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Abstract

The thesis deals with the problem of minimization of Conditional Value at

Risk within the context of Margrabe market under constraints on the initial capital

available. We propose to approximate the distribution of the difference between

two lognormal random variables using normal distribution and derive a closed-

form pricing formula for spread options. We use this idea along with the existing

spread option pricing formulas to develop a new methodology for determining

Conditional Value at Risk-efficient portfolios. We conclude that the approaches

considered provide comparable results given that the parameters of the market are

of particular form. Theoretical results are supported by numerical examples based

on real financial data.
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Chapter 1

Introduction

In their seminal 1973 paper Black and Scholes laid groundwork for what is now

estimated to be a half quadrillion dollar derivatives market (see Bank for Interna-

tional Settlements, 2017). In the Black-Scholes theory the price behaviour of any

contingent claim in a complete arbitrage-free market can be viewed as a weighted

portfolio of risky securities underlying the contract and a non-defaultable zero-

coupon bond. At least in theory an investor can perfectly replicate the payoff of

any contingent claim by constantly adjusting the weights in this portfolio and the

Black-Scholes formula provides us with the means of calculating these weights at

any point in time. Ever since the initial publication, Black and Scholes’ insightful

idea was successfully applied to contingent claims with various payoff structures

and the problem of hedging of contingent claims in complete arbitrage-free markets

no longer attracts much of scientific interest.

When a martingale measure is not unique, the market is considered incomplete.

Many experts (see, for instance, El Karoui and Quenez, 1995) studied the problem of

hedging of contingent claims in such markets and came to a conclusion that for any

given contingent claim there is a whole range of fair or arbitrage-free prices. The
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minimum price of setting up a replicating portfolio that guarantees no underheging

at maturity is equal to the maximum price of the arbitrage-free range. Hence,

hedging in such markets might require a larger amount of initial capital outlay than

what would be deemed optimal for practical purposes. Similar situation can arise

when a financial institution or an investor operates in a complete market but is

constrained by the amount of initial capital available or is reluctant to put up the

amount required for complete hedging. One of the possible motivations could be

the possibility of using the extra funds saved on hedging to earn additional return in

excess of the expected shortfall, the expected amount by which a replicating portfolio

underhedges an option payoff at maturity. The problem attracted a lot of scientific

attention: see, for example, Kulldorff (1993), Spivak and Cvitanic (1999), Browne

(1999). Foellmer and Leukert (1999) proposed to use quantile hedging strategies

whereby an investor is aiming at maximizing the probability of a successful hedge.

By following this strategy an investor is using a dynamic version of static Value

at Risk (V aR) concept. The major drawback of this approach is that the size of

potential shortfall is not taken into account. To address this issue Foellmer and

Leukert (2000) proposed a new methodology to minimize the amount of expected

shortfall, where an investor’s attitude to the size of shortfall is measured by some

loss function l. The central idea is to use the results from Neyman-Pearson lemma

to modify the original claim in a special way so that this modified claim can be

completely hedged. The authors proceed to prove that the strategy of complete

hedging for the modified claim will also be the optimal strategy for the original

contingent claim.

Under previous Basel II accord V aR was the preferred method of estimating and

reporting market risk exposure by financial institutions. By definition, for a chosen

confidence level a, V aRa is the smallest amount β such that the probability of
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incurring losses in excess of β is less than or equal to 1− a. In other words, V aRa

is the a-quantile of the distribution function of portfolio losses. There are three

common approaches to measuring V aR: historical simulation approach, Monte

Carlo (MC) simulation approach and parametric approach, where the distributions

of the returns of risky securities held in a portfolio are assumed to be jointly normal

(see JP Morgan, 1996). While all three approaches provide a quick and intuitive way

of assessing market risk exposure, V aR, as a risk measure, lacks some of the desired

mathematical properties and was severely criticized as it failed to predict the scope

of the losses during the global financial crisis of 2008. Artzner et al. (1999) showed

that V aR does not satisfy the subadditivity property of coherent risk measures and it

does not encourage diversification as V aR "does not take into account the economic

consequences of the events the probabilities of which it controls". Further, the

successful implementation of V aR methodology is constrained by the assumption

of normality of stock returns, which is not always in line with empirical evidence,

where the distributions of stock returns are leptokurtic. (Hebner, 2014). The most

recent Basel III framework encourages the shift from V aR to CV aR, also known

as Average Value at Risk (AV aR), or Tail Value at Risk (TV aR), which is a

spectral (Acerbi, 2002) and coherent measure of risk as it satisfied the following

four desirable properties: monotonicity, subadditivity, positive homogeneity and

translation invariance. (Artzner et al., 1999). For continuous distributions, CV aRa

is defined as the conditional expectation of losses, given that losses exceed V aRa.

For discrete distributions and more general distributions, CV aR is determined as

the weighted average between V aRa and losses strictly greater than V aRa.

Melnikov and Smirnov (2012) considered the dual problem: minimization of

CV aR of an investment portfolio within the Black-Scholes market model with con-

straints on the initial capital available and the minimization of hedging costs subject
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to constraints on CV aR. The authors used the results of Rockafellar and Uryasev

(2002) for the alternative representation of CV aR that allows to minimize both

V aR and CV aR at the same time. Closed-form solutions related to construction of

CV aR-efficient portfolios have been derived. The aim of this thesis is to consider

the problem of a similar kind - minimization of CV aR within the context of Mar-

grabe market. The contingent claim of interest is a plain vanilla option to exchange

one asset for another. We will review the formula to price such a contingent claim

as well as approximating formulas for spread options, options to exchange one asset

for another with payoffs containing non-stochastic components. The latter class of

options does not have an exact solution as one is dealing with the distribution of

the difference between two lognormal random variables which is not lognormal.

However, we propose to use normal distribution as an approximate distribution

of the difference between two lognormal random variables, which allows to price

spread options in closed-form. We compare the proposed approximation with the

ones already existing. We will proceed by solving the initial problem and deriving

closed-form formulas for the construction of CV aR-efficient replicating portfolios

by using the proposed normal approximation as well as the approximation by Bjerk-

sund and Stensland (2006). The problem of this kind has not been considered so far

and we believe the results of this thesis will carry a lot of benefits to the practitioners

in view of the most recent developments in risk management regulations.

The thesis is structured in the following way: Chapter 2 contains the necessary

theoretical background related to spread option pricing, Conditional Value at Risk,

Neyman-Pearson lemma and expected shortfall minimization. We show how these

theoretical developments are unified to provide means for minimizing CV aR of a

portfolio subject to constrains on the initial capital available. Chapter 3 is devoted to

the application of the methodology within the Margrabe market. The methodology
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is then tested on both hypothetical and real data portfolios in Chapter 4. Chapter

5 provides the limitations as well as recommendations for further research in this

direction, and finally Chapter 6 concludes the thesis.
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Chapter 2

Theoretical Background

This chapter is devoted to the statements and proofs of some of the theorems that

lay groundwork for the solution to the problem of minimization of CV aR.

2.1 Two-Asset Lemma

Lemma 1. Let X ∼ N(µx, σ
2
x), Y ∼ N(µy, σ

2
y) and Z ∼ N(µz, σ

2
z) be three

normally distributed random variables with correlations ρXY , ρXZ , ρY Z . Then:

E(exp {−Z} I{X<x}I{Y <y}) = exp

{
−µz +

σ2
z

2

}
Φ2(x̂, ŷ, ρXY ) (2.1)

where:

x̂ =
x− µx

σx

+ σzρXZ

ŷ =
y − µy

σy

+ σzρY Z

6



and Φ2 denotes the two-dimensional normal cumulative distribution function

(CDF). (Melnikov and Romanyuk, 2008).

2.2 Spread Option Pricing

The pricing formula for options to exchange one asset for another was derived

independently by Margrabe (1978) and Fischer (1978). Suppose that S1 = (S1(t) :

t ∈ [0, T ]) and S2 = (S2(t) : t ∈ [0, T ]) are the price processes of two correlated

non-dividend paying stocks and are solutions to the following stochastic differential

equations (SDEs) under the unique risk-neutral probability measure Q:

dS1(t) = S1(t)σ1dW
Q
1 (t)

dS2(t) = S2(t)σ2dW
Q
2 (t)

where WQ
1 = (WQ

1 (t) : t ∈ [0, T ]) and WQ
2 = (WQ

2 (t) : t ∈ [0, T ]) are standard

Brownian motion processes with the correlation coefficient ρ. The corresponding

standard deviations are σ1 and σ2, which we assume to be constant. The original

Margrabe’s model of the market assumed only the existence of two risky assets and

no bank account. For the purposes of this thesis we assume that the interest rate

r = 0. Consider a European type spread option which gives the holder the right to

exchange the second asset for the first one with the following payoff:

(S1(T )− S2(T ))
+

where T is the maturity of the contract. The price of such a contingent claim is

given by:
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p = S1(0)Φ(d1)− S2(0)Φ(d2) (2.2)

where:

d1 =
ln(S1(0)

S2(0)
) + σ2T

2

σ
√
T

d2 = d1 − σ
√
T

σ =
√
σ2
1 + σ2

2 − 2σ1σ2ρ

and Φ denotes the CDF of a normal distribution. However, if the option’s payoff

structure is modified to have a deterministic strike price in addition (we will refer to

options with such payoffs as spread options to distinguish with options to exchange

one asset for another):

(S1(T )− S2(T )−K)+ (2.3)

no exact closed-form solution has been found. The problem arises because pricing

such an option requires the knowledge of the distribution of the difference between

two lognormal random variables, which is not lognormal. More generally, any linear

combination of correlated lognormal random variables is not lognormal. (Poulsen,

2010). We note that closed-form approximations for the distribution of sums of

lognormal random variables exist in the literature, see for example Mehta et al.

(2007), Cobb and Rumi (2012), Hcine and Bouallegue (2015), Rook and Kerman

(2015).

Less is known about the distribution of the difference between correlated log-

normal random variables. Lo (2012) proposed to use Lie-Trotter operator splitting
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method and showed that both the sum and the difference of two correlated lognormal

random variables follow a shifted lognormal process. For the evolution of the joint

distribution function of the difference between two lognormal random variables in

time the author considered the following Kolmogorov backward equation (KBE):

{
∂

∂t0
+ L̂+ + L̂0 + L̂−

}
p(S−, t;S+(0), S−(0), t0) = 0 (2.4)

with the boundary condition:

p(S−, t;S+(0), S−(0), t0 → t) = δ(S−(0)− S−)

where:

L̂+ =
1

8

(
σ2
+

(
S+(0)

)2
+ 2
(
σ2
1 − σ2

2

)
S+(0)S−(0) + σ2

−

(
S−(0)

)2) ∂2

∂S2
+(0)

L̂0 =
1

4

(
(σ2

1 − σ2
2)
(
(S+(0))

2 + (S−(0))
2
)
+ (σ2

1 + σ2
2)S+(0)S−(0)

)
∂2

∂S+(0)∂S−(0)

L̂− =
1

8

(
σ2
+

(
S−(0)

)2
+ 2(σ2

1 − σ2
2)S+(0)S−(0) + σ2

−

(
S+(0)

)2) ∂2

∂S2
−(0)

σ± =
√

σ2
1 + σ2

2 ± 2ρσ1σ2

S±(0) = S1(0)± S2(0)

S− = S1(t)− S2(t)

and δ is the Dirac delta function such that:

δ(x) =

⎧⎪⎪⎨⎪⎪⎩
+∞ , if x = 0

0 , otherwise

The following theorem helps to better interpret the form in which the above
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problem is stated:

Theorem 2. Denote by p(y, t;x, s) the transition probability density function (PDF)

from state x at time s to state y at time t. Let u(x, s) = p(y, t;x, s). Then:

⎧⎪⎪⎨⎪⎪⎩
us(x, s) + L{u(x, s)} = 0, for (x, s) ∈ R× (0, t)

lims→t u(x, s) = δ(x− y)

More informally, in problem (2.4) one is trying to reconstruct the transition

probability density function for the difference between two lognormal random vari-

ables by moving backward in time and making sure that the boundary condition is

satisfied. Solution to this problem exists and is of the following form:

p(S−, t;S+(0), S−(0), t0) = exp
(
(t− t0)(L̂+ + L̂0 + L̂−)

)
δ(S−(0)− S−)

The difficulties arise with exponentiating (t − t0)(L̂+ + L̂0 + L̂−) term. The

solution is to use the Lie-Trotter splitting method (Trotter, 1959), which is a gener-

alization of the Lie product formula for arbitrary real and complex matrices. Trotter

showed that:

exp {ϵC} = exp {ϵA} exp {ϵB}+O(ϵ2) (2.5)

where ϵ is some parameter and C is an operator that can be decomposed into

subcomponents:

C = A+B

Splitting methods are widely used for numerical solutions to partial differential

equations (PDEs), where we aim to split a given differential operator into operators

10



that are simpler to deal with. Applying this to (2.5) we get an approximate solution:

papprox(S−, t;S+(0), S−(0), t0) = exp
(
(t− t0)L̂−

)
δ(S−(0)− S−)

Now, having derived the approximate transition PDF of the difference between

two lognormal random variables, Lo proceeds to show that the difference is dis-

tributed as a shifted lognormal process.

Coming back to (2.3), the first actual attempt to price an option with such

a payoff was done by Phelim Boyle (1988), who extended the lattice binomial

approach proposed by Cox, Ross and Rubinstein (1979) to the current setting. The

major benefit of such an approach is that pricing American-style options becomes

possible. Later Kirk (1995) proposed the following closed-form approximation:

p = e−rT
(
S1(0)Φ(d1)− (S2(0) +K)Φ(d2)

)
(2.6)

where:

d1 =
ln
(

S1(0)
S2(0)+K

)
+ σ2T

2

σ
√
T

d2 = d1 − σ
√
T

σ =

√
σ2
1 −

2S2(0)

S2(0) +K
σ1σ2ρ+

( S2(0)

S2(0) +K

)2
σ2
2

The idea of Kirk was to approximate the true price through the following expec-

tation:

p = EQ

((
S1(T )−

aSb
2(T )

EQ(Sb
2(T ))

)+)
(2.7)
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where:

a = S2(0) +K

b =
S2(0)

S2(0) +K

Refer to Appendix 1 for derivations.

Bjerksund and Stensland (2006) elaborated upon the idea proposed by Kirk and

derived the following approximation to the price of a spread option:

p = e−rT
(
S1(0)Φ(d1)− S2(0)Φ(d2)−KΦ(d3)

)
(2.8)

where:

d1 =
ln(S1(0)

a
) + (

σ2
1

2
− σ1σ2bρ+

σ2
2b

2

2
)T

σ
√
T

d2 =
ln(S1(0)

a
) + (

σ2
1

2
+ σ1σ2ρ+

σ2
2b

2

2
− σ2

2b)T

σ
√
T

d3 =
ln(S1(0)

a
) + (−σ2

1

2
+

σ2
2b

2

2
)T

σ
√
T

σ =
√
σ2
1 − 2σ1σ2bρ+ σ2

2b
2

a = S2(0) +K

b =
S2(0)

S2(0) +K

The authors consider the exact same strategy to exercise the option if and only if

S1(T ) exceeds a power function of S2(T ) multiplied by a scalar a/EQ(S
b
2(T )) but

do not modify the option payoff as in (2.7). Then the price is obtained by evaluating

the following expectation:

12



p = EQ

(
(S1(T )− S2(T )−K)I{

S1(T )≥
aSb

2(T )

EQ(Sb
2(T ))

})

The choice of parameters a and b yields quite satisfactory results for the ap-

proximation of the true price as we will see later, however the authors claim that

the precision could still be further improved if one optimizes the option price with

respect to these parameters. We derive (2.8) in Appendix 2.

A somewhat different approach was undertaken by Carmona and Durrleman

(2003) where the authors proposed to express the correlation coefficient between

the two Brownian motion processes through trigonometric functions. The values of

the price processes of the two stocks at any time t are given by:

S1(t) = S1(0)exp

{
−σ2

1t

2
+
(
ϵ1 sin(ϕ) + ϵ2 cos(ϕ)

)
σ1

√
t

}
S2(t) = S2(0)exp

{
−σ2

2t

2
+ ϵ2σ2

√
t

}

where ϵ1 and ϵ2 are independent standard normal random variables, cos(ϕ) = ρ, ϕ ∈

[0, π]. The authors propose to exercise the option whenever the following condition

is satisfied:

ϵ1 sin(θ
∗)− ϵ2 cos(θ

∗) ≤ d∗

where θ∗ ∈ [π, 2π] and d∗ are found numerically by maximizing the option value.

The value obtained by following this strategy represents the lower bound of the true

price of this option and is equal to:
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p = e−rT
(
S1(0)Φ(d

∗+σ1

√
T cos(θ∗+ϕ))−S2(0)Φ(d

∗+σ2

√
T cos(θ∗))−KΦ(d∗)

)
(2.9)

Along with the approximation for the lower price bound on the price of a spread

option Carmona and Durrleman point out that one may approximate the distribution

between two lognormal random variables by means of a normal distribution, in

which case one can derive a closed-form solution for the price of such a contract.

Indeed, if one was to consider the difference between two lognormal prices at

maturity T under risk neural probability measure:

S1(T )− S2(T ) = S1(0)exp

{
−σ2

1T

2
+ σ1W

Q
1 (T )

}
− S2(0)exp

{
−σ2

2T

2
+ σ2W

Q
2 (T )

}

Using Taylor series expansion we can rewrite the above in the following way:

S1(T )−S2(T ) = S1(0)
∞∑
n=0

zn1
n!

− S2(0)
∞∑
n=0

zn2
n!

= S1(0)− S2(0) + S1(0)z1 − S2(0)z2 + S1(0)
∞∑
n=2

zn1
n!

− S2(0)
∞∑
n=2

zn2
n!

where:

z1 = −σ2
1T

2
+ σ1W

Q
1 (T )

z2 = −σ2
2T

2
+ σ2W

Q
2 (T )

14



Noting that in practice the initial prices of the two stocks are standardized to be

equal, the above simplifies to the following:

S1(T )− S2(T ) = S(0)(z1 − z2)− S(0)
( ∞∑

n=2

zn1
n!

−
∞∑
n=2

zn2
n!

)
(2.10)

where: S(0) = S1(0) = S2(0). The first term is normally distributed. So, the

difference between the prices of two risky securities at maturity follows a normal

distribution minus some additional error term in the amount of S(0)
(∑∞

n=2
zn1
n!

−∑∞
n=2

zn2
n!

)
. Ideally, one would like to know the distribution of the error term,

however Berg (1988) showed that a normal random variable raised to a power

p, for p ≥ 3, has an indeterminate distribution (in the Hamburger sense). Indeed,

knowing just the moments of a distribution does not help in managing the exposure

to risk and, on the contrary, can lead to problems by providing a false sense of

security. Suppose that we have estimated 3 moments of a given random variable,

which, for example, represents the loss function on some exposure: mean of 0,

variance of 5/3 and skewness of 0. The distribution of this random variable could

be that of normal. However, using this incomplete knowledge about the distribution

of the loss function for risk management purposes is incorrect as there are many

other distribution functions that have the same 3 moments but fail to match the

moments of higher order. To illustrate our point consider figure 2.1.

15



-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normal PDF

Student t PDF

Figure 2.1: Comparison of Normal and Student t Distributions

The figure plots a PDF of a normal distribution with the first three moments as

described above against a PDF of a student’s t distribution with v = 5 degrees of

freedom. We note that for a given random variable X ∼ t(v) we can estimate the

first 4 moments in the following way:

E(X) = 0, v > 1

E(X2) =
v

v − 2
, v > 2

E(X3) = 0, v > 3

E(X4) =
6

v − 4
+ 3, v > 4

So, the two distributions have the first three moments matching. However, the

kurtosis ofX ∼ t(5) is equal to 9, which is higher than the corresponding kurtosis of

3 for a normal distribution, making it a leptokurtic distribution, also known as a fat-

tailed distribution. Thus, the probability of observing more extreme losses is going

16



to be higher if the actual distribution is student’s t rather than the normal distribution.

Coming back to (2.10), we observe that the significance of each additional random

variable in the error term quickly diminishes due to the presence of a factorial

function in the denominator, which gives us some hope that for a certain choice of

initial model parameters the approximation might yield satisfactory results. Since

we are interested in the error term to be minimized, we want zn1 = zn2 ∀ n ≥ 2.

This can only be achieved if σ1 ≈ σ2 and if the variances of the Brownian motion

processes WQ
1 (T ) and WQ

2 (T ) are minimized as this reduces the probability that the

two Brownian motions end up further apart at maturity T . Hence, these differences

are dependent on the initial parameters of our market model. To illustrate this

dependence we have simulated 100,000 stock price values for two stocks at maturity

T , found and standardized the differences and compared the obtained PDFs and

CDFs of the differences with the one of a standard normal random variable. We

have also used the one-sample Kolmogorov-Smirnov test at the 5% significance

level with the following hypotheses:

H0 : the difference follows a standard normal distribution

H1 : the difference does not come from a standard normal distribution

Refer to figures 2.1 - 2.5 for the results of this simulation.
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Figure 2.2: Parameters: S(0) = 100, σ1 = 0.1, σ2 = 0.1, T = 1, ρ = 0.5
Kolmogorov Smirnov Test: 0, p = 0.58051
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Figure 2.3: Parameters: S(0) = 100, σ1 = 0.1, σ2 = 0.5, T = 1, ρ = 0.5
Kolmogorov Smirnov Test: 1, p = 0

18



-10 -8 -6 -4 -2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Empirical CDF
Standard Normal CDF

Figure 2.4: Parameters: S(0) = 100, σ1 = 0.1, σ2 = 0.1, T = 20, ρ = 0.5
Kolmogorov Smirnov Test: 1, p = 2.2038e-156
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Figure 2.5: Parameters: S(0) = 100, σ1 = 0.01, σ2 = 0.01, T = 20, ρ = 0.5
Kolmogorov Smirnov Test: 0, p = 0.73933
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Figure 2.6: Parameters: S(0) = 100, σ1 = 0.1, σ2 = 0.1, T = 1, ρ = −0.9
Kolmogorov Smirnov Test: 0, p = 0.88763

The results of the simulation confirm our previous claims. We can observe

that for σ1 = σ2 and low values of T we fail to reject the null hypothesis at 5%

significance level as per figure (2.2). If there is a significant difference in volatilities,

the distribution of the differences standardized is no longer standard normal as in

figure (2.3) but is negatively skewed. From figure (2.4) we can infer that even for

σ1 = σ2 but with maturity T extending far into the future, we can no longer accept

the null hypothesis as the variances of each of the two Brownian motion processes

are increased. We also note that correlation coefficient between WQ
1 and WQ

2 does

not affect the distribution of the differences standardized as can be seen from figure

(2.6).

Suppose that an investor or a financial institution is willing to sacrifice precision

in favour of quickness of implementation and ease of understanding, in which case

it is possible to price a contingent claim with payoff as in (2.3) by working with a

normally distributed random variable. Denote S1(T ) − S2(T ) by γ and suppose
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that γ is normally distributed with mean m and variance σ2. Then the price p of a

contingent claim with the payoff as in (2.3) can be approximated by considering the

following expectation:

EQ((γ −K)+) = EQ

(
(γ −K)I{γ≥K}

)
= EQ(γI{γ≥K})− EQ(KI{γ≥K})

=

∫ ∞

K

u

σ
√
2π

exp

{
−(u−m)2

2σ2

}
du−KPQ

(
ϵ ≤ m−K

σ

)
where: ϵ ∼ N(0, 1). By evaluating the above integral:

p =
m

2

(
1−erf

(K −m

σ
√
2

))
+

σ√
2π

exp

{
−(K −m)2

2σ2

}
−KΦ

(m−K

σ

)
(2.11)

where:

erf(x) =
2√
π

∫ x

0

exp
{
−u2

}
du

Alternatively, since we use normal distribution only as an approximation, we

can improve the precision of (2.11) considering an expectation expression of the

following form:

EQ

(
(S1(T )−S2(T )−K)+

)
= EQ(S1(T )I{γ>K})−EQ(S2(T )I{γ>K})−KEQ(I{γ>K})

The price of a spread option in this case is estimated as:

p = S1(0)Φ(x̂1)− S2(0)Φ(x̂2)−KΦ(x̂3) (2.12)
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where:

x̂1 =
−K −m

σ
+ σ1ρ1

√
T

x̂2 =
−K −m

σ
+ σ2ρ2

√
T

x̂3 =
−K −m

σ

ρ1 =

(
S1(0)σ1 − S2(0)σ2ρ

)√
T

σ

ρ2 =

(
S1(0)σ1ρ− S2(0)σ2

)√
T

σ

S1(T )− S2(T ) ∼ N(m,σ2)

Refer to Appendix 3 where we derive a similar but more advanced version of the

above formula that we will encounter later in the thesis.

Carmona and Durrleman (2003) also note that the parameters m and σ2 can

be calculated directly by requiring that at least the first two moments of the true

distribution and the approximating normal distribution coincide. In this case the

mean rate of return m can be estimated as follows:

EQ

(
S1(T )− S2(T )

)
=

= EQ

(
S1(0)exp

{
−σ2

1T

2
+ σ1W

Q
1 (T )

}
− S2(0)exp

{
−σ2

2T

2
+ σ2W

Q
2 (T )

})

= EQ

(
S1(0)exp

{
−σ2

1T

2
+ σ1W

Q
1 (T )

})
− EQ

(
S2(0)exp

{
−σ2

2T

2
+ σ2W

Q
2 (T )

})

= S1(0)− S2(0)

To calculate variance we note that: V ar(x) = E(x2) − (E(x))2. Let us first
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calculate the expectation of the difference squared:

EQ

((
S1(T )− S2(T )

)2)
= EQ

(
S2
1(0)exp

{
−σ2

1T + 2σ1W
Q
1 (T )

})
−

EQ

(
2S1(0)S2(0)exp

{
−
(σ2

1 + σ2
2

2

)
T + σ1W

Q
1 (T ) + σ2W

Q
2 (T )

})
+EQ

(
S2
2(0)exp

{
−σ2

2T + 2σ2W
Q
2 (T )

})
= S2

1(0)exp
{
σ2
1T
}
+ S2

2(0)exp
{
σ2
2T
}
− 2S1(0)S2(0)exp

{(
− σ2

1 + σ2
2

2

)
T

}
+EQ

(
exp

{
σ1W

Q
1 (T ) + σ2W

Q
2 (T )

})

Since σ1W
Q
1 (T ) + σ2W

Q
2 (T ) ∼ N(0, σ2

1T + σ2
2T + 2σ2

1σ
2
2ρT ), the above sums

up to:

EQ

(
S1(T )− S2(T )

)2
=

S2
1(0)exp

{
σ2
1T
}
+ S2

2(0)exp
{
σ2
2T
}
−

2S1(0)S2(0)exp

{
−

((σ2
1 + σ2

2

2

)
T − σ2

1T + σ2
2T + 2σ2

1σ
2
2ρT

2

)}

Now we subtract the mean squared to finally get:

V ar
(
S1(T )− S2(T )

)
= S2

1(0)exp
{
σ2
1T
}
+ S2

2(0)exp
{
σ2
2T
}
−

2S1(0)S2(0)exp

{
−
(σ2

1 + σ2
2

2

)
T +

σ2
1T + σ2

2T + 2σ2
1σ

2
2ρT

2

}
−
(
S1(0)− S2(0)

)2

We would like to note that while these approximations for the mean and variance

of the approximating normal distribution are good for certain choices of initial

market model parameters, for the rest of the thesis we are using the parameters

inferred from Monte Carlo simulations whenever we use (2.12) and its derivatives.

To compare the different pricing formulas for spread options we have estimated
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the prices by first varying the volatility of the first stock σ1 and the time to maturity

T parameters. The results are presented in table 2.1. Tables 2.2 and 2.3 show

the values of absolute and percentage errors when compared with the results of

Monte Carlo simulations. To check if there is any dependence of the accuracy of

our estimates on the strike price K we have estimated the prices by varying the

non-stochastic component and the results are summarized in table 2.4.
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T
σ1

0.5 1 3 5

0.1 4.8886 6.9092 11.937 15.372
4.8853 6.9049 11.933 15.37
4.885 6.9041 11.928 15.361
4.885 6.9041 11.928 15.361
4.8399 6.8061 11.404 14.228

0.15 5.1504 7.2788 12.573 16.188
5.145 7.2715 12.563 16.178
5.1447 7.2708 12.559 16.17
5.1447 7.2708 12.559 16.17
5.1124 7.1577 12.103 15.121

0.2 5.7911 8.1831 14.127 18.179
5.7835 8.1726 14.111 18.159
5.7833 8.172 14.108 18.153
5.7833 8.172 14.108 18.153
5.7503 8.0437 13.445 16.897

0.25 6.7008 9.4663 16.327 20.99
6.6926 9.4547 16.307 20.963
6.6925 9.4544 16.305 20.959
6.6925 9.4544 16.305 20.959
6.6062 9.2315 15.358 18.908

0.3 7.7852 10.994 18.937 24.313
7.7771 10.983 18.914 24.279
7.7771 10.983 18.913 24.277
7.7771 10.983 18.913 24.277
7.7153 10.651 17.074 20.852

Table 2.1: Spread Option: Value Approximation
Parameters: S1(0) = 105, S2(0) = 100, K = 5, σ2 = 0.2, ρ = 0.5
The different formulas are from top to bottom: MC simulations, Kirk’s approxima-
tion, Bjerksund and Stensland approximation, Carmona and Durrleman approxima-
tion, Normal approximation
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T
σ1

0.5 1 3 5

0.1 0 0 0 0
-0.0033 -0.0043 -0.004 -0.002
-0.0036 -0.0051 -0.009 -0.011
-0.0036 -0.0051 -0.009 -0.011
-0.0487 -0.1031 -0.533 -1.144

0.15 0 0 0 0
-0.0054 -0.0073 -0.01 -0.01
-0.0057 -0.008 -0.014 -0.018
-0.0057 -0.008 -0.014 -0.018
-0.038 -0.1211 -0.47 -1.067

0.2 0 0 0 0
-0.0076 -0.0105 -0.016 -0.02
-0.0078 -0.0111 -0.019 -0.026
-0.0078 -0.0111 -0.019 -0.026
-0.0408 -0.1394 -0.682 -1.282

0.25 0 0 0 0
-0.0082 -0.0116 -0.02 -0.027
-0.0083 -0.0119 -0.022 -0.031
-0.0083 -0.0119 -0.022 -0.031
-0.0946 -0.2348 -0.969 -2.082

0.3 0 0 0 0
-0.0081 -0.011 -0.023 -0.034
-0.0081 -0.011 -0.024 -0.036
-0.0081 -0.011 -0.024 -0.036
-0.0699 -0.343 -1.863 -3.461

Table 2.2: Spread Option: Absolute Error
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T
σ1

0.5 1 3 5

0.1 0.00% 0.00% 0.00% 0.00%
-0.07% -0.06% -0.03% -0.01%
-0.07% -0.07% -0.08% -0.07%
-0.07% -0.07% -0.08% -0.07%
-1.00% -1.49% -4.47% -7.44%

0.15 0.00% 0.00% 0.00% 0.00%
-0.10% -0.10% -0.08% -0.06%
-0.11% -0.11% -0.11% -0.11%
-0.11% -0.11% -0.11% -0.11%
-0.74% -1.66% -3.74% -6.59%

0.2 0.00% 0.00% 0.00% 0.00%
-0.13% -0.13% -0.11% -0.11%
-0.13% -0.14% -0.13% -0.14%
-0.13% -0.14% -0.13% -0.14%
-0.70% -1.70% -4.83% -7.05%

0.25 0.00% 0.00% 0.00% 0.00%
-0.12% -0.12% -0.12% -0.13%
-0.12% -0.13% -0.13% -0.15%
-0.12% -0.13% -0.13% -0.15%
-1.41% -2.48% -5.93% -9.92%

0.3 0.00% 0.00% 0.00% 0.00%
-0.10% -0.10% -0.12% -0.14%
-0.10% -0.10% -0.13% -0.15%
-0.10% -0.10% -0.13% -0.15%
-0.90% -3.12% -9.84% -14.24%

Table 2.3: Spread Option: Percentage Error
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K Option Price Absolute Error Percentage Error

5 8.1831 0 0.00%
8.1726 -0.0105 -0.13%
8.172 -0.0111 -0.14%
8.172 -0.0111 -0.14%
8.0114 -0.1717 -2.10%

10 8.0068 0 0.00%
7.9965 -0.0103 -0.13%
7.9956 -0.0112 -0.14%
7.9956 -0.0112 -0.14%
7.8902 -0.1166 -1.46%

20 7.7043 0 0.00%
7.694 -0.0103 -0.13%
7.6929 -0.0114 -0.15%
7.6929 -0.0114 -0.15%
7.5557 -0.1486 -1.93%

40 7.3263 0 0.00%
7.3143 -0.012 -0.16%
7.314 -0.0123 -0.17%
7.314 -0.0123 -0.17%
7.2108 -0.1155 -1.58%

Table 2.4: Spread Option: Value Approximation for Varying K
Parameters: S1(0) = 105, σ1 = 0.2, σ2 = 0.2, ρ = 0.5

We can see that the percentage errors vary significantly depending on the choice

of initial parameters with the lowest percentage error being −0.70% for σ1 = 0.2

and T = 0.5 and the highest being −14.24% for σ1 = 0.3 and T = 5. There seems

to be some dependence on the choice of the strike price K, however this relationship

is not linear. All other formulas are invariant to changes in the deterministic strike

price component. We also observe that all the formulas tend to undervalue the price

of a spread option for all the choices of market parameters. For the purposes of this

thesis we will use the Bjerksund and Stensland approximation (2.8) as well as the

proposed normal approximation (2.12) to tackle the problem of minimizing CV aR.
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2.3 Conditional Value at Risk

In this section we mathematically define V aR and CV aR as well as provide the

necessary theorems related to CV aR minimization as was proposed by Rockafellar

and Uryasev (2002). Let (Ω,F , P ) be a probability space and L = L(x,w) be

the function of losses, which depends on the chosen strategy x ∈ X , and a random

outcome w ∈ Ω. Note that throughout the thesis we consider losses as positive

quantities. Assume that L(x,w) is F - measurable and supxE(L(x,w)) < ∞. Let

Φ(x, •) be the CDF of L for a fixed strategy x:

Φ(x, z) = P (w : L(x,w) ≤ z)

Now we fix some confidence level a ∈ (0, 1), usually a = 0.9, 0.95 or 0.99 for

practical purposes, and definde the corresponding V aRa and CV aRa.

Definition 3. For a given strategy x V aRa is equal to the a-quantile of the loss

function:

V aRa(x) = inf {z ∈ R : Φ(x, z) ≥ a} (2.13)

Since z ∈ R, the infimum in (2.13) is always attained. We note that V aR does

not consider the "information" above a certain cutoff point.

Definition 4. For a given strategy x CV aRa of the loss function is equal to:

CV aRa(x) =

∫ ∞

−∞
z dΦa(x, z), ∀ a ∈ (0, 1) (2.14)

where:

Φa(x, z) =

⎧⎪⎪⎨⎪⎪⎩
0 , if z < V aRa(x)

Φ(x,z)−a
1−a

, otherwise
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Alternatively, we can express CV aRa associated with V aRa in the following

form:

CV aRa(x) = E
(
L(x) : L(x) ≥ V aRa

)
In other words, CV aRa is the conditional expectation of the losses given that

these losses exceed V aRa. Refer to figure 2.7 for graphical representation of the

two concepts, where CV aRa is the expectation of the tail distribution of Φ(x, z),

coloured orange.
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Figure 2.7: Value at Risk and Conditional Value at Risk

Artzner et al. (1999) established the axiomatics of coherent risk measures for

a general type of market, both complete and incomplete. Let G be the set of all

risks, i.e. the set of all real-valued functions on Ω. Denote by A the acceptance
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set, the set of risks with the acceptable level of future net worth (see the original

article for details). In practice the set is specified by regulatory, accounting and risk

management concerns. Define a risk measure:

Definition 5. Given the total rate of return on a reference instrument rT the risk

measure associated with the acceptance set A is the mapping κA from G to R

defined by:

κA (L) = inf {m : mrT + L ∈ A }

A risk-free zero-coupon bond is usually taken as the reference instrument. A

positive value ofκA (L) is interpreted as the amount of extra capital that an institution

needs to invest at the risk-free rate of interest to ensure that the risk is acceptable and

can be taken on by the institution. A negative value of κA (L) signifies the amount

m that can be safely withdrawn. Let us now introduce the axioms.

Axiom 6. Translation invariance: for all L ∈ G and real numbers c:

κ(L+ crT ) = κ(L)− c

Adding an amount of money c and investing it at a risk-free rate of interest

reduces the overall risk by this amount c. In other words, risk-free bond does not

contribute to the overall risk of a portfolio.

Axiom 7. Subadditivity: for all L1 and L2 ∈ G :

κ(L1 + L2) ≤ κ(L1) + κ(L2)

This is a variant of the triangle inequality applied within the context of financial

markets. Risk measure that satisfies axiom 7 benefits from diversification. It is
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possible to reduce an overall risk of a portfolio by adding an additional risky asset

as long as it is not perfectly positively correlated to the ones already present.

Axiom 8. Positive Homogeneity: for all λ ≥ 0 and all L ∈ G :

κ(λL) = λκ(L)

Axiom 8 connects the overall risk of a portfolio to its size.

Axiom 9. Monotonicity: for all L1 and L2 ∈ G with L1 ≤ L2:

κ(L1) ≤ κ(L2)

A coherent risk measure is defined as follows:

Definition 10. A risk measure satisfying the four axioms of translation invariance,

subadditivity, positive homogeneity and monotonicity is called coherent.

V aR as a risk measure satisfies the following three properties: translation

invariance, positive homogeneity and monotonicity. Unless the distribution of

portfolio risks is from an elliptical family of distributions, V aR does not satisfy the

subadditivity property and thus may, in theory, discourage diversification - "the only

free lunch in finance" (Harry Markowitz).

There has been extensive research done in the past years that challenges the theory

of random walks for stock prices first put forward by Louis Bachelier, where stock

returns are modelled as normally distributed random variables. Benoit Mandelbrot

(1963), the father of fractal geometry, studied the stock price data from the year

1900 and concluded that the empirical distributions tend to be more "peaked" as

compared to what would be expected under the normality assumption and proposed
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to model stock returns using the Pareto distribution. Fama (1965) confirmed the

findings of Mandelbrot and found out that the empirical stock returns are riskier

than what the standard deviations of normal distributions tend to predict. For a more

recent overview refer to LeBaron (2008). Generally, empirical stock returns tend

to be drawn from fat-tailed distributions. Figure 2.8 plots a PDF of a sinh-arcsinh

distribution with parameters ϵ = 0 and δ = 1.5, which has a kurtosis of 4.7577,

against a standard normal distribution with the kurtosis of 3. We have implemented

the sinh-asrcsinh transformation proposed by Jones and Pewsey (2009), where, given

a generating distribution (standard normal in our case), one can generate a family

of 4-parameter distributions and control the kurtosis and skewness parameters by

changing the values of ϵ and δ.
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Figure 2.8: Sinh-Arcsinh Distribution PDF. Parameters: ϵ = 0, δ = 1.5

To provide an example of non-subadditivity of V aR, consider a portfolio con-

sisting of two zero-coupon bonds B1 and B2 selling at par. For simplicity assume

that there are only 3 scenarios that can occur, where the portfolio and each of the
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bonds will have the following losses L:

Losses of B1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
20, if scenario 1 occurs

10, if scenario 2 occurs

0, otherwise

Losses of B2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
10, if scenario 1 occurs

20, if scenario 2 occurs

0, otherwise

Portfolio losses =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
30, if scenario 1 occurs

30, if scenario 2 occurs

0, otherwise

The probabilities assigned to each scenario are 5%, 5%, 90% respectively. Let

us first consider V aR0.95 of B1. According to definition 3, the set of z ∈ R for

which P (L ≤ z) ≥ 0.95 is an open set (10,∞). The greatest lower bound of this

set is 10 and hence its infimum is 10, which is the corresponding V aR0.95 of B1.

Likewise, V aR0.95 of B2 is 10. However, the portfolio V aR0.95 is equal to 30. The

combined risk of this portfolio is greater than the individual risks of its constituents.

Artzner et al. (1999) also point out that V aR does not recognize concentration

of risks and fails to encourage an optimal distribution of wealth between agents in

the market. On the other hand, Embrechts and Wang (2015) provided seven proofs

that CV aR is a sub-additive measure of risk, which in addition to the other three

axioms makes CV aR a coherent risk measure in the sense just discussed.

Definition 4 points to a direct link between V aR and CV aR, which we hope
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would make the computations of the two risk measures connected to each other.

Indeed, Rockafellar and Uryasev (2002) showed that it is possible to estimate both

V aR and CV aR associated with a given loss function L(x,w) at the same time

by solving a one-dimensional convex optimization problem. To do that we need to

introduce the following auxiliary function:

Fa(x, z) = z +
1

1− a
E
(
(L(x,w)− z)+

)
Theorem 11. Fa(x, z) is finite with respect to all z ∈ R and is convex with respect

to z. Also, the following relationships are true:

CV aRa(x) = min
z∈R

Fa(x, z) (2.15)

V aRa(x) = min

{
y : y ∈ argmin

z∈R
Fa(x, z)

}
(2.16)

In particular one always gets:

CV aRa(x) = Fa

(
x, V aRa(x)

)
(2.17)

Proof. The fact that Fa(x, z) is finite at any z ∈ R is a direct consequence of our

assumption that supxE(L,w) < ∞. The fact that Fa(x, z) is convex follows from

the fact that (L(x,w))+ is a convex function with respect to z and expectation is a

linear operator that preserves the convexity property.

The proof of assertion (2.17) is taken from the original article. We first note that

Fa(x, z) has finite right and left derivatives at any point z since Fa(x, z) is convex

and finite with respect to z (for proof see Rockafellar, 1970). Let us first derive these

one-sided derivatives. Consider the following:
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Fa(x, z
′)− Fa(x, z)

z′ − z
= 1 +

1

1− a
E
((L(x,w)− z′)+ − (L(x,w)− z)+

z′ − z

)

For the case when z′ > z:

(L(x,w)− z′)+ − (L(x,w)− z)+

z′ − z
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, if L(x,w) ≥ z′

0, if L(x,w) ≤ z

∈ (−1, 0), if z < L(x,w) < z′

Observe that:

P (w|L(x,w) > z′) = 1− Φ(x, z′)

and:

P (w|z < L(x,w) ≤ z′) = Φ(x, z′)− Φ(x, z)

Then, there should exist some value p(z, z′) ∈ [0, 1] for which:

E
((L(x,w)− z′)+ − (L(x,w)− z)+

z′ − z

)
= −(1−Φ(x, z′)−p(z, z′)((x, z′)−Φ(x, z)

Since Φ(x, z′) ↘ Φ(x, z) as z′ ↘ z:

lim
z′↘z

E
((L(x,w)− z′)+ − (L(x,w)− z)+

z′ − z

)
= −(1− Φ(x, z))

Applying this to (2.3), one obtains:
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lim
z′↘z

Fa(x, z
′)− Fa(x, z)

z′ − z
= 1 +

1

1− a
(Φ(x, z)− 1) =

Φ(x, z)− a

1− a

Following the same line of reasoning for the case z′ < z, one can show that the left

derivative is equal to:

lim
z′↗z

Fa(x, z
′)− Fa(x, z)

z′ − z
= 1 +

1

1− a
(Φ(x, z−)− 1) =

Φ(x, z−)− a

1− a

Since function Fa(x, z) is a convex function, its derivatives are increasing with

respect to z. By taking limits:

lim
z→∞

∂+Fa(x, z)

∂z
= lim

z→∞

∂−Fa(x, z)

∂z
= 1

and

lim
z→−∞

∂+Fa(x, z)

∂z
= lim

z→−∞

∂−Fa(x, z)

∂z
= − a

1− a

These limits indicate that the sets {z|Fa(x, z) ≤ c} are bounded for any c ∈ R and

hence the minimum in (2.15) is attainable. Also, the set of arguments of the minima

in (2.16) is a closed bounded interval, where the elements are such that:

∂−Fa(x, z)

∂z
≤ 0 ≤ ∂+Fa(x, z)

∂z

Relationship (2.17) immediately follows.

Theorem 11 reveals why CV aR is a more robust measure of risk than VaR:
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the optimal value in an optimization problem has better properties as a function of

parameter than the interval of arguments of the minima.

Theorem 12. Minimizing CV aRa(x) over all x ∈ X is equivalent to minimizing

Fa(x, z) over all (x, z) ∈ X × R:

min
x∈X

CV aRa(x) = min
(x,z)∈X×R

Fa(x, z) (2.18)

Proof. The proof follows from the fact that for each x ∈ X the minimum with

respect to z of Fa(x, z) is attainable.

2.4 Neyman-Pearson Lemma

This section is devoted to the statements of the classical results of Neyman-Pearson

theory, which first appeared in the article by Jerzy Neyman and Egon Pearson (1933).

Before stating the lemma itself, let us introduce some relevant definitions:

Definition 13. Given a random sample drawn from a population distribution with

parameter θ, simple hypothesis is the hypothesis that uniquely determines the pop-

ulation distribution. Any hypothesis that is not simple is a composite hypothesis.

For example, given a random sample from a normal distribution with a known

variance parameter σ2, a simple hypothesis will be H : µ = 10 as it would com-

pletely determine the population distribution. On the other hand, H : µ > 10 is a

composite hypothesis.

Definition 14. Most powerful test is the test which, given some fixed confidence level

a ∈ (0, 1), has the highest probability of rejecting the null hypothesis H0 when it is

indeed false.
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Neyman-Pearson lemma gives us the answer to the question of what is the most

powerful test for a hypothesis test at a given confidence level.

Lemma 15. Given some random sample x from a population distribution with

parameter θ, suppose one is using the likelihood-ratio test to compare a simple

hypothesis H0 : θ0 against another simple hypothesis H1 : θ1. The significance level

a at which the null hypothesis is rejected is:

a = P

(
L(θ0|x)
L(θ1|x)

≤ η |H0

)

where L(θ|x) is the likelihood function and η is the threshold of the likelihood-ratio

test. In this case, L(θ0|x)
L(θ1|x) is the most powerful test.

Due to its power and uniformity many extensions of the Neyman-Pearson lemma

have been developed following the initial publication. As Lehmann (1992) put it:

"Nevertheless, despite their shortcomings, the new paradigm formulated in the 1933

paper, and the many developments carried out within its framework continue to play

a central role in both the theory and practice of statistics and can be expected to do

so in the foreseeable future". In what follows we stick to the methodology proposed

by Cvitanic and Karatzas (2001). Let Q and P be two probability measures on some

measurable space (Ω,F ). Suppose that we want to construct a hypothesis test that

would distinguish between the two measures. Hence, we consider the following two

simple hypotheses: H0 : Q and H1 : P . Consider a randomized test, a continuous

random variable X : Ω → [0, 1]. If we observe w ∈ Ω, then we reject H0 with

probability X(w). The probability of accepting H0 is correspondingly 1 −X(w).

Type I error, the probability of rejecting H0 when it is correct, is:
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EQ(X) =

∫
X(w)Q(dw)

The probability of accepting H0 when it is incorrect, also know as type II error

is:

1− EP (X) = 1−
∫

X(w)P (dw)

The power of this test is:

EP (X) =

∫
X(w)P (dw)

In practice, it is impossible to minimize both types of errors at the same time.

Indeed, suppose a trader is setting up an automatic trading strategy where he is

receiving buy signals whenever the market is believed to go up. By trying to

minimize type I error, i.e. the error of missing out on a rise in the market level,

he is more likely make purchases before the market level drops, type II error. The

compromise is to minimize the probability of making type II error while keeping

the probability of type I error less than or equal to some fixed significance level a.

Then, one needs to solve the following problem:

⎧⎪⎪⎨⎪⎪⎩
1− EP (X) → min

EQ(X) ≤ a

(2.19)

which is equivalent to maximizing the power of the test while keeping type I error

less than or equal to the significance level a:

⎧⎪⎪⎨⎪⎪⎩
EP (X) → max

EQ(X) ≤ a

(2.20)
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Let us introduce an auxiliary measure v such that: P << v and Q << v, i.e.

both P and Q are absolutely continuous with respect to the third measure v. Define

the following Radon-Nikodym derivatives:

G : =
dP

dv

J : =
dQ

dv

Theorem 16. Problem (2.20) has a solution for any a ∈ (0, 1):

X̃ = I{z̃J<G} + γI{z̃J=G} (2.21)

where:

z̃ = inf {z ≥ 0 : Q(zJ < G) ≤ a} (2.22)

γ =
a−Q(z̃J < G)

Q(z̃J = G)
=

a−Q(z̃J < G)

Q(z̃J ≤ G)−Q(z̃J < G)
∈ [0, 1] (2.23)

Theorem 16 will play key role for the problem of minimizing expected shortfall.

2.5 Minimization of Expected Shortfall

In this section we state the results for the problem of expected shortfall minimization

as in Foellmer and Leukert (2000). Let S = (S(t) : t ∈ [0, T ]) be a discounted

stock price process on a standard stochastic basis (Ω,F ,F (t), P ), where F (t) is a

sigma-algebra of events or filtration, which we assume satisfies the usual conditions,

and F (0) = {Ω, ∅}. We assume that the market is complete and thus there exists a

unique martingale measure Q such that EQ(S(t) | F (s)) = S(s),∀ s < t. In other
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words, the discounted stock price process is a martingale under Q. Let us define a

process of capital V = (V (t) : t ∈ [0, T ]) for a class of self-financing strategies:

V (t) = V (0) +

∫ t

0

ξ(s)dS(s),∀ t ∈ [0, T ]

where V (0) > 0 is the initial capital and ξ = (ξ(t) : t ∈ [0, T ]) is a predictable

process which represents the number units of the underlying asset held at any time

t ∈ [0, T ]. The strategy is self-financing meaning that there is no external inflow or

outflow of capital in the system. All the transactions are financed by the sale of the

existing assets in the portfolio. Together V (0) and ξ form a portfolio π = (V (0), ξ).

Definition 17. A given self-financing strategy π = (V (0), ξ) is admissible if the

following condition is satisfied:

V (t) ≥ 0,∀ t ∈ [0, T ], P − a.s.

Denote by A be the set of all admissible trading strategies. Assume also that

there is an F (T )-measurable contingent claim H ∈ L1(Q). Since the market

is complete, we can construct the perfect hedge. In other words, there exists a

predictable process ξH :

EQ

(
H|F (t)

)
= H(0) +

∫ t

0

ξH(s)dS(s), ∀ t ∈ [0, T ], P − a.s.

where H(0) is the price of setting up a replicating portfolio and is determined as:

H(0) = EQ(H)

So,H can be perfectly replicated with a self-financing strategyπH = (H(0), ξH).
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If an investor only has V̂ (0) < H(0) or is not willing to invest the whole amount into

a hedging portfolio, it is not possible to construct the perfect hedge and the investor

will be faced with the possibility of shortfall at maturity. The criterion of optimality

that we are going to use is E
(
H − V (T )

)+
, which we are going to minimize over

all strategies x ∈ X with the initial capital V (0) ≤ V̂ (0). Foellmer and Leukert

(2000) also weighted the shortfall by a power loss function l(z) = zp to show the

investor’s attitude to risk, however for the purposes of this thesis we assume that

p = 1. So, we get the following optimization problem to solve:

⎧⎪⎪⎨⎪⎪⎩
E
(
H − V (T )

)+
= E

(
H − V (0)−

∫ T

0
ξ(s)dS(s)

)+
→ min

π

π ∈ A , V (0) ≤ V̂ (0)

(2.24)

Let us introduce the success ratio φ associated with a given admissible strategy

π:

φ(π) = I{V (T )≥H} +
V (T )

H
I{V (T )<H}

So, φ(π) is F (T )-measurable random variable and one can easily deduce that

φ(πH) = 1. We also note that:

φ(π)H = HI{V (T )≥H} +
V (T )

H
I{V (T )<H}H

= HI{V (T )≥H} + V (T )I{V (T )<H}

= min {H,V (T )}

= V (T ) ∧H

The size of a shortfall for a given strategy π can be expressed via its success
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ratio φ(π) in the following way:

(H − V (T ))+ = H − V (T ) ∧H =
(
1− φ(π)

)
H (2.25)

Denote by M the class of all F -measurable random variables that take values in

(0, 1). This class will include all the random variables which correspond to the

success ratios of all the admissible self-financing strategies. Now we reformulate

problem (2.24) using the derived relationship in (2.25):

⎧⎪⎪⎨⎪⎪⎩
E
(
(1− φ)H

)
→ min

φ∈M

EQ(φH) ≤ V̂ (0)

Which is equivalent to: ⎧⎪⎪⎨⎪⎪⎩
E(φH) → max

φ∈M

EQ(φH) ≤ V̂ (0)

(2.26)

Introduce the auxiliary probability measures P ∗ and Q∗ as Radon-Nikodym deriva-

tives in the following way:

dP ∗

dP
=

H

E(H)

dQ∗

dQ
=

H

EQ(H)

The expectations in (2.26) can be expressed through the newly defined measures P ∗
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and Q∗ as follows:

E(φH) = EP ∗

(
φH

dP

dP ∗

)
= EP ∗

(
φH

E(H)

H

)
= EP ∗

(
φE(H)

)
= EP ∗(φ)E(H)

and:

EQ(φH) = EQ∗

(
φH

dQ

dQ∗

)
= EQ∗

(
φH

EQ(H)

H

)
= EQ∗

(
φEQ(H)

)
= EQ∗(φ)EQ(H)

= EQ∗(φ)H(0)

Then, we can rewrite (2.26) in the following way:

⎧⎪⎪⎨⎪⎪⎩
EP ∗(φ) → max

φ∈M

EQ∗(φ) ≤ V̂ (0)
H(0)

= β

(2.27)

where β ∈ (0, 1) since 0 < V̂ (0) < H(0). By introducing a notion of a success ratio

φ associated with a given strategy π, we have transformed the original optimization

problem (2.24) to the class of problems considered in the previous section (see

(2.20)), for which the existence of a solution is guaranteed by theorem 16. According

to the theorem we should take a third measure. Let the third measure be the

martingale measure Q. It satisfies the required conditions of absolute continuity:

45



Q∗ << Q and, since Q ≈ P , we have that P ∗ << Q. So, for this problem the

relation (2.22) takes the following form:

ã = inf

{
a ≥ 0 : Q∗

(
a
dQ∗

dQ
<

dP ∗

dQ

)
≤ β

}

Let us simplify the above expectation expression:

Q∗
(
a
dQ∗

dQ
<

dP ∗

dQ

)
= Q∗

(
a
dQ∗

dQ
<

dP ∗

dP

dP

dQ

)
= Q∗

(
a

H

EQ(H)
<

H

E(H)

dP

dQ

)
= Q∗

(
a
E(H)

EQ(H)
<

dP

dQ

)
= Q∗

(dP
dQ

> b
)
= EQ∗

(
I{ dP

dQ
>b}
)

= EQ

(
I{ dP

dQ
>b}

dQ∗

dQ

)
= EQ

(
I{ dP

dQ
>b}

H

EQ(H)

)
=

1

EQ(H)
EQ

(
HI{ dP

dQ
>b}
)
=

1

H(0)
EQ

(
HI{ dP

dQ
>b}
)

where:

b = a
E(H)

H(0)
≥ 0

Then:

ã = inf

{
a ≥ 0 : Q∗

(
a
dQ∗

dQ
<

dP ∗

dQ

)
≤ β

}
= inf

{
a ≥ 0 : EQ

(
HI{ dP

dQ
>a}
)
≤ V̂ (0)

}
To transform (2.23) we follow the same procedure as for (2.22) to get:

γ =
V̂ (0)− EQ

(
HI{ dP

dQ
>ã}
)

EQ

(
HI{ dP

dQ
=ã}
)
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Finally, the solution to problem (2.27) takes the following form:

⎧⎪⎪⎨⎪⎪⎩
φ̃ = I{ dP

dQ
>ã} + γI{ dP

dQ
=ã}, if Q

({
dP
dQ

= ã
}
∩ {H > 0}

)
> 0

φ̃ = I{ dP
dQ

>ã} , if Q
({

dP
dQ

= ã
}
∩ {H > 0}

)
= 0

So, we have found φ̃ ∈ M - the solution to problem (2.26). Now consider a

random variable of the following form:

H̃ = φ̃H

It is obvious that H̃ is F (T )-measurable, nonnegative and integrable random

variable. Hence, we can consider it as a contingent claim. The price of this claim

or, equivalently, the price of setting up a hedging portfolio is given by:

EQ(H̃) = Ṽ (0)

In a complete market the above contingent claim is replicable with a strategy

π̃ = (Ṽ (0), ξ̃):

EQ

(
H̃|F (t)

)
= Ṽ (0) +

∫ t

0

ξ̃(s)dS(s),∀ t ∈ [0, T ], P − a.s.

Theorem 18. The perfect hedge π̃ = (Ṽ (0), ξ̃) for a contingent claim H̃ = φ̃H ,

where φ̃ is the solution to (2.26), is the optimal solution to problem (2.24). What is

more, if we assume that φ̃ = 1 on {H = 0}, then: φ̃ = φ(Ṽ , ξ̃), P-a.s.

Proof. Let π = (V (0), ξ) be any admissible trading strategy such that V (0) ≤ V̂ (0)

with the corresponding success ratio φ = φ(π). Its value process satisfies:
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V (t) = V (0) +

∫ t

0

ξ(s)dS(s),∀ t ∈ [0, T ], P − a.s.

The corresponding shortfall is equal to:

(H − V (T ))+ = H − V (T ) ∧H = (1− φ)H

Under the risk-neutral probability measure Q the corresponding value process is a

supermartingale:

EQ(φH) = EQ

(
V (T )∧H

)
≤ EQ(V (T ))∧EQ(H) ≤ EQ(V (T )) ≤ V (0) ≤ V̂ (0)

Thus, the success ratio satisfies the constraints in (2.26). The following inequality

is further satisfied:

E(H − V (T ))+ = E((1− φ)H) ≥ E((1− φ̃)H)

since φ̃ is the optimal solution to problem (2.26). Now we are left to show that

φ̃ = φ(π̃)(P − a.s.), if we assume that φ̃ = 1 on {H = 0}. This assumption is of

technical kind and does change the random variable H̃ = φ̃H and the solution to

problem (2.26). We have:

φ(π̃) = Ṽ (T ) ∧H ≥ φ̃H on {H > 0} (P − a.s.) (2.28)

Since φ̃ is the optimal solution to problem (2.26) and φ(π̃) is an admissible solution:

E(φ̃H) ≥ E(φ(π̃)) (2.29)
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From (2.28) and (2.29) we deduce that:

φ(π̃)H = φ̃H on {H > 0} (P − a.s.)

Moreover:

φ(π̃) = φ̃ = 1 on {H = 0} (P − a.s.)

It follows that φ(π̃) = φ̃ (P − a.s.).

2.6 Minimization of Conditional Value at Risk

In this section we combine the results of the previous sections to derive the the-

orems related to the problem of minimizing CV aR. The methodology was first

explained by Melnikov and Smirnov (2012). Again let S = (S(t) : t ∈ [0, T ]) be

a discounted stock price processes on a standard stochastic basis (Ω,F ,F (t), P )

with filtration F (t) that satisfies the usual conditions and F (0) = {Ω, ∅}. Let Q be

a unique equivalent martingale measure which is absolutely continuous with respect

to measure P . Denote by A the class of admissible self-financing strategies such

that π = (V (0), ξ). Let there be a contingent claim, which is F (T )-measurable,

nonnegative random variable H ∈ L1(Q). Further suppose that the initial capital

available V̂ (0) is strictly less than the required amount H(0). We define the loss in

the following way:

L(π) = H − V (T )

= H − V (0)−
∫ T

0

ξ(s)dS(s)
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Then, CV aRa(π) is determined by (2.14), where a is a fixed confidence level. We

will be minimizing CV aRa over all strategies π ∈ X with the restriction on the

amount of initial capital available V (0) ≤ V̂ (0):

⎧⎪⎪⎨⎪⎪⎩
CV aRa(π) → min

π

π ∈ A , V (0) ≤ V̂ (0)

(2.30)

The solution to problem (2.30) will be a hedging strategy π̃ = (Ṽ (0), ξ̃), optimal in

the sense of CV aRa, over all admissible self-financing strategies with initial capital

V (0) ≤ V̂ (0). Problem (2.30) can be rewritten:

CV aRa(π) → min
π∈A (V̂ (0))

Applying theorem 12, where instead of set X we take set A (V̂ (0)):

min
π∈A (V̂ (0))

CV aRa(π) = min
π∈A (V̂ (0))

(
min
z∈R

{
z +

1

1− a
E(H − V (T )− z)+

})
= min

z∈R

(
min

π∈A (V̂ (0))

{
z +

1

1− a
E(H − V (T )− z)+

})
(2.31)

Define the auxiliary function c(z) in the following way:

c(z) = min
π∈A (V̂ (0))

{
z +

1

1− a
E(H − V (T )− z)+

}

Problem (2.31) can be reformulated in the following form:

min
π∈A (V̂ (0))

CV aRa(π) = min
z∈R

c(z) (2.32)

50



Let the minimum of function c(z) in (2.32) with respect to z be achieved using

strategy π̃(z) = (Ṽ (0, z), ξ̃(z)):

min
π∈A (V̂ (0))

E(H − V (T )− z)+ = E(H − Ṽ (T, z)− z)+

where:

Ṽ (T, z) = Ṽ (0, z) +

∫ T

0

ξ̃(s, z) dS(s)

Let the global minimum of function c(z) in (2.32) be achieved at point z̃:

min
z∈R

c(z) = c(z̃)

Then the optimal solution to the problem of CV aRa minimization over all π ∈

A (V̂ (0)) is the strategy:

π̃(z̃) = (Ṽ (0, ẑ), ξ̃(0, ẑ))

Then according to theorem 11:

⎧⎪⎪⎨⎪⎪⎩
CV aRa(π̃) = c(z̃)

V aRa(π̃) = z̃

It follows that if we can find the strategy π̃ in an explicit form, then the problem

of CV aRa minimization will be reduced to the problem of minimization of function

c(z). For each z strategy π̃ is a solution to the following problem:

E(H − V (T )− z)+ → min
π∈A (V̂ (0))

(2.33)
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Note that:

(H − V (T )− z)+ =
(
(H − z)+ − V (T )

)+
Denote (H − z)+ by H(z). It is obvious that H(z) is F -measurable random

variable, H(z) ∈ L1(Q) and H(z) ≥ 0, which means that (2.33) can be restated in

the following form:

E
(
H(z)− V (T )

)+
→ min

π∈A (V̂ (0))
(2.34)

Problem (2.34) can be interpreted as the problem of expected shortfall mini-

mization over the strategy set A (V̂ (0)) of contingent claim H(z), to which we can

apply theorem 18.

Proposition 19. The optimal solution π̃ = (Ṽ (0), ξ̃) of problem (2.33) is the per-

fect hedge of contingent claim H̃(z) = φ̃(z)(H − z)+ or, equivalently, H̃(z) =

φ̃(z)H(z):

EQ(H̃(z)|F (t)) = Ṽ (0, z) +

∫ t

0

ξ̃(s, z) dS(s), ∀ t ∈ [0, T ], (P − a.s.)

where:

φ̃(z) = I{ dP
dQ

>ã(z)} + γ(z)I{ dP
dQ

=ã(z)} (2.35)

ã = inf
{
a ≥ 0 : EQ

(
(H − z)+I{ dP

dQ
>a}
)
≤ V̂ (0)

}
(2.36)

γ =
V̂ (0)− EQ

(
(H − z)+I{ dP

dQ
>ã(z)}

)
EQ

(
(H − z)+I{ dP

dQ
=ã(z)}

) (2.37)

Proposition 20. Function c(z) is determined in the following way:
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c(z) =

⎧⎪⎪⎨⎪⎪⎩
z + 1

1−a
E
(
(1− φ̃(z))(H − z)+

)
, z < ẑ

z , z ≥ ẑ

(2.38)

Equivalently:

c(z) =

⎧⎪⎪⎨⎪⎪⎩
z + 1

1−a
E
(
H(z)− H̃(z)

)
, z < ẑ

z , z ≥ ẑ

where ẑ is the solution to the following equation:

V̂ (0) = EQ

(
(H − ẑ)+

)
(2.39)

Proposition 21. Let z̃ be the global minimum of function c(z), then strategy π̃ =

π̃(z̃) is the optimal solution to the original problem (2.30) of CV aRa minimization

and: ⎧⎪⎪⎨⎪⎪⎩
CV aRa(π̃) = c(z̃)

V aRa(π̃) = z̃

Note that in problem (2.34) we assumed that the initial capital available V̂ (0) is

strictly less than EQ(H(z)). If this was not the case, we could use the strategy of

complete hedging for H(z). Then, E(H(z) − V (T ))+ = 0. From this (2.38) and

(2.39) follow. It is also worth noting that when z ≥ ẑ from (2.35), (2.36) and (2.37)

we have:

ã(z) = −∞
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and:

φ̃(z) = 1

Hence for z ≥ ẑ the optimal strategy π̃(z) = (Ṽ (0, z), ξ̃(z)) for problem (2.33) will

be the perfect hedge of contingent claim H̃(z).
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Chapter 3

Applications to Margrabe Market

Under the Margrabe market model we assume the existence of only two risky

correlated assets S1 = (S1(t) : t ∈ [0, T ]) and S2 = (S2(t) : t ∈ [0, T ]) that satisfy

the following stochastic differential equations:

⎧⎪⎪⎨⎪⎪⎩
dS1(t) = S1(t)(σ1dW1(t) + µ1dt)

dS2(t) = S2(t)(σ2dW2(t) + µ2dt)

where W1 = (W1(t) : t ∈ [0, T ]) and W2 = (W2(t) : t ∈ [0, T ]) are standard

Brownian motion processes with the correlation coefficient ρ. The mean rates

of return µ1 and µ2 and volatilities σ1 and σ2 are assumed to be constant. The

original model does not assume the existence of a bank account: r = 0, however the

extension to the case where r > 0 is straightforward. The market is arbitrage-free

and complete, hence we can introduce the equivalent martingale measure Q ≈ P

via the Radon-Nikodym derivative (see, for instance, Melnikov, 2004):

Z(T ) =
dQ

dP
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In an explicit form:

Z(t) = exp

{
ϕ1W1(t) + ϕ2W2(t)−

σ2
ϕ

2
t

}

where:

ϕ1 =
σ1µ2ρ− σ2µ1

σ1σ2(1− ρ2)

ϕ2 =
σ2µ1ρ− σ1µ2

σ1σ2(1− ρ2)

σ2
ϕ = ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2

Under the risk-neutral measure Q the dynamics of the two stock price processes’

satisfy the following SDEs:

dS1(t) = S1(t)σ1dW
Q
1 (t)

dS2(t) = S2(t)σ2dW
Q
2 (t)

where WQ
1 = (WQ

1 (t) : t ∈ [0, T ]) and WQ
2 = (WQ

2 (t) : t ∈ [0, T ]) are standard

Brownian motion processes under measure Q with correlation coefficient ρ. These

processes are defined in the following way:

WQ
1 (t) = W1(t) + θ1t

WQ
2 (t) = W2(t) + θ2t
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where:

θ1 =
µ1

σ1

θ2 =
µ2

σ2

We can rewrite the process Z under measure Q as follows:

Z(t) = exp

{
ϕ1W

Q
1 (t) + ϕ2W

Q
2 (t)−

(σ2
ϕ

2
+ ϕ1θ1 + ϕ2θ2

)
t

}
Let us consider a European style contingent claim H with the following payoff:

H = (S1(T )− S2(T ))
+

The initial capital H(0), which is required for the perfect hedging of this contingent

claim, is determined via the Margrabe formula (2.2):

H(0) = S1(0)Φ(d1)− S2(0)Φ(d2)

where:

d1 =
ln(S1(0)

S2(0)
) + σ2T

2

σ
√
T

d2 = d1 − σ
√
T

σ =
√
σ2
1 + σ2

2 − 2σ1σ2ρ

Assuming that the initial capital available V̂ (0) is less than H(0), we will be

minimizing CV aRa over all strategies with the initial capital less than or equal to

V̂ (0), i.e. π = (V (0), ξ, η) such that V (0) ≤ V̂ (0). Let us construct function c(z)
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as in (2.31):

c(z) = z +
1

1− a

(
min

π∈A (V̂ (0))
E
(
((S1(T )− S2(T ))

+ − V (T )− z)+
))

Now, using proposition 20 we can rewrite function c(z) in the following way:

c(z) =

⎧⎪⎪⎨⎪⎪⎩
z + 1

1−a
E((1− φ̃(z))(H − z)+), z < ẑ

z , z ≥ ẑ

(3.1)

where ẑ is the solution to (2.39) and we will be solving for it using the proposed

normal approximation as in (2.12) and the approximation put forward by Bjerksund

and Stensland (2.8). Having determined the unique value ẑ, we can minimize c(z)

numerically using Monte Carlo simulation approach. Suppose that z̃ is the point

of global minimum of function c(z), then proposition 19 tells us how to construct

the CV aR-efficient portfolio as well as provides information related to the Greeks

of the option and the optimal amount of initial capital required, since it is possible

to find a strategy that is optimal but requires less capital than what is available.

Noting that the distribution of Brownian motion processes is atomless, the problem

is reduced to evaluating the following expectation:

EQ(H̃(z̃)) = EQ(S1(T )− S2(T )− z̃)+I{ dP
dQ

>ã} (3.2)

Approximating the distribution of the difference between two lognormal random

variables as using the normal distribution, the initial price p of replicating portfolio

for a spread option can be estimated as follows:

p = S1(0)Φ
2(x̂1, ŷ1, ρ3)− S2(0)Φ

2(x̂2, ŷ2, ρ3)− z̃Φ2(x̂3, ŷ3, ρ3) (3.3)
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where:

x̂1 =
m− z̃

σ
+ σ1ρ1

√
T

ŷ1 = K̃ + σ1ρ4
√
T

x̂2 =
m− z̃

σ
+ σ2ρ2

√
T

ŷ2 = K̃ + σ2ρ5
√
T

x̂3 =
m− z̃

σ

ŷ3 = K̃

ρ1 =

√
T

σ

(
S1(0)σ1 − S2(0)σ2ρ

)
ρ2 =

√
T

σ

(
S1(0)σ1ρ− S2(0)σ2

)
ρ3 =

a− b

σ

ρ4 = −ρϕ2 + ϕ1

σϕ

ρ5 = −ϕ2 + ϕ1ρ

σϕ

σϕ =
√

ϕ2
1 + ϕ2

2 + 2ρϕ1ϕ2

a = S2(0)
σ2

√
T

σϕ

(
ϕ1ρ+ ϕ2

)
b = S1(0)

σ1

√
T

σϕ

(ϕ1 + ϕ2ρ)

K̃ =
(
σ2
ϕ

2
+ ϕ1θ1 + ϕ2θ2)T + ln( 1

ã
)

σϕ

√
T

S1(T )− S2(T ) ∼ N(m,σ2)

The derivation of the above formula is in Appendix 3. Alternatively, following the
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methodology proposed by Bjerksund and Stensland:

p = S1(0)Φ
2(x̂1, ŷ1, ρ3)− S2(0)Φ

2(x̂2, ŷ2, ρ3)− z̃Φ2(x̂3, ŷ3, ρ3) (3.4)

where:

x̂1 = K̂ + σ1ρ1
√
T

ŷ1 = K̃ + σ1ρ4
√
T

x̂2 = K̂ + σ2ρ2
√
T

ŷ2 = K̃ + σ2ρ5
√
T

x̂3 = K̂

ŷ3 = K̃

ρ1 =
(σ1 − σ2bρ)

√
T√

σ2
1T − 2σ1σ2bρT + σ2

2b
2T

ρ2 =
(σ1ρ− σ2b)

√
T√

σ2
1T − 2σ1σ2bρT + σ2

2b
2T

ρ3 =
(σ2bϕ1ρ+ σ2bϕ2 − σ1ϕ1 − σ1ϕ2ρ)

√
T

σϕ

√
σ2
1T + σ2

2b
2T − 2σ1σ2bρT

ρ4 = −ϕ2ρ+ ϕ1

σϕ

ρ5 = −ϕ2 + ϕ1ρ

σϕ

σϕ =
√

ϕ2
1 + ϕ2

2 + 2ρϕ1ϕ2

b =
S2(0)

a
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a = S2(0) + z̃

K̃ =
(
σ2
ϕ

2
+ ϕ1θ1 + ϕ2θ2)T + ln( 1

ã
)

σϕ

√
T

K̂ =
ln(S1(0)

a
)− σ2

1T

2
+

σ2
2b

2T

2√
σ2
1T + σ2

2b
2T − 2ρσ1σ2bT

Refer to Appendix 4, where we show how to derive the above formula.
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Chapter 4

Empirical Tests

This chapter is devoted to implementing the methodology developed in the previous

chapter using both hypothetical and real data. For the first hypothetical portfolio

example consider two stocks S1 and S2 with the volatility of the first stock being

σ1 = 0.3 and the volatility of the second asset being σ2 = 0.1. The first stock

is perceived to be riskier than the second one and hence market participants are

rewarded by higher rate of return µ1 = 0.1, the rate of return on the latter stock is

µ2 = 0.05. The two stocks are assumed to be positively correlated with ρ = 0.5 and

the initial prices of the two stocks are standardized to be equal to 100. A financial

institution has sold an option to exchange the second asset for the first one with

maturity of T = 5. Using the Margrabe formula we estimate the fair price of this

option to be p = 23.26. However, suppose that the issuing institution decides not to

invest all the proceeds from the sale of the option into a replicating portfolio. What

are the associated CV aRs for various levels of initial capital available as percentage

of p at 90%, 95% and 99% confidence levels? We have estimated the CV aRs

using the normal approximation and the approximation proposed by Bjerksund and

Stensland. Refer to figures 4.1 - 4.3 where we plot CV aRs against the initial capital
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available for hedging purposes.
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Figure 4.1: Hypothetical Portfolio 1: CVaR at 90%
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Figure 4.2: Hypothetical Portfolio 1: CVaR at 95%
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Figure 4.3: Hypothetical Portfolio 1: CVaR at 99%

We can infer from the plots that there is a big divergence between CV aRs

estimated using the proposed normal approximation as compared to the approxima-

tion of Bjerksund and Stensland, which we take as an accurate estiamte of CV aR.

We attribute this drastic difference to the market parameters that we chose for this

hypothetical portfolio: the first stock is perceived to be riskier by a factor of 3 and

the maturity of the contract spans too far into the future. We also observe that

the normal approximation that we have proposed underestimates CV aRs at all the

confidence levels and all the levels of initial capital, which is in line with the results

represented in table 2.1 for the choice of market parameters. We can also see that

there are some ranges over which the graph of CV aR is horizontal. The natural

interpretation would be that increasing (reducing) the amount of capital used for

hedging over this range does not reduce (increase) the overall exposure. However,

this could also be simply attributed to the estimation error: "the trade-off between

estimation accuracy and computational efficiency is well known for Monte-Carlo
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simulation. When the underlying assets have high volatilities, stochastic volatilities,

or time-dependent correlations or when the option has a long maturity or high di-

mensionality, precision deterioration becomes a major concern unless computation

time is increased exponentially" (Li and Wu, 2006).

For the second hypothetical portfolio we consider a similar market but this time

we compare stocks which are more ’equivalent’ in terms of risk-reward charac-

teristics. Thus, assume the following parameters for this market: σ1 = 0.12, σ2 =

0.1, µ1 = 0.055 and µ2 = 0.05. A financial institution has sold an option o exchange

one asset for another to a client for the amount p = 4.44 with maturity of T = 1.

Similarly, we estimate CV aRs for varying levels of initial capital used for hedging

and for the three different confidence levels. Figures 4.7 - 4.9 plot the results.
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Figure 4.4: Hypothetical Portfolio 2: CVaR at 90%
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Figure 4.5: Hypothetical Portfolio 2: CVaR at 95%

0 0.2 0.4 0.6 0.8 1

Initial Capital

-5

0

5

10

15

20

25

30

35

C
V

a
R

Normal Approximation
Bjerksund & Stensland Approximation

Figure 4.6: Hypothetical Portfolio 2: CVaR at 99%

As can be inferred from the plots the CV aR levels under the two methods

are almost identical given the market parameters we have chosen. Again, the
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normal approximation method does underestimate risk for all the cases, however

this underestimation is of almost negligible magnitude. It also becomes evident

that the estimation error of MC simulation is almost eliminated completely, which

is attributed to lower standard deviations and lower maturity for the option under

consideration. Finally, CV aRs are inversely related to the amount of initial capital

available for hedging, which is what one would expect.

Finally, to see how the methodology would apply to the real market data, we have

downloaded the closing price data for Apple Inc. and SP500 index from 1st January

2013 to 28th March 2018, overall 1319 observations. Having transformed the prices

to logarithmic returns and annualized the returns, we obtained the following market

parameters: σ1 = 0.24, σ2 = 0.12, where subscript 1 refers to Apple Inc. and

subscript 2 to S&P 500 index. The annualized returns are: µ1 = 0.14, µ2 = 0.11.

The estimated correlation coefficient over the period was ρ = 0.5068. The initial

prices as of 1st January 2013 are:

S1(0) = 78.4329 S2(0) = 1462.42 ∗ S1(0)

S2(0)

We have standardized the initial prices to be equal so as to make the spread

option feasible. The institution has sold an option to exchange the SP500 for the

stock of Apple Inc. with the expiration date 1 year from now. The price that is

required for complete hedging is determined via the Margrabe formula to be equal

to p = 6.49. As usual we estimate CV aRs that the issuing house faces following

the sale of this option using both methodologies and for the three confidence levels.
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Figure 4.7: Apple Inc. and SP500 Portfolio: CVaR at 90%

0 0.2 0.4 0.6 0.8 1

Initial Capital

-10

0

10

20

30

40

50

C
V

a
R

Normal Approximation
Bjerksund & Stensland Approximation

Figure 4.8: Apple Inc. and SP500 Portfolio: CVaR at 95%
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Figure 4.9: Apple Inc. and SP500 Portfolio: CVaR at 99%

The results plotted are in line with the conclusions we have drawn from the exam-

ples of the two hypothetical portfolios. To further investigate the risk management

aspect of this portfolio, refer to tables 4.1 - 4.3.

Normal Approximation Bjerksund & Stensland

Capital Available VaR CVaR VaR CVaR

0% 28.0807 40.9760 27.9631 40.8337
10% 26.0966 26.0966 27.4378 27.4378
20% 18.9853 18.9853 19.8209 19.8209
30% 14.4674 14.4674 15.1719 15.1719
40% 11.1456 11.1456 11.7549 11.7549
51% 8.4653 8.4653 9.0196 9.0196
61% 6.2721 6.2721 6.7189 6.7189
71% 4.3021 4.3021 4.7194 4.7194
81% 2.5291 2.5291 2.9413 2.9413
91% 0.9631 0.9631 1.3326 1.3326
100% -0.3239 -0.3239 0.0000 0.0000

Table 4.1: Apple Inc. and S&P500 Portfolio: VaR and CVaR at 90%
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Normal Approximation Bjerksund & Stensland

Capital Available VaR CVaR VaR CVaR

0% 37.2960 49.6749 37.2442 49.5760
10% 26.1079 26.1079 27.4378 27.4378
20% 18.9376 18.9376 19.8209 19.8209
30% 14.4738 14.4738 15.1719 15.1719
40% 11.1210 11.1210 11.7549 11.7549
51% 8.4614 8.4614 9.0196 9.0196
61% 6.2273 6.2273 6.7189 6.7189
71% 4.2790 4.2790 4.7194 4.7194
81% 2.5496 2.5496 2.9413 2.9413
91% 0.9693 0.9693 1.3326 1.3326
100% -0.3206 -0.3206 0.0000 0.0000

Table 4.2: Apple Inc. and S&P500 Portfolio: VaR and CVaR at 95%

Normal Approximation Bjerksund & Stensland

Capital Available VaR CVaR VaR CVaR

0% 57.2583 68.9700 57.3636 69.0788
10% 26.0501 26.0501 27.4378 27.4378
20% 18.9578 18.9578 19.8209 19.8209
30% 14.4591 14.4591 15.1719 15.1719
40% 11.1611 11.1611 11.7549 11.7549
51% 8.4916 8.4916 9.0196 9.0196
61% 6.2363 6.2363 6.7189 6.7189
71% 4.2763 4.2763 4.7194 4.7194
81% 2.5743 2.5743 2.9413 2.9413
91% 0.9873 0.9873 1.3326 1.3326
100% -0.3293 -0.3293 0.0000 0.0000

Table 4.3: Apple Inc. and S&P500 Portfolio: VaR and CVaR at 99%

The tables provide the estimated V aR and CV aR values for the portfolio at

the three different confidence levels. First of all, we observe that for most of the

levels of initial capital available V aRs and CV aRs are equal. This is possible

according to proposition 20 when z ≥ ẑ. We naturally interpret this results as

follows: since CV aR is the average of losses in excess of V aR, it must be that
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the probability of those losses is low enough to make the mean of their expected

values equal to the cutoff point beyond which they are estimated. As previously,

we believe that the precision of these estimates could be improved by increasing the

number of simulations in MC procedure. Secondly, since the normal approximation

underestimates the price of a spread option, it naturally leads to lower estimates for

the risks associated with this option. In our particular case this resulted in V aRs

and CV aRs taking negative values, which is, of course, not possible as using 100%

of capital required for perfect hedging should lead to no gains and no losses at

maturity. Other than that, the two methods provide comparable results.

We can further supplement our analysis by looking at CV aR-efficient portfolios

from a regulatory point of view. Suppose that a regulator in the market requires

the member institutions to keep a certain amount of capital in reserves depending

on the estimated level of CV aR. Let β be the amount of capital required per unit

of CV aR exposure. Denote by λa(V̂ (0)) = βCV aRa

(
V̂ (0)

)
+ V̂ (0) the total

amount of capital to be kept in reserves provided that an amount of V̂ (0) has been

used for hedging purposes at a significance level a. Then, theCV aR of an unhedged

position is λa(0). Introduce the following ratio:

Θa =
λa(V̂ (0))

λa(0)

The ratio tells us the relative attractiveness of a CV aR-efficient portfolio. In

the case where Θa < 1 shows that engaging in CV aR-efficient hedging allows the

institution to use less capital to meet the regulatory requirement as compared to an

unhedged position and vice versa. We apply this line of analysis to our Apple Inc.

and SP500 portfolio at 95% significance level and the results are shown in figure

4.10.
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Figure 4.10: Relative Attractiveness of CV aR-efficient Portfolio at 95% confidence
level

The above figure clearly indicates that the higher the regulatory requirements,

the more attractive a CV aR-efficient portfolio is compared to a portfolio with no

hedging.
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Chapter 5

Recommendations

In drawing the conclusions about the comparative effectiveness of the two methods

for minimizing CV aR under capital constraints, we have assumed that the approxi-

mation of Bjerksund and Stensland is precise. In reality, this is not the case. The

pricing formula developed by Bjerksund and Stensland provides a vey close lower

bound to the true price of a spread option and thus, in theory, also underestimates the

true risks associated with a given contingent claim. To be able to draw the ultimate

conclusions about the effectiveness of the two methods, there should be an analyt-

ical pricing formula for a spread option or another approach to measuring CV aR

associated with a given portfolio. Both developments are currently perceived as

incomplete. To be able to give a definite price for a spread option one needs to know

the exact distribution of the difference between two lognormal random variables, a

long standing problem with no definite answer. One possible way to improve the

results in this direction is to use the results of Lo discussed in section 2.2, where

we adopt a Lie-Trotter splitting method and work with a shifted lognormal process.

With regards to the second development, a possible solution is to use the results of

comparison theorem for stochastic processes investigated by Krasin et al. (2017).
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The central idea is to find a process with a known distribution that will dominate

over the process of interest, the process of difference between two lognormally dis-

tributed stock prices in our case. It would then be possible to find the CV aR of a

portfolio whose dynamics is governed by this dominating process and in this way

determine the CV aR of the portfolio of interest. Generally, "despite the advantages

of ES, this measure is less frequently utilized than V aR because forecasting ES is

challenging due to its complex mathematical definition" (Brutti Righi and Ceretta,

2016), where ES is used as an alternative name for CV aR.

Most of the developments in the financial theory are done within the Samuel-

son’s model of the market, where stock price processes are modelled as geometric

Brownian motions. A possible extension is to consider spread option pricing as

well as minimization of risk functions within the context of Bachelier model of

the market, where arithmetic Brownian motions describe the dynamic of the stock

price processes. The reason why Bachelier model is rejected by many is that it

allows for the stock prices to take on negative values, which in reality is impossible

and is associated with bankruptcy of a given enterprise. The solution would be to

introduce stopping times, random variables which are used to represent the default

times of a given company. In this way we account for the problem of stock prices

taking negative values and the transfer of the results of this thesis becomes a viable

option.
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Chapter 6

Summary and Conclusions

This thesis dealt with the problem of minimizing CV aR under capital constraints

within the Margrabe market. We have developed a methodology based on two spread

option pricing methods: the normal approximation to the difference between two

lognormal random variables and the pricing formula for spread options proposed

by Bjerksund and Stensland. Both methods provide almost equivalent results pro-

vided the parameters of the market model under question satisfy certain constraints.

Otherwise, there is a divergence in results and the normal approximation tends to

significantly underestimate the risk exposure of a portfolio. The conclusions of the

thesis might carry a lot of benefit to the practitioners of risk management in light

or recent developments in regulations that call for more stringent requirements for

managing exposure to risk. While we feel that the problem of the thesis has been

addressed, there are still many improvements that can be done in this direction.
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Appendix 1

We are interested in the following expectation:

EQ

((
S1(T )−

aSb
2(T )

EQ(Sb
2(T ))

)+)
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S1(T )−

aSb
2(T )
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2(T ))

)
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2(T )
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}
)

The term in the denominator is:
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}
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2b(b− 1)T
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}

Let us now simplify the term in the indicator function:
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Since:
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the inequality above is equivalent to:

ϵ ≤ K̃

where:

ϵ =
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Q
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Q
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Consider the first term in the original expectation:
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Applying the two-asset lemma (2.1) to the expectation term:
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Which leads to:
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Let us now consider the second term in the original expectation:
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Similarly, applying the two-asset lemma to the term under expectation operator:
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Finally:
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= S1(0)Φ(d1)− aΦ(d2)

which is exactly the formula of Kirk (2.6).
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Appendix 2

Consider the following expression:
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The first term is exactly the same as in Appendix 1. Let us consider the second term:
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Finally, the third term is simply:

KI{
S1(T )≥

aSb
2(T )

EQ(Sb
2(T ))

} = KΦ(K̃)

Combining the three terms together we get the approximation of Bjerksund and

Stensland (2.8).
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Appendix 3
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Now denote S1(T )− S2(T ) by γ ∼ N(m,σ2). Then:
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Let us consider each of the terms above separately.
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Now we need to estimate the correlation coefficients ρZ1X , ρZ1Y and ρXY . Let us

first consider ρXY :
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Since Y ∼ N(0, 1):
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Opening the brackets and calculating the expectations, the above yields:
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To get correlation we need to divide by σxσy to finally get:
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Now consider ρZ1X :
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σ2
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σz1σy
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Since Z1 ∼ N(0, σ2
1T ):
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Opening the brackets and calculating the expectations, the above yields:
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To get correlation we need to divide by σxσy to finally get:
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Let us finally consider ρZ1Y :

ρZ1Y =
σ2
z1y

σz1σy

Since both random variables Z1 and Y have zero expectation:
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Opening the brackets and calculating the expectations, the above yields:
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Finally, we can apply the Two-Asset lemma to I to get:
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ŷ1 = K̃ + σ1

√
TρZ1Y

ρZ1X =

√
T

σ

(
S1(0)σ1 − S2(0)σ2ρ

)
ρZ1Y = −ϕ1 + ϕ2ρ

σϕ

ρXY =
a− b

σ

a = S2(0)
σ2

√
T

σϕ

(
ϕ1ρ+ ϕ2

)
b = S1(0)

σ1

√
T

σϕ

(
ϕ1 + ϕ2ρ

)
K̃ =

(
σ2
ϕ

2
+ ϕ1θ1 + ϕ2θ2)T + ln( 1

ã
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where:

Z2 = −σ2W
Q
2 (T ) ∼ N(0, σ2

1T )

X = −γ ∼ N(−m,σ2)

Y =
ϕ1W

Q
1 (T ) + ϕ2W

Q
2 (T )

σϕ

√
T

∼ N(0, 1)

Now we need to estimate the correlation coefficients ρZ2X and ρZ2Y since ρXY has

already been estimated. Proceeding in the same manner as for I , we evaluate the

correlation coefficients to be as follows:

ρZ2X =

√
T

σ

(
S1(0)σ1ρ− S2(0)σ2

)
ρZ2Y = −ϕ1ρ+ ϕ2

σϕ

Applying the Two-Asset lemma:
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The final term III is simply:

KEQ(I{−γ<−K}I{ϵ<K̃}) = KΦ2(x̂3, ŷ3, ρXY )

where:

x̂3 =
m−K

σ

ŷ3 = K̃

Combining all three terms together we get the stated formula (3.3).
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Appendix 4

Consider the following expectation:
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The terms in the indicator functions have already been considered in Appendices 1

and 3. So, we can rewrite the above expectation in the following way:
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We can apply the Two-Asset lemma to each of the three terms in the above expression.

Before that, however, we need to estimate the correlation coefficient between ϵ1 and

ϵ2:
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where we used the fact thatE(W 2(T )) = V ar(W (T )) = T andE(W1(T )W2(T )) =

Cov(W1(T )W2(T )) = ρT . Combining this result with the results from Appendices
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1 and 3 and applying the Two-Asset lemma to the first term:
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The second term evaluates to:
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Finally, the third term is:

KEQ

(
I{ϵ1≤K̃}I{ϵ2≤K̄}

)
= KΦ(x̂3, ŷ3, ρ3)

where:

x̂3 = K̃

ŷ3 = K̄

Combining the three terms together we get the formula (3.4).
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