
University of Alberta

COMMUNITY MINING: FROM DISCOVERY TO EVALUATION AND
VISUALIZATION

by

Justin Fagnan

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c⃝Justin Fagnan
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Abstract

Social networks are ubiquitous. They can be extracted from our purchase history

at on-line retailers, our cellphone bills, and even our health records. Mining tech-

niques that can accurately and efficiently identify interesting patterns in these net-

works are sought after by researchers from a variety of fields. The patterns they

seek often take the shape of communities, which are tightly-knit groups of nodes

that are more strongly related within the group than outside of the group.

This thesis proposes a series of algorithms that both accurately identify and

evaluate communities in social networks. In particular we show that relative valid-

ity criteria from the field of database clustering do not serve as adequate substitutes

in lieu of a ground truth. Furthermore we propose a novel community mining al-

gorithm that considers the number of internal and external triads within each com-

munity. Finally, we present two visualization algorithms that visually expose pre-

viously difficult to obtain information regarding the structure and relationships of

communities. We conclude this thesis with a brief summary of some open problems

in the area of community mining and visualization.

Acknowledgements

Our research has been supported by the Canadian Natural Sciences and Engineering

Research Council (NSERC), by the Alberta Ingenuity Centre for Machine Learning

(AICML), the Alberta Informatics Circle of Research Excellence (iCORE), and the

Government of Alberta.

Table of Contents

1 Introduction 1
1.1 Introduction . 2

1.1.1 Thesis Statements . 3
1.1.2 Thesis Contributions . 3
1.1.3 Thesis Organization . 5

I Community Mining Survey 7

2 A Survey of Community Mining Methodologies 8
2.1 Early Techniques . 8
2.2 Recent Improvements . 11
2.3 Alternate Methods . 12
2.4 Cutting Edge Research . 19
2.5 Evaluation Challenges . 20

II Clustering Metrics As Community Miners 22

3 Clustering Transformations & Relative Validity Criteria 23
3.1 Motivation . 23
3.2 Distance Methods . 24

3.2.1 Shortest Path (SP) . 24
3.2.2 Adjacency Relation Distance (ARD) 24
3.2.3 Neighbour Overlap Distance (NOD) 25
3.2.4 Pearson Correlation Distance (PCD) 25

3.3 Centroid Methods . 25
3.3.1 Betweenness (B) . 26
3.3.2 Closeness (C) . 26
3.3.3 Degree (D) . 26
3.3.4 Distance Variance (DV) 27
3.3.5 Estimated Closeness (EC) 27

3.4 Relative Validity Criteria . 28
3.4.1 C-Index . 28
3.4.2 C/

√
k . 29

3.4.3 Davies-Bouldin . 29
3.4.4 Dunn . 30
3.4.5 Gamma . 30
3.4.6 PBM . 31
3.4.7 Point-Biserial . 32
3.4.8 Silhouette Width Criterion 32

3.4.9 Variance Ratio Criterion 33
3.4.10 WG . 33
3.4.11 covWG . 34
3.4.12 B/W . 34
3.4.13 log(SSB/SSW) . 35
3.4.14 Ball and Hall . 35
3.4.15 McClain and Rao . 35
3.4.16 Modularity . 36

4 Experiment Setup 37
4.1 Community Mining Algorithms 38

4.1.1 Fast Modularity . 38
4.1.2 MaxMin Modularity . 38
4.1.3 Clique Percolation Method (CPM) 38
4.1.4 Local M . 38
4.1.5 Local L . 39
4.1.6 Local TopLeaders . 39

4.2 External Indices . 39
4.2.1 Adjusted Rand Index (ARI) 39
4.2.2 Jaccard Index . 40
4.2.3 Normalized Mutual Information (NMI) 40
4.2.4 Alternative Normalized Mutual Information (ANMI) 41

5 Experiment Methodology & Results 42
5.1 Correlation Analysis . 42
5.2 Indicator Quality Analysis . 45
5.3 Difficulty Analysis . 49
5.4 Appendix . 52

III Community Mining with Triads 56

6 Motivation 57

7 Related Work 59

8 Our Approach 61
8.1 Local Community Metric T . 62
8.2 Incremental Formula . 64
8.3 Outlier and Hub Detection . 65
8.4 Time Complexity . 67

9 Evaluation and Results 68

IV Community Visualization Layouts 74

10 Motivation 75

11 Related Work 77

12 Fruchterman-Reingold Enhancements 81
12.1 Sized Vertices . 81
12.2 Boundary-Free Layout . 82

13 Community Boundaries 84
13.1 Representative Vertices . 84
13.2 Initial Layout . 85
13.3 Vertex Placement . 87
13.4 Implementing Bounding Circles 88
13.5 Final Layout . 90

14 Community Circles 93
14.1 Sizing Representative Vertices . 93
14.2 Perimeter Slots . 94
14.3 Efficiency Gains . 95

15 Community Attraction 96
15.1 Repulsion Function . 97
15.2 Attraction Function . 98

16 Edge Bundling 100

17 Evaluation 104
17.1 Visual Juxtaposition . 104
17.2 Efficiency . 108

V Conclusion 115

18 Conclusion and Open Problems 116
18.1 Conclusion and Summary . 116
18.2 Contributions . 118
18.3 Open Problems . 118

Bibliography 120

List of Tables

5.1 The top 10 highest correlation scores, averaged over all external
indices. 43

5.2 The top 10 highest correlation scores with respect to ARI. 43
5.3 The top 10 highest correlation scores with respect to Jaccard 43
5.4 The top 10 highest correlation scores with respect to ANMI. 44
5.5 The top 10 highest correlation scores with respect to NMI. 44
5.6 The top 10 highest indicator quality scores, summed over all exter-

nal indices. 47
5.7 The top 10 lowest error rates, summed over all external indices. . . . 47
5.8 The top 10 unified scores, summed over all external indices. 47
5.9 The top 10 unified scores with respect to ARI. 48
5.10 The top 10 unified scores with respect to Jaccard. 48
5.11 The top 10 unified scores with respect to ANMI. 48
5.12 The top 10 unified scores with respect to NMI 49
5.13 The top 10 correlation scores, across all external indices, for ‘Easy’

networks. 50
5.14 The top 10 unified scores, across all external indices, for ‘Easy’

networks. 50
5.15 The top 10 correlation scores, across all external indices, for ‘Medium’

networks. 50
5.16 The top 10 unified scores, across all external indices, for ‘Medium’

networks. 51
5.17 The top 10 correlation scores, across all external indices, for ‘Hard’

networks. 51
5.18 The top 10 unified scores, across all external indices, for ‘Hard’

networks. 52
5.19 The top 10 indicator scores with respect to ARI. 53
5.20 The top 10 error scores with respect to ARI. 53
5.21 The top 10 indicator scores with respect to Jaccard. 53
5.22 The top 10 error scores with respect to Jaccard. 54
5.23 The top 10 indicator scores with respect to NMI. 54
5.24 The top 10 error scores with respect to NMI. 54
5.25 The top 10 indicator scores with respect to ANMI. 55
5.26 The top 10 error scores with respect to ANMI. 55

9.1 An overview of the ground truth networks used in our evaluation. . . 68
9.2 Evaluation results. For the X/Y cells, X indicates the average score

when selecting the starting nodes with the maximum local degree,
and Y indicates the average score when randomly selecting the
starting nodes. A dash indicates that the algorithm did not com-
plete when processing the network. 69

9.3 The number of communities detected by each algorithm. 69

9.4 The runtime for each algorithm, measured in seconds. We have
omitted the R metric because it is similar to the M metric from an
efficiency standpoint. 69

17.1 Runtimes of each layout algorithm averaged over 10 runs. 114

List of Figures

2.1 A sample network with the edge betweenness scores labeled on the
edges. 9

2.2 Divisive algorithm using Edge Betweenness. The circular borders
around nodes indicate the communities. 10

2.3 A depiction of the local community mining framework. Note that
the boundary is a subset of the community. Figure adapted from
Clauset [13]. 13

2.4 An example of high and low density communities. 15
2.5 An example run of the Clique Percolation Method with k = 3. 16
2.6 An example network with Huffman and Infomap encoding. Images

reprinted from Rosvall and Bergstrom [60]. 17

8.1 A depiction of our local framework. 62
8.2 An example of the incremental T calculation. Nodes within the

circle are part of the community. 66

9.1 A visualization of the Mexican Politics network that reveals no ob-
vious community structure. 71

9.2 A graph of runtime versus average degree, for a 1000 node network. 73

11.1 A visualization of the communities in the Protein-Protein Interac-
tion Yeast Network using Lancichinetti’s [40] layout algorithm. . . . 80

12.1 An example of our modification to support sized vertices in the FR
algorithm. 82

13.1 An example of generating Representative Vertices. 87
13.2 Bounding Circles without randomized bounce-back. 89
13.3 An example of a layout produced by COMB. Vertices in blue are

outliers. 91

15.1 An example of a layout produced by COMA. Vertices in blue are
outliers. 99

16.1 An example of split points. 101
16.2 An example our simplified edge bundling technique. 103

17.1 Zachary’s Karate Club Network. 106
17.2 Zachary’s Karate Club Network. 107
17.3 Zachary’s Karate Club Network. 108
17.4 Political Books Network. 109
17.5 Political Books Network. 110
17.6 Political Books Network. 111
17.7 NCAA Football Network. 112

17.8 NCAA Football Network. 113
17.9 NCAA Football Network. 114

Chapter 1

Introduction

1

1.1 Introduction

The advent of the digital age has led to an unprecedented level of data collection,

such that even the most mundane information is captured and recorded with the

hope that it will lead to new and profitable insights. Many organizations seek to

improve their services, and ultimately their profits, by mining this collected data

for interesting patterns. For example, a hospital may improve their patient care

by analyzing medical histories, a financial firm may increase profits by reviewing

transactions in the stock market, or a government may seek to reduce the spread of

disease by monitoring the movement of cattle in agriculture.

Although these datasets contain wildly different structures, they can all be trans-

formed into a universal format that can easily be interpreted and analyzed by data

mining algorithms. This universal format is best described as a series of entity-

entity relationships. For example, a medical history could be expressed as a re-

lationship between the patient (entity) and a symptom (entity), the patient and a

disease, or the patient and an antibiotic. Once the data is converted into this entity-

entity format, we can generate a network where the entities are represented by nodes

and the relationships are drawn as edges (or lines) between the nodes. If these re-

lationships are social in nature, such as friendship between people, then we refer

to the generated network as a Social Network, otherwise we use the more general

Information Network term.

The collected datasets are often massive and thus their associated networks can

contain hundreds, thousands, or even millions of entities and relations. In the health

record example, this large scale allows data mining algorithms to find patterns that

span multiple patients, such as discovering that all patients with a relation to a

specific disease also have a relation to a specific set of symptoms.

Deciding just how to discover these patterns in information and social networks

has been an increasingly hot topic for data mining researchers. One popular tech-

nique is to focus on discovering structural patterns known as communities, which

are loosely defined as a tightly-knit group of nodes that are more strongly related

within the group than outside of the group. Being able to accurately and efficiently

2

identify communities in social networks would aid a variety of academic and in-

dustrial applications, such as the possibility of creating better pharmaceuticals by

studying protein communities, detecting and thwarting organized crime communi-

ties in criminology, targeted advertising to specific communities in Facebook, and

many more.

1.1.1 Thesis Statements

In this thesis we will elaborate on the challenges associated with identifying, eval-

uating, and visualizing communities in social or information networks. We aim to

explore and improve upon each of these challenging areas by addressing the fol-

lowing statements:

• TS1: Previous metrics from the related field of data clustering may also

be effective at evaluating community mining results, provided they are re-

imagined in the context of social networks.

• TS2: A node is more likely to belong to the same community as its neigh-

bours if these neighbours are also neighbours of each other.

• TS3: Not all nodes need to participate in community structures.

• TS4: Previous well-known visualization techniques may be adapted to high-

light discovered communities without sacrificing familiarity or efficiency.

1.1.2 Thesis Contributions

The three main contributions of this thesis are: a thorough evaluation and analy-

sis of clustering metrics in social networks, a novel community mining algorithm

based on the detection of triads, and a novel visualization technique that highlights

the discovered communities in social networks. These contributions represent three

different perspectives of the same problem: how to define and identify commu-

nity structure in social networks. In the evaluation section we seek metrics that

can capture the definition of a community and abuse it to determine the quality of

community mining results. In our discovery section we reveal new definitions of a

3

community based on the distribution of triads in the network. Finally, in our visu-

alization section we allow human intution to play a role by allowing the viewer to

draw their own conclusion on what truly defines a community.

In our first contribution we focus on evaluating whether or not we can use rel-

ative validity criteria, from the existing field of data clustering, to accurately de-

termine the quality of a community mining result. This evaluation also includes a

thorough survey of the existing criteria. However, instead of presenting the original

formula for each metric, we have instead provided a social network equivalent. This

is necessary because the original criteria were not designed to work on datasets that

are only described by relationships.

We evaluate the criteria against a series of synthetic ground truth networks and

reveal that some of the criterion can outperform the existing community mining

metrics on more difficult networks. Unfortunately we also show that neither the

community mining metrics nor the criteria can evaluate a mining result with the

same accuracy as a ground truth.

We also present a novel community mining algorithm based on the well-known

local framework [13]. This algorithm is largely based on our T metric, which aims

to identify communities by measuring the number of internal and external triads

they contain. Here, a triad is defined as a group of three nodes that each share an

edge with each other.

Furthermore we also contribute a method to detect nodes that belong to many

communities (hubs) and nodes which do not belong to any community (outliers) by

considering the statistical distribution of triads within each community. We show

that our T metric and outlier/hub detection stage can achieve exceptional accuracy

when evaluated against a collection of real-world networks.

Finally, we also propose three community visualization layouts that allow hu-

man intuition to play a role when evaluating community mining results. As far as

we know these are the first layouts that reveal the structure and relationships of the

communities without explicitly sacrificing their aesthetic qualities.

The first visualization we propose implements the concept of bounding boxes

within a layout algorithm by forcing the nodes within a community to stay inside the

4

community’s bounding box. This method could also be applied to a variety of other

applications that seek to visually segregate a network. Our second visualization

method uses a novel slotting system to force nodes onto the perimeter of a circle and

features a very low time-complexity. In our final visualization algorithm we modify

the attractive and repulsive forces in the Fruchterman-Reingold layout [24] such that

they encourage nodes belonging to the same community to stick together, while

pushing non-members away. We also contribute a preliminary evaluation of these

layout algorithms and argue that our techniques provides significantly more insight

into the community structure than other state-of-the-art visualization methods.

1.1.3 Thesis Organization

This thesis is organized in four parts. The first part is entirely contained in Chapter

2, where we present a brief community mining survey that provides an introduction

and summary of the major frameworks and mining algorithms for social networks.

This chapter also explores the future of dynamic community mining and the chal-

lenges we are faced with when trying to evaluate mining algorithms.

In the second part we present our evaluation of data clustering criteria and com-

pare them to existing community mining metrics. In Chapter 3 we survey the ex-

isting measures and present a social network equivalent for each one. In Chapter 4

we detail our evaluation framework, including the external indices we will use to

score the results. Lastly, in Chapter 5, we present the results of our evaluation and

analyze why some metrics perform better on ‘easier’ or ‘harder’ networks.

In part three we discuss our novel community mining algorithm based on our T

metric. In Chapter 6 we motivate the problem. In Chapter 7 we explore how others

have tried to solve the community mining problem, and in Chapter 8 we present

our T metric and a modified local framework that detects outliers and hubs using

statistical methods. In Chapter 9 we reveal our evaluation results and show that our

algorithm is significantly better than the existing approaches.

In part four we showcase both of our community visualization algorithms. In

Chapter 10 we introduce the challenge of visualizating networks and in Chapter

11 we cover the existing methods in the field and show that they are inadequate at

5

revealing community structure. In Chapter 12 we present our modifications to the

Fruchterman-Reingold [24] algorithm to support sized vertices. In Chapter 13 we

discuss our COMmunity Boundary (COMB) algorithm that lays out the network

by forcing each community to remain within its own separate bounding box. In

Chapter 14 we present our COMmunity Circles (COMC) layout that forces nodes

into ‘slots’ on the perimeter of a circle. In Chapter 15 we discuss our COMmunity

Attraction (COMA) algorithm that uses attraction and repulsion forces to encourage

nodes within a community to stay together, while pushing non-members away. In

Chapter 16 we propose our edge bundling technique to reduce visual clutter and in

Chapter 17 we present an evaluation of these techniques and argue that our methods

offer significantly more insight into the community structure than the alternatives.

Finally, in Chapter 18 we conclude and show that each of our thesis statements

have been adequately addressed. Furthermore we explore some of the open prob-

lems in the field of community mining and provide our interpretation of the chal-

lenges that researchers will face.

6

Part I

A Survey of Community Mining
Methodologies

7

Chapter 2

A Survey of Community Mining
Methodologies

2.1 Early Techniques

Early adopters of social network analysis tried to perform community mining by

applying algorithms from the well-studied field of graph partitioning. However,

these early attempts proved to be rather unsuccessful and Newman and Girvan ar-

gued that the idea was misguided as the assumptions in graph partitioning do not

necessarily hold in community mining [53]. To address these concerns, researchers

began looking for new methods that would be a better fit in the context of social

network analysis.

One of the first successful methods they discovered was a divisive framework

where one initially assumes that all nodes belong to a single massive community.

The algorithm then greedily splits the community in two by choosing the division

that best satisfies some metric. This continues for each iteration until there are no

possible divisions that would further improve the metric. Note that we greedily split

to avoid exploring every possible division of the communities, which reduces the

complexity from exponential time to polynomial time.

The way this metric is defined will greatly influence the effectiveness of the

framework. The first major breakthrough in defining a suitable metric came from

Newman and Girvan in what is now one of the most cited papers in the field of

community mining [53]. Their motivating observation was that any community

should have relatively few edges linking itself to other communities. To identify

8

Figure 2.1: A sample network with the edge betweenness scores labeled on the
edges.

these inter-community edges we can compute the shortest path between all pairs of

nodes and assign a score to each edge based on the number of paths running through

it. Edges that are included in a large number of paths are more likely to be inter-

community edges. An example is depicted in Figure 2.1. Although this measure

was previously defined as the ‘rush’ in an unpublished report by Anthonisse, the

authors preferred to call it ‘edge betweennes’ based on work done by Freeman

[2, 21].

To include this measure in the divisive framework, we first compute the edge

betweenness score for all edges, and then remove from the network the edge which

has the highest score. The resulting network should now have one less edge between

the communities. We do this iteratively until there are no edges that connect the

communities, as shown in Figure 2.2.

This is, however, only half of the authors’ contribution, as we can see that by

continually removing edges we will eventually be left with communities made up

of single nodes, as in Figure 2.2(e). To avoid this we need an optimization metric

that lets us know when to stop dividing the communities. A suitable metric should

evaluate a proposed assignment of communities and return a score that indicates

the quality of that assignment. We can then stop removing edges when we reach a

maximum score for this metric, where removing any more or any less edges would

detract from the score. In our example, this maximum score should occur at Figure

2.2(c).

For this purpose, Newman and Girvan introduced the Q-Modularity metric which

is formulated as:

9

(a) Initial network. (b) After removing two edges.

(c) After removing five edges. (d) After removing many edges.

(e) No remaining edges to remove.

Figure 2.2: Divisive algorithm using Edge Betweenness. The circular borders
around nodes indicate the communities.

10

Q =
∑
i

(eii − a2i) (2.1)

where eii is the number of edges within community i, normalized by the number

of edges in the entire network. Here, ai is the number of edges with at least one

endpoint in community i, once again normalized by the number of edges in the

entire network. According to our definition, a good community should maximize

eii and minimize ai, resulting in a high value of Q. In practice, a Q value between

0.3 and 0.7 often indicates a good community [53].

The results obtained by combining Q-Modularity and edge betweenness within

the divisive framework were quite striking. Newman and Girvan tested their method

against a generated network that had a pre-defined number of communities and were

able to correctly identify all of the communities. They then applied their method

to Zachary’s Karate Club network, a real-world network containing 34 nodes and

two known communities [66]. The membership list of these communities is known

as the ground truth, which can be compared against the results of the mining al-

gorithms. A good mining algorithm should produce the same communities as the

ground truth.

The results from this evaluation were very good, with only a single node being

assigned to the wrong community. Overall their algorithm looked promising, but

the authors pointed out that the key disadvantage to their approach was the high

computational demands, as the worst cast time complexity was O(n3) where n is

the number nodes [53].

2.2 Recent Improvements

In a follow-up paper published in the same year, Newman realized that the edge

betweenness measure, although very effective, was far too expensive to compute

for any large network [51]. To resolve this he proposed a new community mining

algorithm that relied entirely on the Q-Modularity metric defined by Newman and

Girvan [53]. His new algorithm was based on the agglomerative framework, where

we initially assume that each node belongs to its own community. In each iteration

11

of the algorithm we greedily choose the two communities whose merger would

most improve the score of some metric and merge them. The algorithm concludes

when there are no mergers that would further optimize the metric. As in the divisive

framework, we greedily merge to avoid an exponential complexity.

In this framework, Newman used the Q-Modularity metric to determine which

two communities should be merged. After showing how to further optimize the

metric, he then proved that his resulting algorithm had a worst cast time-complexity

of O(n2) [51]. This is significantly faster than the edge betweenness discussed

earlier. Newman then evaluated his algorithm and showed that the accuracy is on-

par with that of the previous approach for both computer-generated networks and

Zachary’s Karate Club. However, his algorithm performs poorly on the NCAA

Football network, which contains 180 nodes in 11 ground truth communities. Part

of the difficulty with this network is that some of the nodes do not belong to any

community and we call these nodes ‘outliers’.

Q-Modularity does not do well on the football network because it finds only

a few major communities and no outliers, when there are in fact 11 communities

and numerous outliers in the ground truth. This result is contrasted by the edge

betweenness algorithm from Newman and Girvan, which correctly identifies all

of the communities and outliers [53]. A possible reason for Q-Modularity’s poor

performance was explained by Fortunato et al., who showed that modularity based

approaches face a ‘resolution limit’ that prevents them from identifying smaller

communities [20].

2.3 Alternate Methods

While modularity based approaches were being explored, other researchers inves-

tigated frameworks that could successfully mine very large social networks. One

interesting approach came from Clauset’s work on local community mining [13].

In his paper, Clauset proposed a framework which is significantly different from

the others in that it requires only local knowledge of the network. He argued that

this requirement is necessary to solve the challenges associated with very large net-

12

Figure 2.3: A depiction of the local community mining framework. Note that the
boundary is a subset of the community. Figure adapted from Clauset [13].

works such as the World Wide Web, where we do not know the number of nodes or

how they are related.

To implement his framework Clauset defined three sets: the community set, the

boundary set, and the shell set. To begin, his framework randomly selects a seed

node for the community. This seed node becomes a single-node community and

is inserted into both the community set and the boundary set. All of its neigh-

bouring nodes are added to the shell set. In this way, the boundary set contains all

nodes which have an edge leading into the community and an edge leading into the

shell set, whereas the shell set contains all possible candidate nodes that could be

included in the community. A visualization of these sets is provided in Figure 2.3.

In each iteration, the algorithm greedily chooses the node from the shell set that,

when included in the community, would most improve the score of some metric.

This node is placed into both the community and boundary sets and its neighbours

are added to the shell set. The algorithm continues until there are no nodes in the

shell set that would further improve the metric. At this point the community set is

output, all of the sets are cleared, and the process repeats itself on a new randomly

selected node. The algorithm completes when there are no nodes left to explore in

the network.

As a metric for his framework, Clauset proposed the local modularity measure

R as

13

R =
Bin

(Bin +Bout)
(2.2)

where Bin is the number of edges which lead from the boundary set into the

community and Bout is the number of edges which lead from the boundary set into

the unexplored network [13]. Thus a high value of R would indicate a tightly-knit

community.

Similarly, Chen et al. proposed their local community metric L based on the

same framework [12]. The authors defined it as

L =
Lin

Lex

(2.3)

where

Lin =
Σi∈CIKi

|C|
(2.4)

Lex =
Σj∈BEKj

|B|
(2.5)

Here, IKi is the number of edges between node i and the other nodes in the

community, and |C| is the number of nodes in the community. EKj is the number

of edges between node j and the nodes in the unexplored network, and |B| is the

number of nodes in the boundary set. Thus we want to maximize Lin and minimize

Lex, resulting in a high value of L.

Chen et al. argued that by being oblivious to the number of nodes, the R mea-

sure does not actively select for high density communities [12]. A community has

high density if the number of edges is close to the maximum number of possible

edges (n(n − 1)/2), as shown in Figure 2.4(a). This property is desired as it coin-

cides well with the very definition of a community.

To provide evidence for their claim, Chen et al. first revealed that the R metric

outperforms all other known methods for local community detection. They then

evaluated both metrics against the NCAA Football network and showed that their

L metric severely outperforms the R metric in precision and recall [12].

Furthermore the results from the L metric nearly match that of the edge be-

tweenness algorithm on the NCAA Football network. The main reason for this is

the ability of the L metric to detect outlier nodes. The algorithm actively identifies

14

(a) A High Density Community (b) A Low Density Community

Figure 2.4: An example of high and low density communities.

outliers by investigating the values of Lin and Lex before and after merging each

node into the community. As we can see from Formula (2.3), if the Lin value goes

up and the Lex value goes down, then this node is a good candidate to merge into the

community. If, however, the values of Lin and Lex go down then this node must not

have many neighbours inside the community nor does it have many outside [12].

Thus this node is an outlier and does not belong to any community.

In addition to Clauset’s local framework, other researchers pursued methods

that allow a node to belong to more than one community, commonly called overlap.

There is much real world motivation for overlap as, for example, people rarely

belong to a single club or have only one group of friends. Although Clauset’s local

framework can be adapted to allow for overlap, the most well known framework for

this problem is the Clique Percolation Method (CPM) proposed by Palla et al. [56].

In this framework the authors propose an algorithm that discovers communities

based on the existence of k-cliques. They define a k-clique as a fully-connected

sub-network with k nodes, where each node has an edge to all of the other k − 1

nodes, as shown in Figure 2.5(a). The CPM algorithm can be best described as

placing a k-clique over any k nodes in the network that are fully connected and

then rolling the k-clique around until it is unable to reach any unexplored nodes.

We can roll a k-clique by swapping a single node in the clique for one outside of

the clique and keeping the others fixed. When rolling, the clique must remain fully

connected, as shown in Figure 2.5(c).

15

(a) Example of k-cliques. (b) Initial k-clique, k = 3.

(c) Example of rolling the k-clique
once.

(d) Communities found from the CPM
method.

Figure 2.5: An example run of the Clique Percolation Method with k = 3.

All of the nodes encountered while rolling are considered a single community,

as shown in Figure 2.5. Once we cannot roll anymore, we reposition the k-clique

to an unexplored region of the network and repeat. Notice that we may roll over

many of the same nodes even after we reposition; it is this behaviour that leads to

overlapping communities. In their framework, the authors leave the choice of the

parameter k up to the user, but they recommend k = 3 for small networks, k = 4 for

large networks, and k = 5 for very large networks. Unfortunately, they could not

provide any convincing evaluations as there are no networks with an overlapping

ground truth.

Other researchers have posited that even local methods are too slow for very

large networks because the metrics they require are inherently expensive to com-

pute. To address these concerns, Rosvall and Bergstrom have proposed their In-

fomap algorithm, which takes the unorthodox approach of viewing community

mining as an information theory problem [60]. To begin, the authors generate a

16

(a) Random walker path. (b) Example Huffman encoding.

(c) Infomap community-based encoding. (d) Highlighting the community enter/exit
codes.

Figure 2.6: An example network with Huffman and Infomap encoding. Images
reprinted from Rosvall and Bergstrom [60].

17

random walk of the network, with the goal of accurately representing the walker’s

path in a few bits as possible. They then show that the obvious solution to this

problem is to employ a Huffman encoding of the nodes, which assigns each node a

unique code based on how often it is encountered in the random walk [34]. Nodes

that are encountered frequently are given shorter codes than those which are rarely

encountered. A potential Huffman encoding is shown in 2.6(b).

Although the Huffman encoding significantly reduces the number of bits re-

quired to express the path, it does not capitalize on the structural features in the

network. In particular, once the random walker enters a dense region of the net-

work, such as a community, it is likely to stay within that region for an extended

period of time. By identifying these communities and assigning uniques codes to

them we can create a hierarchical encoding, such as two nodes can have the same

identifying code so long as they belong to different communities, just like how two

different cities can have the same street names [60].

By leveraging the unique community codes, Infomap can now compute a sepa-

rate Huffman encoding for the members of each community, rather than a single one

for the entire network. This reduces the number of vertices per encoding and thus

reduces the number of bits per unique code. To include this hierarchical encoding

in the path, we add the community code whenever the walker enters a community

and an exit code whenever it leaves a community. Thus it is imperative that the

walker stay within a community for more than few steps, otherwise the overhead of

using community codes will quickly erase any gains from the shorter unique vertex

codes. This implies that the optimal compression of the random walker’s path will

also contain an optimal partitioning of the network into communities.

To determine this optimal compression, the Infomap algorithm employs the ag-

glomerative framework, and at each step it merges the two communities that would

maximize the level of compression. This compression is computed by consider-

ing the entropy of the random walk between, and within, the communities. Once

the framework reaches a maximum compression the communities are extracted and

their membership is fine tuned through a simulated annealing procedure. Unlike

Newman’s Modularity metric, the Infomap compression metric is blazingly fast to

18

compute and has allowed the authors to apply their method on networks as large as

2.6 million nodes and 29 million edges [51, 60].

Although no concrete evaluation is provided, the authors show some intuitive

results indicating that flow of information in the network is better captured by their

method than by the traditional modularity-based methods. We should also note that

the Infomap method natively supports directed and weighted networks by including

a small probability for the walker to teleport to a random node in the network.

2.4 Cutting Edge Research

Thus far we have explored frameworks that are used to detect communities in net-

works that do not change over time, otherwise known as static networks. However,

there is also interest in algorithms that can identify communities in dynamic net-

works. This would be useful, for instance, in tracking how a disease spreads from

one community to the next, or how a company’s organizational structure evolves

over time.

To solve this problem, Asur et al. introduced their event based framework [3].

Their main idea is to break down a dynamic network into a series of static snap-

shots and perform analysis on these snapshots. For example, when provided with

a network that changes continually throughout the year, they take a snapshot of the

network at the end of each month. The resulting snapshots are static, but when put

together they provide a summary of the dynamic changes in the network. The com-

munity mining task can now be accomplished using any of the static algorithms that

we previously discussed. The challenge, however, is to identify how the communi-

ties have changed between the snapshots.

The method Asur et al. proposed detects when a community is involved in one

of five basic events. A community has Continued, the first event, when there is a

community in the next snapshot that contains exactly the same nodes as this com-

munity. Two communities are k-Merged, the second event, if there is a community

in the next snapshot that contains at least k% of the nodes from these two commu-

nities. A community has k-Split, the third event, if two communities in the next

19

snapshot contain at least k% of the nodes from this community. A community has

Formed, the fourth event, if none of its nodes have belonged to the same commu-

nity in a previous snapshot. Finally, a community has Dissolved if none of its nodes

appear together in any community in the next snapshot [3].

Asur et al. showed that when applied against real-world networks these events

can provide insight into how communities evolve over time. Takaffoli et al. argued

that this framework is too rigid as real-world communities rarely maintain the exact

same members over time and furthermore they rarely dissolve entirely [62]. To

address their concerns, Takaffoli et al. redefined all of the events so that they are

dependent on the parameter k. As an example, their Form event requires that only

k% of the nodes are new to this community. They also argued that the framework

from Asur et al. does not cover all possible events, such as when a community loses

or gains nodes. To capture this information they added two new events, k-Shrink to

detect when a community loses nodes, and k-Reform to detect when a community

gains nodes.

Takafolli et al. [62] evaluated both frameworks against a series of networks

from monthly snapshots. Unfortunately, their evaluation is not conclusive as there

are no dynamic networks with a ground truth. Instead, Takaffoli et al. showed that

their framework identifies an event for each community at each snapshot, while the

framework from Asur et al. does not [62]. They argued that it follows from intuition

that every community should be involved in at least one event at each snapshot.

2.5 Evaluation Challenges

The evaluation challenges that are encountered in dynamic frameworks are an indi-

cator of a much broader problem facing the field of community mining. Although

much time has been spent researching new frameworks, relatively little time has

been spent researching methods to evaluate these frameworks. Without proper eval-

uation methods it is very difficult to claim that one algorithm is better than another.

This is especially true in papers that only evaluate their algorithm against networks

which show good results, leaving the reader with a false sense of confidence in the

20

algorithm.

Recently, Lancichinetti et al. have published benchmarks that evaluate commu-

nity mining algorithms against computer-generated networks that have statistically

valid structure [44] . More recently yet, Leskovec et al. have published a framework

to empirically evaluate algorithms against a variety of real-world networks where

the ground truth is known [45]. As of yet there has been no convincing evaluation or

analysis regarding the accuracy of these methods and thus the evaluation problem

remains unsolved.

We face additional challenges when dealing with overlap as we do not know

of any networks with an overlapping ground truth. The most promising solution is

offered by Lancichinetti et al., which proposes a benchmark that has been modified

to handle overlap [41]. Unfortunately, it is unclear whether or not these benchmark

methods will be adopted by the research community at large.

To make matters worse, to the best of our knowledge there are no suitable meth-

ods to evaluate the results of dynamic community mining. This is because it is

unclear which events should be included in a computer-generated network. Any

particular choice or definition of an event will bias the results of the evaluation to-

wards the framework that proposed the event. Currently there are no approaches

that address this difficult problem.

21

Part II

An Evaluation of Relative Validity
Criteria for Community Mining

22

Chapter 3

Clustering Transformations &
Relative Validity Criteria

3.1 Motivation

Although much progress has been made in identifying communities, very little work

has been done on evaluating the results of the community mining algorithms. The

obvious approach to evaluate these algorithms is to compare their identified com-

munities to a ground truth, where the correct membership of each community is

known. This approach, however, is unsatisfactory as we are rarely provided with

the ground truth of real world social networks. A more suitable approach is to

consider the outcome of some relative validity criteria, which ranks the results of

two or more mining algorithms by evaluating them against some notion of what a

good community should be. This approach is more versatile as it does not require a

ground truth and thus can be applied to any social network.

Unfortunately, defining such a relative validity criterion is non-trivial as there is

no clear consensus on what a ‘good community’ should look like. In light of this,

researchers have proposed a variety of such criteria that focus on density, modu-

larity, internal/external edge ratios, and other graph theory metrics. In this thesis

we extend this list by re-introducing criteria that originated in the well-known field

of database clustering, and show how these criteria can be transformed to evalu-

ate community mining results. We then perform an experiment on these newly

transformed criteria to rank them based on the quality of their evaluations when

compared to the ground truth. We conclude with a brief analysis of these results.

23

3.2 Distance Methods

The process of clustering is commonly viewed as a sister process of community

mining, as both tasks focus on producing tightly-knit groups of entities that are

maximally separated from each other. Due to this similarity, it follows from intu-

ition that many of existing relative validity criteria from clustering could be applied

in context of community mining. To do so, we must first address the differences in

how each method calculates the distance between two entities and how they com-

pute the centroid of a group. We cannot, for example, calculate the Euclidean dis-

tance between two entities in a social network, as this value is undefined.

To address the differences in distance methods, we notice that although the dis-

tances used in each method are syntactically different, they are semantically the

same. Thus we may simply replace any cluster-based distances with a valid graph

theory distance. For this purpose we have selected four suitable distance functions:

3.2.1 Shortest Path (SP)

This distance method computes the shortest path between two nodes by using the

well known Dijkstra’s Shortest Path algorithm.

3.2.2 Adjacency Relation Distance (ARD)

This measure considers the structural equivalence of two nodes by comparing their

immediate neighbourhoods. For example, if two nodes share all of the same neigh-

bours they would have an ARD score of 0. Otherwise, the distance is a function of

the number of neighbours the nodes do not share. More formally:

ARDi,j =

√∑
k ̸=j,i

(Aik − Ajk)2

where A is the adjacency matrix of the network, and i and j are nodes in the

network [19].

24

3.2.3 Neighbour Overlap Distance (NOD)

This measure is very similar to the Adjacency Relation Distance in that it also com-

pares the immediate neighbourhood of both nodes. The NOD between two nodes

is the ratio between the intersection and union of the neighbourhoods. If two nodes

share all of the same neighbours they would have an NOD of 1. More formally:

NODi,j = 1− Ri ∩Rj

Ri ∪Rj

where Ri is the set of nodes in the immediate neighbourhood of node i. We

subtract the ratio from 1 so that we are consistent in implying that a low distance

score indicates that the two nodes are close together [19].

3.2.4 Pearson Correlation Distance (PCD)

This measure considers the Pearson correlation value between the columns and

rows of the adjacency matrix. More formally:

Ci,j =

∑
k (Aik − µi)(Ajk − µj)

nσiσj

where the averages µi = (
∑

j Aij)/n and the variances σi =
√∑

j (Aij − µi)2/n

[19].

3.3 Centroid Methods

In addition to this distance transformation, we also resolve the differences in com-

puting centroids by replacing any clustering-based centroid methods with graph-

based centroid methods. In the context of social networks, a centroid is the single

node which best represents the ‘centre’ of a community. This differs from clus-

tering, where the centroid of a cluster may not be an actual data point, but rather

an arbitrary point that represents the averages. To compute the centroid in a social

network, we consider the following approaches:

25

3.3.1 Betweenness (B)

In this method, the centroid of the community is the node which has the highest

betweenness centrality score [21]. If we consider the shortest path between every

pair of nodes in the community, then the betweenness score for a node is the number

of these shortest paths in which it is included. More formally:

BC = arg maxi∈C(Scorei,C)

Scorei,C =
∑
j∈C

∑
k∈C

Pj,k(i)

where C is the community, Pj,k(i) is 1 if the shortest path between node j, and k

contains the node i; 0 otherwise. The time complexity of this method is O(|C|3), as

we need to compute the shortest path between every pair of nodes in the community.

3.3.2 Closeness (C)

In this method, the centroid of the community is the node with the lowest closeness

centrality score. The closeness centrality score of a node is its average shortest path

distance to all other nodes in the community. More formally:

CC = arg mini∈C(Scorei,C)

Scorei,C =

∑
j∈C dist(i, j)

|C|

where C is the community, and dist(i, j) is the distance function between nodes

i and j. The time complexity of this method is O(|C|3) due to the shortest path

computation.

3.3.3 Degree (D)

In this simple method, the centroid of the community is the node with the highest

degree. More formally it is:

DC = arg maxi∈C(Degreei)

26

If we assume that the degree operation is constant time then the time complexity

of this method is O(|C|).

3.3.4 Distance Variance (DV)

In this method, the centroid of the community is the node with the lowest distance

variance score [65]. This score is the variance of the shortest path distances between

a node and all other nodes in the community. More formally it is:

DVC = arg mini∈C(Scorei,C)

Scorei,C =

∑
j∈C (dist(i, j)− avgdisti)

2

|C|

where the average distance from one node to all others is avgdisti =
∑

j∈C dist(i, j)/|C|,

and C is the community. This method requires computing the shortest path for ev-

ery pair of nodes, thus the time complexity is O(|C|3).

3.3.5 Estimated Closeness (EC)

This approach aims to reproduce the results of the Closeness method, but with a

reduced time-complexity. The key idea here is to take a random sample of k nodes

from the community and only compute the shortest paths from these k nodes to all

other nodes. To determine k, we must set the value of epsilon, which indicates our

desired tradeoff between speed and error level. In our case we have set ϵ = 1, to

achieve the best possible speed optimization. More formally:

EC = arg mini∈C(Scorei,C)

Scorei,C =

∑
k∈K(dist(i, j))

|C|

k =

⌊
log

(
|C|
ϵ2

)⌋
where 0 ≤ ϵ ≤ 1, C is the community, and K is the set of k randomly selected

nodes. This method requires computing the single source shortest path for each of

the k sample nodes, thus its time-complexity is O(kn2) [18].

27

3.4 Relative Validity Criteria

For our experiment we have selected 15 well-known relative validity criteria from

the field of clustering, based on work by Vendramin et al. [64]. For each of these

criteria we have replaced any distance calculations with one of the above distance

functions, and any centroid calculations with one of the above centroid functions.

In addition, we have removed any attribute-based operations, as current community

mining algorithms do not consider attributes.

We do not include a time-complexity analysis for all of the criteria because it is

dominated by the centroid and distance methods.

3.4.1 C-Index

This criterion is based on the sum of the distances between nodes in the same com-

munity [33]. This sum is then compared to both the best case scenario, where the

within-community distances are the shortest distances in the graph, and the worst

case scenario, where the within-community distances are the longest distances in

the graph. The output of this criterion indicates how close the within-community

distances are to the best case scenario. Thus a low C-Index value indicates a good

community mining result. More formally:

CIndex =
θ −min θ

max θ −min θ

theta =
N−1∑
i=1

N∑
j=i+1

dist(i, j) ∗ δ(i, j)

where the T shortest distances min θ =
∑T

i=0 distances[i], the T longest dis-

tances max θ =
∑T

i=1 distances[|distances| − i], the number of within commu-

nity distances T =
∑N−1

i=1

∑N
j=i+1 δ(i, j), and distances[] is an array containing

all of the distances between any pair of nodes in the network, sorted in ascending

order. Here, δ(i, j) is 1 if nodes i and j are in the same community, 0 otherwise,

and N is the nodes in the network.

28

3.4.2 C/
√
k

This criterion considers the ratio between the sum of the within-community dis-

tances, and the sum of each node’s distance to the centroid of the entire network

[59]. The former is used as a compactness measure, and the latter as an estimation

of how spread out the communities are. Therefore, this criteria selects community

mining results that have a high value of C/
√
k, which maximizes the distance to

the centroid of the network and minimizes the within-community distances. More

formally:

C/
√
k =

1√
|k|

√
1− SSW

SST

SSW =
∑
C∈k

∑
i∈C

dist(i, C)2

SST =
∑
i∈N

dist(i, N)2

where C is the centroid of community C, N is the centroid of the entire network,

and k is the set of communities. As Vendramin et al. points out, this normalization

via 1/
√
k is an attempt to counter-balance the decrease in SSW, and therefore the

increase in the
√
1− (SSW/SST) term, as |k| increases [64]. However this nor-

malization does not fully correct for this behaviour, as an increasing |k| eventually

leads to the case where SSW = 0 and thus C/
√
k = 1/

√
k. Therefore this criterion

is biased against community mining results that contain many communities.

3.4.3 Davies-Bouldin

This criterion considers the distances between two communities relative to their

compactness [16]. Specifically, this method selects and evaluates the pair of com-

munities that have the worst possible ratio of within-community to between-community

distances. A community mining result with a low Davies-Bouldin value is desired

as this indicates small within-community distances and large between-community

distances. More formally:

29

DB = 1/|k|
∑
C∈k

DC

DC = arg maxM∈k
M ̸=C

(DC,M)

DC,M =
avgDist(C) + avgDist(M)

dist(C,M)

avgDist(X) =
1

|X|
∑
i∈X

dist(i,X)

where avgDist() represents the average within-community distance to the cen-

troid, k is the set of communities, C is the centroid of community C, and M is the

centroid of community M .

3.4.4 Dunn

This criterion considers both the minimum distance between any two communities

and the length of the largest community diameter [17]. The diameter is defined

as the longest shortest path within a community. This criterion rewards commu-

nity mining results that have large distances between the communities and small

community diameters; resulting in a large Dunn value. More formally:

Dunn = minP,Q∈k
P ̸=Q

(
dist(P ,Q)

maxC∈k(diameter(C))

)
diameter(C) = maxi,j∈C(dist(i, j))

where P is the centroid of community P , Q is the centroid of community Q, and

k is set of communities. We should note that there are a variety of ways to compute

both the diameter of a community and the distance between two communities. We

only present a single approach here. Other cluster-based variations can be found in

the paper by Bezdek and Pal [7].

3.4.5 Gamma

This criterion considers the distance between two nodes from the same community,

relative to the distance between two nodes that belong to different communities [4].

30

If the distance of the former pair is shorter than the distance of the latter pair, the

criteria increments a ‘closer’ counter. Otherwise the criteria increments a ‘further’

counter. The score of the community mining result depends on the ratio of these

two counters. A high Gamma value indicates that the communities are separated

by sufficient distance given their compactness. Therefore a high value of Gamma

is desired. More formally:

G =
Scloser − Sfurther

Scloser + Sfurther

Scloser =
1

2

∑
L∈k

∑
i,j∈L
i ̸=j

1

2

∑
M∈k

∑
p∈M
q/∈M

δ(dist(i, j) < dist(p, q))

Sfurther =
1

2

∑
L∈k

∑
i,j∈L
i ̸=j

1

2

∑
M∈k

∑
p∈M
q/∈M

δ(dist(i, j) > dist(p, q))

This criterion has a very high time-complexity due to the comparison between

every pair of nodes. As a result, the estimated time-complexity of Gamma is

O(N3 + N4

k
); a full discussion can be found in work by Vendramin et al. [64].

Therefore the Gamma criterion is impractical for many social networks.

3.4.6 PBM

This criterion is based on the within-community distances, distances to the centroid

of the entire network, and the maximum distance between two centroids [55]. A

large PBM value is desirable as it indicates that the community mining result has

very compact and spread out communities. More formally:

PBM =

(
1

|k|
Ecentre

Ewithin

Dbetween

)2

Ecentre =
∑
i∈N

dist(i, N)

Ewithin =
∑
C∈K

dist(i, C)

Dbetween = arg maxC1,C2∈k(dist(C1, C2))

31

where N is the set of nodes in the network, N is the centroid of the entire

network, C is the centroid of the community C, C1 is the centroid of community

C1, C2 is the centroid of community C2, and k is the set of communities.

3.4.7 Point-Biserial

This criterion computes how distances between two nodes correlate to the com-

munity membership of those nodes [50]. Intuitively, nodes that are in the same

community should be separated by shorter distances than those which are not. A

large Point-Biserial value indicates that the nodes in the same community are closer.

More formally:

PB =
(avgW − avgB)

√
numW ∗ numB/t2

stdDev

avgW =
1

numW

N−1∑
i=1

N∑
j=i+1

dist(i, j) ∗ δ(i, j)

avgB =
1

numB

N−1∑
i=1

N∑
j=i+1

dist(i, j) ∗ (1− δ(i, j))

Here avgW is the average within-community distance, avgB is the average

between-community distance, numW is the number of within community distances

(
∑

C∈k
|C|(|C|−1)

2
), numB is the number between community distances (numPairs−

numW), numPairs is the number of distances in the network (|N |(|N |−1)
2

), stdDev

is the standard deviation of all the distances in the network, and k is the set of

communities.

3.4.8 Silhouette Width Criterion

This criterion measures the distance between a node and the centroid of the com-

munity it belongs to [37, 61]. It then compares this value to the distance between

that node and the nearest community it does not belong to. The former distance

should be shorter than the latter. The differences are summed up and normalized

by the number of nodes. A large Silhouette Width Criterion value is desired, as it

indicates that the nodes are much closer to their own centroids than they are to the

centroids of the other communities. More formally:

32

SWC =
1

N

∑
i∈N

silhouette(i)

silhouette(i) =
bi − ai

max(ai, bi)

bi =
1

|Cnearest|
∑

j∈Cnearest

dist(i, j)

ai = dist(i, C)

where Cnearest is the nearest neighbouring community that node i does not be-

long to, and C is the centroid of the community that node i belongs to. Deciding

the nearest neighbour is done by computing the distances between the centroids of

each community and selecting the nearest one.

3.4.9 Variance Ratio Criterion

This criterion is a ratio of the distance from each community’s centroid to the net-

work’s centroid and the within-community distance [8]. The centroid to centroid

distances are also weighted by the number of nodes in the community. This ratio

is then normalized to account for increases in the number of communities. A large

Variance Ratio Criterion value indicates that the communities are spread far apart

and are rather compact. More formally:

V RC =
BetweenDist

WithinDist
∗ |N | − |k|

|k| − 1

BetweenDist =
∑
C∈k

|C| ∗ dist(C,N)2

WithinDist =
∑
C∈k

∑
i∈C

dist(i, C)2

where C is the centroid of the community C, N is the centroid of the entire

network, and k is the set of communities.

3.4.10 WG

This criterion is the sum of the within-community distances [22]. Here, the within-

community distance is the sum of the distance from each node to the centroid of

33

its community. For a network with k as its set of communities the WG can be

calculated as:

WG =
∑
C∈k

∑
i∈C

dist(i, C̄)2

where C̄ is the centroid of the community C.

3.4.11 covWG

This criterion is similar to the WG and is based on the sum of the within-community

distances [50]. However, the within-community distance is normalized by the dif-

ference between the number of nodes in the network and the number of communi-

ties. Formally the covWG is:

covWG =
1

|N | − |k|
∑
C∈k

∑
i∈C

dist(i, C̄)2

where C̄ is the centroid of the community C, |N | is the number of nodes in the

network, and k is the set of communities.

3.4.12 B/W

This criterion is a ratio of the distance from each community’s centroid to the net-

work’s centroid, and the within-community distance [22]. The centroid to centroid

distances are also weighted by the number of nodes in the community. This cri-

terion is very similar to the Variance Ratio Criterion except that the ratio is not

normalized. More formally:

B/W =

∑
C∈k |C| ∗ dist(C̄, N̄)∑
C∈k

∑
i∈C dist(i, C̄)2

where C̄ is the centroid of the community C, N̄ is the centroid of the entire network,

and k is the set of communities.

34

3.4.13 log(SSB/SSW)

This criterion is a ratio of the between-community and within-community distances

[30]. The between-community distances are calculated as the distances between the

centroids of each community. The between-community distances are also weighted

by the number of nodes in the communities. The log(SSB/SSW) is calculated as

follows:

log(SSB/SSW) = log(
BetweenDist

WithinDist
)

BetweenDist =

|k|−1∑
l=1

|k|∑
m=l+1

dist(C̄l, C̄m)
2

1/|Cl|+ 1/|Cm|

WithinDist =
∑
C∈k

∑
i∈C

dist(i, C̄)2

where C̄ is the centroid of the community C, and k is the set of communities.

3.4.14 Ball and Hall

This criterion is the sum of the within-community normalized by the total number

of nodes in the network [5]. More formally:

BallandHall =
1

|N |
∑
C∈k

∑
i∈C

dist(i, C̄)

where C̄ is the centroid of the community C, |N | is the number of nodes in the

network, and k is the set of communities.

3.4.15 McClain and Rao

This criterion is a ratio of the between-community distances and the within-community

distance [48]. Unlike most of the criteria, the between-community and within-

community distances are not calculated using the distance to the centroid. Instead,

35

the distance is calculated for each pair of communities as follows:

McClainandRao =
BetweenDist/(N2 −

∑
C∈k |C|2)

WithinDist/((
∑

C∈k |C|2)− |N |)

BetweenDist =

|k|−1∑
l=1

|k|∑
m=l+1

∑
i∈Cl

∑
j∈Cm

dist(i, j)

WithinDist =
1

2

∑
C∈k

∑
i,j∈C

dist(i, j)

where |N | is the number of nodes in the network, and k is the set of communities.

3.4.16 Modularity

We have also included the well-known Modularity criteria from Newman [52]. This

criterion considers the difference between the fraction of edges that are within the

community and the expected such fraction if the edges were randomly distributed.

A higher Modularity value is desired as it indicates that there are significantly more

within-community edges than expected. More formally:

Modularity =
1

2m

∑
i,j∈N

(
Aij −

(
d(i) ∗ d(j)

2m

))
∗ δ(i, j)

where A is the adjacency matrix, m is the number of edges in the network,

δ(i, j) is 1 if nodes i and j are in the same community, 0 otherwise, and d(i) is

the degree of node i. We should note that Fortunato and Barthélemy showed that

modularity cannot accurately evaluate small communities due to its resolution limit

[20].

These 16 metrics will be considered in our evaluation in order to determine

which of them performs the best in the context of community mining analysis.

36

Chapter 4

Experiment Setup

In order to perform our evaluation we first need a large collection of networks with

an associated ground truth. Unfortunately, we are unable to use real-world net-

works for this purpose, as there is only a handful with an associated ground truth.

Therefore we must use generated networks for the majority of our evaluations as

such networks come with an associated ground truth. For this task, we employ

the network generation framework that was recently proposed by Lancichinetti et

al. [44]. This framework can generate a variety of networks by varying the node

degree, community size, and number of inter-community edges. The networks pro-

duced by this framework are of acceptable quality as the authors have shown that

their framework does a better job at revealing the differences between community

mining results when compared to Modularity based network generators.

To specify the inter-community connectedness of the network, the framework

provides a µ parameter. This parameter ranges from (0-1) and determines what frac-

tion of a node’s edges lead outside of its community. A low µ value indicates clear

cut community boundaries, whereas a network with a high µ value has ambiguous

community boundaries. For our experiment we generated 154 networks, with half

containing 100 nodes, the other half containing 500 nodes. Of these networks, ap-

proximately 10% have µ=0.1, 10% have µ=0.2, 10% have µ=0.3 ... up to µ=0.9. We

chose to include networks with high values of µ so that we can determine how the

criteria respond to very noisy data. For each network, we also selected a random

value for both the average degree and the minimum/maximum community sizes.

Thus some of the networks were very dense, some had a few large communities,

37

and some had many small communities.

4.1 Community Mining Algorithms

To identify the communities in these networks we applied the following six com-

munity mining algorithms:

4.1.1 Fast Modularity

This is a fast implementation of an agglomerative community mining algorithm that

maximizes Q-Modularity [14]. Due to the previously mentioned resolution limit of

Modularity, this method is biased against small communities.

4.1.2 MaxMin Modularity

This is an agglomerative approach, introduced by Chen et al., which takes into

account both the Modularity and the number of unrelated node pairs within the

communities [11]. A node pair is unrelated if there is no edge linking the two

nodes. The algorithm tries to maximize the Modularity score while minimizing the

number of unrelated node pairs in a community. As a result, this method is also

biased against small communities due to the use of Modularity [20].

4.1.3 Clique Percolation Method (CPM)

This is a clique-based method, introduced by Palla et al., where the communities

are defined as the maximum union of adjacent k-cliques; where k is the number of

nodes in the clique [56]. Due to the size of our networks, we have elected to use

k=3.

4.1.4 Local M

This approach employs the M metric, proposed by Luo et al. [46], within Clauset’s

local framework [13] .The authors define the M metric as the number of internal

edges divided by the number of external edges.

38

4.1.5 Local L

This approach employs the L metric, proposed by Chen et al. [12], within Clauset’s

local framework. The L metric considers both the ratio of internal to external edges

and the density of the community.

4.1.6 Local TopLeaders

Local TopLeaders is a centroid based, graph-theoretic community mining approach

[38]. It repeatedly explores the graph starting from the possible medoids/leaders

and expands their communities using a modified breadth first search (BFS) method.

This BFS considers the neighbourhood intersections of the nodes to compute dis-

tances. After expanding the followers/community of each leader, TopLeaders jumps

to the next leader in the network to outline its community. Leaders are identified

based on their degree centrality.

4.2 External Indices

If a criterion indicates a particular community mining result is better than another,

how do we know that it chose the correct one? To answer this question we employ

an external index that evaluates the correctness of a community mining result by

computing its similarity to the ground truth. In the case where the membership of

each community exactly matches that of the ground truth, the evaluation is trivial.

However, when the memberships do not match, there are a variety of methods that

focus on the number of false negatives, false positives, or both. We have selected

three well-known, and one recently introduced, external index for our experiment:

4.2.1 Adjusted Rand Index (ARI)

Given a community membership X, and a ground truth G, this external index eval-

uates how similar X is to G by considering if pairs of nodes share the same com-

munity or not [32]. It is also adjusted to correct for chance so that the ARI of a

randomly generated community membership is closer to zero. More formally:

39

ARI =
(|N | ∗ (a+ d))−M

(|N |2)−M)

M = (a+ b)(a+ c)(c+ d)(b+ d)

where —N— is the number of nodes in the network and:

• a = number of node pairs where both nodes are in the same community in

both X and G

• b = number of node pairs where both nodes are in the same community in G

but not in X

• c = number of node pairs where both nodes are in the same community in X

but not in G

• d = number of node pairs where both nodes are in different communities in

both X and G

4.2.2 Jaccard Index

This index considers the similarity between community membership X, and ground

truth G, by computing the ratio between the intersection and union of set(X) and

set(G) [35]. These sets are constructed individually for both X and G, and are

made up of node pairs containing nodes that belong to the same community. More

formally:

Jaccard =
set(X) ∩ set(G)

set(X) ∪ set(G)

where the intersection and union are computed on the node pairs.

4.2.3 Normalized Mutual Information (NMI)

This index measures the overlap between the communities in both X and G to de-

termine how much information we can learn about one if we had the other [15].

More formally:

40

NMI =
2I(X,G)

h(X) + h(G)

I(X,G) =
∑

CX∈kX

∑
CG∈kG

o(CX , CG)

|N |
log

(
o(CX , CG)

|CX ||CG||N |

)
h(X) =

∑
CX∈kX

−1 ∗ |CX |
|N |

log

(
|CX |
|N |

)
h(G) =

∑
CG∈kG

−1 ∗ |CG|
|N |

log

(
|CG|
|N |

)
where kX is the set of communities in X, kG is the set of community in G, and

o(CX , CG) is the overlap between communties CX and CG.

4.2.4 Alternative Normalized Mutual Information (ANMI)

This index was recently proposed by Lancichinetti et al. as a modified version

of NMI that handles overlapping communities [43]. In practice it punishes poor

community results quite heavily, and thus is not an exact duplicate of the original

NMI. The specifics of this index are intricate and beyond the scope of this thesis.

41

Chapter 5

Experiment Methodology & Results

5.1 Correlation Analysis

The goal of our experiment is to determine the quality of each relative validity

criteria and rank them accordingly. To do this we compute the scores for both

the criteria and external indices for each community mining result for a particular

network. A high quality criterion should express a high correlation between its

scores and the scores of an external index. This would indicate that both the criteria

and the index produced similar rankings and magnitudes for the community mining

results.

For our experiment we ran each of the community mining algorithms on 154

generated networks and two real world networks (NCAA Football, and Zachary’s

Karate Club [66]). For each of these community mining results, we computed the

score of each criteria with all possible combinations of distance and centroid meth-

ods. We did not include either the Betweenness centroid method or the Gamma

criteria due to the excessive time-complexity of these methods.

We also computed all of the external indices for each of the community mining

results. For each network, we then determined the Pearson correlation between the

scores of the criteria and each of the external indices. The top 10 average correla-

tions across all external indices are provided in Table 5.1. The top 10 correlations

for each external index are shown in Tables 5.2, 5.3, 5.4, and 5.5.

We can see from the overall correlation scores that no criterion performs well

across every external index. For example, Modularity is the top overall criterion,

42

Correl. Criteria Centroid Distance
0.23845 Modularity - -
0.20713 BallAndHall DV SP
0.20538 WG D ARD
0.20337 BallAndHall D ARD
0.19712 BallAndHall EC SP
0.19669 WG DV SP
0.19588 BallAndHall D NOD
0.19565 WG D NOD
0.19505 covWG DV SP
0.19233 covWG D ARD

Table 5.1: The top 10 highest correlation scores, averaged over all external indices.

Correl. Criteria Centroid Distance
0.67730 BallAndHall D NOD
0.67701 WG D NOD
0.66766 McClainAndRao - SP
0.66724 BallAndHall DV NOD
0.66525 covWG D NOD
0.66410 BallAndHall EC NOD
0.66242 WG DV NOD
0.66086 McClainAndRao - ARD
0.66055 WG EC NOD
0.65804 McClainAndRao - NOD

Table 5.2: The top 10 highest correlation scores with respect to ARI.

Correl. Criteria Centroid Distance
0.40939 VarianceRatio D NOD
0.38886 VarianceRatio DV NOD
0.38127 VarianceRatio EC NOD
0.37758 VarianceRatio EC ARD
0.37692 C/

√
k D SP

0.35971 VarianceRatio D ARD
0.35916 C/

√
k D NOD

0.35910 VarianceRatio DV ARD
0.35898 VarianceRatio EC SP
0.35020 C/

√
k EC SP

Table 5.3: The top 10 highest correlation scores with respect to Jaccard

43

Correl. Criteria Centroid Distance
0.31212 C/

√
k D SP

0.29937 VarianceRatio EC NOD
0.28880 VarianceRatio EC ARD
0.28365 VarianceRatio DV NOD
0.27786 VarianceRatio D NOD
0.27687 C/

√
k EC SP

0.27017 VarianceRatio DV ARD
0.23969 C/

√
k D NOD

0.23854 VarianceRatio EC SP
0.23817 VarianceRatio D ARD

Table 5.4: The top 10 highest correlation scores with respect to ANMI.

Correl. Criteria Centroid Distance
0.58355 Silhouette D NOD
0.54647 Silhouette EC NOD
0.51248 Silhouette DV ARD
0.50597 Silhouette DV NOD
0.50320 Silhouette EC ARD
0.49629 Silhouette EC SP
0.48934 SSBOverSSW D ARD
0.48225 SSBOverSSW EC NOD
0.47612 SSBOverSSW D NOD
0.47541 SSBOverSSW DV NOD

Table 5.5: The top 10 highest correlation scores with respect to NMI.

44

yet it is not in the top 10 of any of the external indices. This exemplifies the fact

that deciding which criteria performs the best depends on the external index used

to evaluate the results. As a result, we cannot declare a clear winner with regards

to correlation scores. In addition, although some of the criteria expressed higher

levels of correlation, such as the top 10 Adjusted Rand Index (ARI) results, none of

them expressed enough correlation such that we can rely on their evaluations as a

substitute for a ground truth.

As an aside, we also notice some agreement between the rankings for the Jac-

card index and for the Alternative Normalized Mutual Information index. This trend

continues throughout the data, revealing a possible weak correlation between these

two indices. Furthermore, we notice that the Pearson Correlation Distance (PCD)

does not show up in any of the results. Upon further investigation we discovered

that the permutations involving this distance metric performed the worst amongst

all permutations - indicating that this distance metric is not well suited for this task.

Whereas all three of the other distance methods appear to be interchangeable, as no

single method dominates the rankings. Also, we chose to omit the permutations that

used the Closeness centroid method, as they were almost perfect duplicates of the

permutations that used the EstimatedCloseness centroid method. This represents

that for our task, the EstimatedCloseness measure represents a sufficiently accurate

estimate of Closeness centrality.

5.2 Indicator Quality Analysis

In addition to this correlation analysis, we also considered all possible pairs of com-

munity mining results within each network. For each pair we labeled the result with

the higher external index score as the most correct one. We then determined which

pair was given a higher score by each of the criteria. The indicator quality counter

of a criterion is incremented by 1 if it correctly gave the higher score to the same

community mining result as the external index did. If it did not, then its total er-

ror rate is incremented by the absolute value of the difference in the external index

scores for each community mining result. The following is a brief example of this

45

evaluation:

ARI Silhouette Dunn
MiningResult1 0.8 0.7 0.5
MiningResult2 0.5 0.6 0.9

MostCorrect(ARI) = MiningResult1

MostCorrect(Silhouette) = MiningResult1

MostCorrect(Dunn) = MiningResult2

We can see that Silhouette and ARI agree, therefore Silhouette’s ‘indicator qual-

ity’ counter is incremented by 1. Whereas Dunn does not agree with ARI, there-

fore its error rate is incremented by 0.3, which is the difference in the ARI values

(abs(0.8-0.5) = 0.3).

From this example, and the explanation above, we can see that a high quality

criterion should have a high indicator quality counter, and a low error rate. There

are 156 networks, and six community mining methods, resulting in 2340 pairwise

comparisons (156 ∗
(
6
2

)
). We normalize each indicator quality score by the number

of such comparisons to learn the percentage of times that the criteria selected the

most correct answer.

The top 10 indicator quality scores, across all external indices, are shown in

Table 5.6. The lowest 10 error rates are shown in Table 5.7. To produce a unified

ranking, we multiply the error rate by the inverse of the indicator quality score; thus

a low unified score is desired. The top 10 unified scores are presented in Table 5.8.

In addition, in Tables 5.9, 5.10, 5.11, and 5.12 we show the top 10 unified scores

for each external index to highlight the disagreements between them.

From these results we can see that BallAndHall, Modularity, WG, and covWG

dominate the rankings for both indicator quality and error rate. Modularity appears

to perform slightly better than the other four, but as was the case for the correlation

scores, the exact ranking depends on which external index we consider. Unfortu-

nately, once more we notice that none of the criteria perform well enough for their

results to be considered as ground truths. Overall, none of the criteria selected the

correct community mining result more often than 57% of the time.

46

Indicator Criteria Centroid Distance
0.57160 Modularity - -
0.55943 BallAndHall DV SP
0.55922 WG D ARD
0.55911 BallAndHall D ARD
0.55879 WG DV SP
0.55599 covWG DV SP
0.55545 BallAndHall D NOD
0.55491 McClainAndRao - ARD
0.55276 WG D NOD
0.55071 covWG D ARD

Table 5.6: The top 10 highest indicator quality scores, summed over all external
indices.

Error Criteria Centroid Distance
57.74007 Modularity - -
60.32266 WG DV SP
60.73679 BallAndHall DV SP
61.89298 covWG DV SP
67.43488 BallAndHall D NOD
68.14982 BallAndHall D ARD
68.50125 BallAndHall EC SP
68.58471 WG D NOD
69.44110 WG D ARD
70.22536 WG EC SP

Table 5.7: The top 10 lowest error rates, summed over all external indices.

Unified Criteria Centroid Distance
0.04350 Modularity - -
0.04649 WG DV SP
0.04676 BallAndHall DV SP
0.04794 covWG DV SP
0.05229 BallAndHall D NOD
0.05249 BallAndHall D ARD
0.05344 WG D NOD
0.05348 WG D ARD
0.05433 BallAndHall EC SP
0.05596 WG EC SP

Table 5.8: The top 10 unified scores, summed over all external indices.

47

Unified Criteria Centroid Distance
0.02264 McClainAndRao - SP
0.02426 McClainAndRao - NOD
0.02474 McClainAndRao - ARD
0.02713 WG DV SP
0.02742 BallAndHall DV SP
0.02780 covWG DV SP
0.02910 BallAndHall EC ARD
0.02925 Modularity - -
0.02995 BallAndHall D NOD
0.03169 WG D NOD

Table 5.9: The top 10 unified scores with respect to ARI.

Unified Criteria Centroid Distance
0.04994 VarianceRatio D NOD
0.05434 VarianceRatio EC ARD
0.05661 VarianceRatio EC NOD
0.05662 VarianceRatio DV NOD
0.05788 C/

√
k D SP

0.05814 VarianceRatio D ARD
0.06030 VarianceRatio DV ARD
0.06089 Modularity - -
0.06392 C/

√
k D NOD

0.06680 PBM D NOD

Table 5.10: The top 10 unified scores with respect to Jaccard.

Unified Criteria Centroid Distance
0.03803 Modularity - -
0.04535 WG DV SP
0.04605 BallAndHall DV SP
0.04856 covWG DV SP
0.05007 VarianceRatio D NOD
0.05293 VarianceRatio EC ARD
0.05395 WG D ARD
0.05510 BallAndHall D ARD
0.05615 VarianceRatio D ARD
0.05690 VarianceRatio EC NOD

Table 5.11: The top 10 unified scores with respect to ANMI.

48

Unified Criteria Centroid Distance
0.04070 Silhouette D NOD
0.04278 McClainAndRao - ARD
0.04517 Silhouette DV ARD
0.04539 McClainAndRao - SP
0.04626 Modularity - -
0.04742 McClainAndRao - NOD
0.04911 WG DV SP
0.04938 BallAndHall DV SP
0.04989 covWG DV SP
0.05152 BallAndHall D ARD

Table 5.12: The top 10 unified scores with respect to NMI

5.3 Difficulty Analysis

For our final piece of analysis we wanted to group the networks based on some

quantitative estimate of how hard it is to find the correct communities in a network.

Unfortunately we could not find a suitable estimator. As an alternative, we grouped

the networks by looking at the average score of their community mining results,

across all of the external indices. Empirically it follows that networks with a low

average score are more difficult than networks with a higher average. The label for

each network depended on which range its average score fell into, as follows:

[0-0.29]: assigned a ‘hard’ label. There were 101 such networks.

[0.3-0.59]: assigned a ‘medium’ label. There were 39 such networks.

[0.6-1.0]: assigned an ‘easy’ label. There were 16 such networks.

We should note that many of the networks within the ‘medium’ and ‘hard’ ranges

had scores well above 0.6 for some particular external index. However, to avoid

being biased towards a particular external index, we only considered the average

across all indices.

The top 10 correlations for the relative validity criteria for each level of difficulty

are shown in Tables 5.13, 5.15, and 5.17. Furthermore the top 10 unified scores for

each level of difficulty are shown in Tables 5.14, 5.16, and 5.18.

Based on our groupings we can see that both Modularity and BallAndHall dom-

inate the rankings for ‘easy’ networks, with each criterion expressing very accurate

49

Correl. Criteria Centroid Distance
0.91151 Modularity - -
0.85435 BallAndHall DV SP
0.82511 WG DV SP
0.81766 covWG DV SP
0.80033 BallAndHall D NOD
0.79927 WG D NOD
0.78670 BallAndHall EC SP
0.77330 BallAndHall D ARD
0.76513 WG D ARD
0.73923 BallAndHall D SP

Table 5.13: The top 10 correlation scores, across all external indices, for ‘Easy’
networks.

Unified Criteria Centroid Distance
0.01309 BallAndHall DV SP
0.01313 Modularity - -
0.01421 WG DV SP
0.01829 covWG DV SP
0.03574 BallAndHall D NOD
0.03596 WG D NOD
0.04891 BallAndHall EC SP
0.05371 WG EC SP
0.05686 BallAndHall EC ARD
0.05817 BallAndHall D ARD

Table 5.14: The top 10 unified scores, across all external indices, for ‘Easy’ net-
works.

Correl. Criteria Centroid Distance
0.80875 Modularity - -
0.73343 WG D ARD
0.73158 BallAndHall DV SP
0.72524 BallAndHall D ARD
0.72417 BallAndHall D SP
0.72375 BallAndHall EC SP
0.70535 WG D SP
0.70048 WG DV SP
0.69998 covWG EC SP
0.69980 WG EC SP

Table 5.15: The top 10 correlation scores, across all external indices, for ‘Medium’
networks.

50

Unified Criteria Centroid Distance
0.02530 Modularity - -
0.03252 BallAndHall D ARD
0.03289 WG D ARD
0.03540 BallAndHall D SP
0.03631 WG DV SP
0.03688 BallAndHall DV SP
0.03831 WG D SP
0.03843 BallAndHall EC SP
0.03848 covWG DV SP
0.03886 covWG D SP

Table 5.16: The top 10 unified scores, across all external indices, for ‘Medium’
networks.

Correl. Criteria Centroid Distance
0.13261 SSBOverSSW D SP
0.13023 SSBOverSSW DV SP
0.12719 Silhouette D ARD
0.12557 SSBOverSSW EC SP
0.11023 SSBOverSSW DV ARD
0.10888 CIndex - SP
0.08989 SSBOverSSW EC NOD
0.08771 SSBOverSSW EC ARD
0.07938 SSBOverSSW D NOD
0.07920 SSBOverSSW D ARD

Table 5.17: The top 10 correlation scores, across all external indices, for ‘Hard’
networks.

results. For networks that fall within this category we believe that either of these

criteria could be used as a ground-truth substitute. It should be noted, however, that

very few real-world networks have such clearly defined community boundaries.

In the ‘Medium’ networks we see a clear domination by Modularity, with strong

performances from both BallAndHall and WG. The correlations indicate a reason-

able level of accuracy, such that these criteria could be used as a ground-truth sub-

stitute if required. In addition, ‘Medium’ networks are most likely more common in

the real world as they contain noisy, yet defined, community boundaries. Yet even

in these realistic networks it is clear that these criteria are not suitable replacements

for a ground truth.

51

Unified Criteria Centroid Distance
0.04846 SSBOverSSW D ARD
0.04992 SSBOverSSW EC NOD
0.05046 Silhouette D NOD
0.05065 SSBOverSSW EC ARD
0.05067 Silhouette EC NOD
0.05107 SSBOverSSW DV NOD
0.05140 SSBOverSSW D NOD
0.05204 SSBOverSSW DV ARD
0.05370 McClainAndRao - SP
0.05474 SSBOverSSW EC SP

Table 5.18: The top 10 unified scores, across all external indices, for ‘Hard’ net-
works.

Finally, in ‘Large’ networks we see both Silhoutte and SSBOverSSW dominat-

ing the rankings. Unfortunately their correlation scores are very low, indicating that

none of the criteria can be relied upon for such challenging networks. However,

these rankings only tell the overall story across all external indices. There are in

fact some criteria which perform quite well for some external indices, achieving in-

dicator rates above 0.7 for these ‘Hard’ networks. We have included these rankings,

and more, in the Appendix section.

In summary, we have shown that Modularity, BallAndHall, WG, and covWG,

are the top performing criteria when considering all of the external indices. The

top criterion for each particular external index can be determined by studying the

tables of results for that index. Furthermore we’ve shown that although Modularity

dominates ‘Easy’ and ‘Medium’ networks, other criteria become more accurate

when considering more difficult networks. Overall, however, none of the metrics

are accurate substitutes for a ground truth.

5.4 Appendix

52

Indicator Criteria Centroid Distance
0.75624 McClainAndRao - SP
0.75065 McClainAndRao - ARD
0.72868 McClainAndRao - NOD
0.71921 Silhouette D SP
0.69208 Silhouette D NOD
0.68777 CIndex DV ARD
0.67743 BallAndHall DV SP
0.67657 WG DV SP
0.67485 covWG DV SP
0.67442 BallAndHall D ARD

Table 5.19: The top 10 indicator scores with respect to ARI.

Error Criteria Centroid Distance
39.74751 McClainAndRao - SP
41.04314 McClainAndRao - NOD
42.61772 WG DV SP
43.11425 McClainAndRao - ARD
43.12828 BallAndHall DV SP
43.56082 covWG DV SP
45.25556 BallAndHall EC ARD
45.81193 Modularity DV SP
46.30270 BallAndHall D NOD
48.80712 WG D NOD

Table 5.20: The top 10 error scores with respect to ARI.

Indicator Criteria Centroid Distance
0.69423 PBM D NOD
0.69208 PBM DV NOD
0.69078 PBM EC NOD
0.68691 VarianceRatio EC ARD
0.68648 C/

√
k D SP

0.68562 VarianceRatio EC NOD
0.68562 VarianceRatio D NOD
0.68303 VarianceRatio DV NOD
0.68260 PBM D ARD
0.67959 C/

√
k D NOD

Table 5.21: The top 10 indicator scores with respect to Jaccard.

53

Error Criteria Centroid Distance
79.50711 VarianceRatio D NOD
82.45160 Modularity - -
86.67675 VarianceRatio EC ARD
88.99288 WG DV SP
89.13855 BallAndHall DV SP
89.53534 VarianceRatio D ARD
89.79338 VarianceRatio DV NOD
90.12495 VarianceRatio EC NOD
90.94655 covWG DV SP
92.26848 C/

√
k D SP

Table 5.22: The top 10 error scores with respect to Jaccard.

Indicator Criteria Centroid Distance
0.72567 Silhouette D NOD
0.70198 Silhouette EC NOD
0.68906 McClainAndRao - SP
0.68691 Silhouette DV NOD
0.68346 SSBOverSSW EC ARD
0.68303 SSBOverSSW D ARD
0.68174 McClainAndRao - ARD
0.67959 Silhouette DV ARD
0.67959 Silhouette EC ARD
0.67916 SSBOverSSW DV NOD

Table 5.23: The top 10 indicator scores with respect to NMI.

Error Criteria Centroid Distance
66.60758 Modularity - -
67.72124 McClainAndRao - ARD
68.57161 Silhouette D NOD
69.00123 WG DV SP
69.28181 BallAndHall DV SP
69.89901 covWG DV SP
71.28420 Silhouette DV ARD
72.18063 McClainAndRao - NOD
72.61985 McClainAndRao - SP
72.84549 BallAndHall D ARD

Table 5.24: The top 10 error scores with respect to NMI.

54

Indicator Criteria Centroid Distance
0.52929 C/

√
k D SP

0.51335 C/
√
k D NOD

0.51034 VarianceRatio EC ARD
0.50689 C/

√
k EC NOD

0.50646 VarianceRatio EC NOD
0.50388 VarianceRatio D NOD
0.50345 PBM D NOD
0.50258 PBM DV NOD
0.50000 PBM EC NOD
0.49957 PBM EC ARD

Table 5.25: The top 10 indicator scores with respect to ANMI.

Error Criteria Centroid Distance
36.08918 Modularity - -
40.67880 WG DV SP
41.39852 BallAndHall DV SP
43.16554 covWG DV SP
49.41485 WG D ARD
49.84470 BallAndHall EC SP
49.86442 BallAndHall D ARD
52.14300 BallAndHall D NOD
52.45674 WG EC SP
52.66312 WG D NOD

Table 5.26: The top 10 error scores with respect to ANMI.

55

Part III

Using Triads to Identify Local
Community Structure in Social

Networks

56

Chapter 6

Motivation

The challenge of exactly how to detect communities has been a central problem

studied in social network analysis in the past two decades. This research has been

fueled by a demand from numerous fields that hope to use community mining algo-

rithms to discover protein communities in biology, crime factions in criminology,

and groups of friends in telecommunication networks. To this end, researchers

have proposed a variety of techniques that discover communities by considering

the entire network structure, that is, they require global knowledge of the network

[53, 51, ?]. Unfortunately, they realized that these global techniques do not scale

well when considering extremely large information networks, such as Facebook or

the World Wide Web, which are becoming increasingly popular and contain hun-

dreds of millions or billions of nodes [53].

To remedy this problem, researchers have recently proposed local methods that

detect communities by only considering local information and therefore are not

sensitive to the size of the network [13, 12, 56]. These local methods generally

require some metric that determines the relative quality of a community, and indeed,

many such metrics have been proposed. However, the existing metrics often suffer

from poor outlier detection [13, 46] and the discovery of incorrect communities in

simple ground truth networks [12, 60].

In this thesis we aim to solve both of these problems by presenting our T met-

ric, which defines the relative quality of a community by considering the number

of internal and external triads it contains. We apply our T metric within a modi-

fied version of Clauset’s local framework to greedily discover communities while

57

achieving more accurate outlier and hub detection when compared to previous ap-

proaches [13]. We also show that our framework, combined with the T metric, leads

to increased accuracy on a variety of ground truth networks when compared to the

existing techniques.

58

Chapter 7

Related Work

In recent years researchers have proposed a variety of community mining tech-

niques that employ either the divisive or agglomerative framework to detect com-

munities using global information [?]. The most well-known of these approaches

is Newman’s Q-Modularity metric which considers the number of edges within a

community minus the expected number of such edges in a random network [51].

However, Fortunato and Barthélemy have shown that Modularity-based metrics

suffer from a resolution limit, in that they cannot detect communities smaller than

some threshold [20]. Furthermore, it is unclear how to detect outlier nodes with

Modularity-based methods.

In addition, researchers have realized that it is computationally intractable to

consider global information for many of the large scale networks that they wish to

analyze [53]. To address this concern, Clauset [13] introduced his local community

mining framework that explores the network through local expansion and thus is not

sensitive to the network size. His method requires a metric to determine the quality

of each discovered community and a variety of such metrics have been proposed,

including Clauset’s own R metric, the M metric from Luo et al., and the L metric

from Chen et al. [13, 46, 12]. All of these metrics evaluate a community by con-

sidering how edges are distributed within the community relative to outside of the

community. These metrics, however, fail to accurately identify outliers and achieve

low scores on many ground truth networks, as shown in our evaluation section.

Palla et al. [56] have also proposed their Clique Percolation Method which

identifies communities by rolling a k-clique around the network until it is unable to

59

reach any unexplored nodes. The nodes covered while rolling are considered the

discovered community and then the process continues on a different section of the

network. Although their algorithm benefits from being local and intuitive, it is also

very sensitive to the parameter choice for k, which determines the size of the clique

and thus the algorithm can be difficult to apply in practice.

Other researchers have proposed using information theory to discover commu-

nities, such as in the method introduced by Rosvall and Bergstrom [60]. In their

Infomap algorithm, Rosvall and Bergstrom view community mining as a code com-

pression problem, where the goal is to describe a random walk of the network using

as few bits as possible. The application of community structures allows the algo-

rithm to assign the same unique code name to multiple nodes, provided they are

in different communities. Thus a good community partitioning, where the random

walk is more likely to stay within the community than leave it, can greatly reduce

the number of unique codes required. It follows from their intuition, then, that

finding the best compression, through simulated annealing, will also yield the best

community partitioning. Their algorithm produced excellent results on synthetic

networks, as shown by Lancichinetti and Fortunato [42], but did not perform as

well against real-world networks, as shown in our evaluation.

We find that our approach lies somewhere between Clauset’s Local Framework

and the Clique Percolation Method, in that our T metric favours communities that

contain triads (cliques of size 3), but it discovers these communities through local

expansion.

60

Chapter 8

Our Approach

Our approach is a two stage algorithm that first detects communities by applying

our T metric within the local community framework and then employs an additional

stage to identify outliers/hubs in the discovered community.

The local community framework we apply in this thesis has been adapted from

Clauset’s local framework [13] and can be summarized as follows. First, we initial-

ize the community with a single node and place all of its neighbours into the shell

set. Then, for each iteration, we greedily select the node from the shell set that,

when included in the community, maximizes the T metric. We add this selected

node to the community and all of its neighbours to the shell set. This process con-

tinues until there are no nodes in the shell set which would further maximize the

T metric. At this point, a community is discovered and the algorithm restarts on

another node in the network. In order to prevent overlapping communities we en-

sure that all nodes which are assigned to one community cannot belong to any other

community. A depiction of the shell set is shown in Figure 8.1. Our major deviation

from Clauset’s original framework is that we do not keep track of the boundary set.

Also, as we will explain later, we have added an additional stage to the framework

that detects both outliers and hubs.

It is important to note that the selection of the starting node for the local frame-

work can have a dramatic effect on the accuracy of the algorithm. In particular, our

evaluation in Section 4 shows that randomly selecting the starting node can result in

very poor community structure and accuracy. We hypothesize that a good starting

node will have a high degree because it allows for a large neighbourhood to be con-

61

Figure 8.1: A depiction of our local framework.

sidered in the first iteration of the framework. However without global knowledge

it is impossible to select the optimal starting node, as we do not know the degree of

every node. To remedy this we propose a local approach, that first chooses a node at

random and then explores its immediate neighbourhood and selects the node with

the highest degree. This node becomes our starting node. Note that we have used

the degree metric, instead of PageRank or Betweenness, because it can be computed

locally without consulting the entire network. We briefly considered other metrics,

such as Estimated Closeness [18], but they did not outperform the degree metric in

our test cases.

8.1 Local Community Metric T

Given the local community framework we can see that the role of the T metric is to

determine whether or not a node should be included in the community. Intuitively,

our metric favours nodes that form many triads with nodes within the community

and few triads with nodes outside of the community. We define these quantities as

Tin and Tex, respectively. We define a triad as a collection of three nodes that are

fully connected, aka, a 3-node clique. Our intuition is that all members of a triad are

tightly bonded together and thus are more likely to belong to the same community.

62

More formally, we present our T metric as:

T = Tin ∗ Tdiff

Where

Tdiff =

{
Tin − Tex if Tin ≥ Tex

0 otherwise

Tin =
1

6
∗

∑
i∈C,j∈C,k∈C

Ai,j ∗ Aj,k ∗ Ai,k

Tex =
1

2
∗

∑
i∈C,j∈S,k∈S

Ai,j ∗ Ai,k ∗ Aj,k

Where C is the set of nodes in the community, S is the set of nodes in the shell

set, and A is the adjacency matrix such that Ai,j is 1 if nodes i and j share an edge.

We divide the Tin score by 6 to prevent double counting all permutations of the

same triad, for example, ‘ABC’, ‘ACB’, ‘BCA’, ‘BAC’, ‘CAB’, and ‘CBA’ all refer

to the same triad between nodes A, B, and C. For Tex we only divide by 2 because

the limitation that i ∈ C reduces the number of permutations. Our intuition with

the T formula is that we wish emphasize the internal triads more than the external

because we believe that a community more strongly defined by what is inside of it,

rather than outside.

We have bounded Tdiff , and thus T , to be non-negative because all of the nodes

in the initial stages of the community will belong to more external triads than inter-

nal ones. If left unbounded, this would result in a negative Tdiff score that would

penalize well connected nodes; yet these are the very nodes that we believe should

be included first. Thus, we set the Tdiff score to zero in these cases and let the

tie-breaking step determine the best node.

This tie-breaking step is a critical part of the metric because there are many cases

where multiple nodes result in the same T score, yet are qualitatively different. For

example, consider a node X that when included in the community has a Tin score

of 49, Tex score of 48, and thus a T score of 49. Also consider a node Y that has

a Tin score of 7, Tex score of 0, and thus also a T score of 49. Clearly, node Y is

a better choice to include in the community because it directly contributes to the

63

internal score without a negative influence on the external score. We capture this

intuition by always selecting the node with the lowest Tex score in the event of a tie.

It is important to note that we are not considering triads that have two nodes in

the community and one node in the shell set. This is because such a triad could

be classified as either external or internal depending on whether the target node is

chosen to be included in the community, or placed back into the shell set. Thus it

does not make intuitive sense to assign this triad to either set.

Furthermore we are aware that our metric is dissimilar from many of the existing

approaches in that it does not try to maximize a ratio of internal to external scores.

This is because we feel that the difficulty associated with dividing by zero results in

a biased metric that favours nodes with no external relations. For example, consider

a metric that counts the number of edges. Also consider two nodes in the shell

set: one with 2 internal edges, 0 external edges, and one with 10 internal edges, 1

external edge. If the ratio of internal to external edges of the community is 100:10,

then the first node will be included, but the second will not. We find this approach

to be counter-intuitive, especially given that as the ratio score of the community

increases, so does the idiosyncrasy of such examples.

8.2 Incremental Formula

Although the formulae given above are relatively simple, it would be computation-

ally demanding to count the number of triads every time a node is considered, thus

we also present an incremental formula for computing the Tin and Tex scores based

on the previous scores. More formally:

64

Tin′ = Tin +
1

2

∑
i∈N(X)
j∈N(X)

i ̸=j

Aj,i ∗ Ci ∗ Cj

Tex′ = Tex

+
1

2

∑
i∈N(X)
j∈N(X)

i̸=j

Aj,i ∗ (1− Ci) ∗ (1− Cj)

−
∑

i∈N(X)
j∈N(X)

i ̸=j

Aj,i ∗ (1− Ci) ∗ Cj

Where Tin and Tex are the scores before including node X in the community,

N(X) is the neighbourhood of node X , Ai,j is the adjacency matrix, and Cn is 1

if n is in the community, 0 otherwise. Here, the last term in Tex′ represents the

number of triads that contain one node in the community and one node outside of

the community. These triads are discounted because they were considered external

triads prior to node X being included in the community, but now are considered

uncounted triads. Note that we divide the second term in Tex′ by 2 to avoid double

counting both permutations of the same triad. A visual example of the incremental

formula can be seen in Figure 8.2.

8.3 Outlier and Hub Detection

Although our T metric is used to identify communities, it does not directly solve

the problems of pruning outliers from these communities or detecting hubs. The

notion of an outlier can be summarized as a node that is weakly connected to the

community but does not belong to any other community. Whereas a hub refers to

a node that is strongly connected to many communities, without truly belonging

to any individual community. To identify such nodes we have added an additional

stage to the local framework that further processes each community after it has been

65

(a) Before including node A. Tin = 2, Tex =
1.

(b) After including node A. Tin′ = 2 + 2 = 4,
Tex′ = 1 + 2 - 1 = 2.

Figure 8.2: An example of the incremental T calculation. Nodes within the circle
are part of the community.

discovered. In particular, we iterate through the entire community and record the

number of internal triads that each node belongs to. We then compute the average,

TinAvg, and standard deviation, TinStd, of this score.

While iterating through the community we label a node as a hub if it participates

in more external than internal triads; which follows from the observation that this

node may belong to many other communities. However, it is not sufficient to detect

a hub by only considering a single community. Thus, we allow nodes with the ‘hub’

label to join more than one community. This way if two or more communities label

the same node as a hub, then it must be a true hub. On the other hand, if only a

single community labels it as a hub then, by definition, it cannot be a hub and we

remove its label.

To detect outliers we rely on the statistical distribution of the internal triads in

the community. More specifically, a node is an outlier if it satisfies the following

criteria:

Tin(X) < ⌊TinAvg − TinStd⌋

Tex(X) = 0

Where Tin(X) is the number of internal triads that node X participates in and

likewise for Tex(X). We believe that this definition best captures the intuitive un-

66

derstanding of an outlier, in that any node participating in significantly fewer triads

than the average must be a weak member of that community. We have opted to use

only one standard deviation based on our empirical analysis. We should point out

that there are a variety of well-known statistical approaches to determine outliers,

such as those proposed by Chauvenet, Grubbs, or Peirce [9, 28, 57]. Unfortunately

we could not apply these methods as their assumption that the data is distributed

normally does not hold in our scale-free social networks.

8.4 Time Complexity

Generally, it is challenging to capture the real-world time complexity of local meth-

ods because they are often bottlenecked by the costly data retrieval of node and edge

structure from the large scale network. However, in terms of theoretical complexity,

we see that the T metric must consider every node in the shell at each iteration and,

for each node, it must count the number of triads that node is involved in. To count

the triads we must iterate through the nodes neighbours, checking if they belong to

the community and whether they share a neighbour with the node. The expected

number of such neighbours is equal to the average degree of the network. Thus,

the complexity of T can be formalized as O(avg(|C|) ∗ k2), where k is the average

degree of the network and avg(|C|) is the average community size.

67

Chapter 9

Evaluation and Results

To rigorously evaluate our proposed framework we have compared it to a variety

of popular community mining algorithms on a series of well-known ground truth

networks. We have employed the Adjusted Rand Index (ARI) to compute a quanti-

tative score that indicates how closely the results returned by each algorithm match

that of the ground truth. More specifically, this index compares two sets of results

and returns a score that ranges from 0, which indicates a completely random match,

and 1, which indicates a perfect match.

We performed an evaluation against all known ground-truth networks, which

are summarized in Table 9.1.

Ground Truth Network Num. of Nodes Num. of Edges Num. of Coms.
Karate Club [66] 34 78 2

Strike [49] 24 38 3
Political Blogs [1] 1224 19087 2

Political Books [39] 105 441 3
Mexican Politics [26] 35 117 2
NCAA Football [27] 180 788 11 + outliers + hubs

Table 9.1: An overview of the ground truth networks used in our evaluation.

Of particular interest to us are the NCAA Football network, which contains

many small communities and the Political Blogs network, which contains over 1000

nodes in two very large communities. We expect that many algorithms will have

difficulty capturing both the small and large scale communities. Furthermore, we

note that the Strike and Karate networks each contain one node that shares a single

edge with both ground truth communities. Thus, using only the information in the

68

MaxMin CPM Local L Local R Local M Local T Infomap
Karate Club 1 0.15 0.32 0.52 0.47 1 / 0.9 0.7

Strike 1 0.36 0.37 0.71 0.76 1 / 1 0.8
Political Blogs - - 0.06 0.62 0.66 0.88 / 0.65 0.84
Political Books 0.64 0.63 0.22 0.55 0.57 0.66 / 0.57 0.65

Mexican Politics 0.36 0.14 0.09 0.19 0.3 0 0.17
NCAA Football 0.15 0.983 0.96 0.28 0.28 0.996 / 0.94 0.31

Table 9.2: Evaluation results. For the X/Y cells, X indicates the average score
when selecting the starting nodes with the maximum local degree, and Y indicates
the average score when randomly selecting the starting nodes. A dash indicates that
the algorithm did not complete when processing the network.

MaxMin CPM Local L Local R Local M Local T Infomap
Karate Club 2 3 6 3 3 2 3

Strike 3 6 5 5 3 3 4
Political Blogs - - 94 20 66 3 46
Political Books 2 4 10 7 4 3 5

Mexican Politics 3 1 3 3 2 1 4
NCAA Football 5 12 12 13 11 11 12

Table 9.3: The number of communities detected by each algorithm.

MaxMin CPM Local L Local M Local T Infomap
Karate Club 0.1 0.1 0.06 0.04 0.051 0.066

NCAA Football 0.55 0.28 0.26 0.23 0.12 0.12
Political Blogs - - 294.9 76 789.4 1.4
Political Books 0.27 0.24 0.35 0.15 0.07 0.08

Table 9.4: The runtime for each algorithm, measured in seconds. We have omitted
the R metric because it is similar to the M metric from an efficiency standpoint.

network it is impossible to assign these nodes to the correct community every time.

To prevent ‘lucky’ selections from biasing the results we have allowed these two

nodes to belong to either of the communities without any penalty to the Adjusted

Rand Index (ARI) score. The algorithms we compare our T metric against include:

MaxMin Modularity

This is an agglomerative algorithm proposed by Chen et al. [11] as an im-

provement over Newman’s Q-Modularity based approach in that it also con-

siders the number of unrelated node pairs within the community. This method

requires global information about the network and contains no outlier de-

tection. Note that we do not compare out method against Q-Modularity-

69

because Chen et al. have shown that their MaxMin algorithm outperforms

Q-Modularity in previous evaluations [11].

Clique Percolation Modularity (CPM)

Please see the section on Related Work. For our evaluation we have selected

the best result between the parameter value of K = 3, 4, and 5.

Local L

This is a local algorithm proposed by Chen et al. [12] that employs Clauset’s

local framework and the L metric to discover communities by maximizing

the ratio of internal average degree over external average degree.

Local R

This is the original local algorithm proposed by Clauset that tries to maximize

the number of edges leading from the boundary set of a community to its core

and minimize the number of external edges [13]. This method contains no

outlier detection.

Local M

This is also a local algorithm proposed by Luo et al. [46] that employs

Clauset’s framework and the M metric to discover communities by maxi-

mizing the ratio of internal edges over external edges. This method contains

no outlier detection.

Infomap

Please see the section on Related Work. In a previous evaluation by Lanci-

chinetti and Fortunato [42], this method outperformed many other algorithms

on a set of synthetic networks. This method contains no outlier detection.

When evaluating our T metric we also want to determine what the optimal strat-

egy is for selecting a starting node in the local framework. Thus we present two

evaluations. In the first, our framework selects the starting node by exploring the

local neighbourhood of a randomly selected node and choosing the one with high-

est degree. In the second, our framework simply selects a starting node at random.

70

To mitigate the effects of this randomness we have run each local algorithm ten

times and reported the average score of these runs. We hope to show our proposed

approach for selecting the starting node is significantly better than the random ap-

proach.

The results of our evaluation are summarized in Table 9.2, which contains the

Adjusted Rand Index (ARI) scores, and Table 9.3, which contains the number of

detected communities. The Normalized Mutual Information (NMI) scores do not

differ in any significant way and thus we have not included them here.

As we can see in Table 9.2, our T metric matches or outperforms the existing

algorithms on nearly every ground truth network, with the exception of the Mex-

ican Politics network. In fact we notice that all of the algorithms perform very

poorly on this network and upon further visual inspection it is unclear if there is

any discernible community structure within the network. We have provided a sam-

ple visualization of the Mexican Politics network in Figure 9.1.

Figure 9.1: A visualization of the Mexican Politics network that reveals no obvious
community structure.

Furthermore, in Table 9.3 we notice that our algorithm is the only method which

71

identifies the correct number of communities for a majority of the ground truth net-

works. We feel that this is an important evaluation tool in that ARI score can often

be misleading when we don’t consider the number of communities. This is ex-

emplified by the fact that both the M metric and Infomap achieved a reasonably

high ARI score in the Political Blogs network, even though they detected a multi-

tude of extraneous communities. Additionally, we can see that our outlier detection

method performed exceptionally well given that it accurately identified all of the

outliers and all but one of the hubs in the NCAA Football Network. More impor-

tantly, contrary to Local L, our method did not identify any outliers or hubs in the

other outlier-free networks.

Finally, our method of selecting the starting node appears to be somewhat better

than the random approach when applied to our T metric. We can see noticeable

improvements when using our approach on denser networks such as Political Blogs

and Political Books. In addition to this evaluation we have also applied the L metric

within our proposed framework to determine if it is our framework that provides

the increased accuracy, or if it is the T metric itself. We hypothesized that perhaps

our outlier and hub detection stage was responsible for our excellent results. This

was not the case, and our results, which we do not present here for the sake of

brevity, indicate that the L metric performs very poorly in our framework. Thus,

we are more confident in claiming that the performance of our algorithm is largely

attributable to our T metric.

As shown in Table 9.4, the increased accuracy of our algorithm comes at the

cost of a longer runtime on networks with a high average degree, such as the Po-

litical Blogs network. To further explore this issue we have computed the runtime

of our algorithm on a network of 1000 nodes and varied the average degree. The

resulting chart is shown in Figure 9.2. It is clear that the time complexity of our

approach can become prohibitively expensive for networks with very high average

degree. We hope that future research into the efficiency of this approach will result

in a clever heuristic for approximating the T score or improving upon its incre-

mental computation for such networks. Alternatively, such research may lead to a

suitable data structure that can significantly speed up the runtime, similar to what

72

FastModularity did for the Modularity based approaches [51].

Figure 9.2: A graph of runtime versus average degree, for a 1000 node network.

73

Part IV

Community Centric Network
Layouts

74

Chapter 10

Motivation

In previous parts we have seen a variety of community mining methods and met-

rics that have all claimed to accurately identify communities in social networks.

However, there has been very little effort spent on evaluating the results of these al-

gorithms in either a human-assisted or an automated sense. This is exacerbated by a

lack of visualization methods that showcase either the structure of the communities

or the relationships between them. Without these visuals clues it can be difficult for

researchers to apply any intuition when evaluating their algorithms. Furthermore,

such visualizations are beneficial for non-research users, who do not wish to scour

through complex tables and matrices to get a big-picture view of the discovered

communities.

In this part we address this issue by presenting two different layout algorithms.

Our algorithms aim to generate aesthetically pleasing graph layouts which high-

light the structure of each community and the relationships between the communi-

ties. We believe that our layouts allow a user to more easily discern the difference

between a good community mining algorithm and poor one, when compared to

the existing generalized layouts. Also, our layouts more accurately depict the re-

lationships between the communities, allowing researchers and decision makers to

benefit from this previously difficult to obtain information.

In order to accomplish these goals we first propose a number of modifications

to the existing Fruchterman-Reingold (FR) algorithm [24], including support for

vertices with a non-zero radius and the removal of visualization boundaries. We

then introduce our first community centric layout algorithm, called COMmunity

75

Boundaries (COMB), which includes a two-stage process of generating represen-

tative vertices and employing circular bounding boxes to ensure the communities

remain intact and isolated. We then present our second algorithm, named COM-

munity Circles (COMC), which utilizes a slotting system to efficiently showcase

the relationships between each community. Our third algorithm, called COMmu-

nity Attraction (COMA), visually amplifies both the attraction between commu-

nity members, and the repulsion between vertices that do not share a community.

Finally, we also propose a very simple edge-bundling technique to reduce visual

clutter in dense networks.

Our contributions in this part are as follows:

1. Adding support for non-zero radius vertices to the existing FR algorithm and

removing the bounding frame.

2. COMB, our two stage algorithm for generating an efficient community-centric

layout that highlights the relationships between communities.

3. COMC, our algorithm which generates community centric layouts using a

highly efficient slotting system to showcase the relationships between com-

munities.

4. COMA, our algorithm which generates community centric layouts with intu-

itive modifications to the attraction and repulsion functions of the FR algo-

rithm.

76

Chapter 11

Related Work

The basis of our research comes from a well-known layout algorithm by Fruchter-

man and Reingold that aims to produce layouts which are both aesthetically pleas-

ing and contain uniform edge lengths. To accomplish this, the Fruchterman-Reingold

(FR) [24] layout employs a force-directed model where each vertex in the graph

both attracts its neighbours and repels all other vertices. The strength of this at-

traction/repulsion is regulated by the current temperature of the system; high tem-

peratures produce strong attraction/repulsion forces and low temperatures produce

weak forces. These forces determine how far away a vertex should move if it is

repelled, or how close it should come if it is attracted.

The FR algorithm has three main functions: the attraction function, the repul-

sion function, and the position calculation function. At each iteration the FR al-

gorithm computes the attraction function between each end point of an edge, and

the repulsion function between all pairs of vertices. These forces are summed by

the position calculation function and each vertex is moved so that it becomes closer

to its neighbours and/or further away from its non-neighbours. The temperature is

then reduced and the next iteration starts; the algorithm completes when the tem-

perature reaches zero or the number of iterations reaches a threshold. We note here

that because FR operates on edge end points it is able to natively support multi-

graphs by accumulating the attraction for all of the shared edges. We also note that

although the temperature system described is comparable to simulated annealing al-

gorithms, the layout itself does not do any hill-climbing due to the time complexity

required to reach the optimal solution. Instead, the authors assume that the discrete

77

iteration-based movement of vertices in the system will be enough to overcome the

local optima.

Other force-directed layouts have also been proposed, including the well-known

Kamada and Kawai layout. In their approach, Kamada and Kawai (KK) [36] model

the edges between vertices as springs and employ Hooke’s law to compute the at-

tractive forces between neighbouring vertices. Their algorithm then aims to mini-

mize the total tension in the system; while also finding an ‘ideal’ distance between

non-neighbouring vertices. As far as we know there has been no conclusive evalua-

tion that determines whether the FR algorithm or the KK algorithm produces better

layouts. We have chosen the FR layout as a basis for our algorithm because of its

popularity amongst the research community.

There have also been numerous community or cluster based layout algorithms

proposed by the research community, including the energy model proposed by

Truong et al. [63]. In their model the authors aim to contain each cluster of vertices

within a convex shape and to ensure that clusters do not overlap; very similar goals

to the COMB algorithm we propose in this thesis. They do this by introducing a

weighting factor to the attraction and repulsion forces in the FR algorithm to en-

sure that some optimal inter and intra-cluster distance is maintained. This optimal

distance appears to be provided by the user and thus we feel their approach can-

not easily be applied to general graphs without some previous knowledge of what

the optimal distances should be. Furthermore, their approach is tailored to support

clusters of disconnected vertices by adding ‘phantom’ edges between these vertices.

We believe our algorithms are set apart from this energy based model because they

do not require any user-specified parameter.

In addition, Frishman and Tal [23] have proposed a layout algorithm to visualize

clusters over time. Their approach places emphasis on ensuring that the clusters

remain in the same position across each timeframe and that the cluster sizes should

be proportional to the number of vertices they contain. Even with very different

goals, their method is strikingly similar to our own COMB algorithm in that they

employ ‘fake’ vertices to set the position of each cluster and assign it a specific

visual size based on the number of vertices within. However, because they favour

78

dynamic networks, their layout leaves much to be desired in aesthetic qualities such

as uniform edge length and an inability to showcase intra-cluster structures.

Other methods have also been proposed to present hierarchical cluster results,

where clusters can contain sub-clusters, including the approach demonstrated by

Lancichinetti [40]. However his algorithm is unpublished and thus we cannot com-

ment on the intuition or methodology that goes into the layout. Instead, we simply

present a sample layout from the algorithm in Figure 11.1. Finally, Balzer and

Deussen [6] have also proposed a method to visualize large networks containing

numerous hierarchical clusters. Given a layout, their approach produces a level-of-

detail visualization that displays everything from generalized cluster shapes, right

down to the individual vertices within each cluster, depending on the amount of

detail the user wants to see. Their approach combines edge-bundling, surface gen-

eration, and translucent filters to accurately depict the network structure without

producing visual clutter.

Our proposed methods differ from previous approaches in that we do not re-

quire any user-defined parameters to produce our community layouts, nor do we

focus on any specific aesthetic quality. Rather, we attempt to maximize the aes-

thetic quality of all aspects in the networks, such as the inter-community qualities,

intra-community qualities, and the network as a whole. We believe this general-

ized approach produces more meaningful visualizations and, contrary to previous

methods, we provide a detailed evaluation to showcase this.

79

Figure 11.1: A visualization of the communities in the Protein-Protein Interaction
Yeast Network using Lancichinetti’s [40] layout algorithm.

80

Chapter 12

Fruchterman-Reingold
Enhancements

12.1 Sized Vertices

Before proposing our layout algorithms we feel it prudent to introduce two basic

modifications to the existing FR algorithm. The first modification addresses the

practical need to visualize networks that contain vertices with heterogeneous sizes.

Such networks are common in real-life scenarios where vertex size conveys some

meaningful information to the viewer. Unfortunately, the existing FR algorithm as-

sumes that all vertices are infinitesimally small points and thus the resulting layouts

often end up with large vertices overlapping or completely obscuring smaller ver-

tices. An example of such a case is depicted in Figure 12.1(a). This overlap occurs

because the repulsion function in the existing FR algorithm repels each pair of ver-

tices by a force inversely proportional to the distance, d, between their centres. As d

nears zero, the force becomes incredibly strong to ensure that vertices do not clump

up.

Yet this repulsion is insufficient in the case when each vertex has a non-zero

radius, because the vertices will be overlapping long before the distance between

their centres nears zero. To solve this problem we apply an intuitive solution of

measuring the distance, d, between the edges of the vertices, instead of the centres.

This way the value d accurately reflects the distance between vertices of any size,

and the extremely strong repulsive forces will occur before the vertices begin to

overlap. We should note that although our solution is independently conceived, it

81

has been previously proposed by Harel and Koren [29]. More formally, we set the

distance d equal to:

d = max(dist(u, v)− (radius(v) + radius(u)), ϵ)

Where dist(u, v) is Euclidean distance between the centres of vertex u and ver-

tex v, and radius(x) is the radius of the vertex x. We include ϵ as a small positive

constant to ensure that overlapping vertices do not result in a negative distance, d.

The resulting layout is shown in Figure 12.1(b).

(a) Original FR algorithm. (b) FR with support for sized vertices.

Figure 12.1: An example of our modification to support sized vertices in the FR
algorithm.

12.2 Boundary-Free Layout

Our second modification focuses on the FR algorithm’s requirement of a user-

defined length and width for the frame, or bounding box, that will be used to contain

the resulting layout. The original authors argued that a layout is aesthetically pleas-

ing when it conforms to a frame and is distributed evenly throughout the frame

[24]. We, however, feel that this requirement is largely unintuitive. We do not often

force a picture to fit a specific picture frame, but rather seek a frame that is large

enough to contain our picture. Thus we opted to remove the need for a frame in our

modified FR algorithm.

In doing so we were forced to redefine two of the constants in the existing FR

algorithm; namely, the force constant, k, and the starting temperature, temp. These

82

constants were previously defined based on the width and height and, as stated in the

related works section, they strongly influence the distance a vertex is able to move

in a single iteration. Instead, we have provided the following alternative definitions:

k =
√

(|V |+ |E|)

temp = |V |+ |E|

Where |V | is the number of vertices in the multigraph and |E| is the number

of edges. We have selected these definitions based on some intuition about how

much movement should occur relative to the size of the network. Large networks

require larger vertex movements in order to escape a local minima and thus their k

and temp values should be higher than smaller networks. We have chosen a square

root function to ensure that very large networks do not result in extreme movements

that end up accomplishing little else other than wasting an iteration.

83

Chapter 13

Community Boundaries

In this section we present our first layout algorithm, COMB, which consists of two

stages. In the first stage we compute the boundary size for each community and then

determine its optimal position in the layout. In the second stage we place each ver-

tex within its community boundary and attempt to minimize the inter-community

edge lengths.

Our algorithm operates on a multigraph G = {V,E,C} where V is the set of

vertices, V = {v1, v2, v3...}, E is the set of edges, E = {e1, e2, e3...}, and C is the

set of pre-computed communities, C = {c1, c2, c3...}. We define each community

cx = {Vcx , Einx , Eoutx} where Vcx is the set of vertices in the community, Einx is

the set of edges between two vertices within the community, and Eoutx is the set of

edges leading out of the community.

13.1 Representative Vertices

We begin the algorithm by generating a single representative vertex for each com-

munity in the network. These representative vertices will ultimately determine the

position of the communities in the final layout. As such, each of these represen-

tatives must be structurally equivalent to the community they represent in terms of

both visual size on the screen and connections to other vertices.

To address the connection equivalence we generate a set of representative ver-

tices, R = {rc1, rc2, ..., rcn}, such that set of edges that each rcx participates in,

Ercx , is exactly equal to Eoutx , which is the set of edges its representative commu-

84

nity participates in. We should note that as per our definition it is very likely that

each pair of representative vertices will be connected by more than one edge; thus

the need for a multigraph structure.

To compute the on-screen size of a community we employ one of two tech-

niques. The first technique is the obvious solution of generating a separate layout

for each community using the Fruchterman-Reingold (FR) [24] algorithm and com-

puting the convex hull of the layout. This approach gives us fairly accurate estimate

of how much visual space the community will take up in the final layout, how-

ever it is costly to run the FR algorithm (O(|V 2| + |E|)) for each community in

the network. An alternative technique is to estimate of the amount visual space re-

quired using only the number of internal edges (|Einx|), vertices (|Vcx|) within each

community. We have defined our estimate function as:

radius = (max(10,
√
|Vcx|) + max(10,

√
|Einx |)) ∗ lm

Where lm is a constant derived from the average radius of each vertex. We

employ the max functions to ensure that very small communities are allotted some

meaningful visual space. It is important to note that any other estimate function

could also be used in our algorithm; we simply chose one that makes some intuitive

sense and has been empirically valid in our experiments.

By using either the estimate or the separate layout technique we can then set the

radius of each representative vertex, rcx, to be equal to the computed radius of the

bounding circle for community x. An example of generating representative vertices

from a set of communities is presented in Figure 13.1. The pseudo-code to generate

representatives is available in Algorithm 1.

13.2 Initial Layout

After generating the representative vertices we can produce an abstraction of the

network, Gabstract = {R+ Vno−comm, E}, where R is our set of representatives and

Vno−comm is the set of vertices that do not belong to any community and thus are

not captured by the representatives. Please see an example of Gabstract in Figure

85

Input: C, a set of communities c1,c2,... where ci = {V,E}, the set of
vertices and edges belonging to the community ci. g = {Vall, Eall},
the network to layout.

Output: A multi-graph G with the representative nodes and associated
edges.

R = ();
G = new Multigraph();

foreach vi ∈ Vall do
/* Include all outlier vertices in the

abstraction. */
if getCommunity(vi) = null then

G.addVertex(vi);
end

end

foreach ci ∈ C do
/* Add sized representative nodes to the

abstraction. */
r = new V ertex();
r.size = (max (10,

√
ci.|V |) + max (10,

√
ci.|E|)) ∗ lm;

r.community = ci;
R.push(r);
G.addVertex(r);

end

foreach r ∈ R do
/* Connect representative nodes with the edges

their respective communities share. */
c = r.community;
foreach e ∈ Eall do

if e.startV ertex ∈ c.V and e.endV ertex /∈ c.V then
targetRep = getRep(getCommunity(e.endV ertex));
G.addEdge(r, targetRep);

end
end

end
Algorithm 1: Generating an abstract network in COMB.

86

(a) Three communities (b) The generated Representative Vertices

Figure 13.1: An example of generating Representative Vertices.

13.1(b). We then feed this abstract network into our FR algorithm that has been

modified to support vertex sizes.

The resulting layout contains representative vertices placed at their ‘optimal’

position, given the goal of uniform edge length. These positions are recorded and

will be used to determine where each community should reside in the final layout.

Note that we do not record the position of the vertices in Vno−comm. These vertices

were only added to the abstraction to ensure that their edges are considered when

finding an optimal position for the representatives.

13.3 Vertex Placement

In the second stage of COMB we focus on refining our initial placement by setting

the location of each vertex in the network. We begin this stage with the initial layout

generated in stage 1 that contains the representative vertices. We then replace each

representative vertex with a bounding circle, centred at the same location that the

vertex once occupied. These bounding circles will ensure that the final layout has

clearly defined boundaries for each community. As such, each circle must have a

radius equal to that of the representative vertex it replaced.

Once the bounding circles are appropriately sized we begin inserting the ver-

tices from the original network. Each vertex is placed at a uniformly selected ran-

87

dom position within the circle that represents its community. After the placement is

complete we have an initial layout where all vertices belonging to the same commu-

nity are contained within the same bounding circle. When we feed this this initial

placement into our modified FR algorithm we expect the vertices to move around

within their circle, but they can not leave the circle. This limited freedom of move-

ment should allow those vertices with many connections to other communities to

migrate towards the perimeter of their respective circle. In the following section we

define these bounding circles.

13.4 Implementing Bounding Circles

To enable bounding circles we have modified the position calculation function int he

FR algorithm so that each vertex is checked against the perimeter of its bounding

circle in each iteration. We determine if the vertex is outside the perimeter by

calculating the distance between the vertex and the centre of the circle. Any vertex

with a distance greater than the radius must be outside of the perimeter and needs

to be relocated so that it is inside the perimeter once more. Before relocating the

vertex we wish to record its angle to the centre of the circle. This angle should

point towards the optimal position (as determined by the FR algorithm) that the

vertex was trying to reach and thus it may be the optimal angle within the bounding

circle as well.

Therefore we first compute the angle between the out-of-bounds vertex and the

centre of the circle. More formally:

angle(v, c) = atan2(c.y − v.y, v.x− c.x)

Where v is the vertex, c is the bounding circle that contains the vertex, and x/y

refers to the x and y coordinates of a point. c.x, for example, would indicate the x

coordinate for the centre point of the circle c.

Once the angle is computed we can now move the vertex within the circle, but

how far inwards? We noticed in our early experimentation that moving the vertex

exactly to the perimeter produced poor layouts, as the perimeters of the circles be-

88

Figure 13.2: Bounding Circles without randomized bounce-back.

came extremely crowded and obfuscated the structure of the community itself. See

Figure 13.2. To combat this problem we applied some randomness to the move-

ment. More specifically, each offending vertex is moved to a randomly selected

position between the perimeter and the centre of the circle, while keeping the same

angle. This randomness follows a uniform distribution.

However, the randomness alone is not satisfactory because a vertex may be in-

correctly moved to the centre of the circle on the very last iteration of the algorithm,

even though it just barely slipped outside of the bounding circle. Thus we also take

into account the temperature of the system. When the temperature is near its max-

imum, the offending vertices may be moved all the way to the centre of the circle;

but as the temperature cools, the movements do not stray far from the perimeter.

We capture this intuition in the following formulae:

89

mlen(c) = c.radius ∗
(
1−

(
rand() ∗ curTemp

maxTemp

))
length = mlen(c)

v.x = (cos(angle(v, c)) ∗ length) + c.x

v.y = (sin(angle(v, c)) ∗ length) + c.y

Where c is the bounding circle for the vertex v, angle() is previously defined,

rand() returns a uniformly random number [0,1], curTemp is the current temper-

ature, and maxTemp is the initial temperature.

As the system cools, curTemp decreases, causing the length to increase, which

places the vertices (on average) further away from the centre of the circle and closer

to its perimeter. This ensures that vertices which barely slip out of the circle in the

final iterations of the algorithm are still able to remain near the perimeter.

13.5 Final Layout

Now that we have defined the bounding circles we merely provide the entire net-

work, G, to our modified FR algorithm. We then feed the initial placement of the

vertices, and the definitions of each bounding circle, into the algorithm. The re-

sulting layout contains all of the features of the original FR algorithm along with a

well-defined visual boundary around each community. An example of a final lay-

out is depicted in Figure 13.3. The pseudocode for our modified FR algorithm is

available in Algorithm 2.

90

Figure 13.3: An example of a layout produced by COMB. Vertices in blue are
outliers.

91

Input: A multi-graph G = {V,E}, where v ∈ V has a .community attribute set for the
centre and radius of the community’s bounding circle.

Output: A position for each vertex in G.

k =
√

(|V |+ |E|);
temp, tempinitial = |V |+ |E|;
fa(z) = z2/k; fr(z) = k2/z;

/* Initialize a random position for each vertex. Bounded
vertices are forced into their circles. */

foreach v ∈ V do
if v.community ̸= null then

v.pos = getRandomPos(v.community);
else

v.pos = getRandomPos();
end

end

foreach iteration do
/* Calculate repulsion function. */
foreach v ∈ V do

foreach u ∈ V do
if u ̸= v then

∆ = v.pos− u.pos;
d = max (|∆| − (v.radius+ u.radius), ϵ);
v.disp = v.disp+ ((∆/d) ∗ fr(d));

end
end

end

/* Calculate attraction function. */
foreach e ∈ E do

∆ = e.start.pos− e.end.pos;
d = max (|∆| − (e.start.radius+ e.end.radius), ϵ);
e.start.disp = e.start.disp− ((∆/d) ∗ fa(d));
e.end.disp = e.end.disp+ ((∆/d) ∗ fa(d));

end

/* Limit the maximum displacement via the temperature. */
foreach v ∈ V do

v.pos = v.pos+ v.disp
|v.disp| ∗min (v.disp, temp);

if v.community ̸= null then
/* Ensure bounding circles are enforced. */
if dist(v, v.community.centre) > v.community.radius then

angle = getAngle(v.pos− v.community.centre);
tempMod = 1− temp

tempinitial
;

disp = v.community.radius ∗ (1− (rand() ∗ tempMod));
v.pos.x = (cos(angle) ∗ disp) + v.community.centre;
v.pos.y = (sin(angle) ∗ disp) + v.community.centre;

end
end

end

/* Cool the system according to a user defined cool(). */
temp = cool(temp);

end
Algorithm 2: The COMB algorithm, with sized vertices, bounding circles, and
removal of borders. Parts of this pseudo-code are adapted from the FR paper [24].

92

Chapter 14

Community Circles

The layouts produced by COMB contain clearly defined boundaries and reveal both

the internal structure and relationships of the communities. Highlighting this inter-

nal structure, however, has an efficiency cost as the layout algorithm needs to retain

all of the functions from the original FR algorithm, resulting in an O(|V |2 + |E|)

time complexity. This is comparable with existing layout algorithms, but it is not

fast enough to be considered a truly interactive visualization. Thus we propose our

COMmunity Circles (COMC) algorithm, which maximizes efficiency by using cir-

cular layouts to showcase only the community relationships. Our goal with COMC

is to represent each community as a circle and place the vertices on the perimeters

of each circle such that inter-community edge length is minimized. This algorithm

is similar to COMB, in that it is based on FR, and shares many of the same steps,

including the generation of representative vertices and the resulting vertex replace-

ment.

14.1 Sizing Representative Vertices

Unlike in COMB, we do not need to scale the size of the representative vertices

according to the number of edges within the community, as these edges are essen-

tially ignored by the COMC layout. Instead, we need to ensure that the perimeter

of each representative is large enough so that we can place each vertex on it without

overlap. Thus we modify the radius function:

93

circumference = (avgsize(Vcx) + padding) ∗ |Vcx|

radius =
circumference

2π

where avgsize() is the average radius of all the vertices in Vcx, and padding is

a user-defined constant that describes how much space there is between each vertex

on the circle. Our preferred setting padding = 15.

14.2 Perimeter Slots

Once the representatives are generated and placed using COMB, we can record the

perimeter and location of each representative and use this information to define a

new data structure. This structure contains both the center and radius of the circle

along with an array of “slots,” one for each vertex in the community. During the

course of the COMC algorithm, each vertex is assigned to the closest slot on its

respective community circle, according to the Euclidean distance between the circle

and the current position of the vertex. If the closest slot is already occupied by

another vertex, we compute the total length of all inter-community edges for both

vertices. The vertex with the smallest total edge length gets the slot, and the other

vertex must move to the second closest slot. If that slot is also occupied, then the

procedure repeats itself until there is a suitable unoccupied slot. We can guarantee

that this process terminates because the set of inter-community edge lengths has a

total order.

Before assigning the slots, we determine the position of each vertex by leverag-

ing the attraction and repulsion functions of the FR algorithm. In particular, we only

compute the attraction between two vertices if they belong to different communi-

ties. This is because we do not need to consider the attraction between members of

the same community; they are all tied to the perimeter of the circle and cannot move

closer to each other. In addition, we do not need to compute the repulsion function

for any vertex that belongs to a community. We can avoid this step because a pair of

vertices within a community cannot possibly get further away than the diameter of

circle and we not interested in showcasing the internal structure of each community.

94

The attraction function sets the position of each vertex by drawing it closer to its

neighbours in other communities. Once this position is set, each vertex is assigned

to the nearest slot on its community circle as described above. At the end of each

iteration, the vertices are moved to the position dictated by their respective slot, and

then the slots are cleared for the next iteration. The algorithm continues until the

system has cooled according to a cooling function specified in the FR algorithm

[24].

14.3 Efficiency Gains

By removing the repulsion function and limiting the attraction function, we have

greatly reduced the time complexity of the algorithm. In each iteration, we need

only loop over the set of inter-community edges to compute the attraction func-

tion and then assign the slots. This reduces the worst-case time complexity from

O(|V 2|+ |E|) down to O(|Eout|+ |V | ∗ avg(|C|)), where avg(|C|) is the average

number of vertices in each community. In practice, the slot assignments tend to

stabilize after the first few iterations of the algorithm, and thus the time complex-

ity is dominated by |Eout|. A sample visualization of COMC is provided in the

Evaluation section.

95

Chapter 15

Community Attraction

Although our COMmunity Boundaries (COMB) algorithm meets its goals of cre-

ating a stark visual boundary around each community, it sacrifices some of the

community’s structural aspects to do so. Not every community can fit comfort-

ably within an appropriately sized circle and many vertices end up being squished

together with the bulk of the community. This is especially troubling for outlier

vertices that are pushed towards the middle, even though they have only a single

edge and would look better on the outskirts of the community. This squishing also

causes each community to appear more dense than it actually is, which can mislead

the viewer. Unfortunately adding more room to each circle does not solve the prob-

lem, as this leads to large patches of white space forming between the communities

and takes away from the aesthetic qualities of the full layout.

For cases when a stronger emphasis should be placed on community structure,

we present our COMmunity Attraction (COMA) layout algorithm, with slightly dif-

ferent goals. Instead of enforcing a strong visual boundary between communities,

the COMA algorithm merely encourages visual boundaries, and rather focuses on

highlighting the structural elements of each community. To accomplish these goals

we have modified the two major forces in the FR algorithm: repulsion and attrac-

tion. We believe that if two vertices belong to the same community they should

have a stronger attraction than if they belong to different communities. Likewise, if

two vertices belong to different communities they should have a stronger repulsion

than if they belonged to the same community. We note that this idea is similar to

the community attraction and repulsion method presented by Truong et al. [63].

96

However, their method considers some user-defined optimal distance between ver-

tices in a cluster; we have no such requirement. Also, their top priority is to ensure

that communities are positioned in a convex zone [63], which greatly contradicts

our goals for COMA.

15.1 Repulsion Function

In order to ensure that two vertices belonging to different communities are repelled,

we apply a weighting factor to the repulsion function in the FR algorithm. We

want to ensure that the repulsion is strong enough to keep somewhat of a defined

boundary between communities, but not too strong as to cause unnecessary white

space in the layout. Also, our approach should be scalable for very small networks,

and very large networks, without requiring the user to set parameters.

We address these needs by proposing a weighting factor based on the density

of each community. More specifically, the repulsion between vertex u and vertex

v is determined by the density of communities that contain vertex v and u. This

follows from our intuition that communities with high density can afford to have

their vertices repulsed a considerable distance, as they will be dragged back into the

community by the attraction function. Likewise, communities with lower densities

cannot afford a strong repulsion as they have relatively few edges that connect to

the repulsed vertex, and thus may not be able to draw the vertex back in.

Assuming that fr(z) is the repulsion function and that vertices v and u belong

to different communities, we apply the weighting factor as:

force = fr(dist(u, v))
(1+density(uc)2)

Where density(uc) is the density of the community that vertex u belongs to.

We define density as |E|
|V |∗|V−1| . Note that the repulsion function is performed for

all unordered pairs of vertices, thus fr(dist(v, u)) will also be computed. We apply

the weighting factor as a exponent because we want to amplify the repulsion in very

large networks, where the force constant is larger, more so than in smaller networks.

97

Also, we have squared the density so that extraordinarily dense communities do not

cause massive movements in the vertices with which they interact.

15.2 Attraction Function

Much like in the repulsion function, we also apply a weighting factor to the attrac-

tion function to ensure that vertices belonging to the same community are strongly

attracted to each other. Once again, we want to ensure the attraction is strong

enough to keep the community together, but not so strong as to prevent the out-

liers from drifting towards the outskirts.

In this function, the weighting factor is determined by the density of the net-

work as a whole. We believe that if the network is very dense, then there is a high

probability that many inter-community edges are attached to the community. These

sum of the attraction forces in these edges may pull the community apart; thus the

intra-community attraction must be quite strong to hold the community together.

Likewise, if the network has low density, then there are likely few inter-community

edges and thus the intra-community attraction need not be as strong.

Assuming that fa(z) is the attraction function and that vertices v and u belong

to the same community, we apply the weighting factor as:

force = fa(dist(u, v))
(1+

√
density(G))

Where density(G) is the density of the network as a whole. Once again we

apply the weighting factor as a exponent because we want to amplify the strength

of the attraction in very large networks more so than in smaller networks. We have

square-rooted the density so that even in very sparse networks the weighting factor

is still meaningful.

The pseudo-code for COMA can be extrapolated from the pseudo-code for

COMB. Simply remove the bounding circle modification and adjust the fa and fr

functions according to the definitions provided above. A visualization of a COMA

layout is provided in Figure 15.1.

98

Figure 15.1: An example of a layout produced by COMA. Vertices in blue are
outliers.

99

Chapter 16

Edge Bundling

As you can see in the final layout examples for both COMB and COMA, the visu-

alization becomes polluted by the sheer number of edges between each community.

The higher the average degree of the network, the worse this problem becomes. To

address this issue we explored the usage of well-known edge bundling techniques

proposed by Holten [31], and by Gansner et al. [25]. The proposed techniques aim

to reduce the visual clutter by bundling together edges that are heading in roughly

the same direction. This greatly reduces the number of visible edges without de-

grading the information those edges convey to the viewer. However, both of the

proposed techniques proved to be too slow for our highly interactive analysis soft-

ware, Meerkat [10]. Also, they were designed for a general graph and were unable

to leverage the knowledge that each community must have its own edge bundle.

Instead of these approaches, we briefly present our own bare bones edge bundling

technique extracted from the algorithm provided by Gansner et al. [25]. Our goal is

relatively simple; we wish to create a separate edge bundle for each pair of commu-

nities. That way we can greatly reduce the visual clutter by having at most |C|∗|C−1|
2

visible inter-community edges, where |C| is the number of communities. Deciding

which edges to bundle is rather trivial; we simply take all edges with an end point

in both Community X and Community Y and bundle them together into the XY

bundle.

Once bundled we must decide where each end of the bundle should split back

into its constituent edges. Split too early and we risk reintroducing the visual clutter

we were trying to remove; split too late and the constituent edges will fan out into

100

an undesired circle. To determine the optimal splitting points we follow the method

proposed by Gansner et al. [25] and record the amount of ink required to draw the

bundle, given two splitting points. The ink can be thought of as equal to the distance

your pen would cover if you were to manually draw the bundle itself and all of its

constituent edges after the splits. An example for two different split points is shown

in Figure 16.1.

(a) Split points with a small angle r.

(b) Split points with a large angle r.

Figure 16.1: An example of split points.

More formally, the ink required to draw a bundle, given the split points, is pro-

vided in the following formula:

Ink(B, sp1, sp2) = d(sp1, sp2) +
∑
e∈B

(min(d(e.start, sp1), d(e.end, sp1))

+ min(d(e.start, sp2), d(e.end, sp2)))

Where d() is the Euclidean distance between two points, B is the set of edges

in the bundle, sp1 and sp2 are the first and second split points, e.start is the first

end point of the edge, and e.end is the second end point.

This definition of Ink() can further be refined by considering the max angle, r,

between a split point and any of its constituent edges. We agree with Gansner et

101

al. [25] that split points with high r values are not ideal because they lead to sharp

angles that reduce the smoothness of the bundling and lead to a poor visualization.

An example of high and low r values is depicted in Figure 16.1. To compute the

r value we merely find the edge with the maximum angle between it and the split

point, and record this angle. We then modify our Ink formula to take this angle

into account:

AInk(B, sp1, sp2) = Ink(B, sp1, sp2) ∗
(
1 +

cos(r)

p

)
Where Ink() is defined above, r is the maximum angle between an edge and its

associated split point, and p is a dampening factor. Larger values of p indicate that

less emphasis should be put on reducing the maximum angle r and smaller values

indicate more emphasis. For our experiments we set p = 5.

Once we can compute the required ink we need only iterate over all possible

split points to find those which require the minimum amount of ink. However,

this is very costly; thus we employ the golden section search (GSS) algorithm,

also suggested by Gansner et al. [25], to efficiently locate the optimal split point

positions. We should note that the GSS algorithm is univariate; thus we cannot

search for both split points at the same time. Instead, we must hold one split point

constant while we search for the optimal location of the other split point, and vice

versa. To initialize the algorithm we provide the centroids of each community as

the starting split points.

Finally, we scale the rendered width of each edge bundle by the square root of

the number of edges within that bundle. This offers a non-intrusive way to convey

the approximate number of bundled edges to the viewer. An example of our edge

bundling algorithm is shown in Figure 16.2.

102

Figure 16.2: An example our simplified edge bundling technique.

103

Chapter 17

Evaluation

17.1 Visual Juxtaposition

Research in visualization evaluation (e.g., [58, 54]) suggest an evolution towards

the design of cognitive experiments to establish measures of visualization effec-

tiveness. But a useful precursor to such formal evaluation is to provide informal

arguments of visualization method preferences by comparing alternative render-

ings of the same kind of base data. In this way we at least begin the development of

intuitive measures that provide the basis for visualization method preference. We

have adopted this approach.

In our comparison of alternative methods for community clustering visualiza-

tion, we are unable to include any of the related work algorithms because we could

not find implementations and the examples provided in the respective papers were

trivial at best. We have also opted to not include edge bundling in these visual-

izations because our bundling algorithm is not easily extended to non-community

centric approaches and thus would give our algorithms an unfair advantage.

In Figures 17.3, 17.6, and 17.9 we present visualizations for a variety of well-

known social networks, including the NCAA Football network [27], Zachary’s

Karate Club [66], and the Political Books network[39]. For each network we have

run an existing Community Mining algorithm, such as Fast Modularity [14], and

generate a visualization using COMB, COMC, COMA, the Kamada Kawai (KK)

algorithm [36], and the general Fruchterman-Reingold algorithm [24]. We note

that although the KK and FR algorithms are not specifically tailored for commu-

104

nities they are nonetheless the most popular methods used to visualize community

mining results. To generate the visualizations we have used the FR and KK imple-

mentations provided by the JUNG framework [47]. Note that the colour of a vertex

specifies the community to which it belongs.

For the rather trivial Karate Club network depicted in Figure 17.3 we can al-

ready see a clear distinction between our proposed algorithms and the generalized

layouts. In the COMB, COMC, and COMA layouts we can easily see the relation-

ships between the communities and the structure of each community. This insight

would allow the viewer to recommend that perhaps the yellow and teal communities

should be merged. Similar observations are much harder to make in the generalized

layouts because it is difficult to tell how each community is related.

For the Political Books network shown in Figure 17.6 we can see that the

COMB, COMC, and COMA layouts highlight the tight coupling between the or-

ange, pink, and purple communities, whereas one can only assume such a coupling

exists in the FR and KK based layouts. Furthermore the COMA layout clearly

shows that the structure of the yellow community is rather weak; the triad in the

middle of the network only has single tie between it and the main body of the com-

munity. A similar observation is not as obvious in the other layouts.

Finally, in the NCAA Football network, shown in Figure 17.9, we can see

clear community boundaries and the interaction between these communities in the

COMB, COMC, and COMA layouts. Furthermore, both the FR and COMA lay-

outs reveal that each of the communities contain numerous outliers (the single edge

vertices), indicating that perhaps a community mining algorithm with support for

outliers should be used instead. Unfortunately, the FR layout provides no other in-

formation as the communities seem to be completely overlapping each other, mak-

ing it difficult to determine the structure of any community. The same can be said

for the KK layout.

105

(a) COMB

(b) COMC

Figure 17.1: Zachary’s Karate Club Network.

106

(a) COMA

(b) Fruchterman-Reingold

Figure 17.2: Zachary’s Karate Club Network.

107

(a) Kamada-Kawai

Figure 17.3: Zachary’s Karate Club Network.

17.2 Efficiency

In addition to the visual evaluations, we also present a comparison between the

efficiency of the algorithms. The COMB, COMA, FR, and KK algorithms each

employ a force-based approach that requires computing a force between every pair

of vertices, and the end points of each edge, in each iteration. Thus the time com-

plexity of each iteration can be thought of as Θ(|V |2 + |E|); our modifications to

the FR algorithm do not add any significant time complexity.

Computing the final time complexity requires determining how many iterations

are possible; yet this is a notoriously difficult question in systems with cooling

schedules. To avoid this issue the authors of previous papers have simply set a

limit to the number of iterations, say 100. We have adopted this approach and

determined that the final time complexity of each algorithm is O(|V 2| + |E|). The

COMC algorithm does not need to compute the pair-wise forces and thus its worse

case time complexity is O(|Eout|+ |V | ∗ avg(|C|)) .

108

(a) COMB

(b) COMC

Figure 17.4: Political Books Network.

109

(a) COMA

(b) Fruchterman-Reingold

Figure 17.5: Political Books Network.

110

(a) Kamada-Kawai

Figure 17.6: Political Books Network.

To include our edge bundling technique into the complexity we only need to

note that each edge must be traversed once to determine which communities it con-

nects. Thus our final time complexity remains at O(|V 2|+ |E|).

A list of the running times for each algorithm, computed on an Intel i7-2540m

with 8GB of RAM, is shown in Table 17.1. We can see that COMB and COMA

are equivalent to the existing FR algorithm in terms of efficiency, and that COMC

is significantly faster than the other layouts. We believe this efficiency allows one

to use the layout in an interactive setting, such as displaying the evolution of com-

munities in dynamic networks. We should note that the Kamada-Kawai algorithm

appears to be much slower because it spends a considerable amount of time making

minor adjustments to the layout.

111

(a) COMB

(b) COMC

Figure 17.7: NCAA Football Network.

112

(a) COMA

(b) Fruchterman-Reingold

Figure 17.8: NCAA Football Network.

113

(a) Kamada-Kawai

Figure 17.9: NCAA Football Network.

Network V E COMB/COMA COMC FR KK
Karate Club 34 77 143 ms 85 ms 130 ms 110 ms

Politcal Books 105 441 7567 ms 375 ms 7181 ms 19752 ms
NCAA Football 180 787 13585 ms 411 ms 14258 ms 22530 ms

Table 17.1: Runtimes of each layout algorithm averaged over 10 runs.

114

Part V

Conclusion and Open Problems

115

Chapter 18

Conclusion and Open Problems

18.1 Conclusion and Summary

In this thesis we have proposed three novel algorithms that employ visual or struc-

tural analysis to extract meaningful information from social networks. These algo-

rithms were motivated by a bevy of real-world applications that will benefit from

being able to more accurately identify and evaluate community structure. In each

section we addressed one or more of our thesis statements and contributed a survey,

an evaluation, or a new algorithm, to the field of social network analysis.

In part one of our thesis we motivated our work by presenting a brief survey of

the existing static and dynamic community mining algorithms. We also discussed

the daunting evaluation challenges facing the field of social network analysis.

In part two we addressed our first thesis statement by transforming and en-

abling criteria from the field of data clustering to work in the context of social

network analysis. The list of criteria we considered includes the well-known Sil-

houette Width Criterion, the Variance Ratio Criterion, and the Dunn Index. We also

included the well known Modularity metric from social network analysis. We per-

formed an experiment to determine which criteria could best predict the accuracy

of a community mining result without needing to consult the ground truth.

Our results showed that overall, Modularity was the most accurate, followed

closely by the Ball and Hall criterion. We further analyzed the results by grouping

our experimental networks into three difficulty levels and showed that some criteria

perform better on ‘easy’ networks than on ‘medium’ networks. Finally, we argued

116

that none of criteria can serve as suitable replacement to a ground truth on anything

but the easiest of networks. Thus our first thesis statement proved to be false.

In part three of the document we explored our second and third thesis state-

ments by presenting a novel community mining algorithm based on our T metric.

In addition, we also proposed modifications to Clauset’s local framework in order

to achieve improved outlier detection and better starting node selection when com-

pared to previous approaches. We then performed a rigorous evaluation against

a variety of existing community mining algorithms and showed that our method

outperforms all of these algorithms on a variety of ground truth networks.

Furthermore, we showed that our starting node selection method is superior to

the current practice of randomly selecting a node, and that our outlier detection

can correctly detect outliers, or the absence of, in all of the ground truth networks

we evaluated. Thus, we can conclusively say that by utilizing triads, as per our

second thesis statement, and by including outlier detection, as per our third thesis

statement, we have proposed a community mining algorithm that is significantly

more accurate than the current state-of-the-art algorithms.

Finally, in part four, we addressed our fourth thesis statement by presenting our

COMmunity Attraction (COMA), COMmunity Circles (COMC), and COMmunity

Boundary (COMB) layout algorithms. These algorithms aim to generate aestheti-

cally pleasing network layouts while highlighting both the structure of each com-

munity and the relationships between the communities. To accomplish this goal we

modified the existing Fruchterman-Reingold (FR) [24] algorithm by removing the

need for bounding borders, adding support for vertices with non-zero size, and ei-

ther enabling the definition of bounding circles within the layout or modifying the

repulsion/attraction functions. Furthermore we borrowed concepts from Gansner

et al. [25] and presented our simplified edge bundling technique to reduce visual

clutter in the final visualization.

Together, these modifications allowed us to create stark visual borders around

each community (COMB), highlighted the structure of the communities (COMA),

or reduced the overall time-complexity (COMC), while still generating an aestheti-

cally pleasing layout. In our evaluation section we argued that COMB, COMC, and

117

COMA offer more insight into the structural components of each community, and

the relationships between the communities, when compared to the existing tech-

niques. We believe that our visualizations will allow researchers and analysts to

more quickly identify communities of interest without needing to scour endless ta-

bles of statistics, thus confirming our fourth thesis statement.

18.2 Contributions

This thesis makes the following contributions:

1. A thorough discussion of data clustering criteria in the context of evaluating

community mining results in social networks. Our evaluation revealed that

although there are similarities between the fields, the criteria themselves do

not outperform the existing social network analysis metrics nor do they act as

suitable replacement for ground truth networks.

2. A novel community mining algorithm based on our T metric that uses a local

framework to accurately identify outliers and hub nodes in the network. Our

evaluation shows that our algorithm achieves better accuracy than the current

state-of-the-art.

3. Our COMmunity Boundary (COMB) algorithm, which generates aestheti-

cally pleasing layouts of networks and highlights the relationships between

the discovered communities.

4. Our COMmunity Circles (COMC) algorithm, which showcases inter-community

edges while ensuring a reduced time-complexity.

5. Our COMmunity Attraction (COMA) algorithm, which reveals community

structure without sacrificing the aesthetic quality of the layout.

18.3 Open Problems

In this thesis we proposed a number of new algorithms for the area of community

mining in the burgeoning field of social network analysis. However, there are still

118

many open problems remaining in this area that, once solved, may further enhance

the quality or evaluation of the identified communities.

For example, most of the current methods in community mining focus on iden-

tifying communities that do not overlap. Thus a node cannot be a member of more

than one community. Yet, there are a variety of real-world applications where over-

lapping communities are desired, such as in friendship or disease networks. Many

algorithms, including our own T metric, can be trivially extended to support over-

lapping communities, but there is no known ground truth for overlapping networks.

As such, it is extremely difficult to provide a convincing evaluation of any overlap-

ping algorithm and thus authors shy away from publishing these results. Proposing

a conclusive and convincing overlap evaluation framework would greatly increase

the visibility and attention that the overlap problem receives.

Furthmore, as we discussed in Part 3, we believe that deciding how to select

a starting node in a local community mining framework is an entirely open prob-

lem that warrants further study. In particular, one could be interested in discov-

ering what structural properties of node result in it being a good seed node for a

community and how these are properties related to existing metrics, such as PageR-

ank, Degree, or Betweenness. Perhaps possible insights can be gained by study-

ing how database researchers have solved the similar problem of selecting cluster

centroids; but it is not immediately obvious that these techniques could easily be

applied within the context of community mining.

Finally, we are completely unsatisfied with the current lack of methods/metrics

that facilitate the evaluation of visualization algorithms. A good starting point

would be to identify methods or metrics that determine how a ‘good’ visualization

layout would differ from a ’bad’ one. Perhaps one could use some measure of edge

length, visual density, or a yet to be discovered metric. We find that it is a daunting

task to present a new layout algorithm when there is no agreed upon methodology

to determine if some research is producing better or worse results than the existing

algorithms.

119

Bibliography

[1] L. Adamic and N. Glance. The political blogosphere and the 2004 us election.
In in Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem,
2005.

[2] J.M. Anthonisse. The rush in a directed graph. Stichting Mathematisch Cen-
trum, 1971.

[3] S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for char-
acterizing the evolutionary behavior of interaction graphs. In KDD ’07, pages
913–921, New York, NY, USA, 2007. ACM.

[4] F. B. Baker and L. J. Hubert. Measuring the power of hierarchical clustering
analysis. J Am Stat Assoc, 70(349):31–38, 1975.

[5] G. H. Ball and D. J. Hall. Isodata, a novel method of data analysis and pattern
classification. 1965.

[6] M. Balzer and O. Deussen. Level-of-detail visualization of clustered graph
layouts. In APVIS’07, pages 133–140, 2007.

[7] J. C. Bezdek and N. R. Pal. Some new indexes of cluster validity. IEEE Trans
Syst Man Cybern B, 28(3):301–315, 1998.

[8] R. B. Calinski and J. Harabasz. A dentrite method for cluster analysis. Com-
mun Stat, 3:1–27, 1974.

[9] W. Chauvenet. A manual of spherical and practical astronomy v. ii. In Tech-
nometrics 11, 1863.

[10] J. Chen, J. Fagnan, R. Goebel, R. Rabbany K., F. Sangi, M. Takaffoli, E. Ver-
beek, and O. Zaı̈ane. Meerkat: Community mining with dynamic social net-
works. Data Mining Workshops (ICDMW), pages 1377–1380, 2010.

[11] J. Chen, O. Zaı̈ane, and R. Goebel. Detecting communities in social networks
using max-min modularity. SIAM International Conference on Data Mining
(SDM’09), 2009.

[12] J. Chen, O. Zaı̈ane, and R. Goebel. Local community identification in social
networks. In ASONAM, pages 237–242, 2009.

[13] A. Clauset. Finding local community structure in networks. Phys. Rev. E,
72(2):026132, Aug 2005.

[14] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in
very large networks. Phys. Rev. E, 70(066111), 2004.

120

[15] L. Danon, A. Daz-Guilera, J. Duch, and A. Arenas. Comparing community
structure identification. J Stat Mech, 9(8):P09008, 2005.

[16] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Trans
Pattern Anal Mach Intell, 1:224–227, 1979.

[17] J. C. Dunn. Well separated clusters and optimal fuzzy partitions. J Cybern,
4:95–104, 1974.

[18] D. Eppstein and J. Wang. Fast approximation of centrality. Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, 2001.

[19] S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174,
2010.

[20] S. Fortunato and M. Barthélemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, January
2007.

[21] L. Freeman. A set of measures of centrality based on betweenness. Sociome-
try, 40(1):35–41, 1977.

[22] H. P. Friedman and J. Rubin. On some invariant criteria for grouping data. J
American Stat Assoc, 62:1159–1178, 1967.

[23] Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In Proceedings
of the IEEE Symposium on Information Visualization, pages 191–198, 2004.

[24] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and Experience, 21:1129–1164, 1991.

[25] E.R. Gansner, H. Yifan, S. North, and Scheidegger C. Multilevel agglomera-
tive edge bundling for visualizing large graphs. Pacific Visualization Sympo-
sium (PacificVis), 2011 IEEE, pages 187–194, 2011.

[26] J. Gil-Mendieta and S. Schmidt. The political network in mexico. In in: Social
Networks 18, volume 4, pages 355–381, 1996.

[27] M. Girvan and M.E.J. Newman. Proc. Natl. Acad. Sci., 99:7821–7826, 2002.

[28] F. E. Grubbs. Procedures for detecting outlying observations in samples. In
Technometrics 11, pages 1–21, 1969.

[29] D. Harel and Y. Koren. Drawing graphs with non-uniform vertices. In Pro-
ceedings of the Working Conference on Advanced Visual Interfaces, AVI ’02,
pages 157–166, 2002.

[30] J. A. Hartigan. Clustering algorithms. 1975.

[31] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. Visualization and Computer Graphics, IEEE Transactions
on, 12(5):741 – 748, 2006.

[32] L. Hubert and P. Arabie. Comparing partitions. J Classif, 2:193–218, 1985.

[33] L. J. Hubert and J. R. Levin. A general statistical framework for assessing
categorical clustering in free recall. Psychol Bull, 10:1072–1080, 1976.

121

[34] D. Huffman. A method for the construction of minimum re-dundancy codes.
In Proc. Inst. Radio Eng, volume 40, pages 1098–1101, 1952.

[35] P. Jaccard. tude comparative de la distribution florale dans une portion des
alpes et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[36] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989.

[37] L. Kaufman and P. Rousseeuw. Finding groups in data. 1990.

[38] R. R. Khorasgani, J. Chen, and O. R. Zaiane.

[39] V. Krebs. http://www.orgnet.com, January 2012.

[40] A. Lancichinetti. https://sites.google.com/ site/andrealancichinetti/cvis, Jan-
uary 2012.

[41] A. Lancichinetti and S. Fortunato. Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping communi-
ties. Phys. Rev. E, 80(1):016118, Jul 2009.

[42] A. Lancichinetti and S. Fortunato. Community detection algorithms: a com-
parative analysis. Phys. Rev. E, 80:056117, 2009.

[43] A. Lancichinetti, S. Fortunato, and J. Kertsz. Detecting the overlapping and hi-
erarchical community structure of complex networks. New Journal of Physics,
11(033015), 2009.

[44] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing
community detection algorithms. Phys. Rev. E, 78(4):046110, Oct 2008.

[45] J. Leskovec, J. Lang, and M. W. Mahoney. Empirical comparison of algo-
rithms for network community detection. In WWW, August 2010.

[46] F. Luo, J. Z. Wang, and E. Promislowl. Exploring local community struc-
tures in large networks. In WI 06: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence, pages 233–239, 2006.

[47] J. Madadhain, D. Fisher, P. Smyth, S. White, and Y.B. Boey. Analysis and
visualization of network data using jung. Journal of Statistical Software, 10:1–
35, 2005.

[48] J. O. McClain and V. R. Rao. Clustisz: a program to test for the quality of
clustering of a set of objects. J Mark Res, 12:456–460, 1975.

[49] J.H. Michael. Labor dispute reconciliation in a forest products manufacturing
facility. In Forest Products Journal, volume 47, pages 41–45, 1997.

[50] G. W. Milligan and M. C. Cooper. An examination of procedures for deter-
mining the number of clusters in a data set. Psychometrika, 50(2):159–179,
1985.

[51] M. E. J. Newman. Fast algorithm for detecting community structure in net-
works. Phys. Rev. E, 69(6):066133, Jun 2004.

122

[52] M. E. J. Newman. Modularity and community structure in networks. Proc.
Natl. Acad. Sci., 103(23):8577–8582, 2006.

[53] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Phys. Rev. E, 69(2):026113, Feb 2004.

[54] Chris North. Toward measuring visualization insight. IEEE Comput. Graph.
Appl., 26(3):6–9, 2006.

[55] M. K. Pakhira, S. Bandyopadhyay, , and U. Maulik. Validity index for crisp
and fuzzy clusters. Pattern Recognit Soc, 37:487–501, 2004.

[56] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435:814, Jun 2005.

[57] B. Peirce. Criterion for the rejection of doubtful observations. In Astronomical
Journal II 45, 1852.

[58] Catherine Plaisant. The challenge of information visualization evaluation. In
Proceedings of the working conference on Advanced visual interfaces, AVI
’04, pages 109–116. ACM, 2004.

[59] D. A. Ratkowsky and G. N. Lance. A criterion for determining the number of
groups in a classification. Aust Comput J, 10:115–117, 1978.

[60] M. Rosvall and C. T. Bergstrom. In Proc. Natl. Acad. Sci, volume 105, pages
1118–1123, 2008.

[61] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis. J Comput Appl Math, 20:53–65, 1987.

[62] M. Takaffoli, F. Sangi, J. Fagnan, and O. Zaı̈ane. A framework for analyzing
dynamic social networks. In ASNA, September 2010.

[63] Q.D. Truong, T. Dkaki, and P.J. Charrel. An energy model for the drawing of
clustered graphs. In Proceedings of Veme colloque international VSST, 2007.

[64] L. Vendramin, R. Campello, and R. Hruschka. Relative clustering valid-
ity criteria: A comparative overview. Statistical Analysis and Data Mining,
3(4):209–235, 2010.

[65] L. Wan, J. Liao, and X. Zhu. Cdpm: Finding and evaluating community
structure in social networks. In Advanced Data Mining and Applications,
volume 5139, pages 620–627. Springer Berlin / Heidelberg, 2008.

[66] W.W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

123

