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Abstract: Owing to mixed-integer and non-linear properties, the distribution network reconfiguration (DNRC) problem has been
widely addressed with meta-heuristic algorithms. To accelerate the solution process, two essential components of meta-heuristic
algorithms are investigated in this study: solution representation and fitness evaluation. Instead of the popular binary and integer
numbers, decimal encoding is employed. Decoding is based on the proposed probability-based loop destruction strategy. The
fitness evaluation is based on the power flow calculation of radial network. Different from backward/forward sweep method, the
advantageous direct solution technique is utilised, where the matrix generation process has been accelerated. Both
improvements are based on the graph theory and fully explained with illustrative examples. Case studies are implemented on
five benchmark systems. The superiority of the proposed methods over their advanced counterparts has been established with
intensive comparisons. Finally, these methods are integrated into a standard particle swarm optimisation framework for the
solution of DNRC. Results indicate that the proposals significantly improve the solution efficiency without the loss of quality.

௑Nomenclature
BCBV branch-current to bus-voltage
BFS backward/forward sweep
BIBC bus-injection to branch-current
BRD branch-based reachability detection
DA direct approach
DN distribution network
DNPF distribution network power flow
DNRC distribution network reconfiguration
FD fast decoupled
GA genetic algorithm
GS gauss-Seidel
MINLP mixed-integer non-linear programming
MRD matrix-based reachability detection
MST minimum spanning tree
NR Newton-Raphson
PLD probability-based loop destruction
PSO particle swarm optimisation
RTS radial tree structure
MILP mixed-integer linear programming

1௑Introduction
As the most intensive part of power systems, the distribution
network (DN) is directly connected to large numbers of consumers,
where unexpected failures and load fluctuations are inevitable. To
deal with these uncertainties, flexibility is indispensable. Generally,
the DN is built as interconnected with switches, while radial tree
structure (RTS) is maintained in operation [1]. The radial tree is
obtained from the opening of switches, and the transformation of
one tree into another is possible with the adjusting of on/off status
of switches; therefore, the flexibility is achieved. Finding an
optimal RTS from the DN with specified objective while satisfying
an operating constraint is classified as the DN reconfiguration
(DNRC) problem. Owing to low-voltage levels, the DN produces a
large number of power losses, thus minimising system power loss
comprises the major objective of DNRC in this work. Other goals
considered in the literature include high reliability [2] and smooth
voltage profile [3].

In addition to the global optimality of the final solution,
execution time is of great significance for DNRC. For any
decision-making problem, the obtained solution is optimal only
when the input status has not changed; otherwise, it might be
suboptimal or invalid. Since the customer action keeps changing,
the solution time of DNRC should be minimised to preserve the
optimality. Nevertheless, the solution process of DNRC is not
trivial. Actually, it is a mixed-integer non-linear programming
(MINLP) problem with combinatorial property [4]. Linearisation
techniques [5–8] are widely utilised to formulate the MINLP into
an MINLP problem, where deterministic methods [9–11] and
heuristic strategies [12–17] are available. However, the accuracy
might be sacrificed due to the utilisation of simplification and
relaxation. On the other hand, meta-heuristic algorithms [1, 4, 18,
19] are capable to accurately solve the MINLP problem. To
achieve satisfactory optimality and efficiency from the solution
process of DNRC with the computationally intensive meta-
heuristic algorithm, the following two major concerns should be
fully addressed:

• RTS: Generally, the DN is described as a graph
G = {V(G), E(G)}, where V(G) and E(G) are finite sets
containing vertices and edges. Thus, the DNRC problem is to
find out an optimal tree T = {V(T), E(T)} with respect to
specific goals, where V(T) = V(G) and E(T) ⊆ E(G). In the
meta-heuristic algorithm, T is described as the individual and
evolutionary operation is conducted on it to achieve better
individuals. However, the newly obtained T might be infeasible
since all elements in V(T) should be connected and no cycles are
permitted in T. Generally, graph theory [20] should be followed
for the generation of T.

• DN power flow (DNPF): The values of resistance R and
reactance X in the DN are of a great range, which may result in a
big ratio of R/X. In this case, the efficient fast decoupled (FD)
PF algorithm may fail to converge since the major assumption
R ≪ X is violated [1]. On the other hand, it is complicated and
time-consuming to introduce the Gauss–Seidel or Newton–
Raphson (NR) methods for the solution of DNPF due to the RTS
of DN [4].
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The key point to address RTS concern is guaranteeing all the
generated individuals are feasible. The infeasible individual will
destroy the evolutionary process since the fitness value cannot be
identified, i.e. the evolutionary direction cannot be evaluated. In
the literature, two types of heuristics are widely investigated to
obtain feasible individuals:

• Modification: This kind of method starts from an RTS tree T. To
obtain a new T, only two steps are required. First, select one
edge ei in E(G)∖E(T) and add it into E(T). Owing to RTS feature
and graph theory, the resulted T does not hold RTS since a cycle
is formulated by ei. Second, in order to obtain RTS again, select
one edge ej belonging to the cycle and add it into E(G). This
method is named branch exchange in the literature, i.e.
exchanging ej ∈ E(T) with ei ∈ E(G)∖E(T). Within this
framework, different strategies are proposed [12–14] to
determine ei and ej.

• Generation: This type of method starts from the full graph G. A
successive process should be implemented to generate a
candidate RTS. At each step, identify one cycle in G, and then
select one edge ei in that cycle to delete. Each step means
breaking a circle/loop. This process continues until there is no
cycle in G. On the basis of how to select ei in each loop,
different methods are developed [15–17, 21].

Although these heuristics are straightforward and easy to
implement, they are greedy and the final solution depends on the
initial configuration [1], thus it is a local optimum rather than the
global best. Therefore, they are commonly integrated into a meta-
heuristic framework to achieve the global optima. Nevertheless, the
encoding and decoding strategies are usually complicated or
inefficient due to the identification of different circles. For
example, the integer coded genetic algorithm is utilised in [18],
where crossover and mutation operations are based on the matroid
theory, which is highly dependent on the circles. Instead of dealing
with loops, a novel decimal encoding technique is proposed in [4],
where the RTS is naturally guaranteed for each candidate based on
the minimum spanning tree (MST) calculation. Given an
undirected graph G whose branches are weighted with decimal
numbers, different trees can be generated by advanced MST
algorithms. This method is direct, but the solution process is time-
consuming because the MST searching is computationally
intensive and should be executed thousands of times. In this paper,
a new encoding and decoding strategy [(probability-based loop
destruction (PLD)] is proposed based on decimal numbers. Instead
of the heavy MST computation, only simple operations are
involved in the PLD method.

To address the DNPF concern shown above, techniques widely
utilised for transmission network have been modified and applied
to accommodate DN such as the FD [22–24] and NR [25–27]
algorithms. One limitation of this kind of method is that the
successive admittance matrices must be updated in each iteration
due to the topology variation. The construction and factorisation of
these matrices bring heavy computation burden; thus, the solution
efficiency is limited. On the other hand, the backward/forward
sweep (BFS) method [28] and its variants [19, 29, 30] have gained
great popularity for the DNPF solution due to their good
convergence and easy applicability. One major drawback of the
BFS as summarised in the literature [31] is the requirement on the
numbering schemes for the system buses and/or branches, which
could reduce the flexibility and affect its ability to accommodate
changes in topology. In addition, the solution time of DNPF with
BFS is mainly determined by the number of system buses, thus the
capability for large-scale systems is restrained.

Instead of the time-consuming LU decomposition and
backward/forward substitution, a distinctive direct approach (DA)
was proposed in [32], where only the matrix multiplications were
involved. The essential processes related to two newly defined
matrices, i.e. the bus-injection to branch-current (BIBC) matrix and
the BC to bus-voltage (BCBV) matrix. The advantages of DA has
been revealed in [32, 33]. Although the formulation algorithm
[branch-based reachability detection (BRD)] of BIBC and BCBV

reported in [32] is intuitive, the efficiency is limited since only one
branch is considered at each step. In this paper, a novel algorithm
[matrix-based RD (MRD)] for the construction of BIBC and
BCBV is developed based on the graph theory, where all switches
are considered concurrently by adjacency matrix and path matrix.

In summary, two improvement proposals are developed in this
paper to address two major concerns of a meta-heuristic algorithm
for the solution of DNRC, i.e. PLD and MRD for RTS and DNPF,
respectively. To validate the accuracy and efficiency, both PLD and
MRD, as well as their advanced counterparts MST and BRD, are
coded and integrated into a standard particle swarm optimisation
(PSO) framework provided by the MATLAB global optimisation
toolbox [34]. Five benchmark systems are introduced for
implementation and comparison. The PLD is 27.02 × faster than
MST method for the decoding of 10,000 individuals. Compared to
BRD, MRD can reduce the execution time by 62.93%. In addition
to the efficiency, PLD is also beneficial on the convergence
property. The results indicate that the superiority of the proposed
strategies is significant within the evolutionary computing
framework. It is believable that their application on other algorithm
frameworks such as deterministic and heuristic are also promising.

The rest of this paper is organised as follows. Section 2 is
devoted to the concerns of RTS, where the detailed steps of PLD
are described and explained. To achieve high efficiency on the
solution of DNPF, the MRD is proposed and embedded within the
DA framework in Section 3. Case studies and discussion are
provided in Section 4. Finally, Section 5 concludes this paper.

2௑Solution encoding and decoding strategies
The DNRC solution consists of a series of open branches, which
can be intuitively represented with binary and integer numbers.
Although both of them are straightforward and easy to implement,
the radial topology of the network cannot be maintained efficiently,
which results in a large number of infeasible solutions during the
evolutionary process; therefore, the convergence property is limited
and the capability for the large-scale system solution is weak. To
alleviate these concerns, a novel encoding technique was
developed in [4], where each branch corresponds to one element in
the solution vector and assigned with a real number. When
decoding, the real number corresponding to each branch is
regarded as the weight, thus a weighted undirected graph was
established. By doing an MST computation, the radial topology can
be uniquely determined. This method guarantees all solutions are
feasible, i.e. the RTS is always preserved.

Although there are several advanced algorithms for MST
computing such as Prim's, Kruskal's, and Boruvka's algorithms, the
computational complexity is still high. In addition, the MST
calculation should be performed for thousands of times,
corresponding to the generation of each candidate. To alleviate the
computational burden and improve the solution efficiency, a two-
stage probability-based encoding and decoding processes are
developed in this paper.

2.1 Stage 1: network analysis

As a preliminary process, this stage is independent of decoding
process and will be executed for only once. The main objective is
to find out the shortest cycle for each tie switch and organise them
in a specified order. On the basis of this order, Stage 2 is designed
to break these cycles and generate the RTS. For simplicity, a small-
scale distribution system is introduced for illustration, which is
shown in Fig. 1. The target network consists of nd = 14 nodes,
nb = 13 branches, and ns = 3 tie switches (indicated by dashed
lines). The following steps are responsible for network analysis,
where step-by-step temporary results corresponding to Fig. 1 are
also revealed:

• Step 1: Open all the switches to generate a radial tree. The result
is indicated by Fig. 2a.

• Step 2: Close each tie switch to find a corresponding cycle. This
step can be fulfilled by calculating the shortest path between two
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nodes of each tie switch in the radial tree. Fig. 2b illustrates
these cycles with responding to both branch and node ID.

• Step 3: Join the cycles with branch ID into one whole vector C,
and determine the index of each switch in C to generate another
vector D. Finally, insert a 0 at the beginning of D. Fig. 2c
demonstrates the ultimate results of Stage 1.

Obviously, the number of cycles is ns; therefore, D is of length
ns + 1s. On the other hand, the length of C is problem dependent
due to branch reputation at different cycles. To sum up, the input of
network analysis is the initial configuration, and the outputs are
vectors C and D. 

2.2 Stage 2: solution representation

On the basis of vectors C and D, this stage illustrates how to
encode and decode decimal solution vector R.

2.2.1 Encoding: To determine whether a branch should be open or
close, a probability value ri ∈ [0, 1] is granted for each branch in
this paper; therefore, the 1 × (nb + ns) decimal solution vector R

can be encoded intuitively as

R = r1, r2, …, rnb
, …, rnb + ns

.

2.2.2 Decoding: Given a real number encoded solution R as
shown in Fig. 3a, the PLD decoding processes are developed as
follows:

• Step 1: Generate a 1 × ns temporary vector T, whose elements
are corresponding to the probability of each tie switch in R.

• Step 2: Sort T in ascending order and store the 1 × ns indexes
vector as P. Set k = 0.

• Step 3: Let k = k + 1, find out the Pkth cycle based on C and D.
• Step 4: Look up the probability value in R for each branch of the

Pkth cycle.
• Step 5: Select the branch with the largest probability value as the

one for breaking, which is marked as Sk.
• Step 6: Update the probability value of the Pkth cycle in R as

−1.00.
• Step 7: If k < ns, go back to Step 3; otherwise, output the

decoded solution S.

Temporary results from Steps 1 and 2 are illustrated in Fig. 3b,
while other results are demonstrated in Fig. 3c. 

2.3 Supplementary explanation

The basic idea of PLD is branch exchange: Stage 1 is utilised to
find the cycle formulated by closing one switch, and that loop is
destroyed in Stage 2 by opening one branch based on the
probability. All cycles generated from Stage 1 are stored in two
vectors C and D with respect to the specified order. Intuitively,
these circles can be broken with the same order for all decoding
process. Nevertheless, this will destroy the randomness and restrict
the solution space. For example, if the destruction of the cycle
{4 − 3 − 1 − 10 − 12 − 13 − 14} is always earlier than a cycle
{7 − 5 − 10 − 11 − 15}, then the branch 10 in the second cycle will
never be broken since its probability is updated into −1.00 after the
destruction of the first cycle. To address this concern, the breaking
of different cycles should be conducted in a random order, that is,
the reason to introduce the vector P in Steps 3–6. In terms of how

Fig. 1௒ Configuration of the target DN
 

Fig. 2௒ Intermediate results of the network analysis
(a) generated radial tree structure by the opening of tie switches, (b) identified cycles corresponding to each tie switch with shortest path calculation, (c) organized vectors for cycles
and indices
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to determine different P for the various decoding process, the
easiest method is a random generation. However, this will result in
diversity during the convergence process since one R may be
decoded into different S if different P is utilised. To guarantee that
one R can only be decoded into a unique S, the P should be the
same for each decoding. One possible strategy is directly deducing
P from R, which is fulfilled by Steps 1 and 2.

Although Stage 1 is straightforward, it is more computationally
intensive than Stage 2 due to the shortest path searching. The
complexity of Dijkstra algorithm with Fibonacci heap for the
shortest path calculation is O(nb + ns + nd log nd) [35]. Similarly,
the MST calculation also comes with heavy computation. The
complexity of Kruskal's algorithm for MST is O((nb + ns)log nd)

[36]. Fig. 4 demonstrates the implementation framework of PLD
and MST methods for encoding and decoding. It can be seen that
the heavy computation workload is involved for all N times of
decoding in the MST method, while only one network analysis is
required for the PLD method; therefore, the computational
complexity of PLD is lighter. Solid quantitative validation will be
given in the case studies. 

3௑DNPF analysis
As indicated in Section 1, the DA proposed by Teng [32] is
advantageous; therefore, its framework is determined by the
solution of DNPF. The DA solution process is dominated by BIBC
and BCBV matrices, which are generated by BRD in [32]. After a
brief introduction of the solution process of DA, this section
intends to propose a novel and efficient MRD for the substitution
of BRD when formulating BIBC and BCBV.

3.1 Solution process of the DA

Given a DN with nd nodes, the equivalent current injection for the
node i at the kth iteration is given as

Ii
k =

Pi + jQi

Vi
k

∗

i ∈ [1, nd], (1)

where Vi
k is the voltage of bus i at the kth iteration; Pi and Qi are

real and reactive power injections on the node i, respectively; ∗ is
the conjugate operator. Consider [Vk] and [Ik] are vectors of Vi

k and
Ii

k without reference node. Then the voltage update steps at the kth
iteration are given as

[ΔV
k] = [BCBV][BIBC][Ik] = [DLF][Ik] . (2)

Therefore, the voltage vector can be updated as

[Vk + 1] = [V
0
] + [ΔV

k], (3)

where [V
0
] is a vector whose all elements are the voltage of

reference bus.
On the basis of the above preliminary description and

definition, the iterative solution process is summarised as
Algorithm 1.
 
Algorithm 1: Iterative solution process of the DA method

1: Initialise [V0
], set iteration k = 1 and [V1

] = [V
0
] + 2ϵ.

2: Generate matrices [BIBC], [BCBV], and [DLF].
3: while max |Vk − V

k − 1| > ϵ do

Fig. 3௒ Encoded real number solution vector and its decoding
(a) real number encoded solution, (b) decoding preparation, (c) decoding process

 

Fig. 4௒ Implementation frameworks of different decoding techniques
(a) PLD method, (b) MST method
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4:  Calculate [Ik] according to (1).
5:  Compute [ΔV

k] based on (2).
6:  Update [Vk + 1] just as (3), and set k = k + 1.
7: end while
8: Calculate the power losses based on [Vk] and [Ik − 1].

3.2 Matrix generation

It can be seen from Algorithm 1 and (1)–(3) that matrices [BIBC]
and [BCBV] are essential for the iterative procedure. To illustrate
how to generate [BIBC], the distribution system shown in Fig. 1 is
utilised as an example, where the tie switches 4–13, 7–11, and 2–8
are open to formulate a radial tree. Consider Bi as the current for
the branch i. The objective is finding matrices [BIBC] and
[BCBV] such that

[B] = [BIBC[I], (4)

[ΔV] = [BCBV][B] . (5)

At first, the formulation of [BIBC] is illustrated as follows:

• Step 1: Reorganise the branch data: Suppose the input data is
the one shown in Fig. 5a, then a radial tree can be generated as
in Fig. 2a. This step is exchanging the ‘from’ and ‘to’ ends of
each branch such that the ‘from’ has a smaller layer number than
the ‘to’. The intermediate result is shown in Fig. 5b.

• Step 2: Rank the branch data: For any DN with nd nodes, there
are nd − 1 branches. After the reorganisation, the ‘to’ nodes of
branches are different from each other, which corresponds to
nd − 1 non-reference buses. This step ranks these branches in an
ascending order of their ‘to’ nodes, and then assigns an ID to
them. Fig. 5c illustrates the temporary result.

• Step 3: Construct the adjacency matrix: To describe the direct
relationship between [B] and [I], an adjacency matrix [A] is
defined. Its size is (nd − 1) × (nd − 1), containing all branches

and non-reference buses. Each element is filled with a binary
number, where Ai j = 1 means that I j can be directly accessed by
Bi, and vice versa. The construction process is as follows: (i)
since Bi is identical with Ii, the diagonal of [A] are all ones; (ii)
if there is a branch from non-reference node i to j, set Ai j = 1.
Fig. 5d demonstrates [A], where ten off-diagonal elements are
corresponding to ten branches without reference node.

• Step 4: Calculate the path matrix: According to Teng [32],
[BIBC] is a binary matrix, and BIBCi j = 1 represents that I j can
be accessed by Bi either directly or indirectly. According to the
graph theory, this definition is similar to the path matrix, thus
the [BIBC] is generated as

[BIBC] = f [A]
nd − 1

, (6)

where f ( ) is a function that converts any non-zero elements into
1 and keeps zeros constant. The final obtained result [BIBC] is
shown in Fig. 5e.

On the basis of (4), [BIBC] in Fig. 5e can be interpreted as

B1 = I1 + I2 + I3 + I4,

B5 = I5 + I6 + I7 + I8 + I9,

⋮

(7)

which is identical with Fig. 1. It was stated in [32] that [BIBC] is
an upper triangular matrix. We intend to claim that this is not
always true though Fig. 5e shows an upper triangular pattern. In
Fig. 5c, if the ‘from’ is larger than ‘to’, matrices [A] and [BIBC]
are both not upper triangular. For example, replace the branch 4–3
with 4–13, the resulting [BIBC] is not triangular. 

As indicated in [32] that the construction processes of [BIBC]
and [BCBV] are similar, thus the above process can be reused with
minor revision. Actually, these two matrices were built in the same
subroutine in [32] to save computation resources and time. In this
paper, the [BCBV] is generated by the following simple equation:

Fig. 5௒ Intermediate results of matrix BIBC generation
(a) original branch data set, (b) reorganised branch data set, (c) ranked branch data set, (d) generated adjacency matrix, (e) calculated path matrix
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[BCBV] = [BIBC]T[Z], (8)

where T is the transpose operator; [Z] is the matrix whose diagonal
is the line impedance shown in Fig. 5c. Combining (5) and (8), we
get

V0 − V4 = Z1B1 + Z3B3 + Z4B4,

V0 − V9 = Z5B5 + Z6B6 + Z9B9,

⋮

(9)

which is in accordance with Fig. 1.

3.3 Supplementary explanation

It should be noted that the [A] generated in Step 3 is not the
adjacency matrix according to the definition of graph theory [20]
due to the non-zero diagonal. Regarding the tree as a directed
graph (each branch is directed from the higher layer to the lower
layer) and let [Y] = [A] − [I], then [Y] is the adjacency matrix
coordinated with the definition. According to Harris et al. [20], the
path matrix can be deduced by

[Y
~
] = [I] + [Y] + [Y]

2
+ ⋯ + [Y]n − 1 + [Y]n, (10)

where n is the size of [Y], i.e. n = nd − 1 in this paper. The (i, j)

entry of [Y]k is equal to the number of walks from node i to j that
use exactly k edges.

On the other hand, according to the binomial expansion
theorem

[A]n = ([I] + [Y])n = [I] + Cn
1
[Y] + Cn

2
[Y]

2
+ ⋯ + [Y]n, (11)

where Cn
r are constant numbers valued as {(n!)/[r!(n − r)!]}.

Since there are no cycles in the tree, the maximum number of
paths between any two nodes is one; thus, the elements of [Y]k as
well as [Y

~
] are zeros and ones. Therefore, (6) can be rewritten as

[BIBC] = f [A]
n

= f ([I] + [Y])n

= f ([I] + Cn
1
[Y] + Cn

2
[Y]

2
+ ⋯ + [Y]n)

= f ([I]) + f (Cn
1
[Y]) + f (Cn

2
[Y]

2
) + ⋯ + f ([Y]n)

= f ([I]) + f ([Y]) + f ([Y]
2
) + ⋯ + f ([Y]n)

= [I] + [Y] + [Y]
2
+ ⋯ + [Y]n = [Y

~
] .

(12)

Although (6) is identical with (10), the difference on the
computational burden is large. In (10), a lot of matrix power should
be calculated such as [Y]n and [Y]n − 1, while there is only one
matrix power [A]n executed in (6). The complexity of f ( ) is
equivalent with the matrix addition. Thus (6) is much more
efficient than (10).

Furthermore, based on the above analysis and (11), we obtain

f ([A]n + k) = f ([A]n) + [Y]n + 1 + ⋯ + [Y]n + k, k ≥ 0. (13)

Since the longest walk in the tree with n nodes is n − 1

[Y]n = [Y]n + 1 = ⋯ = [Y]n + k = 0, k ≥ 0 . (14)

Thus

f ([A]n + k) = f ([A]n), k ≥ 0. (15)

This property can be utilised to further improve the efficiency of
(6), i.e. to reduce the number of matrix multiplications from n − 1
to ⌈log2 n⌉. In this example, n = nd − 1 = 13; therefore,
f ([A]

13
) = f ([A]

16
), and [A]

16 can be generated by ⌈log2 n⌉ = 4

times of matrix multiplications as follows:

[A]
2

= [A] × [A], [A]
4

= [A]
2
× [A]

2
,

[A]
8

= [A]
4
× [A]

4
, [A]

16
= [A]

8
× [A]

8
.

In [32], the BIBC is formulated by nd − 1 steps. Since each step is
dependent on the former step, the constitution process must be
executed in sequence. On the other hand, there are only
⌈log2(nd − 1)⌉ sparse matrix multiplications in MRD method, and
each multiplication can be accelerated with parallel processing.
Comparison of the efficiency will be discussed with numerical
experiments.

4௑Numerical experiments
As demonstrated above, two methods PLD and MRD are proposed
in this paper to accelerate the solution process of DNRC. To
evaluate their performance, three types of numerical experiments
are implemented in this section. In the beginning, the comparison
between PLD and its advanced counterpart MST method is carried
out for the solution decoding. Then, the MRD method is compared
with the BRD method on the DNPF solution. Finally, these
methods are integrated into a standard PSO framework for the
solution of DNRC. The former two tests are the partial validation
of the performances of PLD and MRD, while the last one is a
complete evaluation of their potential for the DNRC solution.

Five benchmark systems generated from [37] are introduced as
the testbed. Table 1 summarises the scales of these systems. All
tests are implemented on a personal computer equipped with Intel
Xeon E5-2620 central processing unit and Windows 8.1 operating
system. MATLAB 2017a is employed for programming and
execution. 

4.1 PLD method versus MST method for solution decoding

Within the meta-heuristic algorithm framework, the solution
decoding process will be executed a lot of times in each iteration;
therefore, its efficiency is of great significance for the whole
execution. On the other hand, the representation methodology
should not contain any bias, i.e. the randomness is valid. This
section is devoted to the performance evaluation of the PLD
method in terms of randomness and efficiency, where the MST
method reported in [4] is introduced for comparison.

4.1.1 Randomness: Without supplementary information, the
global optimal may lie anywhere in the solution space. Therefore,
the meta-heuristic algorithm always demands an evenly initialised
population to cover the solution space as large as possible. Both the

Table 1 Scales of the benchmark systems
Systems Buses Feeders Branches Tie switches
14-bus 13 3 16 3
33-bus 32 1 37 5
70-bus 68 2 79 11
83-bus 83 11 96 13
136-bus 135 1 156 21

 

Fig. 6௒ Frequency of branches chosen for breaking in the 14-bus system
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PLD and MST methods are designed for decimal encoded
solutions, whose randomness is guaranteed by a lot of software
such as MATLAB. Therefore, the randomness of the decoded
integer solution is dominated by the transformation methodology.

For the performance validation and comparison, 10,000 real
number encoded solutions are randomly generated for the 14-bus
system. After decoding, 10,000 integer solutions with sizes of
1 × ns are obtained, which means there will be 30,000 branches to
be chosen for breaking. Since the number of candidate branches for
breaking is only 15 (branches 6–9 cannot open as it is not included
in any cycles), the frequency of each branch should be 2000. Fig. 6
illustrates the results of both methods, it can be seen that the
randomness of the PLD and the MST methods are similar and
satisfactory. For the MST method, branches close to the root node
have a high probability to be chosen for breaking such as branches
1, 5, and 10. While for the PLD method, branches contained by the
shortest cycle are likely to be determined for loop destruction, e.g.
branches 7, 11, and 15.

4.1.2 Efficiency: To compare the execution efficiency, both
methods are implemented to decode N = {1, 10, 100, 1000, 10,000}
solutions for the 14-bus system. Table 2 summarises the
comparative results. Fig. 7 demonstrates the relationship between
the execution time and the population size in the double
logarithmic coordinate system. For the MST method, decoding
each solution involves one whole MST calculation, thus its
execution has a linear relationship with N. On the other hand, the
PLD method invokes two stages for solution decoding, where
Stages 1 and 2 are executed for 1 and N times. In this example, the
execution times for a single run of Stages 1 and 2 are 5.95 ms and
25.72 μs, respectively. Owing to the light computational burden of

Stage 2, the total execution time of the PLD method experiences a
slow increase. On the basis of different properties of execution
time, the speedup keeps increasing as N increases, but the increase
rate is reduced as the maximum speedup is approached.

Comparisons between the PLD and MST methods on other
systems were also implemented. Table 3 demonstrates the results,
where N is fixed as 10,000. The advantage of the PLD over MST
method is established by the gained speedup. It should be noted
that the execution time of the PLD method goes longer as the
system size increases. Fig. 8 indicates that there is a linear
relationship between the PLD execution time and bus numbers.
While the running time of MST method for different systems
seems to be constant. The reason is that the utilised method for
MST calculation is the MATLAB built-in Kruskal's algorithm,
which is highly optimised such that the execution time is
insensitive to system scales when the sizes are moderate. 

4.2 MRD method versus BRD method for DNPF solution

In this paper, the DA framework given in Algorithm 1 is utilised
for DNPF solution, where [BIBC], [BCBV], and [DLF] in lines 1–
2 can be generated by either MRD or BRD method. To compare
the efficiency with more details, the solution process of Algorithm
1 is divided into three parts:

• Part I: Data preparation and matrix generation of [BIBC]
including line 1 and part of line 2.

• Part II: Matrix generation of [BCBV] and [DLF], which is
described in line 2.

• Part III: Iterative DNPF solution, consisting of lines 3–8.

Comparison is implemented to validate the accuracy and
efficiency.

4.2.1 Accuracy: In this paper, the BRD method reported in [32] is
utilised for accuracy validation of the MRD method. Since both
methods are integrated into Part I of the DA framework, the final
difference on the active power losses is fully dependent on the
intermediate results provided by the BRD and MRD methods, i.e.
the [BIBC] matrix. Since [BIBC] consists of zeros and ones, the
difference is easy to identify. On the basis of the test results for
various systems, the [BIBC] generated by the MRD method is
exactly the same as the one formulated by the BRD method.
Accordingly, the final power losses are the same. Therefore, the
accuracy of the MRD method is preserved to be the same with the
BRD method.

Table 2 Execution time of the PLD and MST methods to
decode N solutions for the 14-bus system
N Execution time, ms Speedup

PLD method MST method [4]
1 5.981 11.424 1.91 × 
10 6.244 49.031 7.85 × 
100 8.840 426.557 48.25 × 
1,000 34.549 4176.972 120.90 × 
10,000 289.553 41,735.488 144.14 × 
 

Fig. 7௒ Execution time of the PLD and MST methods in double logarithmic
coordinate system

 

Table 3 Execution time of the PLD and MST methods to
decode N = 10,000 solutions for different systems
Systems Execution time, s Speedup

PLD method MST method [4]
14-bus 0.290 41.735 144.14 × 
33-bus 0.439 41.905 95.46 × 
70-bus 0.874 42.344 48.45 × 
83-bus 1.006 42.704 42.45 × 
136-bus 1.592 43.012 27.02 × 

 

Fig. 8௒ Linear relationship between the PLD execution time and bus
numbers
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4.2.2 Efficiency: In this section, full DA method is implemented
to calculate the DNPF for various systems. Owing to alternative
methods utilised in Part I, the partial as well as total execution
times are different, which are all summarised in Table 4. As shown
in the above, Parts II and III are the same for these two
implementations, thus the execution time is similar and the
speedup is close to 1.00. For Part I, the MRD method gains a
speedup from 1.75 to 4.85 for different systems, which means that
the method is advantageous. Since the improvement is only valid
for Part I, the value of speedup on the total execution time is
reduced to some extent. Taken the BRD method as a benchmark,
the last column of Table 4 shows the execution time reduction
gained by the MRD method. It is observable that the amount of
reduction is larger than 50% for the majority of systems, and it
goes larger as the system scale increases. 

4.3 Performance evaluation with full DNRC solution

On the basis of the above results, the superiority of the proposed
PLD and MRD methods over their counterparts is established. This
section intends to evaluate their performance on the solution of full
DNRC problems. For consistency, different methods are integrated
into the same PSO framework, which is provided by the MATLAB
optimisation toolbox [34]. Therefore, four algorithms are
separated, whose configurations are illustrated in Table 5. Alg1 is
the benchmark implementation without any proposals utilised;
MRD and PLD are employed in Alg2 and Alg3 to replace BRD
and MST, respectively; finally, both acceleration strategies are
integrated in Alg4. Each system is tested by all four algorithms for
20 trials. It should be noted that all the settings of PSO are kept as
default from MATLAB except for the population size, which is
valued as 256 and 512 for the 14-bus and all the other systems. 

4.3.1 Quality: Average active power losses for different systems
with various algorithms are summarised in Table 6. The PSO is a
non-deterministic algorithm and the global optimality of the
obtained solution is not guaranteed. For smaller systems with
moderate complexity, the probability to reach the global optimal
solution is larger, thus all methods achieve the same result for 14-
and 33-bus systems. Owing to larger system size and more decision
variables, the searching process is much easier to be trapped in a

local optimal solution of the non-convex solution space. Therefore,
different methods result in various results for 70-, 83-, and 136-bus
systems. As discussed in the above section, the MRD shares the
same accuracy with the BRD, thus Alg1 and Alg2 (Alg3 and Alg4)
should terminate with the same quality of results. This prediction
has been validated by the last two columns of Table 6. On the other
hand, Alg3 (Alg4) presents less power loss than Alg1 (Alg2) for all
tests, indicating that the PLD method outperforms the MST method
in the convergent property. 

4.3.2 Efficiency: Table 7 summarises the average execution time
of different algorithms for various systems, which is also illustrated
in Fig. 9. It is obvious that Alg4 performs better than all the other
three algorithms. The difference between Alg1 (Alg3) and Alg2
(Alg4) is marked as DIF1, which is due to the alternative DNPF
solution methods, i.e. MRD and BRD. On the other hand, the
difference between Alg1 (Alg2) and Alg3 (Alg4) is marked as
DIF2, which is due to the alternative solution decoding methods,
i.e. PLD and MST. It can be seen from Fig. 9 that DIF2 is larger
than DIF1, which means the improvement on the solution decoding
is more significant on the DNRC solution. It is also identical with
the results reported in Tables 3 and 4 that the speedup gained by
PLD is larger than the MRD. However, DIF1 and DIF2 are not as
large as the difference demonstrated in Tables 3 and 4, the reason is
that the PLD and MRD are just parts of the DNRC solution
process. 

Fig. 10 depicts the speedup gained by Alg4 over the other
algorithms. Compared to Alg1, both MST and BRD are replaced in
Alg4; thus, the speedup is the largest. According to Table 3, the
speedup obtained by PLD is decreasing as the system scale
increases. While the circumstance is reverse in Table 4 for MRD.
In addition, the speedup value and decreasing rate in Table 3 are
larger. Thus, the total speedup of Alg4 versus Alg1 is decreasing.
Finally, it will end up with a compromise between the increasing
and decreasing tendencies. Since the MST is updated by PLD, the
speedup of Alg4 versus Alg2 is also significant. However, without
the updating for the DNPF solution, the speedup decrease rate is
sharper than that of Alg4 versus Alg1. Both Alg3 and Alg4 utilise
PLD for solution decoding, the only difference is BRD versus
MRD; thus, the obtained speedup of Alg4 versus Alg3 in Fig. 10 is

Table 4 Execution times of DNPF solution based on the MRD and BRD methods
Systems Execution time, ms Speedup Execution time reduction, %

MRD method BRD method [32]
Part I Part II Part III Sum Part I Part II Part III Sum Part I Part II Part III Sum

14-bus 0.226 0.017 0.051 0.294 0.395 0.017 0.050 0.461 1.75 0.98 0.98 1.57 36.31
33-bus 0.292 0.043 0.079 0.414 0.764 0.042 0.077 0.883 2.61 0.98 0.98 2.13 53.15
70-bus 0.416 0.148 0.127 0.692 1.530 0.150 0.128 1.808 3.68 1.01 1.01 2.61 61.74
83-bus 0.441 0.181 0.160 0.782 1.814 0.179 0.161 2.154 4.12 0.99 1.00 2.76 63.71
136-bus 0.716 0.579 0.326 1.620 3.471 0.574 0.325 4.371 4.85 0.99 1.00 2.70 62.93
 

Table 5 Configuration of different algorithms
Algorithms Configurations

PSO PLD MST MRD BRD
Alg1 ∙ — ∙ — ∙

Alg2 ∙ — ∙ ∙ —
Alg3 ∙ ∙ — — ∙

Alg4 ∙ ∙ — ∙ —
 

Table 6 Average active power losses by 20 trials (kW)
Systems Alg1 Alg2 Alg3 Alg4
14-bus 84.880 84.880 84.880 84.880
33-bus 139.551 139.551 139.551 139.551
70-bus 203.384 202.929 201.412 201.412
83-bus 469.923 470.182 469.878 469.878
136-bus 285.395 286.412 280.954 280.877
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similar with Table 4. The DNPF is much more time-consuming
than the solution decoding in each iteration. Taking the 136-bus
system as an example, they are 1.620 and 0.159 ms, respectively.
Thus, the total speedups demonstrated in Fig. 10 are approaching
the data reported in Table 4. 

4.4 Discussion

The efficiency and effectiveness of two proposals PLD and MRD
have been validated in the above small- and medium-scale systems,
in this section, their potential for large-scale DN will be explored.
The largest system with 4400 buses given in [4] is introduced for
implementation. Compared to the power loss of 1905.3 kW
reported in [4], 7.26% larger power losses (2043.7 kW) are
generated for the final DNRC solution obtained with Alg4,
indicating that the global optimal convergence capability of Alg4 is
not as well as the one given in [4]. The reason is that the PSO
utilised in this paper is a MATLAB built-in function, whose
parameters are tuned for general applications rather than this
specified problem. To gain better performance for large-scale
DNRC problems, a lot of preliminary experiments should be

implemented for small- and medium-scale cases. It should be noted
that the convergence property is determined by the PSO parameters
rather than the two proposals; therefore, the potentials of PLD and
MRD for practical application should be evaluated from other
aspects.

In addition to the DN (single-phase balanced with RTS)
investigated in this paper, two main features are commonly
appeared in practical DNRC problems, resulting in the following
concerns:

• Three-phase unbalanced DN: Since the RTS is required to be
maintained, the generation of a feasible solution is not trivial.
Therefore, the proposed PLD method is still effective and
beneficial. Before discussing the robustness of MRD, the
capability of DA for three-phase unbalanced DN should be
validated. Fortunately, it has been done in [32] and the
conclusion is positive. On the basis of this truth, we believe that
MRD method is also beneficial for the generation of BIBC for
three-phase unbalanced DN since the topology is same and the
inner mechanism is similar.

• Weakly meshed DN: It should be noted that PLD is proposed to
guarantee the feasibility of randomly generated or evolved
solutions for DN with RTS topology. If there is no requirement
on RTS, i.e. the DN is weakly meshed, the solution feasibility is
much easier to be guaranteed. We intend to claim that the
proposed PLD is still beneficial for this type of DN with minor
revision, i.e. reducing the number of ns in the decoding process
given in Section 2.2.2. The DA method is also capable of
weakly meshed DN [32], whose BIBC matrix generation
process can be accelerated with MRD approach as well since the
theories of adjacency and path matrices are still applicable.

5௑Conclusion
Two main concerns are intensively involved in the solution of
DNRC: preserving the RTS and calculating the DNPF. In this
paper, an effective decimal encoding and decoding techniques are
proposed, which guarantees the RTS with the least effort when
compared with other state-of-the-art methods. In addition, the
solution process of DNPF is enhanced by the introduction of
adjacency and path matrices from graph theory. Case studies are
conducted on five benchmark systems. In the beginning, solely
comparison between the proposal and its counterpart is carried out.
Results indicate that the developed methods outperform their
advanced counterparts on the solution efficiency without accuracy
deterioration. Then, these two improvement methods are integrated
into a standard PSO framework to solve DNRC. It is observed that
the proposed methods benefit from both efficiency and
convergence properties. To fulfil the potential of the proposals for
practical application, highly optimised meta-heuristic framework,
three-phase unbalanced, and weakly meshed properties, and
parallel processing are devoted to future research.
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Table 7 Average execution time by 20 trials (s)
Systems Alg1 Alg2 Alg3 Alg4
14-bus 17.722 16.912 2.230 1.436
33-bus 20.122 18.021 4.955 2.730
70-bus 99.887 82.303 33.627 16.009
83-bus 110.360 89.776 42.422 17.830
136-bus 262.537 190.515 122.709 46.509
 

Fig. 9௒ Execution time of different algorithms for the DNRC solution
 

Fig. 10௒ Speedup gained by Alg4 for the DNRC solution
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