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Abstract

Modern industries are increasingly embracing complex, large-scale processes with

interconnected units for their economic benefits. The increasing scale of industrial

processes and the complexity of unit interactions substantially complicate the devel-

opment of advanced process control systems. Model reduction has been recognized

as a promising framework for managing large-scale complex systems. It involves de-

riving low-dimensional models of computationally efficient systems, yet accurately

represent the behavior of the overall system. Hence, this is essential for simulat-

ing high-dimensional systems in real-time, such as for control decisions or process

monitoring, where accurate yet rapidly-solvable models are necessary. However, in-

dustrial processes bring added complexities along with high dimensionality such as

varying time scales, challenges in measuring real-time outputs, nonlinearities, un-

known parameters, and dynamic system behaviors. Therefore, this thesis focuses on

addressing the high dimensionality of large-scale systems in process monitoring and

control to accommodate various aforementioned industrial complexities.

A class of nonlinear systems, expressed by ordinary differential equations (ODE)

with implicit two-time-scale behavior, is taken into account. The system is decom-

posed into fast and slow subsystems based on the singular perturbation theory and

a composite solution for the system is proposed. Local estimators are designed for

each subsystem and a one-directional communication scheme is used. A benchmark

chemical process example is used to illustrate the proposed method. Attention is
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then given to nonlinear systems with essential process variables that are not mea-

sured but need to be monitored accurately from an operational perspective. It is

assumed that a mechanistic model is available but is too computationally complex

for estimator design and that only a subset of the states needs to be estimated. The

aim is to form a reduced state estimation that can estimate the desired variables.

A dynamic sensitivity-based approach is obtained to determine the appropriate in-

puts and outputs for data collection and data-driven model training. The proposed

method is applied to a chemical process, and its applicability is demonstrated.

We consider a type of nonlinear system defined by partial differential equations

(PDE) for an agrohydrological system. The inherent large-scale nature of the mod-

els stems from the discretization of the underlying PDE. The numerical simulation

of such large-scale dynamical systems imposes overwhelming demands on computa-

tional resources. A reduced framework for large-scale systems is devised, leveraging

unsupervised machine learning. However, in dynamic environments, the properties

and behavior of the system might undergo changes. We therefore rely on dynamic

data-driven reduced models where different reduced models are computed based on

the performance of the model. The proposed approach is implemented to estimate

the soil moisture of a real agricultural field located in Lethbridge, Canada. We also

explore the proposed dynamic model reduction in estimating the soil water content

and soil hydraulic parameters in real-case analysis applied to the farm, using exper-

imental data collected in the summer of 2022.
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Chapter 1

Introduction

1.1 Motivation

Due to the increasing global demand, the prevalence of large-scale complex processes

has become commonplace in the modern process industry. The industrial processes

are inherently nonlinear, dynamically complex, and associated with high dimensional

variables typically arise from a wide range of complex physical and chemical phenom-

ena. Such systems are becoming increasingly prevalent in various domains; chemical

reactions, heat transfer, and agro-hydrological systems are only a few examples.

Performing operational tasks such as predictive modeling, process monitoring and

optimal design of control often leads to challenges due to the overwhelming demands

on computational resources. This encourages us to develop methods of complex-

ity reduction and acquire relevant information about large-scale systems in a more

computationally manageable fashion. Dimensionality reduction aims to decrease

the computational burden by generating simplified models that are faster and more

cost-effective to simulate, while still accurately capturing the behavior of the origi-

nal large-scale system. During the past few decades, model reduction for dynamical

systems has reached a considerable level of maturity, as reflected in [1, 2, 3, 4].

Traditionally, there has been a substantial demand for enhancing operational per-
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formance, with significant capital investments dedicated to improving the productiv-

ity and profitability of industrial processes. Model predictive control stands out as

an advanced strategy in process control, enabling real-time optimization of process

operation while adeptly managing constraints and nonlinearities [5, 6]. Neverthe-

less, implementing advanced control systems often entails the challenge of obtaining

comprehensive measurements of the entire process states. State estimation emerges

as a technique to reconstruct complete process state estimates, utilizing a process

model and output measurements. However, state estimation algorithms face several

challenges in terms of computational burden, the high complexity of their dynamic

models, nonlinearities, unknown parameters, and sensitivity to modeling errors and

measurement noise [7, 8]. In this thesis, we propose computationally efficient state

estimators for process monitoring and control to accommodate various industrial

complexities. Our objectives are to systematically analyze and reduce large-scale

systems, develop reduced-order estimators, and investigate their performance and

applications across various processes.

1.2 Literature review

The complexity of modern engineering systems results from unknown nonlinear re-

lationships, system parameters, and numerous variables. The study of complex sys-

tems involves exploring how the relationships between their parts give rise to their

collective behavior. Understanding and predicting the behavior of these systems

necessitate the use of various modeling techniques. The resulting modeling of the

relationship between the input and output of a system typically employs either first

principles (mechanistic models) or system identification using industrial data. In the

case of first-principle models, process behavior is mathematically represented using

ordinary differential equations (ODEs) and partial differential equations (PDEs). In

the literature review, we examine state estimation techniques, focusing on a specific

2



class of nonlinear systems in each section. We review the background by investigat-

ing the system based on its characteristics and also discuss the existing work, along

with the challenges associated with it.

1.2.1 Implicit time-scale multiplicity and state estimation

Chemical processes are inherently nonlinear and generally associated with a com-

mon feature, time-scale multiplicity. It usually arises due to the strong coupling of

the physical and chemical phenomena occurring at disparate time-scales [9]. Typi-

cal examples of multiple-time-scale processes include processes with a large recycle

[9], reactors with multiple simultaneous reactions [10], and reactor-separator sys-

tems [11] which are modeled by nonlinear ODEs. The time-scale multiplicity occurs

typically due to the presence of distinctly different time constants or multiple fast

and slow reactions. A direct application of standard control or estimation methods

without considering time-scale multiplicity may lead to ill-conditioning, or even the

loss of closed-loop stability [12]. To deal with such systems, singular perturbation

theory provides a natural framework for modeling, stability analysis, model reduc-

tion, and controller design [12]. The design of fully centralized nonlinear controllers

on the basis of the entire process system is impractical in terms of computational

burden, high complexity of its dynamic models, and sensitivity to modeling errors

and measurement noise. These considerations generate vigorous interest in decen-

tralized (composite fast and slow control) [13] and distributed control [14] strategies

using proportional (P) control [9, 15] or Model predictive control (MPC) [13, 14].

However, relatively much less attention has been paid to state estimation of systems

with time-scale multiplicity.

Recently, in [16], two alternative nonlinear observer design approaches, one full-

order and one reduced-order are designed for two-time-scale systems. The full-order

observer is designed based on linearization of the original model around its sta-
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ble steady state, whereas, the reduced-order observer is derived based on a lower-

dimensional model to reconstruct the slow states which are used to calculate an

invariant manifold for the fast state estimation. In [11], a two-time-scale nonlinear

system is decomposed into a fast subsystem and several slow subsystems, and a dis-

tributed moving horizon estimation (DMHE) scheme is developed. One directional

communication from the slow subsystem MHEs to the fast subsystem MHE is es-

tablished and sufficient conditions on the convergence of the estimation error of the

DMHE are derived. However, both [16] and [11] considered two-time-scale systems

that can be described in the standard singular perturbation form where the fast and

the slow dynamics are associated with distinct process variables and can be separated

explicitly. There is a wide range of applications where slow and fast dynamics cannot

be separated explicitly. This implicit time-scale multiplicity cannot be expressed in

the standard singularly perturbed form [10].

To handle implicit two-time-scale systems, one approach is to find a coordinate

change to transform the implicit two-time-scale system into a standard singular per-

turbation form. In [17], the coordinate change construction for linear two-time-scale

systems is addressed using modal analysis. In [18, 19], an ε-independent (ε is a

small variable indicates the separation of time scales) approach was developed to

find the coordinate change. In [20], an ε-dependent coordinate change for a class of

nonlinear two-time-scale systems was also proposed. A series of results was devel-

oped to obtain the standard singularly perturbed representation from the original

two-time-scale process using both ε-independent and ε-dependent coordinate change

[10]. However, for large-scale systems, it is typically challenging to find such a co-

ordination transformation. More recently, fast and slow subsystem reduction-based

methods were developed to address the limitation of the coordinate change-based

approaches in control system design [9, 15, 21]. Similar approaches have also been

used and developed in aerospace control applications [22]. However, there is little
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attention given to state estimation of implicit two-time-scale systems, which is a

common occurrence in chemical processes. To the best of our knowledge, there is

no systematic study that considers slow and fast dynamics separation for implicit

two-time-scale systems from a state estimation perspective and provides the corre-

sponding composite estimator design.

In Chapter 2, a composite solution for implicit two-time scale processes is pro-

posed and a distributed state estimation method is designed for chemical processes.

1.2.2 Input-output selection and state estimation

In recent decades, modern process industries are increasingly employing complex,

large-scale chemical processes due to their economic efficiency. A rigorous dynamic

model for a process can consist of hundreds of differential equations to account for the

process dynamics. State estimation of essential process variables is quite demand-

ing from an operation point of view to achieve better product quality and optimal

utilization of available resources. In process industries, state estimators or observers

are commonly used to estimate unknown variables based on a process model and

some measurable variables. Using a detailed mechanistic model to perform state es-

timation is often challenging due to increased complexity and higher computational

cost. In many applications, the number of key variables that should be estimated

is indeed much smaller than the number of the internal states of the entire system.

A reduced-order estimator that can estimate the key variables is sufficient. brun-

ton2016discovering In the literature, there are some results on state estimation based

on the reduced-order models. In [23], a state estimation scheme of wastewater treat-

ment plants was developed based on model approximation, in which a reduced-order

model was obtained based on the proper orthogonal decomposition (POD) approach.

In [24], a state estimation scheme was developed on a reduced-order approximation of

the forecast error using a Kalman filter. The reduced-order system was developed by
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the balanced truncation of the Hankel operator representation of the estimation error.

In [25], a model reduction was performed using a matched asymptotic expansions

method for an implicit two-time-scale system and a distributed state estimation was

implemented to demonstrate the improved computational time and accuracy. In [26],

a structure-preserving model reduction method using trajectory-based unsupervised

machine learning techniques was used to develop an adaptive moving horizon esti-

mation algorithm. A reduced state observer was developed for a linearized reduced

system using the balancing model reduction technique [27]. Different data-driven

methods are used in many applications to determine the structure of the reduced-

order model and to reveal important physical properties such as sparse regression

[28, 29, 30], sparse identification of non-linear dynamics (SINDy) [31] and Koopman

operator [32]. In process modeling, hybrid modeling is another data-based modeling,

wherein it combines a kinetic model with a data-based model which improves the

model accuracy and robustness [33, 34, 35].

In recent years, machine learning techniques, in particular, neural networks [33,

34, 35] have attracted significant attention in reduced-order model and estimator

development due to the data-driven nature and easy-to-implement feature of these

techniques. In the literature, there are many studies that have used machine learn-

ing to develop data-driven models which are in general reduced-order models. For

example, in [36, 37, 38], machine learning was integrated with traditional observer or

estimator frameworks for data-based state estimation schemes. However, a careful

examination of these studies reveals that there lacks a systematical method to deter-

mine how to choose the appropriate inputs and outputs for these machine learning-

based model development. The well-selected inputs and outputs can make sure that

the resulting data-driven model captures the dynamics needed for the estimation of

the key target variables and can significantly reduce the model training effort [39, 40].

Another relevant topic in the literature is inferential soft sensors built on process
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data and explores the correlation between inputs and target outputs. These infer-

ential soft sensors, in general, do not consider the dynamics of the system. There

are many applications of soft sensors based on machine learning and statistical tech-

niques such as neural networks [41, 42], principal component regression [43], and

partial least squares regression [44]. A soft sensor is developed using a probabilistic

slow feature analysis by extracting slowly varying patterns from noisy process data

[45]. In [46], an information fusion system is developed to take the benefits from

fast-rate sampling of online data and the high accuracy of lab data, which is slow-

rate sampled data, for soft sensing. These soft sensors are useful and can provide

predictions of unmeasured variables and are typically easy to implement. However,

as they do not take the dynamics of the process into account explicitly, their per-

formance may be limited. If a dynamic model can be developed, state estimation

provides much-improved estimation performance.

The selection of input-output and a reduced estimator design are provided in

detail in Chapter 3.

1.2.3 Adaptive model reduction and soil moisture estima-

tion for agro-hydrological systems

Discretizing PDEs typically gives rise to high-dimensional problems, which pose sig-

nificant challenges when seeking numerical solutions. This phenomenon is referred

to as the ”curse of dimensionality,” in which the required computational effort scales

exponentially with system dimension, making traditional grid-based methods infea-

sible. In this context, we consider soil water dynamics in agro-hydrological systems

modeled by the Richards equation.

With population growth, climate change, and environmental pollution, freshwater

scarcity has become a global risk [47]. Agriculture, the primary consumer of freshwa-

ter [48], coupled with the persistent problem of low water efficiency [49], intensifies
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the issue of water scarcity further by utilizing about 38% of the land. Improving

water usage efficiency is a critical step in managing the water and land crisis. The

open-loop control method, which lacks real-time feedback, is a widely used irriga-

tion practice in agriculture. However, it heavily relies on farmers’ experience and

observations rather than on actual field conditions like soil moisture content. This

can lead to over-irrigation or under-irrigation, both of which can be detrimental to

plant growth. In recent years, precision agriculture (PA) has gained popularity in

the agricultural community. The technique provides the appropriate amount of wa-

ter and nutrients for optimal plant growth. A closed-loop irrigation system that

uses field soil moisture data to make decisions can significantly increase water use

efficiency. However, soil moisture sensors are typically placed at selected locations of

the soil profile. To achieve a comprehensive understanding of the dynamic behaviors

of the soil moisture across the entire field, the implementation of an appropriate

state estimation method is essential. State estimation can enable real-time estima-

tion of the soil moisture across the field by utilizing the measurements collected from

the available sensors. Significant progress in developing various computing methods

for smart and sustainable closed-loop agriculture irrigation has been made. These

methods involve sensor placement [50], soil moisture estimation [51], simultaneous

estimation of soil moisture and soil parameters [52, 53], model predictive controller

(MPC) design [54], and scheduler design [55, 56]. In particular, various strategies for

estimating soil moisture based on real-time field measurements have been explored.

Several well-known algorithms such as the extended Kalman filter (EKF) [57], en-

semble Kalman filter (EnKF) [58], and moving horizon estimation (MHE) [51] have

been applied for data assimilation of soil moisture.

The Richards equation is a nonlinear, and three-dimensional PDE, which assumes

local equilibrium between soil water content and soil water potential [59]. To ensure

numerical stability and satisfy the local equilibrium assumption, fine discretization
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(a few centimeters to a few meters) is often required which leads to a high number

of nodes, typically ranging from 104 to 108. Therefore, estimating soil water content

is a major challenge due to the high dimensionality of agro-hydrological systems.

For instance, the online optimization associated with nonlinear MHE can become

intractable due to the high-order of the system. The EKF is a common generalization

of the classic Kalman filter to nonlinear systems. However, linearizing the nonlinear

model consecutively and propagating the covariance matrix explicitly to handle the

nonlinear observation may become infeasible for such a large dimensional system.

Model order reduction is a widely used technique to handle high-dimensional

systems and obtain computationally efficient models. Some of the commonly used

methods include proper orthogonal decomposition (POD) [60], optimal Hankel norm

reduction, [61], slow feature analysis [62], and balanced truncation methods [63].

Yet, these methods typically fall short of preserving the physical meanings of the

system’s states. In particular, when any of these proposed methods is implemented

in an agricultural system, the state of a reduced-order model will no longer accurately

reflect the field’s soil moisture. Researchers have introduced various techniques for

maintaining the topology of the system state in cluster-based model reduction, as

discussed in [64, 50]. Recently, in [65, 55], a reduced model based on system tra-

jectories was proposed for an agrohydrological system. This method can effectively

represent the system’s behavior throughout the entire growing season. Nonetheless,

these approaches are typically implemented for linear systems, and a single reduced-

order model is built at the beginning of the season to operate for the entire duration.

In [51], another approach that employs dynamic model reduction and an MHE-based

estimator was proposed. It is important to mention that these trajectories are not

updated in real-time. This limitation could lead to a substantial discrepancy be-

tween the system model and the actual dynamics of soil water, presenting challenges

in adapting to real-time conditions that vary over time. Additionally, MHE, an on-
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line optimization method, generally leads to longer computation times than explicit

recursive methods such as EKF.

Chapter 4 proposes an adaptive model reduction method with triggering criteria

and estimator design for large-scale agricultural fields.

1.2.4 An application of adaptive model reduction to soil

moisture and its hydraulic parameter estimation via

remote sensing

While both tensiometers and point sensors are reliable for localized measurements,

these methods require significant labor, incur substantial costs, and involve intricate

procedures [66]. Unlike point sensors, microwave radiometers offer a broader per-

spective, essential for large-scale moisture analysis. The integration of microwave

radiometer sensors into center-pivot irrigation systems presents a unique opportu-

nity for real-time, comprehensive soil moisture monitoring [67]. However, the use

of microwave radiometers also introduces new challenges. One significant issue is

the constantly changing locations of measurement as the sensors rotate with the

irrigation system. Hence, the ability of microwave radiometer sensors to provide a

continuous and complete mapping of soil moisture over time and space is limited,

resulting in spatial and temporal inconsistencies in soil moisture observations for ir-

rigation systems. A promising approach is the integration of sparse sensor data with

advanced modeling techniques. This strategy, known as sequential data assimilation,

merges real-time sensor observations with a dynamic mathematical model, creating

more accurate and comprehensive soil moisture estimates [57, 68, 69]. They enhance

the precision of soil moisture readings by filling in the gaps in sensor data, ensuring

that irrigation systems operate more effectively and efficiently.

In improving soil moisture predictions in agricultural models, the accuracy de-

pends on precise soil hydraulic parameters, which have a significant impact on the
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model’s ability to simulate soil moisture content. Recognizing the significant impact

these parameters have on a model’s performance in predicting soil moisture con-

tent, a simultaneous soil moisture and parameters estimation is more suitable as it

considers the interdependence between these estimates, leading to enhanced accu-

racy [52, 70, 71]. In [72], sensitivity analysis is carried out to evaluate parameter

estimability for a remote sensor mounted on a center-pivot. The study proceeded

to estimate the soil moisture and selected hydraulic parameters by assimilating the

soil moisture data from microwave remote sensing into the Richards equation uti-

lizing EKF. Despite the advancements made through this methodology, the study

acknowledges that scalability issues in larger agricultural fields present a significant

challenge. The data assimilation technique used in the agro-hydrological model is

inefficient and demands high computational resources due to the substantial numer-

ical complexities involved in solving the model. This limits many studies to only

applying a 1D system or low-dimensional 3D systems [58, 73, 56].

Chapter 4 is expanded to include considerations for rotating measurements and

parameter estimation. This is applied and validated using actual field data from

microwave remote sensing in Chapter 5 by implementing a data assimilation approach

based on an adaptive reduced model.

1.3 Contributions and thesis outline

The rest of the thesis is organized as follows:

In Chapter 2, a subsystem decomposition approach and a distributed estimation

scheme are discussed for a class of implicit two-time-scale nonlinear systems. Tak-

ing advantage of the time scale separation, A system is first decomposed into fast

subsystems and slow subsystems according to the dynamics. Further, an approach

that combines the approximate solutions obtained from both the fast and slow sub-

systems to form a composite solution of the system is presented. Also, based on
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the fast and slow subsystems, a distributed state estimation scheme is explained to

handle the implicit time-scale multiplicity. It is found that the slow estimator is

entirely decoupled from the fast estimator which is a significant difference from the

control of two-time-scale systems. The decoupling ensures that only one-directional

information transmission from the slow estimator to the fast estimator is needed and

the fast estimator does not send out any information. To demonstrate the usefulness

of the proposed method, a typical chemical process is considered in the simulations

and the simulation results demonstrate the effectiveness of the proposed approach.

In Chapter 3, a sensitivity-based approach is considered to construct reduced-

order state estimators based on recurrent neural networks (RNN). It is assumed that

a mechanistic model is available but is too computationally complex for estimator

design and that only some target outputs are of interest and should be estimated. A

reduced-order estimator that can estimate the target outputs is sufficient to address

such a problem. A systematic method is introduced based on sensitivity analysis to

determine how to select the appropriate inputs and outputs for data collection and

data-driven model development to estimate the desired outputs accurately. Specifi-

cally, a long short-term memory (LSTM) neural network, a type of RNN, is consid-

ered as the tool to train the data-driven model. Based on it, an extended Kalman

filter (EKF), a state estimator, is designed to estimate the target outputs. Simula-

tions are carried out to illustrate the effectiveness and applicability of the proposed

approach. The main contributions of this work include (a) a systematic approach for

input and output selection for reduced-order model development based on sensitivity

analysis; (b) a modified EKF design that can take advantage of the reduced-order

model; (c) detailed simulations illustrating the applicability and effectiveness of the

proposed approach.

In Chapter 4, a state estimation method for large-scale agricultural fields is pro-

posed using an error-triggered adaptive model reduction that utilizes a trajectory-
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based clustering technique. A large-scale system is obtained by discretizing a 3D

polar Richards equation that characterizes complex water movement dynamics. An

adaptive extended Kalman filter (EKF) is designed accordingly based on the adaptive

reduced model. The performance of the proposed method is compared to an EKF

designed based on the Richards equation, full state estimator, and an EKF based

on a non-adaptive reduced model. A small demo agricultural field is considered and

extensive simulations are carried out to compare with the full estimator based on

Richards equation. Further, it is applied to a large field, and its performance is

compared to a reduced EKF based on a centralized reduced model. Also, a periodic

triggering algorithm with the same structural similarities to a centralized method is

explored to mitigate weather forecast and irrigation decision uncertainties associated

with the centralized method. The proposed approach is applied to different scenarios

to show the effectiveness and superiority of the proposed framework.

In Chapter 5, a real case study is presented based on the findings in Chapter

4. We aim to enhance the computational efficiency and accuracy of soil moisture

estimates by implementing a reduced-order approach that simultaneously estimates

soil moisture and its soil hydraulic parameters. The intermittent nature of data

acquisition and the rotating mechanism of microwave remote sensors necessitate an

information fusion system that incorporates the 3D cylindrical Richards equation, a

reduced EKF, and actual measurements. To address high dimensionality in the esti-

mator, we adopt a sequential triggering approach in developing an adaptive reduced

model, minimizing the need for frequent model adjustments. The results demon-

strate the effectiveness of the adaptive model reduction approach in improving both

the computational efficiency and accuracy of soil moisture estimation within a large-

scale agro-hydrological system.

Chapter 6 concludes these works and discusses future research directions.
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Chapter 2

Subsystem decomposition and

distributed state estimation of

nonlinear processes with implicit

time-scale multiplicity

In this chapter, we consider a class of implicit two-time-scale nonlinear systems and

propose a distributed state estimation method based on fast and slow subsystem

decomposition. In a distributed state estimation scheme, a system is decomposed

into several subsystems, and a subsystem estimator is designed for each subsystem.

These subsystem estimators work together collaboratively by exchanging informa-

tion to estimate the entire system state. Because of information exchange between

subsystems, a distributed framework can give performance that is close to or equal

to a centralized framework (when it is feasible). But compared with a centralized

framework, a distributed framework provides more structural flexibility, improved

fault tolerance, and reduced computational complexity [74, 75, 76].

Specifically, we borrow the idea of the method of matched asymptotic expansions

to decompose the system into a fast subsystem and a slow subsystem considering

different limiting conditions on ε. The solutions of the fast and slow subsystems
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are combined to calculate the composite solution of the actual system state. The

composite solution approximates the actual system state. Further, a fast EKF is

designed for the fast system and a slow MHE is designed for the slow subsystem.

The fast EKF and slow MHE form a distributed scheme. It is found that the slow

MHE is entirely decoupled from the fast EKF which is a significant difference from the

control of two-time-scale systems. The decoupling ensures that only unidirectional

information transmission from the slow MHE to the fast EKF is needed and the fast

EKF does not send out any information. Also, we make comparisons between the

proposed approach and a decentralized scheme and a centralized MHE scheme.

The system description and subsystem decomposition are performed in Section

2.1. Section 2.2 addresses the proposed distributed state estimation design. The

application of the proposed method to a chemical process example demonstrates its

applicability and effectiveness via simulations in Section 2.3. Finally, we conclude

our results in Section 2.4.

2.1 Preliminaries

2.1.1 Notation

The operator Lfh represents the Lie derivative of function h with respect to function

f , calculated following Lfh(x) =
∂h
∂x
f(x). Lr

fh represents the rth order Lie derivative

of function f , denoted by Lr
fh(x) = LfL

r−1
f h(x). Subscript f and s denote fast and

slow subsystems respectively unless mentioned. The subscript ss denotes a variable

associated with the steady state. A matrix is full row rank when each of the rows of

the matrix are linearly independent and is full column rank when each of the columns

of the matrix are linearly independent.
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System description

In this work, we consider a class of nonlinear system that can be described in the

following singularly perturbed form [77]:

ẋ(t) = f(x(t)) + g(x(t))u(t) +
1

ε
b(x(t))k(x(t)) + w(t) (2.1a)

y(t) = h(x(t)) + v(t) (2.1b)

where x ∈ X ⊂ Rnx is the vector of state variables of independent time variable t,

u ∈ Rnu is the vector of the manipulated inputs, y ∈ Rny is the vector containing

all the measured outputs, w ∈ Rnx denotes system disturbances and v ∈ Rny is

measurement noise, the initial condition is x(0) = x0 and ε is a small parameter,

such that 0 < ε << 1. f(x) and k(x) are analytic vector fields of dimensions nx and

px (px < nx), g(x) and b(x) are analytic matrices of dimensions (nx× nu), (nx× px),

respectively. In Eq. (2.1), the term 1
ε
b(x(t))k(x(t)) corresponds to the fast dynamics

of the system [77]. We consider that the matrix b(x) and the Jacobian ∂k(x)
∂x

have full

column and row rank, respectively. Though the condition on the rank of b(x) is not

restrictive. Further, it is assumed that output y(t) is continuously measured [10].

Equation (2.1) describes a class of systems where the separation of fast and

slow dynamics is not explicit. There is a wide variety of processes that exhibit

time-scale multiplicity. This phenomenon is generally induced by different thermal

properties, mass transfer rates, and chemical kinetics of the reaction [77]. These

systems are mainly characterized by the presence of a small parameter ε in the explicit

mathematical models. The reciprocal of such a small parameter gives a very large

term that is responsible for the existence of disparate time-scale features. Typical

examples of such processes include those with multiple fast and slow reactions or fast

heat/mass transfer rates. These processes typically exhibit two distinctly different

magnitudes of gains in different input directions and different time constants: a

large and dominant time constant and a small-time constant associated with slow
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and fast dynamics, respectively. The small parameter ε differentiates the nature of

the fast and slow dynamics, and both the dynamics control the speed of the system,

as their names suggest. The overall system response is affected by either fast or slow

dynamics or both [15].

In the remainder of this section, we will introduce how to derive the fast and slow

dynamics of system (2.1) using matched asymptotic expansions method. Further, a

composite solution is introduced to retrieve the system’s complete dynamics through

a correction term.

2.1.2 Two-time-scales decomposition

System (2.1) describes a class of two-time-scale systems with implicit time-scale

separation where each state can have both fast and slow dynamics. Solving such a

system is quite different from solving a system with explicit time-scale separation

[11]. Matched asymptotic expansion is used to decompose and solve the system. It

involves finding different approximate solutions or asymptotic expansions, valid for

a particular time-scale, and then combining these different solutions to give a single

approximate solution valid for the original system. Due to the brisk nature of the

fast dynamics, we need a stretched time-scale to capture the dynamics. Conversely,

the slow dynamics are sluggish in nature, so a squeezed time-scale is preferably apt

for it.

Specially, in asymptotic expansions, the limiting solutions for fast or slow dy-

namics are obtained. An outer (reduced layer) approximation is obtained for the

slow dynamics and inner (boundary-layer) approximation for the fast dynamics is

obtained [12]. While combining the inner and outer approximations for the actual

dynamics, a correction term needs to be subtracted to avoid considering their over-

lap value twice. In the following, we consider the nominal deterministic system to

illustrate how to decompose the fast and slow dynamics.
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Decomposition of fast dynamics

In the inner approximation, a fast (stretched) time τ is defined as τ = t
ε
. Multiplying

both sides of Eq. (2.1a) by ε, converting into τ time-scale, and considering the

limiting case ε→ 0, we obtain the fast dynamics of system (2.1):

dx(τε)

dτ
= b(x(τε))k(x(τε)) (2.2)

Denoting x(τε) as xf (τ), the above equation transforms into,

dxf

dτ
= b(xf )k(xf ) := ff (xf ) (2.3)

The above system as shown as (2.3) approximates the fast dynamics of the original

system (2.1). ff (xf ) is the analytic vector field of the dimension of nxf
. If the steady

state of the fast dynamics is xfss, it satisfies the following condition:

k(xfss) = 0, (2.4)

We consider systems of the form of Eq. (2.1) for which the matrix b(x) and the

Jacobian ∂k(x)
∂x

have full column and row rank, respectively. The condition of full

column rank of b(x) ensures that it cannot be zero. However, the condition on the

rank of Jacobian ∂k(x)
∂x

assures that in the limit ε → 0, the differential-algebraic

equations (DAE) system that describes the slow dynamics of Eq. (2.1) (in the next

section) has a finite index and a well-defined solution, and it is satisfied in typical

chemical process applications.

We obtain the set of linearly independent constraints (2.4) that must be satisfied

in the slow time-scale t. In the fast time-scale τ , the algebraic constraints Eq. (2.4)

are not satisfied unless steady state reaches [77].

The initial condition x(0) = x0 of the system (2.1) applies in the inner approxi-

mation i.e. the initial condition of the fast dynamics xf (τ = 0) = xf0 = x0.

18



Decomposition of slow dynamics

In the outer approximation, multiplying system (2.1) by ε and considering the lim-

iting case ε → 0 in the slow time-scale, we obtain the constraint k(xs) = 0 which

includes px linearly independent scalar equations. Note that xs denotes the vector of

slow states. Note also that the constraint k(xs) = 0 should be satisfied by the slow

dynamics for all time. This also implies that the constraint should be satisfied by the

slow dynamics at time t = 0, which may be used to determine the initial condition

for the slow dynamics.

Taking the limit ε→ 0 and defining

z = lim
ε→0

k(xs)

ε
(2.5)

system (2.1) becomes,

dxs

dt
= f(xs) + g(xs)u+ b(xs)z

k(xs) = 0
(2.6)

Note that in (2.6), z is indeterminate. Once the input u(t) is specified (e.g. by

a control law), it is possible to differentiate the algebraic constraint in Eq. (2.6)

to obtain (after differentiating a sufficient number of times depending on the index

number) a solution for the algebraic variable z. Without the loss of generality, it is

assumed in this work that by one differentiation in time of the algebraic constraint,

a solution of z can be obtained. Based on this assumption, it is obtained that:

z = −[Lb(k(xs))]
−1[Lf (k(xs)) + Lg(xs)(k(xs))u] (2.7)

The matrix Lb(k(xs)) denotes the Lie derivative of function k(xs) along b(xs) and

is nonsingular. By substituting z in Eq. (2.6), we obtain an approximation of the

slow dynamics of system (2.1):

dxs

dt
=f(xs) + g(xs)u+ b(xs)(−[Lb(k(xs))]

−1[Lf (k(xs)) + Lg(k(xs))u]) := fs(xs, u)

(2.8a)
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k(xs) =0 (2.8b)

with an initial condition xs0 = xfss. fs(xs, u) is the analytic vector field of the

dimension of nxs
.

For more detailed procedures on decomposing fast and slow dynamics, the reader

is referred to [77].

Reconstruction of the actual dynamics from fast and slow dynamics

In the preceding discussion, system (2.1) is brought down to a fast subsystem and

a slow subsystem. The fast subsystem approximates the fast dynamics in the origi-

nal system and the slow subsystem approximates the slow dynamics in the original

system. We also see these explicit equations for fast and slow subsystems are each

valid in their corresponding time-scale τ and t, respectively. An approximation of

the actual dynamics of the original system can be constructed based on the fast and

slow subsystems.

We use the idea of matching to find out the overlap region of fast and slow

subsystems. The overlap region is the intermediate area where both fast and slow

approximations should agree for identical values. To elaborate, let us consider the

fast subsystem; this approximation dominates in a certain region of its domain. Sim-

ilarly, the slow subsystem dominates in a specific but distinct area of approximation.

However, there is a common region where the approximations overlap. The overlap

value is xolp which is the outer limit of the fast subsystem, or the inner limit of the

slow subsystem. That is, xolp = limτ→∞ xf (τ) = limt→0 xs(t) [78, 79].

To obtain the final matched and composite solution, valid on the whole time

domain, the uniform method is one of the popular methods. It adds the inner and

outer approximations and subtracts their overlap value, xolp, which would otherwise

be counted twice. Basically, the overlap value is xfss found from the limits mentioned

above (xolp = xfss). Therefore, the final composite solution xcp which is applicable
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Figure 2.1: A schematic of the proposed distributed state estimation scheme

in the entire time t domain [78, 79].

xcp(t) = xf (ετ) + xs(t)− xfss (2.9)

When the exact solution x for a singular perturbation problem Eq. (2.1) is not

available, xcp is an approximate solution of such system that remains uniformly valid

in the independent variable t.

2.2 Proposed distributed state estimation scheme

In this section, we propose a distributed state estimation scheme to estimate the

state of the two-time-scale system (2.1) based on fast and slow dynamics decomposi-

tion. A schematic of the proposed distributed state estimation scheme is presented in

Fig. 2.1. A local estimator is designed for each fast subsystem and slow subsystem.

Two different estimators are used: extended Kalman filter (EKF) is designed for the

fast subsystem, and moving horizon estimation (MHE) is associated with the slow
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subsystem. The reason to use two different estimators is mainly the existing different

time-scales. EKF takes less time to evaluate, which is apt for the fast subsystem, but

it cannot take nonlinearity or constraints into account in a systematical way and may

give poor performance. The use of EKF for the fast dynamics is a trade-off between

computing speed and performance. On the other hand, MHE is more suitable for

complex nonlinear and constrained dynamic systems. However, it requires online so-

lutions of dynamic optimization problems, which results in increased computational

cost. The sluggish nature of the slow subsystem and the necessary high accuracy in

exchange for an increase in computational cost are reasonable enough for the consid-

eration. The EKF and MHE are designed based on the reduced fast subsystem and

the reduced slow subsystem derived in the previous section. Note that f-EKF denotes

EKF for the fast subsystem, and s-MHE indicates MHE for the slow subsystem. The

composite solution is computed using Eq. 2.9 incorporating estimates derived from

f-EKF, s-MHE, and the fast system steady state. The composite solution undergoes

frequent updates on the fast time-scale.

There is no information exchange from f-EKF to s-MHE. Since each subsystem

evolves at different time-scales, it is desirable to use different sampling periods in the

local estimator designs for the fast and slow subsystems. Therefore, the sampling

period for f-EKF and s-MHE are defined as ∆f and ∆s respectively. Without loss

of generality, we assume that ∆s is an integer multiple of ∆f , i.e., ∆s = n∆f where

n is a positive integer. In the proposed design, we use τq := τ0 + q∆f with q ≥ 0

and tk := t0+k∆s with k ≥ 0 to denote the sampling instants of f-EKF and s-MHE,

respectively. While x̂f (τq) denotes the state estimates of f-EKF at τq, x̂s(tk) is the

state estimates of s-MHE at tk. We denote yf (τq) and ys(tk) as the measurements

for f-EKF and s-MHE sampled at τq and tk, respectively. In the end, we find the

estimation of the actual state based on composite solution Eq. (2.9). In the follow-

ing discussion, we illustrate the proposed estimator design procedure that accounts
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rationally for the nonlinear two-time-scale dynamics.

2.2.1 Proposed implementation algorithms

We decompose two-time-scale systems described in Eq. (2.1) into two separate re-

duced subsystems evolving in a fast and a slow time-scales as illustrated in the pre-

vious section. The fast subsystem is described by Eq. (2.3) and the slow subsystem

is described by Eq. (2.8).

It is important to note that the measurements used in the f-EKF and s-MHE are

directly obtained from the actual system measurement y of Eq. (2.1b) but sampled

every ∆f and ∆s respectively.

In the proposed scheme, the f-EKF and s-MHE are designed independently based

on the above subsystems. The implementation details of the distributed state esti-

mation are specified in Algorithm 1.

Algorithm 1 Proposed estimation algorithm

1: Initialization Initialize the f-EKF and s-MHE with their initial guesses. Find
the steady state of the reduced fast subsystem model

2: for q = 0, 1, 2, 3 . . . do

3: At τq, receive measurement yf (q)
4: Evaluate the f-EKF to obtain x̂f (τq)
5: if q

n
is an integer then

6: Evaluate the s-MHE to obtain x̂s(tk) and send x̂s(tk) to the f-EKF
7: else

8: Obtain open-loop prediction x̂s from the reduced slow subsystem model and
send x̂s(τq) to the f-EKF

9: end if

10: Compute x̂cp(t) at time instant τq
11: end for

Note that in a typical distributed estimation scheme, bidirectional communication

between subsystem estimators is in general used [75]. In the proposed approach, we

take into account the specific feature of a two-time-scale system in the design, and
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only a one-directional communication (from s-MHE to f-EKF) is needed. This is a

unique feature of the proposed design and is possible due to the time-scale separation

between the fast and slow subsystems.

2.2.2 Design of f-EKF

In this section, we design an EKF estimator based on the reduced fast subsystem

model to estimate the state of the fast subsystem. Specifically, in the design of the

EKF, we consider the fast subsystem with additive process noise and the system

output represented in terms of the fast and slow states based on (2.9) as follows:

dxf

dτ
= ff (xf ) + wf (2.10a)

y(τ) = h(xf + xs − xfss) + v (2.10b)

Note that in (2.10a), wf reflects the modeling error of the subsystem model. The

modeling error may come from the system disturbance of the original system (w in

(2.1a)) and the assumption of ε = 0 in deriving the fast subsystem. (2.10b) implies

that in the design of the f-EKF, information of the slow subsystem state xs and the

steady state information of the fast subsystem xfss is needed.

EKF is a common method used for state estimation of nonlinear systems based

on successively linearizing the nonlinear system. It can be divided into two steps,

which are prediction and update steps [23].

Prediction step. At a sampling time τq−1, q = 1, 2, . . ., in an open-loop manner

based on the fast subsystem model and the estimate of the fast subsystem state at

τq−1, the f-EKF first predict the state at the next sampling time.

x̂f (τ |τq−1) = x̂f (τq−1|τq−1) +

∫ τq

τq−1

ff (x̂f (τ |τq−1)) dτ (2.11)
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where x̂f (τ |τq−1) represents the prediction of the state at time instant τ ∈ (τ, τq−1].

The propagation of the process disturbance is as follows:

Ṗf (τ |τq−1) = Ff (τ, τq−1)Pf (τq−1|τq−1)F
T
f (τ, τq−1) +

∫ τ

τq−1

Ff (τ, t)QfF
T
f (τ, t)dt

(2.12)

where Pf and Qf are the error covariance matrix and the state covariance matrix,

respectively, P (τq|τq−1) is a square matrix containing the a priori estimation error

covariance information, and Ff (τ, τq−1) denotes the state transition matrix of the

time-varying linearized system matrix, Af (τ |τq−1) :=
∂ff
∂xf
|(x̂f (τ |τq−1)) and can be cal-

culated as follows:

∂Ff (τ, τq−1)

∂τ
= Af (τ |τq−1)Ff (τ, τq−1)

s.t. Ff (τ, τ) = I

for τ ∈ [τq−1, τq] with I being the identity matrix.

Update step. At each sampling instant τq, a state estimate of the actual dy-

namics of the fast subsystem (denoted as x̂f (τq|τq)) is obtained by performing the

measurement-update step. K(τq) is the correction gain updated at τq which is used

to minimize a posteriori error covariance based on the measurement innovation (i.e.

yf (τq)− Ch(x̂f (τq|τq−1) + x̂s − xfss)).

K(τq) = Pf (τq|τq−1)H
T (τq)(H(τq)Pq|q−1H

T (τq) +Rf )
−1 (2.13)

where H(τq) =
∂h
∂xf
|(x̂f (τq |τq−1)) is the observation matrix, Rf is the covariance matrix

of the measurement noise vf . The updated state estimate is as follows:

x̂f (τq|τq) = x̂f (τq−1|τq−1) +K(τq) (yf (τq)− h(x̂f (τq|τq−1) + x̂s − xfss)) (2.14)

where x̂f (τq|τq) represents the estimate of xf at time τq given observations up to time

τq. The updated state covariance is as follows:

Pf (τq|τq) = (I −K(τq)H(τq))Pf (τq|τq−1) (2.15)
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where P (τq|τq) is the a posteriori error covariance matrix with respect to the estima-

tion error at τq, and I is the identity matrix with dimension nxf
. Note that in the

above f-EKF design, Rf , Qf , Pf are three tuning parameters.

Design of s-MHE

In this section, we design the s-MHE based on the reduced slow subsystem model to

estimate the slow states. Similarly, we consider a stochastic version of the reduced

slow subsystem model in Eq. (2.8) described as in the following form:

dxs

dt
=f(xs) + g(xs)u+ b(xs)(−[Lb(k(xs))]

−1[Lf (k(xs)) + Lg(k(xs))u]) + ws

(2.16a)

k(xs) =0 (2.16b)

y(t) =h(xs) + v (2.16c)

In (2.16a), ws accounts the modeling error of this subsystem model which may

originate either from the actual system (w in (2.1a)) or the assumption for decom-

position of slow subsystem. As stated earlier, when deriving the slow subsystem,

it is assumed that the fast dynamics have converged to the corresponding steady

state values. Based on the assumption and the expression shown in (2.9), the output

equation (2.16) can be obtained for the slow subsystem.

MHE is an online optimization-based estimation method [80]. The proposed

s-MHE optimization problem at time tk is formulated as follows:

min
xs(k−N),ŵs(·)

||x̂s(k −N)− x̃s(k −N)||2
P−1
s

+
k−1
∑

j=k−N

||ŵs(j)||
2
Q−1

s
+

k
∑

j=k−N

||v̂(j)||2
R−1

s

(2.17a)

s.t. x̂s(j + 1) = fs(x̂s(j), u(j)) + ŵs(j), j ∈ [k −N, k − 1] (2.17b)

v̂(j) = y(j)− h(x̂s(j)), j ∈ [k −N, k] (2.17c)

x̃s(k −N) = x̂s(k −N |k −N) (2.17d)
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xs ∈ Xs, ŵs ∈W, v̂ ∈ V (2.17e)

where x̂s denotes the estimated value of the slow subsystem state xs, ŵs denotes

the estimated system disturbance, v̂ denotes the estimated measurement noise, and

Xs, W, and V denote the known constraints on the augmented state, the system

disturbance, and the measurement noise, respectively. Equation (2.17a) is the cost

function the MHE tries to minimize. The objective of the s-MHE is to find the best

estimates of the system states such that the model disturbance and measurement

noise are minimized. P−1
s , Q−1

s andR−1
s are positive definite weighting matrices which

are tuning parameters. The arrival cost, ||x̂s − x̃s||
2
P−1
s

summarizes the information

from the initial state of the model up to the beginning of the estimation window of

the MHE. N denotes the length of the estimation window. Equations (2.17b) and

(2.17c) are the slow subsystem models with system disturbance and measurement

noise considered. In Eq. (2.17d), x̂s(k−N |k−N) represents the estimated state x̂s

at time instant k − N , which is estimated at time instant k − N . Equation (2.17e)

is the known constraints or compact sets that bound the subsystem state, system

disturbance, and measurement noise.

Remark 1 Note that in this work, EKF is used to estimate the fast dynamics. The

main consideration is that EKF is of low computational complexity and can be evalu-

ated very fast, which makes it appropriate for the fast dynamics. Other estimator or

observer designs of low computational complexity may also be used for the fast sub-

system. Regarding EKF, it is widely used for systems with Gaussian noise. When

the noise is bounded and is non-Gaussian, Gaussian mixture models may be used

to improve the estimation performance as discussed in [81]. Note also that in the

proposed distributed estimation scheme, the s-MHE sends the estimated slow state x̂s

to the fast subsystem every slow sampling time. The f-EKF uses x̂s in the estimation

of the fast state xf . This mechanism may assist the f-EKF in getting an improved
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estimation performance. The reader may refer to [82] for relevant discussion on how

the performance of EKF can be improved by re-initializing the EKF frequently using

information from MHE.

Remark 2 The proposed fast and slow dynamics decomposition is general. While in

this work EKF is used in the design of the fast estimator, other estimator or observer

designs of low computational complexity may also be used. The idea is also applicable

to other applications including process intensification [77]. The reader may refer to

[13, 77] for more discussion on how time-scale separation may be used in different

applications from a controller design perspective.

Remark 3 Note that in this work, the convergence and boundedness of the proposed

distributed estimation scheme are not investigated. It is expected that when ε is

close to 0, the slow dynamics are essentially independent on the fast dynamics. The

convergence and boundedness of the s-MHE can be established following a standard

centralized MHE design [83]. For the f-EKF, if the estimated slow state x̂s transmit-

ted from the s-MHE to f-EKF can approximate the actual slow state xs accurately,

the convergence and boundedness of EKF may also be established locally. However,

before the convergence of s-MHE, x̂s could be different from the actual slow state

xs. This mismatch between x̂s and xs may lead to divergence of the f-EKF. It is

needed to establish sufficient conditions under which the f-EKF can still converge

in the presence of the mismatch between x̂s and xs. Similar arguments as used in

[75, 11] may be used to find the sufficient conditions. When both s-MHE and f-EKF

can converge, the composite solution will also converge to the actual state. We will

leave the detailed analysis of the convergence property to our future work.
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Figure 2.2: A continuous-stirred tank reactor with heating jacket

2.3 Application to a CSTR

2.3.1 Process description

Consider a continuous-stirred tank reactor (CSTR) with a heating jacket as shown

in Figure 2.2. Reactant A is fed to the reactor at a flow rate FA, initial molar

concentration CA0 and temperature TA. The reactant A is converted into the product

B through the irreversible endothermic reaction A −→ B, and the product stream is

withdrawn at a flow rate F0 = FA. This implies that the reactor holdup volume V

is constant. The reaction rate rA, is given by the following Arrhenius expression:

rA = k0 exp

(

−E

RT

)

CAV (2.18)

where k0 and E are the reaction rate coefficient and activation energy, respectively,

T is the reactor temperature, and CA is the molar concentration of A in the reactor.

Heat is provided to the reactor from the jacket, where a heating fluid is fed at a flow

rate Fh and a temperature Tj. The modeling equations for the process include the

mole balances for the two components in the reactor and the energy balances in the

reactor and the jacket. The resulting dynamic model is as follows:
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ĊA =
FA

V
(CA0 − CA)− rA

ĊB = −
FA

V
CB + rA

Ṫ =
FA

V
(TA − T )− rA

∆Hr

ρcp
+

UA

ρcp

(

Tj − T

V

)

Ṫj =
Fh

Vh

(Th − T )−
UA

ρhcph

(

Tj − T

Vh

)

(2.19)

where, cp and cph are the specific heat capacities of the reaction mixture in the reactor

and heating liquid in the jacket, respectively. Similarly, the density of the liquids of

the reactor and jacket are ρ and ρh, respectively. U is the overall conductance or heat

transfer coefficient, A is the heat transfer area of the contact surface between ractor

and jacket, and ∆Hr is the heat of reaction which is the enthalpy of the reaction.

It is assumed that the densities and specific heat capacities of the two liquids

are the same, i.e. cp = cph and ρ = ρh and the liquid holdup in the jacket at a

temperature Tj has a constant volume Vh. The heat transfer rate by convection

thought the contact surface can be expressed as:

Q̇ = UA(TA − T ) (2.20)

Furthermore, we assume that the heat transfer between the heating jacket and the

reactor is fast compared to the reaction occurring in the reactor. The large difference

in heat transfer and reaction in the model induces two-time-scale behavior in this

dynamical system. The ratio between the heat transfer to the reaction is defined as:

1

ε
=

UA

ρcp
(2.21)

where ε is the small parameter or singular perturbation parameter which indicates

the presence of fast and slow transients in time response of the system. Based on
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the definition of ε, the CSTR model (2.19) can be rewritten as follows:

ĊA =
FA

V
(CA0 − CA)− rA

ĊB = −
FA

V
CB + rA

Ṫ =
FA

V
(TA − T )− rA

∆Hr

ρcp
+

1

ε

(

Tj − T

V

)

Ṫj =
Fh

Vh

(Th − T )−
1

ε

(

Tj − T

Vh

)

(2.22)

For this process, it is considered that the state vector is x = [x1, x2, x3, x4]
T =

[CA, CB, T, Tj]
T , the manipulated input vector is u = [u1, u2]

T = [FA, Fh]
T , and

the controlled output vector is [y1, y2]
T = [x2, x4]

T . The model in (2.22) takes the

form of Eq. (2.1a) with the system functions defined as:

f(x) =

































k0 exp

(

−E

Rx3

)

x1

−k0 exp

(

−E

Rx3

)

x1

−k0 exp

(

−E

Rx3

)

x1
∆Hr

ρcp

0
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
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V
0

−x2

V
0
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V
0

0
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




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












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0

0
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

,

k(x) =
[

x4 − x3

]

2.3.2 Subsystem decomposition

Following the method described in the previous sections, the fast dynamics of the

process can be obtained and the fast subsystem is shown below:

dx3f

dτ
=

x4f − x3f

V
dx4f

dτ
= −

x4f − x3f

Vh

(2.23)
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We multiply Eq. (2.22) by ε and consider the limit of an infinitely high heat transfer

rate compared to reaction (ε −→ 0) in the original time-scale t. In this limiting case,

the heat transfer resistance becomes negligible, and the reactor and jacket approach

thermal equilibrium. The heat transfer rate Q̇ is driven by the thermal equilibrium

condition x4s → x3s instead of the explicit heat transfer correlation. We obtain the

constraint k(xs) which is the linearly independent constraint as follows:

x4s − x3s = 0 (2.24)

This constraint must be satisfied in the slow time-scale. Also in the limit (ε −→ 0),

the term (x4s−x3s)
ε

, which implies that the heat transfer present in the energy balance

equations become indeterminate. Therefore, z = limε→0
(x4s−x3s)

ε
is defined as the

algebraic variable – the finite but unknown term. Therefore, the slow dynamics

become:

ẋ1s =
FA

V
(CA0 − x1s)− k0 exp

(

−E

Rx3s

)

x1sV

ẋ2s = −
FA

V
x2s + k0 exp

(

−E

Rx3s

)

x1sV

˙x3s =
FA

V
(TA − x3s)− k0 exp

(

−E

Rx3s

)

x1sV
∆Hr

ρcp
+

z

V

˙x4s =
Fh

Vh

(Th − x4s)−
z

Vh

(2.25)

which represents the model of the slow dynamics of the process. The variable z can be

obtained after just one differentiation of the algebraic constraint of Eq. (2.24). The

values of the process parameters and variables at the nominal steady state are given

in Table 2.1. Corresponding to the parameter values shown in Table 2.1, the process

has a steady state [CA, CB, T, Tj]
T = [1.205 mol/l, 1.295 mol/l, 302.3 K, 302.6 K]T

when the input vector of the system is [FA, Fh]
T = [2.0 l/s, 0.1 l/s]T . It was verified

that these values correspond to a stable steady state of the system (2.22).
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Table 2.1: Nominal values of parameters of the CSTR

CA0 = 2.5 mol/l cp = cph = 8.0 J/g K ρ = ρh = 800 g/l
k0 = 5× 1010 s−1 E = 60, 000 J/mol K ε = ρcp

UA
= 0.1 s/l

TA = 305 K Th = 330 K ∆Hr = 20, 000 J/mol
V = 1.0 l Vh = 0.0494 l

2.3.3 f-EKF and s-MHE designs

In this section, we take advantage of the configured subsystem equations and imple-

ment the proposed distributed state estimation scheme for the CSTR. Within the

proposed distributed framework, two local estimators are designed for the two sub-

systems. An f-EKF is designed for the fast subsystem, while s-MHE is developed for

the slow subsystem. The estimates from the two estimators are used to reconstruct

the actual state estimate.

It is assumed that CB and Tj are the measured outputs of the system. The

objective is to estimate the entire state vector of the system based on the two outputs.

In the simulations, random process noise is generated following a normal distribution

with zero mean and standard deviation 0.1. Similarly, the random measurement noise

is considered to be Gaussian white noise with mean zero and standard deviation

0.001 for both measurements. The weighting matrices are diagonal matrices such

as Qf = 10−2diag([1, 1]), Rf = 10−6diag([1, 1]) and Pf = 10−8diag([1, 1]) for

the f-EKF. The f-EKF is evaluated at a fast sampling time ∆f = 0.01 s. For the

design of s-MHE, the weighting matrices for s-MHE are Qs = 10−2diag([1, 1, 1, 1]),

Rs = 10−6diag([1, 1]) and Ps = 10−8diag([1, 1, 1, 1]). The s-MHE is evaluated at

a slower sampling time ∆s = 0.1 s. In the s-MHE, the arrival cost is approximated

using EKF following the approach described in [83]. After testing different values for

the estimation window size of the s-MHE, it was found that an estimation window

size of 3 gives sufficient estimation performance.

In the following simulations, a couple of indexes are used to evaluate the per-
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formance of the estimators. The average relative standard deviation σxi
is defined

as

σxi
=

√

√

√

√

1

Nsim

Nsim
∑

j=0

(

x̂i(tj)− xi(tj)

xi(tj)

)2

(2.26)

where Nsim indicates the total simulation steps, x̂i denotes the estimated value, and

xi denotes the actual value of the ith state for i = 1, 2, ...4. Another performance

index is the average root-mean-square error (RMSE) over the time period

RMSE =
1

Nsim

Nsim
∑

j=0

√

√

√

√

1

4

4
∑

i=1

(

x̂i(tj)− xi(tj)

xi(tj)

)2

(2.27)

These performance indexes are expressed in percentages to evaluate the performance

of each scheme. All the simulations were conducted in a desktop computer with an

Intel i7 CPU at 3.2 GHz and 16 GB RAM.

2.3.4 Simulation results

First, the effectiveness of the decomposition is investigated by comparing the com-

posite state trajectories with the actual system state trajectories. Figure 2.3 shows

one set of the trajectories. The actual system trajectory is solved using an initial

condition [2.5, 0.0, 305, 330] for the states CA, CB, T , and Tj respectively. For

the composite solution, the fast subsystem is integrated with an initial condition

[305, 330] for fast states T , and Tj respectively, and the corresponding steady state

solution is found to be [309.167, 309.167]. Then, the slow subsystem is solved where

the initial condition is [2.5, 0.0, 309.167, 309.167] for CA, CB, T , and Tj, respec-

tively. Then, according to Eq.(2.9), the composite solution is evaluated.

It can be seen from Figure 2.3 that the proposed decomposition method is able

to track the actual state trajectories very well. The state approximations using

the composite solution are very close to the true value obtained from actual model
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Figure 2.3: Trajectories of the actual process states (blue solid lines), fast subsystem
(green dot-dashed lines) slow subsystem (orange dashed lines) and composite solution (red
dotted lines)(For interpretation of the references to color in this figure legend, the reader
may refer to the web version of this article.)

equations. It can be observed clearly that the concentration trajectories are smooth

and have a flat slope but the temperature trends have a very steep slope initially,

and then flatten gradually. This indicates that the temperature dynamics exhibit

two-time-scale behaviors. The results also show that there is no explicit separation

of the fast and the slow dynamics in the system. The composite states based on

the fast and slow subsystems and the actual system trajectories do not match 100%

because ε = 0.1 instead of 0. The composite solution approaches the actual system

states when ε = 0. It should be pointed out that in the case considered (ε = 0.1), the

mismatch between the composite solution and the actual model in terms of RMSE is

0.035% which is negligible and shows the decomposed subsystems provide an accurate

approximation of the actual system. It was also observed in our simulations that a

stable numerical solution of the original nonlinear model cannot be obtained using
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Table 2.2: Initial states of the process and the initial guesses used in different estimation
schemes.

states Initial condition Centralised MHE f-EKF s-MHE
CA (mol/l) 2.5 1.5 N/A 1.5
CB (mol/l) 0.0 0.0001 N/A 0.0001

T (K) 306 308 308 308
Tj (K) 311 313 313 313

the explicit fourth-order Runge Kutta method (RK4) if the integration step size is

greater than 0.04 s. This is because the actual system is a stiff system existing in

both fast and slow dynamics and it lacks numerical stability beyond integration step

size 0.04 s when a fourth-order integration method like RK4 is used.

Next, we apply the proposed distributed state estimation scheme to the CSTR

and compare its performance against two other common schemes. Specifically, we

consider three different schemes: (I) the proposed distributed scheme; (II) a de-

centralized estimation scheme; and (III) a centralized MHE. In the decentralized

scheme, the s-MHE and f-EKF in the distributed scheme are still used but they do

not communicate. That is, in the decentralized scheme, the s-MHE does not send

any information to the f-EKF. The tuning parameters of the decentralized scheme are

kept the same as the proposed distributed scheme. The centralized MHE is designed

based on the original full nonlinear system of Eq. (2.19). The weighting matrices

for the centralized MHE are Q = 10−2diag([1, 1, 1, 1]) and R = 10−6diag([1, 1])

and P = 10−8diag([1, 1, 1, 1]). For the centralized scheme, the fast sampling time

∆f = 0.01 s is used to ensure that both the fast and slow dynamics can be captured

accurately. For the centralized MHE, we consider the estimation window is the same

as the s-MHE; that is N = 3. In such a case, the centralized MHE keeps the same

number of decision variables as the s-MHE. In all these designs, the arrival cost is

included and is approximated using the EKF-based approach. For all these schemes,

the system disturbance and measurement noise are the same for proper comparison.
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Table 2.3: Estimation performance of the three estimation schemes

σxi
Scheme I Scheme II Scheme III

σCA
(%) 12.7 12.7 5.7

σCB
(%) 7.15 7.15 8.42

σT (%) 0.19 0.55 6.43× 10−2

σTj
(%) 2.058× 10−3 0.667 7.192× 10−2

Average RMSE (%) 2.88 3.26 2.2

Figure 2.4: Trajectories of the actual states (blue solid line), state estimates based on
decomposition under proposed distributed configuration (orange dashed lines), state esti-
mates based on decomposition under decentralized configuration (green dash-dotted lines)
(For interpretation of the references to color in this figure legend, the reader may refer to
the web version of this article.)

Table 2.3 summarizes the simulation results in terms of the performance measures

introduced earlier. Figure 2.4 shows the estimated and the actual state trajectories

of scheme I and scheme II. From Figure 2.4, we observe that the estimated states are

able to converge to the actual state trajectories in both schemes. From Table 2.3, it
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Table 2.4: Average RMSE of the three estimation schemes under different noise levels

Scheme I Scheme II Scheme III
σw = 0.001 σv = 0.001 2.58 2.62 1.75
σw = 0.01 σv = 0.01 3.19 3.22 5.4
σw = 0.5 σv = 0.01 3.58 4.06 5.88
σw = 0.9 σv = 0.05 6.7 7.61 22.93
σw = 0.9 σv = 0.1 10.7 11.6 44.61

can be seen that the proposed scheme I give better estimation performance. Since

the s-MHE are the same in both schemes and it is decoupled from the f-EKF, the

estimation indexes for the two concentrations σCA
and σCB

are the same. Scheme

I outperforms scheme II mainly in the estimation of T and Tj. The performance

improvement in scheme I is essentially from the information exchange in the proposed

distributed scheme. The information exchange in the proposed scheme I leads to

faster convergence of the estimated states to the actual states compared with scheme

II. Therefore, it can be more favorable to take scheme I for state estimation for the

decomposition considered.

Figure 2.5 shows the results of scheme I and scheme III. The state estimators

are able to track the actual state trajectories in these two schemes, too. It can be

seen from Table 2.3 that the centralized MHE (scheme III) gives improved estima-

tion performance compared with the proposed distributed scheme I in this set of

simulations. However, the centralized scheme III is much more computationally in-

tensive. For the distributed or decentralized schemes, the s-MHE takes about 0.032

sec for each evaluation and it evaluates every 0.1 sec. For the centralized MHE, it

takes about 0.024 sec for each evaluation, which is a bit smaller than the one for the

s-MHE due to the small sampling time used in the centralized MHE but it needs to

be evaluated 10 times every 0.01 sec. This indeed makes the centralized MHE much

more computationally demanding. Further, the performance of the centralized MHE
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Figure 2.5: Trajectories of the actual states (blue solid line), state estimates based on
decomposition under distributed configuration (orange dashed lines), state estimates of
actual system without decomposition (maroon dash-dotted line) (For interpretation of the
references to color in this figure legend, the reader may refer to the web version of this
article.)

Figure 2.6: Average RMSE of the proposed distributed scheme I and the centralized
scheme III when different estimation window sizes are considered.
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is sensitive to the level of noise present in the system and deteriorates quickly as the

noise level increases as shown in the next set of simulations.

In this set of simulations, we run the three estimation schemes with different

initial conditions and different noise levels. Table 2.4 summarizes the results. In

Table 2.4, each data point is calculated based on three simulation runs with dif-

ferent initial conditions and different noise sequences. From Table 2.4, we see that

the performance of the three schemes overall decreases as the noise level increases.

However, the performance of the centralized MHE deteriorates quickly as the noise

level increases. When the noise level is low, the centralized MHE gives the best esti-

mation performance but as the noise level increases, the centralized MHE gives the

poorest performance. This may be due to the centralized model (which is stiff) used

in the centralized MHE. The stiff model makes the centralized MHE sensitive to un-

certainty and is less robust. This shows the advantage of decomposing the dynamics

into fast and slow subsystems as in the proposed distributed scheme. From Table 2.4,

it can be seen that the proposed distributed scheme (scheme I) outperforms the de-

centralized scheme (scheme II) in all the noise levels. This again demonstrates the

benefits of information exchange between the s-MHE and the f-EKF in the proposed

distributed scheme.

Note that in the above simulations, the centralized MHE and the s-MHE both

used an estimation window size of 3. The robustness of the centralized MHE may

be improved by using a longer horizon. To study the dependence of the s-MHE and

the centralized MHE on the length of the estimation window, we perform another

set of simulations. Figure 2.6 shows the average RMSE of the two schemes under

different window lengths. Each RMSE value is the average value calculated based on

simulations with different noise levels as shown in Table 2.4. From the figure, it can

be seen that the performance of the proposed distributed scheme has less dependence

on the size of the estimation window. The centralized MHE (scheme III) may achieve
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a similar performance as the proposed scheme I with N = 3 when the estimation

window is about 8. However, when N = 8, the evaluation time of the centralized

MHE is about 0.057 s, which is much larger than the evaluation time (0.032 s) of the

s-MHE. Given the fact that the centralized MHE needs to be evaluated 10 times every

0.1 sec, it leads to a much higher computational load. This further demonstrates the

proposed decomposition and distributed estimation scheme in obtaining a balanced

performance in terms of estimation performance and computational complexity.

2.4 Summary

In this chapter, we developed a distributed state estimation method based on EKF

and MHE for a class of implicit two-time-scale nonlinear systems, where some of the

state variables inhibit both the fast and slow dynamics. The nonlinear system was

decomposed into fast and slow subsystems based on singular perturbed parameter

ε. In the proposed design, a one-directional communication strategy was established

and the method was applied to a chemical process. A series of simulations were

carried out to compare the proposed architecture with centralized and decentralized

techniques from a computational time and accuracy point of view. Owing to different

sampling times, the system is a stiff problem where step size plays an important role

in the numerical stability of the solution instead of accuracy requirements. However,

our design ensures numerical stability, moderate accuracy, and low computational

time.

The potential challenges in implementing the proposed approach may include (a)

the determination of the small parameter ε for a specific process, which may not

be straightforward for some applications, and (b) the solution of the indeterminate

variable z since it involves the calculation of Lie derivatives, which could be com-

putationally expensive for large-scale processes. Future work aiming at addressing

these challenges should be conducted.
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Chapter 3

Input-output selection for

LSTM-based reduced-order state

estimator design

In this chapter, we consider a sensitivity-based approach to construct reduced-order

state estimators based on recurrent neural networks (RNN). It is assumed that a

mechanistic model is available but is too computationally complex for estimator de-

sign and that only some target outputs are of interest and should be estimated. A

reduced-order estimator that can estimate the target outputs is sufficient to address

such a problem. We propose an approach to find the most appropriate inputs and

outputs for data-driven reduced-order model development for target variable estima-

tion purposes. Specifically, we assume that a mechanistic model of the actual system

is available and we are only interested in estimating a small set of the desired outputs

instead of the entire state vector. To address such a problem, a reduced-order esti-

mator that can estimate the desired outputs is sufficient to meet the requirements. In

the proposed approach, there are three steps. In the first step, the sensitivity matrix

of the target outputs to the initial state is evaluated based on process data. Then the

singular value decomposition (SVD) is applied to the matrix to find the dominant sin-

gular values and the most important state elements that contribute to the dominant
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singular values. The most important state elements are selected as the reduced state

vector. Once the reduced state vector is determined, the sensitivity of the inputs to

the reduced state vector is evaluated and similarly, the most important inputs are

determined. These inputs are selected as the elements in the reduced input vector.

In the second step, process data are collected based on simulating the process model,

and a data-driven model in the form of a Long-Short-Term-Memory (LSTM) neural

network is designed to approximate the dynamics between the selected reduced input

vector and the reduced state vector. In the last step, an extended Kalman filter is

designed based on the reduced-order LSTM model to estimate the target output.

The proposed approach is applied to a chemical process and extensive simulations

will be performed to show its applicability and effectiveness.

3.1 Introduction

3.2 Preliminaries

In this section, we first provide a description of the discrete-time nonlinear system

and define the objectives of the work. This section also discusses the formulation of

the reduced-order model briefly.

3.2.1 System description

We consider a class of discrete-time nonlinear systems described as follows:

x(t+ 1) = f(x(t), u(t)) (3.1a)

y(t) = h(x(t)) (3.1b)

yt(t) = ht(x(t)) (3.1c)

where x(t) ∈ Rnx is the vector of state variables at t, u(t) ∈ Rnu is the vector of

the manipulated inputs, and y(t) ∈ Rny is the vector containing all the measured
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outputs. f(·) and h(·) denote the nonlinear state and measured output equations,

respectively. yt(t) ∈ Rnyt represents the vector of target process variables which is

to be estimated, and the function ht(·) characterizes the relation between the state

x and the target output yt. It is assumed that the state vector x is observable based

on the measurements of y. It is also assumed that the dimension of yt is smaller than

the dimension of x (the number of target outputs nyt is smaller than the number

of states nx). In a process system, the number of states can be many but there

is typically a relatively much smaller number of important states that need to be

monitored very closely. The above assumption is considered from a viewpoint of the

operation. It is not a condition but a scenario of the operation. For convenience, we

will refer to the system in (3.1) as the actual system in the remainder of this work.

3.2.2 Problem formulation

The main objective of this work is to develop a reduced-order estimator to estimate

the target output yt based on measurements of y. Aiming at the yt estimation,

one can develop a full-order estimator using the available measurements y and the

process model (3.1a). Different estimation algorithms can be readily applicable to

estimate all the states x of the system (3.1). However, in many applications, it is

not necessary to estimate all the states of the system when we are only interested

in yt. A full-order estimation can be computationally expensive, and the estimation

performance may also be compromised due to estimating all the states with limited

number of measured output variables. It is expected that a reduced-order estimator

that only estimates a smaller subset of the state variables that are closely related

to the target outputs is sufficient to achieve the objective. Compared to a full-

order state estimator, a reduced-order estimator has the potential to decrease the

computational cost and improve the estimation performance.

In this work, we consider the development of a reduced-order model for the sys-
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tem (3.1) and the associated reduced-order estimator design. Specifically, we pro-

pose to first use the full-order system model (3.1) to generate data, and then to

identify a reduced-order model using RNN for yt estimation purposes. Subsequently,

a reduced-order estimator is designed based on the RNN to estimate yt based on the

measurements of y. In particular, we are interested in identifying a reduced-order

model in the following form:

x̃(t+ 1) = f̃(x̃(t), · · · , x̃(t− nl), ũ(t), · · · , ũ(t− nl)) (3.2)

where x̃ ∈ Rñx is the vector of reduced (selected) state variables, nl is the length of the

sequence of data, ũ ∈ Rñu is the vector of the reduced (selected) manipulated inputs,

and f̃(·) describes the dynamics of the reduced-order model. It is also expected that

the elements of the reduced variables x̃ and ũ are the same as the respective elements

in the actual system variables x and u. The measured output y and the target output

yt are also expected to be able to be described using the reduced state x̃. Let us

denote the relations as follows:

y(t) = h̃(x̃(t)) (3.3)

yt(t) = h̃t(x̃(t)) (3.4)

where h̃ and h̃t define the measured output equation and target output equation

with respect to the reduced state vector x̃.

We will discuss how x̃ and ũ should be selected so that a reduced model as

shown in (3.2)-(3.4) can be identified and the target output yt can be accurately

estimated using the measurements of y based on the reduced-order model (3.2). It is

expected that the dimension ñx of the reduced state vector x̃ is much smaller than

the dimension nx of the actual system state vector x (ñx < nx). Similarly, ñu < nu.
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Figure 3.1: The flow chart of the proposed approach.

3.3 Proposed reduced input and state vectors se-

lection approach

Figure 3.1 shows a flow chart of the proposed approach. In the first step, we select

the reduced-order state x̃ and the corresponding ũ for the purpose of estimating

yt. Based on the full-order system model, we first construct the sensitivity matrix
∂yt
∂x

and normalized. By analyzing
∂yt
∂x

, we can then determine the elements in the

state vector x that are most closely related to yt, and these elements are selected

to construct the reduced-order system state x̃. Once x̃ is determined, we further

construct the sensitivity matrix
∂x̃

∂u
and normalized [84, 85]. Based on

∂x̃

∂u
, we then

find a subset of u, ũ, that has a significant impact on x̃. In the determination of x̃

and ũ, the singular value decomposition (SVD) method will be used. In the second

step, based on the full-order system, we vary ũ and collect the trajectories of x̃.

Then, based on the data of ũ and x̃, an LSTM model is identified. This LSTM

model is a reduced-order model. In the third step, an estimator is designed based

on the reduced-order model identified in the second step. In this work, we will show

how an extended Kalman filter (EKF) may be designed based on the reduced-order
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model to estimate yt based on measurements of y.

3.3.1 Sensitivity matrix for reduced state selection

In order to select the reduced states, the sensitivity matrix of the target output yt

to state x is considered. A larger element in the sensitivity matrix indicates that the

target output is more sensitive to the corresponding state. That is, a small perturba-

tion of the states can generate a larger change in the target output. In the literature,

sensitivity matrices have been used to identify relevant connections between model

outputs and inputs to develop reduced-order model [86, 87, 88] since the sensitivity

is closely related to both observability and controllability of a system[71, 89]. To

find the sensitivity matrix, a practical method is to linearize the nonlinear system at

different points along its trajectories and find the observability matrix at each point.

Consider N + 1 sampling points from t0 to tN along a trajectory of the system

(3.1). Defining A(t) :=
∂f

∂x
(t), B(t) :=

∂f

∂u
(t), C1(t) :=

∂h

∂x
(t), and C2(t) :=

∂ht

∂x
(t),

the linearized system at a sampling time t can be obtained as follows:

x(t+ 1) = A(t)x(t) + B(t)u(t) + F
′

(3.5)

y(t) = C1(t)x(t) +H
′

1 (3.6)

yt(t) = C2(t)x(t) +H
′

2 (3.7)

where F
′

, H
′

1, and H
′

2 are additional constant terms resulting from the linearization

at sampling point (x(t), u(t)).

The sensitivity of the target output yt(t) to the initial state x(t0) is defined as
∂yt(t)

∂x(t0)
. Defining the sensitivity of the state to the initial condition as

∂x(t)

∂x(t0)
, from

(3.5) and (3.7) the following two equations can be written:

∂x(t+ 1)

∂x(t0)
= A(t)

∂x(t)

∂x(t0)
(3.8)

∂yt(t)

∂x(t0)
= C2(t)

∂x(t)

∂x(t0)
(3.9)
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with the initial value at t = t0,
∂x(t0)

∂x(t0)
= I. Using (3.8) and (3.9), it can be rewritten

at the sampling point t as:

∂yt(t)

∂x(t0)
= C2(t)A(t− 1)A(t− 2) · · ·A(0) (3.10)

From sampling time t0 to tN , we can construct the sensitivities,
∂yt(t)

∂x(t0)
, t = 0, . . . , N ,

and stack them to form a sensitivity matrix SO:

SO(t0, . . . , tN) =































∂yt(t0)

∂x1(t0)

∂yt(t0)

∂x2(t0)
. . .

∂yt(t0)

∂xnx
(t0)

∂yt(t1)

∂x1(t0)

∂yt(t1)

∂x2(t0)
. . .

∂yt(t1)

∂xnx
(t0)

...

...
∂yt(tN)

∂x1(t0)

∂yt(tN)

∂x2(t0)
. . .

∂yt(tN)

∂xnx
(t0)































(3.11)

The matrix is a series of snapshots of the sensitivities stacked vertically in the time

span t0 to tN . We can test the rank of SO(t0 . . . tN) along a typical trajectory from

t0 to tN . The sensitivity matrix SO will be used to select the reduced state x̃. The

SVD analysis will be used to achieve this goal and will be discussed in Section 3.3.2.

3.3.2 Reduced state selection via singular value decomposi-

tion

Once the sensitivity matrix SO is constructed, we propose to use the singular value

decomposition (SVD) analysis to analyze SO to find the subset of state elements in

x that are closely related to the target output yt. The SVD algorithm [90] provides a

way to represent the sensitivity matrix SO as a summation of equally sized matrices

that decrease in dominance:

SO = u1σ1v
T
1 + u2σ2v

T
2 + . . .+ unx

σnx
vTnx

(3.12)
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where σi’s (i = 1, . . . , nx) are the singular values of the matrix SO sorted such

that σ1 is the largest singular value and σnx
is the smallest singular value, and ui,

vi (i = 1, . . . , nx) are the associated left and right unitary matrices, respectively.

Equation (3.12) implies that the sensitivity information contained in SO can be

projected onto nx directions represented by the nx singular vectors vi, i = 1, . . . , nx.

The magnitude of the singular value reflects the amount of information contained in

the associated direction.

After SVD, we first examine the singular values and can select the dominant ones

that contain most of the information in SO for further analysis. One way to select

the dominant singular values is to identify a significant gap in the singular values

[91, 92].

Suppose that m out of the nx singular values are selected for further analysis. We

next analyze the associated singular vectors vi, i = 1, . . . ,m. The absolute value of

the j-th, j = 1, . . . , nx, element in vi, denoted as vij, reflects the contribution of the

j-th state element of x to the variance/information of the target variable yt along the

direction of vi [93]. Therefore, in this work, the following measure is used to reflect

the overall effect of the j-th state element on the target output:

Dj =

m
∑

i=0

|σivij|

m
∑

i=0

|σi|
(3.13)

where 0 ≤ Dj ≤ 1. A large value of Dj implies a larger impact on the target output.

Based on the above measure, a partitioning of the elements of x into two groups

can be performed. The first group has a comparatively large effect on the target

variable than the other group. Therefore, the elements belonging to the first group

are selected to be elements in x̃. After the above process, x̃ contains elements that

are most closely related to yt. In order to be able to use the measured output y, we

should check whether y can be expressed using the elements in the current x̃. This
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is, whether an expression in (3.3) can be obtained. If the current x̃ is not sufficient

to express y, the missing state elements should be added to x̃.

3.3.3 Sensitivity matrix for input selection and reduced in-

put vector selection

After x̃ is determined, we can proceed to select the reduced input vector ũ. The

sensitivity of x̃ with respect to the actual input vector u,
∂x̃

∂u
will be used.

Considering again the sampling points from t0 to tN along a trajectory of the

system in (3.1a) and (3.1b), from equation (3.5), it can be written the following

equation:

∂x(t+ 1)

∂u(t0)
= A(t)

∂x(t)

∂u(t0)
+B(t)

∂u(t)

∂u(t0)
(3.14)

where
∂x(t)

∂u(t0)
is the sensitivity of the state vector x(t) with respect to the input u(t0)

and
∂u(t)

∂u(t0)
is the sensitivity of input vector u at t with respect to the input at t0.

As the inputs are not dependent on each other,
∂u(t)

∂u(t0)
= 0 for all the t except t0.

At t = t0,
∂u(t)

∂u(t0)
= I. From (3.14),

∂x(t)

∂u(t0)
is evaluated as follows:

∂x(t)

∂u(t0)
= A(t− 1)A(t− 2) · · ·A(1)B(0) (3.15)

Note that the sensitivity of the reduced state vector x̃ to the input vector u,
∂x̃(t)

∂u(t0)
,

can be obtained by taking the corresponding elements (rows) from
∂x(t)

∂u(t0)
since x̃

is composed of selected elements of x. By calculating
∂x̃(t)

∂u(t0)
from t0 to tN , and
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stacking these sensitivities in a matrix, we can form the following sensitivity matrix:

SC(t0, . . . , tN) =





































































∂x̃1(t0)

∂u1(t0)

∂x̃1(t0)

∂u2(t0)
. . .

∂x̃1(t0)

∂unu
(t0)

∂x̃2(t0)

∂u1(t0)

∂x̃2(t0)

∂u2(t0)
. . .

∂x̃2(t0)

∂unu
(t0)

...
∂x̃ñx

(t0)

∂u1(t0)

∂x̃ñx
(t0)

∂u2(t0)
. . .

∂x̃ñx
(t0)

∂unu
(t0)

...

...
∂x̃1(tN)

∂u1(t0)

∂x̃1(tN)

∂u2(t0)
. . .

∂x̃1(tN)

∂unu
(t0)

∂x̃2(tN)

∂u1(t0)

∂x̃2(tN)

∂u2(t0)
. . .

∂x̃2(tN)

∂unu
(t0)

...
∂x̃ñx

(tN)

∂u1(t0)

∂x̃ñx
(tN)

∂u2(t0)
. . .

∂x̃ñx
(tN)

∂unu
(t0)





































































(3.16)

For determining the reduced input vector ũ, a similar approach to the selection of

x̃ is considered based on the sensitivity matrix SC . First, by applying SVD to SC , an

equation similar to equation (3.12) can be derived. Next, by examining the singular

values, we can find the dominant ones. Next, we analyze the associated singular

vectors to find the important elements in u that have more significant impact on the

reduced state x̃. A similar measure to Dj can be used in determining the important

elements in u and these elements in u form the reduced input vector ũ.

3.4 Proposed reduced-order estimator design ap-

proach

In the previous section, we discussed how to select the reduced state and input

vectors x̃ and ũ. In this section, we discuss how to develop a reduced-order model
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using LSTM to describe the dynamics between ũ and x̃. We will also discuss how

to design a reduced-order estimator in the framework of EKF based on the reduced-

order model.

3.4.1 Reduced-order model development

We propose to use LSTM neural networks to develop the reduced-order model. LSTM

networks are typically used for modeling sequential time-series data, such as the

trajectories of dynamical chemical processes. While the traditional RNNs suffer

from losing error information pertaining to long data sequences, LSTM models can

deal with this problem by protecting error information from decaying using learnable

gates [94, 95].

As illustrated in Step 2 in Figure 3.1, to develop the reduced-order model, we

need to collect data. The data for model development can be generated based on the

actual system model as shown in (3.1) based on extensive simulations with different

initial states and randomly generated multi-step input sequences. The multi-step

input sequence ensures to capture of most of the system’s dynamics. Note that since

only the inputs in the selected ũ are important for the target output yt, only these

inputs need to be considered in the data generation and the other inputs can be

kept constant which is described in detail in the application section. In the extensive

simulations, the trajectories of ũ and x̃ are collected. It is noted that the generation

of these time-series data is an important step of the LSTM modeling. When the data

is collected, the entire data set is divided into training, validation, and testing data

sets for the LSTM model development. A brief step-by-step procedure for identifying

an LSTM model is outlined as follows:

1. Normalise the dataset so that all values are within the range of 0 and 1.

2. Determine the number of layers of the LSTM model, the number of nodes in
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each layer; the outputs of the LSTM model should be x̃ and the input to the

LSTM model should be {x̃, ũ}.

3. Train the LSTM model using the training dataset. This may be done using,

for example, the Keras Library in Python for artificial neural networks.

4. Use the validation and test datasets to validate and evaluate the model perfor-

mance, respectively. If the model performance (both single-step and multi-step

ahead predictions) is not acceptable, go back to Step 2 and retrain the LSTM

model. If the performance is good, save the model parameters.

After the LSTM model is trained, the LSTM model parameters can be extracted

and the model can be described in the form of (3.2)-(3.4).

3.4.2 Extended Kalman filter design

EKF and its variants are standard methods used for state estimation of nonlinear

systems based on successively linearizing the nonlinear system [25, 96]. A traditional

EKF is modified to accommodate the sequence length of the LSTM model. Note

that EKF is based on successive linearization of the original nonlinear system. If

a system cannot be linearized well, numerical approaches may be used to find the

Jacobian matrix treating the nonlinear system as a black box. The EKF is divided

into two steps - prediction and update steps.

Prediction step. At a sampling time t, using the past nl estimated reduced

state ˆ̃x from t− 1 to t−nl, the EKF predicts the reduced state at the sampling time

t. The predicted reduced state is as follows:

ˆ̃x(t|t− 1) = f̃(ˆ̃x(t− 1), . . . , ˆ̃x(t− nl), ũ(t− 1), . . . , ũ(t− nl)) (3.17)

where ˆ̃x(t|t− 1) represents the prediction of the reduced state at time instant t based

on past estimated reduced state ˆ̃x from t− nl to t− 1.
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The propagation of the process disturbance is as follows:

P (t|t− 1) =
t−1
∑

m=t−nl

Ad(m+ 1)P (m)Ad(m+ 1) +Q (3.18)

where P and Q are the reduced state covariance matrix and process noise covariance

matrix. The state-transition matrix, Ad(t) =
∂f̃

∂x̃

∣

∣

∣

∣

ˆ̃x(t−1)

.

To find the expression of P in (3.18), let us consider the reduced-order model

with additive process noise w:

x̃(t) = f̃(x̃(t− 1), · · · , x̃(t− nl), ũ(t− 1), · · · , ũ(t− nl)) + w(t− 1) (3.19)

The error between the actual reduced state x̃(t) and the predicted value from (3.17),

ˆ̃x(t|t− 1), is given as:

x̃(t)− ˆ̃x(t|t− 1) =f̃(x̃(t− 1), · · · , x̃(t− nl), ũ(t− 1), · · · , ũ(t− nl)) + w(t− 1)

− f̃(ˆ̃x(t− 1), . . . , ˆ̃x(t− nl), ũ(t− 1), . . . , ũ(t− nl)) (3.20)

The estimation error can be approximated using by only considering the linear ap-

proximations of the nonlinear system equation:

x̃(t)− ˆ̃x(t|t− 1) ≈
∂f̃

∂x̃

∣

∣

∣

∣

x̂(t−1)

(x̃(t− 1)− ˆ̃x(t− 1)) + · · ·

+
∂f̃

∂x̃

∣

∣

∣

∣

x̂(t−nl)

(x̃(t− nl)− ˆ̃x(t− nl)) + w(t− 1)

=
t−1
∑

m=t−nl

Ad(m+ 1)(x̃(m)− ˆ̃x(m)) + w(t− 1) (3.21)

The covariance matrix P (t|t− 1) can be calculated as follows:

P (t|t− 1) =E
[

(x̃(t)− ˆ̃x(t|t− 1))(x̃(t)− ˆ̃x(t|t− 1))T
]

(3.22)

Based on (3.21) and (3.22), the following equation can be written:

P (t|t− 1) =E

[( t−1
∑

m=t−nl

Ad(m+ 1)(x̃(m)− ˆ̃x(m)) + w(t− 1)

)

54



( t−1
∑

m=t−nl

Ad(m+ 1)(x̃(m)− ˆ̃x(m)) + w(t− 1)

)T]

(3.23)

Given that the noise w(t− 1) is not correlated with the estimates at and before t− 1

and neglecting the correlation between the estimated reduced states at different time

instants, P (t|t− 1) can be approximated as follows:

P (t|t− 1) =
t−1
∑

m=t−nl

Ad(m+ 1)P (m)Ad(m+ 1) +Q (3.24)

which is the expression using in (3.18).

Update step. At each sampling instant t, an estimate of the current reduced

state ˆ̃x(t) is obtained by performing the measurement-update step based on the

predicted value ˆ̃x(t|t− 1) as follows:

ˆ̃x(t) = ˆ̃x(t|t− 1) +Kt(y(t)− C ˆ̃x(t|t− 1)) (3.25)

where ˆ̃x(t) represents the estimated x̃ at time t given the observations of y up to

time t and the observation matrix, C =
∂h

∂x̃

∣

∣

∣

∣

ˆ̃x(t|t−1)

. The correction gain Kt at time t

used to minimize a posteriori error covariance based on the measurement innovation

(i.e. y(t)− C ˆ̃x(t|t− 1)) can be determined as below:

Kt = P (t|t− 1)CT (R + CP (t|t− 1)CT )−1 (3.26)

where R is the covariance matrix of the measurement noise. The covariance matrix

is also updated as follows:

P (t) = (I −KtC)P (t|t− 1) (3.27)

where P (t) is the posteriori error covariance matrix of the estimation error at t and

I is an identity matrix. Note that P (0), Q, and R are three tuning parameters for

the EKF.
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Figure 3.2: Two continuous-stirred tank reactors and a flash separator process

3.5 Application to a chemical process

In this section, we apply the propose reduced-order estimator design approach to a

chemical process to illustrate its applicability and effectiveness.

3.5.1 Process description and simulation settings

A chemical process consisting of two continuous stirred tank reactors (CSTR) and a

flash separator in series is considered [11]. A process schematic is shown in Figure 3.2.

Pure material A is fed at the rate of F10 and F20 respectively, into the two CSTRs,

in which the first-order irreversible exothermic reactions take place, i.e. A −→ B

and B −→ C. The reactors are assumed to be perfectly mixed, with constant density,

liquid volume, and heat capacity. The outlet of the second CSTR is fed into the flash

separator at a flow rate F2. The overhead of the separator is condensed and passed to

a downstream unit at flow rate Fp with a recycle to the first reactor Fr and the bottom

product stream is removed at flow rate F3. Each tank is equipped with a jacket to

heat or cool the tank and Q1, Q2, and Q3 are heat inputs/removals. A detailed model

of the process in the form of ordinary differential equations (ODEs) is described in

[11]. The parameter values of the model are shown in Table 3.1. In the model,
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Table 3.1: Parameter values

T01 = 300 K ∆H1 = −6.0× 104 kJ/kmol

T02 = 300 K ∆H2 = −7.0× 104 kJ/kmol

E1 = 5× 104 kJ/kmol R = 8.314 kJ/ kmol K

E2 = 6× 104 kJ/kmol k1 = 9.972× 106 hr−1

cp = 4.2 kJ/(kg·K) k2 = 9.36× 106 hr−1

∆HvapA = −3.57× 104 kJ/kmol V1 = 4 m3

∆HvapB = −1.57× 104 kJ/kmol V2 = 4 m3

∆HvapC = −4.07× 104kJ/kmol V3 = 4 m3

αA = 3.5 αB = 1.0

αC = 0.5 XA10 = 1.0

XB10 = 0.0 XA20 = 1.0

XB20 = 0.0 ρ = 1000 kg/m3

Q1 = 3× 106 kJ/hr Q2 = 1× 106 kJ/hr

Q3 = 3× 106 kJ/hr Fp = 0.5 m3/hr

F10 = 12.0 m3/hr F20 = 3.0 m3/hr

Fr = 13.4 m3/hr

there are in total nine ODEs corresponding to the dynamics of the concentrations

and temperatures of each tank. It is assumed that the temperatures of all the

tanks are measurable, so the system outputs y = [T1, T2, T3]
T . The concentrations of

components A and B in each tank and the temperatures of the tanks are the states of

the process; that is, x = [XA1, XB1, T1, XA2, XB2, T2, XA3, XB3, T3]
T and input vector

is u = [F10, F20, Q1, Q2, Q3, Fr, Fp]
T .

In order to control and monitor the quality of the product, it is assumed that the

concentration of component B in the separator XB3 is an important process variable

and is considered as the target variable; that is, yt = [XB3]. It is desired to estimate

XB3 at each sampling time based on the process information of the input u and the

measured output y. Since we are mainly concerned about the target output XB3, it
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Figure 3.3: Trajectories of input F10 and the target output XB3

is not necessary to estimate all the other states of the process.

A first principle model of the process was built based on physio-chemical phe-

nomena to connect different unit operations by mass and heat balances [23]. It is

verified that based on the measurements of y and the first principle model, the entire

state x can be estimated. In this section, we illustrate how a reduced-order estimator

may be designed using the proposed approach to estimate XB3 and will compare the

performance of the reduced-order estimator with a full-order estimator based on the

actual first principle model to show the benefits of using a reduced-order estimator.

3.5.2 Selection of the reduced state and input vectors

Following the steps illustrated in Figure 3.1, firstly, to obtain sensitivity matrices for

reduced state and input selection, we perform open-loop simulations based on the

first principle model of the process to generate data. In the simulations, the values

of the process parameters used are shown in Table 3.1. A random process noise w(t)
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is added and the noise is generated following a Gaussian white noise with zero mean

and standard deviation of 0.01. The process model is solved using the fourth-order

Runge Kutta method with a sampling time of 0.01 hr. The entire data is produced

using randomly generated inputs within the allowable ranges. The inputs change

every 2 hours. Figure 3.3 shows the trajectories of one of the inputs and the target

output.

We find the sensitivity matrix of the target output to the state SO following

(3.11). Then, we apply SVD to the sensitivity matrix to find the singular values and

the associated singular vectors. Figure 3.4A represents the nonzero singular values

of the sensitivity matrix in a semi-log plot, in descending order, along with its index

number. There are eight entries in this plot therefore it has a zero singular value.

It can be observed from the plot that there is a clear gap between the 3rd and 4th

singular values. Therefore, the first three singular values are considered the dominant

ones.

After determining the dominant singular values, we calculate measure (3.13)

based on the three dominant singular values. Figure 3.4B shows the Dj values of

each of the state elements or the contributions of the state elements to the three sin-

gular values. From Figure 3.4B, it can be seen that T1, XB3, T2, XB2 have relatively

larger Dj values, which implies that these state elements contribute to the three

dominant eigenvalues most. Further, XB1, XB2, XA2, XA1, XA3 have a much smaller

Dj values and T3 has a Dj value equal to 0. These smaller Dj values imply that the

corresponding state elements contribute much less to the three dominant singular

values. Therefore, the initial reduced state vector can include T1, XB3, T2, and XB2,

which have relatively larger impact on the three dominant singular values. That is,

x̃ = [T1, XB3, T2, XB2]
T . Note that the current x̃ is determined based on yt. Next, we

continue to check whether the measured outputs y = [y1, y2, y3]
T = [T1, T2, T3]

T can

be expressed based on x̃. It can be found that y3 = T3 cannot be expressed based
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Figure 3.4: Singular values of SO and theDj values associated with the dominant singular
values.

on x̃. However, since T3 is not related to the three dominant singular values (Dj = 0

for T3), y3 is not really useful in estimating the target output. Instead of expanding

x̃ to include T3, we can remove y3 from the measurements used in estimating yt.

Once x̃ = [T1, XB3, T2, XB2]
T is determined, we continue to determine the reduced

input vector ũ. Similarly, based on open-loop simulation data, we calculate the sen-

sitivity matrix SC following (3.16). Then, we apply SVD to SC to find the dominant

singular values of SC and then the closely related inputs. Figure 3.5A shows the

singular values of SC . From the figure, it can be seen that there is a significant

gap between the 6th and 7th singular values. Therefore, these six singular values are

considered to be the dominant ones. For these singular values, we further calculate

the Dj values, which are shown in Figure 3.5B. From Figure 3.5B, it can be seen that
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Figure 3.5: Singular values of SC and theDj values associated with the dominant singular
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there are six inputs that contribute significantly to the singular values. These inputs

are included in the reduced input vector. That is, ũ = [Q1, F20, Fr, Q3, Q2, F10]
T .

The elements of the reduced state vector x̃, the reduced input vector ũ, and the

measured outputs used for estimating yt are summarized in Table 3.2.

3.5.3 Reduced-order model and estimator

Based on the selected x̃, ũ, further open-loop simulations of the actual process model

are performed and data is collected for LSTM model development. Noted the data

is only collected for x̃ and ũ.

In the training of the LSTM, different nl values were considered and it was found

that nl = 2 is sufficient to get a good LSTM model. The LSTM has two hidden

layers of 50 neurons and one dense layer of 4 neurons as the output layer.

Once the LSTM model is developed, the EKF is designed based on the LSTM
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Table 3.2: Elements of the reduced state and input vectors and the used measured outputs

State XB3 T1 T2 XB2

Output T1 T2

Input Q1 F20 Fr Q3 Q2 F10

model. For the EKF estimator, the weighting matrices are diagonal matrices with

Q = diag{[0.0052, 0.0052, 0.0052, 0.0052]}, R = diag{[202, 202]}, and the matrix

P (0) = diag{[1002, 1002, 1002, 1002]}.

Although, the LSTM was selected due to its ability to remember both short-term

and long-term temporal dependencies, the real benefits of the LSTM are expected

to be observed when the system under study considers a longer sequence length.

Therefore, it is possible to apply different modeling approaches to find the structure

of the model, and some of the methods are mentioned briefly for this application. It is

the case that for the sequence length used in the simulation example, a vanilla RNN

will be applicable since the vanishing/exploding gradient phenomenon is not expected

to occur. Another model structure such as a deep neural network (DNN) can also

be used to describe the system employed in the simulation example, after an initial

manipulation of the dataset’s inputs. However, such a model will not be flexible

since a sequence length of two must be used during the model’s implementation.

This limitation is however absent in the RNN/LSTM since the sequence length used

for the model development may be varied during its development.

In this work, the number of epochs (30) and batch size (100) hyperparameters

were selected based on a number of simulation experiments. It was also observed that

the default learning rate value set by the Keras library was suitable for the developed

model. Similarly, the LSTM architecture (units = 50) was determined through a

number of simulation experiments. While this brute force approach may be somewhat

suitable for smaller LSTM models, a systematic approach can be considered to tune
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the hyperparameters of the identified LSTM model. The ‘KerasTuner’, a tool in the

Keras library, can be used for selecting and tuning hyperparameters of the LSTM

model

3.5.4 Results and discussion

In this subsection, we evaluate the performance of the above-developed reduced-

order estimator. To evaluate the performance, we will use the average normalized

estimation error of the target output XB3 as shown below:

σXB3
=

√

√

√

√

1

Nsim

Nsim
∑

j=0

(

X̂B3(tj)−XB3(tj)

XB3(tj)

)2

(3.28)

where Nsim indicates the total simulation steps, X̂B3 denotes the estimated value,

and XB3 denotes the actual value of the target variable. All the simulations were

conducted in a desktop computer with an Intel i7 CPU at 3.2 GHz and 16 GB RAM.

The LSTMmodels were trained using Keras and TensorFlow in Python programming

language.

We design various simulation cases to test the performance of the proposed

reduced-order estimation. Specifically, we consider three different schemes: (a)

Scheme 1 - the proposed reduced-order estimator based on the LSTM model with

nl = 2, (b) Scheme 2 - a soft sensor that exploits the correlation between y, u and

yt, (c) Scheme 3, a full-order state estimator design based on a regular EKF based

on the actual full-order process model, and Scheme 4, an LSTM model (nl = 2)

with all the measured variables (u, y) as well as the target output yt as the inputs

and the target output yt as the single output. For these schemes, they are tuned

to give their best performance for a fair comparison. Further, we note that the soft

sensor in Scheme 2 was developed based on a dense neural network with y and u are

the inputs and yt as the output. Such a soft sensor explores the static correlation
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Figure 3.6: Trajectories of the actual states XB3, the single-step ahead prediction (SSAP)
(A), the multi-step ahead prediction (MSAP) using the LSTMmodel (B), and the estimated
target variable using the proposed reduced-order estimator in Scheme 1 (C).

between the y, u, and yt but does not consider the dynamics of the system. Scheme

4 explores only the dynamic relation between the measured variables and the target

output. While in the proposed Scheme 1, the LSTM includes more state variables

in its inputs and outputs to capture the dynamics that are essential for estimating

the target output. Since there are unmeasured state variables in the LSTM model

used in Scheme 1, the EKF is used together with the LSTM to estimate the target

output based on the measured variables.

First, we show the LSTM modeling and reduced-order estimation performance.

Figures 3.6A-B shows the actual target output XB3 and the one-step ahead and

multi-step ahead open-loop predictions using the trained LSTM. From these plots, it

can be seen that the trained LSTM model has a very good performance in predicting

the evolution of XB3. Based on many simulations with different initial conditions and

noise realizations, the corresponding σXB3
for the single-step and multi-step ahead
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Figure 3.7: Trajectories of the actual states XB3 and the predicted target variable using
the soft sensor in Scheme 2.
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Figure 3.8: Trajectories of the actual states XB3 and the estimated target variable using
the full-order estimation in Scheme 3.

predictions are 0.111% and 1.003%. These numbers further verify that the trained

model has a good performance. Note that the results in Figures 3.6A-B are based

on an initialization of the LSTM model from the actual initial XB3 value. It only

shows the performance of the trained model.

Figures 3.6C shows the estimation performance of the proposed reduced-order

estimation scheme. The estimator was initialized using a value that is different from

the actual XB3 value. From the plot, it can be seen that the estimate of the proposed

reduced-order estimation scheme (Scheme 1) can converge to the actual value quickly

and then follow the actual value closely. The corresponding σXB3
of the proposed

reduced-order estimator is 1.43% from extensive simulations with different initial

conditions and noise realizations. This demonstrates that the proposed approach is

effective and applicable if only the target output is needed to be estimated.

Next, we present the performance of the soft sensor in Scheme 2. The inputs of
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Figure 3.9: Trajectories of the actual states XB3 and the predicted target variable using
the soft sensor in Scheme 4.

the soft sensor are T1, T2, T3,Q1, F20, Fr, Q3, Q2 and F10 and the output is the target

variable XB3. A dense neural network is trained. Figure 3.7 shows the results on the

same trajectory of XB3 as used in the previous simulation. From the figure, it can be

seen that while the soft sensor can overall track the trend of XB3 but the prediction

performance is much poorer compared with the estimator in Scheme 1. The σXB3

of the soft sensor (Scheme 2) calculated from various simulations was 5.36%, which

is much larger than the value for the proposed reduced-order estimator. This set

of simulations illustrated that the proposed reduced-order estimator gives much-

improved estimation performance compared with the soft sensor. The improvement

in the estimation performance in Scheme 1 compared with Scheme 2 is from the

explicit consideration of the dynamics of the system and the use of EKF. Note that

the performance metrics reported are obtained from many simulations.

Then, we consider the full-order EKF based on the actual nonlinear model of the

process. Figure 3.8 shows the estimation performance of the full-order EKF (Scheme

3). From Figure 3.8, it can be seen that the full-order EKF can also track the trend

of XB3 but the estimate is much noisy compared with the estimated values in Scheme

1. The corresponding σXB3
value of the full-order EKF is 4.61%, which is relatively

higher than the value for Scheme 1.

The decreased performance of the full-order estimator in Scheme 3 compared

with Scheme 1 may be explained by examining the degrees of the observability of
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the estimated variables in the two schemes. Let us consider the following criterion

for measuring the degree of observability of a system [23, 89]:

γ(Do) =
min{λi(Do|i = 1, · · · , n)}

max{λi(Do|i = 1, · · · , n)}
(3.29)

where Do is the observability matrix of the system and λi is the ith singular value

of Do. For the nonlinear process and the nonlinear reduced-order model, we use

linearization to find the corresponding linear system and then construct the corre-

sponding observability matrix Do. For the full-order nonlinear system, the degree

of observability was found to be about 1.3×10−5 and for the reduced-order model,

the degree of observability was 0.02. It is obvious that the reduced-order system

has a much larger degree of observability compared with the full-order system. This

makes sense since in the reduced-order model, the measured outputs are only used

to estimate the 4 selected states but in the full-order estimator, the same number

of measured outputs are used to estimate the entire state vector x which contains 9

elements. The much-improved degree of observability explains why Scheme 1 gives

much-improved estimation performance compared with Scheme 3.

Now, we present the performance of the LSTM model in Scheme 4. Figure 3.9

shows the predicted target output and the actual trajectory of the target output.

From the figure, it can be seen that the LSTM in Scheme 4 gives a relatively poor

performance in predicting the target output compared with the proposed approach

in Scheme 1. This can also be seen from the σXB3
value, which is 2.00% for Scheme

4 and is 1.43% for the proposed Scheme 1. This is indeed expected since the LSTM

in Scheme 4 only uses the measured variables and they cannot appropriately capture

the essential dynamics that are needed to describe the target output XB3. The

proposed approach keeps all the necessary variables needed to capture the dynamics

of XB3 in the LSTM and the EKF can be used to estimate the target output and

the other unmeasured variables. It is also verified that the proposed approach is
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Table 3.3: σXB3
values for the trained LSTM model and the different schemes

Methods σXB3
in percentage (%) Simulation time (s)

SSAP 0.111 -

MSAP 1.003 -

Scheme 1 1.43 15

Scheme 2 5.36 3

Scheme 3 4.61 20

Scheme 4 2.00 3

more robust to noise in the measured variables given the use of the EKF while the

LSTM in Scheme 4 is more sensitive to measurement noise. When the variance of the

measurement noise increases to σv = 0.1, the proposed approach gives σXB3
= 2.02%

while the LSTM in Scheme 4 leads to a much worse σXB3
= 6.12%.

Finally, we consider the computational complexity of the four schemes. Table 3.3

shows the simulation times of the four schemes. It can be seen that the soft sensor

in Scheme 2 and the LSTM in Scheme 4 are the fastest. The proposed reduced-order

estimator (Scheme 1) gives the best estimation performance and has a relatively

smaller computational complexity (15 seconds for the entire simulation) compared

with the full-order estimator (20 seconds for the entire simulation). The smaller

computational times of Schemes 2 and 4 are due to the fact that they do not need

to evaluate the EKF. Whereas, Scheme 1 and Scheme 3 calculate the Jacobians at

every instant for predicting the covariance matrix, and also EKF has the update

step which requires additional time. Scheme 3 evaluates the Jacobian matrix which

is bigger than Scheme 1 and also updates for all the variables so comparatively,

the computational cost is higher than Scheme 1. This further illustrates that the

proposed reduced-order estimator can bring much-improved estimation performance

using even less computational resources compared with a full-order estimator.
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3.6 Summary

This chapter proposes an approach to select the appropriate inputs and outputs

for data-driven reduced-order model development in the framework of LSTM neural

network for reduced-order estimator design. A sensitivity-based approach was used in

the reduced state and input vector selection. The LSTM neural network was used to

develop the reduced-order model and the EKF was used to develop the reduced-order

estimator. The application to a chemical process demonstrated the applicability and

effectiveness of the proposed approach in achieving good target output estimation. In

the simulations, the proposed approach was compared with a soft sensor design that

did not consider the dynamics of the process, a full-order EKF, and an LSTM that

only uses the measured variables. It was found that the proposed approach gives the

best target output estimation performance whose σXB3
is about 30% smaller than

Scheme 4 which uses only measured variables in the training of the LSTM, and is

more than 70% smaller than the full-order state estimator and the soft sensor that

only uses the static relation between the measured variables and the target output.
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Chapter 4

Adaptive model reduction and soil

moisture estimation for

agro-hydrological systems

This chapter presents a model reduction approach for state estimation of agro-

hydrological systems. Specifically, we consider estimation of soil water content of

agro-hydrological systems. Accurate soil moisture information is crucial for devel-

oping a precise irrigation control strategy to enhance water use efficiency. However,

addressing the challenges associated with state estimation becomes necessary when

dealing with large-scale fields. The major challenge in soil moisture estimation lies in

the high dimensionality of the spatially discretized agro-hydrological models. We pro-

pose an error-triggered reduced state estimation approach to address this challenge.

The proposed approach introduces a model reduction method that uses trajectory-

based unsupervised machine learning techniques. Due to variations in soil dynamics,

model mismatch is inevitable over time. Therefore, an error-trigger criterion is chosen

to adaptively update the reduced model such that the prediction error between the

reduced model and the original model over a prediction horizon is maintained below

a predetermined threshold. An adaptive extended Kalman filter (EKF) is designed

accordingly. The performance of the proposed algorithms is evaluated first using a
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Figure 4.1: A diagram of an agro-hydrological system

small simulated field. Then, the proposed approach is also applied to a large-scale

simulated agricultural field to evaluate its applicability.

4.1 Preliminaries

4.1.1 Description of agricultural systems

An agricultural field represents the complex dynamics involving soil, crops, the at-

mosphere, and water. A diagram of the agricultural system is shown in Figure 4.1.

The water inputs into the system encompass external irrigation to the field and rain

and other precipitation, while the main outputs include natural evaporation, tran-

spiration, and groundwater drainage. The process of water infiltration into the soil,

driven by both capillary and gravitational forces, is mathematically modeled by the
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Richards equation, which was initially developed in [97] as follows:

∂θm
∂t

= c(h)
∂h

∂t
= ∇ · (K(h)∇(h+ z)) + S(h, z) (4.1)

where h [m] is the pressure head as the length of the water column, θm [m3m−3] is

the volumetric soil moisture content which is the volume of water to the unit volume

of soil, c(h) [m−1] is the soil water capillary capacity, K(h) [ms−1] is the unsaturated

hydraulic soil water conductivity which shows how readily water can flow through

soil, z [m] is the axial coordinate, and S(h, z) [m3m−3s−1] is the sink term corresponds

to the removal or decrease of water from the system. The equation between K(h)

and h is provided as below [98]:

K(h) =

{

KsQ
λ
s [1− (1− (Q

1
m
s )m]2, Qs < 1

Ks, Qs ≥ 1
(4.2)

where Ks [ms−1] is the saturated hydraulic conductivity, and Qs can be expressed

as Qs = 1 + (−hα)n, m,λ, α, and n are the soil shape factors which are hydraulic

soil properties and vary with soil type. The c(h) is represented in following equation

[99]:

c(h) =

{

(θS − θR)αn(1− ( 1
n
))(−hα)n−1(1 + (−hα)n)−(2−(1/n)), h < 0

SR, h ≥ 0
(4.3)

where θS [m3m−3], θR [m3m−3], and SR [m−1] correspond to the saturated soil mois-

ture content, the residual soil moisture content, and the specific storage coefficient of

the porous medium when subjected to positive pressure. The soil hydraulic function

θm is defined as:

θm = θR + (θS − θR)[1 + (−αh)n](
1
n
−1) (4.4)

The S(h, z) is the rate of root water uptake by plants. The optimum water extraction

by the roots of the plants is considered and evaluated as defined below [100]:

Smax(h, z) =
ETPp

Lz

(4.5)
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where ETPp [ms−1] denotes the rates of potential evaporation and Lz [m] is the

length of the roots in the soil. The rate of the potential evaporation ETPp is found

by:

ETPp = KcET (4.6)

where Kc [-] is the crop coefficient and ET [ms−1] is the reference evaporation rate.

ET can be evaluated using the Penmon-Moneith equation can be found in [100]. Kc

[-] is an ambient temperature dependant variable. Additional insights and supporting

equations can be found in [55].

4.1.2 Problem formulation and state-space model

We consider agricultural fields equipped with a center-pivot irrigation, as depicted

in Figure 4.1. This center-pivot rotates in a circular pattern. To capture the motion

of the center-pivot irrigation system, the Richards equation in (4.1) is reformulated

in 3D cylindrical form, as detailed in [57] as follows:

c(h)
∂h

∂t
=

1

r

∂

∂r

[

rK(h)
∂h

∂r

]

+
1

r

∂

∂θ

[

K(h)

r

∂h

∂θ

]

+
∂

∂z

[

K(h)

(

∂h

∂z
+1

)]

+S(h, z) (4.7)

The Neumann boundary condition characterizes the surface boundary as follows:

∂h

∂z

∣

∣

∣

∣

∣

r,θ,z=zs

= −1−
u(t)

K(h)

where r, θ, and z represent the spacial variables for radial, azimuthal, and axial

directions, respectively, u(t) is the input that includes irrigation and precipitation at

the surface of the field, and zs is the soil depth. The bottom boundary condition of

the soil is specified as free discharge. The Richards equation (4.7), which models agro-

hydrological processes in three dimensions, is a nonlinear PDE that poses challenges

for analytical solutions. For numerical analysis, we adopt the explicit centralized

finite difference method to discretize Equation (4.7) to tackle this challenge. The
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Figure 4.2: Discretization of the agricultural field where each dot denotes the discretized
node and red dots indicate the point sensors

spatial discretization of the model establishes a continuous-time state-space model

as follows:

ẋ(t) = f(x(t), u(t)) + w(t) (4.8a)

y(t) = Cx(t) + v(t) (4.8b)

where x(t) ∈ R
Nx denotes the soil pressure head value (state vector) of size Nx

and u ∈ R
Nu represents the irrigation at the surface (input vector) with dimension

Nu. y(t) ∈ R
Ny denotes the measurements at each sensor node in pressure head

(observation vector), w(t) ∈ R
Nx is the additive process disturbance, C is a matrix

indicating the relation between x and y, and v(t) ∈ R
Ny denotes the noise associated

with measurements.

A discretized diagram of the agricultural field is provided in Figure 4.2. The

model is discretized into total Nx nodes with Nr, Nθ, and Nz nodes in the radial,

axial, and azimuthal directions, respectively. Noted that the total number of soil

moisture nodes (states) is the discretized nodes Nx. Therefore, the dimension of

the irrigation input u is the same as the radial Nr nodes shown in the diagram 4.2.

That means, at any moment, the central pivot can irrigate radial nodes Nr for a
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Figure 4.3: A schematic of a point sensor

particular axial direction, leaving the rest of the field unirrigated. However, the field

experiences rainfall that is evenly distributed across its entirety.

In this work, we assume that point sensors (as shown in Figure 4.3) are deployed

over the field. The principle and details of the point measurements in soil are pro-

vided in [66]. These sensors measure the soil pressure head at specific locations and

depths within the field, such as the surface, the rooting depth, or at various depths

within the soil. During each sampling period, the sensors record the soil pressure

head measurements y at a total of Ny locations and the equation (4.8b) shows the

relation between x and y. This system possesses inherent stability, rendering it

easily detectable. Moreover, it is presumed that Ny ≪ Nx, yet it still enables the

observability of the complete set of states x.

Since this system is inherently high-dimensional, the state-space model as shown

in (4.8), can be challenging to implement in any state estimation framework. To

address this issue, one possible approach is to use model reduction. A reduced-order

model that approximates the Richards equation can be obtained and used in state
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Figure 4.4: Proposed error-triggered adaptive model reduction and state estimation
scheme

estimation. Over a growing season, soil properties may change over time especially

when the soil is too dry or too wet. Therefore, it is crucial to adapt the reduced

model to different conditions.

Our goal is to obtain information on soil moisture in terms of pressure head x at

each discrete node throughout the field by utilizing the measurement y. It is assumed

that y is sampled with a sampling time ∆; that is, y(tk) with tk = k∆, k = 0, 1, . . .,

are available. This is a standard state estimation problem except that the size of x

can be very large. The large dimensionality typically leads to two challenges: (a)

computational complexity of the model and the associated estimation schemes and

(b) low degree of observability of soil moisture pressure head (x) when the number of

measured outputs (y) is small. To address this challenge, an error-triggered adaptive

model reduction is designed by using a clustering technique inspired by the work

[101]. Finally, we propose a state estimator for soil moisture based on this adaptive

model reduction approach.
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4.2 Proposed model reduction and state estima-

tion

In this section, we present the error-triggered adaptive model reduction method and

the associated extended Kalman filter design. Figure 4.4 illustrates the essential steps

involved in the proposed approach. The state-space model of Richards equation (4.8)

serves as the original model, and an error metric eL is evaluated at each sampling

time tk to observe the prediction accuracy of the reduced model against the original

model. In Figure 4.4, Xol and X̃ol are the open loop predictions from the original

model and reduced model respectively and ˆ̃x denotes the estimated state using model

reduction. The error metric eL will be introduced later in equation (4.18). If the

current reduced-order model begins to fail in describing the soil water dynamics,

for instance, due to variations in the soil moisture dynamics, eL starts to increase,

indicating a deviation from the original model. When eL exceeds a pre-determined

threshold the, the scheduled irrigation input and the weather forecast are used to

collect the state trajectories based on simulating the original model, and a new

reduced model is created. Soil moisture estimation of the entire field is performed

based on the reduced model and field measurements. The main components of the

proposed approach are explained in the remainder of this section.

4.2.1 Adaptive model reduction

The implementation involves identifying a reduced model used for soil moisture es-

timation. At each sampling time, the metric eL is computed, and if it surpasses the

threshold the, the reduced model is re-identified. For model identification initially or

upon eL surpassing the threshold, identical steps are followed, outlined as follows:
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Step 1: State trajectory generation

At a sampling time tk, when the identification of the reduced-order model is triggered,

the soil moisture head or state trajectory of the original model (4.7) is generated.

Specifically, the currently estimated state at tk is used as the initial condition, and

the equation (4.8) is simulated with prescribed irrigation actions for total sampling

intervals of Nfd . The trajectory of the state over the Nfd steps is denoted as Xm as

follows:

Xm = [x(tk) x(tk+1) . . . x(tk+Nfd
)]T

where Xm ∈ R
Nfd×Nx is the state snapshot matrix for the mth model reduction

assuming that there were m− 1 model reductions performed before tk. The reduced

models that are generated during this process are expected to perform well for at

least Nfd sampling time intervals.

Step 2: Clustering and reduced model creation

The new reduced-order model is created using the snapshot matrix Xm. Each column

in Xm indicates the trajectory of a state element or a node xi where i (i = 1, . . . , Nx).

The purpose of the clustering is to merge similar trajectories into one cluster. In-

stead of the state element xi, a cluster will be considered as a state element of the

reduced model. In this study, we used an agglomerative hierarchical clustering [102]

technique to find the clusters for the trajectories. Initially, individual state elements

are treated as clusters, and subsequently, the distances between these clusters are

computed. Then, the clusters are merged such that the average distance is smaller

than a threshold thC . The threshold of the distance between the clusters plays a

crucial role as a tunable factor in determining the performance of the reduced-order

model. In assessing accuracy, the state elements’ similarity is quantified commonly

by the Euclidean distance between trajectories or the state elements. The average
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distance between two clusters is calculated as follows:

D(a, b) =
1

nanb

na
∑

m=1

nb
∑

n=1

d(xam, xbn)

where a and b denote the two distinct clusters, na, nb are the sizes of the clusters

of a and b respectively, xam and xbn denote data points within clusters a and b

respectively.

Consider that after clustering, there are rm clusters. Denote C(m) = {C
(m)
1 , C

(m)
2 ,

. . . , C
(m)
rm } as the collection of clusters for the mth model reduction. The clusters

adhere to the important criteria: i) C
(m)
i ∩C

(m)
j = Φ and ii) C

(m)
1 ∪C

(m)
2 ∪ . . .∪C

(m)
rm =

Xm.

The creation of the mth reduced system relies on the utilization of the Petrov-

Galerkin projection methodology, as elaborated in the work by Antoulas (2005) [1].

Within this Petrov-Galerkin projection approach, the fundamental component is the

projection matrix, denoted as U (m) ∈ R
Nx×rm . This matrix is systematically crafted

based on the structure of the clusters (C(m)). The individual elements of U (m) are

mathematically represented as follows:

U
(m)
i,j =

{

wi, if point i ∈ C
(m)
j

0, else

where wi is the weight of each state element i in a cluster Cj during the mth model

reduction and can be found in the following equation:

wi = 1/||αi||, αi = E
T
i α

where α denotes the inclusion of the state element in the cluster can be defined as

α = [1, . . . , 1]T ∈ R
Nx , ||αi|| denotes the L2 norm of αi, Ei = eCi

∈ R
Nx×NCi (NCi

denied as the size of cluster i Ci) is a matrix with columns of ej’s and each ej is the

j-th column of the identity matrix R
Nx×Nx .
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Figure 4.5: A representation of mth model reduction

The mth reduced model of (4.8) is illustrated in Figure 4.5 and the reduced state

space expressed as follows:

ξ̇(m)(t) = f (m)
r (ξ(m)(t), u(t), w(t)) (4.9)

where f
(m)
r = U (m)Tf and ξ(m)(t) = U (m)Tx(t). It is worth noting that the predicted

state from (4.8), x can be found by approximation of the original state through this

equation x(t) = U (m)ξ(m). After carrying out the numerical discretization, we found

a discrete-time reduced model is shown below:

ξ(m)(tk+1) = f
(m)
rd (ξ(m)(tk), u(tk), w(tk)) (4.10)

where frd is the discrete-time function of the reduced-order model. It’s essential

to highlight that during the transition from one reduced model to another, the di-

mension of the new reduced-order model may not align with the dimension of the

previous one. To facilitate a seamless transition between these reduced models, a
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Figure 4.6: Information transformation from one reduced model to another

two-step process is employed. Initially, the state information of the previous reduced

model is mapped back to the full state space. Subsequently, the entire state space

is projected onto the new reduced model using the recently computed projection

matrix. Figure 4.6 illustrates how information is transferred between models.

4.2.2 Adaptive extended Kalman filter

We propose an adaptive reduced state estimator in the framework of an EKF. EKF is

a commonly utilized method for state estimation in nonlinear systems, characterized

by its process of consecutively linearizing the nonlinear system at each step. The

advantage of using EKF is its computational efficiency [25].

As explained earlier, when there is a model update or re-identification, the di-

mension of the new reduced-order model may not remain the same. Therefore, the

standard EKF cannot be applied. To address this issue, we develop an adaptive EKF

based on the adaptive model. Let us define the discrete reduced-order model (4.10)
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with the corresponding output equation as follows:

ξ(m)(tk+1) = f
(m)
rd (ξ(m)(tk), u(tk), w(tk))

y(tk) = C(m)
r ξ(m)(tk) + v(tk)

(4.11)

where v(tk) denotes the measurement noise at time tk, C
(m)
r = CU (m).

Adaptive EKF design

There are two steps in EKF: the prediction and the update of the states. At the

sampling time tk, in the prediction step, the adaptive EKF first predicts ξm at tk

based on the state estimate at tk−1 and the reduced model as follows:

ξ̂(m)(tk|k−1) = f
(m)
rd (ξ̂(m)(tk−1), u(tk−1), w(tk−1)) (4.12)

where ξ̂(m)(tk|k−1) represents the reduced state prediction at time instant tk using

an initial guess ξ̂(m)(t0) or the previously estimated reduced state ξ̂(m)(tk−1). The

evolution of the variance of the reduced states is also propagated based on the reduced

model:

P (m)
r (tk|k−1) = A

(m)
d (tk−1)P

(m)
r (tk−1)A

(m)
d (tk−1) +Q(m)

r (4.13)

where P
(m)
r andQ

(m)
r denote covariance matrices for the state and process disturbance

in reduced form, respectively, and A
(m)
d (tk−1) =

∂f
(m)
rd

∂ξ(m)

∣

∣

∣

∣

ξ̂(m)(tk−1)

is the state-transition

matrix obtained by linearizing the nonlinear reduced model at the estimated state

at tk−1. Note that if P and Q are the covariance matrices of the state and process

disturbance for the original system, P
(m)
r = U (m)TPU (m) and Q

(m)
r = U (m)TQU (m).

At the sampling instant tk, once the measurement y(tk) is available, it is used to

update the predictions generated in the prediction step. In the update step of EKF,

the current reduced state estimates ξ̂(m)(tk) is calculated based on the predicted value

ξ̂(m)(tk|k−1) as follows:

ξ̂(m)(tk) = ξ̂(m)(tk|k−1) +K(m)
r (tk)(y(tk)− C(m)

r ξ̂(m)(tk|k−1)) (4.14)
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where ξ̂(m)(tk) is the estimated reduced state at time tk, andK
(m)
r (tk) is the correction

gain which minimizes a posteriori error covariance using the observation innovation

y(tk)− C
(m)
r ξ̂(m)(tk|k−1). The correction gain can be determined as below:

K(m)
r (tk) = P (m)

r (tk|k−1)C
(m)T
r (R + C(m)

r P (m)
r (tk|k−1)C

(m)T
r )−1 (4.15)

Here, R represents the covariance matrix for observation noise. Additionally, the

process involves updating the covariance matrix of the system state in the following

equation:

P (m)
r (tk) = (Irm −K(m)

r (tk)C
(m)
r )P (m)

r (tk|k−1) (4.16)

where P
(m)
r (tk) denotes the posteriori error covariance matrix related to the state

estimation error at time tk and Irm is denoted an identity matrix specific to the mth

reduced model with size rm. It is noted that P (t0), Q, and R are tuning parameters

for the EKF. The state estimate at the time tk is ˆ̃x and evaluated from:

ˆ̃x(tk) = U (m)ξ̂(m)(tk) (4.17)

Information exchange during model transition

When there is a model update, the information in the EKF estimator of the previous

model should be smoothly transferred to the EKF built on the new reduced model.

The information transfer is performed by mapping all the information back to the

full state system and then projecting it to the new reduced model. Consider that we

need to transfer the information of the EKF based on the mth reduced model to the

EKF built on the (m+ 1)th model. The following steps are performed:

• Mapping the estimated reduced state and state covariance to the full order

state and covariance: ˆ̃x = U (m)ξ̂(m), P = U (m)P
(m)
r U (m)T .

• Projecting the full order information to the new reduced model using the new

projection matrix: ξ̂(m+1) = U (m+1)T ˆ̃x, P
(m+1)
r = U (m+1)TPU (m+1).
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4.2.3 Design of the error metric eL and implementation al-

gorithm

The reduced model update or re-identification is triggered by an error metric eL,

which is evaluated every sampling time. Specifically, at tk, the estimated state ˆ̃x(tk)

is considered as the initial condition. The trajectory of the system state over the

next Nfd steps is predicted both based on the original model of (4.8) and the current

reduced model. It is assumed that the irrigation amounts of the next Nfd steps are

known, which is typically the case in agricultural irrigation. After generating the

predictions, the deviation between the trajectory generated by the reduced model

and the trajectory of the original model is calculated by percentage mean absolute

error (% MAE) and used as the error metric eL. The design of eL is inspired by the

work of [101] and is shown below:

eL(tk) =
100

Nx

Nfd
∑

j=1

Nx
∑

i=1

|x̃i(tk+j)− xi(tk+j)| (4.18)

where x̃i and xi denote the predictions of ith state element using the reduced model

and the original model respectively. A prediction horizon Nfd is considered. A model

reduction is triggered if eL(tk) exceeds the predefined threshold the. A new reduced

model is generated as discussed earlier.

In order to optimize computational resources and minimize the need for frequent

model generation, the Algorithm 2 employs the metric eL and ėL as the criteria for

model adjustments. The current value of ėL(k) is derived from the moving average

calculated over the preceding ten consecutive differences of eL when eL is on the rise.

This is used to filter out model disturbances that could affect model change decisions.

To generate a snapshot matrix for cluster formation, the algorithm applies an ini-

tial soil content, irrigation uir, rain, evapotranspiration ET , crop coefficient (Kc) to

Richards equation (4.8). The estimation process takes place in a reduced space, with
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the necessary variables transformed using the projection matrix. By utilizing the

EKF design, from (4.12) to (4.17), the algorithm computes estimates for soil mois-

ture. By incorporating these strategies, the algorithm achieves efficient computation,

reduces model updates, and provides accurate estimations of soil moisture.

The proposed reduced-order state estimation is summarized in the following Al-

gorithm (2):

Algorithm 2 Error-triggered reduced EKF algorithm

1: Initialization Initial guess x̂0, P (0) > 0, Q,R > 0, the ,thC , m = 0, and Nfd

2: for k = 0 . . . n do

3: if
(

eL(k) > the ∧ min ėL(k) ≥ 0.05 ∨ k == 0
)

then

4: m← m+ 1
5: Apply ˆ̃xk|k and input to generate Xm and obtain U (m)

6: Convert ξ̂k|k = U (m) ˆ̃xk|k, P
(m)
r (k) = U (m)TP (k)U (m) and Q

(m)
r =

U (m)TQU (m)

7: end if

8: Obtain measurements y(k)
9: Calculate current reduced estimates ξ̂(m)(k|k)
10: Convert to actual state ˆ̃xk|k = U (m)ξ̂(m)(k|k)
11: Compute eL(k) and ėL(k)
12: end for

4.3 Simulation results for a small agricultural field

In this section, we demonstrate the effectiveness of the proposed adaptive model

reduction and estimation in the state estimation of a small demo farm. The field is

located to the east of Lethbridge, Alberta, Canada, with geographical coordinates

latitude 49.68 N and longitude −112.73 W. The field consists of a central pivot

irrigation system, and the crop being grown is sugar beet in its growing stage.

The soil depth considered in this study is 0.4 m, which is discretized evenly into

12 nodes. The field has a radius of 50 m, which is discretized radially into 20 nodes
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Figure 4.7: Demo farm in Lethbridge

and azimuthally into 40 nodes. The surface boundary condition is characterized

by the Neumann boundary condition, which specifies the flow of water out of the

system, and the bottom boundary condition is specified as free drainage. In this

work, we assume the use of point sensors to measure the soil pressure head values

at 90 selected nodes of the field at each sampling time, including surface nodes

and nodes at various depths. The total number of nodes in the field is 9600. The

discretized diagram of the research farm and the farm itself are shown in Figure 4.2

and Figure 4.7 respectively.

The soil parameters in the field are known to vary across the field, as shown in

Figure 4.8. In order to simulate the system, information about evapotranspiration

(ET ), crop coefficient (Kc), irrigation, and rain are used, as shown in Figure 4.9.

The initial actual soil moisture x0 in pressure head is simulated to be a distinct value

for each quadrant of the field, namely, −3.5, −4.0, −2.7, and −1.5 m.

We consider three different estimation schemes to illustrate the proposed ap-

proach. Scheme I involves using the proposed adaptive modeling and EKF. In Scheme

II, a reduced EKF is designed based on a single non-adaptive reduced model. This

approach assumes that all information, such as irrigation, Evapotranspiration (ET ),
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Figure 4.8: Different soil parameters used in the simulation

Figure 4.9: Input (irrigation, ET and rain) and Kc to the system
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Figure 4.10: Actual state trajectories and state prediction of schemes I and II

Figure 4.11: The proposed error-triggered adaptive EKF Scheme I
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Figure 4.12: Actual state trajectories and the state estimation of all schemes

Figure 4.13: State estimation performance of the schemes
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and rain, is available for the entire growing season and is used to generate trajectories

for the non-adaptive model creation. Finally, Scheme III involves a full-order estima-

tor design based on a regular EKF, in which the original model is used. These three

schemes will be compared to evaluate the proposed adaptive EKF’s performance and

determine its effectiveness in accurately estimating the entire field’s soil moisture.

The simulation runs for a total of 52 days, and the initial guess for the soil

moisture x̂(0) is set to −2.5, −3.0, −1.9, and −2.0 m for the four quadrants, which

differ from the actual values of soil moisture x(0). The units for the soil pressure head

values are measured in meters (m). The covariance matrices Q and R are defined

as identity matrices with diagonal elements of Q = 1.0 × INx and R = 0.08 × INy,

respectively. The initial state covariance matrix P has entries of 5 × 10−5 for all

off-diagonal elements and a value of 1.0 for all diagonal elements. The measurement

noise is considered normally distributed with a zero mean and a standard deviation

of 0.1. The sampling time is ∆ = 30 min.

Note that the initial reduced model is generated based on the x̂(0) as the initial

state and not the actual initial state x(0). The x(0) is only utilized to generate the

actual trajectories of the system. In Figure 4.10, the trajectories of actual states

and predicted states of Schemes I and II are shown for a few selected states. The

constant thresholds thC for cluster generation are 0.2 and 0.5 in creating the new

reduced model for Scheme I and Scheme II, respectively. Additionally, the non-

adaptive reduced model used in Scheme II is found to be accurate enough at the

order of 4708.

The proposed estimation approach, scheme I, employs a threshold the = 0.3 for

the error-triggered criterion with Nfd = 48. As depicted in Figure 4.11, the bottom

plot displays the instances where error-triggered model re-identification occurred,

with varying model orders. The re-identification is prompted by the error indicator

eL exceeding the. At the start and end of the simulation, frequent model changes
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were observed, with the highest model order of 2005 corresponding to high values of

Kc and ET and a rapid decrease in the soil moisture.

In Figure 4.12, the state estimates for all schemes are shown to have excellent

agreement with the system’s actual trajectories. Figure 4.13 further highlights the

percentage of the mean average error (% MAE) between the actual and EKF es-

timated states for all schemes. Note that the proposed scheme I converge much

faster compared with the other two schemes may be due to the increased degree of

observability of the estimation problem. In the proposed scheme, the number of mea-

surements is kept the same (90) but the number of states that need to be estimated

is significantly less. This helps the estimation scheme to converge faster. But at the

same time, in the proposed approach, since each reduced model uses fewer nodes

and the model mismatch error accumulates, the accuracy after the convergence is

slightly poorer as can be seen from Figure 4.13. But with the triggered model

adaptation, scheme I can maintain the estimation error within the pre-determined

threshold through model adaptation. This can also be seen in Figure 4.13. The

tuning parameters for re-identification of the reduced models include the fixed time

Nfd , threshold for cluster generation thC , and error threshold the. These also provide

more flexibility in tuning the estimation performance of the proposed approach.

The proposed approach is also much more computationally efficient. The error-

triggered adaptive EKF scheme I, which includes adaptive clustering, model reduc-

tion, and recursive calculation, takes approximately 3 seconds to evaluate at each

sampling time. Whereas, the non-adaptive reduced EKF scheme II utilizes a high

number of reduced states, and takes longer for estimation, around 9 seconds per

sampling time. It is worth noting that the assumption of having all information

beforehand in the non-adaptive reduced EKF is not realistic, and subsequently, the

system is prone to process and weather disturbances. Implementing the classical

EKF based on the actual full-scale nonlinear model scheme III with 9600 discretiza-
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tion nodes is computationally challenging, and it takes approximately 35 seconds for

each step. With an increase in the number of system states, the evaluation time for

calculating the large state transition matrix Ad also experiences a substantial rise,

rendering the estimation process computationally intractable, as indicated in [51].

The small field is considered to provide a comparison with the full estimator

which is intractable for a large system. The conference paper [103] has succeeded in

establishing that the reduced approach converges much faster compared to the full

estimator, primarily due to the enhanced degree of observability in the estimation

problem.

4.4 Simulation results for a large agricultural field

In this section, we present a demonstration of the efficacy of the proposed adaptive

model reduction and state estimation in the soil moisture estimation of a large-scale

agricultural farm.

4.4.1 Simulation settings

The investigated field is a circular field measuring 26.4 hectares, situated at the

Alberta Irrigation Technology Center in Lethbridge, southern Alberta at latitude

49.72 N and longitude 112.80 W. The research farm, highlighted in green in Figure

4.14, serves as the study area. Within this expansive field, a five-span center-pivot

irrigation system is deployed, covering a lateral distance of about 290 meters. Fur-

thermore, the field is facilitated with a commercially viable irrigation system with

variable rates. The soil hydraulic parameters used in this study are provided in

Figure 4.15.

In this study, the soil depth is set at 0.4 m and is evenly divided into 12 discrete

nodes. The field has a radius of 290 m, which is discretized radially into 30 nodes
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Figure 4.14: Investigated area in Lethbridge, Alberta, Canada.

and azimuthally into 68 nodes. In this work, we assume the use of point sensors to

provide measurements of the soil pressure head values at 90 selected nodes of the farm

at each sampling time, including surface nodes and nodes at various depths. Readers

are encouraged to explore the optimal placement of soil sensors for accurate state

estimation [50] and sensor selection for continuous monoclonal antibodies production

[104]. The total number of discretized nodes (states) in the research field is 20400.

To simulate the system, information about ET , Kc, irrigation, and rain is used, as

shown in Figure 4.16. The initial actual soil moisture x0 in pressure head (m) is

simulated to be a distinct value for each quadrant of the field, namely, −13.5, −14.0,

−12.7, and −11.5 m.

The simulation runs for a total of 30 days with a sampling time ∆ = 30 min,

and the initial soil moisture x(0) is unknown and taken as an initial guess as −10.0,

−12.0, −9.0, and −14.0 m for the four quadrants, which differ from the actual values

of soil moisture x(0). The units for the soil pressure head values are measured in

meters (m). The covariance matrices R and Q are defined as diagonal matrices with
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Figure 4.15: Different soil parameters ( α, Ks, n, θr, and θs) used for the study
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Figure 4.16: Input (irrigation, ET, Kc, rain) of the system: real-time irrigation and
rain information (top) and scheduling and forecast error irrigation and rain disturbance
(bottom)
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Figure 4.17: Actual state trajectories and state prediction of schemes I, II, and III for
large field

diagonal elements of R = 0.08 × INy
and Q = 1.0 × INx

, respectively. INy
and

INx
are the identity matrices of dimension Ny and Nx respectively. The initial state

covariance matrix P has entries of 5×10−5 for all off-diagonal elements and a value of

1.0 for all diagonal elements. The normal distribution of the measurement noise and

process disturbance are considered with a mean of zero. Their respective standard

deviations are 0.8 and 1× 10−7.

We explore three estimation schemes to demonstrate the effectiveness of the pro-

posed approach. Scheme I involves using the proposed adaptive modeling and EKF.

In Scheme II, a reduced EKF is designed based on a single non-adaptive reduced

model for the total simulation time. To reduce input disturbance in Scheme II, a re-

duced EKF is designed based on a time-triggered adaptive reduced model in Scheme

III. We assume that all the information, such as irrigation, ET , Kc, and rain, is avail-

able for the total operation duration accurately. It’s important to highlight that the

traditional EKF is not included in this study due to its computational infeasibility
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Figure 4.18: Actual state trajectories and the state estimation of schemes I, II, and III
for large field
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Figure 4.19: The proposed error-triggered adaptive EKF Scheme I: change of % MAE for
the reduced model (top) and model re-identification instances with model orders (bottom)
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(a) Initial soil water map on day one

(b) Final soil water map on the last day

Figure 4.20: Soil moisture pressure head distribution for actual, estimated, and absolute
error between actual and estimated states for surface (From left to right)

limitation for the large-scale system, as discussed in [103].

Note that the initial reduced model is created by applying the initial guess x̂(0)

as the initial state and not the actual initial state x(0) which is unknown for all

the schemes. The purpose of the estimator is to estimate the initial soil moisture

of the agricultural system. Considering x(0) as the actual state at t0 = 0, actual

trajectories are generated to compare the reduced models’ performance for the entire

growing season. In Figure 4.17, the trajectories of actual states and predicted states

of all the schemes are shown for a few selected states. Similarly, as shown in Figure

4.18, the actual and estimated state trajectories of all the schemes are shown for the

same states.

4.4.2 Estimation accuracy

In Figure 4.19, Scheme I, the proposed approach, employs specific thresholds for

the error-triggered criterion: the = 40 for the error threshold and thC = 1.0 for
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(a) Initial soil water map on day one

(b) Final soil water map on the last day

Figure 4.21: Soil moisture pressure head distribution at 30 cm for actual, estimated, and
absolute estimation error between actual and estimated states (From left to right)
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Figure 4.22: The time-triggered adaptive EKF Scheme III: change of % MAE for the
reduced model (top) and model re-identification instances with model orders (bottom)
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Figure 4.23: State estimation performance (% MAE) of all the schemes for large field

the cluster threshold. Two different horizon lengths of Nfd = 250 and Nfd = 350

are utilized in this scheme. The bottom plots in Figure 4.19 provide insights into

instances of reduced model re-identification and the corresponding reduced model

dimensions for the error-triggered approach. Simultaneously, the top plots show

the variation of % MAE for the reduced model. The re-identification process is

initiated when the error indicator eL surpasses the threshold the. Initially, at the

start of the season, the reduced-order model indicates a low model order, indicating

a homogeneous field condition. However, as time progresses and the system receives

input, the model order gradually increases, suggesting a shift in field dynamics.

Figure 4.19a showcases an additional model identification due to considerations of a

short horizon. Notably, the highest model order is observed for the longer horizon at

2778, while the short horizon exhibits a model order of 2188. Figure 4.20 presents the

surface soil pressure head distribution of the actual, estimated, and absolute error

between the actual and estimated states for both the 1st and 30th days, considering

the longer horizon. From Figure 4.20(a) absolute error plot at each node, it is evident

that the absolute estimation error on the first day is significantly reduced to the last
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day, as shown in Figure 4.20(b). Similarly, in Figure 4.21, the soil moisture maps at

a depth of 0.3 m are presented, and the absolute error between actual and estimated

states is decreased over the estimation period except for a few locations.

In the centralized model, Scheme II, the cluster generation threshold thC is set

to 5.0, resulting in a model order of 1974 which can capture the dynamics for the

total simulation time. As shown in Figure 4.23 the solid green line, the estimation

barely converges, with a long convergence delay leading to significant estimation er-

rors. Furthermore, the centralized model is highly vulnerable to forecast and input

disturbances, as the assumption that all information is perfectly known is unrealistic

in real-world scenarios. Although it is assumed that information is exactly known,

in real scenarios, this can be way deviated from the actual forecast and input infor-

mation. Therefore, using input and rain with disturbance shown in the Figure 4.16

bottom plot, it is observed that the estimation diverges, provided as in the green

dotted line in the Figure 4.23. Thus, the adaptation of system dynamics to the

reduced model is necessary to address the problem. To improve this, we propose a

time-triggered adaptive model reduction that can be used for comparison.

Scheme III, which demonstrates time-triggered model reduction, is illustrated in

Figure 4.22 for two distinct values of Nfd . To mitigate weather forecast and irriga-

tion decision uncertainties, we explored the time-triggered algorithm with structural

similarities to the centralized method. In this design, the generated trajectories are

updated at shorter fixed intervals, differing from the centralized method, which takes

into account the entire operational dataset. The performance of the time-triggered

estimator is depicted in red in Figure 4.23. For Nfd = 250 and Nfd = 350, the highest

model orders are 2528 and 2868, respectively. When comparing the two triggered

EKF designs, error-triggered and time-triggered, the estimation error remains similar

for a specific horizon Nfd considered; however, the time-triggered model reduction

exhibits a higher number of model changes. To investigate the plotted results, Figure
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4.23 displays how Scheme I with Nfd = 250 achieves a reduction in estimation error

around the 22nd day, showcasing the benefits of model reduction.

In Figure 4.18, the actual trajectories and estimated trajectores for all schemes

are presented to have excellent agreement with the system’s actual trajectories. Fig-

ure 4.23 further highlights the percentage of MAE between the actual and EKF

estimated states for all schemes. Note that the proposed triggered methods con-

verge much faster compared with the centralized model due to the increased degree

of observability of the estimation problem. In the proposed triggered schemes, the

number of measurements is kept the same (90) but the number of states that need

to be estimated is significantly less. This helps the estimation scheme to converge

faster. However, in the proposed approach, since each reduced model uses fewer

nodes and the model mismatch error accumulates, the accuracy after the conver-

gence is slightly poorer as can be seen from Figure 4.23. With the adoption of the

time-triggered model scheme, Scheme I effectively keeps the estimation error within

the predefined threshold, ensuring reliable performance. The tuning parameters for

re-identification of the reduced models include the fixed time Nfd , threshold for clus-

ter generation thC , and error threshold the. These also provide more flexibility in

tuning the performance of the adaptive estimator in the proposed approach.

4.4.3 Computation times

The proposed approach in this study offers significant improvements in computa-

tional efficiency. All the computational simulations were performed on a computer

loaded with Intel(R) Core(TM) i7 − 8700 CPU operating at 3.2GHz and 24.0 GB

RAM. The proposed error-triggered adaptive EKF, scheme I, which incorporates

adaptive clustering, model reduction, and recursive calculation, requires approxi-

mately 5 seconds to evaluate at each sampling time in Table 4.1. On the other hand,

the time-triggered EKF scheme II, which experiences frequent model changes, takes
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Scheme Simulation time (Sec)

Scheme I Nfd = 250 5.01

Scheme I Nfd = 350 4.93

Scheme II 2.20

Scheme III Nfd = 250 5.52

Scheme III Nfd = 350 5.48

Table 4.1: Average computational speed per iteration comparison of different schemes

a slightly longer estimation time of around 5.5 seconds per sampling time considering

the total simulation time. It is important to note that the assumption of having all

information beforehand in the non-adaptive reduced EKF is unrealistic, leaving the

system vulnerable to process and weather disturbances. When the field dynamics

exhibit variations, the centralized model ends up with a high reduced-order model.

Consequently, as the number of reduced system states increases, the evaluation time

for calculating the large state transition matrix, denoted as Ad, also increases expo-

nentially. While Scheme II may require slightly less time, using a centralized model

is not practical due to its limitations.

4.5 Summary

In this chapter, we addressed the problem of state estimation of a large-scale agro-

hydrological system equipped with a central pivot. We employed a finite difference

method to discretize the Richards equation, which describes the dynamics of the

agro-hydrological system within a cylindrical coordinate framework. We designed

a reduced state estimator using an error-triggered reduction method approach. To

validate the effectiveness of our approach, we implemented the proposed adaptive
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state estimation in a small demo farm and a large agricultural field. The reduced

state estimator demonstrated a satisfactory performance. In particular, accurate

estimates of the soil moisture were obtained and improved computational speed was

achieved as compared to the centralized method.
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Chapter 5

An application of adaptive model

reduction to soil moisture and its

hydraulic parameter estimation via

remote sensing

In this chapter, the work presents a real case study of the adaptive model reduction

in data assimilation of an agro-hydrological system. While the preceding chapter

showcased the effectiveness of the triggered adaptive model reduction approach in

state estimation, this chapter delves into its application with rotating measurements,

exploring the simultaneous estimation of both state and parameters. An informa-

tion fusion system for rotating microwave measurements was considered in [72]. In

[72], the cylindrical coordinate version of the Richards equation, the EKF, and mea-

surements from microwave remote sensors were used to estimate soil moisture and

hydraulic parameters of fields equipped with center-pivots. The current study aims

to improve the computational efficiency and accuracy of the soil moisture estimates

by implementing a reduced-order approach. In Chapter 4, we proposed an error-

triggered model reduction for state estimation which is designed specifically for point

sensors that are continuously available [105]. However, in this chapter, we discuss the
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challenges associated with the discontinuous data acquisition and the benefits of the

proposed model reduction. The intermittent nature of remote sensors necessitates

adaptive model reduction, triggered upon measurement availability. Simultaneously,

we only develop new reduced models when the prediction performance falls short

of the existing reduced model, minimizing the need for frequent model adjustments.

The results demonstrate the effectiveness of the proposed model reduction method

in improving the computational efficiency and accuracy of soil moisture estimation

in a real large-scale agricultural field.

5.1 Model description

As discussed in Chapter 4, the spatial discretization of the agro-hydrological model

establishes a continuous-time state-space model in the following form:

ẋ(t) = f(x(t), p(t), u(t)) + w(t) (5.1a)

y(t) = C(t)x(t) + v(t) (5.1b)

When the soil moisture measurements are obtained from the microwave radiometers

mounted on the center-pivot, the C matrix in the output equation changes over time.

As the center-pivot irrigates the field, the microwave radiometer rotates and provides

the measure of the soil moisture content shown in Figure 5.1. Generally, the radiome-

ters measure the moisture content of areas that have not yet been irrigated. Thus,

we receive the measurements of different locations of the field which are changing

during the rotation cycle of the center-pivot. At any particular sampling time, the

measurements are available for Nr nodes at maximum according to the location of

the center-pivot. In this work, we also consider estimating soil hydraulic parameters.

Owing to the heterogeneity of soil texture, each discrete node is assigned its unique

set of parameters. In this study, we consider five soil hydraulic parameters: Ks, θs,
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Figure 5.1: A top view of microwave remote sensors on center-pivots

θr, α, and η, for each node. We also assume that the same surface soil properties

exist at various depths within the soil.

5.1.1 Problem formulation

Microwave sensors can operate round-the-clock, weather-independent, ensuring a

continuous stream of real-time data for farmers. While these remote sensors play

a significant role, they have limitations in providing comprehensive and precise soil

moisture information, mainly due to their constrained spatial and temporal coverage

of the field. The time required for a center-pivot to complete one rotation cycle is

typically two to three days which delays the generation of a single water content map.

That’s why leveraging an agro-hydrological model becomes essential to generate an

accurate soil water map across the entire area.

Data assimilation methods serve as valuable tools for the continuous estimation

of soil moisture through the fusion of information, delivering essential information

for efficient field management [57, 72, 106]. These studies explore the application of
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microwave remote sensing-based data assimilation methods, specifically focusing on

constructing water content maps suitable for closed-loop irrigation implementation.

In [52], it performs simultaneous state and parameter estimation of the Richards

equation by identifying and selecting a subset of the most estimable parameters. The

selected parameters that have the greatest impact on the system behavior or model

predictions, along with system states, are augmented for simultaneous estimation to

maximize information from observations. Nevertheless, given the high dimensionality

of the system, these methods, while promising, require substantial computational

resources and simulation time. Additionally, the augmentation of discrete states and

parameters leads to a considerably large system that poses numerical challenges.

Scaling these methods for use in large-scale fields presents a significant challenge,

necessitating further studies to make them more practical and efficient for broader

agricultural applications.

5.2 Proposed approach

In the previous chapter 4, we introduce error-triggered adaptive model reduction

aiming at enhancing soil moisture estimation accuracy. It is focused on the point

sensors which provide the soil water head for the corresponding sensor locations and

also at different soil depths continuously at each sampling time. Additionally, the

work assumes a priori knowledge of parameter values. Drawing the inspiration, we

expand our investigation to incorporate microwave remote sensing and simultaneous

estimation to further refine the field soil moisture estimation.

In Figure 5.2, we depict the essential steps of the data assimilation process

within an adaptive reduced model framework, aiming to acquire a comprehensive

understanding of the proposed method. Initial soil moisture and hydraulic parame-

ters are determined by interpolating soil moisture observations and prior parameter

knowledge. The availability of measurements, acting as an event-trigger, guides
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Figure 5.2: The proposed model reduction and simultaneous state and parameter esti-
mation

the decision-making process, determining whether to pursue open-loop predictions

employing the Richards equation or opt for simultaneous estimation using a reduced-

order model. Sequentially, the prediction performance of the existing reduced model

is assessed, and only the reduced-order model exhibiting inadequate performance

is replaced with a new model that is evaluated in real-time. The newly generated

trajectory is initiated based on the current estimates or predicted soil moisture infor-

mation. Subsequently, clusters are formed using the hierarchical clustering method,

separately identifying clusters for both states and parameters. These trajectories are

developed with consideration of anticipated irrigation, rainfall, evapotranspiration

(ET ), and crop coefficient (Kc) over three days. The reduced model performance

is compared with the Richards equation. Within the figure, ϵL serves as the perfor-

mance trigger metric, while ϵth represents the allowable performance threshold, which

will be discussed in more detail later. Utilizing the reduced-order model, we con-
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struct a reduced-order estimator through an EKF algorithm, enabling simultaneous

soil moisture and parameter estimation. Parameters chosen for estimation are those

associated with nodes where measurements are available during the sampling period,

as discussed in [52]. To update the unselected parameters, estimated parameters are

interpolated using the Kriging method. In this section, we explain the methodology

of the adaptive model reduction method and the design of the estimator.

Remark 4 This work is mainly application-oriented and addresses a specific prob-

lem of rotating and intermittent measurements, drawing inspiration from our prior

research outlined in chapter 4. The model reduction employs the same clustering

technique, with distinct clusters generated for soil moisture and parameters, which

are subsequently combined to form a reduced augmented system. The key deviation

in the methodology lies in the incorporation of parameter clusters.

We briefly discuss the methodology of the adaptive model reduction. We assess

measurement availability and calculate ϵL. If the metric ϵL exceeds the threshold ϵth,

the new reduced model is identified and replaced with the existing reduced model.

To identify the reduced model at the beginning or to re-identify a reduced-order

model, the same steps are followed and explained briefly.

The open-loop simulation is performed using the current state estimates at tk,

x̂(tk), and the system equation (5.1) with prescribed irrigation actions for the fol-

lowing Nfd steps.

Xm = [x(tk) x(tk+1) . . . x(tk+Nfd
)]

where Xm ∈ R
Nx×Nfd is the state snapshot matrix for the mth model reduction

assuming that there were (m− 1) number of model reductions performed before tk.

The set of parameters for generating clusters is as follows:

Pm = [Ks(tk), θs(tk), θr(tk), α(tk), η(tk)]

109



where Pm is the current parameter estimate at tk.

Once the sets Xm and Pm are established, clustering is independently applied

to each. Following the methodology outlined in Chapter 4, we implement the ag-

glomerative hierarchical clustering technique to group similar trajectories in Xm

and parameters in Pm into clusters. Parameter clustering follows similar steps as

state clustering. The thresholds for these clusters, which are critical for maintain-

ing the accuracy of the reduced model, are denoted as thx for states and thp for

parameters. For each variable set, the projection matrices are constructed using

the Petrov-Galerkin projection method, resulting in U (m) ∈ R
Nx×rm for state vari-

ables and V (m) ∈ R
Np×pm for parameter variables, where rm and pm represent the

dimensions of the reduced state and parameter spaces, respectively.

The parameters have a different range, variability, and influence on the model

compared to the states. This separate clustering ensures that it is performed for the

type of data it processes, potentially leading to more accurate and topology-preserved

clusters. The clustering-based model reduction employs projection methods to create

cost-effective, simplified models of the nonlinear state space (5.1). For a nonlinear

system, the projection matrices cannot be explicitly computed without going back to

the original model (5.1). This contrasts with linear systems, where reduced models

often feature a more compact and computationally straightforward representation.

Consequently, in (5.1), the correlation between reduced parameters and states is

inherent within the system itself, eliminating the need for a separate characterization

of the correlation.

As previously mentioned, the microwave radiometers measure soil moisture con-

tent during the center-pivot rotation. Consequently, the measured soil moisture

content locations of the field move along with the pivot. The potentially estimable

parameters corresponding to the measured states may change as the pivot rotates.

When the center-pivot rotates, the estimable parameters are grouped in one vector
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and assigned to pe ∈ R
Npe and the rest of the parameters of the nodes not mea-

sured are collected in pne ∈ R
Npn such as total parameters p = [pe pne]. The states

and parameters are augmented in order to estimate simultaneously and it takes the

form: xa(t) = [x(t) p(t)]. The augmentation of the simultaneous state and parame-

ter model is performed by adding the state space equation (4.8) with the following

equation for the soil parameters:

ṗ(t) = 0 (5.2)

where the soil hydraulic parameters are assumed to be constant during the study. The

augmented form for simultaneous parameter and state estimation is shown below:

ẋa(t) = fa(xa(t), u(t)) + wa(t) (5.3a)

y(t) = Ca(t)xa(t) + va(t) (5.3b)

where subscript a to each variable and function denotes the augmentation. The soil

parameters pne which are not estimable are replaced with the soil nominal values

during the state estimation of the augmented state xa. Consequently, the primarily

estimable variables are x(t) and pe(t). The total augmentation is necessary for up-

dating the covariance matrix in EKF, simplifying the calculation of the simultaneous

estimation. At last, the Kriging interpolation approach is applied to evaluate the en-

tries of pne after obtaining pe from the simultaneous estimation. For the augmented

reduced model we define the augmented projection U ∈ R
(Nx+Np)×(rm+pm) after mth

model reduction as a block diagonal matrix (blkdiag) as shown below:

Um = blkdiag{[U m], [V m]} (5.4)

where a block diagonal matrix is defined as a matrix where the diagonal contains

sub-matrices, and the off-diagonal blocks are filled with zeros. The continuous time

mth reduced model is represented as follows:

ξ̇(m)(t) = f (m)
r (ξ(m)(t), u(t), wa(t)) (5.5)

111



where ξ is the reduced state and fr is the reduced-order model expressed as ξ(m)(t) =

U (m)Txa(t) and f
(m)
r = U (m)Tfa respectively. Note that the predicted state xa from

the state space (5.3) can be approximated based on mapping x̃a(t) = U (m)ξ(m). The

continuous-time reduced state space is discretized to implement a discrete-time EKF.

Hence, the discrete-time reduced-order model takes the form as follows:

ξ(m)(tk+1) = f
(m)
rd (ξ(m)(tk), u(tk), wa(tk)) (5.6a)

y(tk) = C(m)
r (tk)ξ

(m)(tk) + va(tk) (5.6b)

where frd is the discrete-time function of the reduced model and C
(m)
r = CaU

(m)T .

The state information of the former is mapped to the full-order system and then

projected onto the latter using an updated matrix, ensuring consistency between

model transitions.

EKF is designed based on the reduced augmented model for the data assimilation

design. CasADi [107], an open-source library for numerical optimization, is used to

symbolically solve the reduced model and the required Jacobian matrices. The EKF

algorithm needs to initialize with a prior guess of the unknown initial augmented state

x̂a(t0) and its augmented covariance matrix Pa(t0). Qa is the augmented covariance

matrix for the system disturbance wa. R is the covariance matrix of the measurement

noise. It is noted that Pa(t0), Qa, and R are the tuning parameters for the algorithm.

The conversion to reduced space and further details on this process can be found in

Chapter 4.

5.2.1 Design of the triggered metrics

The event-trigger is a binary decision: when measurements are available, the EKF

will be executed; otherwise, the open-loop prediction will be computed. This event

is defined by the availability of measurements, which triggers the use of the EKF.

When the EKF is active, it’s essential to assess the performance of the reduced
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model to minimize any model-plant mismatch. A sequential triggering approach is

particularly well-suited for microwave measurements. The reduced model update or

re-identification is triggered by an error metric ϵL, which is evaluated for every event-

trigger. While investigating the model performance, the reduced model is compared

with the Richards equation by checking the prediction accuracy.

ϵL(tk) =
1

Nd

100

Nx +Np

Nd
∑

j=1

|x̃a(tk+j)− xa(tk+j)| (5.7)

where x̃a and xa denote the augmented state and parameters from the open-loop

predictions from the reduced model and the Richards equation respectively. The

term Nd denotes the prediction horizon.

5.3 Application to real-data: Case study analysis

We showcase the effectiveness and performance of the adaptive model reduction,

and simultaneous state and parameter estimation method by implementing to the

microwave remote sensor data acquired from an agricultural field with a center-pivot

irrigation system.

5.3.1 Study area

The investigated agricultural field is located at lat 49.72 N and long 112.80 W in

Alberta, Canada with an average elevation of approximately 888 m, and the study

area is shown in Figure 5.3. The field primarily consists of clay, loam soil, and

sand. The field is a circular field facilitated with a five-span center-pivot system.

The microwave radiometers are installed on the center-pivot system to obtain the

measurement of soil moisture at various points during the rotation cycle and the soil

moisture observations utilized in the work are collected in the summer of 2022. The

soil parameters in the field are known to vary across the field as shown in Figure 5.5.
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Figure 5.3: Investigated area in Lethbridge, Alberta, Canada

Figure 5.4: A schematic diagram of the quadrant 1 where red nodes have the soil moisture
measurements
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(a) θr(m
3m−3) (b) θs(m

3m−3) (c) α(m−1)

(d) Ks(mday−1) (e) n(−)
(f) Initial soil moisture
θm(m3m−3)

Figure 5.5: Spatial distribution of the nominal soil hydraulic parameters ( θr, θs, α, Ks,
and n) and initial guess for soil moisture content for quadrant 1
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Figure 5.6: Inputs to the model for the entire simulation period
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A quadrant of the field has been chosen, delineated by a solid blue line in Figure 5.3,

where wheat was in the growth stage.

5.3.2 Numerical modeling of Richards equation

The quadrant of the agricultural field under investigation encompasses approximately

a radius of 290 m, a depth of 0.32 m, and spans an angle of 0.5π rad. The bound-

ary conditions used in Richards equation for a quadrant can be found in [57]. For

discretizing the quadrant, we have divided the radius, angle, and depth into 30, 17,

and 10 equally spaced sectors, respectively, as illustrated in Figure 5.4. Hence, the

total discretized nodes are Nx = 5100 (number of states) and the total number of

parameters is Np = 2550 giving in total of 7650 estimates. The spatial discretiza-

tion is selected based on the resolution of the microwave radiometer and additional

discretization to the axial nodes is required due to having a minimal effect on the

system trajectories. We consider a timestep of 30 min the temporal discretization

of the reduced and Richards model. An explicit numerical method is utilized to

approximate the time and space derivative. The system trajectories are assessed for

different timesteps, and a suitable timestep is chosen. In solving the Richards equa-

tion, we employ a symbolic CasADi integrator, specifically the Runge-Kutta (RK4)

method, which is an explicit technique featuring third-order finite difference [107].

This symbolic approach with CasADi simplifies the computation of the necessary

Jacobian matrices for implementing the EKF. All the simulations are performed on

a computer equipped with an Intel(R) Core(TM) i7−8700 CPU at 3.2GHz and 24.0

GB RAM.

5.3.3 Data preparation

The soil moisture content measurements are considered from July 1st, 2022 to Au-

gust 8th, 2022 in the investigated quadrant in this study. On average, the microwave
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radiometers provide soil moisture measurements twice in an hour. The simultaneous

state and parameter estimation is trained by 4
5

th
portion of the measurements and

the rest of the measurements are utilized for validation. For the data preparation, the

initial raw soil moisture measurements undergo a sequence of data preprocessing pro-

cedures. These steps include sorting the measurements by date and time, grouping

them by quadrants, removing outliers, and mapping the measurements to the nodes

of the model. The data pre-processing and preparation are explained explicitly in

our previous work [72].

Daily reference evapotranspiration (Figure 5.6b), and daily precipitation data

(Figure 5.6a) are crucial model inputs for the Richards equation and reduced model

and are acquired from the website of Alberta Information Service. Also, the irriga-

tion information for the entire crop season (Figure 5.6a) is sourced from the Alberta

Irrigation Center. To determine the crop coefficient values (Figure 5.6c) for wheat

throughout the simulation period, we employ a daily temperature-dependent equa-

tion as outlined in [72].

5.3.4 Adaptive model reduction

The proposed adaptive model reduction strategy utilizes distinct thresholds for clus-

ter generation. Specifically, we set thx to 0.01 for the state and thp to 0.0005 for

the parameters. As the model undergoes a change, a trajectory spanning three days

(Nfd = 144) is generated to account for the extended prediction horizon. The criteria

for performance assessment consider the prediction for the following day (Nd = 48).

To set the error threshold, we fixed a threshold for the reduced model’s performance

at ϵth = 3. To determine these parameters, several values are assessed, as their

selection significantly influences the frequency of model reductions.
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5.3.5 Reduced simultaneous estimation

The reduced estimator is initialized with initial guess x̂a(t0) which is set with limited

knowledge about the actual condition xa(t0) shown in Figure 5.5f. The initial con-

dition is interpolated using the Kriging interpolation method based on the available

observation. The initial states and nominal hydraulic parameters map are depicted

in Figure 4.15 for quadrant 1. In our prior study [72], we determined the parame-

ter values for quadrant 4. In this current work, we make an informed initial guess

for these parameters by leveraging the similarities in soil type. The initial covari-

ance matrix Pa(t0) is a matrix with higher diagonal elements than the off-diagonal

elements to accommodate the uncertainty in the unknown initial guess x̂a(t0). In

particular, the state elements are initialized in a range of 0.1 − 1700, while for the

parameters, 5 is assigned to Pa(t0). The EKF is typically capable of handling this

selection of large initial variance. The covariance matrices of process disturbance

Q = 0.008INx+Np
and measurement noise R = 0.01INy

are tunable where I is the

identity matrix. However, our experience reveals that dynamically adjusting these

matrices significantly improves the performance of the EKF. We designed Q and

R varying with the sampling time i, which ranges from 1 to 48 for a day, depend-

ing on the poor performance of cross-validation. We set Q = 0.008 × ( i
2
) × INx+Np

and R = (0.01
i
) × INy

when the mean absolute error between the validation data

and the estimates is greater than 0.02. Notably, it places increasing importance on

measurements as time progresses, enhancing the ability of the estimators.

5.3.6 Performance evaluation criteria

The proposed reduced simultaneous estimation employs different ways of cross-

validation. First of all, the available measurements are randomly divided into as-

signed portions of training and validation sets to evaluate the accuracy of state

estimates. The state estimates are cross-referenced with the measurements from the
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validation dataset. Essentially, this validation approach aims to assess the accu-

racy of the soil moisture estimates. The performance of the proposed approach is

quantified using the Normalized Root Mean Square Error (NRMSE). It is calculated

comparing between the soil moisture content ŷ(tk) obtained from estimation and

sensor measured soil moisture content y(tk) and defined as follows:

NRMSE =
1

(ymax − ymin)

√

√

√

√

√

√

Nv
y
∑

k=1

(y(tk)− ŷ(tk))

N v
y

(5.8)

where N v
y represents the number of measurements within the validation dataset,

and ymax and ymin are the highest and lowest soil moisture content present within

the validation set, respectively. In addition to the overall NRMSE, we also use the

performance measure to monitor the performance of the estimation whenever the

measurement is available. Achieving a smaller NRMSE value reflects an improved

alignment between the estimated and measured values.

Furthermore, we conduct a thorough comparative analysis in the context of the

soil moisture observations. We utilize the estimated variables to evaluate model

predictions up to the time when the latest measurements become available, allowing

the model predictions to be directly compared with the actual measurements in both

cases. Since we trust the actual measurements more than the models, this analysis

provides valuable insights into the performance of each case when aligned with the

true values. We assess this performance using NRMSE daily.

Lastly, the Absolute Difference (AD = |x̂a(tk) − x̂r(tk)|) is a metric used to

quantify the discrepancy between estimated variables at the end of the season. The

estimated variables x̂a and x̂r are obtained from full estimation and reduced esti-

mation, respectively. Note that the AD measures the difference of an estimated

variable, which is evaluated for each node in quadrant 1. By introducing both AD

for individual nodes and NRMSE for the overall performance, we can have a more
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comprehensive assessment of the proposed method.

5.3.7 Results and performance evaluation

Figure 5.7 provides a comprehensive summary of the results found through the pro-

posed adaptive model reduction approach. In Figure 5.7a, we represent instances

where measurements are available i.e. events are triggered with solid circles, followed

by error-triggers depicted as solid squares with the measurement count for training

the EKF. The first trigger corresponds to the initial reduced model. The occurrence

of an event-trigger, followed by an error-trigger, signals the necessity for a model

adjustment. Out of fifteen available days with soil measurements, error-triggers are

activated seven times.

Figure 5.7b shows the error metric that triggers the re-identification of the new

model. It is evident that the threshold is violated six times, resulting in the re-

identification of reduced model on each occasion. The tuning parameters for the

cluster generation are set to ensure that the new model’s metrics fall within the

specified threshold. The same cluster configuration may not be universally effective

for different scenarios. However, it is important to ensure that the new model’s

performance consistently aligns with the threshold set to maintain the plant model

mismatch within acceptable limits.

Notably, we observe frequent model changes, especially when the system incor-

porates feedback from microwave sensors in Figure 5.7c. The maximum model order

is recorded as 3507 (3260, and 247), while the minimum model order stands at 1969

(1619, and 350). The initial model order appears lower in comparison to the end-

season, which is a reflection of the different soil moisture conditions. This difference is

most evident when examining 3D soil moisture estimation data further emphasizing

the importance of conducting a 3D analysis. This variation in the field corresponds

to changes in system dynamics due to different environmental conditions, soil prop-
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erties, and crop water intake, leading to alterations in the infiltration process.

In Table 4.1, the simulation time required for estimation at each sampling point

varies from 30 seconds for model orders around 2000 to 100 seconds for model orders

around 3500. However, the full-order system with 7650 variables takes more than

twice as long compared to the highest-ordered reduced model. As the number of

the system states increases, the evaluation time for the large state-transition matrix,

Ad, also grows exponentially. For the same reason, employing the EKF in the large-

scale field becomes nearly intractable with the available computational resources.

While comparing the computation time, as shown in Table 4.1, we can observe a

significant improvement in computational efficiency of over 50% attributed to the

reduced estimator. On average, the reduced estimator can provide assimilated soil

moisture in just 3.5 s, while the full estimation takes approximately 7.4 s. Despite

the additional online simulation time required for model changes and performance

metrics, this extra time remains significantly lower compared to the estimation time

needed for the full estimator. This is why the reduced approach highly realistic and

feasible approach for application in the large-scale field.

In the context of assessing computational performance, it is essential to consider

the accuracy in comparison to the actual measurements, as shown in Table 5.2. The

cross-validation Figures 5.8a and 5.9a compare the actual measurements with the

estimated states derived from both the reduced estimator and the full-state estima-

tor. The results clearly indicate that both state estimates are in good agreement

with the actual measurements and a closer alignment to the actual data towards

the end of the season. Following the convergence of the variables, it is anticipated

that the estimation accuracy will surpass the predictive accuracy of the field model.

Noted, these plots do not represent the trajectory instead compare the actual samples

during the period. We achieve overall NRMSE values of 0.1385 and 0.1244 for the

reduced and full order estimations, respectively. However, it highlights a discrepancy
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of approximately 12 % in the cross-validation results, which corresponds to model

approximation errors. When examining the daily NRMSE in Figures 5.8b and 5.9b,

we realize that a limited number of measurements can result in decreased accuracy.

Also, a similar error pattern is observed on most days, except for the 21st and the

following day, which could be due to a potential model-plant mismatch. Further,

in Table 5.2, the narrower range of reduced estimates compared to the full estima-

tion highlights the relatively consistent and reliable results offered by the reduced

estimator.

Figure 5.10, the plot illustrates the NRMSE between the open loop predictions

obtained using the estimated variables and the actual measurements. For example,

we utilize observations on 22nd July to estimate the variables and perform the open

loop simulation based on those estimates until the next available measurement on

25th July. The comparison shows the collective performance of the models and esti-

mators and both are closely aligned towards the end of the season. Also, the error

consistently fall within a similar range, affirming the consistency and reliability of

the reduced model.

Finally, in Figures 5.11, 5.12 and 5.13, the spatial distribution of soil moisture

yield consistently within the same range, with an average absolute difference of ap-

proximately 0.07m3m−3. Similarly, in Figure 5.14 and 5.15, the estimated parameter

Ks is converged, and average values are in the same range around 0.305 mday−1 [72].

While the results are promising, it’s worthwhile to address the demanding re-

quirements and explore other potential modifications. This proposed method in-

volves tuning various model parameters, such as thx, thp, selecting the type of error

measure, setting the error threshold ϵth, and fine-tuning parameters associated with

EKF. Uncertainty stems from the initial soil moisture condition which is often not

fully known and can affect the reliability of the estimation process. In extreme soil

moisture conditions, such as excessively dry or wet field conditions, numerical issues
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Table 5.1: Computational speed per iteration on an average for Data assimilation and
Estimation steps

Data assimilation (sec) Estimation (sec)

Reduced estimation 3.5± 0.4 30− 100

Full estimation 7.4± 0.6 220± 40

Table 5.2: Overall NRMSE comparison on the validation sets

Overall NRMSE Max value Min value

Reduced estimation 0.1385 0.465 0.121

Full estimation 0.1244 0.557 0.102

can surface, necessitating the use of implicit solvers to ensure stable solutions. To

extend the reliable estimation of hydraulic parameters, integrating data from point

sensors into the proposed framework is crucial.

5.4 Summary

In this chapter, we address the challenge of higher dimensionality in the agro-

hydrological system concerning state and parameter estimation. We apply a reduc-

tion approach to simultaneously estimate soil moisture and soil hydraulic parameters

for large-scale agricultural systems with varying soil conditions, using soil moisture

measurements collected from microwave radiometers mounted on center-pivot irri-

gation systems. We leverage a sequential trigger approach, an event-trigger, and an

error-trigger to systematically deduce the reduced model. The proposed approach

presents adaptive modeling of the investigated field using the cylindrical form of the

Richards equation and integrating remote sensor-provided soil moisture data to the

extended Kalman filtering technique. The EKF is performed in a reduced space, and
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Figure 5.8: Proposed reduced estimation cross-validation result
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Figure 5.11: Spatial soil moisture and AD on 11th July
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Figure 5.12: Spatial soil moisture and AD on 20th July
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Figure 5.13: Spatial soil moisture and AD on 2nd August

(a) Full estimation (b) Reduced estimation

Figure 5.14: Estimated Ks(mday−1) on 31st July for both cases

(a) Full estimation (b) Reduced estimation

Figure 5.15: Estimated Ks(mday−1) on 2th August for both cases
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the Richards equation is considered for soil moisture prediction in the absence of

observations. The reduced state estimator demonstrates satisfactory performance,

providing both high accuracy and improved computational speed. Thus, it concludes

that the reduced approach can deliver sufficiently accurate soil moisture information

which can be used to design of closed-loop irrigation systems. This proposed ap-

proach shows a greater potential for scalability in large-scale agricultural fields. Our

future work will focus on implementing adaptive model reduction methods to design

a controller for the field.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed systematic approaches to reduced-order models and

state estimation applied to various applications.

In Chapter 2, an implicit two-time-scale nonlinear system is considered and a

distributed state estimation method is proposed. Specifically, the nonlinear system

is decomposed into a fast system and a slow subsystem. The solution of the system is

approximated to a composite solution by combining the solution from fast and slow

subsystems separately. A local MHE estimator is designed for the slow subsystem

and and an EKF for the fast system. The estimator for the fast system is not

required to send out any information. The effectiveness of the proposed approach

was illustrated using a jacketed CSTR example.

In Chapter 3, a sensitivity-based method is proposed to determine how to se-

lect the appropriate inputs and outputs for data collection and data-driven model

development to estimate the desired outputs accurately. Although a mechanistic

model is available for the process but is too computationally complex for estimator

design and only some target outputs are of interest and should be estimated. A

systematic method to design a reduced state estimation framework is proposed for
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a target output. The effectiveness of the proposed approach is illustrated using a

separator-reactor process example.

In Chapter 4, the problem of higher dimensionality of the agro-hydrological sys-

tem defined by PDE is addressed. For a small field, the full estimator performance

is compared with the reduced estimator method. The results show that the adaptive

estimator has a better performance than the full estimator in terms of estimation

error and computational cost [103]. The proposed approach has been applied to a

large-scale agricultural field using an error-triggered and time-triggering model re-

duction approach. In both cases, the state estimation showed a satisfactory result

and the effectiveness of the proposed adaptive model reduction methods.

In Chapter 5, soil moisture measurements of a field at the Alberta Irrigation

Center, Lethbridge, obtained from microwave sensors mounted on a center pivot

are used as the observations. An event-triggered followed by error-triggered model

reduction is apt to reduce frequent model reduction. Frequently updated moisture

content maps are constructed to demonstrate the ability of the information fusion

system to eliminate the time delay associated with the current microwave remote

sensing approach. A strong agreement between the estimated moisture content maps

and the actual moisture content maps is also evident from the simulation results. The

information fusion system was able to provide soil moisture estimates that are within

reasonable error bounds from the actual soil moisture values.

6.2 Future research directions

• Controller design : As outlined in this thesis, there has been a lot of focus

on reduced-order state estimation, which is seen as a practical and effective

solution for tackling state estimation issues in large-scale processes. In the the-

sis, structure and topology-preserving adaptive model reduction techniques are

explored using the triggering criterion. State estimation can be used both for
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process monitoring and control applications. The structure-preserving quality

of the reduced model can be beneficial to constructing an observer-based con-

troller for example a set point tracking MPC design integrated with a scheduler.

The implementation of dynamic optimization will be highly useful due to the

reduction of the states of the system.

• Distributed state estimation and controller design : When designing controllers

for large-scale systems, employing a distributed estimation framework becomes

beneficial for estimating the unmeasured states necessary for state feedback

controls. The adaptive model reduction method will greatly help to construct

the distributed framework. The distributed estimation and control will improve

the computational cost.

• Parameter estimation : To expand the set of estimable hydraulic parameters,

integrating measurements from fixed-point sensors into the proposed frame-

work is crucial. This adjustment affects the spatial distribution of estimable

hydraulic parameters, necessitating comprehensive simulations using sensitivity

analysis and orthogonal projection methods. Future directions should prioritize

the development of alternative methods for constructing the output sensitivity

matrix in the context of incorporating fixed-point sensor measurements along

with microwave sensors. Finally, considering the potential, a reduced-order

model can be a valuable approximation in this context.
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