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ABSTRACT

This thesis is concerned with the problems of storage, manipulation and retricval of geographic data.
The objective of this rescarch is o introduce a cognitive map model for the represeniation of spatial data in
geographic information sysiems (GISs). The salient feature of the proposed model is such that it is a result
of the intergration of three arcas: database management systems, artificial intelligence, and statistics, In this
thesis, methods for knowledge representation, data management, uncertainty handling that traditionally
belong to separate areas arc applied in a complementary manner (o enhance the capabilitics of a GIS. This
feature provides the proposed model with significant advancements in GIS technology in three areas: 1) the
model provides a more expressive language for modeling various geographic concepts, including sﬁa'm;
location, place, complex objects, object interrelationships, topological relationships and metric rclaliéﬁi
ships; 2) the model supports the scarching of complex geographic data according to both attribute-based
and location-based criteria in a flexible and effective manner; 3) the model also serves as an imcgrmc{l'

approach to spatial data modeling that effectively handles data crrors.
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Chapter 1

Introduction

1.1 Multipurpose Environmental Database Systems (MEDS): A New Challenge

Effective management of our environment is a daunting task that we face as individuals, in’
government, and as a societ” The inability to regulate our impact on the natural world could ulti-
mately lead to economic and social, and ecological collapsc. There are too many arcas of the
world where our failure to assess the impact of human activities has led 1o visiblc and perhaps
irreparable damage. The horrific ecological problems of the former Soviet Union, the destruction
of the world’s tropical rain forest in Thailand, Indonesia and the Philippines present us with
shocking examples of where we may be heading. In Canada, our western forests arc under-
tremendous development pressures. Tke Eastern cod fishery is at the point of collapsc. How arc

we to deal with these enormous problems?

Environmental and resource issucs cannot be separated from social and political oncs. The
existing infrastructures of our governments 1ypicél1y reflect an institutionalization of past techno- '
logies and problem understanding. Today, departméms and ministrics cxist to deal with forests

and mines, and separate organizations to deal with the protection of the environment.

The arbitrary partitioning of our institutions is not, however, reflected in the extemal world.
Nature is an integrated system. Everything depends in some manner on everything clse. We can-
not attempt to look at water quality without looking at the impact of commercial forestry or agri-
culture or industrial development. Therefore, we must come (o grips with a system that is able to
gather, manage and exploit disparate information resources, and to apply them to decision-

making for natural resource, environmental and economic planning.

Over the past twenty years, two competing trends have developed: an increase in the
requirements of spatial data applications and thc advancement of geographic information system
(GIS) technology. On the one hand, a growing number of federal and international agencies have

been attempted to build very large, integrated geographic information systems to store different



types of spatial data as the basic analytical tool within their respective organizations [Abel92,

Anto87, AM83, Baum88, Chang77, CK81, LM83, NS93, Oren86]. On the other hand, with the

extension of the scope of GIS applications, spatial data has accumulated at an increasing rate. Not

only has this expanded the range of available spatial data in digital format but also has necessi-

tated new requircments for geographic information systems.

The following five aspects which are directly related to a Multipurpose Environmental

Database System (MEDS) are identified:

1)

)

3

@
&)

Voluminous: Spatial data files normally contain very large amounts of data which must be
stored in sccondary storage with aspects in main memory as needed. The World Digital
Databasc for Environment Sciences (WDDES) [Bick88], the European CORINE project
[BM88], and the World Soil and Terrain database (SOTER) [Baug88] are all examples of
MEDSs. Thesc databases normally contain millions of spatial objects compared to the
thousands of objccts commonly processed in current GIS systems.

Multi-typed: The data contains many diverse data types, such as real-valued functicsns,
vector-valued functions, categorical-valued functions, and functions taking gcnerai sym-
bolic values.

Multi-layered: Many layers of different data types, interrelated by complex (implicit) rela-
tionships, must be accommodated. A typical list of coverages might be: administrative base
maps, soils, rainfall, wind velocily,'lcngth of growing season, hydrology, geology, mineral
and petroleum deposits, vegetation cover, land use, terrain, population density, wildlife,

parks and reserves, transportation and waterbody.
Multi-dimensional nature: Spatial data is applicable to a multi-dimensional space.

Uncentain nature: The data in digital format can be incomplete, imprecise and error-prone,

and the number of possible spatial interrclationships is very large.

To meet all these characteristics satisfactorily, a MEDS must be equipped with the follow-

ing features:
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Knowledge representation. The representation must accommodate both spatial and aspatial attri-
butes. In addition, it should be able to capture the uncertainty feature of geographic data, and to '
efficiently support various operations. A systematic method must also be found to encode the

model in terms of a data structure.

Efficient Retrieve: An efficient search scheme must be found that can extract the necessary infor-

mation from the presentation according to both spatial and aspatial criteria.

Reasoning: A specification of the reasoning mechanism that is used to derive implicit relation-
ships recorded in thc knowledge base. “This is the main differentiating characteristics of a
knowledge base system from a database system. Reasoning may be by means of deduction and

abduction techniques.

Assimilation (Learning): Given an accurate representation of some geographic knowledge, and
an accurate geographic fact or description, the representation must be modifiable to include new

facts or descriptions.

1.2 Existing Problems

Current GIS technology suffers from a lack of versatility both for individual systems 0
accommodate a broader range of applications, as well as for the incorporation of differing types
of spatial data from a variety of sources [Abler87, Egen92, Oren86, Pcuq84].

It is appropriate to view the problems of current GIS technology from the point of view of a
data modeling process. The concept of spatial data can be viewed from a number of levels. These
levels progress from reality, through an abstract uscr-oricnted information structure, L0 4
machine-oriented storage structure. There are four realms of intcrest in the philosophy of informa-
tion. These realms are: reality, cognitive model, data model, and structurc model [Davis86,
Peuq84): Reality, the real world, includes all aspects of actual objects that w7 or may not be
perceived by individuals. Cognitive model is a model developed as the resui of a process in

which individuals selectively perceive and mentally construct their conception of the real world
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of living beings, objccts, places, events, and their surrogates. This model is assumed to be partly
subjective since it depends not only on reality, but also on the observer’s perception and
knowledge of the real world. Data model is an abstraction of the cognitive model which incor-
porates only those propertics thought to be relevant to the applications at hand. In general, a data
model has four components [Ullman80]: 1) a data space - a collection of elements and relation-
ships among the clements, 2) a collection of type definition constraints to be imposed on the data
space, 3) a sct of manipulation operators supporting the creation, deletion, and modification of
clements, and 4) a language used to identify and select elements from the database. A data model
forms a physical model rcady for communication via a certain encoding schemes like sounds,
drawings, and text. Structure model is the recording of data in computer code in terms of data

structures and file structures.

The last three views of data correspond to the major steps involved in database design and
implementation. The overall process is one of progressively refining the users’ view of data. At a
high level of abstraction, the data model provides users with a format of data that is easier to .
understand and dcal with, leaving out significant details. Whereas, at a lower level of abstréctioﬁ,‘-

the structure model provides the actual representation of the data.

Historically, geographic information systems and database njanagement systerﬁs were two
separate arcas. On the one hand, current state-of-the-art database technology has been developed
with the primary purpose of supporting business applications. Consequently, the technology
addresses the requirements of hardly any geographic information applications. On the other hand,
throughout the development of GISs, the subject of an efficient structural model has been a cen-
tral topic. While progress has been made in this direction, little attention has been paid to the
development of an adcquate data model [EF89, Eg92]. It has been realized [AM83, Baum88,
Gupta 91, Hass91, MO87, More85] that database management is an essential component of a
GIS. To date, most GIS projects have been focused on combining existing database technology

with GISs.

Geographic information sysiems have relegated database technology to a paradigm of spa-
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tial data processing. The main problem bmught about by the reorientation is the lack of sys-
tematic and accepted data models for spatial feature modcling and processing. Another striking
result of this reoricntation has been an increased interest in the interrclated issucs of geo-data
unceriainty, geometric and attribute error, database consistency and geographic generalization
[Abler87, Abel92, Good92b]. Today, the characteristics of spatial data in a typical MEDS have
presented a challenge to GIS developers in their search for suitable data models. To be success-

ful, a new generation of GIS is expected to emerge.

1.3 Cognitive Map Model for GIS

To respond to this challenge, this thesis develops a novel data model bascd on ihc nolation:
of a cognitive map. | |

In the area of cognitive perception, the terminology "cognitive map" and "cognitive model"
are uscd interchangeably [Hart73, Kuip78]. Cognitive map was originally pmpmsed as a technical
term in neurophysiology, referring to a particular brain simﬁturc (often located in the hippo-
campus). A comparable definition of cognitive map was given by Downs and Stea [DS73], who

attributes related to phenomena in a spatial environment.

With the development of computer technology, the term "cognitive map” has been used in a
more general sense, and the information associated with a cognitive map differs subtly but signifi-
cantly from that of a cagnitive model. For many ycars, a cognitive map has been the subject of ‘
study from many different points of view under the context of artificial intelligence, computer
vision, and geographic information systems [Davis86, MF89, NS93]. In these areas, the term .
"cognitive map" is actually referred to as a physical data model. Nevertheless, as the word "cogni-
tive" implies, the most basic characteristics of a cognitive map is that it is an abstraction of reality
at a level closer to the cognitive model.

The distinct feature of this new model is that it involves integrated techniques from different



-6-

arcas (i.c., Al, DBMS, statistics, ctc.). More importantly, many of the techniques can be applied
in a complementary manner such that the resulting combination would yield a system with data

volume capacitics and data processing capabilitics well beyond those which can be provided by

cxisting GIS approaches.

1.4 Qutline of the Thesis

This thesis is organized in seven chapters. The first chapter provides a general introduction
1o the nature of a cognitive map. The second chapter provides a comprehensive survey on the
currznt state-of-the-art GIS technologies followed by the analysis of shortcomings of the various
systems. Chapter 3 presents a cognitive map model for GIS. This model intended to provide a
unified frarnework for spatial data modelings in GIS. Chapter 4 presents the corresponding query
languages of proposed model. Chapter 5 discusses some issues of database irplementation of the
model, Chapter 6 analyzes the performance of the new model. Chapter 7 summarizes the main
results of the proposed model and discusses problems for future research. left to be done. Finally,
to highlight the underlying concepts of ar cognitive map modcl for GISs, the problem of system

analysis and design of a MEDS will be used as a running example throughout the thesis.



Chapter 2

national levels. The development of geographic information systems can be divided into three

stages: file systems, database systems, and knowledge based geographic information systems.

2.1 File Management for GIS (FMGIS)

Early GISs consisted of a catalog of files, containing cither vector or tesscllated data. Since
the information content of large area geographic maps arc very high and the resulting data files
are extremely voluminous, the use of adequate data structuras is a major concemn in thesc syslefnsi

The Canada Geographic Information System (CGIS) [CM89], which originated in the
1969’s, was the first significant development is GIS for the storage and analysis of resource
related thematic data as well as production of rnaﬁs. The main data division of CGIS is the theme
(coverage) which is designed to cover all of Canada. The data structure for cach theme has two
components: the Image Data Set (IDS) and the Descriptor Data Set (DDS). The former stores spa-

tial information for polygons while the later encodes attribute data for each polygon. The IDS

frames are constructed by hierarchically combining groups of four smaller frames in a manner
similar to quadtrees. Morcover, within each IDS frame, a vector structure is used to encode cnti-
ties such as polygons, chains, and points. Therefore, the IDS is a hybrid model of vector and ras-
ter structures. On the other hand, attribute data for polygons, including thematic attribute, arca
and centroid, and a list of the IDS frames which it intersects, is stored scparately in the DDS. The
DDS, however, is ordered by polygon number which implies that CGIS requires an exhaustive
search for attribute-based information.

Another typical example in this category is referred to in [Cook78], where Cook described a

GIS closely resembling CGIS. The main concept of Cook’s structure is a quadtree. To be specific,
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Cook's structure uses fixed capacity tiles, called buckets. Bucket overflow is handled by subdivi-
sion similar to a quadtree. A significant difference between Cook’s system and CGIS is that the
former efficiently supports the merge of multiple themes within one structure whereas (CGIS uses

one stiucture per theme.

2.2 Database Management for GIS (DBMGIS)

In DBMGISs, vector and/or raster primitives of the spatial data domain are represented by
databasc records (network), segments (hierarchical) or tuples (relational). Additional operators
(i.c., not usually found in querying languages) are added to provide basic spatial capabilities such
as computation of distance [AM83, LM&3].

ARC/INFO is a product by the Environmental Systems Research Institute (ESRI) [AM83].
Like CGIS, both raster and vector structures exist in ARC/INFO. However, in ARC/INFO,
thematic data is stored in the form of feature attribute tables and managed by a relational database
management system. ARC/INFO provides management software called LIBRARIAN which can
be used to organize spatial data, by both attributes and locations, into a map library. Attribute
information associated with spatial data may be extracted, using the Selection operation, i.e,
specifying the attribute, whereas the Thematic overlap, the merge of coverages, is achieved by
means of the Join operation. LIBRARIAN uses a collection of tiles to partition the area of
interest. Tiles may be of any shape. A spatial index, called the index coverage, is maintained for
access to the tile structure. The Windowing operation is performed by defining a window as a
polygon in selection coverage. LIBRARIAN facilitates windowing on a collection of tiles in
which the window may span one or more tiles.

Many query languages for classical models have been developed. There are two broad
classes of query languages: 1) algebraic languages, such as Information System Base Language
(ISBL) [Ullm80], and 2) predicate calculus languages, e.g., SQUARE and SQL for the system R
DBMS, QUEL for INGRES, and Query-by-Example (QBE) [Motro90]. The calculus is favoured
for user specification for queries since the user merely specifies the criteria the query result must

satisfy. An algebraic expression is the opposite in that it specifies how the result is obtained by



identifying an ordering of data manipulation operations.

There are many other GISs [Baum88, Bick88, Bun87, CK81] that use the traditional data-
base model as their implementation paradigm. The differences between them depend on scveral
factors such: as how the structure model is implemented in terms of vector and/or raster data, the
choice of file scheme such as a B-tree or hashing to store data items, and the way in which spatial

operations are associated with the underlying structure modcls.

1t is well known [Alba90, Ban88, LM83, WH87] that classical database management sys-
tems have some difficulty supporting nontraditional applications such as enginecring applications
for CAD/CAM data, geographical data, and images. Thus, computer scientists have been dcvelrc:p=

ing several new models.

In one direction, research on the extension of traditional data models to accommodalc com-
plex objects has occurred. The simplest extension, such as reported in {Bun87], constructs a sct of
pre-defined spatial operators in the relational DBMS. For instance, a QBE-like language can be
employed to handle nonspatial parts of queries while a sct of built-in spatial operators handles _'lhc.
spatial aspects. A more general approach provides a DBMS that can bc customized by the addi-
tion of abstract data types (ADT). INGRES [Ghosh88] has also been extended to allow the addi-
tion of ADTs. In addition, support for a new access method is provided in AgriDB [Gadia93],
Ariel [Haas91], and Pardes [Etz93]. Finally, relational extensions of the standard relational
model, such as RT/M and the nested model, try to strike a balancc between generalizing data

modeling and the data manipulation parts of the relational model.

Many extended SQLs with various features have been reported in the literature: CQL++
[Jaga93] is an SQL-like language designed to define, access and manipulaic a C++ based
extended relational database system; Cymbal [Greer92] is a multi-paradigm language which is
able to synthesize procedural commands with the declarative constructs of symbolic logic, set
theory, and SQL; ParaSQL [Gadia93] is also an SQL like query language for parametric data, of
which spatial, temporal, spatio-temporal, belief and ordinary data are special cases. For other

languages in this class refer to [Gupta 91, Lam91].
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Despite continuous efforts to improve the SQL standard (ANSI 1991), and numerous
attempts to extend SQL [Egen92, Gadia93], assumptions that limit generality are hard-wired into
traditional DBMSs. As the result, the SQL-based languages are less than adequate in dealing with
complex objects. First, since these languages rely on somewhat artificial joins to decompose one
request into a number of lower-level ones, and re-link the tuples in the application program data
space, considerable data transformation and data construction/decomposition must occur in data
transfers involving the underlying DBMS. This causes the so called "impedance mismatch" prob-
lem [Ban88, Kifer89, Loric91]. Secondly, the ADT approach described above gives little support
to users that nced to manipulate spatial objects with ease (i.e., finding spatial relationships of
objects of a plane, creating a new class of objects from existing objects based on a combination of
their spatial and nonspatial properties [Oren86]). Finally, the SQL-based query facilities lack the
ability to take a more active role in deducing relationships rather than being just a passive reposi-
tory of data [Egen92]. Although classical query languages can be extended to incorporate more
real world knowledge, the main weakness is the reliance on a given conceptual schema and the
largely ignored. For example, an answer to a query about a label on a map may be "This is the
mileage along Highway #1 from Edmonton to Calgary", and the query " What are possible soil
classifications?" refers to the domain of an attribute, soil type. These queries belong to a class of
queries called meta-data queries. Another important kind of query is called a knowledge query.
Knowledge queries refer to queries that explain the reasoning process that underlies a particular

query language. Spatial relationships are typically derived from representation in a spatial data

instance, the adjacency between two parcels may be defined such that they share at least one com-
mon boundary, but have no common interior. Users may want to know "Why were the two

objects identified as neighbors?". Such knowledge queries are of particular interest when users
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A number of knowledge based medels have also been described in the literature. These can
be divided into three categories: 1) Prolog-like deductive models, 2) objcct-oriented models, and

3) approximate models. All these models carry out some clements of the cognitive map.

2.3.1 Prolog-like Deductive Models

The systems in this category are all variations bascd on the same theme of coupling logic
programming languages with traditional database management systems. In such designs, ic}gic is
used to obtain a proper foundation for modeling database semantics, and factual data is stored as a
database and maintained by a DBMS. Logic programming languages serve as an interface
between users and the database. Knowledge about the database schema is represented asii a set of
clauses. Rules used in a query, but not defined in Prolog, will be retricved from the database
automatically. Among others, some of the impﬁnam logic based models arc Dm;ﬂt}g. LDM, L.DL
[KW89], and Prolog-INGRES [Ghosh88]. Deductive database models have gained acceptance in
GIS applications. The following shows some GIS projects in this category.

ORBI [Pere82] is an example of a early knowledge based geographic information system. It
was developed to keep track of environmental resources of Portugal. ORBI consists of fc;ur
modules: 1) a natural language parser for Portuguese, 2) a menu handler for fixed-format input, 3)
a deduction facility that uscs Prolog for geographic reasoning, and 4) an expl‘énaticm facility that
explains what is in the database, the kind of deductions that are possible, and what kinds of voca-
bulary and syntax may be used.

LOBSTER [Frank84], likc ORBI, is bascd on a logic programming paradigmi It serves as
an intelligent user interface to a spatial database system, using a nctwork model. LOBSTER
demonstrates the significant impact on the flexibilitics gained by using a Prolog-like language in
building the user interface.

Wang shows [Wang90] that much geographical data can be generalized and formalized into



logic or statistical theory to explicitly represent and manipulate spatial uncertainty. Key work in
this category has been carried out by D. McDermott [McD78], E. Davis [Davis86], and Good-
child [Good92].

D. McDermott and E. Davis developed the SPAM [McD78] program as a autonomous

module of an arbitrary geographic reasoning system. The system consists of three modules: an .

retricver, which answers user queries about s;w:mﬁc objects using the information in the cognitive
map; and an objcct retriever, which enumerates all objects with specified properties.

object coordinate reference systém for positional representation. For this purpose, each object is
associated with a frame of reference by three parameters: origin, scale, and orientation. Further-
more, a pair of frame references is related by three relations: the coordinates in one frame of refer-
ence for the origin of another framt:; the difference between the coordinates of the two frames;
and the ratio between the scales of the two frames. Secondly, shapes in SPAM are described in
terms of hierarchics of "circyls". Circyls are characterized by length, cylinder radius, and endcap
radii. This provides a whole spectrum of object approximation from coarse to fine. Finally, fuzzy
ranges are uscd to capture the uncertainty in the model. Figure 2.1 shows a ,i‘nap that records the
following facts: "the coordinates of the origin of object A in the reference frame of B lie in [2.5,
3.5], [1.0, 2.5]"; "the orientation of A is between 302 and 60° counterclockwise from the orienta-

tion of B"; and the scale of the reference frame of A is between 0.5 and 1.0 times that of B".
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Figure 2.1 Relationship between Two Object Coordinates in SPAM

Figure 2.2 shows a hicrarchical representation of a human arm.
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results in new and tighter bounds on one or more of the fuzzy ranges, as the ncw information
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arrives. If fuzzy restriction fails, then the system must restructure new frames of reference using
remapping.

E. Davis developed MERCATOR as an extension of SPAM [Davis86]. In comparison with
SPAM, MERCATOR’s representation is more expressive, more flexible, and richer in semantics.
For example, instead of using a raster structure as in SPAM, MERCATOR adopts a vector model
in its implementation. Consequently, almost all geographic reasonings involve object boundaries
rather than their interiors. Boundaries are much easier to deal with and reasoning about boun-
darics proves to be adequate for a large number of inferences in cognitive maps [Davis86]. Furth-
ermore, using a vector structure model, MERCATOR is able to give formal semantics of objects

uncertainty of shape, sec Figure 2.3,

[ /!

b) Shape Variation Allowed by Fuzzy Mcasurements

a) Shape Variation Allowed by Grain-size
Figure 2.3 Fuzzy Range and Grain Size for Shape Modeling



-15 -

On the other hand, SPAM has a number of good featurcs which were not included in MER-

CATOR such as the use of a frame of reference in objcct representation, the ability to rcorganize

the cognitive map in order to group objects found to be physically close, and to infer and answer

queries for an arbitrary domain.

Numerous methods for uncertainty reduction and absorption have been developed, however,

a systematic survey in this arca is beyond the scope of this thesis.

233

lows:

Object-oriented Models

The salient features of an object-oricnted modcl [Ban88, Jaga93] can be summarized as fol-

The notion of complex objects: Spatial data in a MEDS is characlcrizcd by the complexity
of the objects or entities that are modeled. A simple cxample to illustrate this point is to
consider an application in the cartographic domain where entities such as dislriclé, towns,
roads, and buildings are modeled. A town is a highly structured objcct that may consist of
networks of roads and railways represented as lincar fcalurcs. and parks and buildings

represented as areal features.

Encapsulation: Encapsulation is the clear separation between the external behavioral seman-
tics of objects and the internal implementation. This black box specification is defined in
terms of the behavior of the operations. An operation is performed by a method. A GIS that
incorporates encapsulation provides flexibility in replacing existing methods with advanced
methods - as long as the external interface remains the same, any code should continuc to

work.

Polymorphism: This refers to the ability to adapt the same method to objects from different
classes. Take a domain of composite objects for cxample - a water-body which has com-
ponent objects such as: lake, river, channel, reservoir, and so forth. It is necessary to be able
to search spatially for many different types of objects based on location. The query "find the

polluted water body closest to a specific sitc” requires that the computation of spatial dis-
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tance between a location (the site) to different object classes (i.e., curves and polygons).

Both use the every same method.

o Identity: An object identity provides a way of denoting the object independently of its
behavior or state. |

e  Type: Typing defines the protocol of a group of similar objects which are instances of type.
It also provides means of defining semantic integrity constraints for a database.

e Inheritance: Objects are grouped into classes and objects of the same class have common
modecling tool enabling capture of relationships between objects and factoring out shared
specifications and implementations in applications.

There are many object-oriented systems in GISs include TIGRIS [Marx86], PROBE
[MO87], GemStone [Cam90], and KBGIS [SP84). Among others, of particular interest, - the
Knowledge Based Geographic Information System (KBGIS) will be reviewed.

KBGIS [SP84] is a prototype system designed to answer queries about spatial objects stored
in implicit form in large multilayered spatial databases. KBGIS is based upon a pair of hierarchi-
cal data structures, one spatially-oriented and the other object-oriented. First of all, data is érgan*
separate quadtree, and all quadtrees are spatially registed. Secondly, a taxonomy of data objects is
recorded by an and-or tree structure.

The names and properties of classes of data objects are stored at each node in the and-or

indicates "and" relations. For example, "eroding orchard” in Figure 2.4 is composed of the com-
bined sct of "orchard" and "slope". The father-son links without a cross-link bar, as shown graphi-
cally in Figure 2.4, are "or" relations. This indicates, for Exaﬁlple, that either a mature or an

immature orchard can be classed in a more general sense as an "orchard".
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Figure 2.4 A Sample Object Tree
Although KBGIS is an early object-oriented GIS, it includes the most salient features of the
object-oriented paradigm. More importantly, to improve the performance of various spatial
queries, the system features some spatially-oriented components. For this reason, a large research
project based on KBGIS is currently under development at the National Science and Space Centre

in the United States [Cam90].

2.3.4 Problems with KBGIS
It is widely recognized [Allen90, Egen88, Frank91, Gadia93] that the current state-of-the-art
KBGIS technology exhibits a number of deficiencies in handling spatial data. The underlying

cause of these current shortcomings is that current systems do not lend themselves conveniently
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deductive database schemes and approximate schemes normally use a flat data model and do not
support the notion of complex object and data abstraction. On the other hand, despite many
appealing advantages, an object-oriented paradigm is not, however, without limitations. The fol-

lowing problems are identified.

Object Orientation Vs. Spatial Orientation

In reality, geographic objects are complex phenomena which typically contain both spatial
into smaller ones, using two very common and useful properties of objects. Both of these proper-
ties concern relationships between objects: ISA relationship (£,) - the relationship between
objects in a hierarchical taxonomy. For example, "dog ISA pet, pet ISA animal, animal ISA
livingthing, etc.”. ISPART relationship (£;) - the relationship between objects that are made up of
a set of components, each of which is made up of a set of components, and so forth. For example,
"Canada ISPART Earth, Alberta ISPART Canada, Edmonton ISPART Alberta, elc.”.

In essence, a spatial database must provide a method of accessing data based on geographi-
cal location. The spatial access method is somewhat distinct, as it permits operations to be

defined that are not included in standard object-oriented systems. For example, it is possible to

polygon, an operation that is not defined in standard object-oriented systems. A spatially-oriented
systcm must also address the issues of spatial dependence, the propensity for nearby locations to
influence cach other and to posses similar attributes, Spatial dependence calls for better methods
for dealing with the world as a set of overlapping continua, instead of forcing the world into the
mold of rigidly bounded objects.

Therefore, the whole issue is not just a matter of introducing two different kinds of "inheri-
tance" links to the model (£, and <,). In a sense the problem lies much deeper. In order to
achicve both inferential and acquisitional efficiencies, a GIS must provide support for both

object-oriented and spatially-oriented views of an object and still retain the vital fact that they are
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all representations of the same object.

Data Abstraction
Data abstraction has two aspects: attribute generalization and geometric generalization, In
object-oriented paradigms, the issuc of geometric generalization is largely ignored. To under-

stand the problem, look at a typical topographic map and a gencralized version, sce Figure 2.5.
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(a) A Topographic Map

Figure 2.5 An Examplc of Geometric Genceralization

All kinds of transformations have taken place. Rail and main roads have been widened,
streets and smaller roads have been climinated; individual featurcs have been disappeared or have
been regrouped into geometric square sided symbot simulatingr built up arcas, a few lkandmarksr
are retained and are highly symbolized; some sclected land use areas are circumscribed by
polygons and enhanced whereas others arc simply-dcnolcd by a graphical symbol, ctc. Most strik-
ing is the change in ratio between open space and space utilized by humans through roads and
built up areas. Open space shrinks, whereas, human space increases significantly, due to the con-
siderable exaggeration of graphic representation of roads, farms and settlements.

Geometric generalization is a key aspect of the mapping process, cartographic generaliza-
tion. Without such a tool, a model can present a scrious bottleneck in query processings since spa-

tial search must be performed at low description levels.
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The Use of Statistics

Statistic modeling is one of the most important components of geographical science. In
common usage statistics often means ‘facts and figures’. For example, health statistics or educa-
tion statistics refers to a branch of applied mathematics concemed with the interpretation of
numerical information. As far as professional geographers are concemed, the following three

types of functions are essential [Good92. NS93]: Description - Descriptive statistics provides

quency, to summarize and measure large sets of data. Inference - most geographic information
systems have to deal with data obtained from samples, rather than with all the data about a partic-
ular situation. Inferential statistics enable the system, within certain strictly defined limits, to
make statcments about characteristics of a population based only on data t:qllegied from a sample
Significance - refers to a set of tests (i.e., the VKGIFﬂDgDTGVESmimGV test, studenﬁ’s T test, etc;)
that decides whether an observed difference or relationship between two sets of sramgletd;ata' 15 ‘
significant,

GISs must come to terms with the ‘information explosion’. The amount of information
available, particularly numerical data, is accelerating [Baum88, Frank91]. If a user is to make use
of this mass of information ways are needed to summarize information to get a concise measure
of their characteristics. Both descriptive statistics and object-oriented formalism can help to fulfill
this aim. The question is how these two components can be combined to yield a class of power-
ful, easy-to-use, and efficient data aggregation features.

Another discrepancy of object-oriented models is that they miss a mechanism for uncer-
tainty handling that is a necessary mechanism for geographic data modeling applications. As a
result, the knowledge about representation of uncertainty information, methods for combining
uncertainty information, and the drawing of inference using uncertainty information is often
embedded in the application program. This is analogous to the "impedance mismatch" problem in

conventional database systems.
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Chapter 3
From Object-oriented Model to Cognitive Map Model

gence and statistics be combined in a coherent, consistent fashion for spatial data modeling. It is
the aim of this thesis to develop the framework which simultancously addresses all these arcas by
employing a highly flexible and robust model for spatial data representation.

In this chapter, a new model for GIS is developed. Section 3.1 introduces some basic com-
ponents of the new model. Section 3.2 introduces a four level semantic hierarchy for complex
geographic data modeling. Sections 3.3 and 3.4 define some data dependency rclationships and

database schema of the new model. Finally, Scction 3.5 summarizes the results.

3.1 System Analysis and Design for MEDSs

We begin by defining what is meant by spatial data in general and then describe the type of
data that this thesis focuses on: thematic data. Spatial data can be defined as any data concerning
phenomena spatially distributed in one or more dimensions [F’equé‘l]. This is a large class of data
and is often referred to as pictorial data (e.g., [CK81]). This thesis is concemed with spatial data
pertaining to the surface of the Earth which is commonly represented by two-dimensional models
known as thematic data.
Location data includes points, curves, and regions. A point is defined as a cccrdinalé: a curve is
defined as a sequence of points, and a region is defined as a polygon with finite number of holes.

Attribute data, on the other hand, is the non-positional, descriptive information aséccialed
with location data on thematic maps. In a MEDS domain, location data and attributc data ar’é Lyp-
ically interrelated by complex (implicit) relations (i.c., an entity can have scveral attributes associ-
ated with it and vice versa). Nevertheless, the simplest correspondences between location data and
attribute data are one-to-one relationships. Among others, but of particular interest, the term

thematic coverage is used to describe some qualitative or quantitative phcnomenon (theme)
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across an area of interest. Generally, thematic coverage partitions an area of interest into a collec-
tion of regions with each region corresponding to an attribute value.

Thematic coverage must deal with positional issues and attribute issues at the same time.
Therefore, an important consideration is which component takes logical precedence: the spatial or
the attribute. In the first case, the positional description of the domain objects precedes any attri-
butes assigned. The resulting map is called a sociceconomic coverage. Examples of
socioeconomic coverage include administrative base maps and census division coverages. In the
second case, some system classification logically precedes the map. The map results from assign-
ing each portion of an arca into a class. The resulting map is called a categorical coverage. Exam-

In the following, the issues of thematic data representation and manipulation under the con-
text of a MEDB will be addressed. For this purpose, the system analysis process is divided into
four levels. These levels progress from a simple thematic feature to a whole host of complex spa-
tial objects and spatial relations. At each level, the corresponding semanﬁcs for thematic data

representation and manipulation will be developed.

3.1.1 Primitive Thematic Data Representations and Manipulations

Onc important model, called the raster data model, for thematic data representation is based
on the idea of subdivision or tessellation of the plane into cells. Each cell in a tessellation
represents and defines a region that can be differentiated from an adjacent region (i.e., each cell
identifies a location on the plane). A common term for the smallest cell of a tesseuatian is pixel.

The term quadtree has come to mean a class of nested tessellation models whose common
property is that they are based on the principle of recursive decomposition of space [Samet90].
Quadtree structures arc differentiated on the basis of the type of data represented and on the prin-
ciple guiding the decomposition process. Quadtrees have been proposed for the representation of
point, curve and region data. The most studied quadtree approach to region representation is the

region quadtree, which is based on the successive decomposition of the image space into four
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quadrants of equal size. Quadrant subdivision continues until homogencous subquadrants are
obtained. In the case of a binary image, all the leaf nodes are either BLACK or WHITE and all

interior nodes are said to be GRAY. An example of a region quadtree is found in Flgure 3.1.

(a) A Region (b) the Quadtree Representation of (a)
Figure 3.1 An Example of Quadtree Region Representation

Other raster data structurcs include Field trees [Frank90], Run Length Encoding [Van88],
Cell Methods [Samet90a] and Grid Files [DH86, See91]. The primary differences among struc-
tures are the shape of the cell used, whether the tessellation is regular or irregular, whether the
tessellation is flat or nested, and whether the structure is organized in main memory or in external
memory.

Data manipulations at the primitive level can be divided into two categories: location based
queries and attribute based queries. Examples of location based queries include sci operations,
thematic overlay and windowing. In Figure 3.2, these operations are illustrated using the thematic
coverages c/ (given in Figure 3.2.a), ¢2 (given in Figure 3.2.b), and the window w. Figures
ing A from c1 and C from ¢2, Figure 3.2.g shows the results of the thematic overlay between ¢
and c¢2, and Figure 3.2.h depicts the results of extracting the window w from the thematic cover-

agecl.
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(a) Coverage cl (b) Coverage c2 (c) Window w
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(g) Overlay(cl,c2) (h) Windowing(w,cl)
Figure 3.2 Examples of Location Based Operations

Attribute-based operations are characterized by a search for specific attribute values within a

It turns out that raster data structures are well-suited to location based operations, as well as
for determining various other region properties [DX86, Maff87, Samet90]. To facilitate attribute
based operations, it is necessary to store attribute values as well. The first method associates attri-
bute valucs with every cell. For instance, to represent different attribute values of a region, the
leaf nodes of a quadtree contain more than two colors. The problem with this approach is that
cells of the structure are not clustered according to attribute values. As the result, the whole struc-
ture is just a miscellaneous collection of the primitives from the objects in the study area
[Maff87,Zhou88]. Therefore, brute force searches are unavoidable.

Onc way to overcome this problem is to list, for each attribute value, all of the cells of that



value. This method constitutes an inverted list of the structure. In this way, cclls can be sorted and
clustered according to attribute values. At first glance, this method appears to be an obvious
improvement over the first method. However, one cannot achieve such an improvement without
giving up something: the inverted list consumes considerable storage since all locations must be
explicitly recorded. For this reason, the inverted list method is not used in practice.

To save additional storage space, a common method is to store object boundaries rather than
their interiors. This method leads to a class of data structures called vector data structures. The
distinct feature to all vector data structures is the representation of points by 2-d coordinates.
Curves are represented by sequences of points and regions are constructed by considering closed
sequences of points. This class of data structures are very compact in terms nf storage. The disad-
vantage is the difficulty of performing location-based cipcraﬁi:ms such as intersection and union
for regions [DX86, Maff87, Van88]. V

The tradeoffs between raster structures and vector structurcs haxe long been the motivating
force for the development of data structures that attempt to capitalize on the advantages of cach
model while minimizing the disadvantages.

The third model is a hybrid of the location-based and attribute-based model [VC88, CV90].

A hybrid model consists of a tessellation structure which subdivides a vector encoded thematic

as an index to the vector data within each cell. A very important characteristic of the hybrid
model is the resolution threshold that governs the quadirce decomposition. The type of threshold
and its particular value determine several parameters describing the resulting data structure. Thesc
vector component (i.e., the amount of data in each tile). These paramcters directly affect the effi-
ciency of the hybrid model for pérfcjﬂniﬁg location-based and attribute-based ‘Qperalions, The
strength of the hybrid model is that it permits the classification of almost all existing spatial data
structures. Limiting cases of the hybrid model correspond to tesscllation and vector models: At

one extreme, the decomposition yields a single node in the tessellation component. This
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represents a single tile that covers the entire area of interest and the hybrid structure is basically a
vector representation. At the other extreme, by selecting the maximum resolution of a tessgliatjcan
as the pixel level, the decomposition results in a tessellation model. Intermediate formulations of
the hybrid model yicld most of the spgciﬁc hybrid data structures developed in the literaturgi
Cabay and Vanzella [CV90] compared the costs associated with vector and raster organizations
for performing some common operations on spatial data scts, with particular emphasis on very
large thematic data scts. Their results indicate that realizations of certain intermediate formula-
tions can provide superior practical alternative for xepresénting large thematic data sets. The
choice of data structures is, therefore, highly domain dependent.

Davis [Davis84] surveys a number of data formats for raster and vector data. He makes the
important pragmatic peint that spatial data should be stored in a format which closely resembles
its source format. This is important for two reasons. Conversion between raster and vector can

reduce the accuracy of the data. Furthermore, organizations maintaining spatial data may not war;t.
1o convert their data. The second situation suggests that, for practical considerations, the question
of raster versus vector is not always an issue; that 15 there is often no choice about the representa-
tion type. It should be noted that in a MEDS environment, data in question are likely to be col-
lected and maintained in a variety of different organizations. Wildlife population data, for exam-
ple, may be maintained by an environmental protection department or agency, while transporta-
tion permits arc more likely handled through the resource regulatory agency. Integration of vari-
ous data formats needs to go beyond simply providing access to different data types. It will
require a complete new look at the user interface, not only in terms of visualization and presenta-
tion but, more importantly, in terms of how user queries are integrated with cc:mputaﬁc:m

To achicve this objective, the principle of information hiding [Ban88] must be practicéd!
The principle of information hiding declares that information not necessary for the user to know

may be hidden from their view. For example, to develop a effective forest managemem applica-
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desirable an application be able to allow for the interaction c:‘l' différem datz; that arc partly based
on common, shared information, and partly on private information, without having to know how
primitive data are represented and handled intenally.

From a system design point of view, information hiding means that the internal data struc-

tures together with the details of procedures to be concealed in a separate module.

3.1.2 Thematic Data Error Representations and Manipulations

Research on error in GIS has two objectives, both of substantial practical significance: first,

putc measures of uncertainty. The first is needed to maintain data consistency in domains where
things are clouded by artifacts, and the second is needed o improve data accuracy through assimi-
lation. Needless to say the sccond approach is a desirable feature of MEDSs.

Thematic data crror can be divided into two classes: geometric errors and autribute errors.
Geometric errors arc characterized by accuracics in point coordinates. Attribute eArmrs. however,

tainties (i.e., an unknown distribution of a multivariate variablc).

In practice, discrepancics between the data model and ground truth may occur in various
forms. Examples include feature misclassification, dangling edges, scll‘scmss:zing camoﬁrs. clc.
The most common form of error in overlaid maps is called a "sliver”. Sliver polygons result
when two independent distortions of the same polygon B@undary arc overlaid, and in large data-
bases the number of spurious polygons so created can casily overwhelm the system [Good92b). It
is common in many systems to include code to remove slivers after overlay, using rules baserj on

area and perhaps shape. However, such algorithms have no sound basis in thematic data handling.

In the following, the issues of thematic data error handlings will be addressed.

3.1.2.1 Geometric Error Representation and Manipulation
Distortion in lines has been described through the concept of an epsilon band by Perkal

[Perk56, Blak84, Chris87]; in its simplest version the true position of the line is believed to lic



within a band of width epsilon about the observed line.

polygons and real polygons in topological overlay algorithms. Chrisman found that the digitiza-
tion process tends to produce a bimodal distribution. This suggests that more suitable model
would be some continuous distribution with asymptotic tails centred on the true line. Such a

model, however, is of little use in handling errors from multiple sources.

3.1.2.1.1 Semantic Cénstraints for Geometric Error Handling

The major discrepancy of the traditional epsilon band approach is that the semantic con-
straints of the data are not utilized for error handlings. In general, there are two kinds of semantic
constraints: metric constraints and topological constraints.

Metric constraints refer to constraints on the measurements of locations. For example, the
position of one object with respect to the position of another object can be expressed in terms of
the relative coordinate from one point to another point. Moreover, the orientation of one object
with respect another object can be expressed in terms of the interscction angle between two edgés.
Since the underlying assumption of the data model is an imperfect world, lengths and Qﬁentatians
cannot be specified preciscly. There is no alternative but to use ranges if the system is to tolerate
inaccuracy. The correct solution is to express lengths and orientations in relative terms and to
specify ranges in which they lie. For instance, the length of edge(A,B) is between 25.0 and 24.6;
its oricntation is between -0.5 to 1.2 degrees, etc. In general, the more constraints expressed in
relative terms, the more shape information about objects is derivable. For example, instead of say-
ing "the length of edge(A,B) is between 25.0 and 24.6 and the dirécticn from A to B is between
-0.5 to 1.2 in the absolute scale”, onc may wish to cxpress local constraints in terms like
"edge(A,B) is between 1.2 and 1.3 times as long as edge(C,D) and the direction from A to B is
between 0.5 1o 0.6 counter-clockwise of the direction from C to D". Using such facts, it is possi-
ble to conclude that ABCD is a rectangle.

Topological constraints, on the other hand, represent relations among objects such as con-
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nectivities, containments, adjacencies, etc. The distinct feature of these constraints is that they are
invariant under topological transfonmations, such as translation, scaling, and rotation.

From the theoretic point of view, both metric constraints and topological cdﬁstminls are
redundant and could be derived from the geometries. Their inclusion in the gcographical model w
nevertheless necessary for the purpose of integrity. For cxample, explicitly capturing adjacency

relationships in the model compensates for inaccuracies in the coordinate representation,

3.1.2.1.2 Geometric Error Reduction

Geometric error reduction refers to the ability to improve spatial data represcntation using
constraints. Geometric error reduction is a comerstonc for intcgration and assimilation since it

would obviate the inconsistencies associated with the data causcd by inaccuracy.

Definition 3.1.1: Let C be a constraint on objects X ,...,X, and let S; be the fuzzy range for X ;.
Then geometric error reduction can be defined by:

Refine(C, X;) = {aj € Sj|13a; Si, i=1,. ki#j,Cay,...,a}....ap).

Example 3.1: Consider two locations X1 and X2 in a one dimensionalstructure, let the domain
of X1 and X2 be {0,7] (e.g., S1) and [0,14] (c.g., S2), rcspéc;ivcly. The following three metric
constraints arc assumed:

C1: the distance between the origin and X2 is actually zero to scven fect;

C2: X1 is at least two fcet from the origin;

C3. X2 is at least two feet from X1.

The following illustrates the resuits of geometric reduction process: The computation of
Refine(C1, X2) yields S2=[0,7], the computation of Refinc(C2, X1) yiclds S1=[2,7], the compu-

tation of Refine(C3, X2) yields S2=[4,7], and the computation of Refine(C3, X1) yiclds S1=[2,5].

In reality, many geometric error reductions requirc both topological constraints and metric

constraints. The following example depicts such a situation:



Example 3.2: Assume the following constraints are adopted in the previous example:

1: X1 coincides with X2 (i.c., a topological constraint);

P

C2: X1 is at most seven feet apart from the origin (i.e., a metric constraint).
‘The first constraint implies that S1 must be the same as S2; whereas, the sreccmd constraint
concludes that the relation $1=82=[0,7] must be true.

The above examples give us three important implications: First, topological constraints can

define point coincidence, spatial object inclusion relations on the base of fuzzy range). Lastly,

both topological constraints and metric constraints are necessary.

3.1.2.2 Attribute Error Representation and Manipulation
As mentioned previously, attribute errors include measurement errors and distribution
uncertaintics. Since measurement errors can be treated using methods similar to the epsilon band

approach [Christ82], it is important.to focus on distribution uncertainties.

3.1.2.2.1 Attribute Uncertainty Representation

the above data types. Although evidence theory has a number of attractive features (i.e., ignorance
representation, subset deduction, etc), it suffers from inefficiency in terms of both computational
statistics and tests of significance involve the calculation of statistics, either directly or indirectly

(i.c., a posteriori probability). For this reason, the later formalism will be adopted: -

Definition 3.1.2: Given an object O, then the property of the object, P<0 >, is a 5-tuple

(A,,A,,dom,,T,,p,) whichis defined recursively as follows:

. A, = [ay,...as), wherea; e A, i = 1,..,n,is a set of attributes;

e A, =1{Dj ..,D; }isanon-cmpty set of scts of domains;
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° dom,: A, — A, is a function that associates a domain with each attribute;

. T, = aex{i dom,(a) is a set of tuples;

e p,: T, — [0,1]isthe statistical function associated with T, (i.c., 3, p,(t) = 1).
teT,

For example, data input from a forest inventory often consist of classificd stands of timber,
defined by polygonal boundaries and homogeneous attributes. Unfortunately, the assumption that
the homogencous patch with a precise boundary is almost always an ébstracticn of rcality. To
compute an estimate of marketable timber, the attributes and arca of the stand will be input to a
set of yield tables. Several methods of classification, such as discriminant analysis, arc capable of
yielding membership probability vectors for each portion of a region, {p ;1 .pi2,....p ,',,,_}. where p;

denotes the probability that ccll i is a member of class j given its spectral responsc.

3.1.2.2.2 Attribute Error Measurements

An important concept associated with objects is that of information. By using Shannon’s

information theory [KL86], it is possible to establish a number of propertics of a databasc.

Definition 3.1.3 Given an objcct O, then the entropy H(Q) of O is defined by
H(0) = = 3, po(t)logp,(0).
te T,
In GISs, features such as moist forest, wet forest and rain forest are not mutually exclusive,
and they are likely highly dependent on attributes such as precipitation and mean temperature. To
capture these type of dependencies, the following dcfinitions were originally proposed by Shan-

non [KL.86]:

Definition 3.1.4: Given X, Y < A,, then the entropy of X U Y is defined as

HXuY)=- Y pxy)logp(x,y)
xeX,yeY

where p(x,y) is the joint statistics of x and y.
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Definition 3.1.5: Given X, Y < A,, then the entropy of Y, given X, is defined as

HYIX) = - % p(xy)logp(y/x),
xeX,yeY

Cavallo and Klir [CK89] show that entropy and conditional entropy are related by
H(X U Y) = HX) + HYIX) = H(Y) + HXIY).
Clearly, the entropy method can be used to measure the distribution uncertainties associated
with objects and their relations. Furthermore, a well-known technique called the standard devia-

tion [KL86] could be adopted to describe the measurement errors.

3.1.2.2.3 Attribute Error Manipulations
This section establishes a foundation of a novel spatial statistic approach for geographic

data handling. The following three important statistic operators will be introduced.

Projection Operator
A projection operator can be used to derive distributions from a multivariatc variable. The

formal definition of this operator is as follows:

Definition 3.1.6: Given an object O, and X < A, then the projection of set A, onto set X results
in the property P = (X,A,,dom,,"xT,,Kxp,), such that nxT, = X,exdom,(v), and

Rxpo(b) = zaeB(b)po(a) are satisfied, where b is a member of nyx7, and

B(b) = {<a),....ap>l<ay,.,a,> € T,andb € {ay,..,a,}}.

Example 3.3: In order to determine the population distribution of palm trees and papaya trees in a
region, thirce independent surveys were conducted. Assume Pro. is the population distribution of
a tuple. The following figure shows the original population distribution table together with a pro-

jected table with respect to attribute Palm:
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?rc. Palm Papaya
L pro. | Palm
05 | 1988 | 3206 Pro. | “4m _

03 | 1456 2843
02 | 1988 | 3560 AL

(a) a population distribution table , (b) a projection of (a)
Figure 3.3: An Example of Projection Operation
Generalization
Generalization is a process of making entity classes less speciﬁc by suppressing characieﬁs!
tics that describe that class [Good92a]. The following, without loss of generality, defines lhé

semantics of a generalization operator for two objects:

denoted by Z=XAY, is defined by P<Z> = (A;,A,,dom,,T,,p;), such that

A, = Az O Ay = (@) .2l Ay = (D,,...,Di ), where Di = Di 0D}, i=1...m

domy:A, = Ay T, = X,cp dom,(v) such that dom,(v) = D}; p; = ryfip petryTa py

where r, and r, are the relative weights of the samples associated with X and Y, respectively.

region defined by an arbitrary window, say W, scc Figurc 3.4. Since this inrfamlaﬁan is not .
directly stored in the database, it must bc derived from regions R1, R2, and R3.

To solve this problem, we must figure out the distribution function (i.c., the number of trees
per square feet) of the region, W. According to the principle of spatial dependency, the property of
this region tends to posses similar attributes as its neighbors. In other words, the distribution
function of the region, p, can be calculated using the formula: p = ¢ py + rapa + rapa,
where ry, 5 and r3 are the relative weights, and py, p2 and p, arc distribution functions for

regions R1, R2, and R3, respectively.



Pro| Palm| Papaya

0.6] 560| 340
0.4] 4791 360
Pro.| Palm| Papaya U m \u Pro.| Palm Pééaja
0.3 489 | 230 ™ 03| 20 | 5678
0.2] 356 | 195 0.7] 20 | 6784

Figure 3.4 An Example of Geographic Object Generalization

The question that remains is how to determine r;; i=1,2,3. A simple approach could be r;
= Arca(lmersect(w,k,-))/Area(R D, i=1,2,3. A careful study, however, will reveal that region R
is likely to be an papaya orchard. If the boundary of this orchard extended to region Ry and R,
then the given region should also be an orchard. Hence, in general, domain specific knowledge is
usually required during the generalization process.!

Unlike geometric generalization, attribute generalization refers to the capability to get a con-
cise measure of the characteristics of a set of relevant spatial objects. This is analogous to the
super-class concept in an object-oriented paradigm. The major difference here is that in an
objeci-oriented model a super-class is formed by clustering objects having the same features with
respect to class, whereas, in the case of attribute generalization the ahove requirement is no longer
necessary. Nevertheless, due to the property of spatial dependency, the underlying spatial objects
arc assumed to possess similar features. This situation legitimatizes the need for attribute general-

ization.

1. It should be pointed out that neither object-oriented systems nor the extended relational DBMSs support
this type of queries.



Integration
Integration, on the other hand, is a very useful operator for rcasoning with a multiple source
situation. To illustrate this, consider another example: Assume that two remote sensing images of
an area were obtained under the same condition, and a discriminant analysis was applicd yiclding
two membership probability functions: T1 and T2, see Figure 3.5.
1)  Apply projection operator on T1 and T2, with respect to attributes {Moist Tundra, Moist
2) Combine T3 and T4, yielding T5.
3) Construct a distribution function p with attribute vector <Dry Scrub, Moist Forest, Moist
Tundra, Wet Tundra>, such that the projection of p with respect 1o {Moist Tundra, Moist

Forest} results in the same distribution as that of T5.
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Figure 3.5: An Example of Data Integration
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The last step, however, has no unique solution. From the information point of view, a solu-
tion that has the least biased is needed. To be the least biased is to minimize the amount of infor-
mation contained in the distribution. Among the distributions satisfying the constraints there is a
unique one {CP87], the maximum entropy distribution, that has minimum information. Hence
maximum entropy inference selects the right distribution. The maximum entropy method

represents a permissible strategy in estimating the uncertainty associated with the resultant object.
In summary, an integration operator can be defined as follows:
Definition 3.1.8: Given object X and Y, then the integration of object X and object Y, Z, denoted
by Z=XVY, is defined by property P<Z> = (A,,A,;,dom,,T,,p;), such that
A, =A; UAy = {ay....a,}; A, =(Dj,,....D}}, where D; =Dz D}, i=1,..n
dom,:A, — A, such that dom,(v) = D}, for every v in set A,; T, = X,e4, dom,(v); where
the distribution function p, is determined using the maximum entropy method, i.e.,
H(p,) = max{H(p) |ngp(t) = wymgp,(2) + wympp, (D}, (Vi) t e T,(1), R = A; N A,
is the st of shared attributes between X and Y, and w, and w, are the weights of éoricepmél :

dependency corresponding to object X and Y, respectively.

3.1.3 Concept of Spatial Orientation

The purpose of this section is to develop a full-fledged model that is both object-orientéd
and spatially-oricnted.

For many years, the phrase "spatial orientation” has been used as a general term referring
the capability of a data model for storage, manipulation, and retrieval of spatial data according to
location [Anto87, MF89, Good92a, NS93]. Nevertheless, there is no clear definition in the GIS
community on what precisely constitute a spatially-oriented model. To overcome this problem,
the following concepts are identified that should be included in systems that can be categorized as
truly spatially-oriented. Each concept will be elaborated and justified at all levels, according to

the requirements of spatial data representations and manipulations.



1) Notion of Complex Spatial Objects

Assume a two dimensional space R?, the following concepts for cﬁmplex' spatial dbji:cts

will be proposed:

Notion of Spatial Entity: A spatial entity is a triple p = (n, ¢, f), where # is an id-term,
t € {point, curve, region) is the type of the entity, and f is a mapping from » into RZ. 'AV
domain object is called a spatial object, if it is also a spatial entity.

Composite Object: A composite object is an object with a hierarchy of component objects.
A composite object can be constructed using grouping. The concept of composite object is
analogous to the concept of object class. But there arc some differences. The most important
difference is that rather than specify a set of objects as having the same characteristics, a
composite object puts a set of objects together according to their gecographic significances in
terms of search, inference and recognition. For instance, a typical national map may contain
a collection of cities, borders of provinces, and a sct of landmarks such as major riyvcrsr.
islands, etc. It is neither necessary nor possible to include cvery object in the country.
Aggregation: Aggregation is a construct which cnables types to be amalgamated into a
higher-order type, the attributes of whose objects are a aggregation of the objects of the con- -
Mean, Ave, Max, Min, etc. For example, the wildlife population in North American is the
sum of the wildlifc populations in Canada, Mexico and U.S.A.

Dynamic Spatial Object: A dynamic object is a spatial cntity associated with an object type.
The attributes of the object are aggregations of the attributes of objects of the type. Example
3.4 depicts a situation where a dynamic object is constructed by means of generalization. In
general, 2 dynamic object can be cither a user-defined window or a spatial entity created by
a query process. Dynamic objects provides a window to view the world as a set of overlap-

ping continua, instead of forcing the world into a mold of rigidly bounded objccts.



2) Notion of Spatial Encapsulation and Inheritance

Spatial encapsulation has two meanings: 1) the concecalment of internal spatial data struc-
tures together with details of procedures for manipulating them; 2) the separation of spatial com-
ponents from nonspatial components, The first requirement has been well justified in Section
3.1.1. The second requirement will now be discussed.
geometric propertics of spatial objects. They play an important role in object classification, recog-
nition, visualization, and spatial search. Moreover, the spatial relationships among entities and
their relationship to cultural and terrain featurcs represent important contextual knowledge for
rcasoning in these domains. There is no doubt that the way these features are organized crucially

affects the effectiveness and the efficiency of the system.

[Anto87, Bun87, Haas91, Oren86]. A common feature of these systems is that they adopt an
encoding scheme (e.g., the Morton sequence [DX86, Peuq84]) that results in generating numeri-
cal key valucs. These values are then stored in record attributes in the same way as nonspatial
atiributes. By using this approach, a spatial operation is viewed as a two step process: first,
retricve the spatial data and then operate on it. Since spatial data is stored with nonspatial data in
a database, much time is wasted on the retrieval step. Both spatial and nonspatial data are
retricved although only the spatial portion in needed. This has led many researchers to try to
cnhance the performance of the retrieval step [Gutt84, RF88, KM90, More85]. In particular,
Faloutsos [RF88] performed experiments in order to find the coding with the least retrieval time
for range query. These experiments clearly indicate that the separation of geometric descriptions
from other attributes is encouraged for large database systems. GISs such as ARC/INFO

[More85] alleviate this problem by storing the nonspatial data in tuple form and storing the

are maintained between the geometric data sets and the relational data by unique system gen-

erated feature identifiers,
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Clearly, if spatial data is structurally separated from nonspatial data, whilc maintaining
appropriate links between the two, then the spatial data retricval bandwidth can be much higher.
The current research places a greater emphasis on the notion of separating the structure of spatial

data from nonspatial data in a sense that it goes beyond the basic gcometric cntitics.

For this purpose, the domain attribute set A is partitioned into iwo separate sub-scts: spatial
attribute set and an aspatial attribute sct. A spatial attribute is a location attribute, in the sensc that
it is inheritable from an "ISPART" rclationship; whereas an aspatial attribute is a conceptual attri-
bute in the sensc that it is inheritable from an "ISA" relationship. This separation is important
due to the fact that while many nonspatial propertics arc "ISA" inhcritable, many geographic attri-

bultes, i.e., climate, soils, geology, cultural and terrain features, arc functions of regions.

At first glance, the above scparation is merely introducing another type of objcct hicrarchy
that can also be modcled by an existing object-oriented system. This analysis, however, is
incorrect, since the semantics of spatial inheritance induced by the "ISPART" relation permit
location based queries. Example 3.3 illustrates a situation where a window W(i.c., a dynamic spa-
tial object) overlaps three regions R1, R2 and R3, and since the dislribu'lion functions arc based
on the regional property, W is able to inherit the propertics from R1, R2 and R3. -Such an opera-
tion would be meaningless should the attribute in question be a ‘non‘spalia’l feature. 'Thcrcforc. itis
important to distinguish the difference between the concept of spaiial inheritance and the concept

of object inheritance, although the two issucs arc closely related.

Another important consideration is how to model the hicrarchical lz;xonomy. Some existing
object-oriented systems adopt a tree structure due to its simplicity. In a typical MEDS applica-
tion, a tree structure of hicrarchical taxonomy is less than adequate. For instance, to develop
effective agricultural management policies, we neced access to tran;porlalion, waterbodics, cli-
mate, soils, etc. The above relations induce a dual lattice structure, which will be termed the con-
ceptual lattice, and the spatial lattice, respectively. The structural feature of the modcl is the dual-
ism of functions relating to two primary types of operations: object-oricnted operations and

spatial-oriented operations. Because of this duality many cquivalent procedurals can be imple-
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mented in both portions of the system. The following figure shows two simple multiple inheri-

tance relations.

Traﬁsﬁortaticm links
I an—~——
Artificial links| | Natural links

Waterbody

%ﬁ%

Airline l Channel Iiﬁavigable Ncnnavigéble

(a) A ISA’ Multiple Inheritance Relation

(b) A "ISPART’ Multiple Inheritance Relation

Figure 3.6 Examples of Multiple Inheritance Relations

3) Notion of Spatial Data Generalization
Spatial data generalization refers to the ability to interpret spatial data at different levels
with various degree of precision. In general, geometric generalization can be done in three ways:

approximate an object. This method cntails more compact (i.e., the number of vertices can be
reduced, cte.) and simp]iér (i.e., a long narrow region such as a river can be reduced to a line, etc.)
feature representation. The second method aggregates objects having similar features into a higher
order class. To this end, criteria such as the crror measurements must be considered at all levels.
The last method uses object legends (i.c., a collection of icons) for spatial object representation.
The advantage of this scheme is two-fold: it highlights the underlying objccts on the one hand,

and it cnables a system to bypass the complex geometry of the objects on the other hand.



Figure 2.5 provides an examplc of spatial data generalization: First, using the approximate
geometry method, river features in Figure 2.5.a arc reduced to line features in Figure 2.5.b.
Secondly, using the aggregation mcthod and the legend method, land use areas in Figure 2.5.a are
either circumscribed by polygons.. or denoted by icons in Figure 2.5.b.

Spatial data gencralization allows us to ‘vicariously experiecnce’ the geometry of the under-
lying spatial objects in a meanful way. In particular, the notion not only improves cfficicncics for
search and inference but also supports the human style of geographic analysis since more often
than not a situation is first viewed from a greater dislanéc: before the region or object of interest is

investigated closely. This leads to the concept of metric space which will be introduced next:

Definition 3.1.9: A metric space is a triple (C,e,D), where C is a composite object, called the
context, € is the measure of imprecision (i.c., the scale paramclexf)i and D is a function VW.I'liL:h cal-
culates the distance between two locations.
The semantics at the metric level usually contains four components:
. A mapping function which maps a subsct of objects into onc of the metric spaces.
¢ A schema which sclects a gecometric imcrprclalién for cach object with respect 1o ciach
metric spacc.
e A sctof semantic constraints rcgarﬁing the completeness and éahcrcncc of the metric space.
. A description of contexts in terms of fixed cntities, such as points, paths, landmaﬂési and
rqgions, linked by metric relations such as relative distance, angle, ctc. In addition, each

entity is associated with an uniquc object identificr.

3.2 Semantic Hierarchy of Spatial Objects
In the last section, a number of key decisions for designing a MEDS were identified. The
question remains is.how can these requirements can be fit together cfficiently to form a gencral

framework for geographical data modecling.
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robust [Hart73]. The psychological literature dealing with the deveiopmem of spatial mapping
and navigation [Hart73, Kuip78] provides a significant number of useful constraints on the struc-
turc of human knowledge representation. There are reasons to assume that the functioning of the
human central nervous system has been optimally adapted to processing and condensing informa-
tion with the help of hicrarchical organization and storage principles. Furthermore, these princi-
ples optimize proccdures for information processing. It is worth noting that in the area of robot-
ics, various cognitive models for navigation and mapping in a large-scale space have been
developed [KL88]. Inspired by these results and based on previous work [Zhou88], a four-level
model of semantic hicrarchy for the description of spatial objccts is proposed: Primitive level: In
this level, spatial objects arc decomposed into a set of structure primitives. The structure models
provide a description of the low-level properties (i.e., geometric propertics, locations, ei«:i) in
terms of the structure primitives. Attribute level: A description of the propertics of objects in the
environment in terms of attributes and their values. Object level: This level contains two parts.
The first part, called the conceptual level, is a description of aspatial objects and their interrela-
tionships, whereas, the second part, called the topological level, is a description of the environ-
ment in terms of spatial objccts linked by topological relations such as connectivity, containment,
and other spatial prepositions (i.c., in front of, behind, left of, beside, above, etc.). Moreover, a
conceptual schema is used for the description of object type, and type inheritance for both con-
ceptual and topological levels. Metric level: A description of the environment in terms of loca-

tion of the spatial objects.

The cognitive map model adopts scveral fundamental principles such as modularity and
specialization from software engincering. Since grouping all kinds of functionalities into a single
unit causes problems such as overhead and com@lexity, the cognitive map model specializes func-
tions into different parts. A realization of such a model consists of a general inference mechanism
and a collection of function units, cach of which is specialized to a specific class of data represen-
tation and manipulation. The purpose of the inference mechanism is two-fold: 1) to utilize

domain knowledge to focus the attention of data processing in the most promising direction (i.e.,
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and 2) to enforce semantic constraints between layers. For example, although both metric con-
straints and topological constraints are locational constraints, they belong to two different layers:
the metric constraints belong to the metric level, whereas, the topological constraints belong to
the topological level. |

The relationships between differcnt levels are illustrated in Figure 3.7,

Primitive Level

Abstraction

Attribute Level

Abstraction

: SO g
Object Level

Conceptual Topological
Level Level

Schema specification

Abstraction

Metric Level

Figure 3.7 Semantic Hierarchy of Spatial Objects

3.3 Data Dependencies

It is well known that anomalies can not only be resulted by malicious treatments of data
errors but also be resulted by malicious use of insertion, deletion and update in the database. To
prevent this situation, a sct of structural constraints, that can be enforced to preserve data integrity

in the events of insertion, deletion and update, must be derived. To this end, the notion of



-44 -

functional dependency and multivalued dependency will be generalized to describe the database

dependencies for the new model.

3.3.1 The Attribute Level

In many cases attributes arc implementable by means of ﬁJpIES, The attrihuté level data
dependency provides a priori knowledge of constraints on the permissible set of tuples of an
object. Since the property of an object is necessarily a tuple, the data dependency for the attribute

level is the same as that for a statistical counterpart of a relational database [CP87, CK89]:

Definition 3.3.1: Given an object O, let X,Y < A,, then Y is said to be functionally dependent on
X, denoted as FD: X — Y, iff it is the case that if the tuples agree on attributes X, then they also
agree on attribute Y.

By virtuc of the property of conditional entropy H(Y/X), the FD: X — Y can be expressed
by mecans of the following two equivalent entropy equations [CK9): H (Y/X) = 0 and

HX v Y) = H(X).

Definition 3.3.2: Given an object O, let X and Y be disjoint subsets of A,, and let
Z = A, — (X U Y). Then A, satisfies the multivalued dependency MVD: X —— Y if, for any
two tuples ¢ and £, with my(¢y) = nk(lz), there exists a tuple #5 such that my (13) = wx (1),

ny(t3) = my(ty), andwz(t3) = nz(12).

Intuitively, X — — Y means that given values for the attributes of X there is a set of zero or
more associated valucs for the attributes of ¥, and this set of Y-values is not connected in any way
to values of the attributes in R — X — Y [CK89]. In terms of entropy, Cavallo and Klir [CK89]

show that X —»— Yiff H(Y/X) = H(Y|IR=(Y =X)).

3.3.2 The Object Level

This scction introduces the concepts of data dependency at the object level. The purpose of

formulating these concepts is to further attenuate data redundancy and enhance data reliability.
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There are two types of dependencies: inheritance dependency and propagation dependency.
Inheritance dependency refers to how attributes in subclasses depend on their superclass in the
object hierarchy, whereas, propagation dependency refers (0 how attributes of a supcrobject
depend on its subobjects.

The difference between the concept of inheritance dependency and the concept of propaga-
tion dependency ié the abstraction level in which an attribute is defined. If an attribute is origi-
nally defined at a superclass, then the semantics of data dependency implies an inheritance rela-
tionship from the superclass to its subclasses. On the other hand, if the attribute is originally asso-
ciated with the subclasscs, then the semantics of data dependency implics a propagation relation-
ship from the subclasses to their superclass. There are many aggregation dependencics, i.c., the
sum or union of valucs of the components, the greatest or the smallest value of the components,
and the average and the weighted average value of the componenis, etc. The following illustrates
an example of such dependency:

Canada. Population = 25,000,000,
USA.Population = 211,390,000.
Mexico.Population = 54,300,000,

North —American.Population — bysummary.

Both dependencies guarantce consistency because data is only stored once and derived from
there. Updates only nced to consider the fundamental propertics, whereas, the derived propertics

can be implicitly updated.

3.4 DataBase Schema
In the following, a definition of spatial database schema based on the concept of semantic

hierarchy will be given:

Definition 3.4.1 Conceptual Schema: A  conceptual schema is a  6-tuple
(D, R, T, MN, Map 4, Map .,) Where

e IDis a sct of object identities.
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o  Ris asect of object relations.

e  Tis sct of type names organized in hierarchical taxonomies.

e  Map is a function mapping from a subset of /D onto an element of T.
hicrarchy.

e  Map,, is a function mapping from a subset of MN onto an element of T.

objects (as is specified by typing functions and object relations) and the notion of type inheritance
(as is defined by the partial order relationships). For example, both papaya and palm are tropical
trees (i.c., an object type), a tropical tree is also a tree (i.e., an hierarchical taxonomies of object
types), and every tree consists of a set of attributes such as height, age, etc. (i.e., methods associ-

ated with an object type).

Definition 3.4.2 Geometric Schema: A geometric schema is a triple (/D, S, Maps), where
e IDis a set of object identities.
¢  §is aset of metric spaces.
®*  Map, is a mapping from a subsct of /D into an element of S.
Unlike the conceptual schema, a geometric schema i purely spatially-oriented in a sense

The following defines the notion of spatial database:

Definition 3.4.3 Spatial Database: A spatial database is a quadruple sdb = (D, S;, §g, M)
where D is the set of basic domains, S is a conceptual schema, S, is a geometric schema, and M

is the sct of applicable methods.
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3.5 Conclusion
The following summarizes the relationships between the new model and previous models:

A typical early GIS represents spatial data as a collection of thematic layers, each stored as
either a vector or a raster data structure. This representation corresponds to the primitive level in
the cognitive map model. According to the principles in [Ullm80], such a rcpresentation is awk-

ward (i.e., being very low degree of data integrity, consistency, and independence).

In DBMGISs, vector structure and/or raster structure primitives of the domain spatial data
together with other attributes arc represented by database records. This is analogous to two lcvc:ls‘
of the new model: the attribute level and the primitive level, cxcept there is no distinction
between structure primitives and other attributes. Again, thesec models arc considered 10 be

unsuitable for GIS due to the lack of semantic support of this class of data modecls.

In object-oriented modecls, the object level starts to play an important role. The important
aspects brought by this technique is that the semantics of data relationship can be exploited to
enhance the power of data representation. However, there is still no distinction between gcomé&ﬁc:

properties and attribute properties.

In cognitive map modcls, more semantic structures arc exploited to model both spatial and

aspatial aspects of the underlying spatial phecnomena.

The first important characteristics of the new model is the scparation of the metric lcvclr
from the topological level. In general, geometric uncertainty can be modeled at different abstrac-
tion levels. Because of this scparation the model is able to represent and to reason with gcometric
imprecision effectively. The topologic level gives gencrality in terms of geometric entitics,
whereas, the metric level describes imprecisions in terms of location and relative positions of
various entities. The two levels work together to achicve both data consistency and data accuracy.
It should be pointed out that the importance of scparating thesc two layer is justified in [DS73,

Kuip78), and there are many other systems that followed this design principle [Davis86, KL88].

The second important feature is the separation of conceptual level from that of topological
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level. In this way, the cognitive map model avoids the dilemma of object-orientation and
spatial-orientation. In particular, the conceptual and attribute levels are designed to answer
these objects; whercas the metric, topological, attribute and primitive levels are designed to
answer queries conceming the objects at specific locations and to perform spatial reasoning.
Under many circumstances, querics and reasoning may have bc;Lh object-based and spatially-
based components. The two portions are therefore interrelated and designed to work together.

The third important feature is the ability to model attribute uncertainty through the use of
attribute level. One of the five high-priority topics for research by the National Centre for Geo-
graphic Information and Analysis (NCGIA) is "new modes and methods of spatial analysis”
[Abler87]. Abler goes on to argue the need of "non-traditional statistics” to capture the nature of
attribute error and error propagation, He states:

“In the long run we shall have to restructure our thinking about geographical

tools are bascd on monovariate percentagism; the calculations of percentages for arbi-

trary statistical area such as countries or enumeration districts. GIS data will be ‘poin-

tillistic’. Maximal disaggregated data will make it possible to portray and think about

several variables simultancously, cach recorded at a detailed level éf precision.”

In the proposed model, novel spatial statistics for implementing such an idea is developed.
At the lower attribute level, statistical theory is adopted for multivariate geographic data represen-
tation; At the higher object level, many descriptive statistics are tailored into the object-oriented
paradigm gracefully. More importantly, the object level can be used to refine the attribute data
representation to better characterize the realty as it is reflected in the geographic data encountered.

The last important notion is the general inference mechanism. From the software enginecr-
ing point of view, the provision of the general inference mechanism not only supports the special-
ization and modularity design principle of the new model but also provides a means of navigating

knowledge inferencing and data processing.



Chapter 4
Querying Languages
The purpose of this chapter is two fold. The first is to develop a formalism for various data
operations, including scarching and rcasoning. The sccond is 10 cstablish a foundation upon

which structure models together with algorithms will be developed in subsequent chapters.

4.1 Recent Developments on Querying Languages for GISs

A query language is the user’s tool to select data of interest, and traditional query languages
such as SQL emphasize this issue by providing complex methods for data retricval, and formula-
tion of logical constraints upon data. Nevertheless, as analyzed previously, traditional query
languages have been found to be inadequate to meet the demands of GIS applications, and various
attempts have been made to solve this problem. As a result, three types of query languages have
been developed: object-oriented, deductive language and extended SQL. These language classes

are briefly reviewed.

Object-Oriented Approach
In the object-oricnted approach [Marx86, MO87, SP84] information is highly structured by
the introduction of classes and inheritance concepts. Data encapsulation and polymorphism pro-
vide some desirable manipulation facilities that arc independent of the physical and lggicalr data
representation. Example: List the towns of King's county. |
The data model defined in [MO86] is bascd on entity:
Type Land_éivision is entity
Name(Land_division) -> String
Areca(Land_division) ->> Polygon
and sub_type:
Type Area_life is Land_division
The above query can cither be expressed using a geometric operator OB_INCLUDE (i.e.,

inclusion of objects):
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OB_Include(Sclect(Area_life), Select(Land_division, Name = "King"))
or be expresscd using a navigational operator:
? Area_life. Name > Land_division.Name = "King"

An object-oricnted query language uses concepts that more easily describe a user’s under-
standing of the structure of the data than does an SQL-based language. An SQL-based language
requires the user to consider all data more or less in tabular form whereas the object-oriented
languages allow for the consideration of complex objects as individual units with attributes and
relationships between them.

Current object-oriented query languages have the following two major drawbacks. First,
they do not usually support a declarative query interface (i.e., a rule-based deductive query inter-
face). Sccondly, they are not spatially-oriented in a sense that they force users to view the world

as a collection of rigidly bounded objects rather than a set of overlapping continua.

Deductive Language Approach

These languages are based on knowledge rei)resentation systems. As an example, NAMEX
[CJ90] implements a Prolog interface to a spatial database storing vector and raéter cértographic
features, along with their associated names. Database search and retrieval is performed by a set of _
functions implemented in a procedural language and called by Prolog predicates. In NAMEX, the-
cartographic task of sclecting names and label configurations and avoiding conflict are expressed
as Prolog rules. Many name placecment rules depend upon the label’s proximity to other features
(i.e., scttlement labels in crowded areas of the map are usually placed close to their own settle-
ments to avoid ambiguity). This may be achieved by halving the normal separation between a
label and its scttlcment if the scttlement is within, say, 4km of another settlement. The following
rule can be used to specify this condition:

determine_prox(Fsn,Prox,New_prox):—get_point_coords(Fsn,East,North) ,

mask_out_current_feature,
raster_circle(East,North,4000,_,Feature_list),

determine_point_prox(Feature _list,Prox,New_prox).
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A declarative query interface allows a uscr to pose queries at a much higher level than prim-
itive representations of geometric objects, which releases the user’s burden of understanding and
programming of low-level spatial data structurcs. However, it is often awkward to adopt a pure
deductive approach in spatial databases because many spatial primitives are computalion-r
intensive units, which are best defined by a set of geometric-oriented computational procédurcs.
Also, since Prolog-based deductive languages [Perc82, Frank84, CJ90] are bascd on a flat data

model, they do not support the notion of a complex object.

Extended-SQL Approach

These languages [Gupta91, Haas91, Loric91, NS93, WH87| arc based on an cxisting SQL- |
like languages. Manipulation of geometrical information is performed using specialized opcrators.r
A query can also be expressed using a QBE (Query By Examplc) philosophy [Gupta91]. As an
example, XSQL/2 [Loric91] or Geo-SAL [SZ91] operators are based on three standard. geometri-
cal information: point, line and arca. Neveriheless, with the XSQL/Z approach, physical,dala
representation is independent of the data model by the definition of geometrical clements as
Abstract Data Types (ADT). An ADT is an cncapsulation of data structurcs and manipulalion
operators to hide all the implementation details from the user. Dat:a mﬁnipu]alion irs madec through
the use of a set of defined primitives. Example: Retrieve the map "Bay area” with its countrics

and cities.

Such a XSQL/2 query is:
Declare Cursor ¢ For
xmap AS SELECT * FROM map WHERE namec="Bay arca’
xcountry AS SELECT * FROM country WHERE map IN xmap.id
xcity AS SELECT * FROM city WHERE country IN xcountry.id

END

In XSQL/2 intemnal references arc used to define the tuples that belong to a particular base

object. For instance, a tuple in map is a root tuple. Some tuples in country are related to that map
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tuple by intemnal references. Similarly, some city tuples are linked to these country tuples, also by
intemnal references. The root and the sct of tuples that are directly or indirectly related to map by
internal references form a base complex object. In addition to ordinary tuples, XSQL/2 maintains
a set of inverse relations to improve the cfficiency of internal access to the base complex object.
In other words, 1o navigate from a map tuple to all related country tuples, from a country tuple to

all related city tuples, etc. Moreover, all tuples for a single map are stored together.

The main advantage is the fact that the philosophy of an object-oriented DBMS is respected.
The use of an internal reference allows specification of complex objects, and the introduction of
the ADT concept allows modification of the data representation without any effect on the rela-

tions defined between thesc objects.

The main drawback concems the underlying assumptions that are hard-wired in the systems
of any SQL-based language. For instance, since these languages rely on tuples, considerable data
transformation and data construction/decomposition must occur in data transfer between an appli-
cation program and the underlying DBMS. Moreover, although the traditional query languages
can be extended to incorporate more real world knowledge, its main weakness arc the reliance on -
a given conceptual schema and focus on syntactic aspects. The conceptual design process and
semantics being modeled are largely ignored. On the other hand, the nature of many geographic
queries involves deep reasoning. Section 2.2 provides a few examples in which the SQL-based

languages are shown to be less than adequate.

In summary, the current state-of-the-art GIS query languages address important aspects of
the characteristics of spatial data However, using an existing query language does not fulfiil all
database requircments of a geographical system. Available ob_uect—onemed query languages pro-
vide advanced modecling capabilitics, efficient navigation, and extensibility. They lack spatial-
oricnted access methods. Available deductive query languages provide a declarative query inter-
face, but lack a complete object modeling capability. Available extended SQL query languages
provide asscrtional language, modeling capabilitics for complex objects. They support reasoning

and navigation poorly.



4.2 Towards a Cognitive Map Approach for Geographic Query Languages

A query language is grounded in the data model on which it is based. In accordance with
data modeling philosophy, the design of a language should be guided by what is nceded to be
modeled, rather than the other way around. To this end, the primary purpose of the proposed
query language is to capture what arc believed to be the essential features of a cognitive map

model.

4.2.1 Representation of Hierarchical Taxonomy of Objects
The new language must come to grips with the concept of object representations at all lev-

els, including object, object class, object type and type inheritance.

Object Representation

Objects in the proposed model can be divided into three calegories: constants, static objects
and dynamic objects. The first catcgory consists of all persistent objects stored in the database,
whereas, the second category consists of dynamic objects defined by users.

A constant is a value that cxplicitly appears within a query language. The most common
constants by data-type classification are integer constants like 20001 and -51; real constants like
-9.99 and 6.798E32; character constants like "A", "*", and "9",

A static object is a structured cntity stored in the database. Each object is a triple <id_term,
state, behaviour>. An object has an cxistence that can be uniquely identified by its identifier
id_term. The state of an object is the set of values of its attributes. The behaviour of an object is
the set of its methods which operate on cither the object’s id_term or the object's state.

Although an object identifier is invisible to users, its interface (an object variable) is visible
to users. In fact, in the proposed language, objects and object classes are manipulated entircly
through this interface. It is important, however, to distinguish identity from equality. If x and y
are variables bound to objects, then x and y are identical if they are bound to the same object - a
modification through x will be visible through y. Equality, on the other hand, is based on a com-

parison of object state,
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A Jdynamic object is created cither by a query process (i.e., overlasr. union, intersection,
aggregation, ctc) or by users. The distinct feature of these objects is that they are not explicitly
stored in the database. To achicve a uniformity, in the proposed model, a dynamic object is also
pgréeived as a triple <id_term, state, behaviour>, where id_term is a uniquc system generated
identifier for the object, the state of a dynamic object is derived from the databaééi and the

behavior of a dynamic object is implied by typing inheritance.

Object Class Representation
represent an object class: enumeration method and object variable method.

Using the first method, a user simply enumerates all the objects in the class within a pair of
curcly brackets. For instance, {Edmonton, Calgary, Montreal, Halifax} constitutes a class of
cities. This method is suitable for small object class in which all members arc known.

An object class can also be denoted by notion {obj_var}, where obj_var is an object vari-
able which is usually constrained by cither the semantics of the querying language or the underly-
ing database. A user may posc a query (o obtain zm object class which contains all cities in the
province. Such an object class can be specified using {x}, where x is an object variable that is

‘bounded by the underlying database.

Type and Type Inheritance

and the spatial lattice induced by "ISA" and "ISPAéT" relationships, respectiveiyi Although

these two lattices exhibit some functional dualities, they are not orthogonal in all aspects. There-

fore, it is necessary to specify both structures at the query language level. For this nzascrl; notions

:. and :; will be adopted to represent the conceptual lattice and the spatial 1atﬁée, réspectivelyi

° Th(: syntactic unit c_type : . item denotes the fact that item is an instance of type ¢_type and
the property of item is "ISA" inheritable, where item is either an object or a subtype. For

example, the asscrtion "Highway :.Trans_#1" represents the fact "Trans_#1 is a
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ways are Artificial_links", etc.

The syntactic unit s_type : ; item denotes the fact that item is ;m instance of type s_type and
the property of item is "ISPART" inﬁeﬁtable, where item is cither an object or a sublypé,
For example, the asscrtion "Alberta : {Edmonton" represents the fact "Edmonton is part of
Alberta", whereas, the assertion "Country :; Province" rcprésc:ms the fact "a Province is part

of Country", etc,

4.2.2 Representation of Complex Object

Complex geog=aphic object manipulations may be classified in three calegorics:

Simple object access is necessary for inseri, delete, and update operations, as well as for
exact-match or range retricval.

Object navigation follows object inter-relationships, cither factual or spatial, from a givén
object to rclated objects. An example of such a query is: "Retricve the name of the mayor of
the capital city of the province of Alberta”.

Set object navigation cnables the retrieval of objects based on common prnpcniés. These
properties being cither expressed through some sort of predicaie expression, or computed
with an algebra of set-opcrators. Queries like: "Retrieve the names of the mayors of the

Clearly, geographical data query requires that the querying language be able to explore the

internal structurc of an complex object for both asscrtion and navigation purposes. Morcover,

methods and frequently used procedures must be incorporated into the language gracefully. To

this end, the following aspects arc considered:

4.2.2.1 Comparators

Comparators play a key role in specifying query constraints. In general, a comparator is a

mapping 8: <0,,02>— {False,True}, where O; are objects. There arc two kinds of compara-
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tors: value-based comparators and set-based comparators. A value-based comparator is one of
the comparators (i.c., =, <, >, etc) for comparing two basic objects, whereas, a set-based compara-
tor is one of the comparators (i.c., =, €, &, etc) for comparing two sct objects.
The following syntax formula specifics query constraints based on attributes.
<obj_var>[<attr_name,> cp <value>,...,<atir_name,> cpy < value, =]
where <obj_var> is an objcct variable, <attr_name;>, i = 1..k, are attribute names, < value; éi
i =1..k, are cither user specified values or values obtained from previous queries, and cpi, i=1.k4

arc comparalors.

4.2.2.2 Navigation Operators

In referencing objects and their auribmcs, there are two perspectives.
° Forest pcrspcétivc: Reference one, or more than one, attribute at a time
e  Pathperspective: Reference one, or more than one, level at a time.

The syntax form for forest referencing is defined as fcllm'\is:
<obj vary>[<attr_name,>—><obj_var;> ,._g,iattfsngmég::%{abjivark >] g

where <obj_var;>, i =0..k, arc objcct variables and <attr_name;>, j=1..k, are attribute names.
As an cxample the clause edm|[mayor — X, population — Y] states: "find the mayor and the
population of the city Edmonton", where edm is an id_term, mayor and population are attribute
names, and X and Y arc object variablcs whose types are person and integer, respectively.

The syntax form for path referencing is defined as follows:

<obj_varg>.<attr_name|>.<attr_namez >.... <aHr_name;>—< obj var, =

where <obj_var;>, i=0,1, arc object variables, and <attr_name; >, j= 1..k, are attribute names,
Using path referencing, the query: "find the name of the mayor of the city Edmonton” can be
expressed by edm.mayor.name — X, where edm is an id_term, mayor and name are attributes,

and X is an objcct variable whose type is string.

In practice, which referencing approach is used depends on our needs and on what particular

data are at the hand. For instance, the query: "find the name of the mayor and the population of



the city Edmonton" may be dcnoted as edm([mayor.name — X, population — Y.

4.2.2.3 Methods and Attributes

According to the philosophy of objcct-oricnted DBMS, the behavior of an object is the set
of its methods which operate on the object’s state. In gencral, a mcthod is a mapping:
m : <obj_var,para,,...,paray> — T, where obj_var is an id_term, para;, i=1.k, arc
parameters, T is a target domain, and m is a function mapping from obj_var 10 T. Although
methods are similar to ordinary procedures and functions, they should be vicwed as containing an
implicit parameter representing the object itself. On the other hand, it is often more convenicnt to
view attributes as methods with single parameters in a sense that both methods and attributes arc

bounded to the same object. The only difference between them is that the former describes the
dynamic aspects of an object, whereas the later specifics the static aspects of an object.

It is, therefore, desirable to have a uniform representation for both attributes and methods.
Morcover, attributes and methods specifying the same object should be clustered together.

The following syntax formula specifics query constraints based on methods.

<obj_var>[<my(p_list\)> cpy <value,>,...,<m(p_listy)> cpy <value,>|

where <obj _var> is an id_term, m;, i =1..k, arc method names, <value;>, i =1..k, arc cither

p_list;, i =1..k, are parameter lists. For cxample, the following query is requesting the annual
average water discharge from lake Marion into the Santee river, and the arca of lake Marion:
lake :.marion|discharge(santee) — X, area — Y1, where marion and santee arc id_terms,
discharge is a method, area is cither an attribute (i.c., its value is cxplicil!y stored) or a method

(i.e., its value is calculated from the intcrnal representation), and X and Y are object variables.

4.2.2.4 Procedure Considerations
The procedural primitives are stored in a system library which consists of two portions:
system-built-in procedures and application specific procedures.

System-built-in primitives in the cognitive map model arc divided into three groups:



attribute manipulations, geometry manipulations, and user interface primitives.

4.2.2.4.1 Attribute Manipulations
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Attribute manipulation can be divided into the following classes:

Attribute error estimations, that include functions for evaluating measurement errors and
distribution uncentaintics: a_m_error, d_uncer, eic.;

Attribute error manipulations, that consist of procedures for error reduction, attribute pro-
jection, generalization and integration: a_error_r, a_proj, a_general, a_integr, ¢tc.;

Set operations such as intersection, union, difference, and complement: a_inter, a_union,
a_diff,a_comp, elc.;

Aggregation functions and operators: Aggregation functions (i.e., sum, g:zve,rm'ax, min,
member, population and distribution, cic.) provide ways of summarizing information 1o get -
concise measures of their characteristics, Whereas, aggregation operators cluster individuai
objects into an object class according to cither measurement errors (i‘ieg, the standard devia-
tion) or distribution uncertaintics: cluster_m, cluster_d, etc.; 7
Attribute data manipulation operators such as scarch, update, insertion and deletion:

a_search, a_update, a_insert and a_delete, clc.;

4.2.2.4.2 Geometry Manipulations
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Geometric manipulations procedures include the fol._wing aspects:

primitive logical predicates, which describe the rclationship of geometric objects:
g_overlapped, g_inside, g _adjacent, cic.;

Geometric error handlings, which include procedures for geometric error measurement,
geometric crror reduction, and geometric generalization: g_m_error, g_error_r,
&_general, cic.;

Geometric data manipulations, which include search, update, insertion, deletion, union,

intersection, differcnce, overlay: g_search, g_update, g_insert, g_delete, g_union,



g_inter, g_diff, g_overlay, etc.;
(4) Quantitative feature evaluations, which compute the quantitative features of geo_objecis:

g_distance, g_perimeter, g _area, cic.

4.2.2.4.3 User Interface Consideration
A user interface consists of two parts: input specifications and output specifications.
There are two basic input specification functions: cursor and window. The first function
picks the current position of the cursor on the screen to form a point entity, whereas, the second
Output specifications, on the other hand, contains procedures for: selecting colors, lcg’énds.

display patterns, graphical representations, and output device management, elc.

4.2.2.5 Simple Arithmetic

Arithmetic primitives arc csscntial for specifying many nontrivial querics. For example, the
query: "find a river whose annual average discharge is at Icast 5000 cfs more than the Sanleer'
river’s" requires an arithmetic operation (i.c., +) at the query language level.

For this purpose, it is assumed that arithmetic terms be usually written in the infix notation.
However, similar to Prolog [Frank86, CJ90], the query language cannot tell when to consider an |
arithmetic term as a term itself or when to evaluate it. To force the evaluation of an arithmetic
term, a new operation is required: the is built-in predicate. The is operator takes an arithmetic
expression as its right operand and a variable as its left operand. All variables in the expression
must be already instantiated, but the left-side variable cannot be alrcady instantiated. For exam-
ple, in: "X is Y/89 - Z" if Y and Z arc instantiated, but X is not, then this clause will cause X to
be instantiated with the valuc of the expression. When this happens, the clause is satisficd.

Clearly, the semantics of the is operator in the proposed language is similar to that of Pro-

log. The difference between the two, however, will be addressed later.
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4.2.2.6 A Syntax Definition for the Proposed Query Language

The logic programming language approach offers an attractive means of solving data han-
dling problems which require inference based on spatial knowledge. In the context of spatial data
handling, a deductive query language can describe explicitly existing spatial data, in terms of
location, relationships and attributes, along with rules and other facts which express how new

spatial relationships may be derived from the existing ones.

4.2.2.6.1 The Definition of Terms

structed out of the alphabet symbols. Formulas are built from either a simple term or a é@rﬁ?lex

term: o

e Simple Term: A simple term is of the form (7 :.X), (T :;X) (1 :.C), (1::C),
(T :ef(t1e. o ata)), 08 (T igf(ty,...,t,)), Where t is a type which is optional, X is a
variable, ¢ is a constant, f is cither an n-ary function symbol or a simple arithmetic clause, ¢;
(1 £ i =n) arc variables. |

o  Complex Term: A complex term is of the form [/, 6y, ¢1,...,1, 0,, €,] (n 2 1),

where ¢ is an object variable, I; (1 < i € n) is either an attribute ora method, e; (1 S i S n)

is cither a variable, a term or a collection of terms of the form {l‘l s ,zf;i} in which
t..., tﬁl‘ arc all terms, 8; is cither a comparator, the function mapping system "—", or the
is operator is.

Intuitively, a term like T @ ¢[!; =ty ,....l,=t,] represents an cbjeci of type 1, whose identity

is ¢, with certain properties indicated by 2.l; = t; (1 £ { = n).

4.2.2.6.2 Rule Statements
Similar to Prolog, the basic form of rule statements corresponds to headed clauses. This
form can be related to a known theorem in mathematics from which a conclusion can be drawn if

the set of given conditions is satisfied. The right side is the antecedent, or IF part, and the left side
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is the consequent, or THEN part. If the antccedent of a statcment is true, then the conscquent of
the staiement must also be truc. The general form of the rule clause is:

<term_0> & <term_1>,<term_2>,..,<term_k>
which can be read as: "term_0 can be concluded if term_i, i =1..k, are true or can be made to be
true by some instantiation of its variables". For example, the domain specific knowledge: "A
floodplain is a unused river side space” can be expressed as follows:

floodplain : ;X « region : . X|[landuse — unused) ,river :.Y,adjacent(Y X).

4.2.2,6.3 Database and Knowledgebase Coupling

Query and reasoning traditionally belong to two scparate arcas: data base systems and
knowledge base systems. However, it has been widcly realized by both rescarchers and practition-

ers that the development of large cffective knowledge bascs is difficult due to the fact that

base system can help to overcome this difficulty. Morcover, it is often awkward to adopt a pure
deductive approach in spatial databasc beccause many spatial primitives arc computation-intensive
units, which are best defined by a sct of gcometric-oriented computational procedures. This lcads
to the concept of database and knowledge base coupling.

Database and knowledge basc coupling can be achieved by incorporating procedures written
in a nonlogic language, such as C or Ada. The proposed query language allows two kinds of cou-
plings: the tightly couplied method and the loosely couplied method. |

The first approach is based on the idea of considering nonground labels as "computed func-
tions" which can be instantiated using system-built-in procedures. For example, the logic term
adjacent(X, Y) may be computed by calling the system-built-in function g!adjaCéﬁz(X ;7 Y)
using clause: adjacent(X, Y) « g_adjacent(X, Y)

The second approach, on the other hand, uscs the is operator to instantiate a variable. For
instance, the clause "w is window", will cause w 10 be instantiated and retumns the identifier of

the current user_created dynamic objcct: window.
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4.3 Query Examples
In developing the above querying language, the motivation is derived from the desire to
capture in a logically clean way a number of scenarios whose most salient features are depicted in

the following examples.

4.3.1 Conventional Queries

As previously mentioned, conventional queries can be divided into two categories: location
based queries and attribute based queries. The proposed language embodies an Dbjectsaﬁémed
declarative query interface that can be utilized to specify both types of queries easily. To jﬂstify
this, the following two query cxamples will be considered.

The first query is: "find all the pested forest within the chosen window". This is a typical
location based query. Such a query can be simply specified by: -

Forest .. X[pested > truel, g_inside(X, W), W is wir;dgw,

where Forest is a type name, pested is a logical predicate, X and W are object vériables. and .
g_inside and window are system-built-in functions.

The second query is drawn from an ccosystem for forest pest control. It is well known Lhai. _
forests arc a major ecological habitat. Specics cempasilinrx_, ‘productivity and gmwth; nutrient
cycling and organic export have been found to be related closely to weather conditions such as
temperature, humidity, etc. The following query requests information about forest pests. Particu-
larly, for each such pest, it requests the name of the pest together with the names and breeding
conditions of all its natural enemics. |

pest: X[ name = Y,n_enemy —=>{Z[name — W ,breed_cnd — C[temp — T ,humidity — H1}].

4.3.2 Dynamic Object Queries

The proposed query language supports the notion of dynamic object in the sense that it
allows users to posc querics about an area (or a location) of interest. In general, a successful query
is subject to three conditions: First, the user needs to sclect an area (or a location) of interest.

Secondly, the chosen arca must be bound to a data type (the default type for a location is point,
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whereas the default type for an arca is region). Lastly, querics must be restricted either to

geometric features or to spatial attributes.

Case 1: Examine a query illustrated in Example 3.4. Assume, without loss of generality, that
regions R/, R2, and R3 are bound 1o type: Forest (i.c., Forest :.{Rl, R2, R3}). and
population_distribution is a spatial attribute of type Forest. Then the query: "How many trees in
the shaded rectangular arca?” can be specified as follows:
Forest :sW{ave(population_distribution) — Y], W is window

Answer: Y = <45, 356> (i.c., Palm = 45, Papaya = 356)

In this example, the intended arca W is created using the syslemsbuil‘l-iij function window,
and bound to type Forest. The autribute population_distribution is implicitly derived from R/, R2
and R3, whereas, the expected value of the population distribution of the region is obtained using

the aggregate function ave.

Case 2: Assume that attributcs age and children arc nonspatial attributes Qf type Parents. Then
the following query is invalid:
Parents : ;Wiage = Y, éhildrgn > (X}, Wis winda'w_
Answer: Y =Undefined, X = Undcfined. |
It should be pointed out, however, that subject to type compatibilitics, the proposed
language does not preclude the possibility for users to associate values to any attributes of an
object. For instance, the clause "camp :.P[name="Youth Summer Camp’,enrollment=50],

P is cursor" defines a new camping sitc on a map, using the system-built-in function cursor.

4.3.3 Meta-Data Queries

As analyzed in chapter 2, mecta-data queries are cssential to geo-data interpretation and
understanding. A salic:it feature of this type of query is that they necessitate reasoning iilf?rma*
tion about the type of a given object. For instance, the queries "What is R1?" and "What are the

possible pest classifications in R1?" can only be answered by considering the type definition of
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region R1. In fact, the above queriecs may be expressed by using clauses such as fype(R1) and
type(R 1)[ dom(pest) — Y], respectively.

Since the proposed language is strongly typed (all objects, attributes and parameters in a
procedure have types), precompilation of the query language is possible. The process of precom-
pilation is divided into two phases: 1) check the consistency of types of the same variables in the
objects, attributes, procedures and predicates. 2) merge the types of the same objects to derive the
minimal set of compatible types. The result of the second phase can be used to support meta-data
querics.

For this purpose, a partial order relation < among all data types is defined: given two types
typel and type2, typel < type2 if typel is subsumed by type2, that is typel is compatible with and
more restrictive than gypeZ. Clearly, the partial order relation < can be derived by either tyne
inheritance relations or rule statements. For instance, the primitive data types of geo-primitivés
arc point, curve and region. Hence, R 1 is nccessarily a region. On the othe‘r}_hanid, R1 is also clas- ¢
sified as Forest by thc DBMS. According to the principle bf type inheritance (i.e.,

region : . Fores?), the correct answer to the first query is type(R1) = Forest.

4.3.4 Knowledge Based Queries

Many geographic concepts and processes can often be expressed in terms of sets of rules.
Deductive languages hold potential for rcpresenting these concepts and processes at a high level,
since these languages are rule-based. Unfortunately, it is often awkward to adopt a purcly deduc-
tive approach in spatial databases due 1o its limited capability in supplying and maintaining fac-
tual data, and its weakness in dealing with compulation-intensive units. The proposed query
language intends to overcome these weaknesses by integrating the power of object-oriented spa-
tial databases with the methodologics of deductive databases. First, it supports a declarative high
level query interface by defining many new propertics using deductive rules. Secondly, factual
data and complex structures arc stored and maintained in an object-oriented spatial database. As
the result, many complex rcasoning tasks (i.c., object inheritance, spatial inheritance, etc.) can be

directly performed within the DBMS. Thirdly, database manipulation primitives and some spatial
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properties are defined by procedurcs implemented in the procedural language C. These pro-
cedures are either called by the proposed query language or invoked during the course of query
processing.

In the query processing, each input parameter of a procedure must be instantiated before the
procedure is called. The parameter in a procedure can be instantiated by query constants, database
accessing, or the process of computing information from other procedures or terms.

To explain knowledge based query processing in more detail. Examine the database illus-
trated in Figure 4.1, that consists of two regions A and B, and a river R. Assume that both A and B

are classified as unuséd-spaces, and their elevations are 100 feet and 95 feet, respectively.

region: W
curve:  River, region: . floodplain

Procedure g_boundary(curve: X, region: .Y)
Procedure g_overlapped(curve: X ,curve: . Y)

Procedure g_ncighbor(region: ;X ,region: . Y)

Function region: , window

Figure 4.1 An Example of Knowledge Based Query
Assume that the following rules are adopted to determine if a:rcgian ispartof a lIb(')dplain:
1. floodplain : ;X « X[landuse — ’'unused’, elevation < 150], |

river 1. Y, adjacent(Y,X)

X.elevation £ Z, elevation, X[landuse — "unused’)
3. adjacent(X.Y) « g_boundary(Y,Z), g_overlapped(Z,X)
4, adjacent(X,Y) « g_neighbor(X,Y)
The first rule indicates that X is part of a floodplain if X is adjacent t0 a river and X is a

piece of unused land with elevation less than 150. The second rule claims that X is part of a flood-
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plain if X is adjacent to a picce of floodplain and its elevation is less than its ncighbor’s. The third
rule states that a curve feature is said to be adjacent to a region feature if the former featre over-
laps the boundary of the later featurc. The fourth rule concludes that two regions X and Y are con-

sidered to be adjacent to each other if the condition g_neighbor (X, Y) is satisfied.

Suppose that it is necessary to find if window W in Figure 4.1 is part of a floodplain (i.e.,
floodplain :W). The query processor is driven by a resolution process similar to the standard
deductive approach such as in [Kifer89] except that the processor must decide whether the current
term is a procedural call, a database access unit, or a deductive term. In this case, the query pro-
cessor delécts that the term "floodplain : ;W" is not a procedure call, using the system procedure
lookup table. On the other hand, since W is a dynamic object and floodplain is necessarily a
region, asscriion "floodplain : ;W" must be derived from the domain of regional objects. There-
fore, a spatial scarch based on the location of W is invoked. According to Figure 4.1, this search '
process returns two objects A and B. In other words, in order to show "floodplain : W", one must
first prove that "floodplain : ;A" and "floodplain :;B" are true. Again, since both assertions are
not facts, attempts aimed at trying to verifying these facts by accessing data arec doomed failure.
Hence, the query processor resorts to deducing these assertions. Clearly, according to rules 1-4,
after a member of steps, the query processor is able to conclude that W is part of a floodplain.
Note that during the resolution process in verilying "floodplain : ;A" and "floodplain :B", both
system-built-in procedure calls (i.c., g¢_neighbor, g_boundary, g _overlapped, cic.) and database

accesses (i.c., A[landuse =’ unused’, elevation < 150)) arc involved.

4.3.5 Geo-Data Generalization Queries
In an interactive information system the interface must be user-friendly and the required
opcrations must also be performed fast. In the case of a GIS, this implies that the user should be

able to look at the data in several Ievels of detail. There are several reasons for this:

. If too much information is presented to the uscr at one time, it will be difficult for the user
to perceive the relevant information. In fact, it is easy to make a GIS produce reams of out-

put that will be of little use and can obscure important results.
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¢  Unnecessary detail will slow down the display of information. This is especially true for

sub-pixel size drawing primitives, because these are hardly visible and thus time is wasted.

to miss important information. To achicve this goal, the following measures arc taken:

1)  User friendly interfaces arc included to highlight important information while filtering out
unnecessary detail. These include the ability for the user to select various metric spaces,
legends, colors and pattemns. In particular, 4t a higher level metric space, many unnecessary
details can be omitted, i.c., rivers may be perceived as curves, citics may be perceived as
point icons, clc.

2) The proposcd query language takes advaniage of both object-oricnted fcatures and the
declarative query interface. It is capable of modeling fcatures such as Sclé, and - the
class/subclass hicrarchy. It should also allow users to define concepts and pose queries at

higher levels. Such a language results in releasing the user’s burden of understanding and

3)  The proposed query language provides ways for uscrs 1o summarize information to obtain
concise measurcs of their characteristics. This is achicved by cither calling aggregation -

cluster_d, ctc.).

The following example is drawn from a typical flood protection application, To develop a
flood protection plan, it is necessary to evaluate flood risk and the expected value of damage to
the propertics of an area resulting from a flood. In all cases it is necessary to be concerned with
the discharge pattern of river systems at different arcas. The discharge data, on the other hand, are
collected at various gauging stations. Since there are several hundred gauging stations in the
country, it is desirable to be able to get concise measures of their characteristics. To this end,
those gauging stations with similar discharge patierns are clustered together using the following
clause:

gauging _station : X([category is m_cluster(Y,0.3), Bargraph is select(Y), discharge — Y|
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where m_cluster(Y,0.3) indicates that objects are grouped together subject to the constraint that
the standard deviation of any object with respect to attribute value Y is less than 0.3, Bargraph is
a user interface procedurc which results in a bargraph to be displayed, and discharge is an attri-

butc of type gauging _station.

gauging _station: X [category is m_cluster(Y,0.3) .bargraph is select(Y) discharge — Y]

Figure 4.2: An Example of Aggregate Response
As the result, gauging stations with similar characteristics are clustered together. Morcover,
since water discharg& has much to do with gcography and climate, spatial correlation among

gauging stations is evident.

4.4 Conclusion
The proposed language provides direct support for the basic features of the cognitive map
model including the semantic aspects of spatial data, the notion of spatial-orientation, and the

ability to specify and manipulate uncertaintics. The following summarizes some of the major
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advantages of the proposcd calculus:

Semantic Data Modeling: The proposed language authentically reflects the semantics of the
underlying data model. First, in the proposed language, a term will have two meanings since it
can be used both for denoting a class of objects and for indicating whether the denoted object
satisfies certain propertics. Sccondly, the rclationships between an object and its altributes are
naturally spcciﬁcd by their syntactic position within thc corresponding term, whereas, the metric
relationships and the other object relationships can be specified as predicates. Many query exam-
ples show that the proposcd language uses notions that closely match the user's understanding of
the complex structure of the data. In particular, concepts such as sets, attributes, predicates, com-

plex relations can be expressed in a clean and uniform scuting. Morcover, the proposcd I:mguage '
not only expresses complex spatial objccls'wilh case but also supports the manipulation of spatial

objects at a level of abstraction appropriate for the processing involved.

User and Programming Interface: The proposed language provides cfficicnt and cffective com-
munication between a user and the query language, and between the query fanguage and a pro-
grammiing language. First, the proposed q.ucry language cnables users to manipulate the informa-
tion about featurcs of spatial objcct at a high level of abstraction, It also allows the specification
of spatial relationships as scarch criteria, and supports the dynamic view of spatial phenomena in
terms of windows and ‘objccl constructors. Sccondly, the proposed language is a high‘ level and

logic-like language that can bc embedded naturally in programming language components.

Ot).iegt and Spatial Reasoning: Sincc the scmantics of the data are explicitly built-into both the
data and the query language; many rcasoning tasks can be directly performed within the database
management systems. For instance, forward chaining, backward chaining, inkeritance, nonmono-
tonic inference become possible. Morcover, the languiage also lends itself conveniently to many
spatial reasoning provlems: 1) the computation of both absolute and relative metrics between
arbitrary combination of point, linc and region features, 2) spatial windowing, i.c., computation of

the distribution of both spatial objccts and spatial features for an arbitrary region, and 3) path



strategies such as ncarest neighbor path development, ete,

Uncertainty Modeling: Perhaps the strongest endorsement of this language is that rather than

rejecting uncertain data, and attemptirg to ignore uncertainties, the proposed language keeps them

as uncertain data and processes them as uncertain information. For this purpose, a measure of reli-

ability has been defined in the previous chapter, and this measure of reliability is explicitly incor-

porated into the proposed language.

Database and Knowledgebase Coupling: The proposed data model encourages such a coopera-

tion in following ways:

Data scmantics are coupled with the data and used by database systems, i.c., semantic
tasks can be directly performed within the database management sysiem.

The data model provides a common scheme for both data and knowledge representation, as
well as a means of knowledge inferencing and data processing. In contrast to traditional
logic which suffers from a voracious demand for data and cncounters a combinatorial explo-
sion before reaching a conclusion, the proposed calculus is based on an object-oriented logic
which is capable of sclectively modeling certain higher-ordur features such as sets,
class/subclass hierarchy, and abstract data type. These features are considered to be crucial
for any logic to be uscful in nontrivial problem domains. For instance, in the proposed
logic, object identitics are commonly used. In ihis way, deductions can be performed at
higher ievel of abstractions without having to consult the underlying database management
systems most of the time. On the other hand, the databasc management system can provide

support for rcasoning with factual data and formulating explanations as necessary.
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Chapter §
Physical Data Organization
In a DBMS which consists of both primary and sccondary memory, datu processing time
depends on how cfficient the underlying model is implemented in terms of two-levels of structure
models: the primary memory data structurc and the sccondary memory data structure. This
chapter consists of three parts. First, in Scction 5.1, a sct of generic spatial operations pertaining
to the cognitive map model is provided. Sccondly, in Scction 5.2, data structures at all levels are

presented. Lastly, Section 5.3 concludes with the main contributions.

5.1 The Basic Spatial Operations

Many existing GIS designs and implementations are based on the so called the single
cohesive approach [AS90]. In the single cohesive environment, a GIS is considered to be a spa-
tial processor (SP) operating on a spatial database. Users and applications get information by
passing a request 1o the spatial processor, which navigates the database to find the answer, which
is then returned to the application. In this way, the details of the database implcmemzuinn'am hid-
den from the application, and other uscful functions like concurrency control and ;msh recovery
can be handled. By using this approach, a spatial operation is perceived as a two stcfg prﬂﬂcss:
first, retrieve the spatial data and sccond operate on it. In particular, query processors simply
retrieve geographic data using spatial and attributc keys, leaving more complex geographic
modelling and cartographic tasks for the application programmer.

The principal drawback of this approach is the difficulty of application development. If the
problem cannot be solved by the query processor, then an application program must be writlen
that extracts the relevant information and solves the geoprocessing problem itself. To be useful 1o
the user, however, such a query operator must be very sophisticated - knowing thematic overlay,
set operations, attribute modelling, cte. Since grouping of all kinds of functionalitics into a single
unit causes problems such as overhead and complexity, a system built in this manner is difficult

to maintain, grow and change.
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To overcome this problem, the techniques of modular software design and development
nave been adapted in the cognitive map model. Using this approach, all sofiware development is
organized around the concept of a module. A module is simply a collection of routines that work
together to definc a data structure or to perform some function. Modules are entirely self-
contained - the code within one module interacts only with the code outside the module by well
levels - the metric level, the object level, the attribute level and the primitive level. The cognitive
map model can be defined as the sct of appropriate and useful tools that operate on these objects.
Complex query processors can be created by combining predefined generic operations.

The basic operations associated with each level can be summarized as follows:

e Maetric level: 1) The pick operation - The user selects a point P = (x,y)ona infa,p displayed
on the screen with an input device such as a mouse or tablet. He wants to know which
object sclected; 2) the windowing operation - The user wanis to se]eci all objects within a
given window or region.

e Object level: This level provides support for queries and operations related 1o the fallawing o
concepts: 1) the object/topological relations - Queries in a spatial database are ofien basgdi
on the relationships among spatial objects. For example, in geographical applications typi-
cal spatial queries arc "Retricve all cities adjacent to the Santee river” or "Find all paths
from city A to city B"; 2) the objcct types - Users may wish to select all instances of an
object type (c.g., "list all floodplains on the map"), to pose queries concerning type inheri-
tance (c.g., "find all line features which are both rivers and transportation links"), or to find
the specific type of an objcct (e.g., "what is the meaning of an integer on the mép?“)é

e Attribute level: Complex object querics and operations based on attribute constraints.

e Primitive level: Location-bascd querics together with a variety of location-based operations

such as overlay, interscction, union, difference, cle.



-73 -

5.2 Design of Efficient Structure Models for the Cognitive Map Model

If the semantics of a data model admit a decomposition into several componenis, then it is

possible to focus attention on developing data structures that arc best suited to cach components,

appropriate choices as dictated by the problem at hand. In particular, two issucs will be émii

sidered: The first issuc concerns the problem of access 10 objects according to spatial and/or attri-

bute constraints, whereas, the second issuc deals with the retricval of relevant information from .

5.2.1 A Guideline for Selecting Application Specific Structure Model
For a given application there exists an optimal database implementation. Such a scheme can '

be defined as follows:

Definition 5.1: Given a scquence of range queries @ = {qy,....4,) and a sct of all possible
structure models, say S, for a spatial databasc. Then s € § is said 10 bc an optimal structure

model with respect to the windowing property iff

i
Ik

7w;t(q,,-..s")f;,(‘?';s")s’ = S}.

i=]

] ,
Y wit(q;,s)fi = min {TI T
i=1

where w; is the weight factor assigned to query q;, t(g;,s”) is the processing time for query q; in
structure model s’, and f; is the frequency of query ¢;. |

The above definition is purcly formal. It can, however, help us (o understand the implica-
query is typically unknown before hand, it can usually be estimated using simulations. Secondly,
according to [VC89], various structurc models can be classificd using the notion of hybrid data
models. Thirdly, application specific querics are all variations of three fundamental querics: 1)
location-bascd querics (i.c., given a location, what arc its attributes?); 2) attribute-based querics

(i.e., given an attribute, what arc its locations?); 3) hybrid querics - These querics are both
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attribute-based and location-based. For instance, thematic overlay is a typical hybrid query.
Thematic overlay involve the complete traversal of the input structure representing two or more
themes. Each region of onc theme is overlayed by all the regions of the other theme which over-
lap the same area, sce Figure 3.2.¢.

Consider a general -hybrid data model for the representation of thematic data. The hybrid
model is based on the method of divide-and-conquer applicd to a vector encoded data structure.
The hybrid model is described by introducing a tesscllation to subdivide an area of interest into a
set of adjacent cells. This tesscllation component of the model serves both as a partition of and as
an index to the vector data. Within cach cell, the thematic data is still represented by the vector
component. The subdivision of the tessellation component is allowed to continue to any level of
resolution. If the resolution is that of pixel size cells, then one limiting case (i.c., the maximum
allowable resolution) of the model is achicved, namely, a raster structure. At the other extreme, if
the resolution is limited o a single ccll covering the entire area, then the other limiting case is
achicved (i.e., the minimum allowablc resolution), that is, a vector data structure.

Cabay and Vanzella compared different structures for performing some common Q?Efalions o
[CVY0]. Their results can be summarized as follows: First, the structure offering the best
altribute-based performance is vector. The cost with the hybrid structure is somewhat more costly
since there is the potential for processing of irrclevant vector daia. Secondly, the structure offer-
ing the best location-based performance is tessellation, The cost with the hybrid representation is
slightly more cxpensive. Finally, hybrid queries such as the thematic overlay operation require
retricval and processing of entirc themes regardless of the representation used. The hybrid model
combincs the advantages of both lcsscllbuﬁcm and vector modcls. Retrieval cost is kept to linear
like a tesscllation method, but the amount of data involved is substantially less. The cost of pro-
cessing vector data is improved over a totally vector approach [VC89).
provides us with a mcasurcment on the performance of various operations: The higher the resolu-

tion threshold value, the better the model towards 1o location-based queries. On the contrary, the
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lower the resolution threshold value, the better the model towards to attribute-based querics.
Hence, the problem of selecting an optimal structure model is reduced to the problem of finding
gaining anything from divide-and-conquer mcans that a suitable intermediate formulation of the
hybrid model must be detcrmined. A specific intermediate formulation of the hybrid model
depends on the nature of the application, especially the type and quantity of data and the types of
operations applicd to the data.

Assume, without loss of gencrality, that the range of the resolution parameter is between 0
and 1 inclusive (i.c., [0,1]). Let r(g;) be the best threshold value for query g4, and r, be the best

threshold value for a given application, then r, can be determined using the formula below:

In practice, the value of r(q;), i=1,...,n, can be determined as follows:

il q; is a location=bhased query
r(q;) = where O<k<l1,il q; is a hybrid query

il g; is an attribute —based query

where & can be obtained by simulations on actual data.

5.2.2 Structure Model Considerations for Expert System Applications

The previous discussion reveals that there exist no single structure model that is efficient for
all applications. To be specific, consider large expert systems in which huge amount of factual
data is kept in a DBMS and deductions arc performed at high level, using rules. The task is o
select a structurc model that is best suitable to these applications.

A distinet feature of an expert system is that deductive querics are posed extensively. The
fact that all resolution algorithms arc rooted in the so called Constraint Satisfaction Problem

[Kifcr89] decides that deductive querics arc NP hard. That is the worst case time bound for a
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deductive query is deemed 1o be nonpolynomial.

To overcome this problem, an object-oricnted deductive query language was developed in

the previous chapter. The advantage of this approach is that it enables a system to focus its atten-

tion on entirc objects without also having to consider all the other facts it knows. Moreover, the

system is able to incorporate into the knowledge structure additional information that can be used -

to focus the attention of the inference mechanism in the most promising directions. This is

important since straightforward approaches tend to lead to combinatorial explosion [Kifer89].

Aside from query language implecmentation, one must also consider the underlying data

structurcs. We claim that a attributc based model is a suitable choice for such an application. The

justifications arc:

1)

2)

3)

Although the proposcd language allows users to perform location-based operations inside of
a deductive query, majority of ground terms are attribute-based (i.e., given an attribute, find
its locations). This is becausc that most location-based queries are interactive in nature,
whereas, a typical deductive query is usually an automatic reasoning proCch with no or

very little human intcraction.

The proposed language builds its foundation on the notion of object-orientation. To Subpo&' ‘
this notion, at the physical level, onc should model the world as it really is - the World con-
tains individual objccts, cach of which has scveral properties, including location of the
object and relationships to the other objects. It is necessary to store all attributes together to
form a single complex object. Morcover, it is desirable to have a simple and clean represen-

tation for location fcatures. The attribute based models fit the bill [CV90].

Many deductive querics must draw inferences based on cither topological or geometrical
propertics of the underlying objects. Most of these properties must be computed from the
data rcpresentation. An attributc based representation compares favorably with either a
totally tesscllation or a hybrid approach to computing these propertics [CV90, Marx86,

Cam90, Van89].

The disadvantage of sclecting an aitribute based model is also evident - the representation is



inefficient in supporting both location-based and hybrid queries. To alleviatc the problem, an

index file must be constructed on top of an attribute based organization.

5.2.3 Indexed Files

The problem of how to organize data in both main and cxlerﬁal memory $0 as to facilitate
subsequent retrieval of the data is crucial in most large databascs where the sizc of the data pre-
cludes the possibility of kecping all the data in main memory. In geographic databases, this prob-
lem is even more complicated due to the spatial nature of the queries that need to be handled.
Spatial querics are inherently different than ordinary data processing querics in that retricval by
both location and attribute is usually required.

In the following, two techniques, namely, approximate geometric enclosure ElﬂdflppfﬂxF
mate conceptual enclosure, for constructing indexed files for spatially-based query and attribute-

based query will be proposed:

5.2.3.1 Approximate Geometry Encluéure

There arc two basic spatial querics. The first is known as the point-in-object problem which
states that given an object and a point, determine whether or not the point isrg‘ﬂn‘mincd in the
object. The second one is ofien called the windowing operation. In genefil, a window is dc‘ﬁngd
as a polygon. The windowing operation consists of extracting a portion of the objects in the sys-
tem contained in a window. This operation is also known as range search or clipping. |

To be effective, a databasc implementation is required to have a "localization” or "window-
ing" property. For instance, it is not possible to store all potential points that may be requested for
a point-in-object problem. Instead, a point-in-object problem is solved by referring to the infor-
mation in the neighborhood of the given point. Clearly, an optimal structure model musi take
several factors into account, including the types of querics, the system organization, and the size
of the database. In particular, for very large database systems such as a typical GIS, important
search time reduction advantages can be achicved if and only if 1) all the information required to

solve a given prt:blém is stored physically together, 2) only those parts of the data that are
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spatially relevant to the search request reside in main memory.

Intuitively, il is advantagcous o 'gmup a sct of objects which are spatially close to one
another to form a single objcct class, If the object class falls within a range query, then all objects
in this class are qualificd objects, otherwise, if the objcct class is away from the query, then none
of the objects in the class arc candidates. Unfortunately, this simple idea may not work well due
to the fact that the complexity of the spatial embedding function is increased accordingly. To

overcome this problem, the concept of approximate geometric enclosure is proposed.

Definition 5.2: Given a spatial object O in a k-dimensional space R*, Iet f, be the spatial Empcdi
ding functionof 0, i.c., fs:0 = R* and function g: O — R* be an approximate geometry of f.
Then g is called an approximate gecometric enclosure of f, if f.(O) < g(0) is satisfied.

Let W c R* and g be an approximate geometric enclosure of fy, then the following proper-
lies are true:
) Wng0) =38 ->Wnf(0) =2
2) g(O)c W f(O)cW

Since a query with g is made simpler, both above properties are found to be uscful in sljé,l;ial
scarch. The first property can be uscd to narrow the scarch space, whereas the sccond-émp&ﬁy'

can be used to obtain the results ol the scarch quickly.

The following defines the approximate gecometric enclosure for an object class:

Definition 5.3: Assume that an object class O is formed by grouping a set of objects

{Oy....,0,}, and cach object Oy, i=1,...,n, is associated with an approximale geometric enclo-

surc function g;. Then a function g is called an approximate geometric enclosure of O iff g is an
H

approximate geometric enclosure of W gy,

with g favors both windowing operations and point-in-object queries. To be effective, in the cog-

nitive map model, the approximate geometric enclosure technique is used at different levels of
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abstractions: the attribute Icvel (approximate gecometric enclosure for objects), the object level
(approximate gcometric enclosurc for object types), and the metric level (approximate gecometric

enclosure for object classes).

There are numcrous ways of construcling approximate geometric enclosures, the simplest
method is the use of the minimum bounding rectangle for cach dbjccl or objécl class. For exam-
ple, let an object class O contain three objects O, O3, and O3. Then the corresponding approxi-
mate geometric cnclosure for O can be defined as g, where g is the minimum bounding rectangle
containing g4, g2 and g4, which arc the minimum bounding rectangles for O, 0, and 0O,

respectively. Figure 5.1. illustrates this concept.

Figure 5.1 Approximate Geometric Enclosure for Spatial Objects

In general, other techniques such as the minimum bounding convex polygon can be usce o
construct an approximate geomectric enclosure. For instance, the usc of a collection of triangles in
approximating 3-dimensional data has been used successfully in computer graphics, solid model-
ing and terrain data rcpresentations. The advantage of the minimum bounding rectangle approach
is its simplicity and uniformity. On the one hand, spatial scarch with the representation is quite
simple and can be performed cfficicntly. On the other haiid, the user specificd window and all the
minimum bounding rectangles in the system arc U ¢ same with respect 1o shape and orientation.

This uniformity is quite uscful in developing both efficient encoding schemes and scarch algo-



rithms,

5.2.3.2 Approximate Conceptual Enclosure
Attribute-based queries are characlerized by search for objects with specific attribute values.

come this drawback, a technique called an approximate conceptual enclosure is introduced next.

Definition 5.4: Given an object O, let P<0 = = [a,:0,,...,a,:0,] be the property of O. Then
P'<0>=[a':0y,...,a" »:0",,] is said to be an approximale conceptual enclosure of
P<O>iffcithera’;:0'; « a1:0y N, ..., N a,:0, is satisfied or (3/)j € {1....;n} such

that ¢”;: 0", is an approximate conceplual enclosurc of P<Q; =, fori=1,...,m.

In addition, P’ < O > must satisly the following constraints:

. P’ <0 > is less complicated than P < 0 =;

The following introduces three methods for constructing an approximate conceptual enclo-
sure: the projection method, the flattened model method, and the semantic constraint method. As '

a running example in this scction, the following data type is assumed:

CROPS CD: - VEGETATION with
name : STRING(25)|
cat:1.7|

production : INTEGER|
grow_in : PROVINCE|
gross_profits : INTEGER |

PROVINCE SD: = COUNTRY with
pname : STRING(25)|
capital ; CITY|
Semantics constraint:*
(VX)X € CROPS, fy < X.gross_profits < f,,

Figure 5.2 A Schema Specification

2./) and f; are functions with paramelers such as X.cat, X.production, cic.



The Projection Method

Lemma5.1:LetP<0> = [a,:04,...,4,:0,] be the property of 0 and X < {a;,....a,}. Then

nx P <0 = is an approximate concepiual enclosure for P <0 =.

Proof: Directly derivable from delinitions 3.3.4 and 5.4.
Q.E.D.

For a particular domain of applications, it is belicved that queries will be conducted with
respect to a subsct of the whole attribute sct. For instance, the attributes which might be used for
searching a crop record can be: name, cat, production, clc., while other attributes are unlikely to
be used as search criteria.

The selection of subset X is domain dependent. The following provides general guidance in
determining X: If projection is performed on a single attribute then query is most efficient for
exact match and range qucrics on that clustering attribute. On the other hand, if queries are based
on inverted attributes rather than projected attributes then there is considerable degradation in per-
formance. Furthermore, if projection is performed on more than one attribute, the query perfor-

mance gets better as more attribules are chosen for scarch criteria.

The Flattened Model Method

Attributes in a complex object are nested in nature. In general, qi:icrics consult specific com-
ponents of the properties and their atomic attributes at dif: fcn;:m‘ nest levels.

Use the CROPS object class as an cxample, sce Figure 5.2. Suppose attribute prame is also
frequently used as a search criterion, then the clustering of objects with respect to attribute prame
is preferable. In other words, the approximate conceplual enclosure for this example can be
defined as P’ <CROPS > = [przszmzs:f?l ] which transforms a nested relation into a simpler and

flat relation.
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The Semantic Constraint Method

Both the projection method and the flattened model method rely on the syntactic knaw]edgé '
about the structure of complex objects in building indices. The semantic constraint method, on
the other hand, trics to exploit the knowledge about the relations, domains of their instances, and
various constraints associated with them.

To illustrate the main idea, assume that a frequent query has the following form:

Sclect name From CROPS with cat = X, production = Y.

A naive index scheme calls for muliiattribute clustering of the object class CROPS with
respect 1o attributes car and production. This can be costly from the implementation point of
view. However, using semantic constraint in Figure 5.2, it is possible to build an efficient index
with respect to the attribule gross_profits.

In summary, as indicated by the length and breadth of the consideration of approximate
gecometry cnclosure and approximale conceptual enclosure, both methodologics arc among the
most important aspects of indexed access to a large member of complex spatial objects on disk.
The concepts ¢f secondary indexes become even more powerful later, as they are tailored into the

specific structural components in next scction.

5.2.4 Structure Models for the Cognitive Map Model

Due to the characteristics of spmi:ﬁ data, structure modcels for geographic information sys-
tems have a tendency of being awkward. To overcome the problem, there is a clear separation of
the notions of metric space, object type, object, and attribute in terms of implementation. The
advantage of such scheme is that it cnables the system to focus its attention to high level entities,

so that lower level structurcs may stay in the background in a fundamental way.

5.2.4.1 Structure Modeals for the Metric Level
A number of file structures has been proposed for handling multi-dimensional spatial data,
among which there are cell methods [DH86], cell trees [Gunt89], quadtrees [Samet90a], k-d-B

trees [DH86], ficld trees [Frank90], R-trecs [Gutt84] and Buddy-trees [Sec91]. The following



presents a detailed discussion and a systematic comparison of these methods.

5.2.4.1.1 The R-trees

A proper file structure, which is the result of appiying the dppmxirﬁalc gcomélric cnclosure
technique at a higher level of abstraction, is called an R-trcc'[Gutt84, Bc>ck9()]. An R-tree isv
cssentially an index based on sgtial location. Its capabilities in dealing wilh advanced querics,
including dynamic computation of the spatial rclationship between objects, paging and 1/0 buffer-
ing, labels it as an excellent index scheme for high level spatial data retricve.

The underlying assumption ol an R-tree is that there is a spatial databasc which consists of a -
collection of tuples representing spatial objects, and each tuple has a unique identifier which can

be used to retrieve it.

An R-tree is composcd of Ieal nodes and nonleaf nodes with a distinct node called the root.
As defined by Guttman [Guui84], Icaf nodes of the R-tree contain entries of the form:
(l.,_glf;;lc —identificr),
where tuple-identificr rcfcr.sdlo a tuple in the database and 1'is an n-dimensional rectangle which'is :
the bounding box of the spatial objcct index: |
l=(l.0,ll,. condnoy)
Here n is the dimension and /; is the closed boundced interval [a,b] describing the cx'.éﬁt of lvh‘c

object along dimension ¢.

On the other hand, non-lcaf nodes contain entrics of the form:
(1, child —pointer)
Where child — pointer is the address of the successor node in the next Ievel of the R-tree and / is

the minimal rectangle which bounds all rectangles in the descendent node’s entrics.

Let M be the maximum number of entrics that fit in onc node and let m<M/2 be a parame-
ter specifying the minimum number ol entrics in the node. Nodes in an R-tree corresponding Lo
disk pages of rcasonable sizc having valucs of M that produce good performance so that a spatial

search needs 1o visit only a small number of nodes.
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To make an R-tree into a dynamic structure that needs no periodic reorganization and o
ficiently, the following requiremenis arc imposed:

Every node contains between m and Af index records unless it is the root.

For cach index record (/,tuple —identifier) in a leafl node, 7 is the smallest reclangle that

contains the n-dimensional data object represenied by the indicated tuple.

For each entry (/,child = pointer) in a non-leaf node, 7 is the smallest rectangle that contains

the rectangles in the child node.,
The root node has at lcast two children unless itis a leaf,
All leaves appear on the same level,

It s out that the spatial lattice can be graceflully adapted in an R-tree, see Figure 5.3. It is

not surprising since both an R-trec and the spatial lattice preserves locality. In fact, the adaptation

of the spatial lattice in an R-trec shows a humber of desirable features: First, objects that are near

1o each other on the study arca arc near Lo cach other in the file with a high probability of being

stored in the same physical disk block. Sccondly, objects from the same physical disk block are

likely to form a "sub-lautice”. Furthicrmore, both near ncighbor finding and spatial hicmri:hig:ﬂ

rcasoning can be accomplished by scarching upper level nodes in the R-tree.
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The other structures in this catcgory include the R*-trees [Beck90] and R -trees [Gre89). A
survey of the algorithms and comprehensive comparison of the different R-trees can be found in
[Beck90]. The paper concluded that an R -tree performs essentially better than any other R-tree
structure. It should be pointed out that the data structure of the R *-tree is the same as for any

other R-tree. However, the R -tree has completely different insertion and splitting algorithms.



5.2.4.1.2 The Buddy-trees

The buddy-tree organizes records with a tree-based data structure whose intemnal and leaf
nodes are called dircctory and data yages, respectively. Data pages contain only data records
whereas the dircctory pages contain so-called directory entires. A dircclory cntry compriscs a
pointer to a subtree and a rectangle that covers all the records in the corresponding subtree,

A buddy-tree can be implemented using three techniques: clipping, overlapping regions, and
transformation. Overall, the technique of overlapping regions is the most efficient one. In the fol-
lowing, the implementation of overlapping regions on top of the buddy-trec will be revicwed:

To build up the structure, the centres of the rectangles are used as 2-dimensional keys. The
rectangles are inserted in a 2-dimensional buddy-tree. There is one basic differcnee to the buddy-
tree used as a purc point access method. The direclory rectangles stored in the leaves of the kd-
trie are not the minimum bounding rectangles of the centres, but of the whole rectangles stored in
the corresponding subtree. In addition, two kinds of rectangles associated with the structure: the
R-rectangles and the B-reclangles. The R-rectangles are the minimum bounding rectangles for the
whole data rectangles stored in the corresponding subtree, wheteas, the B-rectangles are the
minimum bounding rectangles of the centres, The R-rectangles in a pzigc,‘may have a cc’nﬁméﬁ
intersection. However, the B-rectangles are disjoint,

Spatial querics arc performed without making usc of the B-rectangles. Instead, queries -
require only the R-rectangles. For instance, for a point query, simply fcllow the pointer to the
subtree whenever the corresponding R-rectangle covers the point. The B-rectangles, on the other
hand, are exclusively uscd for insertion. A rectangle is inscried in a page when the centre of the

rectangle is covered by the B-rectangle ol the page.

The Choice between an R-tree and a Buddy-tree
The advantage of overlapping rcgions implemented on a buddy-tree is that insertions and
deletions are supported very cfficicntly. In general, an insertion first assumes an unsuccessful

exact match query. This query is restricted to a single path for the buddy-tree, while the R-tree
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has to traverse almost completcly several paths of the directory. A comprehensive experimental
comparison [Sec91] based on data over six distributions demonstrated that for small query
regions the buddy-tree with overlapping regions nutperforms the R*-tree. With increasing query
region size the R -trec becomes better. The paper concludes that the buddy-tree with the tech-
nique of overlapping regions offcrs a similar retrieval performance and essentially betier dynamic
behavior (i.c., less cost for inscrtions and deletions) than the R"-tree.

Clearly, a buddy-trec with overlapping regions is more suitable in the domain of
CAD/CAM systems, due to the fact that insertions and deletions occur frequently in these sys-
tems. However, in the arca of {arge geographic information sysiems, the majority of opcrations
are information retricvals. The choice for the R-tree as our implementation paradigm is not by
accident at all. The justification is;

[1] The storage utilization of the R-tree is superior to the buddy-tree in all cases [See91]. Since
geographical data files arc extremely voluminous, a file scheme which offers better storage
utilization is desirable. In particular, a typical cnvironmental database may contain millions
of spatial objects. For instance, the Canada Geographic Information Sysiecm which ori-

ginated in the 1960’s [CMS89], has an accumulated data bank containing some 20 million

[2] Although all experimental results shown in [See91] indicate that the buddy-tice with over-
lapping regions offers a similar retricval performance than an R -tree, the results can be
biased for two reasons. First, although the height of a buddy-tree is still logarithmically
bounded [Sce91], the structure is not height balam:ci This implies that the worst case per-
formance of a buddy-tree can be poor despite its excellent average case performance. On the
other hand, an R-tree is height balanced. Thus, R-trees are more efficient than buddy-trees
in handling interactive querics. Secondly, an R-tree preserves locality of domain spatial
objects in a betier fashion than a buddy-tree in the sense that the former clusters objects

according to both shape and size information, whereas, the latter clusters objects according



-88 -

to the location of the centres of the objects. Therefore, in applications, such as a typical GIS
data file, in which there exist high variance in the size and the shape of the domain objects,

a buddy-tree doces not offer a [air clustering heuristic,

5.2.4.2 Structure Models for the Object Level

In general, tuple, tree, lattice and network structures are necessary for modeling various
object relations. According to [Frank91], in practice, the number of different data types in a GIS
is in the order of 100 to 1000 and objccts in a GIS are often classificd in groups and subgroups
with inheritance chains that arc 2 1o 10 classes deep. Hence, for a large and complicated domain,

the use of objcct identificrs for encoding an object reiation is highly recommended. This is

which is RAM resident. It is important [or cfficient updates, deductions, and reorganization since
references do not involve physical pointers which would cause disk accesses. Therefore, object
relations should be recorded as a system file and be loaded into main memory during cach ses-
sion.

Data structures together with efficient algorithms for representing and navigating wple, tree,
lattice and network are well developed. By using the proposed structure model, it is relatively
casy ‘o admit existing methods to the system. Typing and database schema may be perceived as a
special case of object relations. As the result, all type of querics pertinent to this layer can be han-

dled.

It should be pointed out, however, that many topological and object relations are not expli-
citly recorded. They must be derived from a lower level of the representations. To solve this prob-

lem, it is necessary to build an interface between different layers,

5.2.4.3 Structure Models for the Attribute Level

The purpose of the attribute Icvel is two-fold: On the onc hand, it must support the retricval
of spatial objects using attributc constraints; on the other hand, it must support the extraction of

relevant information from the qualifying objects.
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To support the first aspect, index structures arc used that enable users Lo access the objects
very efficiently. Since the underlying assumption of a GIS is the presence of a large number of
complex spatial objects, the use of approximate conceptual enclosure is desirable. In the follow-

ing, the structure models for referencing objects and their attributes are provided.

At the attribute level, objects arc represented as a sct of nested relations. Recently, new
datzbase management systems supporting nested relations have been designed, and a variety of
siorage models have been reported in the literature [KM90]. These models can be classificd into
four storage models, namely, the Normalized Storage Model, the Partial Normalized Storage
Model, the Decomposed Storage Model, and the Flattened Storage Model. Each storage model
has its advantages together with its disadvantages. However, gencrally speaking, if most queries
manipulate cntire the object, then thie Flattened Storage Mcel is preferred; if most queries mani-
pulatc internal relations, then the Decomposcd Storage Model or the Normalized Storage Model
is preferred; if mosi querics manipulate specific individual components of relation tuples and their
atomic attributes at different nesting lcvels, then the Partial Normalized Storage Model is a good

choice. For detailed discussion, the interested readers arce referred to [KM90].

5.2.4.4 Structure Models for the Primitive Level

Natural geographic objccts tend to be convoluted and irregular. They subscquently are not
well-defined in terms of location, shape, and topological relations. To solve these hard problems,
it is usually nccessary to decomposc the objects into a sct of primitives such as points, lines,
polygons, pixcls, quadrants, ctc. A varicly of data structures have been developed for this level,
including quadtree, raster, chain codc, topologic model, POLY VRT, cic [Peuq84, Van86]. These
‘structurec modcls can be classificd into two classes: the vector model aﬁd the raster model (for a
survey on basics the reader is referred (o [Pecuq84, Van86]). The choice of data structure for this
level is, however, domain dependent. In general, a file structure such as a lincar quadtree with a
B-tree or hashing scheme incorporated is considered to be appropriate for large databases [DHS86,

‘Zhou88].
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5.3 Conclusicn

This chapter has identified a number of basic spatial operations in relaticn 1o the semantics
of the proposed model. Two important gencral purpose mcthodologics for indexing spatial
objects according to spatial constraints and attribute constraints have been claborated. Structure
models for navigation of objects according 1o object relations and attributes have also been dis-

cussed.

The distinct feature of the proposcd model is that it has an extensive sct of tools which can
operate on this data model. Uscers can interface with the system either at the basic tool level or
through applications and interliaces layered on top of these tools, The primary gorals‘invlihc
development of this model as a softwarc sysiem have been generality and cxtendibility. “All
modules are scif-contained: the code within onc module only interacts with code ou_lSidc lhé*

modulc by well defined function calls.



Chapter 6
System Performance Analysis

"Performance” refers to how well a system works. It is based on measurable factors within
the system (in terms of system resources) and on functional factors (in terms of human resources).
The performance assessment of commercial GiSs has traditionally taken the form of application-
specific benchmark tests commissioned by individual user agencies. This method is inadequate to
evaluate future GISs since the testing methodology does not allow users to predict performance
levels in terms of functional factors. Literature about performance evaluation acknowledges that
human resource expenditures are at least as imporiant as computer resource expenditures in
cvaluating system performance [ST92]. Traditional approaches deliberately exclude the functional
factors from formal study because they do not lend themselves to quantitative measurement. To
overcome this limitation, a different approach will be adopted to justify the proposed madélg In
particular, the following issucs will be discussed:
e  Efficiency of principal analylical algorithms such as query and updale.
e Siorage requirement for the new scheme. .
*  Functional factors such as casc (o usc, reliability and extendibility. These factors cannot be

measured at all; they arc simply verification that the system possesses specificd features.

6.1 Query Performance

Scarch is a comerstone for both query and update operations. For this reason, a novel search
algorithm based on the cognitive map modecl is developed. The distinct feature of the algorithm is
that it not only takes uncertainty into account, but also handles both object-oriented and

spatially-oriented search crileria.

tial windows, T is the type of the objects to be scarched for, C, is a set of object constraints, C,
is a sct of attribute constraints, U is the uncertainty associated with the resultant objects, and P is

the set of propertics that must be returned, with respect to qualifying objects.



Procedure Search (W, T, C,, C,, U, P)
begin
{metric and objcct levels. )
For given W, and the metric spacc /;
R,,:=Window(l, W, T); R:={};
{objcct relations)
R,,:=Uncertainty-Reduction(R,,, U);
while R, is not cmpty do
ri=head(R ), R,,:=tail(R,);
If Satisfies(r, C,) then R:=R|(r};
end-of-while;
{attribute level. }
Cn:={};
while neither C, nor R is cmpty do
Con:=head(C,), C,:=tail(C,);
If there is no index file for Con then .3
C,:=C,liCon)
else If R is not empty then
begin
If Con is a spatial constraint then
R:=Explore(R, s —lattice, Con)
else
R:=Explore(R, a—latiice, Con);
end
end-of-while
return(Search-lattice(®, C,,. P));
end

Proccdure Explore(O, L, C)
begin
if L = ‘s~lattice’ then sclcct the spatial lattice
else select the aspatial latticc;
choose an index file, /, for C
S:=search ~index(l, C); R:={};
while O is not cmpty do
o0:=head(0); O:=1ail(0);
If there exist r € S such thato £, r(or <) then R:=R|{o};
end-of-while
end.
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The following five subroutines arc invoked in the procedure Search: Function Window

retrieves objects within a window. For a given sct of objects, function Uncertainty-Reduction

returns the sct of subobjects that satisfics the prespecificd uncertainty requirement. Function

Satisfies tests whether a given object satisfics certain constraints. Functions Explore and

Search-lattice test whether a given object satisfies certain attribute constraints by searching the

corresponding index structure and storage structure respectively. In addition, three list operators

3. A heuristic function such as the one proposed in [SP84] may be applied to here as well.
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arc employed: function head is uscd 10 obtain the first clement of a list; function tail retums a

sublist of a list by deleting the first clement of the list; function | combines two lists into one.

6.1.1 Time Efficiency

There are two types of scarches: main memory based search and external memory based
search. To distinguish different types of operations, O, and O, will be used to represent the cost
of disk-based searches and the cost of main memory based searches respectively.

There are three basic types of querics: the simple query, the range query, and the cc:.i'.hplc;%x
query. For a simplc query, cither the location or the value of a single key of an object is specified
as a scarch criteria. A range query involves specifying a range of values or addresses of a set of
objects. A complex query is a combination of simple and range queries using various logical
operators (c.g., AND, OR, NOT, cic). For the purpose of simplici[y, it is assumed that any com-

plex query consists of at most one location based component.

6.1.1.1 Cost Functions for Simple Querics
Assume that simple queries retum a sct of object identifiers. Then the following two possi-

ble cases arc analyzed:

Case 1: Location-Based Queries

Suppose N is the total number of objects, ¢ is the capacity of the data pages (data records
per page), f is the fanout of the intemal node of the tree, s is the average size of the data objects,
assuming the size of the screen is 1, Then the theoretical analysis in [Falo87] shows that the time
complexity for retricving a single object, using a typical R-tree structure is bounded by

N(1+s)
c(1+5)-s(1+N)

Oe(logf ).

Case 2: Attribute-Based Queries

Supposc that a B-tree file scheme is adopted. Let N be the maximum number of objects in
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internal node.

Without loss of generality, assume a fully-packed Ealrec (i.c., every data page contain ¢
entrics, cach internal node has f sons). 1t is not difficult to shéw that the height of the B-tree is
bounded by O (log/M/c). Therefore, the worst case time complexity for indexing a singlc object
is bounded by O, (log/M/c).
for the object and the other for the spatial portion of the system, it facilitates both location based -

and object based simple querics.

6.1.1.1 Cost Functions for Complex Queries -

The procedure is logically divided into three phases: metric and spmial level scarch, object

by the cost of exccution time of these three phases.

The Cost of Phase 1:

Bascd on the previous assumption, a location-based component of a complex query can
either be a simplc query or a range query (i.c., windowing operation). The cost of a. Inﬁaﬁgri?
based simple query as indicated previously is given in [Falo87). In the following, the cost of win-
dowing operations will be analyzed. For this purpose, the formalism in [Falo87] will be followed,
and subsequently cxlgndcd.

As explained in Chapter 5, in an R-tree level, domain objects arc encoded as a collection of
rectangles aligned with the axes. An casy way 10 represent these boxes is to consider them as
points in a 4-dimensional spice. For a box aligned with the axes, four coordinates are cnough to
uniquely determine it (Lﬁe x and y coordinates of the lower-left and upper-right comers).

Since 4-D spaces are difficult (o illustrate, line segments (1-D objects) instead of boxes (2-D
objects) will be considered. In this case, cach line scgment x is uniquely determined by the coor-
dinates of its start and end points (i.c., <x,, x,.>). Hencee, it can be represented as a point in a two

dimensional space.
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Assume that the "screen” for these 1-D objeets is a line segment which starts at 0 and ends

at 1. Figure 6.1 shows somc linc scgments and their 2-D representation,

<0,0> <1,0>

Figure 6.1: Linc Scgments and Their Representations in 2-D Space.

Some important obscrvations, with respect (o the transformed sﬁacé:
1)  There arc no points below the diagonal (i.c., assume x;-= xg)
2)  Linc segments of cqual size, like B and C, arc represented by points that lic on a line paral-
le! to the diagonal; |
3) Linc scgments not entircly within the screen, such as A, are allowed.
To make the analysis lr;u;llnblc, assume that line scgments are af.equal size and are uni-
formly distributed, |
Given N segments (domain scgments) of size s, u!nifcmﬂly distributed on the screen, a line
segment (query segxﬁcm) of size ¢ interseets with intsec(N, s, ¢) segments, Falousos et. al.

showed [Falo87] that

Ty

+5 .,
T2 (N +1),
EIES( )

<y

intsec(N, s, q)

fra—

By the same token, the following lemmas arc cstablished:
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the segments are O, (s,N) scgments, where

S(N+1)
0,(s,N) = ————,
v (5.N) 1+s
Morcover, assume that an R-tree is constructed from the above N segments, then the ine-

quality ¢ > O ,(s,N) is truc.

Proof: By definition, overlap is the average number of segments that intersect a single point.

Hence,

S(N+1)
I+s

0,(s,N) = intsec(N, 5, 9) =

On the other hand, il an R-tree is built from the above N scgments, then a correlation
between parameters s and N must be imposced. In particular, at the leal level, each data page con-
tains ¢ entrics and cvery object that interscets a given page must be inserted as an entry of that
page. In other words, assumc the size of a data page is d, then constraint =

¢ 2.intsec(N, s, d)=20,(s, N) must be satisfied.

‘QJ".D

Lemma 6.2: Given N segments (domain scgments) of sizc s, uniformly distributed on the screen.
Assume a linc segment (query scgment) of sizc g such that g > s, then g covers wilh

Cover(N, s, q) domain scgments, where

Cover(N, s, q) = q=3 (N+1).
1+5

Proof: Consider Figure 6.2, projecting the line AB on the horizontal axis, the line AB’ of size
1 + s is obtained. The query ﬁ*éion interscets the line AB on a segment CD, whose projection
- C’D’ is of size ¢ — s. The fraction of the linc segment falls within the query region is
length(CD)/length(AB)=(gq — s)/(1 + ). Since the line AB is divided into N+1 equal inter-
vals by circles, the line CD will contain on the average (¢ — s)(N + 1)/(1 + &) circles, which

is exactly the number of scgments that the query segment g will cover.

QE.D
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Figure 6.2 Line Scgments Covered by a Query Segment.

The next result, which is atiributed to Falousos ct al. [Falo87], lays a foundation for the

analysis. Henee, it will be restated in terms of Lemma 6.3 as follows:

sons) is constructed from a set of N boxes of size s, uniformly distributed on the screen. Let & be
the height of the R-tree, then /2 = log (N —log,(¢ — O, (s, N)).

Now, the formal analysis of windowing operations for an R-tree will be given.

Theorem 6.1: Assume a windowing operation is performed on a full R-tree constructed from a
sct of N boxes of size s uniformly distributed on the screen. Let /4 be the height of the tree and g
be the size of the query rectangle. Then the total number of disk accesses with respect (o the
operation is Wing(q, s, N), where Wing(q, s, \N) = h + q(f" =1)I(f=1),0r

N N-c¢+ 0,0, N)
Ie=0,6 N 0,6, NyG=1)

Wing(q, s. N) = log

Proof: Since the tree is full, at the ith level, i =0..k - 1, there are exactly £ pages that divide the

screen into £ intervals. Due to the uniformity assumption, cach interval will be of size f -
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According to [Guti84], windowing on an R-tree is as follows. A node, starting with the
root, is brought into internal memory and scarched for the given query window among all entries.
If the node is a leaf node, then cach entry corresponds 1o an object on the screen, Therefore, all
desired objects (i.c., all entries contained in the given query window) with respect to the nodce are
located. If the node is an internal node, then each entry corresponds to a sub R-tree. Hence, all
potential sub-trees must be :-arched further.

The forthcoming analysis can be more casily derived by applying the following simple
observation of the above scarch procedure:

The roots of the potential sub-trees associated wlth the entries that intfzﬁvcct the given

query window at level i, where i=0,..,h-1, must be brought into intﬁrndlmfﬂmi’yi

The total number of disk accesses can be calculated as follows:

h=1 i X .
Wing(q, s, N) = Y insec(f*', f~1q)

i=0

=1 rmi . .
f7+qg

=2 T (f+1)

E’; 1+f (f'+1)

h=1 )
=3 (1+qf")

=0

fh-1

=t +¢q =
L+yq j=]

result of Theorem 7.1, thereflore, follows immediately from the above derivations.

Q,E.D

Theorem 6.2: Assumc a windowing operation is performed on a full R-tree constructed from a
set of N boxes of size s uniformly distributed on the screen. Let g be the size of the query rectan-
gle. Then the total number of objects retricved by the windowing operation on the average is

Win,(q, s, N), where Win ,(q, s, N) = (g = s)(N+1)/(1 + 5).

Proof: Since an R-tree guarantees the correetness and the completeness of windowing operations,
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the above mentioned windowing opcration returns all objects spatially contained in the query
window ¢. Morcover, in casc of a uniform distribution of N objects of size s, The total number of '
objccts retrieved by the windowing operation on the average is (¢ = s)(N + 1)/(1 + 5),

according tc Lemma 6.2.
Q.E.D.

Corollary 6.1: Assume a windowing operation is performed on a full R-tree constructed from a

N, the cost of a windowing opcration is less than 1 disk access per qualifying object. Furthermore, -
the cost of the operation in tcrms of the number of disk access per qualifying object decreases as

the total number of the objects retricved by the operation increases.

Proof: It is not difficull to show that given two arbitrary constants A and B, where A > 0, there
cxists a positive number € such that it N > g, then A(N+1)+B = log/N is satisfied.
Assume h is the height of the R-tree, and g is the size of the query rectangle. Let

A= —2 —andB = -—5- Thenthe following incquality cxist:

2(/-1) f-
h £log/N (By Lemma 6.1)

< g(N+1) __c
T2~ f-1
g+ Ou(s.N)

giN+1)  s(N+1)

B (VIH)C.f—I) (I+Y)Cf 1)

< lg=)(V+1) _ Wine(q, s, N)
(+9)(f=1) f-1

Combining the above results, for a sufficiently large N value, the cost of a windowing
operation in terms of the number of disk accesses per qualifying object can be estimated as fol-

lows:
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Wina(q, s, N) _ h N q(f* -1
Win,(q, s, N) ~ Win,(q, s, N) = (f=1)Win,(q, s, N)

< 1 + qg(1+s)
f=1 (f=-1)(g-9)

1 + 2q
f=1 (f-1)(qg-s)

<2
f-1

Since in general f > 3 must be satisficd for an R-tree, the number of disk accesses per qual-
ifying object is less than 1. In particular, if £ is greater than 30, then number of disk accesses per
qualifying record is less than 0.1. »

To prove the sccond property, et r = (¢ — s)/(1 + s), then according to Lemma 6.2, .rris ‘.
the ratio of the number of qualifying objects to N + 1. Assume also that the height of the R-lrcé is “

h, then according to Theorems 7.1-2, the following is true:

Wina(g, s, N) . _ qU'"-1)

Win,(q, s, N)  r(N+1)  r(N+1D(F-1)
3 h F(1+85)+s =1
T AN+ r (N+D)(fF-1)°

Since parameters A, 5, f and N arc independent to r, it is not very difficult to sce that the cost of a

windowing operation decreascs as the value of r increascs.

QE.D

Validity of the Analyiical Results
The above analysis represents an optimistical strategy in estimating the lower time bound of
windowing operations on R-trees in a sense that it is based on (wo rigid assumptions:
1) The R-tree in hand must be l‘uliy packed in which cvery data page contains ¢ entires, cach
internal nodc has f children;

2) Domain objects must have a standard sizc and be uniformly distribuied on ¢ map.

The first requirement, howcever, can be lifted. According to the definitios of an R-tree (sce

Section 5.2.2.11), the fanout of an intemal node is bounded by the constraint m < f < M. Since a



minimum bounding rectangle can be represented by a limited number of bytes, it is reasonable to
assume that f = m > 30. Morc importantly, in [Zhou88], it is proved that the average storage

The second assumption, however, is more problematic. R-tree bascd schemes tend to
cxperience major performance problems when the spatial database contains objects whose size is
large relative to the total size of the data space. Each data object has to be assigned to exactly one
page whose corresponding region has 10 be cxtended to cover the object. Large objects lead to
large extensions and thercfore Icad to large overlaps between regions that may become large
enough to render the index incfficicnt. As a result it could end up searching a significant portion
of the whole index for a single point query. Furthermore, since spatial data is not usually uni-
formly distributed, data pages have a tendency to form irregular sizes. The price paid for the
nonuniform distribution is that in order to determine the arca covered by a particular object, it
may be necessary to retricve all the potential entries it occupics.

In considering the performance of an R-tree, the concepts of coverage and éverlvap are
important. Coverage is defined as the total arca of all minimum bounding rectangles of all leaf
nodes, and overlap is defined as the total arca contained within two or more leaf nodes.

Obviously, cfficient scarching demands that both overlap and coverage be minimized,
although overlap scems to be the more critical of the two issues. A variation of an R-tree that

avoids overlap at the expense of space is called an R*-tree. The main difference is that rectangles

tangles. In some case in which a given rectangle covering a spatial object at the leaf level overlaps
with another rectangle, we decompose it inlo a collection of non-overlapping sub-rectangles
whose union makes up the original rectangle. All the pointers of sub-rectangles point to the same
object. Morcover, these sub-rectangles can be judiciously chosen so that no bounding rectangle at
any level need be enlarged. The same sub-splitting is propagated up to the non-leaf nodes, thus
overlap is forced to stay zcro.

Despite of continuous cfforts [Falo87, Beck90] to improve the R-trees, spatial access
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methods based on R-trees have a tendency to become awkward should the domain objects be
nonuniform distributed with irregular sizes. Fortunately, various experiments results based on real
data indicates that the chance of worst case happening is very rare. In particular, the importance of
using an R-tree in spatial scarch has been studied in the past [Gutt84, Falo87, Beck90, Sceg91].

The following figure [Guli84] shows how performance varies in terms of the number of records.
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Figure 6.3 Scarch Performance vs. Amount of Data.

The simulation was performed in C under Unix on a Vax 11/780 computer. Each scarch
retrieved between 3% and 6% of the data. The simulation results show that as the amount of data
retrieved in each scarch increasces, the cost of processing higher tree nodes becomes less signifi-
cant. The low CPU cost per qualifying record, less than 150 microscconds for larger amounts of

data, shows that the index is quite cffective in narrowing scarches to small subtrees.

The Cost of Phase 2:

In the proposed modcl, most simple object relations can be represented as a pair of object
identities, whereas more complex relations such as hicrarchy taxonomy can be represented as a
lattice or graph structurc in terms of object identities. It is reasonable 10 assume that a lattice
structure can be explored with « disk accesses, where 4 is a small constant. In particular, from the

experiences in the past, lattice structurcs had been uscd extensively in a prototype cognitive map



system developed during the course of this rescarch 10 model various geographic entities such as
water bodices, transportation syslcms, river systems, geographic arca coverages, ctc. In all cases,
the resultant structures were small enough to be main memory resident. This permits efficient
scarch algorithms for various application programs since references do not involve physical
pointers which would cause disk accesses.

For simple ijch constraints, a straightforward look-up table can be employed which usu-
ally takes O,,(1) per test. In particular, uncertainty reduction may necessitates the expansion of
the taxonomy of object hicrarchy to & lower abstraction level. Since the operation can be easily
performed in main memory, the cost of the operation is bounded by 0, (1) per expansion.

For complex relations such as "and-or" rclations, various cfficient search algorithms from
Al such as A* (situation assessment, pathlinding), AO” (e.g., problem solving, complex spatial

relations) and minmax scarch (i.c., batleficld sensor fusion) can be applied.

The Cost of Phase 3:

Suppose that a B-tree file scheme is adopted for index files, and A is the number of objects
obtained from searching indice. Let N be the maximum number of objects in an index file, n, be
the number of attributes scarched through index files, ¢ be the capacity of the data pages (data
records per page), £ be the fanout of an internal node, o be the cost of merging two layers, L be
the number of thematic layers that have to be accessed by the query.

Phasc 3 consists of two sub-phases: the indexing phase and the retrieval phase:

The indexing phase uses procedure Explore to scarch relevant index files pertinent to the
query. Since B-tree schemes are adopted, procedure Explore takes O (logN/c) steps. The total
cost of scarching index files is, therelore, bounded by- O.(nzlogsN/c).

The retrieval phase, on the other hand, involves scarching storage structures. References to
storage structures are necessary lor two reasons: First, index files usually do not provide suffi-
cient suppont to scarch all attributes: secondly, the resultant objects together with their properties

must be returned,
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The first step is to map object identities onto their master layers. The cost of this siep is
0. ()). Again, since many attributes arc associated with the master layer, attribute constraints ‘3?“’:"
be applicd to further narrow the scarch space from A to A, where Ay £ A. The second step i‘sillc: ‘
retrieves those attributes defined at different layers and merge them with the master laycrﬁ Thc' 7
cost of this step is bounded by O, (A, a(L —1)).

In summary, the total cost of phasc 3 is bounded by O, (n,logsN/c + Aa(L—1) + A),

QE.D.

Clearly, in the cvent where a single object must be retricved (i.c., A = 1), the proposed -
scheme is at least as efficient as any existing GIS. This is because optimal time bounds are deriv-
able from the cost function.

On the other hand, in the cvent that a collection of objects must be retrieved, the proposed

paramcters associated with the cost function.

7.1.1.3 Parameters of Cost Functions
The overall cost of a query is the total of the cost in cach of the three phases. Since d and n,,

are small constants, the dominant [actors in the overall cost function are L, A, and o

Parameter L;

In the worst case, L cquals to the humber of autributes to be scarched (i.¢., cach attribute is
stored as a separate layer) For a nontrivial application domain, L can be very large. In particular,
if every attribute is required, then L cquals the lﬁial number of attributes in the system. On the
other hand, in the best case, L cquals 1 (i.c., all desired properties are stored in a single layer).

Note that the value of L can be simply minimized by merging all attributes into a single
integrated layer. This approach yiclds optimal performance with respect to the cost of data
integration. However, it has the tendency of indiscriminately decomposing objects into many

small regions. The disadvantage is that it is 100 primitive and complex post processing of objects



from many small regions is often required [Gut84].
In the proposed cognitive map model, themes arce clustered at object level using a lattice
model (i.c., attributcs pertinent to the same region can be stored in a single layer). Such an

approach aims at minimizing the cost lor both data intcgration and post processing.

Parameter A:
The optimal value for A is m, where m is the number of the resultant objects. In general A is

greater than or equal to m. To minimize A, the following measures are taken:

Measure 1: The Use of Index Files

One of the major contributions ol the new model is that it explores the search space reduc-
tion potential of an integrated spatial representation that provides a ‘window’ into an object-
oricnted paradigm. Both an R-trec and a B-tree are adopted to improve search efficiency by nar-

rowing scarch spaccs.

Measure 2: Aggregate Response

Conventional responses in databasc systems, usually given as list of atomic objects,
although sufficicnt to scrve the purpose of conveying information, do not necessarily provide effi-
cient and effective communication between a uscr and the system. An aggregate response is a list
of object classes at higher abstraction levels (i.e., all vegetation except immature orchards, all
transporiation links cxcept channels, cic.). Tlic purpose of aggregate response is two-fold. The
first is to improve the throughput of the system by providing concise information rather than
cnumerating individual objects. The sccond is to improve the quality of communication between

the users and the system by providing cxpressions at a Ievel that is easy to comprehend.

Parameter o

Merging geographical data involves spatial scarch at the primitive level. Previous work in

[Falo87] pointed out that in somc applications, many spatial queries such as point in polygon, or



- 106 -

polygon in polygon may also require a scarch to be conducted at the primitive level.

Spatial scarch at the primitive Ievel severely obstructs the cfficiency of most existing GISs ;
due to the huge amount of primitive data in these systems. The proposed model improves the ef] ﬁ-
ciency of spatial scarch at the primitive level in two ways. Firstly, the nurﬁbcr of scarchés that
have to be conducted at the primitive level are significantly reduced. This is because most of the
irrelevant objects can be discarded at the R-tree Ievel without having to consult the underlying
primitives {Gutt84]. In particular, cxpcriments with a prototype cognitive map systcm developed
during the coursc of this rescarch indicated that among 100 various querics, only 13 irrclevant
objects were explored. Sccondly, in the proposed model, spatial objects arc first systematically
mapped onto a metric space, then an R-tree is constructed for cach metric space. If both data
abstraction and geomctric gencralization processes are applied in the first step, then a much
smaller and simplicr primitive structurce results. Empirical results with real data indicates that a
significant reduction in data volumec is achicvable using the gcometric gencralization process
alone. In this way thc number of primitives can be drastically reduced by performing spatial
search at a higher metric Ievel. For example, using a 1:15,000,000 scale of precision, the general-
ization of the world map data from the data bank at the University of Alberta yiclds a 75%-85% -

deduction in data volume.

6.1.2 Storage Requirements

At first glance, the proposcd model calls for a large amount of extra space for incorporaling
uncertainties. Careful analysis, however, will indicate that the proposed model will not result in a
significant increase in storagc requirements duc to its data sharing capability.

First of all, the hicrarchical nature of the data model implics superior performance in terms
of the space requircment with respect 1o attribute data, This is because the organization made it
easy to distribute propertics so that thosce being shared in the hicrarchy are at the appropriate place

for covering the maximal subsct of nodes sharing them,

Secondly, as previously described, geographic objects tend to be poorly defined and their
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boundaries tend to be convoluted and irregular. Hence, they do not iend themselves to a compact
definition and quickly become cxtremely large. The issue of geometric data sharing is impoﬁ.amg

In general, the space requirement for geometric descriptions depends on a few factors such
as the domain of applications, the level of dita integration, and the underlying encoding schemes.
From the data model point of view, the Ievel of data integration is a major concem.

There arc two opposite cnds of a broad spectrum of possible data-base schemes involving
various levels of integration: the separated liyer scheme and the fully integrated scheme.

At one extreme [MOB87], data is represented as a collection of thematic layers, merging only
at scarch time. This method is incflicicnt in tlerms of storage requirements due to the potential of a
large amount of redundant data with respect to geometric descriptions. In addition, since thematic
overlay involves many complex gcometric computations, including inconsistency detection, elim-
ination and prevention, the model is also inefficient in terms of computational complexity.

At the other extreme, on the other hand, all layers are merged into a single integrated struc-
ture. The disadvantage of this approach is that it tends to indiscriminately decompose objects into
many small regions. Hence, storage clTiciency deteriorates. Although the scheme avoids the issue
of data integration, the abscnce ol the ability to index spatial objects at a higher abstraction level
is a significant disadvantage. For instance, the problem of finding all objects contained in a given
rectangular area requircs an claborate rcconstruction of objects from many small regions. As a
result, this approach can represent a serious bottleneck in query processing.

Thc‘ proposed model trics to strike a balance between these two extremes. Firstly, with this
modecl, themes that tend to share a great deal of their geometry can be integrated at a master data-
base layer in order to prevent high initial access time for a merge process on one hand, and to
have a more compact represcntation on the other hand. Sccondly, themes which show little spatial
correlation can be represented at different layers to avoid producing many small regions and to

improve the cfficiency of high level retricve processes.
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6.2 Update Performance

Update in a cognitive mzxp' model can take place at different levels of abstraction.. The
notion of semantic hicrarchy together with the representation of spatial objects through Dbjcél
identities allows the system to have data independence, integrity and uniformity. Firstly, and most
obviously, the physical scheme can be changed by a database administrator without altering the
data model. The advantage of this data independence is that it allows "tuning” of the physical
database for cfficiency whilc permilting application programs to run as if no change had been

made. Secondly, at the object level, it permits efficient updates and rcorganization since refer-

to improve its representation at dillerent levels o include new factors and descriptions by means
of assimilation, sce sections 6.3-4 for a detailed discussion.

The time complexity of updaic at the attribute level is the same as that of Search. This is
because the model guarantees consistency as data is only stored once and derived from there, i.c.,

no derived propertics need to be updated explicitly, but only the fundamental propertics.

6.2.1 Functional Factor 1: Advanced Data Integration

Th.crc are three scenarios that must be considered with respect Lé thematic layer imcgr&liom
1) Dataintegration between wo sociocconomic layers.
2) Data integration between one sociocconomic layer and one categorical layer.

3) Dataintegration between two calegarical layers.

6.2.1.1 Problems with Existing Integration Methods

Traditionally, data intcgration in GIS is done by means of thematic overlay. A layer is
defined as a polygon network with each polygon associaled with an unique attribute value. The
thematic overlay operation involves two layers of polygon networks and consists of applying the
intersection operation to cvery possible pair of polygons, onc from cach network.,

Thematic overlay provides a natural way to model geographic phenomena at low abstraction



levels. By overlaying many different thematic layers, the system obtains the set of subobjects of
all the objects defined in the original layers, i.c., the highest lower bound of the sublattice struc-
ture induced by these layers. There is no doubt that thematic overlay plays an important role in
geographic data analysis. It is also onc of the most important topics during the course of the
development of GIS technologics.

It has been widely accepied that the existing thematic overlay algorithms for data integra-
tion have the following two limitations: Firstly, they are unable to integrate data at a level that
matches the human'’s spatial rcasoning style. This is because thematic overlay tends to decompose
polygon networks rather than the other way around. Secondly, both attribute and geometric errors
arc largely ignored. In realty, geographic data are subject to a high degree of both geometric and
attribute errors. Morcovcer, in priaclice, these 1wo types of errors are difficult to disentangle. For
instance, a most common form of error in an overlaid layer is called a sliver. A sliver occurs when
a boundary between two layers is represented slightly differently in two source maps of the over-
laid layer. This causes two problems: 1) a small unintended zone is created; 2) database integer-
ity is violated (i.c., contours may cross onc another).

Various models for modeling sliver crrors have been reported in the literature [Good92b].
These models are all variations of the epsilon band model. Using these modecls, a line on one map
which lies within the cpsilon band of a linc on the other map is assumed to represent the same
line on the ground. By snapping these two lines together any associated slivers can be removed.

The above approach suffers from Lwo major problems: First, since a sliver error in a
categorical layer is likely to be caused by misclassification, the epsilon band approach does not
provide a sound base for crror modelings. Sccondly, although snapping can be used o remove
inconsistencics, it is too primitive. For instance, linc A can be found to lie within Iiﬁe B’s band,
indicating A and B are the same: A can lic in line C's band, indicating A and C are the same, but

line C can lic outside line B’s band. In this case, it is casy to generate new inconsistencies.



- 10 -

6.2.1.2 Advanced Integration Capabilities

The proposed model takes geometric crror, attribute crror, and data abstraction into its

account. Therefore, it supports many advanced integration capabilitics:

High Level Data Integration

The proposcd model provides users with the capability to integrate. some thematic layers
onto a master layer without destroying the geometry structure of the master layer. This fcature is
often desired when geographic information encoded on many thematic layers (e.g., categorical
layers) must be censused and aggregated into a collection of prespecified divisions (i.c., a
sociocconomic layer). In this case, cach object in the master layer serves as a spatial window,
within which propertics defined at other layers are integrated using the operator V. Morcover, by
mapping sourcc layers onto the desired metric space, the gcomcltric uncertaintics can usually be

either reduced or absorbed. This will greatly improve the efficiency of the various algorithms.

Thematic Overlay Between Socioeconomic Layers _ |

As previously described, sliver removal is a key issue in thematic overlay. One way to get
around the proﬁlcm associated with the naive snapping method for sliver removal is to record the
sliver as a statistical data typc with more than vne possible outcomes. The disadvantage of this
method is that it is too conscrvative in a sense that it never deletes any trash data. This may lead

10 a disaster as more and more curves join the tcam alter many overlay operations.

It turns out that in the px'Op()sé(i modcl, topological constraints, metric constraints and sta-
tistical data types can be tailored into the cpsilon band approach gracefully for capturing the data 7
uncertainties and climinuli‘ng déu:x inconsistencics. lTo justify this claim, the follbwingl algorithm
is provided to handle the sliver problem:

Assume that sociocconomic lil)"Cl'S arc encoded in terms of POLYVRT structure. That is
each layer consists of a collection of polygons, and cach polygon in turn consists of a collection
of curves. Morcover, a curve of length # is defined by a scquence < VsiPls-e s Pa-1:Ve> where

vy and v, are vertices of the polygon, and py, .. ., p, are points of the curve.
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Assume that a sliver is detected between v, and v,. In other words, two altemnative curves

(i.c., cy=<Vg,P1,... PiVe>and c3=<vs,qy,...,4;,v.>) arc found. Then the following

three cases are handled as follows: |

1) c¢y's epsilon band lies inside c;’s. Remove ¢; from the map;

2)  ca's epsilon band lies inside ¢ |’s. Remove ¢ from the map;

3)  Otherwise. Apply both mettic constraints and topological constraints to refine the measure-
ments of the curves and to eliminate inconsistent curves. Record remaining curves as a sta-
tistical data type with many possiblc outcomes. Each takes the odds of the relative accuracy
of the corresponding curve,

Figurc 6.4 illustralcs a situation in which traditional overlay algorithms indiscriminately
remove sliver polygons, which results in disappearance of an entire region from the 'map. This

problem is avoidable using the proposed scheme.

Topological Knowledge:
A ISPART of L1
- B ISPART of L1
il B CISPART of L1
-= Action: Merge(A,B,C)
Topological Knowledge:
E ISPART of L2
D ISPART of L2

-> Actlion: Merge(E,D)

Previous 4
Scheme

Metric Constraint:
Max_dis(L1,L2)=[10.5,11.5]
== Decision:
Merge(AB,CO) = A
Merge(D,E)=E

cver is more accurate from the source layers; 2) it avoids the problem of unsafc snapping by using

statistical data types for uncertainty representation; 3) it allows the curves to adjust their shapes



dynamically, according to ncw information.

Both metric constraints and topological constraints arc nccessary for resolving inconsisten-
cies. Firstly, metric constraints must be used 1o refine the measurements of the some domain
objects. Then topological constraints must be applied to refine the measurements of the other

objects and to climinate systcm inconsistencics.

Thematic Overlay Between Categorical Layers

In the arca of attributc crror handling, the statistical nature of the new model lends itsclf
conveniently to modcling, quantifying and reasoning attribute uncertainties. As an example, the

two catcgorical layers.

Assume the input of a thematic laycrvis cncoded as a sct of linear quadtree nodes ard;red in
ascending key order, with cach node stored as a record consisting of four ficlds. The first two
fields, termed KEY and RES, contain the key and the resolution parameter of the nc:déi rgsécc-r
tively. The third ficld, tcrmed ID, identilies the class containing the node, The fourth ﬁeld; 1crrned
PRO, is the probabilistic distribution function,

Let L be a list of nodes representing a layer, and Lo be a list of nodes representing another
layer. The overlay of thesce two layers is obtained by the following procedure termed Overlay.
Function Id-generator creates a new identifier for a new class in the overlaid map; function V
integrates the knowledge about the distribution of spatial phenomena from two different sources
to yield a morc authentic probabilistic distribution function about lﬁc reality. Function

Contains(Q;, Q,) is uscd 1o determine whether node Q5 is spatially contained in node @, A

Function NewNode(Q;, Q1)
begin

New —ID:=Id-gencrator(Q, .1D, (Q..1D);

New —PRC:=V(Q;.PRO, Q. .PROY);

retum <Q4.KEY, Q.RES, New —1D, New —PRO>;
end.

4. In other words, whether the condition Q.RES2Q,.RES and O, .KEY<Q, .KEYSQ, .KEY +4**Q, .RES
is satisfied, sce [DW86].
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Procedure Overlay(Ly, Lj)

begin
R-list:={};
Qi :=head(L); Qa:=head(L,);
while (L # NiL and L5 # NIL) do

Case

Q,.KEY = Q5.KEY and Q,.RES = Q,.RES: 7
append NewNode(@, Q2) 1o R-list; :
{forward both lists.}

Ly:=tail(Ly); Qy:=head(Ly);
Liy:=tail(Ly); Qs :=head(L2);
Contains(Q;, Q1): B
append Newnode(Qy, O2) to R-list; _ 7
{forward list L.} -

Ly:=tail(Ly); Q:=head(Ly);
Contains(Q, Q> ):
append Newnode(Q2, Q) 1o R-list;
{forward list L.}
Lzé';tﬂi!(l;g)i Qa:=head(La);
Otherwise: '
if Q,.KEY < Q».KEY then Ly :=1wil(Ly); @ :=head (L),
else Lo :=1ail(LA); Qa:=head(La); ,

end-of case;

return(R-list);

end.

1y

2)

The following steps arc recommended 10 handle the sliver polygon problem:

connected component of the resultant lincar quadirees. Since a sliver polygon is small and
narrow, it can be recognized from the quadtrec description of the region, using features such
as the area, the number of nodes, the maximum and minimum distance, etc.

Sliver Removal: Since the knowledge of the distribution of geographic phenomena is
dircctly associated with cach rcgion, sliver removal is casy. A simple approach can assign
the whole region to onc of its ncighbors, using a strategy such as maximum likelihood.
More sophisticated methods can be applicd to assign surh,e portion c:f’ ihe region to one class
and some other portion of the region 1o another class. The advantage of these methods is
these methods is the complexity of the classification algorithm. Since conventional algo-
rithms treat cach block independently, they have the tendency to yield many small frag-
ments. Hence, spatial convolution operators must be applied to smooth the image. It is

belicved that the simple approach usually results a reasonable good approximation of the
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real situation. More importanily, since the knowledge about the feature distribution is-
directly associated with each node, the structure is able to adapt its shape gracefully accord-
ing to the new information. This is in sharp contrast to the epsilon band approach for

geometric error handling.

Theorem 6.3: The time complexity of overlay is bounded by @,,(n(N| + N3)), where n is the

resolution of the image, N{ and N1 arc the number of blocks in Ly and L, respectively,

Proof: Obviously, the whilc loop takes no more than N 1':-&_- N, itcrations. Again function -
NewNode costs a constiant amount of cxecution time. chcfc, the Lime c;:ornplexitj of pmc«zﬂuré :
Overlay is bounded by O0,,(N| + Na). B | '

On the other hand, the time complexity of post-processing can be divided into four S-mges: -
removal. Since there can be no more than Ny + N3 nodes in the overlaid layer, the first stage
takes on more than n(N | + N32) steps, scc [DW86]. The second stage calculates the distribution
function for each connccted region that also requires less than (N + N3 ) steps. The third stage
involves the calculation of various geometric properties of a region, i.c., area, number of quadtree
blocks, minimum/maximum distance, cle. According 1o the results in [DW86], these calculations
are bounded by 0,,(n(N| + N3)). The fourth stage removes sliver polygons by assigning them
to their neighboring classes. A typical classification process, i.c., the maximum likelihood
approach, takes O, (S) steps, where S < Ny + N, is the number of slivers in the overlaid layer.

In conclusion, thematic overlay takes O,,(n(N + N3)) steps.

Q.E.D.

Figure 6.5 illustrates the difference between a traditional overlay algorithm and the

5. Note: Otherwise, using a B —tree, it is easy 1o show that the lime complexity of overlay can be bounded
by O .(n(Ny + N3)f)), where [is the lanout of & node, see [DWE6].



proposed algorithm: the perfunctoriness of the former method results in a misclassification in the
feature space, whereas, the assimilation of the latter method yiclds a more accurate classification

in the feature space.

Misclassification

Sliver Polygon = g1,42,...,gn

Topological Constraint:

dircctions of the boundarics

-»Action: Remove Sliver
(i.c., minimum feature distance
method)
gl ->Class B
q2->Class B
q3->ClassC

qn-= Class C

Figure 6.5: An Example of Attribute Error Handling

Functional Factor 2: Reasoning and Learning

The proposed model supports many desirable rcasoning and leamning capabiliﬁes.' In paﬁic;qﬁ
lar, the issuc of both spatial and attribute rcasonings was previously studied in Cﬁaplér 4. In the
following, the issuc of learning will be addressed.

To date, two leaming algorithms, inductive learning and deductive leaming, have been
reporied [Pucq84]. Inductive learning is user driven and is accomplished by the user supplying
positive and/or ncgative cxamples of new characteristics or relations. Deductive learning is
accomplished by the storage and accumulation of information gained from previous queries.
These algorithms can be casily extended in the new model. On the other hand, a major impedi-
ment to the progress of development of advanced geography leaming procedures has been Lhé
lack of a suitable model for handling geographic errors. For instance, most existing GISs, except

SPAM and MERCATOR, usc Boolean logic or normal arithmetic for various operations. The use
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of this logic implicitly assumes that both auributes and geometries arc certain and precise and
their combination leads to a single inferred conclusion. Without knowledge of inaccuracies
inherent in the information contained in a GIS and the ways error can be multiplicd by its most
attractive capabilities, the system will run considerable risk of making erroncous distinctions. On
the other hand, the main weakness of SPAM and MERCATOR for geographic data m@dt}ling in
general is that they treat geographic crrors strictly as a geometric issue. Thus, the attribute uncer-
tainty as well as the taxonomy of complex objects is largely ignored.

Since the proposed model is both spatially-oriented and object-oriented, it opens a new ave-

nue to prosperity of developing advanced geographic leamning procedures. In the following, a new

6.2.2.1 Maximum Entropy Approuch
Maximum entropy infcrence is a method for updating a statistical distribution in the light of
new information. The usc of this approach is commonly justified by an information-thcoretic

argument: Given a sct of statistical constraints, find the statistical distribution that satisfies the

the constraints there is a unique one, the maximum cntropy distribution, that has minimum infor-
mation. Hence maximum cntropy inference sclects the right distribution.

The maximum entropy approach is an important learning method adopted in the proposed
model. In the previous chapicr, the advantage of this approach for data integration was pfgécnlcd.
In this section, this method will be used 1o calculate the most conservative, or unbiased, cstimate
of the probabilitics given the constraints of the data model.

Given an object O, Iet @ = {¢;,....q,} be the actual, unknown probabilities of the attribute
values {vy,....,v,} of Q. Supposc that P = {py,...,p,]} is an initial estimate QT:Q, and supposc
that new information about Q is obtained in the form of constraints that restrict P. A typical

example of such constraints is a sct of known cxpected values as follows:
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if]ifﬂ = j:;, k=1,...m. (6.1)

i=1

In order to determinc the most conservative Q values for the statistical space consistent with
the constraints, one must maximize the entropy, H, over the possible P values, where

H == 3 pilogp;

i=n

This constrained optimization can be solved using Lagrange multiplicrs by forming the

function A’ that incorporatcs the constraints as follows:
n

2.pilogpy)

i=1

H' =

0+ MGy -
k=1

where Ay, k=1,...,m, arc Lagrange multipliers to be determined, along with the va]uééfpi,'

i=1,...,n at the extreme point imposcd by (6.1) and ﬁ‘,q; =1 [ELSS].
i=1
6.2.2.2 The Justifications of Maximum Eniropy Inference

Although AI cmphasizes symbolic processing, numerical information processing will
always have an important role, particularly where uncentain information is involved. In this con-
text, maximum cntropy inference should have a role to play. In particular, there are two areas
where maximum entropy inference ire shown Lo be more appropriate.

The first arca ariscs from maximum cntropy’s propertics as an information measure - it
should be useful as a means of quantilying information gains and losses within probabilistic infer-
ence procedures. A related arca of possible application is the problem of searching large statisti-
cal state spaces, where it is necessary 1o exploit partial information about some optimal path. To
solve this problem cfficiently, it is necessary to use information measures (0 guide a heuristic

scarch.

information updating - it should be useful as a means of data integration and revision in the light
of new information. According to the philosophy of maximum entropy inference, maximum rela-

tive inference must be considered as a way of passing from one statistical distribution to another.
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In this sense, maximum cntropy infcrence addresses only the dynamic problem and not the static
one. The strength of maximum cntropy inference relics on the fact that it builds its foundation on
a dynamic environment. It also does not require the assumption of independent evidence. Since
geographic data arc highly dynamic and gcographic phenomena are interrelated by complex rela-

tionships, the importance ol this approach to GIS is evident.

Some of the putative rivals ol maximum cntropy inference such as Bayesian inference do
not challenge it dircctly because they primarily address the static problem. The max-min rules for
combining certainty factors in the inference system of MYCIN [KL86], for example, are rcally |
rivals of standard probability thcory, not of maximum cntropy. To the cxtent that these nonstan-
dard theories address the dynamic component, the divergence from maximum entropy m oftén
quite small. In the inference system of MYCIN, for example, when the evidence is known with
certainty, updating reduces to conditionalization on the evidence (i.c., Bayesian inference). When
the evidence is not certain the certainty faclors of the hypothesis on the basis of the evidence is
multiplied by the certainty factor ol the cvidenee to yield the final degree of bclicf in the
hypothesis, that gives a rough approximation to the result of maximum cntropy inference. Furth-
ermore, many static-bascd inference approaches including Bayesian inference require the assump-

tion of independent cvidence.

6.3 Potential Problems of the Proposed Model

The proposed model, however, is by no means a panacea in general. It also introduces some
overhead such as the extra storage requirements and the tendency of being awkward, ctc., as pre-

viously analyzed. And with some thought morc problems will undoubtably appear.

6.3.1 Structural Considerations

The most controversial clement is the linkage between spatial components and aspatial
components. The proposcd approach is (o splil the two at the spatial-to-aspatial juncture, Such a
design principle is adequate for large and complex relations. However, it also creates a gap that

must be hurdled every time a combined spatial and aspatial query is exccuted. In fact, for simple
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and small relations, this approach may do more harm than good. Thercfore, database schemas that
result in indiscriminate partition of these two components at all levels for all reiétians' should be
discouraged. To achicve the best performance, it is necessary to carefully choose when and where
a separaied component is required. |

The second important consideration is the explicit structure versus the implicit structure
tradcoff. No one disagrees that both topological structures and geometric structures are boons to
spatial analysis, but there is a controversy as to the manner in which the system maintains such
structures. The proposed model allows two logical alternatives: the explicit structure approach
(the structure is precomputed and explicitly stored) and the implicit structure approach (the struc- -
ture must be computed on the {ly). The first approach improves the search efficiency at the
cxpense of both extra storage and maintenance cost, whereas, the second approach is less efficient
in the query process, howcver, no cxtra storage and maintenance is needed. In practice, the pro-
posed model can suffcr from cumbersomeness if the two issues are not carefully dealt with. For
instance, it is ncither possiblc to derive all topological relations from primitive representations
that admit data errors, nor fcasiblce to store all potential relationships and scales.

Finally, although the usc of a multi-variant logic at the attribute level provides a more flexi-
ble environment, it nccessilates extra storage and sophisticated processing. Since, in practice,

many attributes arc singlc-valucd, it is suggested that a hybrid scheme be adopted.

6.3.2 Limitation on Reasonings

Reasoning in the proposcd model is mainly focused on combining multiple sources of col-
lected data into a single environment appropriaie for further manipulation, and performing infer-
ence in terms of statistical distributions. The merge process is able to recognize when two
sources are in fact diffcrent representations of the same feature, separated by the collection

mcthod, statistically rcasonable error, and to combine these multiple represcntations in a statisti-

multiple inheritance system, and 1o improve data representation in the light of new information.
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The characteristics of spatial data necessitates that inference problems be posed a variety of
uncertain and fuzzy knowlcdge. A number of logics for handling these problems have been pio-
posed, including statistical logic, default logic, and fuzzy logic. The proposed model is basced on
the notion of statistic logic. It docs not provide a complete answer to the inference problems, nci-
ther are either of the last two mcthods. But situations will be elaborated in which either default

logic or fuzzy logic can scrve as uscful tools.

6.3.2.1 Default Logic Reasoning

Rarely docs a system have at its disposal all the information that would be uscful. But often
when such information is lacking, there are sensible guesses that can be made, as long as no con-
tradictory evidence is present. The construction of these guesses is known as default reasoning.
Default reasoning is extremely important in an object-oriented paradigm because it allows a con-
cise statement of the propertics of the objects in the object hicrarchy. Propertics can be associated
with the most general objcct for which they aré valid. Fairly simple inference mechanisms can
then be used to derive thosc propertics (or more specilfic objects. In a wildlife management appli-
cation for example, concisc statcments can be made using general rules such as "a bird flies" and
"mammals bear children”, cic. These stalements, Iikp any other propertics, can be explicitly stored
in and derived from an ISA hicrarchy.

Unfortunately, somctimes objects in hicrarchies do not inherit all of the propertics specified
by their ancestors. There is, howcever, an cxception to cvery rule. For example, although most
mammals bear their young live, the platypuscs lay cggs. Similarly, although the majority of birds
fly, penguins do not fly. The most common approach in dealing with exception uses an inferential
distance method. With this approach, the scarch for a particular piece of information in an ISA
hierarchy must begin at the level representing the most specific concept involved and only move
up the chain toward morc general concepts il the specific information is absent. In other words,

properties are inherited from their "closcst” ancestor in the ISA hicrarchy.

In a multiple inheritance system, the concept of closest ancestor is often meaningless. Con-

flicts arising from derivations must be resolved judiciously. The proposed model misses a
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mechanism for handling dclault reasonings with exceptions. As the result, the task of drawing
inference using default rcasoning is left to the application program. On the other hand, since
object hierarchics are embedded in the databasc management system, it is more appropriate to

perform default reasoning inside the database sysiem.

6.3.2.2 Fuzzy Logic Reasoning

Many spatial relationships are intrinsically fuzzy. Distance, direction, and connection are
common geographic concepts that can be stated in imprecise linguistic variables such as "sﬁcm",'
"north of", and "near", cic. These concepls may not be adequately represented by statistical logic
as defined in the proposed model. They are betler expressed as asymploﬁc membership functions
using fuzzy logic. Previous work in [Robin87] demonstrated the significant impact on storing and
manipulating spatial objccis that is gained by using fuzzy logic. It is expecled that the proposed
model can be cxiended to handle fuzzy concepls as well. The major conceptual change necessary
for applying statistical theory 1o typical luzzy situations is 1o interpret probabilities as a measure
of belief in the relevant proposition rather than a long run frequency. The fuzzy approach seemed
to arise because the frequency interpretation unncceessarily restricts the domain of applicability of
statistics. To this end, a formal theory for gencralization, deduction and uncertainty manipulation
with respect to both statistical data and luzzy data is mandatory. The pr@ppsed model, however,

as in its current form docs not naturally 1itin a fuzzy logic framework.

6.3.3 Drawbacks of R-irees

Although the R-trec based index scheme adopted in the propesed model has many appealing

file. Concurrcncy control is complicaled in an R-tree based structure because the root is a
bottleneck shared by all access paths. 11a process has the potential of modifying the data structure
near the root (such as insertion or deletion in an R-tree), other processes may be slowed down by

the adherence to locking protocols cven il they access disjoint data. Another problem with the

structure is deterioration in performance during and after update. To prevent performance
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care of underfull nodes in the R-tree. Thus, the maintenance of an R-tree can be difficult. As a
result, the scheme is detrimental 1o the performance of a number of primitive operations such as

intersection and overlay.

6.4 Conclusion
This chapter has justificd the performance of the new model in terms of time efficiency,
space requircments, and functionalitics. First of all, efficient principal algorithms such as query

and update have been developed to support the proposed model. Both analytical and simulation
results demonstrate that the new model is quite efficient and suitable for largé geographic data
processing. Sccondly, the proposed model has been shown 1o be quite efficient in terms of space

data applications. Finally, the model also facilitates a number of desirable functionalitics such as

data integration, reasoning, learning, and system development, -
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Chapter 7

Conclusion

7.1 Contributions

This thesis is concerned with the organization of spatial data for geographic information

handling, including retricval, reasoning, and adaptive capabilities, is emphasized.

Spatial data handling has much io do with the representation of gcagraphié knowledge.
Search efficiency depends in large measure on the organization of the database. Spatial rcaséning
cails for the usc of a DBMS ihat is inicgrated both spatially and semanticaily in its organization.
Leaming and cfficient problem solving lics heavily on the accumulation and interpretation of geo-
graphic knowledge. The goal ol this thesis is to develop a novel model, called a cognitive map
model, for GIS. The locus of this rescarch includes aspects of the developments of database
management, artificial intclligence (A, and unccnzliniy which promise new advancements in
geographic information systems. On the one hand, the nature of both A.L. and uﬁcenainty
cncourage the representation and gradual accumulation of geographic knowledge. On the other
hand, the provision of a DBMS not only makes use of geographic data more cfficiently (in terms
of both time and spacc complexity) but also more effectively (in terms reliabiiiy and sharability).
This thesis bears wilness (o (he cross-fentilizaion of these two components. As a result, the fol-
lowing three major contributions are made:

e The Notion of Spatial-orientation, Spatial-oricntation views the geographical world in a
manner similar to the way humans view the physical world. Its phii@scxphy and implementa-
tion will ha\vc a long term affecet on the GISs development. In particu]ari the concept of
dynamic spatial objects, spatial dependency, spatial inheritance, and generalization, as well
as the importance of the separation of spatial components from nonspatial ccmp@nemé will

undoubtly play an important role in future GISs.
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*  Uncertainty and Error Modeling and Processing. The thesis developed a novel approach
for geo-data crror and uncerainty handlings. The strength of this model is that it copes wnh '
various complicated geo-data inconsisiencics (such as dangling edges, sclf-crossing con-
tours, and sliver polygons, ctc) that labels it as an excellent tool for GISs. More importantly,
the distinct feature of the proposed model is its Icarning capabililics. Two lcaming methods
have been proposed o support this claim: the constraint based leaming and the maximum
entropy method.

e  The Four-level Semantic Hierarchy. The proposed semantic structure imegrme,s aspatial
feature modeling, spatial feature modeling and geo-data error and uncertainty handling into

a general framework for gcographical data modeling and processing.

7.1.1 Justification of Coherency

In the proposcd nmchtscvcrul important concepts, such as object-orientation and spatial-
orientation, semantic inheritance, uncertainty information modeling, and database management,
all fit together in a clean theory of the cngnilivé map.

First of all, imrinsic advantages of Tour levels of semantic hierarchy are emphasized. The
structure not only convenicently lends itselt 1o database implementation, but also provides the cog-

nitive map with rich semantics lor modeling various geographic concepts, including shape, loca-

tion, place, object, interrelationship including: topological, object and metric. Morcover, it
enables the specification ol complex application-specific operations and semantic integrity and
consistency constraints at dilferent levels of abstraction, and supports a complex reasoning
processes metaphorically similar to human problem solving approaches. At cach of these levels,
it has something to contribute: Al the first level (the metric Ievel), a hicrz\rc;hic:aliy organized spa-
tial organization provides for ellicient search space reduction by supporting both top-down and
spatially-windowed scarch. Al the sccond level (the object level), a friendly user-oriented inter-
face offers the system with both spatially-oricnied and object-oriented views of the data. At the
third level (the auribute level), the notion of random obscrvable is used lo represent spatial

objects. In this way, the model takes advantage of ideas from both the theory of uncertainty and



the theory of relational databases to achicve both flexibility and reliability in its representation. At
the fourth level (the primitive level), efficient data structures and file structures arc adopted to
represent shape and location aspects of the spatial objects.

Sccondly, the separation of the object level into two parts, the conceptual level and the topo-
logical level, is advocated. In this way, the model avoids the dilemma of object-orientation vs.
spatial-orientation. This is because the conceptual Ievel together with the attribute level offers the
ability to describe, organize, scarch and reason information about objects independent of the loca-
tion of the objects. Whercas, the topological level, together with the primitive level, the attribute
level, and the metric level, supports various spatially-oriented operations cfficiently by taking |

advantage of semantic hicrarchy of the spatial object organization.

7.1.2 Justification of Consistencey

Inconsistency refers to anomalies between the real world and the data modcl. In a database -

crude and carcless use ol data manipulations such as insertion, deletion and update. Generally
speaking, there arc (wo types ol anomalics: structural anomalies and measurement anomalies.
The proposed model not only finds facilities 1o prevent structural anomalies from being stored in

a database, but also [inds mechanisms to accommodale and constrain measurcmenis anomalies.

7.1.2.1 Measurement Anonulies

A distinct feature ol the proposed model is its tolerance of data errors. Two related error
models are defined in the thesis: the [irst is an cpsilon band error model and the second is a sta-
tistical crror model. More importantly, although measurement anomalics are allowed in the pro-
pesed model, they are bounded at various abstraction levels in the sense that certain kinds con-
sistent constraints, (i.c., the scale ol precision, the geometric constraints, and the attribute con-

straints) can be checked by the IYBMS,



7.1.2.2 Structural Anonutlics

Structural anomalies can be resulted in two ways: 1) malicious use of insertion, deletion,
and update in the database: 2) malicious treatments of measurement anomalies that chnlually
lead to structural anomalies. In the proposed model, the issue of protecting the database against
mis-use is well studicd. In particular, the following mcasures are taken:
1) Functional dependency - a set of structural constraints that can be enforced to preserve data

integrity in the events of insertion, deletion, and update operations;
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level or at the topological level. Semuntic constraints on measurements are used not only for

integrity preservation but also for leaming as well.

7.1.3 Justifications of Efficiency
The primary objective ol this thesis is (o develop an efficient data model in‘terms of both
time and space requirements. In reality, however, any scheme is the result of a tradeoff between

time and space and the new scheme is no exceplion,

7.1.3.1 Time Efficiency

The following three measures have been adopted to improve the time efficiency:

7.1.3.1.1 Structural Considerations

Cognitive map model places great emphasis on the notion of separating the stiucture of spa-
tial data from nonspatinl data, while muaintaining appropriate links between the two. This
approach provides the model ;m imyoiunt focus-of-attention capability on the one hand, and
increases the retricval buandwidth on the other hand.

Another major contribution is that it explores the use of various index files of an integrated
spatial representation that provides a *window” inlo an object-oriented paradigm. Both an R-tree

and a B-tree arc adopted to improve scarch eflicieney by narrowing scarch spaces.



7.1.3.1.2 A Lattice Modecl for Spatial Objects

The majority of geographic data arc map coverages with one feature per theme. Neverthe-
less, most of the queries involve multiple features, There are two opposite ends of a broad spec-
trum of possible data-base schemes involving various levels of integration: the separated layer
scheme and the fully integrated scheme.

At one extreme, data is represented as a collection of thematic layers, merging only at
search time. Since integration of thematic layers involves many complex geometric computations,
the model is incfficient.

At the other extreme, on the other hand, all layers are merged into a single geaﬁietﬁc struc-
ture. The disadvantage ol this approach is that it tends to indiscriminately decompose objecls into
many small regions. Although the scheme avoids the issue of data integration, the absence of the
ability to index spatial objects ar @ higher level ol abstraction is a significant disadvantage. For
instance, the problem ol finding all objects contained in a given rectangular area requires an ela-

borate reconstruction process ol objects (rom many small regions.

extremes. With this model, themes that tend 1o share a great deal of geometry can be integrated at

a master databasc layer to prevent a high initial access time for a merge process; themes which

regions and to improve the efficiency of the high level retricve processes.

7.1.3.1.3 Aggregate Response
although sufficient to serve the purpose of conveying information, do not necessarily provide cffi-
cient and cffective communications between a user and the system,

In the proposcd model, the presence ol a class hicrarchy and uncertainty, an integral part of
the proposed model, allows answers 1o be expressed implicitly in terms of classes and instances.

This enables answers (o be provided at various levels with different accuracies.
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7.1.3.1.4 Geometric Genceralization

Merging gcographical data involving spatial scarch occurs at the primitive level. Spatial
search at the primitive level severely obstructs the cfficiency of most existing GISs duc to the
huge amount of primitive data in these systems. To overcome this problem, in the proposed
model, spatial objects are [irst systematically muppcd. into a metric space. Furthcrmore, both data
abstraction and gcometric generalization processes arc applied to this step. As the result, a much

smaller and simplicr primitive structure can be obtained.

7.1.3.2 Storage Requircimnents
Clearly, extra storage expenditures are necessary for incorporating statistical data values,

epsilon-bands, geomictric entitics with diffcrent scale and precision. Nevertheless, the tmdco_ﬂ'

between time efficicncy and storage requirements is cost effective. A‘
The justifications for the storage requirements are as follows:

1)  The extra spacc cxpenditure is considered to be reasonable duc to the fact that geometric
generalization is capable of drastically decrcasing query processing limcr at a moderate
storage cost.

2)  The model Iends itsclf to gcometric data sharing. By gecometric data sharing, is meant that
features with the same geometric description share the same storagc structure. A lattice
model suffices forthe necds ol geographic data sharing. With this model, knowledge about
where, and to what cxitend, an integrated layer is nceded and the relationship between dif-

ferent layers can be directly encoded.

7.2 Future Work

There are many problems remain 1o be done. The following will bricfly mention a few of

the areas that the current work will have potential impact on;

Heterogenecus System: Geographical information systems should be built on a distributed base.

Distributed GISs have scveral porential  advantages, e.g., extensibility, availability, and



performance. There are however, scveral difficult problems need to be solved before the advan-
tages of distributed systems can be realized. The proposed model is a mixed blessing in this
regard. On the onc hand, the model has the potential of improving both processing efficiency and
communication throughput of the network. On the other hand, currently, there are many geo-
graphical information systems bascd on traditional data models. These rcpresent an extremely
valuable resource and a major investment. Therelore, in the years to come these systems will keep
increasing their sharc of the market. There are many dilficulties associated with a distributed data-
base system consisting of heterogencous subsysiems (i.e., data consistency, data format, etc) To
solve these problems, a technique called an SQL gateway is often adopted. Unfortunately, there is
a general Jack of standards Tor exchange data between an object-oricnted databasc and a tradi-
tional modcl. With the cognitive maodel, the problem scems 1o be even more critical. Hence, more

rescarch is clearly needed in this arca.

Heterogeneous Data Handling: As n'icmibm:d previously, one of the importiant characteristics of
spatial data is that it contains many diverse data types. Although the proposed statistical logic is
able to model statistical data types, luzzy inference and default reasoning are somelimes shown to
be more appropriate. For instance, it is important to point out that many spatial rclationships are
intrinsically fuzzy. Distance, direction. and connection are common geographic concepts that can
be stated as imprecise linguistic variables such as "short”, "north of", and "near" etc. In addition,
all geographical information that ix spatial in nature is obtained from physical measurement. All
physical measurcments are by their very nature imprecise. These concepts may not be adequately
represented by cither threshold values or statistical distributions. They may be better expressed as

asymplotic membership funciions using fuzzy logic. Previous work in [Robin87] demonstrated

formal theory for generalization, deduction and uncertainty manipulation with respect to both sta-
tistical data types and fuzzy data types is mandatory. This opens a new avenue for further

research, Moreover, to support default reasoning, a nonmonotonic logic based on multiple
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inheritance systems must be implemented.

Spatial Data Modeling: Spatial data modeling is one of the toughest problems in GIS. To com-
bat this problem, the notion of semantic hicrarchy of spatial objects is proposcd. It should be
made clear that currently, there exists a paucity of research that addresses digital generalization in
a holistic manner. To this cnd, the concept of approximate gcometric enclosurc needs to be gen-
cralized to deal with point and curve, and clficicnt algorithms should be developed that can proQ
duce an approximatc gcomelry of an object at any prespecified accuracy. In addition, the algo-
rithm should be ablc to look at the interrelationships between the conditions that indicate a need
for its application. the objectives or goals of the process, as well as the specific spatial and attri-

bute transformations required to effect the changes.
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