
Vision-Based Methods for Joint State Estimation of
Robotic Manipulators

by

Mingjie Han

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

University of Alberta

© Mingjie Han, 2021

Abstract

This thesis applied a combination of machine learning and computer vision

to an engineering research project, using a two-armed Baxter robot hardware

platform. The challenge was estimating the robot arm’s joint angles from

monocular camera images. After evaluating several methods from traditional

computer vision, we settled on the method of convolutional neural networks,

which provided better accuracy and outlier rejection performance. A simula-

tion environment toolchain was developed to generate automatically labelled

training images for the neural network in order to eliminate the tedious manual

labelling usually required for these methods. This brought the challenge of the

domain gap between simulation and real-world images, which was solved using

a generative adversarial network for transferring image textures. A hardware

evaluation was performed for both joint keypoint detection and joint angle

estimation performance, whose ground-truth values were accurately captured

in the laboratory environment.

ii

Preface

Chapter 4 of this thesis was submitted to IEEE Robotics and Automation

Letters as “Image-Based Joint State Estimation Pipeline for Sensorless Ma-

nipulators” by Mingjie Han, Bowen Xie, Martin Barczyk and Alireza Bayat.

Bowen was responsible for training the generative adversarial network used

in the work. I was responsible for the remainder of the technical work, in-

cluding keypoint detection network training, joint state estimation develop-

ment, running experiments, and documenting results. Dr. Martin Barczyk

and Dr. Alireza Bayat provided valuable advising and supervision throughout

the research, and assisted in editing the paper.

iii

Acknowledgements

I would like to thank Dr. Martin Barczyk and Dr. Alireza Bayat for all the

guidance, enlightenment and supervision throughout the course of my graduate

studies; Bowen Xie for the collaboration on the research projects; and Jun Jin

for advice.

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Work Performed . 2
1.2 Thesis Outline . 3

2 Hardware and Software 4
2.1 Baxter robot . 4

2.1.1 ROS Integration . 5
2.1.2 Forward Kinematics 5
2.1.3 Simulation Model . 7

2.2 RGB-D Camera . 7
2.2.1 Camera Projection Model 8
2.2.2 Camera Calibration . 11
2.2.3 ROS Integration . 13

2.3 Vicon Motion Capture System 13
2.3.1 ROS Integration . 14

2.4 Literature review . 15
2.4.1 Computer Vision and Machine Learning 15
2.4.2 Robot Joint State Estimation 17
2.4.3 Human Skeleton Tracking from 2D images 18
2.4.4 Robot Arm Pose Estimation 19

3 Preliminary Approaches to Manipulator Joint State Estima-
tion 20
3.1 AR Markers . 21

3.1.1 Background . 21
3.1.2 Algorithm . 21
3.1.3 Implementation . 22
3.1.4 Test and Outcomes . 23
3.1.5 Discussion . 24

3.2 Color Strips . 24
3.2.1 Background . 24
3.2.2 Test and Outcomes . 25

3.3 3D Model Fitting onto 2D Images 28
3.3.1 Background . 28
3.3.2 Software . 28
3.3.3 Test and Outcomes . 29

3.4 Iterative Closest Point-based registration 30
3.4.1 Background . 30
3.4.2 Test and Outcomes . 31

3.5 DART: Dense Articulated Real-Time Tracking 33
3.5.1 Background . 33
3.5.2 Discussion . 33

v

3.6 Learning numerical joint angles from RGB images 34
3.6.1 Background . 34
3.6.2 Test and Outcomes . 36
3.6.3 Discussion . 37

3.7 Baxter keypoint detection in Simulation 37
3.7.1 Background . 37
3.7.2 Test and Outcomes . 39

4 Image-based joint state estimation pipeline for sensorless ma-
nipulators 40
4.1 Abstract . 40
4.2 Introduction . 41
4.3 Related Work . 42

4.3.1 Human Skeleton Tracking from 2D images 44
4.3.2 Robot Arm Pose Estimation 44

4.4 Method . 45
4.4.1 System Overview . 45
4.4.2 Instance Segmentation 46
4.4.3 Domain Adaptation . 46
4.4.4 Joint Detection . 49
4.4.5 Joint State Estimation 50

4.5 Experimental Results . 51
4.5.1 Datasets . 51
4.5.2 Joint Detection Evaluation 52
4.5.3 Joint Angle Estimation 55
4.5.4 Failure Cases . 57

4.6 Conclusion . 58

5 Conclusion 59
5.1 Summary of Thesis . 59
5.2 Limitations . 60
5.3 Future work . 61

References 62

vi

List of Tables

4.1 Experimental datasets . 52
4.2 PCK@0.2 scores . 55
4.3 Joint Detection MAE Errors 55
4.4 Mean of joint angle estimation errors 56

vii

List of Figures

2.1 Baxter robot in neutral arm position with natural complex
background in lab environment. 5

2.2 Simulated Baxter robot in Gazebo simulator, with white ground
texture and grey sky texture. The arm poses are controlled
through ROS commands. 6

2.3 RealSense D415 Depth camera consisting of an RGB camera,
an infrared projector and two infrared cameras. Slots on the
top of aluminum shell allow airflow for cooling. 7

2.4 RealSense D415 camera RGB-D image visualization. Top left
image is RGB image, bottom left image is depth image, and the
image on the right is a combination of RGB color and depth on
all pixels. The 3D location of each pixel is relative to the camera
lens coordinate, denoted as ”camera link” in the image. . . . 8

2.5 Example of lens projection with two sample objects (blue dots).
The lens represents the physical arc shaped glass lens in the
camera. The red lines illustrate the light rays of each object.
They are refracted by the lens and land on the image plane
(imaging sensor chip). 9

2.6 Illustration of pinhole projection model. The blue person on
the right is the object in front of camera, and the blue person
upside down on the left is the imaginary object being captured
on the image plane. The lens in this model is simplified as a
pinhole (dotted vertical line) and the ratio between Y and Z is
same as the ratio between f and y. 9

2.7 Illustration of pinhole projection model (version 2). This model
is similar to the model presented in Figure 2.6, and the di↵er-
ence in this one is that both the real object and imaginary object
are placed on the same side of lens for explaining the geometry
relation more intuitively. 10

2.8 Chess board used for camera calibration. It is printed on a rigid
flat board, and each cell is 10 cm by 10 cm square. 12

2.9 Chess board with detected corners labelled by OpenCV. The
overall brightness of the original image in Figure 2.8 is reduced
for better visualization of the color labels. 12

2.10 Vicon Vera cameras (left) and Vicon markers (right). Vicon
cameras are mounted on the metal hanger installed near the
ceiling of the lab. The Vicon marker balls are attached to the
black plastic plate. 13

2.11 Vicon tracker software screenshot. The list on the left are the
objects being tracked. The right part is the 3D view of the
capture volume. The square grids represent the floor, and each
pyramid represents one Vicon camera. 14

viii

2.12 Baxter robot with Vicon markers attached around the body. In
total six markers are used for tracking the pose of the Baxter
body, and each marker is shown in the sub-images around the
complete Baxter image. 15

2.13 RealSense D415 (left) and D435 (right) cameras and holders
with Vicon markers. Each camera has five Vicon markers at-
tached on the metal base frame and camera shell. 16

3.1 Examples of Aruco AR markers. These are 6 by 6 markers,
meaning each marker has 6 rows and 6 columns cells. Other
sizes are also available. 21

3.2 Visualization of AR marker detection and identification steps.
(a) is the raw image captured by camera containing multiple
markers. (b) is the binarized image for contour extraction which
will be further used for marker candidate extraction. (c) is one
of the extracted markers from the raw image. (d) is the marker
after the perspective e↵ect is removed. (e) is segmenting the
marker pattern into a grid with a given size, and (f) is the
binary array converted from the grid in (e) and it is used for
marker index identifying. 22

3.3 Illustration of AR marker placement on Baxter arm. The mark-
ers are attached on four links on the robot arm, and also the sta-
tionary robot body. In this figure, only left side arm is marked
for visualizing the di↵erence between marked and unmarked
robot arm, and the actual implementation will applied for both
arms if needed. 23

3.4 Illustration of color strip markers on Baxter arm. The color
strips are attached on four links on the robot arm, and also
the stationary robot body. In this figure, only left side arm is
marked for visualizing the di↵erence between marked and un-
marked robot arm, and the actual implementation will applied
for both arms if needed. 25

3.5 Color rectangle detection experiment. Left image is the original
image containing the green marker. Middle image is the marker
being filtered out. Right image has four edges labelled as red
lines, and four corners labelled by numbers. 26

3.6 Color strip detection on Baxter arm. Left image is the original
image containing the Baxter robot arm with green strips. Right
image is the green strips being filtered. 27

3.7 Object pose tracking stages. Images in order from top left to
bottom right are: camera video stream, feature helper image,
feature selection on the first image, initial pose estimation, cor-
rected pose estimation over time. 28

3.8 3D geometry model of Baxter arm link. Left image is a picture
of the link of the robot arm being track tracked. Two images on
the right are the 3D CAD model of this robot arm link (front
view and right view). 29

3.9 RGB-D camera output visualization. Top left image is RGB
image, bottom left image is depth image, and the image on
right is a combination of RGB color and depth on all pixels.
The 3D location of each pixel is relative to the camera lens
coordinate, denoted as ”camera link” in the image. 31

ix

3.10 ICP experiment on a chair. This experiment was performed
for this chair because the chair is a single rigid body, and the
result in this experiment is the baseline reference of the ICP
approach to multi-link tracking. The yellow model is fixed, and
the blue one is being moved. In the first image, the two models
are placed at a random pose, serving as the initial guess. The
second image shows the result of the pose estimation. Two
models are aligned. 32

3.11 CNN architecture for direct joint angle prediction. The image
of the crane on the left is the input. The square groups in the
middle are the convolutional layers. The sizes of squares show
the relative sizes of processed arrays, and numbers of squares
show the relative amount of kernels in each stage. The two
columns of circles on the right are the fully connected layers, and
the four circles labelled with J1 - J4 are the outputs. The sizes
and numbers of elements in this Figure are only approximate
values to show the shape of the neural network because the
figure created with the actual parameters was impractical to
visualize. 34

3.12 Simulated 4 DoF crane in Gazebo. It consists of 5 links, and
each link is outfitted with uniquely colored strips. The base link
is marked by cyan strips and it is stationary. The next three
links are covered by green, red and yellow strips. The green-
colored link rotates around the vertical axis while the other two
links rotate around horizontal axes. The link with blue strips
has a linear rather than a rotational motion. All four joints are
controlled by the ROS joint controller. 36

3.13 Examples of joint keypoint detection for simulated Baxter im-
ages. The circles labelled on the robot arm are drawn at loca-
tions identified by the joint detection network. In these three
examples, the results accurately identify the locations of joints
on the robot arm. 39

4.1 Overview of our system pipeline. The camera image is processed
by robot instance segmentation, removing the background. The
resulting image undergoes domain adaptation to change the
coloring and texture of the robot to a simulation style. The
keypoint detection network processes the synthetic images and
outputs heat maps for robot joint locations. The detected joints
are used with the robot’s geometry to estimate joint angles. . 43

4.2 Diagram of training process. Step (A): outlines are automati-
cally generated for real Baxter images and used along with cor-
responding images to train the instance segmentation model.
Step (B): the segmentation model is applied to real Baxter im-
ages, resulting in images with a blank background. Step (C):
the simulator generates simulation images using joint angles ac-
quired in step (B). The step (B) and (C) images are used to
train the domain adaptation model. The results are used with
joint locations computed in step (C) to train the joint detection
model. Once all models are trained, they are ready to be used
for inference in our processing pipeline. 47

4.3 PCK versus pixel distance. Top figure is the plot of result from
our method. Bottom figure is from DREAM method. Black
curves in the plots are the averages of the curves of all joints. . 54

x

4.4 Examples of some common failure cases during testing. It in-
cludes the occlusion failure, background segmentation failure,
and robot arm segmentation failure. 57

xi

Chapter 1

Introduction

1.1 Motivation

Humans performing simple and repetitive tasks manually use their eyes for

sensing the environment and their brain for understanding it. In order to au-

tomate such tasks, computer-based alternatives to eyes and brains are needed.

Cameras are an excellent and a↵ordable alternative to human eyes, and cam-

era types such as depth, infra-red (IR) and spectral o↵er capabilities beyond

those of the human eye. Alternatives to the human brain are computer al-

gorithms, which include traditional computer vision as well as the emerging

learning-based artificial neural network algorithms.

Traditional computer vision algorithms have shown excellent performance

in certain tasks, such as edge detection, but fail to handle more complicated

cases such as detecting pedestrians [18]. For this reason, learning-based meth-

ods have become a popular tool to solve more complex problems involving

computer vision. The most common learning-based approach for processing

image data is the convolutional neural network (CNN), which was first pro-

posed in the 1980s [20], [38].

The complexity of CNNs was limited by available computing power, but

this changed when GPUs (Graphics Processing Unit) became widely avail-

able. The massive parallel computation ability of GPUs significantly boosted

research into convolutional neural networks and their applications. At the

same time, software frameworks for implementing and training neural net-

works have become more sophisticated and optimized. At the time of writing,

1

TensorFlow [45] and PyTorch [53] are the most popular platforms for machine

learning, each providing an easy-to-use Application Programming Interface

(API) for implementing and training neural networks.

Some applications of convolutional neural networks involve only monoc-

ular camera images, for instance human face recognition [37], [52], [70] and

tra�c monitoring [6], [13], [31]. But in other applications such as robotic ma-

nipulators and autonomous vehicles, the fields of kinematics and dynamics,

closed-loop control and mechatronic designs must be integrated with CNN-

based image processing.

Robotic manipulators have been deployed in di↵erent fields including aca-

demic research, recreation, and industrial applications. Most of these ma-

nipulators are equipped with motion planning and feedback systems. The

resulting systems provide excellent dexterity, but fundamentally rely on joint

state feedback from sensors embedded in the manipulator, typically encoders.

Joint state feedback is a standard feature on industrial robot arms such as the

Franka Emika Panda, Kuka Fortec, and UR10e. But this is not the case for

equipment specifically designed for human control (e.g. cranes and excavators)

or low cost manipulators (e.g. toys and do-it-yourself (DIY) manipulators).

Our research was motivated by studying the problem of adapting a human-

operated knuckle-boom loading crane to autonomous operation. The existing

system was not equipped with joint state feedback sensors. This is what

led to our interest in developing a method to estimate the joint states of an

articulated manipulator based on computer vision. As stated above, both

conventional and CNN-based computer vision algorithms can be used for this

purpose. We developed and tested several methods from both categories in

our research.

1.1.1 Work Performed

The work performed and described in this thesis was the development of a soft-

ware pipeline inputting a two-dimensional (2D) Red-Green-Blue (RGB) image

of a robot arm and outputting its estimated joint angles. While this pipeline is

built from three neural networks, the manual labour of labeling training data

2

is nearly eliminated by using a simulation environment to generate data, and

the resulting domain gap is solved by utilizing a novel generative adversarial

network to process the simulated images. This work was submitted as [24].

1.2 Thesis Outline

Chapter 1 explained the background and motivation of the research performed.

Chapter 2 explains the hardware and software used throughout this project.

The hardware includes a Baxter robot, an Intel RealSense RGB-D (Red-Green-

Blue and Depth) camera, and a Vicon motion capture system. For each of

these systems, the hardware, functionality and software drivers are discussed.

Analytical tools including forward kinematics, camera projection and camera

calibration are discussed. A literature survey of software algorithms related to

this work is provided.

Chapter 3 documents di↵erent approaches evaluated for sensorless robot

arm joint state estimation, including color filtering, depth image processing,

and convolutional neural networks. In each method, background information

is provided followed by test results and observations. None of these methods

ended up being used for the final system design due to a variety of factors,

which are explained in detail.

Chapter 4 covers our chosen method for joint state estimation. This ap-

proach was found to provide the best performance in joint detection and joint

angle estimation, while also minimizing the work associated with training data

labeling. Related works are discussed, the proposed method is covered in de-

tail, followed by result analysis and conclusion.

Chapter 5 concludes the thesis. Results are summarized and limitations

of the present work are listed. Future work to address these and improve

performance are then provided.

3

Chapter 2

Hardware and Software

This chapter discusses the hardware used for the research, including cameras,

robots, computers, and lab setup. Everything is connected together with ROS

(Robot Operating System) [55], an open-source software platform running on

Linux which provides connectivity between hardware and software modules.

ROS and other software will be discussed in more detail in the next chapter.

Following this, a literature review of various software tools and methods for

tasks carried out in this thesis will be provided.

2.1 Baxter robot

The Baxter is an industrial robot developed by Rethink Robotics Inc. It has

two arms and one screen serving as the “face” for the user interface. Each arm

has 7 revolute joints and one removable gripper as the end-e↵ector. There

are two types of grippers o↵ered by Rethink Robotics: an electrical gripper

powered from onboard the Baxter, and a pneumatic gripper which requires

an external air supply. We use electrical grippers in our setup. The arms

are outfitted with encoders providing joint angle and joint angular velocity

feedback to the robot’s onboard computer, which runs Gentoo Linux and ROS.

In addition to grippers, there are also other sensors on each hand link.

An Inertial Measurement Unit (IMU) measures the 3-axis linear acceleration

and angular velocity of the hand. An infrared (IR) range sensor measures

distance to obstacles in front of the hand. Cameras on each hand provide a

video stream at 640⇥ 400 resolution with a 30 Hz frame rate.

4

Figure 2.1: Baxter robot in neutral arm position with natural complex back-
ground in lab environment.

2.1.1 ROS Integration

The computer inside the Baxter connects over wired Ethernet to a router which

has a laptop connected to it, and this laptop is running as one of the slave

devices while Baxter computer is the master device. The robot state informa-

tion is sent out from the onboard computer, and commands for manipulating

the robot are sent out from the laptop. ROS provides services for logging data

and sending commands over the network connection.

The joint angle and velocity data are sent on the topic joint state publisher

using JointStates messages. The 3D location (x, y, z) and 3D orientation as

quaternion (x, y, z, w) of each joint are published on the topic tf (transform).

The robot also publishes its hand camera video feed and IMU measurements,

although this data is not used for our purposes.

2.1.2 Forward Kinematics

Forward kinematics computes the end-e↵ector pose relative to the base link

of the robot. We employ the Product of Exponentials (PoE) formulation of

5

forward kinematics [48]. This can be used to compute the pose of either the

end-e↵ector or any intermediate link on the robot, since the end-e↵ector pose

is accumulated from the proximal to the distal link. To compute the 3D

coordinates (Xn+1, Yn+1, Zn+1) of the (n + 1)th joint, we specialize the PoE

formula as 2

664

Xn+1

Yn+1

Zn+1

1

3

775 = eX(⇠̂1)✓1 · · · eX(⇠̂n)✓nT 0
b(n+1)

2

664

0
0
0
1

3

775 (2.1)

where ⇠̂n is the twist axis of the nth joint and T 0
b(n+1) 2 SE(3) is the pose of

the link carrying the (n+1)th joint at the zero configuration ✓1 = · · · = ✓n = 0

with respect to the base link frame. The twist axes and zero pose can be

obtained from the Unified Robot Description Format (URDF) file describing

the geometry of the robot. Note for n = 0, [X1, Y1, Z1, 1]T = T 0
b1[0, 0, 0, 1]

T is

a constant, because the position of the first joint is fixed relative to the base

link frame.

Figure 2.2: Simulated Baxter robot in Gazebo simulator, with white ground
texture and grey sky texture. The arm poses are controlled through ROS
commands.

6

2.1.3 Simulation Model

The URDF and 3D mesh files (in dae format) of the Baxter robot are used to

render the Baxter robot in a ROS simulation environment such as Gazebo [33],

iGibson [73] or AirSim [61] (based on Unreal engine). We chose Gazebo as the

simulation environment due to its straightforward integration with the ROS

environment.

Simulation is important in our project because it renders realistic images of

the Baxter and provides ground truth values for joint angles, 3D positions, as

well as intrinsic and extrinsic matrices of the virtual camera(s) used to capture

2D images. The simulation environment was used at two stages in the project.

First, a joint detection convolutional neural network was trained using datasets

generated with this tool. The simulation environment also played a key role

in the toolchains proposed in Chapter 4.

2.2 RGB-D Camera

Figure 2.3: RealSense D415 Depth camera consisting of an RGB camera, an
infrared projector and two infrared cameras. Slots on the top of aluminum
shell allow airflow for cooling.

The Intel RealSense D415 RGB-D camera was the primary camera used

throughout this thesis. It captures both monocular 2D images (RGB) and

coloured 3D point clouds (RGB-D), each at a resolution of 1280 ⇥ 720, with

a 30 Hz frame rate. The depth sensing technology is active stereoscopic, with

7

an operational range of 0.16 to 10 meters. RGB-D camera is used in one of

the methods in Chapter 3, while all the other methods discussed in Chapter

3 and 4 use RGB cameras.

Figure 2.4: RealSense D415 camera RGB-D image visualization. Top left
image is RGB image, bottom left image is depth image, and the image on the
right is a combination of RGB color and depth on all pixels. The 3D location of
each pixel is relative to the camera lens coordinate, denoted as ”camera link”
in the image.

2.2.1 Camera Projection Model

A digital camera employs an imaging sensor mounted behind a transparent

lens. The lens is usually arced in shape, and light rays from objects in front

of the lens travel through the lens while being refracted, then hit the imaging

sensor plane. This is illustrated in Figure 2.5.

The model represented above is realistic but overly complex for most com-

puter vision tasks. For this reason, the simplified pinhole model shown in

Figure 2.6 is more commonly used. The figure on the right is the real-world

object, while the smaller upside down figure on the left is the projection onto

the imaging plane. The real object is located at a distance of Z meters in front

of the camera lens, and has a height of Y meters. Its captured image has a

height of y in the imaging plane, and the distance between the image plane

and the lens is f , known as the focal length of the camera. Note only the Y-Z

plane is shown to make the figure clear and easy to understand, but the same

e↵ects occur in the X-Z (out of page) plane.

8

Figure 2.5: Example of lens projection with two sample objects (blue dots).
The lens represents the physical arc shaped glass lens in the camera. The red
lines illustrate the light rays of each object. They are refracted by the lens
and land on the image plane (imaging sensor chip).

Figure 2.6: Illustration of pinhole projection model. The blue person on the
right is the object in front of camera, and the blue person upside down on
the left is the imaginary object being captured on the image plane. The lens
in this model is simplified as a pinhole (dotted vertical line) and the ratio
between Y and Z is same as the ratio between f and y.

An equivalent representation of the model in Figure 2.6 is shown in Fig-

ure 2.7. Here the image plane is placed at a distance f in front of the lens,

such that the image is rightside-up. The geometry relation for this equivalent

pinhole model is
f

Z
=

y

Y
=

x

X
(2.2)

The X, Y, Z terms in the above equation are the point coordinates of the real

9

object with respect to a camera lens-fixed frame. This frame is located at the

center of the camera lens, with the z-axis pointing outwards from the lens, the

x-axis pointing to the right and the y-axis pointing down.

Figure 2.7: Illustration of pinhole projection model (version 2). This model
is similar to the model presented in Figure 2.6, and the di↵erence in this one
is that both the real object and imaginary object are placed on the same side
of lens for explaining the geometry relation more intuitively.

The complete mathematical model for the pinhole camera which projects

3D points (X, Y, Z) to 2D image plane pixels (u, v) is

2

4
u
v
1

3

5 =
1

z

2

4
fx 0 cx
0 fy cy
0 0 1

3

5

| {z }
K

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5

| {z }
⇧0

2

664

X
Y
Z
1

3

775 (2.3)

where fx and fy are the focal length f multiplied by scaling factors sx and sy

in units of pixels/m. If pixels are exactly square then sx = sy and fx = fy,

but they may not be identical due to manufacturing imperfections. (cx, cy)

represent the coordinates of the optical center of the lens in image frame

10

coordinates. They are usually close, but not exactly equal to, half the image

frame resolution. The matrix ⇧0 contains the extrinsic rotation matrix of the

world reference frame relative to the camera-fixed frame. If the camera-fixed

frame is used as the world frame, this matrix is as given in (2.3), but in general

the world frame may be di↵erent (e.g. camera-in-hand applications).

2.2.2 Camera Calibration

The intrinsic camera matrix K models the optics of the camera, and is usually

obtained by a camera calibration. In addition to the intrinsic matrix K, the

calibration process also estimates the distortion coe�cients [k1, k2, k3, p1, p2].

The coe�cients [k1, k2, k3] model radial distortion created by the curvature

of the lens, resulting in straight lines in the real world being curved inwards

or outwards from the optical center in the captured image. The coe�cients

[p1, p2] model tangential distortion created by the lens not being perfectly

aligned with the imaging plane, causing straight lines to be curved laterally

outwards from the optical center. The relation between the locations of point

in distorted image (xdist, ydist) and undistorted image (x, y) is expressed as

follow equation [8]:

r2 = x2
d + y2d

xdist = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r

2 + 2x2)

ydist = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2xy

(2.4)

We use a 10 by 10 square chess board (Figure 2.8), with a cell size of 10 cm

for calibrating the camera. The full calibration toolchain is available within

OpenCV. A total of 50 images of the board is used to calculate the distortion

coe�cients. These images include various poses of the chessboard, obtained

by rotating the chessboard around its three axes and placing it at various

distances from the camera. The sample image in Figure 2.9 shows the corners

detected by OpenCV.

The 2D RGB imaging module in Realsense D415 camera can output reso-

lution of 1920⇥ 1080. At this resolution, D415 camera was found to have the

11

Figure 2.8: Chess board used for camera calibration. It is printed on a rigid
flat board, and each cell is 10 cm by 10 cm square.

Figure 2.9: Chess board with detected corners labelled by OpenCV. The over-
all brightness of the original image in Figure 2.8 is reduced for better visual-
ization of the color labels.

intrinsic camera matrix

K =

2

4
1408.861118 0.000000 967.112103
0.000000 1405.073465 549.061123
0.000000 0.000000 1.000000

3

5 (2.5)

and the distortion coe�cients

⇥
k1 k2 k3 p1 p2

⇤
=

⇥
0.090983 0.154693 0.005158 0.007692 0.000000

⇤

(2.6)

12

2.2.3 ROS Integration

Intel provides a software development kit (SDK) for its RealSense cameras for a

variety of software platforms, including ROS. The SDK publishes point clouds

and monocular images at 30 Hz, and we set the image resolution at 640⇥480 to

provide smooth video and reduce bandwidth requirements. While the camera

supports higher resolutions, these are not required by the neural networks as

explained in the upcoming chapters.

2.3 Vicon Motion Capture System

A Vicon optical motion capture system is installed in the lab, consisting of

10 Vero 2.2 cameras plus a stand-alone computer running Vicon’s Tracker

software. Using strobed infra-red (IR) light, the system tracks the 3D position

of reflective markers in the capture volume. In order to track the pose of a

rigid body, several reflective markers are fixed to the surface of an object in an

asymmetric pattern. The set of markers is used within the software to define a

rigid-body, whose pose is then calculated with respect to a user-defined world

frame within the lab. The cameras and markers are shown in Figure 2.10. A

screenshot of the running Tracker software is shown in Figure 2.11.

Figure 2.10: Vicon Vera cameras (left) and Vicon markers (right). Vicon
cameras are mounted on the metal hanger installed near the ceiling of the lab.
The Vicon marker balls are attached to the black plastic plate.

13

Figure 2.11: Vicon tracker software screenshot. The list on the left are the
objects being tracked. The right part is the 3D view of the capture volume.
The square grids represent the floor, and each pyramid represents one Vicon
camera.

2.3.1 ROS Integration

The vicon bridge package is used to stream the output of Vicon’s Tracker

software into ROS. The result is published on the tf topic at a rate of 100 Hz.

In order to measure the pose of the Baxter’s base link frame, six reflective

markers are attached to various spots on the robot as shown in Figure 2.12.

The marker pattern is placed asymmetrically on the Baxter in order to achieve

more robust rigid-body detection. The location and orientation of the Bax-

ter’s body-fixed frame assigned by Tracker does not match with the base link

frame defined within Baxter’s URDF file. Thus the former is manually ad-

justed in software to match with the latter.

The D415 camera and stand are also outfitted with reflective markers as

shown in Figure 2.13. Both D415 and D435 cameras are shown in the figure

because we tested both cameras in our experiments. As discussed above, the

camera model assumes the reference frame is placed at the center of the lens,

thus the body-fixed frame of the rigid body defined within Tracker is manually

configured to achieve this.

14

Figure 2.12: Baxter robot with Vicon markers attached around the body. In
total six markers are used for tracking the pose of the Baxter body, and each
marker is shown in the sub-images around the complete Baxter image.

2.4 Literature review

This Section outlines the background references related to the various software

tools which will be used for subsequent work in this thesis. A more focused

and specialized literature review will be provided in Chapter 4, in the context

of our chosen method for tracking the joint states of the lab robot.

2.4.1 Computer Vision and Machine Learning

Computer vision has several applications, including 3D reconstruction and im-

age processing. All of these can be performed using conventional techniques,

but learning-based convolutional neural networks have shown superior perfor-

mance in the latter two areas in recent research works.

3D reconstruction can be achieved by either RGB-D cameras or (con-

15

Figure 2.13: RealSense D415 (left) and D435 (right) cameras and holders with
Vicon markers. Each camera has five Vicon markers attached on the metal
base frame and camera shell.

ventional) monocular cameras. RGB-D cameras capture 2D color images

alongside a depth image describing the depth of each pixel, while monocu-

lar cameras capture only 2D images. Using RGB-D cameras, TSDF (Trun-

cated Signed Distance Function) [17] is a method for 3D reconstruction of

objects, while RTAB-Map (Real-Time Appearance-Based Mapping) [35], [36]

also reconstructs 3D scenes but is optimized for SLAM (Simultaneous Lo-

calization And Mapping) applications. Structure From Motion (SfM) is a

method to reconstruct 3D models from monocular camera 2D images [60],

[67], [71]. Orb-Slam [46], [47] compute the 3D pose of a camera using its

monocular images. Orb-Slam runs in real time by tracking features points

rather than complete textures, while SfM usually runs o✏ine due to its esti-

mation of depth images used to build a complete 3D mesh of the scene. In

our project, we evaluated several 3D reconstruction methods including both

RGB-D and monocular camera-based, and chose TSDF because of its fast

computation and reconstruction quality.

Object detection is an important application of computer vision, for in-

stance detecting all instances of humans in an image and outputting their

16

coordinates in terms of a rectangular bounding box. YOLO [56] is an object

detection convolutional neural network which is capable of detecting multiple

types of objects in high-resolution images in real-time. The fast performance

is facilitated by using a GPU, whose hardware keeps achieving higher com-

putational power every year. A sub-domain of object detection is instance

segmentation using regional convolutional networks [26], [57]. Instead of rect-

angular bounding box, instance segmentation outputs the actual boundary

of the object(s) of interest. This is used to remove image backgrounds, for

instance.

While certain image processing tasks can be performed using conventional

computer vision methods (e.g. color correction and contrast modification),

but many other tasks can only be achieved by convolutional neural networks

(e.g. texture style modification). A Generative Adversarial Network (GAN) [22]

is a type of neural network which can manipulate content or change texture

style in images [62], [77]. In our projects, CycleGan [77] is used for transfer-

ring robot images between simulation style and real-world style for robot joint

detection and state estimation.

An active area of research is the application of machine learning techniques

to engineering problems which were not previously solvable using conventional

computer vision methods. For example, conventional object detection needs

to rely on shape, color and size, while neural network-based methods can

distinguish between objects and classify previously unseen items, for instance.

Machine learning also enables synthesizing closed-loop control designs which

are too complex for conventional methods. An early example of this is [14],

which implemented a model helicopter controller trained using a human pilot’s

inputs. The resulting design was able to autonomously perform 3D acrobatics

and auto-rotations, which had not been achieved previously using conventional

control design.

2.4.2 Robot Joint State Estimation

Conventional sensors to measure joint states of robot arms are encoders, ei-

ther rotary or linear [58]. Hydraulic cylinders, typically used to actuate heavy

17

machinery such as construction equipment, can be equipped with position

feedback sensors such as LVDT (Linear Variable Di↵erential Transformers) or

other technologies [30]. Two vision-based approaches to measuring robot arm

joint states are 2D RGB image-based methods, based on fiducial markers or

trained Convolutional Neural Networks (CNNs), and 3D sensor-based meth-

ods, based on RGB-D cameras or LiDAR. In the former, fiducial markers [21]

provide good performance in nominal conditions due to their easy-to-spot na-

ture, but may fail in the case of motion blur, unfocused cameras, or occluded

or dirty markers. CNNs are a promising approach to this problem, and re-

search works have shown them capable of delivering excellent performance and

robustness to e↵ects such as motion blur and dynamic environments. RGB-D

cameras are capable of directly measuring depth and thus avoid scale ambi-

guity, but typically have a limited sensing range and may not work reliably

in outdoor scenes. LiDAR works in both indoor and outdoor environments,

but good-quality units are much more expensive than the previous sensing

technologies. In our work, after evaluating both fiducial markers and RGB-D

cameras, we settled on the CNN approach.

2.4.3 Human Skeleton Tracking from 2D images

A number of recent research works have focused on human skeleton tracking

from 2D images, which all require a large set of training images annotated

with joint locations, either by manual labeling [3] or obtained from specialized

equipment [69]. Manual labelling is typically the best approach since it can be

applied to a wide range of human subjects and can be done on both indoor and

outdoor images. The CNNs developed for human pose estimation have several

variations. Early work focused on detecting a bounding box for individual

limbs of the human body [75]. Skeleton joint detection was then found to pro-

vide better performance, for instance Toshev [65] and Carreira [10] employed

an iterative regression method to detect joints. Meanwhile, one-pass joint de-

tectors suitable for real-time skeleton detection were demonstrated in [9], [11],

[74]. These methods produce a set of heat maps, one for each joint of interest,

indicating the statistical likelihood of the joint’s location. Mask R-CNN [26],

18

a neural network designed for instance segmentation in images, can also be

adapted to perform human skeleton tracking.

2.4.4 Robot Arm Pose Estimation

The robot being observed is an articulated body consisting of multiple links

and joints rather than single body objects, the problems get more di�culty.

But similar to single body object pose estimation, the pose of articulated

objects can be treated as a collection of the poses of each single link or joint.

For relatively simple open kinematic chains, namely less than 3 or 4 links,

the configuration of the arm can be obtained by estimating the pose of the

end-e↵ector and then using inverse kinematics to calculate the joint states.

However, this approach will not work for fully- or over-actuated robot manip-

ulators, such as the Baxter’s twin 7 DoF arms, where IK has multiple solutions.

In this case individual joint angle detection is necessary. One notable example

of this approach is DART (Dense Articulated Real-Time Tracking) [59], which

employ RGB-D images and a 3D CAD (Computer-aided design) geometry of

the robot to track link poses in real time. This method is based on optimiza-

tion using a signed distance function to minimize the error between model and

RGB-D point cloud. The limitation of this method is the reliance on a depth

camera, which as discussed before provides a limited depth range.

Two recent works addressing the domain gap problem for robotic arms us-

ing domain adaptation are CRAVES (Controlling Robotic Arm with a Vision-

based Economic System) [78] and DREAM (Deep Robot-to-camera Extrinsics

for Articulated Manipulators) [39]. In CRAVES, 17 distinguishable feature

points on the surface of a low-cost robot arm manipulator are selected as key-

points to train a 2-stack hourglass network [50], and an optimization is used

for regression of the joint angles to match the detected keypoints. In DREAM,

the individual joints of the Baxter robot are used as keypoints, and the detec-

tion model is trained using a CNN with VGG-19 [63] as encoder followed by a

customized decoder. In these methods, the key point detection networks are

trained on simulation images, and tested on real images.

19

Chapter 3

Preliminary Approaches to
Manipulator Joint State
Estimation

This chapter documents our early approaches to vision-based joint angle esti-

mation of an encoderless multi-link manipulator. One approach is to estimate

the poses of individual links, then computing their relative angles using the

known robot geometry.

For each method, we discuss the background knowledge, software and hard-

ware setup, and results assessed with either quantitative and qualitative met-

rics. As will be shown, none of the methods in this chapter provided acceptable

performance. The next chapter focuses on a method which was found to work

and provide good performance for estimating the joint angles.

As mentioned in Chapter 1, the original motivation for this research was the

automation of an outdoor loading crane. Since we did not have ready access

to this system nor a source of ground truth, we performed all our experiments

on the Baxter robot in our research lab. The outdoor crane has 4 joints, while

the Baxter robot has 7 joints on each of its two arms. By moving only 4 of

these joints, the Baxter robot arm was made to approximate the structure of

the crane. Throughout this work, we used both a simulation environment and

the physical robot hardware to test the di↵erent approaches.

20

3.1 AR Markers

3.1.1 Background

The first approach we tried was using Augmented Reality (AR) markers, shown

in Figure 3.1. AR markers are widely used in both research environments and

industrial applications, thanks to their robust performance and a↵ordability.

In order to estimate the 3D pose of an object relative to a camera, we only

need to print an AR marker with a known size and pattern, a�x the marker

to the object, and use the video feed from a regular monocular camera to

calculate the pose.

Figure 3.1: Examples of Aruco AR markers. These are 6 by 6 markers, mean-
ing each marker has 6 rows and 6 columns cells. Other sizes are also available.

AR markers provide reliable pose estimates when they are in complete and

clear view of the camera. They are robust to small levels of occlusion (e.g. one

corner being covered) or lack of camera focus, but will not work for larger

levels.

3.1.2 Algorithm

AR marker pose estimation is executed in three steps. First, the RGB image

is transformed into a grayscale image and then thresholded to yield a binary

(black and white) image as shown in Figure 3.2. The image portion containing

21

the marker is extracted then warped into a square by a perspective correction.

After this, marker cells are applied to the detected marker region, which pro-

duces an n by n array containing 0 or 1 in each cell. Using this array, the

marker is identified from a dictionary of all predefined marker types. The

pose of the marker is estimated using the perspective correction along with

the known dimensions of the printed marker.

Figure 3.2: Visualization of AR marker detection and identification steps. (a)
is the raw image captured by camera containing multiple markers. (b) is the
binarized image for contour extraction which will be further used for marker
candidate extraction. (c) is one of the extracted markers from the raw image.
(d) is the marker after the perspective e↵ect is removed. (e) is segmenting
the marker pattern into a grid with a given size, and (f) is the binary array
converted from the grid in (e) and it is used for marker index identifying.

3.1.3 Implementation

In order to estimate the joint angles on the robot, we attached separate AR

markers to each of its links as well as the base frame. By computing the 3D

pose of each link, we can calculate the joint angles between them using the

22

joint locations on each of the links, which are known.

Figure 3.3: Illustration of AR marker placement on Baxter arm. The markers
are attached on four links on the robot arm, and also the stationary robot
body. In this figure, only left side arm is marked for visualizing the di↵erence
between marked and unmarked robot arm, and the actual implementation will
applied for both arms if needed.

3.1.4 Test and Outcomes

Hardware testing was performed in our lab, using ROS’ ar track alvar pack-

age and a Logitech C920 camera. We printed markers on paper and mounted

them on rigid foam boards. For the AR tag detection algorithm, accuracy

and speed are optimized when the marker view is large, meaning that using

physically larger markers leads to more better estimation performance. At the

23

same time the markers should not be larger than the dimensions of each link

of the robot arm of the Baxter. Thus we printed out markers with 28.9 cm

square dimensions for testing. For our first test, the marker was held perpen-

dicular to the camera’s lens axis and moved away, starting from 1 meter and

ending at 9 meters. Detection was nearly at frame rate over the first 4 meters,

but the detection rate started lagging for larger distances. Meanwhile, pose

estimation was accurate within the 1–4 m range, but pose errors and detection

drop-outs started to be seen at larger distances.

3.1.5 Discussion

While the theoretical idea of AR Marker detection for joint state estimation is

valid, things are much more complex in practice. The first issue is occlusions

due to the 360 degree rotation mobility of the base joint, meaning all sides

of each crane link need separate markers to maintain link detection. The

second issue is the clarity of markers in captured images. The sharpness of the

markers rendered in the images a↵ects the accuracy of the estimated pose. In

order to obtain clear images, the camera needs to focus on the AR markers,

but these can be located at various distance from the lens, easily resulting in

defocused images. This issue is aggravated when by the camera has a large

distance to the robot, which can be expected in field testing conditions. Lastly,

environmental issues such as the markers getting fouled by mud or snow or

physically damaged by the elements, would also lead to poor detection results.

For these reasons, we decided not to pursue the AR marker idea further.

3.2 Color Strips

3.2.1 Background

As explained in the previous Section, AR markers do not perform well at

longer distances. We next considered the idea of marking the links with color

strips, acting as fiducial markers. Theoretically, 8 unique feature points in a

flat pattern are su�cient to estimate 3D pose [44], and if a smaller number is

available, pose can be estimated down to a small set of possibilities, which can

24

be further refined by real-world constraints. Meanwhile color-based markers

are much less sensitive to distance and camera focus than AR markers for

detection purposes. In our case the markers were rectangular stripes with

di↵erent colors

Figure 3.4: Illustration of color strip markers on Baxter arm. The color strips
are attached on four links on the robot arm, and also the stationary robot
body. In this figure, only left side arm is marked for visualizing the di↵erence
between marked and unmarked robot arm, and the actual implementation will
applied for both arms if needed.

3.2.2 Test and Outcomes

Two colored strips are wrapped around each link of the manipulator, and

each link has a pair of strips with a particular color. When an image of the

manipulator is captured by the camera, the image is first transferred from

25

RGB to HSV (Hue, saturation, brightness) color space, then color filters are

used to extract the regions corresponding to each color.

We started testing using a single green rectangle as shown in Figure 3.5.

The original image was filtered by a fixed-range HSV color space filter. The

resulting image is shown in the middle of Figure 3.5. In this example, the

background is clean and of a di↵erent color than the object, but this will not

always be the case in a real-world environment, where random elements of

the scene may also pass through the thresholding filter. The last step of the

detection pipeline is corner extraction using the Harris method [25]. In our

testing, this corner extraction performed well as shown in Figure 3.5, but let to

the problem of the corner detection numbering being random. This could be

resolved by using a tracking algorithm for the individual corners. Note corner

numbers are shown in the right side of Figure 3.5.

Figure 3.5: Color rectangle detection experiment. Left image is the original
image containing the green marker. Middle image is the marker being filtered
out. Right image has four edges labelled as red lines, and four corners labelled
by numbers.

The second test involved color filtering thin strips attached to the Baxter

robot’s arm as shown in Figure 3.6 (left side). The middle of this Figure shows

the filtered image, obtained from a fixed-range thresholding of the HSV color

space. The green strips on the Baxter are correctly extracted, but random

background color elements are also filtered out as seen in the right-bottom

corner of this image. Meanwhile, the extracted color strips have lost some of

their shape near the top-left corner, due to light shadowing in that area. The

performance of the filtering was even worse in more complex environments.

Thus this method is very sensitive to the trade-o↵ between shape extraction

26

and noise rejection.

Figure 3.6: Color strip detection on Baxter arm. Left image is the original
image containing the Baxter robot arm with green strips. Right image is the
green strips being filtered.

As demonstrated above, the color strip method has several weaknesses

which will cause it to perform poorly in a real-world operating environment:

1. Each link must have a unique color to distinguish it from the others, and

the colors must be su�ciently distinguishable. For a four-link manipu-

lator we can readily find such colors, but this may not be the case for

more complicated manipulators.

2. There will always be regions of matching colors in a natural scene back-

ground. This will make it more di�cult to identify the the true regions

of interest, and may result in erroneous corner detections.

3. Just like the ARmarker method, the visibility of the color strips is critical

for performance. If the strips are fouled, occluded by another object or

subject to glare, detection will fail and pose will not be estimated.

4. Within the setup discussed above, eight points (four corners of each color

strip) are available for pose estimation, the minimum number required to

estimate pose. However if the strip filtering produces a distorted image

with less than 4 corners, pose estimation will not return a unique pose.

27

3.3 3D Model Fitting onto 2D Images

3.3.1 Background

The pose of an object can be estimated if its image has distinguishable vertices

(corners) and edges (lines). Lines and corners can be extracted from images

through standard computer vision techniques, e.g. Canny edge detection on

grayscale images, and if a correspondence can be found between features in

the image and features on a pre-defined 3D model of the object, then the pose

of the real object can be estimated in real time. This method was proposed

in [15].

3.3.2 Software

Figure 3.7: Object pose tracking stages. Images in order from top left to
bottom right are: camera video stream, feature helper image, feature selection
on the first image, initial pose estimation, corrected pose estimation over time.

The stages involved in applying this method to a single rigid-body object

are demonstrated in Figure 3.7. The top-left image is the scene seen by the

camera, and the top-right image is a helper image of the object to be tracked.

This image contains four clearly distinguishable vertices, which are indexed

from 1 to 4. To identify the location of these features on the actual object, the

user needs to manually click on the locations of these features in the helper

28

image, as shown in the bottom-left image with the green markers showing

the clicked locations. Once these 4 feature points are selected in the helper

image, the algorithm fits the detected lines and corners to the camera image

to the 3D model to estimate the pose of the object. However, due to the

limited resolution of the image and errors in manual feature selection, there

are noticeable o↵sets between the object’s identified features, whose edges are

shown as green lines in the bottom-center image, and the actual image. The

algorithm will further refine the fitting of the 3D model to minimize the error

between the projected version and actual image. The result is shown in the

bottom-right image as red lines, demonstrating a good fit.

Since this method requires 3D models of the object to be tracked, we

focused on the Baxter platform for which geometry information is available

as STL (STereoLithography) files, as shown in Figure 3.8 for the arm link.

Just as in the previous method, joint angles can be computed from the pose

of the two links connected by the joint. Since each robot arm contains seven

links, estimating their pose along with the geometry of the manipulator would

enable estimating the values of the 7 joint angles.

Figure 3.8: 3D geometry model of Baxter arm link. Left image is a picture of
the link of the robot arm being track tracked. Two images on the right are
the 3D CAD model of this robot arm link (front view and right view).

3.3.3 Test and Outcomes

Testing was performed in our lab, employing ROS’ vision visp package and a

Logitech C910 webcam. The initial test involved a simple plastic box. The di-

29

mensions were measured manually and a CAD (Computer-aided design) model

of the box was created. Using the procedure explained in the previous Section,

real-time object tracking was achieved. The performance was found to be very

good, likely due to the box’s easily distinguishable edges and corners.

Unfortunately this method did not work for the links on the robot arm.

These objects are di↵erent in nature from the box in the previous test. The

first di↵erence is the lack of distinguishable edges and corners on the smoothly

contoured links. The second di↵erence is the severe occlusions created by the

presence of other links on the arm. However the primary reason for the the

failure of tracking by this method is that the algorithm relies on matching

edges in the CAD model with visible edges in the camera images. While in

the case of the box, there are 8 vertices and 12 edges to be matched which

are clearly visible in the camera images, the Baxter arm link model has 7,379

vertices and 13,754 edges. This detailed model allows a detailed rendering of

the Baxter arm link, but almost none of these CAD vertices and edges are

clearly visible on the real arm link. As a result the algorithm is unable to

extract enough features from images to match the features of the CAD model,

even when these are accurately initialized by the user using a helper image.

Another problem we noticed for this package is the necessary computing

power. Even when tracking the simple box, the algorithm used nearly full CPU

(Central Processing Unit) power on an Intel Core i7-8750H based system. This

means tracking complex and multiple objects such as arm links is not likely

to work in real-time, although this needs further testing.

3.4 Iterative Closest Point-based registration

3.4.1 Background

While all the other pose estimation methods discussed so far rely on RGB

images from a monocular camera, the next method relies on capturing point

clouds with an RGB-D camera. When the object is in the field of view of

the camera, the captured point cloud contains a portion of the surface of the

object, as shown in Figure 3.9. The top-left image is the RGB image captured

30

by the camera, which provides color information in the 2D plane. The bottom-

left image is the depth image captured simultaneously with the RGB image,

whose pixel values are 16-bit integers proportional to the physical distance

from the image plane to the object. This image is rendered with darker pixels

for closer range and brighter pixels for further range. The RGB-D camera

used to capture this image was an Intel RealSense D415, which has an upper

range limit of about 10 meters. The 3D mesh on the right of Figure 3.9 is the

point cloud created by combining RGB and depth information for each pixel,

visualized in RVIZ. The 3D location of each voxel (pixel in 3D space) relative

to the camera is calculated from the depth image and the camera projection

model, and each voxel is colorized using the corresponding pixel in the RGB

image.

Figure 3.9: RGB-D camera output visualization. Top left image is RGB image,
bottom left image is depth image, and the image on right is a combination of
RGB color and depth on all pixels. The 3D location of each pixel is relative
to the camera lens coordinate, denoted as ”camera link” in the image.

3.4.2 Test and Outcomes

Assuming we have a 3D CAD model of the object of interest, for instance a

robot arm link, the pose of this link can be estimated by fitting the 3D model

to the captured point cloud. One algorithm for doing this task is ICP (Iterative

Closest Point) [7]. We used the implementation provided in Open3D [76], an

open-source software package for 3D point cloud manipulation. ICP takes two

31

point clouds as inputs, one captured by the RGB-D camera, the other from the

3D model (known as the target). The algorithm iteratively adjusts the pose of

the target point cloud until the distances between voxels of the captured and

target point cloud are minimized. To test the capability of this algorithm, we

performed experimentation in two steps. We first tested the method for using

a chair in the lab, representing a single rigid body. Each link in the articulated

robot arm represents a rigid body which needs to be tracked individually, with

the added challenge of occlusions created by other links a↵ecting the tracking

accuracy of the system. Thus the single chair experiment works as an idealized

experiment to test the best-case performance of the system. Figure 3.10 shows

an example of ICP being applied to point clouds of a chair. The blue portion

is the target point cloud, while the yellow is the captured point cloud. The

algorithm successfully finds the pose required to align the blue point cloud

to the yellow point cloud. The result gives the pose of the actual 3D object

relative to the RGB-D camera-fixed frame.

Figure 3.10: ICP experiment on a chair. This experiment was performed
for this chair because the chair is a single rigid body, and the result in this
experiment is the baseline reference of the ICP approach to multi-link tracking.
The yellow model is fixed, and the blue one is being moved. In the first image,
the two models are placed at a random pose, serving as the initial guess. The
second image shows the result of the pose estimation. Two models are aligned.

The second part of testing involves the articulated robot arm. While ICP

performed well in the first trial, it will not reach the same performance for

our task of estimating the poses of individual robot arm links. While in the

32

previous example, the “captured” point cloud (yellow) is actually stitched

from di↵erent views of the chair from all directions. The run-time RGB-D

images will contain only a partial surface of the object, as seen in Figure 3.9.

Applying the ICP algorithm in this case will not produce satisfying results in

our experiments due to this and the occlusion issues mentioned above.

3.5 DART: Dense Articulated Real-Time Track-
ing

3.5.1 Background

Since the conventional ICP algorithm did not produce satisfactory results, we

tried the related Dense Articulated Real-Time Tracking (DART) method de-

veloped by [59]. This method uses SDF (signed distance function) for aligning

a 3D model with an RGB-D image of the object.

3.5.2 Discussion

The authors of DART have made the software toolchain for running DART

with Baxter publicly available. While testing with our Baxter model yielded

good estimation results, there are limitations to this approach preventing it

from being used for an outdoor crane. First, the depth range of our RealSense

RGB-D camera is 10 m, which is too close to capture a full view of the outdoor

crane. Second, depth sensing in the camera is performed by projecting and

measuring an IR image ahead of the camera, but this signal is lost in bright

sunlight which can be expected in outdoor conditions. One possible alterna-

tive is a stereo camera, which works by correlating images from two parallel

monocular cameras to estimate depth and generate point clouds. However

based on our testing, commercial stereo cameras such as StereoLabs’ ZED

are unable to generate su�ciently detailed point clouds at longer (> 10 m)

distances as well.

Based on our informal experiments, methods relying on depth cameras

were dropped from consideration, since they could not function reliably in an

outdoor setting, which is the longer-term goal of the work presented in this

33

thesis.

3.6 Learning numerical joint angles from RGB
images

3.6.1 Background

The approaches discussed in the previous sections are based on traditional

computer vision methods, which work reliably in certain scenarios but may

fail when the image background is too busy or the tracked object is too com-

plex. Inspired by the many real-world successes based on convolutional neural

networks (CNNs) in recent years, we decided to try a CNN-based approach to

joint angle estimation.

Since our goal is to estimate the joint angles on a robot arm, the input of

our network are RGB images, and the output is a set of four joint angles. The

image is first processed by convolutional layers whose function is to extract

features from the arm, followed by subsequent layers used to calculate a 1D

array of joint angles. This idea is illustrated in Figure 3.11.

Figure 3.11: CNN architecture for direct joint angle prediction. The image of
the crane on the left is the input. The square groups in the middle are the
convolutional layers. The sizes of squares show the relative sizes of processed
arrays, and numbers of squares show the relative amount of kernels in each
stage. The two columns of circles on the right are the fully connected layers,
and the four circles labelled with J1 - J4 are the outputs. The sizes and num-
bers of elements in this Figure are only approximate values to show the shape
of the neural network because the figure created with the actual parameters
was impractical to visualize.

In this approach, a simulated crane is used instead of the Baxter robot be-

cause this neural network solution is end-to-end (from image directly to joint

34

angles) while the previous approaches consist of sequential steps (e.g. extract-

ing features from image, computing individual link poses, and then computing

the joint angles), and the crane has 360 degree base-joint rotation range while

the Baxter arm base-joint has only a 200 degree rotation range. The sequen-

tial steps require analytical forward/backward kinematics model to compute

the joint angles, which brings the benefit that the solutions developed for the

Baxter robot could work on the crane as well simply by changing the kinemat-

ics model. But since the behavior of this end-to-end network solution is less

analytic, the network architecture developed for the Baxter arm would not be

representative of the crane. Thus the crane is exclusively considered in this

approach. Note that the subsequent methods use sequential steps again, so

the Baxter robot is used in these approaches.

In order to train such a network for a real crane, we would need a library of

images of the real crane together with the corresponding joint angles. However,

since the field crane does not provide joint angle feedback, this approach cannot

be directly applied to the real crane. As a result, we built a simulated crane in

the Gazebo simulation environment, as shown in Figure 3.12. This simulated

crane consists of a stationary base plus 4 moving links. Each link has a pair

of strips with a unique color attached to it. It would have been ideal if a

3D CAD model of the crane were provided by the manufacturer, but we were

unable to obtain this. Therefore we created the simplified model shown in

Figure 3.12 in Blender, using the actual dimensions of the field crane listed

in its user manual [1] to increase realism. The geometry of the crane was

encoded in a URDF and a configuration file. The simulated crane has four

joints, three revolute and one prismatic; note the real crane is designed with

a 3-section telescoping section, but this can be modeled as a single prismatic

joint. The intrinsic parameters of the simulated monocular camera were set

to match those of the Logitech C920 webcam, while the extrinsic parameters

(pose) were set to just fit the simulated crane into the image frame throughout

its range of motions. Virtual lighting was also added for additional realism.

We used a simple network inspired by VGG [63] to evaluate this method.

The network has 5 convolutional sets in sequence, each consisting of two con-

35

Figure 3.12: Simulated 4 DoF crane in Gazebo. It consists of 5 links, and each
link is outfitted with uniquely colored strips. The base link is marked by cyan
strips and it is stationary. The next three links are covered by green, red and
yellow strips. The green-colored link rotates around the vertical axis while the
other two links rotate around horizontal axes. The link with blue strips has
a linear rather than a rotational motion. All four joints are controlled by the
ROS joint controller.

volutional layers and one max-pooling layer. Then it has two fully connected

layers followed by the output layer. The input to this CNN was 256 ⇥ 256

RGB images. While the virtual camera returns 640⇥ 480 images, these were

downsized to 256⇥256 to allow training on our consumer-grade GPU. The in-

put images were then processed by 4 convolutional layers with a kernel size of

4 by 4, followed by fully connected layers, outputting for values corresponding

to the joint states.

To train this network, training data was generated inside the Gazebo simu-

lation environment. The training set consisted of 3000 images of the simulated

crane in various poses, together with the corresponding joint states. Another

2000 pairs of images and joint state data were generated for testing. The

virtual camera was kept in a fixed pose throughout. Training was performed

using the PyTorch deep learning environment using the Adam optimizer and

L2 loss function.

3.6.2 Test and Outcomes

The test results were not as good as expected, but still demonstrated the

potential of a CNN-based approach. Following multiple rounds of training

36

while tuning the hyper-parameters of the network, the trained CNN was only

capable of correctly estimating a portion of the 4 joint states. For instance,

using the validation dataset, the network would produce two joint estimates

within 5 degrees of the ground truth values, but the two remaining estimates

would exhibit large errors.

3.6.3 Discussion

Even if the results from this method would work well in simulation, it could

not be applied to the real-world crane since we cannot obtain the joint angles

in that system, which are required for training the network. However, this ap-

proach still proved valuable since it demonstrated the interest of CNN-based

methods relative to conventional computer vision methods for joint angle es-

timation. This motivated the author to pursue convolutional neural networks,

which play a key role in the method discussed in the next section, and are the

basis of the eventually chosen approach documented in Chapter 4.

3.7 Baxter keypoint detection in Simulation

3.7.1 Background

Inspired by the CNN approach discussed in the previous section as well as

reading other research, we found that our project is related to human pose

estimation, the latter relying on estimating the positions of joints on a human

skeleton without access to direct sensing.

There are several excellent recent works on human body joint detection

from monocular RGB images based on CNNs [9], [10], [74]. We thus tried

this class of methods in our simulation environment. We chose to use Baxter

robot for this portion since the simulation results could be validated on a real

Baxter in our lab, unlike the outdoor crane where a detailed 3D model was

not available. Even if such a model was available, validation would be di�cult

since the ground truth of joint states of the full-sized crane is not available to

evaluate the accuracy of the state estimates.

37

As before, the simulation is performed with the Gazebo simulation envi-

ronment [33], using the Baxter model provided by Rethink Robotics. One

fixed monocular camera is placed in front of the Baxter, and several lighting

sources are added to the scene in order to enhance the color contrast. During

data collection, both arms of the Baxter are commanded to move in random

motions throughout its reachable workspace, and the virtual camera acquires

images at a rate of 1 Hz. The ground truth joint state data is saved in json

files corresponding to the captured pictures. The background in the simula-

tion environment is set to be pure white, such that post-collection background

augmentation can applied using simple color filters. The background of each

image was filled by single images randomly selected from the COCO image

dataset [41]. The resulting augmented images along with the logged joint

states were used as training data for the network. The output of the network

are heatmaps for each detected joint, reflecting the probability distribution of

the joint’s location within the pixel image.

There are several types of convolutional neural network architectures avail-

able, for instance VGG-19 [63], hourglass [50] and ResNet [27]. We chose

ResNet because of its ability to handle larger numbers of layers than the other

two networks, and its superior accuracy in classification problems [27]. There

are several versions of ResNet, including ResNet-18, ResNet-34, ResNet-50,

ResNet-101 and ResNet-152, indicates the number of convolutional layers used

by the network. We chose ResNet-50 as a balance between speed and accuracy.

Since ResNet was designed for classification problems, its output layers are

fully connected, which is not compatible with the desired joint heatmaps. Thus

the fully connected output layers were replaced by transposed convolutional

layers which generate larger 2D output arrays from an input of smaller arrays.

The output data are heatmaps built based on the joint location in pixel

coordinates. For each keypoint, a 2D Gaussian distribution with certain � is

generated.

38

3.7.2 Test and Outcomes

After training the network with simulated images, we first applied the net-

work back to the training dataset to evaluate performance. The result was

a PCK@0.2 score of 0.99, indicating that 99% of joint detections had errors

(Euclidean distance between the detected and ground truth location of joints)

less than 20% of the robot’s bounding box dimensions. Figure 3.13 shows three

sample images, with the detected joints draw as circles with various colors.

Figure 3.13: Examples of joint keypoint detection for simulated Baxter images.
The circles labelled on the robot arm are drawn at locations identified by the
joint detection network. In these three examples, the results accurately identify
the locations of joints on the robot arm.

Interestingly, applying the trained network to real-world images of the

Baxter provided very inaccurate results. This brought up the requirement for

domain adaptation, a method of bridging the gap between simulated and real

images. In our case, this gap is caused by the texture di↵erence between the

simulation images and real-world images. There are several methods to bridge

this gap [16], including Domain Randomization and Generative Adversarial

Networks. We chose to implement the latter method, as discussed in the next

Chapter.

39

Chapter 4

Image-based joint state
estimation pipeline for
sensorless manipulators

The contents of this Chapter were submitted as [24]. The method presented

was found to provide the best real-world joint state estimation performance

as compared to the methods covered in the previous chapter.

4.1 Abstract

Motion planning is a solved problem for robot arms with joint state feed-

back, but remains an area of research for sensorless manipulators such as toy

robot arms and heavy equipment such as excavators and cranes. A promising

approach to this problem is deep learning, which employs a pre-trained convo-

lutional neural network to identify manipulator links and estimate joint states

from a monocular camera video feed. Whereas manual labeling of training

image sets is tedious and non-transferable, a simulation environment can au-

tomatically generate labeled training image sets of any size. The issue is the

gap between simulated and real-world images. This chapter solves this prob-

lem by implementing a Generative Adversarial Network. The complete joint

state estimation pipeline is implemented and tested in hardware experiments

to validate our proposed approach.

40

4.2 Introduction

Thanks to the continuing growth in sensing and computing power, robot arm

manipulators are now being deployed in high-precision tasks such as picking

items o↵ shelves [29], assembly operations in manufacturing [51], [34], and

food preparation [12], [19], [49]. A necessary part of these precise operations

is motion planning, which relies on forward and inverse kinematics [48], which

in turn require knowledge of the robot’s geometry and joint states (angles

for revolute joints or displacements for prismatic joints). While commercial-

quality robot arms such as the Barrett WAM arm, the Franka Emika Panda or

the Kinova JACO can measure joint states nearly perfectly, the same cannot

be said in the following cases: (i) using inexpensive robot arms whose joint

encoders are subject to poor resolution and backlash issues and (ii) adapting

human-operated manipulators without joint feedback, such as knuckle-boom

cranes, for autonomous operations. In either of these cases, using computer vi-

sion to estimate joint angles and/or end-e↵ector pose is an appealing solution,

as shown in the recent works [78], [39], [43], [28], [40].

In this chapter, we focus on joint state estimation in robot arms using

images from a monocular camera, a sensor which is much cheaper and provides

a longer working range than depth-sensing technologies such as stereo vision,

RGB-D or LiDAR (Light Detection and Ranging). Our approach has close ties

to human skeleton tracking, which was popularized around 2010 by the mass-

produced Kinect v1 RGB-D camera which used this feature for video games [2],

and which today is o↵ered as an SDK for Intel’s RealSense line of RGB-D

cameras [64]. Human skeleton tracking from monocular images was seen in

[65], [9], [11], [23] and is founded on convolutional neural network (CNN)-

based machine learning. One key element for all learning-based methods is

training data which consists of a large set of images annotated with joint

labels. While a number of human joint datasets are publicly available [4]

[41] [68], this is not the case for robot manipulators, since each has a unique

geometry. This means that in order to train a joint detector, thousands of

images of a specific manipulator would need to be taken and manually labeled,

41

an extremely tedious and time-consuming process.

One alternative to manual joint labelling is to use a CAD model of the

robot inside a simulation environment (e.g. [33], [54], [73]), which can generate

unlimited numbers of images of the robot and its associated joint labels in

di↵erent poses, viewing angles and environmental settings such as backdrop

and lighting. Since the simulated images remain distinguishable from the

real robot, we need to employ a process of domain adaptation [16] in order

to apply the network trained on simulated images to real-world monocular

camera images.

In this chapter, we present a pipeline to detect joint positions and estimate

joint states of a robot manipulator using images from a monocular camera. We

employ the two-armed Baxter robot from Rethink Robotics to experimentally

validate our approach, using the unit’s high-accuracy joint angle measurements

as a ground truth for our joint state estimates. The specific contributions of

our work are:

• Implementing a combination of image segmentation and domain transfer

methods which were experimentally found to provide the best-performing

processing pipeline.

• Demonstrating that our system can perform joint detection as well or

better than recent state-of-the-art work [39] which provides a ready-to-

use joint detection system for the Baxter robot.

• Testing of the experimental joint state estimation performance in a va-

riety of test settings including di↵erent backdrops and robot arm mo-

tions, and assessing the resulting performance quantitatively against the

ground truth.

4.3 Related Work

Conventional sensors to measure joint states of robot arms are encoders, either

rotary or linear. Hydraulic cylinders, typically used to actuate heavy machin-

ery such as construction equipment, can be equipped with position sensors

42

Figure 4.1: Overview of our system pipeline. The camera image is processed by
robot instance segmentation, removing the background. The resulting image
undergoes domain adaptation to change the coloring and texture of the robot
to a simulation style. The keypoint detection network processes the synthetic
images and outputs heat maps for robot joint locations. The detected joints
are used with the robot’s geometry to estimate joint angles.

such as LVDT (Linear Variable Di↵erential Transformers) or other technolo-

gies [30]. Vision-based approaches to measuring robot arm joint states can be

divided into 2D image-based methods, based on fiducial markers or trained

Convolutional Neural Networks (CNNs), and 3D sensor-based methods, based

on RGB-D cameras or LiDAR. In the first category, fiducial markers [21] pro-

vide good performance in nominal conditions due to their easy-to-spot nature,

but may fail in the case of motion blur, unfocused cameras, or occluded or dirty

markers. CNNs are a promising approach to this problem, and research works

have shown them capable of delivering excellent performance and robustness

to real-world e↵ects such as motion blur and dynamic environments. In the

second category, RGB-D cameras are capable of directly measuring depth and

thus avoid scale ambiguity, but typically have a limited sensing range and may

not work reliably in outdoor scenes. LiDAR works in both indoor and outdoor

environments, but good-quality units are much more expensive than the other

sensing technologies. In our studies, after first evaluating fiducial markers and

43

RGB-D cameras, we settled on the CNN approach.

4.3.1 Human Skeleton Tracking from 2D images

A number of recent research works have focused on human skeleton tracking

from 2D images, which all require a large set of training images annotated

with joint locations, obtained from either manual labeling [4] or specialized

equipment [69]. Manual labelling is typically the preferred approach since it

can be applied to a variety of human subjects in both indoor and outdoor

images. The CNNs developed for human pose estimation have several varia-

tions. Early work focused on detecting a bounding box for individual limbs

of the human body [75]. Skeleton joint detection was then found to provide

better performance, for instance [65] and [10] employed an iterative regres-

sion method to detect joints. Meanwhile, one-pass joint detectors suitable for

real-time skeleton detection were demonstrated in [9], [11], [74]. These meth-

ods produce a set of heat maps, one for each joint of interest, indicating the

statistical likelihood of the joint’s location.

4.3.2 Robot Arm Pose Estimation

For relatively simple open kinematic chains, namely with 4 or less links, the

arm joint states can be obtained by estimating the pose of the end-e↵ector and

then using inverse kinematics (IK). However, this approach will not work for

fully- or over-actuated manipulators, such as the Baxter’s twin 7 DoF arms,

since in this case IK has multiple solutions. In this case individual joint angle

detection is necessary. One notable example of this approach is DART (Dense

Articulated Real-Time Tracking) [59], which employs RGB-D images and a 3D

CAD model of the robot to track poses of individual links in real time. DART

is based on optimization using a signed distance function to minimize the error

between model and RGB-D point cloud. The limitation of this method is the

requirement for a depth camera, which as discussed earlier has disadvantages

in cost and range over a monocular camera.

Two recent works addressing the domain gap problem for robotic arms us-

ing domain adaptation are CRAVES (Controlling Robotic Arm with a Vision-

44

based Economic System) [78] and DREAM (Deep Robot-to-camera Extrinsics

for Articulated Manipulators) [39]. In CRAVES, 17 distinguishable feature

points on the surface of a low-cost robot arm manipulator are selected as key-

points to train a 2-stack hourglass network [50], and a least squares fitting is

used to find joint angles which best match the detected keypoints. In DREAM,

the individual joints of the Baxter robot are used as keypoints, and the detec-

tion model is trained using a CNN with VGG-19 [63] as an encoder followed by

a customized decoder. In both these papers, the keypoint detection networks

are trained on simulation images, then applied to real images.

4.4 Method

4.4.1 System Overview

We tried several approaches, such as a�xing coloured strips to robot links

and detecting their angles through colour thresholding, or using a pre-trained

CNN [63] with transfer learning based on robot images and corresponding

encoder measurements to detect joint states directly, but the results were

disappointing. We then moved to keypoint detection. Several variations of

the keypoint detection process were also tried. After much trial and error, the

approach described below was found to provide the best results.

In our chosen methodology, each monocular camera image I1 is processed

in three stages, as shown in Figure 4.1. Instance segmentation is performed

to separate the robot from its background, yielding image I2 of the robot over

a white background. Next a generative neural network is used to perform

domain adaptation of the physical image I2 into a simulation-style image I3.

A joint detection CNN inputs I3 and outputs the pixel coordinates of the 10

joints of the two Baxter robot arms. The joint locations are combined with a

geometry model of the robot to estimate joint angles. The following sections

provide details about each step, focusing on two aspects: the choice of method

and the training data preparation steps.

45

4.4.2 Instance Segmentation

The first processing step applied to the image is instance segmentation, which

extracts an object (here the Baxter robot) from the image. This is required

for the next step, the generative neural network, which requires a segmented

image of the robot. There are many image segmentation methods available,

e.g. InstanceCut [32], DIN [5], SGN [42], and Mask R-CNN [26]. We chose to

use Mask R-CNN as our segmentation method because it was found to have

higher accuracy compared to other methods.

To train the Mask R-CNN model, individual image frames of the Baxter

robot at their original resolution (1920 ⇥ 1080 pixels) are placed in X, and a

polygon outline of the Baxter robot in the image is placed in Y . The mask la-

belling can be done either automatically or manually. For automatic labelling,

a uniform background is needed, and the robot’s outline can be extracted using

standard colour filters. Manual labelling can yield higher-precision outlines,

but the required labour made it impractical for our study.

Thanks to Mask R-CNN’s pre-trained network and transfer learning, we

found that using only 80 images of the Baxter robot captured in our lab was

su�cient to adequately train the masking network. The network weights from

Detectron2 [72] were pre-trained on a large number of common objects, so

training the network for the Baxter took only 30 minutes. Each image in

our mask training dataset includes the majority of the robot body, taken at

di↵erent viewing angles, distances from the robot, and configurations of the

robot arms.

Since Mask R-CNN employs polygon outlines, masked images may fail to

capture fine extremity details such as robot grippers or caster wheels. There

are new variants of Mask R-CNN which employ finer masks [72] and which

could be implemented in future work.

4.4.3 Domain Adaptation

The purpose of domain adaptation is to transfer real images of the Baxter into

simulation-style images, which can be used for joint detection in the next step

46

Figure 4.2: Diagram of training process. Step (A): outlines are automatically
generated for real Baxter images and used along with corresponding images
to train the instance segmentation model. Step (B): the segmentation model
is applied to real Baxter images, resulting in images with a blank background.
Step (C): the simulator generates simulation images using joint angles acquired
in step (B). The step (B) and (C) images are used to train the domain adap-
tation model. The results are used with joint locations computed in step (C)
to train the joint detection model. Once all models are trained, they are ready
to be used for inference in our processing pipeline.

47

of the pipeline. We chose to use the generative adversarial network CycleGAN

[77] for this purpose because of its excellent performance relative to other

methods, and the fact that it does not require paired training images, which

as explained below is an important feature for our pipeline.

We used Gazebo [33] and ROS (Robot Operating System) [55] along with

CAD model files of the Baxter robot provided by its manufacturer to generate

simulation images. CycleGAN consists of two generators {GXY , GY X} and two

discriminators {DX , DY }. We assign the segmented real images as the input

set {X} and the simulation-style images as the output set {Y }. Generator

GXY is trained to transfer images {X} into images {Y }, GY X does the reverse,

and the two discriminators DX , DY are used to determine the quality of the

resulting images. While all four parts are involved in the training process,

only the real-to-simulated image generator model GXY is retained for use in

our proposed pipeline.

Data for the CycleGAN domain adaptation method consists of two im-

age sets: real camera images {Ir} and simulation images {Is}. As mentioned

above, CycleGAN has the noteworthy feature that the two sets of images do

not need to be paired, in other words the real images and simulation images do

not need to have identical arm configurations nor camera-to-robot poses. Due

to this, our CycleGAN training process does not require measuring camera

poses during data collection nor matching the robot arm movements between

experiment and simulation, which greatly simplifies data collection. This fea-

ture is essential if applying our pipeline to a manipulator without joint state

feedback, such as those mentioned in Section 4.2.

In our training, we captured 2000 images of the real Baxter robot in our

lab, employing a RealSense D415 camera (using only the monocular camera

images) moving in front of the Baxter and yawing up to 70 degrees in either

direction, while having the Baxter executing a series of random arm motion

sequences. The resulting images were processed with the Mask R-CNN model

trained at the previous step, resulting in 2000 images consisting of the masked-

out robot over a white background. Due to the nature of Mask R-CNN as well

as limited number of training data, the resulting masked images of the robot

48

were not always clean, in particular distal joints of the arms were cropped

o↵ in a portion of the images. Meanwhile, 1500 images were captured in the

Gazebo simulation environment, employing a random motion for the virtual

camera and having the simulated Baxter perform random arm motions. In

order to boost color contrast of the images, additional virtual spotlights were

added to the scene. The simulation background was set to white to match the

segmented images output from Mask R-CNN. The intrinsic parameters of the

virtual camera were set to match those of the D415 2D camera.

4.4.4 Joint Detection

The joint detection process is performed on the set {I3} of post-image segmen-

tation and domain adaptation images. The Baxter robot has 7 joints on each

arm, but 2 of them located on the elbow and wrist links are nearly unobserv-

able from a video, so we chose to focus on 5 joints on each arm of the Baxter,

as illustrated in Figure 4.1. Inspired by current research into human joint

detection and skeleton tracking [9], [74], we chose the ResNet [27] architecture

for robot joint detection. Since the original ResNet has fully connected out-

put layers, we used ResNet-50 with all its convolution, pooling and activation

layers preserved, but replaced the output layer by transposed convolutional

layers (3⇥ 3) for upscaling resolution. The network inputs a monocular image

with a resolution of 640 by 480 pixels, and outputs 10 heat maps (one for

each joint) each with the same resolution as the input, ideally containing a bi-

variate Gaussian distribution rendering the estimated position and associated

uncertainty for the joint.

In order to train the joint detection module, we captured 8000 simulation

images of the Baxter at di↵erent arm configurations and camera poses. The

arm configurations spanned the full range of motion of each joint, while the

camera poses covered a frustum in front of the robot with an angle of 140

degrees and depths between 3 and 4 meters. The 3D coordinates and 2D pro-

jections of each joint were calculated using the robot’s CAD model and camera

intrinsics, respectively. The combination of 2D simulated images and corre-

sponding joint locations was used to train the ResNet joint detection network.

49

To improve the quality of the trained network, we applied image augmenta-

tion processes including random color saturation and brightness adjustment,

cropping, and background augmentation using images from the COCO dataset

[41].

4.4.5 Joint State Estimation

The link geometries of the Baxter robot are contained inside a Unified Robot

Description Format (URDF) file. Using this information together with joint

states, we employ forward kinematics to calculate the 3D position of each joint

relative to a frame attached to the base link of the robot. Then, using the

SE(3) pose of this frame relative to the camera, we can project the estimated

joint positions into the image frame, where they are compared against the

detected joints.

The relationship between pixel locations (u, v) in the image frame and 3D

coordinates (x, y, z) relative to the camera lens-fixed frame is

2

4
u
v
1

3

5 =
1

z

2

4
fx 0 cx
0 fy cy
0 0 1

3

5

| {z }
K

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5

| {z }
⇧0

2

664

x
y
z
1

3

775 (4.1)

where K is the camera intrinsic matrix, whose entries can be obtained from a

calibration process, and ⇧0 is a projection matrix. The 3D coordinates (x, y, z)

in the camera-fixed frame are obtained from the coordinates (X, Y, Z) in the

robot’s base link frame as 2

664

x
y
z
1

3

775 = Tcb

2

664

X
Y
Z
1

3

775 (4.2)

where Tcb 2 SE(3) is the pose of the base link relative to the camera, which

can be measured directly as explained in Section 4.5.1. Finally, the 3D coordi-

nates (Xn+1, Yn+1, Zn+1) of the (n+1)th joint are given by forward kinematics,

specifically the Product of Exponentials formulation [48]
2

664

Xn+1

Yn+1

Zn+1

1

3

775 = eX(⇠̂1)✓1 · · · eX(⇠̂n)✓nT 0
b(n+1)

2

664

0
0
0
1

3

775 (4.3)

50

where each ⇠̂n, the twist axis of the nth joint, and T 0
b(n+1) 2 SE(3), the pose of

the reference frame with origin at the (n+1)th joint and fixed to link (n+1),

can be obtained from the URDF file. Note for n = 0, [X1, Y1, Z1, 1]T =

T 0
b1[0, 0, 0, 1]

T because the position of the first joint is fixed relative to the base

link frame.

Combining (4.1), (4.2) and (4.3) yields the (nonlinear) function

(un+1, vn+1) = fn(✓1, · · · , ✓n) (4.4)

which relates the 2D image coordinates of the (n+ 1)th joint to the set of

joint states (✓1, · · · , ✓n) a↵ecting it. In our case, each arm has five detected

joint locations (udet
n , vdetn), 1 n 5, giving the set of four residuals

2

64
(udet

2 , vdet2)T � f1(✓1)
...

(udet
5 , vdet5)T � f4(✓1, · · · , ✓4)

3

75 (4.5)

which can be minimized using a standard nonlinear least-squares method.

We employ a trust-region-reflective algorithm, with bounding values for the ✓

vector set to the physical joint limits of the Baxter robot.

4.5 Experimental Results

4.5.1 Datasets

We collected seven datasets using the Baxter robot, varying the two conditions

listed in Table 4.1: arm actions and image background. The camera was fixed

to face the robot head-on throughout data collection, at a height of 1.5 meters

and depth of 3 meters. This camera placement was chosen to ensure the

robot had a reasonable size within the image frame, and that its arms did not

leave the frame during motions. The two types of arm actions were waving

and pick-and-place. In waving, both robot arms moved in random motions

throughout their reachable workspace, while in pick-and-place operations one

arm was programmed to sequentially pick up then drop three black blocks

into a designated container. The backdrop of the robot was our research lab,

as seen in Figure 4.1, in a static and a dynamic variant. In the former the

51

backdrop was fixed, while in the latter a person walked behind the robot while

holding up a large checkerboard. All images were captured with a resolution

of 640⇥ 480 and a framerate of 30 fps.

Throughout the image capture process, the joint angle encoder measure-

ments of the robot arms were logged, and the camera-to-robot pose was mea-

sured using a Vicon Vero motion capture system [69] installed in the lab.

Combined with the forward kinematics of the robot and the intrinsic parame-

ters of the camera, the ground truth coordinates of the individual joints were

calculated at each frame. The camera-to-robot pose was also used in the joint

state estimation calculations described in Section 4.4.5, with the measured

joint states used as the corresponding ground truth.

Table 4.1: Experimental datasets

Dataset # of images Arm actions Background

T1 5583 Waving Dynamic
T2 5789 Pick-and-Place Dynamic
T3 4364 Pick-and-Place Static
T4 4012 Waving Static
T5 3987 Waving Static
T6 7684 Waving Dynamic
T7 5667 Waving Dynamic

4.5.2 Joint Detection Evaluation

Before testing joint angle estimation, we first quantified the performance of

joint detection in 2D images.

Methodology comparison

A recently proposed methodology for robot joint detection is DREAM (Deep

Robot-to-camera Extrinsics for Articulated Manipulators) [39]. Their method

is capable of detecting robot keypoints such as joints in real images subject to

varying environmental lighting and surface texturing. The authors of DREAM

released a joint detection network trained on a Baxter robot, allowing us to

52

immediately use their system for comparison purposes.

Joint Detection Evaluation Metrics

For each image, the 2D euclidean pixel distances between the detected and

ground truth coordinates of the 10 joints were calculated. The metrics chosen

to quantify the performance of the system up to 2D keypoint detection are

Percentage of Correct Keypoints (PCK) and Mean Average Error (MAE).

The PCK@0.2 metric [66] provides the percentage of joints in a dataset whose

euclidean distance in pixels is within 20% of the robot’s bounding box size

(the maximum of length and width). In addition to PCK@0.2, we will also

provide plots of PCK scores against a distance varying from 1 to 30 pixels.

The MAE metric is the mean of the euclidean distances in pixels between a

detected joint and its ground truth location across a data set.

Since the Baxter robot has symmetric arms, the per-joint evaluation scores

were averaged between corresponding joints on the left and right arm to reduce

the amount of data being reported. For the joint detection evaluation, the

results for each joint were also averaged out across the seven datasets. The

results will thus reflect the typical performance of the two methods across a

variety of tasks and conditions. Performance will be broken out by dataset in

Section 4.5.3, when evaluating the joint estimation performance.

Simulation Testing

The performance of our joint detection method was first tested entirely in

simulation. We collected 10,000 simulated images of the Baxter robot, and

augmented their backgrounds with random images from the COCO datasets.

A joint detection network was trained using these synthetic images, using

joint coordinate labels provided by the simulation environment. The trained

network was tested on 8,000 synthetic images, this time using the simulator-

provided joint locations as the ground truth. The resulting PCK@0.2 score

for the test was 99.91%, giving us confidence about our implementation.

53

Testing on Real Datasets

Next, we applied the two joint detection methods to the seven experimental

datasets described in 4.5.1, taking the average of the performances across all

seven datasets. Figure 4.3 illustrates the average joint detection performance

of both methods for each joint in terms of PCK versus detection pixel distance.

As expected, all PCK scores climb as the threshold pixel distance is increased.

We see both methods provide roughly similar results for the Base and Shoulder

joints, with DREAM having an advantage in the Elbow joint but our method

having an advantage in the more distal Wrist and Hand joints. These results

are confirmed in Table 4.2, which lists the average PCK@0.2 score for each

joint. Our method thus exhibits a slight edge over DREAM in terms of joint

detection performance.

Figure 4.3: PCK versus pixel distance. Top figure is the plot of result from our
method. Bottom figure is from DREAM method. Black curves in the plots
are the averages of the curves of all joints.

The accuracy of joint detection is quantified in Table 4.3, showing the

54

Table 4.2: PCK@0.2 scores

Joints Overall
Method Base Shoulder Elbow Wrist Hand Mean

DREAM 0.99 0.99 0.99 0.94 0.86 0.95
Ours 0.99 0.99 0.98 0.96 0.92 0.97

MAE errors between detected and ground truth locations of each joint, aver-

aged out over the seven datasets, for each method. Here our method exhibits

better performance than DREAM across all joints. Remark both joint detec-

tion methods exhibit significantly larger MAE errors at the more distal wrist

and hand joints. In DREAM, this may be due to these joints being smaller,

making them more di�cult to distinguish from the background. In our pro-

posed method, the segmentation module occasionally crops the wrist joint of

the robot, leading to outliers in the data which increase the MAE. This last

e↵ect is discussed in Section 4.5.4.

Table 4.3: Joint Detection MAE Errors

Joints Overall
Method Base Shoulder Elbow Wrist Hand Mean

DREAM 11.82 11.74 12.98 15.64 20.43 14.52
Ours 10.01 10.62 8.09 13.17 18.08 11.99

4.5.3 Joint Angle Estimation

We now combine our joint detection method with the joint state estimation

method described in Section 4.4.5. We employ the seven datasets described

in Section 4.5.1, breaking out by dataset. The performance metric chosen

for this part was the mean of the joint angle errors (✓truek � ✓k), 1 k 4,

corresponding to the base, shoulder, elbow and wrist joints. To reduce the

amount of data shown, corresponding joints on the left and right arms were

combined in the “Waving” datasets in Table 4.1. In the “Pick-and-Place”

datasets, the joint data from the single active arm was reported. The results

55

are shown in Table 4.4. Note that since angle errors may be either positive or

negative, the same is true of their average value.

Table 4.4: Mean of joint angle estimation errors

Dataset Base ✓1 Shoulder ✓2 Elbow ✓3 Wrist ✓4
T1 11.13 4.98 5.11 -15.60
T2 4.62 9.69 -13.92 18.55
T3 4.55 7.72 -8.09 -6.75
T4 16.66 5.76 -6.01 -7.05
T5 9.56 7.37 -4.29 -1.26
T6 13.45 3.25 5.37 -20.11
T7 11.72 3.38 2.43 -9.83

Mean 10.24 6.02 -2.77 -6.01

The results in Table 4.4 are mixed. The Base has relatively poor estima-

tion results. A likely reason is the nature of the motions: in both T2 and T3,

the pick-and-place operations, the robot executes a series of slow arm sweeps

about the Base joint, and we see the errors are considerably lower than the

other datasets. The opposite is seen in the Waving datasets (T1 and T4–T7),

where the Shoulder and Elbow joints carry out larger motions while the Base

joint does not move as much, which is reflected by their associated estimation

errors. The Wrist joint estimates are uniformly poor, but this is due to the

calculation of ✓4 relying exclusively on the detected position of the hand joint

(c.f. Section 4.4.5), which as seen in Section 4.5.2 is the most error-prone. De-

spite all these factors, the proposed method shows promise, and the overall

estimation errors of roughly 5 degrees are su�ciently good to perform rough

motion planning. We suspect that system performance could be greatly im-

proved by using higher-resolution input images, since the current input data

consisting of 640 ⇥ 480 images of the robot at a distance of 3 m from the

camera naturally leads to large uncertainties within the joint state estimates.

56

Figure 4.4: Examples of some common failure cases during testing. It in-
cludes the occlusion failure, background segmentation failure, and robot arm
segmentation failure.

4.5.4 Failure Cases

Examples of common failure cases are shown in Figure 4.4. Each row is one

case. In the first one, the left arm’s wrist is cropped during segmentation,

resulting in an incorrect detection for the left wrist joint. The right wrist is in

an occluded pose, and CycleGAN fails to reconstruct the proper texture. In the

second case, a person holding a checkerboard was moving in the background,

leading to the segmentation module producing a mask containing a portion

of the board; the right wrist was again cropped. In the third case, masking

filtered out the checkerboard, but the accuracy of the mask region was a↵ected.

57

4.6 Conclusion

In this chapter, we presented a pipeline which employs monocular images of a

Baxter two-armed robot and performs joint detection for the purpose of esti-

mating the arm configuration without the use of joint encoders. The pipeline

is built on a combination of instance segmentation, domain adaptation, and

joint detection modules based on CNNs. Our proposed approach requires very

minimal manual labeling of the training data, and relies on a generative adver-

sarial network (GAN) to perform domain adaptation. We performed extensive

quantitative evaluation of our method and showed that it performs as well or

better than other current state-of-the-art joint detection algorithms. The in-

terest of our approach is the ability to use the resulting joint state information

to enable motion control with either low-cost robot arms which are equipped

with low-quality encoders and/or are subject to significant levels of backlash,

or manipulators without joint state measurements such as construction equip-

ment.

Future work will include applying our method to cases where precise CAD

files of the manipulator are not readily available, for instance construction

equipment. This is possible since GANs are capable of transferring images

between domains while altering their style. Other improvements include inves-

tigating performance improvements from training on high-resolution images,

adding outlier detection and removal to reduce false positive detections, and

implementing model-based filtering for the detected joint locations to provide

smoother data.

58

Chapter 5

Conclusion

5.1 Summary of Thesis

This thesis documented the research work performed using the Baxter robot

manipulator testbed along with computer vision and convolutional neural net-

work techniques. The work focused on solving the challenge of vision-based

joint state estimation.

We developed a pipeline for estimating the joint angles of a robotic manip-

ulator using monocular camera images as the only input. While we employed

the Baxter robot for hardware testing, since the longer-term goal is to im-

plement this method on a large outdoor loading crane, the pipeline needs to

be able to operate in outdoor conditions and at significant camera depths.

Before settling on the chosen method, we tried several di↵erent strategies for

joint state estimation, including feature extraction from 2D images using con-

ventional computer vision filters, feature matching with 3D models, and depth

image registration. These preliminary trails identified deficiencies such as poor

performance for complex backgrounds and/or objects, while the methods rely-

ing on depth images were subject to range and outdoor operation restrictions

imposed by the sensing hardware. In the ultimately chosen method, three neu-

ral networks are used to process the monocular camera images and estimate

the location of joints in the image frame, which is then used in a module em-

ploying the forward kinematics of the manipulator, camera projection model

and optimization algorithm to estimate the joint angles. The main challenge

involved with this method was solving the domain gap between simulated

59

and real-world images. The joint detection subsystem produced accuracy and

stability which were as good or better than other published methods for joint

detection from monocular images. The joint angle estimation calculations pro-

duced good results for a subset of the joints; obtaining good performance for

all the joints has been left for future work.

5.2 Limitations

The proposed solution shows promising result, but there remain limitations as

listed below:

• The current instance segmentation model is based on Mask-RCNN [26],

which is capable of generating object masks in real-time, but the resulting

mask tends to crop out fine details associated with small components on

the robot’s end-e↵ector gripper.

• The Generative Adversarial Network used in our pipelines is Cycle-

GAN [77], which did not successfully train with higher-resolution images.

While the current image resolution is capable of rendering textures and

features on the robot, high-detail textures are dropped due to the neces-

sity of resizing the image.

• The joint detection of distal joints is not not as stable as for the proxi-

mal ones. This problem leads to inaccurate joint angle estimates at the

optimization calculations.

• In the joint state estimation, the number of equations is exactly equal to

the number of unknowns. This enables computing the values of the joint

states, but there is no redundant information which could increase the

robustness of estimation to outliers and provide estimates with better

accuracy.

60

5.3 Future work

Certain parts of the approaches proposed in this thesis could be improved in

the future by either implementing newer algorithms or using a di↵erent setup:

• A more advanced instance segmentation network could be implemented

to yield better mask generation capable of capturing finer details.

• Picking up extra keypoints on each robot arm link in order to increase

robustness and accuracy of the joint state estimation calculations

• Since CycleGAN can transfer texture between images, implementing the

proposed pipeline with a simplified CAD model of the manipulator is a

promising research avenue. A specific benefit would be the elimination

of the need for a detailed 3D model of the manipulator.

61

References

[1] H. I. AB. [Online]. Available: https://www.arwtruck.com/media/
truck-mounted/hiab/xs-166/brochures/HIAB-XS-166-CLX-Basic-

Data.pdf.

[2] D. S. Alexiadis, P. Kelly, P. Daras, N. E. O’Connor, T. Boubekeur,
and M. Ben Moussa, “Evaluating a dancer’s performance using Kinect-
based skeleton tracking,” in Proceedings of the 19th ACM international

conference on Multimedia, Scottsdale, AZ, Nov. 2011, pp. 659–662.

[3] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose
estimation: New benchmark and state of the art analysis,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2014.

[4] ——, “2D human pose estimation: New benchmark and state of the
art analysis,” in Proceedings of the 2014 IEEE Conference on Computer

Vision and Pattern Recognition, Columbus, OH, Jun. 2014, pp. 3686–
3693.

[5] A. Arnab and P. H. S. Torr, “Pixelwise instance segmentation with a
dynamically instantiated network,” in Proceedings of 30th IEEE Confer-

ence on Computer Vision and Pattern Recognition, Honolulu, HI, Jul.
2017, pp. 879–888.

[6] C. M. Bautista, C. A. Dy, M. I. Mañalac, R. A. Orbe, and M. Cordel,
“Convolutional neural network for vehicle detection in low resolution
tra�c videos,” in 2016 IEEE Region 10 Symposium (TENSYMP), IEEE,
2016, pp. 277–281.

[7] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992. doi: 10.1109/34.121791.

[8] D. C. Brown, “Decentering distortion of lenses,” Photogrammetric En-

gineering, vol. 32, no. 3, pp. 444–462, 1966.

[9] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Re-
altime multi-person 2D pose estimation using part a�nity fields,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 1, pp. 172–186, Jan. 2021.

62

https://www.arwtruck.com/media/truck-mounted/hiab/xs-166/brochures/HIAB-XS-166-CLX-Basic-Data.pdf
https://www.arwtruck.com/media/truck-mounted/hiab/xs-166/brochures/HIAB-XS-166-CLX-Basic-Data.pdf
https://www.arwtruck.com/media/truck-mounted/hiab/xs-166/brochures/HIAB-XS-166-CLX-Basic-Data.pdf
https://doi.org/10.1109/34.121791

[10] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose
estimation with iterative error feedback,” in Proceedings of 29th IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, Jun. 2016, pp. 4733–4742.

[11] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang, “Adversarial PoseNet:
A structure-aware convolutional network for human pose estimation,”
in Proceedings of 2017 IEEE International Conference on Computer Vi-

sion, Venice, Italy, Oct. 2017, pp. 1221–1230.

[12] P. Y. Chua, T. Ilschner, and D. G. Caldwell, “Robotic manipulation of
food products – a review,” Industrial Robot: An International Journal,
vol. 30, no. 4, pp. 345–354, Aug. 2003.

[13] J. Chung and K. Sohn, “Image-based learning to measure tra�c den-
sity using a deep convolutional neural network,” IEEE Transactions on

Intelligent Transportation Systems, vol. 19, no. 5, pp. 1670–1675, 2017.

[14] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for heli-
copter control,” Communications of the ACM, vol. 52, no. 7, pp. 97–105,
2009.

[15] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, “Real-
time markerless tracking for augmented reality: The virtual visual ser-
voing framework,” IEEE Transactions on Visualization and Computer

Graphics, vol. 12, no. 4, pp. 615–628, 2006. doi: 10.1109/TVCG.2006.78.

[16] G. Csurka, “Domain adaptation for visual applications: A comprehen-
sive survey,” in Domain Adaptation in Computer Vision Applications,
ser. Advances in Computer Vision and Pattern Recognition, G. Csurka,
Ed., Cham, Switzerland: Springer, 2017, pp. 1–35.

[17] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques - SIGGRAPH 96, 1996.
doi: 10.1145/237170.237269.

[18] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A
benchmark,” in 2009 IEEE Conference on Computer Vision and Pattern

Recognition, 2009, pp. 304–311. doi: 10.1109/CVPR.2009.5206631.

[19] Y. Fernando, A. Mathath, and M. A. Murshid, “Improving productivity:
A review of robotic applications in food industry,” International Journal
of Robotics Applications and Technologies, vol. 4, no. 1, pp. 43–62, 2016.

[20] K. Fukushima, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition una↵ected by
shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202,
1980. doi: doi.org/10.1007/bf00344251.

63

https://doi.org/10.1109/TVCG.2006.78
https://doi.org/10.1145/237170.237269
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/doi.org/10.1007/bf00344251

[21] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marın-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, Jun. 2014.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, Z. Ghahramani, M.
Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., vol. 27,
2014, pp. 2672–2680.

[23] R. A. Güler, N. Neverova, and I. Kokkinos, “DensePose: Dense human
pose estimation in the wild,” in Proceedings of the 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, Jun. 2018, pp. 7297–7306.

[24] M. Han, B. Xie, M. Barczyk, and A. Bayat, “Image-based joint state
estimation pipeline for sensorless manipulators,” IEEE Robotics and Au-

tomation Letters, 2021, Submitted.

[25] C. G. Harris and M. Stephens, “A combined corner and edge detector,”
in Proceedings of the Alvey Vision Conference, AVC 1988, Manchester,

UK, September, 1988, C. J. Taylor, Ed., Alvey Vision Club, 1988, pp. 1–
6. doi: 10.5244/C.2.23. [Online]. Available: https://doi.org/10.
5244/C.2.23.

[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 2, pp. 386–397, Feb. 2020.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of 29th IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, Jun. 2016, pp. 770–778.

[28] C. Heindl, S. Zambal, T. Pönitz, A. Pichler, and J. Scharinger, 3d robot

pose estimation from 2D images, arXiv:1902.04987, Feb. 2019.

[29] C. Hernandez et al., “Team delft’s robot winner of the amazon picking
challenge 2016,” in RoboCup 2016: Robot World Cup XX, ser. Lecture
Notes in Artificial Intelligence, S. Behnke, R. Sheh, S. Sariel, and D. D.
Lee, Eds., vol. 9776, Cham, Switzerland: Springer, 2017, pp. 613–624.

[30] C. C. P. Inc, Cpi hydraulic cylinder position sensor, https://www.cpi-
nj.com/hydraulic-cylinder-position-sensors.

[31] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Tra�c mon-
itoring and accident detection at intersections,” IEEE transactions on

Intelligent transportation systems, vol. 1, no. 2, pp. 108–118, 2000.

64

https://doi.org/10.5244/C.2.23
https://doi.org/10.5244/C.2.23
https://doi.org/10.5244/C.2.23
https://www.cpi-nj.com/hydraulic-cylinder-position-sensors
https://www.cpi-nj.com/hydraulic-cylinder-position-sensors

[32] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother,
“InstanceCut: From edges to instances with MultiCut,” in Proceedings

of 30th IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, Jul. 2017, pp. 7322–7331.

[33] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in Proceedings of 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Sendai, Japan,
Sep. 2004, pp. 2149–2154.

[34] M. Kyrarini, M. A. Haseeb, D. Ristić-Durrant, and A. Gräser, “Robot
learning of industrial assembly task via human demonstrations,” Au-

tonomous Robots, vol. 43, no. 1, pp. 239–257, Jan. 2019.

[35] M. Labbe and F. Michaud, “Appearance-based loop closure detection
for online large-scale and long-term operation,” IEEE Transactions on

Robotics, vol. 29, no. 3, pp. 734–745, 2013.

[36] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-
term online operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416–
446, 2019.

[37] S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back, “Face recog-
nition: A convolutional neural-network approach,” IEEE Transactions

on Neural Networks, vol. 8, no. 1, pp. 98–113, 1997. doi: 10.1109/72.
554195.

[38] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989. doi: 10.1162/neco.1989.1.4.541.

[39] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D.
Fox, and S. Birchfield, “Camera-to-robot pose estimation from a single
image,” in Proceedings of 2020 International Conference on Robotics and

Automation (ICRA), Paris, France, May 2020, pp. 9426–9432.

[40] Z. Li, K. Okada, and M. Inaba, “Searching a suitable keypoint detection
network for robotic assembly,” in Proceedings of the 2020 IEEE/SICE

International Symposium on System Integration (SII), Honolulu, HI,
Jan. 2020, pp. 377–383.

[41] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Computer Vision - ECCV 2014, ser. Lecture Notes in Computer Science,
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol. 8693, Cham,
Switzerland: Springer, 2014, pp. 740–755.

[42] S. Liu, J. Jia, S. Fidler, and R. Urtasun, “SGN: Sequential grouping
networks for instance segmentation,” in Proceedings of 2017 IEEE In-

ternational Conference on Computer Vision, Venice, Italy, Oct. 2017,
pp. 3516–3524.

65

https://doi.org/10.1109/72.554195
https://doi.org/10.1109/72.554195
https://doi.org/10.1162/neco.1989.1.4.541

[43] J. Lu, F. Richter, and M. C. Yip, Robust keypoint detection and pose esti-

mation of robot manipulators with self-occlusions via sim-to-real transfer,
arXiv:2010.08054, Oct. 2020.

[44] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-

D Vision, ser. Interdisciplinary Applied Mathematics. New York, NY:
Springer-Verlag, 2004, vol. 26.

[45] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Je↵rey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geo↵rey Irv-
ing, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, Soft-
ware available from tensorflow.org, 2015. [Online]. Available: https :
//www.tensorflow.org/.

[46] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[47] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgb-d cameras,” IEEE Transactions on

Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[48] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to

Robotic Manipulation. CRC Press, 1994.

[49] G. A. Nayik, K. Muza↵ar, and A. Gull, “Robotics and food technology:
A mini review,” Journal of Nutrition & Food Sciences, vol. 5, no. 4, 2015.

[50] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human
pose estimation,” in Computer Vision - ECCV 2016, ser. Lecture Notes
in Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.,
vol. 9912, Cham, Switzerland: Springer, 2016, pp. 483–499.

[51] C. Park and K. Park, “Design and kinematics analysis of dual arm robot
manipulator for precision assembly,” in Proceedings of the IEEE Interna-

tional Conference on Industrial Informatics, Daejeon, Korea, Jul. 2008,
pp. 430–435.

[52] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
2015.

66

https://www.tensorflow.org/
https://www.tensorflow.org/

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information

Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.

[54] W. Qiu et al., “UnrealCV: Virtual worlds for computer vision,” in Pro-

ceedings of the 25th ACM international conference on Multimedia, Moun-
tain View, CA, Oct. 2017, pp. 1221–1224.

[55] M. Quigley et al., “ROS: An open-source robot operating system,” in
ICRA workshop on open source software, Kobe, Japan, May 2009.

[56] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[57] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks,” in Advances in

Neural Information Processing Systems 28: Annual Conference on Neu-

ral Information Processing Systems 2015, December 7-12, 2015, Mon-

treal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds., 2015, pp. 91–99. [Online]. Available: http://
papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-

object-detection-with-region-proposal-networks.

[58] RLS, Rls robotic encoders products, https://www.rls.si/eng/products.

[59] T. Schmidt, R. Newcombe, and D. Fox, “DART: dense articulated real-
time tracking with consumer depth cameras,” Autonomous Robots, vol. 39,
no. 3, pp. 239–258, Oct. 2015.

[60] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 4104–4113.

[61] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service

Robotics, 2017. eprint: arXiv:1705.05065. [Online]. Available: https:
//arxiv.org/abs/1705.05065.

[62] T. R. Shaham, T. Dekel, and T. Michaeli, “Singan: Learning a generative
model from a single natural image,” CoRR, vol. abs/1905.01164, 2019.
arXiv: 1905.01164. [Online]. Available: http://arxiv.org/abs/1905.
01164.

67

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://www.rls.si/eng/products
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1905.01164
http://arxiv.org/abs/1905.01164
http://arxiv.org/abs/1905.01164

[63] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in 3rd International Conference on Learn-

ing Representations, San Diego, CA, May 2015.

[64] Skeleton tracking SDK getting started guide, https://www.cubemos.
com/skeleton-tracking-sdk, cubemos.

[65] A. Toshev and C. Szegedy, “DeepPose: Human pose estimation via deep
neural networks,” in Proceedings of 2014 IEEE Conference on Computer

Vision and Pattern Recognition, Columbus, OH, Jun. 2014, pp. 1653–
1660.

[66] J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, and S. Birch-
field, “Synthetically trained neural networks for learning human-readable
plans from real-world demonstrations,” in Proceedings of the 2018 In-

ternational Conference on Robotics and Automation (ICRA), Brisbane,
Australia, May 2018, pp. 5659–5666.

[67] S. Ullman, “The interpretation of structure from motion,” Proceedings

of the Royal Society of London. Series B. Biological Sciences, vol. 203,
no. 1153, pp. 405–426, 1979.

[68] VGG human pose estimation datasets, https://www.robots.ox.ac.
uk/~vgg/data/pose/.

[69] Vicon-Motion-Systems-Ltd-UK, Vicon motion systems, https://www.
https://www.vicon.com/, 2019.

[70] M. Wang andW. Deng, “Deep face recognition: A survey,” Neurocomput-

ing, vol. 429, pp. 215–244, 2021. doi: 10.1016/j.neucom.2020.10.081.
[Online]. Available: https://doi.org/10.1016/j.neucom.2020.10.
081.

[71] M. J. Westoby, J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M.
Reynolds, “‘structure-from-motion’ photogrammetry: A low-cost, e↵ec-
tive tool for geoscience applications,” Geomorphology, vol. 179, pp. 300–
314, Dec. 2012.

[72] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2,
https://github.com/facebookresearch/detectron2, 2019.

[73] F. Xia et al., “Interactive Gibson Benchmark: A benchmark for interac-
tive navigation in cluttered environments,” IEEE Robotics and Automa-

tion Letters, vol. 5, no. 2, pp. 713–720, Apr. 2020.

[74] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose esti-
mation and tracking,” in Computer Vision - ECCV 2018, ser. Lecture
Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds., vol. 11210, Cham, Switzerland: Springer, 2018, pp. 472–
487.

68

https://www.cubemos.com/skeleton-tracking-sdk
https://www.cubemos.com/skeleton-tracking-sdk
https://www.robots.ox.ac.uk/~vgg/data/pose/
https://www.robots.ox.ac.uk/~vgg/data/pose/
https://www.https://www.vicon.com/
https://www.https://www.vicon.com/
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1016/j.neucom.2020.10.081
https://github.com/facebookresearch/detectron2

[75] Y. Yang and D. Ramanan, “Articulated human detection with flexible
mixtures of parts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 12, pp. 2878–2890, Dec. 2012.

[76] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv:1801.09847, 2018.

[77] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings

of 2017 IEEE International Conference on Computer Vision, Venice,
Italy, Oct. 2017, pp. 2242–2251.

[78] Y. Zuo, W. Qiu, L. Xie, F. Zhong, Y. Wang, and A. L. Yuille, “CRAVES:
Controlling robotic arm with a vision-based economic system,” in Pro-

ceedings of 2019 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), Long Beach, CA, Jun. 2019, pp. 4209–4218.

69

	Introduction
	Motivation
	Work Performed

	Thesis Outline

	Hardware and Software
	Baxter robot
	ROS Integration
	Forward Kinematics
	Simulation Model

	RGB-D Camera
	Camera Projection Model
	Camera Calibration
	ROS Integration

	Vicon Motion Capture System
	ROS Integration

	Literature review
	Computer Vision and Machine Learning
	Robot Joint State Estimation
	Human Skeleton Tracking from 2D images
	Robot Arm Pose Estimation

	Preliminary Approaches to Manipulator Joint State Estimation
	AR Markers
	Background
	Algorithm
	Implementation
	Test and Outcomes
	Discussion

	Color Strips
	Background
	Test and Outcomes

	3D Model Fitting onto 2D Images
	Background
	Software
	Test and Outcomes

	Iterative Closest Point-based registration
	Background
	Test and Outcomes

	DART: Dense Articulated Real-Time Tracking
	Background
	Discussion

	Learning numerical joint angles from RGB images
	Background
	Test and Outcomes
	Discussion

	Baxter keypoint detection in Simulation
	Background
	Test and Outcomes

	Image-based joint state estimation pipeline for sensorless manipulators
	Abstract
	Introduction
	Related Work
	Human Skeleton Tracking from 2D images
	Robot Arm Pose Estimation

	Method
	System Overview
	Instance Segmentation
	Domain Adaptation
	Joint Detection
	Joint State Estimation

	Experimental Results
	Datasets
	Joint Detection Evaluation
	Joint Angle Estimation
	Failure Cases

	Conclusion

	Conclusion
	Summary of Thesis
	Limitations
	Future work

	References

