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Abstract

This thesis presents a novel approach towards modelling individual human be-

haviour on tasks with insufficient data via transfer learning. In most cases,

deep neural networks (DNNs) require a great deal of data to train and adapt

towards a particular problem. But there exist different tasks in which we

do not have sufficient data available to train DNNs from scratch. There are

approaches, such as zero-shot and few-shot learning, that can produce high

quality DNNs with smaller amounts of data. However, these approaches still

assume a large source dataset or a large secondary dataset to guide the transfer

of knowledge from a source task to the target task. These are not assumptions

that hold true when our goal is to model individual humans, who tend to pro-

duce much less data.In this work we present a novel transfer learning method

for producing a DNN for modeling the behaviour of a specific individual on

an unseen target task, by leveraging a small dataset produced by that same

individual on a secondary task. We make use of a specialized transfer learning

representation and Monte Carlo Tree Search (MCTS). We demonstrate that

our approach outperforms standard transfer learning approaches and other

optimization methods on two different human modeling domains.
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Chapter 1

Introduction

Deep Neural Networks have achieved remarkable success in many domains.

Modern artificial neural networks tend to do well when trained on large amounts

of data [14]. But on tasks with less data, deep neural networks (DNNs) can

struggle to achieve the same level of performance. For example, when one

wishes to train a DNN to model a specific individual [1]. For the purpose of

this thesis, modelling humans refers to predicting the behaviour of each person

individually on a specific task. This refers to being able to understand how

beneficial a specific person’s behaviour is in a particular scenario. There are

cases in which we need specialized trained models for specific individuals; to

maintain privacy and security and/or in domains where modelling individuals

leads to better performance. The more common approach is to model all indi-

viduals in aggregate. However, this method is also less likely to lead to a final

model that adequately handles outliers. Due to lack of training data, we are

usually forced to model the behaviour of all individuals in aggregate instead

of modelling individual behaviour. One solution to this problem would be to

employ transfer learning: to adapt a pretrained model to an individual.

Different approaches exist for adapting DNNs trained on larger datasets to

smaller ones, including: transfer learning [18], few-shot learning [16], and zero-

shot learning [20]. These approaches are useful in transferring the knowledge

gained from a source task and applying it on a target task with insufficient

data. The source task represents a task consisting of sufficient data on which

the DNN is trained initially. The target task represents the problem with less
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available data on which the transfer learned model will be applied. Transfer

learning focuses on solving a target task using the learnt knowledge from a

similar but different task. Few-shot learning refers to the training of neural

networks on tasks with less available training data. Zero-shot learning is used

in the scenarios where no data related to the target domain is available. All of

these approaches generally require re-training a model, or authoring or learning

secondary features to guide the adaptation. [6], [10]

It will often be the case that we lack data to train a model to predict

the behaviour of an individual for a target task. But there might exist some

data belonging to an unrelated secondary task which can be used to predict

the behaviour of an individual on the target problem. If we could develop a

general method to approximate models of individual behaviour for an unseen

target task based on data of that individual doing another task we could solve

the problem of model specialization on low data tasks. Such an approach can

be used to model the behaviour of each individual specifically on a target task,

especially the behaviour of outliers. Outliers represent the set of individuals

who represent different behaviour than the typical behaviour observed over a

certain task. Moreover, developing such a method will also help ensure privacy

as this will allow us to have specifically trained neural networks corresponding

to each individual.

We introduce an approach named CE-MCTS for approximating DNNs for

modeling individuals on an unseen target task, by employing data of other

individuals on that task and data of that specific individual on a secondary

task. We call this problem model specialization, as it can be understood to

be a process to specialize a general model to an unseen individual. This

approach combines Monte Carlo Tree Search (MCTS) with a transfer learning

representation suited to low data problems. This low data transfer learning

representation allows us to approximate new models and MCTS allows us to

explore our unbounded representation to optimize these models. We evaluate

our approach on 2 distinct domains, outperforming other transfer learning

methods particularly on outlier individuals.
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1.1 Research Questions and Related Contri-

butions

Under the preceding motivation, this thesis aims towards further understand-

ing modelling individual human behaviour for low data problems. With that

objective in consideration, the major research questions of this thesis are as

follows:

• How can Artificial Intelligence be used to model individuals specifically

in a low-data problem?

• Can existing knowledge belonging to an unrelated secondary task be

used to model human behaviour on a target task?

• How can we discover neural networks with better performance for mod-

elling humans in a low-data problem with the help of an unrelated sec-

ondary task?

• Are the current optimization techniques sufficient for modelling individual-

specific human behaviour?

The related contributions of this thesis are as follows:

• A background survey on combining existing knowledge and connecting

it with human behaviour modelling via machine learning.

• A complete step-by-step detailed walk-through over our proposed ap-

proach ’Conceptual Expansion via Monte Carlo Tree Search (CE-MCTS)’

• Detailed explanation of two different experimental setups for modelling

individual human behaviour.

• Results and analysis based on the evaluation of our proposed approach

in comparison with existing approaches.

• Evidence demonstrating how CE-MCTS is better than current existing

approaches and overall outperforms them, particularly on outlier indi-

viduals.
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1.2 Outline

This thesis is divided into 6 parts including the introduction. Following the

outline of this thesis, we introduce the readers to the essential background and

related work information in Chapter 2. We introduce our proposed approach

named ’Conceptual Expansion with Monte Carlo Tree Search (CE-MCTS)’

in Chapter 3. Afterwards, in Chapter 4, we familiarize the readers with the

experimental setup of the two different domains in which the performance of

CE-MCTS is evaluated for modelling individuals in a low-data target problem.

In chapter 5, we present the results and analysis of the performance of CE-

MCTS with other baseline approaches. The first domain presents individual

human behaviour modelling in the financial fitness. The second domain refers

to the modelling of human behaviour in game level design. Details of the

experimental setup are followed by the introduction to the baselines used for

the analysis of the performance of CE-MCTS. Then we present the in-depth

evaluation and results highlighting the performance of CE-MCTS in compar-

ison with the prior existing methods. Finally, in Chapter 6, we conclude our

thesis with an overview of how our approach proves beneficial in task of model

specialization followed by its implications and future work.
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Chapter 2

Background

This chapter provides readers with necessary background required to under-

stand the work presented in this thesis. In sections 2.1 and 2.2, we start with a

basic introduction of Artificial Neural Networks (ANNs) and Recurrent Neural

Networks (RNNs) to provide readers with an overview of the basic architec-

ture of neural networks followed by how they are used for tackling sequential

data. In section 2.3, we introduce the readers to Long Short-Term Memory

(LSTM) Recurrent Neural Networks. We use a LSTM network as the primary

model throughout this thesis. This is followed by a general outline of transfer

learning in section 2.4. Transfer learning is used in this thesis to obtain a

preliminary trained model for the target problem and lays the foundation of

our proposed transfer learning based CE-MCTS approach. In sections 2.5 and

2.6, we introduce readers to background work related to financial time series

forecasting and game level designing. These sections provide the readers with

a better understanding of the areas on which the work presented in this thesis

is evaluated and analyzed. Finally, sections 2.7 and 2.8 introduce readers to

an overview of Combinational Creativity (CC) and Monte Carlo Tree Search

(MCTS) for the background necessary to understand our approach.

2.1 Artificial Neural Networks

Recently, Artificial Neural Networks (ANNs) have become one of the most

popular components of Machine Learning. ANNs are used in almost every

domain to train AI capable of learning from huge amounts of data and gen-
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the neural network without any problem due to dimension mismatch. Then,

the data is progressed further in the ANN as it moves forward through the

hidden layers. There can be any number of hidden layers inside an ANN as

it depends on the structure of the network to be used for a specific problem.

The hidden layers are followed by an output layer whose dimension matches

the size of the output required for a specific problem.

Neurons use activation functions to process the information and provide

an output that is passed in as the input to the neurons in the next layer in an

ANN. Selection of activation functions to be used in a neural network depends

upon the type of problem one is trying to solve. Some examples of activation

functions include identity function, sigmoid function and ReLU function. For

example, the sigmoid function limits the output values between 0 and 1 and

is widely used in classification based problems.

For training the ANN, first the data is pre-processed to the point where

it can be fed to the neural network as the input. The data is divided into 3

splits: training set, validation set and the test set. The ANN is then trained

on the training set in which the training set input is provided to the network.

The model is trained for a fixed number of iterations in which the input data

is processed throughout the model and the layered neurons are trained over

it. In this process, gradients are calculated and the weights associated with

the neurons are updated over the training process. In most of the cases, we

have multiple gradients corresponding to each datapoint in a training batch.

Therefore, we need to obtain a single gradient to update the neural network.

For selection of the gradients during the training process, we use optimizers.

Some examples of optimizers include Gradient Descent, Stochastic Gradient

Descent, Momentum, and Adagrad. These optimizers are responsible for the

gradient selection during the training process of a neural network. For ex-

ample, in Stochastic Gradient Descent, the gradients are changed after the

calculation of loss on every training sample. Moreover, optimizers such as

Adam work with first and second order momentum to slow down the speed of

gradient search in order to avoid skipping over optimal minimum. The valida-

tion set is used to validate the performance of the trained ANN over unseen
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works (LSTMs) are used for predicting time series data containing long term

dependencies.

2.3 Long Short-Term Memory

As discussed in the last section, Recurrent Neural Networks (RNNs) struggle to

provide high quality performance on long term dependent sequential data. To

achieve better performance on longer sequences, a network capable of carrying

previously learnt information all the way to the end of the sequence is required.

Long Short-Term Memory (LSTM) networks represent a type of Recurrent

Neural Network (RNNs) which are capable of processing longer dependencies

while carrying forward the processed knowledge all the way to the end in the

sequential data. Learning sequence predictions is helpful in different domains

such as speech recognition [21], handwriting recognition [19], stock market

prediction [15] and machine translation [5].

An LSTM performs similarly as typical Recurrent Neural Networks, with

major key differences in the internal operations. The core functionalities of

LSTMs are carried out by the cell states and various gates. The gates help

the cell states carry relevant information all the way to the end of the se-

quence. An LSTM network consists of sigmoid activations as gates which are

responsible for clipping the output values in the range between 0 and 1. Sig-

moid activation helps in the forget gates as the outputs multiplied by values

closer to 0 are forgotten as the input progresses through the LSTM network.

Sigmoid activation ensures that only relevant and important information is

carried along in the LSTM recurrent neural network. LSTM networks also

consist of ’tanh’ activation for the regulation and maintenance of values be-

tween -1 and 1 throughout the network. A simple LSTM network is shown in

Figure 2.3.

2.4 Transfer Learning

Transfer learning is a technique used in machine learning which focuses on

reusing knowledge learned from one domain to a different, but related, domain.
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2.5 Financial Time Series Prediction

Financial time series forecasting is the prediction of future trends based on

financial decision-making. Breaking down this term, time series refers to the

data represented in a sequential fashion and forecasting means an attempt to

predict an upcoming event. When the prediction is made on the sequential

data representing a financial event such as trends in stock market and retail

price, it is called financial time series forecasting. Other examples of financial

time series forecasting include sales predictions [2] and unemployment rate

forecasting [17]. Privacy is one of the key components to be considered when

modelling humans. There exist techniques in Machine Learning such as feder-

ated learning [4], which uses decentralized training of models across different

devices without compromising the privacy of data. We view federated learning

as complimentary to our approach. One could apply our method in a feder-

ated learning scenario by training CE-MCTS with multiple different sources

of data for the same individual.

There are different crucial components of time series events which affect the

models we can learn. Examples of such components include observed trends

over the sequential data, cycles representing the repetitiveness of certain trends

and the seasonality of certain fluctuations observed overtime in the sequential

data. These components contribute towards how a neural network will obtain

knowledge from the sequential data and the overall error that will persist

between the actual results and the predicted results.

2.6 Combinational Creativity

Combinational creativity, also known as conceptual combination refers to an

efficient, general cognitive ability to recombine existing knowledge to produce

new knowledge [3], [9]. Human beings are capable of combining their pre-

existing knowledge to understand new concepts [7]. For example, humans can

easily break down phrases such as farm cat or a black cat to understand what it

means. Combinational creativity aims to explore how recombining pre-existing
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knowledge can be used to identify and understand new knowledge.

There exists prior work in which existing concepts are combined compu-

tationally to represent new knowledge, but they have traditionally required

hand-authored input data. [8] introduced ’Conceptual Blending’ to signify

how already existing elements or concepts can be mixed and blended together

to construct the meaning of the knowledge represented by their meaningful

combination. An approach named ‘Conceptual Expansion (CE)’ was devel-

oped to be applied to deep neural networks [13]. CE is a way of representing

combinational creativity in which knowledge gained by DNNs can be taken as

an input and recombined to represent the combination of existing knowledge.

3.1 represents CE, in which the weights of the DNN model are used as the

components that are recombined:

CE(F, α) = α1 ∗ f1 + α2 ∗ f2 + ...+ αn ∗ fn (2.1)

Where W represents a weight in the final output model, F = f1, f2, ..., fn

represents existing weights and α=α1, α2, ..., αn are alpha value filters, which

undergo pairwise multiplication with the weights. The alpha filters are used to

transform the weights during the combination. The same f value can occur an

arbitrary number of times in F with different α values, allowing CE to repre-

sent a wide-range of combinations. The f and α values are modified for various

output weights or introduce new ones to search over a CE representation.

The work presented in this thesis makes use of conceptual expansion along

with Monte-Carlo Tree Search (MCTS). MCTS is well-known as an efficient

method for searching large search spaces.

2.7 State Space

The combination of alpha filters and weights leads to an infinite search space

consisting of all possible parameter values of a Neural Network represented

with Conceptual Expansion (CE). Each state in this state space represents a

unique set of Neural Network weights, represented with as a combination of

alpha filters and the initial weights.

12



2.8 Naive Tree Search

Simple tree search is a search approach based on a definite set represented in

a tree like structure. In this method, the nodes of the tree represent the data

points of a set and the tree search can be used to extract these node values

depending upon the type of query associated with the task.

2.9 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a search algorithm in the domain of Ar-

tificial Intelligence. Due to Conceptual Expansion (CE), there can be nearly

infinite number of possible DNNs that can be explored for model specializa-

tion. MCTS combines the naive tree search approach along with balanced

exploration and exploitation based policy for discovering better states in large

unbounded spaces. Unlike simple tree search, MCTS does not rely on the

assumption that the current action is going to be the best possible action ev-

ery time at a particular step. MCTS algorithm is structured as a tree search

approach in which the next possible states are represented as the ’nodes’ of

the tree. MCTS is beneficial in discovering better possible nodes as through-

out the search, it continues to explore better possible alternatives by not only

exploiting the existing nodes but also exploring new nodes. MCTS carries out

a balanced exploration-exploitation based search with the help of simulating

’roll-outs’ of fixed length for a specific number of iterations.

MCTS algorithm consists of 4 major steps. These steps are also demon-

strated in the figure below.

Selection

In this step, the MCTS algorithm makes a decision to select the next node

that will be used as the starting point for expansion. Here expansion signifies

the exploration of undiscovered nodes in the MCTS algorithm. Selection of

the node is dependent upon if the exploration or exploitation will be carried

out at the current step. This selection procedure is called ’selection policy’.

In exploitation, the node with the maximum node value is selected for further
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Back-propagation

In this final step, the values of the nodes are updated all the way up from the

final node reached to the original root node. This step makes sure that the

node values are up-to-date for the node selection step in the next iteration.

For example, in figure 2.4, after we have reached the last node in a roll-out

(marked as red), all the fitness values of the parent nodes traversed in that

roll-out are updated from bottom to top all the way to the root node (as shown

with the upward arrows). Updating the fitness values of the nodes discovered

throughout the roll-out is important for reflecting how optimum is the selection

of a set of nodes in a roll-out.
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Chapter 3

Conceptual Expansion based
Monte Carlo Tree Search
(CE-MCTS)

In this chapter, we introduce the readers to an in-depth explanation of our ap-

proach: Conceptual Expansion-based Monte Carlo Tree Search (CE-MCTS).

In section 3.1, we first provide the readers with an overview of the CE-MCTS

system. This is followed by an explanation of Conceptual Expansion (CE) in

section 3.2 and how it is used to approximate new neural network weights.

Section 3.3 provides the readers with an overview of the CE-MCTS search

process. Section 3.4 and 3.5 covers the internal structure of the CE-MCTS

algorithm, namely how nodes are represented in this search approach and the

criteria behind the selection of the final model.

3.1 Model Specialization

In this thesis, our work is focused on the problem of modeling the behaviour of

a specific individual on a target task, when we have no record of that individual

doing that task. This problem is specifically targeted to the scenarios in which

we want to model individuals on tasks with little or no data, but we have

sufficient data for these individuals on a secondary task.

For tackling such problems, we assume in this work that we have some

available data of the same individual on a similar, secondary task. Moreover,

we further assume that we have data on other individuals performing the target
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task. We name this problem as ’model specialization’.

3.2 System Overview

The approach described in this work focuses on using the specific individual’s

secondary task data to guide a novel transfer learning method to fine tune a

model trained on other individuals undertaking the target task. This method

is named Conceptual Expansion-based Monte Carlo Tree Search (CE-MCTS).

Conceptual expansion (CE) provides the representation space of possible fine

tuned models, which we then search with the MCTS algorithm. MCTS is

well-suited to searching the CE representation as it is an unbounded search

space. MCTS is well suited to large search spaces with sparse high values in

games such as Chess and Go. CE-MCTS is visualized in Fig 3.1.

CE-MCTS consists of 2 key steps:

• First, we train a model on the available data of other individuals under-

taking the target task, which we call the source model.

• Second, we employ the data from the target individual on the secondary

task to guide MCTS through the space of re-combinations of weights

from the source model. This allows us to approximate a final model for

the individual on the the target task without any data of that individual

undertaking that task.

3.3 Conceptual Expansion

In this work, conceptual expansion is used to define the search space of possible

output models. Conceptual Expansion (CE) is a method of representing com-

binations of existing knowledge, in this case the weights of our source model.

We represent Conceptual Expansion in Equation 3.1:

CE(F, α) = α1 ∗ f1 + α2 ∗ f2 + ...+ αn ∗ fn (3.1)

Where W represents a weight in the final output model, F = f1, f2, ..., fn

represents existing weights and α=α1, α2, ..., αn are alpha value filters, which

17



Figure 3.1: The complete CE-MCTS approach. First we train a model on the
target task training data for other individuals, which we call a source model.
Then we use the behaviour of the individual on a secondary task to guide CE-
MCTS to finetune the source model. We then output a final model from this
process meant to approximate the behaviour of an individual on the target
task, with no record of that individual undertaking that task.

undergo pairwise multiplication with the weights. The alpha filters are used to

transform the weights during the combination. The same f value can occur an

arbitrary number of times in F with different α values, allowing CE to repre-

sent a wide-range of combinations. When we search over a CE representation

we modify the f and α values for various output weights or introduce new

ones. If CE is a reasonable computational approximation of combinational

creativity, it should demonstrate the same ability to efficiently approximate

useful combinations for this problem [3], [9]. Combination of the behaviour

of individuals on a specific task can prove useful in approximating someone’s

behaviour on the same task. Combinations can be helpful to approximate the

solution to model specialization problems.

3.4 CE-MCTS Search Overview

Conceptual Expansion defines an unbounded search space to explore neural

networks. In the problem targeted in this work, there is very little data avail-

able which can be used to guide the search for the approximation of individual
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Algorithm 1 CE-MCTS

Input:Base prediction model(Mn)
Parameters:Iterations (n), Rollout count (c), Rollout Length (l), Epsilon (ε)
Output:Finalised prediction model(On)

1: t ← 0
2: Root node ← Mn

3: while t < n do
4: t ← t+1
5: for i in roll-out length do
6: Pcurrent ← Selection Probability(i)
7: if Pcurrent ≤ ε then
8: Nodecurrent ← Exploit(currentnodes)
9: else
10: Nodecurrent ← Explore(newnodes)
11: end if
12: end for
13: Backpropagate(c, l)
14: end while
15: return On

specialized neural networks. We can also expect the space to demonstrate

a sparsity in terms of high quality models because of the large unbounded

space that needs to be explored to discover better possible models for mod-

elling individuals specifically. For exploration of such a sparse and unbounded

space, a balance between exploration and exploitation is crucial. Thus we

draw on Monte Carlo Tree Search (MCTS). MCTS performs a well-balanced

exploration and exploitation based search over an unbounded space to discover

better existing states. This requires that we initialize the number of iterations,

a roll-out length and policy to balance exploration and exploitation. We rep-

resent this whole process in Algorithm 1. We take a model trained on other

individuals for the target task domain as input (Mn). This model is represented

with CE and becomes the root node. We initialize the number of iterations

(n), the number of rollouts (c), and the length of rollouts (l). The number of

iterations represent how many times CE-MCTS will be executed. The number

of rollouts represent how many times the simulation will be carried out in each

iteration. The length of rollouts depict the number of nodes to be explored in

each rollout. We make use of ε-greedy for our node selection policy. We chose
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ε=0.30 to bias our approach towards the exploration of the space. This value

of epsilon is derived via experimentation using different possible values and

picking the one which represents a balanced exploration-exploitation. In each

roll-out, we select a random probability (Pcurrent) which is compared with ε to

decide if the already explored node with the greatest value will be chosen as

the next node (exploitation) or a new node should be discovered (exploration).

At the end of a rollout, we backpropagate through all the nodes in the rollout

to update the node values of the parents based on the values of the child nodes

as described below. This complete process is continued for n iterations.

3.5 Node Representation

MCTS is typically represented as a tree of nodes. In general, nodes in the

MCTS algorithm represent different action states. In our CE based MCTS ap-

proach, each node represents a possible output model, its weights represented

as a combination of weights from our input model. Each node is connected

to one parent node and an unbounded set of child nodes. In CE-MCTS, each

node stores the information for all of the weights of a potential neural network

(as alpha filters and weights), a reference to it’s parent node, references to

it’s child nodes and it’s current fitness value. Node representation is depicted

in Figure 3.2. We initialize the root node as the input model, represented in

CE by assigning each weight a f value of itself and an α matrix of all 1’s of

the appropriate dimensions. This makes the root node equivalent to the input

model at inference time, but allows us to add f and α values or modify existing

values to produce new child nodes.

We employ a total of four functions to produce child nodes. We used

these four functions as they have previously been employed for Conceptual

Expansion [13]. These four function are responsible for altering the combined

values of f and α to provide a variation of weights representing a new model:

• The first function multiplies a randomly selected index of a randomly

selected α with a scalar value in the range [-2, 2].
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the way we bias CE-MCTS towards exploration we use a different criteria to

select our final output model. For the financial time series prediction domain

we identify the five most similar individuals in terms of their secondary task

performance to our chosen individual. We then use the average performance

(MSE) of each model on these individuals for the target task to select a final

model. For the video game designer modeling domain we use the performance

of each model (MSE) on the secondary task. The method of selection of a

better performing model which best represents an individual’s behaviour is a

domain specific measure. Notably in both cases we still do not make use of,

or have access to, any data on the specific individual for the target task.
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Chapter 4

Experimental Setup

This chapter covers the experimental setup details for this thesis. Section 4.1

introduces the readers with an overview of the target problem and related do-

mains for the evaluation of CE-MCTS. In section 4.2 and 4.3, we talk about

the architecture selection and the details of the transfer learning method asso-

ciated in this work. This is followed by the details of the experimental setup

in sections 4.4 and 4.5 of the 2 domains evaluated in this work. Section 4.4

covers the Financial Time Series Prediction domain and section 4.5 explains

the Video Game Designer Modelling domain.

4.1 Experiment Overview

In this work, we are interested in model specialization problems where we do

not have any data available for a specific individual for a target task but we

have data of other individuals for the same task. We also assume we have

a secondary dataset which is not related to the target task, but in which we

have data for the specific individual. For the evaluation of CE-MCTS, we have

selected two completely different problems that require modeling the behaviour

of individuals.

• The first problem requires modeling the financial behaviour of a set of

individuals during two different time periods.

• The second problem requires modeling the evaluative behaviour of a set

of individuals in two different game level design tasks.
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Figure 4.1: The recurrent neural network (RNN) architecture consisting of 4
LSTM layers. Each of the 4 LSTM layers contain 512 units with a dropout
size of 0.2. This model contains a dense layer with the unit size of 1 at the
end.

4.2 Architecture

In this work, as our experiments are focused towards modelling individual

human behaviour over a period of time, our targeted problems deal with time

series data. Therefore, we use Recurrent Neural Networks (RNNs) as our

neural network architecture. For our approach and baselines, we use a simple

recurrent neural network (RNN) architecture consisting of 4 LSTM layers.

Each of the 4 LSTM layers contain 512 units with a dropout size of 0.2.

These 4 LSTM layers are followed by a Dense prediction layer at the end

with a unit size of 1. We employed Keras and used all the default values

for its LSTM and Dense layers otherwise. Figure 4.1 represents the neural

network architecture. Our focus is on how CE-MCTS is able to solve the

model specialization problem in different domains compared to our baselines.

Therefore, we are less interested in measuring the performance of more complex

models that may obfuscate our primary goal. Moreover, we are looking at low

data problems where more complex architectures may not be appropriate. We

use the Adam optimizer along with a learning rate of 0.001, and mean square

error (MSE) for calculating loss.
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4.3 Transfer Learning

In our experiments, both of our domains involved low training data problems.

Therefore, we pretrain our LSTM model on a stock market dataset. 1 This

stock market dataset contains 20 years of daily information such as the opening

value, highest value, lowest value and closing value of the stocks. We chose a

stock market dataset to pretrain our model due to the large amount of available

data and as it related to both of our evaluation domains. We used a batch size

of 32 for 100 epochs, with a learning rate of 0.001. We used this learning rate

across all approaches that employed backpropagation. This pretrained LSTM

model is then used as the input to CE-MCTS and as the basis for all of our

baselines but one.

4.4 Domain 1: Financial Time Series Predic-

tion

For the first domain, we employ Servus Credit Union’s records as our dataset.

The data consisted of anonymous financial records of 320 individual across two

distinct time periods of their lives. For the purpose of this paper, and due to

an ongoing agreement, we will call these periods T1 and T2, as T2 took place

after T1 in all cases. These time periods represent 2 different financial phases

of each individual’s life.

4.4.1 Dataset and Preprocessing

We were provided with 35 months of data belonging to time period T1 followed

by 10 months of financial data for the same individuals in time period T2. For

every day we have information on 15 transaction types including bill payments,

debit transactions, credit transactions, and so on representing the financial

behaviour of these individuals. The financial behaviour of the individuals

differs significantly in T1 and T2, which we confirmed with the Mann Whitney

U-test across the 15 transaction types (p� 0.01).

1https://www.kaggle.com/rohanrao/nifty50-stock-market-data?select=HDFC.

csv
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The input size for this domain is 31x15 representing the 15 different types

of transactions across a month. The output from the neural network is a

single value that varies from [-1,1] and represents the financial fitness of the

individual during that month.

4.4.2 Experimental Details

The goal of CE-MCTS and the baselines is to approximate a model that ac-

curately predicts this financial fitness during T2 for individuals we have not

observed during T2, based on their behaviour during T1. We can expect

model specialization to benefit this domain due to the high degree of variance

in individual financial behaviour.

In this task, we evaluate our CE-MCTS approach over a 5-fold cross val-

idation experiment, given that we cannot publicly release the dataset and it

has no standard train-test splits. Each fold consists of 64 test individuals and

256 training individuals. For each test individual we assume we do not have

access to their T2 data, and only make use of it during testing. For this first

problem domain we used CE-MCTS with 5 iterations, each with 20 rollouts

of length 10.

4.5 Domain 2: Video Game Designer Mod-

elling

To analyze how CE-MCTS performs in modelling humans in general, we de-

cided to choose a completely different task from domain 1 as our second domain

for the experimental setup. In the second domain, we have a dataset of 84

individuals who worked with an AI partner on video game level design tasks

[12]. Figure 4.2 represents the AI partner developed in this work named as

’Morai Maker’. A video game level is a standalone environment or piece of

game structure. Each individual was given two tasks, to design two distinct

types of levels for the game “Super Mario Bros.”. In this domain, tasks T1

and T2 represent designing two different types of Super Mario Bros. game

levels with an AI agent. The two level types are “underground” and “above
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Figure 4.4: Super Mario Bros aboveground level example.

experience in designing a level, 36% who had designed a game level at least

once, and 38% having previous experience in designing multiple game levels.

In general, all the participants had played games and 77 users had previously

played Super Mario Bros..

4.5.1 Dataset and Preprocessing

The goal for this dataset is to correctly predict how a particular designer would

evaluate an action taken by the AI agent while designing an unseen type of

level. The input is of size 40x15x34, which we reshape to 600x34, where 40

is the width of a chunk of level, 15 is the height of a chunk of level, and 34

corresponds to a one-hot encoding of game entities. Thus if a particular cell

has a 1 in it that indicates that the AI just added that entity at that location.

This corresponds to only part of the level (which has dimensions 100x15), but

it is the part of the level where the AI and/or human designer have recently

made changes, and was employed in the original work. The output is a single

value that varies from [-1,1] and represents the designer’s evaluation of that AI

action. Because of a widely varying type of user composition involved in this

study, the behaviour of participants while designing the game level can differ

from each other a lot. Moreover, their thought process while designing the

’aboveground’ and ’underground’ Super Mario Bros level can also vary from

each other. We can expect model specialization to be beneficial in this domain
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as individuals tend to have highly varied design styles and preferences [11].

4.5.2 Experimental Details

We make use of the train-test split from prior work for comparison purposes

[12], which used 73 train individuals and 11 test individuals. We also only

make use of two of the baselines from our prior experiment: Random Search

and Aggregate. We made this choice given that these two baselines performed

the best in the first experiment. We also include the approach put forth in

the original Guzdial and Riedl paper as a baseline [12], which modeled the

problem with a convolutional neural network instead of an LSTM. We note

that this approach is similar to the 2nd Task-trained baseline, as it included

training on the first level design task data. For this domain, due to its smaller

size, we used CE-MCTS with 3 iterations of 20 rollouts of length 10.
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Chapter 5

Results

This chapter covers the results representing the performance of CE-MCTS in

comparison with other baseline approaches over 2 different domains. Section

5.1 introduces the readers with the baseline approaches that are used in this

work for the comparison of the performance of CE-MCTS approach. Section

5.2 presents the results and analysis of CE-MCTS in comparison with other

baseline methods on the financial time series prediction domain. In section

5.3, we discuss the performance of CE-MCTS along with the other baselines

for the video game designer modelling domain.

5.1 Baselines

In this work we employed six baselines. The first three represent how one

might traditionally attempt to solve a model specialization problem, while

the next three employ the CE representation, and are included to clarify the

benefits of MCTS for this problem.

• The first baseline, called “Naive Aggregate” simply involves finetuning

our source model on the target task data for all available individuals

for 30 epochs. This represents the standard approach one might take to

“solve” a model specialization problem: not trying to solve the problem

at all and assuming that unseen individuals will fall into the learned

distribution. This model is employed as the input for all other baselines

and CE-MCTS.
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• The second baseline, called “CE-2nd Task-finetuned” takes our Naive

Aggregate model and then further trains it on the available secondary

task data for our specific individual for 10 epochs. This represents the

common approach of finetuning a model on a secondary task when it

is similar initial to a target task. If it is the case that the secondary

task is close enough to the target task, this should lead to improved

performance.

• The third baseline, named “Random” represents a random exploration

of the neighbouring models to the “Aggregate Naive” model. It is im-

plemented identically to the below baseline, but only searches over the

default DNN representation, not the CE representation. It is included to

compare the greedy finetunng of the above baseline, and as a comparison

point to the below baseline.

• Our fourth baseline, named “CE-Random” uses a random walk instead of

MCTS to explore the space defined by CE. The same root node and child

functions are employed as described above. At each step, a random child

with random arguments is selected and repeat for 100 steps. Selection

of the best model is made according to the final model selection criteria

described above. This will allow us to test if our MCTS approach leads

to better exploration than a pure random walk.

• The fifth baseline, called “CE-Greedy” uses a greedy or hill-climbing op-

timization instead of MCTS. This is roughly equivalent to the original

conceptual expansion on DNN work [13]. At each step ten random neigh-

bours using the above child functions are produced, each neighbour is

evaluated and the one that maximizes the node value between all neigh-

bours and the current node is chosen. This process is repeated for 100

steps for up to a total of 1000 node evaluations. The best final model is

selected according to the same selection criteria. This baseline allows us

to test if exploration is needed at all.

• The sixth and final baseline, called “CE-Beam Search” employs a simple
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beam search. We send out 400 random beams of length 10 from the

initial root node. This is similar to the random search baseline, but

essentially checks the case of a search approach with more coverage but

a limited depth. We again employ the same final model selection criteria

over these 4000 nodes.

For a fair comparison, the training time for all these baselines and our

approach CE-MCTS was kept the same. All of these baseline approaches and

CE-MCTS are executed roughly for around 6 hours independently. Keeping

the time constraint the same across all the approaches helps us in validating

which approach is able to model individuals better.

5.2 Domain 1: Financial Time Series Predic-

tion

5.2.1 Results

The Average Mean Square Error (MSE) loss and Standard Deviation (SD)

across all baselines and our proposed CE-MCTS approach are provided in Ta-

ble 5.1. These same values for the outlier individuals are presented in Table

5.2. CE-MCTS outperforms all other baselines for 4 of 5 folds across all test

individuals, and for all folds for the outliers. The Naive Aggregate baseline

performed fairly well, which follows from it being the standard way of handling

problems like this, without engaging in specialization. Its performance demon-

strates that the majority of held-out individuals did fall within the learned

distribution in terms of their T2 behaviour. However, it does up to an order of

magnitude worse when it comes to the outliers. Given that we are interested

in modeling individuals, this performance is insufficient, demonstrating a need

to further adapt this initial model. The 2nd Task-finetuned baseline, where

we finetuned the Naive Aggregate model on the available secondary task (T1)

data for each individual (420 datapoints), performed significantly worse than

all other approaches across all test individuals. This demonstrates that for

problems like this traditional transfer methods lead to worse models due to

the fact that the secondary task (T1) is so different from the target task (T2).
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However, on the outliers 2nd Task-finetuned outperformed Naive Aggregate,

but no other approaches. Thus, we conclude that outlier individuals exhibited

some similar behaviour between T1 and T2, but insufficiently similar to make

naive finetuning sufficient.

Both of the random approaches present intriguing results. Over all test

individuals, CE-Random performed surprisingly well, even outperforming CE-

MCTS on the third fold. However, pure Random baseline performed much

worse. This provides an evidence that CE is more likely to represent good

models in comparison to naively altering DNN weights. This is also a clear

indicator of the importance of exploration in the CE representation, as CE-

Random outperformed CE-Greedy in all cases. However, the format of the

exploration matters, as CE-Beam Search performed as well or slightly worse

than the Naive Aggregate baseline. This indicates that the models “nearby”

to the CE-Aggregate approach in the CE representation were all fairly similar.

This could have been addressed with longer beams, but we already identify

the importance of exploration from CE-Random’s performance. Despite this

CE-MCTS outperforms CE-Random in almost all cases, indicating that ex-

ploration alone is insufficient, and that exploiting based on our value function

is beneficial. On average, CE-MCTS outperformed the closest baseline by

0.003 MSE across all individuals and by 0.016 MSE on outliers. While this

may seem like a small amount, its value ranges from 5.19 USD and 186,194.42

USD based on the individual, with a median value of 216.50 USD. Practically,

these improvements are impactful in terms of the amount corresponding to

this margin of enhancement in modelling individuals. Servus Credit Union,

our partner for this task, found these results helpful in terms of how they can

model individuals to reach better financial health.

5.2.2 Statistical Significance Results

We have established that CE-MCTS performs the best in this domain on

average, and that these results were viewed as an improvement by domain

experts. However, this does not tell us if the results are significantly different.

To understand whether CE-MCTS is statistically different from other baseline
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Approach fold 1 fold 2 fold 3 fold 4 fold 5 Average
Naive Aggregate 0.089 ±0.104 0.110 ±0.134 0.081 ±0.096 0.128 ±0.150 0.089 ±0.118 0.089 ±0.111
2nd Task-finetuned 0.137 ±0.180 0.210 ±0.203 0.170 ±0.225 0.268 ±0.247 0.213 ±0.262 0.196 ±0.223
Random 0.088 ±0.104 0.110 ±0.134 0.082 ±0.096 0.132 ±0.152 0.089 ±0.118 0.100 ±0.121

CE-Random 0.089 ±0.103 0.105 ±0.130 0.076 ±0.089 0.128 ±0.150 0.088 ±0.119 0.088 ±0.111
CE-Greedy 0.092 ±0.099 0.146 ±0.170 0.149 ±0.225 0.136 ±0.156 0.167 ±0.251 0.129 ±0.175
CE-Beam Search 0.089 ±0.101 0.113 ±0.138 0.081 ±0.094 0.128 ±0.150 0.090 ±0.117 0.089 ±0.109

CE-MCTS 0.085 ±0.101 0.103 ±0.130 0.081 ±0.095 0.120 ±0.143 0.085 ±0.112 0.085 ±0.107

Table 5.1: Average Mean Square Error (MSE) loss over 5 cross-validation folds
of the financial time series prediction dataset.

Approach fold 1 fold 2 fold 3 fold 4 fold 5 Average
Naive Aggregate 0.231 ±0.259 1.087 ±0.294 1.084 ±0.288 1.115 ±0.354 1.149 ±0.385 0.933 ±0.316
2nd Task-finetuned 0.324 ±0.307 0.476 ±0.244 0.292 ±0.223 0.328 ±0.233 0.439 ±0.213 0.372 ±0.224
Random 0.231 ±0.260 0.170 ±0.188 0.172 ±0.234 0.175 ±0.190 0.203 ±0.194 0.190 ±0.213

CE-Random 0.229 ±0.261 0.160 ±0.179 0.162 ±0.230 0.173 ±0.189 0.198 ±0.194 0.184 ±0.211
CE-Greedy 0.243 ±0.257 0.260 ±0.343 0.223 ±0.327 0.172 ±0.187 0.407 ±0.318 0.261 ±0.286
CE-Beam Search 0.231 ±0.260 0.181 ±0.196 0.167 ±0.231 0.177 ±0.191 0.195 ±0.196 0.190 ±0.215

CE-MCTS 0.209 ±0.241 0.127 ±0.136 0.157 ±0.224 0.161 ±0.174 0.186 ±0.208 0.168 ±0.196

Table 5.2: Average Mean Square Error (MSE) loss over 5 cross-validation folds
over the outliers of the financial time series prediction dataset.

approaches or not, we conducted paired t-tests between the predictions made

by our baselines in comparison with CE-MCTS and between the Mean Square

Error (MSE) observed between CE-MCTS and the other baseline approaches.

Table 5.3 represents the p-values observed for the paired t-test conducted

for the predictions between CE-MCTS and other baseline approaches across

the 5 cross validation folds and the outliers. Table 5.4 represents the p-values

for the paired t-test comparing the MSE between CE-MCTS and our baseline

approaches across the 5 cross validation folds and the outliers.

These results indicate that CE-MCTS leads to models with significantly

different performance compared to everything but CE-Beam Search. More-

over, CE-MCTS leads to significantly better results than the naive baseline ap-

proach, the 2nd task fine-tuned approach, and CE-Greedy on the outliers. This

strengthens the value of exploration over the outliers and demonstrates the dif-

ference encountered with a balanced exploration-exploitation search method.
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CE-MCTS VS fold 1 fold 2 fold 3 fold 4 fold 5 Outliers
Naive Aggregate 0.850 7.475e-26 1.874e-23 2.536e-29 5.695e-42 0.008
2nd Task-finetuned 0.429 0.453 0.344 0.913 0.080 0.008
Random 0.872 0.259 0.851 0.248 0.182 0.0365

CE-Random 0.174 0.765 0.250 0.207 0.069 0.004
CE-Greedy 0.162 6.724e-05 1.256e-10 0.023 0.002 0.454
CE-Beam Search 0.250 0.054 0.512 0.124 0.418 0.481

Table 5.3: Paired T-test p-values comparing the predictions observed across
the 5 cross validation folds and the outliers between CE-MCTS and the dif-
ferent baseline approaches.

CE-MCTS VS fold 1 fold 2 fold 3 fold 4 fold 5 Outliers
Naive Aggregate 0.871 3.502e-06 3.278e-05 8.917e-06 0.0003 1.084e-18
2nd Task-finetuned 0.145 0.002 0.024 0.097 0.317 7.468e-07
Random 0.871 0.791 0.943 0.651 0.852 0.224

CE-Random 0.859 0.934 0.786 0.745 0.868 0.221
CE-Greedy 0.719 0.116 0.031 0.537 0.020 8.728e-07
CE-Beam Search 0.840 0.682 0.988 0.742 0.810 0.553

Table 5.4: Paired T-test p-values compare the MSE observed across the 5 cross
validation folds and the outliers between CE-MCTS and the different baseline
approaches.

5.3 Domain 2: Video Game Designer Mod-

elling

5.3.1 Results

The results for this experiment are presented in Table 5.5. CE-MCTS outper-

forms all three of the baselines, including the original approach used for this

dataset [12]. Notably both of the other baselines outperformed this original

approach as well, which we identify as likely due to pretraining the LSTM

network on the Stock Market dataset prior to training the Naive Aggregate

model, which is otherwise the closest new approach in performance. To put

this in context, CE-MCTS’ performance demonstrated a third of the error of

the original approach, which has already shown an impressive ability to adapt

to individuals [11]. Same trend can be observed from the first domain of CE-

Random performing well, but still outperformed by 0.013 MSE. We do not

recommend directly comparing the results from this domain to the first do-

main, given they are modeling two very different kinds of behaviour. However,

the similar improvement over outlier or outlier-rich datasets of individuals sug-

gests that this approach should extend to similar problems in other domains.
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Approach MSE ±SD
CE-Random Search 0.197 ±0.131
Aggregate 0.500 ±0.246
Guzdial & Riedl [12] 0.596 ±0.483
CE-MCTS 0.184 ±0.130

Table 5.5: Average MSE loss and Standard Deviation (SD) for the video game
design modeling dataset.
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Chapter 6

Conclusion

This chapter sums up the conclusive thoughts on the work presented in this

thesis. In section 6.1, we present the implications of our proposed CE-MCTS

approach. Section 6.2 provides the readers with further discussion on possible

future work using CE-MCTS. Finally, section 6.3 presents the readers with

the closing thoughts for this work.

6.1 Implications

In this work, our focus was on a problem we called ‘model specialization’. This

thesis presents a novel approach called CE-MCTS to model an individual on

an unseen target task based on the behaviour of others on that target task,

and data of that individual on a secondary task. We observed that CE-MCTS

can be utilized to identify relationships between a secondary task and tar-

get task data, which is difficult to achieve with the current existing transfer

learning and search-based approaches. Morevoer, CE-MCTS also proves ben-

eficial in discovering how a secondary task can be indirectly connected to the

target task and can be used to better model individuals. Our approach out-

performs relevant transfer learning baselines for this problem in two domains,

which indicates support for the appropriateness of this approach to this type

of problem.
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6.2 Future Work

While the results are positive, this does not yet represent strong evidence that

CE-MCTS is appropriate in any domain where this problem formulation exists

and might prove useful. In future work, we are interested in exploring how

CE-MCTS will perform in modelling individual human behaviour in differ-

ent domains. In particular, we are interested in modeling individuals in the

medical domain. Our interest is more aligned towards the medical domain

because CE-MCTS can prove beneficial in tackling privacy, security and spe-

cialized care concerns in healthcare. We presented an initial implementation

of CE-MCTS that focused on a relatively simple architecture and relatively

low amounts of computation time. Computation time was kept fixed across

our baselines (except the prior Guzdial and Riedl approach in the second do-

main [12]) for comparison purposes. It is unclear how CE-MCTS will perform

with other hyper-parameter choices. We expect CE-MCTS to discover better

Neural Networks to model individuals if trained for a longer period of time due

to the balanced exploration-exploitation based search in the state space. We

hope to explore this in future work and evaluate the impact of hyperparameter

selection.

6.3 Closing Thoughts

In this thesis, we introduced the model specialization problem, and Concep-

tual Expansion-based Monte Carlo Tree Search (CE-MCTS) as a potential

solution. This approach uses CE to define the search space and MCTS to

search over this space. We evaluated the performance of CE-MCTS in com-

parison to existing transfer learning approaches over two different domains:

financial time series prediction and video game designer modelling. The re-

sults indicate that CE-MCTS is a good solution for model specialization and

outperforms existing transfer learning approaches. These positive results lay

the foundation for exploring how CE-MCTS will perform in modelling individ-

ual human behaviour across different domains. In the future, we look forward
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to evaluating how our proposed approach performs on more general problems.
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