

Staged Grid NewSQL Database System for OLTP and Big Data Applications

by

Lengdong Wu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

© Lengdong Wu, 2015

Abstract

Big data applications demand and consequently lead to developments of diverse scalable data man-

agement systems, ranging from NoSQL systems to the emerging NewSQL systems. In order to

serve thousands of applications and their huge amounts of data, data management systems must

be capable of scale-out to clusters of commodity servers. The overarching goal of this disserta-

tion is to propose principles, paradigms and protocols to architect efficient, scalable and practical

NewSQL database systems that address the unique set of challenges posed by the big data trend.

This dissertation shows that with careful choice of design and features, it is possible to implement

scalable NewSQL database systems that efficiently support transactional semantics to ease appli-

cation design. In this dissertation, we first investigate, analyze and characterize current scalable

data management systems in depth and develop comprehensive taxonomies for various critical as-

pects covering the data model, the system architecture and the consistency model. On the basis

of analyzing the scalability limitations of current systems, we then highlight the key principles for

designing and implementing scalable NewSQL database systems.

This dissertation advances the state-of-the-art by improving and providing satisfactory solu-

tions to critical facets of NewSQL database systems. In particular, first we specify a staged grid

architecture to support scalable and efficient transaction processing using clusters of commodity

servers. The key insight is to disintegrate and reassemble system components into encapsulated

staged modules. Effective behavior rules for communication are then defined to orchestrate in-

dependent staged modules deployed on networked computing nodes into one integrated system.

Second, we propose a new formula-based protocol for distributed concurrency control to support

thousands of concurrent users accessing data distributed over commodity servers. The formula

protocol for concurrency is a variation of the multi-version time-stamp concurrency control pro-

tocol, which guarantees serializability. We reduce the overhead of conventional implementation

by technologies including logical formula caching and dynamic timestamp ordering. Third, we

ii

identify a new consistency model-BASIC (Basic Availability, Scalability, Instant Consistency) that

matches the requirements where extra efforts are not needed to manipulate inconsistent soft states

of weak consistency models. BASIC extends the current understanding of CAP theorem by char-

acterizing precisely different degree of dimensions that can be achieved rather than simply what

cannot be done.

We introduce all these novel ideas and features based on the implementation of Rubato DB, a

highly scalable NewSQL database system. We have conducted extensive experiments that clearly

show that Rubato DB is highly scalable with efficient performance under both TPC-C and YCSB

benchmarks. These results verify that the staged grid architecture and the formula protocol provide

a satisfactory solution to one of the important challenges in the NewSQL database systems: to

develop a highly scalable database management system that supports various consistency levels

from ACID to BASE.

Preface

The research conducted for this thesis forms part of a research collaboration, led by Professor Li-

Yan Yuan and Professor Jia-Huai You at the University of Alberta. Most of the research described

in this thesis has been previously published. The following paragraph lists the original publications

and describes my contribution to each of them.

Chapter 2 is based on a publication in JCST [Wu et al., 2015]. In this paper, I developed

the taxonomies and principles with the assistance of Professor Li-Yan Yuan. Chapters 3, 4, 5 are

based on the publications for the system Rubato DB appeared in CIKM [Yuan et al., 2014] and

SIGMOD [Yuan et al., 2015]. I was responsible for some components implementation, architecture

and algorithm verification, all the experiments and analysis as well as the manuscript composition.

Chapter 6 is based on a publication that appeared in IEEE Big Data [Wu et al., 2014]. In this

paper, I proposed the model, designed the protocol, conducted the analysis and implemented the

experiments.

iv

Acknowledgements

I would like to express my deepest gratitude to my doctoral advisors Professor Dr. Li-Yan Yuan

and Professor Dr. Jia-Huai You for their long-time support, caring and patience. Especially, I want

to thank Professor Dr. Li-Yan Yuan for his excellent guidance and providing me with an excellent

platform for doing research. Thanks for letting me experience the research in the big data trend,

patiently leading me to grow as a researcher, and financially supporting my research continuously.

What they have taught me is the most precious treasure of my life.

I would also like to thank my committee members, Professor Dr. Ke Wang, Professor Dr.

Denilson Barbosa, Professor Dr. Davood Rafiei, for their brilliant comments and suggestions and

making my defense an enjoyable moment. Many thanks to IT support staff in our department and

Cybera, I could not finish the experiments without their hardware support.

A special thank goes to my family. Words cannot express how grateful I am to my parents,

for all of the sacrifices that they’ve made on my behalf. Thank all of them to support me to strive

towards my goal with their best wishes.

At the end I would like to express my most special appreciation to my beloved wife Huiling

Zhou, who is always there cheering me up and stands by me. Thank her for being always my

support in every moment.

v

Contents

1 Introduction 1

1.1 Development of Large-Scale Data Management Systems 1

1.2 Motivation and Challenges . 5

1.3 Dissertation Overview . 8

1.4 Contributions and Impact . 9

1.5 Synopsis . 10

2 Taxonomy of Large-Scale Data Management System 12

2.1 Data Model . 12

2.1.1 Physical Layout . 13

2.1.2 Conceptual Model . 14

2.1.3 Data Model Taxonomy . 15

2.2 System Architecture . 17

2.2.1 SMP on Shared-Memory Architecture 18

2.2.2 MPP on Shared-Disk Architecture 19

2.2.3 Sharding on Shared-nothing Architecture 20

2.2.4 MapReduce/Staged Event Driven Architecture 23

2.2.5 System Architecture Taxonomy 24

2.3 Consistency Model . 28

2.3.1 ACID . 28

2.3.2 BASE . 29

2.3.3 Consistency Model Taxonomy 32

2.4 Implementation Principles for Large-Scale Data Management System . 35

2.4.1 Data Model Integration . 35

2.4.2 Architecture Scalability . 37

2.4.3 Scalable Consistency Implementation 39

2.5 Chapter Summary . 40

3 Overview of Rubato DB 42

3.1 Features in Rubato DB . 42

3.2 SQL Engine Design . 43

3.3 Transaction Manager . 45

3.4 Storage Manager . 47

3.5 Chapter Summary . 49

4 A Staged Grid Database 50

4.1 A Staged Grid Architecture . 50

4.2 Implementation of Staged Grid Database 55

4.3 Determinism Verification . 57

4.3.1 Monotonic and Continuous Function 60

4.3.2 Least Fixed Point . 63

4.3.3 Effective Execusion . 65

4.4 Chapter Summary . 67

5 Formula Protocol for Concurrency Control 68

5.1 Formula Protocol Overview . 68

5.2 Timestamp-based Formula Protocol 74

5.3 FPC Serializability Guarantee . 78

5.4 Implementation of FPC . 81

5.5 Performance Evaluation . 84

5.5.1 Single Node Capacity . 86

5.5.2 Scalability under TPC-C Benchmark 87

5.5.3 Conflict Operations over Different Partitions 91

5.5.4 Stages vs. Threads . 92

5.6 Chapter Summary . 93

6 BASIC: Narrowing the Consistency Gap 95

6.1 Motivating Examples . 96

6.2 BASIC Properties . 101

6.2.1 BASIC Specification . 101

6.2.2 BASIC in CAP . 104

6.3 Protocol for BASIC . 109

6.3.1 Protocol for Instant Consistency 109

6.3.2 Basic Availability Guarantee 115

6.4 Performance Evaluation . 116

6.4.1 Experimental Setup and Benchmark 117

6.4.2 Inconsistency Ratio . 117

6.4.3 Scalability on YCSB . 118

6.4.4 Scalability on TPC-C . 122

6.4.5 Increasing Replication . 123

6.5 Chapter Summary . 125

7 Summary and Conclusions 126

7.1 Contributions . 126

7.2 Directions for Future Work . 127

Bibliography 129

List of Figures

2.1 Taxonomy of Data Storage Model . 16

2.2 SMP on Shared-Memory Architecture 18

2.3 MPP on Shared-Disk Architecture . 20

2.4 Dispatching on Shared-Nothing Architecture 21

2.5 Staged Event Driven Architecture . 23

2.6 Taxonomy of system architecture . 25

2.7 Taxonomy of Consistency Model . 33

3.1 RubatoDB system architecture . 44

3.2 Hybrid partition of Storage Manager 49

4.1 Staged Grid Database Architecture . 54

4.2 Staged Modules of Rubato DB’s SQL Engine 55

4.3 KPN Functional Process . 59

4.4 Monotonicity illustration . 61

4.5 Increasing Chain of Sequences . 62

4.6 Execution transformation to a fixed point of a function 64

5.1 Transaction states Transitions . 78

5.2 Query/Update engine module . 82

5.3 TPC-C schema as a tree schema . 86

5.4 Grid partition illustration . 86

5.5 Scaling up with Memory Size . 87

5.6 TPC-C Performance on 1 node . 88

5.7 TPC-C Performance on 2 nodes . 89

5.8 TPC-C Performance on 4 nodes . 89

5.9 TPC-C Performance on 8 nodes . 90

5.10 TPC-C Performance on 16 nodes . 90

5.11 Scalability on TPC-C Benchmark . 91

5.12 Impact of Remote Guest Clients . 92

5.13 Throughput Comparison . 93

6.1 General Extension of CAP Theorem 108

6.2 Atomic write illustration . 113

6.3 Comparison between BASIC and BASE for read intensive workload . 120

6.4 Comparison between BASIC and BASE for write intensive workload . 121

6.5 Comparison of Scalability on TPC-C 122

6.6 Comparison of Latency for Replication 124

List of Tables

5.1 Table Employees Instance . 70

5.2 Employees Instance . 73

5.3 Transactions Schedule . 73

5.4 TPC-C benchmark workloads summary 85

5.5 TPC-C results . 88

6.1 No R/W or W/W overlap schedule . 99

6.2 W/W and R/W overlap schedule . 100

6.3 W/W and R/W overlap schedule for partitioned replicas 100

6.4 Consistency model comparison . 105

6.5 W/W and R/W overlap schedule with dynamic timestamp ordering . 114

6.6 Inconsistent Soft State Ratio . 118

6.7 Rollback Ratio . 122

Chapter 1

Introduction

“The beginning is the most important part of the work.”

- Plato.

1.1 Development of Large-Scale Data Management Sys-

tems

Data is flowing into organizations, ranging from traditional database vendors to new

emerging internet enterprises to social research institutes, at an unprecedented scale.

Data volumes collected by many companies are doubled in less than a year or even

sooner. The amount of data is growing with a speed faster than the “Moore’s Law”,

which predicts that general-purpose hardware and software solutions that advance

at the rate of Moore’s Law will not be able to keep pace with the exploding data

scale [Agrawal et al., 2011]. In the database community, the “Big Data” problems

arose when the traditional enterprise database products were not able to handle the

tremendous business data and Web-scale data [Borkar et al., 2012]. The pursuit

for tackling the challenges posed by the big data management has given rise to a

plethora of systems that possess their own desiderata revealing various possibilities

in the design space.

To date, the trend of “big data” is usually characterized by the following dimen-

sions according to the well-known cliché: volume, velocity, variety and veracity.

• Volume. Excessive data volumes and a large number of concurrent users require

1

substantially throughput raising for the systems.

• Velocity. Data is flowing in at an unprecedented speed and needs to be dealt

with in a timely manner.

• Variety. Data comes in all types of formats, from the structured relational data

to the unstructured data.

• Veracity. Inconsistency or uncertainty of data, due to the quality of the data

source or transmission latency, will jeopardize the utility and integrity of the

data.

The “Big Data” trend has imposed challenges on the conventional design and

implementation of traditional data management systems. In particular, the ability

to scale out for processing an enhanced workload has become an important factor for

the proliferation and popularization of data management systems. Big data needs to

be partitioned across a large number of distributed servers, since no single server is

capable of containing an entire copy of the big data. To design and implement such

a large-scale system, multiple, sometimes competing goals require to be achieved. In

particularly, the desirable properties include:

• High scalability. The system scales out linearly by adding more computing

resources to achieve enhanced throughput and storage capacity.

• High Availability. All continuously operations issued to the system response

successfully. No operation will block indefinitely or return an error indicating

unavailable data.

• Low latency. Operations complete in a timely manner. Commercial service-level

objectives suggest average performance of a few milliseconds and worse-case

performance (i.e., 99.9th percentile) of 10s or 100s of milliseconds [DeCandia et

al., 2007].

• Partition Tolerance. In the deployment with hundreds of thousands of servers,

the network partitions will become rather common than rare. The system is

capable of continuing to operate under network partition.

2

• Strong Consistency. An ideal system would provide strong consistency, which

dictates that operations appear to take effect across the entire system at a

single instance in time between the invocation and completion of the operation.

A strong consistency simplifies the users experience by providing single images

of objects across wide-area storage.

The pursuit for these challenges has given rise to a plethora of data management

systems. Diverse systems explore various possibilities in the design spaces.

When considering the spectrum of historical data management system develop-

ments, we firstly have traditional relational database systems (RDBMSs) that provide

low latency and high throughput of transaction processing, but lack the capacity of

scale-out. As expected, conventional database vendors have recently developed their

own system appliances in response to the high scalability requirement. Typically, Ora-

cle Exadata1, IBM Netezza2 and Teradata3 exploit the declarative nature of relational

query languages and deliver high performance by leveraging a massively parallel fash-

ion within a collection of storage cells. Oracle Exalytics [Gligor and Teodoru, 2011]

is the industrial pioneer to use terabytes of DRAM, distributed across multiple pro-

cessors, with a high-speed processor interconnect architecture that is designed to

provide a single hop access to all the memory. Azure [Campbell et al., 2010] is a

parallel run-time system, utilizing specific cluster control with minimal invasion into

the SQL Server code base. Some research prototypes, such as H-store [Kallman et

al., 2008], later commercialized into VoltDB4, and C-Store [Stonebraker et al., 2005],

the predecessor of Vertica5, also provide their tentative solutions for the big data

management challenges. Though these systems have been proven to scale well, but

there are very few known deployments with thousands of nodes to achieve ultimate

scalability [Abouzeid et al., 2009; Isard et al., 2007; Shute et al., 2013; Melnik et

al., 2010].

With the growing popularity of the Internet, many applications were delivered over

1Technique overview of the Oracle Exadata Database Machine and Exadata Storage Server. Oracle
White Paper, 2012.

2The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing
and Analytics. IBM Red Paper, 2011.

3Teradata past, present, and future. http://isg.ics.uci.edu/scalable_dml_lectures2009-10.
html

4https://voltdb.com/
5http://www.vertica.com/

3

the Internet and the scale of these applications also increased rapidly. As a result,

many Internet companies, such as Google, Yahoo!, and Amazon, faced the challenge

of serving hundreds of thousands to millions of concurrent users. Classical RDBMS

technologies could not scale to these workloads while using commodity hardware to

be cost-effective. In the absence of appropriate scalability of traditional relational

database management systems, a notable phenomena - the NoSQL movement, be-

gan in early 2009 and is now growing rapidly. The need for highly available and

scalable distributed data management systems with reliable and “always-writable”

properties, leads to the development of Amazon Dynamo [DeCandia et al., 2007] and

Yahoo! PNUTS [Cooper et al., 2008]. An open-source clone of Dynamo, Cassandra

[Lakshman and Malik, 2010], has also been developed by the Apache community.

Oracle NoSQL Database [Joshi et al., 2012] using Oracle Berkeley DB as the under-

lying data storage engine provides flexible durability and consistency polices. Similar

systems such as Voldemort6 and SimpleDB7, are all categorized as key-value data

stores. Key-value data stores are characterized as simplified highly scalable databases

addressing properties of being schema-free, simple-API, horizontal scalability and re-

laxed consistency.

Google responds to the web-scale storage challenges by developing a family of

systems. Google File System (GFS) [Ghemawat et al., 2003] is a distributed file

system for large distributed data-intensive applications, providing with an OS-level

byte stream abstraction on a large collection of commodity hardware. The Bigtable

[Chang et al., 2008] is a hybrid data storage model built on GFS. Megastore [Baker

et al., 2011] and Spanner [Corbett et al., 2012] are two systems over the Bigtable

layer. Megastore blends the scalability and the fault tolerance ability of Bigtable

with transactional semantics over distant data partitions. Spanner is a multi-version,

globally-distributed and synchronously replicated database by adopting “True Time”

that combines an atomic clock with a GPS clock for synchronization across world-

wide datacenters. HBase8 and Hypertable9 provide open-source versions of Google’s

Bigtable.

6http://project-voldemort.com/
7http://aws.amazon.com/en/simpledb/
8http://hbase.apache.org/
9http://hypertable.org/

4

Google developed the MapReduce framework that is highly scalable and parallel

for big data processing [Dean and Ghemawat, 2008]. Taking the released MapReduce

paper as the guideline, open-source equivalents were developed as well, such as the

Apache Hadoop MapReduce platform built on the Hadoop Distributed File System

(HDFS) [Shvachko et al., 2010]. Numerous NoSQL systems based on the MapReduce

and Hadoop utilize a large collection of commodity servers to provide high scalability.

For example, a set of systems with high-level declarative languages, including Yahoo!

Pig [Olston et al., 2008], Microsoft SCOPE [Chaiken et al., 2008] and Facebook Hive

[Thusoo et al., 2009], are realized by compiling queries into the MapReduce frame-

work before the execution on the Hadoop platform. Greenplum [Cohen et al., 2009]

integrates the ability to write MapReduce functions over data stored in their par-

allel database products. HadoopDB [Abouzeid et al., 2009] is to connect multiple

single-node database systems using Hadoop as the task coordinator and the network

communication layer. Queries are parallelized across nodes using the MapReduce

framework. There are also a number of commercialized systems that combine parallel

DBMSs with the MapReduce framework such as Cloudera10, Teradata Aster11, etc.

1.2 Motivation and Challenges

NoSQL systems, typically like key-value stores, were designed to scale to thousands

of commodity servers, and to replicate data across geographically remote locations,

while supporting low latency and highly available accesses. NoSQL systems support

simple functionality based on single-key operations, while being lack of transactional

guarantees for accesses spanning multiple keys. However, as the class of applica-

tions broadened, applications often access multiple data items within a single request.

These applications range from online social applications to enterprise class applica-

tions deployed in the scalable grid environment. Providing transactional support in

the grid has therefore been an active area of research.

Classical transactions guarantee the ACID semantics: either all operations in a

transaction execute or none of them execute (Atomicity), a transaction takes the

database from one consistent state to another consistent state (Consistency), concur-

10https://www.cloudera.com
11http://www.asterdata.com/

5

rently executing transactions do not interfere (Isolation), and updates made from a

committed transaction are persistent (Durability) (ACID). Serializability, the strongest

form of isolation, ensures that transactions execute in an order equivalent to se-

rial order, thus making concurrency transparent to the application developers. The

ACID semantics, therefore, considerably simplifies application logic and helps reason-

ing about correctness and data consistency using sequential execution semantics.

NoSQL systems represent the recent evolution in building infrastructure by mak-

ing trade-off between scalability and consistency, which often renounce strict consis-

tency (e.g. ACID) and turn to weak consistency (e.g. BASE [Vogels, 2008]) for high

scalability. Such single key accesses in NoSQL systems were enough to support the

class of applications that the key-value stores initially targeted. However, as the class

of applications using the NoSQL systems diversified, applications accessing multiple

data items within a single request was inevitable. NoSQL systems do not provide

any atomicity and isolation guarantees for such accesses to multiple data items. In

the absence of transactional guarantees, applications must either embrace the data

inconsistencies, which considerably complicates reasoning about data freshness and

application correctness.

As a result, there exists a big gap between RDBMSs that provide strong transac-

tional guarantees but are hard to scale-out and NoSQL systems that scale-out with-

out supporting transactional semantics guarantees. The recently proposed NewSQL

database systems (relative to NoSQL) aim to achieve the scalability and availability

same as NoSQL systems while preserving the ACID properties for transactions and

complex functionality of relational databases [Stonebraker, 2012]. NewSQL database

systems are appropriate in applications where traditional RDBMS have been used,

but requiring additional scalability and performance enhancement. With the ability

to ingest large amounts of data quickly and scale to meet growing demand, NewSQL

database systems support rapid analytics and decision making, helping organiza-

tions leverage their data for business advantage. Particularly, NewsSQL database

systems are notable to support enterprise initiatives such as fraud detection, digital

advertising, market segmentation analysis, real-time pricing and billion, retail loyalty

programs, as they provide the scalable performance of NoSQL systems for OLTP

workloads as well as safety guarantees for critical data.

6

According to the core requirement differences between NoSQL systems and NewSQL

systems, there are challenges in the design and implementation of NewSQL systems

in the following aspects:

• NoSQL systems usually merely support non-relational data model such as key-

value stores [DeCandia et al., 2007] and Bigtable-like stores [Chang et al., 2008].

NoSQL systems represent a recent evolution by making trade-off between scala-

bility and complexity of the data model. Thus the implementation of NewSQL

systems faces with the first issue:

Is the complex relational data model an obstacle of scalabil-

ity?

• NoSQL systems represent an evolution in building scalable infrastructure by

sacrificing strong consistency and opting for weak consistency [Cooper et al.,

2008; DeCandia et al., 2007; Lakshman and Malik, 2010]. However, strong

consistency levels such as ACID properties are essential for NewSQL systems

to manage critical data which requires safety guarantee. The implementation

of NewSQL systems needs to resolve the second challenge:

Is it possible to achieve high scalability with ACID?

• Traditional database vendors employ new techniques to explore the scalability

of the symmetric multiple processing (SMP) architecture and the massively par-

allel processing (MPP) architecture. However, because of the inherent deficien-

cies due to the resources contention, the scalability of these architectures is not

comparable with NoSQL systems. Some NoSQL systems based on the Bigtable

[Chang et al., 2008] and MapReduce framework [Dean and Ghemawat, 2008]

utilize the shared-nothing infrastructure to provide high scalability. A set of

systems with high-level declarative languages, including Yahoo! Pig [Olston

et al., 2008] and Facebook Hive [Thusoo et al., 2009], are realized to compile

queries into the MapReduce framework on the Hadoop platform.

To achieve high performance and scalability, innovative software architecture

should be applied to NewSQL systems, thus we need to consider:

7

Is it possible to scale out commonly used single server database

system design?

1.3 Dissertation Overview

The overarching goal of this dissertation is to propose principles, protocols and

paradigms to architect efficient, scalable and practical NewSQL database systems

that address the unique set of challenges encountered by traditional DBMS in the

big data trend. This dissertation shows that with careful choice of design and fea-

tures, it is possible to implement scalable NewSQL database management systems

that efficiently support transactional semantics to ease application design.

In this dissertation, we first investigate, analyze and characterize current scalable

systems in depth and develop comprehensive taxonomies for various critical aspects

covering the data model, the architecture, and the consistency model. On the basis

of analyzing the scalability limitations of current systems, we then highlight the key

principles for designing and implementing NewSQL database systems. Using these

principles as the cornerstone, this dissertation advances the state-of-the-art by im-

proving and providing satisfactory solutions to critical facets of NewSQL database

systems.

We specify a staged grid architecture and abstractions to support scalable and

efficient transaction processing using clusters of commodity servers. The key in-

sight is to disintegrate and reassemble system components into encapsulated staged

modules. Effective behavior rules for communication are then defined to orchestrate

independent staged modules deployed on networked computing nodes into one inte-

grated system. We verify the determinism of the proposed staged grid architecture

based on the formalisms of Kahn’s PN model with enhancements that are designed

to make it efficiently implementable and preserve the properties including scalability,

composability and boundedness.

A new formula-based protocol is proposed for distributed concurrency control to

support for thousands of concurrent users accessing data distributed over commodity

servers. The formula protocol for concurrency is a variation of the multi-version time-

stamp concurrency control protocol, which guarantees the serializability. We reduce

8

the overhead of conventional implementation by technologies including logical formula

caching and dynamic timestamp ordering.

A novel consistency model-BASIC (Basic Availability, Scalability, Instant Consis-

tency) is identified that matches the requirements where extra efforts are not needed

to manipulate inconsistent soft states of weak consistency models. BASIC extends the

current understanding of CAP theorem by characterizing precisely different degree of

dimensions that can be achieved rather than simply what cannot be done.

We introduce all these ideas and features based on the implementation of Rubato

DB, a highly scalable NewSQL database system. We have conducted extensive exper-

iments that clearly show that Rubato DB is highly scalable with efficient performance

under both TPC-C and YCSB benchmarks. These results verify that the staged grid

architecture and the formula protocol provide a satisfactory solution to one of the

important challenges in the NewSQL database systems: to develop a highly scalable

database management system that supports various consistency levels from ACID to

BASE.

1.4 Contributions and Impact

This dissertation makes several fundamental contributions towards realizing our vi-

sion of building scalable NewSQL database systems. Our contributions significantly

advance the state-of-the-art by supporting scale-out architecture and concurrency

control for transaction processing in the NewSQL database systems. These technolo-

gies are critical to ensure the success of the next generation of NewSQL database

systems serving the big data trend. We now highlight these contributions and their

impact.

• We categorize and analyze critical aspects of NewSQL database systems, and

identify the principles for designing and developing NewSQL database systems.

We propose taxonomies to classify techniques based on multiple dimensions, in

which every high scalable data management system is able to find its position.

A thorough understanding of current systems and a precise classification are

essential for analyzing the scalability limitations.

• We define a highly scalable staged grid database architecture, and provide its

9

implementation techniques in details, based on which a NewSQL database sys-

tem Rubato DB is implemented. We disintegrate and reassemble the traditional

single server database system design into multiple encapsulated staged modules.

Then independent staged modules deployed on networked computing nodes are

orchestrated based on communication to work as one single database instance.

We verify the determinism property of the staged grid architecture.

• We propose the formula protocol for concurrency in the distributed environment

ensuring serializability for transation processing. We describe the novel tech-

nologies employed for the implementation of the formula protocol (i.e., logical

transformation formula caching and dynamic timestamp ordering) to achieve

strong consistency with high scalability and availability.

• We explicitly identify important disadvantages of weak consistency (e.g. BASE)

with tangible examples and formally define BASIC property, which is an alter-

natively higher level of consistency than BASE, while lower than ACID. BASIC

is desired by a largely class of applications requiring multi-partition, partial-

replication, atomically non-transactional operational data access where none of

inconsistent states should be visible to clients. We generalizes the understanding

of CAP theorem based on BASIC. Given the general extension of CAP theorem,

we do not just pick two of the three properties, while the optimal three can be

chosen based on different application requirements.

• We conducted extensive experiments focused on the performance of Rubato

DB, which shows that it supports various consistency guarantees ranging from

ACID to BASE with scalability. Our experiments not just confirm our solution

but also provides much needed insights towards NewSQL database design and

implementation.

1.5 Synopsis

This thesis is organized as follows. Chapter 2 propose taxonomies to classify tech-

niques based on multiple dimensions, in which every high scalable system is able to

find its position. A thorough understanding of current systems and a precise clas-

10

sification are provided for analyzing the scalability limitations. Chapter 3 discusses

the overview design of a NewSQL database system-Rubato DB. Chapter 4 proposes

a highly scalable staged grid database architecture, and provide its implementation

techniques in details, based on which a NewSQL database system Rubato DB is im-

plemented. Chapter 5 describes details on the formula protocol for concurrency in

the distributed environment ensuring serializability for transaction processing. Chap-

ter 6 identify important disadvantages of BASE and formally define BASIC property,

which is an alternatively higher level of consistency than BASE, while lower than

ACID. Chapter 7 concludes this dissertation.

11

Chapter 2

Taxonomy of Large-Scale Data

Management System

“What is real is rational and what is rational is real.”

- Hegel.

In this chapter, we provide a comprehensive study of the state-of-the-art large-scale

data management systems and conduct an in-depth analysis on the critical aspects in

the design of different infrastructures. We propose taxonomies to classify techniques

based on multiple dimensions, in which every high scalable system is able to find its

position. A thorough understanding of current systems and a precise classification are

essential for analyzing the scalability limitations. Based on our taxonomies and anal-

ysis, we identify the principles for the implementation of large scale data management

systems.

2.1 Data Model

Data model consists of two essential levels in the context of databases: the physical

level and the conceptual level. The details of how data is stored in the database

belong to the physical level1. The schema specifying the structure of the data stored

in the database is described in the conceptual level.

1By physical level we mean a lower level of storage schema, not actual file structures on disk.

12

2.1.1 Physical Layout

A key factor affecting the performance for any data management system is the storage

layout on the physical level used to organize the data on the storage disks. There are

three mechanisms to map the two-dimensional (2D) relational tables onto the one-

dimensional (1D) physical storage, i.e., row-oriented layout, column-oriented layout,

and hybrid-oriented layout.

Row-Oriented Layout

Data has been organized within a block in a traditional row-by-row format, where

all attributes data for a particular row is stored sequentially within a single database

block. Traditional DBMSs towards ad-hoc querying of data tend to choose the row-

oriented layout.

Column-Oriented Layout

Data is organized in a significant deviation of the row-oriented layout. Every column

is stored separately in the column-oriented layout and values in a column are stored

contiguously. Analytical applications, in which attribute-level access rather than

tuple-level access is the frequent pattern, tend to adopt the column-oriented layout.

They can then take advantage of the continuity of values in a column such that only

necessary columns related with the queries are required to be loaded, reducing the

I/O cost significantly [Abadi et al., 2008].

Hybrid-Oriented Layout

The design space for the physical layout is not limited to merely row-oriented and

column-oriented layouts, but rather that there is a spectrum between these two ex-

tremes, and it is possible to build the hybrid layout combining the advantages of

purely row and column oriented layouts.

Hybrid-oriented layout schemes are designed based on different granularity. The

most coarse-grained granularity essentially adopts different layouts on different repli-

cas like fractured mirrors [Ramamurthy et al., 2003]. The basic idea is straightforward:

rather than two disks in a mirror being physically identical, they are logically identical

in which one replica is stored in the row-oriented layout while the other one is in the

13

column-oriented layout. Fractured mirror can be regarded as a new form of RAID-1,

and the query optimizer decides which replica is the best choice for corresponding

query execution.

The fine-grained hybrid schema [Grund et al., 2010; Hankins and Patel, 2003]

integrates row and column layouts in the granularity of individual tables. Some parts

of the table are stored with the row-oriented layout, while other parts apply the

column-oriented layout. An even finer schema is based on the granularity of disk

blocks. Data in some blocks is aligned by rows while some is aligned by columns. To

some extend, we can consider that, row-oriented layout, column-oriented layout are

special extreme cases of hybrid-oriented layout.

2.1.2 Conceptual Model

Obtaining maximum performance requires a close integration between the physical

layout and the conceptual schema. Based on the interpretation of data, three dif-

ferent conceptual data structures can be defined, i.e., unstructured data store, semi-

structured data store and structured data store.

Unstructured data store

The unstructured data store is at the lowest conceptual level. All data items are

uninterrupted, isolated and stored in a binary object or a plain file with no struc-

ture information. This type of data store takes the simplest data model: a map

allowing requests to put and retrieve values per key. Operations are limited to single

key/value pair without allowing cross-references between distinct pairs and there is

no support for relational schema. With these restrictions and simplified query prim-

itives, the key-value paradigm favors high scalability and performance advantages

and provides developers the maximum flexibility to program customer features by

their own. Nowadays, it gains popularity in large-scale web services [DeCandia et

al., 2007; Ghemawat et al., 2003; Cooper et al., 2008]. Due to the lack of structure

information to extract data items separately, the row-oriented physical layout is the

only choice for the unstructured data store.

14

Semi-structured data store

A semi-structured data store is used to store a collection of objects that is richer

than the uninterrupted, isolated key/value pairs in the unstructured data store. A

semi-structured data store, being schemaless, has certain inner structures known to

applications and the database itself, and therefore can provide some simple query-

by-value capability, but the application-based query logic may be complex [Chang et

al., 2008]. Because of its nature of schemaless, a semi-structured data store can only

adopt row-oriented or hybrid layout on the physical layer.

Structured data store

A structured data store is used to store highly structured entities with strict relation-

ships among them. Naturally, a structured data store is defined by its data schema,

and usually supports comprehensive query facilities. As a representative of structured

data store, the relational database organizes data into a set of tables, enforces a group

of integrity constraints, and supports SQL as the query language.

2.1.3 Data Model Taxonomy

Based on the classification of the physical layout and the conceptual schema, we

analyze currently prevailing database systems and categorize them in an appropriate

taxonomy, as demonstrated in Figure 2.1, based on our observations outlined below.

Amazon’s Dynamo [DeCandia et al., 2007], Yahoo! PNUTS [Cooper et al., 2008],

Voldemort2 and SimpleDB3 are the typical systems belonging to the category with

the row-oriented physical layout and the unstructured conceptual data store, since

they are built on the simple key-value paradigm by storing data as binary objects

identified by unique keys. These systems are all unstructured data stores that can

only use the row-oriented physical layout.

Google’s Bigtable [Chang et al., 2008] together with Cassandra [Lakshman and

Malik, 2010], HBase4 and Hypertable5, are representatives of semi-structured data

store built on hybrid-oriented physical layout. They treat each individual table as a

2http://project-voldemort.com/
3http://aws.amazon.com/en/simpledb/
4http://hbase.apache.org/
5http://hypertable.org/

15

Figure 2.1: Taxonomy of Data Storage Model

sparse, distributed, multi-dimensional sorted map that provides the semi-structured

data.

CouchDB6 and MongoDB7 considered as document stores8, are another typical

class of semi-structured data stores while using the row-oriented physical layout. Data

in a document store is serialized from XML or JSON formats so that row-oriented

layout is applied, similar to key-value stores.

C-store [Abadi et al., 2006; Stonebraker et al., 2005] supports the relational

structured data model, whereas tables are stored column-oriented physically. Mon-

etDB/X100 [Boncz et al., 2006; Manegold et al., 2009] and commercial systems Sybase

IQ9 and Vertica10 adopt an idea similar to C-store. These systems benefit greatly from

data caching and compressing techniques. Having data from each column with the

same data type and low information entropy stored close together, the compression

ratio can be dramatically enhanced to save a large amount of storage.

6http://couchdb.apache.org/
7http://www.mongodb.org/
8http://en.wikipedia.org/wiki/Document-oriented database
9http://sybase.com/

10http://www.vertica.com/

16

Megastore [Baker et al., 2011] and Spanner [Corbett et al., 2012] define a struc-

tured data model based on relational tables stored on Bigtable [Chang et al., 2008].

Since they are built on top of Bigtable, the hybrid layout is applied on the physi-

cal level. Same as traditional relational databases, the data model is declared in a

schema. Tables are either entity group root tables or child tables, which must declare

a single distinguished foreign key referencing a root table.

Oracle’s Exadata11, IBM Netezza12 and Greenplum [Cohen et al., 2009] evolved

from traditional parallel database systems, and thus support the structured data

store.

Furthermore, Exadata introduces Hybrid Columnar Compression (HCC) in the

granularity of disk blocks, which employs the similar idea of Partition Attributes

Across (PAX) [Ailamaki et al., 2001] combined with compression. Netezza integrates

row and column oriented layouts on each individual table. Greenplum provides mul-

tiple storage mechanisms with a variety of formats for different level of compression

modes. The column-oriented store with the slightly compressed format is applied for

data that is updated frequently, and append-only tables are using the row-oriented

store with the heavily compressed format. These systems adopt the hybrid-oriented

layout.

2.2 System Architecture

The system architecture is the set of specifications and techniques that dictate the

way how various modules are orchestrated together within a system and how data

processing logic works throughout the system.

In this section, we are going to classify systems according to diverse architectures.

Basically, there are four important historical shifts in the architecture technology

behind large-scale data management systems:

1. Invention of databases on a cluster of processors (single or multi-core) with

shared memory;

11Technique overview of the Oracle Exadata Database Machine and Exadata Storage Server. Oracle
White Paper, 2012.

12The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing
and Analytics. IBM Red Paper, 2011.

17

2. Improvement of databases on a cluster of processors with distributed memory

but common storage disks;

3. Rise of parallel databases processing on the shared-nothing infrastructure;

4. Popularization of the MapReduce parallel framework and the distributed file

system.

2.2.1 SMP on Shared-Memory Architecture

The symmetric multi-processing (SMP) on the shared-memory architecture, as illus-

trated in Figure 2.2, involves a pool of tightly coupled homogeneous processors run-

ning separate programs and working on different data with sharing common resources

such as memory, I/O device, interrupt system and system bus. The single coherent

memory pool is useful for sharing data and communication among tasks. This archi-

tecture is fairly common that most conventional database management systems have

been deployed on such high-end SMP architectures.

Figure 2.2: SMP on Shared-Memory Architecture

However, a small-scale SMP system consisting of a few processors is not capable of

managing big data processing. It can be scaled “up” by adding additional processors,

memories and disks devices, but is inevitably bounded by the resources limitation. In

18

particular, when data volumes are increasing enormously, the memory bus bandwidth

will be the ceiling for scaling-up, and similarly I/O bus bandwidth can also be clogged.

In addition, the initial expense of scaling up SMP server is quite high due to the

larger capabilities and often more complex architectures [Poess and Nambiar, 2005].

It has been observed that the efficiency, scalability, and cost effectiveness of SMP

systems degrade beyond 32 modern high performance microprocessors13. The SMP

on shared-memory architecture has the disadvantage of limited scalability.

2.2.2 MPP on Shared-Disk Architecture

The massively parallel processing (MPP) on the shared-disk architecture is built on

top of SMP clusters executing in parallel while sharing a common disk storage, as

demonstrated in Figure 2.3. Each processor within an SMP cluster node shares the

memory with its neighbors and accesses to the common storage across a shared I/O

bus.

The shared-disk infrastructure necessitates disk arrays in the form of a storage

area network (SAN) or a network-attached storage (NAS) [Gibson and Van Meter,

2000]. For instance, Oracle and HP grid solution orchestrates multiple small server

nodes and storage subsystems into one virtual machine based on the SAN [Poess

and Nambiar, 2005]. Unlike the shared-memory infrastructure, there is no common

memory location to coordinate the sharing of the data. Hence explicit coordination

protocols such as cache coherency [Bridge et al., 1997] and cache fusion [Lahiri et

al., 2001] are needed [Poess and Nambiar, 2005].

The MPP on shared-disk architecture is commonly used in several well-known

scalable database solutions. Two notable systems are Oracle’s Exadata14 and IBM

Netezza15. Exadata is a complete, pre-configured Oracle system that combines Oracle

RAC16 with new Exadata Storage Servers. Exadata improves parallel I/O and filters

only data of interest before transmitting. This process of filtering out extraneous

data as early in the data stream as possible close to the data source can minimize

13Scaling-Up or Out. IBM Performance Technical Report. 2002.
14Technique overview of the Oracle Exadata Database Machine and Exadata Storage Server. Oracle

White Paper, 2012.
15The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing

and Analytics. IBM Red Paper, 2011.
16http://www.oracle.com/technetwork/products/clustering/overview/index.html

19

the I/O bandwidth bottleneck and free up downstream components such as CPU

and memory, thus having a significant multiplier effect on the performance. Netezza

integrates server, storage and database all in a single compact platform. It proposes

Asymmetric Massively Parallel Processing (AMPP) mechanism with Query Streaming

technology that is an optimization on the hardware level .

Figure 2.3: MPP on Shared-Disk Architecture

2.2.3 Sharding on Shared-nothing Architecture

Based on the idea that data management systems can be parallelized to leverage

multiple commodity servers in a network to deliver increased scalability and perfor-

mance, the parallelism on the shared-nothing infrastructure was coined for the new

computing clusters. The sharding on the shared-nothing architecture is currently

widely used in large-scale data management systems [Ghemawat et al., 2003; Chang

et al., 2008; DeCandia et al., 2007; Baker et al., 2011; Cooper et al., 2008; Lakshman

and Malik, 2010; Campbell et al., 2010].

In order to harness the power of this architecture, data is partitioned across mul-

tiple computation nodes. Common partitioning techniques used include range parti-

tioning and hash partitioning. Range partitioning involves splitting the tables into

non-overlapping ranges of their keys and then mapping the ranges to a set of nodes. In

hash partitioning, the keys are hashed to the nodes serving them. These partitioning

20

techniques are simple and are supported by most common database systems.

Each node hosts its own independent instance of the database system with op-

erating on its portion of data. Each node is highly autonomous, performing its own

scheduling, storage management, transaction management and replication. The au-

tonomy allows additional nodes to be involved without concerning about interruption

with others.

Sharding on shared-nothing architecture has a two-tier system design, as shown

in Figure 2.4. The lower processing unit tier is composed of dozens to hundreds of

processing machines operating in parallel. All query processing is decoupled at the

processing unit tier. In the host tier, the assigned coordinator receives queries from

clients and divides the query into a sequence of sub-queries that can be executed

in parallel, and dispatches them to different processing units for execution. When

processing units finish, the central host collects all intermediate results, handles post-

processing and delivers results back to the clients. There are two flavors of this

architecture that are centralized topology and decentralized topology.

Figure 2.4: Dispatching on Shared-Nothing Architecture

21

Centralized Topology

Centralized topology utilizes a dedicated centralized coordinator to manage the system-

wide membership state. The central server hosts the entire metadata and periodically

communicates with each data server via heartbeat messages to collect the status of

each member. The central server also takes charge of activities, typically including

identifying the nodes that own the data with the key, routing the request to the

nodes and integrating for the responses. The centralized topology simplifies the de-

sign and implementation of the complex architecture since the central node has an

authoritative view of the whole system [Cooper et al., 2008].

To prevent the central master server from easily becoming the bottleneck due to

the heavy workload, shadow master mechanism is employed [Ghemawat et al., 2003].

The key idea is to separate the control flow and the data flow of the system. The

central master is only responsible for the metadata operation, while clients communi-

cate directly with the data servers for reads and writes bypassing the central master.

This design also delivers high aggregate throughput for high concurrent readers and

writers performing a variety of tasks.

Decentralized Topology

Unlike the centralized topology, systems such as Dynamo [DeCandia et al., 2007]

and Cassandra [Lakshman and Malik, 2010] choose implementation of decentralized

topology. All nodes take equal responsibility, and there are no distinguished nodes

having special roles. This decentralized peer-to-peer topology excels the centralized

one on the aspect of single point failure and workload balance. The gossip-based

membership protocol [Birman, 2007] is a classical mechanism to ensure that every

node keeps a routing table locally and is aware of the up-to-date state of other nodes.

Consistent hashing [Karger et al., 1997] is widely used in the decentralized topology

implementation. Consistent hashing is a structure for looking up a server in a dis-

tributed system while being able to handle server failures with minimal effort. A

client can send requests to any random node, and the node will forward the requests

to the proper node along the ring.

22

Figure 2.5: Staged Event Driven Architecture

2.2.4 MapReduce/Staged Event Driven Architecture

In the last decade, the importance of shared-nothing clusters was enhanced in the

design of web services. Interesting architectures have been proposed to deal with

massive concurrent requests on large data volumes for excessive user basis. One

representative design is the well-known MapReduce framework for processing large

data sets [Dean and Ghemawat, 2008]. Another design is the Staged Event-Driven

Architecture (SEDA), which is intended to allow services to be well-conditioned for

loading, preventing resources from being over-committed when the demand exceeds

service capacity [Welsh et al., 2001; Gribble, 2000].

Applications programmed with MapReduce framework are automatically paral-

lelized and executed on a large cluster of commodity servers. The framework consists

of two abstract functions, Map and Reduce, which can be considered as two different

stages as well. The Map stage reads the input data and produces a collection of

intermediate results; the following Reduce stage pulls the output from Map stage,

and processes to final results. The trend of applying MapReduce framework to scale

out configurations with lower-end, commodity servers has become popular, due to the

drop in prices for the hardware and the improvement in performance and reliability.

Staged Event-Driven Architecture (SEDA) is designed based on the event-driven

approach that has been introduced and studied for various software applications, such

as Dynamic Internet Servers and high performance DBMSs [Harizopoulos and Aila-

maki, 2003; Welsh et al., 2001]. The event-driven approach implements the processing

of individual task as a finite state machine (FSM), where transitions between states

23

in the FSM are triggered by events. The basic idea of this architecture is that a soft-

ware system is constructed as a network of staged modules connected with explicit

queues, as illustrated in Figure 2.5 [Welsh et al., 2001]. SEDA breaks the execution

of applications into a series of stages connected by explicitly associated queues. Each

stage represents a set of states from the FSM, and can be regarded as an independent,

self-contained entity with its own incoming event queue. Stages pull a sequence of

requests, one at a time, off their incoming task queue, invoke the application-supplied

event handler to process requests, and dispatch outgoing tasks by pushing them into

the incoming queue of the next stage. Each stage is isolated from one another for

the purpose of easy resource management, and queues between stages decouple the

execution of stages by introducing explicit control boundaries [Welsh et al., 2001]. It

has been shown that the aforementioned MapReduce framework can also be regarded

as an architecture based on SEDA, and the basic MapReduce framework resembles

the two-staged SEDA architecture. The general MapReduce extensions [Condie et

al., 2010; Verma et al., 2013], introducing pipelined downstream data flow between

multiple functional MapReduce pairs, behaves identically as SEDA [Isard et al., 2007].

There has been some recent work on bringing ideas from MapReduce/SEDA to

database management systems. The SEDA design has been applied to improve the

staged database performance through exploiting and optimizing locality at all levels

of the memory hierarchy of the single symmetric multiprocessing system at the hard-

ware level [Harizopoulos and Ailamaki, 2003]. Some systems aim to integrate query

construction into the MapReduce framework to allow greater data independence, au-

tomatic query optimization, and instruction reusability at the query level [Chaiken

et al., 2008; Olston et al., 2008]. There are also attempts to program the MapRe-

duce/SEDA over high performance parallel databases for a hybrid solution at the

systems level [Cohen et al., 2009; Abouzeid et al., 2009; Thusoo et al., 2009; Thusoo

et al., 2010].

2.2.5 System Architecture Taxonomy

Based on the above analysis, we present the taxonomy of Bigdata system architecture

in Figure 2.6 [Wu et al., 2015]. Due to the long-time popularity of the shared-memory

multi-threads parallelism, almost all major traditional commercial DBMS providers

24

support products with the SMP on shared-memory architecture, such as Microsoft

SQL Server, Oracle Berkeley DB and Postgres-R, to name a few.

Figure 2.6: Taxonomy of system architecture

Microsoft Azure server [Campbell et al., 2010] is built on Microsoft SQL Server

and uses centralized topology over the shared-nothing infrastructure. This architec-

tural approach is to inject the specific cluster control with minimal invasion into the

Microsoft SQL Server code base, which retains much of the relational features of

MS SQL Server. To enhance the scalability, Azure also assembles multiple logical

databases to be hosted in a single physical node, which allows multiple local database

instances to save on memory for the internal database structures in the server.

MySQL Cluster17 applies a typical sharding on shared-nothing architecture based

on MySQL. Data is stored and replicated on individual data nodes, where each data

node executes on a separate server and maintains a copy of the data. MySQL Clus-

ter automatically creates node groups from the number of replicas and data nodes

specified by the user. Each cluster also specifies the central management nodes.

H-Store [Kallman et al., 2008] is a highly distributed relational database that

runs on a cluster of main memory executor nodes on shared-nothing infrastructure.

H-Store provides an administrator node within the cluster that takes a set of compiled

stored procedures as inputs.

17MySQL Cluster Architecture Overview. MySQL Technical White Paper, 2005.

25

Megastore [Baker et al., 2011] is a higher layer over Bigtable. Megastore blends

the scalability of Bigtable with the traditional relational database. Megastore parti-

tions data into entity groups, providing full ACID semantics within groups, but only

limiting consistency across them. Megastore relies on a highly available and persistent

distributed lock service for master election and location bootstrapping.

Yahoo! PNUTS [Cooper et al., 2008] is a massively parallel and geographically

distributed system. PNUTS uses a publish/subscribe mechanism where all updates

are firstly forwarded to a dedicated master, and then the master propagates all writes

asynchronously to the other data sites.

Calvin [Thomson et al., 2012] is designed to serve as a scalable transactional

layer above any storage system that implements a basic distributed non-transactional

storage. Calvin organizes the partitioning of data across the storage systems on each

node, and orchestrates all network communication that must occur between nodes in

the course of transaction execution with optimized locking protocol.

System above all elect and utilize certain logically central nodes to manage the

coordination of the whole cluster, thus they all belong to the centralized topology

category. Dynamo [DeCandia et al., 2007], Cassandra [Lakshman and Malik, 2010]

and Spanner [Corbett et al., 2012] opt the symmetric structure on the decentral-

ized topology over the centralized one based upon the understanding that symmetry

in decentralization can simplify the system provisioning and maintenance. Systems

with the decentralized topology basically employ a distributed agreement and group

membership protocol to coordinate actions between nodes in the cluster.

Dynamo [DeCandia et al., 2007] uses techniques originating in the distributed

system research of the past years such as DHTs [Gummadi et al., 2003], consistent

hashing [Karger et al., 1997], quorum [Alvisi et al., 2001], etc. Dynamo is the first

production of system to use the synthesis of all these techniques [DeCandia et al.,

2007].

Facebook Cassandra [Lakshman and Malik, 2010] is a distributed storage system

for managing very large amounts of structured data spread out across many com-

modity servers. Cassandra brings together the data model from the Bigtable and the

distributed system technologies from Dynamo.

Spanner [Corbett et al., 2012] is a scalable, multi-version, globally-distributed

26

database system based on the “True Time” API, which combines an atomic clock

and a GPS clock to timestamp data so it can then be synchronized across multiple

machines without the need of centralized control. F1 [Shute et al., 2013] is built on top

of Spanner, which provides extremely scalable data storage, synchronous replication,

and strong consistency and ordering properties.

Hive [Thusoo et al., 2009; Thusoo et al., 2010], Scope [Chaiken et al., 2008] and

Pig latin [Olston et al., 2008], built on top of Hadoop, compile SQL-like declarative

queries into a directed acyclic graph of MapReduce jobs executed on Hadoop. They

systematically leverages technologies from both parallel databases and MapReduce

framework throughout the software stack.

Spark [Zaharia et al., 2010] introduces resilient distributed dataset that lets ap-

plications keep data in memory across queries, and automatically reconstruct data

nodes in failure. Its parallel operations fit into the iterative MapReduce which ex-

tends the traditional framework to support iterative data analysis. Spark focuses on

applications that reuse a set of data across multiple parallel operations. Shark [Xin et

al., 2013] is a low-latency system built on Spark, which can efficiently combine SQL

engine and machine learning workloads, while supporting fine-grained fault recovery.

Greenplum [Cohen et al., 2009] is a hybrid system that enables to execute write

functions in SQL queries across multiple nodes in MapReduce style. It makes the

effort for parallel loading of Hadoop data, retrieving data with MapReduce, and

accessing Hadoop data by SQL.

HadoopDB [Abouzeid et al., 2009] is built based on the idea of providing Hadoop

access to multiple single-node DBMS servers and pushing data as much as possible

into the engine. HadoopDB is to connect multiple single-node database systems by

using Hadoop as the task coordinator and the network communication layer. Queries

are parallelized across nodes using the MapReduce framework.

Dremel [Melnik et al., 2010] uses a multi-level serving tree to execute queries that

resemble the SEDA for data process. Each query gets pushed down to the next level

in the serving tree, and is rewritten at each level. The result of the query is assembled

by aggregating the replies received from the leaf servers at the lowest level of the tree

which scan the tablets in the storage layer in parallel.

Dryad [Isard et al., 2007] is based on a direct acyclic graph (DAG) that combines

27

computational vertices with communication channels to form a data flow graph. The

vertices of the graph are on a set of available computers, communicating through

files, TCP pipes, and shared-memory FIFOs. Dryad schedules vertices to run simul-

taneously on multiple computers for parallelism. The arbitrary execution data flow

through the communication channel in Dryad is identical to the SEDA.

SAP HANA [Sikka et al., 2012] database is the core of SAP’s new data manage-

ment platform. It introduces the calculation graph model that follows the classical

data flow graph principle. The calculation model defines a set of intrinsic operators

based on different types of nodes. Source nodes represent persistent table structures

or the outcome of other calculation graphs. Inner nodes reflect logical operators con-

suming one or multiple incoming data flows and produce any number of outgoing

data flows.

2.3 Consistency Model

One of the challenges in the design and implementation of big data management

systems is how to achieve high scalability without sacrificing consistency. The consis-

tency property ensures the suitable order and dependency of operations throughout

the system, helping to simplify application development. However, most large-scale

data management systems currently implement a trade-off between scalability and

consistency in that strong consistency guarantees, such as ACID [Lewis et al., 2002],

are often renounced in favor of weaker ones, such as BASE [Cooper et al., 2008]. In

this section, we are going to classify systems according to different consistency levels

based on ACID and BASE.

2.3.1 ACID

There are a set of properties that guarantee that database transactions are pro-

cessed reliably, referred to as ACID (Atomicity, Consistency, Isolation, Durability).

Database management systems with ACID properties provide different isolation lev-

els, mainly include serializability, snapshot isolation and read committed [Berenson

et al., 1995].

Serializability, the highest isolation level, guarantees that the concurrent execution

28

of a set of transactions results in a system state that would be obtained if transac-

tions were executed serially, i.e., one after the other. It is typically implemented by

pessimistic reads and pessimistic writes, achieving the condition that unless the data

is already updated to the latest state, the access to it is blocked.

Snapshot isolation is a multi-version concurrency control model based on opti-

mistic reads and writes. All reads in a transaction can see a consistent committed

snapshot of the database. A data snapshot is taken when the snapshot transaction

starts, and remains consistent for the duration of the transaction. Restrictions such

as “first-committer-wins” rule allow snapshot isolation to avoid the common type of

lost update anomaly [Bornea et al., 2011].

Read committed, allowing applications trading off consistency for a potential gain

in performance, guarantees that reads only see data committed and never sees un-

committed data of concurrent transactions.

If we use the symbol > to represent the stronger relationship among two isolation

levels, it is shown that [Berenson et al., 1995]:

serializability > snapshot isolation > read committed

To provide high availability and read scalability, synchronous replication is an

important mechanism. With synchronous replication, rather than dealing with the

inconsistency of the replicas, the data is made unavailable until updates operations

are propagated and completed in all or most of replicas. Update operations may be

rejected and rolled back if they fail to reach all or a majority of the destination repli-

cas within a given time. When serializable consistency is combined with synchronous

replication, we can achieve one-copy serializability [Bornea et al., 2011], in which the

execution of a set of transactions are equivalent to executing the transactions in the

serial order within only one single up-to-date copy. Similarly, combining read com-

mitted and snapshot isolation with synchronous replication, one-copy read committed

and one-copy snapshot isolation can be obtained, respectively [Lin et al., 2005].

2.3.2 BASE

The ACID properties work fine for horizontally scalable, relational database clusters.

However, they may not well fit in the new unstructured or non-relational, large-scale

29

distributed systems, in which flexible key/value paradigm is favored and the network

partition or node failure can be normal rather than rare. Naturally, many large-scale

distributed key-value store systems, such as Amazon Dynamo [DeCandia et al., 2007],

Yahoo! PNUTS [Cooper et al., 2008] and Facebook Cassandra [Lakshman and Malik,

2010], choose BASE, a consistency model weaker than ACID. The BASE, standing

for Basically Available, Soft-state, Eventually consistent, can be summarized as: the

system responses basically all the time (Basically Available), is not necessary to be

consistent all the time (Soft-state), but has to come to a consistent state eventually

(Eventual consistency) [Pritchett, 2008].

Various BASE consistency models have been specified, and thus we first categorize

these models and present multiple system implementations to demonstrate different

levels of consistency model.

Eventual Consistency

Eventual consistency, one of the fundamental requirements of BASE, informally guar-

antees that, if no new updates are made to a given data item, eventually all accesses

to that data item will return the last updated value.

Even though a system with eventual consistency guarantees to “eventually” con-

verge to a consistency state, it increases the complexity of distributed software appli-

cations because the eventual consistency does not make safety guarantees: an eventu-

ally consistent system can return any value before it converges [Pritchett, 2008; Lloyd

et al., 2011]. Eventual consistency may not provide a single image system since it

makes no promise about the time intervals before the convergence is reached. In addi-

tion, the value that eventually achieved is not specified. Thus, additional restriction

is required from applications to reason the convergence [Roh et al., 2011; Shapiro et

al., 2011; Vogels, 2008].

Causal Consistency

Causality is described as an abstract condition that ensures execution in a cluster

agrees on the relative ordering of operations which are causally related. Conditions of

causality based on reads and writes derive from causal memory [Ahamad et al., 1995].

Causal consistency guarantees the relative ordering of read and write operations that

30

are causally related [Lloyd et al., 2011; Bailis et al., 2013b]. Causality is described

as an abstract condition that ensures execution in a cluster agrees on the relative

ordering of causally related operations.

Implementation of causal consistency usually involves dependency tracking [Bailis

et al., 2013b; Lloyd et al., 2011; Lloyd et al., 2013]. The dependency order defines the

relative ordering of read and write operations that are causally related. It requires

that reads respect the order of causally related writes. Under causality, all operations

that could have influenced one operation must be visible before the operation takes

effect. Dependency tracking associated with each operation is employed to record

meta-information for reasoning about the causality. Each process server reads from

their local data items and determines when to apply the newer writes to update the

local stores based on the dependency tracking.

Ordering Consistency

Instead of merely ensuring partial orderings between causality dependent operations,

ordering consistency is an enhanced variation of causal consistency ensuring global

ordering of operations. Ordering consistency provides the monotonicity guarantee of

both read and write operations to each data item.

(a) The “monotonic writes” ensures write operations being applied in the identical

order on all nodes.

(b) The “monotonic reads” ensures that reads only see progressively newer versions

of data on each node.

The “monotonic writes” guarantee can be enforced by ensuring that write op-

eration can be accepted only if all writes made by the same user are incorporated

in the same node [Saito and Shapiro, 2005]. It can be achieved by designating one

node as the primary node for every record; and then all updates to that record are

first directing to the primary node. The primary node orders operations by assigning

them monotonically increasing sequence numbers. All update operations, together

with their associated sequence numbers, are then propagated to non-primary nodes

by subscribing them to a queue ensuring updates are delivered successfully. In the

31

case that the primary node fails, one of the non-primary nodes is elected to act as the

new primary node [Cooper et al., 2008; Lloyd et al., 2011; Burckhardt et al., 2012].

From the analysis above, causal consistency is stronger than eventual consistency.

Further, it is not difficult to see that ordering consistency is stronger than causal

consistency in that a system that guarantees ordering consistency also guarantees

causal consistency, but not vice versa, since the causal consistency does not prevent

conflicting updates [Lloyd et al., 2013]. If we use the symbol > to represent the

stronger relationship among two consistency models, the following demonstrates that

all the three consistency models form a linear order:

ordering consistency > causal consistency > eventual consistency

More generally, if we consider each operation in BASE as a single operation trans-

action18, the operation schedule in BASE can have an equivalent schedule in the view

of single operation transaction in ACID. Considering the bounded staleness [Bailis et

al., 2012a; Cipar et al., 2012] for values observed by read, the ordering consistency

permits possibly stale of data for read at low cost; however, the read committed

guarantees that every read observes the most recent and consistent value of data

committed before the start of the transaction. We may conclude the stronger rela-

tionship among all consistency models in both ACID and BASE as:

serializability > snapshot isolation > read committed > ordering consistency >

causal consistency > eventual consistency

2.3.3 Consistency Model Taxonomy

Based on the discussion of consistency models, we categorize the implementation of

different systems into the taxonomy as shown in Figure 2.7. The classification is based

on our ensuing analysis.

Spanner [Corbett et al., 2012; Shute et al., 2013], Megastore [Baker et al., 2011]

and Spinnaker [Rao et al., 2011] provide one-copy serializability with a two-phase

commit and Paxos-based protocol [Chandra et al., 2007]. Megastore and Spinnaker

provides serializable pessimistic transactions using strict two-phase locking protocol.

18By the view of single operation transaction, we mean “start transaction” and “commit” are added
before and after each and every database operation.

32

Figure 2.7: Taxonomy of Consistency Model

Spanner adopts strong timestamp semantics. Every transaction is assigned a commit

timestamp, and these timestamps allow Spanner to correctly determine whether a

state is sufficiently up-to-date to satisfy a read. Paxos protocol [Chandra et al., 2007]

ensures that data will be available as long as the majority of the replicas are alive.

To support transactions across multiple sites, the two-phase commit protocol and

Paxos are usually combined, such as MDCC [Kraska et al., 2013], 2PC-PCI [Lloyd

et al., 2013], Paxos-CP [Patterson et al., 2012], and a group of engines have been

implemented, such as Chubby [Burrows, 2006] and ZooKeeper [Hunt et al., 2010].

VoltDB19 and H-Store [Kallman et al., 2008; Jones et al., 2010; Stonebraker et

al., 2007] support the SQL transaction execution through the stored procedure. By

initiating a global order before execution, all nodes can asynchronously execute the

stored procedures serially to completion with the same order. Furthermore, H-Store

and VoltDB perform the sequential execution in a single-threaded manner without

any support for concurrency. The combination of above mechanisms makes the trans-

action execution in those systems resemble a single operation call.

MySQL Cluster20 and Microsoft Azure [Campbell et al., 2010] combined tradi-

19https://voltdb.com/
20MySQL Cluster Architecture Overview. MySQL Technical White Paper, 2005.

33

tional read committed with the master-slave mode synchronization. Exadata21 iso-

lates read-only transactions using snapshot isolation. High water mark with low-

overhead mechanism is introduced for keeping track of the value in multi-replica en-

vironment in C-Store [Stonebraker et al., 2005]. SAP HANA [Sikka et al., 2012] relies

on MVCC as the underlying concurrency control mechanism to synchronize multiple

writers, and provide distributed snapshot isolation.

HyperDex [Escriva et al., 2012] provides ordering consistency with a chaining

structure, in which nodes are arranged into a value-dependent chain. The head of the

chain handles all write operations and dictates the total order on all updates to the

object. Each update flows through the chain from the head to the tail, and remains

pending until an acknowledgement of commit received from the tail. Read operations

can be dealt with by different nodes as long as the latest committed value of data can

be obtained on that node.

Yahoo! PNUTS [Cooper et al., 2008] provides a per-record timeline consistent

model that preserves ordering consistency. PNUTS introduces a pub/sub message

broker, which takes charge of receiving updates from a master node and sending

them to other nodes in an identical sequence order.

GFS [Ghemawat et al., 2003] and Bigtable [Chang et al., 2008] both use Chubby

[Burrows, 2006], a distributed locking mechanism for distributed node coordination.

They rely on Chubby with a lease agreement to apply mutations to each chunk in the

same order. The global mutation order is defined by the lease grant order.

COPS [Lloyd et al., 2011; Burckhardt et al., 2012] and Eiger [Lloyd et al., 2013]

track dependencies on versions of keys or operations to enforce causal consistency.

An operation does not take effect until verifying that the operation’s dependencies

are satisfied.

Bolt-on [Bailis et al., 2013b] provides a shim layer that upgrades the eventual

consistency of an underlying general-purpose data store to the causal consistency for

the application. Bolt-on sets a generalized, declarative specification of causal cut as

the criteria to determine which writes are made visible to clients.

Dynamo [DeCandia et al., 2007], Voldemort22 and Cassandra [Lakshman and Ma-

21Technique overview of the Oracle Exadata Database Machine and Exadata Storage Server. Oracle
White Paper, 2012.

22http://project-voldemort.com/

34

lik, 2010] provide eventual consistency for allowing applications with “always write-

able” property, that is, write operations can always be accepted by any node. Vector

clock, also named as version vector, is associated with data to determine the eventual

consistent state during reconciliation.

2.4 Implementation Principles for Large-Scale Data Man-

agement System

So far, we have built the taxonomies for the state of the art large-scale data manage-

ment systems based on the data model, the system architecture and the consistency

model. In this section, we will discuss and analyze the scalability limitation for differ-

ent designs and implementations, and provide our principles for the implementation

of the next generation large-scale data management systems.

2.4.1 Data Model Integration

To achieve high scalability, systems need to distribute data to different nodes. The

simplest way for the data distribution is to deploy individual tables at different nodes.

However, since concurrent transactions usually access different portions of one table,

thus the table partition can improve the performance by parallel execution on a

number of nodes. In addition, when processing a single query over a large table,

the response time can be reduced by distributing the execution across multiple nodes

[Cohen et al., 2009]. Partitioning can be either horizontal or vertical, and systems

require a close integration between data model and data partition.

Physical level. For the row-oriented layout, horizontal partitioning is properly

used where each partition contains a subset of the rows and each row is in exactly one

partition. For column-oriented or hybrid layout, vertical or mixed partitioning can be

applied. The fine-grained mixed partitioning is often implemented by vertically parti-

tioning columns of a table into frequent and static column groups. Columns frequently

accessed together are clustered into the same frequent column group, while columns

seldom accessed are gathered into static column groups [Grund et al., 2010; Jones et

al., 2010]. In addition, columns with large-size data are separated independently to

35

take the advantage of the compression benefits of column stores [Abadi et al., 2006].

Conceptual level. Regarding to the conceptual schema, numerous NoSQL high

scalable systems such as key-value stores [DeCandia et al., 2007] and Bigtable-like

stores [Chang et al., 2008] represent a recent evolution of making trade-off between

scalability and schema complexity. These NoSQL systems adopt variant of schema-

less unstructured data for large-scale data applications. Atomicity and isolation are

supported at the granularity of a single key-value pair, that is, an atomic operation is

supported only for individual key-value pairs. Restricting data accesses to a single-key

limits the flexibility of operating at a much finer granularity. Since a single key-value

pair is never split across compute nodes, data manipulation is restricted within a single

compute node boundary and thus obviates the need for multi-node coordination and

synchronization. As a result, systems can only horizontally partition key-value pairs

to scale out. The rationale is that even though there can be potentially millions of

requests, the requests are generally distributed throughout the data set.

However, some NewSQL systems relatively to NoSQL seek to provide the high

scalability and throughput same as NoSQL while still preserving the high level of

structured data model [Kallman et al., 2008; Baker et al., 2011; Corbett et al., 2012;

Cohen et al., 2009]. To achieve high scalability for a structured data store, the

partitioning must be based on the relational schema and query workloads in order

to minimize the contention. Inappropriate partitioning may cause data skew. The

skewed data will decline the response time and generate hot nodes, which easily

become a bottleneck throttling the overall performance and scalability [Kossmann et

al., 2010; Xu et al., 2008]. For example, to obtain the optimal partitioning, the schema

of OLTP workload always transits to a tree structure. Tuples in every descendent table

are partitioned according to the ancestor that they descend from. As a consequence,

data accessed within a transaction will be located in the same data node [Grund et

al., 2010; Jones et al., 2010].

Based on the analysis above and the taxonomy, we believe that:

1. The data model with lower conceptual level can simplify the design and imple-

mentation for scale-out capability, but data model with higher conceptual level

is not an obstacle for scalability as long as an optimal partitioning strategy is

36

applied according to the schema.

2. The hybrid storage is the most flexible to leverage the advantages of row stores

and column stores. And hybrid storage facilitates the close integration for data

modeling and data partitioning.

2.4.2 Architecture Scalability

Systems based on shared-resources infrastructure can only be scaled up with inevitable

bound due to resources contention and limitation. For example, the internal bus

bandwidth, the number of CPU cores, the hardware coordination mechanism [Poess

and Nambiar, 2005], the context switches [Stonebraker et al., 2007; Johnson et al.,

2009], all can inhibit scalability.

In the sharding on shared-nothing architecture, local resources serve local pro-

cessors; thus it overcomes the disadvantage of shared-resource infrastructure. The

shared-nothing design is intended to support scaling out smoothly by involving new

computation nodes. The centralized topology uses one dedicated centralized coordi-

nator for managing system-wide membership state. Thus, it may suffer the single

point failure and the central node is susceptive to become the bottleneck. The scala-

bility of the decentralized peer-to-peer topology can excel that of the centralized one

[DeCandia et al., 2007; Lakshman and Malik, 2010].

Though systems on sharding on shared-nothing architecture are desired to achieve

ultimate scalability, and have been proven to scale really well into tens of hundreds of

nodes. However, there are very few known data management system deployments with

thousands of nodes [Abouzeid et al., 2009; Shute et al., 2013; Melnik et al., 2010; Isard

et al., 2007].

SEDA/MapReduce architecture is able to scale to thousands of nodes due to its

superior scalability and flexibility. In particular,

(a) The architecture facilitates the use of shared-nothing infrastructure as a scal-

able platform for applications, which is easy to scale out the critical components

by adding more computing resources. Computing resources can be distributed

flexibly to wherever more computation power is needed to eliminate bottleneck.

37

(b) The decomposition of a complex database management system into various stages

connected by queues not only enables modularity and reuse of stage modules, but

also allows two types of parallel data processing: pipeline parallelism and partition

parallelism.

(c) Since a data flow is distributed not only between multiple server instances (usually

running on different physical nodes) but also between different staged modules,

multiple identical stages can be executed on multiple cluster machines with data

replication in order to achieve high availability for fault tolerance.

(d) The architecture easily supports data partition. Different partitions can be dis-

tributed to different staged modules on multiple computing nodes. Different stage

modules are communicated by passing operation. The downstream module can

start consuming operation when the producer module passes the operation.

A large number of system applications based on this architecture are such good

examples:

1. Google uses the MapReduce framework internally to process more than 20PB

datasets per-day, achieving the ability to sort 1 PB data using 4,000 commodity

servers [Dean and Ghemawat, 2008].

2. Hadoop at Yahoo! is assembled on 3,000 nodes with 16PB raw disk [Shvachko

et al., 2010].

3. At Facebook, Hive [Thusoo et al., 2009] forms the storage and analytics system

infrastructure that stores 15PB data and process 60TB new data everyday with

thousands of nodes [Thusoo et al., 2010].

4. Microsoft Dryad conducts data mining style operations to tens of perabytes

data using a cluster of around 1800 computers [Isard et al., 2007].

5. Google Dremel manages trillion-record, multi-perabyte datasets, running on

1000-4000 nodes with near-linear scalability [Melnik et al., 2010].

Based on the above empirical evidence and the system taxonomy, we can have

that the scalability capacity of these different architectures can be ordered as:

38

SEDA/MapReduce >> Sharding Decentralized > Sharding Centralized >>

Shared-Disk MPP > Shared-Memory SMP.

Thus, the SEDA/MapReduce achitecture is the most suitable for large-scale data

management systems.

2.4.3 Scalable Consistency Implementation

We propose a consistency model taxonomy in which the model in a higher level

provides stricter guarantees than the model in a lower level. Now we discuss the rela-

tionship between consistency and scalability, and especially how the implementation

of different consistency models will affect the scalability.

The common implementation to provide serializability is based on distributed

two-phase locking (2PL) protocol [Baker et al., 2011; Rao et al., 2011]. However, the

locking-based protocol adds overhead to each data access due to the manipulation to

acquire and release locks, and it limits concurrency and scalability in case of conflict-

ing accesses, and adds overheads due to deadlock detection and resolution [Larson

et al., 2011; Özsu and Valduriez, 2011; Weikum and Vossen, 2001]. Another simi-

lar pessimistic concurrency control protocol implementation is based on distributed

serialization graph testing (SGT), which characterizes conflict serializability via the

absence of cycles in the conflict graph [Özsu and Valduriez, 2011]. The limitation of

this implementation is closely related to the problem of testing a distributed graph

for cycles, which also arises the deadlock detection issue. Thus, transactions executed

by a distributed large-scale database should not cause distributed deadlocks that are

rather difficult and expensive to deal with.

Optimistic protocol is lock-free assuming that conflicts between transactions are

rare. However, to guarantee that the validation phase can produce consistent re-

sults, a global order checking is required which will degrade performance heavily in

large-scale distributed data systems [Corbett et al., 2012]. Additionally, in the pres-

ence of slower network connection, more transactions may crowed into the system

causing excessively high chances of rollbacks [Larson et al., 2011]. Therefore, the

timestamp-based concurrency control is the most suitable for large-scale data man-

agement systems, and Google Spanner [Corbett et al., 2012] based on True Time is

39

such a good example.

The communication latency caused by various protocol implementations (e.g. two-

phase commit, three-phase commit, Paxos, etc.) can limit the scalability due to the

overhead caused by multiple network round-trips [Helland, 2007]. Though a protocol

implementation performs well within a small scale cluster, however, it may severely

limit the scalability of large-scale systems, since the availability and coordination

overheads become worse as the number of nodes increases [Yu and Vahdat, 2002; Yu

and Vahdat, 2006].

Constraining the scope of transactions is one typical way to minimize the high-

latency communication overhead. The restriction of transactions alleviates the trans-

action coordination protocol and reduces message delays. A list of systems such

as Azure [Campbell et al., 2010], MySQL Cluster23, Megastore [Baker et al., 2011],

Sinfonia [Aguilera et al., 2009] and H-Store [Kallman et al., 2008; Stonebraker et

al., 2007] only support restricted transactions that can be executed in parallel to

completion without requiring communication with other repositories or any commit

vote phase. This restrictive scope is reasonable for the applications where data can

be well deployed, so that distributed transactions will be very rare in such cases.

The weak consistency model like BASE can achieve high scalability much easier

than the strong consistency model like ACID. But the strong consistency model does

not hinder the scale-out capability as long as a proper implementation (or reasonable

restriction) is developed.

2.5 Chapter Summary

In this chapter, we have investigated, categorized and studied several critical aspects

of large-scale data management systems. These systems have several unique charac-

teristics mainly including scalability, elasticity, manageability, and low cost-efficiency.

We have first enumerated various data models on physical layouts and conceptual

representations. And then, we focused on the design and implementation of system

architectures. We have developed architecture taxonomies for prevailing large-scale

database systems to classify the common architecture designs, and provide compar-

23MySQL Cluster Architecture Overview. MySQL Technical White Paper, 2005.

40

ison of the capability for scale-out. We then compared two categories of the consis-

tency models and classified prevailing systems according to the respective taxonomies.

With these taxonomies, we have gained insights into the trade-off between consistency

and scalability. Based on our taxonomies and characterization, we also identify the

principles for implementation of large scale data management systems including:

• The hybrid storage layout can facilitate the close integration of data modeling

and data partitioning.

• The SEDA/MapReduce architecture is the optimal to achieve high scalability.

• The timestamp-based protocol is the most suitable for the implementation of

consistency models to scale out.

• The strong consistency model is not an obstacle for scalability with a proper

implementation (or reasonable restriction).

41

Chapter 3

Overview of Rubato DB

“Music is the art of thinking with sounds.”

- Jules Combarieu.

3.1 Features in Rubato DB

Based on the principles outlined in the last chapter, we implement a scalable NewSQL

database management system-Rubato DB [Yuan et al., 2014; Yuan et al., 2015], sup-

porting relational data model for data-centric applications. Rubato DB is imple-

mented with the following distinguished features:

• F1: Rubato DB applies a novel grid architecture, based on the staged event-

driven architecture (SEDA), proposed by Welsh for parallel web servers [Welsh

et al., 2001].

• F2: Rubato DB uses a hybrid data partitioning based on application semantics

and query workloads.

• F3: Rubato DB introduces a new formula based protocol for distributed con-

currency control.

• F4: Rubato DB supports various consistency guarantees from ACID to BASE.

One of the key challenges in designing and developing NewSQL database man-

agement system using a collection (cluster) of commodity servers is how to distribute

large volume of workloads and data into tens or hundreds of commodity servers with

42

smaller dedicated DAS devices attached. It is F1 and F2 that enable Rubato DB to

resolve this problem.

Another key challenge is developing a suitable concurrency control protocol for

thousands of concurrent users that are accessing data distributed over commodity

servers. We have developed a distributed formula protocol for concurrency control

under the staged architecture (F3, F4), which guarantees the consistency of transac-

tions processed by Rubato DB.

The formula protocol for concurrency is a variation of the multi-version time-

stamp Concurrency Control Protocol [Thomas, 1984], which reduces the overhead of

conventional implementation with the following mechanisms:

• Instead of using multiple versions of updated data items, the protocol uses

simple formulas stored in memory (associated with the updated data items).

• Caching and delaying the transaction operations with formulas before commit-

ting.

• A dynamic time-stamp ordering is used to increase the concurrency and reduce

unnecessary blocking.

In general, the design and implementation of Rubato DB combines and extends

the ideas as following:

hybrid data partitioning, staged-event driven architecture (SEDA) [Welsh

et al., 2001], data-intensive MapReduce framework [Dean and Ghemawat,

2008], and distributed timestamp-based concurrency control;

and using innovative technologies such as

formula based protocol, software instruction, lazy loading, dynamic times-

tamp ordering, multiple communication protocols.

3.2 SQL Engine Design

The main architectural components of Rubato DB are depicted in Figure 3.1. We

firstly give a brief overview of the several essential Rubato DB components as below.

43

Figure 3.1: RubatoDB system architecture

Socket Monitor Rubato DB runs on a collection of servers as one database man-

agement system, with a single socket monitor to establish and record the connection

states for all client requests. The socket monitor which the clients link to, hides the

logic of connection management and routing, and abstracts the system’s dynamics

from the client applications while maintaining uninterrupted connections to the sys-

tem. Multiple socket monitors can be deployed in Rubato DB to distribute the work-

loads of massive client’s requests, in order to reduce the risk of becoming bottleneck

and improve the availability for socket monitor. Also note that special mechanism

is required to generate global coherent timestamps across multiple socket monitors,

such as time master tracking mechanism [Hochschild et al., 2015].

The socket monitor adopts a loading control schema, called lazy loading, to reduce

data contention and to minimize unnecessary rollbacks. The socket monitor maintains

two lists of clients: a list of active clients with active transactions, and a list of

requesting clients whose requests are waiting to be evaluated. The socket monitor

will guarantee that the waiting transaction is among the oldest 20% ones base on

the following practical principle: if all the current requests have higher potential to

conflict with other requests, the system should rather wait awhile for new requests

with lower conflict potential to arrive.

44

SQL Engine Rubato DB’s SQL engine is used to process all the SQL queries, in-

cluding aggregate functions and nested queries, updates, and all other requests accord-

ing to SQL2003. Rubato DB’s SQL engine is implemented using a staged architecture,

which has been introduced and studied for various applications, such as Dynamic In-

ternet Servers [Welsh et al., 2001] and high-performance DBMSs [Harizopoulos and

Ailamaki, 2003]. The basic idea of this architecture is that a system is constructed

as a network of staged modules connected with explicit queues. A staged module (or

stage) is a self-contained module consisting of an incoming event (request) queue, a

thread pool and an event handler [Welsh et al., 2001].

The SQL engine is composed as a set of such staged modules with an incoming

request queue. Threads within each staged module operate by pulling a sequence

of requests, one at a time, off the input queue, invoking the application-supplied

event handler (e.g. parser, optimizer, query, update, etc) to process requests, and

dispatching outgoing results by enqueuing them on the request queues of outgoing

staged module, located either in the same server or another server within LAN. Each

request to the system will be processed in a relay-style by being passed from one

staged grid module to the next one until it is completed. Both parallelism and pipeline

execution are supported by the engine. A set of software instructions are employed to

carry the operation’s backpack with its private state and data. The instruction with

a uniform format is the only packet flowing through different staged modules. The

staged architecture provides a satisfactory design for a scalable grid (or distributed)

database management system, since the staged modules can be easily arranged to run

on various grid servers.

3.3 Transaction Manager

The transaction manager, consisting of Transaction stage and Formula DB, is re-

sponsible for coordinating data access on multiple nodes based on a novel formula

protocol for concurrency (FPC) to ensure serializability. It is the transaction man-

ager that performs all the transactional operations, including pre-commit (necessary

for distributed concurrency), commit, and rollback.

The FPC is a novel implementation of the classical Multi-version Timestamp

45

Concurrency Control Protocol [Thomas, 1984], with two distinct features:

1. Instead of using multiple versions of updated data items, FPC uses formulas

stored in memory (associated with the updated data items) to represent the

multiple values of updated data items, which will reduce overhead of storing

multiple versions of data replicas.

2. The timestamp ordering of transactions may be altered to allow a transaction

with older timestamp to read the data item updated by a later transaction, as

long as the serializability is respected, which will increase the degree of concur-

rency.

The two parts of the transaction manager perform their respective responsibilities:

1. Transaction stage. A dedicated stage grid module that is located in every grid

server and is responsible for all the basic transactional operations including

pre commit, commit and rollback of the transaction manager.

2. Formula DB. A thread-free layer on the top of the Berkeley DB such that all

disk accesses in Rubato DB are through Formula DB.

Three different consistency guarantees are supported by Rubato DB including:

1. ACID. The strongest end of the consistency spectrum for the transactional

functionalities.

2. BASE. The most notable weak consistency model used by NoSQL systems

[Cooper et al., 2008; DeCandia et al., 2007; Lakshman and Malik, 2010]. The

BASE can be summarized as: the system responses basically all the time (Basi-

cally Available), is not necessary to be always consistent (Soft-state), but has to

come to a consistent state eventually (Eventual consistency) [Pritchett, 2008].

3. BASIC. Rubato DB is not limited to merely ACID that is too strong and BASE

that is too weak, but rather supports BASIC, a spectrum between these two

extreme. BASIC stands for Basic Availability, Scalability, and Instant Consis-

tency [Wu et al., 2014]. BASE and BASIC provide different choices between

46

the model that is faster but requiring extra efforts to deal with inconsistent re-

sults and the model that delivers consistent results but is relatively slower with

higher latency.

3.4 Storage Manager

Numerous systems such as key-value stores [Ghemawat et al., 2003; DeCandia et

al., 2007] and Bigtable-like stores [Chang et al., 2008; Lakshman and Malik, 2010] rep-

resent a recent evolution in building infrastructure by making trade-off between scal-

ability and functionality. They adopt variant of the unstructured or semi-structured

data. Since Rubato DB as a NewSQL database system aims for data-centric appli-

cations, the data model is still based on the widely-accepted relational data model

where data is organized into tables of records with attributes according to pre-defined

and flexible schema.

Obtaining performance requires a close integration between data model and physi-

cal layout. Rubato DB’s storage manager adapts a hybrid layout to support combina-

tion of row-oriented and column-oriented storage model in order to take advantage of

the data continuity of values in each column, thus the I/O wait for queries frequently

accessing a subset of attributes in the table schema can be reduced significantly.

To achieve linear scalability, extra effort on an appropriate system configuration is

also required. The configuration is highly dependent on the actual data and queries in

the workload. An improper configuration can cause the performance decline greatly.

A poor data partitioning could cause the problem of redistribution skew [Xu et al.,

2008] or fluctuating workload [Kossmann et al., 2010]. The skewed data not only

declines response time, but also generates hot nodes, which easily become a bottleneck

throttling the overall performance.

To obtain maximum performance, when a table is created according to the schema,

the storage manager provides facilities for users to specify fine-grained hybrid storage

partitioning based on application semantics and query workload. The fine-grained

hybrid schema integrates row-oriented and column-oriented layouts in the granularity

of individual tables.

The varieties of data partitioning depend on how the tables are accessed. For

47

columns accessed as a part of sequential scans, narrow vertical partitions can per-

form better due to cache locality; whereas, horizontal partitions perform better for

frequently accessing many of fields of a row. With the analysis on different schemes of

data partitioning, we choose to split the tables with hybrid partitioning, and deploy

subtables into different nodes with beneficial storage model. The data partitioning

task is done in two aspects, as depicted in Figure 3.2.

The storage manager supports grid partitioning based on the tree-based schema.

A schema has one root table whose primary key acts as the partitioning key. A root

table can however have multiple descendant tables. Every descendant table in the

schema will have the root table’s key as a foreign key. The tree structure implies

that corresponding to every row in the root table, there are a group of related rows

in the descendant tables. Such grid partitioning on tree-based schema can work

well for most OLTP applications based on the fact that transactions only access

data in the same group descended from the root table key. If numerous transactions

violate such boundary, the tree-based schema partitioning will not be able to obtain

the best performance. There are also some more complex mechanisms that deal

with partitioning merely based on real workloads, such as set merging [Agrawal et

al., 2004] and graph-based partitioning [Curino et al., 2010]. However, compared

with tree-based schema partitioning, these mechanisms may induce overheads due to

the complexity. In addition, the grid partitioning based on the tree schema structure

allows efficient splitting and merging of partitions. Even though such grid partitioning

on tree-based schema does not encompass the entire spectrum of OLTP applications,

most of them either have such an inherent tree-based schema pattern or can be easily

adapted to it [Bernstein et al., 2011].

In addition, some tables are look-up tables that are mostly read-only. Since such

tables are not updated frequently, they are replicated on all the nodes.

The column partition in the storage manager enables users to store a single re-

lation as a collection of disjoint (none-key columns) vertical partitions of different

groups. Columns frequently accessed together are clustered into the same frequent col-

umn group, while columns seldom accessed are categorized into static column groups.

Compression can be applied to take the benefits of column-oriented layout.

Storage manager uses Formula DB for all disk accesses to direct attached storages

48

Figure 3.2: Hybrid partition of Storage Manager

(DAS). All tables and their partitions if any are stored on local disk as a Formula DB

file.

3.5 Chapter Summary

In this chapter, we describe the overview of Rubato DB, a scalable NewSQL system,

showcasing the main feature of scalability with various consistency properties from

ACID to BASE, which provides a positive answer to the question on the trade-off

between scalability and consistency. In the following chapters, we will introduce

detailed information about each features included in Rubato DB.

49

Chapter 4

A Staged Grid Database

“Every truth passes through three stages before

it is recognized. In the first it is ridiculed, in the second it is opposed, in

the third it is regarded as self evident.”

- Arthur Schopenhauer.

The principle foundation in staged grid database architecture is modularization,

encapsulation and communication. By disintegrating and reassembling system com-

ponents into encapsulated staged modules, different modules can be assigned to self-

contained stages. Effective behavior rules for communication are then defined to or-

chestrate independent staged modules deployed on networked computing nodes into

one integrated system.

4.1 A Staged Grid Architecture

The traditional widely adopted, work-centric, thread-parallel and monolithic architec-

ture has the deficiency that could limit the performance when executing excessive data

access workloads with changing requirements [Stonebraker et al., 2007]. To harness

the available computing power and memory hierarchy for the database architecture,

one of the tentative amelioration is introducing the staged-event driven architecture

to improve the DBMS effectiveness by optimizing the sheer volume of data access and

the unpredictable sequence of memory requests.

The architecture of the scalable grid database we propose is based on the principle

50

behind the staged-event driven architecture that is easy to be integrated into the grid

shared-nothing infrastructure.

Similar to the staged architecture, the key insight in redesigning the database

architecture is modularization and loose coupling. The basic idea of this architecture

is that a system is constructed as a network of staged modules connected with explicit

queues. The fundamental unit of processing within a staged architecture is the staged

module or the stage for short. A stage is a self-contained module consisting of an

incoming request (also called event) queue, a thread pool, and an event handler.

Threads within a stage operate by pulling a sequence of requests, one at a time, off

the input queue, invoking the application supplied event handler to process requests,

and dispatching outgoing events by enqueuing them on the request queues of outgoing

stages.

Now we specify the staged grid architecture by integrating the staged approach

into the grid shared-nothing environment. The definition facilitates easy and efficient

implementation.

Definition 1 A process module is a software component that operates within that

system independent of the operations of the other components.

Definition 2 A staged module is a software module that interacts with other soft-

ware components only by means of message queues.

Definition 3 A staged grid module is a staged module that runs on a grid node.

Let M be a staged grid module, data(M,e) be the state of the staged grid module M.

The semantic behavior of M is specified by two transition rules:

• For an input request e, the data transition rule data(M,e): data
e

→ data′ trans-

forms the given data to data′;

• For an input request e, the output transition rule output(M,e): data
e

→ output

creates the output offer based on the given request e and the current state of

data.

Each grid module consists of an input queue storing all the requests to be evalu-

ated, and the module will continuously pull requests off the queue and then executes

51

it. At any given moment different modules are processing multiple requests concur-

rently. It can be assumed that the request queue in each grid module is reliable and

unbounded, which guarantees that the delivered requests are kept in order and can

never be lost. A round of computation in a grid module starts when the module pulls

the top input request off the queue, and ends when the module enqueues the outgoing

event, also called an output offer, into the tail of the input queue of the next stage

for further processing.

Definition 4 A grid module is said to be grid-encapsulated if it accesses only the

data stored in the DAS (Direct-Attached Storage) of the node, and does not interact

(call) any other modules directly.

The grid-encapsulation is to specify the data locality: A grid module is grid-

encapsulated only if it does not access data stored in the storage devices other than

the local disk attached to the grid node. Obviously, a grid-encapsulated stage is easy

to develop and efficient to operate, especially for concurrency operations. Since each

staged module is encapsulated, meaning that it performs its computation without

any specific dependency on other modules. Each single client request visits several

different grid nodes during the different phases of the execution, which is transparent

to the clients.

Definition 5 A staged grid architecture is a software system architecture such

that:

(a) The system is constructed as a network of grid encapsulated modules on the

shared-nothing infrastructure, i.e., all grid nodes are connected by a (high speed

or otherwise) network.

(b) Communication between two modules is by means of the event queues through the

network.

(c) When a staged module pushes a request to the next module, the request will always

be accepted and kept in the event queue of the destination module.

(d) Each staged module attempts to read requests from its input event queue. The

module will wait if no available request can be obtained.

52

(e) Each request to the system will be processed in a relay-style by passing the request

from one staged grid module to the next one until it is completed.

The staged grid architecture, as illustrated in Figure 4.1, facilitates the use of

shared-nothing infrastructure, which is easy to scale out the critical components by

adding more computing resources. The decomposition of a complex system into stages

connected by queues not only enables modularity and reuse for each stage, but also

allows parallelism and pipelining execution. Different grid stage components are com-

municated by passing operation. The downstream module can start consuming op-

eration when the producer module passes the operation. Each individual staged grid

module is programmed in a usual manner and the operation is coded in the standard

format, so that modules at both ends of the queue do not need to have dependencies

as long as they can understand the common format.

Multiple identical stages can be executed on multiple cluster machines with data

replication in order to achieve high availability. The architecture is also possible to

support data partition. Different partitions can be distributed to different staged

modules on multiple computing nodes. Particularly, data independent stages, such as

parser stage, security stage, can be allocated on arbitary nodes; while the allocation

of data dependent stages, such as the query/update stage, are corresponding to the

positions of the data. Each update request issued to one data item will be pushed to

every update stage that is collocated according to each data replica.

In addition, computing resources can be distributed effectively where more com-

putation power can converge to the bottleneck. The number of operations waiting

in the queue can reflects the workload status of each staged grid module. A growing

number indicates that module cannot process the work fast enough, thus require ad-

ditional computing nodes to assist consume operations faster. Observing the length of

waiting list and adjusting the number of nodes accordingly, the system can effectively

scale out smoothly.

53

Figure 4.1: The architecture is composed as a set of encapsulated staged grid modules, each of which has its own queue. SQL statements
are embedded into an operation with private state and data, and pass through the modules. Edges represent the flow of operations
between modules. Each staged grid module is independently managed, and can work in pipeline and in parallel. The execution engine
can include a combination of multiple modules to preserve scalability. Multiple identical stages can be executed on data replication in
order to achieve high availability. For simplicity, some operation paths and modules have been elided from this figure.

54

4.2 Implementation of Staged Grid Database

System Deployment

Rubato DB runs on a collection of servers as one database instance with a single

socket monitor stage module to establish and record the connection states for all client

requests (as illustrated in Figure 3.1 in Section 3.2). Unlike systems such as VoltDB1,

Rubato DB provides a service as a general OLTP store in that all the transactions

are received as a sequence of SQL requests, not just a stored procedure. When a

request is received by the socket monitor stage, it is assigned a transaction id (i.e.,

timestamp).

Rubato DB’s SQL engine is used to process all SQL queries. The SQL engine is

built on top of the staged grid architecture where each component is implemented as

a staged module. The essential components of Rubato DB are depicted in Figure 4.2.

Figure 4.2: Staged Modules of Rubato DB’s SQL Engine

Data independent staged modules such as parser and security can be deployed

on arbitrary grid nodes, and each node can even consist of multiple such stages for

scaling up. Optimizer and processor stage modules (i.e. query stage, update stage)

are deployed corresponding to tables per node. Particularly,

1. If a query involves one table on one node, one query stage is set up for each

table.

2. If a query involves a join on multiple tables on one node, the join will be carried

out by one join stage.

3. If a query involves one table that distributed over different nodes without join,

1http://voltdb.com/products/technology

55

one query stage per node will issue the requests, and one aggregation stage in

one of the nodes will collect all result sets and combine them as one result set.

4. If a query involves a join on two or more tables distributed over different nodes,

several stages are needed to perform the semi-join based query optimization

(not implemented yet2).

5. One update stage for each table to perform all update/insertion/deletion oper-

ations on each node.

With such deployment, different types of stages can work together for a single

query in a relay-style to achieve pipelined execution. The same type of stages asso-

ciated with different table partitions can also work simultaneously to achieve paral-

lelism. A Transaction stage is deployed on each node, being responsible for coordinat-

ing data access on multiple nodes based on a novel formula protocol for concurrency

(FPC in Chapter 5).

Software Instruction Set

To facilitate communication among staged modules on different nodes, a set of

software instructions is introduced to specify all basic operations and/or data pack-

ets. Each instruction carries all necessary information required for a request or a

data packet, including its transaction id, operation id, stage id, partition id, table id,

destination node. Any stage will receive a sequence of incoming instructions from its

previous stages, and forwards the processing result, being a result set or a subsequent

operation, as an instruction (or a sequence of instructions) to its successive stages

for further processing. The instructions with a uniform format are the only packets

flowing through stages in the system.

By properly multiplexing the concurrent requests of multiple instructions, there is

a potential of increasing instruction reusability for main memory utilization. Rubato

DB utilizes a stack as a pool of instructions in each grid node: one instruction is

popped up to serve a request when needed, and will be pushed back to the pool after

being used.

2So far, we can avoid such case by distributing tables with joining on the same node.

56

Multiple Communication Channels among Stages

Rubato DB utilizes different communication channels among all stages, depending

on locations of stages and/or the system resources. Assume the stage Si is going to

send an instruction I into the stage Sj . Three different channels can be used for

different cases:

• I1. Si and Sj are in the same node. Since each node maintains one instruction

stack pool, it only needs to push the address of I into the operation queue of

Sj .

• I2. Si is in Node Ni and Sj is in Node Nj , and Ni, Nj are on a shared-

nothing infrastructure. The standard TCP/IP protocol pipes are used to send

the content I from Ni into a new instruction Ij in Nj and then push the address

of Ij into the operation queue of Sj .

4.3 Determinism Verification

We verify the determinism of the proposed staged grid architecture based on the

formalisms of Kahn’s PN model [Kahn, 1974] with enhancements that are designed

to make it efficiently implementable and preserve the properties including scalability,

composability and boundedness.

• Determinism in the system context means that the modeled system will produce

the same result every time it is executed. Insufficient restrictions on accesses

to shared resources lead to race conditions and can occur with unintended non-

determinism. Note that, in the KPN model, we assume that there is neither

network latency nor execution node failure. Also, for multiple requests of con-

current clients, we assume that the system will receive the same fixed sequence

of concurrent requests for repeated computation.

• Scalability indicates a system that can take full advantage of increasingly avail-

able parallel hardware. The commonly used multi-threading programming model

used in SMP infrastructure has limits to its scalability because too much locking

on shared resources can reduce scalability and concurrency.

57

• Composability is a desirable property, since composable modules are self-contained,

and thus their behavior can be analyzed and tested in isolation. Composability

guarantees that connecting the outputs of modules computing functions f(x)

and g(x) to the inputs of a module computing function h(x, y) will result in

h(f(x), g(x)). Thus, components can be developed and tested individually, and

later assembled into clustered hierarchy to create larger and more complicated

systems.

• Boundedness is the ability of the modeled system to execute within finite amount

of memory, which is practical for implementation in reality.

Architecture with these desirable properties can allow development of determi-

nate, scalable systems built from composable components within bounded resources.

Besides, each module can be written in the usual sequential manner where synchro-

nization is implicitly controlled by communication primitives. Each module can thus

be reused and does not need to concern about non-deterministic aspects of concur-

rent execution. The mechanism for achieving parallelization and distribution are

also transparent. Several theoretical models have been developed to formally rea-

son the message passing systems mathematically. Kahn Process Networks (KPN)

[Kahn, 1974] is such typical formal model of concurrent computation in which a set

of deterministic processes communicates via a series of unbounded first-in first-out

(FIFO) queues. In the dataflow graph, the nodes are referred to actors. Each actor

executes according to predefined rules that specify the action when tokens are avail-

able at its inputs. When executing, an actor consumes some number of input tokens

and produces some number of output tokens.

There are basically two variations in how the message passing mechanism can

behave. In the synchronous mechanism, a message sender will not proceed until

the receiver has received the message. This provides synchronization points between

concurrent components. However, it reduces concurrency because each point must

wait for each other to proceed. In the asynchronous mechanism, by buffering messages

and using asynchronous messaging, execution can overlap with communication.

Staged grid architecture applies an asynchronous message passing mechanism for

concurrent model that is supposed to support scalability, composability and bound-

58

the restriction that write(xi) ≺ write(xj) if and only if read(xi) ≺ read(xj).

• Modular processes introduce additional restrictions. For example, if W =

f(U, V), then we have the following restrictions. The process reads from the

two input sequence U and V . read(ui) ≺ write(wi), read(vi) ≺ write(wi).

A sequential execution is a total ordering of write and read operations. We can

compare any pair of operations. A parallel execution is a partial ordering of write

and read operations. We may be able to compare some operations but will not be

able to compare others. Any execution order must satisfy the restrictions imposed by

the communication channels and the processes. The determinism within staged grid

architecture means a unique history of each input operation sequence on channels

despite the concurrent execution of modules. The deterministic property was verified

through the introduction of the Kleene Least Fixed-point Theorem [Lee, 2011] of Kahn

process network (KPN) [Kahn, 1974], according to which the history complies with

the “least fixed point” of a set of mathematical equations. Limitations of determinism

in the theoretical model are also discussed to figure out how to practically tackle these

challenges when applying the model in the database system.

4.3.1 Monotonic and Continuous Function

We first demonstrate that the process of each staged grid module can be regarded

as a monotonic and continuous function. In the above representation of staged grid

architecture, all queues hold a sequence of operations.

A sequence is defined as a stream of data elements (or tokens), e.g. X = {x0, x1, x2, ...}.

In the context of a staged grid module, the contents of a sequence S represent the

operations that have been inserted into a queue S = (e1, e2, e3...). Sequences are

ordered in the prefix order.

Definition 6 For a set of operations E and the set of finite and infinite sequences

E∗∗ of operations of E, the prefix order is a relation ⊆ from E∗∗ to E∗∗ such that for

any s, s′ ∈ E∗∗, s ⊆ s′, if

• s is the empty sequence ⊥ (the empty sequence ⊥ is a prefix of all sequence).

• ∀n ∈ Nwhere s(n) is defined, s′(n) is defined and is equal to s(n).

60

constructed outputs, given partially constructed inputs. Then continuity requires

that ∨(~F (S)) be equal to the eventually complete output F (∨(~S)).

The least upper bound of the chain ∨(~S) is the shortest sequence such that all

sequences in the chain are a prefix of ∨(~S). Since the chain ~S represents a sequence of

partial inputs to each module, ∨(~S) is the eventual complete input. The unblocking-

write behavior rule enforces that each module does not halt before producing the

corresponding complete output. Using the least upper bound of a sequence as input,

the output is also the least upper bound.

Since the continuous and monotonic function has the property of compositionality,

thus the whole staged grid architecture can be regarded as a continuous and monotonic

function composed of the functions defined by each individual staged module function

over increasing sequence chains.

4.3.2 Least Fixed Point

Since the continuous and monotonic function has the property of compositionality,

thus the whole staged grid architecture can be regarded as a continuous and monotonic

function composed of the functions defined by each individual staged module function

over increasing sequence chains. The unique execution history of the architecture can

be reduced to finding the fixed point of a function. Given a function f : X → X. If

there is a value x ∈ ~X such that f(x) = x, that value is called a fixed point.

The Kleene Least Fixed-point theorem assures the existence and uniqueness of

such a least fixed point for monotonic and continuous function [Lee, 2011]. Existence

and uniqueness of fixed point is essential for the semantics of executions.

Theorem 10 Kleene Least Fixed-point theorem [Lee, 2011]: For any monotonic

function F : ~X → ~X, where ~X is a chain. Suppose a sequence ⊥ is the prefix of all

sequences in the chain ~X, i.e. ∀X ∈ ~X,⊥ ⊆ ~X. Let C = Fn(⊥) : n ∈ N . Then

if ∨X = F (∨X), ∨X is the least fixed point of F . If F is also continuous, then

∨X = F (∨X).

Let α be any fixed point, i.e. f(α) = α. If ∨X ⊆ α, ∨X is the least fixed

point. Since ⊥ ⊆ α and F is monotonic, F (⊥) ⊆ F (α) = α. Recursively using the

monotonic property, this implies that F (F (⊥)) ⊆ F (F (α)) = F (α) = α, ∀n ∈ N ,

63

Fn(⊥) ⊆ Fn(α) = α. Also ⊥ ⊆ F (⊥) ⊆ F (F (⊥)) ⊆ F (F (F (⊥)))...∀n ∈ N,Fn(⊥) ⊆

Fn+1(⊥). Let C = Fn(⊥) : n ∈ N.F (C)∪⊥ = C. Moreover, ∨(F (C)∪⊥) = ∨(F (C))

since an additional ⊥ in a chain will not change its least upper bound. Thus we have

∨F (C) = ∨(C), and ∨(C) is the least fixed point.

Guarantee 11 F : E∗∗ → E∗∗ holds a unique least fixed point obtained by recursively

iterating the function F on the least prefix element ⊥, generating an increasing chain:

~S = (⊥, F (⊥), F (F (⊥))...Fn(⊥)...).

Figure 4.6: Execution transformation to a fixed point of a function

Figure 4.6 demonstrates Kleene Least fixed-point theorem in a simple example.

Given three modules with three channels, modules can be re-drawn into one rectangle

forming a combined function. Then three channels become undifferentiated and can

be merged into one channel. Therefore, the execution is reduced to a fixed point of a

function.

Kleene Least fixed-point theorem provides the mathematically provable property

of determinism regardless of the concurrent execution order of the processes in the

program. The sequence of the history of operations on all of the queues depends only

on the solution to the fixed point equation.

64

4.3.3 Effective Execusion

The previous section shows that the history of tokens on all of the queues depends

only on the solution to the fixed point equation. However, the assumption about the

termination of each modular program is undecidable infinite time, as is boundedness

of the queues. Boundedness is related to the number of unconsumed operations in

the queues during the execution.

The interpretation of the infinite sequence is that the system does not terminate,

which can continue to execute for as long as it is expected to execute. The sequences

that have been produced at any point during the execution are mere approximations.

To make the approximation appropriate, the execution requires complying with the

principle as following.

Definition 12 For a module process, which is fair with respect to its inputs and

outputs, the ability to produce an output sequence or read an input sequence will

eventually be allowed to realize.

A fair process cannot indefinitely neglect any of its inputs or outputs. A fair

processes will allow the sequence to proceed and eventually converge to the least

fixed point [Geilen and Basten, 2003].

Theorem 13 Kahn principle: An execution is effective if each module process

involved is fair. Any two effective executions produce the same sequences of messages,

matching the least fixed point within the semantics [Kahn, 1974; Lynch and Stark,

1989].

The Kahn principle states that fair executions produce sequences that match

the least fixed point. Every effective execution is finite in practice and converge in

the limit to the least fixed point [Lee, 2011]. To achieve effective executions, we

implemented reliable FIFO queue established on TCP/IP socket for channels. The

reliability guarantees every operation produced by a source process will eventually be

read by the destination module process.

For an important class of models complying with Kahn principle, termination is a

property of the program and does not depend on the execution order. However, the

number of data elements buffered on the communication channels during execution

65

does depend on the execution order and is not completely determined by the programs

definition. Thus, the mechanism is needed to guarantee the number of data elements

buffered on the communication channels remains bounded for all possible execution

orders.

The unbounded queues assumption makes the implementation of the system in-

feasible in bounded memory, since the queues will grow to be of infinite length, and

are therefore impossible to run in a limited memory space. To make the program able

to be implemented within infinite memory, the number of unconsumed operations

in queues should be finite for bounded programs. Though the “write” semantics is

defined to be unblocked, however, the “write” has to be blocked if the output channel

is full. With at least one module being blocked on “write”, a subset of modules in

the system will be blocked. This kind of block is artificial because it would not occur

with infinite channel capacities.

By requiring all processes to be fair, we need to make sure that any full queues are

eventually and periodically read from, and any such blocked producers will eventually

make progress. As long as modules that are blocked on full queues can eventually

make progress, the system will eventually proceed and converge to the least fixed

point.

When execution repeatedly blocks due to full channels, we increase the size of at

least one channel capacity on which a module process is “write” blocked. The system

continues to execute unbounded as long as the system resources are not exhausted,

which eventually will be blocked when all module processes are blocked by reading

from empty channels and no modules are blocked by writing to full channels. It is

proved that this strategy delivers an effective execution that transforms a complete,

unbounded execution to a partial bounded execution [Lee and Parks, 1995; Geilen

and Basten, 2003].

Guarantee 14 The staged grid architecture yields deterministic effective execution

converging to the least fixed point with blocking-reads & unblocking-writes behavior

semantics, reliable FIFO queue bounded channels and artificial blocking resolution

strategy.

66

4.4 Chapter Summary

Inspired by the principle behind the staged event driven architecture and MapReduce

framework, in this chapter, we have introduced a scalable staged grid architecture

for NewSQL database management systems, which can be elastically deployed on the

shared-nothing infrastructure.

We define a highly scalable staged grid database architecture, and provide its

implementation techniques in details, based on which a NewSQL database system

Rubato DB is implemented. We disintegrate and reassemble the traditional single

server database system design into encapsulated staged modules. Then independent

staged modules deployed on networked computing nodes are orchestrated based on

communication to work as one single database instance.

To verify the proposed architecture, we prove the behavior of the systems on

the architecture is deterministic for applications. Determinism in the staged grid

database architecture context means that the program can always generate the same

procedure despite the concurrent execution of the nodes deployed on the shared-

nothing infrastructure.

67

Chapter 5

Formula Protocol for

Concurrency Control

“Of course there is no formula for success, except perhaps an

unconditional acceptance of life, and what it brings.”

- Arthur Rubinstein.

Scaling out while processing transactions efficiently is an important requirement

for NewSQL database systems. We analyzed multiple popular mechanisms in current

DBMSs to distill some feasibility and principles for building systems that scale out to

clusters of commodity servers while efficiently executing transactions. In this chapter,

we first highlight these designs and then present the Formula Protocol for Concurrency

(FPC), the concurrency control protocol used in Rubato DB; and then outline our

schema for the implementation of the protocol.

5.1 Formula Protocol Overview

One commonly used implementation to provide serializability in large-scale database

systems, such as Megastore [Baker et al., 2011], Spinnaker [Rao et al., 2011], etc., is

based on distributed two-phase locking with two-phase commit protocol.

Using a locking-based concurrency control mechanism, update transactions are

not permitted to write a data object which has been read by a read transaction and

thus has to wait until the potential long-running read transaction completes. All of

68

a transaction’s locks must be held for the whole duration of the commit phase. Since

multiple network round-trips are needed for commit, the extra time that locks are held

can considerably reduce the overall transactional efficiency [Thomson et al., 2012].

Besides, the deadlock detection and resolution may further prohibit the concurrency

and scalability [Larson et al., 2011].

Some systems (e.g. Azure [Campbell et al., 2010], Sinfonia [Aguilera et al., 2009]

and H-Store [Jones et al., 2010; Kallman et al., 2008]) attempt to reduce the locking

overhead by constraining the scope of transactions whose accesses are limited to a

small subset of database. Transactions that can be executed in parallel to comple-

tion without requiring communication with others are optimized, but other transac-

tions are aborted or executed with coarse-grained locks on each partition. Despite

of the high performance and scalability induced by restricted transactional scope,

the concurrency and applicability can be hindered for generalized workload [Baker

et al., 2011; Kallman et al., 2008; Thomson et al., 2012]. Another simplified varia-

tion is to write transactions as stored procedures [Stonebraker et al., 2007] which can

be executed sequentially within different partitions to take advantage of parallelism.

Calvin [Thomson et al., 2012] introduced deterministic ordered locking. By using a

pre-ordered agreement for acquiring locks in the presence of distributed transactions,

distributed commit protocols can be eschewed. However, stored procedures and or-

dered locking require extra efforts to analyze knowledge of all transactions in advance,

which can be time-consuming and error-prone for complicated workloads.

Multiversion Concurrency Control (MVCC) provides a better solution, in which

each update creates a new version of that data object rather than update the data

object in place. Concurrent read can access the old version of data while the update

transaction can proceeds without waiting. Without using locking mechanism, reads

and writes are not necessarily block each other.

Most typical systems using MVCC, such as Microsoft Azure [Campbell et al.,

2010] and SAP HANA [Sikka et al., 2012], only guarantee a weaker isolation level

than serializability, such as read committed or snapshot isolation. Although those

weak guarantees offers good isolation level, some non-serializable schedules are still

permitted. The known solution to avoid non-serializable schedules in weak isolation

level is to keep track of the entire read/write set of transactions, which tends to create

69

an expensive overhead [Jorwekar et al., 2007; Cahill et al., 2009].

The formula protocol for concurrency (FPC) used in Rubato DB is a novel im-

plementation of the classical Multiversion Timestamp Concurrency Control Protocol

[Thomas, 1984] with new features: logical transformation formula caching and

dynamic timestamp ordering, for achieving serializability with scalability.

The logical transformation formula caching approach has the advantages

over storing actual multiple versions of data items mainly in the following cases:

(a) For all non-key updates, storing multiple versions need to maintain physical copies

of numerous rows [Manassiev et al., 2006], but the formula-based approach still

uses one single formula. This will significantly reduce overhead of multiple ver-

sions of all update data items.

Example 15 Consider a database containing one table “Employees” with the

initial instances as shown in Table 5.1, and a request from one transaction:

T10: UPDATE employees SET salary = salary ∗ 1.1 WHERE d id = 20;

Table 5.1: Table Employees Instance

e id d id salary

1001 10 90

2000 20 100

2001 20 100

...

2999 20 100

3000 30 110

Since there exist 1000 records in the table satisfied the condition d id = 20, in the

traditional MVCC, new versions of data (version= T10, did = 20, salary = 110)

require to be generated for all of the 1000 records (eid = 2000, ..., 2999).

However, within the FPC, one single formula update(T10, d id = 20 → salary =

salary ∗ 1.1) is enough for all 1000 records.

(b) Formula enables us to use conflict-free operations such as increment/decrement,

instead of updates, which is much easier than if otherwise, in terms of much less

conflict potential.

70

Example 16 Consider Table 5.2 and two requests from different transactions:

T20: UPDATE employees SET salary = salary + 20 WHERE d id = 10;

T30: UPDATE employees SET salary = salary − 30 WHERE d id = 10;

Since T20, T30 both update the same data item in the table, they are considered to

be conflict. In the traditional MVCC, a new version of data copy V20 (version= 20,

eid = 1001, did = 10, salary = 110) will be created according the update request

in T20. And another new version of data copy V30(version= 30, eid = 1001,

did = 10, salary = 60) is also generated for T30.

Only one of V20 and V30 can be the final result due to the conflict between T20

and T30. Usually, rules such as “first commit writer wins” are commonly applied

[Fekete et al., 2005; Cahill et al., 2009]. For instance, once T30 commits before

T20, the data version V20 of T20 will be discarded and T20 needs to be rolled back

and retried.

However, actually the execution order of those two operations does not affect the

final result, thus such operations should be considered conflict-free, even though

they write on the same data item. Within FPC, if two formulas are generated

from conflict-free operations, they are considered commutative and FPC does not

need to unnecessarily abort any of the transactions.

(c) The implementation of multiversion uses the fine-grained page as the minimal

unit in the memory [Blott and Korth, 2002; Brantner et al., 2008]. The page

size can affect the latency greatly since the full bandwidth can only be achieved

if data is flushed in pages of relatively large size (e.g. 4KB, 8KB) [Brantner et

al., 2008]. To save page space, multiple versions of different data are clustered

into pages, and complex and error-prone mechanism is required to ensure the

update operation does not overwrite each other even though they access different

data [Blott and Korth, 2002; Brantner et al., 2008].

Example 17 Consider transactions T10, T20 and two pages P1, P2.

Assume the original copy of employees lives on the page P1. T10 reads data from

P1 and creates a new version V10 on the page P2. Similarly, T20 reads data from

71

P1 and creates a new version V20 on the page P2.

The two transactions T10 and T20 have no overlapping read sets and generate

different versions of data. However, since the order in which T10 and T20 arrive at

the scheduler is same to the order of their assigned versions, normally T10 locks

the page P2 and creates version V10 on P2. Subsequently, T20 may need to wait

until T10 commits and releases its lock on page P2 in order to be able to create

its required version V20 on P2. This wait is due to a write-write conflict on the

page P2 upon creating different versions, rather than a conflict on the actual same

data access. Note that such wait duration would normally be longer or involving

more pages if T10 has updated a large set of data. Instead, our FPC modification

process can minimize the conflict wait time.

In addition, since the size of data version V10, V20 varies, extra efforts are required

for the alignment in the page.

The manipulation on the unit of formula can reduce the complexity of storing

multiple versions on the page-level. FPC is also suitable for both numeric values

and string values.

By storing the update formulas locally associated with the data items, it not only

significantly reduces overhead of storing multiple updates data items, but also enables

us to achieve serializability over distributed servers efficiently. For most transactions

which are read-only, FPC can also take advantage of the transaction ordering per-

spective.

The dynamic timestamp ordering is used to achieve:

1. avoiding unnecessary blocking or waiting in order to increase the degree of

concurrency.

2. clearing the formulas as early as possible, similarly to database management

systems using the multiversion timestamp protocol that delete any version of

updated data item as soon as it is not needed.

In the conventional multiversion timestamp protocol, the commit order of operations

conforms with the timestamp initially assigned to each transaction. This mechanism

72

is considered to be static. However, the FPC respects the initial timestamp ordering

while permitting an equivalent schedule that differs from the static timestamp order-

ing, as long as it ensures serializability. The timestamp ordering of all the transactions

may be altered to allow a transaction with older (smaller) timestamp to read the data

item updated by a later (larger) transaction on condition that the serializability is

respected.

The following example demonstrates the two distinct features of the FPC.

Example 18 Consider a database containing one table employees, with the initial

instances as shown in Table 5.2.

Table 5.2: Employees Instance

e id d id salary

1 10 90

2 20 100

3 20 80

Let A,B,C denote three values in one data item1. We use “W”, “R” to denote

“write” and “read” operation respectively, e.g. W (B = B + 10) means update B

by increasing the value of B by 10; R(B) means read the value of B. Consider the

schedule in Table 5.3 where T10, T20, T30 are three transactions with subscripts as their

timestamp:

Table 5.3: Transactions Schedule

T10 T20 T30 A B C

t1 90 100 80
t2 W(B=B×1.1) 90 100 80
t3 W(B=B+10) 90 100 80
t4 W(C=C+10) 90 100 80
t5 commit 90 110 90
t6 R(B=121)
t7 commit 90 121 90
t8 commit 90 121 90

1For simplicity, we consider only one data item but all the discussions are valid for a set of data
items.

73

In this schedule, the updates issued by T10, T30 at t2, t3, t4 will be executed

by caching formulas rather than multiple versions of replica. When T30 requests to

commit at t5, all formulas issued by T30 (i.e., W (B = B + 10), W (C = C + 10)) will

be force-written and eliminated from the memory. After T30 commits, the disk values

of B and C are updated to 110 and 90 respectively. Further, when T20 issues R(B)

at t6, it will first read the value of B from disk as 110, and then the update formula

W (B = B ∗ 1.1) issued by T10 earlier will be applied. Hence, T20 reads the value of

B as 121. This schedule that is not allowed in the classical multiversion timestamp

protocol, is indeed serializable and its equivalent serial schedule is T30, T10, T20. The

schedule does not comply with the intial timestamp ordering, but it does permit an

equivalent serial schedule.

5.2 Timestamp-based Formula Protocol

As with the timestamp protocol, each transaction under FPC is assigned a unique

timestamp, TS(T), when it is initiated in the socket monitor stage on one dedicated

server. The FPC guarantees the existence of an equivalent serial schedule in which

transactions are ordered by their timestamps (subject to dynamic timestamp order-

ing). The FPC stores with each data item, x, on relevant node, the following pieces

of information:

• lrt(x,Ni): the largest timestamp of active (not committed) transactions that

have read x on the node Ni;

• list(x,Ni): the list of update formulas of the form: uf(x, Tu1, Ni), . . . , uf(x, Tun, Ni),

where uf(x, Tj , Ni) represents an update formula on x by transaction Tj on Node

Ni, and TS(Tu1) ≤ TS(Tu2) ≤ · · · ≤ TS(Tun).

If such an active transaction does not exist, lrt(x,Ni), and list(x,Ni) are set to

0 and ∅ respectively.

Read/Write Operation

When a transaction, T1, makes a request to read x on node Ni, read(x, T1, Ni)

will first retrieve the value of x from disk on Ni and then update the retrieved value

74

using stored update formulas in list(x,Ni) if needed. More specifically,

• R1. T1 read x on Ni. Let v0(x) be the disk value of x on Ni, and

uf(x, Tu1, Ni), . . . , uf(x, Tum, Ni) be the list of update formulas in list(x,Ni)

such that

(1) TS(Tum) ≤ TS(T1) and

(2) TS(Tu(m+1)) > TS(T1).

Then

v1(x) be the value obtained by applying uf(x, Tu1, Ni) on v0(x),

v2(x) be the value obtained by applying uf(x, Tu2, Ni) on v1(x), and vum(x) be

the value obtained by applying uf(x, Tum, Ni) on vu(m−1)(x).

vum(x) is the value to be retrieved by read(x, T1, Ni).

If TS(T1) > lrt(x,Ni), TS(T1) is assigned to lrt(x,Ni).

To facilitate the cascading rollbacks and wait for commits, the FPC protocol

also records a fact:

read by(Tuk, x, T1) for 1 ≤ k ≤ m,

indicating the value x updated by Tuk is read by T1.

Obviously, T1 retrieves the value that is obtained by sequentially applying all up-

date formulas on x issued by transactions with older timestamps, and if TS(T1) <

swt(x,Ni), where swt(x,Ni) is the smallest timestamp of a transaction contained in

list(x,Ni), it retrieves the disk value of x directly. This is the same as the multiver-

sion timestamp protocol, except that the update formulas are used instead of actual

multiple versions of data items.

When a transaction, T1 with timestamp TS(T1), makes a request to write x on

node Ni, i.e., write(x, T1, Ni), the FPC performs the following action:

• W1. If TS(T1) < lrt(x,Ni), there must exist another transaction T2, which

should follow T1 according to the equivalent serial order on the timestamp, has

read the value of x before.

Thus T1 is too old to write x, and must be aborted.

75

This may also trigger cascading rollbacks as in K1.

• W2. If lrt(x,Ni) = 0 or TS(T1) = lrt(x,Ni), the write request is processed by

simply adding a new update formula

uf(x, T1, Ni) into list(x,Ni).

• W3. If TS(T1) > lrt(x,Ni) > 0, the write request is processed by simply

adding a new update formula uf(x, T1, Ni) into list(x,Ni).

Further, there must exist another transaction T2 such that

(a) TS(T2) < TS(T1), and

(b) T2 has read the value of x before.

The FPC protocol also records a fact read b4(T2, x, T1).

In W3, read b4(T2, x, T1) is recorded to facilitate the dynamic timestamp order-

ing. Assume that TS(T2) < TS(T1), and T1 issues commit before T2 does. The

dynamic timestamp ordering allows T1 to commit, but update formulas of T1 will

be retained in the memory rather than cleared if there exists any read b4(T2, x, T1)

stored in the system. Only when all the stored facts read b4(Ti, x, T1) for T1 are

removed as in C2, K1, update formulas of T1 can be cleared and force-written to

disks.

Commit/Rollback Protocol

To facilitate committing a transaction that has accessed data items distributed

over different nodes, the FPC maintains a list PN(T) of participating nodes for each

active transaction T . That is,

PN(T) = {Ni | T reads x on Ni or T writes x on Ni}.

When a transaction, T1, makes a request to commit, the FPC performs a variation of

two-phase commit protocol. In the 1st-phase, pre-commit(T1,Ni) pre-checks if Ni is

ready to commit for each Ni ∈ PN(T1). In the 2nd-phase, a consentaneous action will

be taken based on the response from each node. There are two kinds of approaches to

present the dynamic timestamp ordering: one is pessimistic that forces transactions

76

to wait for commit for read b4 facts; the other is optimistic that allows transactions

to commit immediately in presence of read b4 facts, but retain the formulas without

being cleared until all read b4 facts are removed later. The pessimistic approach is

optimal for read intensive workloads where read b4 facts are rare; while the optimistic

approach is optimal for write intensive workloads where read b4 facts are frequent.

• P1. (pessimistic) pre-commit(T1,Ni)

1. If there exists read by(T2, x, T1) or read b4(T2, x, T1) on Ni, suspend T1

with wait for commit(T1, T2).

2. Otherwise, return T1 is ready to commit on Ni.

• P2. (optimistic) pre-commit(T1,Ni)

1. If there exists read by(T2, x, T1) onNi, suspend T1 with wait for commit(T1, T2).

2. Otherwise, return T1 is ready to commit on Ni.

The FPC waits until it receives the ready-to-commit message from all nodes in

PN(T1), then performs commit(T1,Ni) on all nodes Ni ∈ PN(T1).

• C1. (pessimistic) commit(T1,Ni), i.e., T1 commits on the node Ni: Force-

write all update formulas issued by T1 on Ni, and remove all stored facts, such

as read by, read b4, and uf involving T1.

• C2. (optimistic) commit(T1,Ni) i.e., T1 commits on the node Ni: The for-

mulas issued by T1 are cleared and force-written to database disks only if there

exists no read b4(Trb, x, T1) fact; otherwise formulas are reserved in the mem-

ory. When Trb commits or rollbacks and read b4(Trb, x, T1) is the only read b4

stored fact for T1, force-write and clear all update formulas issued by T1 on Ni

in W3.

After T1 commits in all participating nodes in PN(T1), the FPC wakes up all

waiting transactions Tw to resume pre-commit(Tw,Ni), if wait for commit(T1, Tw)

recorded in P1(1) or P2(1). When a transaction T1 makes a request to rollback, or

is forced to rollback as in W1, or times out to receive any response from Ni due to

network failure, the FPC performs rollback(T1,Ni) on all Ni ∈ PN(T1).

77

• K1. rollback(T1,Ni). Send cascading rollbacks to all Tr if read by(Tr, x, T1) is

recorded; and remove all stored facts, such as read by, read b4, and uf involving

T1 on Ni. If there exists read b4(T1, x, Tcb) and it is the only read b4 stored fact

for Tcb, force-write and clear all update formulas issued by Tcb on Ni in W3.

After T1 rollbacks in all participating nodes in PN(T1), the FPC wakes up all

waiting transactions Tw to be rolled back. if wait for commit(T1, Tw) is recorded in

P1(1) or P2(1). As indicated after C1, C2 and K1, when T1 terminates (commit or

rollback), all transactions that are waiting for T1 resume and restart to pre-commit or

cascading rollback. The transition for transaction states is demonstrated in Figure 5.1.

Figure 5.1: Transaction states Transitions

5.3 FPC Serializability Guarantee

Since FPC is a novel implementation of the multiversion timestamp protocol [Thomas,

1984], we can prove that the FPC guarantees serializability and stomicity sticking to

the conventional notations in the multi-version protocol. As a matter of fact, its proof

follows from the following facts:

(a) The orders of all conflict pairs of operations are compatible with the timestamp

ordering of all the involving transactions.

(b) The dynamic ordering rearranges a transaction T to be effectively a smaller times-

tamp only if T has no operations that are conflicting to any operations of Ti such

78

that TS(Ti) < TS(T).

(c) Update transactions commit corresponding to timestamp ordering. If T1 and T2

are update transactions that commit, then if TS(T1) < TS(T2) (after dynamic

ordering if possible), then T1 commits before T2.

(d) No transaction commits in a state where it has read uncommitted data. That is,

transactions that issue commit will wait for any uncommitted update transactions

from which they read.

(e) Any transaction that reads data written by an aborted transaction itself aborts.

We use two abstractions in the FPC, timestamps (versions) and conflict dependen-

cies, to reason about serializability isolation. Since FPC is a variation of multi-version

implementation, we still stick to the conventional notations in multi-version protocol

for the serializability guarantee proof. We assume wi(xi) denotes a new version xi

issued by the write operation wi in transaction Ti; and ri(xj) denotes the read op-

eration opi in transaction Ti on the data version xj . The multi-version history Hx

defines a total order ≺x for each data object x. The total version order ≺ is the union

of the ≺x in Hx [Thomas, 1984].

Given a multiversion history H and a total version order ≺, a direct dependency

graph can be constructed by setting a vertex for each transaction Ti in H, and a

direct edge Ti → Tj if one the following conditions hold:

(a) write-read dependency: Ti →wr Tj , if wi(xi) in Ti produces a version of data

object xi, and rj(xi) in Tj reads the version of data object xi.

(b) read-write dependency: Ti →rw Tj , if ri(xk) in Ti reads a version of data

object xk, and wj(xj) in Tj produces a later version of data object xj .

(c) write-write dependency: Ti →ww Tj , if wi(xi) in Ti produces a version of data

object xi, and wj(xj) in Tj produces a later version of data object xj .

Guarantee 19 The history H generated by FPC can guarantee serializability as its

corresponding direct dependency graph does not contain any oriented cycle.

Proof. Our proof is based on establishing a mapping between each vertex in the

direct graph and its dynamic timestamp order. We prove the graph to be acyclic

79

by illustrating that for each edge Ti → Tj in the graph, FPC can guarantee that

TS(opi) < TS(opj).

• In the case (a), Ti →wrTj means that rj in Tj has read a version of data object

produced by wi in Ti.

1. If Ti has a smaller timestamp than Tj , according to the writing rule W1,

wi arrives too late so that Ti must be aborted and trigger rollback as in

K1.

2. Otherwise, a read by fact according to the reading rule R1 is generated

and regulates TS(wi) < TS(rj) in P1 or P2.

• In the case (b), Ti →rwTj means that ri reads a version of data object before wj

in Tj produces a later version. A stored fact read b4(Ti, Tj) will be generated

and stored according to the writing rule W3.

The read b4 fact in W3 guarantees that Tj with a larger timestamp can not be

committed before Ti with a smaller timestamp based on P1, C1 or P2, C2.

Therefore, we can also have TS(ri) < TS(wj).

• In the case (c), Ti →ww Tj means that Tj produces a later version of data object

overwriting the version created by Ti.

1. If there exists any transaction Tk such that a read operation rk in Tk reads

the version newer than xi while older than xj , then we can have Ti →wr Tk

and Tk →rw Tj .

Based on previous case (a) and case (b), TS(Tk) < TS(Tj) and TS(Tk) <

TS(Tj) will be held accordingly.

Therefore, we can have TS(Ti) < TS(Tk) < TS(Tj).

2. Otherwise, either Ti or Tj can commit at first in C1 or C2, since we

only regulates read b4, read by in P1 and P2, which will not suspend Ti

or Tj . And thus the dynamic timestamp ordering may be considered as

alternating the timestamps to guarantee TS(wi) < TS(wj).

80

5.4 Implementation of FPC

Rubato DB uses Berkeley DB2 with B-tree indexes for basic data operations (e.g.

put, get, insert, delete). All table partitions and their secondary index files if any are

stored on the local disk as Berkeley DB files. The basic operations of the FPC are

implemented as a layer, called Formula DB (FDB) on top of Berkeley DB. Formula

DB is a thread-free package compatible with Berkeley DB, such that all disk accesses

are through Formula DB3. In addition to all Berkeley DB operations, Formula DB

also supports the following operations and functionalities:

(a) FDB→ pre-commit(T1): to perform the pre-commit operation on FDB, as speci-

fied in P1 and P2,

(b) FDB→ commit(T1): to perform the commit operation on FDB, as specified in

C1 and C2.

(c) FDB→ rollback(T1): to perform the rollback operation on FDB, as specified in

K1.

(d) FDB→ update(T1, N, F,W): to update the Nth column of the FDB according to

the formula F for all records satisfying the boolean value expression W .

Formula DB uses (a), (b), (c) to achieve serializability over distributed nodes; and

uses (d) to store logic formulas instead of multiversions of updated data items for FPC.

Formula DB implements a fine granularity of control on the manipulation of data at

row level or even finer by using formula unification. As shown in Figure 5.2, an internal

main memory Formula DB is used to store logic formulas of all the updates. Each

update operation is stored as one formula. Selection or read operation is evaluated

against both formulas and disk. Update or write operation is done only after the

transaction is committed. All associated formulas are removed from the main memory

when the related transaction’s state is cleared. The implementation of Formula DB

is decentralized in that every node contains a transaction stage to initialize the two-

phase commit/rollback.

2The transaction support of Berkeley DB itself is turned off.
3We set the buffer size of Formula DB same as Berkeley DB that is fine-tuned based on the data

size.

81

Figure 5.2: Query/Update engine module

FPC operates in a distributed environment, which needs to deal with partial

failure and network partitions. Partition independence ensures that failed clients do

not cause other clients to fail. This provides network partition tolerance as long as

clients can access relevant working partitions.

FPC uses a two-phase commit protocol, which will always complete the transac-

tion except when every relevant node has performed the precommit phase, but none

of them has performed the commit phase.

The node where the two-phase commit protocol is initialized is called the co-

ordinator node for the transactions. Other participating nodes are cohort nodes,

respectively. Rubato DB includes measures for dealing with various kinds of fail-

ures and/or network partition that might occur. Failures of transactions can lead to

aborting itself, and will not lead to blocking the execution of other transactions.

(a) The cohort node times out while waiting for a pre-commit message. The cohort

can be sure that no commit/rollback decision has been taken at any node, since

it has not replied any ready-to-commit yet. The cohort decides to rollback. If a

pre-commit message subsequently arrives, the cohort will simply respond with a

negative response that will prevent coordinator from making a commit decision.

(b) The coordinator node times out while waiting for a ready-to-commit response

from cohorts. The coordinator will decide to rollback and send a rollback message

to all cohorts. Though that all nodes might have sent positive read-to-commit

response, but one of the replies might not have been delivered during the timeout

82

period. In this case, the coordinator decides to rollbacks the transaction, even

though all cohorts are operational and reply ready-to-commit.

(c) The cohort cannot unilaterally choose to commit or rollback since the coordina-

tor might have made a different choice, thus violating unanimity. The cohort

attempts to communicate with the coordinator to determine the outcome of the

transaction. If the cohort cannot communicate with the coordinator, it attempts

to communicate with another cohort. If it finds one that has committed or aborted,

it makes the same decision. If it finds one that has not yet reply read-to-commit,

they both decide to rollback. Otherwise, the cohort is blocked until it can deter-

mine if the coordinator has made a decision and if so what that decision is.

Similar to the timestamp management approach of Spanner [Corbett et al., 2012]

that avoids transactions from being executed with an invalid timestamp, Rubato DB

adopts a loading control schema implemented in the socket monitor stage based on

the following principles:

At any time, the system should process the requests with least conflict potential.

When all the current requests have higher conflict potential, the socket monitor stage

would wait awhile for new requests with lower potential to arrive. The conflict po-

tential is evaluated by the number of active clients and priorities among transactions.

The socket monitor maintains one list of active clients (with an active transaction)

and one list of requesting clients (whose requests are waiting to be processed).

Assume the oldest timestamp in the requesting list is TSR, and the number of

active clients is NA, and NO is the number of active clients whose transaction times-

tamp TS ≤ TSR. The conflict potential at any moment is determined by NO

NA
. If the

transaction TTSR
with timestamp TSR is the oldest among all active transactions,

then the ratio is 1
NA

, and processing TTSR
has the least conflict potential. On the

other hand, if TTSR
is the youngest transaction, then the ratio is NA

NA
= 100%, and

processing TTSR
has the highest conflict potential. Rubato DB regulates the socket

monitor not process any request when the oldest waiting transaction is not among

the older 20%.

83

5.5 Performance Evaluation

In this section, we provide a detailed experimental evaluation of Rubato DB to analyze

the impact of the major design and implementation choices of Rubato DB.

We report various experiments, focusing on the performance evaluation of Rubato

DB. The main purposes of experiments are:

1. What is scalability of Rubato DB for the OLTP applications requiring ACID

properties?

2. Is Rubato DB capable of handling big data OLTP applications using a collection

of commodity servers?

Since Rubato DB is developed using the proposed new formula protocol for con-

currency and the staged grid database architecture, the answers to aforementioned

questions also provide an assessment to the FPC and the new architecture.

We also present some interesting experiments conducted during the development

of Rubato DB that provide much needed insights to FPC and the staged architecture.

Particularly, answers are given to the following questions:

3. If numerous conflict operations access data items distributed over multiple nodes

in an OLTP application, what is the impact on the performance of FPC?

4. In developing an application using the staged architecture, which is a better

choice between using either single-thread or multiple-threads for each stage?

All the experiments reported in this paper use a collection of (up to 16) commodity

servers connected with a Gigabit LAN with low network latency. More specifically,

1. Each server has dual quad-core Intel Xeon CPUs (maximum CPU usage is

800%), 32 GB of main memory, SATA disks configured in RAID0.

2. All of the servers are running Linux Ubuntu 12.04 LTS.

3. A Rubato DB server runs on the collection of servers as one database instance.

In order to measure performance of Rubato DB, the standard TPC-C benchmark

is used. The TPC-C benchmark4 is a comprehensive database benchmark test

4http://www.tpc.org/tpcc/

84

that continues to be a popular yardstick for comparing OLTP performance on var-

ious hardware and software configurations. TPC-C benchmark includes pre-defined

database schema to generate warehouse data as the target domain. The TPC-C

benchmark was introduced to measure the performance of transaction processing. It

is a mixture of read-only and update intensive transactions that simulate the activi-

ties found in complex warehouse application environments. The TPC-C benchmark

suite consists of nine tables and five transactions that portray a wholesale supplier.

The five transactions represent various business needs and workloads:

(a) the NEW ORDER transaction which models the placing of a new order;

(b) the PAYMENT transaction which simulates the payment of an order by a cus-

tomer;

(c) the ORDER STATUS transaction representing a customer query for checking the

status of the customers last order;

(d) the DELIVERY transaction representing deferred batched processing of orders

for delivery;

(e) the STOCK LEVEL transaction which queries for the stock level of some recently

sold items.

Table 5.4 summarizes the characteristics of the inclusive transactions.

Table 5.4: TPC-C benchmark workloads summary

Transaction Workload Operations Frequency

New Order Middle-weight Read-Write Read:50% Write:50% 45%

Payment Light-weight Read-Write Read:55% Write:45% 43%

Order Status Middle-weight Read-only Read: 100% 4%

Stock Level Heavy-weight Read-only Read: 100% 4%

Delivery Heavy-weigh Read-Write Read: 40% Write:60% 4%

TPC-C performance is measured in tpmC (i.e., the number of New-Order trans-

actions per minute). The benchmark can be scaled up by increasing the number of

warehouses and hence the number of concurrent clients.

85

server. This allows us to analyze the bottleneck for scaling up. We investigate the

capacity of a single server system by scaling up the RAM size (i.e., 32 GB, 64 GB, 128

GB). We deploy all staged modules in one server. The test is conducted by increasing

the number of clients from 1000 to 20000 (each warehouse has 10 clients as per the

TPC-C specification). Figure 5.5 shows the CPUs can achieve high utilization with

128 GB RAM. Considering we only have a collection of commodity servers with 32

GB RAM, so the memory will easily become the bottleneck for fully utilizing the CPU

resources. As a reasonable workaround, in the following tests, we strictly comply with

TPC-C specification with one exception that is setting 50 clients per warehouse in

order to make the best of the computing resources we have. Figure 5.5 shows that

our results will still stand if we fully comply with TPC-C specification, i.e., 10 clients

per warehouse if we had 16 servers with 128G memory each.

Figure 5.5: Scaling up with Memory Size

5.5.2 Scalability under TPC-C Benchmark

The following set of experiments are conducted to measure scalability of Rubato DB5

for OLTP applications using the TPC-C Benchmark.

To test the scalability of Rubato DB, we continue the experiments by increasing

5By using “SET TRANSACTION ISOLATION LEVEL SERIALIZABLE”, Rubato DB provides
serializable transaction semantics guarantee.

87

Table 5.5: TPC-C results

warehouse size clients servers tpmC

500 72 GB 25000 1 28935
950 135 GB 47500 2 55390
1700 245 GB 85000 4 105572
3200 464 GB 160000 8 184524
6500 943 GB 325000 16 363759

Figure 5.6: TPC-C Performance on 1 node

the number of concurrent clients from 25,000, at the full capacity of one server, to

47,500 using two servers, to 85,000 using four servers, and all the way to 325,000

clients using 16 servers6. The latency of all TPC-C tests satisfies the benchmark

specification, and as a matter of fact, all transactions are completed within 0.6 second.

The performance of scalability is summarized in Table 5.5, and all details are presented

in Figures 5.6, 5.7, 5.8, 5.9 and 5.10. There are two types of nodes when the system

size is greater than one. Compared with non-main nodes, the main-node also includes

an additional socket monitor stage and simulates the client requests of the TPC-C

test program7.

The tests show that the system works smoothly by allocating more computing re-

6Rubato DB is currently implemented as a research system in the university lab, and its perfor-
mance may still be improved dramatically comparing with those commercial ones.

7We do not need dedicated client servers for simplicity and minimal hardware cost.

88

Figure 5.7: TPC-C Performance on 2 nodes

Figure 5.8: TPC-C Performance on 4 nodes

sources gradually to handle growing client base. The CPU and RAM usage percentage

increases linearly with the growing client number. However, when the system reaches

its full capacity, increasing the number of clients will decrease the tpmC. Then the

system needs to scale out by adding more servers. The results clearly demonstrate

that Rubato DB is scalable for OLTP applications in that the throughput of the

benchmark satisfies a linear growth with the increase of the number of servers used.

89

Figure 5.9: TPC-C Performance on 8 nodes

Figure 5.10: TPC-C Performance on 16 nodes

The overall throughput of Rubato DB with different system sizes is plotted in Fig-

ure 5.11, which shows the achieved throughput (tpmC) and the rollback ratio on

top of the commodity servers cluster. The rollback ratio is stable at a low level of

0.05% as the number of nodes increases. Our experiments also verify that the FPC

is scalable in distributed database environment without decreasing the performance.

Another interesting observation is that by using the proposed formula protocol for

90

Figure 5.11: Scalability on TPC-C Benchmark

concurrency and the new staged grid database architecture, we can develop a large

scale of database applications running on a collection of commodity servers, with-

out using expensive network-attached storage (NAS) systems and/or cluster servers.

Thus, in a stable grid environment where all compute nodes works normally, we can

predict that Rubato DB is able to achieve superior linear scalability.

5.5.3 Conflict Operations over Different Partitions

This set of experiments are design to investigate the impact on the performance of

OLTP applications using the formula protocol for concurrency when a large percent-

age of conflict operations accessing data items distributed over multiple different grid

nodes. We execute a workload derived from the TPC-C benchmark by involving

remote guest clients. With remote guest clients, transactions will need to access mul-

tiple table partitions across multiple nodes, adding additional network overhead. The

performance of the TPC-C benchmark tests with the remote guest accesses varying

from 1%, 10%, 20%, and 30% are presented in Figure 5.12.

Rubato DB runs smoothly and correctly8 with various percentages of remote guest

accesses. As expected, the implementation of FPC does not limit the scalability,

unless extensive conflicts occur over distributed nodes, as shown by the performance

8TPC-C check program is conducted to verify all constraint conditions are passed.

91

Figure 5.12: Impact of Remote Guest Clients

declining with the increase of remote guest accesses in Figure 5.12: with 10% remote

guest accesses, the throughput of the TPC-C test reduces to about 80% on 8 and 16

grid nodes. The performance further reduces to 65% with 20% remote guest accesses.

With 30% remote guest accesses, the performance may decrease nearly by half. We

believe that the performance repercussions increase relative to the number of nodes

mainly because of the communication cost among distributed nodes, which leaves

room for improvement of the FPC.

5.5.4 Stages vs. Threads

Modern database systems adopt a thread-based concurrency model for executing

query streams. Traditional RDBMS typically use a pool of threads to best utilize the

available computing resources. Each incoming query is handled by multiple threads

according to the number of available CPUs. Each thread executes until it either

blocks on a synchronization condition, an I/O event, or until a predetermined time

quantum has elapsed. Then, the CPU switches context and executes a different

thread or the same thread takes on a different task. The thread scheduling does

not exploit cache contents that may be common across a set of threads. Context-

switching typically relies on generated events instead of program structure or the

92

querys current state. It has been reported that the multiple threads may pay a heavy

price in context switching, especially in transactional processes involving high code

foot-print and exhibiting irregular data access patterns [Harizopoulos and Ailamaki,

2003; Stonebraker et al., 2007].

Different from traditional databases using multi-threads for parallelism, and staged

event-driven architecture applications using multi-threads in their stages, Rubato DB

is implemented with a single-thread in each and every staged module in its architec-

ture, partially due to the results demonstrated by the experiment below.

Figure 5.13: Throughput Comparison

We conducted a sequence of experiments for performance comparison of Rubato

DB using single-thread stages vs. multi-threads stages running on a collection of 4

commodity servers. The results are presented in Figure 5.13. It clearly demonstrates

that the superior scalability of the system using a single thread delivers much better

performance than that of the system using multiple threads.

5.6 Chapter Summary

In this chapter, we introduced formula protocol to solve one of the key challenges in

designing and implementing NewSQL systems, that is, developing a suitable concur-

rency control protocol for thousands of concurrent users accessing data distributed

93

over commodity servers. The formula protocol for concurrency is a variation of the

multi-version time-stamp Concurrency Control Protocol, which guarantees the seri-

alizability of transactions processed by Rubato DB.

To verify the solution of staged grid architecture and formula based protocol for

NewSQL system, the performance experiments of Rubato DB are reported in this

chapter. The results prove that:

1. Rubato DB is highly scalable and efficient for OLTP applications supporting

the ACID properties.

2. Rubato DB is considerably cost effective.

3. It is better to use a single thread for all stages in the staged architecture.

4. The scalability of OLTP applications is not limited by using FPC, unless a large

percentage of conflict operations access data items distributed over different grid

nodes.

94

Chapter 6

BASIC: Narrowing the

Consistency Gap

“Maintaining a consistent platform also helps improve product support -

a significant problem in the software industry.”

- Bill Gates.

Based on the understanding of CAP theorem [Brewer, 2002], linearizability is not

achievable with high availability in the presence of network partitions, and low la-

tency is not compatible with linearizability either [Gilbert and Lynch, 2002; Bailis et

al., 2013a]. To minimize latency and remain available during network partition or par-

tial failure, many modern large-scale data management systems eschew transactional

functionality, and opt for strong semantic guarantees for atomic non-transactional

operations over multiple data partitions (atomic multi-partition operation), such as

Google’s Bigtable [Chang et al., 2008], Amazon Dynamo [DeCandia et al., 2007],

Apache Cassandra [Lakshman and Malik, 2010], Yahoo! PNUTs [Cooper et al., 2008],

Linkedin’s Espresso [Qiao et al., 2013].

Many of these systems have attempted to provide weaker consistency guarantees

- the most notable being BASE (Basic Availability, Soft State, Eventual Consistency)

[DeCandia et al., 2007; Lakshman and Malik, 2010; Cooper et al., 2008]. The BASE

can be summarized as: the system responses basically all the time (Basically Avail-

able), is not necessary to be always consistent (Soft-state), but has to come to a

consistent state eventually (Eventual consistency) [Pritchett, 2008]. Despite of its

95

high concurrency and performance benefits, BASE has its own inevitable problems

resulting in incorrect behavior for use cases that require consistent visibility for users.

Therefore, BASE should not overwhelmingly be the only default choice. We believe

the design space for the consistency model is not limited to merely ACID that is too

strong and BASE that is too weak, but rather that there is a spectrum between these

two extremes, and it is possible to build a set of semantics guarantees combining

different consistency models and availability for various use case requirements.

In this chapter, we present BASIC (Basic Availability, Scalability, Instant Con-

sistency), an alternatively higher level of consistency than BASE, for a large under-

served class of applications requiring multi-partition, partial-replication, atomically

non-transactional operational data access where none of inconsistent (soft) states

should be visible to clients. BASIC is desirable because it makes system easier for

users to reason about in a scalable manner. BASE and BASIC provide different

choices between the model that is faster but requiring extra efforts to deal with in-

consistent results and the model that delivers consistent results but is relatively slower

with higher latency.

6.1 Motivating Examples

The weak eventual consistency is applicable for some distributed applications requir-

ing “always-on” operations. ATM is such a typical example for eventual consistency,

which is designed to have a higher priority for availability than consistency in the

partitioning replicated mode. If an ATM is disconnected from the network, it can

still provide service to the user. And when the partition eventually heals, the ATM

sends a list of requests to the bank and the final balance will still be correct eventu-

ally. However, there are a range of large-scale applications that cannot accept weak

eventual consistency.

Case 1: Global dependency

For example, in a social networking services (e.g. Facebook’ TAO [Bronson et al.,

2013], databases contain information about users’ posts, records, relationships, etc.

Maintaining the global dependency between events is an important consideration for

building high quality online services [Lloyd et al., 2011; Bailis et al., 2013b]. Imagine

96

a hypothetical scenario:

1. Landon posted a status S: “Got injured in a game...”.

2. After the treatment, Landon updated S to a new status S’: “Feel better!”.

3. Landon’s friend Sophia observed S’ and responded J: “Relieved to know that!”.

If merely eventual consistency is respected, a third friend Zoe, can possibly observe

J and S rather than S’, causing misunderstanding that Sophia is happy about Landon’s

injury. Similarly, foreign-key constraints and bi-directional relationships in the social

network (e.g., the friend of, likes and liked by association) need to reserve the global

dependency (or causality) [Qiao et al., 2013; Bronson et al., 2013; Cooper et al., 2008].

As another example for global dependency, cloud-based health care applications

[Wu et al., 2013] prefer value predictable utility and consistency over availability and

low latency. Eventually consistent medical record with missing dependency may lead

to improper path of patient care.

Case 2: Storage view

We consider an eventually consistent storage system, adopting the ring hashing

replication model (e.g., Dynamo [DeCandia et al., 2007], Cassandra [Lakshman and

Malik, 2010]) or host based model (Amazon S3 [Brantner et al., 2008], Google F1

[Shute et al., 2013]). Various applications load data into it; meanwhile some others

extract data out. When data read from one of the replica, it might succeed, but

could be lagged behind for part or all of the data. It is quite difficult to quantify the

time differences between pairs of storage operations, since the intervals depend on

situational factors (e.g., clock skew, network latency or workload) and configuration

parameters (e.g., the number of replicas accessed). So the storage system needs set

up certain protocol that requires modifying both the write sets and the read sets. In

a more complicated situation, the system has to deal with the fact that reads from

non-synchronous tables, which might get cross-reference records that point to data

that is invalid or even does not exist [Shute et al., 2013].

Generally, having inconsistent storage view pushes a lot of problems from the

storage system to the application. Application developers need appropriate tools to

determine what effect different factors have on the value observed by applications,

97

and spend extra work in detecting and compensating for all anomalies that can show

up.

Case 3: Partition index

Most large-scale applications might need to perform queries. Local indexes are

created so that query requests can be issued against these indexes. Each local index

is associated with exactly one partition of the table, which is easy for management

but not scalable.

Some systems (e.g. Espresso [Qiao et al., 2013], Cassandra [Lakshman and Malik,

2010], Megastore [Baker et al., 2011], etc.) employ global partition indexes. Global

partition indexes are scalable in the degree of partitioning. However, if the eventually

consistent fashion is applied, changes may be propagated to the global partitioned

indexes after a long delay. Users’ applications need to anticipate and handle situations

where a query based on these indexes are not correct.

To better understand the problem induced by eventual consistency, we imagine

a set of partitioned data items spread over multiple servers. In such distributed

infrastructure, network partition may prevent servers from communicating, and in

the absence of server failures, communicating messages may also be delayed by factors

such as network congestion and routing.

Consider an example of data items1 with three columns L, S, H distributed over

three different partitions P1, P2, P3, respectively; and the following three atomic multi-

partition operations on the data item:

1. a(x): Wa(L = L+ x,H = H + x);

2. b(y): Wb(S = S + y,H = H − y);

3. check: Rc(L, S,H), assert(L− S = H).

Conventionally, we use W and R to denote write and read operations respectively.

a(x) increases the value of data items L and H by the value of x; b(y) increases the

value of data item S by the value of y, while decreases the value of data item H by

the value of y; check reads the value of data items L, S,H, and testifies the equation

L− S = H.

1For simplicity, we consider only one data item but all the discussions are valid for a set of data
items.

98

The state of the data item transits from one consistent state to another if and

only if it is caused by the completion of an update atomic operation (i.e., a(x), b(y)).

We assume initial values of L, S, H are all 0.

Example 1. Consider a schedule with no R/W or W/W overlap across all partitions:

S1 = {a(20), b(10), check} such that:

1. a(20) completes before b(10) starts;

2. check is issued after b(10) is done.

Table 6.1: No R/W or W/W overlap schedule

schedule value

P1 P2 P3 L S H

t1 Wa1(L+ 20) Wa3(H + 20) 20 0 20
t2 Wb2(S + 10) Wb3(H − 10) 20 10 10
t3 Rc1(L = 20) Rc2(S = 10) Rc3(H = 10)

Table 6.1 describes the schedule on each partition. Note that Wai,Wbi, Rci rep-

resent the corresponding actions of operations a, b and check on the partition Pi(i =

1, 2, 3). The check at t3 returns a consistent state according to BASE, since there

exists no overlap among operations on all partitions. However, this is not always the

case, as multi-partition operations can overlap due to various reasons (e.g., network

delay, network congestion and routing, transmission latency etc.).

Example 2. Consider a schedule with R/W and/or W/W overlap across partitions:

S2 = {a(20), b(10), check, check} such that:

1. a(20) is incomplete at t2 when b(10) starts;

2. the first check is issued at t3 before b(10) is done;

3. the second check is issued after b(10) is done.

Table 6.2 describes the schedule on each partition. There exist overlaps between a(20)

and b(10); and b(10) and the first check.

The schedule in Table 6.2 satisfies BASE, since though the first check at t3 returns

an inconsistent state, while at some later time after t4, the second check eventually

99

Table 6.2: W/W and R/W overlap schedule

schedule value

P1 P2 P3 L S H

t1 Wa1(L+ 20) 20 0 0
t2 Wb2(S + 10) Wa3(H + 20) 20 10 20
t3 Rc1(L = 20) Rc2(S = 10) Rc3(H = 20)
t4 Wb3(H − 10) 20 10 10
t5 Rc1(L = 20) Rc2(S = 10) Rc3(H = 10)

achieves a consistent state. For such schedules, clients are required to reason about

the correctness of each state which can be consistent or not.

Table 6.3: W/W and R/W overlap schedule for partitioned replicas

schedule value

P1 P2 P3 R1 R2 R3

t1 Wa1(R1 × (1 + 20%)) Wa2(R2 × (1 + 20%)) Wb3(R3 + 10) 120 120 110
t2 Rc1(R1 = 120) Rc2(R2 = 120) Rc3(R3 = 110)
t3 Wb1(R1 + 10) Wb2(R2 + 10) Wa3(R3 × (1 + 20%)) 130 130 132
t4 Rc1(R1 = 130) Rc2(R2 = 130) Rc3(R3 = 132)

Now we consider a case for partial replication. There is a distinction between

a fully replicated system, in which all servers are replicas for all data items, and a

partial replicated system, in which at least one server acts as a replica for a proper

subset of all data items.

Example 3. Consider replicated columns R1, R2, R3 that are distributed across dif-

ferent partitions; and atomic multi-partition operations that are non-commutative2:

1. a(x): Wa(R1 = R1 × (1 + %x), R2 = R2 × (1 + %x), R3 = R3 × (1 + %x));

2. b(y): Wb(R1 = R1 + y,R2 = R2 + y,R3 = R3 + y);

3. check: Rc(R1, R2, R3), assert(R1 = R2 = R3).

a(x) increases the value of data replicas R1, R2, R3 by the percent of x%; b(y)

2The order of the execution will affect the final results. Some operations are commutative, such
as increment and decrement, of which the execution order does not matter to the result.

100

increases the value of data replicas R1, R2, R3 by the value of y; check reads the value

of data replicas R1, R2, R3, and testifies the equation R1 = R2 = R3.

Consider a schedule S3 = {a(20), check, b(10), check} with overlaps between a(20)

and b(10); and a(20) and the first check, as shown in Table 6.3. We assume the initial

value for three replicas to be 100.

Both checks in Table 6.3 return inconsistent states, even at the time points after

t4. Additional restriction is required for applications to ensure the reconciliation of

replicas.

The cases and examples above motivate us to propose BASIC, since BASE has

the following inevitable limitations:

• The eventual consistency makes only liveness rather than safety guarantee, as

it merely ensures the system to be consistent in the future [Lloyd et al., 2011].

• The soft state presents challenges for developers, which requires extremely com-

plex and error-prone mechanisms to reason about the correctness of the system

state at each single point [DeCandia et al., 2007; Shute et al., 2013; Cooper et

al., 2008].

• Additional restriction is required for the soft state to converge to eventual con-

sistency [Roh et al., 2011; Shapiro et al., 2011; Vogels, 2008].

6.2 BASIC Properties

6.2.1 BASIC Specification

In order to resolve the inconsistency of soft state, we propose BASIC standing for

Basic Availability, Scalability and Instant Consistency.

• Basic Availability: the system can response for all continuously operations in a

timely manner. The system should never block waiting for an operation that is

either delayed or may never arrive in the presence of partitions.

• Scalability: the system is able to scale out by adding more resources for increas-

ing workloads. Partitioned data is arranged to be hosted on distributed servers

over a shared-nothing architecture.

101

• Instant Consistency: all partitioned data seen by each read operation reflects the

recent consistent state, i.e., each read operation returns the result that reflects

write operations which have been executed completely prior to the read on all

partitions.

To define instant consistency formally, we first describe the abstract model over

which it operates. Assume the database is running on partitions P1, P2, . . . , Pn. Two

types of multi-partition operations are considered: (1) READ (i.e., to read a set of

data items from multiple partitions) and (2) WRITE (i.e., to write a set of data items

into multiple partitions).

An important concept in our model is the notion of dependency between opera-

tions. Four rules on each partition define dependency as following:

1. Direct Read-After-Write dependency. w
wr
→ r, if the operation r reads the

value written by the operation w.

2. Direct Write-After-Read dependency. r
rw
→ w , if the operation r reads the

value that is later overwritten by the operation w.

3. Direct Write-After-Write dependency. wi
ww
→ wj , if the operation wi writes

a value that is later overwritten by the operation wj .

4. Happen-before dependency. opi
hb
→ opj , if the operation opj starts after opi is

finished.

A sub-schedule Si on the partition Pi is a sequence of operations that access the

data item on Pi. A total schedule S is the union of sub-schedules on all related

partitions. Given a total schedule S and its all sub-schedule Si, a direct dependency

graph DDG(S) can be constructed by setting a vertex for each operation op in S, and

a direct edge opm → opn if any of the previous rules is satisfied.

Following the convention of general isolation level [Adya et al., 2000; Berenson et

al., 1995]: instant consistency is defined as the absence of the following anomalies

in the total schedule S.

• G0 (Aborted Reads): A total schedule S exhibits anomaly G0 if it contains an

aborted write w and a read r, such that r has read a value written by w.

102

• G1 (Write Cycle): A total schedule S exhibits anomaly G1 if DDG(S) contains

a directed cycle consisting entirely of write-write dependency edges.

• G2a (Circular Information Flow): A total schedule S exhibits anomaly G2a if

DDG(S) contains a directed cycle consisting entirely of read-write and write-

read dependency edges.

• G2b (Interference): A total schedule S exhibits anomaly G2b if DDG(S) con-

tains a direct read-write dependency edge from r to w without a happen-before

dependency edge from w to r.

A total schedule S is valid under instant consistency iff G0 and G1, G2a, G2b are

not present in S and its DDG(S).

• Proscribing G0 captures the essence of no-dirty-reads anomaly.

• Proscribing G1 prohibits interleaving of write operations on different partitions.

• Proscribing G2a ensures that there is a unidirectional flow of information from

opm to opn.

• Proscribing G2b guarantees that the value in the future should not be returned

by any current read.

For instance, in previous Tables 6.2 for schedule {a(20), b(10), check1}:

1. check1
rw
→ b(10) exists on partition P2 at t2-t3 in DDG(S2);

2. And b(10)
wr
→ check1 exists on partition P3 at t3-t4 in DDG(S3);

3. Since DDG(S) = ∪DDG(Si)(i = 1, 2, 3), DDG(S) includes both check1
rw
→

b(10) and b(10)
wr
→ check1, thus G2a (Circular Information Flow) is violated.

In the previous Table 6.3 for the schedule {a(20), check1, b(10), check2}:

1. check1
rw
→ b(10) exists on partition P3 at t1-t2 in DDG(S3);

2. We do not have b(10)
hb
→ check1. The values returned by check1 violates G2b

(Interference);

103

3. Until check2 began at t4, we have b(10)
ww
→ a(20) on DDG(S1) and DDG(S2)

for sub-schedules on partition P1 and P2, respectively;

4. a(20)
ww
→ b(10) exists in DDG(S3) for sub-schedules on partition P3. Since

DDG(S) = ∪DDG(Si)(i = 1, 2, 3), it includes both b(10)
ww
→ a(20) and a(20)

ww
→

b(10), that is against G1 (Write Cycle).

Instant consistency is weaker than serializability. Instant consistency trades off a

lower boundary (operational aligned) of consistency than serializability (transactional

aligned) for seeking a higher level of availability and a lower level of latency. Con-

sider two transactions T1={a(20), check1} and T2={b(10), check2}. The serializable

schedules include {a(20), check1, b(10), check2} and {b(10), check2, a(20), check1},

both of which also satisfy instant consistency. However, the schedule {a(20), b(10),

check1, check2} can only achieve instant consistency only rather than serializability.

We present detailed differences in the upcoming section.

6.2.2 BASIC in CAP

The CAP Theorem [Brewer, 2002; Gilbert and Lynch, 2002] asserts that any net-

worked distributed system can have only two of strong consistency, availability and

partition tolerance, that is, a highly available system cannot provide strong consis-

tency guarantees in the presence of network partitions. Though strong transactional

consistency models are not achievable with availability, many weak consistency models

are feasible in the highly distributed environment.

As formally proven [Gilbert and Lynch, 2002], the CAP Theorem pertains to the

consistency model of linearizability or the ability to read the most recent write to a

data item that is partitioned across servers. However, CAP theorem just provides

a relatively narrow scope which is often misconstrued as a broad result regarding

the co-existence of consistency and availability in the presence of partitions. By

introducing BASIC properties, we are now able to classify a range of models on the

three dimensions of consistency, availability and partition tolerance in CAP theorem

according to different levels of safety and liveness guarantees.

Serializability, the highest isolation level, guarantees that the concurrent execution

of a set of transactions results in a system state that would be obtained if transac-

104

tions were executed serially, i.e., one after the other. It is typically implemented by

pessimistic reads and pessimistic writes, achieving the condition that unless the data

is already updated to the latest state, the access to it is blocked. Snapshot isolation

is a multi-version concurrency control model based on optimistic reads and optimistic

writes. A committed snapshot is taken when the snapshot transaction starts, and

remains consistent for the duration of the transaction.

To provide high availability and read scalability, serializability will be combined

with replication synchronization, which can achieve one-copy serializability [Bornea

et al., 2011]. Within one-copy serializability, the execution of a set of transactions

are equivalent to executing the transactions in the serial order within only one single

up-to-date copy. Similarly, combining snapshot isolation with replication synchro-

nization, one-copy snapshot isolation can be obtained accordingly [Lin et al., 2005].

Eventual consistency is one of the most commonly used weak consistency models.

The eventual consistency guarantees that if no new updates are made to the object,

eventually all accesses will return the last updated value. Even though a system with

eventual consistency guarantees to converge to a consistenct state, it may not provide

a single image system since it makes no promise about the time intervals before the

convergence is reached [Roh et al., 2011; Vogels, 2008; Shapiro et al., 2011].

Causal consistency is stronger than eventual consistency by providing additional

guarantees on the operations which are causally related. Any execution is the same as

if all causally related read and write operations were executed in an order that reflects

their causality. Causal consistency guarantees that the execution agrees on the relative

ordering of causally related operations [Lloyd et al., 2011; Bailis et al., 2013b]. Causal

consistency does not prevent conflicting updates [Lloyd et al., 2013].

Table 6.4: Consistency model comparison

Convergence Freshness Causality High Availability

ACID One-copy Serializability Strong Complete Yes No
One-copy Snapshot Isolation Strong Snapshot Yes No

BASIC Instant Consistency Strong Snapshot Yes Basic

BASE Causal Consistency Weak Arbitrary Yes Yes
Eventual Consistency Weak Arbitrary No Yes

105

We compare different consistency models according to the properties of scalability

in Table 6.4.

Convergence is usually defined on a sequence of objects. The sequence Xn con-

verges to X, if for every ε > 0 there exists an integer m such that for every n > m it

happens that |Xn −X| < ε. Convergence in the consistency content can be defined

as data objects that have received the same updates will reach equivalent state after

δ units of time. It is desirable by the systems that δ should be as small as possible.

• Weak convergence. Though data objects that have received the same updates

will finally reach equivalent state in the future, it makes no promise about the

value of δ.

• Strong convergence. If δ is always smaller than the interval before a read comes

after a write, strong convergence can be guaranteed so that a system will not

be divergent at the data object for each read operation.

Freshness is also called as bounded staleness [Terry, 2011] based on the quantify

staleness of observed read values as the number of missed writes or the amount of

time [Cipar et al., 2012; Bailis et al., 2012b].

• A consistency model provides arbitrary freshness if the read operation can ar-

bitrarily observe any stale version without restrictions. The arbitrary freshness

condition is trivial and undesirable.

• Snapshot freshness guarantees that every read operation observes the most re-

cent snapshot of data committed before.

• Complete freshness guarantees that each read observes the most recent updated

data object.

Causality is defined as abstract conditions that ensure processes in a cluster agree

on the relative ordering of operations which are causally related. It requires that

reads respect the order of causally related writes. With causality, all operations that

could have influenced one operation must be visible before the operation takes effect.

106

Availability

Availability represents a key attribute for large-scale data management systems

to guarantee adequate performance ensuring data survival in the event of node failure

or network partition.

• Highly available systems ensure “always on” operation and guarantee low la-

tency for single-object, single-operation availability [DeCandia et al., 2007]. We

say a system provides high availability if every request that can reach a non-

failing server can receive a response from that server, even in the presence of

network partitions between servers [Lloyd et al., 2013].

High availability is considered for single-object, single-operation availability,

which is however not sufficient for the applications with operations over multiple

objects.

• We say that a system provides basic availability:

1. If each read operation of a client can access at least one replica for every

data object, the read operation will return a response.

2. If the write operation can achieve at least one replica for every data object

it attempts to access, the write operation will commit or reasonably abort.

Reasonable aborts ensures that the system can not indefinitely abort op-

erations on its own volition.

Partition Tolerance

Partition tolerance guarantees that consistency is maintained even when network

failures prevent some servers from communicating with others. It depends on the

policy of update manipulation consisting of update initiation (write-to-one, write-

to-many) and update propagation (eager or lazy propagation) [Kemme and Alonso,

2000; Wu and Kemme, 2005].

With write-to-one initiation, all updates are firstly sent to one designate node.

This node resolves all conflicts, determines the order to perform updates and broad-

casts to other nodes with order preserving [Défago et al., 2004]. The propagation

can be eager (i.e., each partition waits to commit until all replicas have received the

107

6.3 Protocol for BASIC

Now we present the protocol for providing instant consistency in multi-partition,

partial replicated data management systems. We apply the similar idea in FPC with

the optimization.

6.3.1 Protocol for Instant Consistency

At a higher level design, the write operation in the protocol relies on a distributed

certification algorithm that is an integration of the two-phase commit protocol com-

bined with the total order multi-casting. The certification is used to validate each

write operation and guarantee that once a write updates the data on one partition,

all other respective partitions should be updated to the same version. The total or-

der multi-casting facilitates to preserve the order of the commit for write operation

among all the replicas of each data item [Bailis et al., 2013a; Schiper et al., 2010].

The read operation first acquires the version of the latest available formula from

its relevant partitions. Comparing the timestamps fetched by the first round of read,

checks are made to verify that if the version of the snapshot visible on each relevant

partition is consistent. If any inconsistency is found, the reader needs to issue a sec-

ond round of read based on a lower version of snapshot, in order to ensure that the

according formulas are visible on all relevant partitions. We implement pessimistic

and optimistic protocols for read operations based on the tolerance to staleness of

snapshot. The pessimistic read must return the most fresh snapshot so that it may

need to wait for the completion of write operations. The optimistic read allows po-

tentially stale snapshot to achieve fast response. Now, we present the formal protocol

in detail.

Each atomic multi-partition operation op is assigned a unique monotonically in-

creasing timestamp, TS(op), when it is initiated. To guarantee partition indepen-

dence, a list of participating partitions is maintained for each active operation op,

denoted as P (op). P (op) involves only the partitions that maintain replicas of the

data op accessed. With each data item x, on each relevant partition Pi, the following

pieces of information are stored:

(1) lrt(x, P i): the largest timestamp of active read operation on data item x on

109

the partition Pi;

(2) lwt(x, P i): the largest timestamp of active write operation on data item x on

the partition Pi;

(3) list(x, Pi): the list of update formulas.

(4) Initially, lrt(x,Ni), lwt(x, P i) and list(x, Pi) are set to 0, 0 and ∅ respectively.

Write operation

To guarantee the atomicity of the write operation, write operation is processed

with a distributed certification algorithm integrated in the two-phase commit proto-

col. The certification is performed over all participating partitions since each partition

only knows about the snapshot of its own but not the snapshot at other partitions.

Without loss of generality, consider a write operation W accessing three partitions

(P1, P2, P3). Each partition is also replicated by a replica group across sites (multi-

partition partial replicated data set), as shown in Figure 6.2. Solid lines indicate inner

communication in each replica group, while dashed lines indicates outter communica-

tion among leaders and the client. Although the certification adds more messaging for

communication, it may impact latency marginally since the requests are processed in

parallel. Also to reduce communication overhead, we piggyback information on exist-

ing messages, for example, certification result is padded into the prepare ack message.

The distributed certification algorithm is shown in Algorithm 1. The distributed cer-

tification algorithm is integrated into the two-phase commit protocol as part of the

phase for preparing the operation for acceptance.

Read Operation

Read operation begins by first fetch the latest valid version that is visible for

each item from its respective partition. Pessimistic read returns the most recent

version having the timestamp smaller than TS(read(x, Pi)), no matter the formula is

committed or not. Optimist read returns the version with the largest timestamp that

is smaller than TS(read(x, Pi)), whose status is committed. Comparing the version

returned from the first round, the read can check which consistent version of snapshot

can be visible from all respective partitions. If necessary, the second round of read

will obtain the value according to the version determined in the first round. The

distributed read algorithm is shown in Algorithm 2.

110

Algorithm 1 Distributed Write Operation Algorithm

1. W is sent to any relevant partition (e.g. Pi, i = 1, 2, 3) in each replica group.
2. Pi are elected as the leaders for each replica group, respectively.
3. Pi sends the write operation to all cohorts in the same replica group. Certification
is done according to rules W1, W2 and W3 (for pessimistic read) on all cohorts.

• W1. If lrt(x, Pi) = 0 or TS(W (x, Pi)) > lwt(x, P i), W (x, Pi) passes the
certification on Pi. A new formula is added into list(x, Pi), and return positive
response.

• W2. If TS(W (x, Pi)) < lrt(x,Ni) or TS(W (x, Pi)) < lwt(x,Ni), there must
exist at least one read (or write) operation, which should follow W (x, Pi)
according to the timestamp order, has read (written) the value of x before
W (x, Pi). Thus W (x, Pi) is too old to write x, thus certification fails. A
negative response is returned.

• W3.If TS(W (x, Pi)) > lrt(x, Pi) > 0, the write operation is processed as:

(a) Adding an update formula of W (x, Pi) into list(x, Pi);

(b) There must exist another operation Rk(x, Pi) such that:

– TS(Rk(x, Pi)) < TS(W (x, Pi));

– Rk(x, Pi) has read the value of x before.

Return a fact read b4(Rk(x, Pi),W (x, Pi)) , indicating Rk(x, Pi) has read the
data item x before W (x, Pi). W (x, Pi) must wait for being force-written until
Rk(x) is done.

4. Pi aggregates the certification results from all cohorts and acknowledge each
other, confirming that its group has done the certification.

• If all Pi reply positively, it means W will be accepted. Set lwt(x, Pi) =
TS(W (x, Pi)).

• If any Pi replies negatively, W will be aborted.

• Otherwise, W is suspended in the wait queue with a wait for record according
to rule W3;

5. Pi collects the response and achieve the final decision to process W . Pi sends
the decision (accept, abort or suspend) to all cohorts to take the identical actions
for W .

• In case of acceptance, the formula will be forced written.

• In case of abort, the formula is removed directly. W does not affect any
results.

• In case of suspend, a reference to the wait-for meta-data is expanded.

6. When W terminates (revoke or force-write), pessimistic read operations that are
waiting for W will return.

111

Algorithm 2 Read Operation Algorithm

1. read is sent to any relevant partitions (e.g. Pi, i=1,2,3) in each replica group.

2. On each partition Pi, search uf(x, opu1, Pi), . . . , uf(x, opum, Pi) in list(x, Pi)
such that:
(a) TS(opum) < TS(read(x, Pi)) and
(b) TS(opu(m+1)) > TS(read(x, Pi)).
(c) Status of uf(x, opum, Pi) is committed (only applicable for optimistic read).

3. Pi acknowledge each other its own TS(opum), and the minimal version is chosen.

4. Pi calculates the returned value based on the version determined in Step 3,
according to rule R.

• R. Let v0(x) be the value of x on the disk of Pi; Let v1(x) be the value
obtained by applying uf(x, opu1, Pi) on v0(x); vum(x) be the value obtained
by applying uf(x, opum, Pi) on vu(m−1)(x). vum(x) is the value to be retrieved
by read(x, Pi). read(x, Pi) retrieves the value that is supposed to be obtained
by sequentially applying all update formulas on data x issued by operations
prior to the read operation.

5. For pessimistic read, read by(opuk, x, Read(x, Pi)) is recorded for all opuk in
list(x, Pi) such that 1 < TS(opuk) < TS(R(x, Pi)), indicating the value x written
by opuk is read by R(x, Pi).

6. Read action:

• If there exists no read by, read(x, Pi) can return immediately.

• Otherwise, read(x, Pi) needs to return after the completion of the opuk. Read
is put into the waiting queue with a wait for record.

7. If TS(R(x, Pi)) > lrt(x, Pi), TS(R(x, Pi)) is assigned to lrt(x, Pi), indicating
TS(R(x, Pi)) is currently the largest timestamp of active read operation on data
item x on the partition Pi.

112

Figure 6.2: Atomic write illustration

Now we use the previous examples to demonstrate how to achieves instant con-

sistency.

Consider the schedule {a(20), b(10), check} in Example 6.1 and assume the times-

tamp for each operation is:

{TS(a(20)) = 201, TS(b(10)) = 202, TS(check) = 203}.

Operations performed on each partition are illustrated in Table 6.5. The times-

tamps of the operations are shown as the subscripts of each operation. ti illustrates

different time points during the execution.

(a) At t1, formulas issued by a(20) on partition P1 and P2 are stored in the list of

update formulas based on the writing rule W2.

113

(b) At t2, formulas issued by b(10) on partition P1, P2 and P3 are stored based on

the writing rule W2, and since there exists no stored facts read by or read b4

associated with b(10), formulas issued by b(10) are then allowed to be force-

written to update values for each column. Even though the timestamp of b(10)

(=202) is larger than the timestamp of a(20) (=201), b(10) will take effect on the

value without waiting for a(20).

(c) At t3, check is suspended due to the existence of stored fact read by.

(d) At t4, a(20) is revoked since TS(Wa3) = 201 < lrt(H,N3) = 203, according to the

writing rule W1. Upon the removal of formula and read by facts of a(20), check

suspended at t3 is resumed by returning a consistent state (Rc1 = Rc2 = Rc3).

Table 6.5: W/W and R/W overlap schedule with dynamic timestamp ordering

schedule action value

P1 P2 P3 L S H

t1 Wa1 Wa2 uf(L,Wa1, N1) → list(L,N1)
uf(S,Wa2, N2) → list(S,N2) 100 100 100

uf(L,Wb1, N1) → list(L,N1)
t2 Wb1 Wb2 Wb3 uf(S,Wb2, N2) → list(S,N2)

uf(H,Wb3, N3) → list(H,N3)
Forcewrite(b) (dynamic ordering) 110 110 110

Rc1(uf(L,Wa1, N1)), read by(Wa1, L,Rc1)
t3 Rc1 Rc2 Rc3 Rc2(uf(S,Wa2, N2)), read by(Wa2, S,Rc2)

Rc3(H = 110), lrt(H,N3) = 203

Revoke(Wa3), Revoke(a)
t4 Wa3 uf(L,Wa1, N1), read by(Wa1, L,Rc1)

uf(L,Wa2, N2), read by(Wa2, L,Rc2)
Rc1(L = 110), Rc2(S = 110), Rc3(H = 110)110 110 110

Instant Consistency Guarantee

We now consider how the protocol preserves instant consistency according to the

definition (i.e. proscribing G0, G1, G2a, G2b).

• G0 (Aborted Reads): The two-phase atomic commit protocol of write operation

can guarantee that once opuk is applied on one partition, all other respective

114

partitions should be updated to the same version. Otherwise if opuk aborted,

the formula uf(x, opuk, Pi) will be eliminated so that read(x, Pi) can not see

the updates according to rule R.

• G1 (Write Cycle): If there exist wi and wk such that wi → wk, then we have

lwt(x) = TS(wk) < TS(wi) according to ruleW2 and Step 4 in write algorithm.

Similarly, if there also exists wk → wi, we will have lwt(x) = TS(wi) < TS(wk),

inducing the contradiction.

• G2a (Circular Information Flow): If ri → wj exists, it means that a stored

fact read b4(ri, wj) will be generated according to rule W3. The read b4 fact

guarantees that wj with a larger timestamp can not be issued before ri with a

smaller timestamp. Therefore, it is impossible that rj read a version produced

by wi, so that wi → rj can not happen according to step 2 in the read algorithm.

• G2b (Interference): If there exists wi → rj means that rj has read a version

produced by wi. If wi with smaller timestamp arrives later than rj , wi will

abort and retry, since wi arrives too late to force-write according to the writing

rule W1.

Otherwise, a read by fact, according to the step 5 in the read algorithm, is

generated and regulates TS(wi) < TS(rj).

6.3.2 Basic Availability Guarantee

The protocol operates in a distributed environment, which needs to deal with partial

failure and network partitions. Partition independence ensures that failed clients do

not cause other clients to fail. This provides fault tolerance and availability as long

as clients can access relevant working partitions.

The write protocol use a two-phase atomic protocol, which will always complete

the operation except when every relevant partition has performed the first certification

phase, but none of them has performed the second phase. Particularly,

• (i) If a partition Pr accessed by an operation op, has timed out while waiting

during the certification phase, Pr can abort the operation and safely discard its

formula, since Pr can be certain to never force-write op in the future.

115

• (ii) If a partition Pr has performed the certification phase but times out while

waiting in the second phase, Pr can check the status of operation op on any

other partitions to determine the outcome of the operation. If another partition

has executed force-write for op, then Pr can force-write op.

• (iii) The leader unilaterally aborts the operation if it times out while waiting

for other cohorts for the certification phase.

• (iv) Every event happened is logged on each partition, including all operation

submission and phase status changes. If the leader becomes unavailable in each

replica group, another cohort takes over. The replica group is available as long

as there is one available replica to respond.

• (v) If all of the cohorts in the group go down, all running operations are lost.

Operations that were running are assumed to have exited.

Failures of write operations can lead to aborting itself, and will not lead to blocking

the execution of read operations.

Partition independence ensures that one operation only contacts partitions that

its operation accesses, and operations accessing totally different group of partitions

do not affect each other. The partition independence can reduce the work burden

of partitions that are not directly involved in an operation’s execution. And it is

important in the presence of partial failure that prevents one client’s operation from

causing another to block.

6.4 Performance Evaluation

In this section, we are going to conduct experiments on the performance evaluation

of BASIC. The main purpose of experiments includes:

1. What is the inconsistent soft states ratio in the systems with BASE ?

2. What are the performance comparisons between systems with various consis-

tency models?

3. What is the scalability for systems with BASIC?

4. How much will the latency of response increase for systems with BASIC?

116

6.4.1 Experimental Setup and Benchmark

In our experiments, we compare different system configurations including: Rubato

DB with BASIC, Rubato DB with BASE, HBase3 with BASE, and Cassandra4 with

BASE. We run all our experiments on a collection of, up to 48 partitions on 12 Cy-

bera5 instances. In order to measure the performance of those systems, two standard

commonly used benchmarks YCSB and TPC-C are applied.

The Yahoo Cloud Serving Benchmark (YCSB version 0.1.4) [Cooper et al., 2010]

is a data serving benchmark widely used to measure throughput and latency with

varying operation distribution for big data systems. According to the YCSB speci-

fication, we define a multi-column structure for each data item, which consists of 48

data columns. We use column partitioning and distribute columns across multiple

servers evenly. We test the read-intensive workload (including 90% read operations

and 10% write operations) and the write-intensive workload (including 50% read oper-

ations and 50% write operations). In the experiments, a continuous mixed workload

is submitted into the system, and the benchmark then measures the performance

in terms of throughput (i.e., the number of operations per second) and latency of

operations in milliseconds.

6.4.2 Inconsistency Ratio

We first calculate the inconsistent soft states ratio of BASE on the number of parti-

tions as 2, 4, 8, 16 and 24. Keys of data are hashed uniformly across all partitions.

The keys are drawn from “hot spot” distribution, with 80% of the operations going

to a subset of hot keys comprising 20% of the key space. We evaluate the inconsis-

tency of value returned by read operations applied to Rubato DB with BASE and

Cassandra with BASE.

The inconsistent state of read operation in Rubato DB is detected by checking the

update formula on each participating nodes. If the formulas employed by the read

operation do not coincide, then the state returned is inconsistent.

Cassandra version 2.0.9 is installed and configured with default parameters on

3http://hbase.apache.org/
4http://cassandra.apache.org/
5http://www.cybera.ca/projects/cloud-resources/rapid-access-cloud/

117

all servers. One additional server is used to simulate multi-threaded YCSB clients,

32 client threads per YCSB process, and 80% read and 20% write operation mix.

Cassandra is configured with a replication factor of 3. By default, the Cassandra

consistency level is “ONE” for both reads and writes, which requires that a write be

applied to the commit log and memory table of at least one replica before returning

acknowledgment to the client. The read return the value obtained from the first

replica that responds. The value returned by the read is compared with the latest

write value. If they are not equal, we regard the read to be inconsistent.

Table 6.6: Inconsistent Soft State Ratio

Partitions 2 4 8 16 24

RubatoDB %0.08 %0.15 %0.19 0.28% 0.42%

Cassandra %0.04 %0.12 %0.29 0.45% 0.63%

As the aggregate number of YCSB clients is proportional to system size, we observe

that the consistency violations become more severe as the number of servers increases.

Table 6.6 shows that the inconsistent soft state ratio of Rubato DB on the 2-node

system is lower than 0.1%; however, the ratio increases gradually with the growth

of the system size, which is as high as 0.42% on the system with 24 nodes. The

inconsistency ratio in Cassandra on the 2-node system is about 0.04%, and all way

increases to more than 0.6% on the system with 24 nodes. Such increasing tendency

of inconsistency indicates that more efforts are required to deal with the soft state as

the system scales out. As the system size becomes large, it is clear that uncertainties

in communication may prevent all partitions from drawing accurate decision about

the instantaneous global state of the system. Another source of inconsistency may

also arise if all partitions fail to execute identical reactions or evaluate the same value.

6.4.3 Scalability on YCSB

We now compare the performance in terms of throughput and latency as per the

YCSB specification. In this group of experiments, we set up three replicas for each

data item, that is using HBase (replication factor=3) and Cassandra (replication

factor=3).

118

Our results show that the throughput and latency of Rubato DB with BASE is

comparable with Cassandra and HBase, but Rubato DB with BASIC has potentially

lower the performance and higher the latency. The throughput comparison for read-

intensive (write-intensive) workload is plotted in Figure 6.3(a) (Figure 6.4(a)) and

the corresponding latency is presented in Figure 6.3(b) (Figure 6.4(b)).

In the read-intensive workload, the number of conflict operations and update

formulas on each partition is quite limited. Most read operations are able to response

efficiently with little effort to obtain the converged consistent version of snapshot.

Thus, the second round of most read operations can be skipped. And also since the

concurrency of write operations is relatively low, the write certification process will

return positive result with higher possibility, since rule W1 is applied for most cases.

With 48 partition, the throughput of optimal and pessimistic read implementation of

BASIC is quite similar, which decreases about 10% than BASE. The latency increases

by 1.2 times.

In the write-intensive workload, the potential of operation confliction increases,

causing a higher cost for ensuring BASIC. As illustrated in Figures 6.4(a) and (b), the

throughput reduces 25% with the latency increasing nearly one order of magnitude.

The main source of the latency comes from the presence of abundant dependencies

between operations. As more cases trigger rules W2 or W3, the numerous stored

facts (i.e. read by, read b4) can cause one operation to wait for response until another

operation is done. At the same time, as the update formula list becomes longer, it

takes more time to calculate the final value for each snapshot according to the read

rule R.

Though there is decline for the performance, we can still find that Rubato DB with

BASIC preserves near-linear scalability with increasing throughput and flat latency,

same as systems with BASE.

In addition, as shown in Table 6.7, though the rollback ratio rises as the number

of partitions increase, it is still quite stable at a lower level than 0.1% for the read-

intensive workload and 1% for the write-intensive workload as the number of partitions

increases. Thus, it ensures a reasonable rollback ratio range for the basic availability

guarantee.

119

performance declining with the increase of remote guest accesses in Figure 6.5: with

10% remote guest accesses, the throughput of the TPC-C test reduces to about 8% on

48 partitioning nodes. The performance further reduces to 15% with 20% remote guest

accesses. With 30% remote guest accesses, the performance may decrease around

20%. The performance degradation is mainly because transactions in the TPC-C

benchmark have a larger data access scope, which will induce more dependencies

among operations. And as the remote guest ratio increases, the data skew issue [Xu

et al., 2008; Kossmann et al., 2010] will become more severe, causing some partitions

to be hot spots.

On the other hand, the degradation is quite minimal, which can partially be

attributed to the fact that systems with BASIC will commit or rollback operations as

soon as they are issued on all participating partitions rather than being postponed to

the end of each transaction. Such immediate action for each operation can minimize

the overhead induced by remote guest accesses.

6.4.5 Increasing Replication

The following experiments explore the response latency under increasing workloads

of partial and full replication. A 12-node Rubato DB with BASIC is used as the test

bed. We increase the replication factor from 2, 4, 6 for partial replicas, to 12 for full

replicas. Figure 6.6 shows the latency of response time for 12-node Rubato DB with

BASIC under various replication factors.

The partial replication results (2, 4, and 6 replicas per data item) show that the

smaller the number of replicas is, the higher throughput (operations per second) can

be achievable with flat low latency. It is reasonable that less cost is required for

synchronization with a smaller the replication factor.

Particularly, since the read-intensive workload induces less overhead for write

certification, the response time of full replication stabilizes for 70% of maximum

workloads, and partial replication can achieve 85% of the maximum workloads before

the latency rockets (as shown in Figure 6.6(a)). The latency of replication does not

decline the performance of the system quite much, since that results of any read

distributed across replications can obtain consistent snapshot easily.

In the write-intensive workload, a “safe” write operation requiring multiple repli-

123

(a) Read Intensive Workload

(b) Write Intensive Workload

Figure 6.6: Comparison of Latency for Replication

124

cations acknowledge the write before it returns will incur higher latency, and/or may

time out in presence of network partition. Requiring confirmation of each write op-

eration has replicated to all partitions will effectively guarantee that those replicated

partitions have caught up with the timestamp of this write. The partial replication

can scale significantly better than full replication (as shown in Figure 6.6(b)), but

still the more replicas are used, the more dependency stored facts are involved caus-

ing higher latency. This exhibits that the latency of operations increases with high

contention. The clients wait longer for the majority response for either abort or accep-

tance. When the number of operations per second is low (< 40, 000), the latency does

not vary as much as the replications increases. This is because when the contention

is not that high, the latency can be maintained low with more rollback operations;

an abort operation exhibits lower latency due to its early termination compared to a

committed operation.

In summary, for the read-intensive workload or the write-intensive workload with-

out requiring extremely low response latency, the cost induced by BASIC is accept-

able comparing with the extra efforts needed to manipulate inconsistent soft states for

BASE. That is, BASIC pays a reasonable price for a higher consistency than BASE.

6.5 Chapter Summary

We explicitly identify important disadvantages of BASE with tangible examples and

formally define BASIC property, which provides an alternatively higher level of con-

sistency than BASE, while lower than ACID. BASIC is desired by a large class of ap-

plications requiring multi-partition, partial-replication, atomically non-transactional

operational data access where none of inconsistent states should be visible to clients.

We generalizes the understanding of CAP theorem based on BASIC. Given the gen-

eral extension of CAP theorem, we do not just pick two of the three properties, while

the optimal three can be chosen based on different application requirements.

125

Chapter 7

Summary and Conclusions

“We can only see a short distance ahead, but we can see plenty there that

needs to be done.”

- Alan Turing

7.1 Contributions

Over the past few years, big data has emerged as a multi-billion dollar industry and

as a successful paradigm for large scale data management systems deployment. Since

DBMSs store and serve an application’s critical data in the past, making them adapt

the big data application become a critical mission. NewSQL database management

systems deployed in a scalable infrastructure aim to provide such solutions. The

overarching goal of this dissertation was to make NewSQL systems scale-out while

efficiently supporting transactional semantics and being efficient without introduc-

ing high performance overhead. This dissertation makes fundamental contributions

in the thrust areas of principles, paradigms and protocols to architect and imple-

ment practical NewSQL database systems. These contributions are critical to the

design and implementation of NewSQL database systems and significantly advances

the state-of-the-art in the field.

In particular,

(1) We categorize and analyze the critical aspects of NewSQL database systems,

comparing with NoSQL systems. We propose taxonomies to classify techniques in

which every high scalable system is able to find its position. A thorough understanding

126

of current systems and a precise classification are essential for analyzing the scalability

limitations.

(2) We specify a staged grid architecture and abstractions to support scalable and

efficient transaction processing using clusters of commodity servers. The key insight is

to disintegrate and reassemble system components into encapsulated staged modules.

Effective behavior rules for communication are then defined to orchestrate indepen-

dent staged modules deployed on networked computing nodes into one integrated

system.

(3) We propose a new formula-based protocol for distributed concurrency control

to support for thousands of concurrent users accessing data distributed over commod-

ity servers. The formula protocol for concurrency is a variation of the multi-version

time-stamp concurrency control protocol, which guarantees the serializability. We

reduce the overhead of conventional implementation by technologies including logical

formula caching and dynamic timestamp ordering.

(4) We identify a new consistency model - BASIC (Basic Availability, Scalability,

Instant Consistency) that matches the requirements where extra efforts are not needed

to manipulate inconsistent soft states of weak consistency models. BASIC extends the

current understanding of CAP theorem by characterizing precisely different degree of

dimensions that can be achieved rather than simply what cannot be done.

We introduce all these features based on a novel implementation of Rubato DB, a

highly scalable NewSQL database system. We have conducted extensive experiments

that clearly show that Rubato DB is highly scalable with efficient performance under

both TPC-C and YCSB benchmarks. These results verify that the formula protocol

and the staged grid architecture provide a satisfactory solution to one of the important

challenges in the NewSQL database systems: to develop a highly scalable database

management system that supports various consistency levels from ACID to BASE.

7.2 Directions for Future Work

The continued growth of data sizes, advent of novel applications, and evolution of the

infrastructure ensures that the area of data management facing the big data trends

has many interesting research challenges. Based on the techniques presented in this

127

dissertation, some direct extensions will be worthwhile for further research.

(1) Access driven hybrid data partitioning techniques depend on the applications

access patterns to partition data to avoid data skew and hot spot. As the applica-

tion’s access patterns modify, it might also need re-partitioning. Traditional OLAP

approaches rely on long unavailability waiting time to repartition the data and are

therefore not amenable to support regular re-partitioning. The challenge is to re-

partition the data real-time while minimizing service interruption.

(2) Administering large scale database systems is expensive. Automatic admin-

istration of a large cluster of servers minimizes the need for human intervention for

resource orchestration. The responsibilities of such a self-managing controller include

monitoring the behavior of the system, dynamically scaling out based on current bot-

tleneck of the performance. The goal is to ensure that the performance guarantees

are met while ensuring effective resource utilization.

(3) Extending the designs of NewSQL database systems to the dynamic cloud

infrastructure with larger scale operations, higher network latency, and lower network

bandwidth is also a worthwhile direction of future work.

128

Bibliography

Abadi, Daniel J, Samuel R Madden and Nabil Hachem (2008). Column-stores vs.
row-stores: How different are they really. In: Proceedings of 2008 ACM SIGMOD
International Conference on Management of Data. ACM. pp. 967–980.

Abadi, Daniel, Samuel Madden and Miguel Ferreira (2006). Integrating compres-
sion and execution in column-oriented database systems. In: Proceedings of
2006 ACM SIGMOD International Conference on Management of Data. ACM.
pp. 671–682.

Abouzeid, Azza, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz and
Alexander Rasin (2009). HadoopDB: an architectural hybrid of MapReduce and
DBMS technologies for analytical workloads. Proceedings of the VLDB Endow-
ment 2(1), 922–933.

Adya, Atul, Barbara Liskov and Patrick O’Neil (2000). Generalized isolation level
definitions. In: Proceedings of the 16th International Conference on Data Engi-
neering. pp. 67–78.

Agrawal, Divyakant, Sudipto Das and Amr El Abbadi (2011). Big data and cloud
computing: current state and future opportunities. In: Proceedings of 2011 ACM
International Conference on Extending Database Technology. ACM. pp. 530–533.

Agrawal, Sanjay, Vivek Narasayya and Beverly Yang (2004). Integrating vertical and
horizontal partitioning into automated physical database design. In: Proceedings
of the 2004 ACM SIGMOD international conference on Management of data.
ACM. pp. 359–370.

Aguilera, Marcos K., Arif Merchant, Mehul Shah, Alistair Veitch and Christos Kara-
manolis (2009). Sinfonia: A new paradigm for building scalable distributed sys-
tems. ACM Transactions on Computer System.

Ahamad, Mustaque, Gil Neiger, JamesE. Burns, Prince Kohli and PhillipW. Hutto
(1995). Causal memory: definitions, implementation, and programming. Dis-
tributed Computing 9(1), 37–49.

Ailamaki, Anastassia, David J. DeWitt, Mark D. Hill and Marios Skounakis (2001).
Weaving relations for cache performance. In: Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases. pp. 169–180.

Alvisi, Lorenzo, Dahlia Malkhi, Evelyn Pierce and Michael K. Reiter (2001). Fault
detection for Byzantine quorum systems. IEEE Transactions on Parallel Dis-
tributed System 12(9), 996–1007.

Bailis, Peter, Aaron Davidson et al. (2013a). Highly available transactions: virtues
and limitations. Proceedings of the VLDB Endowment 7(3), 181–192.

Bailis, Peter, Ali Ghodsi, Joseph M. Hellerstein and Ion Stoica (2013b). Bolt-on causal
consistency. In: Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data. ACM. pp. 761–772.

129

Bailis, Peter, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein
and Ion Stoica (2012a). Probabilistically bounded staleness for practical partial
quorums. Proceedings of the VLDB Endowment 5(8), 776–787.

Bailis, Peter, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein
and Ion Stoica (2012b). Probabilistically bounded staleness for practical partial
quorums. Proceedings of the VLDB Endowment 5(8), 776–787.

Baker, Jason, Chris Bond, James Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Léon, Yawei Li, Alexander Lloyd and Vadim Yushprakh (2011).
Megastore: Providing scalable, highly available storage for interactive services.
In: In the 5th Conference on Innovative Data Systems Research. pp. 223–234.

Berenson, Hal, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil and Patrick
O’Neil (1995). A critique of ANSI SQL isolation levels. In: Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data. ACM.
pp. 1–10.

Bernstein, Philip, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal Kaki-
vaya, David B Lomet, Ramesh Manne, Lev Novik, Tomas Talius et al. (2011).
Adapting Microsoft SQL server for cloud computing. In: Proceedings of the 27th
International Conference on Data Engineering. pp. 1255–1263.

Birman, Ken (2007). The promise, and limitations, of gossip protocols. SIGOPS Op-
eration System Review 41(5), 8–13.

Blott, Stephen and Henry F Korth (2002). An almost-serial protocol for transac-
tion execution in main-memory database systems. In: Proceedings of the 28th
International Conference on Very Large Data Bases. pp. 706–717.

Boncz, Peter, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger
and Jens Teubner (2006). MonetDB/XQuery: a fast xquery processor powered
by a relational engine. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data. pp. 479–490.

Borkar, Vinayak, Michael J. Carey and Chen Li (2012). Inside “big data manage-
ment”: ogres, onions, or parfaits?. In: Proceedings of the 15th International
Conference on Extending Database Technology. pp. 3–14.

Bornea, Mihaela A., Orion Hodson, Sameh Elnikety and Alan Fekete (2011). One-
copy serializability with snapshot isolation under the hood. In: Proceedings of
the 2011 IEEE 27th International Conference on Data Engineering. pp. 625–636.

Brantner, Matthias, Daniela Florescu, David Graf, Donald Kossmann and Tim Kraska
(2008). Building a database on S3. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. pp. 251–264.

Brewer, Eric A. (2002). Towards robust distributed systems. In: Proceedings of the
19th Annual ACM Symposium on Principles of Distributed Computing. ACM.
pp. 7–10.

Bridge, William, Ashok Joshi, M. Keihl, Tirthankar Lahiri, Juan Loaiza and N. Mac-
Naughton (1997). The Oracle universal server buffer. In: Proceedings of the 23rd
International Conference on Very Large Data Bases. pp. 590–594.

Bronson, Nathan, Zach Amsden et al. (2013). Tao: Facebook’s distributed data store
for the social graph.. In: USENIX Annual Technical Conference. pp. 49–60.

Burckhardt, Sebastian, Daan Leijen, Manuel Fähndrich and Mooly Sagiv (2012).
Eventually consistent transactions. In: Proceedings of the 21st European Confer-
ence on Programming Languages and Systems. pp. 67–86.

130

Burrows, Mike (2006). The chubby lock service for loosely-coupled distributed sys-
tems. In: Proceedings of the 7th Symposium on Operating Systems Design and
Implementation. pp. 335–350.

Cahill, Michael J., Uwe Röhm and Alan D. Fekete (2009). Serializable isolation for
snapshot databases. ACM Transactions on Database Systems 34(4), 20:1–20:42.

Campbell, David G., Gopal Kakivaya and Nigel Ellis (2010). Extreme scale with full
SQL language support in Microsoft SQL Azure. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data. pp. 1021–1024.

Chaiken, Ronnie, Bob Jenkins, PerAke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver and Jingren Zhou (2008). Scope: easy and efficient parallel processing of
massive data sets. Proceedings of the VLDB Endowment 1(2), 1265–1276.

Chandra, Tushar D., Robert Griesemer and Joshua Redstone (2007). Paxos made live:
an engineering perspective. In: Proceedings of the 26th Annual ACM Symposium
on Principles of Distributed Computing. pp. 398–407.

Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes and Robert E. Gruber (2008).
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems 26(2), 4:1–4:26.

Cipar, James, Greg Ganger, Kimberly Keeton, Charles B. Morrey, III, Craig A.N.
Soules and Alistair Veitch (2012). Lazybase: trading freshness for performance
in a scalable database. In: Proceedings of the 7th ACM European Conference on
Computer Systems. pp. 169–182.

Cohen, Jeffrey, Brian Dolan, Mark Dunlap, Joseph M Hellerstein and Caleb Welton
(2009). Mad skills: new analysis practices for big data. Proceedings of the VLDB
Endowment 2(2), 1481–1492.

Condie, Tyson, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, John Gerth, Justin
Talbot, Khaled Elmeleegy and Russell Sears (2010). Online aggregation and con-
tinuous query support in MapReduce. In: Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data. pp. 1115–1118.

Cooper, Brian F, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan and Russell
Sears (2010). Benchmarking cloud serving systems with YCSB. In: Proceedings
of the 1st ACM Symposium on Cloud computing. ACM. pp. 143–154.

Cooper, Brian F., Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver and Ramana Yerneni
(2008). PNUTS: Yahoo!’s hosted data serving platform. Vol. 1. pp. 1277–1288.

Corbett, James C., Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Ra-
jesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang and Dale Woodford (2012). Spanner: Google’s globally-distributed
database. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation. pp. 251–264.

Curino, Carlo, Evan Jones, Yang Zhang and SamMadden (2010). Schism: a workload-
driven approach to database replication and partitioning. Proceedings of the
VLDB Endowment 3(1-2), 48–57.

Dean, Jeffrey and Sanjay Ghemawat (2008). MapReduce: Simplified data processing
on large clusters. Communication of ACM 51(1), 107–113.

131

DeCandia, Giuseppe, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels (2007). Dynamo: Amazon’s highly available key-value store.
In: Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles. ACM. pp. 205–220.

Défago, Xavier, André Schiper and Péter Urbán (2004). Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computer Survey.

Escriva, Robert, Bernard Wong and Emin Gün Sirer (2012). Hyperdex: a dis-
tributed, searchable key-value store. SIGCOMM Computer Communication Re-
view 42(4), 25–36.

Fekete, Alan, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil and Dennis
Shasha (2005). Making snapshot isolation serializable. ACM Transactions on
Database Systems 30(2), 492–528.

Geilen, Marc and Twan Basten (2003). Requirements on the execution of Kahn pro-
cess networks. Springer. pp. 319–334.

Ghemawat, Sanjay, Howard Gobioff and Shun-Tak Leung (2003). The Google file sys-
tem. In: Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples. ACM. pp. 29–43.

Gibson, Garth A and Rodney Van Meter (2000). Network attached storage architec-
ture. Communications of the ACM 43(11), 37–45.

Gilbert, Seth and Nancy Lynch (2002). Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services. ACM SIGACT News 33(2), 51–
59.

Gligor, Gabriela and Silviu Teodoru (2011). Oracle exalytics: Engineered for speed-
of-thought analytics. Database Systems Journal 2(4), 3–8.

Gribble, Steven David (2000). A Design Framework and a Scalable Storage Platform
to Simplify Internet Service Construction. PhD thesis. University of California,
Berkeley. AAI3001853.

Grund, Martin, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux and Samuel Madden (2010). Hyrise: a main memory hybrid storage
engine. Proceedings of the VLDB Endowment 4(2), 105–116.

Gummadi, K., R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker and I. Stoica
(2003). The impact of DHT routing geometry on resilience and proximity. In:
Proceedings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications. pp. 381–394.

Hankins, Richard A. and Jignesh M. Patel (2003). Data morphing: an adaptive, cache-
conscious storage technique. In: Proceedings of the 29th International Conference
on Very Large Data Bases. pp. 417–428.

Harizopoulos, Stavros and Anastassia Ailamaki (2003). A case for staged database
systems. In: CIDR. number DIAS-CONF-2003-001.

Helland, Pat (2007). Life beyond distributed transactions: an apostate’s opinion. In:
In 3rd Biennial Conference on Innovative Data Systems Research. pp. 132–141.

Hochschild, Peter, Alexander Lloyd, Wilson Cheng-Yi Hsieh, Robert Edman Fel-
derman and Michael James Boyer Epstein (2015). Generating globally coherent
timestamps. US Patent 8,938,636.

132

Hunt, Patrick, Mahadev Konar, Flavio P. Junqueira and Benjamin Reed (2010).
Zookeeper: wait-free coordination for internet-scale systems. In: Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference. pp. 11–
11.

Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell and Dennis Fetterly (2007).
Dryad: distributed data-parallel programs from sequential building blocks. ACM
SIGOPS Operating Systems Review 41(3), 59–72.

Johnson, Ryan, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki and Babak
Falsafi (2009). Shore-MT: a scalable storage manager for the multicore era. In:
Proceedings of the 12th International Conference on Extending Database Tech-
nology: Advances in Database Technology. pp. 24–35.

Jones, Evan P.C., Daniel J. Abadi and Samuel Madden (2010). Low overhead concur-
rency control for partitioned main memory databases. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data. pp. 603–614.

Jorwekar, Sudhir, Alan Fekete, Krithi Ramamritham and S. Sudarshan (2007). Au-
tomating the detection of snapshot isolation anomalies. In: Proceedings of the
33rd International Conference on Very Large Data Bases. pp. 1263–1274.

Joshi, Ashok, Sam Haradhvala and Charles Lamb (2012). Oracle NoSQL database-
scalable, transactional key-value store. In: Proceedings of the 2nd International
Conference on Advances in Information Mining and Management. pp. 75–78.

Kahn, Gilles (1974). The semantics of a simple language for parallel programming.
North-Holland.

Kallman, Robert, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stone-
braker, Yang Zhang, John Hugg and Daniel J. Abadi (2008). H-store: a high-
performance, distributed main memory transaction processing system. Proceed-
ings of the VLDB Endowment 1(2), 1496–1499.

Karger, David, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine and
Daniel Lewin (1997). Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In: Proceedings of the
29th Annual ACM Symposium on Theory of Computing. ACM. pp. 654–663.

Kemme, Bettina and Gustavo Alonso (2000). A new approach to developing and im-
plementing eager database replication protocols. ACM Transactions on Database
Systems 25(3), 333–379.

Kossmann, Donald, Tim Kraska and Simon Loesing (2010). An evaluation of alterna-
tive architectures for transaction processing in the cloud. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data. ACM.
pp. 579–590.

Kraska, Tim, Gene Pang, Michael J. Franklin, Samuel Madden and Alan Fekete
(2013). MDCC: multi-data center consistency. In: Proceedings of the 8th ACM
European Conference on Computer Systems. pp. 113–126.

Lahiri, Tirthankar, Vinay Srihari, Wilson Chan, N. MacNaughton and Sashikanth
Chandrasekaran (2001). Cache fusion: Extending shared-disk clusters with
shared caches. In: Proceedings of the 27th International Conference on Very
Large Data Bases. pp. 683–686.

Lakshman, Avinash and Prashant Malik (2010). Cassandra: a decentralized struc-
tured storage system. SIGOPS Operation System Review 44(2), 35–40.

133

Larson, Per-Åke, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M Patel
and Mike Zwilling (2011). High-performance concurrency control mechanisms for
main-memory databases. Proceedings of the VLDB Endowment 5(4), 298–309.

Lee, Edward A. (2011). Concurrent models of computation: An actor-oriented ap-
proach. Ptolemy.org. UC Berkeley. pp. 17–26.

Lee, Edward A and Thomas M Parks (1995). Dataflow process networks. Vol. 83.
pp. 773–801.

Lewis, Philip M, Arthur J Bernstein and Michael Kifer (2002). Databases and trans-
action processing: an application-oriented approach. Addison-Wesley.

Lin, Yi, Bettina Kemme, Marta Patiño Mart́ınez and Ricardo Jiménez-Peris (2005).
Middleware based data replication providing snapshot isolation. In: Proceedings
of the 2005 ACM SIGMOD international conference on Management of data.
pp. 419–430.

Lloyd, Wyatt, Michael J. Freedman, Michael Kaminsky and David G. Andersen
(2011). Don’t settle for eventual: scalable causal consistency for wide-area stor-
age with COPS. In: Proceedings of the 23rd ACM Symposium on Operating
Systems Principles. pp. 401–416.

Lloyd, Wyatt, Michael J. Freedman, Michael Kaminsky and David G. Andersen
(2013). Stronger semantics for low-latency geo-replicated storage. In: Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implemen-
tation. pp. 313–328.

Lynch, Nancy A. and Eugene W. Stark (1989). A proof of the Kahn principle for
input/output automata. Information and Computation 82(1), 81 – 92.

Manassiev, Kaloian, Madalin Mihailescu and Cristiana Amza (2006). Exploiting dis-
tributed version concurrency in a transactional memory cluster. In: Proceedings
of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. pp. 198–208.

Manegold, Stefan, Martin L. Kersten and Peter Boncz (2009). Database architecture
evolution: mammals flourished long before dinosaurs became extinct. Proceedings
of the VLDB Endowment 2(2), 1648–1653.

Melnik, Sergey, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,
Matt Tolton and Theo Vassilakis (2010). Dremel: interactive analysis of web-
scale datasets. Proceedings of the VLDB Endowment 3(1-2), 330–339.

Olston, Christopher, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar and Andrew
Tomkins (2008). Pig latin: a not-so-foreign language for data processing. In: Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management
of Data. pp. 1099–1110.

Özsu, M Tamer and Patrick Valduriez (2011). Principles of distributed database sys-
tems. Springer Science & Business Media.

Patterson, Stacy, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal and Amr El Ab-
badi (2012). Serializability, not serial: concurrency control and availability in
multi-datacenter datastores. Proceedings of the VLDB Endowment 5(11), 1459–
1470.

Poess, Meikel and Raghunath Othayoth Nambiar (2005). Large scale data warehouses
on grid: Oracle database 10g and HP proliant servers. In: Proceedings of the 31st
International Conference on Very Large Data Bases. pp. 1055–1066.

Pritchett, Dan (2008). BASE: An ACID alternative. Queue 6(3), 48–55.

134

Qiao, Lin, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman, Bhaskar
Ghosh, Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Auradar et al. (2013).
On brewing fresh Espresso: Linkedin’s distributed data serving platform. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data. pp. 1135–1146.

Ramamurthy, Ravishankar, David J. DeWitt and Qi Su (2003). A case for fractured
mirrors. The VLDB Journal 12(2), 89–101.

Rao, Jun, Eugene J. Shekita and Sandeep Tata (2011). Using paxos to build a scalable,
consistent, and highly available datastore. Proceedings of the VLDB Endowment
4(4), 243–254.

Roh, Hyun-Gul, Myeongjae Jeon, Jin-Soo Kim and Joonwon Lee (2011). Replicated
abstract data types: Building blocks for collaborative applications. Journal of
Parallel Distributed Computer 71(3), 354–368.

Saito, Yasushi and Marc Shapiro (2005). Optimistic replication. ACM Computer Sur-
vey 37(1), 42–81.

Schiper, Nicolas, Pierre Sutra et al. (2010). P-store: Genuine partial replication in
wide area networks. In: The 29th IEEE Symposium on Reliable Distributed Sys-
tems. pp. 214–224.

Shapiro, Marc, Nuno Preguiça, Carlos Baquero and Marek Zawirski (2011). Conflict-
free replicated data types. In: Proceedings of the 13th International Conference
on Stabilization, Safety, and Security of Distributed Systems. pp. 386–400.

Shute, Jeff, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins,
Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner et al. (2013).
F1: A distributed SQL database that scales. Proceedings of the VLDB Endow-
ment 6(11), 1068–1079.

Shvachko, Konstantin, Hairong Kuang, Sanjay Radia and Robert Chansler (2010).
The Hadoop distributed file system. In: Proceedings of the 26th Symposium on
Mass Storage Systems and Technologies. pp. 1–10.

Sikka, Vishal, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh
and Christof Bornhövd (2012). Efficient transaction processing in SAP HANA
database: the end of a column store myth. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. pp. 731–742.

Stonebraker, Michael (2012). New opportunities for NewSQL. Communications of the
ACM 55(11), 10–11.

Stonebraker, Michael, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem and Pat Helland (2007). The end of an architectural era: (it’s time for a
complete rewrite). In: Proceedings of the 33rd International Conference on Very
Large Data Bases. pp. 1150–1160.

Stonebraker, Mike, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin, Nga Tran and Stan Zdonik (2005). C-store: a column-
oriented dbms. In: Proceedings of the 31st International Conference on Very
Large Data Bases. pp. 553–564.

Terry, Doug (2011). Replicated data consistency explained through baseball. Techni-
cal report. Technical Report MSR-TR-2011-137, Microsoft Research.

Thomas, R.H (1984). A solution to the concurrency control problem for multiple copy
databases. In: Digest of papers IEEE COMPCON Spring. pp. 56–62.

135

Thomson, Alexander, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao
and Daniel J Abadi (2012). Calvin: Fast distributed transactions for partitioned
database systems. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. pp. 1–12.

Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff and Raghotham Murthy (2009). Hive: a ware-
housing solution over a MapReduce framework. Proceedings of the VLDB En-
dowment 2(2), 1626–1629.

Thusoo, Ashish, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joy-
deep Sen Sarma, Raghotham Murthy and Hao Liu (2010). Data warehousing and
analytics infrastructure at Facebook. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data. pp. 1013–1020.

Verma, Abhishek, Brian Cho, Nicolas Zea, Indranil Gupta and Roy H. Campbell
(2013). Breaking the MapReduce stage barrier. Cluster Computing 16(1), 191–
206.

Vogels, Werner (2008). Eventually consistent. Queue 6(6), 14–19.

Weikum, Gerhard and Gottfried Vossen (2001). Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. Elsevier.

Welsh, Matt, David Culler and Eric Brewer (2001). SEDA: an architecture for well-
conditioned, scalable internet services. In: Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles. pp. 230–243.

Wu, Lengdong, Hua He and Osmar R Zäıane (2013). Utility enhancement for privacy
preserving health data publishing. In: Advanced Data Mining and Applications.
pp. 311–322.

Wu, Lengdong, Liyan Yuan and Jiahuai You (2014). BASIC, an alternative to BASE
for large-scale data management system. In: Proceedings of the 2014 IEEE In-
ternational Conference on Big Data. pp. 5–14.

Wu, Lengdong, Liyan Yuan and Jiahuai You (2015). Survey of large-scale data man-
agement systems for big data applications. Journal of computer science and tech-
nology 30(1), 163–183.

Wu, Shuqing and Bettina Kemme (2005). Postgres-R (SI): Combining replica control
with concurrency control based on snapshot isolation. In: Proceedings of the 21st
International Conference on Data Engineering. pp. 422–433.

Xin, Reynold S, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker and
Ion Stoica (2013). Shark: SQL and rich analytics at scale. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. pp. 13–
24.

Xu, Yu, Pekka Kostamaa, Xin Zhou and Liang Chen (2008). Handling data skew
in parallel joins in shared-nothing systems. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data. pp. 1043–1052.

Yu, Haifeng and Amin Vahdat (2002). Minimal replication cost for availability. In:
Proceedings of the 21st Annual Symposium on Principles of Distributed Comput-
ing. pp. 98–107.

Yu, Haifeng and Amin Vahdat (2006). The costs and limits of availability for repli-
cated services. ACM Transactions on Computer Systems 24(1), 70–113.

136

Yuan, Li-Yan, Lengdong Wu, Jia-Huai You and Yan Chi (2015). A demonstration of
Rubato DB: A highly scalable NewSQL database system for OLTP and big data
applications. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data. ACM. pp. 907–912.

Yuan, Liyan, Lengdong Wu, Jiahuai You and Yan Chi (2014). Rubato DB: a highly
scalable staged grid database system for OLTP and big data applications. In:
Proceedings of the 23rd ACM International Conference on Conference on Infor-
mation and Knowledge Management. ACM. pp. 1–10.

Zaharia, Matei, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker and Ion
Stoica (2010). Spark: cluster computing with working sets. In: Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing. Vol. 10. pp. 1–
7.

137

	thesis front page
	content
	frontpage
	Abstract
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	TYPE CHAPTER NAME HERE
	The First Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter
	This is a Sub Section in the Chapter

	First Appendix

	thesis_v5
	Introduction
	Development of Large-Scale Data Management Systems
	Motivation and Challenges
	Dissertation Overview
	Contributions and Impact
	Synopsis

	Taxonomy of Large-Scale Data Management System
	Data Model
	Physical Layout
	Conceptual Model
	Data Model Taxonomy

	System Architecture
	SMP on Shared-Memory Architecture
	MPP on Shared-Disk Architecture
	Sharding on Shared-nothing Architecture
	MapReduce/Staged Event Driven Architecture
	System Architecture Taxonomy

	Consistency Model
	ACID
	BASE
	Consistency Model Taxonomy

	Implementation Principles for Large-Scale Data Management System
	Data Model Integration
	Architecture Scalability
	Scalable Consistency Implementation

	Chapter Summary

	Overview of Rubato DB
	Features in Rubato DB
	SQL Engine Design
	Transaction Manager
	Storage Manager
	Chapter Summary

	A Staged Grid Database
	A Staged Grid Architecture
	Implementation of Staged Grid Database
	Determinism Verification
	Monotonic and Continuous Function
	Least Fixed Point
	Effective Execusion

	Chapter Summary

	Formula Protocol for Concurrency Control
	Formula Protocol Overview
	Timestamp-based Formula Protocol
	FPC Serializability Guarantee
	Implementation of FPC
	Performance Evaluation
	Single Node Capacity
	Scalability under TPC-C Benchmark
	Conflict Operations over Different Partitions
	Stages vs. Threads

	Chapter Summary

	BASIC: Narrowing the Consistency Gap
	Motivating Examples
	BASIC Properties
	BASIC Specification
	BASIC in CAP

	Protocol for BASIC
	Protocol for Instant Consistency
	Basic Availability Guarantee

	Performance Evaluation
	Experimental Setup and Benchmark
	Inconsistency Ratio
	Scalability on YCSB
	Scalability on TPC-C
	Increasing Replication

	Chapter Summary

	Summary and Conclusions
	Contributions
	Directions for Future Work

	Bibliography

	文本1: 2016
	文本04: vi
	文本05: vii
	文本06: viii
	文本07: ix
	文本08: x
	文本09: xi
	文本0007: iii

