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Abstract

This thesis focuses on characterizing the optimal consumption and invest-

ment strategy for an investor, in a simple �nancial market, when his consump-

tion habit is considered in the utility formulation. We consider a continuous-

time market model for which we maximize the overall utility within an in�nite

horizon.

Using the Bellman's Principle, we derive the associated Hamilton-Jacobi-

Bellman equation (called HJB hereafter). For the case of HARA utility (ex-

ponential, power and logarithmic), the solution to the corresponding HJB is

explicitly described. Furthermore, for the HARA case, the optimal consump-

tion, consumption habit and wealth processes are described by a stochastic

di�erential equation (called SDE hereafter). We pay particular attention to

the case of exponential utility, where the obtained SDE is solved explicitly.

By applying graphing method, we explain the relationships between the

optimal consumption/wealth/habit and the system's parameters. This result

is meaningful, since it implies the potential in�uence to investors when the

system's parameters are changing.
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Chapter 1

Introduction

Mathematical �nance is an area where researchers develop quantitative meth-

ods and analysis for �nancial problems. It is a multidisciplinary �eld, which

involves �nancial and economic theory, the engineering designs and meth-

ods, mathematical and statistical tools, and computer skills. As the pace

of �nancial innovation increases, commercial banks, investment banks, hedge

funds, insurance companies, corporate treasuries and other �nancial institu-

tions apply the methods of �nancial mathematics to problems such as deriva-

tive securities valuation, portfolio structuring, risk management, and scenario

simulation.

Among the most popular topics in this �eld, the topic of investment opti-

mization draws attention of many �nancial mathematicians. Under the mod-

ern portfolio theory, we assume that investors try to minimize risk while striv-

ing for the highest return possible. The theory states that investors will act

rationally, always making decisions aimed at maximizing their return for their

acceptable level of risk. The pioneer of this �eld is Harry Markowitz, who

stated in 1952 that it is possible for di�erent portfolios to have varying levels
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of risk and return. Each investor must decide how much risk he or she can

tolerate, and allocate their portfolio according to the e�cient frontier which

shows a set of optimal portfolios that o�ers the highest expected return for a

de�ned level of risk.

Another popular mathematical �nance topic is Asset Pricing Theory, which

has attracted many researchers since the middle of the last century. In �nance,

the agents can use a variety of pricing strategies when selling a product or ser-

vice. Finding the right pricing rules is an important element for a successful

business. In 1973, Fisher Black, Robert Merton and Myron Scholes developed

the Black�Scholes Model, which is one of the most important concept in �nan-

cial theory. It is widely used in determining fair prices of options, and many

empirical tests have shown that the Black�Scholes price is close to the observed

prices, although this model is often applied with adjustments and corrections.

In addition, CAPM, another capital asset pricing model, describes the rela-

tionship between risk and expected return. CAPM says that the expected

return of a security or a portfolio equals the rate on a risk-free security plus a

risk premium.

1.1 Optimal Portfolio and Optimal Consump-

tion

This optimization topic is an important area of �nancial economics. For dif-

ferent optimization goals, researchers have developed the optimal strategies in

various directions. The research on this subject was initiated by Yaari (see [20])

in 1965, who raised the problem of consumption optimization for an individual
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who might be expected to react to his lifetime uncertainty. In his model, Yaari

concentrated on lifetime uncertainty and ignored other uncertainties by build-

ing a deterministic investment environment. Merton (see [11]) investigated

the optimum consumption and portfolio rules in a continuous-time model. His

work extended these optimal rules for more general cases, and addressed an

optimization problem without any bequest motive. For di�erent specialized

utility formation, he derived the optimal consumption in the feedback form.

Combining the optimality theory with insurance application, Hakansson (see

[7]) put forward an optimization problem allowing the individual to hold in-

surance in case of risk, and he discussed the corresponding optimal strategy

for specialized models. As a specialized case, Bommier (see [2]) explored how

survival uncertainty may a�ect individual preference under the assumption

of risk aversion with respect to the length of life. In the same spirit, Young

(see [22]) also focused on the reaction to lifetime uncertainty. In this work,

the optimization target is to minimize the probability of lifetime ruin, and

the author derived the optimal investment strategy under the assumption of

constant consumption rate. Cuoco and Cvitani¢ (see [3]) examined the e�ect

of that "large" investor whose portfolio choices may a�ect the price process of

traded asset. By martingale and duality techniques, they proved the existence

of optimal policies for large investors. Under the assumption that long-term

macroeconomic conditions will in�uence investor's behavior. Sotomayor and

Cadenillas (see [16]) added another stochastic process to represent the regime

switching, then solve the optimization problem for speci�c HARA utility func-

tion.

Generally speaking, for some certain targets, the corresponding optimality

conditions were obtained in previous works. In this thesis, I will examine an
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optimization problem with the target of maximizing expected overall utility.

1.2 Habit Formulation Utilities

In the last two decades, many researchers believe that the consumption habit

formation plays an important role in optimization theory and utility formu-

lation, and use time-separable utility function to represent the agent's prefer-

ence. This idea started as early as 1930, when I. Fisher carefully examined

the measurability of the utility function, and emphasized the importance of

nonseparable utility formation. In the literature on habit formation, Pollak

(see [15]) built a model binding a speci�cation of linear habit formation. He

proved the existence of long-run utility functions which depend on the param-

eters of short-run utility function and those of habit formation. Detemple and

Zapatero (see [4]) discussed the asset prices in an general exchange economy

where the preferences of the agents is formed by previous consumption. They

derived closed-form solutions for the interest and the value at risk. Merton

(see [11]) gave a brief discussion on an optimization problem for two-asset

discrete market, and then passed to the case of continuous time within an in-

�nite horizon. Sundaresan (see [17]) constructed a model in which consumer's

utility depends on the consumption history. Applying the Hamilton-Jacobi-

Bellman equation, he gave a feedback form consumption in a simple example.

With simulation method, the consumption paths generated from this model is

formed to be less �uctuating compared with the case of separable utility func-

tion. Hindy, Huang and Zhu (see [8]) explored the interaction between the

durability of consumption goods and habit formation over consumption �ow.

Applying numerical techniques, they solved a free-boundary singular control

4



problem.

1.3 Summary

In this thesis, we study the problem of optimal consumption and investment

rules in a simple �nancial market within an in�nite lifetime horizon for a

investor with habit formation.

The thesis is organized as follows. In Chapter 2, we introduce the �nancial

concept and the mathematical tools which are applied throughout the thesis.

In Chapter 3, we specify the market model on which the remaining part of

the thesis is based on. Then, we describe the optimal value function as a so-

lution to a partial di�erential equation (PDE). Afterwards, we solve explicitly

this obtained PDE for the three cases of HARA utility (Exponential, power

and logarithmic). In Chapter 4, we focus on the global solution for optimal

consumption, optimal consumption habit, and optimal wealth processes. Es-

pecially, we discuss the exponential habit formation in details. In Chapter 5,

we apply graphing method to describe the e�ect of the model's parameters

on the optimal investment, consumption rate, consumption habit or wealth.

Finally, in Chapter 6, we conclude this thesis by summarizing the main �nding

and contribution of the thesis.
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Chapter 2

Preliminaries on Stochastic and

Financial Concepts

In this chapter, we introduce some �nancial concepts, and discuss the mathe-

matical tools used throughout the rest of the thesis.

2.1 Market Structure

We start by describing and introducing the �nancial market. A �nancial mar-

ket is a market in which people can trade �nancial derivatives, commodities,

and other fungible items of value. In the market, everything for trade has a

corresponding price. In ordinary usage, price is the quantity of payment or

compensation given by one party to another in return for goods or services.

The law of the markets determines that a suitable price is the one which can

keep a balance between supply and demand. Usually, there exists low trans-

action costs when trading activities happen in real life.

However, to make the research concise, we need to simplify the market
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structure in this thesis. We will focus on a single small investor, which means

that his transaction will not in�uence the market equilibrium. We also consider

this single-agent economy with frictionless markets and no taxes. It is only

stocks and bonds that are tradeable in our model. Bond is a riskless asset, and

its rate of return is a positive number r(t). r(t) is also called interest rate at

time t. The price process of the bond is denoted by P0(t) (t > 0), and follows

dP0(t) = r(t)P0(t)dt. (2.1)

Equivalently, given the initial bond price P0, for every t ∈ [0,∞)

P0(t) = P0 exp
(∫ t

0

r(s)ds
)
, t > 0. (2.2)

Di�erent from bonds, usually many kinds of stocks exist in the �nancial

market. We assume that the market consists of m stocks. We denote by Pi(t)

the price of the ith stock at time t (i = 1, 2...,m). The dynamic of the stock

price process is given by:

dPi(t) = bi(t)Pi(t)dt+ Pi(t)
d∑
j=1

σij(s)dW
j
t . (2.3)

Equivalently, given the initial stock price Pi, for every t ∈ [0,∞), we have

Pi(t) = Pi exp

{∫ t

0

[
bi(s)−

1

2

d∑
j=1

σ2
ij(s)

]
ds+

d∑
j=1

∫ t

0

σij(s)dW
j
s

}
. (2.4)

In the equations above, the interest rate r(t), the stock appreciation rate

b(t) , (b1(t), ..., bm(t)), the volatility matrix σ(t) = {σij(t)}16i6m,16j6d are the

coe�cients/parameters of the model. Precisely, r(t) : [0,∞) × Ω → R and
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bi(t) : [0,∞) × Ω → R are positive scalars, while the volatility of ith stock

σi(t) : [0,∞]×Ω→ Rm describes the price dispersion rate. All these processes

are assumed to be Ft-adapted.

The process Wt ,
{
W 1
t ,W

2
t , ...,W

d
t

}
is a d-dimensional standard Wiener

process. It is assumed that m 6 d. If m = d and the volatility matrix is

nonsingular, those stocks create a complete market. A �nancial market where

every payo� can be replicated is called complete. Otherwise, the market is

incomplete such as the case m < d, where an in�nite number of risk neutral

probability measures exist.

We further assume that the investors can buy stocks and bonds with

their capital. The investment activity is characterized by portfolio π(t) ,

(π0(t), π1(t), ..., πm(t)), where πi(t) , Ni(t)Pi(t). N0(t) represents the amount

of bond, and Ni(t) represents the amount of ith stock at time t, i = 1, ...,m.

In our model, short-selling is allowed, which means that Ni can be any real

number for i = 0, ...,m.

2.2 Habit Utility Formation

In this section, we de�ne some mathematical variables that describe the state

of agent. At �rst, it is assumed that the agents have to make a continuous-

time expense �ow in order to live, so we use c(t) to represent the consumption

rate of the agent at time t. Consequently, the agents will gain happiness from

their consumption, and we call this e�ect as utility. In economics, utility is a

description of preferences over some set of goods and services. In mathematics,

utility is a function U : (0,∞) → R that is increasing and concave. It is a

single variable function with respect to consumption rate. In macroeconomics,
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the utility function must satisfy the following condition.

Assumption 1: U(c) is continuously di�erentiable and satis�es

∂U(c)

∂c
> 0,

∂2U(c)

∂c2
< 0, lim

c→+∞

∂U(c)

∂c
= 0. (2.5)

This assumption means that the utility function has to be strictly increas-

ing and strictly concave. From a �nancial view, the marginal utility is strictly

decreasing, and it goes to zero as consumption rate approaches positive in�nity.

In our model, we study the problem of optimal consumption and investment

rules for an agent with habit formation. Therefore, we expand the original

utility U(c) to a multi-variable function U(c, z) with respect to consumption

rate c(t) and consumption habit level z(t). The habit index process z(t) is

given by

dz(t) = β(c(t)− z(t))dt, z(0) = z0, (2.6)

Equivalently, given the initial consumption habit z0,

z(t) = z0e
−βt +

∫ t

0

βeβ(s−t)c(s)ds. (2.7)

In this formulation, z0 is the initial consumption preference level. β is called

habit formulation factor, and it represents the weight of nearby consumption in

the formulation of habit. As time passes, the preference places less weight on

historical consumption at a given past date. From the di�erential form, we can

see that the consumption habit will increase if the momentary consumption

rate exceeds the consumption habit. The higher β is, the fast z(t) is adjusted

to current consumption rate. If β = 0, the preference index is a constant and

stays at z0.
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Similarly, the habit-related utility function has to satisfy the following con-

dition.

Assumption 2: U(c, z) is continuously di�erentiable and satis�es:

1. ∂U(c,z)
∂c

> 0. For �xed historical consumption rate, an increase in current

consumption will increase utility.

2. ∂U(c,z)
∂z

< 0. For �xed current consumption, an increase in historical

consumption rate will decrease utility.

3. ∂2U(c,z)
∂c2

< 0. Marginal utility will decreases as current consumption

increases. It indicates that utility function U(c, z) is concave down for c.

4. lim
c→+∞

∂U(c,z)
∂c

= 0. Marginal utility approaches 0 as consumption rate

goes to in�nity.

In order to simplify calculations, various formations have been assumed

in utility functions. The utility function can be specialized as follows: (just

examples, not limited to those cases)

1. Exponential utility function: u(c, z) = − 1
Φ1
e−Φ1c+Φ2z, where Φ1 >

0,Φ2 > 0. The parameter Φ2 describes the strength of intertemporal de-

pendence.

2. Power utility function: u(c, z) = {c−z}A
A

, A < 1. This utility formation

has the property that as c approaches z, the marginal utility goes to in�nity.

Therefore, the agent would never allow his consumption level to be lower than

his consumption habit.

3. Logarithmic utility function: u(c, z) = log{c − z}. Same as power

utility function, as c→ z, the marginal utility goes to in�nity. Therefore, the

consumption habit determines the lower limit of consumption rate.

4. Generalized power utility function: u(c, z) = 1−γ
γ

(
mc−nz

1−γ + η
)γ
. The
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last three kinds of utilities usually referred as HARA utilities. The word HARA

is an abbreviation for "hyperbolic absolute risk aversion". A utility function is

said to exhibit hyperbolic absolute risk aversion if and only if the level of risk

tolerance is a linear function of consumption. HARA function is often applied

in model to characterize the property of risk aversion mathematically.

In chapters 3 and 4, we examine the property of exponential utility function

in depth, and make a brief discussion for the generalized power utility function.

2.3 The Consumer Optimization Problem

In our economy, the agent starts with an initial capital x0, and no endowment

will be added at any time t ∈ (0,∞). We use x(t) to represent the wealth of

the agent at time t. At any time t, the consumer must decide his consumption

rate c(t) and investment strategy π(t). Then, the wealth process is determined

by


dx(t) =

[
r(t)x(t) +

m∑
i=1

(bi(t)− r(t))πi(t)− c(t)
]
dt+

d∑
j=1

m∑
i=1

πi(t)σij(t)dW
j
t ,

x(0) = x0.

(2.8)
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Equivalently, for every t ∈ [0,∞),

x(t) = exp

 t∫
0

r(s)ds

x0 +

∫ t

0

exp

− s∫
0

r(u)du

 [π(s)(b(s)− r(s) · 1)>

− cs] ds+
d∑
j=1

t∫
0

exp

[
−
∫ s

0

r(u)du

]
π(s)σ·j(s)dW

j
s

 .

(2.9)

For a given utility function U , a given initial capital x0, and a given initial

consumption preference z0, we consider the following target function

J(x0, z0; c(·), π(·)) = E0

{∫ ∞
0

e−δtU(c(t), z(t))dt

}
. (2.10)

J(x0, z0; c(·), π(·)) represents the overall expected utility within an in�nite hori-

zon. Here, E0 is the expectation operator, and δ is the subjective discount rate,

which describes the level of investor's impatience.

The initial condition includes the initial wealth x0 and initial consump-

tion habit z0, and the variables for control are consumption �ow c(·) and

investment �ow π(·). Our objective is to maximize the overall expected util-

ity J(x0, z0; c(·), π(·)) over the set of pairs 〈c(·), π(·)〉. Mathematically, the

problem can be expressed as follows,

max
{c(·),π(·)}

J(x0, z0; c(·), π(·)) = max
{c(·),π(·)}

E0

{∫ ∞
0

e−δtU(c(t), z(t))dt

}
. (2.11)

This stochastic control problem is the main focus of this thesis.
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2.4 Itô's Formula

In this section, we introduce Itô's Formula for an n-dimensional Itô process

having the form of

Xi(t) = Xi(0) +

∫ t

0

Ki(s)ds+
m∑
j=1

∫ t

0

Hij(s)dWj(s).

Theorem 1: (Itô's Formula) Let f : [0,∞) × Rn 7→ R be a C1,2-function.

That is, f is continuous, continuously di�erentiable with respect to the �rst

variable (time), and twice continuously di�erentiable with respect to the last

n variables (space).

Then, for every t > 0,

f(t,X1(t), ..., Xn(t))

=f(0, X1(0), ..., Xn(0))

+

∫ t

0

ft(s,X1(s), ..., Xn(s))ds+
n∑
i=1

∫ t

0

fxi(s,X1(s), ..., Xn(s))dXi(s)

+
1

2

n∑
i=1

n∑
j=1

∫ t

0

fxixj(s,X1(s), ..., Xn(s))d〈Xi, Xj〉s.

2.5 Optimization Tools

This section provides mathematical results and arguments useful for solving

our main target de�ned in (2.11). To this end, we consider (Ω,F,Ft>0,P) as

a given �ltered probability space which satis�es the usual condition, on which

is de�ned an m-dimensional standard Brownian motion W (t). We set up the

13



following stochastic framework for dynamic programming:


dx(t) = b (t, x(t), z(t), c(t), π(t))) dt+ σ (t, x(t), z(t), c(t), π(t)) dW (t),

dz(t) = β(t, x(t), z(t), c(t), π(t))dt,

x(s) = x, z(s) = z.

(2.12)

along with a target function

J(s, x, z; c(·), π(·)) = E

{∫ ∞
s

e−δtu(c(t), z(t))dt

}
. (2.13)

We emphasize that in (2.12) the initial state x, z is a deterministic (almost

surely) variable under (Ω,F,P), and the mathematical expectation E is with

respect to the probability P.

Under the framework (2.12), we maximize J(s, x, z; c(·), π(·)), and �nd the

optimal strategy 〈c∗(·), π∗(·)〉 such that

J(s, x, z; c∗(·), π∗(·)) = max
{c(·),π(·)}

J(s, x, z; c(·), π(·)). (2.14)

Then, we de�ne the following functions

V (s, x, z) , max
{c(·),π(·)}

J(s, x, z; c(·), π(·)), (2.15)

J(x, z; c(·), π(·)) , J(0, x, z; c(·), π(·)), (2.16)

and

V (x, z) , max
{c(·),π(·)}

J(x, z; c(·), π(·)). (2.17)
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If we put c̃(s) = c(t+ s), π̃(s) = π(t+ s), for s ≥ 0, then we have

J(t, x, z; c(·), π(·)) = E

{∫ ∞
t

e−δsu(c(s), z(s))ds

}
= e−δtE

{∫ ∞
0

e−δsu(c̃(s), z̃(s))ds

}
= e−δtJ(0, x, z; c̃(·), π̃(·)).

(2.18)

As a result, we obtain

V (t, x, z) = e−δtV (x, z), (2.19)

and get

Vt(t, x, z) = −δe−δtV (x, z),

Vxx(t, x, z) = e−δtVxx(x, z),

Vx(t, x, z) = e−δtVx(x, z),

Vz(t, x, z) = e−δtVz(x, z).

(2.20)

The following theorem is the stochastic version of Bellman's Principle of

Optimality.

Theorem 2: For any (s, x, z) ∈ [0,∞) × R × R, the function V de�ned in

(2.15) satis�es the following equation:

V (s, x, z) = max
{c(·),π(·)}

E

{∫ ŝ

s

e−δtu(c(t), z(t))dt+ V (ŝ, x(ŝ), z(ŝ))

}
,

0 ≤ s < ŝ <∞

Based on this equation, we can derive the following HJB equation associ-

ated to the control problem (2.17).

Proposition 1: If the function V (x, z) de�ned in (2.17) is continuously twice

15



di�erentiable, then it is the solution of following HJB equation:

δV (x, z) + inf
{c(·),π(·)}

G(t, x, z, c, π, Vx, Vz, Vxx) = 0. (2.21)

Here

G(t, x, z, c, π, Vx, Vz, Vxx) =− Vx(x, z) · b (t, x, z, c, π)− Vz(x, z) · β(t, x, z, c, π)

− 1

2
Vxx(x, z) · [σ (t, x, z, c, π)]2 − u(c, z),

and

Vx(x, z) ,
∂V (x, z)

∂x
, Vz(x, z) ,

∂V (x, z)

∂z
, Vxx(x, z) ,

∂2V (x, z)

∂x2
.

Proof. Fix (s, x, z) ∈ [0,∞)×Rn ×Rn and {c(·), π(·)}. Then assume ŝ which

satis�es 0 ≤ s < ŝ <∞. By Bellman's Principle (see Theorem 2), we have

V (s, x, z) = max
{c(·),π(·)}

E

{∫ ŝ

s

e−δtu(c(t), z(t))dt+ V (ŝ, x(ŝ), z(ŝ))

}
.

This implies that

V (s, x, z) ≥ E

{∫ ŝ

s

e−δtu(c(t), z(t))dt+ V (ŝ, x(ŝ), z(ŝ))

}
.

After simpli�cation, we write

0 ≤ −E {V (ŝ, x(ŝ), z(ŝ))− V (s, x, z)}
ŝ− s

−
E
∫ ŝ
s
e−δtu(c(t), z(t))dt

ŝ− s
.
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Thus, using Itô's Formula and taking ŝ ↓ s afterwards, we obtain

0 ≤− Vt(s, x, z)− Vx(s, x, z) · b (s, x, z, c, π)− Vz(s, x, z) · β(s, x, z, c, π)

− 1

2
Vxx(s, x, z) · [σ (s, x, z, c, π)]2 − e−δsu(c, z).

(2.22)

Then, by plugging (2.20) in the above equality, we get

0 ≤− (−δV (x, z))− Vx(x, z) · b (s, x, z, c, π)− Vz(x, z) · β(s, x, z, c, π)

− 1

2
Vxx(x, z) · [σ (s, x, z, c, π)]2 − u(c, z).

Further simpli�cations imply that, for any c, π

0 ≤δV (x, z) + {−Vx(x, z) · b (s, x, z, c, π)− Vz(x, z) · β(s, x, z, c, π)

−1

2
Vxx(x, z) · [σ (s, x, z, c, π)]2 − u(c, z)

}
.

Therefore, we deduce that

0 ≤ δV (x, z) + inf
{c(·),π(·)}

G(s, x, z, c, π, Vx, Vz, Vxx). (2.23)

Then, for any ε > 0, 0 ≤ s < ŝ <∞ with ŝ− s > 0 small enough, there exists

a pair 〈c(·), π(·)〉 such that

V (s, x, z)− ε(ŝ− s) ≤ E

{∫ ŝ

s

e−δtu(c(t), z(t))dt+ V (ŝ, x(ŝ), z(ŝ))

}

After a simple transformation, we get

ε ≥ −E {V (ŝ, x(ŝ), z(ŝ))− V (s, x, z)}
ŝ− s

−
E
∫ ŝ
s
e−δtu(c(t), z(t))dt

ŝ− s
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Again, using Ito's formula and let ŝ ↓ s, we obtain

eδsε ≥ δV (x, z) +G(s, x, z, c, π, Vx, Vz, Vxx)

≥ δV (x, z) + inf
{c(·),π(·)}

G(s, x, z, c, π, Vx, Vz, Vxx).

Therefore, we conclude that

0 ≥ δV (x, z) + inf
{c(·),π(·)}

G(s, x, z, c, π, Vx, Vz, Vxx). (2.24)

By combining (2.23) and (2.24), our conclusion (2.21) follows immediately.

This ends the proof of the proposition.

Applying the HJB equation, we may get a partial di�erential equation for

V . In most cases, the explicit form of V is di�cult to �nd. However, if we

the function V is smooth enough, then we can apply the following theorem to

test whether a given admissible pair of 〈c(·), π(·)〉 is optimal. It is also called

Veri�cation Theorem.

Theorem 3: (Veri�cation Theorem) Let v be a solution of the HJB equation

(2.21). For any (s, x, z) ∈ [0,∞) × R × R, the function v satis�es the

following equation:

v(s, x, z) > J(s, x, z; c(·), π(·))

Furthermore, a given admissible pair 〈x∗(·), z∗(·), c∗(·), π∗(·)〉 is optimal for
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the control problem given in (2.11) if and only if

vt(t, x
∗(t), z∗(t))

=H(t, x∗(t), z∗(t), c∗(t), π∗(t), vx(t, x
∗(t), z∗(t)), vz(t, x

∗(t), z∗(t)), vxx(t, x
∗(t), z∗(t)))

where

H(t, x, z, c, π, vx(t, x, z), vz(t, x, z), vxx(t, x, z))

, −vx(t, x, z) · b (t, x, z, c, π)− vz(t, x, z) · β(t, x, z, c, π)

− 1

2
vxx(t, x, z) · [σ (t, x, z, c, π)]2 − e−δtu(c(t), z(t))

Proof. By Itô formula, we get

d

dt
v(t, x, z)

=vt(t, x, z) + 〈vx(t, x, z), b (t, x, z, c, π)〉+ 〈vz(t, x, z), β (t, x, z, c, π)〉

=vt(t, x, z) + vx(t, x, z) · b (t, x, z, c, π) + vz(t, x, z) · β(t, x, z, c, π)

+
1

2
vxx(t, x, z) · [σ (t, x, z, c, π)]2

=− e−δtu(c(t), z(t))

+ {vt(t, x, z)−H(t, x, z, c, π, vx(t, x, z), vz(t, x, z), vxx(t, x, z))}

6− e−δtu(c(t), z(t)), (2.25)

where the last inequality has been proved in equation (2.22). Integrating both

sides from s to ∞, we get

v(s, x, z) > v(∞, x, z) + J(s, x, z; c(·), π(·))

= J(s, x, z; c(·), π(·))
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Next, applying the second equality in (2.25) to 〈c∗(·), π∗(·)〉, and integrating

from s to ∞:

v(s, x, z) =J(s, x, z; c∗(·), π∗(·))−
∫ ∞
s

{vt(t, x∗(t), z∗(t))−H(t, x∗(t), z∗(t),

c∗(t), π∗(t), vx(t, x
∗(t), z∗(t)), vz(t, x

∗(t), z∗(t)), vxx(t, x
∗(t), z∗(t)))}dt

Combined with (2.22), we get:

vt(t, x
∗(t), z∗(t))

=H(t, x∗(t), z∗(t), c∗(t), π∗(t), vx(t, x
∗(t), z∗(t)), vz(t, x

∗(t), z∗(t)), vxx(t, x
∗(t), z∗(t)))

This ends the proof of the theorem.

In conclusion, thanks to the HJB equation, we can deduce a partial di�eren-

tial equation in the form of (2.21). Then, we can apply dynamic programming

principle to �nd the optimal controls c∗(·) and π∗(·).

In mathematics, dynamic programming is a method for solving complex

multi-variable problems by breaking then down into simpler subproblems.

Many problems re�ect a need to choose among multiple alternatives. We

now generalize the following techniques.

Theorem 4: If f(x1, x2, ..., xn) is di�erentiable with respect to each of its

arguments and reaches a maximum or a minimum at the stationary point

(x∗1, x
∗
2, ..., x

∗
n), then each of the partial derivatives evaluated at that point

equals zero, i,e.

f1(x∗1, x
∗
2, ..., x

∗
n) = 0

...
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...

...

fn(x∗1, x
∗
2, ..., x

∗
n) = 0

For a continuously di�erentiable multi-variable real function, a point P is

critical if all of the partial derivatives of the function are zero at P. In calculus,

the second derivative test is a criterion for determining whether a given critical

point of a real function is a local maximum or a local minimum using the value

of the second derivative at the point. For a function of more than one variable,

the second derivative test generalizes to a test based on the eigenvalues of the

function's Hessian matrix at the critical point.

The Hessian matrix is a square matrix of second-order partial derivatives

of a function. It describes the local curvature of a function of many variables.

Given a real function

f(x1, x2, ..., xn),

If all second partial derivatives of f exist and are continuous over the domain

of the function, then the Hessian matrix of f is de�ned by

H(f)ij(x) = DiDjf(x),

where x = (x1, x2, ..., xn) and Di is the di�erential operator with respect to

the ith argument. Thus, the Hessian matrix of f can be written as
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H(f) =



∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2n


.

A non-degenerate critical point is a local maximum if and only if the Hes-

sian matrix is negative de�nite; it is a local minimum if and only if the Hessian

matrix is positive de�nite; otherwise, it is a saddle point.

2.6 Second Order Linear Di�erential Equations

In this subsection, we introduce the method in solving the second order non-

homogeneous linear di�erential equations, which can be expressed as:

y′′ + py′ + qy = f(x), (2.26)

where p and q are two constants and f(x) is any continuous function.

Theorem 5: let λ1 and λ2 are the complex roots of λ2 + pλ + q = 0. Then,

the particular solution to (2.26) is given as follows.

1. If λ1 and λ2 are distinct real roots, then

y(x) =
1

λ2 − λ1

[
eλ2x

∫
f(x)e−λ2xdx− eλ1x

∫
f(x)e−λ1xdx

]
.

2. If λ1 = λ2 are equal roots, then

y(x) = eλ1x
[
x

∫
f(x)e−λ1xdx−

∫
xf(x)e−λ1xdx

]
.
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3. If λ1 and λ2 are two complex conjugate roots (i.e. λ1 = µ + νi and

λ2 = µ− νi, ν > 0), then

y(x) =
1

ν
eµx
[
sin(νx)

∫
e−µxf(x) cos(νx)dx− cos(νx)

∫
e−µxf(x) sin(νx)dx

]
.

Theorem 6: Using the same notations of Theorem 5, The general solution to

(2.26) is given as follows:

1. If λ1 and λ2 are distinct real roots, then

y(x) = C1e
λ1x+C2e

λ2x+
1

λ2 − λ1

[
eλ2x

∫
f(x)e−λ2xdx− eλ1x

∫
f(x)e−λ1xdx

]
.

2. If λ1 and λ2 are equal roots, then

y(x) = (C1 + C2x)eλ1x + eλ1x
[
x

∫
f(x)e−λ1xdx−

∫
xf(x)e−λ1xdx

]
.

3. If λ1 and λ2 are two complex conjugate roots, then

y(x) =eµx[C1 cos(νx) + C2 sin(νx)]

+
1

ν
eµx
[
sin(νx)

∫
e−(µx)f(x) cos(νx)dx− cos(νx)

∫
e−µxf(x) sin(νx)dx

]
.

2.7 Gaussian White Noise Process

In mathematics, Gaussian white noise is a real-valued process Ẇ (t) such that

Ẇ (t) ∼ N(0, σ2), for all t > 0, and Ẇ (t) is independent of σ(Ẇ (u), u < t).

The relationship between Wiener process (or Brownian Motion) and Gaus-
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sian white noise Process is

Wt −Ws =

∫ t

s

Ẇ (u)du, for t > s.

In this thesis, by white noise we mean the generalized Gaussian process

which is informally given by the time derivative of the Wiener process. We will

apply this concept as a key idea in solving the obtained stochastic di�erential

equation.
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Chapter 3

HARA Habit Utilities:

Description of the Optimal Value

Function

In this chapter, we solve an optimization problem of an agent who begins

with an initial endowment, and optimally consume and invest in a standard

simple market. The objective of this agent is to maximize the overall utility of

consumption in an in�nite horizon. For this problem, we calculate the optimal

value function, and give the feedback-form solutions for the optimal controls.

3.1 Introduction of Optimization Problem

At �rst, we describe mathematically the simple �nancial market model that

will be investigated. We consider a continuous-time economy on an in�nite

time span. The agents in this market are assumed to be "small investor",

which means his actions have no in�uence on the market prices. In addition,
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the transaction is smooth, which indicates all transaction costs are ignored.

This market consists of a riskless bond and one stock. The stock price

is driven by a one dimension Brownian motion W (t) (m = d = 1), which

indicates the completeness of the market. The interest rate r(t), the expected

return of stock b(t) and the volatility matrix σ(t) are assumed to be constants,

i.e.

r(t) = r, b(t) = b, σ(t) = σ. (3.1)

Thus, the bond price at time t is denoted by p0(t) and follows

dp0(t) = rp0(t)dt, p0(0) = p0. (3.2)

Equivalently, for every t ∈ [0,∞)

p0(t) = p0 exp(rt). (3.3)

The stock price at time t is denoted by p1(t) and satis�es

dp1(t) = b(t)p1(t)dt+ σp1(t)dWt, p1(0) = p1. (3.4)

Equivalently, for every t ∈ [0,∞)

p1(t) = p1 exp

{
(b− 1

2
σ2)t+ σWt

}
. (3.5)

Since in this economy m = d = 1, then σ is a real number that we assume to

be positive.

Now, we consider the wealth process x(t) of an investor. We assume that

the investor starts with an initial wealth x0 and no endowment will be added
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to his asset. For any t ∈ [0,∞), the investor consumes and/or invests only

throughout the investment period. The consumption activities are character-

ized by its consumption rate c(t), t > 0. Since there is only one stock in this

market, then the portfolio π(t) , π1(t) = N1(t)p1(t) is a real number. Thus,

the wealth process can be rewritten as

dx(t) = [rx(t) + (b− r)π(t)− c(t)] dt+ π(t)σdWt, x(0) = x0. (3.6)

Equivalently,

x(t) = ertx0 +

∫ t

0

e−r(s−t) [π(s)(b− r)− c(s)] ds+

∫ t

0

e−r(s−t)π(s)σdWs. (3.7)

To de�ne the utility maximization problem faced by the investor, we �rst

introduce the utility function. In economics, utility is a representation of pref-

erences over some set of goods and services, while mathematically speaking,

the utility is a function satisfying some conditions. For details, we refers the

reader to Assumption 2. The agent in our model has a utility function U(c)

corresponding to his consumption rate U : R2 → R.

For a given utility function U , a given initial capital x0, and a given initial

consumption preference z0, we consider the following target function.

J(x0, z0; c(·), π(·)) = E0

{∫ ∞
0

e−δtU(c(t), z(t))dt

}
. (3.8)

J(x0, z0; c(·), π(·)) represents the overall expected utility within a in�nite hori-

zon. Here, E0 is the expectation operator, and δ is the subjective discount

rate, which describes the level of investor's impatience. Our objective is to

maximize the overall expected utility J(x0, z0; c(·), π(·)) under c(·) and π(·).
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It can be mathematically expressed as

V (x0, z0) := max
{c(·),π(·)}

J(x0, z0; c(·), π(·)) = max
{c(·),π(·)}

E0

{∫ ∞
0

e−δtU(c(t), z(t))dt

}
.

(3.9)

This function V is called the optimal value function that we will describe in

the forthcoming section.

3.2 The Optimal Value Function

In this section, we characterize the optimal value function.

Theorem 7: For the optimization problem constructed in Section 3.1, for any

x > 0, z > 0, the optimal value function V (x, z) de�ned in equation (3.9) is

the solution for the following partial di�erential equation.

δV =U(I(Vx − βVz, z), z) + [rx− I(Vx − βVz, z)]Vx

+ [β(I(Vx − βVz, z)− z)]Vz −
(b− r)2V 2

x

2σ2Vxx
,

(3.10)

where I(·, z) = Uc(·, z)−1. To be concise, from here we use V , Vx, Vz, Vxx

instead of V (x, z), Vx(x, z), Vz(x, z), Vxx(x, z).

Proof. Thanks to (2.21), the corresponding HJB equation for the optimization

problem in (3.9) is given by

δV = max
{c,π}

{
u(c, z) + [rx+ (b− r)π − c]Vx + β(c− z)Vz +

1

2
π2σ2Vxx

}
.

(3.11)

In order to calculate the optimal controls c∗ and π∗ in the above equation,

we calculate the corresponding �rst derivatives and put them equal to zero.
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The derivative with respect to c leads to

∂u(c, z)

∂c
− Vx(x, z) + βVz(x, z) = 0, (3.12)

while the derivative with respect to π implies that:

(b− r)Vx(x, z) + πσ2Vxx(x, z) = 0. (3.13)

On the one hand, by solving both equations above, the optimal controls c∗

and π∗ are given by

c∗ :=c∗(x, z) = I(Vx(x, z)− βVz(x, z), z),

π∗ :=π∗(x, z) = −(b− r)Vx(x, z)

σ2Vxx(x, z)
.

(3.14)

On the other hand, (3.11) becomes

δV = u(c∗, z) + (rx+ (b− r)π∗ − c∗)Vx + β(c∗ − z)Vz +
1

2
(π∗)2σ2Vxx. (3.15)

Hence by inserting (3.14) into (3.15), (3.10) follows immediately. This ends

the proof of the theorem.

3.3 Exponential Habit Utility Formation

In the previous sections, the utility function considered is general. Here, we

focus on the interesting and particular case of exponential utility function.
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Precisely, we consider the case where U(c, z) is given by

u(c, z) = − 1

φ1

e−φ1c+φ2z. (3.16)

In economics, the parameter φ2 represents the level of intertemporal depen-

dence. According to Assumption 2, to make this utility formation reasonable,

we assume that

φ1 > 0 and φ2 > 0. (3.17)

For this case, we will calculate the function V explicitly.

Proposition 2: For the utility U(c, z) de�ned in (3.16), the solution to (3.10)

is given by:

V (x, z) := −b1e
−b2x+b3z, (3.18)

where 
b1 := 1

φ1r
exp

(
1− 2δσ2+(b−r)2

2σ2r

)
> 0,

b2 := rφ1 − rβφ2
r+β

= rφ1β
r+β

( r+β
β
− φ2

φ1
),

b3 := rφ2
r+β

> 0.

(3.19)

Proof. Firstly, we assume that the solution to (3.10), denoted by V , takes the

form of

V (x, z) = −b1e
−b2x+b3z. (3.20)

Then, thanks to (3.14), we calculate c∗ and π∗ in this case as follows.

c∗(x, z) =
φ2

φ1

z − 1

φ1

ln(Vx(x, z)− βVz(x, z))

=
b2

φ1

x+
φ2 − b3

φ1

z − 1

φ1

ln(b1b2 + b1βb3),

(3.21)
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and

π∗(x, z) = −(b− r)Vx(x, z)
σ2Vxx(x, z)

=
b− r
b2σ2

. (3.22)

Hence π∗(x, z) is constant in (x, z) and as a result the optimal portfolio does

not depend on time nor on randomness.

A combination of (3.10) and (3.16) leads to

δV = (Vx − βVz)
(
− 1

φ1

− φ2

φ1

z +
ln(Vx − βVz)

φ1

)
− βzVz −

(b− r)2V 2
x

2σ2Vxx
+ rxVx.

Using (3.20), we calculate Vx, Vz and plugging them afterwards in the above

equation, this latter becomes

δ = x

[
1

φ1

b2(b2 + βb3)− b2r

]
+ z

[
1

φ1

(−b2 − βb3)(b3 − φ2)− βb3

]
+

[
−b2 − βb3

φ1

[ln(b1b2 + βb1b3)− 1]− (b− r)2

2σ2

]
.

Since x and z are arbitrary elements of (0,∞), this equation is equivalent to



1
φ1
b2(b2 + βb3)− b2r = 0,

1
φ1

(−b2 − βb3)(b3 − φ2)− βb3 = 0,

−b2−βb3
φ1

[ln(b1b2 + βb1b3)− 1]− (b−r)2
2σ2 = δ.

Then, (3.19) follows from solving the above system. This ends the proof of

the proposition.
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3.4 General Power and Log Habit Utility

In this section, we examine another form of HARA habit utility formation

given by

u(c, z) =
1− γ
γ

(
mc− nz

1− γ
+ η

)γ
, c > z, (3.23)

with restrictions on parameters

m > n > 0, γ < 1 and η > 0,

For this case, we calculate explicitly the optimal value function V .

Proposition 3: For the utility U(c, z) de�ned in (3.23), under the assumption

x+ pz + q > 0. the solution to (3.10) is given by:

V (x, z) := Ω{x+ pz + q}γ, (3.24)

where



Ω := m
γ−γpβ

[(
δ+

γ(b−r)2

2(γ−1)σ2
−γr

)
m

(1−γ)2(1−pβ)

]γ−1

,

p := − n
mr+γm−γn ,

q := η(1−γ)
rm

(1− pβ).

(3.25)

Proof. Firstly, we assume that the solution to (3.10), denoted by V , takes the

form of

V (x, z) = Ω{x+ pz + q}γ. (3.26)
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Then, thanks to (3.14), we calculate c∗ and π∗ for this case as follows.

π∗(x, z) =− (x+ pz + q)(b− r)
(γ − 1)σ2

,

c∗(x, z) =
1

m

{
(1− γ)[(

Ωγ − Ωγpβ

m
)

1
γ−1 (x+ pz + q)− η] + nz

}
.

(3.27)

By calculating Vx, Vz, and Vxx from (3.26) and inserting them into (3.10)

afterwards, we obtain

δΩ(x+ pz + q)γ =
1− γ
γ

(
mc− nz

1− γ
+ η

)η
+ Ωγ(x+ pz + q)γ−1(rx− c∗)

+ Ωpr(x+ pz + q)γ−1β(c∗ − z)− Ωγ(b− r)2

2(γ − 1)σ2
(x+ pz + q)γ.

(3.28)

Thus, a combination of (3.27) and (3.28) implies that

(x+ pz + q)

{
δΩ +

Ωγ(b− r)2

2(γ − 1)σ2
+

(
Ωγ − Ωγpβ

m

) 1
γ−1
[
−Ω(1− γ)2(1− pβ)

m

]}

=Ωγrx+
Ωγ

m
(−n+ pγ(n−m))z +

ηΩγ(1− γ)(1− pβ)

m
.

(3.29)

This is equivalent to

Ωγr =
Ωγ
m

(−n+ pγ(n−m))

p
=

ηΩγ(1−γ)
m

(1− pβ)

q
. (3.30)

Then, we derive that

p = − n

mr + γm− γn
and q =

η(1− γ)

rm
(1− pβ). (3.31)
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In order to get Ω, we plug p and q back to (3.29) and obtain

Ω =
m

γ − γpβ


(
δ + γ(b−r)2

2(γ−1)σ2 − γr
)
m

(1− γ)2(1− pβ)

γ−1

. (3.32)

This ends the proof of the proposition.

As a special case, which is frequently investigated, we consider the following

utility function.

u(c, z) =
{c− z}A

A
, c− z > 0 and A < 1, (3.33)

This case can be obtained from (3.23) by puttingm = n = 1, η = 0 and γ = A.

The corresponding optimal controls are given by the following proposition.

Proposition 4: For the case of utility formation de�ned in (3.33), under the

assumption that δ −Ar+ A(b−r)2
2(A−1)σ2 > 0, the optimal value function V can be

expressed as

V (x, z) = Ω{rx− z}A,

where

Ω =

[
δ − Ar + A(b−r)2

2(A−1)σ2

]A−1

(1− A)A−1A(r + β)A
.

And the optimal controls are

c∗(x, z) =z +
δ − Ar + A(b−r)2

2(A−1)σ2

(1− A)(r + β)
(rx− z),

π∗(x, z) =− (rx− z)(b− r)
(A− 1)σ2r

.

Another special case of utility formulation is logarithmic utility function,
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which can be expressed as

u(c, z) = log{c− z}, c > z (3.34)

This case can be obtained from (3.23) by putting m = n = 1, η = 0, and let

γ goes to 0.

Similarly, we can get the optimal control by the following proposition.

Proposition 5: For the case of utility formation de�ned in (3.34), the optimal

value function V is given by

V (x, z) =
1

δ
log{rx− z}+M,

where

M =
1

δ

(
log(

δ

r + β
) +

r

δ
− 1 +

(b− r)2

2δσ2

)
.

Furthermore, the optimal controls are given by

π∗(x, z) =
(rx− z)(b− r)

rσ2
, c∗(x, z) = z +

δ(rx− z)

r + β
.
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Chapter 4

The Optimal Portfolio and

Consumption Processes

In chapter 3, we examined several particular cases of habit utility formation.

For each case, we derived explicitly the optimal value function and the optimal

controls in feedback forms. Herein, we continue investigating the optimal con-

sumption. Throughout this chapter, c∗(t), z∗(t) and x∗(t) denote the optimal

consumption process, the optimal consumption habit process and the optimal

wealth process respectively. Thanks to the instantaneous optimal portfolio

and consumption obtained in chapter 3, we give the explicit description for

c∗(t), x∗(t) and z∗(t) in this chapter.

4.1 Exponential Habit Utility Function

For the case of exponential utility formation de�ned in (3.16), the dynamic of

the process c∗ is described in the following.

Theorem 8: The process Lt := eβtc∗(t) satis�es the following stochastic dif-
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ferential equation

dXt =

[
α1Xt + α2

∫ t

0

Xsds

]
dt+ dKt, (4.1)

with the initial condition

X0 =
rx0[φ1(r + β)− φ2β]

(r + β)φ1

+
βφ2

φ1(r + β)
z0 −

2(r − δ)σ2 − (b− r)2

2σ2rφ1

. (4.2)

Here

dKt :=
(
γ1e

βt + γ2z0

)
dt+ γ3e

βtdWt,

α1 := β + r − b2

φ1

+ β
φ2 − b3

φ1

=
β(φ1 + φ2)

φ1

,

α2 := −φ2 − b3

φ1

β(r + β) = −β2φ2

φ1

,

γ1 :=
2σ2(r − δ) + (b− r)2

2φ1σ2
,

γ2 := −φ2 − b3

φ1

(r + β),

γ3 :=
b− r
φ1σ

.

(4.3)

Proof. Put

c̃∗t := e−rtc∗(t), z̃∗t := e−rtz∗(t), and x̃∗t := e−rtx∗(t), t > 0. (4.4)

Then, by using Itô's Formula, (2.6) and (2.7), we derive

dz̃∗t = −re−rtz∗(t) + e−rtdz∗(t)

= −(r + β)e−rtz∗(t)dt+ βe−rtc∗(t)dt

= −(r + β)e−rt[z0e
−βt +

∫ t

0

βeβ(s−t)c∗(s)ds]dt+ βe−rtc∗(t)dt.

(4.5)
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Similarly, we use Itô's Formula and (3.6) and get

dx̃∗t = −re−rtx∗(t) + e−rtdx∗(t)

= e−rt
[

(b− r)2

b2σ2
− c∗(t)

]
dt+

b− r
b2σ

e−rtdWt.
(4.6)

Due to (3.21), we have

c̃∗t =
b2

φ1

x̃∗t +
φ2 − b3

φ1

z̃∗t −
1

φ1

ln(b1b2 + b1βb3)e−rt

=
b2

φ1

x̃∗t +
φ2 − b3

φ1

z̃∗t −
2σ2(r − δ)− (b− r)2

2φ1σ2r
e−rt.

(4.7)

Then, by di�erentiating the above equation and inserting (4.5) and (4.6) af-

terwards, we obtain

dc̃∗t =
b2

φ1

dx̃∗t +
φ2 − b3

φ1

dz̃∗t +
2σ2(r − δ)− (b− r)2

2φ1σ2
e−rtdt

=
b2

φ1

{
e−rt

[
(b− r)2

b2σ2
− c∗(t)

]
dt+

b− r
b2σ

e−rtdWt

}
+
φ2 − b3

φ1

[
−(r + β)e−rt[z0e

−βt +

∫ t

0

βeβ(s−t)c∗(s)ds]dt+ βe−rtc∗(t)dt

]
+

2σ2(r − δ)− (b− r)2

2φ1σ2
e−rtdt

=

[
−φ2 − b3

φ1

(r + β)e−(r+β)tz0 +
2σ2(r − δ) + (b− r)2

2φ1σ2
e−rt

]
dt

+

[
− b2

φ1

+ β
φ2 − b3

φ1

]
c̃∗tdt−

φ2 − b3

φ1

β(r + β)e−(r+β)t

(∫ t

0

e(β+r)sc̃∗sds

)
dt

+
b− r
φ1σ

e−rtdWt.

(4.8)

Consider the process

Lt := e(β+r)tc̃∗t = eβtc∗(t), t > 0, (4.9)
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whose dynamic will be derived below using (4.8).

dLt =(β + r)e(β+r)tc̃∗tdt+ e(β+r)tdc̃∗t

=

[
−φ2 − b3

φ1

(r + β)z0 +
2σ2(r − δ) + (b− r)2

2φ1σ2
eβt
]
dt

+

[
β + r − b2

φ1

+ β
φ2 − b3

φ1

]
Ltdt−

φ2 − b3

φ1

β(r + β)

(∫ t

0

Lsds

)
dt

+
b− r
φ1σ

eβtdWt

=α1Ltdt+ α2

(∫ t

0

Lsds

)
dt+ dKt,

(4.10)

where Kt, α1 and α2 are de�ned in (4.3). Furthermore, the initial value of the

process L can be calculated as follows.

L0 = c∗(0) =
b2

φ1

x0 +
φ2 − b3

φ1

z0 −
1

φ1

ln[b1b2 + b1βb3]

=
rx0[φ1(r + β)− φ2β]

(r + β)φ1

+
βφ2

φ1(r + β)
z0 −

2(r − δ)σ2 − (b− r)2

2σ2rφ1

.

This ends the proof of the theorem.

Below, we will prove the uniqueness of the solution to the stochastic dif-

ferential equation (4.1)�(4.2).

Proposition 6: The solution to the stochastic di�erential equation (4.1)�

(4.2), when it exists, is unique.

Proof. Suppose that there are two solutions L1 and L2 to (4.1)�(4.2), and put
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Dt := L1
t − L2

t . Thus, we calculate
dDt = α1Dtdt+ α2

(∫ t
0
Dsds

)
dt,

D0 = 0.

(4.11)

By putting ξt :=
∫ t

0
Dsds, we obtain


ξ′′t = α1ξ

′
t + α2ξt,

ξ′0 = 0,

ξ0 = 0.

(4.12)

Using Theorem 6, we deduce the following cases.

Case 1. If ∆ := α2
1 − 4α2 > 0, then ξt = C1e

r1t + C2e
r2t where r1 and r2

are the distinct real roots to the equation x2 − α1x − α2 = 0 and C1, C2 are

constants. From the initial conditions, we obtain


C1 + C2 = 0,

r1C1 + r2C2 = 0.

(4.13)

Thus, C1 = C2 = 0, which means ξt ≡ 0, t > 0. Hence L1 ≡ L2.

Case 2. If ∆ := α2
1−4α2 = 0, then ξt = (C1+C2t)e

r1t where r1 is the unique

real root to the equation x2−α1x−α2 = 0, and C1 and C2 are constants. The

initial conditions lead to
C1 = 0,

C1r1 + C2 = 0.

(4.14)
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As a result, we get C1 = C2 = 0, or equivalently ξ ≡ 0.

Case 3. If ∆ := α2
1 − 4α2 < 0, then ξt = [C1 cos(νt) +C2 sin(νt)]eµt, where

µ±νi (ν > 0) are the distinct complex roots to x2−α1x−α2 = 0 . The initial

conditions imply C1 = C2 = 0, which means ξt ≡ 0.

In conclusion, in all cases, we obtained L1 = L2. This proves the uniqueness

of solution to (4.1)�(4.2).

Proposition 7: Put It :=
∫ t

0
Lsds. Then, I is a solution to the non-homogeneous

linear di�erential equation:

I ′′t − α1I
′
t − α2It = Gt, (4.15)

with the initial conditions

I0 = 0,

I ′0 =
rx0[φ1(r + β)− φ2β]

(r + β)φ1

+
βφ2

φ1(r + β)
z0 −

2(r − δ)σ2 − (b− r)2

2σ2rφ1

.

Here Gt is the following process

Gt = −φ2 − b3

φ1

(r + β)z0 +
2σ2(r − δ) + (b− r)2

2φ1σ2
eβt +

b− r
φ1σ

eβtẆt, (4.16)

where Ẇ is the white noise.

Proof. Thanks to Theorem 8, It =
∫ t

0
L(s)ds satis�es

I ′′t − α1I
′
t − α2It =

dKt

dt
= Gt. (4.17)
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Finally, we put t = 0 to get the initial conditions

I0 = 0, (4.18)

I ′0 = c∗(0)

=
rx0[φ1(r + β)− φ2β]

(r + β)φ1

+
βφ2

φ1(r + β)
z0 −

2(r − δ)σ2 − (b− r)2

2σ2rφ1

.
(4.19)

This ends the proof of Proposition 7.

According to Theorem 6, in order to solve (4.15), we need to discuss its

characteristic equation:

λ2 − β(φ1 + φ2)

φ1

λ+ β2φ2

φ1

= 0. (4.20)

The discriminant of the above equation is:

∆ := β2(
φ2

φ1

− 1)2 > 0. (4.21)

Thus, we obtain two cases whether φ1 6= φ2 or φ1 = φ2. These two cases

will be discussed separately in two subsections.

4.1.1 The case of φ1 6= φ2

For this case, λ2 − α1λ− α2 = 0 has two solutions given by

λ1 :=
β
(

1 + φ2
φ1

+
∣∣∣1− φ2

φ1

∣∣∣)
2

and λ2 :=
β
(

1 + φ2
φ1
−
∣∣∣1− φ2

φ1

∣∣∣)
2

. (4.22)

Theorem 9: Consider λ1 and λ2 given in (4.22), and γ1, γ2 and γ3 given in

(4.3). Then, the following assertions hold.
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1. The optimal consumption rate process c∗(t) is given by

c∗(t) = c∗(0)κ1(0, t)+

∫ t

0

κ1(s, t)
(
γ1e

βs + γ2z0

)
dt+γ3

∫ t

0

κ1(s, t)eβsdWs, t > 0,

(4.23)

where κ1(s, t) is de�ned by

κ1(s, t) :=
e−βt√

∆

[
λ1e

λ1(t−s) − λ2e
λ2(t−s)] , t > s > 0.

2. The optimal consumption habit z∗(t) is given by

z∗(t) =z0e
−βt + c∗(0)κ2(0, t) +

∫ t

0

κ2(s, t)
(
γ1e

βs + γ2z0

)
dt

+ γ3

∫ t

0

κ2(s, t)eβsdWs, t > 0,

(4.24)

where κ2(s, t) is de�ned by

κ2(s, t) :=
βe−βt√

∆

[
eλ1(t−s) − eλ2(t−s)] , t > s > 0.

3. The optimal wealth process x∗(t) is given by

x∗(t) =ertx0 +
(b− r)2

rb2σ2
(ert − 1) +

b− r
b2σ

ert
∫ t

0

e−rsdWs − c∗(0)κ3(0, t)

−
∫ t

0

κ3(s, t)
(
γ1e

βs + γ2z0

)
dt− γ3

∫ t

0

κ3(s, t)eβsdWs.

(4.25)

where κ3(s, t) is de�ned by

κ3(s, t) :=
λ1

[
e(λ1−β)t−λ1s − ert−(r+β)s

]
√

∆(λ1 − r − β)
−
λ2

[
e(λ2−β)t−λ2s − ert−(r+β)s

]
√

∆(λ2 − r − β)
, t > s > 0.

(4.26)

43



Proof. 1) Consider the process

Lt := c∗(0)eβtκ1(0, t) + eβt
∫ t

0

κ1(s, t)dKs, t > 0. (4.27)

Then, thanks to Theorem 8 and Proposition 7, it is enough to prove Lt ful�lls

the SDE (4.1)�(4.2). To this end, we write

Lt =
c∗(0)λ1√

∆
eλ1t − c∗(0)λ2√

∆
eλ2t

+
λ1√
∆

∫ t

0

eλ1(t−s)dKs −
λ2√
∆

∫ t

0

eλ2(t−s)dKs.

(4.28)

Then, the dynamic of dL is given by

dLt =

[
c∗(0)λ2

1√
∆

eλ1t − c∗(0)λ2
2√

∆
eλ2t +

λ2
1√
∆

∫ t

0

eλ1(t−s)dKs

− λ2
2√
∆

∫ t

0

eλ2(t−s)dKs

]
dt+ dKt,

(4.29)

and
∫ t

0
Lsds is given by

∫ t

0

Lsds =
c∗(0)√

∆
(eλ1t − 1)− c∗(0)√

∆
(eλ2t − 1)

+
1√
∆

∫ t

0

[
λ1

∫ s

0

eλ1(s−u)dKu − λ2

∫ s

0

eλ2(s−u)dKu

]
ds.

(4.30)

Since

(
λi

∫ s

0

eλi(s−u)dKu

)
ds = d

(∫ s

0

eλi(s−u)dKu

)
− dKs, i = 1, 2, (4.31)
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the equation (4.30) becomes

∫ t

0

Lsds =
c∗(0)√

∆
eλ1t − c∗(0)√

∆
eλ2t +

1√
∆

∫ t

0

eλ1(t−s)dKs −
1√
∆

∫ t

0

eλ2(t−s)dKs.

(4.32)

Then, by combining (4.28), (4.32) and

λ2
i = α1λi + α2, i = 1, 2,

we obtain

α1Lt + α2

∫ t

0

Lsds =
c∗(0)λ2

1√
∆

eλ1t − c∗(0)λ2
2√

∆
eλ2t +

λ2
1√
∆

∫ t

0

eλ1(t−s)dKs

− λ2
2√
∆

∫ t

0

eλ2(t−s)dKs.

(4.33)

Therefore, by inserting (4.33) in (4.29), we get

dLt =

[
α1Lt + α2

∫ t

0

Lsds

]
dt+ dKt. (4.34)

This proves that L is a solution to the SDE (4.1)�(4.2). Since this SDE has a

unique solution (see Proposition 6), and L(t) := eβtc∗(t) is also a solution to

this SDE, we get

Lt = eβtc∗(t), t > 0.

Thus, we obtain

c∗(t) = c∗(0)κ1(0, t) +

∫ t

0

κ1(s, t)dKs, t > 0, (4.35)

The equality (4.23) follows directly from the equation (4.35). This ends the
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proof of the �rst assertion.

2) By inserting (4.35) into (2.7), we get

z∗(t) =z0e
−βt +

∫ t

0

βeβ(s−t)c∗(s)ds

=z0e
−βt +

∫ t

0

eβ(s−t)
[
c∗(0)κ1(0, s) +

∫ s

0

κ1(u, s)dKu

]
ds.

(4.36)

Since

∫ t

0

eβ(s−t)c∗(0)κ1(0, s)ds =
e−βtc∗(0)√

∆

∫ t

0

(
λ1e

λ1s − λ2e
λ2s
)
ds

=
e−βtc∗(0)√

∆

(
eλ1t − eλ2t

) (4.37)

and

∫ t

0

eβ(s−t)
(∫ s

0

κ1(u, s)dKu

)
ds

=
e−βt√

∆

∫ t

0

(∫ s

0

[
λ1e

λ1(s−u) − λ2e
λ2(s−u)

]
dKu

)
ds

=
e−βt√

∆

(∫ t

0

eλ1(t−s)dKs −
∫ t

0

eλ2(t−s)dKs

)
,

(4.38)

the next equality (4.39) follows directly from the equation (4.36).

z∗(t) = z0e
−βt + c∗(0)κ2(0, t) +

∫ t

0

κ2(s, t)dKs, t > 0. (4.39)

Thus, by inserting the expression of dKt given in (4.3) into (4.39) and simpli-

�cation, we get (4.24), and this ends the proof of the second assertion.

3) Here, we will prove (4.25). By inserting (3.22) and (4.35) into (3.7), we
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get

x∗(t) =ertx0 +

∫ t

0

e−r(s−t) [π∗(s)(b− r)− c∗(s)] ds+

∫ t

0

e−r(s−t)π∗(s)σdWs

=ertx0 +
(b− r)2

rb2σ2
(ert − 1) +

b− r
b2σ

ert
∫ t

0

e−rsdWs

− ert
∫ t

0

e−rs
[
c∗(0)κ1(0, s) +

∫ s

0

κ1(u, s)dKu

]
ds.

(4.40)

Now, since φ2
φ1
< r+β

β
due to b2 > 0, by using the notation in (4.26), we calculate

ert
∫ t

0

e−rsc∗(0)κ1(0, s)ds

=ert
∫ t

0

e−rsc∗(0)
e−βs√

∆

[
λ1e

λ1s − λ2e
λ2s
]
ds

=
c∗(0)ert√

∆

[
λ1

λ1 − r − β
(
e(λ1−r−β)t − 1

)
− λ2

λ2 − r − β
(
e(λ2−r−β)t − 1

)]
=c∗(0)κ3(0, t), (4.41)

and

ert
∫ t

0

e−rs
∫ s

0

κ1(u, s)dKuds

=ert
∫ t

0

e−rs
∫ s

0

e−βs√
∆

[
λ1e

λ1(s−u) − λ2e
λ2(s−u)

]
dKuds

=
ert√

∆

{
λ1

λ1 − β − r

[
e(λ1−β−r)t

∫ t

0

e−λ1sdKs −
∫ t

0

e−(β+r)sdKs

]
− λ2

λ2 − β − r

[
e(λ2−β−r)t

∫ t

0

e−λ2sdKs −
∫ t

0

e−(β+r)sdKs

]}
(4.42)

=

∫ t

0

κ3(s, t)dKs (4.43)
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A combination of (4.40)�(4.42) leads to

x∗(t) =ertx0 +
(b− r)2

rb2σ2
(ert − 1) +

b− r
b2σ

ert
∫ t

0

e−rsdWs

− c∗(0)κ3(0, t)−
∫ t

0

κ3(s, t)dKs.

(4.44)

By inserting the expression of dKt given in (4.3) into the above equation, we

get (4.25), and this ends the proof of the third assertion. In conclusion, the

proof for the theorem is completed.

4.1.2 The case of φ1 = φ2

For this case, the characteristic equation (4.20) has one single root λ1 := β.

Hence, the SDE (4.1)�(4.2) becomes


dXt =

[
2βXt − β2

∫ t
0
Xsds

]
dt+ dKt,

X0 = r2

r+β
x0 + β

r+β
z0 − 2(r−δ)σ2−(b−r)2

2σ2rφ1
.

(4.45)

In this case, dKt is given by

dKt :=

[
−βz0 +

2σ2(r − δ) + (b− r)2

2φ1σ2
eβt
]
dt+

b− r
φ1σ

eβtdWt. (4.46)

Theorem 10: Consider γ1 and γ3 given in (4.3), for the case of φ1 = φ2, the

following properties hold.

1. The optimal consumption rate process c∗(t) is given by

c∗(t) = c∗(0)(1 + βt) +
γ1β

2
t2 + γ1t− βz0t+

∫ t

0

γ3(βt− βs+ 1)dWs, t > 0.

(4.47)
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2. The optimal consumption habit z∗(t) is given by

z∗(t) = z0 + βc∗(0)t− βz0t+
γ1β

2
t2 + βγ3

∫ t

0

(t− s)dWs, t > 0. (4.48)

3. The optimal wealth process x∗(t) is given by

x∗(t) =x0 +

[
rβ

r + β
x0 −

β

r + β
z0 +

2rσ2(r − δ) + (r + 2β)(b− r)2

2φ1σ2r2

]
t

+
β

2r
γ1t

2 + γ3

∫ t

0

[
β + r

r2
+
β

r
(t− s)

]
dWs, t > 0.

(4.49)

Proof. 1) Here, we prove (4.47). Consider the process

Lt = c∗(0)(1 + βt)eβt +

∫ t

0

(βt− βs+ 1)eβ(t−s)dKs, t > 0. (4.50)

Then, thanks to Theorem 8 and Proposition 7, it is enough to prove that

the process Lt satis�es the SDE (4.45)�(4.46). To this end, we calculate the

dynamic of dL as follows.

dLt =

[
c∗(0)(2β + β2t)eβt + (2β + β2t)eβt

∫ t

0

e−βsdKs

−β2eβt
∫ t

0

se−βsdKs

]
dt+ dKt.

(4.51)

Similarly, the dynamic of
∫ t

0
Lsds is derived as

∫ t

0

Lsds = c∗(0)teβt +

∫ t

0

[
(βs+ 1)eβs

∫ s

0

e−βudKu − βeβs
∫ s

0

ue−βudKu

]
ds.

(4.52)
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By inserting

(
(βs+ 1)eβs

∫ s

0

e−βudKu

)
ds = d

(
s

∫ s

0

eβ(s−u)dKu

)
− sdKs,

and (
βeβs

∫ s

0

ue−βudKu

)
ds = d

(∫ s

0

ueβ(s−u)dKu

)
− sdKs,

into (4.52), we get

∫ t

0

Lsds = c∗(0)teβt + t

∫ t

0

eβ(t−s)dKs −
∫ t

0

seβ(t−s)dKs. (4.53)

Then, by combining (4.50) and (4.53), we obtain

2βLt − β2

∫ t

0

Lsds =c∗(0)(2β + β2t)eβt + (2β + β2t)eβt
∫ t

0

e−βsdKs

− β2eβt
∫ t

0

se−βsdKs.

(4.54)

Now, we insert (4.54) into (4.51) and get

dLt =

[
α1Lt + α2

∫ t

0

Lsds

]
dt+ dKt. (4.55)

This proves that L is a solution to the SDE (4.45)�(4.46). Since this SDE has

a unique solution (see Proposition 6), and L(t) := eβtc∗(t) is already a solution

to this SDE, we deduce that

Lt = eβtc∗(t), t > 0.
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Thus, we get

c∗(t) = c∗(0)(1 + βt) +

∫ t

0

e−βs(βt− βs+ 1)dKs, t > 0. (4.56)

By plugging the expression of dKt given in (4.46) into the above equation, we

obtain (4.47) after simpli�cation. This ends the proof of the �rst assertion.

2) Here, we will prove the equality (4.48). By inserting (4.56) into (2.7),

we get

z∗(t) =z0e
−βt +

∫ t

0

βeβ(s−t)c∗(s)ds

=z0e
−βt +

∫ t

0

βeβ(s−t)
[
c∗(0)(1 + βs) +

∫ s

0

e−βu(βs− βu+ 1)dKu

]
ds.

(4.57)

Since ∫ t

0

βeβ(s−t)c∗(0)(1 + βs)ds = βc∗(0)t,

and

∫ t

0

βeβ(s−t)
∫ s

0

e−βu(βs− βu+ 1)dKuds

=βe−βt
∫ t

0

[
(βs+ 1)eβs

∫ s

0

e−βudKu − βeβs
∫ s

0

ue−βudKu

]
ds

=βe−βt
[
teβt

∫ t

0

e−βsdKs − eβt
∫ t

0

se−βsdKs

]
=β

∫ t

0

(t− s)e−βsdKs,

the equation (4.57) becomes

z∗(t) = z0e
−βt + βc∗(0)t+ β

∫ t

0

(t− s)e−βsdKs, t > 0.
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By inserting the expression of dKt given in (4.46) into this equation, we get

(4.48) immediately, and this completes the proof of the second assertion.

3) Here, we will prove (4.49). By inserting (3.22) into (3.7), we get

x∗(t) =ertx0 +

∫ t

0

e−r(s−t) [π∗(s)(b− r)− c∗(s)] ds+

∫ t

0

e−r(s−t)π∗(s)σdWs

=ertx0 +
(b− r)2

rb2σ2
(ert − 1) +

b− r
b2σ

ert
∫ t

0

e−rsdWs − ert
∫ t

0

e−rsc∗(s)ds.

(4.58)

Here, we denote

ψ(s, t) := e−βs
[(

1

r
+
β

r2

)(
er(t−s) − 1

)
− β

r
(t− s)

]
.

Similar as we did in calculating z∗(t), we obtain that

ert
∫ t

0

e−rsc∗(s)ds

=ert
∫ t

0

e−rs
[
c∗(0)(1 + βs) +

∫ s

0

e−βu(βs− βu+ 1)dKu

]
ds

=c∗(0)

[
−1

r
(1− ert)− β

r
t− β

r2
(1− ert)

]
+

∫ t

0

e−βs
[
(
1

r
+
β

r2
)(er(t−s) − 1)

−β
r

(t− s)
]
dKs

=c∗(0)ψ(0, t) +

∫ t

0

ψ(s, t)dKs.

By inserting this equation into (4.58), we derive that

x∗(t) =ertx0 +
(b− r)2

rb2σ2
(ert − 1) +

b− r
b2σ

ert
∫ t

0

e−rsdWs

− c∗(0)ψ(0, t)−
∫ t

0

ψ(s, t)dKs, t > 0.

(4.59)
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By inserting the expression of dKt given in (4.46) into this equation, we

get (4.49).

This ends the proof of the theorem.

4.2 General Power Habit Utility Function

For the class of utilities de�ned in (3.23), we will describe the dynamic of the

process c∗ as follows.

Theorem 11: The process Lt := eβtc∗(t) satis�es the following stochastic

di�erential equation

dXt =

[
(β + h1)Xt + h2β

∫ t

0

Xsds+ h2z0 + h3e
βt

]
dt

+

[
h4Xt + h5β

∫ t

0

Xsds+ h5z0 + h6e
βt

]
dWt,

(4.60)

with the initial condition

X0 = n1x0 + n2z0 + n3. (4.61)
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Here,



h1 = r +m1(b− r)− n1 + n2β,

h2 = −n2(r +m1(b− r)) + (b− r)m2n1 − n2β,

h3 = −n3(r +m1(b− r)) + (b− r)m3n1β,

h4 = σm1,

h5 = −σn2m1 + σn1m2,

h6 = −σn3m1 + σn1m3.

(4.62)

and 

m1 = b−r
(1−γ)σ2 ,

m2 = (b−r)p
(1−γ)σ2 ,

m3 = (b−r)q
(1−γ)σ2 ,

n1 = 1−γ
m

(Ωγ−Ωγpβ
m

)
1

γ−1 ,

n2 = 1−γ
m

(Ωγ−Ωγpβ
m

)
1

γ−1p+ n
m
,

n3 = 1−γ
m

(Ωγ−Ωγpβ
m

)
1

γ−1 q − (1−γ)η
m

.

(4.63)

Proof. For the HARA utility de�ned in (3.23), we use the feedback form of

the optimal controls in (3.27), and conclude that

π∗(t) = m1x
∗(t) +m2z

∗(t) +m3 and c∗(t) = n1x
∗(t) + n2z

∗(t) + n3. (4.64)
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Thus, the dynamic of c∗ follows

dc∗(t) =n1dx
∗(t) + n2dz

∗(t)

=n1 {[rx∗(t)− c∗(t) + (b− r)(m1x
∗(t) +m2z

∗(t) +m3)] dt

+(m1x
∗(t) +m2z

∗(t) +m3)σdWt}+ n2β(c∗(t)− z∗(t))dt.

(4.65)

Since x∗(t) = c∗(t)−n2z∗(t)−n3

n1
, the above equation can be simpli�ed as

dc∗(t) = (h1c
∗(t) + h2z

∗(t) + h3)dt+ (h4c
∗(t) + h5z

∗(t) + h6)dWt, (4.66)

Now we put Lt = eβtc∗(t), and derive

dLt =βLtdt+ eβtdc∗(t)

=

[
(β + h1)Lt + h2β

∫ t

0

Lsds+ h2z0 + h3e
βt

]
dt

+

[
h4Lt + h5β

∫ t

0

Lsds+ h5z0 + h6e
βt

]
dWt.

(4.67)

This ends the proof of the theorem.
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Chapter 5

Graphs and Financial

Interpretation

In the previous chapters, the optimal consumption and investment strategies

are derived in closed-form expressions. However, since most of the parameters

are general scalars, the inner relationship between those parameters and the

optimal strategies is not obvious enough. In this section, we apply graphing

methods to investigate the properties of a particular case of habit utility.

For the exponential utility function de�ned in (3.16), there are two param-

eters φ1 and φ2 that we assume to be equal to one. In other words, we consider

the following utility.

u(c, z) = −e−c+z. (5.1)

The interpretation of this formation lies in the exponential relationship be-

tween the utility and the value that the consumption rate exceeds the historical

average discounted consumption level.

For this setting, we have ∆ := α2
1− 4α2 = 4β2− 4β2 = 0, where α1 and α2
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are de�ned in (4.3). Hence, the parameters become

b1 =
1

r
exp(1− 2δσ2 + (b− r)2

2σ2r
), b2 =

r2

β + r
, b3 =

r

β + r
,

α1 = 2β, α2 = −β2,

c∗(0) =
r2

r + β
x0 +

β

r + β
z0 −

2σ2(r − δ)− (b− r)2

2rσ2
,

dKt =

[
−βz0 +

2σ2(r − δ) + (b− r)2

2σ2
eβt
]
dt+

b− r
σ

eβtdWt.

In the rest of this chapter, we investigate the expected value of π∗(t), c∗(t),

z∗(t) and x∗(t).

5.1 The Investment Strategy

We recall that the optimal portfolio π∗ is given by

π∗(t) =
b− r
b2σ2

=
(r + β)(b− r)

r2σ2
. (5.2)

We can obtain several conclusions from this expression. Firstly, It is obvi-

ous that the optimal portfolio is a positive constant (i.e. it does not depend

on time nor on randomness). Secondly, since the agent is risk-averse according

to his utility function, a higher stock return b and a lower risk σ will lead to

a higher stock investment, and this expression also supports this conclusion.

Moreover, π∗ is also constant in x0 and z0, which indicates a possible situation

that π∗(t) > x∗(t). In that case, the investor will get loan from the bank with

interest rate r. Finally, π∗ is a linear function of habit factor β with positive

slope b
rσ2 .
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5.2 The Expected Consumption Rate

Proposition 8: Under the assumption φ1 = φ2 = 1, the expected value of the

optimal consumption rate c∗(t) can be simpli�ed as

E[c∗(t)] = c∗(0)(1 + βt)− βz0t+
α3β

2
t2 + α3t, (5.3)

where α3 is de�ned as

α3 =
2σ2(r − δ) + (b− r)2

2σ2
.

The expression (5.3) indicates that the curve should be a parabola. Natu-

rally, the optimal consumption rate will start from c∗(0) = r2

r+β
x0 + β

r+β
z0 −

2σ2(r−δ)−(b−r)2
2rσ2 . Under the assumption that α3 > 0, as t approaches ∞, c∗(t)

also approaches ∞.

Then, in order to describe directly the relationship between E[c∗(t)] and

the other parameters of the model (i.e. x0, z0, b, σ, δ, r, β), we plot graphs that

explain these relationships. In addition, We also focus on its �rst derivative

with respect to some of those parameters. This part is necessary since we may

�nd the numerical foundation of those graphs.

5.2.1 The E�ect of Initial Wealth x0

The �rst derivative with respect to x0 is

∂E[c∗(t)]

∂x0

=
r2(1 + βt)

r + β
. (5.4)
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Figure 5.1: Expected consumption rate for di�erent x0

At time 0, ∂E[c∗(t)]
∂x0

∣∣
t=0

= r2

r+β
. As t approaches ∞, ∂E[c∗(t)]

∂x0
is positive and

approaches ∞ as well.

Now we put r = 0.05, β = 0.03, x0 = 10, 100, 500, 1000, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.1.

5.2.2 The E�ect of Initial Consumption Habit z0

The �rst derivative with respect to z0 is

∂E[c∗(t)]

∂z0

=
β(1− rt)
r + β

. (5.5)

At time 0, we have ∂E[c∗(t)]
∂z0

∣∣
t=0

= β
r+β

. Before the moment t0 = 1
r
, ∂E[c∗(t)]

∂z0
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Figure 5.2: Expected consumption rate for di�erent z0

is positive, and becomes negative after that moment. As t goes to in�nity,

∂E[c∗(t)]
∂z0

is approaching −∞. This phenomenon shows that, even though a

lower initial consumption habit decreases the initial consumption level, it will

contribute to a higher consumption rate after time t0.

Now we put r = 0.05, β = 0.03, x0 = 500, z0 = 5, 20, 50, 100, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.2.

5.2.3 The E�ect of Stock Return b

The �rst derivative with respect to b is

∂E[c∗(t)]

∂b
=
b− r
σ2

[
1

r
+ (1 +

β

r
)t+

β

2
t2
]
. (5.6)
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Figure 5.3: Expected consumption rate for di�erent b

At time 0, we have ∂E[c∗(t)]
∂b

∣∣
t=0

= b−r
rσ2 . This expression implies that ∂E[c∗(t)]

∂b

is positive, and increases to∞ as t goes to∞. This can be explained by the fact

that a higher stock return can boost the consumption activity of consumers.

The increase indicates that this e�ect becomes more signi�cant as time passes.

Now we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.06, 0.07, 0.08, 0.09,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.3.

5.2.4 The E�ect of Stock Volatility σ

The �rst derivative with respect to σ is

∂E[c∗(t)]

∂σ
= −(b− r)2

σ3

[
1

r
+ (1 +

β

r
)t+

β

2
t2
]
. (5.7)
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Figure 5.4: Expected consumption rate for di�erent σ

At time 0, we have ∂E[c∗(t)]
∂σ

∣∣
t=0

= − (b−r)2
rσ3 . If we assume that σ is nonnega-

tive, then it is obvious that this derivative is always negative, and approaches

−∞ when t goes to ∞. This result shows that higher volatility of the stock

price will push down the consumption level. In economics, this fact means that

people would be cautious in consumption when the potential risk becomes sig-

ni�cant.

Now we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.07, σ =

0.01, 0.02, 0.03, 0.04, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.4.
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5.2.5 The E�ect of Subjective Discount Rate δ

The �rst derivative with respect to δ is

∂E[c∗(t)]

∂δ
=

1

r
(1 + βt)− (

β

2
t2 + t). (5.8)

At time 0, we get ∂E[c∗(t)]
∂δ

∣∣
t=0

= 1
r
. Before the moment t1 = − 1

β
+ 1

r
+

1
β

√
β2

r2
+ 1, ∂E[c∗(t)]

∂δ
is positive, and becomes negative after t1. As t goes to ∞,

∂E[c∗(t)]
∂b

approaches −∞. Since δ represents the extent of impatience, a higher

δ causes a higher consumption rate at the beginning. However, it has negative

impact on the consumption in the long run. Thus, a more patient investor will

consume more in the long run.

Now we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.07, σ = 0.01,

δ = 0.01, 0.1, 0.2, 0.5, the graph of E[c∗(t)] is shown in �gure 5.5.

5.2.6 The E�ect of Interest Rate r

The �rst derivative with respect to r is

∂E[c∗(t)]

∂r
= α4(1 + βt) + (1 +

r − b
σ2

)(
βt2

2
+ t), (5.9)

where α4 = r2+2rβ
(r+β)2

x0 − β
(r+β)2

z0 − δ
r2
− b2

2r2σ2 + 1
2σ2 .

At t = 0, we have ∂E[c∗(t)]
∂r

∣∣
t=0

= α4, and its sign depends on several pa-

rameters. However, this expression indicates that, in the long run, ∂E[c∗(t)]
∂r

approaches ∞.

Now we put r = 0.03, 0.04, 0.05, 0.06, β = 0.03, x0 = 500, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.6.
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Figure 5.5: Expected consumption rate for di�erent δ

Figure 5.6: Expected consumption rate for di�erent r
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Figure 5.7: Expected consumption rate for di�erent β

5.2.7 The E�ect of Habit Formulation Factor β

The �rst derivative with respect to β is

∂E[c∗(t)]

∂β
= α5(1 + βt) + c∗(0)t− z0t+

α3

2
t2, (5.10)

where α5 = −r2x0+rz0
(r+β)2

.

Obviously, the value of ∂E[c∗(t)]
∂β

at time 0 coincides with α5, and its sign

depends on the value of (−rx0 +z0). However, ∂E[c∗(t)]
∂β

goes to∞ as t increases

to∞. This result indicates that the sensitive agents have a high level of optimal

consumption in the long run.

Now we put r = 0.05, β = 0.03, 0.05, 0.08, 0.1, x0 = 500, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.7.
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5.3 The Expected Consumption Habit

Proposition 9: Under the assumption φ1 = φ2 = 1, the expected value of the

optimal consumption habit can be expressed as

E[z∗(t)] = z0(1− βt) + βc∗(0)t+
βα3

2
t2. (5.11)

Since the optimal consumption rate c(t) goes to in�nity as t→ 0, it is clear

that the consumption habit z(t) approaches the same limit as well.

Then we consider its �rst derivative with respect to certain parameter, and

the relationship between E[z∗(t)] and those parameters will be shown in the

forthcoming graphs:

5.3.1 The E�ect of Initial Wealth x0

The �rst derivative with respect to x0 is

∂E[z∗(t)]

∂x0

=
r2βt

r + β
. (5.12)

At time 0, we have ∂E[z∗(t)]
∂x0

= 0
∣∣
t=0

. As t goes to in�nity, ∂E[z∗(t)]
∂x0

is positive

and it approaches in�nity as well.

We put r = 0.05, β = 0.03, x0 = 10, 100, 500, 1000, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[z∗(t)] is shown in �gure 5.8.
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Figure 5.8: Expected consumption habit for di�erent x0

5.3.2 The E�ect of Initial Consumption Habit z0

The �rst derivative with respect to z0 is

∂E[z∗(t)]

∂z0

= 1− rβt

r + β
. (5.13)

At time 0, we have ∂E[z∗(t)]
∂z0

∣∣
t=0

= 1, and it is positive before a certain mo-

ment t2 = r+β
rβ

. However, it becomes negative after that point, and approaches

−∞ as t goes to ∞.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 5, 20, 50, 100, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[z∗(t)] is shown in �gure 5.9.
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Figure 5.9: Expected consumption habit for di�erent z0

5.3.3 The E�ect of Stock Return b

The �rst derivative with respect to b is

∂E[z∗(t)]

∂b
=
β(b− r)
rσ2

(
t+

r

2
t2
)
. (5.14)

At time 0, we get ∂E[z∗(t)]
∂b

∣∣
t=0

= 0, and it is positive for any t > 0. As t

approaches ∞, ∂E[z∗(t)]
∂b

becomes in�nite as well.

We put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.06, 0.07, 0.08, 0.09,

σ = 0.01, δ = 0.04, the graph of E[z∗(t)] is shown in �gure 5.10.

68



Figure 5.10: Expected consumption habit for di�erent b

5.3.4 The E�ect of Stock Volatility σ

The �rst derivative with respect to σ is

∂E[z∗(t)]

∂σ
= −β(b− r)2

rσ3

(
t+

r

2
t2
)

(5.15)

At time 0, we get ∂E[z∗(t)]
∂σ

∣∣
t=0

= 0. For any t ∈ (0,∞), it is negative for

positive σ. Moreover, it decreases to −∞ as t approaches ∞.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.07, σ =

0.01, 0.02, 0.03, 0.04, δ = 0.04, the graph of E[z∗(t)] is shown in �gure 5.11.
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Figure 5.11: Expected consumption habit for di�erent σ

5.3.5 The E�ect of Subjective Discount Rate δ

The �rst derivative with respect to δ is

∂E[z∗(t)]

∂δ
=
βt

r
− β

2
t2. (5.16)

For t = 0, we have ∂E[z∗(t)]
∂δ

∣∣
t=0

= 0, and it is positive before t3 := 2
r
.

However, after t0,
∂E[z∗(t)]

∂δ
becomes negative, and approaches −∞ as t increases

to ∞. This result implies that the impatience leads to higher consumption

habit at the beginning and lower consumption preference in the long run.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.07, σ = 0.01,

δ = 0.01, 0.1, 0.2, 0.5, the graph of E[z∗(t)] is shown in �gure 5.12.
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Figure 5.12: Expected consumption habit for di�erent δ

5.3.6 The E�ect of Interest Rate r

The �rst derivative with respect to r is

∂E[z∗(t)]

∂r
= α4βt+ (1 +

r − b
σ2

)
βt2

2
, (5.17)

where α4 = r2+2rβ
(r+β)2

x0 − β
(r+β)2

z0 − δ
r2
− b2

2r2σ2 + 1
2σ2 .

At t = 0, we have ∂E[z∗(t)]
∂r

∣∣
t=0

= 0, and it is strictly positive for any time

t > 0. Then, ∂E[z∗(t)]
∂r

goes to ∞ as time passes. This result implies that the

higher interest rate leads to a higher consumption preference in the long run.

Now we put r = 0.03, 0.04, 0.05, 0.06, β = 0.03, x0 = 500, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.13.
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Figure 5.13: Expected consumption habit for di�erent r

5.3.7 The E�ect of Habit Formulation Rate β

The �rst derivative with respect to β is

∂E[z∗(t)]

∂β
= α5βt− z0t+

α3

2
t2. (5.18)

Obviously, the value of ∂E[z∗(t)]
∂β

vanishes at time 0, and approaches ∞ as

t increases to ∞. This result indicates that the sensitive agents have a high

level of optimal consumption habit in the long run.

Now we put r = 0.05, β = 0.03, 0.05, 0.08, 0.1, x0 = 500, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.14.

72



Figure 5.14: Expected consumption habit for di�erent β

5.4 The Expected Wealth Value

Proposition 10: Under the assumption φ1 = φ2 = 1, the expected value of

the optimal wealth x∗(t) can be simpli�ed as

E[x∗(t)] =x0 +

(
rβ

r + β
x0 −

β

r + β
z0 +

β(b− r)2

r2σ2
+

2σ2(r − δ) + (b− r)2

2rσ2

)
t

+
2βσ2(r − δ) + β(b− r)2

4rσ2
t2. (5.19)

In the following, we consider its �rst derivative with respect to certain pa-

rameters. Then, the relationship between E[x∗(t)] and those parameters will

be shown in graphs.
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Figure 5.15: Expected wealth for di�erent x0

5.4.1 The E�ect of Initial Wealth x0

The �rst derivative with respect to x0 is

∂E[x∗(t)]

∂x0

= 1 +
rβ

r + β
t. (5.20)

At time 0, we get ∂E[x∗(t)]
∂x0

∣∣
t=0

=1. As t approaches∞, ∂E[x∗(t)]
∂x0

is approaching

∞, and it is positive. This result indicates that the impact of a small di�erence

in initial wealth on future wealth will becomes greater as t increases.

Now, we put r = 0.05, β = 0.03, x0 = 10, 100, 500, 1000, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[x∗(t)] is shown in �gure 5.15.
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Figure 5.16: Expected wealth for di�erent z0

5.4.2 The E�ect of Initial Consumption Habit z0

The �rst derivative with respect to z0 is

∂E[x∗(t)]

∂z0

= − β

r + β
t. (5.21)

At time 0, we have ∂E[x∗(t)]
∂z0

∣∣
t=0

= 0. As time passes, ∂E[x∗(t)]
∂z0

is always

negative, and it approaches −∞ as t goes to ∞. This result shows that the

optimal wealth value is negatively related to the initial consumption habit for

any t > 0.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 5, 20, 50, 100, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[x∗(t)] is shown in �gure 5.16.
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Figure 5.17: Expected wealth for di�erent b

5.4.3 The E�ect of Stock Return b

The �rst derivative with respect to b is

∂E[x∗(t)]

∂b
=

(2β + r)(b− r)
rσ2

t+
(b− r)β

2rσ2
t2. (5.22)

At time 0, we have ∂E[x∗(t)]
∂b

∣∣
t=0

= 0. Since stock return is always higher

than interest rate, ∂E[x∗(t)]
∂b

is positive as time passes. It is clear that a higher

stock return leads to a higher level of wealth all the time.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.06, 0.07, 0.08, 0.09,

σ = 0.01, δ = 0.04, the graph of E[x∗(t)] is shown in �gure 5.17.
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Figure 5.18: Expected wealth for di�erent σ

5.4.4 The E�ect of Stock Volatility σ

The �rst derivative with respect to σ is

∂E[x∗(t)]

∂σ
= −(2β + r)(b− r)2

r2σ3
t− β(b− r)2

2rσ3
t2. (5.23)

At time 0, we get ∂E[x∗(t)]
∂σ

∣∣
t=0

= 0. As t increases, ∂E[x∗(t)]
∂σ

is negative and

approaches −∞. This result proves that higher volatility of stock price has

negative in�uence on optimal wealth.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.07, σ =

0.01, 0.02, 0.03, 0.04, δ = 0.04, the graph of E[x∗(t)] is shown in �gure 5.18.
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Figure 5.19: Expected wealth for di�erent δ

5.4.5 The E�ect of Subjective Discount Rate δ

The �rst derivative with respect to δ is

∂E[x∗(t)]

∂δ
= −1

r
t− β

2r
t2. (5.24)

At time 0, we get ∂E[x∗(t)]
∂δ

= 0. As t goes to∞, ∂E[x∗(t)]
∂δ

is negative and ap-

proaches −∞. This result indicates that the impatient agents have to tolerate

a low level of wealth compared with the patient agents.

Now, we put r = 0.05, β = 0.03, x0 = 500, z0 = 10, b = 0.07, σ = 0.01,

δ = 0.01, 0.1, 0.2, 0.5, the graph of E[x∗(t)] is shown in �gure 5.19.
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5.4.6 The E�ect of Interest Rate r

The �rst derivative with respect to r is

∂E[x∗(t)]

∂r
=t

(
β2x0

(r + β)2
+

βz0

(r + β)2
− 2βb2

r3σ2
+

2b

r2σ2
+

δ

r2
− b2

2r2σ2
+

1

2σ2

)
+ t2

(
βσ

2r2
− βb2

4r2σ2
+

β

4σ2

)
.

At time 0, we get ∂E[x∗(t)]
∂r

∣∣
t=0

= 0. The e�ect of r on the optimal wealth

can be explained in two aspects. On one hand, higher interest rate causes

a higher return from the bond investment. However, on the other hand, it

may increase the cost the investors pay for the loan. This equality tells us

that the e�ect of interest rate is very complex since it depends on many other

parameters.

Now we put r = 0.03, 0.04, 0.05, 0.06, β = 0.03, x0 = 500, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.20.

5.4.7 The E�ect of Habit Formulation Factor β

The �rst derivative with respect to β is

∂E[x∗(t)]

∂β
=

(
r2

(r + β)2
x0 −

r

(r + β)2
z0 +

(b− r)2

r2σ2

)
t+

2σ2(r − δ) + (b− r)2

4rσ2
t2.

Similarly, we get ∂E[x∗(t)]
∂β

∣∣
t=0

= 0. Under the assumption that α3 > 0,

∂E[x∗(t)]
∂β

approaches ∞ as time goes to ∞, which suggests that the sensitive

investors can enjoy a high level of wealth in the long run.

Now we put r = 0.05, β = 0.03, 0.05, 0.08, 0.1, x0 = 500, z0 = 10, b = 0.07,

σ = 0.01, δ = 0.04, the graph of E[c∗(t)] is shown in �gure 5.21.
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Figure 5.20: Expected consumption rate for di�erent r

Figure 5.21: Expected wealth for di�erent β
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Chapter 6

Conclusions

In this thesis, we analysed a habit utility optimization problem for a "small"

investor in a complete �nancial market. Our optimization target consists of

maximizing the expected overall utility of an agent over his consumption and

investment activities. This leads to a stochastic control problem for which we

derived the corresponding Hamilton-Jacobi-Bellman equation (HJB equation).

We focused more on the HARA case and calculated explicitly the optimal value

function that is the solution of the obtained HJB equation.

In addition to the optimal value function, we calculated the optimal con-

trols in feedback forms. Our results at this stage correct a mistake in Sundare-

san's paper (see [17]). More importantly, for the case of exponential habit, we

obtained a stochastic di�erential equation (SDE) that the optimal consump-

tion rate process satis�es. This SDE has the form of

dXt =

[
α1Xt + α2

∫ t

0

Xsds

]
dt+ dKt,

where α1, α2 are general coe�cients, and Kt is an Itô Process.
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Using the white noise interpretation, we solved explicitly this SDE. Fur-

thermore, we calculated explicitly the optimal consumption/habit process and

the optimal wealth process. All these constitute our major theoretical contri-

bution in this thesis.

Furthermore, we applied graphing method to describe the inner relation-

ships between the optimal strategies and the model's parameters for an ex-

ample of exponential habit utility (see (5.1)). From the obtained graphs, we

gave �nancial interpretations to these relationships. Below, we outline some

of these �nancial/economic conclusions.

� The optimal portfolio is positive and is constant in time and randomness.

� Lower initial consumption habit leads to lower consumption at the be-

ginning. However, after a certain moment that we calculated, the level

of life becomes higher.

� Higher stock volatility has negative in�uence on both optimal consump-

tion rate and optimal wealth process. This fact indicates that the expo-

nential utility agents are risk-averse.

� Patient consumers can enjoy higher level of life in the long run.

� Sensitive consumers have high level of consumption in the long run.
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