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Abstract 

Post-prandial dyslipidemia is associated with the development of atherosclerosis. The 

atherogenic nature of aberrant post-prandial metabolism has been attributed to the 

ability of chylomicron remnants to enter arterial tissue and become entrapped within 

arterial vessels. Thus, interest has grown in the use of chylomicron metabolism for the 

assessment of cardiovascular disease risk. However, only a handful of techniques are 

available for the detection of chylomicrons and standardized methods have yet to be 

established. Ultracentrifugation has been used to isolate a lipoprotein fraction that is rich 

in nascent chylomicrons. More recently, an anti-serum to apolipoprotein B48 has been 

raised as an exclusive marker of chylomicrons, allowing for the specific determination of 

chylomicrons directly from whole plasma. Therefore, the aim of this thesis was to 

contribute knowledge on how best to measure chylomicron metabolism, either from 

whole plasma or a triglyceride rich lipoprotein (TRL) fraction at density < 1.006 g/ml, in 

order to provide the most accurate interpretation of post-prandial lipemia. Study 1: 

Chylomicron concentrations, as measured from whole plasma and TRL fractions, were 

compared in a population with established post-prandial lipemia (hyper-insulinemia). 

Fasting and post-prandial chylomicron concentrations were significantly greater when 

quantified from whole plasma compared to TRL fractions in hyper-insulinemic men. 

Study 2: Whole plasma chylomicron concentrations were utilized to examine post­

prandial metabolism in type 1 diabetes mellitus (T1DM). Subjects with brittle T1DM 

exhibited elevated plasma chylomicron concentrations in the fasting and post-prandial 

state compared to healthy controls, but not from TRL fractions. Collectively, the studies 

of this thesis have shown that the detection of chylomicrons from whole plasma provides 

greater sensitivity to detect potentially atherogenic remnant particles during conditions of 

either hyper-insulinemia or T1 DM. 
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Chapter 1: Introduction 

1.1 Rationale 

Cardiovascular disease (CVD) is the leading cause of death in Canada, accounting for at 

least 36% of all deaths and $21.7 billion in direct and indirect cost of illness (Heart and 

Stroke Foundation of Canada, 2007). Despite the decrease in CVD-related mortality 

between 1997 and 2003, the Heart and Stroke Foundation of Canada (2007) predicts 

that there will be 100,000 more hospitalizations per year due to CVD over the course of 

the next 10 years. Thus, early diagnosis and treatment of CVD are essential in reducing 

its substantial medical, economic, and social burden. By definition, CVD encompasses 

numerous conditions involving the heart, its associated blood vessels, as well as the 

system of arteries and veins throughout the body and the brain. However, the two most 

common forms of CVD are coronary artery disease (CAD) and cerebrovascular disease, 

which are caused by a disease known as atherosclerosis (Heart and Stroke Foundation 

of Canada, 2007). 

Atherosclerosis is a chronic disease characterized by the thickening and stiffening of the 

arterial walls (see details in Section 2.2.3, Figure 2-2) (Luis, 2000). The first stage of the 

pathological process begins with a fatty streak, an intracellular accumulation of 

cholesterol and macrophages within the vessel wall (Libby et al., 2002). The delivery of 

cholesterol to the vessel wall is due to lipid carriers known as lipoproteins (section 2.1). 

Thus, it is thought that increasing arterial exposure to potentially atherogenic lipoproteins 

increases the arterial retention of lipid (Nordestgaard and Tybjaerg-Hansen, 1992). 

Lipoprotein entry through the vessel wall has been shown to occur via transcytosis (the 

vesicular transport from the plasma to the subendothelial space) and is limited to 

particles that have a diameter that can be accommodated by the transcytotic vesicles 
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(maximum 70-80 nm). Initially, intracellular deposition of cholesterol by lipoproteins is 

metabolized by macrophages and removed from the subendothelial space. However, as 

lipid accumulation increases, the functioning of macrophages shifts from protective to 

unregulated, resulting in the formation of "foam cells" and the maturity of the fatty streak 

(Libby et al., 2002). Over time, the fatty streaks progress to mature plaques, consisting 

of foam cells, collagen, lipids and smooth muscle cells at its core (Libby et al., 2002). 

The proliferation of smooth muscle cells leads to a further thickening of the arterial wall 

and subsequent loss of lumen diameter. At this stage, the condition can progress to form 

a plaque that occludes the vessel lumen or to the development a coronary thrombosis, 

both of which can result in a cardiovascular event (Luis, 2000). 

The etiology of atherosclerosis is complex and despite years of research, is not 

completely understood. Further, disease initiation and / or progression of lesions and 

their maturity are difficult to detect and track in humans (Luis, 2000). Consequently, risk 

factors and clinical events (i.e. heart attack or stroke) have traditionally been used to 

estimate disease risk and severity. Specifically, strategies for the prevention and 

management of atherosclerosis primarily target cholesterol, particularly fasting levels of 

low density lipoprotein (LDL) cholesterol, as a key indicator of CVD risk (Genest et al., 

2003). While there is long standing evidence that LDL cholesterol is causally related to 

heart disease , research shows that many patients who present with a clinical event 

have normal fasting lipid concentrations (Cabezas and Erkelens, 2000; Mamo and 

Proctor, 2002). 

Recently, post-prandial lipemia has emerged as a key contributor to CVD risk and its 

progression. For instance, increased plasma concentrations of intestinally-derived 

chylomicrons and their remnants have been identified in normolipidemic patients with 

CAD (Meyer et al., 1996; Rajanatman et al., 1999; Weintraub et al., 1999; Redgrave et 
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al., 2004). Studies also show that elevated plasma levels of chylomicrons are associated 

with chronic conditions that accelerate atherogenesis, such as familial 

hypercholesterolemia, insulin resistance, and type 2 diabetes mellitus (T2DM) (Tomkin 

and Owens, 2001; Lairon et al., 2007). Chylomicrons are associated with the initiation 

and progression of atherosclerosis, because remnant particles are small enough to enter 

the vessel wall and become entrapped in sub-endothelial space (see detailed description 

in Section 2.2.3, Figure 2-2) (Mamo and Wheeler, 1994; Mamo et al., 1998; Proctor et 

al., 2002). Furthermore, Proctor et al. (2004) have shown that chylomicrons can deliver 

more cholesterol to the vessel wall than LDL cholesterol on a per particle basis. 

As the number of studies linking post-prandial metabolism and chronic disease 

increases, interest has grown in the use of chylomicron metabolism as a possible 

indicator of early CVD risk. This, in turn, has raised the question of what method might 

be most appropriate to accurately detect of chylomicrons in plasma. However, the direct 

determination of chylomicrons and their remnants in fasting and post-prandial samples 

has been hampered by the presence of hepatically-derived lipoproteins of similar size 

and composition (Jackson and Wiliams, 2004). Further, the detection of chylomicrons 

has proven difficult because they can be found at different stages of catabolism in 

plasma during the post-prandial phase, and therefore, are heterogeneous in size and 

composition (Cohn, 1999). To date, there are only a handful of techniques able to 

measure chylomicron concentrations. Traditionally, ultracentrifugation has been used to 

isolate a triglyceride-rich (TRL) lipoprotein fraction containing newly synthesized 

(nascent) intestinal chylomicrons at a density < 1.006 g/ml. More recently, an antiserum 

to apolipoprotein (apo) B48 has been raised as an exclusive marker of chylomicrons; 

this has allowed for the specific and direct determination of chylomicrons from whole 

plasma (e.g., immunoblotting and enzyme-linked immunosorbent assays). At present, 
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the concentration of apo B48 is neither easily determined nor standardized. 

Consequently, it is not surprising that apo B48 concentrations in the literature vary as 

much as 10-100 fold thereby confounding comparisons between studies (Jackson and 

Williams, 2004). The method used in the detection of chylomicrons is relevant because 

some methods reflect the plasma concentration of larger, nascent chylomicrons (e.g., 

TRL fractions) whereas others represent smaller remnant particles (e.g., measurement 

from whole plasma) (Cohn, 1999). In order to provide the most accurate interpretation of 

post-prandial lipemia, it is important to employ a method that can detect small 

chylomicron remnants, because the size of the particle is important to its' potential 

atherogenicity. Indeed, there is evidence that chylomicron particles found in density 

fractions > 1.006 g/ml are potentially more atherogenic and may be a better predictor of 

disease risk than the measurement of chylomicrons from TRL fractions (Mamo et al., 

1998; Cohn, 1999). Thus, the specific and accurate detection of chylomicrons from 

whole plasma may potentially capture remnant particles that are of interest. 

To our knowledge, no published reports have examined the methodological differences 

between the use of whole plasma or density fraction < 1.006 g/ml to detect apo B48 

among individuals who are at greater risk from atherogenic effects compared to a 

healthy population. 
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1.2 Thesis Aim 

The primary aim of this thesis was to contribute knowledge on how best to measure 

chylomicron metabolism, either from whole plasma or from a triglyceride-rich 

lipopoprotein (TRL) fraction (density < 1.006 g/ml), in order to provide the most accurate 

interpretation of post-prandial lipemia. 

To achieve this aim, we measured apo B48 in two different study populations: adults 

with hyper-insulinemia and type 1 diabetes mellitus (T1DM). In the first study (Chapter 

3), we investigated methodological differences in a situation of established post-prandial 

lipemia (in this case, hyper-insulinemia), allowing our findings from apo B48 

measurements in whole plasma and density fractions < 1.006 g/ml to be compared and 

validated with knowledge from current literature. Subsequently, we applied the most 

accurate measure of apo B48 (whole plasma or TRL fraction) to investigate post­

prandial metabolism in individuals with T1DM (Chapter 4), as the relationship between 

apo B48 and atherogenesis has not been extensively explored in this population. 
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1.3 General Hypotheses 

The hypotheses for this thesis are as follows: 

1. The detection of fasting apolipoprotein B48 (apo B48) from whole plasma will be 

statistically greater than apo B48 from triglyceride-rich lipoprotein (TRL) fractions 

(density < 1.006 g/ml) in a condition of post-prandial lipemia. 

2. Apo B48 associated-chylomicron concentrations during the post-prandial state, 

as determined by area under the curve (AUC), will be elevated in a condition of 

post-prandial lipemia when measured from whole plasma relative to a TRL 

fraction (density < 1.006 g/ml). 

3. The measurement of apo B48 from whole plasma will detect a significantly 

greater proportion of chylomicron particles at fasting and post-prandial, as 

determined by AUC, in a sample of subjects with brittle type 1 DM compared to 

healthy controls. 

1.4 Specific Objectives 

To test the above hypotheses: 

1. To determine apo B48 levels from both whole plasma and TRL fractions (d < 

1.006 g/ml) during the fasting and post-prandial state, as determined by AUC, in 

a sample of hyper-insulinemic / insulin resistant subjects. 

2. To examine chylomicron metabolism, as measured from whole plasma apo B48 

concentrations at fasting and post-prandial AUC, in a free-living situation among 

normolipidemic subjects with type 1 DM compared to healthy controls. 
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Chapter 2: Literature Review 

2.1 Lipoproteins 

2.1.1 Introduction 

Lipids play a variety of critical biological roles. They are the main storage form of energy 

in most organisms, as well as a major constituent of cell membranes (Nelson and Cox, 

2000). Specialized lipids serve as pigments (retinal, carotene), detergents (bile salts), 

cofactors (vitamin D), hormones (vitamin D), transporters, anchors for membrane 

proteins, and extracellular and intracellular messengers (eicosanoids). The main types of 

lipids found in plasma are triglycerides (TG), phospholipids, unesterified free fatty acids, 

unesterified cholesterol, and cholesterol esters (Nelson and Cox, 2000). Lipids are 

essentially insoluble in water, and consequently, are carried from one tissue to another 

via macromolecules known as lipoproteins. 

Lipoproteins are formed from specific carrier proteins, called apolipoproteins, combined 

with lipids to generate spherical complexes with hydrophobic lipids in the core and 

hydrophilic amino acid side chains at the surface (Nelson and Cox, 2000). Various 

combinations of lipids and proteins produce particles of different densities (Table 2-1). 

As the ratio of lipid to protein varies, the buoyancy and size of the lipoprotein particle 

changes accordingly. In general, as lipoproteins progress from low to high density, they 

display decreasing TG content and increasing cholesterol ester, phospholipid and 

protein. Thus, lipoproteins can be separated by size, density, and/or composition 

(Kritchevsky, 1986). 
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Table 2-1. Major Classes of Human Plasma Lipoproteins: Some Properties 
Lipoprotein 

Nascent 
Chylomicron 

VLDL 

LDL 

HDL 

Density 
(g/ml) 

< 1.006 

0.95-1.006 

1.006-
1.063 

1.063-
1.210 

Size 
(nm) 

100-400 

40-70 

22.5-
27.5 

7.5-10 

Triglyceride 
(% lipid) 

80-95 

55-80 

5-15 

5-10 

Cholesterol 
(% lipid) 

2-7 

5-15 

40-50 

15-25 

Phospholipid 
(% lipid) 

3-9 

10-20 

20-25 

20-30 

Modified from: Kritchevsky D. Atherosclerosis and nutrition. Nutr Int. 1986;2:290-297 

2.1.2 Chylomicrons 

Chylomicrons are intestinally-derived lipoprotein particles and transport dietary fatty 

acids and fat soluble vitamins to the tissues where they are consumed and / or stored as 

fuel. Chylomicrons can be recognized by the presence of their unique structural protein 

apolipoprotein (apo) B48 (Kane et al., 1980). Apo B48 is synthesized from the same 

gene as the hepatically-derived apo B100; however, a stop codon inserted haif-way into 

intestinal mRNA accounts for a protein that is 48% the size of apo B100, and in humans, 

is exclusively secreted from the intestine (Kane et al., 1980). Apo B48 is ideal for the 

determination of chylomicron kinetics as it is indicative of particle number (only one apo 

B48 per chylomicron particle), essential for chylomicron assembly, and not transferred to 

other lipoproteins (Phillips et al., 1997). 

Typically, nascent chylomicrons are TG-rich (88%), reflect dietary fatty acid intake, and 

carry 2-5% of the cholesterol pool (Olson, 1998). Due to the greater TG to protein ratio, 

nascent chylomicrons are large (100-400 nm) and buoyant. Therefore, chylomicrons are 

often termed 'triglyceride-rich lipoproteins' and are traditionally isolated at density < 

1.006 g/ml, with a Svedberg flotation (Sf) value > 400. 
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However, the hydrolysis of chylomicrons generates a remnant that is considerably 

smaller than the nascent chylomicron, between 45 and 60 nm in diameter (Redgrave, 

2004). As a result, chylomicron remnants are TG-depleted (70%), contain less 

phospholipid, and have a greater proportion of cholesterol ester (13%) relative to the 

nascent chylomicron (Cooper, 1997). Chylomicron remnants can exist in density 

fractions > 1.006 g/ml and can be found in the VLDL fraction (Cohn et al., 1999). 

Due to their smaller size, chylomicron remnants are potentially atherogenic lipoprotein 

particles (Cohn et al., 1999; Tomkin and Owens, 2001). Fasting and post-prandial 

chylomicron concentrations, hypothesized to be mostly in remnant form, are elevated in 

a number of diet and lifestyle-related diseases and conditions such as obesity, insulin 

resistance, and type 2 DM (Chen et al., 1993; Curtin et al., 1996; Chan et al., 2002; 

Couillard et al., 2002). While chylomicron remnants exist in plasma at relatively low 

concentrations due to their rapid catabolism, these particles have been shown to deliver 

more cholesterol to the vessel wall than LDL cholesterol on a per particle basis (Proctor 

et al., 2004). Despite advancements in post-prandial research, chylomicron 

measurements have yet to be applied to a routine clinical setting. 

2.1.3 Very Low Density Lipoproteins 

In situations where the diet contains more fatty acid than is immediately required for fuel, 

they are converted into TG in the liver and packaged into very low density lipoproteins 

(VLDL) for transport to muscle and adipose tissue. VLDLs are secreted from the liver 

with apo B100 and apo E on their surface and acquire additional apolipoproteins (e.g. 

apo CI, II and III) in the blood compartment. VLDL particles consist of approximately 7-

10% protein and 90-95% lipid, of which 50-55% is TG, 5-15% is cholesterol, and 10-20% 

is phospholipid (Olson, 1998). VLDL particles share a similar composition to that of 
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chylomicrons due to the large proportion of core lipid and surface TG, and are also 

termed 'triglyceride-rich' lipoproteins. Consequently, VLDLs are isolated at a density 

which overlaps that of chylomicrons (density 0.95-1.006 g/ml) and a Sf rate of 20-400. 

Thus, the presence of apo B100 on the VLDL particle is one of the only means to 

distinguish VLDL from chylomicrons. 

Traditionally, VLDL particles are not believed to be significantly involved in the 

development of atherosclerosis (Nordestgaard, 1992). Although the catabolism of VLDL 

removes up to 75% of lipids and reduces its size, the influx of VLDL to arterial vessels is 

much less compared to other lipoproteins such as LDL (Nordestgaard, 1992). 

2.1.4 Low Density Lipoprotein Cholesterol 

The loss of TG from VLDL particles can lead to the formation of cholesterol-rich 

lipoproteins known as low density lipoproteins (LDL). LDL particles express only apo 

B100 on its surface and are comprised of approximately 22% protein and 78% lipid, of 

which 5-15% is TG, 40-50% is cholesterol, and 20-25% is phospholipid. As a major 

cholesterol-carrying lipoprotein in the blood, LDL transports 70% or more of the plasma 

cholesterol at any one time. LDL particles have a density ranging from 1.006-1.063 g/ml, 

which is greater than that of chylomicrons and VLDL, despite its small size (22.5-27.5 

nm) (Tomkin and Owens, 2001). 

Based on long-standing evidence from experimental animal models, epidemiology, 

genetic forms of hypercholesterolemia, and clinical interventions, fasting plasma 

concentrations of LDL cholesterol have been identified as the primary target for reducing 

the risk of CVD (Genest et al., 2003). It is believed that increased arterial exposure to 

elevated concentrations of LDL is an atherogenic characteristic because LDL particles 

are small enough to enter subendothelial space and undergo modification (Tabas et al., 
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2007). These modified forms of LDL are thought to be responsible for foam cell 

formation, a hallmark feature of early atherosclerotic lesions (Steinberg et al., 1989). 

Despite the substantial body of evidence supporting a positive relationship between LDL 

cholesterol and increased CVD risk, LDL cholesterol alone does not unequivocally 

explain the presence of cholesterol in atherosclerotic plaques. While LDL cholesterol is 

often raised in patients with coronary artery disease (CAD), approximately 40% have 

normal LDL levels (Cabezas and Erkelens, 2000; Mamo and Proctor, 2002). 

2.1.5 High Density Lipoprotein Cholesterol 

High density lipoprotein (HDL) particles begin in the liver and small intestine as small, 

protein-rich lipoproteins that contain relatively little cholesterol and no cholesterol esters. 

High density lipoproteins contain apo A-l, apo CI, apo CM, apo CHI, apo E, and the 

enzyme lecithin cholesterol acyl transferase (LCAT) which catalyzes the formation of 

cholesterol ester from lecithin and cholesterol. LCAT resides on the surface of nascent 

HDL and converts cholesterol and phophatidyl choline of LDL and VLDL to cholesterol 

esters. The cholesterol esters form the core of the disk-shaped nascent HDL, 

transforming it to a mature, spherical HDL particle. The cholesterol-rich, mature HDL 

subsequently returns to the liver where cholesterol is unloaded. Typically, a mature HDL 

particle consists of 5-10% TG, 15-25% cholesterol, and 20-30% phospholipid and is 

collected at density 1.063-1.21 g/ml. 

In contrast to LDL, it is believed that HDL particles confer a protective effect as they 

function to remove excess cholesterol from blood and tissue, including the cholesterol 

loaded cells of atherosclerotic plaques, in reverse cholesterol transport pathways 

(Nelson and Cox, 2000). For instance, in one reverse transport pathway, apo Al in 

depleted HDL interacts with an active transporter, the ABC1 protein, in cholesterol-rich 
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cells. The apo A1 (and HDL particle) are taken up by endocytosis, then resecreted with a 

load of cholesterol to be transported back to the liver (Nelson and Cox, 2000). In a 

second pathway, the nascent HDL particle interacts with the plasma membrane receptor 

protein SR-B1 in cholesterol rich cells which triggers the passive movement of 

cholesterol from the cell surface into HDL (Nelson and Cox, 2000). Moreoever, 

epidemiological studies suggest that every 0.03 mmol/L (1 mg/dL) decrease in HDL 

cholesterol is associated with an increase of 2-3% in CVD (Wilson et al., 1988; Gordon 

et al., 1989). Accordingly, the Canadian Working Group on Hypercholesterolemia and 

Other Dyslipidemias has recommended the use of cholesteroLHDL cholesterol ratio as a 

secondary target of therapy (Genest, 2003) 
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2.2 Chylomicron Metabolism 

2.2.1 Introduction 

The post-prandial period results in a transient accumulation of lipoproteins that mediate 

the transport of dietary lipid in the circulation, namely chylomicrons as well as VLDL. The 

repeated flux of post-prandial lipoproteins through the intra-vascular space over the 

course of the day has led to the hypothesis that the metabolic response following the 

ingestion of a fat-containing meal could have pathological effects on the vessel wall 

(Tomkin and Owens, 2001; Redgrave, 2004). Significant advancements in post-prandial 

research have shown that chylomicrons are associated with atherosclerosis due to their 

ability to penetrate the vessel wall, be preferentially retained in subendothelial space, 

and induce macrophage lipid loading (Tomkin and Owens, 2001; Redgrave, 2004). 

2.2.2 Chylomicrons and Cholesterol Metabolism 

2.2.2.1 Chylomicron Production and Secretion 

The production and secretion of chylomicron particles is dependent on the prandial state 

of the individual (Cartwright and Higgins, 1999). Even in the absence of dietary fat, 

nascent chylomicron particles are synthesized and secreted at a basal rate. However, 

the ingestion of a fat-containing meal leads to a stimulated increased production of 

chylomicrons from the intestine (Cartwright and Higgins, 1999). The formation of the 

chylomicron begins in the endoplasmic reticulum (ER) of the enterocyte and occurs in a 

two-step process (Mansbach and Gorelick, 2007). First, apo B48, apo A1V, cholesterol, 

and small amounts of TG are formed to produce a high-density chylomicron particle 

(Mansbach and Gorelick, 2007). The addition of large neutral lipids (TG and cholesterol) 

to this high-density chylomicron particle leads to the formation of a large, buoyant pre-
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chylomicron (Mansbach and Gorelick, 2007). The TG core of the chylomicron reflects 

the dietary fatty acid composition of meals whereas the outer phospholipid layer of the 

particle reflects body fat (Luchoomun and Hussain, 1999). The pre-chylomicron buds 

from the ER surrounded by a membrane where it subsequently translocates to and fuses 

with the Golgi complex. At the Golgi, apo A1 attaches to the pre-chylomicron to form a 

mature particle which exits the Golgi complex in large transport vesicles and fuses with 

the basolateral membrane to be secreted into lymphatic collecting ducts (Mansbach and 

Gorelick, 2007). 

2.2.2.2 Chylomicron Clearance 

Once secreted, the first step in chylomicron clearance is the hydrolysis of the TG core by 

lipoprotein lipase (LPL), an enzyme on the surface of endothelial cells in skeletal muscle 

and adipose tissue that releases TG, free fatty acids and free cholesterol (Redgrave, 

2004) (Figure 2-1). The actions of LPL are aided by the cofactor apo CM (Shelburn et al., 

1980; Windier et al., 1980). Investigators have hypothesized that one of the functions of 

apo C is to ensure that chylomicrons have sufficient time to be hydrolysed in the plasma 

(Shelburn et al., 1980; Windier et al., 1980). 

The hydrolysis of nascent chylomicrons leads to the formation of small, dense remnants. 

These remnant particles are removed from the circulation via receptor-mediated 

processes (Cooper et al., 1982). The composition of apolipoproteins associated with the 

chylomicron particle changes during the course of its metabolism; it gains more apo E 

while losing apo A. The addition of apo E to the chylomicron is of particular significance 

because apo E is the primary protein that interacts with the apo B100/apo E (or LDL) 

receptor for remnant clearance on the hepatocyte surface (Cooper et al., 1982). It has 

been shown that apo E has a high affinity for the apo-B100/apoE receptor, allowing for 
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the rapid clearance of chylomicron remnants from the circulation (Mahley and Innerarity, 

1983). 
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Figure 2-1. Schematic diagram of chylomicron hydrolysis and clearance by receptor-
mediated processes 

2.2.3 Chylomicrons in Atherogenesis 

For individuals at risk for CVD, chylomicrons can be poorly hydrolysed and their 

clearance via hepatic receptor-mediated pathways can be delayed (Coppack, 1997; 

Malmstrom et al., 1997). There is also emerging evidence that both the production and 

secretion of chylomicron particles may be up-regulated during disease states with 

accelerated atherogenesis, including obesity, insulin resistance and type 2 diabetes 

mellitus (T2DM) (Haidari et al., 2007; Duez et al., 2006; Hogue et al., 2007). The 

etiological significance of increased levels of chylomicron remnants in the circulation is 

that these particles are small enough to enter and become entrapped within the intima of 

arterial vessels (Mamo et al., 1994; Mamo et al., 1998; Proctor et al., 2002) (Figure 2-2). 

Moreover, chylomicron remnants can be preferentially retained relative to other 
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lipoprotein fractions. In a study by Proctor et al. (2004), the delivery and efflux of both 

chylomicron remnants and LDL in the vessel wall were compared. While LDL particles 

had a higher rate of delivery, they effluxed more readily from arterial tissue compared to 

chylomicron remnants. Furthermore, chylomicron remnants can contribute substantially 

to the intimal deposition of cholesterol as they contain 42 times more cholesterol 

compared to LDL particles (Proctor et al., 2002). Hence, the accumulation of 

chylomicron remnants during conditions of post-prandial lipemia is relevant for CVD risk. 

Upon entrapment in the subendothelial space, post-prandial lipoproteins are known to 

induce the inflammatory state by multiple mechanisms (Alipour et al., 2008). 

Chylomicrons have been found to have a chemotatic effect on human-derived 

monocytes in vivo (Proctor, 2000). Also, chylomicrons have been shown in vitro to 

induce the expression of endothelial cell adhesion molecule-1 (ECAM-1) and vascular 

adhesion molecule-1 (VCAM-1) on human endothelial cells (Moers et al., 1997). 

Monocyte recruitment and adhesion to the endothelium is an important step in the 

atherogenic process as monocytes differentiate to form macrophages at the site of the 

atherosclerotic lesion. Gianturco et al. (1998) have demonstrated that there are specific 

receptors on the macrophage for apo B48-containing lipoproteins. Moreover, Brown et 

al. (2000) found that lipoprotein uptake by the apo B48 receptor converts macrophages 

into lipid filled foam cells and advances the fatty streak. 

As the atheroma matures, T-cells release hydrolytic enzymes such as metalloproteases 

which lead to local cell death (Ross, 1999). The accumulation of necrotic inflammatory 

cells, smooth muscle cells and fibrous tissues restructures the lesion and forms a fibrous 

cap (Ross, 1999). Injury to the artery wall may affect its ability to dilate and improve 

blood flow (Ross, 1999). Many processes are believed to affect the normal functioning of 

the vessel wall during the development of atherosclerosis. One possible mechanism is 
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the impairment of endothelium-dependent vasorelaxation by chylomicron remnants 

(Grieve et al., 1998; Doi et al., 1998). Thus, the inability of the artery to compensate in 

the presence of a lesion (i.e., by dilating) may lead to an occlusion in blood flow (Ross, 

1999). Alternately, an eventual weakening or tearing of the plaque may cause 

hemorrhaging and luminal thrombosis. In either case, the occlusion of the vessel may 

result in ischemia, myocardial infarction and / or stroke (Schroder and Falk, 1996). 

Figure 2-2. Schematic diagram of the initiation of atherosclerosis: lipid deposition and 
entrapment in the vessel wall 

2.2.4 Chylomicrons and Clinical Studies of Coronary Artery Disease 

Clinically, the persistent and substantial impairment of chylomicron remnant clearance 

and metabolism is pertinent for individuals with or at risk of CAD. This is particularly 

relevant for subjects whose concentrations of LDL cholesterol are within the normal 

range (Meyer et al., 1996; Rajanatman et al., 1999; Weintraub et al., 1999; Redgrave, 

2004). In a study by Meyer et al. (1996), fasting apo B48 levels were significantly higher 

among normolipidemic subjects (n = 24; mean age: 60 ± 2 years) with CAD (as verified 

by coronary angiography) compared to healthy controls (0.25 ± 0.03 versus 0.15 ± 0.03 

integrated optical density units; p < 0.05) Similarly, Rajanatman et al. (1999) found 
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increased fasting apo B48 levels in post-menopausal women (n = 24) with CAD versus 

women without CAD (3.10 ± 0.39 mg/L versus 1.67 ± 0.22 mg/L; p < 0.001) despite 

similar serum TG, total cholesterol and total apo B concentrations. In addition to 

elevated fasting apo B48, subjects with CAD demonstrated post-prandial lipemia 

compared to controls, indicated by the higher apo B48 incremental area under the curve 

(iAUC) (20.6 ± 2.8 versus 11.0 ± 1.2; p<0.01) (Rajanatman et al., 1999). 

2.2.5 Conclusion 

Increased post-prandial lipemia is recognized as a CAD risk factor, and impaired 

metabolism of chylomicrons and their remnants is believed to contribute directly to the 

initiation and progression of atherosclerosis (Tomkin and Owens, 2001). Although there 

is strong rationale for measuring chylomicrons to assess metabolic lipid abnormalities or 

risk of CAD, this procedure has not yet been applied to routine clinical practice. 

Currently, the expansion of the field of chylomicrons has been limited. One of the main 

reasons is that no agreement exists as to the best way to quantify chylomicrons (Cohn, 

2006). Thus, a comparison of chylomicron methodology (whole plasma and TRL 

fractions) forms the basis for this thesis. A summary of the different approaches that 

have been undertaken to detect chylomicrons is discussed in section 2.4. 
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2.3 Chylomicron Metabolism in Insulin Resistance / Hyper-insulinemia and Type 1 
Diabetes Mellitus 

2.3.1 Chylomicron Metabolism in Insulin Resistance / Hyper-insulinemia 

2.3.1.1 Introduction 

With the prevalence of diabetes, particularly T2DM, reaching epidemic proportions in 

Canada and worldwide, achieving a better understanding of the role of insulin resistance 

in chronic disease risk is gaining prominence (Harris et al., 1998; Leiter et al., 2001; 

Dunstan et al., 2002). An elevated chylomicron response following a meal challenge has 

been demonstrated in insulin resistance (Abbasi et al., 1999; Ai et al., 2000; Harbis et 

al., 2001; Duez et al., 2006) as well as other conditions in which insulin resistance is a 

common clinical symptom, such as obesity, the metabolic syndrome, and T2DM (Curtin 

et al., 1996; Chen et al., 1999; Mekki et al., 1999; Chan et al., 2002). Therefore, in this 

thesis, we have selected hyper-insulinemia / insulin resistance as a model of post­

prandial lipemia to better understand the clinical applicability of apo B48 methods 

(Chapter 3). As such, the following provides further background on chylomicron 

metabolism in relation to insulin resistance and diabetes. 

2.3.1.2 Physiological Role of Insulin 

Insulin is a peptide hormone secreted by the (3 cells of the pancreatic islets of 

Langerhans and plays a pivotal role in regulating cellular energy supply and directing 

anabolic processes of the fed state (Burks and White, 2001). Insulin is essential for the 

intra-cellular transport of glucose, via glucose transport protein 4, into insulin-dependent 

tissues such as muscle and adipose tissue (Burks and White, 2001). By signaling an 

abundance of exogenous energy following the ingestion of a meal, insulin suppresses 

adipose tissue fat breakdown and promotes adipose tissue synthesis (Karam, 1997). In 
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muscle, glucose entry into cells enables glycogen to be synthesized and stored and for 

carbohydrates, rather than fatty acids or amino acids, to be utilized as the immediately 

available energy source for muscle contraction (Karam, 1997). Therefore, insulin 

promotes glycogen and lipid synthesis in muscle cells while suppressing lipolysis and 

gluconeogenesis from muscle amino acids. 

2.3.1.3 Chylomicrons and Clinical Studies of Insulin Resistance / Hyper-lnsulinemia 

Insulin resistance is a condition in which the adipose, skeletal muscle, and hepatic cells 

of the body become resistant to the effects of insulin; the normal response to a given 

amount of insulin is reduced (Reaven, 2004). Consequently, insulin secretion from 

pancreatic (3 cells is increased in an attempt to maintain normal blood glucose levels in a 

process known as compensatory hyper-insulinemia (Wilcox, 2005). Impairment of insulin 

secretion and defects in insulin action frequently coexist in the same individual, and it is 

often unclear which abnormality, either together or alone, is the primary cause of the 

hyperglycemia. Further, insulin resistance precedes the development of type 2 DM 

(Wilcox, 2000). A variety of approaches have been utilized to assess insulin resistance 

(Wilcox, 2005). The most robust methods for measuring insulin resistance are limited to 

research settings due to their high cost, invasiveness and need for clinical skill (e.g., 

euglycaemic hyper-insulinemic clamp, frequently sampled intravenous glucose tolerance 

test) (Wilcox, 2005). Fasting plasma insulin is the most widely used clinical indicator of 

insulin resistance (Wilcox, 2005). 

Importantly, insulin resistance / compensatory hyper-insulinemia increases the risk of 

CVD in non-diabetic individuals (Pyorala, 1979; Despres et al., 1996; Yip et al., 1998; 

Zavaroni et al., 1999). However, the role of insulin resistance in CVD risk is complex due 

to the fact that multiple CVD risk factors exist in individuals with this condition (Wilcox, 
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2005). In this context, increasing attention has been given to the atherogenicity of 

intestinally-derived chylomicron particles. It is now appreciated that individuals with 

insulin resistance / hyper-insulinemia have elevated concentrations of post-prandial 

lipoproteins (Abbasi et al., 1999; Ai et al., 2000; Harbis et al., 2001; Duez et al., 2006). 

For instance, Harbis et al. (2001) induced acute hyper-insulinemia among 10 healthy 

men (n = 10; 21-30 years of age) by two methodological approaches. First, various 

isolipidic test meals were used to stimulate different degrees of hyper-insulinemia. Apo 

B48 plasma concentration and insulin plasma concentration were found to be strongly 

correlated (r2 = 0.70; p = 0.0001). Second, by utilizing a 3-hour hyperinsulinemic-

euglycemic clamp, portal hyper-insulinism delayed and exacerbated the accumulation of 

apo B48 chylomicron-containing particles. Collectively, Harbis et al. (2001) found that 

increased chylomicron concentrations were associated with hyper-insulinemia in the 

absence of insulin resistance. Furthermore, Duez et al (2006) examined apo B48 

metabolism in the fed state among 14 hyper-insulinemic, insulin resistant men (31-60 

years of age) with a 15-hour primed constant infusion of [D3]-L-leucine. In this study, 

apo B48 intestinal production rate was significantly higher in hyper-insulinemic, insulin 

resistant subjects (1.73 ± 0.39 versus 0.88 ± 0.13 mg/kg/day; p < 0.05) and correlated 

with fasting plasma insulin concentrations (r = 0.558; p = 0.038). The relationship 

between insulin resistance and post-prandial chylomicrons has been frequently explored 

in the literature. Therefore, an insulin resistant / hyper-insulinemic population was 

utilized in this thesis to compare apo B48 measurements from whole plasma and density 

fractions < 1.006 g/ml. 
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2.3.1.4 Chylomicrons and Clinical Studies of Overweight / Obesity 

Insulin resistance increases with greater body mass index (BMI) (weight in kilograms 

divided by height in meters squared), waist circumference and waist-to-hip ratio (WHR) 

(Aronne and Segal, 2002). Thus, it is not surprising that a positive relationship between 

obesity and post-prandial lipemia has also been repeatedly reported in the adult 

population (Mekki et al., 1999; Watts et al., 2001; Chan et al., 2002; Couillard et al., 

2002). Couillard et al. (2002) found in a sample of 43 men (mean age 43.1 ± 9.6 years) 

that visceral abdominal fat was significantly associated with a decreased catabolism and 

an increased accumulation of apo B48-containing chylomicron particles (r = 0.30-0.44; p 

< 0.05). Similarly, Mekki et al. (1999) found elevated concentrations of chylomicron 

particles in abdominally obese women (WHR > 0.80 cm) compared to controls who were 

either lean or gynoid obese (n = 24, age 24-57 years; p < 0.05 for both comparisons). 

More recently, evidence has emerged suggesting that overweight children (n = 40; 7-11 

years old) also have chylomicron concentrations equivalent to that found in adults 

diagnosed with CVD (Nzekwu et al., 2007). 

2.3.1.5 Chylomicrons and Clinical Studies of the Metabolic Syndrome 

Insulin resistance and obesity often exist among a constellation of other symptoms and 

conditions which are risk factors for chronic diseases. Many obese individuals have the 

metabolic syndrome (Lairon et al., 2007). However, there is no consensus regarding the 

operational definition of the metabolic syndrome. In 1998, the World Health Organization 

proposed a definition of the metabolic syndrome as 3 criteria among the following: 

elevated waist circumference (> 102 cm in men and > 88 cm in women); elevated 

triglyceridemia (> 1.7 mmol/l); low HDL cholesterol (< 1.0 mmol/l in men and < 1.3 

mmol/l in women); elevated glycaemia (s 6 mmol/l); hypertension (systolic blood 
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pressure s 130; diastolic blood pressure S: 85 mm Hg) (Alberti and Zimmet, 1998). More 

recently, the United States Expert Panel on Detection, Evaluation, and Treatment of 

High Blood Cholesterol in Adults (2001) provided a definition that does not include a 

measure of insulin resistance and is based on the following 3 or more criteria: elevated 

waist circumference (> 102 cm in men and > 88 cm in women); TG s 1.7 mmol/l; fasting 

plasma glucose > 6.0 mmol/l; low HDL cholesterol (< 1.0 mmol/l in men and < 1.3 mmol/l 

in women); blood pressure > 130/85 mm Hg. While post-prandial dyslipidemia is a 

common feature among those at increased metabolic risk (Mekki et al., 1999; Kim et al., 

2002; Lovegrove et al., 2002; Harbis et al., 2004), the complexity of this condition means 

that subject selection is more difficult due to their metabolic heterogeneity. 

2.3.1.6 Chylomicrons and Clinical Studies of Type 2 Diabetes Mellitus 

The progressive inability of pancreatic (3 cells to compensate for chronic insulin 

resistance with sufficient hyper-insulinemia signals the clinical onset of T2DM (Reaven, 

2004). T2DM is the most common form of diabetes, accounting for approximately 90-

95% of all cases (Canadian Diabetes Association, 2003). T2DM ranges from a 

predominantly insulin resistant condition with relative insulin deficiency to a 

predominantly insulin secretory defect with insulin resistance (Canadian Diabetes 

Association, 2003). The diagnostic criteria for T2DM and the plasma glucose thresholds 

are as follows: fasting plasma glucose s 7.0 mmol/L or casual (any time of day) plasma 

glucose > 11.1 mmol/L plus symptoms of diabetes (polyuria, polydipisia, unexplained 

weight loss, etc), or 2 hour plasma glucose > 11.1 mmol/L following a 75-g oral glucose 

tolerance test (Canadian Diabetes Association, 2003; World Health Organization, 2006). 

It is well established that the post-prandial profile is elevated in people with T2DM 

compared to healthy controls (Curtin et al., 1996, Mero et al., 2000; Taniguchi et al., 
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2000; Ai et al., 2001; Dane-Stewart et al., 2003). Curtin et al. (1996) found that the post­

prandial apo B48-associated chylomicron concentration was greater among subjects 

with T2DM (n = 18; age 62 ± 0.3 years). Moreover, participants with T2DM exhibited 

both a prolonged increase and a later post-prandial peak of chylomicron particles 

compared to healthy controls (p < 0.01). Because individuals with T2DM have an 

increased risk of developing atherosclerosis, researchers have explored the post­

prandial response of subjects with T2DM and CAD. For instance, Mero et al. (2000) 

conducted a case-control study of 43 T2DM subjects with severe (n = 26) and mild (n = 

16) CAD (verified by coronary angiogram). In this study, post-prandial apo B48 

concentrations were elevated in participants with T2DM, even in those with only mild 

CAD (p < 0.003). Furthermore, the most significant coronary stenosis correlated with 

chylomicron apo B48 area under the curve (AUC) (r = 0.548; p = 0.01). Most nutritional 

studies performed in the field of post-prandial metabolism utilize subjects with T2DM 

(Lairon, 2007). However, many of these participants are also overweight and / or exhibit 

features of the metabolic syndrome, making subject selection of particular importance in 

order to minimize intra-sample heterogeneity. 

2.3.1.7 Mechanisms Underlying Abnormal Chylomicron Metabolism in Insulin Resistance 
/ Hyper-lnsulinemia 

Individuals with insulin resistance have an exaggerated and prolonged chylomicron 

response in the blood following a dietary fat challenge (Howard, 1999). The mechanisms 

underlying the overaccumulation of chylomicron particles have not been fully 

characterized and studies have suggested a mixed contribution of impaired LPL activity 

(Howard, 1999), reduced recognition of hepatic receptors (Coppack et al., 1997; 

Malstrom et al., 1997), and intestinal overproduction (Haidari et al., 2002; Lewis et al., 

2005) (Figure 2-3). 
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Post-prandial chylomicron overaccumulation may indirectly result from increased hepatic 

VLDL production during the insulin resistant state. Hepatic insulin resistance leads to the 

inappropriate secretion of VLDL in the fasting and post-prandial phase (Malstrom et al., 

1997) because poor insulinization increases adipocyte lipolysis and provides free fatty 

acid (FFA) substrate for hepatic VLDL production (Chen et al., 1987; Swislocki et al., 

1987). Since VLDL and chylomicron particles can compete for LPL activity, an increase 

in hepatic VLDL release may prolong the residence time of chylomicrons in circulation 

(Havel, 1994). 

Elevated post-prandial chylomicron concentrations in insulin resistance may result 

directly from decreased LPL activity. It has been hypothesized that alterations in 

biologically active LPL functioning may arise from defects in cellular production 

(Semenkovich et al., 1989; Tavangar et al., 1992) and / or transport of LPL to the luminal 

side of capillary endothelial cells (Knutson, 2000). There is also evidence to suggest that 

insulin therapy improves LPL activity in subjects with insulin resistance and T2DM 

(Taskinen and Nikkila, 1979; Yost et al., 1995; Bagdade et al., 1997). Furthermore, the 

chronic hyperglycemia associated with insulin resistance can lead to the glycation of 

proteins such as apo E. Changes in ligand properties have been shown to impair the 

normal interaction of the apo B100 / apo E receptor with chylomicron remnant particles, 

and thereby affecting remnant clearance (Curtiss and Witztum, 1985; Mamo et al., 

1990). Finally, emerging evidence indicates that both the production and secretion of 

chylomicron particles is up-regulated during disease states such as insulin resistance 

and T2DM (Adeli and Lewis, 2008). Recent studies utilising cultured primary enterocytes 

from fructose-fed, insulin-resistant hamsters have found an increased secretion of 

intestinally-derived chylomicron particles (Haidari et al., 2002; Lewis et al., 2005). The 

findings from animal studies have been confirmed in humans using a primed constant 

25 



infusion of L-[5,5,5-D3] leucine in the fed steady state (Duez et al., 2006; Hogue et al., 

2007). A greater intestinal secretion of chylomicron particles has been demonstrated in 

subjects with hyperinsulinemia (Duez et al., 2006) and T2DM (Hogue et al., 2007) 

compared to healthy controls. 
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Figure 2-3. Schematic diagram of aberrant chylomicron metabolism in insulin resistance 
/ hyper-insulinemia 
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2.3.2 Chylomicron Metabolism in Type 1 Diabetes Mellitus 

2.3.2.1 Introduction 

Type 1 diabetes mellitus is marked by cellular-mediated autoimmune destruction of 

pancreatic (3 cells resulting in an absolute deficiency of insulin secretion (Canadian 

Diabetes Association, 2003). Markers of immune destruction of (3 cells include auto­

antibodies to insulin, auto-antibodies to glutamic acid decarboxylase, and auto­

antibodies to tyrosine phosphatases IA-2. Usually, one or more these auto-antibodies 

are present in 85-90% of individuals when fasting hyperglycemia is initially detected 

(Canadian Diabetes Association, 2003). The plasma glucose threshold for a clinical 

diagnosis of T1 DM is the same as T2DM (section 2.3.1.6). 

As with insulin resistance and T2DM, individuals with T1 DM are at an increased risk (3-4 

fold) of developing CVD compared to an age-matched non-diabetic population (Kannel 

and McGee, 1979). However, despite the increased CVD risk, classic fasting lipid 

indices (HDL cholesterol, LDL cholesterol and / or TG concentrations) are often normal 

in individuals with T1DM (Howard, 1987). Moreover, the increased atherosclerotic risk 

may not be attributed to other non-lipid risk factors, as there is no increased prevalence 

of hypertension, obesity, or smoking in this population (Howard, 1987). Currently, the 

etiology for increased atherosclerotic risk in T1 DM is not well understood and shapes the 

foundation of Chapter 4 in this thesis. 

2.3.2.2 Chylomicrons and Studies in Type 1 Diabetes Mellitus 

While the association of impaired chylomicron metabolism appears better defined in 

dietary and lifestyle related diseases (obesity, insulin resistance, metabolic syndrome 

and T2DM), the role of these particles in T1DM is unclear. In T1DM, a limited number of 

animal studies have examined chylomicron metabolism in streptozotocin-induced 
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diabetic rats (Redgrave and Snibson, 1977; Levy et al., 1985). In an autologous study, 

Redgrave and Snibson (1977) injected labeled chylomicrons from thoracic duct lymph in 

control and diabetic rats following a test meal containing 14C cholesterol and 2-3H 

glycerol trioleate to determine if chylomicron clearance rates differed between the 2 

groups. Redgrave and Snibson (1997) found that diabetic rats demonstrated a 

decreased clearance of chylomicron particles compared to controls. Furthermore, a 

human study of men with T1 DM (n = 6; mean age 33 ± 4.9 years) found an elevation of 

apo B in the TRL fraction (Sf 100-400) compared to healthy controls (Georgopoulos and 

Phair, 1991). To date, no studies have examined apo B48 remnant particle metabolism 

in the human T1 DM population. 

2.3.2 Conclusion 

Conducting the two studies outlined in this thesis was important for several reasons. In 

relation to insulin resistance, evidence suggests that this condition precedes type 2 DM 

and places individuals at increased risk for CVD morbidity and mortality (Pyorala, 1979; 

Despres et al., 1996; Yip et al., 1998; Zavaroni et al., 1999; Canadian Diabetes 

Association, 2003). Further, post-prandial lipemia is well established in this population 

(Howard, 1999). This allows for apo B48 measurements from whole plasma and density 

fractions < 1.006 g/ml to be compared and validated with knowledge from current 

literature. Finally, the method that most accurately measures chylomicron remnants in 

density fractions > 1.006 g/ml will be used to explore apo B48 metabolism in type 1 DM. 
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2.4 Detection of Chylomicrons 

2.4.1 Introduction 

As impaired chylomicron metabolism becomes increasingly recognized as a risk factor 

for CVD, it is only logical that researchers and clinicians suggest the need to measure 

plasma lipoprotein levels in the fed state. To date, there are only a few techniques 

available for the detection of chylomicrons, and these methods differ in their ability to 

detect small, potentially atherogenic remnant particles (Cohn, 2006). Thus, the final 

phase of this literature review provides an overview of methods that have historically 

been used to quantify chylomicron concentrations as well as newer techniques available. 

2.4.2 Triglyceride-Rich Lipoprotein Fractions 

The primary change elicited in the circulation following a fatty meal is a transient 

elevation in triglyceride-rich lipoproteins (TRL) derived from the intestine (chylomicron) 

and the liver (VLDL). Density grading and sequential ultracentifugation have traditionally 

been used to separate chylomicrons from VLDL because the density of buoyant, 

nascent chylomicron particles is slightly lower than that of VLDL (Cohn, 2006). 

Classically, chylomicrons have been collected from plasma by ultracentrifugation at 

density < 1.006 g/ml. 

While sub-fractioning is common practice for the separation of lipoproteins, it is limited 

by variations in lipoprotein particle size, particularly in the post-prandial state (Cohn et 

al., 1999). The size of the chylomicron is dependent upon the degree of delipidation that 

has occurred in the circulation prior to sampling. Thus, up to 50% of the total apo B48 

pool can consist of smaller remnants that are found in VLDL, and to a lesser degree, the 

LDL fraction (Cohn et al., 1999). As the size and density of the particle are important to 
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its' potential atherogenicity, the determination of chylomicrons with TRL sub-fractions 

may omit remnant particles at density > 1.006 g/ml that are of relevance to the etiology 

of atherosclerosis. Furthermore, ultracentrifugation remains a labor intensive process. 

Hence, researchers have often utilized proxy measures for the assessment 

chylomicrons and their remnants. 

2.3.2 Indirect Measures 

2.3.2.1 Remnant-Like Particle Cholesterol 

In recent years, remnant-like particle cholesterol (RLP-C) concentrations have been 

used as an alternative approach to assess CVD risk associated with dysfunctional 

postprandial metabolism (Havel et al., 2000). RLP-Cs are partially catabolised 

lipoproteins derived from the lipolysis of intestinal apo B48-containing chylomicrons and / 

or hepatic apo B 100-containing VLDL. Thus, these small, dense remnants are TG-

depleted as well as cholesterol and apo E enriched (Cohn et al., 1999). 

It has been shown that RLP-C concentrations are elevated in obesity (Chan et al., 2002), 

insulin resistance (Abbasi et al., 1999; Ai et al., 2000; Ai et al., 2001; Ohnishi et al., 

2002; Schaefer et al., 2002; Funada et al., 2004) and CAD (Higashi et al., 2001; 

Schaefer et al., 2001; Dane-Stewart et al., 2003; Imke et al., 2005). However, RLP-C 

measurements lack specificity and detect both apo B100 and apo B48-containing 

lipoproteins (Cohn, 2006). Thus, the use of RLP-C as a measure of post-prandial 

metabolism does not necessarily allow investigators to distinguish the separate actions 

of intestinally-derived chylomicron particles and hepatically-derived lipoproteins in the 

role of atherogenesis. 
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2.4.2.3 Retinal Esters 

The measurement of post-prandial retinyl esters (RE) in the blood has been used to 

identify the presence of chylomicrons and their remnants (Cohn, 2006). The concept for 

the use of RE as a measure of the clearance of chylomicron particles is as follows: 

dietary lipophylic vitamin A molecules are esterified in the intestine, incorporated into the 

core of a chylomicron particle, and remain associated with the chylomicron from 

intestinal secretion until hepatic remnant clearance. A decreased clearance of plasma 

RE after vitamin A ingestion has been demonstrated in studies with T2DM subjects 

(Chen et al., 1993) and CAD (Simpson et al., 1990; Groot et al., 1991; Weintraub et al., 

1996). Although the measurement of REs has been widely used to assess post-prandial 

metabolism, several studies have drawn attention to the shortcomings of this approach 

(Cohn et al., 2006). For example, Rajaratnam et al. (1999) studied 54 women (mean 

age: 52.3 ± 0.5 years) and found that the total post-prandial AUC and peak iAUC for RE 

did not differ between women with CAD (defined as angiographically proven stenosis of 

50% in at last one coronary artery) versus matched controls. However, in the same 

study, determination of chylomicron concentrations with other methods (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis [SDS-PAGE] and coomassie staining), 

showed that women with CAD had a significantly greater chylomicron AUC (p < 0.001) 

compared to controls and adjustments for fasting concentrations did not alter the post­

prandial findings (p = 0.01). Similarly, a study by Mero et al. (2000) compared the post­

prandial response of men and women with T2DM (n = 43; mean age: 57.7 ± 1.1 years) 

and CAD (defined as angiographically proven stenosis) to controls without CAD. While 

the measurement of RE did not find an elevated response in either plasma or 

chylomicron fractions (Sf > 400) among T2DM subjects with CAD versus controls, 

determination with SDS-PAGE and coomassie blue staining demonstrated a correlation 
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between chylomicron AUC and the most severe coronary stenosis (r = 0.461; p = 0.041). 

These differences may be attributed to the shortcomings of utilising RE as a proxy 

measure of chylomicron concentrations. Some studies have shown that more RE 

molecules are incorporated into larger chylomicron particles (Karpe et al., 1995). 

Furthermore, other investigators have reported a transfer of RE between lipoproteins, 

and consequently, RE molecules have been found in lipoprotein particles of hepatic 

origin (Krazinski et al., 1990; Cohn et al., 1993;). Thus, plasma concentration of RE may 

potentially be an unreliable marker of intestinally-derived chylomicron particles, thereby 

limiting its use as a method for assessing post-prandial lipemia. 

2.4.2.4 13C Breath Test 

The 13C breath test is a functional assessment of chylomicron remnant metabolism and 

has been used to examine post-prandial metabolism in hyperlipidemic, obese and insulin 

resistant subjects (Redgrave et al., 2001; Watts et al., 2001; Chan et al., 2002; Dane-

Stewart et al., 2003) (Table 2-3). The appearance of 13C03 in the breath is measured 

following the intravenous injection of a lipid emulsion labelled with cholesteryl 13C-oleate 

(Redgrave et al., 2001). The lipid emulsion mimics the composition and physiology of 

chylomicron remnants, and their removal by receptor-mediated processes releases 

labelled 13C that in turn is expired in the form of 13C02 (Redgrave et al., 2001). 

Utilising the 13C breath test in a cross-sectional study, Watts et al. (2001) found that 

centrally obese men (n=24; mean age: 43.4 ± 2.4) demonstrated a decreased fractional 

catabolic rate (FCR) of remnant-like particles compared with lean subjects (0.061 ± 

0.014 versus 0.201 ±0.048 pools/h; p = 0.016). Similarly, Dane-Stewart et al. (2001) 

showed that post-menopausal women with type 2 DM (n=24; mean age: 60 ± 1 years) 

had an increased initial appearance of 13C02 over time versus non diabetic women (p < 
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0.01). Diabetic women also had a significantly lower FCR than non-diabetic women 

(0.06 ± 0.05 pools/hr versus 0.12±0.02 pools/hr; p= 0.007) (Dane-Stewart et al. 2001). 

Nevertheless, the breath test has not yet been used to identify individuals with CAD in 

the absence of other conventional risk factors. Furthermore, no commercial kits are yet 

available for the breath test. 

2.4.4 Direct Measures of Chylomicron Metabolism 

2.4.4.1 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis is the most widely used 

approach for the detection of apo B48 containing lipoproteins and is the only means of 

distinguishing apo B48-containing chylomicrons from apo B100-containing VLDL 

particles (Jackson and Williams, 2004). Samples are first prepared through 

ultracentrifugation to create a TRL fraction (density < 1.006 g/ml) that is rich in newly 

synthesized chylomicrons (Jackson and Williams, 2004). Apo B48 proteins are then 

separated on a polyacrylamide gel based on molecular weight (260 kDa), and the 

proteins are visualized with coomassie blue staining (Jackson and Williams, 2004). The 

quantification of the apo B48 band is conducted by densitometric scanning of gels as 

there is a linear (Karpe and Hamsten, 1994) or power relationship (Kotite et al., 1995) 

between protein content and dye uptake depending on the type of stain used. Within the 

literature, apo B48 has been measured: (1) as a percentage of fasting or peak 

concentrations, (2) as a ratio to apo B100, (3) as absolute apo B48 concentrations from 

a standard curving using apo B100 derived from LDL or (4) with affinity purified apo B48 

(Jackson and Williams, 2004). 

While SDS-PAGE with coomassie staining is an established method for measuring apo 

B-48 concentrations in TRL fractions, it is a multi-step process with no universally 
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consistent protocol. Variability is introduced into this method due to the type of gel (rod 

versus slab), gel stain, and two-dimensional scanning methods used (Jackson and 

Williams, 2006). Thus, large ranges in fasting levels of apo B48 are observed from this 

method. Table 2-4 summarizes the studies that have employed ultracentrifugation, SDS-

PAGE, and coomassie staining to determine chylomicron metabolism in subjects with 

obesity, insulin resistance, and CVD. 

2.4.3.2 Enzyme Linked Immunosorbent Assays 

Recently, the raising of an anti-serum to apo B48 has allowed for the direct 

determination of chylomicrons by enzyme-linked immunosorbent assay (ELISA). With 

the availability of an anti-serum to apo B48, Uchida et al. (1998), Lorec et al. (2000) and 

Sakai et al. (2003) have developed ELISAs for the specific determination of apo B48 

directly from whole plasma without the need for isolating TRL fractions (Table 2-5). The 

procedure, originally designed by Lorec et al. (2000), utilises a competitive ELISA in 

which apo B48 anti-serum is coated on an ELISA plate and samples are pre-incubated 

with apo B48 anti-serum before addition to the plate. The amount of anti-serum bound 

on the plate is inversely proportional to the concentration of apo B48 in the samples. 

Uchida et al. (1998) and Sakai et al. (2003) have each developed sandwich ELISAs 

whereby monoclonal anti-apo B48 antiserum is coated onto the ELISA plate before 

incubation with serum samples. The concentration of apo B48 in samples is proportional 

to the amount of apo B48 bound to the monoclonal anti-serum. Lovegrove et al (1996) 

has employed human lymph as a standard for apo B48 in an attempt to mimic 

chylomicrons found in density fractions < 1.006 g/ml. However, Sakai et al (2003) has 

used recombinant human apo B48 containing lipoproteins derived from cell culture 

medium of rat hepatoma McA-RH7777 cell lines. 

34 



Although the ELISA method is specific and allows for a high throughput of samples, 

several methodological limitations remain. The storage and preparation of samples for 

the ELISA technique can affect the exposure of immunogenic sites on apo B48 (Jackson 

et al 2004). Further, the use of monoclonal antibodies in ELISA has made this approach 

less sensitive, due to fewer epitope binding sites, compared to immunoblotting with 

polyclonal antibodies. As the ELISA method is not yet standardized, a wide range of 

results are obtained in the literature which limits its clinical utilization and applicability 

(Jackson and Williams, 2004). 

2.4.3.3 Immunoblotting 

The raising of polyclonal (Lorec et al., 2000) anti-serums to apo B48 has allowed for the 

development of assays, such as immunoblotting, which are more sensitive in the 

detection of apo B48 containing chylomicron particles. Smith et al. (1997) developed a 

method utilising SDS-PAGE, followed by immunoblotting with commercially available 

anti-apo B antiserum, and visualization of apo B48 bands with enhanced 

chemiluminescence to quantify chylomicron particles. This technique has been shown to 

be 8-10 times more sensitive than coomassie blue staining (Smith et al., 1997). 

Importantly, this has allowed for the measurement of apo B48 containing chylomicrons 

directly from whole plasma without the need for prior fractionation or additional 

preparative steps. Smith et al. (1997) standardized apo B48 concentrations against a 

purified apo B48 protein of known mass to reduce intra- and inter-assay variability, while 

other researchers have presented apo B48 concentrations as a percentage of the 

internal standard (Peel et al., 1993). 

The increased precision of immunoblotting has resulted in studies that have consistently 

reported an elevation in apo B48 concentration from obese, insulin resistant, type 2 
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diabetic and dyslipidemic subjects compared to controls (Smith et al., 1997; Chan et al., 

2002; Dane-Stewart et al., 2001; Redgrave et al., 2001; Dane-Stewart et al., 2003) 

(Table 2-6). While immunoblotting is a multi-step technique, it has been widely accepted 

as one of the most sensitive and accurate methods to quantify chylomicron 

concentrations from plasma (Jackson and Williams, 2004). Thus, immunoblotting was 

chosen for this thesis as the method that would best detect chylomicrons and their 

remnants directly from whole plasma. 

2.4.5 Conclusion 

Plasma lipoproteins of intestinal origin have been isolated and measured via a number 

of different biochemical procedures. While each method has contributed to our current 

understanding of post-prandial lipoproteins and their role in atherogenesis, they can not 

be considered equivalent. Whereas some methods reflect the plasma concentration of 

larger, TG-rich lipoproteins (e.g., ultracentrifugation and TRL fractions), others represent 

small, remnant particles (e.g., measurement from whole plasma with immunoblotting). It 

is critical that the methodology chosen to quantify chylomicrons is capable of detecting 

small remnant particles (in density fractions > 1.006 g/ml) in order to provide the most 

accurate interpretation of post-prandial lipemia and its contributions to CVD risk. 

Consequently, an appreciation of how best to measure chylomicron concentrations, 

either from whole plasma or TRL fractions, forms the premise for this thesis. 
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Table 2-2. Summary 

Reference 

Chenetal., 1993 

Grootetal., 1991 

Sharrett et al., 1995 

Syvanne et al., 
1994 

of Studies Reporting Chylomicron 

Subjects 

T2DM 

CAD 

CAD 

T2DM and 
CAD 

N 
(m/f) 

13/7 

40/0 

602 

60/0 

Age 
(years) 

62 ± 2 

51 ± 1 

45-64 

54 ± 1.6 

Concentrations from 

Test Meal 

Vitamin A: 60,000 
U/m2 body surface 
area with lunch 

Oral fat load: 77.5 g 
fat, 500 mg 
cholesterol, 27,000 
IU RE per U/m2 

body surface area 

Oral fat load: 105g 
fat, 300 mg 
cholesterol, 100 000 
IU vitamin A U/m2 

body surface area 

Oral fat load: 78g 
fat, 490 mg 
cholesterol, 345,000 
IU vitamin A 

3etinyl Esters 

Main Findings 

The post-prandial RE concentration was not 
different between those with and without T2DM in 
the chylomicron-containing Sf > 400 fraction. 

Subjects with and without CAD showed no 
differences in RE response in the ascending 
post-prandial phase (0-6 hours). CAD patients 
showed a marked delay in the clearance of RE 
(13.3 ± 1.6 mg/[Lxhr] versus 8.7 ± 1.1 mg/[l_xhr]; 
p < 0.05) 

RE levels in white CAD subjects were similar to 
controls at fasting and 3.5 hrs, but RE levels 
were higher at 8 hrs (p < 0.01). Mean fasting and 
post-prandial RE levels were not different 
between black subjects with and without CAD. 

There were no differences in RE levels among 
diabetic subjects with or without CAD. 
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Table 2-2 continued. 

Reference 

Meyer etal., 1996 

Weintraub et al., 
1996 

Rajaratnam et al., 
1999 

Mero et al., 2000 

Mamo et al., 2001 

Summary of Studies Reporting Chylomicron Concentrations from Retinyl Esters 

Subjects 

CAD 

CAD 

CAD 

T2DM& 
CAD 

Obese 

N 
(m/f) 

0/24 

126/44 

0/54 

31/12 

35/0 

Age 
(years) 

60 ±2 

57 ± 1.4 

52 ±0.5 

58 ±1.1 

46 ± 2.6 

Test Meal 

Oral fat load: 50 g 
fat per m2 body 
surface, 60 000 IU 
RE per 50 g fat. 

Oral fat load: 50 g 
fat, 145 mg 
cholesterol, 60,000 
IU RP per U/m2 

body surface area 

Oral fat load: 90 g 
fat, 432 mg 
cholesterol, 34,000 
IU vitamin A 

Oral fat load: 100 
000 IU vitamin A 

Oral fat load: fat 
content 47% wt/wt, 
900 mg/kg RE 

Main Findings 

RE concentration at density < 1.006 g/ml was not 
different in CAD versus controls. 

The area below the RE curve (65.3 ± 28.3 versus 
55.0 27.5 umol/lhr; p=0017) and non-
chylomicron fraction RP curve (23.4 ± 15.0 
versus 15.3 ± 8.9 umol/l- hr; p < 0.001) was 
greater in CAD patients than controls. 

Total and peak incremental area under the curve 
(density < 1.006 g/ml) did not differ between 
subjects with CAD and controls. 

RE response in plasma and chylomicron fractions 
(Sf >400) did not differ between diabetic subjects 
with and without CAD. 

The area under the RE curve was significantly 
greater in obese subjects versus controls (3,120 
± 511 versus 1,308 ± 177 U/ml-hr; p = 0.03). 
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Table 2-3. Summary of Studies Reporting Chylomicron Concentrations from 13C Breath Test 

Reference 

Redgrave et al., 
2001 

Watts et al., 2001 

Dane Stewart et al., 
2003 

Subjects 

Hyper-
lipidemia 

Obese 

T2DM 

N 
(m/f) 

32 

24/0 

0/34 

Age 
(years) 

28-65 

43 ± 2.4 

60 ± 1 

Test Meal 

Fasting 

Fasting 

Fasting 

Main Findings 

Compared with the normolipidemic men, the 
fractional catabolic rate of remnants was 
significantly decreased (p < 0.006) in subjects 
with type III dyslipidemia. In the group with type 
I hyperlipemia, the fractional catabolic rate was 
not different from the control group. 

Centrally obese subjects had a decreased 
fractional catabolic rate of the remnant-like 
particles compared with lean subjects (obese: 
0.06 ± 0.01 versus lean: 0.2 ± 0.05 pools/hr; p = 
0.016). 

The initial appearance of 13C02 over time was 
greater in diabetic versus non diabetic women 
(p < 0.01). Diabetic women had a significantly 
lower fractional catabolic rate than non-diabetic 
women (diabetic: 0.06 ± 0.05 pools/hr versus 
control: 0.12 ± 0.02 pools/hr; p= 0.007) 
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Table 2-4. Summary of Studies Reporting Chylomicron Concentrations from Triglyceride-Rich Lipoprotein Fractions (d < 
1.006 g/ml), SDS-PAGE & Coomassie Staining 

Reference 

Sharrett et al., 1995 

Curtinetal., 1996 

Meyer et al., 1996 

Rajaratnametal., 
1999 

Subjects 

CAD 

T2DM 

CAD 

T2DM and 
CAD 

N (m/f) 

602 

8 

0/24 

0/54 

Age 
(years) 

45-64 

62 ± 2.4 

60 ± 2 

52 ± 0.5 

Test Meal 

Oral fat load: 105g 
fat, 300 mg 
cholesterol 

1340 kcal breakfast, 
55% fat 

Oral fat load: 50 g 
fat perm2 body 
surface 

Oral fat load: 90 g 
fat, 432 mg 
cholesterol 

Main Findings 

Apo B48 at fasting and 3.5 hours post-prandial 
did not differ. 

Diabetic subjects had greater levels of apo B48 
at fasting (2.2 ± 0.8 versus 0.5 ± 0.1 ug/ml; p < 
0.05) and post-prandial (p < 0.001), with a 
prolonged increase and a later peak (6 hours: 7.7 
± 2.0 ug/ml versus 1.2 ± 0.2 ug/ml; p < 0.01). 

Fasting apo B48 was higher in CAD cases (CAD: 
0.25 ± 0.03 versus 0.15 ± 0.03 integrated optical 
density units; p < 0.05). A greater AUC response 
was also observed in CAD cases (p = 0.01). 

Women with CAD had a greater apo B48 post­
prandial AUC (p < 0.000), particularly at 6 hours 
(CAD: 2.6 ± 0.6 mg/l versus control: 1.2 ±0.3 
mg/l; p < 0.01). Adjustments for fasting 
concentrations did not change post-prandial 
findings (p = 0.01). 
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Table 2-4 continued. Summary of Studies Reporting Chylomicron Concentrations from Triglyceride-Rich Lipoprotein 
Fractions (d < 1.006 g/ml), SDS-PAGE & Coomassie Staining 

Reference 

Meroetal.,2000 

Couillard et al., 
2002 

Duez et al., 2006 

Hogueetal., 2007 

Subjects 

T2DM and 
CAD 

Obese 

Hyper-
insulinemic 

Type 2 DM 

N 
(m/f) 

31/12 

50/0 

14/0 

24/0 

Age 
(years) 

58 ±1.1 

46 ±9 

49 ± 4.7 

54 ± 7.5 

Test Meal 

Oral fat load: 
soybean oil 50 g/ 
m2, glucose 50 g/ 
m2, egg white 
protein 25 g/ m2, 
dried egg yolk 

Oral fat load: 60g 
fat/m2 body surface 
area 

Fed steady-state: 
18% fat, 20% 
protein, 62% 
carbohydrate 

Fed steady-state: 
40% fat 

Main Findings 

Fasting and post-prandial apo B48 
concentrations did not differ between diabetic 
subjects with and without CAD. The severity of 
the most significant coronary stenosis in 
angiography correlated with chylomicron apo B48 
area under the curve (r = 0.461; p = 0.041). 

Visceral abdominal fat was associated with an 
elevated postprandial apo B48 concentration (r 
=0.03-0.44; p < 0.05). Total area under the curve: 
5.8 ± 3.0 umol-8hr/L; total area under the 
increment curve: 2.7 ± 1.8 pmol-8hr/L 

Apo-B48 intestinal production rate was increased 
in hyper-insulinemic subjects as measured by 
kinetic tracers (p < 0.05) 

Diabetic subjects had higher apo B48 
concentrations than controls (4.2 ± 2.0 mg/dL 
versus 0.9 ± 0.6 mg/dL; p < 0.001) 
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Table 2-5. Summary 

Reference 

Lovegrove et al., 
2002 

Sakai et al., 2003 

Valero etal., 2005 

of Studies Reporting Ch^ 

Subjects 

Obese and 
Insulin-
resistant 

Hyperlipidemia 

CAD 

N 
(m/f) 

0/24 

588 

85/38 

flomicron 

Age 
(years) 

62 ± 7 

37-74 

67 ±13 

Concentrations from E 

Test Meal 

Stardardized 
breakfast (2469 k j , 30 
g fat) and lunch (3138 
kJ, 44 g fat) 

Oral fat load: 30 g 
fat/m2 body surface 
area 

Fasting 

LISA 

Main Findings 

A significantly higher postprandial apo B48 
response was observed in women with a higher 
BMI (>27 kg/m2). 

Serum apo B48 levels were 7-18 times greater 
in subjects with Type V (37.3 ± 14.9 ug/ml), and 
Type III (56.4 ± 7.9 ug/ml, n=5) hyperlipidemia 
compared to controls. 

No differences in fasting apo B48 
concentrations were found between those with 
CAD and controls (0.1 ±0.1 versus 0.1 ±0.1 
u.g/ml). There were also no differences between 
subjects with and without diabetes. 



Table 2-6. Summary 

Reference 

Chan etal., 2002 

Dane-Stewart et 
al., 2001 

Mamo et al., 2001 

of Studies Reporting Ch\ 

Subjects 

Obese 

Hyper-
lipidemia 

Obese 

N 
(m/f) 

48/0 

16/14 

35/0 

rlomicron 

Age 
(years) 

54 ±9.0 

53 ±2 

46 ± 2.6 

Concentrations from Immunoblotting 

Test Meal 

Fasting 

Fasting 

Oral fat load: fat 
content 47% 

Main Findings 

Obese subjects had significantly increased 
plasma concentrations of apo B48 (24.3 ±8.8 
versus 12.3 ± 2.8 mg/L; p < 0.001). 

Subjects with familial dyslipidemia had elevated 
apo B48 concentrations versus controls (29.3 
mg/L versus~\2.8 mg/L respectively; p < 0.001) 

Compared with lean subjects, fasting 
concentrations of apo B48 was more than two­
fold greater in obese individuals (obese: 31.5 ± 
7.5 versus control: 12.7 ± 1.7 ug/ml; p < 0.005). 
AUC and incremental AUC were greater in 
obese subjects compared with lean controls 
(obese: 365 ± 71 versus control: 137 ± 18; p < 
0.005, and obese: 9 ±17 versus control: 44 ± 
12; p= 0.03, respectively). 



Table 2-6 continued 

Reference 

Redgrave et al., 
2001 

Dane-Stewart et 
al., 2003 

. Summary of Studies Reporting Chylomicron Concentrations from Immunoblotting 

Subjects 

Hyperlipidemia 

T2DM 

N 
(m/f) 

32 

0/38 

Age 
(years) 

28-65 

60 ±1 

Test Meal 

Fasting 

Fasting 

Main Findings 

Compared to normolipidemic participants, (6.9 ± 
1.08 mg/L), subjects with type I hyperlipidemia 
(59.7 ± 9.9 mg/L) and type III hyperlipidemia 
(32.9 ± 4.5 mg/L had significantly elevated apo 
B48 concentrations (p < 0.001 and p < 0.01, 
respectively). 

Women with T2DM had greater fasting apo B48 
plasma concentrations (16.4 ± 1.2 versus 13.0 ± 
0.9 mg/L; p = 0.021). 
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Chapter 3: Quantification of Chylomicron Remnants in Fasting Hyper-lnsulinemia 

3.1 Introduction 

Post-prandial dyslipidemia is a prominent feature of insulin resistance (Higashi et al., 

2001; Ohnishi et al., 2002; Schaefer et al., 2002) and exists among a cluster of clinical 

symptoms in which individuals are predisposed to atherosclerosis (Zilversmit, 1995; 

Tomkin and Owens 2001; Proctor et al., 2002). The atherogenic nature of aberrant post­

prandial metabolism has been attributed to the ability of cholesterol-dense chylomicron 

remnants to penetrate arterial tissue and become entrapped within arterial vessels 

(Mamo and Wheeler, 1994; Mamo et al., 1998; Proctor et al., 2000). Studies show that 

those with cardiovascular disease (CVD) may exhibit greater post-prandial 

concentrations of chylomicrons compared to healthy subjects, even when otherwise 

normolipidemic (Cohn et al., 1999). Thus, the measurement of post-prandial chylomicron 

metabolism has become of great interest as a potential index for the early and accurate 

detection of atherosclerosis and the insulin resistant state. However, the typical lipid 

profile used to assess CVD risk does not include a measure of chylomicron 

concentration. 

Chylomicron metabolism is ideally assessed by monitoring the kinetics of apolipoprotein 

(apo) B48 in the post-prandial state. Apo B48 is structurally integral for the formation of 

chylomicrons, is endogenous, indicative of particle number, and not transferred to other 

plasma lipoproteins (Phillips et al., 1997). Metabolic studies of apo B48 have focused on 

the analysis of large triglyceride-rich lipoproteins (TRL) in the post-prandial state, a 

measurement which represents newly secreted apo B48 particles from the intestine. 

Ultracentrifugation techniques are often used to prepare TRL fractions at density < 1.006 

g/ml, however, this method omits apo B48-associated particles found in remaining 
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fractions of whole plasma at density > 1.006 g/ml (Cohn et al., 1999; Sullivan et al., 

2004). There is evidence that smaller apo B48-containing remnant particles located 

within density fractions > 1.006 g/ml are more atherogenic and may be more accurate 

predictors of disease risk (Mamo et al., 1998). Our laboratory has developed an SDS-

PAGE and western immunoblotting method (Smith et al., 1997; Vine et al., 2007) such 

that apo B48 can be quantified accurately and directly from whole plasma without the 

need for prior fractionation or additional preparative steps (Vine et al., 2007). In the 

present study, plasma was collected in 12 men during a metabolically fed, steady-state 

which was achieved through the repeated intake of high fat liquid meals (Duez et al., 

2008). Apo B48 concentration was determined in both whole plasma and corresponding 

TRL samples. The aim of this study was to examine if the preparation of the sample for 

measurement of apo B48 impacts the ability to identify dysfunctional post-prandial 

lipoprotein metabolism, specifically apo B48 remnant particles, in men with features of 

insulin resistance and fasting hyper-insulinemia. 

3.2 Methods 

3.2.1 Subjects 

Subjects were normo-glycemic and normo-lipidemic men ages 30 to 57 years, with body 

mass index (BMI) values ranging from 22.8 kg/m2 to 31.7 kg/m2. Twelve men were 

selected from the saline group of a previously reported study (Duez et al., 2008). All 

participants had normal fasting lipid values with total plasma cholesterol < 5.6 mmol/L, 

low density lipoprotein (LDL) cholesterol < 4.1 mmol/L, high density (HDL) cholesterol > 

0.9 mmol/L, triglycerides (TG) < 4.1 mmol/L, and fasting blood glucose < 6 mmol/L. All 

men had no prior history of cardiovascular, gastrointestinal, renal pulmonary disease or 

systemic illness, or surgical intervention within six months prior to the study. 
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All subjects gave their written consent to participate in the study, which was approved by 

the ethics board of the University Health Network, University of Toronto. 

3.2.2 Achieving the Fed Steady State 

Participants were fasted for 13 hours the evening prior to the study day and blood was 

drawn by an intravenous catheter inserted into their forearm vein. Subjects were 

provided with identical hourly volumes of a liquid food supplement, Hormel Great Shake 

Plus™ (Hormel Health Labs), for the first 3 hours, followed by the ingestion of the same 

formula every half hour for the remainder of the study (Duez et al., 2008). Blood was 

drawn at 0 hours (fasting) and during the fed steady-state at 6, 8, 12, 15, and 17 hours 

following the first meal and collected in a tube with 0.1% EDTA. 

Each volume of the supplement was equivalent to one-seventeenth the caloric needs for 

the first 3 hours and 1/34th of their daily energy requirements for every following half hour 

in order to achieve a post-prandial steady state (Duez et al., 2008). The Harris Benedict 

Equation was used to determined total energy needs (based on gender, age, weight, 

height, and activity factors). Of these calories, 12% were from protein, 44% were from 

carbohydrates and 44% were from fat. 

3.2.3 Biochemical Analysis 

Plasma was separated from blood by bench top centrifugation at 2000 rpm for 15 

minutes at 4°C. Triglyceride was determined using an enzymatic colorimetric kit (Roche 

Diagnostics, Mannheim, Germany). Cholesterol was measured with the CHOD-PAP 

enzymatic colorimetric kit (Roche Diagnostics, Mannheim, Germany). Free fatty acids 

(FFA) were determined with the NEFA colorimetric method (Wako Industrials, Osaka, 

Japan). Plasma insulin concentrations were assayed by radioimmunassay utilizing a 
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human specific insulin kit (Linco Research, St Louis, MO, USA), and glucose was 

enzymatically determined using a Beckman Glucose Analyzer II (Beckman Instruments 

Corporation, Fullerton, CA). The homeostasis model assessment for insulin resistance 

(HOMA-IR) was then derived using fasting insulin and glucose concentrations and used 

as an index of insulin resistance (Levy et al., 1998). 

Triglyceride-rich lipoprotein fractions were separated for each time point through 

ultracentrifugation at density < 1.006 g/ml after 16 hours, 39000 rpm and at 12°C. 

Samples were frozen immediately and stored at -80 °C. The concentrations of apo B48 in 

whole plasma samples and TRL fractions were determined by a modified 

immunoblotting and an enhanced ECL technique described previously (Smith et al., 

1997; Vine et al., 2007). Other less intensive methods for measuring the contribution of 

intestinaily-derived lipoproteins (e.g. monoclonal ELISA and RLP-C) are available. 

Nevertheless, we have elected to apply the western-blot analysis with polyclonal 

antibodies for greater sensitivity in detecting apo B48 while simultaneously differentiating 

chylomicrons from apo B100. Briefly, apolipoproteins were separated by SDS-PAGE 

using 3-8% tris-acetate polyacrylamide gels (Nupage, CA, USA) and then transferred to 

a PVDF membrane (0.45um; ImmobilonP™, Millipore. MA USA). Apo B48 protein was 

recognized using a commercially available affinity-purified goat polyclonal antibody 

(Santa Cruz Biotech, CA, Cat#sc-11795). Separated bands were visualized using 

enhanced chemiluminescence (ECL) (ECL-Advance Amersham Biosciences, UK) and 

Typhoon Trio imager (GE Healthcare, USA). The mass of apo B48 in both plasma and 

TRL fractional samples was determined by a linear densitometric comparison (Scion 

Image) with a standard curve for apo B48. 
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3.2.4 Statistical Analysis 

Subjects were separated into 2 groups based on their fasting plasma insulin 

concentrations. The median insulin value (48 pmol/L) was used to divide subjects into 

'normo-insulinemic' (n = 6, fasting insulin 34.7 ± 2.6 pmol/l, HOMA-IR score 1.2 ± 0.2) 

and 'hyper-insulinemic' groups (n = 6 fasting plasma insulin 68.8 ±10.8 pmol/l, HOMA-IR 

score 2.4 ± 0.3). Paired and un-paired t-tests were used to compare physical and 

metabolic variables across groups, including apo B48 concentrations quantified from 

whole plasma versus TRL fractions and between normo-insulinemic versus hyper-

insulinemic groups, respectively. Linear regression analysis was used to determine the 

slope of the area under the curve (AUC) graph between time points 0 and 1 hour. All 

analyses were performed with Graph Pad Prism 4. Results are presented as mean ± 

S.E.M. Results were considered significant at a p value < 0.05. 

3.3 Results 

3.3.1 Biochemical Characteristics 

The physical and metabolic characteristics of subjects segregated into hyper-insulinemic 

and normo-insulinemic groups are presented in Table 3-1. Subjects defined as hyper-

insulinemic had significantly elevated fasting plasma insulin concentration (p = 0.02) and 

calculated HOMA-IR score (p = 0.01) compared to those in the normo-insulinemic group. 

All other parameters including BMI, body weight, fasting glucose, FFA levels and fasting 

plasma lipid levels (total cholesterol, HDL cholesterol and TG) were not different 

between the hyper-insulinemic and normo-insulinemic groups. 
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Table 3-1. Physical and fasting plasma metabolic characteristics of normo-insulinemic 
and hyper-insulinemic subjects 

Parameter 

Age (years) 

Weight (kg) 

BMI (kg/m2) 

Waist Circumference (cm) 

Insulin (pmol/L) 

Glucose (mmol/L) 

Insulin Resistance (HOMA-IR) 

FFA (mmol/L) 

Total Cholesterol (mmol/L) 

HDL Cholesterol (mmol/L) 

Triglyceride (mmol/L) 
Values are given as a mean ±: 

Normo-insulinemic 
(n=6) 

50.2 ± 2.5 

84.7 ± 5.8 

27.7 ±1.4 

99.3 ± 4.4 

34.7 ± 2.6 

5.0 ±0.1 

1.2 ±0.2 

1.2 ±0.1 

4.9 ± 0.2 

1.2 ±0.1 

0.42 ± 0.04 
S.E.M. p values are by 

Hyper-insulinemic 
(n=6) 

44.3 ± 3.7 

85.5 ± 3.3 

28.5 ±1.0 

99.6 ± 3.2 

68.8 ±10.8 

4.8 ± 0.2 

2.4 ± 0.3 

1.5 ±0.3 

4.4 ± 0.2 

1.2 ±0.1 

0.52 ±0.1 
un-paired t-tests. 

p value 

0.23 

0.91 

0.66 

0.96 

0.02 

0.36 

0.01 

0.42 

0.06 

0.85 

0.35 

3.3.2 Fasting Apolipoprotein B48 Concentrations 

Fasting apo B48 from whole plasma was significantly greater compared to apo B48 from 

TRL fractions in both normo-insulinemic and hyper-insulinemic subjects (normo-

insulinemic: 10.7 ± 1.2 versus 5.2 ± 0.6 ug/ml, p = 0.02; hyper-insulinemic: 16.20 ± 1.96 

versus 7.08 ± 1.78 ug/ml, p = 0.008). 

3.3.3 Apolipoprotein B48 Concentrations in the Fed Steady State 

The fed steady-state response, measured by total area under the curve (AUC), is 

presented in Figure 3-1. Given that the fractional (TRL density < 1.006 g/ml) method of 

quantifying apo B48 omits smaller particles, we anticipated that a greater concentration 

of apo B48 would be detected by whole plasma. Predictably, apo B48-AUC from whole 

plasma was 33% higher compared to apo B48-AUC from TRL fractions among hyper-
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insulinemic subjects (418.3 ± 39.2 versus 314.5 ± 48.1 ug/ml-17 hrs; p = 0.002). 

Similarly, determination of apo B48-AUC from whole plasma was 69% greater compared 

to TRL apo B48-AUC fractions among normo-insulinemic participants (287.8 ± 23.8 

versus 170.4 ± 8.2 |ig/ml-17 hrs, respectively; p = 0.003). 

Apo B48 quantified from both whole plasma samples and TRL fractions revealed a 

significantly greater apo B48-AUC among those with hyper-insulinemia versus normo-

insulinemia (Table 3-2; p = 0.03 and p = 0.01, respectively). 

Normo-insulinemic Hyper-insulinemic 
SOi 50-i 

0 6 

Time (hours) Time (hours) 

Figure 3-1. The post-prandial associated apo B48 response (AUC) in normo-insulinemic 
subjects (left panel) and hyper-insulinemic subjects (right panel) during the fed, steady-
state. Values are shown for whole plasma (o) and TRL fractions (•) as mean ± S.E.M. 
Whole plasma found significantly greater total AUC compared to TRL in 
normoinsulinemic (p = 0.03) and hyperinsulinemic subjects (p = 0.002). 

Table 3-2. Apo B48 response in a fed, steady-state among hyper-insulinemic and 
normo-insulinemic men as determined from whole plasma and TRL fractional samples 

Parameter Normo-insulinemic Hyper-insulinemic p value 
(n=6) (n=6) 

Whole Plasma ApoB48 
(u.g/ml-17 hrs) 

Fractional ApoB48 
(Hg/ml-17hrs) 

287.8 ± 23.8 

170.4 ±8.2 

480.0 ±70.1 

314.5 ±48.0 

0.03 

0.01 

Values are given as a mean ± S.E.M. Hyper-insulinemic subjects showed a significantly 
greater apo B48-AUC than normo-insulinemic subjects when measured from whole 
plasma and TRL fractions. 
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3.3.3 Small Apolipoprotein B48 Remnants in the Fed Steady State 

The difference between apo B48 measured in whole plasma and TRL fractional samples 

was used to further calculate the population of small, apo B48-derived remnant particles 

(i.e., density > 1.006 g/ml) shown as the shaded region in Figure 3-1. The difference 

between apo B48 measured in whole plasma and TRL fractional samples was plotted 

over time during the fed-state in both normo-insulinemic and hyper-insulinemic groups 

(Figure 3-2). Hyper-insulinemic subjects demonstrated a significantly greater AUC 

containing apo B48 particles at density > 1.006 g/mL compared to normo-insulinemic 

controls (125.5 ± 16.9 versus 91.3 ± 13.9 u.g/ml-17 hrs, respectively; p = 0.03). 
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Figure 3-2. Apo B48 remnants in density > 1.006 g/ml. Values are shown for normo-
insulinemic subjects ( • ) and hyper-insulinemic subjects (•) as mean ± S.E.M. Hyper-
insulinemic subjects demonstrated significantly more apo B48 remnant particles (density 
> 1.006 g/ml) compared to normo-insulinemic participants (p = 0.03). 

3.3.4 Apolipoprotein B48 Appearance in Plasma 

The slope of the apo B48 AUC curve was also calculated from both the whole plasma 

and TRL fractional apo B48 AUC graphs between time points 0 (fasting) and 6 hours to 

represent the chylomicron particle production prior to the fed steady-state (Table 3-3). 

Subjects in the hyper-insulinemic group showed a greater rate of chylomicron 
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accumulation when apo B48 was determined from both whole plasma (24.0 ± 4.2 versus 

14.3 ± 1.0 ug apo B48/ml-6 hrs; p = 0.04) and TRL samples (22.0 ± 4.7 versus 11.6 ± 

0.8 ug apo B48/ ml-6 hrs; p = 0.03). 

Table 3-3. Initial response to feeding from 0 to 6 hours before steady-state is reached in 
hyper-insulinemic and normo-insulinemic subjects as determined by whole plasma 
apoB48 and fractional (TRL) methods 

Method of apoB48 Normo-insulinemic Hyper-insulinemic p value 
measurement (n=6) (n=6) 
Whole Plasma ApoB48 14.3 ±1.0 24.0 ±4.2 0.04 
(ug/ml-6 hrs) 
Fractional ApoB48 11.6 ±0.8 22.0 ±4.7 0.02 
(ug/ml-6 hrs) 
Values are given as a mean ± S.E.M. Greater chylomicron particle accumulation was 
seen in hyper-insulinemic subjects when determined by both whole plasma and TRL 
fractions. 

3.3.5 Ratio of Apolipoprotein B48 and Triglycerides During the Fed Steady State 

The TG:Apo B48 ratio (proportion of TG per particle during the fed steady-state period) 

was not significantly different between hyper-insulinemic versus normo-insulinemic 

subjects when determined from whole plasma or TRL fractional methods (Figure 3-3). 

Further, the TG:Apo B48 ratio determined from whole plasma did not differ from TRL 

fractional methods in hyper-insulinemic participants. However, apo B48 measured from 

whole plasma detected a greater rate of apo B48-containing chylomicron particles in the 

TRL fraction compared to whole plasma in normo-insulinemic but not hyper-insulinemic 

individuals (Figure 3-4; p = 0.02). 
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Figure 3-3. TG:Apo B48 ratio determined from whole plasma (left panel) and TRL 
fractions (right panel). Values are shown for normo-insulinemic subjects ( • ) and hyper-
insulinemic subjects (•) as mean ± S.E.M 
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Figure 3-4. TG:Apo B48 ratio among normo-insulinemic subjects (left panel) and hyper-
insulinemic subjects (right panel). Values are shown for apo B48 analysis as determined 
by whole plasma (o) and fractional (TRL) methods (•) as mean ± S.E.M. Measurement 
of TRL fraction apo B48 in normo-insulinemic subjects revealed larger chylomicrons 
compared to whole plasma (p = 0.02). 
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3.4 Discussion 

The aim of this study was to determine if the preparation of the apo B48 sample effects 

the identification of dysfunctional post-prandial lipoprotein metabolism, specifically 

remnant apo B48-containing particles, during the steady-state in subjects with fasting 

hyper-insulinemia. TRL fractions (density < 1.006 g/ml) have traditionally been used to 

isolate newly secreted chylomicron particles. Recent evidence has demonstrated that 

nascent chylomicrons particles are too large to enter the subendothelial space. 

However, once hydrolyzed by the lipoprotein lipase, chylomicron remnants are able to 

penetrate the intima (Nordestgaard et al., 1992; Mamo et al., 1994; Mamo et al., 1998; 

Proctor et al., 2000), impair endothelial function (Doi et al., 1998), and accumulate in the 

subendothelial space (Mamo et al., 1998; Proctor et al., 2000). In this study, we have 

found that apo B48 quantified from whole plasma describes a significantly higher apo 

concentration at fasting and post-prandial, as measured by AUC, compared to 

measurements from TRL fractions (density < 1.006 g/ml). 

Clinical and epidemiology studies have demonstrated that small, dense LDL particles 

are increased in individuals with insulin resistance (Feingold et al., 1992; Shelby et al., 

1993; Austin et al., 1995) and at greater risk of CVD (Gardner et al., 1996; Zambon et 

al., 1999; St. Pierre et al., 2005). However, the equivalent has not been demonstrated 

for apo B48-containing particles, despite the knowledge that a larger proportion of 

intestinally-derived particles reside in fractions > 1.006 g/ml (i.e., smaller remnant 

particles). We have used the difference in apo B48 concentration from whole plasma 

and TRL fractions to calculate the contribution of small, apo B48-derived remnant 

particles (density > 1.006 g/ml). To our knowledge, this is the first study to provide 

support for the increased presence of apo B48 remnants in density > 1.006 g/ml during a 

hyper-insulinemic condition. 
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The mechanisms underlying the link between elevated chylomicron concentrations in 

insulin resistance and type 2 diabetes mellitus (T2DM) have not yet been fully 

characterized. We have revealed a greater concentration of small, remnant particles in 

hyper-insulinemic subjects, which may be the result of impaired clearance or increased 

intestinal secretion of apo B48-containing chylomicrons. Previous studies have shown a 

relationship between defective clearance of apo B48 particles due to increased VLDL 

production in the liver and competition for lipoprotein lipase (LPL) activity (Coppack, 

1997; Malstrom et al., 1997). In the current study, the slope of the apo B48 AUC graph 

between 0 and 6 hours (representing the accumulation of chylomicron particles) was 

found to be greater in hyper-insulinemic versus normo-insulinemic subjects when apo 

B48 is determined either directly from whole plasma or from the TRL fraction. These 

results are in agreement with recent studies that have demonstrated a higher production 

rate of intestinally-derived apo B48-containing lipoproteins utilizing a primed-constant 

infusion of deuterium-labeled leucine in men with hyper-insulinemia and insulin 

resistance (Duez et al., 2006), as well as T2DM (Hogue et al., 2007). 

Measurement of TRL fractional apo B48 in normo-insulinemic subjects revealed larger 

chylomicrons, with a greater amount of TG per particle, compared to whole plasma. 

Intuitively, we might expect a similar separation in particle size in hyper-insulinemic 

subjects. However, we have shown a lack of difference between the TG:Apo B48 curves 

of whole plasma and TRL fractional measurements, which further supports our 

observations that individuals with hyper-insulinemia have an increased rate of small, 

remnant chylomicron secretion during the fed, steady-state. 
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3.5 Conclusion 

In conclusion, we have shown that apo B48 quantified from whole plasma reveals a 

significantly higher fasting and post-prandial AUC for apo B48 compared to 

measurements from TRL fractions (density < 1.006 g/ml). We have also found for the 

first time a significantly greater apo B48 remnant particle (density > 1.006 g/ml) 

population in men with hyper-insulinemia. These results provide evidence that the 

measurement of apo B48 in whole plasma provides greater sensitivity to detect small, 

potentially atherogenic, apo B48-containing particles. Greater accuracy in detecting the 

production and metabolism of small, apo B48 remnant particles may aid in the diagnosis 

of post-prandial dyslipidemia and its contributions to CVD-risk during early stages of 

insulin-resistance. 
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Chapter 4: Apolipoprotein B48 Lipemia in Type 1 Diabetes Mellitus 

4.1 Introduction 

Type 1 diabetes mellitus (T1DM) is associated with a 3 to 4 fold increase in 

cardiovascular disease (CVD) risk as compared with an age-matched non-diabetic 

population (Kannel and McGee, 1979). The paradox of T1DM is that despite increased 

CVD risk, classic fasting lipid indices (low concentrations of high density lipoprotein 

[HDL] and/or elevated low density lipoprotein [LDL] cholesterol or triglyceride [TG] 

concentrations) are often comparable to, or better than, those of a healthy population 

(Howard, 1987). Moreover, increased atherosclerotic risk may not be attributable to 

other non-lipid risk factors, as there is no increased prevalence of hypertension, obesity, 

or smoking in this population (Howard, 1987). Currently, the etiology of increased 

atherosclerotic risk in T1 DM is not well understood. 

Recent evidence suggests that the metabolic response to multiple meals can exert 

effects on the initiation and progression of atherogenesis (Tomkin and Owens, 2001). 

For instance, non-fasting TG has been shown to be a significant predictor of future 

vascular events in multivariate analysis, and the highest risk was found among those 

with the greatest non-fasting TG concentrations (Nordestgaard et al., 2007). 

Furthermore, increased concentrations of intestinally-derived chylomicrons are 

becoming increasingly acknowledged as an indicator of CVD risk and progression. For 

instance, impaired metabolism of intestinally-derived remnants have been demonstrated 

in normolipidemic patients with coronary artery disease (CAD) (Meyer et al., 1996; 

Weintraub et al., 1996) and other conditions associated with increased vascular disease 

such as obesity, metabolic syndrome, type 2 diabetes mellitus (T2DM) and familial 

hypercholesterolemia (Curtin et al., 1996; Mekki et al., 1999; Dane-Stewart et al., 2001). 
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While the association of impaired remnant metabolism appears to be better defined in 

dietary and lifestyle-related diseases (obesity, insulin resistance and T2DM), the role of 

these particles in T1DM is unclear. In T1DM, a limited number of animal studies have 

observed reduced clearance of chylomicron particles in streptozotocin-induced diabetic 

rats (Redgrave and Snibson, 1977; Levy et al., 1985). A study of men with T1DM found 

elevated triglyceride-rich lipoprotein (TRL) (Sf 100-400) concentrations compared to 

healthy controls (Georgopolous and Phair, 1991). No studies to date have examined 

apolipoprotein (apo) B48, a specific marker of chylomicron particle number, in the 

human T1DM population. The advantage of this approach is that apo B48 allows for 

detection of chylomicrons and chylomicron remnants directly from whole plasma (Mamo 

et al., 1998). Classically, ultracentrifugation has been used to isolate large, buoyant 

triglyceride-rich chylomicrons that are newly synthesized from the intestine at a density 

of < 1.006 g/ml. However, there is now evidence to suggest that smaller apo B48 

remnant particles in density fractions > 1.006 are potentially more atherogenic (Mamo et 

al., 1998), and consequently, may provide a better understanding of CVD risk. In the 

present study, we examined chylomicron metabolism (via apo B48) in normo-lipidemic 

men and women with T1 DM compared to healthy controls. 

4.2 Methods 

4.2.1 Participants 

Nine normolipidemic subjects with brittle T1DM (5 males, 4 females) and 7 healthy 

controls (2 males, 5 females) were studied. Subjects were matched based on gender, 

age (53.3 ± 3.3 vs. 46.5 ± 6.3 years; p = 0.31), and BMI (24.9 ± 1.2 vs. 23.7 ± 0.80 

kg/m2; p = 0.44). T1DM participants were recruited from the Clinical Islet Transplant 

Program at the University of Alberta, Edmonton, Alberta. The duration of diabetes in the 
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nine diabetic subjects was 41.6 ± 3.3 years (range 20-45 years) and glycosylated 

hemoglobin concentration (HbAic) was 8.9 ± 0.51 %. Cholesterol-lowering medications 

were discontinued one week prior to the study since cholesterol-lowering agents have 

been shown to alter the clearance of intestinally derived triglyceride-rich lipoproteins 

(Dane-Stewart et al., 2003). All T1DM patients were treated with a conventional insulin 

regimen consisting of insulin lispro / aspart with humulin N, humulin R and / or insulin 

glargine. 

Control participants were recruited via advertisements throughout Edmonton. Control 

subjects were not on any medication and exclusion criteria included smoking, 

hypertension (>140/90 mmHg), elevated LDL cholesterol (>3.4 mmol/L), low HDL 

cholesterol (<0.90 mmol/L), and/or a family history of CVD. 

All subjects gave informed consent to participate in the study, and the research protocol 

was approved by the Health Research Ethics Board at the University of Alberta. 

4.2.2 Study Protocol 

All participants were asked to follow their regular diet and exercise regime leading up to 

the study. Dietary evaluations, as assessed by 3-day food records, revealed no 

significant differences in total calories or percent daily calories from fat, carbohydrate, 

and protein between the study groups (Table 4-1). 

Subjects were fasted overnight prior to the test day and a baseline blood sample was 

obtained from an intravenous catheter inserted into the forearm vein at approximately 

8:00 am (0 hours). Breakfast (0.5 hours) and lunch (4.5 hours) were subsequently 

provided to all participants. Post-prandial blood samples were drawn at 2, 4, 6 and 8 

hours into vacutainer tubes containing 0.1% EDTA. 
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Both breakfast and lunch meals provided approximately 1/3 of daily caloric 

requirements, with 20%, 30% and 50% of total energy as protein, fat and carbohydrate, 

respectively. Breakfast consisted of whole wheat toast with margarine, scrambled eggs, 

fruit and 1% milk. Lunch included pasta with chicken, vegetables in a marinara sauce 

and 1% milk. These two meals were provided sequentially to represent food 

consumption in a free-living situation and to elicit a typical post-prandial response. T1 DM 

patients self-administered long-acting insulin dose(s) as prescribed and rapid-acting 

insulin injections were self-adjusted before or after each test meal. 

Table 4-1. 3-day food records of T1 DM subjects and matched controls 

Macronutrient Control T1 DM p value 
(n=7) (n=9) 

Calories (kcal) 

Protein (%) 

Carbohydrate (%) 

Fiber (g) 

Total Fat (%) 

Saturated Fat (%) 

Monounsaturated Fat (%) 

Polyunsaturated Fat (%) 

Trans Fat (g) 

n-3 (g) 

n-6 (g) 

Cholesterol (mg) 

1711.2 ± 138.4 

20.0 ±1.3 

54.2 ± 3.8 

19.6 ±3.0 

25.4 ± 2.3 

7.6 ±1.0 

8.7 ±1.1 

4.5 ±0.8 

0.7 ± 0.3 

0.8 ±0.1 

5.4 ±1.2 

230.0 ±51.5 

1689.3 ±190.6 

20.7 ±1.5 

46.0 ± 2.3 

19.1 ±3.2 

34.4 ± 3.3 

11.3 ±1.6 

11.0 ±2.2 

5.7 ±1.0 

0.6 ± 0.5 

0.7 ±0.2 

3.4 ±1.0 

180.6 ±30.8 

0.93 

0.73 

0.07 

0.93 

0.06 

0.11 

0.28 

0.40 

0.91 

0.59 

0.21 

0.39 

Values are given as a mean ± S.E.M. 
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4.2.3 Biochemical Analysis 

Chylomicron concentrations were determined from both whole plasma and triglyceride-

rich lipoprotein (TRL) fractions (density < 1.006 g/ml). TRL fractions were separated at 

each time point by ultracentrifugation (Beckman Optima Centrifuge) at 25,000 RPM for 

25 min at 20°C and were immediately frozen and stored at -80°C. Apo B48 was 

quantified from whole plasma and TRL fractions (d < 1.006 g/ml) using a previously 

described SDS-PAGE and modified western blotting technique (Vine et al., 2007). 

Briefly, apolipoproteins were separated by SDS-PAGE using 3-8% tris-acetate 

polyacrylamide gels (Nupage, CA, USA) and then transferred to a PVDF membrane 

(0.45um; ImmobilonP™, Millipore, MA, USA). Apo B48 lipoproteins were identified using 

a commercially available affinity-purified goat polyclonal antibody (Santa Cruz Biotech, 

CA, Cat#sc-11795, Cat#sc-2304). Separated apo B48 bands were visualized with 

enhanced chemiluminescence (ECL) (Amersham™ ECL Advance™ Western Blotting 

Detection Kit) and the imaging of proteins was conducted by high sensitivity scanning 

Typhoon Trio Imager (GE Healthcare, USA). The mass of apo B48 in both whole plasma 

and TRL fractional samples was quantified by a linear densitometry comparison (Scion 

Image) from a standard curve of known mass of human apo B48. 

Glucose, total cholesterol, LDL cholesterol, HDL cholesterol, and TG were determined 

by the University of Alberta Hospital laboratory using standard enzymatic colorimetric 

assays. Insulin was measured using a radioimmunoassay highly specific for human 

insulin and analogues. 
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4.2.5 Statistical Analysis 

All results are presented as mean ± S.E.M. Absolute post-prandial total cholesterol, TG, 

insulin, glucose, and apo B48 responses were calculated as area under the post­

prandial curve (AUC) (0-8 hours). Incremental post-prandial variations in apo B48 were 

determined by subtracting the baseline value from the absolute AUC. Statistical 

comparisons for area and baseline measurements were determined by unpaired t-test. 

Spearman's correlation coefficients were calculated to study associations. Results were 

considered significant at a p value < 0.05. All analyses were performed with Graph Pad 

Prism 4. 

4.3 Results 

4.3.1 Subject Characteristics 

The use of anti-hypertensive medications was more frequent in the group with T1DM. 

Two subjects with T1DM were prescribed hydrochlorothiazide, 7 used angiotensin 

converting enzyme inhibitors, 3 used beta blockers, and 2 were prescribed calcium 

inhibitors. 

Eligible participants with T1DM underwent coronary angiography and were found to 

have one or more lesions which narrowed the lumen diameter by at least 50%. 

Additional minor disease in multiple vessels was also common among subjects with 

T1DM. The angiogram results were consistent with accelerated vascular disease 

associated with diabetes. The control group was not eligible for cardiac catheterization. 

Fasting metabolic characteristics of T1DM and control subjects are shown (Table 4-2). 

Fasting plasma glucose and insulin levels were slightly elevated in participants with 

T1 DM compared to controls, but these differences did not reach statistical significance. 

The fasting lipid profile (total cholesterol, LDL, HDL and TG) for all subjects was within 
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the normal range and did not significantly differ between the 2 groups. In contrast, 

fasting apo B48 was the only lipid-associated parameter found to be higher subjects with 

T1DM relative to controls (22.8 ± 2.5 versus 12.3 ± 0.99 ug/mL, respectively; p < 0.01). 

Table 4-2. Fasting plasma metabolic characteristics of subjects with T1 DM and controls 

Parameter 

Glucose (mmol/L) 

Insulin (pmol/L) 

Total Cholesterol (mmol/L) 

LDL Cholesterol (mmol/L) 

HDL Cholesterol (mmol/L) 

Triglyceride (mmol/L) 

ApoB48 (ug/mL) 

Control 
(n=7) 

5.0 ± 0.2 

6.8 ±1.9 

4.9 ±0.2 

3.0 ± 0.2 

1.5 ±0.1 

0.9 ±0.1 

12.3 ±1.0 

T1DM 
(n=9) 

7.1 ±1.1 

16.4 ±11.1 

4.8 ± 0.3 

2.9 ± 0.3 

1.5 ±0.1 

0.9 ±0.1 

22.8 ± 2.5 

p value 

0.12 

0.06 

0.58 

0.64 

0.82 

0.69 

<0.01 
Values are given as a mean ± S.E.M. 

4.3.2 Response of Post-Prandial Insulin and Glucose 

Post-prandial insulin and glucose concentrations are presented in Figure 4-1. 

Concordant with the brittle nature of the subjects' diabetes, participants with T1DM 

showed a significantly elevated post-prandial glucose AUC (64.4 ± 8.4 versus 39.9 ± 1.8 

mmol/L-8 hrs; p < 0.01) and greater glucose levels at time points 6 and 8 hours (p = 0.03 

and p < 0.01 respectively) following lunch. Insulin AUC did not differ between the 2 

groups (71.1 ±31.1 versus 67.1 ± 17.7 mU/L-8 hrs; p = 0.53). 

4.3.3 Response of Post-Prandial Triglyceride and Cholesterol 

Mean values for post-prandial cholesterol and triglyceride concentrations are shown 

(Figure 4-2). No differences were observed in either TG (8.3 ± 0.8 and 8.9 ± 1.4 

78 



mmol/L-8 hrs, respectively; p = 0.66) or cholesterol AUC (38.6 ± 2.0 and 38.7 ± 1.0 

mmol/L-8 hrs, respectively; p = 0.96) between T1DM versus controls. 
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Figure 4-1. The post-prandial response in plasma insulin (left panel) and glucose (right 
panel) (AUC) for T1 DM subjects and controls following the intake of sequential meals. 
Data are shown for control subjects (•) and T1DM subjects (•) as mean ± S.E.M. 
Participants with T1DM demonstrated a significantly greater glucose AUC (control: 39.9 
± 1.8 versus type 1 DM: 64.4 ± 8.4 mmol/L-8 hrs; p < 0.01) and glucose levels at time 
points 6 and 8 hours (p = 0.03 and p < 0.01 respectively) compared to controls. 
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Figure 4-2. The post-prandial response in plasma triglyceride (left panel) and cholesterol 
(right panel) (AUC) for subjects with T1DM and controls following the intake of 
sequential meals. Data are shown for control subjects (•) and T1DM subjects (•) as 
mean ± S.E.M. Values between subject groups are not significantly different. 
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4.3.4 Post-Prandial Response of Apolipoprotein B48 

The post-prandial response of plasma apo B48, as measured by the total area under the 

curve (AUC), showed that subjects with T1 DM had a progressive and significant delay in 

clearance of remnant particles over the 8 hour time period (Figure 4-3). Total plasma 

apo B48-AUC indicated that circulating apoB48 mass was 31% greater in subjects with 

T1DM compared to controls (222.9 ±11.3 versus 169.8 ± 15.87 ug/mL-8 hrs; p < 0.01). 

Ingestion of sequential meals, consistent with a free-living situation, resulted in a 

biphasic response of plasma apo B48, peaking at 2 hours following the initial meal (i.e., 

breakfast) (T1DM: 26.1 ± 1.9 versus control: 25.5 ± 1.7 |ig/ml_) and 6 hours after a 

second meal (i.e., lunch) (T1DM: 33.1 ± 2.2 versus control: 22.8 ± 2.2 ug/mL). Apo B48 

concentrations did not differ between participants with T1DM versus controls at time 

points 2 and 4 hours following the initial meal (i.e., breakfast). In contrast, participants 

with T1 DM demonstrated circulating apo B48 levels that were 45% greater at 6 hours (p 

< 0.01), which progressively increased to 69% by 8 hours (p < 0.01) following a second 

meal (i.e., lunch) relative to controls. 

Corresponding incremental area under the curve (iAUC) showed that the change in apo 

B48 particles during the post-prandial phase in total (51.81 ± 2.26 and 39.24 ± 1.25 

ug/mL-8 hrs; p = 0.43) and after ingestion of the first meal (15.87± 2.22 and 21.06 ± 0.99 

ug/mLO-4 hrs; p = 0.56) was not different between the 2 groups (data not shown). 

However, iAUC following intake of a second meal (i.e., lunch) was 5-fold higher in 

subjects with T1DM compared to controls (25.04 ± 2.23 versus 5.03 ± 1.43 ug/mL-4-8 

hrs; p = 0.044). 
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Figure 4-3. The post-prandial associated plasma apo B48 response (AUC) following the 
intake of sequential meals (represented by dotted lines). Data are shown for control 
subjects (•) and T1DM (n) as mean ± S.E.M. ApoB48 total AUC (control: 169.8 ± 15.87 
versus type 1: 222.9 ± 11.3 u.g/ml-8 hrs; p < 0.01) and time points 6 and 8 (p < 0.01 for 
both) are significantly elevated in subjects with T1DM compared to the control group. 

4.3.5 Comparison to Triglyceride-Rich Lipoprotein Fraction 

Apolipoprotein B48 quantified from triglyceride-rich lipoproteins fractions (TRL, density < 

1.006 g/ml) showed a 61% greater fasting apoB48 concentration (6.0 ± 1.5 versus 2.3 ± 

1.2 ug/mL; p = 0.19) and a 31% higher apoB48 AUC (59.2 ± 14.3 versus 41.1 ± 4.1 

u.g/mL-8 hrs; p = 0.58) in subjects with T1DM compared to controls, but these 

differences did not reach statistical significance (data not shown). The net mass of apo 

B48 measured in the TRL fraction was only 30% of the apo B48 determined from whole 

plasma, and this was true for either T1 DM (p < 0.01) or control subjects (p < 0.01). 
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4.3.6 Correlation of Plasma Apolipoprotein B48 with Post-Prandial Measurements 

The associations between the post-prandial response of plasma apo B48 AUC, insulin 

AUC, glucose AUC and TG AUC are shown (Table 4-3). Furthermore, no significant 

associations were observed between apo B48 levels and insulin, glucose and TG 

concentrations at fasting or any other time point. 

Table 4-3. Spearman's correlation coefficients for apolipoprotein B48 and plasma insulin, 
glucose and triglyceride responses 

r P 

Insulin AUC : 0 3 023 

Glucose AUC -0.1 0.80 

Triglyceride AUC 0.1 0.68 

Values are given as a mean ± S.E.M. No significant associations were observed 
between apo B48 AUC and insulin AUC, glucose AUC or triglyceride AUC. 

4.4 Discussion 

The study objective was to examine the metabolism of intestinally-derived chylomicron 

remnant particles among normolipidemic subjects with T1DM. A significantly higher 

fasting plasma apo B48 concentration among participants with brittle T1 DM compared to 

matched controls was observed. It is acknowledged that there may be limited power to 

detect a difference for other indices (fasting lipid profile, glucose, insulin) due to the 

relatively small number of subjects. Despite the lack of greater statistical power, fasting 

plasma apo B48 concentration was the only fasting characteristic that differed between 

subjects with T1DM compared to matched controls. Further, participants with T1DM 

demonstrated a greater total plasma apo B48 AUC versus control subjects. While 

corresponding total iAUC was not significantly different, iAUC following a second 
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sequential meal (i.e., lunch) was elevated in subjects with T1DM. Moreover, net AUC 

provides a more accurate indicator of total cholesterol (associated with the remnant 

particle) exposure to the arterial wall over time. Thus, we suggest that altered apo B48 

metabolism may be associated with increased CVD risk in T1 DM, independent of other 

risk factors such fasting lipid profile, body weight, and age. 

Increased plasma apo B48 concentrations in subjects with T1DM were observed at time 

points 6 and 8 hours and may be attributed to an accumulation of chylomicron particles 

following a second daily meal. It is important to consider that most individuals are 

repeatedly in the post-absorptive state, and typically, a third meal would be ingested by 

individuals over the entire course of a day. It is likely that the addition of a third meal 

(i.e., dinner) would exacerbate the existing impaired post-prandial apo B48 response. 

In contrast to plasma apo B48 responses, fasting and post-prandial apo B48 

concentrations from TRL fractions (density < 1.006 g/ml) were not elevated in 

participants with T1DM. A previous study in humans has reported increased apo B 

concentration in the TRL fraction of men with well-controlled T1 DM compared to controls 

(Georgopolous and Phair, 1991). The discrepancy between the present study and that 

reported by Georgopoulos and Phair may be attributed to differences in the individuals 

selected for study. Also, Georgopoulos and Phair (1991) presented results as total apo 

B, without distinguishing between the contributions of intestinally-derived apo B48 

chylomicrons and hepatically-derived apo B100 particles. 

Insulin plays both an indirect and direct role in metabolism of apo B48-containing 

chylomicrons (Taskinen, 1992). Insulin is an important regulator of VLDL production and 

is also a key regulator of lipoprotein lipase (Taskinen, 1992). Nevertheless, an 

association between apo B48 and post-prandial insulin and glucose AUC was not found 

in the present study. Inter-subject variability in insulin requirements was observed 
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among T1 DM participants studied and may have been a contributing factor to the lack of 

significance. Lewis and colleagues have examined the post-prandial response in 

subjects with T1 DM following reduced insulin dosages to alter glycemic control (Lewis et 

al., 1991). Consistent with our findings, Lewis et al. (1991) have suggested that post­

prandial chylomicron concentrations are not related to deteriorations in glycaemic control 

or the level of post-prandial insulin replacement. 

The present study was not designed to address mechanisms underlying increased and 

prolonged residence time of plasma apo B48-containing chylomicrons in T1 DM per say. 

However, some lines of evidence have been proposed. There is some evidence that 

lipase activity may be decreased among patients with diabetes (De Man et al., 1996). 

However, if this were the case in the present study, we would expect an increased 

fasting and post-prandial AUC response for TG and TRL apo B48 (density < 1.006 g/ml). 

Other investigators have suggested that remnant particle clearance may be impaired in 

T1DM due to altered particle composition affecting LDL-receptor recognition 

(Georgopolous and Rosengard, 1989; Georgopolous and Phair, 1991; Taskinen et al., 

1992). Indeed, accumulation of apo B48 remnant particles in density fractions > 1.006 

g/ml in our study is consistent with impaired apo B48 clearance. Similar conclusions 

were reached by Georopoulos and Phair (1991) using 125l labeling of apo B particles. 

Another possible and more novel mechanism that might potentially explain increased 

accumulation of remnant particles in T1DM is the finding of increased lipid synthesis 

and/or secretion from the intestine. Studies in streptozotocin-induced diabetic rats have 

shown both greater intestinal absorption (Young et al., 1983) and increased synthesis 

(Feingold et al., 1994) of cholesterol. Overproduction of intestinal chylomicrons has 

recently been demonstrated in humans with insulin resistance (Duez et al., 1996) and 
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T2DM (Hogue et al., 2007). Thus, future studies should assess the potential impact of 

increased particle production in T1DM. 

4.5 Conclusion 

In the fasting and post-prandial state, normolipidemic men and women with brittle T1 DM 

showed significantly elevated plasma apo B48 concentrations, but not from TRL 

fractions. Furthermore, the increased plasma apo B48 AUC among subjects with T1 DM 

was primarily attributed to the post-prandial response following a second consecutive 

meal. These differences were observed in the absence of abnormal lipid indices. 

Therefore, elevated levels of plasma apo B48 could be associated with the increased 

atherosclerotic risk of brittle T1 DM. Further studies utilizing larger sample sizes should 

examine whether disturbed plasma apo B48 remnants can potentially predict CAD in this 

population. 
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Chapter 5: Collective Discussion and Conclusion 

5.1 Collective Discussion 

The primary aim of this thesis was to contribute knowledge on how best to measure 

chylomicron metabolism, either from whole plasma or from a TRL fraction (density < 

1.006 g/ml), to provide the most accurate assessment and interpretation of post-prandial 

lipemia. The results of study 1 (Chapter 3) support part 1 and 2 of our initial hypothesis. 

First, we confirmed that the detection of apo B48 from whole plasma was statistically 

greater than density fractions > 1.006 g/ml in a condition of post-prandial lipemia (in this 

case, hyper-insulinemia). Second, we found that apo B48 quantified from whole plasma 

revealed a significantly higher AUC for apo B48 compared to TRL fractions (density < 

1.006 g/ml) during the fed, steady state. Because whole plasma measurement of apo 

B48 was a more sensitive measure of chylomicrons than TRL fractions, whole plasma 

apo B48 was used to examine chylomicron metabolism in a sample of subjects with 

brittle T1DM. In concordance with part 3 of our hypothesis, fasting and post-prandial 

AUC for plasma apo B48 was significantly elevated in participants with T1DM compared 

to matched controls, even in the absence of traditional fasting dyslipidemia. 

It is well known that individuals with insulin resistance and T1 DM are more likely to have 

atherosclerosis and its related complications than similar age matched healthy controls, 

but the etiology is still unclear (Tomkin and Owens, 2001). Although evidence show that 

improved glycemic control reduces complications related to diabetes (The Diabetes 

Control and Complications Trial Research Group, 1995), other studies have found that 

subjects with insulin resistance (without overt T2DM) have more CVD before the 

development of hyperglycemia (Haffner et al., 2000; Haffner, 2003). Thus, it is not 

known whether hyperglycemia, lack of insulin action and / or other metabolic 
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derangements exclusive of hyperglycemia are atherogenic (Goldberg and Dansky, 

2006). In our selected study populations of hyper-insulinemia / insulin resistance and 

T1DM, no commonalities existed in relation to glycemic control, plasma insulin 

concentrations and disease presentation. However, post-prandial lipemia was observed 

in both subject with hyper-insulinemia and T1 DM compared to controls. 

The results of this thesis suggest that both groups of hyper-insulinemic and T1DM 

participants exhibited elevated concentrations of small chylomicron remnants in density 

fractions > 1.006 g/ml. A decrease in the size and an increase in density of LDL 

cholesterol are characteristics of insulin resistance and T2DM (Goldberg, 2001). In vitro, 

small dense LDL particles are more readily oxidized, and these particles can display an 

impaired interaction with LDL receptors (Goldberg, 2001). Several human studies also 

imply that small dense LDL particles are an additional marker for atherosclerotic 

development (Gardner et al., 1996). However, an equivalent body of evidence does not 

exist for apo B48-containing chylomicron particles, despite the knowledge that a larger 

proportion of intestinally-derived particles reside in fractions > 1.006 g/ml (i.e., smaller 

remnant particles). Additional studies are needed to assess the affect of chylomicron 

particle size and density in subjects with hyper-insulinemia and T1 DM. 

Chapter 2 (Section 2.3.1.6) reviewed the mechanisms underlying abnormal chylomicron 

metabolism in hyper-insulinemia / insulin resistance. The mechanisms accounting for 

increased chylomicron accumulation and / or decreased particle clearance in T1 DM are 

currently not known, and the following expands upon the lines of evidence that have 

been proposed. It has been hypothesized that chylomicron overaccumulation may be the 

indirect result of increased hepatic VLDL release. In poorly controlled patients with 

T1 DM, the antilipolytic effect of insulin may be diminished, resulting in higher free fatty 

acid flux from adipose tissue and increasing substrate availability for hepatic VLDL 
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production (Jensen et al., 1989). Consequently, the sudden increase in chylomicron 

particles following a meal may compete with VLDL for LPL activity leading to 

chylomicron accumulation in the circulation. 

Similar to insulin resistance, elevated post-prandial chylomicron concentrations in T1 DM 

may directly result from decreased LPL activity (De Man et al., 1996). Another possible 

mechanism for elevated apo B48 concentrations in T1DM involves increased lipid 

absorption from the intestine. Studies in streptozotocin-induced diabetic rats found a 

greater intestinal absorption (Young et al., 1982) and synthesis (Feingold et al., 1994) of 

cholesterol compared to controls. Furthermore, studies utilizing compositional analysis 

have shown that apo B particles from the TRL fraction of men and women with T1 DM 

are cholesterol-enriched compared to matched controls (Georgopoulos and Rosengard., 

1989; Georgopoulos and Phair., 1991). Compositional abnormalities may explain the 

decreased clearance of post-prandial chylomicrons in T1 DM. A reduced hepatic uptake 

of LDL particles from patients with T2DM has been associated with an altered lipid 

composition of the LDL particle (Taskinen, 1992). It is possible that compositional 

alterations in chylomicrons would also cause changes in the binding of these particles to 

their receptors. Moreover, rat studies using lipid emulsions as a model for the 

metabolism of TG-rich lipoproteins have shown that the accumulation of these particles 

is due to impaired tissue clearance (Redgrave and Callow, 1990). 

In Chapter 4 of this thesis, subjects with T1DM had poor glycemic control. 

Hyperglycemia contributes to macrovascular complications (Brownlee 2001; Reusch 

2003; Goldberg and Dansky 2007), and it is possible that elevated glucose levels may 

confer additional risk and / or exacerbate existing post-prandial dyslipidemia among the 

T1DM participants studied (Ebara et al., 2000). Large prospective clinical studies 

suggest a strong correlation between glycemia, atherosclerotic plaque burden and 
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cardiovascular events (Laakso, 1996; Tominaga et al., 1999; Ledru et al., 2001). Four 

major molecular signaling pathways have been implicated in the hyperglycemic injury of 

endothelial cells and other cell types (Brownlee 2001). These include: increased polyol 

pathway flux; increased advanced glycation end-production formation; activation of 

protein kinase C isoforms; and increased hexosamine pathway flux (Brownlee 2001). 

Nishikawa et al. (2000) have proposed a unifying mechanism that integrates the four 

different pathogenic mechanisms through a single hyperglycemia-induced process: 

overproduction of superoxide by the mitochondrial electron transport chain. Many 

studies have previously shown that hyperglycemia increases oxidative stress (Giugliano 

et al., 1996), but neither the underlying mechanism nor the consequences for other 

pathways of hyperglycemic damage were known. 

5.2 Future Directions 

A number of unanswered questions from this thesis provide additional avenues for 

further study. For instance, no published reports have compared the methodological 

differences between the use of immunoblotting and ELISA among individuals who are at 

increased risk of atherosclerosis compared to a healthy population. Both immunoblotting 

and ELISAs are capable of detecting apo B48 from whole plasma but differ in their level 

of sensitivity, time, and cost. In order to extend chylomicron detection to a clinical 

setting, investigations into a standard method of measurement, with established 

reference values indicating level of risk for various populations, should be further 

explored. 
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5.3 Collective Conclusion 

In conclusion, the measurement of apo B48 from whole plasma provides greater 

sensitivity to detect small, potentially atherogenic apo B48-containing remnant particles 

in both the hyper-insulinemic and T1 DM populations. Furthermore, the determination of 

apo B48 from whole plasma detected differences in chylomicron metabolism between 

subjects with brittle T1DM and healthy controls. Collectively, the studies of this thesis 

suggest that greater accuracy in detecting the metabolism of chylomicron remnants can 

impact the interpretation of post-prandial lipemia and its contributions to CVD risk. 

92 



5.4 References 

De Man FH, Cabezas MC, Van Barlingen HH, Erkelens DW, de Bruin TW. Triglyceride-
rich lipoproteins in non-insulin-dependent diabetes mellitus: post-prandial metabolism 
and relation to premature atherosclerosis. Eur J Clin Invest. 1996;26:89-108. 

Ebara T, Conde K, Kako Y, Lui Y, Xu Y, Ramakrishnan R, et al. Delayed catabolism of 
apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in 
diabetic mice. J Clin Invest. 2000;105:1807-1818. 

Feingold KR, Wilson DE, Wood LC, Kwong LK, Moser AH, Grunfeld C. Diabetes 
increases hepatic hydroxymethyl glutaryl coenzyme A reductase protein and mRNA 
levels in the small intestine. Metabolism. 1994;43:450-454. 

Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein 
particles with the incidence of coronary artery disease in men and women. JAMA. 
1996;276:875-881. 

Georgopoulos A, and Rosengard A: Abnormalities in the metabolism of postprandial and 
fasting triglyceride-rich lipoprotein subtractions in normal and insulin-dependent diabetic 
(IDDM) subjects: effects of sex. Metabolism. 1989;38:781-789. 

Georgopoulos A, Phair RD: Abnormal clearance of postprandial Sf 100-400 plasma 
lipoproteins in insulin-dependent diabetes mellitus. J Lipid Res. 1991;32:1133-1141. 

Goldberg IJ, Dansky HM. Diabetic vascular disease: An experimental objective. 
Arterioscler Thromb Vase Biol. 2001 ;26:1693-1701. 

Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular 
complications. Diabetes Care. 1996;19:257-267. 

Haffner SM, Mykkanen L, Festa A, Burke JP, Stern MP. Insulin-resistant prediabetic 
subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: 
implications for preventing coronary heart disease during the prediabetic state. 
Circulation. 2000;101:975-980. 

Haffner SM. Insulin resistance, inflammation, and the prediabetic state. Am J Cardiol. 
2003;92:18J-26J. 

Jensen MD, Caruso M, Heiling V, Miles JM. Insulin regulation of lipolysis in nondiabetic 
and IDDM subjects. Diabetes. 1989;38:1595-1601. 

Laakso, M. Glycemic control and the risk for coronary heart disease in patients with non 
insulin-dependent diabetes mellitus. The Finnish studies. Ann Intern Med. 1996;124:127-
130. 

Ledru F, Battaglia S, Beverelli F, Guermonprez JL. New diagnostic criteria for diabetes 
and coronary artery disease: insights from an angiographic study. J Am Coll Cardiol. 
2001;37:1543-1550. 

93 



Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y. Normalizing 
mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. 
Nature. 2000;404:787-790. 

Redgrave TG, Callow MJ. The effect of insulin deficiency on the metabolism of lipid 
emulsion models of triacylglycerol-rich lipoproteins in rats. Metabolism. 1990;39:1-10. 

Taskinen MMR. Quantitative and qualitative lipoprotein abnormalities in diabetes 
mellitus. Diabetes. 1992;41(suppl 2):12-7. 

The Diabetes Control and Complicaitons Trial Research Group. Effect of intensive 
diabetes management on macrovascular events and risk factors in the Diabetes Control 
and Complications Trial. Am J Cardiol. 1995;75:894-903. 
Young NL, McNamara DJ, Saudek CD, Krasovsky J, Lopez DR, Levy G. Hyperphagia 
alters cholesterol dynamics in diabetic rats. Diabetes. 1983;32:811-819. 

Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa. Impaired glucose 
tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. 
The Funagata Diabetes Study. Diabetes Care. 1999;22:920-924. 

94 


