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ABSTRACT 13 

Construction crew productivity is affected by the motivation of the crew performing given 14 

activities and by situational/contextual factors forming the dynamic construction environment. The 15 

literature lacks a comprehensive analysis of causal relationships between crew motivation and 16 

situational/contextual factors for dynamic modelling of crew productivity. The contributions of 17 

this paper are 1) identifying a set of criteria for performing expert weight assignment for 18 

heterogenous group experts in productivity research, 2) proposing an integrated fuzzy analytic 19 

hierarchy process–fuzzy decision-making trial and evaluation laboratory (FAHP-FDEMATEL) 20 

approach that provides a systematic, structured method for determining causal relationship 21 

mapping between factors affecting crew productivity, and 3) proposing an approach for identifying 22 
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cause-and-effect groups amongst the situational/contextual factors and crew motivation, which can 23 

further be used to formulate strategic productivity improvement solutions. The proposed 24 

methodology is demonstrated using a case study on an actual industrial construction project in 25 

Alberta, Canada. 26 

Keywords: construction crew productivity, construction crew motivation, fuzzy AHP, fuzzy 27 

DEMATEL, dynamic modeling  28 

1. INTRODUCTION 29 

Construction productivity plays a significant role in determining a construction project’s success, 30 

therefore it is a major research area. Construction productivity problems include assessing factors 31 

that affect productivity and identifying improvement strategies for crew productivity. Previous 32 

studies attempted to identify factors that affect crew productivity and develop modelling 33 

approaches for monitoring and establishing improvement strategies to address productivity 34 

problems. Construction projects are performed in a dynamic environment with numerous 35 

interactions between work-setting conditions and situational/contextual factors related to tasks and 36 

resources, such as labour and materials, management, and project characteristics (Raoufi and 37 

Fayek 2018). Situational or external factors such as economic, social, and technological issues 38 

impact crew productivity and performance. These as well as contextual factors such as age, gender, 39 

culture, and personal interests are studied in crew productivity research (Raoufi and Fayek 2018). 40 

Crew productivity is a primary project performance indicator and can be described as a function 41 

of the efficiency of resource utilization (i.e., labour), which is affected by crew motivation. Thus, 42 

it is imperative to properly assess crew productivity by 1) identifying relevant factors (e.g., crew 43 

motivation, situational/contextual factors) that affect productivity of different crews in 44 

construction projects and 2) capturing existing complex causal relationships between these factors. 45 
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In the current construction literature for capturing the complex causal relationships for dynamic 46 

modelling of productivity, commonly used methods include literature reviews, modellers’ 47 

assumptions, and verifying model assumptions using focus groups, questionnaire surveys, and/or 48 

semi-structured interviews (Nasirzadeh and Nojedehi 2013; Khanzadi et al. 2017; Gerami Seresht 49 

and Fayek 2018). Literature review methods are limited, because relationships between model 50 

variables can only be obtained through the literature if knowledge about those relationships exists. 51 

Moreover, methods such as focus groups, survey questionnaires, and interviews entail aggregating 52 

inputs collected during assessment involving multiple experts (Cyr 2016; Paradis et al. 2016). 53 

These experts usually have varying expertise levels, which contributes to the complexity of 54 

modelling crew productivity. Although the literature yields several productivity-related studies, a 55 

need exists to first, provide a systematic and structured methodology for establishing causal 56 

relationships in dynamic productivity modelling. This involves assessing the importance of and 57 

causalities between the situational/contextual factors and constructing causal loop diagrams 58 

(CLDs), which are functions of the dynamic relationships between system variables. Second, there 59 

is a need to consider importance weights in aggregating the opinions of heterogenous experts who 60 

participate in productivity-related decision making.  61 

The decision-making trial and evaluation laboratory (DEMATEL) method uses graph and matrix 62 

theory to systematically structure cause-and-effect relationships between system elements (Nazeri 63 

and Naderikia 2017). However, application of DEMATEL for productivity is limited in some 64 

aspects of modelling in previous studies. There are limitations to the number of criteria considered 65 

to weigh expert input, the level of detail (i.e., sub-criteria) being considered for each criterion, and 66 

the ability to consider subjective uncertainties arising from the linguistic nature of expert inputs 67 

(e.g., “low” influence, “high” impact). Further, the literature lacks a framework for weighing the 68 
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relative importance between productivity factors, which can enable modelers identify causal 69 

relationships, and mapping influences between system elements to complement dynamic 70 

modelling of crew productivity. The fuzzy DEMATEL method applies fuzzy set theory to capture 71 

subjective uncertainties in DEMATEL. Decision-making problems involve imprecision, because 72 

goals, constraints, and the set of possible actions can not be precisely known (Zadeh 1965). Hence, 73 

converting linguistic inputs into fuzzy numbers is a better approach for processing various 74 

experiences, opinions, ideas, and motivations of an individual or group decision maker (Aykuz 75 

and Celik 2015). This enables the capture of complex causal relationships that affect the overall 76 

productivity of a system, while also enabling modellers to assess each variable’s influence using 77 

influence relation mapping (IRM) and other metrics (Bashardoost et al. 2018; Han and Wang 78 

2018). Furthermore, a weighted approach to FDEMATEL involves integrating it with techniques 79 

such as fuzzy analytic hierarchy process (FAHP), which enables FDEMATEL to process inputs 80 

from heterogeneous experts whose inputs vary owing to their expertise level, educational 81 

background, or experience in related fields. 82 

The research question addressed in this paper is: “How can the complex and dynamic 83 

interrelationship between crew motivation, and situational/contextual factors that affect crew 84 

productivity be captured while taking into account the construction environment?” In this regard, 85 

this paper has three objectives: 1) identify criteria to perform expert assessment for assigning 86 

importance weights of heterogenous experts in productivity research, 2) propose a systematic, 87 

structured methodology to define causal relationships between the most significant factors 88 

affecting crew productivity and analyse their interrelated impacts using IRM with FAHP–89 

FDEMATEL, and 3) map causal relationships between crew motivation, situational/contextual 90 
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factors, and crew productivity from FDEMATEL outputs, which can be used to perform qualitative 91 

SD modelling of crew productivity.  92 

2. LITERATURE REVIEW 93 

2.1 Construction crew productivity modelling 94 

Productivity is a crucial metric for assessing overall crew performance in construction and usually 95 

involves several interrelated variables (Nasirzadeh and Nojedehi 2013). Construction crew 96 

productivity has been effectively defined as the ratio of measured output (completed work) to 97 

measured input (work effort) (CII 2006; Kedir et al. 2022). 98 

Models that have implemented in studies on crew productivity modelling include statistical 99 

methods (Hiyassat et al. 2016; Ghodrati et al. 2018), artificial neural network (ANN) (Ma et al. 100 

2016; Golnaraghi et al. 2019; Gutiérrez-Ruiz et al. 2020), discrete event simulation (DES) (Afifi 101 

et al. 2016; Larsson et al. 2016; Abbasi et al. 2020; Plamenco et al. 2021), agent-based modelling 102 

(ABM) (Shehwaro et al. 2016; Jabri and Zayed 2017; Dabirian et al. 2021; Wu et al. 2022), and 103 

system dynamics (SD) (Khanzadi et al. 2017; Gerami Seresht and Fayek 2018; Javed and Pan 104 

2018; Al-Kofahi et al. 2020). These approaches have been used individually or in hybrid models, 105 

such as those incorporating fuzzy logic concepts (Mirahadi and Zayed 2016; Nojedehi and 106 

Nasirzadeh 2017; Gerami Seresht and Fayek 2018). Accordingly, productivity research modelling 107 

has mostly emphasized crew productivity as a dynamic problem due to the dynamic nature of 108 

construction projects. Moreover, dynamic modelling approaches are preferred because they allow 109 

modellers to track project changes that happen over time (Gerami Seresht and Fayek 2018) and 110 

capture causal relationships (Kim et al. 2020). 111 
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Several different dynamic approaches can be used to analyse causal relationships. Interpretive 112 

structural method (ISM) has an elaborate visual representation and enables grouping of factors into 113 

dependent, independent, autonomous, and linkage clusters, but it is unable to consider interactions 114 

between factors that belong to different categories (Tavakolan and Etemadinia 2017), such as 115 

crew-level versus project-level factors. Moreover, ISM cannot effectively capture subjective 116 

uncertainties and is unable to deal with the dynamic nature of variables that affect productivity 117 

(Siraj and Fayek 2021). Analytic network process is relatively simpler to understand and can 118 

establish relationships between different categories, but it results in high computational complexity 119 

(Valipour 2015; Li et al. 2019). Fuzzy cognitive mapping (FCM) can model complex relationships 120 

that involve causalities and feedbacks (Case and Stylios 2016). However, FCM is unable to capture 121 

time-concept (dynamism), its assumes linear causalities between variables, and it lacks the 122 

capability to capture uncertainty and represent conditional relationships or rule-based knowledge 123 

(Lazzerini and Mkrtchyan 2011; Mpelogianni and Groumpos 2018).SD is a modelling approach 124 

capable of capturing dynamic system behaviour, where changes in the system correspond to 125 

variables that make up the system (Shokouh-Abdi et al. 2011). SD captures the dynamic nature of 126 

systems that exhibit varying properties, using multiple feedback processes, interactions, and 127 

dependencies (Nasirzadeh et al. 2020). Thus, qualitative modelling of productivity in SD is the 128 

most important step in dynamic modelling, which entails the critical step of establishing CLDs and 129 

feedback relationships (Siraj and Fayek 2021).  130 

To perform the qualitative aspect of SD modelling, productivity-related studies in the literature 131 

have utilized one or more approaches, such as literature reviews, modellers’ assumptions, and 132 

experts’ verification through focus groups, questionnaire surveys, or semi-structured interviews 133 

(Khanzadi et al. 2017; Gerami Seresht and Fayek 2018; Leon et al. 2018; Al-Kofahi et al. 2020). 134 

https://scholar.google.com/citations?user=sANboxgAAAAJ&hl=en&oi=sra
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In this regard, productivity research lacks a systematic method for gathering group knowledge 135 

from individuals with different expertise levels using techniques such as FAHP, capturing causal 136 

relationships between factors, and visualizing these complex cause-and-effect interrelationships 137 

using techniques such as FDEMATEL. 138 

2.2 Fuzzy AHP 139 

AHP is an extensively applied multi-criteria decision making (MCDM) method used to establish 140 

the weights of criteria and alternative priorities via pairwise comparisons (Liu et al. 2020). 141 

Integrating fuzzy logic with AHP enables the latter to process subjective uncertainties arising from 142 

the use of linguistic terms. To process the linguistic expressions used in experts’ inputs, crisp 143 

numbers used in the AHP pairwise comparison matrix are replaced with fuzzy numbers. Fuzzy 144 

logic enables processing of imprecise data and ambiguous human judgement (Shokouh-Abdi et al. 145 

2011; Seker and Zavadskas 2017). 146 

In the area of construction management, FAHP is extensively applied, namely in problems related 147 

to project site selection, contractor selection and biding evaluation, selection of construction means 148 

and methods (Nguyen and Tran 2017; Prascevic and Prascevic 2017), and in construction risk 149 

analysis and risk assessment problems (Beltrão and Carvalho 2019; Lyu et al. 2021). FAHP is also 150 

prominently applied in emerging methods such as building information modelling (BIM) 151 

(Khanzadi et al. 2020; Figueiredo et al. 2021). In this regard, FAHP is one of the most useful 152 

approaches to decision making problems consisting of multiple criteria with uncertain, subjective, 153 

and linguistic data and involving a group of decision makers. FAHP can be improved through 154 

integration with other methods to improve overall decision making. For example, data collected 155 

from experts can be structured using Delphi method, spatial data can be processed using GIS, 156 

multivariate analysis can be used to structure different criteria. The alternatives of technique for 157 
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order of preference by similarity to ideal solution (TOPSIS) and elimination et choix traduisant la 158 

realité (ELECTRE) can be used to rank alternatives, Monte Carlo simulation can be used to process 159 

uncertainties in the output, and mathematical programming can be used for optimization (Nguyen 160 

and Tran 2017). 161 

2.3 Fuzzy DEMATEL 162 

FDEMATEL applies fuzzy set theory to capture subjective uncertainties in DEMATEL, which 163 

extends the scope of the DEMATEL method and enables modellers to capture complex causal 164 

relationships affecting overall productivity while also enabling them to assess each variable’s 165 

influence using IRM (Chien et al. 2014; Bashardoost et al. 2018). In construction research, 166 

FDEMATEL has mostly been applied to find interrelationships between system elements and 167 

identify causal mappings in the research areas of risk identification and assessment (Seker and 168 

Zavadskas 2017; Hatefi and Tamošaitienė 2019; Li and Xu 2021), sustainability (Jeong and 169 

Ramírez-Gomez 2018; Mavi and Standing 2018; Rostamnezhad et al. 2020; Li et al. 2022), safety 170 

(Shakerian et al. 2020; Chai et al. 2022), and planning (Jeong et al. 2016; Jeong and Ramírez-171 

Gomez 2018). Although the literature is comprehensive regarding FDEMATEL application in 172 

other construction areas, it lacks studies on using FDEMATEL to identify causal relationships and 173 

map influence between system elements to complement dynamic modelling of crew productivity. 174 

Moreover, in previous studies the application of DEMATEL-based approach to productivity is 175 

limited in some aspects of modelling. In Jalal and Shoar’s (2019) DEMATEL model, the criteria 176 

considered for performing expert weight assessment is limited and is utilized only at a higher level. 177 

For example, the criterion experience could be considered to capture an expert’s general or specific 178 

experience. Thus, an expert could work for 20 years in construction (e.g., on highways) but still 179 

have limited experience in a different construction field (e.g., buildings). Assessment of experts' 180 

https://scholar.google.ca/citations?user=DvF9GsoAAAAJ&hl=en&oi=sra
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responses should consider multiple qualifying attributes such as education, and the quality of 181 

experts’ responses should be assessed in terms of a more detailed set of criteria that is capable of 182 

giving consideration to other qualifying attributes such as education, knowledge, and professional 183 

performance. 184 

3.0 METHODOLOGY 185 

3.1 Stage 1: FAHP 186 

3.1.1 Developing criteria lists and constructing the problem hierarchy 187 

First, criteria for assessing expertise levels, and their corresponding qualification attributes used 188 

as subcriteria in this paper, were identified along with their measurement scales. A list of 7 criteria 189 

and 24 subcriteria was developed from construction management studies in the literature 190 

(Farrington-Darby and Wilson 2006; Monzer et al. 2019; Siraj and Fayek 2021) and modified to 191 

enable expert assessment in the productivity domain. (See the Results and Discussion section for 192 

a list of identified qualification attributes and related data.) 193 

3.1.2 Obtain relative importance weights 194 

To establish expert weight assessment for the FAHP process and conduct pairwise comparisons, 195 

the relative importance weights of the listed criteria were obtained. Expert ranking was performed 196 

based on the hierarchy shown in Figure 1, in which level-2 subcriteria n, p, and r are the number 197 

of subcriteria for criterions 1, 2 and n, respectively. The qualification attributes were measured 198 

using qualitative or quantitative scales (see table in Results and Discussion). The list of criteria 199 

was then evaluated via a survey completed by experts with extensive knowledge of the 200 

construction industry and productivity research. Likert scales are one of the most fundamental and 201 

frequently applied tools in research (Joshi et al. 2015). For qualification attributes that cannot be 202 



10 
 

measured quantitatively, a predetermined Likert scale of 1–5 was adopted from Monzer et al. 203 

(2019) that enables objective quantification of the qualitative subcriteria for more accurate 204 

decision making. For example, participants used this Likert scale to rate the criterion Personal 205 

attributes and skills and its 5 subcriteria: Level of communication skills, Level of teamwork skills, 206 

Level of leadership skills, Level of analytical skills, and Level of ethics. The experts were also 207 

prompted to suggest additional criteria that were not yet listed. 208 

 209 
Fig. 1. Hierarchical structure for expert importance weight assignment. 210 

 211 

Next, the fuzzy pairwise comparison matrix for performing expert weight assessments was 212 

established, in which each criterion’s relative importance for performing expert weight assessment 213 

is obtained using a predetermined scale. FAHP uses crisp inputs while assessing the relative 214 

importance of criteria, and an FAHP pairwise comparison matrix uses fuzzy numbers instead of 215 

crisp inputs to represent the linguistic terms used during information synthesis. Each linguistic 216 

term is associated with its own fuzzy set. A series of such fuzzy sets combine to form a fuzzy scale 217 

for describing the levels of the linguistic terms, thus linking the verbal and numerical expressions. 218 



11 
 

The most common fuzzy scales in the literature are nine-level and five-level fuzzy scales (Liu et 219 

al. 2020). For this paper, Zimmer et al.’s (2017) five-level fuzzy scale was used, where 1 = Equally 220 

important, 2 = Weakly important, 3 = Fairly strongly important, 4 = Very strongly important, and 221 

5 = Absolutely important. The type of fuzzy set used to represent the fuzzy scale also depends on 222 

several factors. In this study, the tree-diagram approach for selecting fuzzy sets was used to select 223 

triangular fuzzy numbers. 224 

In the fuzzy pairwise comparison matrix Fm is shown in eq. 1, F represents the pairwise matrix of 225 

an expert m and comprises triangular fuzzy numbers that assess the relative importance of criterion 226 

i (ci) over criterion j (cj): 227 

Fm = 

[
 
 
 
 (1,1,1) �̃�12

(𝑚)
⋯ �̃�1𝑛

(𝑚)

�̃�21
(𝑚)

(1,1,1) ⋯
⋮ ⋮ ⋱ ⋮

�̃�𝑛1
(𝑚)

�̃�𝑛2
(𝑚)

⋯ (1,1,1)]
 
 
 
 

  (1) 228 

where �̃�𝑖𝑗
(𝑚)

= 1 �̃�𝑗𝑖
(𝑚)⁄ . 229 

Each expert’s judgements (Fm) were checked for consistency using Saaty’s consistency ratio 230 

(Saaty 2008; Liu et al. 2020), shown in eqs. 2 and 3. This is performed using the principle of crisp 231 

consistency, whereby the fuzzy numbers in the TRM are defuzzified before the consistency ratio 232 

is computed: 233 

𝐶𝐼 ⥂=
𝜆𝑚𝑎𝑥

𝑛−1
  (2) 234 

where CI = consistency index, max = the largest eigenvalue of the comparison matrix, and n = 235 

dimension of the square matrix; and 236 



12 
 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼(𝑛)
   (3) 237 

where n = dimension of the square matrix, CR = consistency ratio, and RI = random index, obtained 238 

from the random index table of different matrix sizes (Zadeh 1965). 239 

A CR value of ≤0.1 is acceptable for a consistent matrix (Saaty 2008). If the matrix does not 240 

comply with this requirement, the expert is prompted to repeat the pairwise comparisons until such 241 

criteria are met. Expert inputs are then aggregated to construct the representative matrix that 242 

combines the inputs of all involved experts. The subsequent steps (i.e., aggregation of expert 243 

inputs; obtaining fuzzy weights; defuzzification) to obtain the ranking of expert assessments were 244 

adopted from Monzer et al. (2019). 245 

3.1.3 Assign experts’ weighted importance 246 

The final step in FAHP is using the matrix outputs (i.e., relative importance weights between 247 

criteria) and assigning relative importance weights to experts. To achieve this, results of the 248 

subcriteria assessment are normalized in the range of [0–1] and used to evaluate each expert 249 

involved in the decision-making process of assessing the causal relationships between factors. 250 

Thus, weights obtained for criteria and subcriteria levels are applied to score each expert’s 251 

expertise level, using eq. 4: 252 

𝑆𝑖 = ∑ ∑ 𝑤𝐶𝑗
 𝑤𝑆𝑗𝑘

 𝐼𝑆𝑗𝑘
(𝑖),   𝑖 = 1. . . , 𝐸

𝑛𝐶𝑗

𝑘=1
𝑛
𝑗=1   (4) 253 

where )(iI
jkS  is the normalized evaluation of expert j in a total of E experts, based on subcriterion 254 

k and criterion Cj; 
jCw is the weight of criterion Cj; 

jkSw is the weight of subcriterion Sjk; n is the 255 

total number of criteria Cj; and nCj is the total number of subcriteria k. 256 
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The eq. 4 scores are then normalized using eq. 5 and used as weights by multiplying each expert’s 257 

assessment with the importance weight (IW) of each expert: 258 

𝐼𝑊𝑖 =
𝑆𝑖

∑ 𝑆𝑚
𝐸
𝑚=1

,  𝑖 = 1. . . , 𝐸  (5) 259 

A survey was prepared to formulate the application of FAHP discussed above and provide inputs 260 

for FDEMATEL. In this survey, the criteria and subcriteria identified through FAHP were 261 

presented in a question format to profile the participating experts. The resulting outputs were used 262 

to determine the experts’ importance weights. 263 

3.2 Stage 2: FDEMATEL process 264 

3.2.1 Factor identification 265 

Factors that affect crew motivation and productivity were identified and collected from the 266 

literature (Nasirzadeh and Nojedehi 2013; Tsehayae and Fayek 2016; Khanzadi et al. 2017; 267 

Gerami Seresht and Fayek 2018; Raoufi and Fayek 2018). The identified factors were grouped 268 

into situational/contextual factors at the crew and project levels. Crew-level factors were 269 

subcategorized into task-, labour-, and foreman-related factors, and project-level factors were 270 

subcategorized as task-related, management-related, work-setting conditions, resources, and safety 271 

(Raoufi and Fayek 2018). 272 

The most critical factors affecting crew productivity were then identified using expert inputs. 273 

Interview surveys were designed to elicit knowledge from experts (i.e., project management, 274 

tradespeople staff). Based on their individual knowledge, experts ranked the influence of factors 275 

on crew productivity, which was reflected in two scores: 1) the agreement score, showing the 276 

extent to which the expert agrees the factor is present in their project, and 2) the impact score, 277 
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showing the extent to which the factor impacts productivity. In this study, as recommended in CII 278 

(2006) and Taherdoost (2019), a seven-point Likert scale consisting of Strongly Disagree, 279 

Disagree, Slightly Disagree, Neither Agree nor Disagree, Slightly Agree, Agree, and Strongly 280 

Agree was used to measure the agreement score, and the impact score was measured using the 281 

seven-point Likert scale of Strongly Negative, Negative, Slightly Negative, No Impact, Slightly 282 

Positive, Positive, Strongly Positive. After expert inputs on these factors were collected, statistical 283 

analysis was performed to select factors with the maximum positive or negative impact on crew 284 

productivity (Gerami Seresht and Fayek 2020). Pearson correlation analysis is the most commonly 285 

preferred technique for correlation analysis (Bobko 2001; Pandey 2020). Pearson’s coefficient 286 

indicates relationship, such as between independent variables (e.g., motivational and 287 

situational/contextual factors) and dependent variables (e.g., crew productivity). (Note that 288 

Pearson correlation analysis does not establish causation between factors, per Gogtay and Thatte 289 

2017). Once a strong relationship between factors is established, these factors are used to define 290 

system elements in subsequent steps of the FDEMATEL process. 291 

3.2.2 Define system elements and generate expert assessments 292 

The next FDEMATEL step is defining system elements that influence the system’s behaviour 293 

(Rostamnezhad et al. 2020). In this study, system elements are the identified list of top factors 294 

affecting crew productivity. A survey was first prepared to provide inputs for FDEMATEL, using 295 

fuzzy linguistic scales (Seker and Zavadskas 2017; Mavi and Standing 2018) to generate expert 296 

assessments on causal relationships between the factors using expert inputs. The linguistic terms 297 

No influence (NI), Very low influence (VL), Low influence (L), Medium influence (M), High 298 

influence (H), and Very high influence (VH) were represented by the fuzzy numbers (0.00 0.00 299 

0.00), (0.00 0.00 0.25), (0.00 0.25 0.50), (0.25 0.50 0.75), (0.50 0.75 1.00), and (0.75 1.00 1.00), 300 
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respectively. This survey was also used to determine whether the polarity of causal relationships 301 

between variables was positive or negative. Polarity between two elements is positive if an 302 

increase/decrease in system element i causes an increase/decrease in element j. A positive link 303 

implies a similar change of direction between the factors; for example, increase/decrease in crew 304 

size can lead to increase/decrease in congestion. Negative polarity of a causal relationship/link 305 

implies an opposite change of direction between the factors such as when greater rework volume 306 

causes reduced project progress. 307 

3.2.3 Constructing IRM maps 308 

The generated expert assessments were used to obtain an initial fuzzy matrix for each expert, in 309 

the form of fuzzy matrix �̃�𝐸, shown in eq. 6: 310 

�̃�𝐸 =[�̃�𝑖𝑗
(𝑒)

]
𝑛𝑥𝑛

 =

[
 
 
 
 0 �̃�12

(𝑒)
⋯ 𝑥1𝑛

(𝑒)

�̃�21
(𝑒)

0 ⋯
⋮ ⋮ ⋱ ⋮

�̃�𝑛1
(𝑒)

�̃�𝑛2
(𝑒)

⋯ 0 ]
 
 
 
 

  (6) 
311 

where i,j = 1,2,...n; e =1,2,...E; n = total number of elements in the system; and E = total number 312 

of experts assessing the causal relationships. 313 

The set of initial fuzzy matrixes obtained from a set of experts E were aggregated to form the 314 

aggregated direct relation matrix �̃�. Each element in the aggregated matrix was obtained by 315 

multiplying the weights of the experts (w) obtained from the FAHP process with the elements in 316 

the direct matrices of respondents, as shown in eqs. 7 and 8 (Seker and Zavadskas 2017): 317 

�̃� = ∑ 𝑤𝑒 ⊗ �̃�𝑖𝑗
𝐸
𝑒=1 , 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑥𝑖𝑗

𝑙 , 𝑥𝑖𝑗
𝑚, 𝑥𝑖𝑗

𝑢), and i,j = 1,2...n  (7) 318 

Hence, 319 
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�̃� = [ �̃�𝑖𝑗]𝑛𝑥𝑛
, 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑑𝑖𝑗

𝑙 , 𝑑𝑖𝑗
𝑚, 𝑑𝑖𝑗

𝑢 )  (8) 320 

This direct relation matrix �̃� was used to obtain the normalized fuzzy aggregated direct relation 321 

matrix N, as shown in eqs. 9 and 10: 322 

�̃� =  �̃� ∗     (9) 323 

where: 324 

 =
1

𝑚𝑎𝑥1≤𝑖≤𝑛(∑ 𝑑𝑖𝑗
𝑛
𝑗=1 )

,   𝑖, 𝑗 = 1,2,… 𝑛  (10) 325 

The fuzzy total relation matrix T represents the total degree of causal influence of factor i on 326 

factor j, which was obtained using eqs. 11–13 (Rostamnezhad et al. 2018). 327 

𝑇 = 𝐷(𝐼 − 𝐷)−1  (11) 328 

where: 329 

�̃� = 𝐷 + 𝐷2 + 𝐷3 + ⋯+ = ∑ 𝐷𝑖∞
𝑖=1   (12) 330 

and I is represented by an n × n identity matrix. Hence: 331 

�̃� = [ �̃�𝑖𝑗]𝑛𝑥𝑛
, 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑡𝑖𝑗

𝑙 , 𝑡𝑖𝑗
𝑚, 𝑡𝑖𝑗

𝑢), 𝑎𝑛𝑑 𝑖, 𝑗 = 1,2, …𝑛   (13) 332 

Next, the sum of rows (ri) and sum of columns (cj) were computed as shown in eqs. 14 and 15, 333 

then (Ri + Cj) and (Ri – Cj) were calculated using eqs. 16 and 17. These calculations were used to 334 

construct IRM maps in which the defuzzified values of horizontal axis (Ri + Cj) are referred to as 335 

prominence (Zhou et al. 2014) and signify the degree of relationship of each factor with all other 336 

factors. Higher Ri + Cj values indicate higher causal relations with other factors. Defuzzified 337 

values of the vertical axis (Ri – Cj) are referred to as relation (Zhou et al. 2014). Positive relation 338 
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values indicate that factors are in the cause group. Negative relation values indicate that factors 339 

are in the effect group. 340 

𝑟𝑖 = ∑ 𝑡𝑖𝑗
𝑛
1≤𝑗≤𝑛  ∀𝑖   (14) 341 

𝑐𝑗 = ∑ 𝑡𝑖𝑗  ∀𝑗𝑛
1≤𝑖≤𝑛   (15) 342 

(𝑅 + 𝐶)𝑖 = 𝑟𝑖 + 𝑐𝑗  𝑖, 𝑗 = 1, ⥂ 2,…𝑛  (16) 343 

(𝑅 − 𝐶)𝑖 = 𝑟𝑖 − 𝑐𝑗  𝑖, 𝑗 = 1, ⥂ 2,…𝑛  (17) 344 

3.2.4 Establishing CLDs for SD 345 

Finally, CLDs, which present the causal relationships between crew motivation and 346 

situational/contextual affecting crew productivity, are established for use in SD modelling of 347 

productivity. The total relation matrix T obtained in eq. 13 was defuzzified using the center-of-348 

area method to achieve the Tdef matrix, which represents the degree of causal influence between 349 

the factors affecting crew productivity. Thus, Tij represents the degree of causal influence of factor 350 

i on factor j. The direction of arrows in the CLD indicate how factors in each row affect the factors 351 

of the matrix’s columns. Tij values that signify a stronger relationship between factors i and j are 352 

selected using a threshold value, which filters out negligible effects between factors that can 353 

otherwise make the resulting model too complex to comprehend (Si et al. 2018). The threshold 354 

value can be obtained using expert inputs (Li and Tzeng 2009) or brainstorming (Azadeh et al. 355 

2015), or it can be based on a given percentile (Si et al. 2018), the average of the elements in the 356 

matrix (Sumrit and Anuntavoranich 2013), or other approaches. Tij values meeting the threshold 357 

requirement are selected to plot the relationship maps that form the CLDs. 358 

4.0 CASE STUDY 359 
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The proposed FAHP-DEMATEL method was demonstrated using data collected over a period of 360 

three months from a real-world industrial construction project in Alberta, Canada. These data 361 

comprised the findings on factors affecting crew motivation and performance (Raoufi and Fayek 362 

2018) in this project’s context. Determining the sample size (i.e., the number of respondents 363 

surveyed from the total population) is critical to ensure the reliability of results. The population 364 

for this survey was made up of various personnel who assess a construction project. Random 365 

sampling ensures that all members of a population (e.g., respondents) have an equal chance of 366 

being selected, to help prevent biased selection based on convenience (Robinson 2014; Fellows 367 

and Liu 2015). An adequate sample size was used to ensure proper representation of the population 368 

as a whole. To identify system variables (i.e., motivational and situational/contextual variables), a 369 

survey was distributed at a construction company with 25 supervisors and 54 craftspeople. A total 370 

of 23 supervisors and 15 craftspeople responded (Raoufi and Fayek 2018). For the craft and 371 

supervisor survey, 80% and 99% confidence intervals were achieved, respectively, with 10% 372 

margin of error. For the population of 79 people, 38 responded, which achieved a 90% confidence 373 

interval with 10% margin of error. 374 

Surveys for the case study were conducted in two stages. In Stage 1, a survey was conducted with 375 

experts who have extensive knowledge in construction and related productivity research. Survey 376 

results were used to validate and weigh the criteria identified for expert ranking, as described in 377 

the Methodology section above. The experts’ responses were obtained in the form of a pairwise 378 

comparison matrix as input for the FAHP process. Participating experts had an average of >15 379 

years’ experience in the construction industry and had previously participated in productivity 380 

research. Table 1 presents profiles for this group of experts. 381 

 382 
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Table 1. Profile of experts in the FDEMATEL process. 383 

 Education (civil 

engineering) 

Work experience 

- Industry 
Current profession 

Expert 1 MSc <5 years Researcher 

Expert 2 PhD >10 years Project control 

Expert 3 PhD >10 years Project manager 

Expert 4 MSc 5 years Researcher 

Expert 5 PhD >10 years University professor 

Expert 6 PhD <5 years Researcher 

 384 

In Stage 2, factors affecting crew motivation and performance were prioritized using data collected 385 

for the actual construction project (Raoufi and Fayek 2018). For this case study, data on 386 

situational/contextual factors, crew motivation, and several crew performance measures were 387 

collected using interview surveys, project documents such as safety logs, and external databases 388 

such as weather data. The data from interview surveys with crew members, supervisors, and 389 

project managers were utilized to rank the factors impacting crew motivation and performance, 390 

where respondents were prompted to assess the extent to which a factor existed in the project and 391 

also evaluate its corresponding degree of importance. Data collected on situational, contextual, 392 

and crew motivational factors were analysed to identify the most important factors that affect crew 393 

productivity. A total of 129 situational/contextual factors that affect crew performance were 394 

identified at the crew level (Raoufi and Fayek 2018).  395 

5.0 RESULTS: THEORETICAL AND PRACTICAL IMPLICATIONS 396 

Per the methodology, experts identified and validated a list of criteria. Table 2 presents the results 397 

of relative importance weights for each criterion and subcriterion. The normalized expert weight 398 

assessment performed on the six experts (E1, E2, E3, E4, E5, E6) was computed as (0.13, 0.17, 0.21, 399 

0.16, 0.19, 0.14). Of a total 129 situational/contextual crew-level factors, Pearson’s correlation 400 
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coefficient values of >0.5 were chosen based on Pearson correlation analysis that identified 38 401 

factors as having a strong relationship with crew productivity. 402 

Table 2. Calculated weights of criteria and weights, scales of measure, and range of data input 403 

for subcriteria. 404 

No. Criterion Weight Subcriterion Weight 
Scale of 

measure 
Range of 

data input 

1 Experience 0.16 1.1. Total years of experience 0.60 Integer 0–35 

1.2. Relevant experience 0.40 Integer 0–20 

2 Knowledge 0.16 2.1. Academic knowledge 0.21 Integer 0–5 

2.2. Education level 0.30 1–5 rating 1–5 

2.3. On-the-job training 0.49 Integer 0–10 

3 Professional 

performance 

0.15 3.1. Current occupation in the 

company 

0.40 1–5 rating 1–5 

3.2. Years in current occupation 0.60 Integer 0–35 

4 Productivity-

related 

project 

management 

practices 

0.31 4.1. Average hours of work in 

productivity-related work 

per week 

0.35 Integer 0–20 

4.2. Level of management 

training related to 

productivity 

0.30 Integer 0–5 

4.3. Experience in conferences 

related to productivity 

management 

0.15 Integer 0–5 

4.4. Functional skills related to 

productivity management 

0.20 1–5 rating 1–5 

5 Project 

specifics 

0.06 5.1. Project size limit 0.26 Integer 1mil – 2 bil 

5.2. Commitment to time 

deadlines 

0.23 Integer 0–100 

5.3. Commitment to cost budget 0.23 Integer 0–100 

5.4. Safety adherence 0.16 Integer 0–5 

5.5. Geographic diversity 

experience 

0.12 Integer 0–20 

6 Reputation 0.03 6.1. Social acclimation 0.34 1–5 rating 1–5 

6.2. Willingness to participate in 

survey 

0.33 1–5 rating 1–5 

6.3. Professional reputation 0.33 1–5 rating 1–5 

7 Personal 

attributes 

and skills 

0.13 7.1. Level of communication 

skills 

0.24 1–5 rating 1–5 

7.2. Level of teamwork skills 0.24 1–5 rating 1–5 

7.3. Level of leadership skills 0.27 1–5 rating 1–5 

7.4. Level of analytical skills 0.14 1–5 rating 1–5 

7.5. Level of ethics 0.11 1–5 rating 1–5 

 405 
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Per the FDEMATEL results, experts’ survey responses were converted from a linguistic scale to 406 

triangular fuzzy numbers. Table S1 depicts a sample section of the fuzzy total relation matrix �̃�. 407 

Table S2 depicts a sample section of the defuzzified total relation matrix Tdef. [See end of this post-408 

print document for Tables S1 and S2.] The matrices and diagrams represent contextual 409 

relationships between the factors in the system, whereby the numeric value measures the strength 410 

of influence (Bavafa et al. 2018). Prominence is a measure of each factor’s role on the overall 411 

system in terms of its causality. Hence, greater prominence values indicate higher causal relations 412 

with other factors. Relation values in the vertical axis allow assessment of the factors by 413 

categorizing them into cause-and-effect groups. Hence, factors with positive relation values are 414 

categorized into the cause group, and those with negative values form the effect group. The top 415 

prominence and relation values are summarized in section 5.1.2, Relative criteria importance, 416 

below. The values of prominence (R + C) and relation (R – C) can be simultaneously analysed by 417 

mapping these values to formulate IRM, as shown in Figure 2. 418 

Outputs of the FDEMATEL process, namely the defuzzified values of the T matrix, were used to 419 

map the causal influence relationships between factors. While constructing the CLD, it is 420 

imperative to consider the extent of causal relationships between variables (e.g., in a matrix of 38 421 

variables, 1,444 potential relationships exist). Considering these relationships can become too 422 

complex and unfeasible to implement. Therefore, from causal relationships that exist between any 423 

two variables, a threshold value of 75th percentile of the defuzzified total-relation matrix T was 424 

set by selecting values ≥0.021. Hence, only the strong relationships are used to map causal 425 

relationships between variables. In comparison with previous studies, the number of 38 nodes used 426 

in this study is significantly higher. Researchers have utilized nodes in the range of five or lower  427 

(Yazdi et al. 2015) and fifteen or higher (Zhou et al. 2014; Akyuz and Celik 2015; Aliakbari Nouri 428 
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 429 

Fig. 2. Influence relation map (IRM). 430 

and Shafiei Nikabadi 2017; Selvaraj et al. 2018). However, most researchers used nodes within 431 

the range of 5–15 (Seker and Zavadskas 2017; Bavafa et al 2018; Can and Toktas 2018). 432 

As described in the methodology, the direction of the arrows for drawing the CLD is obtained from 433 

the T matrix, whereby factors in each row affect the factors of the matrix’s columns. Thus, the 434 

CLD was progressively and hierarchically constructed by first considering contextual/situational 435 

factors at the crew level. The contextual/situational factors at the foreman and project levels were 436 

subsequently introduced into the crew-level variables (see Figures S1, S2, and S3 [end of this post-437 

print document]). CLDs were constructed for the system in general and for the different hierarchies 438 

of the crew, foreman, and project levels. For example, the CLD in Figure 3 presents an interaction 439 

between situational/contextual factors in terms of reinforcing feedback loops R1, R2, and R3. 440 
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 441 

Fig. 3. Example of reinforcing loops in a causal loop diagram (CLD). 442 

 443 

5.1 Expert weight assessment 444 

Findings of the expert weight assigning model (Stage 1) identified Productivity-related project 445 

and construction management practices amongst the list of criteria unique to assessing decision 446 

makers’ inputs in the area of productivity. The related subcriteria are: Average hours of work in 447 

productivity-related work per week; Level of management training related to productivity; 448 

Experience in conferences related to productivity management; and Functional skills related to 449 

productivity management. The criterion Productivity related project management practices had an 450 

overall weight of 0.31 and thus the highest relative importance in terms of the expert importance 451 

weights. This indicates the need to give relatively more consideration for experts’ involvement in 452 

productivity-related activities during the decision-making process. The criteria Experience and 453 



24 
 

Knowledge were both ranked second, with an overall weight of 0.16, while Reputation was ranked 454 

as the criterion with the lowest importance for expert assessment. 455 

5.2 Relative criteria importance 456 

Using FDEMATEL to identify cause-and-effect groups within the factors affecting crew 457 

productivity and draw influence relation maps between the factors, the �̃� matrix values were used 458 

to obtain the prominence and relation values. Factors with higher prominence values indicate 459 

higher causal relations with the other factors presented. Factors with the five highest prominence 460 

values were Ability to perform (Ri + Cj = 1.297), Reliability (1.133), Project progress (1.128), 461 

Visibility of outcome (1.120), and Project scheduling (1.042). Hence, these five factors have a 462 

greater strength of interrelationship with and strongly influence other factors. Conversely, 463 

Location of washrooms, Change in weather conditions, Temperature, Access points, and Fairness 464 

were found to be the factors with minimum prominence values, indicating their relatively low 465 

influence over other factors. 466 

For relation values, the factors were categorized into cause-and-effect groups based on positive 467 

and negative relation values. Crew motivation (Ri – Cj = 0.60), Crew experience (0.49), Foreman 468 

experience (0.48), Foreman knowledge (0.43), Task repetition (0.42), Crew composition (0.34), 469 

and Rework (0.23) were among the top cause factors. These factors are shown to impose more 470 

impact on the system (R values) than they receive (C values), meaning they have greater causal 471 

influence on other factors and the system’s overall behaviour. Therefore, improving these factors 472 

can result in the best improvement of crew productivity measures. Conversely, Project progress 473 

(Ri – Cj = –0.56), Project time management (–0.45), Ability to perform (–0.39), Material handling 474 

(–0.33), Project scheduling (–0.32), Safety management (–0.21), Safety facilitation and 475 
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implementation (–0.17), Performance monitoring (–0.16), and Reliability (–0.13) were the top 476 

factors with a high degree of being strongly influenced by other factors. 477 

The prominence and relation values were also used to plot IRM, which analyses cause-and-effect 478 

groups and their overall influence on system behaviour. Crew experience, Foreman experience, 479 

Foreman knowledge, Crew motivation, Crew composition, Visibility of outcome, and Rework were 480 

found to factors with higher combined prominence and relation values relative to the other factors 481 

affecting crew productivity. In terms of managerial decision-making to improve the system’s 482 

overall behaviour and improve crew productivity, these results show it is imperative to focus on 483 

improving factors with a higher measure of both prominence and relation values. Factors that 484 

registered the highest prominence values and were categorized as ranking highest under the effect 485 

group, as noted above, are therefore affected most by the other factors and have more interaction 486 

with the other factors in terms of causal relationships. Improving these factors, which have most 487 

interactions and the highest causal impact on other situational/contextual factors, can significantly 488 

improve factors categorized as ranking highest under the effect group, thereby improving the 489 

system’s overall behaviour and crew productivity. 490 

5.3 CLDs 491 

The FDEMATEL output was used to obtain the CLDs and feedback loops crucial in the qualitative 492 

modelling step of SD modelling. At the crew level, ability to perform is a factor of both the crews’ 493 

and crew foremen’s knowledge and experience. Hence, increasing crews’ ability to perform tasks 494 

at the activity level can be facilitated through choosing the right combination of foreman and crew 495 

members with appropriate knowledge and experience, which can in turn bring about a positive 496 

project progress. In Figure 3, in reinforcing causal loop R1, positive Project progress leads to an 497 

increase in the Reliability of crews to perform tasks. The reliability of crews in performing their 498 
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tasks is a crucial input towards goal-setting and task assignment while planning the set of activities 499 

crews will perform. Thus, clearly communicating outlined goals can lead to a better perception of 500 

outcome in crews’ task performance (i.e., better visibility of outcome). This in turn can help crews 501 

and crew members better identify with their tasks, which adds to their knowledge about and ability 502 

to perform tasks. Conversely, reinforcing causal loops R2 and R3 in Figure 3 show the impact of 503 

better project progress resulting in better execution and monitoring of project schedule, which 504 

results in better project-level time management and cost management, and consequently better 505 

monitoring of project performance. Thus, improved performance measures reinforce project 506 

progress. 507 

6.0 CONCLUSIONS AND FUTURE WORK 508 

Improving construction crew productivity is a complex process because of a combination of 509 

multiple challenges such as being able to identify factors that can be used as productivity 510 

predictors, identifying issues that can contribute to productivity improvement, and proposing 511 

mitigation measures for crew productivity improvement. These processes mostly involve input 512 

from heterogenous experts, meaning the experts have varying backgrounds, experience, and 513 

expertise areas. Furthermore, capturing the inherent causal interrelationships between factors that 514 

can contribute to productivity improvement. Capturing these relationships between factors used as 515 

predictors for crew productivity is also crucial to formulating a comprehensive solution for the 516 

productivity problem. Thus, the main goal of this study was to address productivity by proposing 517 

a systematic, structured methodology integrating fuzzy set theory, AHP, and DEMATEL 518 

approaches for use in dynamic modelling of crew productivity. 519 

This paper identifies criteria for assigning expert weights in productivity studies. FAHP enables 520 

expert weight assessment to account for heterogenous experts involved in productivity studies. 521 
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FDEMATEL identifies cause-and-effect groups within the factors affecting crew productivity and 522 

thus captures the influencing relationships between factors, which can be used in strategic decision 523 

making on productivity improvement. Further, FDMATEL can be used to obtain CLDs and 524 

feedback loops. The outputs of FAHP-FDEMATEL form a crucial input for a more representative 525 

modelling of dynamic construction productivity compared with other techniques. Moreover, the 526 

identified cause-and-effect groups can serve as crucial inputs for strategic decision making in 527 

productivity improvement. 528 

The contributions of this paper are 1) identifying a set of criteria to perform expert weight 529 

assignment for heterogenous group experts in productivity research, 2) proposing an integrated 530 

FAHP-FDEMATEL approach as a systematic, structured method for determining causal 531 

relationship mapping between crew motivation, situational/contextual factors, and crew 532 

productivity, and 3) proposing an approach for identifying cause-and-effect groups amongst 533 

situational/contextual factors and crew motivation, which can be used to formulate strategic 534 

productivity improvement solutions. Validity of the proposed method was demonstrated using a 535 

case study of a real-life construction project.  536 

Future work will include developing the proposed FAHP to perform expertise-level assessment 537 

that considers dependency between the hierarchy elements. FAHP will also be improved to 538 

consider the dependence between multiple criteria and/or subcriteria using other approaches, such 539 

as fuzzy analytic network process. Sensitivity analysis will also be provided to study relationship 540 

strengths and how each relationship is sensitive to changes from input parameters. Furthermore, 541 

additional studies will be conducted to reduce the complexity resulting from using higher number 542 

of nodes and system variables. In effect, comparative analysis will be performed by comparing the 543 

current number of nodes in this study versus the number of nodes obtained using the results of 544 
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sensitivity analysis to further reduce the system variables. Moreover, the effect of varying 545 

threshold selection approaches (i.e., higher percentile thresholds, average of the elements in the 546 

matrix, expert inputs) while developing CLDs from defuzzified TRM values can also be explored. 547 
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Supplmentary Materials 834 

Table S1. Sample section of fuzzy total relation matrix. 835 

T T1 T2 … T37 T38 
  Tl Tm Tu Tl Tm Tu    Tl Tm Tu Tl Tm Tu 
 ID 1.1 1.2 … 7.1 7.2 

T1 1.1 0.0 0.00 0.00 0.01 0.02 0.03 . . . 0.01 0.02 0.03 0.00 0.00 0.00 

T2 1.2 0.0 0.01 0.02 0.00 0.00 0.00 . . . 0.00 0.01 0.02 0.00 0.00 0.00 

T3 1.3 0.0 0.00 0.01 0.02 0.03 0.04 . . . 0.00 0.00 0.01 0.00 0.00 0.00 

. . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . 
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. . . . . . . . . . . . . . . . . 

T37 7.1 0.0 0.0 0.00 0.00 0.00 0.00 . . . 0.00 0.00 0.00 0.01 0.02 0.03 

T38 7.2 0.0 0.0 0.00 0.00 0.00 0.00 . . . 0.03 0.04 0.04 0.00 0.00 0.00 

 836 

Table S2. Sample section of defuzzified total relation matrix. 837 

 ID T1 T2 T3 T4 T5    T34 T35 T36 T37 T38 

T1 1.1 0.0 0.021 0.031 0.010 0.0 . . . 0.0 0.0 0.0 0.0 0.021 

T2 1.2 0.01 0.000 0.039 0.003 0.0 . . . 0.0 0.0 0.0 0.0 0.010 

T3 1.3 0.003 0.031 0.000 0.010 0.0 . . . 0.0 0.0 0.0 0.0 0.003 

T4 1.4 0.039 0.031 0.031 0.0 0.0 . . . 0.0 0.003 0.0 0.0 0.003 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

T34 6.5 0.0 0.0 0.0 0.0 0.0 . . . 0.0 0.0 0.0 0.0 0.0 

T35 6.6 0.0 0.0 0.0 0.0 0.0 . . . 0.010 0.0 0.0 0.0 0.0 

T36 6.7 0.0 0.0 0.0 0.0 0.0 . . . 0.010 0.0 0.0 0.0 0.0 

T37 7.1 0.0 0.0 0.0 0.0 0.0 . . . 0.031 0.010 0.0 0.0 0.021 

T38 7.2 0.0 0.0 0.0 0.0 0.0 . . . 0.031 0.003 0.0 0.039 0.000 

 838 

 839 
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 840 

Fig. S1. CLD between factors affecting productivity at the crew level. 841 
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 842 

Fig. S2. CLD between factors affecting productivity at the crew level, including foreman-related 843 

factors. 844 
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 845 

Fig. S3. CLD between factors affecting productivity at the crew level, including foreman-related 846 

and project-level factors. 847 


