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Abstract

AND/OR tree search has been a fundamental topic in Artificial Intelligence, 

because many tasks can be decomposed into subtasks, such that either all 

(AND) or one (OR) of them must be solved. Recent AND/OR tree search 

algorithms have become powerful, especially by using the notion of proof and 

disproof numbers. However, there are limitations of these algorithms if the 

search space involves repetitions. Repetitions cause a problem of efficiency 

versus correctness. Some approaches incorrectly deal with repetitions to pre­

serve search efficiency. As a result, they occasionally return incorrect solutions. 

Other approaches compromise efficiency to guarantee correctness. However, 

they are not efficient enough to become satisfactory choices of practitioners.

This thesis presents effective and correct methods for AND/OR tree search 

with repetitions. The one-eye problem in the game of Go, tsume-Go (life and 

death problem), and checkers are used as application domains to explore the 

new techniques.

The thesis contains four research contributions. First of all, a solution to 

the Graph History Interaction (GHI) problem, which may cause a solver to 

return the incorrect outcome because of repetitions, is presented. Theoreti­

cal and empirical results show that the GHI solution is general, correct, and 

efficient. Secondly, a performance problem is presented when the depth-first 

proof number (df-pn) search algorithm, which is an effective algorithm using 

proof and disproof numbers, is adapted to domains involving repetitions. A 

solution to the problem is given and dramatical improvements over df-pn are 

empirically achieved. Thirdly, on top of these solutions, domain dependent en­

hancements are added to the programs th a t solve the one-eye and tsume-Go 

problems. These techniques are very promising, and contribute to surpass the
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performance of the best existing tsume-Go solver. Finally, a divide and con­

quer approach that can reduce the search space is presented. This approach 

further improves the performance of the one-eye solver.
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Chapter 1 

Introduction

1.1 Artificial Intelligence and Games

Since playing games is one of the intellectual behaviors of human beings, games 

have been described as a vehicle to conduct research in Artificial Intelligence 

(AI) [23, 72]. There are many reasons why games are ideal domains for ex­

ploring the capabilities of AI:

• C lear m o tiv a tio n s: Games raise an interesting question of whether 

machines can outperform human players in terms of intelligence. Games 

therefore supply clear and strong motivations for researchers to defeat 

the best human players.

• S im plicity  a n d  difficulty: The rules of games are usually fixed and 

short. Also, games have clear results that are either wins, draws, or 

losses. It is therefore easier for researchers to measure improvements 

than in many real-world applications. Yet despite the simplicity of game 

rules, a large amount of work and scientific inventions is needed for 

computers to play well.

•  M any  ap p lica tio n s: The techniques investigated in games have often 

been adapted to real-world domains. For example, search algorithms 

used in solving puzzles can be applied to path-finding and DNA sequence 

alignment. As well, some of the techniques developed for games engines 

easily transfer to other search engines.

1
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Since the dawn of research on programming games, chess has been a major 

testbed because of its popularity in the western world. McCarthy mentioned 

that chess is referred to as the Drosophila of AI [50]. As the Drosophila, the 

scientific name for the common fruit fly, is used for biological experiments, 

chess is similarly used for experiments in AI. A variety of techniques were 

invented by research in chess, including specialized hardware [8, 19, 27], and 

search algorithms [47, 64]. Massively parallel search was also an important 

contribution [24, 27, 69]. These techniques contributed to D e e p  B l u e  [14], 

the culmination of a multi-year effort at IBM Research, which beat the World 

Chess Champion, Garry Kasparov in 1997 [74].

1.2 Problem Solving and Games

Strong game-playing programs such as chess programs employ look-ahead 

search algorithms to improve their move decisions. One of the crucial pro­

cedures in games is to find a  winning way from a given position. Since a 

player has to prove tha t one of the moves must lead to a win (i.e., OR pro­

cedure), as well as th a t all the moves played by the opponent lead to losses 

for the opponent (AND procedure), this process can be seen as AN D /O R tree 

search.

Two properties are required for a solver that finds a winning way:

•  Efficiency: The solver must quickly return a solution, since solving hard 

positions improves the strength of game-playing programs.

• C orrectness: The solver must be a perfect player. In other words, if 

the solver returns a result, that result must always be reliable.

In terms of efficiency, search algorithms using the notion of proof and dis­

proof numbers have been shown to be effective in many games, such as five- 

in-a-row, chess, and Shogi (Japanese chess) [4, 2, 10, 56, 77]. In particular, 

Nagai’s depth-first proof-number (df-pn) search is a most promising method 

[56]. His tsume-shogi (Shogi checkmating problem) solver solved all known 

difficult problems with solution sequences of 300 moves and more. Proof and

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



disproof numbers are good estimates of the difficulty of finding a solution. 

One of the important enhancements to these algorithms is a transposition ta­

ble. The transposition table is a cache that keeps previously searched results, 

making use of the fact that the search space explored in practice is not a tree, 

but a graph [78]. If more than one path  leads to an identical state, and a 

result that state is stored in the transposition table, a search algorithm can 

just retrieve a table entry and omit searching below that state, thus saving 

duplicate effort. However, in terms of correctness, the transposition table may 

contain flaws, if the search space involves repetitions, since the transposition 

table does not contain the paths by which the identical positions are reached. 

This problem is called the Graph-History Interaction (GHI) Problem [60]. Pro­

grams have suffered from GHI over decades. Programmers either ignore the 

GHI, since they do not want to degrade the performance of their solvers, or 

compromise the effectiveness of the solvers to guarantee correctness of the so­

lutions returned by the solvers. The m ajor contribution of this thesis is the 

design of a high-performance AND/OR tree search algorithm which always 

guarantees correctness.

1.3 Target Domains

Three domains are chosen as target applications: the tsume-Go problem in 

the game of Go, the one-eye problem in Go, and the game of checkers. The 

reasons why these three domains are suitable for investigating a research topic 

of this thesis is explained.

1.3.1 The Tsume-Go Problem  in Go

After D e e p  B l u e ’s victory against the human world champion, a larger num­

ber of researchers have moved to more complex games such as Go and Shogi. 

Researchers have started investing significant resources especially to Go, be­

cause of its popularity in Asian countries. According to McCarthy, Go can be a 

new drosophila of AI due to the difficulty of the domain [50]. The search space 

of chess is estimated between 1043 and 105° [2]. 19 x 19 Go has 3361 ss.101'2

3
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Figure 1.1: A tsume-Go problem (Black to live).

possible positions of which about 1.2% are legal. The number of 3361 for Go 

ignores move history. If the history is taken into account, the number is much 

larger. There are two reasons why Go is especially difficult. One essential 

difference between chess and Go is the number of possible moves in a position 

(branching factor). Since the branching factor in Go is usually larger than in 

chess, brute-force approaches taken by chess programs are not as effective in 

the domain of Go. The other difficulty in Go is evaluation of positions. In 

chess, very good and efficiently computable criteria are available such as the 

m aterial balance. In contrast, so far there are no clear strategies for evaluat­

ing positions in Go. Slight differences in the location of stones can completely 

change the result of a game. As a result, despite a lot of efforts, the best Go 

programs can still be easily beaten even by human players of moderate skills.

One weakness of Go programs is recognizing whether groups of stones are 

alive or dead. Such problems are called tsume-Go (life and death)  problems 

and play a critical role in deciding the outcome of many games. Figure 1.1 (a) 

shows an example. Given the crucial stones marked by triangles, the tsume- 

Go problem is to check whether these stones can live or not. If the crucial
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stones cannot be captured, the stones are proven to be alive. For example, 

if the crucial stones can make two eves*, they are alive (see an example of 

a life-making sequence for Black in Figure 1.1 (b)). If the eye space is too 

small, the crucial stones are proven to be dead. Therefore, the process to 

prove if crucial stones are alive can be conducted as an AND/ OR tree search. 

Although the tsume-Go problem is simpler than the whole game of Go, tsume- 

Go solvers still suffer from the difficulties of Go. Hence, building a high- 

performance solver is a good domain for research on effective AND/OR tree 

search algorithms. Besides, since the search space of tsume-Go involves many 

repetitions of identical board positions, for example by two consecutive passes, 

tsume-Go is also an ideal domain to investigate a new solution to the GHI 

problem.

This thesis focuses on enclosed positions, which are easier than open po­

sitions. The currently best tsume-Go solver, Wolf’s GoTools [90], achieves 

high performance on such positions with a small to moderate branching fac­

tor. However, the state-of-the-art tsume-Go solvers have difficulties in solving 

tsume-Go problems with a larger branching factor. Therefore, new methods 

must be invented to tackle such enclosed problems.

This thesis follows Wolf’s definitions for enclosed tsume-Go problems. A 

problem is defined by the following parameters:

• The two players, called the defender and the attacker. The defender tries 

to live and the attacker tries to kill.

•  The region, a subset of the board. At each turn, a player must either 

make a legal move within the region or pass.

• One or more blocks*1 of crucial stones of the defender. The crucial 

stones are part of the region. The defender wins a tsume-Go problem 

by making one of crucial stones safe from capture inside the region, 

typically creating two eyes connected to one of the crucial stones. The 

attacker can win by either capturing all crucial stones, or by preventing 

the defender from creating two eyes in the region.
1See Appendix B for a definition of the Go terms marked by *.

5
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Figure 1.2: An enclosed tsume-Go problem (Black to Live).

•  Safe attacker stones, which surround the region.

• The player moving first.

•  Seki* is a win for the defender. The situational super-ko (SSK) rule is 

used to determine legal moves. It states tha t any move that repeats a 

previous board position with the same color to play is illegal.

Figure 1.2, adapted from [90], shows an enclosed tsume-Go problem. The 

problem is completely closed off by safe white stones. Black is the defender 

and White is the attacker. Crucial stones are marked by triangles and the rest 

of the region is marked by crosses. The task for Black is to  live inside the area 

enclosed by the safe stones and for White to prevent tha t. There is an unsafe 

stone at F7. If this stone is captured, a player might play at such a point 

later, so they are part of the region.

The one-eye problem as another target domain is selected. This problem is a 

special case of tsume-Go. It addresses the question of whether a player can 

create an eye connected to  the player’s stones in a given region. Although this 

problem is simpler than full tsume-Go, which is concerned with making two

1.3.2 The One-Eye Problem  in Tsum e-G o

6
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Figure 1.3: Example of a one-eye problem (Black to live).

eyes, there are many similarities. For example, every tsume-Go problem in 

which the group under attack has already surrounded one eye in some region 

reduces to the one-eye problem on the rest of the board.

A one-eye problem in a given Go position is defined similarly to enclosed 

tsume-Go by the defender, attacker, region, crucial stones, and safe attacker 

stones. Only the winning conditions of the attacker and defender for the one- 

eye problem is listed:

• The defender wins a one-eye problem by creating an eye connected to 

all the crucial stones inside the region. The attacker can win by either 

capturing at least one crucial stone, or by preventing the defender from 

creating a connected eye in the region.

There is a small difference of dealing with crucial stones between enclosed 

tsume-Go and the one-eye problem. The blocks surrounding the eye cannot 

be captured.

Figure 1.3 shows an example of a one-eye problem. Black is the defender 

and White is the attacker. Again, crucial stones are marked by triangles and 

the rest of the region is marked by crosses. Black must make an eye inside the
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region, while White tries to prevent that.

1.3.3 Checkers

Compared with Go, checkers is a simpler game for game-playing programs. 

Checkers has a smaller branching factor and simpler position evaluation. Check­

ers is estimated to have 5 x 1020 possible positions [73]. It is a game in which 

brute-force search has been quite successful. C h in o o k  was the first game- 

playing program to win a World Championship [71]. After this milestone in 

research on C h i n o o k , the next goal for checkers has become to solve the game 

itself. However, despite a lot of effort including large endgame databases [73], 

the search space of 1020 is still challenging. Further, since checkers involves 

repetitions, it suffers from the GHI problem. Therefore, checkers is an ideal 

domain to investigate correct and efficient search algorithms.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

• A novel solution to the GHI problem is presented. Compared with the 

previous solutions, the GHI solution is so general and practical that it 

is applicable to many games and algorithms. As demonstrated with two 

applications in checkers and the one-eye problem in Go, the solution 

incurs only a very small overhead, while guaranteeing correctness.

• Empirical evidence that repetitions cause not only the GHI problem, 

but also a performance issue for the df-pn algorithm is presented. An 

improved version of df-pn, called df-pn(r)is developed. Results on the 

one-eye problem and in checkers show that df-pn (r) improves the solving 

ability of df-pn.

•  One-eye and tsume-Go solvers based on df-pn(r)are developed. By fur­

ther adding correct domain-dependent knowledge to the solvers, very 

promising results are achieved. These solver succeeds in solving hard 

problems that the current best tsume-Go solvers are unable to solve.

8
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• As a further improvement to the one-eye solver, a divide and conquer ap­

proach, called dynamic decomposition search (DDS) is presented. DDS 

achieves a reduction of the search space, thereby achieving better perfor­

mance on average. Additionally, relaxed decomposition, a more ambitious 

way of splitting positions is introduced.

1.5 Outline of this Thesis

Chapter 2 reviews literature on A N D/O R tree search algorithms, previous 

solutions to the GHI problem, and computer Go. Chapter 3 presents a solution 

to the GHI problem. Chapter 4 addresses a problem of the df-pn algorithm 

in domains with repetitions and describes a  solution. Chapter 5 gives the 

details of the one-eye solver. Chapter 6 explains techniques for the tsume- 

Go solver. Chapter 7 presents a divide and conquer approach for the one-eye 

solver. Chapter 8 concludes the thesis and indicates further research directions.

1.6 Publications

Chapter 3 is based on three papers. Additional unpublished material that 

deals with the case of replacing proven and disproven transposition table en­

tries is added to the chapter. “A Solution to the GHI Problem for Depth-First 

Proof-Number Search” was presented a t the 7th Joint Conference on Infor­

mation Sciences (JCIS 2003) [38], and an extended version was accepted for 

Information Sciences [40]. The later paper “A General Solution to the Graph 

History Interaction Problem” generalized the method to adapt to various al­

gorithms and games [39]. It was presented at the 19th National Conference 

on Artificial Intelligence (AAAP04). The techniques described in the chapter 

contributed to solving the first standard opening in checkers [68], and is used 

in an ongoing effort to solve the whole game. They are also incorporated into 

the tsume-shogi solver of ISshogi [35]. Chapter 4 is based on the paper “Df- 

pn in Go: Application to the One-Eye Problem” [37], presented at the 10th 

Advances in Computer Games Conference. The chapter includes additional 

results in checkers. Chapter 5 is based on the paper “Df-pn in Go: Application

9
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to the One-Eye Problem [37].” The chapter improved on the paper by includ­

ing further enhancements. Chapter 7 is based on the paper that has been 

accepted by the IEEE Symposium on Computational Intelligence and Games 

in 2005. Additionally, Chapters 4 to 7 contain material from an invited talk 

“Search Techniques for the One-Eye and Tsume-Go Problems (in Japanese)” 

given at the 9th Game Programming Workshop in Japan (GPW 2004) [36].
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Chapter 2 

Literature Review

This chapter introduces previous approaches on search and computer Go. Sec­

tion 2.1 gives a survey of AND/OR tree search algorithms. Section 2.2 dis­

cusses the GHI problem and previous solutions. Section 2.3 reviews the rele­

vant literature on computer Go. Section 2.4 describes some research questions 

related to this previous work.

2.1 Advances in A N D /O R  Tree Search

Since solving tsume-Go problems involves searching AND/OR trees, the meth­

ods available for this domain are surveyed. Some definitions for AND/OR tree 

search are given in Section 2.1.1. Then, before understanding AND/OR tree 

search algorithms, the basics of two standard search algorithms, best-first and 

depth-first, are briefly reviewed in Section 2.1.2. The advantages and disad­

vantages of these algorithms are explained and enhancements to depth-first 

search are discussed. Next, two best-first and three depth-first search algo­

rithms for AND/OR trees are introduced from Section 2.1.3 to Section 2.1.8. 

Their advantages and disadvantages are also discussed. An enhancement to 

AND/OR tree search is described in Section 2.1.9. The aj3 algorithm, which 

is the most popular algorithm for two-player game-tree search, is briefly pre­

sented in Section 2.1.10. Replacement and garbage collection schemes are 

described in Section 2.1.11. Finally, concluding remarks are given in Section 

2.1.12.

11
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2.1.1 Terminology for A N D /O R  Tree Search

The terminology for AND/OR trees and their relation to game-tree search are 

defined in this section. There are two types of nodes: OR and AND  nodes. 

OR nodes correspond to positions where the first player to play, AND nodes to 

positions where the opponent moves next. At each OR node only one branch 

has to be solved, while at each AND node all the branches must be solved. All 

children of an OR node are AND nodes, and all children of an AND node are 

OR nodes. The root node is the only node that does not have any parents. The 

root is assumed to be an OR node. Each node can have three kinds of values: 

tru e , false, and unknow n. Once an AND/OR tree is solved, the value of the 

root node must be determined to be either t ru e  or false. A terminal node is 

a node that has no children. Hence, when a node is evaluated as a terminal 

node, the value of that node must be either t ru e  or false. A node having at 

least one child is called an interior node. A leaf node is a node that has not 

been expanded. It is unknown whether a leaf node is terminal or interior.

If at least one of the children of an interior OR node has value tru e , that 

OR node also has value tru e . If all the children have value false, the value of 

that node is false. Similarly, if one of the children of an interior AND node 

has value false, th a t AND node has value false, whereas the AND node has 

value t ru e  if all its children have value tru e . A node having value t ru e  is 

called a  proven node, while a node having value false is called a disproven 

node.

An AND/OR tree is analyzed for the player who is to play at the root. 

The player to play at the root is called the first player, and the opponent is 

called the second player. Considering the value of an AND/OR tree from a 

viewpoint of the first player, a node associated with value tru e  is called a win, 

and a node with value false is a loss. A proof is also used to express a win, 

while a disproof stands for a loss.

In AND/OR trees, a  proof tree guarantees that a node is proven. In other 

words, a proof tree has the following properties:

1. The root node is in the proof tree.

12
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2. For each interior OR node in the proof tree, at least one child of the OR 

node is in the proof tree.

•3. For each interior AND node in the proof tree, all the children of the 

AND node are in the proof tree.

4. All terminal nodes in the proof tree are proven.

A disproof tree which provides a disproof is defined in an analogous way.

2.1.2 Standard Search Strategies 
Depth-First Search versus Best-First Search

Depth-first search (DFS) [65] is a search strategy that selects one branch, pur­

sues down that branch until it reaches a terminal node or a certain maximum 

depth. After reaching the end of a branch, it backs up to the most recent 

previous choice point, continuing this process. Assuming DFS cuts off search 

at depth d and a constant branching factor h, it requires only a small amount 

of memory linear in d. However, DFS suffers from an explosion of time com­

plexity Q(bd) in the worst case, since it needs to search the whole tree. DFS 

also has the problem of how to determine the maximum search depth d. In 

general, since the value of d required to solve a problem is not known, d must 

be decided by some heuristics. If d is too small, DFS does not find any so­

lution. On the other hand, if d is chosen too large, DFS results in a large 

amount of unnecessary tree expansions.

Best-first search (BFS) [65] is an alternative approach that overcomes some 

of the disadvantages of DFS. BFS is an algorithm that picks up a promising 

node among all the nodes currently expanded with guidance of a heuristic es­

timation. BFS usually achieves less tree expansions than DFS, if the heuristic 

estimation is accurate. However, since BFS needs to keep all the nodes ex­

plored in working memory, it suffers from a combinatorial explosion of space 

complexity.

13
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Depth-First Iterative Deepening and the Transposition Table

Iterative deepening overcomes the problem of determining the maximum depth 

to explore for DFS. This technique first appeared as a better time control 

scheme in Slate and Atkin’s chess program [78]. Depth-first iterative deepening 

(DFID) search first carries out a depth-first search to depth 1. Then, if DFID 

cannot find a solution, it starts over and performs a depth-first search with 

depth 2, then depth 3, and so forth, continuing this process until it finds a 

solution. At first sight, DFID seems less efficient than directly performing 

DFS to depth d, because of the extra cost of re-expanding previously explored 

nodes. However, DFID is usually more efficient than a direct d-ply search 1 in 

practice, by using information from previous searches to achieve a better node 

ordering. When DFID performs a new iteration, a promising path explored 

in the previous iteration is usually searched first. The previous iteration gives 

DFID reliable information on ordering nodes for the next iteration. The cost 

paid for the previous iteration is a small price to pay for gaining the benefits 

of searching a promising node first with a larger depth d.

One of the practical enhancements to DFID is the use of a transposition 

table, a  large cache that keeps results of previous search efforts. This ap­

proach appeared in early chess programs [26, 78]. There are two benefits of 

incorporating a transposition table into DFID:

1. The search space of many domains is not a tree, but a graph. More 

than one path can lead to the same node — a so-called transposition. If 

a cached node has been explored deep enough, DFID does not need to 

explore that node again, thus saving considerable search effort.

2. DFID repeatedly re-visits many nodes. Even if the search effort stored in 

the transposition table is not sufficient to avoid searching the subtrees, 

the transposition table information helps DFID to improve node order­

ing. For example, in game-tree search, the best move from a previous

aThe term p ly  was introduced by Samuel [67]. The ply count represents a distance from 
the root, and is the sam e notion as depth.
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iteration has a high probability to be the best move for a new iteration, 

and a considerable amount of work is saved by examining this move first.

2.1.3 D epth-First versus B est-F irst Search for A N D / OR  
Tree Search

Although both BFS and DFS (and DFID) seem to have merits and limitations, 

research on search algorithms reveals tha t some best-first search algorithms can 

be turned into depth-first search algorithms. Examples in single-agent search 

are A* and its depth-first version IDA* [42]. In game-tree search, SSS* [79] 

has a depth-first variant MT-SSS* [61].

Sections 2.1.4 and 2.1.5 review work on two best-first search algorithms for 

AND/OR trees, AO* and proof number search. Sections 2.1.6 to 2.1.8 deal 

with the reformulation of these algorithms as depth-first search algorithms, 

leading to the algorithms PN*, PDS, and df-pn.

2.1.4 The AO* Algorithm

AO* is a  representative best-search algorithm for AND/ OR trees [48, 59]. How­

ever, because AO* is quite complicated and does not achieve high performance, 

practitioners prefer using the other algorithms explained later.

AO* uses a heuristic function h(n) and a cost function f(n ) .  Assuming that 

AO* needs to pay a non-negative cost c(n, m) when moving from node n to m,

a heuristic function h(n) to estimate the cost required to prove node n  is de­

fined by programmers. As the A* algorithm finds an optimal solution (called 

admissibility), similarly AO* guarantees admissibility if h{n) never overesti­

mates the real cost. Let • • •, ra* be the children of n. If h(n) is admissible, 

f (n )  is a  lower bound of finding a solution for a subtree rooted at n, based on 

the tree currently explored:

1. For a true terminal node, f ( n ) =  0.

2. For a false terminal node, f (n)  =  oo.

3. For a leaf node n, f (n)  =  h(n).

15

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4. For an interior OR node n,

f (n)  = m in(/(n i) +  c (n ,n i ) , - - - , / (n j fe) + c ( n Jnfc)).

5. For an interior AND node n,

k
f ( n ) =  £ ( / ( « * )  +c{n,ni)).

i=i

AO* works as a best-first search with guidance of f{n).  AO* keeps the 

whole tree in memory, tracing a most promising path a t each step by selecting 

the child having the minimal /(n )  at each OR node. AO* expands a leaf node 

of a most-promising path, and revises the cost function by propagating cost 

estimates upward to the root. This process continues until the root is solved.

One problem of AO* is tha t it needs to keep all explored nodes in working 

memory. As a result, AO* suffers from combinatorial explosion of the search 

space.

2.1.5 Proof-Num ber Search

Allis introduced the notion of proof and disproof numbers for his best-first 

search algorithm called proof-number search (PNS) [4]. The idea of proof 

numbers originates from McAUester’s conspiracy numbers, which measure the 

reliability of an evaluation in minimax search [49].

The proof number of a node is defined as the minimum number of leaf 

nodes that must be proven to prove that the node is a win for the first player, 

while the disproof number is the minimum number of leaf nodes that must be 

disproven in order to disprove the node. Proof and disproof numbers can be 

viewed as an estimate of how easy it is to prove or disprove a tree.

Let n  be a node and n \ ■ ■ ■ n* be n ’s children. Since only one proven child 

suffices to win at an OR node, while all children must be proven to win an 

AND node (and vice versa for disproof), the proof number pn(n) and the 

disproof number dn(n) of a node n are defined as follows:

1. For a proven node n, pn(n) = 0 and dn(n) =  oo.

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CO, Oj 0  ,03.
LOSS WIN

| | OR n o d e  ( ^ )  AND n o d e

Figure 2.1: Proof and disproof numbers.

2. For a disproven node n, pn(n) =  oo and dn(ra) =  0.

3. For an unknown leaf node n , pn(n) =  dn(n) =  1.

4. For an interior OR node n,

p n  (n) =  m in(pn(ni), • • •, pn(n^)) 

dn(n) =  d n (n x) H------|-d n (n &).

5. For an interior AND node n,

pn(n) =  pn (n i) d------ Fpn(rife)

dn(n) =  m in(dn(n1), • • •, dn(n*)).

Figure 2.1 illustrates an example of proof and disproof numbers. The proof 

number is written on the left inside a node and the disproof number on the 

right.

Proof numbers can be seen as a special case of the cost function in AO* 

with h(n) =  0 for a proven n, h(n) = oo for a disproven n, h(n) = 1 for each 

unproven leaf node n, and c(n, m) =  0 for all edges. However, PNS has better 

criteria for selecting a most promising node at both AND and OR nodes.

PNS maintains a proof and a disproof number for each node. The leaf 

node to expand next is chosen in a best-first manner. Starting from the root,
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Figure 2.2: Snapshot of expanding a tree in PNS.

PNS traverses the tree by continuously selecting a child whose (dis)proof num­

ber is minimum at OR (AND) nodes, until it reaches a leaf node called the 

most-promising node. PNS expands that node and recomputes the proof and 

disproof numbers on the path  to the root. This process continues until the 

root is either proven or disproven.

Figure 2.2 illustrates an example of tree expansion in PNS. The most- 

promising node is H. Expanding H  yields 3 new nodes, K , L, and M . Next, 

PNS backs up the updated proof and disproof numbers of the nodes on the 

path to the root. For example, A’s proof and disproof numbers become 2 and 

2 respectively.

Allis et al. applied PNS to the games Qubic, Go-Moku, Awari, give-away 

chess [2], and checkmating problems in chess [10]. Qubic and Go-Moku were 

solved. PNS performed much better than state of the art a/5 algorithms.

2.1.6 The PN* A lgorithm

To overcome the large memory requirement of AO*, Seo’s PN* converts a spe­

cial case of AO* into a depth-first search algorithm th a t requires less memory 

[77]. Like AO*, PN* explores a promising node first. The equivalence between 

AO* and PN* is proven by Nagai et al. [58].
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Figure 2.3: Multiple iterative deepening.

PN* employs depth-first iterative deepening. Unlike normal iterative deep­

ening methods, PN* uses the proof number as a threshold, not the search 

depth. PN* begins searching the root with a threshold of p n  =  2. If neither a 

proof nor a disproof is found, PN* increments p n  and tries to prove the root 

within the threshold of p n  =  3. PN* continues this process, until there is a 

proof of the root or the root is disproven. Since this process re-expands many 

nodes already visited, PN* uses a transposition table to store previous search 

efforts, i.e., the proof numbers of visited nodes. Before a node is explored, 

PN* checks if a proof number for that node is saved in the transposition ta­

ble. If this is the case, the proof number of that node is initialized to the 

number saved in the table, otherwise it is set to 1. Similarly, when selecting 

a promising child of a node to explore, PN* checks the transposition table for 

information on the children.

PN* performs iterative deepening at all OR nodes, which is called multiple 

iterative deepening. This technique avoids the problem of a gap between the 

current threshold and the proof number for an AND node, when PN* expands 

the AND node and one of the children is proven. Figure 2.3 illustrates an 

example. Currently A ’s proof number is pn(jB) -I- pn(C') = 4  +  1 =  5. As­

sume that A  is explored with a  threshold of 6, B  is selected and proven. The 

proof number for A  then decreases to 1, since C  is the only node left to prove. 

However, A ’s threshold is still 6, much larger than A’s current proof number. 

Searching C  with such a large threshold can result in a large amount of tree

19

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



exploration. Multiple iterative deepening reduces the search nodes dramat­

ically by assigning smaller initial thresholds to search the children of AND 

nodes. One might be concerned about the overhead of re-expansion of inte­

rior nodes. However, this price is relatively small. Seo implemented PN* for 

his tsume-shogi (Japanese chess mating problem) solver and showed that the 

ratio of node re-expansions is about 20 percent experimentally. With further 

enhancements, Seo’s tsume-shogi solver performed far better than previous 

solvers based on AO* [29].

2.1.7 The PD S Algorithm

Seo’s PN* uses only proof numbers. Nagai’s PDS (Proof and Disproof-number 

Search) algorithm enhances PN* by using both proof and disproof numbers 

[55]. Its behavior is almost the same as PNS, but it uses less memory and 

explores fewer interior nodes by taking advantage of the techniques invented 

for PN*.

PDS has two thresholds, one for proof numbers and one for disproof num­

bers. PDS expands a node n  while pn(n) and dn(n) do not both exceed their 

thresholds. It uses a transposition table to store proof and disproof numbers 

for visited nodes, and performs multiple iterative deepening at all nodes. Once 

both proof and disproof numbers exceed their threshold, the threshold of ei­

ther the proof or the disproof number is incremented. Let n.<j) and n.5 be as 

defined follows:

_  J  pn(n) (n is an OR node)
|  dn(n) (n  is an AND node)

r _  J d n ( n ) (n  is an OR node)
n ' ~  |  pn(n) (n is an AND node)

Then, the incrementing strategy of PDS is: (a) If n.<j) < n.5, increment 

n.(f>] (b) otherwise increment n.5. Intuitively PDS aims at a proof if a search 

tree seems to be easier to  prove, and at a disproof if it seems easier to disprove. 

By using both proof and disproof numbers, PDS is good not only at proofs 

but also at disproofs.
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Nagai experimented with PDS on Othello and random game trees and 

achieved a better performance than PNS, AO*, and PN* [54, 55].

2.1.8 The Df-pn Search Algorithm

Unlike PNS, in PDS a most-promising node does not exist. Later, Nagai 

invented df-pn (depth-first proof-number) search [56], which turns PNS into a 

depth-first search algorithm by generalizing the ideas behind PDS. As a depth- 

first search, df-pn can expand less interior nodes and use a smaller amount of 

memory than PNS. Like PNS, it always expands a most-promising node.

Figure 2.4, adapted from [56], presents pseudo-code of the df-pn algorithm. 

The code is written using the (j) and 8 notation introduced in Section 2.1.7. 

In the pseudo-code, df-pn returns a value of whether the first-player wins or 

loses.

Df-pn utilizes two thresholds like PDS, one for proof and the other for 

disproof numbers. While the iterative deepening methods such as PN* and 

PDS have global thresholds, df-pn’s thresholds work as local thresholds at 

each recursive call. This approach is similar to recursive best-first search [43]. 

The main function Df-pn initializes both thresholds to infinity, and then calls 

the recursive function MID that iterates over nodes. When returning from 

MID, the root node is either proven or disproven. In practice, one more value 

tha t represents unknow n can be returned, such as if df-pn uses up the time 

required in the tournament. MID traverses the subtree below node n in a 

depth-first manner. It explores nodes while proof or disproof numbers do 

not exceed the threshold, or until it finds a terminal node that determines a 

winner. In the code, IsTerminal checks if n  is a terminal node, while Win- 

ForCurrentNode checks whether a terminal node is a  win or a loss. When a 

node n  is expanded, the best child nc in terms of proof and disproof numbers 

is selected by SelectChild for a recursive call to MID with the following new 

thresholds: nc.5 is set to the minimum of the current threshold for n  and the 

value when n ’s child with the second smallest 5 becomes the most-promising 

node during the exploration of nc’s subtree. Note that n.<p corresponds to nc.5 

because of the duality of proof and disproof numbers. In order to set nc.<j>, the
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/ /  Set up for the root node
. . . .

/ /  Select the most promising child
int Df-pn(node r) { node SelectChild(node n, int &cj>c,

r.cj> =  oo; r.5 =  oo; int &:52) {
MID(r); node njest,
if  (r.5 =  oo) 5c =  4*c =  oo;

return winJfor_root; for (each child n chud of n) {
else TTlookup (nchudi 0:5);

return loss_for_root; / /  Store the smallest and second
} / /  smallest 5 in 5C and 52 

if (5 < 5C) {
/ /  Iterative deepening at each node ^best =  n childl
void MID (node &n) { ii'-o’

-UiioII
TTlookup (n,cp,5); }
if  (n.cj) <  <j> || n.5  < 5) { else if  (5 <  52)

/ /  Exceed thresholds 52 =  5;
n.cj) =  <j>; n .5  =  5; if (<j) =  oo)
return; return n6est;

} }
/ /  Terminal node return n6es4;
if (IsTerminal(n)) {

. }
if  (WinForCurrentNode(n)) {

n.<f> =  0; n.5 =  oo; / /  Compute the smallest 5 of
} else{ / /  n ’s children

n.cj) =  oo; n.5 =  0; int AMin(node n) {
} int min = oo;
TTstore(n,n.<£,n.5); for (each child nchiid of n) {
return; TTlookup (nchiid,cj), 5);

} mm =  min(mm,5);
GenerateMoves (n); }
/ /  Store larger proof and disproof return min;
/ /  numbers to detect repetitions }
TTstore (n,n.cj),n.5);
/ /  Iterative deepening / /  Compute sum of cj> of n’s children
w hile (n.cj) >  AMin(n) &:&; int 3>Sum(node n) {

n .5  > <&Sum(n)) { int sum — 0;
n c =  SelectChild(n,?i>c,<52); for (each child n^ud  of n) {
/ /  Update thresholds TTlookup (nchud, cj),5);
n c.cj) =  n.5 +  cj)c - $Sum(n); sum =  sum +  0;
nc.5 =  min(n.0,52 4- 1); }
MID(nc); return sum;

} }
/ /  Store search results
n.cj) =  AMin(n); n.5 =  §Sum(n);
TTstore(n,n.</>,n.5);

}

Figure 2.4: Pseudo-code of the df-pn algorithm.
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gap between n.5 and the sum of all (j) of n ’s children is computed, and then 

n c.<j> is set to the sum of this gap and the current (j) for nc.

Because df-pn is an iterative deepening method that expands interior nodes 

again and again, the heart of the algorithm is the transposition table. TTstore 

stores proof and disproof numbers of a node in the table. TTlookup checks the 

table for information on proof and disproof numbers of a node. If no result is 

found, both numbers are initialized to 1.

Nagai applied df-pn to tsume-shogi, and df-pn contributed to make his 

solver the current best solver, by solving all the existing hard problems whose 

solution sequence is longer than 300 steps [56].

2.1.9 Simulation

Tree simulation was invented by Kawano to effectively deal with useless inter­

posing piece drops in tsume-shogi [30]. Later, Tanase extensively applied this 

idea in his a/3 search engine to reduce the overhead of calling the tsume-shogi 

solver inside the normal search [80].

Assume that P  is a  proven node and Q is a “similar” one that simulation 

wants to  prove. Simulation borrows moves from P ’s proof tree at each OR 

node to try  to find a quick proof of Q. Thus, if simulation returns a proof for 

Q, Q is proven as well. Otherwise, Q ’s value is unknown.

Compared to a normal search, simulation requires much less effort to  con­

firm whether a position is proven or not. Even with good move ordering, a 

newly created search tree is typically much larger than an existing proof tree. 

Also, since moves are borrowed from the transposition table at OR nodes, there 

is no need to invoke the move generator there. Figure 2.5 presents pseudo-code 

for simulation. The notation of Figure 2.4 is used. npr0Of  is a node th a t has 

already been proven, and n Sim is a similar node to try  to prove. WinForORN- 

ode checks if n  is a proven terminal node, while IsORNode checks if n  is an 

OR node. TTstoreProof saves a proof in the transposition table. IsProoflnTT  

checks if n ’s proof is saved in the transposition table. RetrieveWinningMove 

retrieves the winning move for an OR node n  from the transposition table if 

n  is proven. One possible refinement is that nVTOOj  can be the transposition
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table key of nproof,  since all the algorithm needs is to retrieve information in 

the transposition table.

Figure 2.6 illustrates an example of how simulation works. Assume that 

Figure 2.6(a) is A’s proof tree, and A' in Figure 2.6(b) is a similar position to 

prove. Normal search algorithms generate all moves (i.e., m l and m6) at OR 

node A'. However, simulation generates only m l at A', because A  is proven 

by m i. Nodes below G  are not explored by simulation. Moreover, m l can be 

saved in A’s transposition table entry when A  is proven, m l for A' can be 

retrieved from A’s table entry. Only checking the legality of move m l for A' 

is necessary: At AND node B ', simulation generates all moves, m2 and m3, 

because all branches must be proven. This process is recursively called at C' 

and D'. Only m4 at C' and mb at D' are tried to check if Ans proof tree 

can be constructed. The proof tree is confirmed by reaching E' and F' and 

checking that these p ositions are proven..................

2.1.10 The ot(3 Algorithm

The a/3 algorithm [41] is the most popular algorithm used in game-playing pro­

grams to determine a next move. In the a/3 framework, the first player tries 

to maximize his or her advantage, while the second player tries to minimize it. 

a/3 evaluates a leaf node by calling an evaluation function that approximates 

the chance of the first player winning, a/3 explores nodes in a depth-first man­

ner to compute the best score at the root, based on the minimax framework. 

In this framework, the score a t each node is calculated from the leaf nodes in 

a bottom-up manner. The first player maximizes the score of the children at 

each node, while the second player minimizes the scores from the children.

Although a/3 returns a numeric score, it can be applied for AND/OR trees, 

for example, by assigning a score of 1 for a proof, 0 for an unknown value, and 

-1 for a disproof.

a/3 utilizes a search window defined by two bounds, a  and /3, which rep­

resent lower and upper bounds on the score of a tree. The search window is 

narrowed during search, and used for pruning subtrees if the score of a node 

is proven to be outside of the window. Many variants and enhancements have
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int Simulation(node nproof, node nsim) {
/ /  Terminal node 
if  (IsTerminal (nsim)) {

if  (WinForORNode(nsim)) {
TTstoreProof(nsjm); 
return true;

}
return unknown;

}
/ /  Check if a proof is saved in the transposition table 
if  (IsProoflnTT(nsjm)) 

return true;
/ /  Try to construct nsjm’s proof tree 
if  (IsORNode(nsjm)) {

move =  RetrieveWinningMove (nproo _/■);
/  /  Try only one move
if  (move = =  NOJVIOVE || !IsLegal(nsim, move)) 

return unknown; 
childproof  =  MakeMove(nproo/ ,  move); 
childsim  =  MakeMove(raSjm, move); 
result =  Simvl&tion(childpTOof,ch ildSim); 
if  (result = =  true)

TTstoreProof(nsjm) ; 
return result;

} else {
GenerateMoves(nsjTO);
/ /  Check if all moves lead to true  
for (each move m  of n) {

childproof =  MakeMove (nproo_f, m); 
childsim  =  MakeMove(nsjm, m);
if  (Siwala.tiori(childproof:Childsim) = =  unknown) 

return unknown;
}
TTstoreProof(n5im); 
return true;

}
}

Figure 2.5: Pseudo-code of simulation.
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Figure 2.6: Kawano’s simulation.

been developed over the years [47, 64, 70], but a transposition table is almost 

always used. . . ..

2.1.11 Replacem ent and Garbage Collection Schemes

When search algorithms use up all transposition table entries, some table 

entries must be deleted to save new search results. Replacement schemes over­

write a transposition table entry, when a collision occurs. On the other hand, 

garbage collection schemes delete a large number of transposition table entries 

a t a time when the transposition table becomes full or almost full. Breuker in­

vestigated effective methods for replacement schemes [11]. The most effective 

scheme computes the number of nodes of a subtree. The node th a t contains 

a larger subtree is preserved in the transposition table. Nagai investigated 

garbage collection schemes [55]. SmallTreeGC, which he later implemented 

for his tsume-shogi solver [56], is an effective method. In SmallTreeGC, each 

table entry contains the number of nodes of its subtree. When SmallTreeGC 

is invoked, it keeps track of all table entries and discards the entries that 

contain small subtrees until a certain amount of table entries are deleted. 

By incorporating this technique, Nagai’s tsume-shogi solver was able to solve 

hard problems with a much smaller amount of memory than other tsume-shogi 

solvers.
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Figure 2.7: The GHI problem.

2.1.12 Summary

Over the last 20 years, many improvements have been developed for AND/OR 

tree search algorithms. In particular, the notion of proof and disproof numbers 

was shown to be very effective. However, how to best adapt the algorithms 

surveyed in this section to harder search domains such as Go is still an open 

question. Moreover, if the search space is a directed cyclic graph and trans­

position tables are used, current algorithms may return incorrect results. The 

next section deals with this problem.

2.2 The GHI Problem

The last section explained that enhanced AND/OR tree search algorithms 

make use of transposition tables to save search effort. However, if the search 

space includes cycles, cached results may be flawed because they ignore the 

path used to reach the position. This is the so-called GHI problem [60]. This 

section explains the problem and surveys previous approaches to solve it.

2.2.1 Problem Description

W ith the help of Figure 2.7 the GHI problem for AND/OR trees is explained. 

There are two scenarios in which the GHI problem can occur, depending on 

the rules of the game.
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In the first scenario, which is called first-player-loss, a repetition is con­

sidered to be a loss for the first player, the player to play at the root node. 

Examples are checkmating problems in chess and shogi (tsume-shogi), since a 

repetition does not help the first player who is trying to checkmate. Assume 

D  in the figure is a loss for the first player, and this result is stored in the 

transposition table. Let G  be a win for the first player. Then a search starting 

from A. in the following order leads to the wrong result:

1. Search A - y B —y E - y H —y E .  A loss is stored in the table entry for

H .  because the position repetition cannot be avoided.

2. Search A  —y B  —y D.  A loss is stored for AND node B.

3. Expand A  —y C  — » F  - y  H .  A table look-up for H  retrieves a loss which 

is backed up to F  and C.

4. A is now incorrectly labeled as a loss because losses are stored for both 

successors B  and C.  However, A is a win by the sequence A —y C  - y  

F  —y H  — E  —y G.

In the first-player-loss scenario, the GHI problem only causes invalid disproofs 

(first-player losses). Programs can avoid the GHI problem, accepting a loss of 

performance, by not storing any disproofs caused by repetitions.

The other scenario for GHI, which is called current-player-loss, occurs when 

a repetition is declared to be a loss for the player who repeats the position. 

For instance, the situational super-ko (SSK) rule in Go declares that any 

move that repeats a previous board position is illegal. In this scenario, using 

a  transposition table can lead to errors in both ways: it can change a loss into 

a win or a win into a loss. For example, in Figure 2.7, now assume that G  is 

a loss for the player to move at the root:

1. Search A - y  B  - y  E  - y  H.  H  is stored as a win because the opponent 

does not have a legal move at H.

2. Search A —y C  —> F  - y  H.  The win stored for H  is backed up and a win 

is stored for C  as well.
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3. A  is now incorrectly labeled as a win since C ’s table entry shows a win. 

However, A  is a losing position, since the sequences A  B  D, 

A ^  C ^  F  -> H  E  G and A -> C ^  F  H  ^  E  ^  H  all 

lose.

This scenario does not occur in checkmating problems where only one 

player’s king is under attack. However, van der Werf et al. point out that 

when using the SSK rule in Go, this scenario can lead to invalid proofs [83]. 

In their work the problem is avoided by storing a separate hash entry for each 

path leading to a node. Unfortunately, this resulted in over 1,000 times larger 

searches when solving Go on a 4 x 4 board.

Avoiding the GHI problem is crucial, especially when one wants to declare 

that games are solved by programs. Since even a single flawed transposition 

table entry can lead to a completely wrong solution, correct techniques must 

be devised.

2.2.2 Palay’s Suggestions

Palay first pointed out the GHI problem and suggested two solutions [60]. 

The first solution is to refrain from using transpositions. Van der Werf used 

this approach to solve 4 x 4 Go with the SSK rule [83]. The drawbacks are a 

large number of expansions of duplicated nodes and large space requirements. 

Palay’s second solution is to continue using a graph representation but attem pt 

to recognize the GHI problem. When GHI is recognized, his solution checks 

a path from a node which has more than one parent to a node tha t causes 

a repetition. The nodes that are on such a path are duplicated to be able 

to store different results. However, Palay did not implement this strategy, 

since GHI did not occur so frequently in his tests. He conjectured that the 

second solution would take additional time since the graph must be revised 

occasionally.
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Figure 2.8: Prototypical case of GHI.

2.2.3 Cam pbell’s Analysis

Campbell partially solved the GHI problem for a/3 search [13]. In his algo­

rithm, each transposition table entry contains a field that stores the depth 

searched below a node. If a transposition is recognized and the depth stored 

in the table entry is at least as deep as the depth that must be explored, the 

table information is retrieved and no further search for that node is performed. 

Campbell classified the GHI problem into two cases, draw-first and draw-last. 

These names come from the fact tha t path X  —> Y  —> X  is treated as a draw 

by repetition in computer chess. Figure 2.8, adapted from [13], illustrates an 

example. In the draw-first case, path (1) is explored first and a score is stored 

in the table entry for X .  Then if Y  is searched via path (2), Y  might be 

incorrectly computed because of the table entry for X .  In the draw-last case, 

(2) is explored first and Y ’s incorrect score is used when reaching Y  via (1). 

This happens because of the implementation of the transposition table. When 

reaching X  via (1), the search depth for X  via (2) is shallower than via (1). 

Therefore, X  via (1) must be explored. On the other hand, if Y  is reached 

via (2) first, Y  is already explored deeply enough via (1) to reuse the table 

information on Y .

Campbell noted th a t draw-first GHI is curable by not storing scores that 

might cause the GHI problem, while draw-last is incurable. However, Camp­

bell mentioned that in practice most GHI problems can be avoided by com-
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bining the a/5 algorithm with iterative deepening [13]. Breuker conjectured 

that the GHI problem appears much less frequently in iterative deepening a/5 

search than in best-first search [12]. These conjectures will be discussed in 

Chapter 3.

2.2.4 Breuker’s Base-Twin Algorithm

Breuker et al. proposed the base-twin algorithm (BTA) for solving the GHI 

problem in proof-number search [12]. BTA is described for a 3-valued evalua­

tion model with values win, loss, and draw. If a draw is considered a disproof 

as in their experiments, this model is the same as the first-player-loss scenario.

BTA uses a possible-draw mark combined with the depth of a node to 

recognize repetitions. To find out which level of the node causes repetitions, 

BTA utilizes two kinds of nodes: a base node to be explored and twin nodes 

that have different parents, and link to their base node, but are not explored. 

When more than one path reaches identical positions, these positions are not 

represented by a single node, but split into one base node and one or more 

twin nodes, which can have different values (i.e. possible-draw marks) than 

the base node. Whenever a most-proving node is selected, BTA also checks if 

possible-draw marks can be stored by recognizing repetitions. Possible-draw 

marks are passed back to parents and when the root of the subtree that causes 

repetitions is detected, then a real draw is stored in that root. See [12] for 

details of the algorithm.

Although Breuker et al. claim that BTA is a general solution to the GHI 

problem for best-first search, there are three issues that must be addressed:

1. Since BTA was implemented for a best-first search algorithm that keeps 

an explicit graph in memory, it is an open question whether BTA is 

applicable to depth-first search algorithms with limited memory. They 

concluded in [12] “W hat remains is solving the GHI problem for depth- 

first search. This will need a different approach, storing additional in­

formation in transposition tables rather than in the search tree/graph 

in memory. However, Campbell already noted that in depth-first search
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Figure 2.9: An example where BTA fails with the current-player-loss scenario.

the frequency of GHI problems is considerably smaller than in best-first 

search [13]. The solution of the GHI problem for depth-first search re­

mains a nearly theoretical exercise.” However, curing the GHI problem 

for depth-first search algorithms using proof and disproof numbers is nec­

essary, because these algorithms combine properties of best-first search 

and depth-first search, and GHI occurs more frequently than in iterative 

deepening a/3.

2. The cycle detection scheme in BTA does not work with the current- 

player-loss scenario. Figure 2.9 illustrates an example. Assume that 

B  has not been expanded, and it is currently unknown whether B  has 

child D. Then assume that BTA explores A -¥ C —> D —>• C. Since 

this repetition occurs at C, a score (disproof in this case) is saved in 

C ’s transposition table entry without any condition. Then, assume that 

path A —> B  —> D  is searched, and recognizes D  as a child of B. Next, 

BTA reaches C  by expanding D. In BTA, C ’s entry has a disproof 

and a disproof is retrieved from the entry. However, this is incorrect, 

since the second player cannot make a move at C  if it is reached via 

A ^ B - + D - > C .

3. All the possible-draw marks are removed for each iteration of proof- 

number search. The deletion of possible-draw marks is necessary in 

BTA since it is path-dependent information. Figure 2.10 illustrates an 

example which returns an incorrect draw score when possible-draw marks 

are not cleared. Assume that the first-player-loss scenario is used in
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Figure 2.10: An example showing why BTA must remove possible-draw marks.

Figure 2.10. If path A  - y  B  —y C ^y D  —>■ c is followed, a possible- 

. draw mark is stored at c. Since BTA keeps C ’s depth combined with 

the possible-draw mark, the depth of 2 is stored in c to indicate that 

C  is the node involving a repetition. Then, if the possible-draw mark 

a t c is not deleted and c is reached via A  —y B  —y F  —y d => D —y c, 

the mark at c is passed back to d (and F). As a result, a real draw 

is stored at F. However, this is incorrect, since F  is a win via path 

F  —y d D  —̂ c =r' C —y E.

Hence, as long as real draws are not stored, the nodes causing repetitions 

must be explored again and again to mark possible-draws, resulting in 

much tree expansion overhead.

2.2.5 N agai’s Approach

Nagai proposed a solution to the GHI problem for df-pn [56]. He applied this 

modified df-pn to tsume-shogi problems, a first-player-loss scenario. In his 

algorithm, df-pn first sets large thresholds of proof and disproof numbers at 

the root. These thresholds are not oo as in the original df-pn, but oo — 1. 

In this model, Nagai assumes that oo — 1 <  oo, since a large integer is used 

to express oo in practice. In case of a repetition, df-pn simply returns to the
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parent node without storing a disproof. If a proof for the root is found, the 

proof tree is guaranteed to be repetition-free. However, if df-pn returns to the 

root by exceeding one of the large thresholds oo — 1 for proof and disproof 

numbers, df-pn re-searches with a threshold of oo. If the root position is 

reached by a move, this move is now considered disproven. A similar process 

is performed a t all interior nodes. If df-pn exceeds one of the oo — 1 thresholds, 

it re-searches with a threshold of oo, assuming that that node is a disproven 

position.

There are two drawbacks of Nagai’s approach:

1. It may take a long time for the proof or disproof numbers to exceed the 

preset threshold. For example, if there are many branches, the thresholds 

for expanding a node are much smaller than oo—1, since df-pn locally sets 

the thresholds based on the proof and disproof numbers of the children. 

Hence, because this approach has to wait for proof or disproof numbers 

of all the children to reach oo — 1, it is impractical for detecting disproofs 

with repetitions. Nagai measured the ability of his tsume-shogi solver 

only with positions that can be proven. He did not measure the overhead 

incurred by this approach, or the performance in positions where a node 

must be disproven.

2. Nagai’s approach also does not work with the current-player-loss sce­

nario. Since this approach does not use any path information, it cannot 

store two different path-dependent results for one node. Again, Figure 

2.9 serves as an example. In this figure, D  via A  —»• B  —> D is a proven 

node, since A —> B  —> D —> C  ^  D is not allowed. On the other hand, 

D  via A —> C  —> D  is a disproven node, since A —>■ C —>■ D —>■ C is 

illegal. .D’s value cannot be determined without considering the path 

used.

2.2.6 Other Related Work

According to [12], Thompson noticed that his tactical chess analyzer suffered 

from the GHI problem. He cured it by using a DCG (directed cyclic graph)
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representation. When a node was expanded, his analyzer took the history 

into account to avoid returning an incorrect result. However, when leaf nodes 

were evaluated, the history was not considered, possibly resulting in incorrect 

evaluation values.

Baum and Smith suggested a solution to the GHI problem for their best- 

first search algorithm [5]. Their algorithm stores the whole DCG in memory 

to be able to check all ancestors and descendants of a node. Then, if node 

P  spawns a child Q and Q has another parent P', their method checks if the 

ancestors of P  and the descendants of Q contain P '. If this is the case, Q is 

split into two nodes to be able to store different results. However, this idea 

was not implemented. The authors conjectured that a low storage algorithm 

would probably be too costly.

Schijf et al. investigated proof-number search in domains where the search 

graphs are DAGs (directed acyclic graphs) and DCGs [75]. They observe.that 

in practice it is not necessary to compute proof and disproof numbers correctly 

for DAGs, as long as correct results are returned. Three algorithms for DCGs 

are presented:

1. The tree method does not use transpositions, which has the disadvantage 

of not reusing results, while correctness is always guaranteed.

2. In the DAG method, two classes of moves are defined: conversion moves 

are irreversible and non-conversion moves may be reversible. The DAG 

method maps identical positions to a single node for conversion moves, 

while identical positions reached by non-conversion moves are treated as 

different nodes. This approach is also applied in the solution of 5 x  5 Go 

with Japanese and Chinese rules by van der Werf et al. [83]. This ap­

proach can cure the GHI problem, but a disadvantage is th a t duplicated 

searches are performed for all nodes with non-conversion moves.

3. The DCG method maps identical nodes to a single node unless a cycle is 

created. If a repetition is detected, a node creating a cycle is mapped to a 

second node and recognized as a disproven leaf node. Identical positions
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are mapped to at most two nodes. Although the DCG method is shown 

to be effective in their experiments in chess, as pointed out in [75] this 

approach sometimes results in wrong disproofs.

2.2.7 Summary

More than 20 years have passed since Palay pointed out the GHI problem. 

Although many solutions were presented, programs still suffer from the GHI 

problem. Algorithms are either less efficient to guarantee correctness, or in­

correct in order to not degrade the performance.

2.3 Previous Research on Computer Go

This section deals with relevant work on computer Go. Research related to 

tsume-Go is mainly addressed. Good overviews of computer Go in general are 

available in [9] and [53].

2.3.1 Tsum e-G o Solvers
GoTools

Wolf’s GoTools has been the best tsume-Go solver for 15 years [86, 88]. Go­

Tools specializes in solving completely enclosed positions. GoTools uses a 

depth-first search algorithm. Unlike most game-playing programs, GoTools 

does not perform iterative deepening, but traverses a tree as deeply as pos­

sible until reaching a terminal node. This search strategy is similar to SAT 

(Satisfiability) solvers [21] such as Satz [46]. If a node is either proven or 

disproven, the result for tha t node is stored in a transposition table.

GoTools contains an evaluation function that includes look-ahead aspects, 

powerful rules for static life and death recognition, and learning of dynamic 

move ordering from the search [90]. The latest version of GoTools has three 

kinds of parameters, tuned by genetic algorithms [63]: Static weights (46 pa­

rameters) are mainly for the static evaluation of positions. Dynamic weights 

(10 parameters) are used to order moves based on the results of tree searches 

performed. Pruning weights (14 parameters) give criteria for forward pruning

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



that sacrifices correctness of solutions in order to speed up the search. Go­

Tools has five modes for searches: One mode always ensures correctness of the 

answers: the other four heuristic search modes use different degrees of forward 

pruning [90].

One of the most important enhancements in GoTools is to order moves 

from the subtrees explored [90], which has similarities with the killer heuristic 

[1] and the history heuristic [70]. Assume that the first player makes a move 

m\ at position P , and the second player refutes mi by playing m2. Then, the 

first player next tries move m2 at P, since this is a killer move that reduces 

the chance of the second player to win. The moves refuting opponent moves 

at subsequent positions also get some credit to achieve better move ordering.

One research question is to compare GoTools with a tsume-Go solver in 

which techniques such as proof and disproof numbers are implemented. For 

example, one - possible advantage of the df-pn algorithm is that it uses the 

transposition table more extensively., Only solved positions are saved in the 

transposition table in GoTools, while in df-pn proof and disproof numbers of 

previous iterations are stored in the transposition table to improve the order 

of tree expansion [56].

Eye Databases

Since making two eyes is the most common way to prove that stones are alive, 

an early detection method for whether eyes can be created or not can result 

in a  great reduction of the search depth. Dyer created eye databases [22] and 

Yamashita uses a similar approach in the tsume-Go solver in his Go program 

A y a [91]. Cazenave created a database that enumerates a large number of 

possible patterns of eyes up to size 5 x 3  [16]. Large databases were successful 

in many domains such as chess [81], checkers [44], and the 15-puzzle [20]. There 

is, however, one important difference between Cazenave’s work and databases 

for other domains. For the other databases, once programs find a pattern in 

the databases th a t matches a position, it is always a perfect answer without 

any conditions. In contrast, whether blocks in Go are alive or dead can depend 

on conditions outside of the pattern. Cazenave’s database contains additional
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Figure 2.11: An example of safe stones but an unsafe territory.

information on external conditions that must be satisfied to match patterns, 

such as the number of outside liberties*.

As a result, Cazenave’s database requires 32 bits of storage per pattern, 

while the other databases only need 1 or 2 bits (e.g., to store a win, loss or 

draw). The size of the database is greatly reduced by making use of domination 

between positions and by storing only smaller patterns. Cazenave incorporated 

the database with external conditions into his tsume-Go engine based on proof- 

number search and achieved better performance.

Static Eye Detection

Vila and Cazenave presented a static approach to detect large eye shapes [84]. 

Such eye shapes guarantee life by either dividing it into two eyes or living in 

seki. They succeeded in statically classifying many eye shapes containing up 

to 7 points.

2.3.2 Proving Territories Safe

Let a territory* be an area which is surrounded and controlled by a player. 

Dead opponent stones can be contained in a  territory. Proving territories safe 

is as essential a task as proving stones safe in Go. Safe territories are very 

similar and closely related to safe stones. However, there are some cases in 

which stones are safe while territories are unsafe. Figure 2.11 from [51] shows
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Figure 2.12: An example of Benson’s unconditional safety.

an example. In this figure, all black stones are safe. However, the territory 

surrounded by black stones is not safe, since the white stone inside the territory 

can live in seki if White plays a. Another case is when a surrounded area is 

so large th a t the opponent can live inside the area.

Moves committing suicide are not allowed in the methods explained here. 

Japanese rules forbid suicide. Let the defender be the player trying to prove 

safety, and the attacker be the opponent. Benson presented a method for 

static evaluation of unconditional safety of blocks [6]. In Benson’s definition, 

defender blocks are unconditionally safe if the blocks are still safe even after 

an unlimited number of moves in a row played by the attacker. For example, 

all the black blocks in Figure 2.12(a) are unconditionally safe. On the other 

hand, the black blocks in Figure 2.12(b) are not unconditionally safe, since 

they can be captured by White’s consecutive plays (see Figure 2.12(c)).

Popma and Allis generalized the notion of unconditional safety to X  life 

[62]. The definition of X  life is that the blocks of the defender are still alive 

after X  consecutive passes by the defender, but can be killed after X  +  1 

consecutive passes.

The methods mentioned above are limited in practice, since no defensive 

moves for threatening moves are allowed. Muller presented a practically more 

effective method to find the safety of blocks and territories by locally alter­

nating play [51] . Locally alternating play allows the players to play moves in
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Figure 2.13: An example of safety by locally alternating play.

turns only in one area enclosed by the defender’s blocks, starting with the at­

tacker. Figure 2.13 illustrates an example th a t works effectively with Muller’s 

method. In this figure, the most important technique is the miai* strategy, 

although there are some other rules to recognize safety. First, one liberty is 

ensured in an enclosed area at A 4 and A3. The miai strategy finds two ways 

for connections to interior points. For example, White cannot prevent Black 

from connecting the block marked by triangles to a, by playing either at a l or 

a t a2. Similarly, the black block has connections to 6, c, and d. e is connected 

to the block by applying the miai strategy from a. As a result, the strategy 

guarantees a second liberty in the area. Hence, the block and territory are 

proven to be safe.

2.3.3 Heuristic Estim ations o f Eyes

Strong computer Go programs have methods to estimate the life and death of 

blocks. One popular method is to analyze life and death with a combination 

of exact and heuristic rules.

Ken Chen’s Go Intellect and Zhixing Chen’s HandTalk statically analyze 

the life and death status of blocks [18]. They have evaluation functions for es-
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timating the number of eye points. Fotland’s Many Faces of Go first classifies 

the eye shape, then determines a score for eye points by performing tacti­

cal searches around the eye spaces [25]. An advantage is that this approach 

approximates the life and death status faster than a search-based approach. 

However, one disadvantage is that this method occasionally returns an incor­

rect answer, which might lose a game. If an efficient and precise method to 

detect life and death is established, replacing those estimations by a high- 

performance solver that employs searches will be possible.

2.3.4 Other R elated Work
Threat-Based Search

When one player threatens to win immediately, a set of moves that are worth 

trying can be defined, resulting in a reduced branching factor of search trees. 

Such an approach, called threat space search [3], was used by Allis in combi­

nation with PNS to solve Go-Moku [2]. In Go, programs usually have search 

engines to capture stones in ladders. A-search was a generalized search algo­

rithm  to capture stones [82]. Later, Cazenave presented Generalized Threat 

Search (GTS) for Atari-Go [17]. In order to find threats (moves that the player 

must play to win or not to lose), GTS performs searches to  a certain depth by 

allowing a number of consecutive moves played by the same player. Perform­

ing these searches is relatively cheaper than doing direct brute-force searches, 

which improves the performance.

It is still an open question whether GTS is applicable to harder domains, 

such as tsume-Go, because of the higher complexity of finding a set of threats.

Decom position Search

Since the larger branching factor in Go makes global search expensive in prac­

tice, one idea is to take a divide-and-conquer approach which divides a problem 

into subproblems th a t have fewer moves, then solves them and combines their 

results for the original problem. Muller’s decomposition search takes this ap­

proach for Go endgames [52]. In decomposition search, a position is divided 

into subpositions, separated by safe stones. Local searches, based on combi-
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natorial game theory [7], are then performed for each subposition, and allow 

optimal play using the combinatorial game values of the subproblems. Using 

this approach, programs can solve a much larger class of endgame problems 

than with classical minimax-based solvers. However, in basic decomposition 

search a problem is split into subproblems only at the root node of a search. 

There are no further splits during the search, so the method fails for example 

when there is just a single large undivided area in the beginning. In contrast, 

in one-eye or tsume-Go problems, decompositions can profitably be done in­

side the search tree. There is usually just one large undivided space in the 

beginning.

2.4 Research Issues

Although a large amount of resources has been invested in researching search 

algorithms, the GHI problem, and computer Go, there are still research issues 

that must be addressed:

• Programmers want to have algorithms that are guaranteed to return 

correct results without degrading performance. Because of the existence 

of the GHI problem practitioners are not satisfied with the currently 

available algorithms. In particular, the only solution for the current- 

player-loss scenario is to give up all transpositions.

•  Programmers are eager to have efficient search methods. This raises the 

following questions:

— Nagai’s df-pn algorithm has been so successful in tsume-shogi. The 

performance of his tsume-shogi solver far surpasses that of human 

players. On the other hand, such a sm art search algorithm has 

not been adapted to the game of Go yet. I t is a challenging task 

to research the efficiency of df-pn for the tsume-Go and one-eye 

problems.

— Although decomposition search was shown to be powerful, it is lim­

ited to domains where a position is already decomposed at the root
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node. The application of decomposition search is therefore cur­

rently limited to Go endgames. On the other hand, in applications 

such as tsume-Go and the one-eye problem, it seems necessary to 

do decomposition dynamically within the search tree. It is still an 

open question if splitting a position dynamically is feasible.

The thesis will try to resolve these issues in the remaining chapters.
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Chapter 3 

A General Solution to the GHI 
Problem

This chapter presents a complete solution to the GHI problem, which has very 

small overhead for both the first-player-loss and current-player-loss scenarios. 

This scheme is proven to always return correct answers. Since the idea does not 

depend on any algorithm-specific features, it can be applied to different game- 

tree search algorithms. The proposed GHI solution has been implemented 

for both the df-pn algorithm [56] and a/3 [41]. Experimental results with both 

algorithms in the domains of Go and checkers show only a very small overhead 

compared to programs tha t ignore the GHI problem.

3.1 The Algorithm  to Solve the GHI Problem

3.1.1 Overview of the Solution

The outline of the solution to the GHI problem is as follows: When a proven 

or disproven position stored in the transposition table is reached via a new 

path, instead of blindly retrieving the result, a search is performed to verify 

it. If the proof/disproof verifies, the result can be safely reused; otherwise the 

transposition table entry is treated as a different position. Kawano’s simulation 

[30] is used to reduce the search overhead. For efficiency, this approach requires 

a good scheme for storing and comparing paths and a technique for minimizing 

the number of simulation calls.
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3.1.2 Duplicating Transposition Table Entries

To reuse the results of previous search efforts, unproven identical positions 

reached via different paths are considered to be transpositions. The values 

stored in the transposition table are reused: proof and disproof numbers for 

df-pn, and minimax values for a@. When position A  is proven via path p, the 

transposition table entry for A  is split into a base and a first tw in  table entry. 

A proof is stored in the twin table entry to indicate that A  is proven when 

reaching A  via p. If A  is proven via a different path q, another twin table 

entry for q is created and the new proof is stored there. When reaching A  via 

a path other than p, the proofs of the twin table entries are simulated (see 

Section 3.1.4). If at least one verifies then that proof is used; otherwise the 

information from the unproven base table entry is used in the search. Disproofs 

are handled in the same way.

3.1.3 Encoding Paths

Identical positions reached via different paths can be differentiated by comput­

ing a signature of a path. A variant of the Zobrist function, which is used to 

hash a position into its corresponding transposition table key [92], can be used 

to encode a path. In the implementation, each transposition table entry con­

tains an additional 64-bit field to encode a signature of the path from the root 

to a position. Let MaxMove be the number of different moves in a game, and 

MaxDepth be the maximum search depth. A precomputed 2-dimensional table 

R  with MaxMovex MaxDepth random 64 bit integers as entries is prepared to 

encode a path. The sequence of moves to  reach that position is encoded by a 

technique inspired by Zobrist’s method. Let the path p  be (mi, m2, • ■ •, m*,), 

where m* are moves. Then p is encoded as follows:

code(p) =  i?[mi][l] ® J?[m2][2] ® • • • ® iJ[mjt][fc]

An important property of this path-encoding scheme is that the order 

of moves is not commutative, since the random table entries for the same 

move played at different depths are different. For example, the codes of
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the two paths pi =  {rni,mz,m$) and p2 =  (m3, m2, m i) are not the same, 

since code(pi) =  i?[mi][l] ® ff[m2][2] © ff[m3][3] is different from code(p2) =  

# [m 3][l] © R[m2}[2] 0  J?[mi][3].

The size of the random table is small enough for current hardware. For 

example, in the experiments on 19 x 19 Go, setting MaxMove =  362 and 

MaxDepth =  50 the size is about 140KB. In games with a large number of dif­

ferent possible moves, such as Shogi or Amazons, a move can be split into two 

or three partial moves, for example by separating the from-square information 

from the to-square information. This way MaxMove can be greatly reduced, 

while MaxDepth increases by a factor of 2 or 3.

3.1.4 Invoking Simulation for Correctness

Kawano’s tree simulation [30] only needs a minimal amount of effort to confirm 

if a position is proven. Similarly the dual notion of dual simulation-cm  be 

defined to check if a position is disproven.

Since a position identical to a proven or disproven position but reached via 

a different path is not considered to be a transposition, simulation and dual 

simulation are utilized to quickly check proofs or disproofs of such positions. 

Assume that position A  was proven via path p. If A  is reached via a different 

path  q, simulation can check if A  via q can be proven quickly. A proof is 

borrowed from the twin table entry with path p. If a proof for A  via q is 

verified, an additional twin table entry for the proof of A  via q is created. If 

more than one twin table entry is available, they are tried one after another. 

However, since proof trees often have the same shape, it is rare that more than 

one tree simulation is needed. The analogous verification by dual simulation 

is tried to find disproofs.

3.1.5 Reducing Simulation Calls

Since simulation incurs an overhead to assess the correctness of a transposition 

table entry, a method to reduce the number of simulation calls is devised. If 

a node is (dis)proven without detecting a repetition, th a t node can always be 

used as a transposition, since it is independent of the path  taken by the search.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



In this case, the (dis)proof is stored directly in the base table entry, without 

creating a twin node. If another path leads to that position, this (dis)proof 

can be reused safely.

3.1.6 Algorithm -Specific Implementation Details 
Implementation of the Transposition Table

As in Nagai’s work [55], the implementation of the transposition table uses 

chaining to avoid collisions. The two-level transposition table [11] popularly 

used for a/? often loses valuable information from the transposition table, 

degrading the ability of a solver. However, one implementation problem has 

to be resolved to make the transposition table work efficiently (see Section 

3.4).

Implementation of Df-pn

The following modifications were made to the original df-pn algorithm:

• Proof and disproof numbers in a base table entry are re-initialized to 1 

whenever a (dis)proof is saved in a twin table entry. This is because df- 

pn tends to create large proof and disproof numbers before a (dis)proof 

is found, which made df-pn unable to solve some positions.

•  As in Nagai’s GHI solution [56], The thresholds of proof and disproof 

numbers at the root are initialized to oo — 1, not oo as in the original df- 

pn algorithm, oo — 1 <  oo holds in the algorithm as in Nagai’s method. 

This is necessary to avoid the GHI problem at the root, since df-pn saves 

thresholds in the transposition table before expanding a node. If df-pn 

with this modification returns a proof number of 0 and a disproof number 

of oo, or vice versa, it is a correct (dis)proof. Otherwise, df-pn returns 

the value unknown.

Implementation o f a/3

The following modifications were made:
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• The scheme for transposition table lookups was modified. A normal 

transposition table entry contains a field that stores the depth searched 

below a node. If a  transposition is recognized, the depth stored in the 

table entry is at least as deep as the depth th a t must be explored, and 

the table entry has a tight aj3 bound that causes a cut-off, then the table 

information is retrieved and no further search for that node is performed. 

This strategy is used only for unproven nodes. (Dis)proofs saved in the 

transposition table are always retrieved without checking the explored 

depth, since they are correct. This modification not only makes more 

use of the transposition table but also solves Campbell’s draw-last case. 

The proofs of the theorems that guarantee correctness are given in the 

next section.

•  The current a/3 search implementation uses only the three values (win, 

unknown, or loss). However, the GHI solution works for the general case 

of more values in between win and loss. In the experiments in checkers, 

a draw is considered as a loss for the first player. To prove a draw, a 

second search must be performed in which a draw is regarded as a win for 

the first player. Determining a draw with a single search is not a trivial 

problem for the a/3 algorithm, since the values draw and unknown are 

incomparable. A correct heuristic value can be obtained by performing 

a sequence of null window searches as in MTD(f) [61] and modifying the 

transposition table.

3.2 Correctness of the Solution

3.2.1 W hen Proofs and Disproofs F it in M emory

Assume that all proven and disproven nodes are stored in the transposition

table. The following theorems guarantee correctness of the GHI solution:

T h eo rem  3.2.1 The GHI solution does not suffer from the draw-first case.

Proof. This theorem is proven with the help of Figure 3.1. Although X  is an 

OR node and Y  is X ’s child in Figure 3.1, the only assumption is that
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X

Y

X

Figure 3.1: Figure used to prove tha t the GHI solution is free from the draw- 
first and draw-last cases.

X  i s Y ’s ancestor and also Y ’s descendant. In the draw-first scenario, if  

;•proving Y  via (1) involves repetitions related to X ,  X  and Y  are stored 

in the transposition table with “via path (1).” Hence, i f Y  is reached via 

(2), a search is performed below Y  and X  in the algorithm. The case of 

disproofs is similar. Thus the draw-first scenario does not happen in the 

GHI solution.

■

T h e o rem  3.2.2 The GHI solution does not suffer from the draw-last case.

Proof. In Figure 3.1, with the same assumption as in Theorem 3.2.1, assume 

that path (2) is explored and X ’s proof is saved in the transposition table. 

The following cases have to be considered:

1. I f  X  via (2) is proven without repetitions, Y  is not included in 

X ’s proof tree. When X  is reached via (1), a proof is immediately 

retrieved from X ’s table entry and this is a correct proof, since it 

does not contain any repetitions. Y  is never explored via (1), which 

would cause the draw-last case.

2. I f  X  via (2) is proven with repetitions:

(a) I f  Y  via (2) is proven without repetitions, X ’s proof tree must 

not be a part o f Y ’s proof tree. When reaching X  via (1), X ’s
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proof via (2) is not retrieved because it is stored in the twin 

table entry via (2). Then, when reaching Y  via (1), Y ’s table 

entry is retrieved. Because Y  ’s proof tree does not contain any 

repetitions such a s Y —> X —* - Y , Y ’s proof tree can be reused,

(b) I f  Y  via (2) is proven with repetitions, neither X ’s nor Y ’s 

proof via (2) is retrieved at X  and Y  via (1) in the algorithm. 

Hence, X  and Y  are explored, guaranteeing a correct result.

The case of disproofs is similar. Thus the GHI solution guarantees that 

the draw-last case never happens.

n

For unproven nodes, the proposed GHI solution might compute incorrect 

proof and disproof numbers for df-pn, and incorrect heuristic values for a/3 

search. However, the above theorems guarantee that (dis) proofs returned by 

this approach are always correct.

3.2.2 W hen Proofs and Disproofs Do N ot F it in Mem­
ory

In Section 3.2.1, in order to guarantee correctness of the GHI solution, proven 

and disproven nodes in the transposition table were assumed never to be re­

placed. One question is what happens if any entry is allowed to be replaced. 

Practical replacement and garbage collection schemes such as [11, 55] delete 

both proven and unproven nodes. The correctness of the proofs and disproofs 

saved in the transposition table is easily shown in the following way:

• If neither proofs nor disproofs are replaced, Theorems 3-2.1 and 3.2.2 

guarantee that correct proofs and disproofs are saved in the transposition 

table.

•  Even if replacement or garbage collection schemes delete proven and 

disproven table entries, every search result is determined by transposition 

table lookups and a search. The search result is therefore correct and is 

correctly saved in the transposition table.
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A

Win

| | OR node ( ^ )  AND node

Figure 3.2: An example of constructing an incorrect proof tree with replace­
ment schemes.

The above discussion ensures that using any replacement or garbage collec­

tion scheme still leads to correct values. However, incorrect proof or disproof 

trees are sometimes constructed, when proven or disproven nodes are dis­

carded. Figure 3.2 shows an example. The first-player-loss-scenario is adapted 

in this figure and I  is a win for the first-player. Assume th a t when either an 

OR node is proven or an AND node is disproven, one of the branches that 

constructs a proof or disproof tree is saved in the transposition table. Under 

these conditions, searching in the following order yields an incorrect proof tree:

•  Explore Proofs are saved in the

base entries of C, E , G : H , and I .  The move leading to H  is saved in 

G ’s entry, since G is proven by reaching H .

•  Let G, H, and I  be replaced by new entries.

•  Explore A - > B - ^ - D ^ F - > G - > E .  Since a proof is saved in E ’s base 

table entry, G is also proven. G ’s table entry contains a move leading
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to E , because G is proven by reaching E.  Now, although G is a proven 

node, the reason why G is proven is incorrect. G must be proven by 

taking path G —>■ H  -> / ,  not G —> E  —> G —> • • •.

Since this wrong proof construction is related to replacement schemes, the 

problem also occurs in previous work, such as Nagai’s GHI solution [56]. Nagai 

suffered from a similar problem when his tsume-shogi solver performed re­

searches to find other checkmating sequences [56]. This issue is also similar 

to Campbell’s draw-last scenario, since the base table entry might implicitly 

include a repetition. However, the above discussion guarantees tha t there must 

be a valid proof or disproof in the base entry that is free from a repetition. 

The proof is never for the wrong reason, only the retrieval goes wrong.

To reconstruct a proof tree when using a replacement or garbage collection 

scheme that discards proven or disproven table entries, an algorithm that 

constructs a proof or disproof tree is required after the completion of the 

df-pn or a/? search. For such a proof tree reconstruction algorithm, a small 

transposition table that is separate from the transposition table of the search 

is allocated. For the sake of simplicity, only the case of df-pn is explained. A 

similar approach can be applied to a/3. Let T  be the transposition table for 

df-pn, and S  be the small transposition table that contains a proof tree. Then, 

a simple re-search is performed to construct a proof tree in S. An analogous 

method can be used to construct a disproof tree. The reconstruction algorithm 

works as follows:

•  Proven terminal nodes are saved in S.

•  At an OR node, all branches that lead to proven AND children in T  are 

traversed to construct a proof tree. If one of them succeeds, the proof 

tree is confirmed and saved in S.

•  At an AND node, all children are traversed to construct a proof tree. If

all of them succeed, the proof tree is saved in S.

•  If no proven AND child is found in T  at an OR node n, df-pn is called

to prove n.
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• If an incorrect repetition p at n, leading to a disproof of n via p, is 

detected, the reconstruction algorithm is terminated. Df-pn is invoked 

a t the root node to construct another proof tree. Before df-pn is invoked, 

proof and disproof numbers of the nodes on the path of p are initialized 

to 1, and n  via p is saved as a disproof in T. When df-pn returns a proof, 

the reconstruction algorithm is invoked again.

• The process is continued until a complete valid proof tree for the root is 

stored in S.

Since df-pn usually explores a much larger tree than a proof tree, the over­

head of this algorithm is mostly small. However, the overhead incurred by the 

reconstruction algorithm is sometimes large. See Section 3.5 for experimental 

results.

3.3 Game-Specific Implementation Details

3.3.1 Go

All enhancements that will be explained in Chapter 5 are incorporated in the 

df-pn and a/? implementations. The method that will be described in Chapter 

4 is integrated with df-pn. a/3 performs iterative deepening, extends the search 

for forced moves, and searches the best move from a previous iteration first.

3.3.2 Checkers

8-piece endgame databases are incorporated in the df-pn and a/? implemen­

tations. Scores obtained by database lookups are considered to be correct, 

because these scores are path independent. Simulation is not invoked for trees 

involving only database scores. The method that will be described in Chap­

ter 4 is integrated with df-pn. The a/3 implementation performs a variable 

depth-first search with state-of-the-art enhancements.
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3.4 Other Im plem entation Issues

One implementation problem has arisen in the GHI solution if the transpo­

sition table uses chaining to avoid collisions. When proving or disproving 

identical positions by repetitions via different paths, the GHI solution gives 

the identical transposition table key to these path-dependent positions. This 

property can cause a large number of chained twin table entries if the same 

position is proven or disproven via hundreds or thousands of different paths 

involving repetitions.

To solve the problem of long chains, two hash functions to compute trans­

position table keys are used. One key is an encoded position, the other key 

is an encoded path. The encoded position is called the first hash key, and 

the encoded path is called the second hash key. These hash keys are used as 

follows:

1. First hash keys are always used for unproven nodes.

2. Assume that A is a proven OR node or disproven AND node via path p , 

and m  is a move th a t leads to a proof of A via p. The first hash key is 

computed and chained transposition table entries are traversed. If one of 

the chained table entries contains A via q and m  is in the twin table entry 

of A via q, a (dis)proof of A via p is saved in the transposition table entry 

computed by the second hash key. Otherwise, A via p  is saved in the 

table entry computed by the first hash key. This is reasonable because of 

the process of simulation: When simulation is invoked for A via another 

path, it needs to generate m by retrieving the table entry for A via p. m  

is generated by keeping track of all table entries which contain the first 

hash key of A. However, if A via q uses the first hash key to cache and 

contains m, A via p is not necessarily placed in the table entry with the 

first hash key. m  can be generated by checking the table entry for A via 

Q-

3. If A is a proven AND node or a disproven OR node via p , the move m  

in A via p  is not used for simulation calls. Hence, A via p is not neces-
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sarily stored by using the first hash key. The implementation therefore 

tries step 2 by assuming th a t m  is constant. This technique randomly 

distributes (dis)proofs by repetitions over the transposition table.

3.5 Experiments

3.5.1 Setup

The df-pn and aft algorithms were applied to Go and checkers. The one- 

eye problem with situational super-ko in Go is a current-player-loss scenario. 

Checkers is a first-player loss scenario.

The experiments for programs ignoring and dealing with the GHI problem 

in Go were performed on an Athlon XP 2800 with a 300 MB transposition 

table. The experiments in checkers were performed on an Athlon 2400MP 

with a 300 MB transposition table. All proven and disproven nodes are saved 

in the transposition table in both programs. 162 positions in Go and 200 

positions in checkers were prepared (see Appendix C). Each test suite was 

created in the following way:

•  In contrast to full tsume-Go, for which many large collections of test 

problems are available, any specialized collection of one-eye problems 

could not be found in the literature. The current set of 81 test positions 

was created mainly by M artin Muller. The problems can be played 

for both colors going first, resulting in a total of 162 problems. All 

problems are of the following form: a group of the defender already 

has one safe eye, and is completely surrounded at a distance by safe 

stones of the attacker. The area in between forms the region, and the 

fate of the group of the defender depends on whether it can form a 

second eye in the region. Problems of this kind are also suitable for 

solution by a general tsume-Go solver, since making one eye is equivalent 

to solving the tsume-Go problem. The test set is available at h t tp :  

/ / w w w .cs.ualberta .ca/~gam es/go/oneeye. See Appendix C for a list 

of the positions. The problems include a mix of easy and hard problems.
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Figure 3.3: Example of a hard problem (Black to live).

Some problems are challenging only for one color playing first, and are 

very easy if the other color plays first. Some of the positions are hard to 

solve for current tsume-Go programs. For an example, see Figure 3.3.

• In checkers, test positions are randomly extracted from a partial proof 

tree of the White Doctor Opening. They were created by Neil Burch, 

Yngvi Bjornsson, and Jonathan Schaeffer.

The time limit was set to 5 minutes per position in Go. In checkers the 

execution time was unstable because it is dominated by disk I/O  to access 

the databases. Therefore, the execution time was not limited here. Instead, 

the checkers searches were limited to 20 million node expansions per position. 

Since df-pn can only return a binary answer, either proven or disproven, for 

a given position, it solves the question “win or no win.” A draw is therefore 

considered a disproof in the test.

3.5.2 Results in Go

Tables 3.1 and 3.2 summarize the results for df-pn and a/3 in Go in terms of 

the number of problems solved and total node expansions. These statistics
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Table 3.1: Performance comparison between ignoring and dealing with the 
GHI problem for df-pn in Go. All statistics are computed for 157 problems

Method
used

Number of 
problems 

solved
Total
nodes

Total
time
(sec)

IGNORE-GHI 149 +  8 82,002,480 1,757
HANDLE-GHI 157 84,084,752 1,975
Total problems 162 -

Table 3.2: Performance comparison for afi in Go. All statistics are computed 
for 138 probl"—  u-n , .™.~:—ems solved by both  versions.

Number of Total
Method problems Total time

used solved nodes (sec)
IGNORE-GHI 136 +  2 146,893,143 1,154
HANDLE-GHI 138 149,839,855 1,231
Total problems 162 -

were collected from the two programs ignoring (IGNORE-GHI) and handling 

(HANDLE-GHI) the GHI problem, other approaches such as Nagai’s could 

not be tested in Go, since they do not handle the current-player-loss scenario. 

Both IGNORE-GHI and HANDLE-GHI solve the same subset of problems. 

However, IGNORE-GHI gave incorrect proof or disproof trees for 8 positions in 

df-pn and for 2 positions in a/3. The incorrectness of (dis)proof trees was con­

firmed by re-checking (dis)proof trees computed by IGNORE-GHI. Although 

the scores returned by IGNORE-GHI were correct, it is important to have a 

scheme to handle the GHI problem, since GHI happens both in df-pn and a/?. 

Even if GHI does not appear in the final proof tree, it occasionally appears 

in the search. In the 157 problems solved, HANDLE-GHI in df-pn invoked 

simulation 70,003 times, explored 3,356,038 nodes by simulation, and discov­

ered 4,230 flawed transposition table entries. In the 138 problems solved by 

a/3, HANDLE-GHI invoked simulation 8,500 times, explored 124,160 nodes 

by simulation, and detected 2,678 flawed entries. These numbers are conser-
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Table 3.3: Performance comparison for df-pn in checkers. Node statistics are 
computed for the subset of 160 problems solved by all program versions.

Method
used

Problems
solved

Total
nodes

IGNORE-GHI 138 +  26 188,422,395
HANDLE-GHI 166 . 187,297,631
NAGAI 163 212,237,026
Total problems 200 -

vative, because some incorrect proofs or disproofs may have been stored but 

never retrieved. As in Campbell and Breuker’s papers [13, 12], these numbers 

confirm that GHI occurs more frequency in df-pn than in a/3. However, the 

results show that it is still necessary to cure GHI in a/3.

Figures 3.4 to 3.7 compare the performance between IGNORE-GHI and 

HANDLE-GHI for each problem. In Figures 3.4 and 3.6, the node expansions 

of HANDLE-GHI are plotted on the X-axis against IGNORE-GHI on the Y- 

axis on logarithmic scales. A point above the diagonal means that HANDLE- 

GHI performed better. Similarly, in Figures 3.5 and 3.7, the execution time 

spent by HANDLE-GHI is plotted on the X-axis against IGNORE-GHI on 

the Y-axis on logarithmic scales. The results show tha t HANDLE-GHI can 

avoid the GHI problem with negligible overhead in terms of node expansions. 

In terms of execution time, IGNORE-GHI solves problems slightly faster than 

HANDLE-GHI in df-pn and almost as quickly as HANDLE-GHI in a/3. In 

total, HANDLE-GHI explored 2.5% extra nodes and needed 12.4% extra time 

in df-pn. In a/3, HANDLE-GHI explored 2.0% extra nodes, and needed 6.7% 

extra time. This is a small price to pay for guaranteeing correctness.

3.5.3 Results in Checkers

Table 3.3 gives the results for df-pn in checkers. Nagai’s solution (NAGAI) to 

the GHI problem [56] is additionally implemented. Of the 200 problems in the 

test set, 160 problems are solved by all methods. Table 3.4 summarizes the ex­

tra  problems solved by each method. HANDLE-GHI solved 3 extra problems 

that IGNORE-GHI did not solve. IGNORE-GHI solved 164 problems, includ-
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Figure 3.4: Node expansions for problems solved by both HANDLE-GHI and 
IGNORE-GHI in df-pn in Go.
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Figure 3.5: Execution time for problems solved by both HANDLE-GHI and 
IGNORE-GHI in df-pn in Go.
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Figure 3.6: Node expansions for problems solved by both HANDLE-GHI and 
IGNORE-GHI in aj3 in Go.
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IGNORE-GHI in a/3 in Go.
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Table 3.4: Extra problems solved by each method. See Appendix C.2 for a 
listing of the 200 problems.___________________________

Method Problem Id
IGNORE-GHI 17 62 76 136
HANDLE-GHI 55 62 76 78 87 136

NAGAI 55 87 156
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Figure 3.8: Comparison of node expansions between HANDLE-GHI and 
IGNORE-GHI in df-pn in checkers.

ing one problem which was not solved by HANDLE-GHI. However, IGNORE- 

GHI generated incorrect disproofs in 26 cases, including the one extra problem 

solved only by IGNORE-GHI. Figure 3.8 compares node expansions for the 

problems solved by both IGNORE-GHI and HANDLE-GHI. Figure 3.8 indi­

cates that the GHI solution does not degrade the performance. HANDLE-GHI 

even explored 0.6% less total nodes than IGNORE-GHI.

Compared with Nagai’s method, HANDLE-GHI solved 4 extra problems 

that NAGAI did not solve. On the other hand, NAGAI solved one more 

problem unsolved by HANDLE-GHI. Although both approaches solved prob­

lems correctly, the GHI solution can be applied to various algorithms, whereas
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Figure 3.9: Node expansions for problems solved by HANDLE-GHI and NA­
GAI in df-pn in checkers.

Table 3.5: Performance comparison for a/3 in checkers. Node statistics are
computed for the subset of 119 pro flems solvec

Method Problems Total
used solved nodes

IGNORE-GHI 109 +  12 244,508,069
HANDLE-GHI 120 229,763,174
Total problems 200 -

by both program versions.

Nagai’s method can be incorporated only to df-pn. Figure 3.9 plots node 

expansions for each problem. The plot is slightly above the diagonal line.

In terms of total nodes for problems solved by all versions, NAGAI explored 

13.3% more nodes than HANDLE-GHI.

Simulation again detects flawed transposition table entries. In the 166 

solved problems, HANDLE-GHI invoked simulation 720,684 times with 5,787,658 

node expansions and discovered 332,362 flawed transposition table entries. 

These numbers confirm that the GHI problem occurs in the search. These in­

correct results sometimes appear in the final disproof trees of IGNORE-GHI.
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Figure 3.10: Node expansions for problems solved by HANDLE-GHI and 
IGNORE-GHI in a/3 in checkers.

Table 3.5 shows the results for aj3. IGNORE-GHI solved 2 extra positions 

th a t were not solved by HANDLE-GHI, whereas HANDLE-GHI solved one 

problem unsolved by IGNORE-GHI. IGNORE-GHI returned incorrect dis­

proofs for 12 positions, including the two positions ‘solved’ only by IGNORE- 

GHI. Figure 3.10 plots node expansions for problems solved by both versions. 

Most results are close to the diagonal line, which implies that HANDLE-GHI 

incurs a negligible overhead. In terms of total nodes, HANDLE-GHI even 

explored 6.4% less nodes than IGNORE-GHI.

In the 121 problems solved, HANDLE-GHI invoked simulation 48,699 times 

with 81,772 node expansions and detected 29,852 flawed entries. These num­

bers indicate tha t the GHI problem occurs in aj3 in checkers, but much less 

frequently than in df-pn.

In conclusion, since the GHI problem happens both in df-pn and ce{3 in 

checkers, it is dangerous to ignore. Because the GHI solution not only in­

curs low overhead but also always returns correct answers, it is a worthwhile 

addition to any search engine susceptible to GHI.
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The proposed solution could be compared with Breuker’s BTA. However, 

BTA needs an explicit graph representation, and complicated operations to 

deal with repetitions. This causes a problem when BTA uses up available 

memory. On the other hand, the approach proposed in this Chapter does 

not need any explicit graph representation. Transposition table entries can be 

replaced when the table becomes full. Breuker’s scheme to detect real draws is 

specific to the first-player-loss scenario, and could be added to the framework.

3.5.4 Results with Limited M emory

In the previous experiments, proofs and disproofs are never deleted from the 

transposition table. In this section, the performance of the algorithms was 

measured when using a garbage collection scheme. Nagai’s SmallTreeGC [55], 

which discards transposition table entries containing small subtrees was imple­

mented. Two versions were implemented in Go: one th a t always keeps proven 

and disproven table entries (KEEP-PROOF), and one that can discard proven 

and disproven entries (DISCARD-PROOF). The size of transposition table 

was varied from 5 MB to 30 MB for df-pn and aft. The size of a table entry 

is 48 byte in both df-pn and a/3. For example, a 30 MB transposition table 

contains 655,360 entries in df-pn and a/?. 10 hard problems which do not fit in 

memory with a 30 MB transposition table were chosen. Tables 3.6 and 3.7 list 

the problems used in the experiments. Node expansions and execution time 

in the tables are from data in KEEP-PROOF with a 300 MB transposition 

table. Separate test sets are used for df-pn and a/?, because problems solved 

by a/3 are usually easy for df-pn. The time limit was set to 400 seconds per 

position.

Figures 3.11 compares the solving ability of the two methods for df-pn. 

The size of the transposition table is plotted on the X-axis against the number 

of problems solved by each method on the Y-axis. DISCARD-PROOFS works 

better than KEEP-PROOFS. However, the test set used in the experiments 

contains only very hard problems, to be solved with a small amount of mem­

ory. Most problems that are excluded from these experiments are easy for 

both KEEP-PROOFS and DISCARD-PROOFS, because most of them fit in
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Table 3.6: List o : problems used for df-pn.
Problem name Color to play Node expansions Execution time (sec)
oneeyee.l.sgf Black 1,732,845 35.65
oneeyee.2.sgf White 5,557,002 164.77
oneeyee.3.sgf Black 1,601,033 37.52
oneeyee.3.sgf White 8,293,193 198.46
oneeyee.4.sgf White 10,288,160 194.26
oneeyee.5.sgf Black 6,277,938 138.65
oneeyee.7.sgf Black 4,771,253 97.10
oneeyee.8.sgf White 10,550,455 258.69
oneeyee.9.sgf White 2,711,384 57.70
oneeyee.ll.sgf White 9,783,406 250.71

Table 3.7: List of problems used for a/3.
Problem name Color to play Node expansions Execution time (sec)
oneeyee.l.sgf White 2,604,146 18.16
oneeyec.6.sgf White 29,897,113 248.99
oneeyec.7.sgf Black 6,449,003 36.36
oneeyec.9.sgf Black 18,090,794 174.99
oneeyed.2.sgf White 8,926,242 66.58
oneeyed.6.sgf Black 20,698,195 177.46
oneeyee.l.sgf White 7,540,735 57.42
oneeyee.6.sgf White 3,162,111 27.12
oneeyee.7.sgf White 34,758,867 293.45

oneeyee.10.sgf White 3,571,438 31.36
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Figure 3.11: Comparison of the solving ability of DISCARD-PROOFS and 
KEEP-PROOFS in df-pn.

memory. All problems solved by KEEP-PROOFS are solved by DISCARD- 

PROOFS. Moreover, DISCARD-PROOFS solves more problems even with a 

5 MB transposition table than KEEP-PROOFS with a 30 MB transposition 

table. In KEEP-PROOFS, proofs and disproofs are saved in most of the ta ­

ble entries, causing the performance to degrade. For example, with a 30 MB 

transposition table entries, 99.8% (more than 654,300 entries out of 655,360) 

contained proven or disproven nodes for the 8 unsolved problems.

Since DISCARD-PROOFS may construct a wrong proof tree, the proof 

tree reconstruction algorithm in Section 3.2.2 is invoked after df-pn returns 

a yes/no answer. Tables 3.8 and 3.9 show the overhead to reconstruct proof 

trees for solved problems. Total node expansions are computed as the sum 

of the numbers of nodes explored by df-pn and the proof tree reconstruction 

algorithm. The overhead is usually a few percent. However, in one prob­

lem, oneeyed.9.sgf, the solver spent more than 20% of node expansions for 

constructing a proof tree. Df-pn created an incorrect proof tree in the final 

proof tree as in Figure 3.2. The proof reconstruction algorithm detected it and
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Table 3.8: List of problems solved by df-pn with a 5 MB transposition table.

Problem name Color to play
Total 

Node expansions
Node Expansions for 

Proof tree reconstruction
oneeyee.l.sgf Black 7,812,083 475,536 (6.1%)
oneeyee.3.sgf Black 6,289,650 446,501 (7.1%)
oneeyee.9.sgf White 8,662,833 1,869,667 (21.6%)

Table 3.9: List of problems solved by df-pn with a 30 MB transposition table.

Problem name Color to play Node expansions
Node Expansions for 

Proof tree reconstruction
oneeyee.l.sgf Black 1,846,981 122,775 (6 .6%)
oneeyee.3.sgf Black 1,587,828 104,309 (6 .6%)
oneeyee.7.sgf Black 8,381,461 217,358 (2.6%)
oneeyee.9.sgf W hite 3,998,017 969,255 (24.2%)

needed to construct a correct proof tree. However, considering the fact that 

oneeyee.9 is not solved by KEEP-PROOFS, this is still a price worth paying to 

achieve a  better solving ability. Also, since the previous garbage collection or 

replacement schemes such as [11] and [55] already deleted proven and disproven 

nodes, these algorithms also need some methods to reconstruct a proof tree. 

Moreover, these previous garbage collection or replacement schemes deleted 

proofs and disproofs without considering the GHI problem.

Figure 3.12 compares the number of problems solved by DISCARD-PROOFS 

and KEEP-PROOFS for a/5. The problems used for a/5 are easy for df-pn. 

All problems solved by KEEP-PROOFS are solved by DISCARD-PROOFS. 

The benefit of discarding proven and disproven transposition table entries are 

more vividly shown in this graph. Again, if the size of the transposition table 

is small, more than 99% of the transposition table entries of KEEP-PROOFS 

are filled out by proofs and disproofs. KEEP-PROOFS thus suffers from the 

degradation in performance.

Tables 3.10 and 3.11 show the overhead of reconstructing proof trees in 

a/5. Although the overhead of re-searches to reconstruct proof trees is usually
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Figure 3.12: Comparison of the solving ability of DISCARD-PROOFS and 
KEEP-PROOFS in a/3.

small, a large amount of search is occasionally performed. In particular, more 

than half of all node expansions are needed for reconstructing a  proof tree in 

oneeyee.l.sgf in Table 3.10. This position was not solved by KEEP-PROOF. 

Again, this is the price to pay for deleting proofs and disproofs from the 

transposition table.

3.5.5 An Example of GHI in Go w ith the SSK Rule

A position that suffered from the GHI problem with the SSK rule was found 

when the solver th a t ignores GHI was implemented (see Figure 3.13 and Figure 

3.14(a)). First the solver explored the position by tracing the move sequence in 

Figure 3.14(b). Path C7 —>■ (1) —»■ (3) —> A 8 —> (4) in Figure 3.13 corresponds 

to this move sequence. Then, Black cannot play at A 8 , because this move leads 

back to the position after move 4, shown in Figure 3.14(c). Based on this result, 

a win for White is saved in the table entry for position (c). However, after the 

sequence in Figure 3.14(d), position (c) is no longer a win for White. When 

the solver traced move sequence (d), it first reached (e) and then encountered
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Table 3.10: List of problems solved by a/3 with a  5 MB transposition table.

Problem name Color to play Node expansions
Node Expansions for 

Proof tree reconstructions
oneeyee.l.sgf White 3,429,461 577,095 (16.8%)
oneeyec.7.sgf Black 10,802,300 74,792 (0.7%)
oneeyed.2.sgf White 15,858,823 1,307,200 (8.2%)
oneeyee.l.sgf White 29,222,605 15,810,038 (54.1%)
oneeyee.6.sgf White 4,102,290 462,400 (11.2%)

oneeyee.10.sgf White 7,751,578 2,194,344 (28.3%)

Table 3.11: List of problems solved by a/3 with a 30 MB transposition table.

Problem name Color to play Node expansions
Node Expansions for 

Proof tree reconstructions
oneeyee.l.sgf White 2,906,373 296,307 (10.2%)
oneeyec.7.sgf Black 7,185,485 38,439 (0.5%)
oneeyec.9.sgf Black 29,992,774 783,018 (2.6%)
oneeyed. 2.sgf White 10,151,792 549,229 (5.4%)
oneeyed.6.sgf Black 31,567,671 1,235,226 (3.9%)
oneeyee.l.sgf White 11,937,308 2,179,076 (18.3%)
oneeyee.6.sgf White 3,286,143 652,258 (17.0%)

oneeyee.10.sgf White 4,190,165 594,050 (14.2%)
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C7

A8

td)

(4)

(b)

| | White to  p lay ([^ ) Black to p lay

Figure 3.13: Repetitions in the move sequences in Figure 3.14.

(c). However, after the sequence (d), White cannot play a move at A 8 , since 

it leads back to position (e). Path C7 —>• (2) —>■ (4) —y A 8 —> (3) in Figure 

3.13 stands for this sequence of moves. The correct result for position (c) via 

Figure 3.14(d) is a win for Black.

Remark that W hite 15 a t  7 in Figure 3.14(b) would be better than 15 

a t  1 , and White 15 a t  5 would be better in Figure 3.14(d), because then 

W hite can win without repetition in both cases. However, even if adding more 

game-specific knowledge to the one-eye solver could reduce the number of such 

cases, there is no general way to always find a non-repetition proof first.

3.6 Conclusions

This chapter presented a framework to solve an important open problem raised 

by [60] 20 years ago. This approach incurs very small overhead and is appli­

cable to  algorithms such as df-pn and a/3. The solution to the GHI problem 

is concluded to be both practical and general. Additionally, the GHI solution 

guarantees a correct yes/no answer even if the proof does not fit in memory. 

To reconstruct a correct proof or disproof tree, a re-search must be performed. 

Although the proof reconstruction algorithm usually incurs a small overhead,
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A B C D E F G H J

A B C D E F G H J

The original position: White to play, 
(a)

A B C D E F G H J A B C D E F G H J

A B C D E F G H J A B C D E F G H J

6 at 4, 8 at 4, 10 at 7, 12 at 5, 14 at 4, 15 at 1. White to play after move 1
(b) (c)

A B C D E F G H J A B C D E F G H J

A B C D E F G H J

4 at 2, 8 at 2, 10 at 5, 12 at 3, 14 at 2, 
15 at 1, 16 at 5, 17 at 3, 18 at 2.

A B C D E F G H J

Black to  play after move 7.

(d) (e)

Figure 3.14: An instance of the GHI problem in Go.
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a large amount of re-searches is sometimes performed. However, since dis­

carding proofs and disproofs allows the solvers to run in limited memory, it is 

worth discarding them.
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Chapter 4 

Depth-First Proof-Number 
Search with Repetitions

When standard df-pn was applied to the one-eye problem in Go, it could not 

solve some of the easy problems. The algorithm has a fundamental problem 

when applied to a domain with repetitions. The existence of the same problem 

was also confirmed in checkers. This chapter addresses the problems of df-pn 

related to repetitions and presents a solution, called df-pn(r).

4.1 Problem Description

Figure 4.1 shows an example of the problem of the standard df-pn algorithm. 

Assume F  is unknown, then the df-pn algorithm computes pn(E') =  pn(A) +  

pn (F ). Hence, p n (F ) is larger than pn(A ). Df-pn’s termination condition is 

(see Figure 2.4 in Chapter 2):

n.(j> < AMin(n) || n.8  <  <3?Sum(n)

Usually the threshold of the proof number is only a little bit larger than 

pn(A) when exploring A’s subtree in df-pn. Therefore, assuming tha t df-pn 

reaches E, df-pn exceeds the proof number threshold, stops expanding and 

updates A’s proof number to p n (E) =  pn(A ) -t- p n (F). Even if E  is chosen 

again in a later iteration, this phenomenon continues. The search exceeds the 

threshold at E  and F  is never explored. These repetitions often happen in 

Go, because passes are allowed. Two consecutive passes lead back to the same
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pn(E)=pn(A) + pn(F) > pn(A)

Win for AND

[ [ OR node AND node

Figure 4.1: A problem with repetitions in df-pn.

position in a short loop.

One might argue th a t this problem may be solved by The solution to the 

GHI problem explained in the last chapter. If a repetition is detected in the 

GHI solution, a proof or disproof via a path is immediately saved. Therefore, 

the above simple example is not a problem for df-pn with the GHI solution. 

However, the problem does occur even with the GHI solution. Figure 4.2 

shows an example. Let us call df-pn with the GHI solution df-pn(GHI). A 

detailed proof that df-pn(GHI) cannot solve this graph is given in Appendix 

A. In this figure, when reaching O via A —> C —> G —> J  —> O, the threshold 

of the disproof number is dn(O ). Df-pn(GHI) stops expanding and updates 

proof and disproof numbers above O. Moreover, when df-pn(GHI) reaches N  

via A —t C - ^ - F —t - I —t - L ^ - N  and dn(iV) is computed, dn(O ), which is 

a bit larger than d n (N),  is added to dn(iV). The threshold of the disproof 

number is dn(iV) and no expansion occurs below N.  Hence, although Q must 

be reached to prove that A is a win, df-pn(GHI) never explores Q.
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| | OR node AND node

Figure 4.2: An example in which df-pn loops forever even with the GHI solu­
tion.

4.2 Computing Proof and Disproof Numbers 
in Domains w ith Repetitions

The new improved version of df-pn is called df-pn(r). Df-pn(r) incorporates the 

GHI solution in the last chapter, and modifies the scheme for computing proof 

and disproof numbers in the presence of repetitions. Adding proof numbers 

from an ancestor to a node seems intuitively bad, since it leads to double­

counting of the leaf nodes below. In the proposed solution to this problem, 

the children of a node are classified into two types. A field minimal distance 

(md) of a node n  is initially set to the length of the shortest path from the root 

to n, the depth of n  in the search tree. The notion of minimal distance is later 

extended based on search results. A child n* is called normal if ni.md > n.m d , 

and old if n^.md < n.md. Among the children n x • • •, n*, of n, let n x ■ ■ -, n; (1 < 

I <  k) be the normal and n*+i, • - -, the old children. The computation of 

proof and disproof numbers is modified in the following way:

n.6  =  min ni.5l<i<k
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md=2 C D md=2

md=3 ( e ) pn(E)=pn(F)

F md=4

| | OR node AND node md Minimal distance

Figure 4.3: Df-pn with minimal distance md.

n.5 i=1 i = li

In this computation scheme, the maximum (dis)proof is taken if only old 

children remain unproven. The max operation is reasonable since it preserves 

the following basic properties of proof and disproof numbers:

• If at least one child is (dis)proven at an OR (AND) node n, n  is (dis)proven.

• If all children are (dis) proven at an AND (OR) node n, n  is (dis) proven.

Figure 4.3 illustrates an example of computing proof numbers. If F  is 

neither proven nor disproven, then F”s proof number cannot be 0. Therefore 

A  is ignored to compute E ’s proof number, since A  is an old child.

When a node has only old children, since all normal (and possibly some old) 

children have been solved, that node itself must be considered old, since now 

there is no way to prove or disprove it without exploring old nodes. Therefore, 

the m d  field of that node must be updated. It is set to the minimum of the 

md  fields of the currently unsolved old children.

Figure 4.4 presents pseudo-code that computes (dis)proof numbers and 

updates md. Each transposition table entry contains an extra field for md.
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void MID (node Szn) { / /  Compute sum of <£ of n’s children
int $Sum(node n) {

/ /  Terminal node int sum  =  0, max =  0;
if  (IsTerminal(n)) { int md = n.md;

if  (WinForCurrentNode(n)) { for (each child nCdud of n) {
TTlookuplnMu^Amd^ud);

} else{ if  (n.md < mdchud)
/  /  Normal child

} sum =  sum + 0;
TTstore(n,n.d>,n.d, n.md); else{
return; / /  Old child

} mux =  max (max,
md =  min (md,mdchiid);

/ /  Iterative deepening }
4>n =  $Sum(n); }
while (n.<j) > AMin(n) && if (sum != 0)

n.5 >  <f>n) { return sum;
--- else {
MID(nc); <f>n =  <&Sum(n); / /  Update md if only old children

} / /  exist
/ /  Store search results n.md =  md;
n.cj) =  AMin(n); n.5 =  0n; return max;
TTstore(n,n.0,n.d, n.md)] }

} }

Figure 4.4: Pseudo-code of the df-pn (r) algorithm.
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md=0

md=l

md=2 md=2

pn(E)=pn(F) pn(E)=pn(A)

md=4

) md=5 
Win for OR

md=3 ( E

| [ OR node Q  AND node md Minimal distance

Figure 4.5: Updating E ’s minimal distance.

TTlookup  retrieves information on m d , and TTstore  saves md  in the trans­

position table. If no unproven normal children of exist, n ’s minimal distance 

is set to the smallest m d  of the children.

Figures 4.5 and 4.6 depict an example of updating md. In this figure, 

assuming th a t G is proven, E  now has only an old child to  explore, because F  

is also proven. In that case E ’s minimal distance is updated to A’s distance, 

and pn(F ') becomes pn(A ). Further, C.md is set to E .m d , since E  is now 

an old child of C  and the only child to explore (see Figure 4.6). As a result, 

p n (C) is now ignored in the computation of p n (5 ), since C  has become an 

old child.

Dealing with over-counting proof numbers caused by repetitions was essen­

tial to make df-pn work, in domains such as Go and checkers. Note that Nagai 

achieves impressive results with his tsume-shogi solver, and described the GHI 

problem, which returns incorrect results involving cycles [56]. However, the 

problem addressed above was not described in his papers. One possibility is 

that although the same problem could happen in shogi, it might happen much 

less often. On the other hand, search in Go can easily return to identical 

states, for example by consecutive pass moves. Another possibility is th a t this 

problem tends to happen less frequently with additional search enhancements. 

Because Nagai’s tsume-shogi solver is enhanced with a lot of domain-dependent
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md=0

md=l ( 3 j pn(B)=pn(C)+pn(D)— ► pn(B)=pn(D)

md=0 **•4— md=2 md=2

md=0 ( E

md=4

md=5 Win for OR

j | OR node AND node md Minimal distance

Figure 4.6: Computing C ’s minimal distance.

knowledge, it might not occur in his case in practice. However, the existence 

of this problem in shogi was confirmed by personal communication with Tsu- 

ruoka and Maruyama of team Gekisashi. The existence of the problem in shogi 

was confirmed when implementing a tsume-shogi solver based on df-pn for the 

IS shogi project [34]. Sakuta found that df-pn did not work better than PDS 

[55] in his tsume-shogi solver, and gave as possible explanation the occurrence 

of cycles [66].

4.3 Experimental Results

4.3.1 Setup

The df-pn algorithm was applied to Go and checkers. The experiments for 

programs ignoring and dealing with computing proof and disproof numbers 

with repetitions are performed. Old df-pn is the plain df-pn solver which does 

not incorporate the proposed method, whereas df-pn(r) uses it. Both versions 

already include the GHI solution explained in the last chapter. This implies 

that trivial repetitions are already naturally handled by the GHI solution. 

Moreover, one refinement added to all solvers is that if one of the large pre­

set thresholds oo — 1 (see Section 3.1.6) is exceeded at a child n c of n, the 

solvers give up solving nc and try  n ’s other children. The same experimental

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 4.1: Performance comparison between old df-pn and df-pn(r) in Go.

Number of 
problems 

solved

Total 
time (sec) 

150 problems

Total 
nodes expanded 

150 problems

Nodes 
expanded 

per second
Old df-pn 150 281 11,297,348 40,256
Df-pn (r) 157 251 9,783,406 39,024

Total problems 162 - - -

Table 4.2: Performance comparison between old df-pn and df-pn(r) in checkers.

Number of 
problems 

solved

Total 
nodes expanded 

115 problems
Old df-pn 115 91,206,147
Df-pn (r) 166 25,793,405

Total problems .200 -

conditions explained in Section 3.5.1 were used in the experiments.

4.3.2 Results

Tables 4.1 and 4.2 compare the solving abilities of the version with and without 

the method for computing proof and disproof numbers related to repetitions. 

More problems are solved by df-pn (r). Moreover, all problems solved by old 

df-pn are also solved by df-pn(r) in both games. This indicates the superiority 

of df-pn (r).

Figures 4.7 and 4.8 present statistics for the problems solved by both ver­

sions in Go. Logarithmic scales were used to plot each problem. The number 

of nodes explored by df-pn(r) is plotted on the X-axis against old df-pn on 

the F-axis. A point above the diagonal means th a t df-pn(r) performed better. 

Since most of the plots stay around the diagonal line in terms of execution 

time and node expansions, adding df-pn(r) does not degrade the performance 

of the solver.

Figures 4.9 and 4.10 present statistics on the problems solved only by
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Figure 4.7: Node expansions for problems solved by both versions in Go.

1 10 100 1000 10000 100000 le+06 le+07
Df-pn(r)
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Figure 4.8: Execution time for problems solved by both versions in Go.
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Df-pn(r)

Figure 4.9: Node expansions for problems solved only by df-pn(r) in Go.
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Df-pn(r)
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Figure 4.10: Execution time for problems solved only by df-pn(r) in Go.
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A B C D E F G H J
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Figure 4.11: An example easily solved by df-pn(r) in Go (oneeyed.8.sgf, Black 
to live at A2).

df-pn (r). Again, logarithmic scales are used to plot each problem. In Figure 

4.9, the number of nodes explored for 5 minutes by old df-pn is plotted on the 

H-axis. In Figure 4.10, 5 minutes, the time used by old df-pn, is plotted on 

the H-axis. The difficulties of the problems unsolved by old df-pn vary from 

easy to hard. These figures confirm that some problems that would have been 

easily solved become unsolvable with old df-pn. For example, df-pn(r) solved 

the position in Figure 4.11 with only 31,710 nodes in 0.54 seconds, whereas 

old df-pn explored 14,800,130 nodes but was still unable to solve it. In this 

position, old df-pn encounters the problem of computing proof numbers a t an 

early stage (after about 30,000 node expansions) and loops forever.

In checkers, node expansion statistics for the problems solved by both 

versions are presented in Figure 4.12. The results are similar to Go. Both 

methods explore a similar amount of nodes. However, old df-pn occasionally 

expands much more nodes, as shown in Figure 4.12. In this case, old df-pn 

suffers from the problem of computing proof and disproof numbers and loops 

until proof or disproof numbers of nodes that cause infinite loops exceed oo —1. 

Old df-pn then gives up solving the node causing infinite loops and tries other 

branches, eventually resulting in finding a solution.

Figure 4.13 shows node expansions for the problems solved only by df-pn(r). 

Again, some problems that old df-pn could not solve are easily solved by
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Figure 4.12: Node expansions for problems solved by both versions in checkers.
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Figure 4.13: Node expansions for problems solved only by df-pn(r) in checkers.
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J S S t jsKS SM .m m  w»w£ ez i Zs M  & »_ws. m  r*i s
yA/Zj:

m ^ m
m m

(a) Black to play (b) White to play
The original position 
(Position 141)

(c) W hite to play (d) Black to play

Figure 4.14: An example easily solved by df-pn(r) in checkers.

df-pn(r). Figure 4.14(a) shows such a position, which was solved by df-pn(r) 

in 12,290 nodes, whereas old df-pn could not solve it within 20 million nodes. 

The problem of computing proof and disproof numbers occurs in the position 

is confirmed (see Figures 4.14 and 4.15). Algebraic notation is used for moves. 

The position is a loss for Black. There are two paths to reach the position 

in Figure 4.14(b) (paths f4-g5 c7-d8 g5-h4  and f4-g5 c7-d8 g5-f4 d6-e7 

f4-g3 e7-d6 g3-h4) and (d) (paths f4-g5 c7-d8 g5-h4 d6-e5 h4-g3 e5-d6 

and f4-g5 c7-d8 g5-f4 d6-e7 f4-g3 e7 -d 6 ). These paths create a cycle, as 

in Figure 4.15. Old df-pn always exceeds the threshold of the proof number 

at (c), because the proof number of (d) includes the proof number of (c) and 

vice versa. On the other hand, df-pn (r) disproves (c) by playing c5-d6, which 

is not played by old df-pn.

4.4 Conclusions

This chapter described a solution to an essential problem of the df-pn algorithm 

in domains with repetitions. Results in two games, Go and checkers, show

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



h4g3

e7d6

(d)

| | Black to  p lay  White to  p lay

Figure 4.15: An example from checkers showing the problem of computing 
proof and disproof numbers with repetitions.

th a t this approach greatly improves the solving abilities of the df-pn solvers 

without degradation in performance. However, one unanswered question is 

whether this approach is complete or not. In other words, if a problem involving 

repetitions is given, it is unknown whether df-pn(r) can always solve that 

problem or not. So far, any problems that are unsolvable because of repetitions 

have not been found. However, a theoretical analysis of the approach remains 

as future work.
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Chapter 5 

Domain Dependent Knowledge 
for the One-Eye Problem

This chapter gives the details of the one-eye solver. The one-eye solver in­

corporates the df-pn (r) algorithm. However, since df-pn (r) is not enough to 

achieve high performance, more.effective.game-specific methods are added to 

the solver. After the basic one-eye algorithm is introduced, a few enhance­

ments that safely reduce the search space are described. Then, a method for 

modeling ko threats tha t affect the outcome of life and death status is given. 

Experiments show that the one-eye solver with these enhancements is 10 times 

faster and solves harder problems.

5.1 The Basic One-Eye Algorithm

The basic algorithm, due to Anders Kierulf [32], is quite simple, and has been 

used as part of the tsume-Go search in the program E x p l o r e r  for many 

years. It detects single-point eyes and false eyes.

As explained in Section 1.3.2, an instance of the one-eye problem is defined 

by the defender, attacker, region, crucial stones, and safe attacker stones. The 

algorithm checks for all points in the region whether they are potential eye 

points for the defender. Eyes are created by either surrounding empty points 

or by capturing attacker stones. If a safe eye connected to crucial stones can be 

created in the region, the defender wins. If no potential eye space remains in 

the region, the attacker wins. Seki is considered to be a win for the defender.
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A B C D E F

Figure 5.1: An example of seki.

Seki is detected by search. If the defender passes and the attacker cannot win, 

that position is regard as seki. Figure 5.1, adapted from [53], is an example of 

seki. White cannot capture the black stones if Black passes.

Whether or not a point E is a potential eye point is computed as follows:

• E occupied by unsafe attacker stone: yes.

•  E occupied by safe attacker stone: no.

• E occupied by defender stone: no.

•  E is empty: check the neighbors and the diagonal neighbors of E.

— Some direct neighbor is occupied by the attacker: no. The safety 

of the attacker stone does not matter.

— E is at the edge of the board and a t least one diagonal neighbor 

contains a safe attacker: no.

— At least two diagonal neighbors contain a safe attacker: no.

— Otherwise: yes.

A potential eye point is a safe eye if all direct neighbors and all but one 

diagonal neighbor are occupied by defender stones. All diagonal neighbors are 

needed at the edge of the board. A safe eye is a defender win if the surrounding 

block is connected to crucial stones, and all crucial stones are connected. The 

search generates all moves in the region, unless there are forced moves (see 

Section 5.2.2).
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A B C D E F G H J

W A

A B C D E F G H J A B C D E F G H J

Connection for attacker. Connection for defender.

Figure 5.2: Connections to safe stones.

A B C D E F G H J

A B C D E F G H J  

Figure 5.3: Connection to safe stones on protected liberty.

5.2 Game-Specific Search Enhancements

5.2.1 Safety by Connection To Safe Stones

Connectivity is a fundamental aspect of the game of Go. Most Go programs 

recognize connected blocks. Connections are used to promote unsafe attacker 

stones to safe, and to  prove that an eye is connected to crucial defender stones. 

Both types of connections help to reduce the search depth.

The current implementation recognizes simple miai strategies [51] and some 

protected liberties for connections. Figure 5.2 gives examples. In the left 

diagram, W hite has two ways (A and B) to connect. The white block marked
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Figure 5.4: Forced moves.

with squares to safe stones, so W hite can connect even if Black plays first. 

The stone at F 6 is also safe now, because it has a connection either at C  or 

at D. Since there is no eye space after recognizing these blocks as safe, this 

position can be statically evaluated as a loss for Black. Similarly, in the right 

diagram in Figure 5.2, the connection at E  or F  guarantees a win for Black. 

The algorithm to compute these connections is straightforward. It checks if 

safe blocks S  have two liberties to connect to a block b. If this is the case, 

b is included in S  and the two liberties are marked to not be used for other 

connections. The process continues until no further blocks can be added to S.

More safe stones are found by recognizing some forms of protected liberties. 

Figure 5.3 shows an example. The stone marked with a square has only one 

connection point at B to a safe white block. However, this connection is safe 

since the stone has another liberty and the opponent cannot play at B.

5.2.2 Forced M oves

Forced moves are a safe form of pruning when one player threatens to win 

immediately. Two kinds of forced moves, forced attacker moves and forced 

defender moves are defined.

The first type of forced move is on a point where the defender could com­

plete an eye that is connected to the crucial stones. The left position in Figure 

5.4 presents an example. Black can make an eye at A. White must play at A
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to stop an immediate win for Black.

The second type of forced move is defined as follows:

1. There is no empty eye space for the defender in the region.

2. There is exactly one unsafe attacker’s block b.

3. b has a single-move connection to safe stones. If the defender plays any 

other move, the attacker can connect b to safety, leaving the defender 

with no potential eye points.

For instance, in the right position of Figure 5.4 the move at B is forced.

Forced moves give a large reduction of the search space by decreasing the 

branching factor.

5.2.3 Simulation

Kawano’s simulation [30] is a quick way to confirm whether a position is proven 

or not th a t avoids a normal search. If similar positions for the one-eye problem 

are plausibly defined, a reduction of the search space can be achieved. In the 

solver, simulation and dual simulation are applied as follows:

•  At an AND node n, assume th a t one of n ’s children, nchud, is proven at 

some point in the search. Let richud be proven by the OR player playing 

m. Let riexception be n ’s child by playing m  a t n. Simulation is applied to 

all unsolved children of n except for nexception■ nexception is not considered 

to be similar to n ^ d ,  because n^ception already contains a stone of the 

AND player at m, where the OR player must play.

•  Similarly, at an OR node n, apply dual simulation if one of n ’s children 

is disproven.

In Wolf’s GoTools, nexception is tried next if one of n ’s children is (dis) proven 

[90]. The solver tries nodes except for n exception, which is the opposite approach 

to GoTools. However, this method is believed to be more suitable for the solver 

using df-pn(r), because of the behavior of df-pn searches. When simulation 

succeeds, it can make df-pn explore n ’s children other than nChud more deeply
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t h p n = 1 2
t h d n = 1 0

P r o v e n  — -

AND n o d eOR n o d e

Figure 5.5: An example showing that simulation is effective.

without increasing n ’s current thresholds. Figure 5.5 shows an example. The 

proof number is written on the left inside a node and the disproof number 

on the right in this Figure. Assume that df-pn explores A  with th pn(A) =  

12, df-pn has just proven B , and D  can be proven after p n (D) is increased 

to 6 . If simulation proves C  and df-pn expands D, df-pn explores D  with 

thpn(-D) =  thpn(A) =  12. This threshold is enough to prove D. On the other 

hand, if simulation is not invoked, df-pn searches D  with the threshold of the 

proof number of th pn(D) =  th pn(A) — pn(C') =  12 — 7 =  5. In this case, 

the threshold of the proof number of 5 is not enough to prove D. Df-pn must 

reach A  again in later iterations with larger thresholds, which usually needs 

more node expansions.

nexception contains a different proof or disproof tree from nChud- On the 

other hand, the other children of n  can be similarly proven by nchud s proof 

tree. Therefore, proving children other than nexception first has more chances to 

assign a larger threshold for proving nex^im . without increasing n ’s threshold.

This use of simulation is much more extensive than in tsume-shogi [30]. 

See Section 5.4.4 for a further discussion.

5.2.4 H euristic Initialization

If the basic df-pn algorithm encounters a leaf node, the proof and disproof 

numbers for that node are initialized to  1. One possibility to further enhance
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performance is to use heuristic initialization of proof and disproof numbers as 

in Nagai’s df-pn+ [57], or in [2,10]. The current implementation uses problem- 

specific evaluation functions that were originally implemented in E x p l o r e r .

Let the defender be the player to disprove, and the attacker be one to prove. 

A heuristic estimate of the “distance” to make an eye is computed to initialize 

a disproof number for each move on a point p. This initialization function 

for disproof numbers first checks potential eye points that are adjacent or 

diagonally adjacent to p. The function counts how many moves in a row the 

defender must make to create a safe eye. The initialization function assigns 

the minimum value among these numbers to p. Figure 5.6(a) illustrates an 

example. Each number represents a disproof number. Potential eye points 

exist at C 8 , D 8 , and D7. To create an eye on C 8 requires two black stones at 

D 7 and D 8 , whereas for D 7 five black stones are needed: D 6 , D 8 , E7, and 

two of the three diagonally adjacent points C 8 , E 6 , and E 8 . The disproof 

number of a black move on D 8 is 2, the minimum distance to an eye that this 

move contributes to. Higher disproof numbers are assigned to moves that do 

not directly help the defender make an eye. In the current implementation, 

the highest value among the moves th a t directly help to make an eye plus 

10 points is assigned to such an indirect eye-making move. For example, the 

15 points for F 8 includes a 10 point penalty and the highest non-penalized 

value in this position is 5 (i.e., either D 6 or E 6 ). Note that moves such as F 8 

may still help to make eyes indirectly and therefore cannot be pruned. Figure 

5.7 shows an example in which the only winning move does not decrease the 

distance to an eye as measured by this heuristic. G 9 is a move that is not 

played next to an eye space, but is necessary to connect to an eye.

Similarly, a heuristic distance to make the defender eye-less is computed to 

initialize proof numbers. Let ne be the number of eye spaces for the current 

position, and b(m) be the number of eye spaces th a t move m  directly breaks. 

Then the heuristic distance h(m) is computed by:

h(m) =  m ax(l, ne — b(m)). 

b(m) checks whether m  directly connects to the safe stones, or two miai
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Distance to an eye Distance to less eyes

Figure 5.6: Heuristic initialization for the one-eye problem.

A B C D E F G H J
9

Figure 5.7: Example of an indirect move that must be generated.
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points to connect m to safe attacker stones exist. Then, b(m) returns the 

number of m ’s direct and diagonal eye points that to can break.

Figure 5.6(b) illustrates an example. Again, there are three potential eye 

points. Since W hite’s move D 8 breaks potential eye points at C 8 and D7, 

the initialization function returns 3 — 2 =  1 as the proof number for D 8 . 

The proof number to D 7 can be set to 0, since it breaks all potential eye 

points. However, since the current implementation does not always correctly 

estimate b(m), the proof number of each move is initialized to at least 1. The 

current implementation for b(m) assumes that two miai points for m are always 

available to establish m ’s connection. However, these points may have already 

been used when promoting another unsafe attacker block is promoted to be 

safe.

When proof and disproof numbers are initialized at leaf nodes, the reex­

pansion overhead at interior-nodes increases in the implementation. Let n  be 

an OR node, nc be n ’s child selected by df-pn, and pn2 be the second largest 

proof number among n ’s children. The standard df-pn algorithm computes 

the threshold of the proof number at n as follows:

t h pn(nc) =  m in (th pn(n),pn2 +  1).

Let the value added to pn2 be the unit of the proof number. Unit =  1 is a 

small value for initialized proof numbers. For example, assume that n  has two 

leaf nodes and t h pn(n) =  oo — 1. Since the standard df-pn algorithm sets the 

proof numbers of the leaf nodes to 1, t h pn(nc) =  2. Df-pn explores nc until 

p n (n c) =  2, which doubles the proof number of n c. However, if df-pn with 

heuristic initialization initializes the proof numbers of these two leaf nodes to 

6 and the unit is 1, it sets th pn(nc) =  7, which is only a factor of |  larger than 

the proof number a t the leaf nodes. Hence, the termination condition of df-pn 

can be satisfied more frequently with the heuristic initialization. This results 

in more reexpanded interior nodes.

To reduce the number of reexpansions, the modified df-pn(r) algorithm 

tries to assign a larger unit than 1. The proposed scheme tends to have a 

larger unit if larger proof and disproof numbers are assigned to leaf nodes.
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When computing the proof number at an OR node n, the evaluation function 

that initializes proof numbers is called to compute the heuristic scores of all 

moves and computes the average of these scores pnave. The threshold of the 

proof number at nc is adjusted as follows:

th pn(nc) =  m in (th pn(n),pn2 +  pnave).

If n  is an AND node, the threshold of the disproof number for n c is set 

analogously. The same scheme as in the standard df-pn algorithm is used 

for the other cases. Figure 5.8 presents pseudo-code of nonuniform thresh­

old increments. A Eval is an evaluation function that returns an initialized 

(dis)proof number for n. NumberOfMoves returns the number of legal moves 

for n.

5.3 Ko and Ko Threats

Sometimes the outcome of a one-eye problem depends on ko. It is therefore 

important to model ko threats and ko recaptures in the search algorithm.

The approach taken in GoTools can require several searches [88]. The 

parameter to each search is how many ko recaptures are allowed for a specified 

ko winner.

The current implementation allows only two options: one is to forbid any 

immediate ko recaptures; the other is to always allow ko recaptures for a 

designated ko winner. I t searches in one or two phases. The first search of 

a position, phase 1, forbids immediate ko recaptures, but marks nodes where 

such moves exist. If the search result depends on marked nodes, in phase 2 a 

re-search is performed. The loser of the phase 1 search becomes the designated 

ko winner for phase 2. Even if there are at least two ko in the region, this 

approach works. The ko winner cannot immediately recapture both ko at once, 

and can win only one ko.

Phase 2 reuses the contents of the transposition table from phase 1. The fol­

lowing implementation of the transposition table aims at reducing the amount 

of re-search:
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/ /  Iterative deepening at each node 
void MID (node &n) {

/ /  Iterative deepening
w hile (n.<f> > AMin(n) && n.6 > <5Sum(n)) {

nc =  SelectChild(n,0c,<52);
/ /  Update thresholds
nc.(j) =  n.5 + 4>c - $Sum(n);
nc.6 = min(n.<fi,S2 +  AAverage(n));
MID(nc);

.}................................................................................

}

/ /  Compute average 6 of n ’s children that are heuristically initialized 
int AAverage(node n) { 

int ave =  0;
for (each child nchud of n) { 

ave =  ave +  AEval(nc/li;(f);
}
return  (ave /  NumberOfMoves(n));

}

Figure 5.8: Pseudo-code of the df-pn algorithm with nonuniform threshold 
increments.
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1. The Zobrist hash function [92] is modified to account for a stone cap­

tured for ko in the previous move, to differentiate identical positions with 

different histories.

2. Two flags, one for each color, in each transposition table entry keep track 

of any possible ko captures in the subtree below that node. If there is 

a ko capture for a player, the flag for the other player is set to indicate 

that a ko recapture will be allowed after that node in a re-search. When 

a node n is proven (similarly for disproven), flags are set as follows:

• If n is an OR node and nc is n ’s proven child, n ’s flags are set the 

same as nc’s flags.

• If n is an AND node, the flag is set if and only if the flag of at least 

one of the children is set.

In the phase 2 re-search, many phase 1 (dis)proofs can be reused. For 

example, assume that a node is proven and the flag for the ko winner is not set. 

Then the proof from the transposition table can be used. Similarly, disproofs 

can also be reused. Even for nodes that are not proven or disproven, the proof 

and disproof numbers from phase 1 are valuable information for directing the 

re-search.

Re-searches usually have a low overhead, since the previous results are kept 

in the transposition table and the table entries are reused in most cases. How­

ever, if the solution changes dramatically by ko compared to the solution from 

the first search, a larger amount of new search is necessary (see an example in 

Section 5.4).

5.4 Empirical Results

5.4.1 Setup of Experiments

The following abbreviations are used for the methods and enhancements de­

scribed above:

• D f-pn(r): The modified df-pn algorithm.
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Table 5.1: Performance for successively switching on enhancements.

Enhancements
used

Number of 
problems 

solved

Total 
time (sec) 

138 problems

Total 
nodes expanded 

138 problems

Nodes 
expanded 

per second
(1): D f-pn (r) 138 1,468 64,532,221 43,947
(2): (1) +  AC 143 506 20,807,755 41,095
(3): (2) +  DC 144 587 22,109,250 37,653
(4): (3) +  FD M 144 398 15,228,689 38,242
(5): (4) +  FAM 146 267 10,508,493 39,257
(6): (5) +  SIM 152 170 7,541,088 44,128
(7): (6) +  E Y E D IS T 151 140 6,177,114 43,977
(8): (7) +  FE Y E D IST 157 75 3,888,457 51,777

Total problems 162 - - -

•  AC: Connections to safe stones for attacker.

•  DC: Connections to crucial stones for defender.

•  FAM : Forced attacker’s moves.

•  FD M : Forced defender’s moves.

•  SIM : Simulation and dual simulation.

•  E Y E D IST : Heuristic initialization for the defender to make an eye.

•  FE Y E D IST : Heuristic initialization for the attacker to prevent an eye.

5.4.2 Adding Enhancem ents

Table 5.1 shows the results on the test set in Section 3.5.1, starting with 

df-pn(r) and switching on enhancements one by one. The total execution 

time and number of nodes expanded were computed using the subset of 138 

problems that are solved by all methods (1) - (8) in the table. All problems 

solved by (1) are solved by (2) - (8). Moreover, except for one case between 

(6) and (7), the version with a new enhancement solved all problems solved by
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Figure 5.9: Performance for 20 hard problems for each enhancement.

the versions before. One problem was solved close to the time limit by version 

(6), but was unsolved within 5 minutes by version (7).

Search speed decreases a little with more enhancements, but improves again 

with simulation. As is explained in Chapter 3, simulation provides a fast way 

to generate moves, faster than the current normal move generator, which has 

some overhead such as checking connections and looking up the transposition 

table information on children. Since computing the distance to  an eye or no eye 

is simple, the search speed becomes dependent on the frequency of simulation 

calls.

Figure 5.9 plots the time for the 20 hardest problems for all versions, succes­

sively switching on all enhancements. Enhancements are successively turned 

on as in Table 5.1. A time of 300 seconds means that the problem was not 

solved. This vividly demonstrates the importance of adding knowledge-based 

enhancements. For example, problem oneeyee.10.sgf with W hite to play, could 

not be solved by (1) in 300 seconds, whereas version (8) with all enhancements 

solved it in 5.6 seconds with 306,756 nodes.
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Table 5.2: Performance for turning off single enhancement.

Enhancements
used

Number of 
problems 

solved

Total 
time (sec) 

148 problems

Total 
nodes expanded 

148 problems

Nodes 
expanded 

per second
(1): AC 150 1,007 54,382,555 54,004
(2): D C 156 464 26,447,241 56,946
(3): FD M 154 622 30,996,740 49,799
(4): FAM 153 646 32,414,442 50,173
(5): SIM 152 889 36,421,076 40,968
(6): E Y E D IS T 154 665 33,672,519 50,648
(7): F E Y E D IS T 151 796 35,611,877 44,763
(8): All turned on 157 517 27,310,377 52,799

Total problems 162 - - -

5.4.3 Leaving out Enhancements

Two experiments measure whether enhancements are effective in isolation, 

and how much they contribute overall. In Table 5.2, results for switching 

off a single enhancement is shown. Table 5.3 shows results for using only a 

single enhancement. The results show that all enhancements except for D C  

improve performance of the solver. Adding D C  shows both advantages and 

disadvantages.

5.4.4 Performance o f Simulation

Table 5.4 shows the performance of simulation in phase 1 searches. Since the 

method is applied in a very basic way, 52% success seems to be a good initial 

result, with plenty of room for further refinements. Such refinements will be 

one of the possible future research topics.

5.4.5 Re-searches for Ko

Table 5.5 shows a summary of the overhead incurred by re-searches for ko. 

In phase 1, immediate ko recaptures are not allowed. Phase 2 are the re­

searches with a designated ko winner. The results in this table are also with
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Table 5.3: Performance for turning on single enhancement.

Enhancements
used

Number of 
problems 

solved

Total 
time (sec) 

135 problems

Total 
nodes expanded 

135 problems

Nodes 
expanded 

per second
(1): D f-pn (r) 138 702 32,238,410 45,936
(2): AC 143 263 10,605,909 40,261
(3): D C 137 776 31,396,386 40,439
(4): F D M 139 696 32,238,410 46,292
(5): FAM 141 392 18,918,746 48,239
(6): SIM 146 308 15,484,676 50,170
(7): E Y E D IS T 141 420 19,489,233 46,379
(8): F E Y E D IS T 142 379 19,139,981 50,441

Total problems 162 - - -

Table 5.4: Performance of simulation for all 157 solved problems (all enhance- 
ments on, phase 1 searches only).__________________________________

Total nodes Nodes by SIM SIM  calls Successful calls
74,841,218 28,450,185 (38.0%) 6,808,439 3,570,662 (52.4%)
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Table 5.5: Overhead for ko re-searches.
Total nodes (157 problems)
Phase 1 Phase 2

74,841,218 (89.0%) 9,243,534 (11.0%)

all enhancements.

The overhead is small, but of course this is mainly a property of the test 

set used, which contains only a few cases with complex ko fights. In the worst 

case encountered, problem oneeyed.3.sgf with Black to play, phase 1 took 178 

nodes and phase 2 took 787 nodes.

5.4.6 Reexpansion of Interior Nodes

The performance of the version that sets larger thresholds (UNIT-N) against 

the version that does not set larger thresholds (UNIT-1), described in Section 

5.2.4 was compared. Since UNIT-1 needed more time to solve the same subset 

of test positions, Both versions were run for 400 seconds.

Table 5.6 summarizes the performance. The number of nodes explored 

by simulation is excluded to compute the ratio of reexpanded nodes. UNIT- 

1 suffers from a larger overhead to reexpand interior nodes than UNIT-N, 

resulting in 28% longer to tal execution time and 22% extra nodes. In Figure

5.10 the node expansions of UNIT-N are plotted on the X-axis against UNIT- 

1 on the Y-axis on logarithmic scales. A point above the diagonal means 

that UNIT-N performed better. W ith small-size problems, it is hard to see 

a difference between two versions. However, with larger problems, UNIT-N 

explores slightly less nodes than UNIT-1. Therefore, UNIT-N is believed to 

scale better.

In Seo’s experiments in shogi, the ratio of reexpansions was about 20% 

[77]. Since information achieved dynamically is usually more reliable than 

static evaluation, the 32% is still a very small price to pay to achieve more 

cut-offs. However, investigating the trade-off between the ratio of reexpansions 

and decreasing the total execution time remains as future work.
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Table 5.6: Performance comparison between UNIT-N and UNIT-1.

Methods
used

Number of 
problems 

solved

Total 
time (sec) 

(157 problems)

Total 
nodes expanded 
(157 problems)

Ratio of 
reexpanded 

nodes
UNIT-1 157 2,518 102,515,362 44.7%
UNIT-N 157 1,975 84,084,752 32.0%

Total problems 162 - - -
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Figure 5.10: Comparison of node expansions between UNIT-N and UNIT-1.
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Figure 5.11: Black to play and live: A currently unsolved problem. 

Table 5.7: List of unsolved problems.
Problem name Color to play
oneeyed. 7. sgf Black
oneeyed.9.sgf Black
oneeyed. 9. sgf White
oneeyee.2 .sgf Black

oneeyee.ll.sgf White

5.4.7 Currently Unsolved Problems

The solver currently cannot solve the 5 problems in the test suite listed in 

Table 5.7. Figure 5.11 shows an example. All unsolved problems feature large 

regions with many possible moves. Besides, some problems such as Figure

5.11 stretch the limits of the one-eye problem, and should rather be treated 

as semeai or tsume-Go problems. In Figure 5.11, for example, making one eye 

for Black depends on whether white stones adjacent to black crucial stones 

can make two eyes or not.

5.4.8 Comparison to Other Solvers

As far as I know, this is the first program specialized for solving one-eye 

problems. Since the algorithm solves only one-eye problems, it is hard to 

make a fair comparison with general tsume-Go solvers. Evaluation for two 

eyes is much harder than for one eye, and many years of hard work have gone
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into the development of the Go knowledge in programs such as GoTools. the 

comparison on the tsume-Go solver will be left to the next chapter.

5.5 Conclusions and Future Work

The results of the work on applying df-pn (r) to the one-eye problem in Go 

are very encouraging. There are numerous possible enhancements, both for 

improving the search algorithm and for adding Go-specific knowledge. Ex­

amples are recognizing larger eyes, refining the knowledge about connections, 

generalizing forced moves, and search in open-ended areas.

To apply these ideas to other problems in Go is also an interesting research 

topic. Examples include full tsume-Go (two-eye problems), tactical capture 

search and connection search. Applying the ideas to tsume-Go is the topic of 

the next chapter.
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Chapter 6 

Domain Dependent Knowledge 
for the Tsume-Go Problem

This chapter deals with techniques for the tsume-Go solver, called T s u m e G o  

E x p l o r e r . The ideas invented for the one-eye problem are applicable to 

tsume-Go with slight modifications. Experiments show that the approach in 

the chapter is very promising. T s u m e G o  E x p l o r e r  outperforms GoTools, 

the previously best tsume-Go solving program.

6.1 The Basic Two-Eye Algorithm

The basic two-eye algorithm is similar to the basic one-eye algorithm. At first, 

all potential eye points are computed. However, finding two safe eyes using 

the basic-eye algorithm is not enough, since it does not work when two eyes 

are diagonally adjacent as in Figure 6.1. In this example, although neither Ei 

nor E 2 is a  safe eye for the algorithm of Chapter 5, the black stones are alive. 

The notion of a safe eye E i with respect to point E 2  is introduced as follows:

A B C D
4
3
2
1

4
3
2
1

Figure 6.1: Example in which the basic one-eye algorithm fails.
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• E2 must not be E fs  direct neighbor.

• If Ei is at the edge of the board, all diagonal neighbors except for E 2 ■ 

are occupied by defender stones.

• If Ei is not at the edge of the board, all direct neighbors and all but one 

diagonal neighbor excluding E 2 are occupied by defender stones.

Two potential eye points E i and E 2 are two safe eyes if the following 

conditions hold:

• E i is a safe eye with respect to E 2.

• E 2 is a safe eye with respect to Ei.

•  E i and E2 share all defender blocks.

In the basic two-eye algorithm, if the defender can construct two safe eyes 

in a given region, the defender wins. A group with two safe eyes is always 

safe, since all blocks constructing two eyes always have two liberties E i and

E 2, which can not be played at a time by the attacker. Hence, this is a

special case of Benson’s unconditional safety [6]. If less than two nonadjacent 

potential eye points remain in the region, the attacker wins. As defined in 

Section 5.1, seki is detected by search and is a win for the defender.

Currently, this approach cannot detect live stones that do not have two safe 

eyes. Figure 6.2 illustrates an example of such a position. In this example, 

black stones marked with triangles are alive, although they merely have two 

false eyes. In the above algorithm, this position is dead, because it is considered 

to have no eye space. This case is currently ignored, because it occurs very 

rarely. Such a case could be detected by implementing Benson’s algorithm [6] 

or Muller’s method for static detection of safe stones [51].

One improvement that is currently added only in the tsume-Go solver is 

detection of large eyes. If two adjacent potential eye points are surrounded by 

defender stones, they are considered to be a large eye. Let E i be a potential 

eye point. A large safe eye E i with respect to point E2 is defined as follows:
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Figure 6.2: A live position without two eyes.

• E 2 must be empty.

• Check all adjacent points to E i. If there is only one point E% tha t is 

either empty or an unsafe attacker stone, the algorithm checks the next 

process. Otherwise, E\ is not a large safe eye.

• Neither E \ nor E% is adjacent to E 2.

• All direct neighbors of E\ and E 2 must be occupied by defender stones.

• Let Ep be Ei or £ 3. Check the following conditions for both E\ and £ 3;

— If Ep is at the edge of the board, all diagonal neighbors of Ep except 

for E 2 are occupied by defender stones.

-  If Ep is not at the edge of the board, all direct neighbors and all 

but one diagonal neighbor excluding E 2 are occupied by defender 

stones. If one diagonal neighbor except for E 2 does not contain a 

defender stone for Ep, all diagonal neighbors except for E2 must be 

occupied by defender stones for the other case.

Because E2 must be empty in the above definition, it excludes the case in 

which stones are captured by playing inside the eye space. Figure 6.3 shows 

an example. In this example, A is a large eye point with respect to B , but B

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A B C D E F G

6 0 ® @ ® C >H  6
5 5
4 4
3 j - C C Q @ ^  3
2
1

2
1

A B C D E F G

Figure 6.3: An example that is not a large safe eye.

is not a large eye point with respect to A. If the defender can construct either 

two large safe eyes, one large safe eye and one safe eye, or two safe eyes, the 

defender wins. These two eyes are also safe, because they are a special case of 

Benson’s unconditional safety, or the existence of moves that lead to Benson’s 

safety by alternating play is guaranteed. This is proven as follows: .............

•  Since two safe single point eyes are safe, the cases of two large safe eyes, 

and one large safe eye and one safe eye are considered.

•  The state in which there are two stones of the attacker in a large eye is 

impossible.

•  If there is a stone of the attacker in the large eye, the fact th a t the 

defender has another safe eye or one safe eye guarantees that the attacker 

cannot play inside the large eye. Hence, the defender block have two sure 

liberties.

•  If there are two empty points in a large eye with respect to point p 

and the attacker plays inside, the defender can capture the stone of the 

attacker by filling the large eye, making the large eye a safe single point 

eye with respect to p.

6.2 Game-Specific Knowledge

Techniques invented for the one-eye solver are incorporated into the tsume-Go 

solver. Each technique is briefly reviewed:
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Safety by  connections to  safe stones Connections that promote unsafe 

attacker stones to safe are considered. However, connections that help the 

defender make two eyes are not implemented yet, because of the following 

complexities:

• There are more cases to consider in tsume-Go than in the one-eye prob­

lem, such as:

-  One region containing two complete eyes is recognized and con­

nected to a crucial block.

— Two single eyes are recognized and connected. Then, the eyes are 

connected to an crucial block.

• In the definition of the one-eye problem, all crucial stones must be con­

nected to an eye. The algorithm to compute connections is invoked once 

to check if all of them are connected. On the other hand, following Wolf’s 

definition for tsume-Go, the defender wins if any one of the crucial stones 

is alive. Some crucial stones can possibly be captured. If there are n cru­

cial blocks, connections must be computed to check if one of the blocks 

are proven to have two safe eyes. Therefore, the algorithm computing 

connections must be invoked n  times, which may incur a higher overhead 

to compute.

F orced  M oves Forced moves similar to the one-eye solver are incorporated 

into the tsume-Go solver. A forced attacker move is generated on a point where 

the defender could make two eyes such as point A  in Figure 6.4(a). A forced 

defender move is generated on a point where the defender must play, checking 

the following conditions:

•  There is only one unsafe attacker block b which has a single-move con­

nection to safe stones.

•  If the defender plays any other move and the attacker connects b to 

safety, the defender has either no potential eye point, one potential eye 

point, or two adjacent potential eye points.
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Figure 6.4: Forced moves.

In this case, the defender is forced to play so th a t the attacker cannot connect 

b to safe stones. Otherwise, the attacker could steal the potential eye points 

that are necessary for the defender by playing on that point. An example is 

point B  in Figure 6.4(b).

S im ulation  Simulation is invoked in the same way as in the one-eye solver.

H eu ris tic  In itia liz a tio n  Assume tha t the attacker is the player to prove a 

position, and the defender is one to disprove. In order to initialize proof num­

bers, the same evaluation function th a t the one-eye solver uses is incorporated 

into the tsume-Go solver. The single-player distance to make two eyes is com­

puted to initialize disproof numbers. This is similar to the heuristic function 

from the old E x p l o r e r  tsume-Go solver [32]. The heuristic function tries to 

approximate the current “distance” to create two eyes on two potential eye 

points E a and E b. Then, based on the current distance, the distance to two 

eyes after move m  is played is computed, which is used as an initial disproof 

number for m. This process can be summarized as follows:

1. For each potential eye point E , D istO ne(E ), the number of consecutive 

defender moves to make an eye at E , is computed as explained in Section

2. Let E a and E b be potential eye points. The distance to two eyes is

5.2.4.
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approximated by D istO ne , defined as follows:

D istTw o(Ea, Eb) =  D istO ne(Ea) +  DistOne(Eb).

3. Assume that E\ is a potential eye point that is a direct or diagonal 

neighbor of move m. Let E2 be a potential eye point that contains at 

least one common defender stone to make a safe eye at E i with respect 

to E2. For all combinations of such Ex and E2, the smallest value of 

Eval(E i, E 2, m) is computed to set as an initialized disproof number. 

E va l(E \,E 2, m) is defined as follows:

• If m  helps to make one eye in both E\ and E 2, for example if m  is 

a direct neighbor of both Ei and E2, E va l(E i,E 2,m )  is computed 

as follows:

Eval(E i, E2,m ) = m ax(l, D istTw o(Ei, E2) — 2).

Note that 2 is subtracted from D istTw o(E \ , E 2), since DistO ne(Ei) 

and D istO ne(E2) are used to measure D istT w o(E i,E 2), and m  

helps to decrease the distance to make an eye on both E \ and E 2.

•  Otherwise, E va l(E i,E 2,m )  =  m ax(l, D istTw o(E i, E 2) — 1).

4. If E i and E 2 are not found, move m  does not help decrease the distance 

to two eyes. In the implementation, 10 points plus the largest score 

of the move which directly helps to make two eyes is assigned to m as 

a heuristic disproof number. So far there is no distinction between the 

moves that directly helps to make only an eye and the ones that decrease 

the distance neither to one eye nor to two eyes. This is a possible future 

extension to this method.

K o  a n d  K o T h re a t  The treatment is identical to the one-eye solver. If ko is 

involved in a proof or disproof tree in the first phase, a re-search is performed 

by assuming that the loser can immediately re-capture ko as often as needed.
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Figure 6.5: A position in Wolf’s test collection.

6.3 Experimental Results

6.3.1 Setup

Two kinds of test suites were prepared for experiments:

• A subset of 40,000 tsume-Go problems generated by GoTools [85] was 

chosen. In the problem collection, there are 6 volumes. Each volume 

contains 14 levels. All 283 positions in the hardest category in volume 

6, called LV6.14, are chosen. Figure 6.5 shows an example. The prob­

lems were tried for either color playing first, resulting in a total of 566 

instances.

• Since the one-eye problems used for experiments in the previous chapter 

can be seen as tsume-Go problems, these problems were used, to compare 

the performance against GoTools. This test suite is called ONEEYE.

As in the last chapter, the following abbreviations are used for the methods 

and enhancements described above:

• Df-pn(r): The modified df-pn algorithm.

• 2P O IN T E Y E : Recognition of two point eyes.

• AC: Connections to safe stones for attacker.

•  FAM : Forced attacker’s moves.

• FD M : Forced defender’s moves.
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Table 6.1: Performance for successively switching on enhancements in LV6.14.

Enhancements
used

Number of 
problems 

solved

Total 
time (sec) 

564 problems

Total 
nodes expanded 

564 problems

Nodes 
expanded 

per second
(1): D f-pn (r) 564 6,262 399,195,987 63,743
(2): (1) +  2 P O IN T E Y E 565 5,340 332,933,309 62,335
(3): (2) + AC 564 3,828 185,639,307 48,488
(4): (3) +  F D M 564 3,061 136,639,362 44,629
(5): (4) +  FAM 566 1,480 63,049,713 42,572
(6): (5) +  SIM 566 1,146 54,265,265 47,344
(7): (6) +  E Y E D IS T 566 994 43,076,112 43,323
(8): (7) +  F E Y E D IS T 566 808 36,592,350 45,287

Total problems 566 - - -

•  SIM : Simulation and dual simulation.

•  E Y E D IS T : Heuristic initialization for the defender to make two eyes.

•  F E Y E D IS T : Heuristic initialization for the attacker to prevent two 

eyes.

6.3.2 Performance on Enhancem ents

Table 6.1 shows the results in LV6.14, starting with df-pn(r) and switching 

on enhancements one by one. The total execution time and number of nodes 

expanded were computed using the subset of 564 problems th a t are solved by 

all methods (1) - (8) in the table. All problems solved by (1) are solved by (2) - 

(8). Besides, each version with a new enhancement solved all previously solved 

problems except two cases between (2) and (3), and between (2) and (4). One 

problem was solved close to the time limit by version (2), but was unsolved 

within 5 minutes by version (3) and (4). Table 6.2 shows results on removing 

one enhancement. Table 6.3 shows results on adding single enhancement. 

These experiments mostly confirm the results of Chapter 5 for the one-eye 

problem. However, there are two main differences:

•  The ratio of success for simulation is lower than in Chapter 5. This can
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Table 6.2: Performance for turning off single enhancement in LV6.14.

Enhancements
used

Number of 
problems 

solved

Total 
time (sec) 

566 problems

Total 
nodes expanded 

566 problems

Nodes 
expanded 
per second

(1): 2 P O IN T E Y E 566 1,048 47,781,611 45,581
(2): AC 566 1,551 92,971,700 59,955
(3): FD M 566 1,154 53,000,753 45,929
(4): FAM 566 1,372 66,147,069 48,213
(5): SIM 566 1,314 50,478,657 38,416
(6): E Y E D IS T 566 1,089 52,745,197 48,435
(7): F E Y E D IS T 566 1,167 50,228,127 43,051
(8): All Turned on 566 933 42,192,836 45,222

Total problems 566 - - -

Table 6.3: Performance for turning on single enhancement in LV6.14.

Enhancements
used

Number of 
problems 

solved

Total 
time (sec) 

562 problems

Total 
nodes expanded 

562 problems

Nodes 
expanded 

per second
(1): D f-pn(r) 564 5,721 373,314,568 65,249
(2): 2P O IN T E Y E 565 4,815 308,313,657 64,037
(3): AC 564 4,087 213,151,669 52,151
(4): F D M 563 5,951 373,278,106 62,723
(5): FAM 564 3,373 201,512,000 59,740
(6): SIM 564 3,409 237,915,070 69,797
(7): E Y E D IS T 565 5,165 273,697,298 52,988
(8): F E Y E D IS T 565 4,035 274,566,759 68,048

Total problems 566 - - -

Table 6.4: Performance data  on simulation for all 566 solved problems in 
LV6.14. All enhancements on. Phase 1 searches only._________________

Total nodes Nodes by SIM SIM  calls Successful calls
24,940,863 9,006,439 (36.1%) 3,009,733 1,274,218 (42.3%)
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Table 6.5: Overhead for ko re-searches.
Total nodes (566 problems)

Phase 1 Phase 2
24,940,863 (59.1%) 17,251,973 (40.9%)

be explained by the greater complexity of tsume-Go compared to the 

one-eye problem. For example, when all enhancements are turned on, 

the success rate of simulation was 42% (see Table 6.4), compared to 52% 

in Chapter 5 for the one-eye problem.

•  T s u m e G o  E x p l o r e r  performed a much larger amount of re-search for 

ko in LV6.14 (see Table 6.5). 40.9% of all node expansions were needed 

for re-search for ko, whereas the number in Chapter 5 was 11.0%. Since 

LV6.14 contained a lot of problems that require a number of ko threats to 

win, the solver suffered from such high overhead. Similar behavior occurs 

in GoTools if many ko are involved in the problem. Wolf mentions in 

[87] that for a complete search all ko’s with threats and answers must 

be played out and the tree typically deepens by a factor of 1.5 in the 

presence of ko’s.

6.3.3 Comparison w ith GoTools

T s u m e G o  E x p l o r e r  is compared with a general tsume-Go solver to assess its 

performance. GoTools was chosen, since it has been considered to be the best 

tsume-Go solver for 15 years. GoTools was run under the same experimental 

conditions.1 Since GoTools and T s u m e G o  E x p l o r e r  use different schemes 

for dealing with ko and ko threats, the problems whose results depend on the 

number of ko threats available were excluded. As a result, 418 positions in 

LV6.14 and 148 positions in ONEEYE were used.

Tables 6.6 and 6.7 compare two solvers on LV6.14 and ONEEYE. These 

indicate that T s u m e G o  E x p l o r e r  surpasses the solving ability of GoTools. 

Although both programs solve all problems in LV6.14, T s u m e G o  E x p l o r e r

1 Sometimes GoTools had a problem on enclosing positions. In this case, the outside of 
regions was filled out by attacker stones to make GoTools correctly enclose them.
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Table 6 .6 : Performance comparison between T s u m e G o  E x p l o r e r  and Go­
Tools in LV6.14.___________________________________________ _

Number of 
problems 

solved

Total 
time (sec) 

(418 problems)
GoTools 418 1,235

T s u m e G o  E x p l o r e r 418 448
Total problems 418 -

Table 6.7: Performance comparison between T s u m e G o  E x p l o r e r  and Go­
Tools in ONEEYE.

Number of Total
problems time (sec)

solved (119 problems)
GoTools 119 957

T s u m e G o  E x p l o r e r 142 47
Total problems 148 -

solves them about 2.8 times faster than GoTools. In ONEEYE, all problems 

solved by GoTools were also solved by T s u m e G o  E x p l o r e r . In addition, 

T s u m e G o  E x p l o r e r  solved these problems more than 20 times quicker than 

GoTools. All results are obtained with the original version of GoTools provided 

by Wolf.

Figures 6.6 plots the execution time for problems solved by both programs. 

The tim e spent by T s u m e G o  E x p l o r e r  is plotted on the X-axis against 

GoTools on the Y-axis on logarithmic scales. In points above the diagonal 

T s u m e G o  E x p l o r e r  performed better. In case of easy problems, it is hard 

to see a difference in performance between the two solvers. Sometimes GoTools 

performs better than T s u m e G o  E x p l o r e r , because of its large amount of 

hand-coded knowledge. For example, GoTools solved the position in Figure 

6.7 in 0.08 seconds. The search tree of GoTools contained 167 leaf nodes. The 

deepest depth explored by GoTools is 19. GoTools needs a similar number 

of leaf nodes (171 nodes) to prove that White wins for the position after D 1 

is played. GoTools is therefore believed to try  D 1 first and White is proven
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Figure 6 .6 : Comparison of execution time for individual instances in LV6.14.
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Figure 6.7: A position that GoTools solves more quickly than T s u m e G o  

E x p l o r e r  (P1031246, White lives with D l) .
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Figure 6 .8: A position that T s u m e G o  E x p l o r e r  solves more quickly than 
GoTools (P2072215, Black kills with E2).

to be alive. On the other hand, T s u m e G o  E x p l o r e r  needs 0.44 seconds 

with 22,773 node expansions. The deepest search depth in the proof tree is 

23. These numbers imply that T s u m e G o  E x p l o r e r  needs to search deeper 

with wider branches than GoTools for the problem. However, T s u m e G o  

E x p l o r e r  usually performs better for hard problems, this is believed because 

of a more sophisticated search algorithm. For example, GoTools needed 211 

seconds to solve the position in Figure 6 .8, whereas T s u m e G o  E x p l o r e r  

solves it in 11.7 seconds with 452,042 nodes.

Figures 6.9 plots the execution time for problems solved by both programs 

in ONEEYE. The superiority of T s u m e G o  E x p l o r e r  on hard problems is 

more vividly shown in this test suite. T s u m e G o  E x p l o r e r  outperforms 

GoTools by a large margin. Figure 6.10 shows an example. GoTools needed 

121 seconds to solve this problem, whereas the problem was easy for T s u m e G o  

E x p l o r e r  (0.14 seconds with 8,387 nodes). However, the Go knowledge of 

GoTools is sometimes very valuable. For example, Figure 6.11 with White to 

play is statically solved by GoTools, while T s u m e G o  E x p l o r e r  needs 3,159 

nodes.

Figure 6.12 plots the problems solved only by T s u m e G o  E x p l o r e r . Since 

GoTools could not solve the problems in 5 minutes, 5 minutes is plotted on 

the Y-axis. The difficulty for T s u m e G o  E x p l o r e r  ranges from very easy to 

hard. Again, the benefit of the search-based approach is shown. For example, 

Figure 6.13 could not be solved by GoTools within 5 minutes, while T s u m e G o
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Figure 6.9: Execution time for problems solved by both programs in ONEEYE.
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Figure 6.10: A  position that is hard for GoTools but very easy for T s u m e G o  

E x p l o r e r  (oneeyec.10.sgf, Black to kill by playing at C5).

121

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 6.11: A position that GoTools solves statically (oneeyeb.10.sgf, White 
to kill by playing at F9).
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Figure 6.12: Execution time for problems solved only by T s u m e G o E x ­
p l o r e r  in ONEEYE.
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Figure 6.13: A position solved only by T su m e G o  E x p l o r e r  (oneeyee.9.sgf, 
Black to live by playing at D 8).

E x p l o r e r  solved it in  0.73 seconds w ith 22,616 nodes.

One advantage of df-pn is that it uses the transposition table more exten­

sively. Only solved positions are saved in the transposition table in GoTools 

[90], while in df-pn proof and disproof numbers of previous iterations are stored 

in the transposition table to improve the order of tree expansion [56]. As a 

result, some problems th a t are very hard for GoTools are quickly solved by 

T s u m e G o  E x p l o r e r .

6.3.4 Comparison w ith Smart Go

Kierulf rewrote GoTools in C + +  and improved when he incorporated it into 

SmartGo [31, 33]. This version of GoTools is about 3.4 times faster than the 

original on problems in LV6.14. However, it also could not solve most of the 

problems in ONEEYE that are unsolved by the original GoTools.

6.4 Currently Unsolved Problems

T s u m e G o  E x p l o r e r  currently cannot solve 6 problems in the test suite. 

Table 6.8 presents a list of unsolved problems. There are more problems 

remaining unsolved than by the one-eye solver. Oneeyed.7.sgf for White to 

live is solved by T s u m e G o  E x p l o r e r  with 11,874,229 nodes in 820 seconds. 

However, it cannot be solved within 5 minutes, because of the slower search
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Table 6.8: List of unsolved problems in ONEEYE.
Problem name Color to play
oneeyed.7.sgf Black
oneeyed. 7.sgf White
oneeyed.9.sgf Black
oneeyed.9.sgf White
oneeyee.2.sgf Black
oneeyee.ll.sgf Black

speed caused by a more complicated function to compute the heuristic distance 

for two eyes.

6.5 Conclusions and Future Work

The ideas invented in Chapter 5 were adapted to tsume-Go. A large reduction 

of the search space was achieved, thus the best tsume-Go solver was built. The 

current T s u m e G o  E x p l o r e r  can solve enclosed positions with around 20 

empty points in a reasonable amount of time. Judging by the size of unsolved 

problems, the size limit of T s u m e G o  E x p l o r e r  seems to be between 22 and 

27 empty points. This compares favorably to GoTools, which has a limit of 

about 14 empty points in reasonable time.

Since the knowledge added to enhance T su m e G o  E x p l o r e r  is quite sim­

ple, there is a lot of room for further improvement. As explained in Chapter 

5, possible enhancements include recognizing larger eyes, refining connections, 

generalizing forced moves, and so on. For tsume-Go specific enhancements, 

recognizing more complicated eyes such as a half eye and one and a half eyes 

will be a challenging topic. This may help to decompose a tsume-Go prob­

lem in subproblems, such as making the first eye in some space, and then a 

second eye that can be connected to the first eye. Such a divide and conquer 

approach for the simpler case of the one-eye problem will be discussed in the 

next chapter.
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Chapter 7 

Divide and Conquer Approach 
to the One-Eye Problem

Divide and conquer is a way to tackle the large branching factor and deep 

search depth in the game of Go. This approach splits a problem into subprob­

lems that can be independently solved, and was successful in Go endgames

[52], This chapter presents a new divide and conquer technique, called the 

dynamic decomposition search (DDS) algorithm. The results of DDS in the 

one-eye problem in Go show the promise of this approach. Additionally, re­

laxed decomposition, a more ambitious way of splitting positions is proposed.

7.1 Basic Idea

The basic idea of the proposed divide and conquer approach is quite simple. 

For example, assume that Black needs to make the second eye in Figure 7.1. A 

naive algorithm would generate moves at all marked points in its search. This 

is clearly inefficient, since the marked region is already split into two separate 

areas. W ith the exception of ko fights, no move played in one area can affect 

the result of whether there is an eye in the other area. Instead of performing a 

global search, a divide and conquer approach performs two local searches tha t 

can be combined into a global result. This approach can reduce the branching 

factor and depth of the search by a large margin.

However, if ko fights are involved in a local solution, this approach can 

change the ko status because formerly local ko threats become non-local. Fig-
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Figure 7.1: A position to which a divide and conquer approach is applicable. 
(Black to play.)
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Figure 7.2: Interacting regions in ko with the divide and conquer approach.
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ure 7.2 presents such a case. In this example, White can capture the ko first 

but Black has a local ko threat at 2. So White needs one external ko threat 

to win. However, if the region is divided into two parts, the solver cannot see 

the ko threat at 2, and the ko becomes one where Black needs an external ko 

threat.

To fix this problem, the solver would need to be extended to search for ko 

threats in all subregions whenever the result of the one eye search is a ko. This 

is currently not implemented. There are further complications, for example if 

two or more subregions end up as some kind of complex ko. For simplicity, 

this chapter concentrates only on eyes for which the defender does not need 

to fight ko. The solver correctly deals with double ko, triple ko, and so on, as 

long as all ko are in the same region.

Checking the number of liberties of crucial stones is important to avoid 

them being captured while the defender is working in one subregion. In the 

test example, the eye point that is given already is not marked as a region. 

However, in practice, it must be whether each crucial stone has more than one 

liberty.

7.2 The Dynam ic Decom position Search Al­
gorithm

Let R  be the region at the root position, and be the working region that the 

algorithm is currently searching in. At the start, set R w =  R . The dynamic 

decomposition search (DDS) works as follows:

1. If there is an eye in R ^ , the defender wins in region Ry,.

2. Otherwise, if no eye space remains in Ry, , the attacker wins in Ry,.

3. Before generating moves, the region Ry, is tested for a possible split 

into subpositions. Both safe attacker stones and crucial defender stones 

are used for splitting. This check is done at every newly encountered 

nonterminal position.
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4. Suppose that a position is already partitioned into several subpositions 

R i---R k . If the defender is to play and a move in Ri is chosen by 

the search control (see the next section), then the working region R^  is 

restricted to Ri. Below this position, moves are generated only in R i, or 

an even smaller region when further decompositions occur. This reduces 

the number of possible moves and the search depth to reach terminal 

positions. If the defender finds an eye in one of the subregions R \ ■ • • Rn, 

the defender wins. If no eye is found in any subregion, the attacker wins.

5. If the attacker is to play, all moves in Ru, are tried.

Figure 7.3 presents pseudo-code of DDS, integrated with a naive AND/OR 

tree search algorithm. The working region can only be narrowed if the defender 

is to play.

7.3 Search Control

If there are several subregions, the defender must select one to expand the 

search in. Df-pn (r) with DDS selects the move to play based on proof and 

disproof numbers. This dynamically selects a  most promising working region 

at each step. Figure 7.4 shows an example. Let the defender be a player to 

prove a position, and the numbers on the board be proof numbers. In this 

figure, Black plays at B 6 , because it has the smallest proof number. The 

working region is narrowed to the left side. White answers only in the left 

subregion after Black’s B 6 . Assume th a t the proof number at B 6 is changed 

to 5 after exploring positions below Black’s play at B 6 . Then, Black plays 

at G 6 because it becomes the smallest proof number. The working region 

switches to the right subregion.

7.4 Using the Transposition Table in DDS

In a normal transposition table, Zobrist hashing [92] maps a full board position 

to its hash key. However, DDS must distinguish between different working 

regions. For example, if a position contains two subregions A  and B , there
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int DDS (node n, region R w ) {
/ /  An eye is made in R w  
if  (HasOneEye(n , R w ))  

return defenderWin;
/ / N o  eye space is found in R w  
if  (HasNoEyeSpace(n, R w ))  

return attackerWin;
/ /  Split R w  using safe attacker stones and crucial defender stones 
RecognizeDecomposition(i?u;); 
if  (IsDefender(n)) { 

for (each child n ^u d o f  n) {
/ /  Narrow working region 
R i =  FindW orkingRegionfochudjRw); 
if  (DDS{nchud, R i ) = =  defenderWin) 

return defenderWin;
}
return attackerWin;

} else { 
for (each child n^ud  of n) { 

if  (DDS(nĉ 27rf, R w ) = =  attackerWin) 
return attackerWin;

}
return defenderWin;

}
}

Figure 7.3: Pseudo-code of the DDS algorithm.

A B C D E F G H J

A B C D E F G H J

Black to play

Figure 7.4: Example of using proof numbers to select the working region.
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can be three cases for move generation: only in A, only in B , and in both A  

and B . To differentiate these cases. DDS encodes the working region into the 

hash key as well.

7.5 Experim ental Results

7.5.1 Setup of Experiments

Two test suites in the experiments were used. The first test suite, the toy 

problem collection, contains 13 test positions (26 problems) th a t are already 

completely or mostly split into independent problems at the root (see Appendix 

C.1.2). These problems were used mainly to verify that the decomposition ap­

proach works. The second test suite is the standard problem collection given 

in Appendix C. It contains 81 test positions (162 problems). Two versions of 

the solver, with and without dynamic decomposition search (DDS) were com­

pared. The version without DDS, no-DDS, is the solver described in Chapter

5.

7.5.2 R esults

Tables 7.1 and 7.2 compare the solving abilities of DDS and no-DDS. More 

positions are solved by using DDS in Toy. Moreover, all problems solved by 

no-DDS were also solved by DDS. On the other hand, both versions solved the 

same subset of problems in Standard. The improvement achieved by DDS is a 

factor of 66 in Toy and 1.2 in Standard in total execution time. This indicates 

that DDS surpasses the abilities of the previous df-pn (r) solver.

On average, DDS is about 13% slower in terms of node expansions per 

second (see Table 7.2). However, sometimes DDS is faster, especially in Toy 

(see Table 7.1). In particular, with decompositions at or near the root, DDS 

can concentrate on a smaller region, which speeds up basic operations such as 

detecting potential eye points and move generation.

Figure 7.5 compares node expansions of both solvers for each problem in 

the Toy test set. The number of nodes explored by DDS is plotted on the X- 

axis against no-DDS on the Y-axis on logarithmic scales. In points above the
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Table 7.1: Performance comparison for ’DDS and no-DDS in Toy.
Number of 
problems 

solved

Total 
time (sec) 

23 problems

Total 
nodes expanded 

23 problems

Nodes 
expanded 
per second

No-DDS 23 52 2,169,239 41,636
DDS 26 0.79 49,433 62,573

Total problems 26 - - -

Table 7.2: Performance comparison for DDS and no-DDS in Standard.

Number of 
problems 

solved

Total 
time (sec) 

157 problems

Total 
nodes expanded 

157 problems

Nodes 
expanded 

per second
No-DDS 157 1,975 84,084,752 42,573

DDS 157 1,645 62,129,738 37,774
Total problems 162 - - -

diagonal DDS performed better. Except for one problem DDS expanded at 

most as many nodes as no-DDS, and often dramatically less. The performance 

of DDS scales exponentially better in the size of problems. For example, DDS 

solved the position in Figure 7.6 in 1,075 nodes, while no-DDS needed 334,718 

nodes. This is not surprising, since all positions in this set are ideal for DDS, 

while no-DDS suffers from combinational explosion.

Figures 7.7 and 7.8 present the results for the standard test collection. 

None of these problems were designed with decomposition in mind. In con­

trast to Figure 7.5, there are more problems where DDS was slower. However, 

on average DDS explores less nodes and needs less execution time. This is 

especially true for the larger problems, so DDS seems to scale better. DDS 

sometimes improves the performance by a large margin. For example, DDS 

needed 360,163 nodes in 7.5 seconds for the position in Figure 7.9, whereas 

no-DDS explored 1,732,845 nodes in 35.6 seconds. In this position, decom­

positions triggered by black crucial stones and white safe stones reaching the 

borders of the board seem to occur frequently.

In the hard problems of this set, the percentage of nodes in which decom-
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Figure 7.5: Node expansions for toy problems solved by both versions.
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Figure 7.6: A position that DDS solved with much less nodes than no-DDS 
(divide-conquer.12.sgf, Black to live by playing at 012).
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Figure 7.9: A position that DDS solved more quickly (oneeyee.l.sgf, Black 
lives with B2).

positions are possible varies from 16% to 50%. Again, for example, in Figure 

7.9, in the 360,163 nodes explored by DDS, DDS detected 127,479 (35.3%) 

decompositions.

7.6 A Relaxed Decom position M odel

DDS is limited in the way th a t splits are recognized. The only points used to 

split positions are those occupied by safe attacker and crucial defender stones. 

This section introduces a less rigid decomposition th a t uses “almost safe” 

attacker stones as well. Figure 7.10 shows an example. If the two white stones 

marked by squares are assumed to be safe, then the area can be split into two 

subregions, a left subregion marked by small grey squares and a right region 

marked by crosses. The attacker can always make the two marked white stones 

safe by following a simple miai connection strategy: Whenever the defender 

plays either A  or B, reply on the other point. The relaxed decomposition model 

uses such stones for splitting a position. However, during the search the case 

where a miai connection is attacked by the defender must be handled.

In this case, the relaxed decomposition model extends the search to the 

union of the affected subregions. The algorithm is explained in detail with 

the help of Figure 7.10. In this figure, let region R x consist of the empty 

point A  and all points marked by filled squares. Region R 2 contains B  and
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A B C D E F G H J K L

Figure 7.10: Relaxed decomposition.

all points marked by crosses. The points A  and B  together form a miai con­

nection from safe attacker stones to an almost safe attacker block. Without 

loss of generality, assume that the defender starts playing in R i. Then Relaxed 

Decomposition Search (RDS) defines the strategies of both players as follows:

1. If both A  and B  are empty, both players are restricted to play moves in 

R l

2. If either A  or B  is occupied by the attacker, the relaxed decomposition 

has changed into a normal decomposition. Both players keep playing in 

R ,.

3. Otherwise, if at least one of A  and B  contains a stone of the defender, 

and the other point is empty or also occupied by the defender, the region 

is extended and both players continue play in R i U R 2 .

In RDS, as long as the defender does not play at A, both players stick to 

play in R 1. However, if the defender plays at A  and the attacker does not 

respond at B, then the defender can invade i?2- Figure 7.11 presents pseudo­

code of RDS, integrated with the naive AND/OR tree search algorithm. This 

is similar to DDS in Figure 7.3. However, the working region can be widened, 

when the defender attacks a miai point but the attacker does not reply.
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int RDS(node n, region R w ) { |
/  /  An eye is made in R w  
if (HasOneEye(n, R w )) 

re tu rn  defenderWin;
/ /N o  eye space is found in R w  
if  (HasNoEyeSpace(n, R w )) 

return attackerWin;
/ /  Split R w  using safe attacker stones, crucial defender stones,
/ /  and connection to safe attacker stones 
RecognizeDecompositionUsingMiaiPoints (R w ); 
if  (IsDefender(n)) { 

for (each child ricAiM of n) {
/ /  Region can be widened 
R i =  FindWorkingRegion(nĉ i7(i,i?u;); 
if  (RDS(nChud, R i ) = =  defenderW in) 

return defenderWin;
}
return attackerWin;

} else { 
for (each child n^ud of n) { 

if  (RDS (richiid, Rw) = =  attackerW in) 
return attackerWin;

}
return defenderWin;

> I
} 1

Figure 7.11: Pseudo-code of the RDS algorithm.
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Remark: as in DDS, the defender can switch between trying moves in P i 

and i?2 at the root. This process is controlled by proof numbers.

Let us call A  and B  in Figure 7.10 connection points, the following lemma 

is required to prove correctness of RDS.

L em m a 7.6.1 Assume the following:

1. Position P  contains region R  which is split into two subregions R \ and 

P 2 by relaxed decomposition.

2. The attacker is to play in P.

3. Two connection points A  in R \ and B  in P 2 are initially empty.

4- I f  the attacker plays at A, the defender can still create an eye uncondi­

tionally (without ko) in R\ and the proof graph created by the defender 

is a DAG.

Then, the defender can create an eye in R i unconditionally for the position 

after the attacker plays a move in P 2 for P.

Proof. Let Pi be the node after the attacker plays a move at A  for P , and P2 

be the node after the attacker plays a move in R 2  for P. The defender 

can be proven to make an eye for P2 by following the winning strategy 

for Pi. The lemma is proven by induction on the maximum depth d of 

a terminal node in the proof graph of Pi.

case 0 : d  =  0 If Pi is a terminal position, the same eye exists in both 

Pi and P2.

case 1: d  =  1 The defender can create an eye by making move m  A A  

in R i for Pi- Since Pi is identical to P2 within P i — {A}, m  is legal 

in P2 and also creates an eye there.

case 2: in d u c tio n  s tep  Assume that Lemma 7.6.1 holds for all d <  k. 

The lemma is also proven to hold for d = k  +  2. Let m  E R i — {A} 

be the winning defender move in Pi, Q\ be P i’s child after playing
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m  for Pi, and n l5 n2, • • •, ni be Q i’s children. Let rii be the node 

after the attacker passes for Qi. Since m  £ R x — {A}, m  is legal for 

P2 . Let Q2 be P2’s child by playing m, Oi be Q2’s child after the 

attacker plays at A, 0 2  ■ ■ • op be Q f  s children after moves in i?2, and 

Op+1 • • • op+q be Q2 s children from moves in R x. The defender can 

make an eye for op+x • • -op+q by the assumption of Lemma 7.6.1. 

Ri is completely separated from i?2 in ox and n x. Moreover, since 

Oi and nx are identical positions in R x, the defender can create an 

eye in ox. By induction, since 01 has depth d < k, the defender can 

create an eye for o2 • - • op. Thus, the lemma is proven for the case 

of k + 2.

■
The following theorem guarantees the correctness of RDS in the case that 

an eye is found.

T h e o re m  7.6.1 Assume that R  is split into two subregions R x and P 2 by 

RDS. I f  the result of RD S shows that the defender can create an eye uncondi­

tionally (without ko) in either R x or i ?2 and the proof graph created by RDS  

is a DAG, then that eye can always be made against any attacker strategy in 

R x U i?2.

Proof. In the following, the proof graph created by RDS is called the RD S  

proof graph, and a proof graph for the whole region R x U P 2 an original 

proof graph.

The proof shows that each RDS proof graph can be converted into an 

original proof graph, for the case where the RDS proof graph is a DAG. It 

uses induction on the depth of a terminal node in the RDS proof graph. 

The first case of RDS is explained with the help of Figure 7.10. The other 

two cases are trivial, because searching either with completely separated 

subregions or with the whole region is performed in those cases.

Assume without loss of generality that the first defender move is in R x. 

As above, if the RDS graph contains only a terminal node, an eye already
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exists and the RDS proof graph also works as an original proof graph.

Otherwise, let n be the root of the RDS proof graph. Assume that 

by induction n ’s descendants in the RDS graph have been converted to 

original proof graphs.

• If n  is an OR node, n ’s move m  leading to n ’s child nc in the RDS 

proof graph is also legal for searching in R\ U R 2. nc’s RDS proof 

graph can be converted to nc’s original proof graph by the induction 

assumption. Hence, n ’s original proof graph can be constructed by 

adding a branch m  from n to n c’s original proof graph.

•  If n  is an AND node, assume that n ’s children nCl, • • •, nCk in R\ 

have proof graphs. Let n Cl be n ’s child after the attacker plays 

a move at A, nCk+1 - • • nCi be n ’s children by playing in R 2. It is 

required to prove tha t n Cfc+1 • • -nCl have original proof graphs. nCl 

guarantees that an eye can be made in R \ , since R \ is completely 

separated from R 2. By applying Lemma 7.6.1 to n Ck+1 • • • nCl based 

on nCl’s proof graph, the defender can make an eye for n Ck+1 • • • nC(. 

Hence, nCk+1 ■ ■ • nCl have original proof graphs.

■
A conjecture is that Lemma 7.6.1 and Theorem 7.6.1 also hold for cyclic 

graphs in the case where the eye can be made unconditionally. However, 

a different approach is required to prove this conjecture for cyclic graphs, 

because a property of DAGs was used in the induction proof: it uses the fact 

th a t children have a height that is at least 1 smaller than their parents. This 

property does not hold for cycles.

RDS can split positions more frequently than DDS. The approach can be 

generalized to more than two relaxed split subregions, as long as all the miai 

connections to safe attacker stones are disjoint. However, the completeness of 

the relaxed decomposition algorithm is not known yet. To prove that no eye is 

possible, the worst-case scenario might require re-searches in the whole region. 

In this case, an efficient re-search strategy must be devised.
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Figure 7.12: Decomposition for tsume-Go.

7.7 Conclusions and Future Work

The chapter presented a method that dynamically decomposes a position into 

sub-positions during search. The results of this dynamic decomposition search 

are encouraging. In many problems, DDS is able to reduce the search space, 

thereby enabling the one-eye solver to solve hard problems more quickly. How­

ever, the current version of DDS is limited to dealing with ko fights only in the 

same subregion. To overcome this problem, a detailed ko status and ko threat 

status of each divided region must be detected and combined. Additionally, 

investigating relaxed decomposition search is a  challenging topic from both 

theoretical and practical points of view. Furthermore, splitting a position in 

a more aggressive way such as by using divider patterns [53] is an interesting 

extension of this research topic. Finally, applying the ideas to tsume-Go is 

also a challenging topic. In tsume-Go, the decomposition will be more com­

plicated. Suppose that a region is split into two completely separated rooms 

A  and B. There are several possibilities to be considered, such as making (1) 

two eyes at A, (2) one eye at A  and the other eye at B , (3) two eyes at B, 

or (4) one eye either at A  or at B  if one eye already exists. In case of tsume- 

Go, local searches must distinguish between sente* and gote*. For example, 

the position in Figure 7.12 has two subregions, a left subregion R i marked by 

small grey squares and a right subregion i?2 marked by crosses. Move B 6 in 

Ri makes one and a half eye [45] if Black plays first. A half eye is made in

140

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R 2. Therefore, Black can live with B 6 , since White cannot play both B4 and 

D 6 . To solve such a problem, with two separate searches in i?i and Ro, return 

values of regions [45] such as “1.5 eyes” or “0.5 eyes” must be recognized by 

the search.
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Chapter 8 

Conclusions and Future Work

This chapter concludes by summarizing the research issues and the achieve­

ments. Finally, future work is discussed.

8.1 Conclusions

The focus of this thesis was to develop efficient and correct search algorithms 

for domains involving repetitions. The contributions of the thesis are:

•  The GHI problem is a notorious problem that causes game-playing pro­

grams to falsely regard proven positions as disproven or vice versa. A 

solution to the GHI problem was presented (Chapter 3). Theoretical 

results showed th a t the GHI solution is correct. Experimental results in 

a/5 and df-pn in checkers and Go indicated that this approach is efficient, 

general and practical.

•  The basic df-pn algorithm [56] has a problem with computing proof and 

disproof numbers that can cause it to loop infinitely in domains with 

repetitions. The thesis presented a modified version of df-pn, called 

df-pn(r), which is suitable for such domains (Chapter 4). Experiments 

in Go and checkers showed that df-pn(r) improves the solving abilities 

of the solvers.

•  Based on df-pn(r), simple domain-dependent knowledge was added to 

the one-eye and tsume-Go solvers (Chapters 5 and 6). These enhance-
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Figure 8.1: An example in Igo Hatsuyo-ron (White to live) and its enclosed 
version.

ments improved the solvers by an order of magnitude. Thus, this ap­

proach succeeded in developing the first powerful one-eye solver as well 

as T sxjm eG o  E x p l o r e r , the currently best tsume-Go solver.

• The decomposition search algorithm that has been successful in Go 

endgames was extended and applied to the one-eye problem (Chapter 

7). This approach reduced the search space on average, and improved 

the performance of the one-eye solver. Relax decomposition search, a 

more relaxed way to split a position into sub-positions was investigated 

and a theorem on correctness was proven.

8.2 Future Work

There are still many unexplored topics. Many are already mentioned in the 

individual chapters:

• Now that correctness of a modified df-pn algorithm is guaranteed even 

in the presence of repetitions, it is time to investigate completeness of 

df-pn. An open question is whether df-pn (r) in Chapters 3 and 4 can in 

principle solve any problem involving repetitions, if an unlimited amount 

of time is given.
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• Invent more effective methods to solve harder problems. Currently I am 

trying to build a tsume-Go solver tha t can solve some modified problems 

from Igo Hatsuyo-ron [28], enclosed by Martin Muller (see an example 

of an original and an enclosed problem in Figure 8.1). Igo Hatsuyo-ron 

is one of the hardest test collections in the literature, and is beyond 

the capability of current tsume-Go solvers. I believe that some of these 

problems are solvable with smarter knowledge and sophisticated algo­

rithms to split positions. Future research also includes recognition of 

larger eyes, and generalization of forced moves.

• One more practical extension is to write a solver for open positions, in 

which stones do not have to be surrounded by opponent’s safe stones 

(see Figure 8.1(a) again). Open tsume-Go problems can become dra­

matically harder than enclosed problems. Wolf describes some reasons 

in [89]. The essential reason is the difference in the number of moves to 

be considered between closed and open positions. For a closed position, 

moves can be restricted to  inside a region. On the other hand, all le­

gal moves potentially have to  be investigated on the whole board for an 

open position, since a slight difference might influence the whole board. 

One interesting open question is how accurately and efficiently tsume-Go 

solvers can solve problems with open boundaries. Moves are probably 

required to be heuristically restricted, or threat-based approaches such 

as [15, 82] are used to find a set of moves that guarantees correctness.
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Appendix A 

Proof that Df-pn Loops Forever 
in the Example of Figure 4.2

Figure A.l shows the crucial steps in running df-pn on the example from Figure 

4.2 on page 75. Let k be the number of visits to node C  in Figure 4.2, I be a 

positive integer, and p n fc(n), dn^(n) be proof and disproof numbers of node 

n  a t the kth  visit to C. Let X  > Y  mean that X  is preferred to Y . Assume 

the following ordering of nodes for tie breaking to choose a child with tied 

(dis)proof numbers:

• B > C ,

• F  > G,

• I > H ,

• J > K ,

• N  > M,  and

• I >  P.

To prove that df-pn never expands P  in Figure A. 1(a), first the fact that 

the following equations hold is shown:

p n fc(A) =  1 for all k  and all X  6  {F, G, H, I,  J, K,  L, M,  N,  O, P}  

d n k(X) = 1 for all k and all X  € {H,  K,  M,  P}

151

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



dn fc(F) =  

dnfc(G) =  

dn k(I) =  dn*(Ir) =

dnfc(J) =  dnfc(0) =

d n k(N) =

f
(for k  =  1)

k, (for Jfe =  2Z)

. k ~  1, (for & =  21 +  1)

J  k,

rH1CMIIa

1 A r -  1, (for k =  21)

1, (for k =  1)
< k — 1, (for k =  21)

k -  2, \ ; (for k = 21 +  1)

i, (for k =  1, 2)
k -  1, (for k =  21 +  1)
k -  2,V 3 (for k = 2l + 2)

f  15
(for ft =  1 , 2 , 3 )

k - 2 , (for ft =  21 +  2)

( k - 3, (for ft =  2Z +  3)

Let thpn(n) and th dn(n) be the threshold of the proof and disproof num­

bers at n. Now the above equations is proven by induction on ft.

•  (Case ft <  5) Figure A.l(b)-(i) gives a trace of df-pn in Figure A .l(a),

which illustrates that P  is not explored in case of k <  4. In this figure, 

(c), (e), (g), and (i) correspond to k =  1, k  =  2, k =  3, and k =  4. 

Clearly the proof and disproof numbers for each node in this figure hold. 

An analogous proof can be given for the case of k =  5.

• Assume that the equations are satisfied at the ftth visit. They are proven 

for k + 1  by tracing the search graph.

-  (Case k  =  21 +  2) At the ftth visit to C , p n k(F) =  p n k(G) =  1 

and dn k(F)  =  k > dn*;(G) =  k  — 1. G is, therefore, chosen 

with th p n(G) =  1 and t h dn(G) =  ft 4- 1. At G,  t h pn(G) =  

2 >  m in(pnfc( J ) ,p n fc(Ar)) =  1 and t h dn(G) =  k +  1 >  d n fc(J) +  

d n fc(AT) = k — 2 + I = k  — 1, G is  expanded. Since p n fc(J) =

p n k(K)  =  1, J  is chosen with t h pn(J) =  2 and th dn(J) =  k.

At J , O is explored since t h pn(J) =  2 >  m in(pnfc(G)) =  1 and 

t h dn(</) = k >  d n  ̂ (0) =  k — 2. Therefore, O is selected to expand 

with th pn(G) =  2 and t h dn(0) =  k. However, the termination 

condition is satisfied at G, because d n k(I) -1- dn*(F) =  k — 1 + 1  =
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k > thdn(O) =  k. Thus, P  is not explored and proof and disproof 

numbers are backed up to C as follows:

P*jfc+i(0) =  m in(pn*(/),pnfc(P)) =  1 

d n fc+i(0 ) =  dn  k(I) +  d n fc(P) =  k 

p n fc+i(J ) =  p n fc+1(0 ) =  l 

dn/c+i (J) =  d n fc+1(0 ) =  fc 

p n fc+i(G) =  m in(pnfc+1(Jr) ,p n jfc(A’)) =  1 

d n fc+1(G) =  d n fc+1(J) +  d n  k(K) = k + 1.

For the remaining nodes F, H , I,  K , L, M,  and N,  proof and 

disproof numbers remain the same. Thus, the equations shown 

above are proven for the case of k  + 1.

— (Case k = 21 + 3) This case is proven with an analogous discussion. 

At the kth  visit to C,  p n k(F) =  p n k(G) =  1 and dn*(P) = k — 1 < 

d n k(G) =  k. F  is chosen with thpn(F) =  2 and thpn(F) =  k +  1. 

C —> F  —> I  L  —> N  is explored. The termination condition at 

N  holds, since dn*,(0) = k —1 > thdn(A') =  k —1. Then, proof and 

disproof numbers are backed up to C  and the proof and disproof 

numbers change as in the equations above.

P  is never explored and df-pn loops forever. ■
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Figure A.l: An example in which df-pn loops forever.
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Appendix B

Glossary

The terms used in the thesis are adapted from [76] and [53].

B lock Connected stones of the same color. See Figure B .l.

E ye A single empty point surrounded by stones of the same color. See empty 

points marked by squares in Figure B.2. Stones that have two eyes are 

guaranteed to be alive.

G o te  Opposite of sente. See sente.

K o The situation in Figure B.3 is called ko, which can lead to repeated 

positions. In a ko situation, if one player takes the ko, the opponent 

may not re-capture it immediately. See the empty point marked by a 

square in the figure after Black plays a move.

L ib e rty  An empty point adjacent to a block of stones. See empty points marked 

by squares in B.4.

M iai A player has two different options at his or her disposal.

Figure B.l: Blocks.
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Figure B.2: Eye.

Figure B.3: Ko.

Sente In Japanese, sente means initiative. A player has sente if he or she does 

not have to answer the opponent’s last move.

Seki Co-existence. Both black and white blocks are alive without two eyes. 

In Figure B.5, adapted from [76], both marked black and white stones 

do not have two eyes, but are alive. If either player plays A, the other 

will capture the block of that player.

T e rr ito ry  An area surrounded and controlled by one player. Dead opponent stones 

may be contained in a territory.

Figure B.4: Liberties.
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A B C D E F G H J

Figure B.5: Seki.
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Appendix C 

Positions Used for Experiments

C .l Go

C.1.1 Positions Used for All Experiments

The positions are available at h t t p : //www. c s . u a lb e r ta . ca/"gam es/go/oneeye.
A B C D E F G H J

9
8
7
6
5
4
3
2
1

A B C D E F G H J

oneeye.l.sgf
A B C D E F G H J

r f X # ? O n
W aVa\ v -X -(T 1—

A B C D E F G H J

oneeye.4.sgf

A B C D E F G H J
mc-x-x-x

8

A B C D E F G H J  

oneeye.2.sgf 
A B C D E F G H J  

9 r # X - m O - n  9

A B C D E F G H J

oneeye.5.sgf

A B C D E F G H J

A B C D E F G H J

oneeye.3.sgf
A B C D E F G H J

A B C D E F G H J

oneeye.6.sgf
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A B C D E F G H J

^ - m O n  9 
® @ fg^x-^-xO —

A B C D E F G H J

oneeye.7.sgf

A B C D E F G H J  

®X<

? 0 ® - ^ C x
l& W Q -
x ^ x

x-x-x

9
8
7
6
5
4
3
2
1
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C.2 Checkers

1 Black to play

5 Black to play

9 White to play

13 Black to play

■Sal ,]M S  1st

i j a n s O i  

je

w  »
®  «g§

• O e r t r t r
s ^ w ^ s p H -2z& 3aa» jag....

a  a  g a

§̂ n  n  m
$^JSs££ IS* 5-35

m m  m  ,„.„ 
p i i»  w f \

j||| gg|j

WaMi

2 Black to play 3 Black to play 4 Black to play

ĵgf gyr gy*

6 Black to play 7 Black to play 8 Black to play

10 White to play 11 White to play 12 White to play

14 Black to play 15 Black to play
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iS as

17 White to play 18 W hite to play 19 White to play 20 White to play

m

21 Black to play 22 Black to play 23 Black to play 24 Black to play

25 Black to play25 Black to play 26 Black to play 27 Black to play

m

13

29 Black to play 30 Black to play 31 Black to play 32 Black to play

33 Black to play 34 Black to play 35 Black to play 36 Black to play
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@ -S* PIT
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37 White to play 38 White to play 39 White to play 40 White to play

jm - J b l J 8 m
J3

s '  «  i l l :«&&£ SciẐ **“
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41 White to play 42 White to play 43 W hite to play 44 White to play

45 Black to play 46 Black to play45 Black to play 46 Black to play 47 Black to play 48 Black to play

50 Black to play49 Black to play 50 Black to play

1  Efi

53 Black to play 54 Black to play 55 Black to play 56 Black to play
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57 Black to play 58 Black to play 59 Black to play 60 Black to play
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61 White to play 62 White to play 63 W hite to play 64 White to play
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65 White to play 66 White to play 67 White to play 68 White to play

s s S I

69 White to play 70 White to play 71 White to play 72 White to play
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73 White to play 74 White to play 75 White to play 76 White to play
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77 Black to play 78 Black to  play 79 Black to play 80 Black to play
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81 White to play 82 White to  play 83 White to play 84 W hite to play

m
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M m

85 W hite to play 86 White to play 87 White to play 88 W hite to play
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89 Black to play 90 Black to play 91 Black to play 92 Black to play
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93 W hite to play 94 White to play 95 White to play 96 W hite to play
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97 W hite to play 98 White to play 99 White to play 100 W hite to play

101 W hite to play

S

101 W hite to play 102 White to play 103 White to play 104 W hite to play

105 W hite to play 106 White to play 107 White to play

109 W hite to play

B

109 W hite to play 110 White to play 111 White to play 112 W hite to play

m

113 Black to play 114 Black to play 115 Black to play 116 Black to play
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117 Black to play 118 Black to play 119 Black to play 120 Black to play

121 W hite to play 122 White to play 123 White to  play 124 White to play

125 White to play 126 White to play 127 W hite to play 128 White to play

129 W hite to play 130 White to play 131 White to play 132 White to play

m
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133 White to play 134 White to play 135 White to play 136 White to play
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137 White to play 138 White to play 139 White to play

m

141 Black to play 142 Black to play 143 Black to play

m

145 White to play 146 White to play 147 W hite to play

149 White to play 150 White to play

H
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153 Black to play 154 Black to play 155 Black to play

177

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without

140 White to play

144 Black to play

148 White to play

152 White to play

156 Black to play
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157 White to play 158 White to play 159 W hite to play 160 White to play

161 Black to play 162 Black to play 163 Black to play 164 Black to  play

165 Black to play 166 Black to play 167 Black to play 168 Black to  play

169 W hite to play169 W hite to play 170 W hite to play 171 W hite to play 172 White to  play

S

173 W hite to play 174 W hite to play 175 W hite to play 176 White to  play
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177 White to play 178 W hite to play 179 W hite to play

181 White to play .182 W hite to play 183 W hite to play

185 White to play 186 W hite to play 187 W hite to play

189 Black to play189 Black to play 190 Black to play 191 Black to play

S®5

193 Black to play 194 Black to play 195 Black to play
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180 White to play

184 White to play

188 White to play

192 Black to play

196 Black to play
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197 White to play 198 White to play 199 White to play 200 White to play
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