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Anything that would not sell, I do not want to invent.

Its sale is proof of its utility. 

And its utility is proof of its success.

Thomas Alva Edison

(February 11, 1847 -  October 18, 1931)
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ABSTRACT

This thesis describes the research and development of a novel method for analyzing, 

quantifying and tracking the shape of three dimensional objects based on their 

curvature and symmetry. The method is called structured splines modelling and it 

brings together and expands on ideas from mathematical shape analysis, computer 

engineering and biomedical image analysis.

Shape description using structured splines models has the following properties: it is 

intuitive, based on features of an object that are most relevant to its visual 

perception; it is relatable, yields indices that can be understood in terms of the 

common description of shape such as bend, tw ist and t ilt ; it is practical, accepts 

range images of objects, a form of input that is available from most segmentation or 

image acquisition applications; and it is error-correcting, corrects such errors in the 

input data as holes and stray points. Structured splines modelling is the first shape 

analysis method to possess all of these properties.

We present the theory of the structured splines model and describe its application to 

quantifying and tracking torso deform ity caused by scoliosis, a deform ity of the spine 

that causes visible torso asymmetries. The application to scoliosis provides clinicians 

with information on the shape of the torso in an intuitive and useful form, thus aiding 

in deform ity management. The application represents the first use of a shape-based 

index of asymmetry in the biomedical image analysis of torso deformity.
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CHAPTER 1

INTRODUCTION

1.1  PURPOSE

This thesis describes the research and development of a method for analyzing, 

quantifying and tracking the shape of three dimensional (3-D) objects based on their 

curvature and symmetry. The method is called structured splines modelling and it 

brings together and expands on ideas from mathematical shape analysis, computer 

engineering and biomedical image analysis. Shape description using structured 

splines models has the following properties: 1) intuitiveness -  it is based on features 

of an object that are most relevant to its visual perception; 2) relatability - it yields 

indices that can be understood in terms of the common description of shape such as 

bend, tw ist and t ilt ; 3) practicality -  it accepts range images of objects, a form of 

input that is available from most segmentation or image acquisition applications; 4) 

error-correction -  it corrects such errors in the input data as holes and stray points.

This thesis presents the theory of structured splines models and describes its 

application to quantifying and tracking torso deform ity caused by scoliosis (see 

Section 2.3 for a description of scoliosis). The application to scoliosis provides 

clinicians with information on the shape of the torso in an intuitive and useful form, 

thus aiding in deform ity management.

1 .2  M O T IV A T IO N

The management of scoliosis is traditionally based on the assessment of the internal 

deform ity of the spine [1 ], [2 ]. Recently, there has been a move towards 

incorporating information about the shape of the torso in the routine care and 

management of scoliosis patients [3 ]. This is borne of the fact that most scoliosis

1
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patients and the ir families are more concerned with the shape of the torso than the 

internal alignment of the spine and judge protocols for managing scoliosis based on 

their effect on torso shape [4 ], [5 ]. Also, patients typically visit scoliosis clinics for 

the first time because they are worried about their appearance [6 ]. From the 

clinician's point of view, change in torso shape may indicate changes in the spinal 

alignment.

Traditional methods for assessing torso shape are based on landmarks. As the 

torso is relatively smooth, it is difficult to precisely locate these landmarks in real 

time. Also, the large anthropometric variation in the population means that the 

relative locations of torso landmarks vary significantly amongst patients1. Finally, 

landmarks are particularly prone to the effects of posture variations, sway and 

breathing that usually occur during the acquisition of torso images. These effects are 

a function of being alive and cannot be completely eliminated. For instance, a slight 

lift of one shoulder would significantly change the locations of landmarks on the 

offending shoulder relative to other landmarks.

Other techniques such as difference mapping [7 ], for evaluating changes in torso 

shape by subtracting consecutive range images, have been proposed. However, 

difference maps have not fully matured as it is very difficult to precisely fit two 

surface maps of the back while coping with other sources of change such as growth, 

posture, sway and breathing.

These difficulties call for the use of shape analysis methods for characterizing and 

describing torso shape changes caused by scoliosis. However, to be useful, the 

method chosen needs to be intuitive so that it can be meaningful to the clinicians 

involved in the chain of care of scoliosis patients. I t  also needs to be practical so that 

it can be easily implemented and descriptive so that its output can better inform

1 For a description of the anthropometric variation in children, see for instance, R. G. Synder e t al., 
Anthropometry o f infants, children, and youths to age 18 for product safety design SP-450, Society for 
Automotive Engineers, Inc., Warrendale, PA, USA. 1977.

2
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clinical decision making and be easy to explain to patients and their families. A 

survey of the literature shows that existing shape analysis methods do not possess 

one or more of these requirements. Thus, there is a need to develop a new method 

for assessing, quantifying and tracking three-dimensional (3-D) shape that would 

then serve as the framework for incorporating shape analysis in the assessment of 

torso deform ity and the clinical management of scoliosis.

1.3  RESEARCH FRAMEWORK

A review of the literature (Chapter 2) highlights the gaps that exist in the knowledge 

related to our application. First, there is a need to develop a shape analysis method 

that satisfies the four criteria given in Section 1.1, that is: intuitiveness, practicality, 

relatability and error-correction. Of existing shape analysis methods, dominant point- 

based techniques (Section 2.2) are most promising as they are intuitive and practical 

but still need to be improved so that they can become relatable and error-correcting. 

Second, there is a need for shape-based analysis of torso shape. Existing methods 

for assessing torso shape are based on landmarks and suffer greatly from 

anthropometric variations in the population [8 ] and from variations in individuals [9] 

caused by growth and positioning during torso image acquisition. This thesis fills 

these two gaps.

First, an imaging system is developed for use in the acquisition (Chapter 7) and 

pre-processing (Chapter 8) of the torso topographic images of scoliosis and non­

scoliosis patients. These images are used for model development and clinical 

validation. Second, three shape analysis methods are developed. The first is based 

on computing the orthogonal maps of the torso by performing a cylindrical to 

Cartesian coordinate transformation (Chapter 5). The second involves calculating 

points of high curvature on an object's surface (Chapter 6). The third derives the 

structured splines models of objects and is the most sophisticated and robust of the

3
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three (Chapter 3). Third, three sets of deformation indices corresponding to each of 

the shape analysis methods described above are developed (Chapter 4). The shape 

analysis method and corresponding deformation indices are applied to the shape- 

based assessment of torso deform ity in scoliosis. Finally, the overall system is 

evaluated using the developed curvature-based shape analysis method (Chapter 9).

1 .4  OBJECTIVES AND SCOPE

The objectives of this thesis are two-fold.

1) To create a novel method for describing and assessing 3-D shape that is 

intuitive, descriptive and practical. This requires making use of mathematical 

features of objects that greatly influence the human perception of shape. The 

method should be applicable to the task of describing and assessing the torso 

deform ity caused by scoliosis.

2) To create a tool for quantifying and tracking shape changes in 3-D objects. This 

requires developing a multi-dimensional shape score that is robust and intuitive. In 

addition, the shape score should be applicable to the quantification and tracking of 

the torso deform ity caused by scoliosis. I t  should be translatable to the common 

description of torso deformity.

The scope of this thesis is limited to developing a curvature-based method for 

assessing shape in 3-D, developing a deformation index for quantifying shape and 

shape changes in 3-D objects and demonstrating the quantification and tracking of 

the torso deform ity caused by scoliosis using the developed deformation index.

1.5  TH ESIS  O U TLIN E

Structured splines models are tools for assessing and describing 3-D shape. Their 

outputs can be processed to obtain a set of indices for quantifying and tracking

4
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shape changes. This thesis presents the theory of structured-splines-modelling and 

demonstrates its application to managing scoliosis using range images of the torso.

Chapter 2 presents a review of the literature. Overviews of shape analysis and 

description, dominant points, scoliosis and range imaging systems are presented. 

Shape analysis techniques can be grouped into feature-based and content-based 

methods. Dominant points are a sub-set of feature-based methods that possess two 

of the four qualities we require for our application (See Section 1.1). Section 2.3 

describes scoliosis and the torso deform ity that results from it. The internal 

deform ity caused by scoliosis is assessed using radiographs while its external 

deform ity is assessed using range images of the torso. Section 2.4 describes range 

imaging systems and describes an example system.

The rest of the thesis can be divided into four parts: 1) the theory and validation 

of the structured splines model (Chapter 3) and application to quantifying torso 

deform ity in scoliosis (Chapter 4); 2) orthogonal maps (Chapter 5) and point-set 

data (Chapter 6), two pertinent tools for shape analysis; 3) the torso analysis system 

comprised of image acquisition (Chapter 7) and pre-processing (Chapter 8); and 4) 

an evaluation of the entire system comprised of shape acquisition, pre-processing 

and modelling (Chapter 9).

Chapter 3 presents the theoretical framework of the structured splines models. 

The relationship between the Gaussian and B-spline scale spaces is described. As 

Gaussian scale-spaces have been used for multi-scale analysis of contours, their 

relationship to B-spline scale spaces makes the use of B-spline basis functions in 

multi-scale analysis of shape possible. This chapter marks the completion of our 

model development and index formulation.

Chapter 4 describes the application of structured splines models and their 

corresponding indices of torso deform ity to quantifying and tracking torso shape in 

scoliosis. The chapter also presents the first shape-based classification system for
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Torso analysis -  
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Orthogonal Point-set 

maps data
(Chapter 5) (Chapter 6)

Fig. 1.1: An illustration of the relationship between the chapters.

torso deform ity. A comparison between the developed shape-based indices and other 

clinical indices w ith regards to classifying scoliosis is performed.

Chapter 5 presents orthogonal maps, an alternative tool for shape analysis 

obtained by performing a cylindrical to Cartesian coordinate transformation of torso 

images. Chapter 6 presents point-set data, another tool for shape analysis that is 

derived from points of high curvature on an object's surface.

Chapter 7 describes our torso image acquisition system. Chapter 8 describes 

routines for transform ing range images of the torso into a form suitable for use in a 

shape analysis application. The routines are used to fill holes, remove stray points 

and crop unwanted regions.

Chapter 9 presents the results of evaluating the entire system comprised of: 1) 

torso imaging; 2) pre-processing and reconstruction routines; and 3) structured 

splines models. The system response to errors due to sway and breathing is 

assessed. The variability of the shape-based and landmark-based indices of torso 

deform ity and the reconstruction accuracy of the system are investigated. A 

justification for using full torso images rather than back torso images in the clinical 

monitoring of scoliosis is provided.

Chapter 10 presents conclusions and suggestions for future work.
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CHAPTER 2

LITERATURE REVIEW

2 .1  SHAPE A NA LYSIS AND D ESCRIPTIO N

Shape description spans many fields. To mathematicians, a shape is typically an 

equivalence class under a group of transformations. In the context of visual analysis 

of shape required for our application, this definition is necessarily incomplete as it 

only tells us when two shapes are exactly the same. We need to be able to 

differentiate between degrees of sim ilarity. From the point of view of statistics [1 ] 

[2 ], the definition of shape incorporates a definition of shape distance. However, 

there is usually an assumption that the correspondence between sim ilar parts of the 

shapes being compared is known, but this is not often the case. Other approaches 

from statistics do not require that there be a correspondence between parts of 

objects being compared. For example, one could compare feature vectors containing 

descriptors such as areas, volumes or moments and discard shape information in the 

process. An example of a study of shape sim ilarity in psychology is Goldmeier [3 ].

An extensive survey on shape matching in pattern recognition can be found in [4 ]. 

In general, there are two broad approaches to shape analysis: 1) feature-based 

methods, which use the spatial arrangements of extracted features such as edge 

elements or junctions in 2-D and surfaces in 3-D; and 2) content-based methods, 

which make more direct use of pixel brightness or the colour of the interior in 2-D 

and voxel brightness or colour in 3-D.

2.1.1 Feature-based methods

The simplest feature of a 2-D object is its silhouette while that of a 3-D object is its 

bounding surface. A lot of work has been done using boundaries of silhouette
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images. As silhouettes do not have holes or internal markings, the ir boundaries can 

be conveniently represented by a single-closed curve which can be parameterized by 

its arclength. Pioneering work on the analysis of silhouettes include Fourier 

descriptors, for example by Zahn and Roskies [5 ]. The publication of Blum's medial 

axis transform led to attempts to capture the part structure of the shape in the graph 

structure of the skeleton [6 ]. The 1-D nature of silhouette curves led to dynamic 

programming approaches for shape analysis, for example using the edit distance 

between the curves [7 ]. The best approaches from a comprehensive comparison of 

different shape descriptors for silhouettes, done as part of the MPEG-7 standard 

activity, were those of Latecki et al. [8 ] and Mokhtarian et al. [9 ].

Silhouettes are 2-D objects which extend to surfaces in 3-D. However, they are 

limited descriptors of general 2-D objects as they ignore internal contours which 

could be very important (for example in logos). They are also d ifficu lt to extract from 

real images. Approaches that treat shape as a set of points in the 2-D image make 

use of both outlines and internal edges. These are more promising and easier to use 

as the extraction of general edge points can be achieved using a simple edge 

detector. Huttenlocher et al. developed methods in this category based on the 

Hausdorff distance [10] that can be extended to deal with partial matching and 

clutter. Methods based on Distance Transforms, such as [11] are sim ilar in spirit and 

behavior in practice.

The work of Sclaroff and Pentland [12] is representative of the eigenvector- or 

modal-matching based approaches. In these approaches, points in the image are 

cast into a finite element spring-mass model and correspondences are found by 

comparing the ir modes of vibration. Another example is Chui and Rangarajan [13]

There have been several approaches to shape recognition based on spatial 

configurations of a small number of key points or landmarks. In geometric hashing 

[14 ], these configurations are used to vote for a model w ithout directly solving for

9
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correspondences. Am it et al. [15] train decision trees for recognition by learning 

discriminative spatial configurations of key points. Leung et at. [16 ], Schmid and 

Mohr [17 ], and Lowe [18] additionally use gray-level information at the key points to 

provide greater discrimination power. But not all objects have distinguishing key 

points (e.g. the circle), and using key points alone sacrifices the shape information 

available in smooth portions of object contours.

A class of point-based techniques obtains rich local descriptors of a representative 

sample of points that make up the interior and exterior edges of the image. 

Prominent examples include the shape context [19] and distance multiset [20]. The 

use of rich local descriptors that are globally distributed about the shape has been 

shown to be very effective, even for applications where the image is partially 

occluded or sparsely sampled [21]. A major challenge in using rich local descriptors 

of global shape is developing effective sampling strategies to maximize the 

information content of the sampled set with regards to the overall shape.

I t  should be noted that though most of these methods were developed for 2-D 

applications, they can be easily extended to 3-D (particularly the silhouette based 

approaches) by decomposing the 3-D object into a number of cross-sections. This is 

the approach we take in developing our model for 3-D shape analysis.

2.1.2 Content-based methods

Content-based (also called brightness or appearance-based) methods make direct 

use of the color values within the content of the pixels of an image in 2-D or its 

voxels in 3-D rather than ju s t the information contained in the interior or exterior 

edges or the shape of the containing contour. There are two frameworks for the use 

of content-based methods. The first framework directly performs correspondence 

and alignment using the color information. An example of this approach is Yuille 

[22]. In [22 ], invariance to a number of transformations can be in-bu ilt in the model
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used to assess the sim ilarity of the shapes being compared. Handicaps of the method 

include the need for human-designed templates and sensitivity to initialization when 

searching with gradient descent. Another example of a direct use of color values is 

Lades e ta /.'s  elastic graph matching technique [23]. Some approaches first attem pt 

to warp one image into another using dense correspondence field before they 

compare the color values. Examples of this approach include [24] and [25].

The second framework involves attempting the classification of shape properties 

w ithout first solving for correspondences. In this framework, a learning algorithm is 

developed with enough examples to determine the appropriate invariances. Good 

examples in the area of face recognition include using principal component analysis 

[26], [27] particularly in a probabilistic framework [28]. Examples of the application 

of discriminative classification methods in the content-based shape matching 

framework include the LeNet classifier [29 ], and the support vector based methods 

of [30].

2.1.3 Pertinent gaps in knowledge

Though a plethora of methods have been developed over the years, there is a dearth 

of methods that are: 1) intuitive -  based on features of an object that are most 

relevant to its visual perception; 2) relatable - yield indices that can be understood in 

terms of the common description of shape such as bend, tw ist and t ilt ; 3) practical -  

accepts range images of objects, a form of input that is available from most 

segmentation or image acquisition applications; and 4) error-correcting -  corrects 

such errors in the input data as holes and stray points.

2 .2  D O M IN A N T PO IN TS

Dominant point detection methods are a subset o f feature-based shape analysis 

methods. They are primarily 2-D and make use of silhouettes. They were inspired by
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Attneave's observation that much of the information about the shape of a curve is 

concentrated at points of local maximal curvature [31] called its dominant points. In 

Euclidean space, the curvature of a continuous curve is defined as the rate of change 

of its slope with respect to its arc length. This cannot be applied to digital curves as 

digital curves lack an exact mathematical definition [32]. In general, there are two 

approaches to computing dominant points from digital data. The firs t is to directly 

estimate the curvature of the points of interest by utilizing information from nearest 

neighbors to the point referred to as the point's region o f support. The second 

approach is to obtain a piecewise linear polygonal approximation of the curve subject 

to constraints on the goodness of fit, such that the dominant points would 

correspond to the vertices of the bounding polygon [33]. This approach is considered 

the dual notion of the first [34 ], thus we focus on the first approach.

Detection of dominant points on a digital curve by curvature usually follows two 

stages: 1) estimation of the curvature of each point; and 2) selection of the points 

with maximal local curvature as the dominant points. Curvature estimation can be 

achieved by determining a region of support and calculating the curvature based on 

some established formula. The region of support delimits a point's neighborhood and 

is usually symmetric about the point. Sequential [35 ], [36], [37] and recursive [34] 

one point at a time schemes have been used.

Teh and Chin [32] posited that precisely determining the region of support was 

more important than choosing the curvature estimation formula. They proposed a 

nonparametric method that determines the region of support from the perpendicular 

distance between a point and a succession of chords obtained from other points 

centered on the point of interest. Several curvature measures have been used to 

estimate the curvature of each point, such as k-cosine, k-curvature, and 1-curvature 

[37]. The selection of the points with maximal local curvature is then a simple m atter
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of ranking the points according to their curvature and optimizing the number of 

points chosen and the reconstruction error obtained from them.

Some region of support methods operate by pre-processing the Freeman chain 

codes of the curve. Cronin [38] proposed a method based on concavity code 

constructed from the chain codes. Arrebola et al. [39] calculated curvature by 

comparing histograms of chain codes. Sanchiz et al. [40] used neural networks to 

detect dominant points from chain codes. Other machine learning based methods 

have included the use of fuzzy knowledge and an adaptive method for segmenting 

free-hand sketches [41] and corner detection in binary images using neural networks 

[42]. Lin e t al. [43] proposed a multi-scale shape recognition method based on 

feature vectors consisting of multi-scale wavelets applied to a Hopfield network. 

Here, wavelet normalization was applied to make the method scale invariant and to 

reduce distortion resulting from normalizing the object contours.

In many implementations, it is crucial to optimize the number of dominant points 

and the resulting approximation error. Liatsis e t al. [44] proposed methods that 

simultaneously achieved this based on genetic algorithms (GA). Other GA methods 

include Yin's [45] methods for determining the optimal polygons of a digital curve 

and Tsang's [46] method for searching for the best alignment between contours of 

near planar objects. Scale-space methods have been used for computing the 

dominant points of continuous curves. An early example is Mokhtarian and 

Mackworth's [47] curvature based shape representation scheme. Other methods 

include Yin's [48] ant colony search algorithms, Fayolle e ta /.'s  [49] wavelet methods 

for grey level images and Wang e t a l.'s [50] B-spline wavelet based multi-scale 

curvature functions. The method we describe in this thesis makes use of the scale- 

space property of B-spline curves.

The theory of dominant points has inspired several applications. Boucheham e t al. 

applied dominant point detection methods to ECG reconstruction and baseline error
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correction [51 ]. Lin e t al. [52] developed an automatic palm-print verification system 

that employs multi-resolution hierarchical decomposition. Park and Lee [53] applied 

dominant points to 6-spline curve fitting and Ganguly [54] showed that the simple 

Arc tree and Equal error tree was improved by finding tree vertices at only dominant 

points. Gao [55] proposed an efficient method for Hausdorff distance-based face 

matching using dominant points and Fatemizadeh e t at. [56] applied dominant points 

to automatic landmark extraction from Magnetic Resonance brain images.

Other applications have included robot automation [57 ], segmentation of free­

hand sketches and detection of principal features of handwritten characters [58 ], 

detection o f edges and junctions [59], analysis of chromosomes [60 ], and the 

detection o f stroke of Chinese characters [61] and edges [62].

2.2.3 Pertinent gaps in knowledge

As they are based on curvature and can be applied to range images, dominant point- 

based methods satisfy two of the four desired attributes (Section 2.1.3): 

intuitiveness and practicality. There is a need to modify the computation of dominant 

points so that the output is error correcting and relatable. We propose a method for 

achieving this in Chapter 3.

2 .3  SC O LIO SIS

2.3.1 W hat is scoliosis?

Scoliosis is the abnormal lateral curvature o f the spine accompanied by rotation of 

individual vertebrae and visible torso asymmetries [63]. The rotation of the 

vertebrae causes the ribcage to distort and a hump to be produced in the back o f the 

torso. Radiological assessment of the lateral curvature of scoliosis usually includes 

measurement of the Cobb angle [64] (Fig. 2.1) which is the angle subtended by the
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□
Fig. 2.1: The Cobb angle measurement of spinal deformity.

two normal lines to the points of maximum curvature in the spinal midline. Two to 

four percent of the population of North America has scoliosis of at least 10 degree 

Cobb angle [65]. Most of the people with significant curvature are girls [66] and 

most scoliosis develops during the adolescent years [67]. Some of the visible 

characteristics of scoliosis are: 1) uneven shoulder heights; 2) uneven scapula 

(shoulder blade) shape and prominence; 3) shifting of the trunk over the pelvis; 4) 

uneven hip shape and prominence; and 5) the head being off center over the pelvis. 

In addition, when the patient is examined from behind and asked to bend forward 

until the spine is horizontal, one side of the back usually appears higher than the 

other side (Fig. 2.2).

Despite more than a century of research, most cases of scoliosis are still of 

unknown etiology and termed idiopathic [63]. Consequently, there are no generally 

acceptable preventive measures for scoliosis. In adolescents, scoliosis can progress 

at an alarming rate and have severe effects on the cosmetic appearance of an 

individual [67]. In rare cases of severe scoliosis, organ development and pulmonary 

function can be affected [66]. However, many cases of late onset idiopathic scoliosis 

will have no attendant health risks associated with them [68].
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Fig. 2.2: Uneven shape of the back caused by scoliosis.

Scoliosis treatm ent is mostly influenced by the extent of the spinal curvature [69]. 

The general protocol is based on the Cobb angle [66 ]: 1) Small spinal curvatures 

(less than 20°) require no treatm ent; 2) Medium spinal curvatures (between 20 and 

50°) are often braced (Fig. 2.3); and 3) Large spinal curvatures (more than 50°) 

often require spinal fusion surgery (Fig. 2.4). Aside from improving the overall 

internal alignment of the trunk, two primary goals of treatm ent are to improve the 

external appearance of the torso and to halt the progression of the deform ity.

2.3.2 Scoliosis monitoring

Scoliosis is traditionally monitored using posterior-anterior (back-to-front) and lateral 

(side) radiographs taken in the upright position. The rapid progression of scoliosis in 

many patients during the adolescent growth spurt prompted scoliosis clinics to start 

the frequent monitoring of patients. This raised fears about the cumulative effect of 

ionisation due to the increased frequency of radiography. Some authors attempted to 

link the increased use of radiographs to an increased risk of cancer [2 ]. Scoliosis
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Fig. 2.3: The Boston brace used to manage moderate scoliosis.

Fig. 2.4: Spinal fusion surgery often involves supporting the spine using metal rods and hooks.

clinics adopted minimal dose radiography to minimize this perceived risk of 

ionization. They also decreased their use of radiographs to about twice a year [70]. 

However, some clinicians believed that the decreased rate was inadequate to

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



monitor the rapidly evolving shape of the spine. This led to an increased effort to find 

alternative methods for assessing the internal and external effects of scoliosis and an 

increased interest in torso imaging systems and torso shape monitoring.

2.3.3 Use of torso surface images in scoliosis clinics

The management of scoliosis by torso shape predates radiography [71 ]. The use of 

plaster casts and torso models was the norm in the late nineteenth century [72]. The 

contemporary use o f torso shape analysis was initially aimed at complementing 

radiographs, but accelerated due to fears of the ionization effects of radiation and 

the desire to develop methods for estimating spinal deform ity from torso shape.

Over the years, several imaging techniques have been proposed for assessing 

scoliosis and monitoring its progression. Early techniques were limited to the back. 

These include: Moire topography [73 ], Integrated Shape Imaging System (ISIS) 

scanning [74 ], Quantec system scanning [75 ], rasterstereography [74 ], [76 ], and 

laser scanning [77]. Indications that full torso images provide more information 

about the overall deform ity of the torso than back torso images [78] prompted the 

development of several full torso imaging systems. These include Inspeck 3D 

digitizers (Inspeck Corporation, Montreal, Quebec, Canada) [70] and laser scanning 

systems proposed by Poncet e t al. [79] and Ajemba e t al. [80 ], [81]. Several 

measures of torso deform ity were also developed. Most of these were based on torso 

landmarks or other parameters of the imaging systems and generally suffered due to 

the existence of severe anthropometric differences due to growth. See Jaremko e t al. 

[78 ], [82] for a comprehensive list and description of landmark based indices of 

torso deform ity.

Statistics, machine learning and artificial intelligence tools were applied to 

landmark-based indices [66 ], [78 ], [82 ], [83] to: 1) assess changes in torso shape 

and sym m etry; 2) classify scoliosis; and 3) predict the internal alignment of the
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spine from torso shape. These applications yielded mixed results partly due to the 

technical lim itations of the torso imaging systems used [70] but mostly because 

torso shape is influenced by spine shape, rib shape, muscle alignment, body fat, and 

skin characteristics in a largely undefined and changing manner which varies from 

one person to another [71 ], [80 ], [81] and [82]. Some researchers have questioned 

the clinical usefulness of these applications and have called for a new role for torso 

imaging in scoliosis clinics [84].

2.3.4 A novel rationale for using torso surface images in the routine 

management of scoliosis

Studies show that most scoliosis patients and the ir families are primarily concerned 

about the external deform ity of the torso with its attendant social and psychological 

issues than the abnormal alignment of the spine [68]. Patients also seek treatm ent 

primarily because they are not satisfied with their cosmetic appearance [68 ], [76] 

and judge protocols for managing scoliosis by their effectiveness at checking or 

correcting torso asymmetry [75]. In addition, torso shape changes usually imply 

changes in the internal alignment of the spine and rib-cage [78].

This implies that both the internal and external deformities associated with 

scoliosis are useful measures that should dictate its management and treatm ent 

[68]. As spinal deform ity is not easily deciphered from torso deform ity and torso 

shape cannot be predicted from spinal shape, abnormal torso and spinal shape 

should be viewed as related but separate manifestations of spinal deform ity [85], 

[86], [87 ], [88 ], [89]. This is the novel rationale for the inclusion of torso surface 

imaging in the routine assessment of patients in a growing number of scoliosis clinics 

[90].

The ability to detect change and classify scoliosis with radiographs alone is limited 

as accuracy in measuring Cobb angles (3-10°) spans the threshold of clinically
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relevant change seen between typical clinic visits (5° over 6 months). Using 

additional measures of deform ity such as torso shape will improve the predictive 

value of detecting clinically relevant change and clinical classifications. True change 

is most certain when both the internal and the external measures of the deform ity 

reveal a change [90]. In this case the confidence in the predicted outcome or 

classification would be increased. On the other hand, careful consideration would be 

given to those cases where only the internal or external measures record a change 

or a different classification as this may reveal occult issues [88 ], [90].

2.3.5 Pertinent gaps in knowledge

Traditional methods for assessing torso shape are based on landmarks. As the torso 

is relatively smooth, it is difficult to precisely locate these landmarks in real time. 

Also, the large anthropometric variations in the population means that the relative 

locations of torso landmarks vary significantly amongst patients. Finally, landmarks 

are particularly prone to the effects of posture variations, sway and breathing that 

usually occur during the acquisition of torso images. These effects are a function of 

being alive and cannot be completely eliminated. These difficulties call for the use of 

shape analysis methods for characterizing and describing torso shape changes 

caused by scoliosis.

2 .4  RANGE SCANNING  SYSTEMS

Section 2.3 described the use of torso surface images for assessing and monitoring 

scoliosis. The process of acquiring images of surfaces such as the human torso using 

light sources such as lasers is called range scanning. In this section, we describe a 

typical range scanning system. We list other applications of range scanning systems 

and describe some of the problems associated with acquiring images of the torso 

using range scanning systems.
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2.4.1 The operation of a typical range scanning system

The range scanning system we describe is based on the Minolta VIVID 700 laser 

digitizer. The digitizer uses optical triangulation. The fundamental principle is shown 

in Fig. 2.5A [91]. A narrow light beam shines on a spot on the surface of an object. 

I f  the surface is not tota lly matte, this beam is scattered in many directions, and a 

camera records an image of the lighted spot. The center pixel of this spot is found 

and a line of sight traced through the pixel until it intersects the illumination beam at 

a point on the surface. This yields a single range point. To obtain the coordinates of 

an entire surface, the laser beam is systematically swept all over the surface of the 

object using mirrors. In the VIVID 700 digitizer, the beam is fanned into a sheet of 

laser light as shown in Fig. 2.5B. This casts a stripe onto the surface of the object 

which is then captured using a conventional CCD camera. For each camera scan line 

of each stripe, the centre pixel is computed and a line of sight traced to intersect the 

corresponding portion of the laser beam. This yields a range profile of the object. The 

shape of an object can be obtained by sweeping the laser beam over its surface.

The Minolta VIVID 700 digitizer is portable and standalone and uses an eye-safe 

laser beam and a galvanometer-m irror to sweep the beam over the object at a 

resolution of 200 by 200 and 256 levels (8-bits) per point. Its  digital camera has a 

resolution of 400 by 400 pixels. I t  has a SCSI interface and takes about 0.6 seconds 

to sweep the laser beam over the object and about 2 seconds for data transfer to its 

host computer. The cloud of range points obtained is triangulated and converted into 

a 3D surface. The digital camera captures the texture map independent of the cloud 

of points. The triangulated range data can be obtained in a variety of formats 

including ASCII and Wavefront. The texture map can be exported with the range 

data or stored as a separate TIFF or UNIX RGB file.
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Cylindrical Lens

Fig. 2.5: Active triangulation principle.

2.4.2 Generating a complete model of the torso

To obtain a complete model of the human torso, the general procedure is to obtain 

several partial views of the surface from a number o f angles in a way that covers the 

entire surface of the torso and then merge the partial views to form a complete torso 

surface. For the VIVID 700 digitizer, four (or six) partial views of the torso are used.

We carried out experiments to determine the optimum configuration for imaging 

stationary objects [81]. The experiments made use of ten scans of a calibration box 

obtained from four and six partial views. In each position, the box was 210 mm away 

from the digitizer. The results obtained using four and six partial views were 

indistinguishable but the six-partial-view configuration took 50% longer for image 

acquisition. To minimize the acquisition time and thereby reduce the effect of sway 

and breathing when scanning humans, the four-partia l-view configuration was 

adopted. The four views were obtained by placing the digitizer in the four positions 

relative to the subjects shown in Fig. 2.6. In the single digitizer configuration, the 

subject was placed on a rotating positioning platform and rotated by 90° after each 

scan. Fig. 2.7 shows the single digitizer and a cast of the torso of a scoliosis patient.
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(
POSITION 1

POSlTfON 4

Fig. 2.6: The four positions of the digitizer.

M IN O LTA  V IV ID  7D0

Fig. 2.7: A single Minolta digitizer and the mannequin.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Prior to merging, the partial views were aligned, transformed into a common 

coordinate system and registered. Merging consisted of determining the best surface 

in areas o f overlap between the partial views using spline interpolation techniques 

[86]. Fig. 2.8 shows views of the rendered polygonal mesh of the cast from the 

alignment, registration and merging process. Fig. 2.8a-d shows the four views of the 

cast before alignment, registration and merging. Fig. 2.8e shows the views after 

alignment and registration and Fig. 2.8f shows the views after merging. A 3D texture 

map was obtained from each of the four views. For an average sized torso, the 

polygonal mesh obtained contained over 100 000 vertices. The data can be sub­

sampled for easier manipulation by varying the reconstruction parameters.

2.4.3 Other uses of range scanning systems

Modern range scanning systems have found applications in such areas as robotics 

[92], image guided surgery [93 ], medical imaging [94 ], [95 ], electronic component 

testing [96] and computer graphics [97 ], [98]. Range scanning systems are used in 

medical imaging as an aid in planning reconstructive surgery [99 ], prosthetics 

manufacture and brace design. In computer graphics, range scans of objects are 

used to create the ir 3D animations [97].

Many range scanning systems capture the shape of objects by reflecting laser 

beams (or structured light) off the objects' surface to obtain the coordinates and 

other attributes of clouds of 3D points that describe a mesh representation of the 

object. The obtained mesh usually requires further processing before it can be used 

for most applications [100]. Capturing occlusion and hole-free surfaces remains a 

challenge due to errors in reflecting the laser beams from high-reflectance surfaces 

and the lim itations of the reconstruction algorithms employed.
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2.4.4 Problems peculiar to torso imaging

Range scans of human torsos exhibit several problems and require an elaborate pre­

processing stage before they can be used to assess torso deformities. First, stray 

data points from surrounding artefacts such as the positioning platform and 

garments that are not of interest can be arbitrarily positioned vis-a-vis the scanned 

object and have to be manually removed. Second, regions such as the head and 

neck and the shoulders and arms are often asymmetrically aligned and hence 

difficult to crop. Third, holes due to the occlusion of parts of the surface and grazing 

angles of incidence of the laser beam are often located in obscure regions like under 

the arms. Fourth, additional errors can be introduced during initial processing 

operations such as merging and smoothing.

The solutions to these problems are beyond the scope of this thesis. However, we 

correct for the ir effect using a suite of pre-processing procedures (Chapter 8).
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CHAPTER 3

STRUCTURED SPLINES MODELS: THEORY AND VALIDATION *

3 .1  IN TR O D U C TIO N

In this chapter, we consider the problem of quantifying the shape of a deformable 3- 

D object in order to compare its shape to those of sim ilar objects and track its shape 

changes over time. This is an example of shape analysis of deformable objects, an 

important problem in computer vision and pattern recognition. A robust, accurate 

solution would facilitate applications such as disease prognosis from the analysis of 

human organ shape and tracking and measuring changes in 3-D objects from 4-D 

data. We require that our solution be intuitive and rely on perceptible surface 

features such as curvature and symmetry. To be practical, we also require our 

solution to be able to estimate 3-D shape from incomplete point sets (obtained from 

range scanning or segmentation) by first reconstructing the data.

3.1.1 Outline

We propose a three-step solution to this problem (Fig. 3.1). First, the 3-D object's 

surface is modelled as a structured sequence of cross-sections based on a geometric 

property of 3-D shapes called volume constancy. The sequence of cross-sections 

obtained this way is shown to be invariant to positioning and affine (orthographic 

and semi-perspective) transformations. Second, feature points that describe the local 

curvature of a cross-section are extracted from each of the structured cross-sections 

as perception of a shape is chiefly influenced by local curvature [1 ]. Third, the

K A version of this chapter has been submitted for publication. P. 0 . Ajemba, N. G. Durdle, and V. J. Raso, 

'Quantifying torso deformity using dominant points obtained from structured splines m odels/ IEEE 

Transactions on Im age Processing, 2007.
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Fig. 3.1: Schematic diagram of the structured splines model.

aggregated set of points is used to develop a multi-axial shape vector which in turn 

is used to quantify and track the shape of the deformable 3-D object.

The main contributions of this chapter are: 1) a technique for obtaining structured 

sequences of cross-sections of deformable 3-D objects; 2) a minimum error 

estimation technique for interim shape matching during feature point selection based 

on the shape context technique [2 ]; 3) a multi-axial shape vector for quantifying 

shape that takes into account symmetries and near symmetries; and 4) a technique 

for classifying and tracking 3-D shape. In addition, this study builds in non-trivial 

ways on curvature based shape description to address the problem of 3-D shape 

quantification and tracking of deformable objects.

3.2 BACKGROUND AND RELATED WORK

Shape description and matching is a fast evolving field and reviewing it extensively is 

beyond the scope of this work. Good reviews of the field can be found in [3 ] and [4 ]. 

Existing methods can be classified into feature-based or content-based methods. 

Feature-based methods make use of information obtained from the edges of an 

image [5 ]. The edges of interest include silhouettes (or the exterior edges), but may 

also include interior edges like letterings [6 ]. Content-based methods make use of 

information in the interior of the image in addition to the edge information [7 ]. This 

includes pixel colours and areas in 2-D images, voxel colours and volumes in 3-D 

images, as well as the distribution of pixels and voxels. [8 ].
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We are interested in 2-D boundary based methods (a sub-class of feature-based 

methods) as they can be extended to 3-D and used for our application.

Feature-based methods can be further classified into local, global and hybrid 

methods. Global methods take into account the overall shape of the object. An 

example is the medial axis transform [9] and moment-based techniques [10 ], [11]. 

Local methods focus on local properties o f shapes such as curvature. They include 

Mokhtarian and Mackworth's curvature scale space methods [12] and spline based 

methods such as [13]. Hybrid methods combine both global and local characteristics 

of shapes. Examples of such techniques are rich descriptors like shape contexts [2] 

and distance multisets [14] which use global descriptors of local coordinates.

Attneave [1 ] observed that the edges of a curve are its most important visual 

components. As we require that our choice of shape descriptors be based on the 

human visual perception of shape, we lim it our search to methods that utilize local 

shape features such as curvature. A subset of shape description methods are based 

on representing shape using points of local maximum curvature called dominant 

points [15]. A review of these methods is given in Chapter 2.

Finally, we require that the method chosen be able to determine 3-D shape from 

incomplete point sets obtained from range scanning or segmentation and include a 

data reconstruction routine. This suggests the use of a spline based technique for 

both surface reconstruction and dominant point detection. 6-splines [16 ], [17] are 

the most basic of existing spline based methods and are used in this study.

3.3 PRELIMINARIES

3.3.1 fi-spline basis functions and S-spline curves

6-spline curves are generated from piecewise polynomial functions called 6-spline 

basis functions. They locally approximate a contour using a small number of
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parameters called control points. We briefly describe the S-spline theory used in this 

chapter. A detailed treatm ent of the theory can be found in [18].

In 1915, W hittaker [19] proposed that given the values of a function / ,

corresponding to an infinite number of equidistant values of its arguments x QI

x 0 + T , x 0 + 2 T , ... from which a table of interpolation can be constructed, there

exists many functions which give rise to the same exact table, but only one has all 

constituents of period less than 2 T . He called it the cardinal function given as

+oo sin - ( x - x 0 - k T )

c m  = Z  / < * . + kn - r  • d )
*=~°° - i . x - x 0 - k T )

I t  reproduces its interpolating values as C(x0 + kT) = f  (x0 + kT) [2 0 ]2. Schoenberg

[16], [17] showed that a drawback of (1) is that the resulting functions do not 

necessarily yield smooth curves and cannot be used to generate osculatory curves. 

Let

F(.x) = Y ,ynL (x ~ n) > (2)
n

where

T. . s in^x 1 *r ,
L(x)  = --------- = —  \e du . (3)

7DC 2 71 i- n

2 The sampling theorem proposed by Shannon [21] (researchers such as Kotel'nikov, Raabe and Someya

have also been credited with this discovery [20 ]) follows from (1 ). Let F  be a function that contains no

frequencies higher than W cps. The sampling theorem deals with the reconstruction of the function using

a pulse of type sin(27tWx)/ 27tWx.. .  where sk is the k th sample. In this case, the function is given

by the expression

. ip  sin 7t(2Wx -  k)
F (x )  = 2  h   v ■ (4)

7i{2W x-k)

Note that (4 ) corresponds to (1) when x0 =  0 and T  =  1/2W .
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Then (2) is an interpolation formula if F{ri) = yn, for all n , and in this case if and 

only if L (x ) is such that Z(0) = 1, but L (i) = 0 for all other integers i * 0 .  This is 

called a cardinal series representation. Note that the data is limited to one 

interpolating function per value. Now, (2) would be smoothing if L(x) = L ( -x ) and 

for \x\> p , L(x) =  0 , for some abscissa value p . The sequence in (2) can then be 

written as

where (5) is finite as L {p ) = L ( -p )~  0. This is an example of a linear transformation

or time invariant filtering in signal processing, w ith L  the impulse response function. 

We next determine the condition under which F  is smoothing. Using the properties 

of Fourier transforms and convolutions, from [18 ], (5) reads

where 3[-] is the Fourier transform operator. Thus, in (6), 3 [X ] is the frequency 

response of the system. A smoothing filte r is essentially a low pass filter, so 3[Z ](ry) 

should be small or zero for large m . We define the B-spline basis function of order k 

(and degree k — \ )  as the inverse Fourier transform of the product of k sine 

functions, that is

f (x) =  Y j y M x ~ r )> (5)

3[in(ffl) = 3b](©)2tZ](©), (6)

sin(a>/2)
(7)

for k = 1, 2, . . . ,  then

sin(ry/2)

Schoenberg [16] showed that (7) was equivalent to

(8)
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Where Sk is the k t h  order central difference of a unit step [16 ], [18] and

a*"1 x > 0

0 x  < 0

From (3) and (7), the zeroth order 6-spline basis function M 0 is the impulse 

function. The & th order continuous 6-spline basis function is obtained from k + 1 

convolutions of M 0 . That is

Note that M x(x) = M 0* M 0( x ) , and M k in (9) is equivalent to k  convolutions of 

M x. I t  follows that a 6-spline basis function of order k  represents the probability 

density function of the sum of k  independent random variables with uniform 

distribution in the interval [-1 /2 , 1/2].

The discrete 6-spline basis function of order k  at scale level m is given as [12]

In (10), A°m = l / m  ■ [1,1,••*,!] is a normalized sampled pulse of width m .

The discrete sampled 6-spline basis function of order k  at resolution m is given 

as akm(t) .  I t  is obtained by directly sampling the & th-order continuous 6-spline basis 

function at the scale m , as follows:

When m = 1, the discrete sampled 6-spline basis of order k  is denoted as 

ak{ t ) - M k{t ) .  The inverse of the operator ak in (11) is defined using the impulse 

response function Im(-) as

Computing 6-spline basis functions from (7) and (8) is tedious. In this chapter, we 

use a numerical implementation [18].

38

M k (x) = M 0 * M k_x (x) = M 0* M 0 * - * M 0 (x)  . (9)

( 10 )
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(aky x* a k(t) = lm( t ) .
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Given two sequences of real numbers U = {ui ) si=0 and M - { m i } si=a called a 

breakpoint sequence and a m ultiplicity vector respectively, we define a non­

decreasing sequence of real numbers T  = { t j }  called a knot vector, such that

nil = c a r d { j  : t  . = u i ) . Let T  be given as For n = 0 , . . . ,N,  and

i - 0 , . . . , N - n ,  the / th 6-spline basis function of order £ is defined for k  = 1 as:

f 1 t: < t  <
M , (0 = n ' ■ (12a)

0 otherwise

For k > 1, it is defined as: 

JW «(0 =
(o  + / V ,.,.,., (o , t, < t lM, . l , K ~  1 v /  . ,  l  +  l , K - X  \  S '  I l  +  X t K  t *

h+k - u  ■ ( 12b)
0 otherwise

Finally, let P  = be a sequence of control points. A 6-spline curve based on a

set of 6-spline basis functions M in{t ) ,  of order k ,  is defined for k >  1, using (12a)

and (12b) as:

^ ( 0 = ^ i ,M a ( ^ 0  = E A ’ M y ( ^ 0 '  (13)
( '= o

3.3.2 Volume decomposition

Given our task of determining the dominant points of a 3-D object (i.e., a volume) 

we are faced with 3 options. First, model the volume as a surface, using polynomial 

interpolants. The dominant points can be obtained from the control points of the 

interpolated surface. Second, decompose the volume into a structured sequence of 

h 2-D cross-sections and then model the cross-sections using polynomial 

interpolants. The dominant points in this case can also be obtained from the control 

points of the sequence of h interpolated curves. Third, directly estimate the 

dominant points from the surface points using range data compression.
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The first option produces an unstructured sequence of dominant points as the 

point locations are tota lly unconstrained. Though this may be useful for applications 

in computer graphics, it is undesirable in our case as our shape quantification routine 

requires our dominant points to have a quasi-structure as we hope to utilize them in 

deriving our deformation indices. The third option fails to make use of any curvature 

information, a desirable feature of our application.

We choose to go with the second option and use 6-spline basis functions as our 

polynomial interpolants. Advantages of this choice include: 1) the existence of a 

quasi-structure on the dominant points obtained; 2) the local correction for holes, 

ambiguities and errors in the surface; 3) the possibility of very efficient surface 

recovery from the cross-sections obtained; and 4) the low computational cost 

incurred compared to the other options.

3 .4  STRUCTURED SPLINES MODELS

3.4.1 From 3-D objects to 3-D cross-sections

In concrete terms, the problem we seek to solve is this: Given an object O made up 

of a collection of say M x N  points, we want to extract a structured sequence of 

h x c  points that are the dominant points of O ' s surface. Concisely,

To create the theoretical framework for this process, we start by exploring the 

properties of a fundamental invariant of 3-D objects: volume constancy. This refers 

to a closed 3-D object retaining its volume in the presence of affine transformation.

OmxN Oh,c (0 (14)

Where the structured sequence of points Ohc is given by:

h-\ h- 1 c- 1

(15)
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Definition 1: For a simple closed 3-D surface (or object) O with a start point T 

and an end point E , a regular set o f cross-sections is one that divides O into a 

number of equal volume segments independent of position, orientation and scale.

The planes of a regular set of cross-sections need not be parallel to each other but 

cannot intersect within the volume of the surface.

Definition 2: For a simple closed 3D surface O with a start point T  and an end 

point E , its centroid line originates at T  and ends at E  and jo ins the centroids of 

the cross-sections of an infinite-sized regular set of cross-sections o f O .

Corollary 1: For h >  3 , a regular set of h cross-sections of a simple closed 

surface is unique and invariant to positioning and affine transformations.

Proof: Follows from Definitions 1 and 2. ■

Lemma 2: Let an affine transform be applied to a simple closed surface 0 A 

to obtain another simple closed surface 0 B . Let LA and LB be the centroid lines of 

0 A and 0 B respectively. Applying to L A yields LB.

Proof: Let 0 A be a simple closed surface with a start point TA and an end point 

E A. The surface of 0 A can be decomposed into an infinite number of surface lines 

originating from TA and ending at E A. These surface lines would fall about L A. Let 

0 B be the result of applying a transform to 0 A. Ob could also be sim ilarly

decomposed about its centroids line LB . As geometric transforms are onto, each 

component surface line of 0 A will be unique and correspond to a component surface 

line of Ob . I f  we apply a contraction operation on 0 A and 0 B centered around their 

respective centroids, and repeat the process of decomposing the resultant surfaces 

into lines and then mapping the lines of 0 A into those of 0 B, in the lim it, both 0 A

and 0 B would consist of the ir centroids which would map to each other ■
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From Lemma 2, the shape sim ilarity of centroid lines is equivalent to the shape 

sim ilarity of the corresponding 3-D objects.

The formal definition of the structured splines model of a 3-D object is as follows: 

Definition 3: Let each of the h regular cross-sections of a simple closed 3-D 

object O that consists of a cloud of M x N  points be modeled by h interpolating 

curves Sk with c dominant points and B-spline basis functions a in e C ° . The h x c

matrix M  formed by the structured sequence of dominant points is the structured 

splines model of O of order h x c x k  .

Theorem 3: An h x c x k  order structured splines model of a simple closed 3-D 

object O is unique and captures the shape of the surface for h,c = 3,...,oo .

Proof: Follows from Corollary 1 and Definition 3. ■

Lemma 2 and Theorem 3 imply that structured splines models of 3-D objects are 

unique signature o f the objects' shape. Thus, the shapes of different 3-D objects can 

be compared by comparing the ir structured splines models.

3.4.2 From 3-D cross-sections to dominant points

Our goal is to f it a set of m ( m > n  + 1) ordered data points P , that lie on a curve S , 

with a real-valued B-spline, where

P  ~  ( P l ’ P 2  ’ • • - ’ P m  )  =  {[''■ l’ T l JZ 1 ] ’ [ X 2 ’ y 2 ’ Z 2~\ ■>'" ^ - X m ^ y  m ’ Z m \

and [-]r  is the transpose operator. There are two methods to achieve this. The first 

method is to utilize P  as the sequence of control points of the B-spline curve. As in 

(13), M k(x) could be used. In the lim iting case, k = 0 and the points are not joined

at all by M 0(x) .  In this chapter, we obtain our ground tru th curve using k = 4 , thus, 

the points are joined by cubic polynomials.
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The second method is to find a 6-spline curve that fits the data points such that 

the error measured between the data points and the ir corresponding points on the 6- 

spline curve is less than an error tolerance value sT . Ideally, let c be the number of 

control points of the approximating 6-spline. Then, c « m ,  though 1 < c < m  could 

be acceptable. The second method does not require many initialization parameters, 

achieves a data compression ratio of m /c  and is noise resistant [13].

From sampling theory, let Sk be an interpolated version of a given a curve / .  Let

Sk be obtained using interpolating functions M ik e C° and i control points. We can 

infer that

l i m | | ^ - / | | t .  = °. (16)

In other words, there exists an interpolated version of /  that will be an exact match 

for some number of control points i and some degree of the interpolated function k , 

as both terms increase infinitely. The lim it in (16) is not very useful as we need 

bounded values fo r i  and k .

Theorem 4: Let Sk and /  be as given in (16). For 6-spline basis functions

M i k e C° and some c e Z , there exists a set of points D  = {<i,}[=0 for which

Proof: Mokhtarian and Mackworth [12] showed that the Gaussian can be used to 

obtain a scale space representation of a curve at varying resolutions (tha t is, number 

of inflection points3). They termed this the Gaussian scale space representation of 

the curve.

A scale space representation for 6-spline curves was developed by Wang et at.

[13]. Let D  = {d ,}[=0 be the input to Sk . From (13), a parameterization of /  using

3 Dominant points can be defined as points of inflection. This is the dual of their definition as points of 

local maximum curvature. We use the latter definition in this chapter.
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M .0 is:

So(0 = ]£ s o ( 0 'M j,o ( t - 0 -  (18)
i

where s0(t) = [x(/,0),.y(f,0),z(f,0)]r  in (18). The approximation coefficient vector 

s0(i) is:

s0(i)  = (a ‘ y l * D ( i) .  (19)

Note that in (18), the discrete points D  are not yet interpolated. They are ju s t the 

original sampling points, as often used in Gaussian smoothing. The evolution of the 

curve at different resolution levels x  is achieved by convolving the curve w ith a 

dilated 6-spline basis function,

S(t,x) = S0* M xk(t) (20)

where M k(t) = ( l / x ) -M k( t /x ) denotes the k  th-order 6-spline at resolution x .

This scale space representation of 6-spline curves so far is quite sim ilar to the 

Gaussian scale space. By the central lim it theorem, the 6-spline basis function 

approximates the Gaussian as k —»co. Thus, as with the case of the Gaussian scale 

space, the evolution obtained from (18), (19) and (20) ensures that the curve Sk 

matches /  exactly for some k  value. ■

In practise, we do not have the liberty to use any arbitrary value for k . We seek a 

form of (17) where the order o f k  is fixed. In this chapter, we use k = 4 . The 

resulting equation is

\im\\Sk - f \ \ ki<eT. (21)

The term  sT in (21) is the resultant matching error from lim iting k  to 4. As sT 

varies with the number of dominant points, the shape of Sk is not preserved at any 

step. Increasing c ,  though computationally more costly, does not necessarily 

guarantee that sT = 0 .
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Corollary 5: In (17), the dominant points D = {d i } ci=0 uniquely define the shape of

Proof: This follows from Theorem 4 and the discussion above ."

Next, we examine the uniqueness and shape representation ability of D .

Lem m a 6: Let Px be the centroid of D = {d i } ci=Q, and G be the centroid of /  .A s

c —> oo, Px ^> G  and traces a path unique to the shape of / .

Proof: i) As c —» oo , Px ^> G  : From Theorem 1, D = { / . }  -=0 exists for each c . As 

the control points of a spline curve are not self-coincident, as oo D will 

approximate /  and Px —> G .

ii) As c —» oo, the path of Px is unique to the shape of / :  From Corollary 5, for 

every set of B-spline basis functions M i r , and c > 3 , /  is approximated by a unique

interpolating spline curve Sr . Let f A and f B be two ground tru th curves with

identical shapes. From Corollary 5, the dominant points of the ir interpolants will be 

identical at every resolution c . As centroids are completely determined by point

distributions, the centroids of the dominant point distributions of f A and f B will be 

identical. I f  f A and f B are not identical, then, there will exist at least one resolution 

c , for which the centroids of the dominant point distributions differ. This implies that 

the centroids of the dominant point distributions of f A and f B will follow identical 

paths as c —>co if and only if f A and f B have identical shapes. ■

Lemma 6 implies that the path of the centroids of the dominant point distributions 

of a curve for varying c , is a unique shape signature for the curve.
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3.4.3 From dominant points to shape description indices

The result of obtaining the structured splines model of a 3-D object is a cloud of 

dominant points having a quasi-structure. The relative distribution of the points at 

each cross-section is a function of the degree of asymmetry at that cross-section. 

The task is to extract information related to shape (and perhaps symmetry) from the 

dominant point distribution obtained. Let I be the number of planes of symmetry (or

near symmetry) present in the object. The object is decomposed into 2l sectors 

along the planes of symmetry if I is even, and into 2M sectors along the planes of 

symmetry and along planes orthogonal to the planes of symmetry if / is odd4. Fig.

3.2 shows examples for objects with one and two planes of symmetry. In this study, 

we determine symmetry using the method of [22].

A. Absolute origin and absolute length

No deformation indices can be calculated for objects for which I = 0 or / —>• oo . I f  

/ >  1 and countable, then the planes of symmetry of the figure would intersect to 

form a point or line. I f  the intersection is a point, we term the point the absolute 

origin of the object. I f  the intersection is a line, the absolute origin is the m id-point 

of the part of the line that is confined within the object. I f  1 = 1, then the absolute 

origin of the object is the m id-point (usually the centroid of area) of the portion of 

the plane of symmetry tha t lies w ith in the object. The absolute length of a point is 

the point's distance from the absolute origin.

B. Corresponding segments

Corresponding segments are pairs of segments that are m irror images of each other.

4 For objects with 1 =  0  or I  —> oo (such as circular cylinders or spheres), no decomposition is 

necessary as they exhibit no computable shape deformation.
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Fig. 3 .2 : Decomposing an object into sym m etric components along its planes of sym m etry  

(o r partial sym m etry) for the analysis of the distribution o f its dom inant points.

An object w ith I axes of symmetry usually has I pairs of corresponding segments. 

After decomposition along the principal axes, the corresponding segments are 

numbered as in Fig. 3.2. The dominant point distributions in the segments are 

aggregated and their centroids computed. The shape of the object can be inferred 

from the set of absolute lengths of the centroids of its segments.

C. Deformation indices

absolute lengths of the centroids of the / th corresponding segments, where i = {1 , 

2 , . . . , /> .  We define the normalized bend index as:

Where the normalization factor k b in (22)

k b = 1 • max[max(g^ | / = 1,..., /), max(h!z \ i =  1,..., /)] 

is the product of the number of corresponding segments by the longest absolute

length of a centroid, and J z = ( g ‘z ~h'z) 2 . g \ and h\ are the z components of G ‘ 

and H l respectively.

I f  / > 0  and countable, then let G' = (g x,g ly,g'z)r  and H ' = (hx,hy ,h lz) T be the

(22)
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The equations for the normalized tw ist and t ilt  indices, ^  and X¥A, are:

(23)

and

(24)

Similarly, k t  and k a in (23) and (24) are defined respectively as:

k t  - 1• max[max(g^ | i - 1, max(/^, | i =  1,. 

k a = I • max[max(g( | i = l,...,l),max(h'x \ i  - 1 ,...,/)].

Note that T b , 'Fj, and ^  are the average rotations of the object in the x-y, x-z  

and y-z  planes respectively.

D. Tracking shape changes

Shape is a relative property o f an object. Thus, we can only track shape changes 

relative to a template shape. This is still the case in situations in which we are not 

consciously aware of our template5. Fig. 3.3 illustrates this.

Given a template object, change in shape is measured relative to the starting 

shape as a signed difference in tw ist, bend and t i l t  indices between the object in 

consideration and the template object.

3.5 IMPLEMENTATION

In this Section, we describe our particular implementation of the structured splines 

model. We describe our choice of optimal parameters, shape matching error 

estimation and method of speeding up the execution of the algorithm.

5 The most widely used template is the circle in 2-D and the sphere in 3-D . Most shape description 
methods based on relative length, moments of areas or other symmetry-affected property of objects make 
this implicit assumption.
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TEMPLATE

o c o
Average Spoon Long Spoon Very Long Spoon

TEMPLATE

o O c=o
Short Spoon Average Spoon Long Spoon

<=o =0 £=0 <==0
TEMPLATE Very Short Spoon Short Spoon Average Spoon

Fig. 3.3: Relative descriptions of spoons. The description of an object is context dependent.

3.5.1 Optimal choice of parameters

The structured splines model is made up a sequence of spline curves that model a 

structured sequence of cross-sections of the object. For our implementation, we use 

6-spline basis functions and 6-spline curves. This choice is influenced by the 

following properties: 1) 6-spline curves are characterized by the ir control points, 

which are a natural set of dominant points; 2) They show invariance under affine 

transformations; 3) They globally describe the entire curve and yet have local 

flexib ility (depending on the degree) w ithout having to partition the curve into 

segments.

The choice of parameters such as the order of 6-spline k , and the number of 

dominant points to be fitted to the curve points c , was based on the model 

described in [12]. Fig. 3.4 shows plots of c and k  versus normalized shape 

matching error (Section 3.5.2) and normalized execution tim e for ten cross-sections 

of a test object.
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Fig. 3 .4 : Plots of num ber of control points and order of 6-spline versus normalized shape 

matching error (NSME) and normalized execution tim e (NET). NSME and NET are normalized

with respect to  the ir first values.

3.5.2 Shape matching error estimation

We develop a shape matching error estimation method, based on the shape context 

[10 ], for evaluating the fidelity of the match between the interpolated curve Sk and 

the ground tru th  curve / .  The shape context of a point of p  belonging to the 

contour of an object is a bivariate histogram in a log-polar coordinate system 

showing the distribution of contour points in the surroundings of p . Let O be an

object represented by a set of contour points, 0  = {p x...p N} .  The shape context of a 

point p e O  is a vector form ally defined as:
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H ° ( p )  = (h l (p ) ,h 2(p ) , . . . ,h s ( p ) ) ,  

where

hs (p )  = card {q *  p \q  e 0 ,{q  ~ p )  s bin(s)} 

is the number of contour points in the s th  bin bin(s) and S is the total number of 

histogram bins which divide the image plane into S partitions in a log-polar 

coordinate system with p  as the origin. In this study, we use five intervals for the 

log distance y  and 12 intervals for the polar angle 6 , so that S = 60. The maximal 

diameter6 of the cross-section serves as the upper bound of the radial distance y  on 

which the shape context is computed, and thus is consistent for all our tests. We 

randomly select c points in /  (out of the possible m ) and all the points in Sk and

calculate the ir shape contexts. The shape of /  and Sk (Xsfc and Xsfk ) are described 

respectively, using the ir sets of shape contexts as:

^ Sf  = {H °  (p ) \ p e  f } ,

Xfk = { H 0s (q ) \q e S k}.

As an equal number c , o f points is chosen from both curves, the cost o f matching 

a point p  e /  to q e Sk is:

r * , w - W ] 2
i , j  ~  /  i  j  ,  \  . r /  \  (25)2 s=i hs(P i) + hs(q j)

A c x c  cost m atrix of point-wise dissimilarities is constructed according to (25). The 

dissim ilarity between the shapes representations Xsf  and Xsf  of the objects is 

computed as:

ffsc( 4 ^ )  = T £ m m { * - J  \ j  = \ , . . . ,c ) .  (26)
C  1=1

6 The maximal diameter of an object is the greatest distance between two points in its convex hull.
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The metric in (26) is the mean of the minimum costs of matching all pairs of points 

in the bipartite match of Sk to / .  Furthermore, if an ideal approximating curve is

obtained, s sc < sT .

3.5.3 Algorithmic speed-Ups

The determination of the interpolated curve SL involves an iterative procedure of 

order

■ n c = — — — .

Since each step involves point selection and shape matching error calculation, the 

computational cost easily escalates making algorithmic speed-ups a necessity. One 

speed up option lim its the candidate points for dominant point selection to points of 

local maximum curvature. Of the m points on the ground tru th curve, if y  points

are deemed points of high curvature, then the performance improvement is given as

/  ( y c) = —

y! ( m - c ) ! '

3 .6  RESULTS

3.6.1 Deformable elliptical frustums

We created a deformable model of an elliptical frustum with rotations of 0 -  90° in 

increments of 5° in the x-z and x-y planes. Fig. 3.5 shows three elliptical frustum 

models. For each model, a 4 x 8 x 3  structured splines model was created for each 

frustum. Fig. 3.6 shows the structured splines model of the frustums in Fig. 3.5. 

Table 3.1 shows the changes in the tw ist, bend and tilt  values obtained from five 

180x180x3 structured splines models of the truncated frustums. Each model is used 

in turn as the template for the other models. This gives a quantitative example
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Fig. 3.5: Three frustums used to illustrate the descriptive power of shape contexts. A has no 

x-z or x-y rotations, B has 30° x-z rotation but no x-y rotation, while C has 30° x-z rotation
and 30° x-y rotation.

BA C

Fig. 3.6: Top-view of a 4x8x3 structured splines models of the frustums. Though a rough 
model is shown, the differences (transformations applied to the frustums) are very apparent.

of the idea of that shape description is relative.

3.6.2 Range images of the human torso

To demonstrate a practical application of structured splines modelling, we model 

range images of the back surface of patients who have scoliosis, a deform ity of the
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Table 3.1: Comparison of the percent change in {twist, bend, tilt) values obtained for six 

frustums. Each frustum was used alternately as the template object for comparison.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 1 00,00,00
Model 2 15,00,07 00,00,00
Model 3 00,15,07 15,15,15 00,00,00
Model 4 15,15,15 00,15,07 15,00,07 00,00,00
Model 5 30,15,22 15,15,15 30,00,15 15,00,07 00,00,00
Model 6 15,30,22 00,30,15 15,15,15 00,15,07 15,15,15 00,00,00

Model 1: x-z = 0°; x-y =  0°. Model 2: x-z = 30°; x-y = 0°. Model 3: x-z = 0°; x-y = 30°.

Model 4: x-z = 30°; x-y = 30°. Model 5: x-z = 60°; x-y = 30°. Model 6: x-z ;= 30°; x-y =  60°.

spine that causes visible torso asymmetry [23]. Scoliosis affects up to four percent of 

adolescents in North America, but only a small fraction of those affected will need 

clinical treatm ent or monitoring [24]. Range images of the torso are used in 

monitoring the effect of scoliosis on the shape of the torso. Fig. 3.7 shows back torso 

pictures of three scoliosis patients who have a prominent tw is t or bend deform ity. 

Fig. 3.8 shows a cascaded top view of the 4 x 4 x 3  structured splines models o f the 

range scans corresponding to the back torso pictures of Fig. 3.7.

A visual representation of the obtained indices can be captured using a status 

diagram  (Fig. 3.9). To improve the descriptiveness of the status diagram, the back 

image is first divided into two halves along its symmetry line. Each half is further 

divided into three sections. The centroids of the dominant points in each section is 

computed and plotted to give a visual representation of the back torso deformity.

3 .7  CONCLUSIONS

This chapter considered the problem of quantifying the shape of a deformable 3-D 

object with a view to tracking its shape changes over time and comparing its shape 

to that o f sim ilar objects. An intuitive solution that relied on perceptible surface
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A B C
Fig. 3.7: Back torso images of scoliosis patients who have prominent deformation 

components. A: Left Tilt; B: Right Tilt; and C: Left Twist.

A B C
Fig. 3.8: Cascaded top-view of the 4x8x3 structured splines models of the range images of 

the back whose pictures are shown in Fig. 3.7. The differences between the three structured 
splines models are also apparent at this low resolution.

-100 
H---

+ 100 
— I-

Twist

Bend

Tilt
ijjaj

Fig. 3.9: A nine bar-status diagram of the back torso of a scoliosis patient. The bar lengths 
correspond to absolute index values of the deformity indices while the placements of the bars 

relative to the center line indicate the index sign. Right is positive and left is negative.
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features, curvature and symmetry, was proposed for the problem. The solution 

involved structured splines modelling of the deformable 3-D object. I t  involved three 

stages: First, the 3-D object's surface was modelled as a structured sequence of 

cross-sections and the sequence thus obtained was shown to be invariant to 

positioning and affine transformations; Second, feature points (dominant points) that 

describe local curvature of the deformable object were extracted from each of the 

structured cross-sections obtained in the first stage; Third, the aggregated set of 

dominant points obtained is used to develop a multi-axial shape vector (comprising 

of tw ist, bend and t i l t  components) which in turn is used to quantify and track the 

shape of the deformable 3-D objects.

The use of dominant points of a structured sequence of B-spline curves ensured a 

rich representation as most of the information present in a shape is concentrated at 

the dominant points [1 ]. Though dominant points have been used for several 

applications, they have not been used to quantify the shape of 3-D objects.

The main contributions of this chapter were a technique for obtaining a structured 

sequence of cross-sections of deformable 3-D objects, a minimum error estimation 

technique for interim shape matching during feature point selection, based on the 

shape context technique [2 ], a m ulti-axial shape vector for quantifying shape taking 

into account symmetries and near symmetries and a technique for classifying and 

tracking 3-D shape. In addition, this study built on curvature based shape 

description, in non-trivial ways, to address the problem of 3-D shape quantification 

and tracking of deformable objects.
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CHAPTER 4

STRUCTURED SPLINES MODELS: APPLICATION TO 

QUANTIFYING TORSO DEFORMITY IN  SCOLIOSIS K

4 .1  IN TR O D U C TIO N

This chapter proposes a solution to the problem of quantifying torso deform ity in 

scoliosis and tracking changes in torso shape over time. This is an example of the 

broader class of problems in computer vision and shape analysis that deals with 

deformable 3-D shape description and matching. We approach the problem from the 

point of view of scoliosis, a deform ity of the spine that results in visible torso 

deformity. Readers are referred to Chapter 2 for a discourse on scoliosis. Fig. 4.1 

shows back torso pictures o f a patient with progressive scoliosis taken in six-month 

intervals. We require our solution to torso deform ity classification and tracking to 

make use of range scans of the torso (the most common form of acquisition [1 ]) , be 

intuitive to medical practitioners involved in the chain of care of the scoliosis patients 

and be based on deform ity features like curvature and symmetry.

4.1.1 Overview

Our previous work [2 ] proposed the use of dominant points obtained from structured 

splines models of deformable 3-D objects for quantifying their shape and symmetry. 

In this chapter, we apply the method to the human torso for the assessment, 

quantification and tracking of torso deform ity. Three indices o f torso shape deform ity 

were developed. The indices were tw ist, bend and t i l t  corresponding to the average

* A version of this chapter has been submitted for publication. P. O. Ajemba, N. G. Durdle, and V. J. Raso, 

'Quantifying and tracking torso deformity using dominant points of structured splines m odels/ IEEE 

Transactions on Medical Imaging, 2007.
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Fig. 4.1: Back surface images of a scoliosis patient taken at six-month intervals.

torso rotation in the coronal (top), lateral (side), and posterior-anterior (front-back) 

views respectively. We present a classification system based on the said indices and 

a torso deform ity tracking system for scoliosis management. We also present 

improvements to the techniques for obtaining structured splines models and the 

indices of torso shape deform ity from torso images. Finally, this work builds on the 

theory of dominant points of structured splines models to address the problem of 

assessing, classifying and tracking scoliosis deformity.

4 .2  STRUCTURED SPLINES MODELS

4.2.1 Model description

In concrete terms: Given a 3-D object O made up of a collection of say M x N  

points, our task is to extract a structured sequence of h x c  3-D points that are the

dominant points of the object's surface. That is,

O m xN Oh,c(0 ■ ( 1)

First we decompose the object into a structured sequence of cross-sections using a 

technique based on volume constancy, an invariant of closed 3-D objects1. Next, we

1 Volume constancy means that sectioning an object into a number of equal volume segments with respect

to two or more fixed points on its surface results in a consistent set of cross-sections.
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obtain the dominant points of each cross-section using 6-spline basis functions and 

aggregate them to create the structured splines model of O.

A. Volume decomposition

The following definition sets up our volume decomposition technique.

Definition 1: For a simple closed 3-D surface O with a start point T  and an end 

point E ,  a regular set o f cross-sections is one whose members divide O into a 

number of equal volume segments that are invariant to orientation and scale.

The planes of a regular set of cross-sections need not be parallel to each other but 

cannot intersect within the volume of the surface. In addition, the regular set of 

cross-sections is unique and invariant to affine transformations [2]. Our first step 

then reduces to obtaining a regular set of cross-sections from the 3-D object. This 

requires computing a centroid line for the object.

Definition 2: For a simple closed 3-D surface O with a start point T and an end 

point E , a centroid line originates at T  and ends at E  and jo ins the centroids of 

the cross-sections of an infinite-sized regular set of cross-sections o f O .

B. Cross-section modelling

Let two sets of real numbers called a breakpoint vector set and a m ultip licity vector 

set be given respectively as U = {w,}-=0 and M  = {/w;};=0. We define a set of numbers

called a knot vector set as T = { t j } ,  where mt -  ca rd { j : t j - u t} , such that

For k  = 0 , . . . ,N , and i  = 0 , . . . ,N - k  . The zth 6-spline basis function 

of order k  is defined for k = 0 as:

1

0 otherwise'
(2a)
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and fo r k > 0 as:

a . k(t) h+ k-h  *i + ■ (2b)
0 otherwise

Let P  = {/>(} ^ 0 be a sequence of 3-D points. A 6-spline curve based on the 6- 

spline basis functions (2a) and (2b) is defined as:

oo N

sk(0  = X Pi • - 0  = X Pi • a hk(t- 0  ■ (3)
/=-oo /=0

I t  can be shown [2 ] that for a curve /  and c e Z ,  c > 3 ,  there exists a set of 

points Z) = {<ii.}[=0 which when interpolated using (2a) or (2b) (as in (3)) yields an 

interpolant Sk of /  for which in the ideal case2 

l.im  11 Sk - / | |  =0.
i-*c K (4)

The set of points D  are called the dominant points of / .  D  uniquely defines the 

shape of / .

C. Structured splines models

The structured splines model of O is the set of dominant points of the structured 

sequence of curves given by:

°h,c(0 = U ŝl(0 = U Z P i ' (* -  0 ■ (5)
7=0 7=0 i=0

For a given start point T  and end point E , the structured splines model of O is 

formally defined as follows:

Definition 3: Let each of the h regular cross-sections of a simple closed 3-D 

object O consisting of a cloud of M x N  points be modeled by h interpolating

In actual cases, a small matching error threshold ST is expected rather than zero.
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curves Sk using B-spline basis functions a {<k e C° and c dominant points per cross-

section. The h x c  m atrix formed by the structured sequence of dominant points is 

the structured splines model of O of order h x c x k .

This definition implies that an h x c x k  order structured splines model of a simple 

closed 3-D object O is unique and captures the shape of the surface for 

h,c = 3,. . . , o o .  Thus, the shapes of different 3-D objects can be compared by 

comparing the ir structured splines models.

4.2.2 Selection of parameters

The choice o f parameters, such as the order of the spline k and the number of 

control points to be fitted to the curve points c, was based on a selection routine 

described in [3]. Fig. 4.2 shows plots of c and k versus normalized shape matching 

error and normalized execution time for ten evenly spaced cross-sections of an 

average norm al torso3 w ithout scoliosis.

4.2.3 Shape matching error estimation

There are a plethora of variables associated with 6-spline modelling. During model 

development, it is useful to continuously assess the match between the interpolated 

curve Sk to / .  Our error estimation method is based on the shape context [4 ]. We

use five intervals for the log-distance r  and twelve intervals for the polar angle 0 . 

The maximal diameter4 of the cross-section serves as the upper bound of the radial 

distance r  on which the shape context is computed, and thus is consistent for all our 

tests. We blindly select c out of m points in /  and all the points in Sk and

3 The average normal torso was obtained by averaging the 3-D  torso images of ten volunteers who had no 

scoliosis and whose average demographics matched the average of our scoliosis dataset.

4 The maximal diameter of an object is the greatest distance between two points in its convex hull.
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Fig. 4.2: Plots of the number of control points and the order of 6-spline versus the 
normalized shape matching error (NSME) and the normalized execution time (NET). The NSME 

and the NET are normalized with respect to their first values.

calculate the ir shape contexts. The shape of /  and Sk and Asfk ) are described 

respectively, using the ir sets of shape contexts as:

As an equal number c , o f points is chosen from both curves, the cost of matching 

a point p e . f  to qeSk is:

(6)
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A c x c  cost m atrix of point-wise dissimilarities is constructed using (6). The 

dissim ilarity between the shape representations (/l^c and As£ )  of the objects is 

computed as:

,A £ )  = i - £ ™ n { < C  ly = l , . ..,<•}. (7)
c  i=1

The metric in (7) is the mean of the minimum costs of matching all pairs of points in 

the bipartite match of Sk to / .  Furthermore, if an ideal approximating curve is

obtained, then e s c < s T .

4.2.4 Computational improvement

Let m be the original number of points. For a h x c x k  structured splines model, the 

determination of all the c dominant points on the h interpolated curves {S lk} hi=0 

involves an iterative procedure of the order

mn hc = h — —— .
c \(m -c ) \

Algorithmic speed ups are necessary as each step also involves shape matching error 

calculation. A number of speed-up options for computational improvement are 

possible. In this section, we present three of the more robust options.

A. Location-based lim iting

This is the simplest method we describe. I t  entails limiting the pool of candidate 

points for dominant point selection to points that lie in some pre-defined locale of the 

curve. Of the m points on / ,  let y  be the number of points selected. The 

performance improvement is given as
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A simple implementation of this is to select every two or three points and discard the 

rest. That would yield performance improvement values of 2 and 3 respectively. A 

random selection of points can also be used.

B. Curvature-based limiting

This entails lim iting the pool of candidate points for dominant point selection to 

points of local maximal curvature. To determine these, the curvature of each point is 

determined from points around it using curvature estimation methods such as 1- 

curvature [12 ]. Of the m points on / ,  if y  points are deemed points of local 

maximal curvature, then the performance improvement obtained is given as

^  m\ (y - c ) l  
y\ (m- c ) \

C. Block-based lim iting

This entails lim iting the computational complexity of the search by firs t dividing the 

available point set into blocks o f smaller sized sets before applying a secondary 

lim iting operation. Position and curvature-based lim iting operations can be used as 

the secondary operation. Let the m points on /  be divided into w partitions

( m ® w - 0 , where ©  is the modulo operation). Each partition would then yield

dominant points ( c © w  = 0 ). The performance improvement achieved is

j. _ ml (c/w)\ ((m- c ) / w ) \  
m c\ (m/w)\ w (m -c )\  s ^

Where I s is the improvement obtained from the secondary method.
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4 .3  DEFORM ATIO N IN D IC E S

4.3.1 Deformation parameters

Torso deform ity due to scoliosis is complex and wide ranging, and can be 

decomposed into three orthogonal components; bend, tw ist and t ilt. Bend is a 

measure of torso rotation in the lateral (side) view. Twist is a measure of torso axial 

rotation in the coronal (top) view, while t i l t  is a measure o f torso rotation in the 

posterior-anterior (back-front) view. Fig. 4.3 shows the pictures o f the back of 

volunteers whose torso deform ity has a prominent tw ist or bend component. Fig. 4.4 

shows a cascaded top view of the 4 x 4 x 3  structured splines models of the range 

scans corresponding to the back torso pictures of Fig. 4.3.

Tilt deform ity may result in an uneven hip height, shoulder t ilt  and waist crease. I t  

also results in a misalignment of the center o f the neck with the middle of the waist. 

Twist deform ity usually results in prominent and uneven collarbones and a relative 

shift in the locations of the shoulders and hips. Bend usually results in a forward or 

backward stoop. These three components form an orthogonal basis vector in 3-axis 

deform ity space but do not necessarily correspond to specific aspects of spinal 

deform ity as torso deform ity is related but separate from spinal deform ity [5 ], [6 ].

The result of structured splines modelling is a collection of dominant points having 

a quasi-structure. The distribution of the points at each cross-section depends on the 

torso asymmetry present at that cross-section. The task is to extract information 

related to shape and symmetry from the dominant point distribution obtained. The 

human torso ideally has one plane of (near) symmetry as shown in Fig. 4.5.

To aggregate the dominant points, we divide the torso into quadrants in the 

coronal plane view: Front Right, Front Left, Back Right and Back Left (Fig. 4.5). Full 

torso images contain all four quadrants whereas back torso images contain only the 

back quadrants. As torso deform ity is mostly due to an absence of symmetry, we
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A B C D
Fig. 4.3: Back torso images of scoliosis patients who have prominent deformation 

components. A: Left Tilt; B: Right Tilt; C: Left Twist; and D: Right Twist.

A B C D
Fig. 4.4: Cascaded top-view of the 4x8x3 structured splines models of the back surfaces 

shown in Fig. 6.3. The differences in shape are apparent at this low resolution.

Back Right Coronal

Front Right Front Left

Fig. 4.5: The plane of symmetry of the torso with the plane of symmetry in dashed lines.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



estimate the deformation indices from the relative locations of the centroids of the 

dominant point distributions in each quadrant. We then compare the corresponding 

x ,  y  and z components of the centroids of the left and right quadrants at the back 

and the corresponding quadrants at the front if they are available.

4.3.2 Dominant point aggregation

We utilized four options for aggregating the dominant point distribution: 1) Dividing 

each torso quadrant into a number of horizontal segments and then aggregating the 

dominant points that fall within each segment; 2) Clustering the entire distribution of 

dominant points using k-means classifiers; 3) Dividing the dominant points equally 

into a number of horizontal sections of the quadrants before clustering; and 4) 

Dividing the quadrants into horizontal segments before computing the dominant 

points, leading to different criteria for dominant point selection for each segment. 

Table 4.1 summarizes the properties of the four methods.

Let w be the number of sections that each quadrant is divided into. This yields an 

overall number of 4w sections for a full torso scan, and 2w  for a back torso scan. To 

determine the optimal value of w ,  we calculate the percentage improvement in 

shape discrimination and the normalized increase in computational cost5 for values of 

w >  1. The results obtained (Fig. 4.6) show that w = 3 is optimal.

4.3.3 Index calculation

The absolute origin of an object is the m id-point (usually the centroid of area) of the 

portion of the plane of symmetry that lies within the object. The absolute length  of a 

point is the point's distance from the absolute origin.

5 The shape discrimination at a  is the absolute difference between the shape index values (see next 

section) at w = a  and the shape index values at w =  1. The normalized increase in computational cost 

(execution tim e) at a is the ratio of the computational cost at W = a to the computational cost at w =  1.
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Table 4.1: Attribute of dominant point aggregation methods

Attribute* Method 1 Method 2 Method 3 Method 4

Number of dominant points Variable Variable Fixed Fixed
Location of sections Fixed Variable Variable Fixed
Bounds for dominant points Global Global Global Local

*Method 1: Dividing each torso quadrant into a number of horizontal segments before aggregating the 

dominant points in each segment. Method 2: Clustering the distribution using k-means. 3: Dividing the 

dominant points equally into a number of horizontal quadrants before clustering; and 4: Dividing the 

quadrants into horizontal segments before computing the dominant points..

ISO

-a 100

c 50

2 3 4 5
Number of sections

1.4

1.3

1.2

1.1

1
1 2 3 4 5 6

Number of sections

Fig. 4.6: Plots of number of sections w versus % change in index of shape discrimination 

and normalized execution time (NET) for n = 3 , c = 180 and h = 180.

Let G l = ( g ‘x,g y ,g lz) T and H ‘ = (h lx,h ‘y,h'z) T be the absolute lengths of the 

centroids of the zth left and right segments respectively, where / = {  1, 2 ,

We define the normalized bend index xi ' B as:

v, =— -2V77- — - E V te T W .
k b  i  k b  i

Where the normalization factor k b in (9)

k b = w - max[max(g^ | i  = 1,..., w),max(h'z \ i  - 1,. . . ,w)]

(9)

is the product of the number of corresponding segments by the longest absolute
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le n g th  o f a c e n tro id . T h e  c o rresp o n d in g  e q u a tio n s  fo r th e  n o rm a lize d  tw is t in d ex  

a n d  th e  n o rm a lize d  t i l t  in d ex  xi ’A a re :

Similarly, k t  and k a in (10) and (11) are defined respectively as:

k t  =  w-max[max(g', \ i  = l,...,w),max(/z^ | /  = l,. . . ,w )] , 

k a -  w-max[maxQF \ i  = \,...,w),max(h‘x |z = l,.. . ,w )] .

Note that 'Fy and ^  are the average rotations of the object in the x-y, x-z  

and y-z planes respectively.

Alternate formulations for J z, J y and J x are:

1) Mean absolute difference: J z =| g\ - h ‘z \ , J y =| g'y -h'y | and J x =\g'x -h'x \, and

2) Mean cube difference: J z = (g ‘2 -  h‘z)3, J y = {g ly -h'yj i and J x ~ (g ‘x - h ‘xy  .

4 .4  C LA SSIFIC A TIO N  AND TRACKING OF TORSO DEFO RM ITY

4.4.1 Deformation classes

We grouped torso deform ity caused by scoliosis into nine classes based on the signs 

of the deform ity indices (Table 4.2). Class zero corresponds to no deform ity. For our 

purposes, unless a patient shows a zero deform ity score in all three categories, zero 

is considered a positive number. For instance, a patient with positive tw ist and bend 

scores and a zero t i l t  score will be placed in class one. Fig. 4.7 shows examples of

( 10)

an d

( 11)

each  class.
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Table 4.2: Categorization of torso deformity based on twist, bend and tilt indices

Class Bend Tilt Twist

Zero Zero Zero Zero
One Positive Positive Positive

Two Positive Positive Negative

Three Positive Negative Positive
Four Positive Negative Negative
Five Negative Positive Positive
Six Negative Positive Negative
Seven Negative Negative Positive
Eight Negative Negative Negative

Class Zero corresponds to no deformity. Positive deformity is rotation to the right or front; Negative 

deformity is rotation to the left or back.

4.4.2 Status diagrams

Status diagrams help to visualize the tw ist, bend and t i lt  scores and present a snap 

shot of the deform ity scenario. To enhance the ir utility, the front and back are 

separated. Horizontal torso segments are represented by separate bars (Fig. 4.8).

4.4.3 Status charts

These are derived from the status diagrams and show the deform ity profile of the 

scoliosis patient over several clinical visits. Fig. 4.9 shows the status chart o f a 

scoliosis patient. In addition to the deform ity indices, status charts also record 

significant change in index values and class changes. The status diagram in Fig. 4.8 

is the October 2004 entry in the status chart of Fig. 4.9. The clinician using the 

system defines what constitutes a significant change in index values. In our case, a 

significant change in index values was a change of up to 10 points. The occurrence of 

a significant change may prompt a more detailed look at the patient's file.
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Class one Class two

Y~

Class three Class four

Class five Class six

Class seven Class eight

Fig. 4.7: Example classifications of torso deformity based on twist, bend and tilt indices.
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Fig. 4.8: A three section-status diagram of a scoliosis patient with a class five external 
deformity. The bar lengths correspond to absolute index values. The placement of the bars 

relative to the center line corresponds to the index sign. Right is positive and left is negative.
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•t—

Bend

Tilt

Twist

Class

C Change* 

S Change*

+ 100 
— ^

Mar 2003 Dec 2003 May 2004 Oct 2004

*C change means class change; S change means significant index change

May 2005

Fig. 4.9: The status chart of a scoliosis patient obtained over five clinic visits. Back pictures 
obtained during the first four visits are shown in Fig. 4.1. A significant change in index values 
is noticed at the October 2004 visit. The patient had spinal fusion surgery after October 2004. 

The resulting significant change in index and class values is noticed at the May 2005 visit.

4.5 IMPLEMENTATION

Torso surface images and clinical records of patients from the database of the 

scoliosis clinic at the Glenrose Rehabilitation Hospital, Edmonton, Canada, were 

examined to select patients for the study. The following inclusion criteria were used: 

1) a diagnosis of idiopathic scoliosis; 2) age at first clinical v is it of at least 8 years;
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and 3) availability of one or more back torso or full torso images showing visible 

torso deform ity. Patients admitted to the scoliosis clinic were generally deemed to 

have progressive scoliosis. The images were acquired as described in [1 ], [5 ]. The 

data collection procedures and experimental protocols were approved by the 

University health research ethics panel.

Three separate analyses were performed: 1) an analysis of the entire dataset to 

ascertain the gamut of the torso deform ity indices and develop linear deform ity 

scales; 2) an analysis of a subset of the dataset to correlate the deform ity indices 

with existing clinical parameters; and 3) an analysis of the full torso images o f four 

patients (three girls and one boy) to investigate the possibility of tracking the 

progression of scoliosis using the system.

In this section, we demonstrate the implementation of our system using the 

results o f the third analysis (Table 4.3). The results of the first two analyses are 

presented in the next section. I t  took about 20 minutes to process an image on a 

Pentium IV PC running at 1.8 GHz. A 180 x180x3  structured splines model was used 

to obtain the dominant points.

4.5.1 Calculation of dominant points and indices of torso deformity

Fig. 4.10 shows front and back views of the full torso images o f the four patients. 

Each quadrant was divided into three sectors for a total of 12 sectors. Fig. 4.10 also 

shows the centroids of the sectors superimposed on the images. Table 4.4 shows the 

deformation index values obtained fo r the four torso images used for this analysis.

4.5.2 Quantifying and tracking torso deformity

To illustrate the use of the system for quantifying and tracking torso deform ity, 

status charts were created for each of the four patients (Fig. 4.11). The chart for the 

chosen patients showed at least one significant change or class change. The numbers
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Table 4.3: Clinical description of the patient used to illustrate the system

Patient Sex Age Cobb Angle Height Weight DC TT CS

One F 16.1 40 163 54 25 18 3.7
Two F 15.1 50 157 53 33 11 1.4
Three M 16.9 50 167 62 17 19 2.7
Four F 15.4 45 169 60 17 19 2.5

Cobb angle, decompensation (DC) and trunk twist are given in degrees. Height is in cm. Weight is in 

kilograms. Cosmetic score (CS) ranges from 0 to 10 in increasing order of deformity. TT is trunk twist.

■
w  S m m  \

Patient one Patient two

Patient three Patient four

Fig. 4.10: Front and back views of patients used to illustrate the system. The centroids of 
the left and right horizontal sections of the front and back are superimposed on the images.

on Table 4.5 corresponds to the fourth entry in charts of Fig. 4.11.

4.6 VALIDATION AND RESULTS

This section presents the results of the analysis of the entire dataset to ascertain the 

gamut of the torso deform ity indices and develop linear deform ity scales and the 

analysis of a subset of the dataset to correlate the deform ity indices with existing 

clinical parameters.
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Table 4.4: Deformation index values of the patients used to illustrate the system.

Patient Bend 4 ^ Tilt x¥ a Twist 4 ^ Class

One 24 42 36 1
Two -19 27 16 5
Three 32 -60 -43 4
Four 25 -45 37 3

4.6.1 Ascertaining the gamut of scoliosis deformity indices

This involved 604 back torso images obtained from 203 patients and 43 full torso 

images obtained from 43 patients (out of the 203). This included back torso images 

from 10 boys and full torso images from two boys (out of the 10). The mean age was 

14.2 ±  2.5 and 12.6 ±  2.7 years for the girls and boys. A 180x 180x3 model was used 

to obtain the dominant points from full torso scans and a 1 8 0 x9 0 x3  model used for 

back torso images. The dominant points were aggregated using six sections for the 

back torso images, and 12 sections for the full torso images (tha t is, w = 3).

Table 4.5 shows the results. A conversion scheme was obtained for each deform ity 

index by mapping the minimum and maximum values obtained to a 100-pt deform ity 

scale. For example, a bend of 45m m 6 converted to a deform ity score of 48 bend 

points, while a t ilt  of 45mm yielded a score of 39 t ilt  points. The lengths, widths and 

heights of the torso images were normalized to account for shape differences due to 

morphology and gender by selecting an equal number of points per cross-section 

(480 for full torso scans and 240 for back torso scans). The upper, lower, left and 

right extremities were cropped. An advantage of using spline interpolation was that 

holes created during the image acquisition stage were easily corrected for during 

dominant point detection.

6 Note that as twist, bend and tilt indices are measures of the relative distribution of dominant points, they 
are originally measured in mm and then normalized into deformity scores.
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Fig. 4 .1 1 :  The sta tus ch art o f th e  fo u r scoliosis p atien ts .
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Table 4.5: Statistical distribution of deformation indices in the validation dataset.

Type
# of # of Bend ^ Tilt 'F , Twist 'Fr

images patients Mean/SD Range Mean/SD Range Mean/SD Range

Back 604 203 35.6/14.2 6-94 41.3/26.0 5-120 25.0/11.4 6-58
Full 43 43 45.5/8.3 9-72 36.9/17.4 8-68 28.5/10.9 14-48

SD = Standard Deviation. Table shows absolute values of twist, bend and asymmetry in mm.

Table 4.6: Statistical distribution of clinical parameters (mean/ SD) in the validation dataset.

Cobb Angle Height Weight DC TT Cosmetic Score

Girls
Boys

38.5/17.3
24.3/12.1

157.9/9.4
148.2/9.5

51.1/13.7
52.3/12.8

13.9/12.4 
8.6/5.4

13.1/6.6
10.2/5.3

2.42/1.18
1.77/1.12

Cobb angle, decompensation (DC) and trunk twist are given in degrees. Height is in cm. Weight is in 

kilograms. Cosmetic score ranges between 0 and 10 in increasing order of deformity.

Table 4.7: Statistical distribution of normalized deformation indices in the secondary dataset.

Type
# of # of 

patients
Bend xi>B Tilt % < Twist VP7.

images Mean/SD Range Mean/SD Range Mean/SD Range

Back 205 40 31.4/9.8 4-90 31.6/18.3 8-98 32.6/19.7 4-100
Full 5 5 30.8/4.2 15-59 33.4/3.7 26-41 29.8/11.4 12-73

SD = Standard Deviation. Table shows absolute values of twist, bend and tilt in deformation points.

4.6.2 Comparison to existing clinical classification

Two hundred and five back images o f 40 patients and five full torso images of five 

patients were used to compare the novel indices to existing clinical classification. The 

patients chosen for this analysis had a follow-up period of at least three years from 

their first clinical visit. They also had up to five back torso or full torso images in the 

database and clinical information obtained on the day each of the images were 

taken. Table 4.6 shows the clinical parameters utilized for this analysis. Table 4.7 

shows the range of indices of deformation obtained for the images used in the
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analysis. The deformation indices obtained are given in deformation points.

To obtain an equivalent classification to the existing clinical classification, a K- 

means classifier method was used to cluster the dominant point-based shape 

deformation indices into three clusters in 3-D shape descriptor space. The axes of 

the space corresponded to tw ist, bend and tilt. The clusters were termed mild, 

moderate and severe, based on the average of the norm of the shape indices in each 

cluster (that is, the cluster with the smallest average corresponded to m ild  while that 

w ith the largest average corresponded to severe). Table 4.8 shows some results.

The classification obtained was compared to two other classifications based on: 1) 

External deform ity as measure by the cosmetic score7 [3 7 ]; and 2) Internal 

deform ity as measured by the Cobb angle, decompensation and trunk tw ist. The 

classifications were performed by a clinician who was not involved in developing the 

method. Table 4.9 shows the results of applying correlation analysis to the clinical 

and structured splines-based classifications. The novel classification significantly 

correlated with the external deform ity classification based on the Cosmetic score (as 

expected) but not with the internal deform ity classification. The classifications 

obtained did not change when Gaussian noise (with mean and standard deviation 

equal to the reconstruction accuracy of the imaging system used [1 ])  was added to 

the input images.

A clinician needs to make several decisions when treating a scoliosis patient. Two 

important decisions are: 1) Is immediate and/or serious intervention required? 2) Is 

further treatm ent and/or follow-up? To assess the ability of the novel classification 

scheme to furnish the answer to these queries, the m ild  and moderate categories 

were compared to the severe category to answer the first question. The m ild  

category was compared to the moderate and severe categories to answer the second

7 The cosmetic score is the ratio of waist diameter to the hip diameter relative to the locations of the wait 
and hip centers.
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question. Results of these comparisons for each of the clinical classifications are 

shown in Table 4.10. The proposed classification system achieved the highest level of 

accuracy when compared to the external deform ity classification.

Table 4.8: Six example classifications of back torso images of scoliosis patients.

First Second Third Fourth Fifth Sixth

Twist (pt) 15 12 34 62 30 77

Bend (pt) 26 18 50 56 100 98
Asymmetry (pt) 12 8 26 21 100 36

Norm (pt) 32 23 66 86 145 130
Classification Mild Mild Moderate Moderate Severe Severe

pt =  deformity points.

Table 4.9: Result of applying correlation analysis (r2) to the classifications obtained

Internal Deformity External Deformity Dominant Point

Internal Deformity* 1
External Deformity 0.64 1
Dominant Point 0.67 0.93* 1

^Statistically significant correlation (p<0.05). +This was assessed from the Cobb angle.

Table 4.10: Results of comparing the classifications obtained using dominant point-based 

indices to clinical classification based on internal deformity and external deformity

Mi and Mo VS Se Mi VS Mo and Se

Internal
Deformity

External
Deformity

Internal
Deformity

External
Deformity

Accuracy (%) 84.3 96.7 87.1 94.8
False negative 22 2 11 3
False positive 11 5 16 8
Sensitivity 0.85 0.99 0.83 0.95
Specificity 0.82 0.93 0.89 0.95
Positive predictive value (PPV) 0.92 0.97 0.77 0.88
Negative predictive value (NPV) 0.69 0.97 0.92 0.98

Mi = Mild; Mo = Moderate; Se = Severe.
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4 .6 .3  D is trib u tio n  o f th e  d e fo rm atio n  classes

We investigated the distribution of the deformation classes in our dataset of 604 

back torso images and 43 full torso images. Fig. 4.12 shows the distribution of the 

eight classes. Classes one and two had the highest percentage of members and 

classes six and seven had the lowest percentage of members. Overall, the m ajority 

of the torso scans in the datasets had a positive (right) bend.

4 .7  CONCLUSIONS

This chapter considered the problem of quantifying the shape of a human torso with 

a view to tracking its changes over time and comparing it to the shape of other 

torsos. This was applied to the problem of quantifying and tracking the torso 

deform ity caused by scoliosis. A three step approach was taken: sectioning the torso 

into a structured sequence of 2-D cross-sections; computing the dominant points of 

the cross-sections and interpolating to fill holes using B-spline curves; and obtaining 

a three-axial shape vector, comprising of tw ist, bend and t i l t  indices by aggregating 

the dominant points of the cross-sections. As most o f the information present in a 

shape is concentrated at the dominant points [6 ], the ir use for our purposes ensured 

that the resulting classification of the torso is intuitive and based on the principal 

manifestations deform ity: curvature and asymmetry.

Full torso images and back scan images were used to evaluate the effectiveness of 

the deformation indices obtained. A disadvantage of the system is that the indices 

obtained cannot be more accurate than the full torso or back torso images. As torso 

imaging is plagued by errors caused by positioning and motion (such as postural 

sway and breathing), these errors trickle down to the indices obtained. Thus, the 

inaccuracies of the imaging system used to obtain the torso images play an 

important role in the accuracy of the overall torso quantification. Though the indices
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Fig. 4 .1 2 : Distribution of the full torso and back shape images by the ir class of deform ity.

are orthogonal and form a basis vector in three-axis shape deform ity space, 

individual components are affected differently by these errors.

Results show that the indices significantly correlated with the clinical assessment 

of the external deform ity, but not with the assessment of the internal deformity. This 

was expected as the internal and external deformities are related but separate 

manifestations of scoliosis [8 ], [9 ]. An effect of scoliosis on the torso is an uneven 

prominence of back feature such as scapula and waist creases. In patients with high 

body mass index, the added body fat reduces these manifestations and results in an 

understatement of the underlying spinal deformity.

The indices achieved a classification accuracy of up 90% when the clinical 

assessment of the external deform ity is considered as the gold standard. Accuracy in 

clinically relevant super-classifications (Table 4.10) ranged from 84 to 96%. The 

indices are not affected by age, gender and morphology as the process of computing 

the dominant points corrects for them. This is useful as shape changes are a
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perennial problem in scoliosis monitoring because most scoliosis patients are in the ir 

adolescent growth-spurt period and show marked changes between clinical visits.

The system outperforms existing systems [6 ] and provides a more descriptive 

view of the torso shape. I t  is suitable for use in the fast-paced clinical environment 

as it only takes about 20 minutes to obtain the indices. Future work explores 

application of the system to tracking scoliosis and predicting its progression.
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CHAPTER 5

SHAPE ANALYSIS: ORTHOGONAL MAPS N

5 .1  IN TR O D U C TIO N

This chapter presents a technique for assessing the torso and classifying scoliosis 

into mild, moderate and severe categories using two indices, tw is t and bend, 

obtained from orthogonally transformed images of the full torso surface called 

orthogonal maps. Four transforms are used. The tw ist index gives an indication of 

the torso axial rotation. The bend  index gives an indication of the overall severity of 

lateral tilt, shoulder hump differences and waist crease. The technique gives a visual 

representation of the entire torso in one view and is tested on scans of eight non­

scoliosis and 22 scoliosis volunteers. I t  is viable for use in a clinical environment.

5 .2  ORTHOGONAL MAPS

The method of quantifying changes in torso shape presented in this chapter relies on 

orthogonally transformed images of the torso called orthogonal maps and half­

difference maps derived from orthogonal maps. In this section, we describe four 

orthogonal and half-difference maps that can be used to assess torso asymmetry.

D e fin it io n  (O rth o g o n a l m aps): An orthogonal map is obtained by applying an 

orthogonal transform to the surface map of a 3D object.

Orthogonal transforms map cylindrical ( p , 6 , Z ) or spherical ( p,0,<j) ) coordinate 

systems onto normalized Cartesian coordinate systems ( x ,y ,z ). Each map consists 

of a r  x s array of numbers, where r  is the number of cross-sections or layers and

K A version of this chapter has been published. P. O. Ajemba, N. G. Durdle, D. L. Hill, and V. J. Raso, 

'Classifying torso deformity in scoliosis using orthogonal maps of the to rso / Medical and Biological 

Engineering and Computing, vol. 45, pp. 575-584 , June 2007.
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5 is the number of points per cross-section. (The points on any particular cross- 

section are typically evenly spaced 3 6 0 /s degrees apart.) The numbering of the r  

cross-sections is from the bottom to the top of the torso. The numbering of the ^ 

points per cross- section starts at a point 90° from a maximal diameter of the torso 

cross-section1. By varying r  and s , any arbitrary precision can be obtained.

Definition (Half-difference maps): A half-difference map is obtained by 

subtracting the right half of an orthogonal map from its left half. I t  is a measure of 

the lateral asymmetry in the shape.

5.2.1 The axial line technique

A description of this technique appeared in a prelim inary version of this work [1 ]. In 

this technique, the centroids of each of r  cross-sections are calculated from the s 

evenly spaced points per cross-section (Fig. 5.1a). An axial line is then obtained by 

jo ining the centroids. The cylindrical to Cartesian coordinate transformation used rfl, 

is defined as:

^ai := { * —> 0, .y —> Z, z —»/? = p } .

The elements of the r  x s array correspond to the horizontal distance R, 

between each of the s points per cross-section and the axial line.

5.2.2 The unfolded surface technique

Here, the absolute values of the x and y  coordinates of each of the s evenly

spaced points on each r  cross-section are computed (Fig. 5.1b). Two r  x s arrays 

are obtained. The elements o f the first array correspond to the x coordinates while 

the elements o f the second array correspond to the y  coordinates. The cylindrical to

1 The m axim al diam eter of a closed 2D shape such as a torso cross-section is the longest distance 

between any two points in the convex hull of the shape.
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Fig. 5.1: Generating the four orthogonal maps: a) axial line; b) unfolded cylinder; c) enclosing 

cylinder; and d) subtracting cylinder. P is the axis or plane through about which the transform 

is taken. The r  cross-sections are taken along the Z axis while the s points per cross-section

are taken along the 0 axis.

Cartesian coordinate transformation used for the first map F ^  is defined as:

r usx : = { x ^ 0, y ^ Z , z ^ > R  = p-cos0 } .

The transformation used for the second map r  is defined as:

r usy '■= ix  - >  &>y - >  Z > z  - *  R = P  ■ s i n # }  •
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For this study, the first map (in this case a plot of the x values) would be used as 

the front and back of the human torso contain more information related to torso 

deform ity than the two sides.

5.2.3 The enclosing cylinder technique

In this technique, an enclosing cylinder is defined as the smallest cylinder that can 

encompass the entire 3D object (Fig. 5.1c). The elements of the r  x s array 

correspond to the length of a line R, parallel to the horizontal axis and jo ining each 

of the r  x s points to the centroid of the enclosing cylinder. The cylindrical to 

Cartesian coordinate transformation used Yec is defined as:

:= {*  - *  6>y ->  Z ,z  -»  R -  p ec}, 

where p ec is the corresponding coordinate o f the enclosing cylinder.

5.2.4 The subtracting cylinder technique

Here, a subtracting cylinder is defined as the smallest cylinder that can fit  the entire 

shape (Fig. 5 .Id ). I t  is sim ilar to the enclosing cylinder. The elements of the r  x s 

array correspond to the absolute difference between the length of a line R, parallel 

to the horizontal axis and jo ining each of the r  x s points to the centroid of the 

subtracting cylinder and the radius of the subtracting cylinder. The orthogonal map is 

the plot of the r  x s array. The cylindrical to Cartesian coordinate transformation

used Tsc is defined as:

'-={x 0 ,y  ^  Z ,z  -»  R - D - p sc\.

D  is the radius of the subtracting cylinder and p sc is the corresponding coordinate 

of the subtracting cylinder.
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5 .2 .5  An exam p le

A computer model of an elliptical frustum having 30° bend and 30° tw is t (Fig. 5.2) 

was created to illustrate the mapping techniques. Fig. 5.3 shows the four 

corresponding orthogonal maps and Fig. 5.4 shows the four corresponding difference 

maps. The contours on the orthogonal maps correspond to iso-values of the radius of 

curvature. The peaks in the maps correspond to bumps, while the valleys correspond 

to dimples in the transformed surface2.

5 .3  DEFORM ATION IN D IC E S

This section describes the bend and tw ist indices obtained from orthogonal maps [1 ].

5 .3 .1  The twist in dex

The tw ist index reflects the transverse asymmetry present in cross-sections o f the 

torso and noticeable in its coronal plane view. On orthogonal maps, the troughs of 

the contours at the edge of the torso correspond to tw ist lines. The tw ist index is a 

measure of the average slope of the two tw ist lines at the edges o f the torso.

D e fin it io n  ( f iv /s t  //n e ): The tw ist lines of a 3D shape are the closures of the 

paths of maximal curvature at each incremental cross-section on the orthogonal 

maps of the shape.

Twist lines are computed along the horizontal-vertical (principal) axes but the tw ist 

index is computed in the coronal plane. The prominence of a horizontal-vertical tw ist 

line at any point is directly proportional to the horizontal curvature of the point on 

the orthogonal map. The value of the tw ist index at a cross-section is the rate of 

change of the tw ist line at the cross-section. A circular cylinder would have no tw ist 

lines and hence zero apparent tw ist as the operation of tw isting a circular cylinder

2 The orthogonal maps of a perfect circular cylinder are devoid of contours.
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Fig. 5.2: A model of an elliptical frustum with 30° twist and 30° bend, a) top; b) side view.

IxialLlosMajJ

„ i w

i ni

» 20 »  40 »  «  10
A n|k,T brt*

Unfolded CvlinderMap

» 20 30 « 10 ® 10
ingle, Item

Bmkmg €fItader Map Subtracting Cylinder Map

m
n
i »m
I

i i i i i . ' € |
m  i k

» »  30 40 30 a  1
Angle, Tkta

00
K

» 1  30 «  50 «  I
Angie* Bute 

d

Fig. 5.3: The orthogonal maps of an elliptical frustum with 30° twist and 30° bend. The maps 

emphasize different features. The axial line map features a distinct peak that gradually slopes 

into a distinct valley. The unfolded cylinder map has a more pronounced slope at the base of 

the peak. The enclosing cylinder map features two distinct opposing peaks. The subtracting 

cylinder map features a distinct peak that gradually slopes into a very broad valley.
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Fig. 5.4: Half-difference maps of an elliptical frustum with 30° twist and 30° bend, a) axial 

line; b) unfolded cylinder; c) enclosing cylinder; and d) subtracting cylinder.

leaves it physically unchanged. Other shapes which deviate from the circular cylinder 

have at least one tw ist line and symmetric objects have at least two. (The deformed 

elliptical frustum of Fig. 5.2 has two tw ist lines which correspond to the two vertical 

edges of its side view.)

For an orthogonal map made from a r  x s array, the tw is t at cross-section / is 

given by:

rr, 2-7T Ax 
r .   s — ( 1)r  Ay

Here, Axis the change in degree units of the 'tw is t line' per Ay change in the index

of the cross-sections. For a 72 x 72 array with Ay = 1, (1) reduces to Tt = 2 • n  ■ Ax.
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5 .3 .2  The bend index

The bend index is a measure of the abnormal lateral deformation present in cross- 

sections of the torso and noticeable in its posterior-anterior view. The bend index is a 

measure of the average slope of the bend line that represents the difference between 

the unsigned magnitudes o f the x-coordinates of the surface of the torso.

Definition (bend line): The bend line of a 3D shape is the closure of the highest 

points of incremental cross-sections on the half-difference maps of the shape.

Like tw ist lines, bend lines are computed along the horizontal-vertical (principal) 

axes but the bend index is measured in the lateral (or anterior-posterior) plane. The 

prominence of a horizontal-vertical bend line at any point is directly proportional to 

the horizontal curvature of the point in the half-difference surface. The value of the 

bend index at each cross-section is obtained from the radius of curvature p , of the

bend line at the cross-section.

Let y  = y ( t)  and z = z(t) represent the height and depth of a bend line, t is the 

index of the cross-section, the radius of curvature of the line at cross-section / is:

Where K. is the curvature at i . From (3.2), the bend at cross-section i  is given by:

Here, h is the height of cross-section i , measured from the base of the torso. The 

value of z at each cross-section is indicative of the lateral deviation of the cross- 

section from the central axis of the base cross-section.

(2)

(3)
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5 .4  C LA SSIFIC A TIO N  OF DEFORM ITY

5.4.1 Analysis of Computer Models

Mathematical models consisting of elliptical frustums having various degrees of tw ist 

(ranging from 0 to 90° in 5° steps) and bend (also ranging from 0 to 90° in 5° steps) 

were used. 361 models corresponding to all the possible permutations of the 

selected tw ist and bend values were created. The four orthogonal maps and their 

corresponding difference maps were generated for each model. Twist and bend 

indices were obtained from each map. The degree of tw ist and bend present in each 

model was blindly ascertained quantitatively using equations ( l) - (3 ) .  I t  took about 

10 minutes to process a model on a Pentium IV PC running at 1.8GHz. The obtained 

indices were used to classify the computer models into mild, moderate and severe 

deform ity categories3. Table 5.1 shows a pseudo code for the classification system 

used. Table 5.2 shows typical classification results.

The classification based on the computed indices showed a 100% correspondence 

with classification based on the known values of the deformation indices validating 

the proposed technique. Unexpected differences were observed in the possibility of 

intuitively guessing the classification of maps from their contours. In general, it was 

relatively easier to guess the classification of axial line maps and unfolded cylinder 

maps than enclosing cylinder maps and subtracting cylinder maps.

5.4.2 Analysis of Human Torso Scans

Torso scans of 30 volunteers were used to investigate the u tility  of the system for 

quantifying torso shape. The scans were obtained using the method of Ajemba e t ai. 

[2 ]. The reproduction accuracy of the method was reported to be l. l± 0 .9 m m  [3 ].

3 As twist and bend  indices are basis vectors in deformity space, the classification uses their norm.
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Table 5.1: Pseudo code for classifying the deformation of models of a frustum by severity

IF twist AND bend <20° Mild
ELSE IF twist AND/OR bend >20°

AND IF twist AND bend <60° Moderate
ELSE Severe

Table 5.2: Example classifications of computer models of a frustum

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Twist (°) 10 5 30 0 70 90
Bend (°) 10 0 40 50 20 40
Classification Mild Mild Moderate Moderate Severe Severe

The volunteers were recruited from the scoliosis clinic of the Glenrose Rehabilitation 

Hospital in Edmonton, Alberta, Canada. Twenty-two of the 30 volunteers had 

scoliosis (mean age 13.1 years). Of the 22, 15 were female. All the volunteers who 

had no scoliosis (mean age 21.2 years) were male4. For this study, the lengths, 

widths and heights of the torso scans were normalized to account for shape 

differences due to morphology and gender by selecting an equal number of points 

per cross-section. The upper, lower, left and right extremities were cropped and a 

spline interpolation method was used to fill in any missing holes that arose during 

the image acquisition stage. For each torso scan, orthogonal maps consisting of a 72 

x 72 array were obtained from 72 equally spaced cross-sections each having 72 

points per cross-section spaced at 50 degree intervals. Bend and tw is t indices were 

calculated for each scan. Fig. 5.5 shows back views of typical mild, moderate and 

severe scoliosis patients. Fig. 5.6 shows the four orthogonal maps obtained from the 

torso scan of a male volunteer who did not have scoliosis. Table 5.3 shows the 

ranges of tw ist and bend indices for none, mild, moderate and severe scoliosis 

volunteers for each of the four orthogonal maps.

4 Their torso scans were used to check the null-response pattern of the system.
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Fig. 5.5: Back views of typical mild, moderate and severe scoliosis patients.
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Fig. 5.6: The four different orthogonal maps of a male volunteer without scoliosis. The solid 

black lines on the right half of the maps are the twist lines. The white patches on the maps 

were generated when the arms where cropped of the torso at the shoulder region.
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Table 5.3: Range of values for the twist and bend indices for none, mild, moderate and severe

scoliosis patients for each of the four orthogonal maps

Axial Line Unfolded Cylinder Enclosing Cylinder Subtracting Cylinder

Twist (°) Bend (°) Twist (°) Bend (°) Twist (°) Bend (°) Twist (°) Bend (°)

No Scoliosis 1.0-1.2 1.0-1.4 1.0-1.2 1.1-1.5 1.0-1.4 1.0-1.5 1.0-1.4 1.2-1.5
Mi Scoliosis 1.4-2.2 1.7-3.2 1.5-2.2 1.7-3.2 1.5-2.3 1.7-3.3 1.5-2.2 1.7-3.4

Mo Scoliosis 3.4-3.9 3.5-5.5 3.3-3.8 3.5-5.4 3.2-4.0 3.5-5.3 3.1-4.1 3.5-5.6
Se Scoliosis 4.5-5.6 5.6-7.0 4.6-5.5 5.5-7.2 4.7-5.6 5.6-7.1 4.5-5.5 5.5-7.3

Mi: Mild; Mo: Moderate; Se: Severe.

To create gold standards for the classification obtained using orthogonal map 

indices, an experienced clinician was asked to retrospectively assign scores to the 

volunteers in three categories using a visual analog scale. The categories were: 1) 

external deform ity as evidenced from 2D and 3D torso images taken on the day of 

clinical assessment; 2) internal deform ity as evidenced from radio- graphs and other 

clinical parameters taken on the day of assessment; and 3) clinical history up to the 

day of assessment based on clinical records. The scores obtained were compared to 

the Euclidean norm of the tw ist and bend indices obtained from axial line orthogonal 

maps. Boundaries for classifying the volunteers into categories were obtained by 

assessing the histograms and scatter plots of the distributions of scores obtained for 

break points (Table 5.4). The classification is shown in Table 5.5.

I t  can be observed from Table 5.5 that eight of the 22 volunteers who have 

scoliosis (six females and two males) had the same classifications in all three clinical 

categories. Seven of these also had identical orthogonal map based classifications. 

The clinical classifications of four of the volunteers ran the available gamut and the 

orthogonal maps classifier ranked each case as moderate. Table 5.6 shows the result 

of applying correlation analysis to the clinical and orthogonal maps-based classes. I t  

can be seen that the orthogonal maps based classification significantly correlated 

with the external deform ity classification (as expected) but not with the internal
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Table 5.4: Range of scores used in classifying volunteers into mild, moderate and severe

Internal Deformity External Deformity Clinical History Orthogonal Map 

Mild <1.5 <2.0 <2.0 <4.0
Moderate 1.5-3.5 2.0-3.5 2.0-3.5 4.0-6.0
Severe >3.5 >3.5 >3.5 >6.0

Table 5.5: Comparison of classifications of scoliosis patients into mild, moderate and severe

Int Deformity Ext Deformity Clinical History Orthogonal Map
Sex Age_____________________________________________________________

Score Class Score Class Score Class Twist Bend Score Class

1 F 17 3.4 Mo 3.7 Mo 2.5 Mo 3.4 2.7 4.3 Mo
2 M 16 3.3 Mo 4.1 Se 3.1 Se 3.9 4.3 5.8 Mo
3 F 15 1.4 Mi 3.4 Mo 2.1 Mo 2.2 3.2 3.9 Mo
4 F 10 4.0 Se 3.0 Mo 1.2 Mi 3.6 4.8 6.0 Mo
5 F 14 2.0 Mo 2.4 Mo 1.7 Mo 4.5 6.5 7.9 Se
6 M 9 4.9 Se 2.1 Mo 1.4 Mi 3.7 4.7 6.0 Mo
7 M 16 3.9 Se 1.7 Mi 3.0 Mo 5.6 7.0 9.0 Se
8 F 14 4.7 Se 4.1 Se 3.8 Se 4.9 6.3 8.0 Se
9 F 14 2.6 Mo 0.6 Mi 1.4 Mi 3.5 5.5 6.5 Mi
10 F 15 0.1 Mi 2.3 Mo 0.3 Mi 3.6 2.3 4.2 Mo
11 M 9 1.4 Mi 2.4 Mo 1.4 Mi 3.4 3.5 4.9 Mo
12 M 7 0.9 Mi 1.8 Mi 1.6 Mi 1.8 2.4 3.0 Mi
13 F 15 1.2 Mi 1.5 Mi 1.6 Mi 2.6 1.6 3.1 Mi
14 F 14 1.2 Mi 2.7 Mo 1.9 Mi 2.7 2.9 3.9 Mi
15 F 13 2.6 Mo 2.5 Mo 2.0 Mo 2.8 3.3 4.3 Mo
16 M 14 2.7 Mo 2.3 Mo 2.5 Mo 4.0 2.3 4.6 Mo
17 F 12 2.4 Mo 1.7 Mi 1.3 Mi 2.2 1.7 2.8 Mi
18 F 11 1.1 Mi 0.9 Mi 1.2 Mi 1.4 2.5 2.9 Mi
19 M 9 2.7 Mo 4.0 Se 3.0 Mo 4.0 5.4 6.7 Se
20 F 16 4.0 Se 4.1 Se 3.0 Mo 3.4 6.4 7.2 Se
21 F 13 1.0 Mi 2.1 Mo 3.8 Se 4.0 2.2 4.6 Mo
22 F 15 1.0 Mi 1.1 Mi 2.2 Mo 2.2 1.9 2.9 Mi

RMS = root mean square; SD = standard deviation; L =  length; W = width; H = height; sample size =  20.

deform ity or clinical history classifications (which correlated with each other). The 

classification obtained did not change when Guassian noise (with mean and standard
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Table 5.6: Result of applying correlation analysis to the classifications obtained

Internal Deformity External Deformity Clinical History Orthogonal Map

Internal Deformity 1
External Deformity 0.51 1
Clinical History 0.81* 0.60 1
Orthogonal Map 0.61 0.85* 0.54 1

^Statistically significant correlation (p<0.05)

deviation equal to the reconstruction accuracy of the imaging system used) was 

added to the input torso scans.

After seeing a patient on any given day at a scoliosis clinic, the clinician needs to 

make a number of decisions. Two of the most important of these are: 1) Is 

immediate and/or serious intervention required? 2) Is further treatm ent and/or 

follow-up required? To assess the ability of the orthogonal classification scheme to 

help answer the questions, the m ild  and moderate  categories were compared to the 

severe category for the first question and the m ild  category was compared to the 

moderate and severe categories to answer the second question. Results of these 

comparisons for each of the clinical classifications are shown in Table 5.7. The 

proposed classification system achieved the highest levels of accuracy when 

compared to the external deform ity clinical classification.

5 .5  D ISC U SSIO N

A method of assessing torso shape using orthogonal maps is presented. Orthogonal 

maps are complete scans of three-dimensional objects that have been unfolded by 

applying polar to Cartesian coordinate transforms. They give a visual representation 

of the entire torso in one view. This is important as the overall impression simplifies 

the identification of anomalies on torso scans and the analysis of torso shape. Four 

different types of orthogonal maps (axial line, unfolded cylinder, enclosing cylinder 

and subtracting cylinder) produced by applying different types of orthogonal
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Table 5.7: Results of comparing the classification obtained with the axial line indices to 

clinical classification based on internal deformity, external deformity and clinical history

Mild and Moderate VS Severe Mild VS Moderate and Severe

Internal External Clinical Internal External Clinical
Deformity Deformity History Deformity Deformity History

Accuracy (%) 54.5 86.4 72.7 72.7 95.5 77.3
False negative 2 1 2 2 1 1
False positive 2 2 4 4 1 4
Sensitivity 0.60 0.75 0.33 0.85 0.93 0.92
Specificity 0.88 0.89 0.79 0.56 0.86 0.60
Positive predictive value (PPV) 0.60 0.60 0.20 0.73 0.93 0.73
Negative predictive value (NPV) 0.88 0.94 0.88 0.71 0.86 0.86

transforms were evaluated. Two indices, tw ist and bend, derived from the maps were 

used to describe torso shape.

The sensitivity of the technique to detecting torso deform ity and the possibility of 

classifying torso scans according to their degrees of deform ity into mild, moderate 

and severe categories were explored. The indices of asymmetry are not affected by 

age, gender and morphometry as the process of computing the orthogonal maps 

automatically normalizes for these factors. This is an important feature as scoliosis 

progresses rapidly during the adolescent growth spurt period and the morphometry 

and shape of many scoliosis patients' torsos change significantly between visits to 

the clinic.

A weakness of the method is that its accuracy cannot be better than the accuracy 

of the imaging system employed to capture the torso scans used. The accuracy of 

the system is also affected by the accuracy o f the techniques used to pre-process the 

torso scans and to compute the torso cross-sections. The indices obtained are poor 

predictors (p>0.05) of the internal deform ity and clinical history of the patient. This 

is expected because the relationship between the internal deform ity o f the torso and
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its external shape is complex and changing and dependent on such hard to model 

variables as body fat, rib-alignment, morphometry and posture [2 ], [4 ], [5 ].

The proposed system classifies the torso based on continuous 3D variables unlike 

existing methods of torso classification such as the Cosmetic Score [6 ], the Posterior 

Trunk Symmetry Index (POTSI) score [7 ], the Integrated Shape Imaging System 

(ISIS) score [8 ], and the Quantec score [9 ]. The orthogonal maps can be obtained 

quickly from torso scans. This is particularly important in the fast-paced 

environments o f scoliosis clinics. Once the indices of deform ity are computed, the 

classification of scoliosis can be automatically obtained and coupled with the 

classification of the internal spinal deformity. By using both the internal and external 

measures, confidence in the obtained status and classification of scoliosis patients 

will be increased.

5 .6  CONCLUSIONS

This chapter presents the proof of concept o f a technique for classifying the torso 

deform ity associated with scoliosis based on indices obtained from orthogonal maps 

of the full torso. Results show that the technique is robust and clinically relevant. I t  

yields detailed and overall assessments of torso deform ity and a continuous measure 

of deform ity and can be used to monitor the progression of scoliosis. Results 

obtained indicate that the technique is reliable.

Future work will focus on automating the process of computing the shape indices 

from the orthogonal maps and classifying scoliosis and verifying the results on a 

larger database of full torso scans. Future work will also focus on developing a three 

dimensional score for torso deform ity based on novel mathematical models5.

5 This was achieved by developing the structured splines model. See Chapter 3.
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CHAPTER 6

SHAPE ANALYSIS: POINT-SET DATA*

6 .1  IN TR O D U C TIO N

The study of the external deform ity associated with scoliosis pre-dates modern 

investigations of spinal deform ity using radiographs [1 ]. Continued interest in the 

external deform ity is justified by the fact that many patients worry more about their 

external shape than about the ir spinal deform ity [2 ]. Also, many patients initially 

seek treatm ent for scoliosis because they are not satisfied with the appearance of 

their torsos and view improvement in torso shape as a measure of the success of 

scoliosis treatm ent [2 ].

Since the advent of the use o f back shape imaging for the assessment of scoliosis 

(with systems such as Moire topography [3 ]) , several research groups have 

developed scores to quantify torso asymmetry based on indices like scapular angle 

differences and back surface rotation obtained from images of the back. These 

scores include: posterior trunk symmetry index (POTSI) [4 ], [5 ]; cosmetic score [6 ]; 

integrated shape imaging system (ISIS) index [7 ]; and Quantec score [8 ]. They are 

computed from indices that are not linearly independent basis vectors in shape 

space. This makes them untenable to multidimensional analysis of shape and 

asymmetry. Thus, it is very possible to see two patients who have the same 

deform ity score and yet present widely different manifestations of torso asymmetry. 

There is a need to develop more descriptive measures of torso asymmetry based on 

multi-dimensional analysis of torso shape and asymmetry in shape space.

This chapter presents a technique for evaluating torso shape and asymmetry in

x A version of this chapter has been published. P. O. Ajemba, N. G. Durdle, and V. J. Raso, 'Evaluation of 

torso shape and asymmetry associated with scoliosis,' Research into spinal deformities 6, 2006.
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scoliosis based on descriptors of the major features of torso deform ity: tw ist, bend 

and asymmetry (Fig. 6.1). The descriptors are indices of point-set data obtained 

from torso surface scans.

Point-set data are the maximum curvature points of surface scans and contain key 

shape information. The centroids, distributions and densities of point-set data are 

indices of shape and asymmetry. The mean-squared deviations of the centroids per- 

cross-section from the medial axis are indicative of asymmetry. The distribution and 

density of point-set data are indicative of shape. The technique was modelled from 

30 back shape scans o f scoliosis patients and tested on another 18 back shape scans 

of scoliosis patients.

6 .2  PO IN T-SET DATA

6.2.1 High curvature points

Edges and points of high curvature play an important role in the perception of shape. 

Research in human cognition and shape recognition suggest that when presented 

with objects, the human visual system pays much attention to points of high 

curvature [9 ]. Davis [10] developed an approach that detects angles and sides at 

various degrees of coarseness to construct a hierarchy of angles tha t describe the 

curve at any desired level of coarseness. The approach was to aid the incorporation 

of curvature information in descriptions of plane shapes. I t  can be extended to the 

description of 3D shapes by representing the 3D shapes by a finite set of cross- 

sections. In this chapter, high curvature points are called point-set data.

6.2.2 Application to assessing scoliosis

As human torso scans are 3D shapes, point-set data can be used to assess the torso 

shape and asymmetry associated with scoliosis. The range of deform ity patterns
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Coronal plane view

Cross-section of a complete torso scan 

Posterior-anterior view Cross-section of a back

a b c
Fig. 6.1. A. Twisted torso shape. B. Bent torso shape. C. Points of high curvature on cross- 

sections of a complete torso scan and a back shape scan of a human torso.

produces various distributions of point-set data. The torso surface is divided into six 

regions (Fig. 6.2) and centroids of point-set data in each region computed. The 

difference between the mean-square deviations from the medial plane of the 

centroids in the two halves of the torso is a measure of asymmetry. The centroid 

distributions are indicative of overall tw ist and bend.

Back shape scans of 30 female idiopathic scoliosis patients whose torso deform ity 

run the gamut seen in our scoliosis database (containing over 1000 entries) were 

used to calibrate the deform ity- and symmetry-space of the tw ist, bend and 

asymmetry indices. The patients were diagnosed as having idiopathic scoliosis and 

were between 10 and 18 years old (average age 14.5 years). Each index ranged 

from 0 to 10 w ith 'O' corresponding to no deform ity and '10' corresponding to the 

maximum found in our database. To obtain an overall score, the three indices were

6 .3  M ATERIALS AND METHODS
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Fig. 6.2: Back shape views of (from left to right) mild, moderate and severe patients showing 
centroids of the distribution of point-set data of the six sections.

modeled as orthonormal vectors in 3D shape space. The deform ity index was the 

Euclidean norm of the magnitude of the indices. Mild, moderate and severe torso 

deform ity mapped to values of 1-3, 3-5 and 5-10 respectively.

To evaluate the correspondence of the technique to other measures of torso 

deform ity like the cosmetic score [6 ], 18 torso scans of female scoliosis patients 

whose demographics matched the earlier group were selected from our scoliosis 

database (age range, 12-18 years; average age 14.9 years). The torso deform ity 

present in the back shape scans were classified using the proposed technique and 

compared to the classification obtained using the cosmetic score.

6 .4  RESULTS

Table 1 shows the results obtained from classifying 18 scans of female scoliosis 

patients based on the distribution of the ir point-set data and a comparison w ith the 

cosmetic score classification. Evaluations using point-set data indices were 100% in 

accord with those based on the cosmetic score. Indices of point-set data have more 

degrees of freedom and were able distinguish between scans that have sim ilar 

cosmetic scores. They are a superset of clinical descriptions like the cosmetic score.
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Table 6.1: Classification of back shape scans of 18 female scoliosis patients

Cosmetic Score Point-set Data
Age ---------------------------------------  -----------------------------------

Score Classification Score Classification

1 14.1 1.0 Mild 1.0 Mild
2 13.8 1.0 Mild 2.3 Mild

3 13.3 1.1 Mild 1.2 Mild
4 14.2 1.5 Mild 2.3 Mild
5 18.0 1.6 Mild 2.5 Mild

6 17.0 1.8 Mild 2.2 Mild
7 15.1 1.9 Mild 1.6 Mild
8 14.6 1.9 Mild 1.8 Mild
9 15.0 1.9 Mild 2.6 Mild
10 14.8 2.1 Moderate 4.4 Moderate
11 12.8 2.5 Moderate 4.3 Moderate
12 14.4 2.6 Moderate 4.7 Moderate
13 17.4 3.1 Moderate 3.6 Moderate
14 16.2 3.1 Moderate 3.7 Moderate
15 12.7 3.3 Moderate 3.8 Moderate
16 16.1 3.4 Severe 6.5 Severe
17 13.8 3.5 Severe 6.3 Severe
18 16.4 4.9 Severe 7.1 Severe

6 .5  D ISC USSIO N

The proposed technique can be used on back shape data (as in this paper) or on 

complete torso data [11 ]. The classifications obtained were in accord with a 

classification based on the cosmetic score. As shape and asymmetry characterize the 

external deform ity of scoliosis, the technique could be applied to monitoring changes 

in torso shape in progressive scoliosis. Future work will focus on validating the 

technique on a larger dataset of patients.
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C H A P TE R  7

T O R S O  IM A G IN G  S Y S TE M : IM A G E  A C Q U IS IT IO N

7.1 INTRODUCTION

In this chapter, we present a low-cost torso imaging system for quantifying the 

deform ity associated with scoliosis. The system has image-capture and image- 

analysis components. The image-capture component obtains full-torso scans using a 

rotating positioning platform and one or two 3D surface digitizers (Fig. 7.1). The 

image analysis component is based on a commercial visualization toolkit and 

assesses the shape of the torso from torso scans. We describe the system 

architecture and possible configurations and present the results of system calibration 

and error analysis (accuracy of reproduction based on tests on inanimate objects and 

human subjects). Finally, we discuss the use of maps obtained from torso scans in 

quantifying the deform ity associated w ith scoliosis.

7.2 THEORETICAL BACKGROUND

7.2.1 Im age capture

A rotating positioning platform and one or two laser digitizers (cameras) are needed.

1. One-Digitizer Configuration: This is based on the ideas that: 1) four shots of an 

object taken at right-angles to each other will effectively capture the full 360° view of 

the object; 2) it is possible to generate a full-torso scan from four orthogonal partial- 

scans using image matching techniques; and 3) errors associated with the image- 

capture and matching procedures are either acceptable or can be compensated for.

* A version of this chapter has been published. P. O. Ajemba, N. G. Durdle, D. L. Hill, and V. J. Raso, 'A 

torso imaging system for quantifying the deformity associated with scoliosis/ IEEE Transactions on 

Instrumentation and Measurements, vol. 56, no. 5, October 2007.
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Fig. 7.1: The Minolta 700 surface digitizer system and rotating positioning platform

Details of the technique can be found in [1 ] and [2 ]. In brief, the cameras are 

fixed and the positioning platform is rotated after each step. The four range images 

obtained from each position are converted into mesh objects and stitched together to 

form full-torso scans using image registration techniques [3 ]. In regions of overlap 

between the meshes (a 30% overlap typically exists), spline interpolation is used to 

produce the approximate surface.

2. Two-Digitizer Configuration: An additional assumption particular to this 

configuration is that the simultaneous use of two digitizers, rather than one, will 

reduce errors due to patient re-positioning (sway and breathing) and motion artifacts 

[1 ] as the average scan obtained from the two cameras would have less variance 

than the scans obtained from either camera [4 ]. By combining scans from the two 

cameras, the tim e difference between the four scans used in the image synthesis is
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reduced to one rotation1, rather than the three rotations obtained with the single 

camera system.

The number of unique arrangements of two cameras in four positions around a 

circle is 2. Fig. 7.2 shows the two arrangements. Four partial scans corresponding to 

the front, back and sides of the scanned object are needed to construct a full-torso 

image in both arrangements.

7.2.2 Im age analysis

The image analysis model is based on 3D spline-based models—spline objects, that 

consist of a series of m latitudinal and k longitudinal closed spline curves, Sc and

S, respectively, given as:

where £ j( t )  and £ l} (t) are the latitudinal and longitudinal cross-sectional closed 

spline curves respectively and P(. . are the control points of spline curve i .  a f . and 

a \ j  are spline basis functions. The numbers m and k and the positions of spline

curves vary w ith application. The longitudinal splines curves could be made to pass 

through prominent anatomical landmarks on the torso by making the control points 

Pf . coincide with those landmarks. For this study, we use evenly spaced curves

along the length of the torso.

Definition 1: Let /? represent a transformed version of a spline object y  such 

that each of the closed spline curves in y  is transformed into an open spline curve in

1 This is achieved by using the first and second scans of both digitizers. The first scans of both digitizers 
are taken simultaneously as are the second scans of both digitizers.

m-1 m- 1 n - 1

(2.1)

(2.2)
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Fig. 7.2: The two arrangements for the two camera configuration

P  by applying a transformation T . Then, the object /? made up of a series of 

modified spline curves is called a modified spline object. P  could be referred to as 

the open equivalent of spline object y .

To quantify the shape of a torso, a spline object is generated and transformed into 

its open equivalent modified spline object. In this study, T  transforms the spline 

curves of the spline object into an open equivalent curve by plotting the distances 

from the centroids of each spline curve to locations on the surface of the curve as a
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function of its sector angle (formed by lines jo ining the centroid to the points on the 

surface) (Fig. 7.3). To compare two torso scans (A and B) of the same individual 

taken at different times (or torso scans of two different individuals), spline objects 

with equal numbers of horizontal closed spline curves are obtained and transformed 

into the ir equivalent modified spline objects. The graphs obtained from the open 

spline objects are subtracted to produce a difference surface. The difference surface 

provides a quantitative and visual assessment of differences between the subtracted 

torso surfaces.

7 .3  MATERIALS AND METHODS

Scans of a test-box (of dimensions 300x150x200m m 3; machined to an accuracy of 

lm m  and measured to a precision of 0.1mm) and a plaster cast (made from a cast 

of the torso o f a scoliosis patient) were used to assess the accuracy of the image 

capture system. Analyses were performed to: 1) assess the accuracy of reproduction 

of the dimensions and aspect ratios of the sides of the test-box; 2) assess the effect 

of misaligning partial scans of the test-box; and 3) assess the effect of using one or 

two cameras on the accuracy of reconstruction of a plaster cast.

To assess the accuracy of reproduction of the dimensions and aspect ratios of the 

test-box, ten complete scans of the box were obtained using a single laser camera 

(Minolta VIVID™ 700 Digitizer2) with the box repositioned after each scan. Five of 

these scans were taken with the sides of the box perpendicular to the line of sight of 

the digitizer. The other five were taken with the sides at an angle of 45° to the line of 

sight of the digitizer. The lengths, widths and heights of the reconstructed image of 

the test-box were measured from each scan. The values of the three aspect ratios of 

the test-box (length-w idth, length-height and height-width) were obtained. The root

2 Konica-Minolta Inc., Mahwah, NJ, USA.
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Fig. 7.3: Obtaining a spline surface. A: A cross-section modeled as a spline curve. B: Open 
equivalent of A. C: A spline surface obtained from a series of open equivalent spline curves.

mean square errors and the standard deviations in the dimensions and aspect ratios 

of the test-box were calculated. Errors here refer to the difference between the 

measured and actual values of the dimensions and aspect ratios.

To assess the effect o f aligning the partial scans of the test-box to an angle 

different from 90° on its reconstruction accuracy, scans of the test-box were 

obtained from partial scans aligned by 80, 82.5, 85, 87.5, 90, 92.5, 95, 97.5 and 

100° from each other. The volumes of the models created from misaligned partial- 

scans o f the test-box were determined. The accuracy of reconstructing the models 

was assessed by comparing their volumes to that of the box. In general, smaller 

error in the volume of the reconstructed model implied a higher reconstruction
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accuracy3. A plot of alignment error versus reconstruction accuracy was obtained 

(Fig. 7.4). For any given value of reconstruction accuracy, a maximum tolerable 

error o f alignment could be ascertained from the plot. The maximum tolerable error 

o f alignment is the largest value of alignment error that would produce a scan whose 

accuracy is less than or equal to the specified reconstruction accuracy.

To compare the effect of using one camera operating alone to two cameras 

operating in parallel (w ith regards to the accuracy of reconstruction o f a test object), 

ten scans of a plaster model of a human torso were obtained using each of the two 

cameras individually. Ten other scans of the plaster cast were obtained from the two 

cameras at once (the cameras were placed opposite each other as in Arrangement 2 

of Fig. 7.2). The lengths of the range images were computed and the ir standard 

deviations calculated.

An integrated software package based on an AVS/Express4 shell provided the 

visualization platform for the image analysis component of the system. Proprietary 

software developed by our group and running as scripts o ff the shell performed tasks 

such as computing cross-sections of torso scans, calculating points P;J ((1) and (2)),

deriving spline surfaces and computing difference surfaces from the spline surfaces5. 

Two scans of the bare torso of a 22-year old male volunteer who has no scoliosis or 

any other spinal deform ity were obtained w ithin one hour o f each other. The 

volunteer was allowed to move around freely between scans. Spline surfaces 

comprising 40 latitudinal and 40 longitudinal cross-sections were computed from the 

scans and subtracted to generate a difference surface. The variation in the scans was 

assessed using the difference surface obtained.

3 The reconstruction accuracy of the surfaces of the box (assessed by computing the standard deviation of 
the individual surface points from their ideal positions) was less than the reconstruction error (1m m ).
4 Advanced Visual Systems Inc., USA

5 This is done by subtracting one spline surface from another. The second spline surface may be generated 

from another image of the same individual taken at a different time or may belong to another individual.
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Fig. 7.4: Reconstruction accuracy as a function of the angle of alignment

7 .4  RESULTS

Table 7.1 shows the root mean square errors and standard deviations in the 

dimensions of the sides of the test-box. Overall the dimensions of the test-box varied 

by 1-2%. Scans obtained w ith the sides of the test-box at an angle of 45° to the line 

of sight of the camera showed more variation than scans obtained with the sides of 

the test box perpendicular to the line of sight of the camera. Table 7.2 shows the 

root mean square errors and the standard deviations in the aspect ratios of the test- 

box. Overall the aspect ratios of the test-box varied by 1-3%. The orientation of the 

test-box also significantly influenced the variations in the aspect ratios of the scans 

obtained as higher variations were obtained for scans taken with the sides of the box 

at an angle of 45° to the line of sight of the camera.
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Table 7.1: RMS and SD error in the dimensions of the test-box

90° to digitizer line-of-sight 45° to digitizer line-of-sight

Mean RMS Error SD Mean RMS Error SD

Length 299.9 0.8 0.9 300.2 1.8 1.9
Width 150.1 0.8 0.9 149.6 2.1 2.1
Height 199.9 0.9 1.0 200.7 2.1 2.2

RMS = root mean square; SD = standard deviation; sample size = 20.

Table 7.2: RMS and SD error in the aspect ratios of the test-box

90° to digitizer line-of-sight 45° to digitizer line-of-sight

Mean RMS Error SD Mean RMS Error SD

ivw 2.0000 0.0054 0.0059 2.0075 0.0255 0.0291
L/H 1.5000 0.0038 0.0040 1.4975 0.0134 0.0129
H/W 1.3300 0.0039 0.0039 1.3400 0.0232 0.0228

RMS = root mean square; SD == standard deviation; L = length; W = width; H = height; sample size = 20.

Figure 7.4 shows a plot of the reconstruction accuracy (defined as the percentage 

difference between the volume of the reconstructed scan and the actual volume of 

the test-box) as a function of the angle of alignment of the partial scans. The 

maximum tolerable error o f alignment was 5° for reconstruction accuracy of 5%. 

Thus, barring other errors, the system could reconstruct an object to an accuracy of 

at least 5% if the partial scans were set-o ff by an angle between 85 and 95°. As the 

design of the system almost certainly precludes the possibility of misaligning the 

partial scans by up to 5°, the maximum error o f alignment of the system was 2%.

Table 7.3 shows the standard deviations in the values of the lengths of ten evenly 

spaced cross-sections of the plaster cast obtained using each of the two cameras 

(Digitizers A and B) alone and both digitizers simultaneously. The cross-sections 

were numbered in increasing order from the waist of the cast upwards. The standard 

deviations in the lengths of the first few cross-sections (close to the waist of the 

cast) were lower than those of later cross-sections. This was due to persistent errors
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Table 7.3: RMS and SD error in the aspect ratios of the test-box

Standard Deviation

Digitizer A Digitizer B Digitizers A and B

1 0.64 0.58 0.47
2 0.83 0.75 0.67
3 0.92 0.83 0.75
4 1.04 1.14 0.98
5 1.12 1.03 0.95
6 1.06 1.04 0.94
7 1.06 1.10 0.93
8 1.12 1.01 0.94
9 1.16 1.06 0.99
10 1.71 1.82 1.04

in aligning the central axis of the cast to the line of sight of the camera. These errors 

were introduced by the positioning platform and are entirely a function of the setup 

of the experiments. The standard deviations in the lengths of the cross-sections 

obtained from the two-camera scans were less than that of the one-camera scans.

Fig. 7.5 shows a plot of one of the spline surfaces obtained from the male 

volunteer. The spline and difference surfaces were divided into five regions: chest, 

stomach, right scapula, left scapula and back for the purpose of analysis. The 

difference surface showed a maximum average variation of 4mm in each section. 

Most of the point-by-point differences observed were attributable to errors caused by 

patient re-positioning and are less than the size of anatomical landmarks on the 

torso.

7 .5  D ISC U SS IO N  AND CONCLUSIONS

A full torso imaging system based on surface digitizers and a rotating positioning 

platform was described. The system consisted of image capture and image analysis 

components and required four partial scans set-o ff at 90° to produce a full scan.
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Fig. 7.5: Orthogonal surface obtained from torso scans of a male volunteer. The surface 

was divided into 5 sections: 1: Chest; 2: Stomach; 3: Right scapula; 4: Left scapula; 5: Spine.

Several models of a test-box were used to assess the reconstruction accuracy of the 

system's image capture component. The dimensions and aspect ratios of the models 

of the test-box obtained varied by less than 3%.

Several models of a plaster cast of an actual scoliosis torso were obtained and 

analyzed to quantitatively compare the image capture component of the one-camera 

to that of the two-dig itizer configuration. Variations of 1-3% were observed. This was 

comparable to results obtained from our previous work [1 ]. In [1 ], the maximum 

variations in the dimensions of models obtained from five volunteers were found to 

be less than 4%. The higher error value was attributed to errors caused by sway and
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breathing. As expected, errors associated with the two-dig itizer configuration were 

lower than those associated with the one-digitizer configuration.

These results indicate that the system can be used to create acceptable models of 

the torso. I t  can also be used to quantify and describe the torso deform ity caused by 

scoliosis from analysis of torso scans of scoliosis patients. A lim itation of the system 

is that two fairly skilled people are needed for its operation. Future work6 will focus 

on creating more elaborate mathematical models for analyzing, quantifying and 

classifying torso deform ity.
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C H A P TE R  8

TO R S O  IM A G IN G  S Y S TE M : P R E -P R O C E S S IN G  "

8.1 INTRODUCTION

This study presents a procedure for pre-processing range images used in the 

assessment of torso deformities. The procedure includes an interactive technique for 

clipping stray points and extremities and a novel interpolation technique for filling 

holes and correcting for surface errors. Contributions of this chapter include four 

indices for validating the reconstruction accuracy obtained from pre-processing range 

images. However, its most important contribution is putting together the different 

pre-processing operations into an easy to apply procedure.

8.1.1 Previous work

The problem of filling holes in 3D images is not new. Past work on hole-filling and 

edge completion encompass those applied to content-based [1] and feature-based 

images [2 ]. Methods applied to content-based images are beyond the scope of this 

chapter. The basic idea of interpolating a set of points to obtain a curve or surface 

can be viewed as a lim iting case of hole-filling a feature-based image in the form of a 

silhouette with a hole occurring between every two consecutive points. A variety of 

methods have been used for hole filling, including spline-based techniques such as B- 

splines [3 ], Bezier curves [4 ], Beta curves [5 ] and T-splines [6 ]. Uniform versus 

non-uniform and rational and non-rational formulations have been used (for 

example, NURBS [7 ]). Radial basis functions [8 ] have also found some use in hole-

K A version of this chapter has been submitted for publication. P. 0 . Ajemba, A. Kumar, N. G. Durdle, and

V. J. Raso, 'Range data pre-processing and reconstruction for the analysis of torso images in scoliosis,' 

IEEE Transactions on Information Technology in Biomedicine, 2006.
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filling. Splines enable an arbitrary degree of smoothness or curvature to be achieved 

and make use of nearby points to estimate the filled curve or surface1. The 

underlying assumption for their use is that the degree of smoothness of the missing 

part is known.

Allen e t at. [8 ] used a technique that roughly approximates the human body 

surface to fill holes in range images of human body parts. They produced good 

reconstructions that can be used for applications primarily concerned with the 

anthropometric relationships of body parts. However, for applications that employ 

surface or cross-sectional images of the human body for medical diagnosis, such glib 

approximations are unacceptable as the roughness of a cross-section, for instance, 

may be a factor in the prognosis of a disease or condition. Model fitting  [9 ] used to 

estimate surfaces from range images, has been used for hole-filling by elastically 

deforming an ideal model to the desired shape [10]. The moving least squares (MLS) 

projection procedure which minimizes the sum of squared Euclidean distances of 

surfaces [11] has also been used to represent surfaces by clouds of points.

In the presence of large holes, arbitrarily aligned extremities and a significant 

amount of stray points, a comprehensive pre-processing and reconstruction 

procedure is needed for clinical applications.

8.1.2 Overview

The pre-processing and reconstruction procedure described in this chapter consists of 

three stages: torso cross-sectioning and clipping, torso hole filling and sub-sampling, 

and torso surface re-generation (Fig. 8.1). The first stage comprises of torso clipping 

(cropping the extrem ities) and torso cross-sectioning (sectioning the torso into some 

number of cross-sections defined by the user2). The torso clipping routine uses an

1 All the points in the Bezier curve method are control points that are not necessarily interpolated.

2 The sections are usually evenly spaced but division into a number of equal volume segments is possible.
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PREPROCESSING & RECONSTRUCTION PROCEDURE
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Fig. 8.1: Flow chart of the preprocessing and reconstruction procedure.

implementation of the Sutherland-Hodgman polygon clipping algorithm [12]. An 

enhancement detects the boundary points of the extremities and holes in the torso 

using a convexity algorithm. A hole is defined as a region in the torso cross-section 

where the two nearest points on the plane are not connected by a line segment. At 

the end of the torso clipping and cross-sectioning stage, much of the surrounding 

artefacts that are not part of the image are removed.

The points in each cross-section are evaluated to fill holes in the 3-D scan in the 

hole filling stage. Once a hole is detected, depending on its size, a decision is made 

to either connect the two nearest points to it to fill it directly or to generate 

intermediate points to fill it by interpolation. The sub-sampling and surface 

generation stage re-samples the sets o f cross-sectional points into a user-defined 

number of evenly spaced points per cross-section. The sets of points are resampled 

using B-spine interpolation. The resulting points are triangulated and rendered to 

generate the filled surface.

8 .2  THEORETICAL BACKGROUND

The novel approximation procedure proposed in this chapter, the spline-fitted moving 

least squares (SMLS) procedure, utilizes the Bezier curve (BC) approximation theory 

and the moving least squares (MLS) projection theory. The MLS projection theory is
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based on the MLS approximation theory. The theoretical backgrounds to MLS and BC 

approximation are given in appendix III.

In this chapter, the SMLS procedure is defined in 2D as it is applied to fill holes in 

cross-sections of the torso but it can easily be extended to 3D3. The procedure 

consists o f a first pass involving spline fitting with BC approximation that yields the 

approximate positions o f the intermediate points and a second pass during which the 

positions of the intermediate points are refined using MLS projection.

Let px, p2, p3 and p4 be four consecutive points on a cross-sectional plane Q with

a constant z coordinate, such that p t eR3 { i  = 1, 2, 3, 4 }  with rectangular 

coordinates ( p ix, p iy, p iz). In this case, p i2 is constant for all i . Let the part of the 

connectivity map of Q containing px to p4 be given by { .. ./> , <-> p2 ° p3 <-> p4... > 

where px <-» p2 denotes that px and p2 are connected and p2 ° p3 denotes that there 

is a hole (or disconnection) between p2 and p3. Let the mean Euclidean distance 

between all the connected pairs of points in the connectivity map of Q be given by

where C is  the total number of points in the connectivity map of the cross-section 

and zis the index of one such point p .  Finally, let the standard deviation of the 

distribution of Euclidean distances between connected points in the connectivity map 

be a4. I f  the Euclidean distance between p2 and p3 is less than or equal to

M D  + 2 -c r , then the hole can be filled by drawing a line between p2 and p3. I f  the

3 This is achieved by working with the cross-sections in an increasing order of position. For all cross- 

sections apart from the first, the previous section serves as a rough estimate of its shape.

4 The distribution of distances between neighboring points for this application is generally skew- 

symmetric.

m d  = Y
c - 1

\

/
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distance is greater than M D  + 2 - & , the SMLS approximation procedure is invoked. 

In the first pass, asymptotes joining pv p2 and p3, p4 are defined respectively as

Ply-P ly3y r  ly  j  \  , P Ay Ply ( \

y - P l y  = - --------- \ X - P u )  and  y - P l y  = ~ -------- — \X - P 7 x b (1)
Plx P\x Pax Plx

The point of intersection of these two asymptotes is denoted as p 5eR3 (Fig. 8.2)

where:

Psx =
(Ply -P lyfa lx -P lJP ix  -P2x)-Plx(piy ~ PlyXPlx ~  P lxY  Plx(p*y ~ Pl^Plx ~ Plx) 

U v  -PlytPAx -Plx)-[p4y -P ly h lx  ~Plx)

Psy =
Ply -Ply

y5x-Plx)+Ply>
v Plx Plx 

Psz Piz '

Also, i = \ ,  2 , 3, 4 . Two new 3D points p 6,p-, eR3 are constructed from p 2, p3 and

p5 such that

P6 =
r P i+P s^

a n d  p-j ^P i+Ps^

The four points p 2, p 6, p2 and p3 then become the edges of the control polygon of a 

BC that provides a rough interpolate of p 2 ° p3. The parametric equation of the BC is

p (0 = ( l- 0 3 *P2 + 3 * ( l- f ) 2 * t * p 6 +3*(1 - i ) * t 2Pl + t3 * p 3, (2)

where 0 < t  <1 and p { t)  -  { x ( t ) ,y ( t ) ,z ( t ) ) . An initial t value is chosen for (2) starting 

from p x. To determine the location of the intermediate points between p 2 and p 3, t 

is varied at equal intervals of length in a series { t , I t , 31, ..., I t } ,  where I  e Z  is 

the total number of intermediate points required between p2 and p3 and is a

function of the ratio of M D  to the distance between the points . Let the control point 

distance C P D e R  be the sum of the Euclidean distances between p 2 and p 6,
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Fig. 8.2: Interpolating a hole (P2oP3) using the SMLS method. P5 is the intersection of lines 

P1<-»P2 and P3<-»P4. P6 and P7 are intermediate points. The *s are the interpolated points.

p6 and p7l and p7 and p-i such that

CPD=^j{p6x - p j  +(p6y - Plyf  +^{p lx- p 6xf  +(ply - PrJ  +^(p2x- p 7xf  +(p2y ~p7yf .

In the second pass, the SMLS procedure is implemented using either of two 

methods. In the first method I e Z « CPD / M D . The number of intermediate points 

computed at this stage is given by I  = ( X - 1) where t = \ / I  is a parametric 

operator that varies from 0 to 1 at equal intervals. The ensuing SMLS construction 

yields a number of intermediate points P  which have an average spacing of M D . 

The points in P  provide better approximation using bivariate local polynomials and 

smoothing using radial Gaussian weights.

In the second method X  e Z  « Integer (CPD) . The key difference between this 

method and the first is that this ensures that the average distance between the 

intermediate points created by the BC equation is one unit. In this case, the SMLS 

procedure assumes that the number of intermediate points is greater than what is
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required to correctly fill the gap as M D  is usually greater than double the distance 

between the intermediate points. I  and t are defined as in the previous method. Let 

P  = iP 2 > P i’ P a ’ P i f  ■■■’ P i f  ’ P i )  be the set of points obtained. PSEL, a subset of 

P  containing enough key control points5 to make the mean distance M D , is 

obtained by iteration and yields the final set of interpolants of p 2° p3. This approach 

is slower but more accurate than the first and is used in our implementation.

8 .3  IM PLEM EN TA TIO N

8.3.1 Torso clipping and cross-sectioning

The torso image is aligned such that its medial axis is parallel to the vertical axis of 

the imaging plane. The upper extremities (the regions of the image above the base 

of the neck) and the lower extremities (the regions of the image below the waist) are 

cropped using a horizontal cutting plane implemented using the Sutherland- 

Hodgman plane clipping algorithm [12]. The coefficients of the cutting planes in the 

neck and waist ( p  and p wy respectively) are user-defined and delineate the extent

of the crop. As the human torso is usually asymmetric, the left and right extremities 

rarely attach to the torso in planes parallel to the torso medial plane6. This makes it 

d ifficult to automatically crop the left and right extremities of most torsos using a 

plane clipping algorithm. A semi-automatic cropping regime using a box or sphere 

clipper that clips the parts of the image that lie w ith in its boundaries is preferable.

In this chapter, the left and right extremities are clipped using an implementation 

of the Sutherland-Hodgman box clipping algorithm (see Fig. 8.3). For every instance 

of the box clipper, four variables p h(MIN), p iy(MIN), p ^ ^  and p iy(MAX) (where i is

5 Key control points whose removal from the curve perceptibly changes the shape of the curve.

6 The degree of misalignment of the left and right extremities is reflective of torso asymmetry.
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the instance of the box clipper) that delineate the extent of the boundaries of the 

box in the X - Y  plane, are user-defined. The box is assumed to have an infinite 

depth.

The implementation of SMLS is preceded by a cross-sectioning stage. The 

number of cross-sections and the region of the torso to be sectioned is also user- 

defined. A vertex array and a connectivity map are obtained for each cross-section. 

The vertex array is a N  x 3 -dimensional array that stores the physical locations of 

each point in the cross-section. The vertices in the vertex array are numbered in a 

generally counter-clockwise loop starting from the left-most point in the plane 

orthogonal to the medial axis of the image. The connectivity map is an array 

sequence that shows the connections between the N  points in the vertex array and 

their neighbours. For example, { . . .  px <r> p 2 ° p3 p A. . . }  shows that px and p 2 are 

connected but p 2 and p2 have a hole (or disconnection) between them.

To obtain a cross-section at a height p  , the data points near the height are

contoured and the boundaries between regions are interpolated to generate an 

isosurface. These boundaries correspond to contour surfaces of a constant scalar 

value (in this case p oy). Contouring begins at p oy and usually requires interpolation

because most of the points will not be exactly located on the user-defined contour. 

Linear interpolation along the edges is used to generate points on contour surfaces 

that are stored in the vertex array. Once the points on the edges are generated, 

they are connected to form contours (as represented in the connectivity map) by 

detecting edge intersections and tracking the contour as it moves across the 

polygons. The contour is tracked until it forms a closed loop or exits the dataset 

boundary. I f  there are no holes, a perfect connectivity map consisting of a single 

loop is obtained.
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Fig. 8.3: Progressing clipping of a torso scan using plane and box clipping tools. The cutting

boxes are shown in red.

8.3.2 Hole detection

Definition: A hole exists if ||/?(. ° p M || >M D  + 2-cr,  V pt,pM &P, i e{\,... ,N} .

In other words, a hole is a disconnection between points in the connectivity map of a 

cross-section. Holes are identified during the generation of the connectivity map in 

the cross-sectioning stage. Boundary points are points that are adjacent to holes and 

connected to exactly one other point. Stray points are connected to no other point 

and exist in the vertex array but not in the connectivity map. These are removed 

from the vertex array and appropriate modifications made to maintain consistency. 

Missing points exist in the connectivity map but not in the vertex array. Two arrays 

Pord and Phole are created. Pord stores points in their sequential order akin to the

vertex array and Phole stores all the boundary points of the holes in their order of 

occurrence. The centroid of the cross-section c = (cx,c ,c2) , ceJ?3, is obtained 

from the rectangular coordinates of the points in the vertex array as

f  N  > (  N  \
IX IX
/=1 i- 1

N ’ y N
v / K /
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In a symmetric cross-section of the torso, the farthest points lie on opposite sides of 

the centre point spanning the m aximal diameter of the cross-section7. In Algorithm I, 

max D is t,  the Euclidean distance between max p x and m axp2, is the maximal 

diameter of the cross-section. The maxim al radius, half of the m axim al diameter, is 

used to construct a point p s = (p sx,p sy,p sz) , Ps e R 3, which serves as the initial

point in the Pord array, where

p sx = (max imalRadius x cos(^)) + cx < 

p sz = (max imalRadius x sin(.sT)) + cz ,
\3)

Psy=Cy

The value of st e R used in (3) was 0.5 radians.

8.3.3 Convexity algorithm

Another problem associated with clipping torso images of humans is how to handle 

the shoulder regions and the regions of the upper arms above the armpit. Based on 

the application, a decision was made to retain both regions and crop other parts of 

the arm. This created the problem of locating the positions of the armpits as the 

imaging posture required placing the arms close to the body. To solve this problem, 

the regions of the arms below and above the armpits were defined by their 

convexity.

In the ir work on digital point-based curves, curvature functions and graphs, Pikaz 

and Dinstein [13] define a concave chain as a sequence of points in which each point 

and its two immediate neighbours generate a negative angle. This definition can be 

directly applied to torso cross-sections represented as point-based curves as in the

7 This assumption does not hold for arbitrary shapes such as severely deformed torso cross-sections. In

general, the maxim al diam eter can be defined as twice the farthest distance of any point from the centre

of the cross-section.
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forgoing. A concave chain belonging to P  will be a convex chain of P  after

changing the plane of orientation. Based on this definition, regions of the arm above 

or below the arm pit can be differentiated by the ir convexity as shown in Fig. 8.4 by 

using a user-defined threshold. Thus, the task reduces to detecting and eliminating 

regions whose convexities are above the user-defined threshold. Its operation is 

based on the ordered set of points Pord and depend on the depth p iz, of individual 

points with respect to the ir neighbours around user-defined regions of interest 

defined by their p h coordinate.

Upon inspecting the 3D image the user selects two points p az and p bz based on 

their p ix values representing the two regions of interest. The most convex points are 

assumed to lie within ^ ± 2 0  units of the selected points. The value of 20 was 

chosen from experiments. The algorithm was applied to points in the cross-section 

whose depth with respect to the depth of the centre p iz -  cz were below the user-

defined range m ax(^oz + 2 0 ,p bz + 2 0 ). This is shown in Fig. 8.5. Quadrants of an 

inscribing circle of maximal radius centred at c were obtained.

The points w ithin each quadrant were arranged in order o f the magnitude of the ir 

depth from the plane of c . Points whose depths were below the threshold were said 

to be within the region of interest (Fig. 8.5). Points within the regions of interest 

accounted for an average of 30% of points in Pord . The most convex point within 

each quadrant was determined and the section of interest (Fig. 8.6) selected. The 

sections of interest in the four arrays were merged to form the updated Pord .
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Fig. 8.4: Varying degrees of convexity: Concave and partly concave half-sections (leftmost 

two); partly convex and completely convex half-sections (rightmost two).

Fig. 8.5: Regions of Interest: The regions of interest correspond to the parts of the cross- 

section between the two dotted lines and centered on the center line.

Fig. 8.6: Sections of Interest: The sections of interest are contained in the rectangular boxes 

for the partly concave and partly convex half-sections.

8.3.4 Torso Hole Filling

Torso hole filling was implemented using the SMLS approximation procedure. The 

first part o f the procedure was spline interpolation to estimate the shape of the 

missing part. The second part was interpolation using MLS. From Section 8.2, the 

second part can be implemented in either of two ways. Depending on which method 

was used, the interpolated data points were stored in either the PMLS or PSEL array.

Each new data point was added to the Pord array between the boundary points of the

corresponding hole resulting in a connected set of points in the Pord array with an
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average separation of M D . The SMLS procedure was implemented on one cross- 

section at a time. For each cross-section apart from the first, the initial estimate 

obtained from spline interpolation is combined with the data from the previous cross- 

section to produce the estimate used in the second part of the SMLS procedure. This 

yields a better result as the 3D form of the image is exploited.

8.3.5 Re-sampling and surface generation

The Pord arrays contain points from cross-sections of varying sizes. Mid-range cross- 

sections are generally the largest of all. Point distributions obtained from the Pord

arrays are generally non-uniform in size and inadequate for dynamic rendering. They 

need to be uniform ly resampled to a user defined density per cross-section. This is 

achieved by spline interpolation using splines. The resampled rectangular array of 

points is stored in the Pcomp array. Redundancy in Pcomp is reduced. This ensures that

the points are centered on the centroid and uniform ly spaced around the enclosing 

circle of the cross-section. For a user-defined number of points per cross-section 

N P , the angular spacing between points is

r 2 n ^
st -

\N P  j (4)

8 .4  RESULTS

This section presents the results of testing the SMLS reconstruction procedure on 

torso images o f 30 volunteers, 22 of whom have scoliosis. The scans were obtained 

using the methods of Ajemba et at. [14 ], [15]. The procedure was implemented in 

the Microsoft Visual C++ .Net 2003 environment on a Pentium IV PC running at 

1.8GHz. Fig. 8.7 shows a stepwise implementation of the procedure on a torso scan
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of a volunteer who has scoliosis. Tests were performed to evaluate and compare the 

reconstruction accuracy achieved using the SMLS, MLS the BC theories.

8.4.1 Hole filling using the SMLS, BC and MLS techniques

Twenty cross-sections containing holes with different bounding polygons were 

obtained from ten range images of the human torso and filled using the MLS-based 

procedure, the BC-based procedure and the SMLS-based procedure. Fig. 8.8 shows 

the results obtained for four of the holes. In general, the MLS projection theory failed 

as it produced straight interpolation lines since the holes were too large. The BC 

approximation theory produced symmetrical C " smooth interpolation arcs while the 

SMLS projection procedure produced smooth interpolation arcs that were somewhat 

skewed. The degree of skew of the arcs was determined by the MLS parameters 

used. Cross-sections of the human torso do not exhibit perfect local symmetry, thus 

the SMLS interpolation tended to yield a closer f it  to the original curve.

8.4.2 Validation of cross-sections reconstructed using the SMLS and BC 

techniques

Ten complete cross-sections (containing no holes) were obtained from each of the 30 

torso images. The cross-sections were modified by randomly creating holes on them 

that account for up to 10% of the ir perimeters. Each modified cross-section was then 

reconstructed using the SMLS and BC based procedures and evaluated using four 

validation indices (Table 8.1). The original sections with no holes were used as the 

gold standard for the comparisons. The reconstructed cross-sections were optimally 

aligned to the original cross-sections using the ir centroids and maximal diameters. A 

minimum bounding circle containing the actual and reconstructed cross-sections was 

defined as the universal set for the purpose of computing indices C and D (Table
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Fig. 8.7: Stepwise implementation of the SMLS procedure. Results of (a): Plane-clipping; (b) 

Box-clipping; (c) Cross-sectioning (72 cross-sections); (d) Hole and convexity-detection and 

hole-filling; (e) Resampling and meshing; and (f) Surface generation.
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Fig. 8.8: Results of interpolating four holes with MLS ( •  .), BC (*) and SMLS (+)

8.1). An average value for each index was obtained over the 300 cross-sections. 

Table 8.2 shows the results obtained. The SMLS procedure outperformed the BC in 

all the measured indices.

8.4.3 Validation of volumes reconstructed using the SMLS and BC techniques

Table 8.2 also shows validation results obtained from five torso images. The images 

were randomly selected from the 30 originally obtained and reconstructed using the 

SMLS procedure. Holes accounting for up to 10% of the surface area were randomly 

created on the torso images. The modified torso images were then reconstructed 

using the SMLS projection procedure and the BC approximation procedure. The 

reconstructed cross-sections were optimally aligned to the original cross-sections 

using the ir centroids and maximal diameters. The universal set for computing indices 

C and D was the minimum bounding cylinder enclosing both the original and
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Table 8.1: Validation indices used

Formula* Psuedo-name Description

Ca n C p Positive Predictive
This is a ratio of the size of the overlap between the

A ------------
C. Value

original and reconstructed cross-section (or volume) 
to the size of the original cross-section (or volume).

This is a ratio of the size of the overlap between the  

original and reconstructed cross-section (o r volum e) 

to the size of the reconstructed cross-section (o r  

volum e).

This is a ratio of the size of the difference between 
the union of the two cross-sections from the 

universal set to the difference between the original 
cross-section (or volume) from the universal set.

This is a ratio of the size of the difference between 
the union of the two cross-sections from the 
universal set to the difference between the 

reconstructed cross-section (or volume) from the 
universal set.

is the original cross-section (or volume); Ca is the reconstructed cross-section (or volume); and 3

is the universal set consisting of the minimum bounding circle (or cylinder) containing the original cross- 

section (or volume) and the reconstructed cross-section (or volume).

Table 8.2: Average validation indices obtained for 300 cross-sections and 5 volumes
reconstructed using the SMLS projection procedure and the BC approximation procedure

Indices
Cross-Sections Volumes

A B C D A B C D

SMLS 0.88 0.87 0.86 0.88 0.80 0.77 0.76 0.79
BC 0.83 0.81 0.79 0.81 0.82 0.75 0.72 0.80

reconstructed images. An average value of each index was obtained over the 5 

images. The SMLS procedure outperformed the BC procedure in two of the four 

measured indices.

B — —------  Sensitivity
Cp

3 - C ,  u C „  Negative

3  -  C„ Predictive Value

3 - C a u C ,
D  JC— ------ Specificity

- s ~ C p
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8 .4 .4  E rror to le ran ce

The tolerance of the SMLS, BC and MLS procedures to errors (holes) were tested by 

reconstructing models of a randomly selected complete surface (reconstructed using 

the SMLS technique) with 0.05-0.20 hole-area-per-total-surface-area-ratio. A 

procedure is said to fail if all the validation indices obtained are less than 0.708. The 

MLS, BC and SMLS procedures failed for hole-area-per-total-surface-area-ratios of

0.10, 0.20 and 0.20 respectively. Though both the BC and SMLS procedures failed at 

the same hole-area-per-total-surface-area-ratios, the BC procedure failed in a more 

drastic manner (Fig. 8.9).

8.5 CONCLUSION

Spline based interpolation techniques like BC assume uniform smoothness on both 

sides of a hole and return symmetric curves when interpolating holes that occur at 

the edge of the torso. Though the output can be visually pleasing, it is generally 

unrealistic as actual human torsos are usually locally unsymmetrical. Also, the global 

nature of BC interpolation makes outlier points significantly influence the generated 

curves. The MLS approximation technique applies more weight to the control points 

close to the hole than those far away from it. Thus in theory, MLS should perform 

better than BC for interpolating unsymmetrical shapes. However, for hole-area-per- 

total-surface-area-ratio (or hole-length-per-total-cross-section-length-ratio) greater 

than 0.10, the MLS technique fails. This failure can be prevented by leveraging the 

strengths o f both MLS and spline fitting. This was achieved in the framework of the 

SMLS projection procedure.

This chapter presented a comprehensive procedure for pre-processing and 

reconstructing range images comprising an interactive technique for cropping stray

8 We chose this value from our experiments.
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a b
Fig. 8.9: Results of re-sampling and meshing a badly deformed torso scan of a normal

volunteer using the SMLS projection (a) and the BC approximation procedures (b) at 0.2 hole-

area-per-total-surface-area.

points and extremities and a novel interpolation technique (SMLS) for filling holes. 

Three stages were involved: cross-sectioning and clipping; hole-filling and sub­

sampling; and surface re-generation. Results of tests on images of 30 volunteers, 

with and w ithout scoliosis, showed that the technique outperformed spline based 

techniques in the presence of large holes (as is usually the case in torso images used 

for evaluating scoliosis). The results were based on four new validation metrics 

(corresponding to sensitivity, specificity, negative predictive value and positive 

predictive value). The procedure can be applied to pre-processing range images used 

in other areas of medicine, science and engineering.
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C H A P TE R  9

EVALUATION OF THE TORSO IM AG ING  AND ANALYSIS SYSTEM K

9.1 INTRODUCTION

In this chapter, we consider the task o f evaluating the entire system for imaging and 

assessing human torsos for deformities such as scoliosis. (A discourse on scoliosis 

and torso imaging is presented in Chapter 2.) The system comprises of image 

acquisition, image reconstruction and shape analysis components. The evaluation 

procedure consists of three steps: 1) assessment of the accuracy of reconstruction of 

the system using inanimate models; 2) evaluation of the system response to 

anticipated errors in the input values due to patient positioning, sway and breathing; 

and 3) analysis of the variability of clinically relevant indices using multiple scans of 

a number of volunteers with and w ithout scoliosis. The clinically relevant indices can 

be grouped into landmark-based and shape-based categories. This chapter also 

attempts to ju s tify  investing in full torso imaging systems, as against the more 

prevalent back torso imaging systems. This is done by analyzing the relative 

contributions of the front and back torso relative to the full torso.

9.2 THE IMAGING AND ANALYSIS SYSTEM

The system for imaging and assessing torso deform ity consists of three components: 

1) a torso imaging system comprising of two Minolta VIVID 700 digitizers and a 

rotating positioning platform (Chapter 7); 2) image reconstruction routines for filling

* A version of this chapter has been accepted for publication. P. O. Ajemba, N. G. Durdle, and V. J. Raso, 

'Validation of an imaging and analysis system for assessing torso deformities,' Computers in Biology and  

Medicine, 2005. Additional material contained in this chapter has been submitted for publication: P. O. 

Ajemba, N. G. Durdle, and V. J. Raso, 'Suitability and robustness of structured splines models for the 

assessment of torso deformity due to scoliosis,' Medical and Biological Engineering and Computing, 2007.
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holes, removing eliminating stray data points, and cropping away unwanted parts of 

the torso image (Chapter 8); and 3) shape analysis routines for obtaining the 

structured splines model and associated indices of torso deform ity (Chapter 3).

9.3 INDICES OF TORSO DEFORMITY

Indices of torso deform ity can be grouped into landmark-based and shape-based 

categories. In this section, we describe the two categories and review methods of 

classifying torso deform ity in scoliosis based on both categories.

9.3.1 Landmark-based indices

There are a number o f anthropometric landmarks on the human torso. Fig. 9.1 

shows seventeen of them. The location of a torso landmark is often given in terms of 

the vertebrae levels where T is for thoracic, L is for lumber, and S is for sacral. For 

example, the bottom of the sternum is located close to T5 or the fifth  thoracic 

vertebrae. A class of landmark-based indices o f torso deform ity were developed as 

part of many legacy torso imaging systems. These include the Cosmetic Score [1 ], 

the Posterior Trunk Symmetry Index (POTSI) score [2 ], the Integrated Shape 

Imaging System (ISIS) score [3 ], and the Quantec score [4 ]. Table 9.1 shows a 

representative set of landmark-based indices o f torso deform ity [5 ], [6 ].

9.3.2 Shape-based indices

Our previous work (Chapter 3) introduced the structured splines model, a novel 

shape descriptor for 3-D objects based on curvature. The structured splines model 

was applied to solve the problem of quantifying torso deform ity and tracking changes 

in torso shape in scoliosis (Chapter 4). Three indices of torso deform ity were 

obtained from the analysis of key points of structured splines models: tw ist, bend 

and tilt  corresponding to rotations in the side, back-front and top views respectively.
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Fig. 9.1: Prominent anthropometric landmarks on the torso. 1-Right Acronium (Front); 2- 
Right Clavicle; 3-Left Clavicle; 4-Left Acronium (Back); 5-Bottom of Sternum; 6-Umbilicus; 
7-Top of Right Iliac Crest; 8-Top of Left Iliac Crest; 9-Right Anterior Superior Iliac Spines of 
the Pelvis; 10-Left Anterior Superior Iliac Spine of the Pelvis; 11-Left Acronium (Back); 12- 
Right Acronium (Back); 13-Seventh Cervical Vertebra; 14-Tip of Left Shoulder Blade; 15-Tip 

of Right Shoulder Blade; 16-Left Posterior Iliac Spine; 17-Right Posterior Iliac Spine.

9.3.3 Classification of torso shape

The deformation indices yield at least two approaches to classifying torso shape: 

grouping by aggregation of distributions and grouping by locations in shape space. 

Single valued indices (which include most landmark-based indices) are often grouped 

by distribution. Here, appropriate boundaries are sought in the ir histograms or 

grouping is achieved using techniques such as the k -means classification method. 

The most common grouping strategy for torso shape is mild, moderate and severe 

deform ity. Multi-valued indices are more amenable to grouping by location in shape 

space. For our shape-based indices, an eight-class system is obtained from the signs 

of the deformation indices (Table 4.2). Fig. 4.7 shows examples o f each class.
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Table 9.1: Representative indices of torso deformity

Index category Torso asymmetry index Unit Torso level

Centroid line Range of lateral deviation mm T7 -  L4

Principal axes Range of PAX orientation (°) T12 -  L5

Maximal Rotation of PAX (°) T i l  -  L4
Minimum cross-section eccentricity T8 -  L5

Back surface Range of rotation (°) T3 -  L3
rotation Maximal value of rotation (°) T5 -  T12

Range of rib hump; left-right, measured from PAX mm T10 -S I
Difference between PAX orientation and BSR (°) T i l  -  L5

Envelope Range of left-right difference in aspect ratio (lat/AP) T7 -  L2
Diff between left & right half-widths from centroid L2 -  L5

Oth moment Diff between left and right half areas T7 -  SI

1st moment Diff between left and right half-centroid, AP locations mm T i l  -  SI

2nd moment Quasi-Cobb angle of curve of left-right diff in lateral 

inertia
(°) T i l  -  SI

Quarter areas Range of orientation of line joining rear quarter- 
centroids

(°) T8 -  L5

Range of left-right difference in rear quarter areas T12 -  L5
Ratios Ratio of waist diameter to hip diameter; relative 

placements of wait and hip centers (Cosmetic Score)
T5 -  L5

SPL Range of lateral deviation mm T12 -  L4

... = dimensionless, AP: anterior-posterior, lat: lateral, PAX: principal axes, BSR: back surface rotation, 

SPL: spinous process line, diff: difference.

9 .4  MATERIALS AND METHODS

The scoliosis volunteers for this study were recruited from the scoliosis clinic at the 

Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada. The following inclusion 

criteria were used: 1) a diagnosis of idiopathic scoliosis; 2) age at first clinical visit of 

at least 8 years; and 3) availability of one or more back torso or full torso images 

showing visible torso deform ity. Patients admitted to the scoliosis clinic were 

generally deemed to have progressive scoliosis. The images were acquired as
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described in [7 ], [8 ]. The data collection procedures and experimental protocols were 

approved by the University medical research ethics panel.

Four analyses were performed: 1) an assessment of the reconstruction accuracy of 

the system using repeat acquisitions of images of static models (a calibration box 

and a mannequin); 2) an analysis of the response of the system to expected 

variations in shape due to sway and breathing using repeat acquisitions of the 

images of three non-scoliosis volunteers; 3) an analysis of the variability in clinically 

relevant indices of torso deform ity using repeat acquisitions of the images of ten 

scoliosis volunteers; and 4) an analysis of the relative contributions of the back torso 

and front torso images using full torso images obtained from 43 scoliosis volunteers.

9.4.1 Reconstruction accuracy

The accuracy of reconstruction of the imaging system was assessed from repeat 

acquisitions of the range images of a calibration box (of dimensions 300 mm by 150 

mm by 200 mm; machined to an accuracy of 1 mm and measured to a precision of

0.1 mm) and a mannequin (made from a cast of an actual scoliosis torso and 

measured to a precision of 0.1 mm). The edges of the box served as markers 

detectable on both the geometry and texture data of the 3-D reconstructions. The 

digitizers were placed opposite each other as in Arrangement 2 of Fig. 9.2. The effect 

of lighting on surface reconstructions was qualitatively assessed. The acquisition- 

room  was darkened but differences in surface reconstructions due to subtle 

variations in the lighting conditions were still observed.

To assess the accuracy of reproduction of the dimensions of the test-box, two sets 

of five full surface scans of the box were acquired with the box repositioned after 

each scan. One set of scans was taken with the sides of the box perpendicular to the 

line of sight of the digitizer. The other set o f scans was taken with the sides 45° to 

the line of sight of the digitizer. The dimensions of the reconstructed image of the
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Fig. 9.2: The two arrangements for the two digitizer configuration

test-box were measured from each scan and the root mean square errors and 

standard deviations were calculated. The 12 edges (four each o f length, width and 

height) were measured from the reconstructed images (2 positions x 5 repetitions x 

12 edges). A m ulti-way analysis of variance was conducted on the measured 

dimensions to evaluate the accuracy of the reconstructions and to highlight some 

factors w ith significant effect. Acquisition sequence, positioning (or placement) of the 

test-box relative to the digitizer, and digitizer (A or B) used were factors. The effects 

of re-positioning and the use of one or two digitizers on the accuracy of 

reconstruction were assessed. A set of ten scans of a mannequin (Fig. 2.7) was 

obtained using the two digitizers placed at right angles to each other as in
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Arrangement 1 of Fig. 9.2. Two sets of scans were also obtained using each of the 

digitizers (A and B) separately.

9.4.2 System response to sway and breathing

The response of the system to expected variations due to sway and breathing was 

assessed from repeated acquisitions of images of three non-scoliosis volunteers. The 

volunteers were male and had no history of scoliosis or any other spinal deformity. 

They were 18.5, 19.6 and 21.2 years old.

Ten torso images were obtained for each volunteer at th irty-m inute  intervals 

during a five-hour long imaging session. The volunteers were standing and grabbing 

the side handles of a rotating positioning platform (Fig. 2.1). The two digitizers were 

placed as in Arrangement 2 of Fig. 9.2. The positioning platform was placed such 

that the back (or front, depending on the digitizer, see Fig. 9.2) of the images o f the 

volunteers were at 90° to the line of sight of the digitizers at the start of the image 

acquisition cycle. The volunteers were asked to inhale deeply and hold the ir breadths 

as each shot was taken. Though the acquisition room was darkened during the image 

acquisition cycles, subtle differences in lighting were still observed.

The holes in each acquired image were interpolated and stray points removed. The 

extremities (arms, head and neck, and regions below the waist) of each image were 

cropped. Each torso image was sectioned into ten evenly spaced cross-sections. A 

centroid line jo ining the centroids of each section was generated for the purpose of 

analyzing the effect of sway on the reconstruction system. The distance D , between 

the centroid and a fixed vertical line was calculated at each cross-section (Fig. 9.3). 

The fixed vertical line is the origin of the bottom cross-section. For the variability due 

to sway, the standard deviations in D  at each cross-section were calculated for each 

volunteer from the ten scans obtained per volunteer. The width W and length L  of 

the ten cross-sections obtained per volunteer was calculated at each level. Variability
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Fig. 9.3: A, the variability due to sway. D is the offset of the centroid from the fixed vertical 
line. B, the variability due to breathing. H  and L are the torso height and width.

due to breathing was assessed by calculating the standard deviations in W and L  at 

each cross-section from the ten scans obtained for each volunteer.

For each of the ten images of the three volunteers, a 180 x180x3  structured 

spline model was obtained. The shape-based deform ity indices: tw ist, bend and tilt, 

were calculated in ten horizontal segments for each image. The system response to 

the calculated variability due to sway and breathing was assessed from the standard 

deviations in the shape-based indices over the ten images of each volunteer.

9.4.3 Variability of clinically relevant indices

The variab ility of clinically relevant indices of deform ity (both landmark-based and 

shape-based) was assessed from three repeated acquisitions of the images of ten 

scoliosis volunteers. Table 9.2 shows the clinical indices of the volunteers. The 

images were acquired and pre-processed in a way sim ilar to those of the non­

scoliosis volunteers. 180 x180x3  structured spline models were obtained for each of 

the three images of the ten volunteers. Shape-based deformation indices: tw ist, 

bend and tilt, were obtained from the structured splines model. Landmark-based 

deformation indices; cosmetic score, were also obtained for each torso image. The 

variability of the clinically relevant indices was assessed from the standard deviations
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Table 9.2: Clinical description of the volunteers used to validate the system

Volunteer Sex Age Cobb Angle Height Weight DC TT MCS

One F 16.1 40 163 54 25 18 3.7
Two F 15.1 50 157 53 33 11 1.4
Three M 16.9 50 167 62 17 19 2.7
Four F 15.4 45 169 60 17 19 2.5
Five M 14.3 25 165 61 10 12 3.5
Six F 13.8 54 165 56 5 14 2.5
Seven F 17.6 27 156 58 4 7 1.3
Eight F 14.8 46 167 61 0 22 3.3
Nine F 14.4 45 165 57 18 12 2.1
Ten F 12.5 25 156 50 35 1 1.0

Cobb angle, decompensation (DC) and trunk twist are given in degrees. Height is in cm. Weight is in 

kilograms. Mean Cosmetic Score (MCS) is the mean of the scores obtained from the images we use in our 

analysis and ranges from 0 to 10 in increasing order of deformity. TT is trunk twist.

in each index value for each volunteer. Variability is shape-based classification was 

also assessed from the frequency of class change.

9.4.4 Relative information contents of front and back torso images

The analysis of the relative information contents of the back torso and front torso 

images was based on information from the full torso images o f 43 scoliosis 

volunteers. The torso images were acquired and pre-processed in the same way as 

those of non-scoliosis volunteers. Fig. 9.4 shows the distribution of the shape-based 

deformation indices obtained from the back torso, front torso and full torso images. 

The relative information contents of the back torso and full torso was assessed from 

the variability of the distributions as information content is related to entropy.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TW IS T distribution on BACK TORSO

*50 -30 -10 +10 +30 +50 +70 +90 
 Range o f  values__________________

BEND distribution on BACK TORSO
12 
10  

J 8OJ 
§ ■ 6 

£  4 
2 
0

-90 -70 *50 -30 -10 +10 +30 +50 +70 +90 
_________________ Range o f values__________________

TILT  distribution on BACK TORSO
12
10
8
6

4

2
0

-90 -70 -50 -30 -10 +10 +30 +50 +70 +90
Range o f values

Back Torso

TW IS T distribution on FRONT TORSO
12
10
8
6
4
2

0
-90 -70 -50 -30 -10 +10 +30 +50 +70 +90

Range o f values

BEND distribution on FRONT TORSO
12

10
8
6
4

2
0

-90 -70 -50 -30 -10 +10 +30 +50 +70 +90
Range o f values

TILT distribution on FRONT TORSO

-30 -10 +10 +30 +50 +70 +90 
Range o f values__________________

Front Torso

TW IS T distribution on FULL TORSO
12

10
8
6
4
2

0
-90 -70 -50 -30 -10 +10 +30 +50 +70 +90

Range o f  values

BEND distribution on FULL TORSO
12

10
8
6
4
2
0

-90 -70 -50 -30 -10 +10 +30 +50 +70 +90
Range o f values

TILT distribution on FULL TORSO
12
10
8
6
4
2

0
-90 -70 -50 -30 -10 +10 +30 +50 +70 +90

Range o f  values

Full Torso

Fig. 9.4: Distribution of shape based deformation indices in the dataset of 43 patients

9 .5  RESULTS

9.5.1 Reconstruction accuracy

Table 9.3 shows the errors in calculating the length, width and height (dimensions) 

of the sides o f the test-box. Overall, the error was estimated to be 1.16 ±  1.04 mm, 

which is of the order o f magnitude as the digitizer's resolution. The absolute errors in 

the dimensions of the test box followed a half normal distribution with a standard 

deviation of 1.04 mm. Measurements of the length of the box showed the highest 

variation 1.32 ± 1.13 mm. Table 9.4 gives the analysis of variance in the dimensions 

of the test-box for acquisitions. I t  shows a significant difference in the sum of
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Table 9.3: Errors related to the dimensions of the test-box

Dimensions Errors RMS Errors Range N

Lengths 0.99 ± 0.98 mm 1.93 mm 0 -4 .1  mm 40
Widths 1.17 ± 1.06 mm 2.46 mm 0 -  4.6 mm 40
Heights 1.32 ± 1.13 mm 2.98 mm 0 -  4.6 mm 40
Average of Dimensions 1.16 ± 1.04 mm 2.45 mm

Table 9.4: Analysis of variance in the dimensions of the test-box (in mm)

Sum of Squares Degree of Freedom Mean Squares Fischer coefficient Prob > F

Acquisitions 103.04 9 11.45 5.94 0*
Dimensions 467720.09 11 42520.01 22060.04 0*
Error 190.82 99 1.93
Total 468013.96 119

‘ Statistically significant correlation (p<0.05)

squares between acquisitions and dimensions. Analysis of variance performed using 

sets of scans instead of acquisitions shows that there is a significant difference within 

series and between series and that the variations within the set obtained with the 

faces 45° to the line of sight of the digitizer was 20% higher than w ithin the set 

obtained with the sides of the box perpendicular to the line of sight of the digitizer.

Table 9.5 shows the standard deviations in the lengths o fte n  evenly spaced cross- 

sections of a mannequin obtained using each of two digitizers (A and B) alone and 

both digitizers in tandem. The numbering of the cross-sections increased from the 

waist of the mannequin upwards. The deviations in the lengths of the cross-sections 

close to the waist were lower than those of cross-sections farther from the waist due 

to persistent errors in aligning the central axis of the mannequin to the line of sight 

of the digitizer. These errors were caused by the not-perfectly symmetrical motion of 

the test platform and are a function of the setup of the experiment. The deviations in 

the lengths of cross-sections obtained from single-digitizer images were about 20% 

higher than those obtained from double-digitizer images. Table 9.6 shows the results
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Table 9.5: Standard deviations in the lengths of cross sections of the mannequin

Digitizers
Standard Deviation (mm)

1 2 3 4 5 6 7 8 9 10

A 0.64 0.83 0.92 1.04 1.12 1.06 1.06 1.12 1.16 1.71

B 0.58 0.75 0.83 1.14 1.03 1.04 1.10 1.01 1.06 1.82

A and B 0.47 0.67 0.75 0.98 0.95 0.94 0.93 0.94 0.99 1.04

Table 9.6: Standard deviations in the lengths of cross sections of a human volunteer

Digitizers
Standard Deviation (mm)

1 2 3 4 5 6 7 8 9 10

A 0.82 1.09 1.20 1.33 1.44 1.40 1.38 1.43 1.51 2.24

B 0.84 1.15 1.23 1.29 1.51 1.42 1.41 1.41 1.49 2.26

A and B 0.80 1.01 1.02 1.13 1.14 1.14 1.23 1.34 1.44 2.14

of a sim ilar analysis for one of the non-scoliosis volunteers. The deviations in the 

lengths of cross-sections obtained from the volunteer were about 30% higher than 

those obtained from the mannequin because of the added sway.

These results and other qualitative information obtained showed that a significant 

fraction of the errors observed was due to the registration and merging of the partial 

scans. Variations in light intensity and surface reflectance contributed to the 

observed errors as well as the imperfect alignment of the positioning platform.

9.5.2 System response to sway and breathing

Fig. 9.5 shows the variab ility in the dimensions of the ten cross-sections due to sway 

and breathing for each of the three non-scoliosis volunteers. The figure in addition 

shows the variability in the shape-based deform ity index values (Euclidean norm of 

tw ist, bend and tilt)  at each of the ten evenly spaced horizontal sectors for each 

volunteer. Each sector corresponds to a cross-section in Fig. 9.5. The standard
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Fig. 9.5: Variability in the dimensions and index values due to sway and breathing in points.

deviations in the variability due to sway for all the cross-sections was termed the 

overall variability due to sway. The standard deviations in the variability due to 

breathing or shape were calculated sim ilarly. Table 9.7 shows the system response 

to the effect of sway assessed from the ratios of the overall variability due to sway 

and the overall variability in the shape index value. The system response to 

breathing was assessed in a sim ilar fashion.
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Table 9.7: The high ratios indicate a low system response to the effect of sway and breathing.

Patient One Patient Two Patient Three

Average Shape Index variation 0.0120 0.0202 0.0169

Average variations due to
Sway
Breathing

0.7613
0.4057

0.8293
0.7671

1.0185
0.5292

Variation ratio due to
Sway

Breathing

33.9
63.6

37.9
41.0

31.4
60.4

9.5.3 Variability of clinically relevant indices

Fig. 9.6 shows three views of two of the ten models used to evaluate the variability 

of clinically relevant indices. Table 9.8 shows the deformation index values for the 

shape based indices: tw ist, bend and tilt, and the landmark index: cosmetic score, 

assessed from three repeat acquisitions of the torso images of ten scoliosis 

volunteers. The shape-based deform ity indices were calculated using the four 

horizontal segment-structured splines models of each image.

From Table 9.8, the standard deviations in the landmark-based index (Cosmetic 

Score) was about 6% of the average index values while the standard deviations in 

the shape-based indices were generally around 2-3% of the average index values. 

This difference suggests that the Cosmetic Score shows more variability than the 

shape-based indices.

9.5.4 Relative information contents of front and back torso images

Table 9.9 shows the variation in the distributions of tw ist, bend and t ilt  values for 

back torso, front torso and full torso images of 43 scoliosis volunteers. From the 

table, back torso images showed more variation than front torso images. Table 9.10 

shows the relative information content of the back and front torso images. The ratio 

of the information content is on average 3 to 1 in favour of the back torso image.
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Fig. 9.6: Three views of the torso images of two of the ten patients (patients one and three) 

showing the centroids on the right and left parts of the three horizontal segments.

Table 9.8: The deformation index values of the ten patients in deformation points.

Volunteer
Av. Twist HT/ Av. Bend Av. Tilt x¥ a ACS

Score SD Score SD Score SD Score SD

One 24 1 42 1 36 2 74 10
Two -19 2 27 2 16 3 28 8
Three 32 3 -60 3 -43 1 54 6
Four 25 2 -45 1 37 1 50 8

Five 20 2 22 1 18 2 70 12
Six 30 1 26 2 41 3 50 4
Seven 18 1 26 2 34 4 26 5
Eight 41 1 38 2 16 5 66 10
Nine 54 2 24 1 28 1 42 4
Ten 17 1 12 2 42 2 20 5

Av.: Average; SD: Standard Deviation; MCS: Modified Cosmetic Score is the cosmetic score X 20.
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Table 9.9: The variations in the deformation index distributions (in deformation points).

Twist Bend Tilt

Back Torso Image 2.7508 3.5292 3.4464

Front Torso Image 0.9718 0.6992 1.3499
Full Torso Image 1.7670 2.1705 2.2211

Table 9.10: The relative information content of the back and front torso images (in %).

Twist Bend Tilt Average*

Back Torso Image 74 83 72 76
Front Torso Image 26 17 28 24
Total 100 100 100 100
’ The standard deviation in the back and front torso images is 5.8.

9 .6  D ISC U SSIO N

The accuracy o f reproduction of a complete torso imaging system was evaluated 

using a test-box and a mannequin whose shape was modelled from an actual 

scoliosis torso. Results showed that there was a significant difference between 

measurements made with the sides of the test box aligned perpendicular to the line 

of sight of the digitizer and those obtained w ith the line of sight 45° to the line of 

sight of the digitizer. This may be explained by the non-uniform effect o f light on the 

inclined surfaces of the test-box in the 45° position and may be particular to our 

setup.

I t  was qualitatively observed that subtle changes in the external lighting of the 

acquisition room  and varying reflectance of the test surface introduced small random 

errors in the measurements. Errors due to lighting can be controlled by eliminating 

sources of external lighting and using a controlled amount of artificial light. In 

general, the lighting conditions should be adjusted for each person before every 

scanning session bearing skin characteristics in mind. Using a two-dig itizer
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configuration improved the repeatability of the system by 20% over the one-digitizer 

configuration. Re-positioning increased the errors associated with the system by 

30%. Overall, the accuracy of the 3D reconstruction system evaluated from the test- 

box and mannequin was found to be adequate for analysis of human torso 

asymmetry. I t  was observed that the accuracy of the two-dig itizer system was 

significantly better than that of the single digitizer system. A four-d ig itizer system 

may provide better results than a two-dig itizer system.

The system response to sway and breathing was evaluated from three repeat 

acquisitions of the torso shapes of three non-scoliosis volunteers. Analysis (Fig. 9.5) 

shows that the variability due to sway increases from the waist upwards to the 

shoulders. This suggests that the torso is most stable at the waist. The variability 

due to breathing however does not show such as clear pattern. Table 9.7 shows a 

comparison of the variability in the shape-based deformation index values of the 

three volunteers to the variability in the positioning of the cross-sections due to sway 

and the variability in the dimensions of the cross-sections due to breathing. The 

variation ratio, which is the ratios of the aforementioned variability, shows that 

shape changes due to sway and breathing is much smaller than the actual changes 

in position and dimensions due to sway and breathing.

Table 9.8 compares the shape-based deformation indices (tw ist, bend and tilt)  to 

a landmark-based deformation index (Modified Cosmetic Score). The modification to 

the Cosmetic Score was to m ultiply it by 20 so that its range can be comparable to 

those of the shape-based indices. Analysis shows that shape-based deformation 

indices are much less variable than the landmark-based index. This is because 

shape-based deformation indices are much less affected by the effect of posture, 

positioning and sway. Also, difficulties in consistently locating torso landmarks add 

errors to the calculation of landmark-based indices.
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Tables 9.8 and 9.9 show the variation in the distribution of the deformation indices 

for back torso, front torso and full torso images as well as the relative information 

content of the back and front torso images. Back torso images, on average, contain 

up to three times the amount of information contained in front torso images. Though 

the use of back torso images rather than full torso images would result in a loss of 

only a quarter of the available information in the torso shape, a hidden advantage of 

using full torso images is that they are more resilient to the effect of posture on the 

torso indices obtained. For example, if a patient is leaning forward during the image 

acquisition, their back torso image alone would appear to have an exaggerated tilt. 

The effect of leaning forward is however lost if the full torso image is analyzed.

9 .7  CONCLUSIONS

A complete torso image acquisition system was designed and evaluated. Experiments 

using a test-box and a mannequin led to better understanding of the system 

accuracy. Experiments with three volunteers who do not have scoliosis and with ten 

scoliosis volunteers shed more light on the system response to the effect of sway 

and breathing, an intractable problem in torso imaging, and the variability of 

clinically relevant indices. Landmark-based indices showed more variability than 

shape-based indices, suggesting that shape-based indices may be more reliable. The 

relative information contents of the front-torso and back-torso images were 

assessed. Back torso images were found to contain, on average, up to three times 

the amount of information contained in front torso images. Thus, the use of back 

torso images alone in the analysis of torso deformities caused by scoliosis means 

forfeiting up to a quarter of the available information. An additional advantage of 

using full torso images is that they provide robustness to variations in clinically 

relevant indices such as tilt.
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CHAPTER 10

CONCLUSIONS

This thesis describes the research and development of the structured splines model, 

a method for analyzing, quantifying and tracking the shape of 3-D objects based on 

the ir curvature and symmetry. Structured spline modelling brings together and 

expands on ideas from mathematical shape analysis, computer engineering and 

biomedical image analysis. I t  possesses the following properties: 1) intuitiveness -  it 

is based on features of an object that are most relevant to its visual perception; 2) 

relatability - it yields indices that can be understood in terms of the common 

description of shape such as bend, tw ist and t ilt ; 3) practicality -  it accepts range 

images of objects, a form of input that is available from most segmentation or image 

acquisition applications; 4) error-correction -  it corrects such errors in the input data 

as holes and stray points.

In this chapter, the major contributions of this thesis are highlighted and some 

suggestions for future work presented.

10 .1  OVERALL ACHIEVEM ENT

A review of the relevant literature (Chapter 2) described the existence of two gaps. 

First, there was a need to develop a shape analysis method that intuitive, practical, 

relatable and error-correcting [1 ]. Second, there was a need to apply shape-based 

analysis to the assessment of torso deform ity in scoliosis management [2 ]. This 

thesis fulfilled those two needs.

First, an imaging system was developed for use in the acquisition of the torso 

topographic images of scoliosis and non-scoliosis patients (Chapter 7) and pre- 

processed (Chapter 8). These images were used for model development and clinical
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validation. Second, three shape analysis methods were developed: 1) Orthogonal 

mapping, which involved performing a cylindrical to Cartesian coordinate 

transformation on torso images (Chapter 5); 2) Point-set data, which involved 

calculating points of high curvature on the object's surface (Chapter 6); 3) 

Structured splines modelling, which makes use of curvature information extracted 

from structured cross-sections of objects (Chapter 3). Third, three sets of 

deformation indices corresponding to each of the shape analysis methods described 

above were developed (Chapter 4). The shape analysis methods and their 

corresponding deformation indices were then applied to the shape-based assessment 

of torso deform ity in scoliosis. Finally, the overall system is evaluated using the 

developed curvature-based shape analysis method (Chapter 9).

1 0 .2  MAJOR C O N TR IB U TIO N S

The major contributions of this thesis span three fields: mathematical shape 

analysis, computer engineering and biomedical image analysis.

1. Mathematical shape analysis -  this thesis developed a framework for multi -scale 

shape analysis using 6-spline basis functions and presented a description of the 

relationship between the Gaussian scale space and the 6-spline scale space.

2. Computer engineering -  this thesis presents a procedure for analyzing the shape 

of three-dimensional objects using their structured splines models. I t  also 

presents procedures for describing the shape of three-dimensional objects using 

a multi-dimensional deformation index, and for analyzing three-dimensional 

shapes that incorporate hole-filling and error correction of range images.

3. Biomedical image analysis -  this thesis presents an intuitive, descriptive and 

practical tool for assessing and describing the torso deform ity caused by scoliosis 

and tools for quantifying and tracking torso deform ity and clinical management of 

scoliosis.
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10 .3  SUGGESTED FUTURE W ORK

This thesis presents a shape analysis method that is intuitive, relatable, practical and

error-correcting. Suggested future work arising from this thesis includes:

1. Integrating the modules into a graphical user interface: To better appreciate the 

suite of software developed in this thesis, the software should be organized and 

re-implemented using a user-friendly graphical user interface.

2. Improving the range acquisition system: This could be achieved by making use of 

up to four digitizers rather than two. The digitizer should also have a resolution 

higher than 1mm.

3. Applying structured splines models to other areas: The concepts described in this 

thesis can be applied to other areas of study. Currently, applications are being 

envisaged for areas such as medicine and computer vision. Medical applications 

include the use o f structured splines models to achieve shape based tracking of 

the motions of organs such as the heart. Applications in computer vision include 

performing the biometric identification of faces from their structured splines 

models.
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APPENDIX 1

A SUPPORT VECTORS CLASSIFIER APPROACH FOR PREDICTING  

THE RISK OF PROGRESSION OF ADOLESCENT ID IO P A TH IC  

SCOLIOSIS*

A l . l  IN TR O D U C TIO N

Adolescent Idiopathic Scoliosis (AIS) is a condition involving lateral deviation and 

rotation of the spine causing visible asymmetries of the trunk [1 ]. I t  affects between 

2 -  4% of adolescents and its aetiology is still unclear. A goal of current research 

work by our group is to develop decision support systems for predicting the risk of 

progression of AIS using artificial intelligence and machine learning techniques. The 

most common protocols employed in the management o f AIS are surgical 

intervention and bracing. Surgical intervention is usually carried out to halt the 

increase in deform ity and reduce the abnormal curvature o f the spine w ithout in jury 

to the spinal cord [2 ]. Bracing is usually done to check the increase in deform ity 

during the high-risk adolescent growth spurt and delay surgical intervention [3 ].

The most common indicator of AIS is the Cobb angle [4 ], a radiographic indicator 

obtained from posterior-anterior (PA) radiographs of the spine. The Cobb angle is 

measured between the endplates of the upper and lower vertebrae of the scoliotic 

curve. Seventeen common radiographic indicators including the Cobb angle (known 

as the Lenke set of indicators) were accumulated by Lenke et a/. while developing a 

new classification system for AIS [5 ], [6 ] (Table A l . l ) .  Our group is examining the

* A version of this chapter has been published. P. O. Ajemba, L. Ramirez, N. G. Durdle, D. L. Hill and V. J. 

Raso, 'A support vectors classifier approach to predicting the risk of progression of adolescent idiopathic 

scoliosis,' IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 2, pp. 276 -  282, June 

2005.
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Table A l . l :  Listing of Lenke radiographic indicators

Parameter
Mean (Standard Deviation) Range

I II III I II III

1 Proximal thoracic Cobb angle 18.2 (6.9) 17.8 (6.9) 18.9 (7.0) 6-34 6-34 8-34
2 Main thoracic Cobb angle 28.9 (9.3) 29.0 (9.6) 28.6 (9.2) 11-47 11-47 16-44

3 Thoracolumbar/Lumbar angle 25.7 (9.3) 26.3 (10.3) 24.4 (6.7) 5-49 5-49 13-32

4 Thoracic apical vertebrae4 20.2 (15.5) 20.916.3 18.6 (14.1) -25-57 -25-57 -5-45
5 Lumbar apical vertebrae + -13.5 (16.6) -14.0 (17.7) -12.2 (14.4) -64-39 -64-39 -33-23
6 Coronal decompensation4 -7.5 (13.0) -7.0 (14.2) -8.5 (10.2) -33-24 -33-24 -27-6
7 T1 tilt angle 1.8 (6.0) 1.9 (6.5) 1.6 (5.2) -8-12 -8-12 -8-8
8 Sagittal T2-T12 Cobb angle 22.3 (9.9) 22.5 (8.4) 21.9 (12.9) 2-43 5-43 2-43

9 Sagittal T2-T5 Cobb angle 8.0 (5.2) 8.5 (5.2) 7.0 (5.2) 0-21 2-21 0-18
10 Sagittal T5-T12 Cobb angle 14.4 (9.0) 14.3 (8.1) 14.8 (11.1) 0-35 0-35 0-35
11 Sagittal T10-L2 Cobb angle 9.1 (6.5) 8.5 (5.7) 10.5 (8.1) 0-33 2-24 0-33
12 Sagittal T12-S1 Cobb angle 51.3 (13.2) 49.3 (13.9) 55.4 (10.8) 18-76 18-76 40-71
13 Sagittal balance C7-sacrum+ -5.2 (33.8) 0.0 (36.3) -15.6 (25.9) -60-87 -60-87 -56-34
14 Gross Risser Grade++ 1.6 (0.5) 1.7 (0.5) 1.1 (0.3) 1-3 1-3 1-2
15 Maximum Vertebral Rotation 1.7 (0.6) 1.6 (0.6) 1.8 (0.8) 0-2.5 0-2.5 1-2
16 Spondylolysis 0.1 (0.5) 0.2 (0.5) 0.1 (0.3) 0-2.5 0-2.5 0-1
17 Wrist X-ray4' 444 12.8 (1.1) 13.5 (1.1) 12.0 (1.0) 10-17 10-17 10-13
18 Chronological age* 12.3 (1.4) 12.6 (1.5) 11.8 (1.1) 10-15 10-15 10-13
19Sex (0=Female, l=Male) * + + + 0-1 0-1 0-1
20Growing? (0=No, l=Yes) * + + + 0-1 0-1 0-1
+ : Not applicable. * :  Index is not part of the Lenke set. +Index is not bounded. ++The Gross Risser Grade 

is our clinical modification of the Risser Grade. 1 = Risser 0 or 1 (Im m ature); 2 = Risser 2 or 3 (In  

transition); and 3 = Risser 4 or 5 (Mature). +++The Wrist X-ray replaces Lenke's Triradiate Cartilage that 

we are unable to measure due to X-ray cropping

inter- and intra-observer variability of measuring the individual Lenke indicators and 

results obtained so far are encouraging. For more on the manifestation and 

treatm ent o f AIS the reader is referred to the Scoliosis Research Society website [7 ].

Since AIS has an unclear aetiology, its risk of progression (the principal 

determ inant of its treatm ent options) can only be assessed from its indicators. For 

this study, progression of AIS was deemed to be a five-degree increase in Cobb 

angle [8 ]. Many researchers believe that indicators such as chronological age, bone
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age, curve size and the stage of development of the apophysis of the iliac crest -  the 

Risser sign (or grade) [9 ] -  are associated with the risk of progression of AIS [8 ], 

[10], [11 ], [12 ], [13].

Complex indicators such as spinal imbalance [10 ], rate of growth of the spine [11] 

and the angle between the plane of maximum deform ity and the front-back axis [14] 

have been shown to predict scoliosis progression with varied success. As most 

indicators yield at best partial results, some researchers have used statistical 

combinations of indicators from different sources [8 ], [10 ], [11] to obtain better 

results. However, obtaining the value of most of these indicators is arduous and 

involves much skill and repeated measurements taken over time and often subject to 

unknown inter- and intra-observer variability. Thus, getting results from predictive 

models based on them is very time consuming, making them difficult to use in a 

clinical setting.

Machine learning (ML) techniques have not been applied to predicting the risk of 

progression of AIS. We believe that combining a number of common indicators from 

one source (such as the Lenke set of radiographic indicators) with some ML based 

analytical tools such as support vector classifiers (SVC) [15 ]; we can develop a fast 

predictive tool that could be used in a clinical setting.

In this study, using a SVC, we investigate the possibility of predicting the risk of 

progression of AIS in patients with moderate curves (20-45 degrees) from Lenke 

indicators and clinical variables. A SVC was chosen because, unlike techniques such 

as Artificial Neural Networks, the support vector theory offers the possibility to train 

generalizable, non-linear classifiers in high-dimensional space using small training 

sets [16] as is usually the case in scoliosis research. Finally, finding no comparable 

ML model, we compare the result of applying our SVC to three datasets of scoliosis 

patients to that obtained by applying a "substantially equivalent" [17] binary logistic 

regression (BLR) model and a stepwise linear regression (SLR) model [18] to the
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datasets to fu lfill the requirement of comparability needed for decision support 

systems [17].

A1.2 MATERIALS AND METHODS 

A l.2 .1  Patient datasets

Retrospectively, radiographs and clinical records of AIS patients from the database of 

the scoliosis clinic at Glenrose Rehabilitation Hospital were examined to select 

patients for the study. The following inclusion criteria were used: (1) A diagnosis of 

AIS; (2) Age at initial clinical v isit of at least 10 years; (3) Clear standing posterior- 

anterior (PA) and lateral radiographs w ith a maximum Cobb angle of 20-45 degrees; 

(4) A follow-up period of one year from first clinical visit if the curve progressed or to 

skeletal m aturity (as shown by a Risser sign of 4 or 5, wrist X-ray showing a bone 

age of 15-17 years or an increase in height of less than 2cm /yr) if the curve did not 

progress. To be admitted to the scoliosis clinic, the patients are deemed to be at risk 

of progression.

Forty-four patients satisfied the inclusion criteria and were placed in group I. Of 

these, 38 (87% ) were girls. The mean age of the group was 12.3 ± 1.4 years (range 

10 -  15) and the mean maximum Cobb angle was 32 ± 8 degrees (range 18 -  49). 

Of the 44, 31 patients (70% ) had progressive curves. To isolate the effect o f bracing 

( if any) on the risk of progression of AIS, the 30 patients in group I who were not 

braced (observed patients) were placed in group II  and the remaining 14 patients 

were placed in group I II .  Of the 30 observed patients, 22 had curves w ith maximum 

Cobb angles greater than 30 degrees but were not braced either because they 

refused bracing or their surgeons deemed that brace-wear would not be effective in 

their case (for instance, some had passed the ir adolescent growth spurt period at 

their first v isit to the clinic). Six patients who were prescribed braces were placed
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with the observed because their surgeons noted them to be clearly non-compliant to 

wearing the ir braces.

Seventeen pre-operative Lenke indicators were measured for each of the 44 

patients from PA and lateral radiographs. These indicators in addition to 

chronological age, sex and a dichotomous indicator "growing" (1, if increase in height 

^  2cm/year in the year after first v isit to the clinic; 0, otherwise) made up the 20 

features of datasets I I  and I II .  Dataset I contained, in addition, another dichotomous 

indicator "bracing" (1, if patient was braced; 0, otherwise). Table A l . l  shows 

statistical information of these indicators.

A l.2 .2  Support vector classifiers

Support vector classifiers, originally designed to solve two-class classification 

problems, have been used with a measure of success in such applications as storm 

cell classification [19]. In this approach, a margin is created between the classes and 

around the decision boundary. The margin is defined by the distance to the nearest 

training patterns known as support vectors which define the classification function. 

The aim of training is to maximize the margin between classes thereby minimizing 

the number of support vectors chosen to define the decision boundary described in 

[16] as:

D ix ) = X  a iAiK ( x i ,x)  + a 0 , (1)

where K ( x ; , x ) is the kernel function (for example, for a linear kernel, 

K ( x j ,x)  = ( x - x t) )  of a pattern to be classified x and a training pattern x t . S is a 

subset of the training set (the support vector set), and is the label of

pattern^,.. As described in [16 ], during training, optimization of a i > 0 is achieved 

by:
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m ina (ctrr  AKAa + C^jTey) , (2)
j

constrained by l iD ( x ) > \  -  s j , Vx. in the training set. A  is a diagonal matrix 

containing the labels A. and the m atrix K stores the values of the kernel function 

K(xi, x) for all pairs of training patterns, s ■ are slack variables which allows for class 

overlap, controlled by the penalty weight C>0. For C —> 0 0 , no overlap is allowed. 

During optim ization, the values of all a i become 0, except for those associated with

the support vectors. Consequently the support vectors are the only ones that are 

finally needed in deciding the position of the decision boundary.

Sequential minimal optimization [20] with radial basis and linear kernels was used 

to train the dataset. To select the appropriate values for C and y  (the spread for the

radial basis kernel), a process of 3-fold cross-validation of the dataset was carried 

out. The sets of parameters used in the cross-validation were: C e {0.1,1,10}

and y e  {2“ ',2~2,2~3}.

A l.2 .3  Statistical analysis

As the datasets are samples from the general population of scoliosis patients, known 

correlations between features of the general population and progression were 

verified to check that the samples are representative of the population. These 

features include developmental status (chronological age and Risser grade) and 

maximum Cobb angle [8 ], [10]. This was done by determining the percentage of 

progressive curves for various ranges of values of those features.

A l.2 .4  Training and testing the SVC models

As a preprocessing stage, the data for the experiments were normalized to attain a
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zero mean and one standard deviation. Principal component analysis (PCA) (Fig. 

A l . l )  and Pearson's correlation analysis were performed on each dataset for the 

purpose of feature selection. Due to the paucity of data samples (44, 30 and 14 for 

datasets I, I I  and I I I  respectively), training and testing were done using the leave- 

one-out method and the results were averaged. Six models based on a SVC (SVC1- 

SVC6, Table A1.2) were used. These models utilized different combinations of 

features (all the features, top features obtained from PCA, and top features obtained 

from Pearson's correlation analysis) and kernel functions (radial basis and linear 

kernels). A voting model, SVC-Voting, based on three of the better performing SVC 

models was also used. The output of the model was the m ajority vote (2-1 or 3-0) of 

the outputs of SVC4-6. For the BLR model, best results were obtained by training in 

the forward conditional mode. In comparing the BLR and SLR models to the SVC 

models, the "gold standard" [24] was the actual outcome of the patients (whether 

they progressed or not).

A1.3 RESULTS

This section compares the results, in testing, of the SVC models with those of the 

BLR and SLR models and evaluates their performance. Results of investigating the 

correlation between developmental status and maximum Cobb angle to the risk of 

progression in the datasets confirmed that the risk of progression reduces with 

increase in developmental status and increases with maximum Cobb angle. For 

instance, 12/14 (90% ) of the 10- and 11-year old patients in the datasets had 

progressive curves while only 3/8 (40% ) of 14- and 15-year olds progressed.

The results of classifying the curves into progressive and non-progressive curves
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Fig. A l . l :  Plots of variance per feature and cumulative variance A, Dataset I: The top seven 
feature account for up to 70% of the variability in the dataset. B, Dataset II: The top seven 

feature account for up to 80% of the variability in the dataset.

Table A1.2: Selections of features used to train the SVC

Selection Criteria Used Features Selected (Feature 
Numbers)

Kernel Used

SVC1 All features All Radial Basis
SVC2 All features All Linear

SVC3 PCA features explaining at Between 7 and 21 features may Radial Basis

least 10% of total Variance be used
SVC4 PCA features explaining at Between 7 and 21 features may Linear

least 10% of total Variance be used
SVC5 Features with correlation to Dataset I: 8 and 18; Dataset II: Radial Basis

progression statistically 1, 2, 4, 14, 17, 18 and 20;
significant at p<0.05 Dataset III: 13 and 17

SVC6 Features with correlation to Dataset I: 8 and 18; Dataset II: Linear
progression statistically 1, 2, 4, 14, 17, 18 and 20;
significant at p<0.05 Dataset III: 13 and 17
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are summarized in Table A1.3. SVC-Voting and SVC4 outperformed other SVC 

models and the BLR and SLR models with an accuracy of 78 and 80% for databases I 

and II, compared to 73 and 73 % respectively for SVC4, 68 and 70% for SVC6, 66 

and 70% for SVC5 and 66 and 67% for SVC3. As the number of features in dataset 

I I I  exceeded the number of records, PCA could not be applied so SVC3 and SVC4 

could not be used on dataset I I I .  Four SVC models (SVC3, SVC4, SVC5 and SVC6) 

classified datasets I and I I  with accuracies 65-73%. SVC-Voting was based on three 

of these models (SVC4-6). SVC5 and SVC6 classified dataset I I I  with 79% accuracy. 

The BLR model achieved accuracies of 61, 60 and 57% for datasets I, I I  and I I I  

compared to 50, 52 and 50% for the SLR model.

Table A1.4 shows the detailed classification o f patients in datasets I I  using the 

SVC4 and SVC-Voting models. I t  can be seen that the SVC4 and SVC-Voting 

correctly classified 91% and 86% of progressive curves respectively, in dataset II. Of 

the 44 records in database I, 23 (53% ) were correctly classified by all the models 

(SVC, BLR and SLR) while 6 (14% ) were misclassified by all. Detailed result of 

determining the risk of progression in dataset I I  using the SVC models are shown on 

Tables A1.5.

A1.4 DISCUSSION

Six models based on a support vector classifier (SVC1-6) were used to predict the 

risk of progression of AIS from radiographic and clinical indicators. A seventh model, 

SVC-Voting, whose output was the m ajority vote of the outputs of SVC4-6, was also 

used. Results obtained showed that five of the seven models (SVC3-6 and SVC- 

Voting) achieved classification accuracies 65-80%  in testing and 100% in training on 

the datasets used, outperforming a "statistically equivalent" [17] BLR model and an 

SLR model [16]. The models also outperformed other models based on combinations 

of indicators from various sources proposed in the literature [8 ], [10]. In [10 ], a
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Table A1.3: Test results (% accuracy) with the SVC, BLR and SLR models

Accuracy SVC1 SVC2 SVC3 SVC4 SVC5 SVC6 SVC-Voting BLR SLR

Dataset I 64 61 66 73 66 68 78 61 50

Dataset II 70 67 67 73 70 70 80 60 52

Dataset III 71 50 NA+ NA+ 79 79 71 57 50

+ : Not Applicable: Cannot apply PCA because dataset I I I  has more features (20 ) than records (14 )

Table A1.4: Test results of classifying Dataset II using the SVC4 and SVC-voting models

Actual \  Predicted
SVC4 SVC-Voting

P NP Total P NP Total

Progressive 19 (91%) 6 (67%) 25 18 (86%) 3 (33%) 21

Non-progressive 2 (9%) 3 (33%) 5 3 (14%) 6 (67%) 9

Total 21 9 30 21 9 30

P: Progressive; NP: Non-progressive

Table A1.5: Results of determining the risk of progression in dataset II

SVC1 SVC2 SVC3 SVC4 SVC5 SVC6
SVC-
Voting

Accuracy (%) 70 67 67 73 70 70 80
False negative 2 4 7 2 2 3 3
False Positive 7 6 3 6 7 6 3
Sensitivity 0.91 0.81 0.67 0.91 0.91 0.86 0.86
Specificity 0.22 0.33 0.67 0.33 0.22 0.33 0.67
Positive Predictive Value (PPV) 0.73 0.74 0.82 0.76 0.73 0.75 0.86
Negative Predictive Value (NPV) 0.50 0.43 0.46 0.60 0.50 0.50 0.67

logistic regression model was used to predict the risk of progression of AIS from a 

cohort of 159 girls (Cobb angels 25-35 degrees). The model achieved an accuracy of 

81% in training.

A total of seven of the 20 indicators (21 for database I I I )  chosen because of their 

high correlation to progression (p<0.05) were used by two models (SVC5 and SVC6).

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The statistically equivalent BLR model and the SLR model needed 20 and 12 

indicators respectively. Eight of the 20 indicators used (Proximal and Main thoracic 

Cobb angles, Gross Risser Grade, Wrist X-ray, Chronological age, AVT -  Thoracic, 

Sagittal T2-T12 Cobb angle, Sagittal balance C7-sacrum and "Growing", Table A1.2) 

had statistically significant correlations with the risk of progression (p<0.05). This 

finding is sim ilar to observations made in [8 ] and [10].

I t  was observed that 23 (53% ) of the records in database I were correctly 

classified by all the models. 30 (68% ) of the records were correctly classified by the 

top four models (SVC3-6). The relatively small number o f records consistently 

misclassified by all the models may suggest these were "outliers" present in the 

datasets. I f  that were the case, it may be possible to obtain better results from a 

larger dataset having fewer of outliers. Though only eight indicators showed a 

statistically significant correlation to the risk of progression, the SVC-voting model 

achieved sensitivity and specificity values of 0.86 and 0.67, and NPV and PPV values 

of 0.86 and 0.67 and an accuracy of 80% (Table A1.5) on dataset II. As patients 

admitted to the clinic are deemed at risk of progression, improvements in PPV will 

translate to savings in healthcare costs as it will reduce the number of patients 

unnecessarily treated. Improvements in NPV will reduce the number of progressive 

patients whose clinical treatments are delayed.

The 20 indicators used in our study can be measured quickly (especially in the 

fast-paced clinical environment) and requires no pre-processing. I t  took less than 20 

minutes per patient to measure the indicators, input their values into the system and 

produce the needed results. These findings suggest that a SVC-based decision 

support system may be viable for use in a clinical environment to aid in management 

of AIS at the initial clinical visits as the prediction results can be obtained quickly.
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A1.5 CONCLUSION

Our study indicates that it may be possible to predict the risk of progression of AIS 

(to an accuracy of up to 80%) from radiographic indicators and clinical variables 

using a decision support system based on a SVC. This could be useful in the 

management of AIS in a fast-paced clinical environment. Once the initial radiographs 

and clinical data are acquired, the risk of progression can be assessed and an 

appropriate course of treatm ent chosen very quickly especially at the early stages of 

manifestation of AIS.

Results of statistical analysis (section A l.1 .3 ) showed that our datasets 

(representing samples from the general population of scoliotic patients) exhibited 

trends sim ilar to those found in the general population of scoliosis patients. Due to 

the low rate of occurrence of patients satisfying our inclusion criteria, we are 

currently pursuing a retrospective validation of our results on larger datasets of 

patients from other scoliosis clinics.

Future work will focus on studying more patients (to further assess the 

applicability of the SVC for clinical decision making), developing a better 

classification system based on the SVC, and incorporating additional information 

about prognostic factors for curve progression to improve the predictive capability of 

our system.
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APPENDIX 2

EFFECT OF POSTURE AND RE-PO SITIO NING  ON TORSO 

IM AG ING  FOR SCOLIOSIS ASSESSMENT*

A 2.1  IN TR O D U C TIO N

Complete torso images are becoming an im portant part of the comprehensive 

treatm ent available at clinics that treat scoliosis, a condition characterized by lateral 

deviation and rotation of the spine resulting in visible torso deformities. Scoliosis 

affects about 2 -4%  of adolescents, mostly girls [1 ]. Conventional methods of 

assessing idiopathic scoliosis are focused on evaluating the internal nature of the 

deform ity-curvature of the spine, deformation of the ribcage and tw ist of the 

individual vertebrae. Thus, the most widely accepted indicator o f scoliosis is the Cobb 

angle [2 ], measured from standing posterior-anterior radiographs of the entire spine. 

As most cases of late-onset idiopathic scoliosis will have no attendant health risks on 

the patient in the long run [3 ], the primary purpose of treatm ent is to improve torso 

appearance with its attendant social and psychological deprivation often of great 

concern to patients and their families [4 ]. Contact and non-contact surface imaging 

methods have been developed to assess scoliosis. Contact methods such as contour 

tracers [5 ] are generally limited in their use and low-cost, but provide limited 

information. Non-contact methods include back surface imaging methods based on 

optical techniques such as Moire [6 ], ISIS [7 ] and Quantec [8 ] systems. Recently, 

more costly full torso imaging systems utilizing multiple cameras and scanners to 

capture multiple views simultaneously, including InSpeck 3D digitizers, were

N A version of this chapter has been published. P. O. Ajemba, N. G. Durdle, D. L. Hill and V. J. Raso, 

'Posture and re-positioning considerations of a complete torso topographic imaging system for assessing 

scoliosis,' Research into spinal deformities 6, 2006.
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proposed. To reduce the cost of full torso imaging, a system utilizing a rotating 

positioning frame and a single Minolta VIVID 700 3D digitizer was developed [4 ], The 

system requires four images taken at 90 degree intervals over 10 seconds to 

generate a torso image.

To better understand the output of torso imaging systems, the ir accuracies and 

factors that influence the ir performance need to be understood. In this paper the 

influence of posture and re-positioning (sway and breathing) on the accuracy of 

reproduction o f a human torso topographic analysis system used in the clinical 

assessment of scoliosis was assessed. The accuracy of reproduction of the system for 

inanimate test objects was previously assessed as 1.1 ±  0.9mm [4 ].

The purpose of this study was to demonstrate that though the use of a rotating 

positioning frame introduces additional motion artifacts; their overall effect on the 

accuracy of reproduction of the system is within acceptable lim its and outweighed by 

savings in cost [9 ], [10].

A 2.2  MATERIALS AND METHODS

A2.2.1 Torso imaging system

The torso imaging system comprises a rotating positioning frame and a Minolta 

VIVID 700 3D digitizer (Konica Minolta Photo Imaging U.S.A., Inc.). The digitizer unit 

contained a camera and a laser scanner (Fig. A2.1). The laser scanner produces a 

near horizontal beam of light that is swept along the length of the object. The 

camera captures the contour of the beam as it is swept along. The deformation of 

the beam as it strikes the object and knowledge of the relative positions of the 

scanner and digitizer is used to compute the distance from the digitizer to each 3D 

point. The camera also captures a 3D texture map of the object. I t  takes about 0.6 

seconds to scan one view of an object. The texture map of the scanned object aids
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Fig. A2.1: The Minolta VIVID 700 digitizer

users during image editing procedures such as cropping the arms of generated 

models. To produce a full torso view, the digitizer was placed in four separate 

positions relative to the object to be scanned (Fig. A2.2) to capture its four 

orthogonal views. The four views were captured at three speeds (8, 10 and 12 

seconds). Mesh objects generated from the 3D scans obtained from the four 

positions were stitched together to form the full torso model using an image 

registration technique. A spline interpolation algorithm was used to obtain the true 

surface at regions o f overlap between the meshes.

A2.2.2 Data acquisition

Five male volunteers aged between 19 and 26 years who have no scoliosis were 

recruited for the study. The average age of the volunteers was 23.5 years. The 

experimental protocol was explained to the volunteers before the start of data 

acquisition and each gave the ir informed consent. The effect o f posture on the 

accuracy of the torso imaging system was assessed from forty torso scans of all five 

volunteers. Each volunteer was imaged twice in four postures (free-standing, holding
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Fig. A2.2: The four positions of the digitizer

side supports, holding front supports and with the ir hands on the ir shoulders) at 30- 

minute intervals in a randomized manner. The volunteers were required to hold their 

breaths as each shot was taken and released the ir breaths as the positioning frame 

was moved to the next position after each shot. The volunteers provided structured 

qualitative feedback on the various postures and the kinematics of the imaging 

process (such as the speeds of rotation of the positioning frame).To assess the effect 

of repositioning (sway and breathing), two male volunteers (aged 20 and 27 years) 

having no scoliosis were each imaged 10 times holding the side supports at 30- 

minute intervals in a randomized manner. The posture was used because our 

prelim inary experimental trials showed that it was associated w ith the least amount 

of errors compared to other postures. The volunteers were also required to hold their 

breaths as each shot was taken. Fig. A2.3 shows four views of a typical torso image 

obtained using the system.

A2.2.3 Data analysis

The arms of each torso image were cropped and twenty evenly-spaced cross-

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M IN O LTAM  f t to W M h W

C*lstaiiR-0
,Cari*todR-9Q
Carts»4dR-180
C«t4lWH-2?0

r Pan
r  Ncj«m«l 

&  Show Back

U m hyjg |

V Smoo* Shade

r *  sated hont ' Gnki

'*  S h i^ U f l • Reel Un**tect Chhlaft

•^85<«.l| S j  f f S  »  - #]Urave<^y sFAIbe'U.-Hicl. [ 4tjY«>.aol M«i■ jn r f x n tw n [ j >  H IH O U A V M O  1.34 jgbetogMMSfc.Pwl |

Fig. A 2.3: Four views of a typical torso im age

MepFeb 141?57132005 

12-57PM

sections were computed starting from the bottom of the image. The coordinates 

( x , y ) of the centroids of each cross-section were calculated from binary images of 

the sections by assigning to each pixel in the section an area of, say 1mm2, and 

using the equations [11 ]:

-  ^ x - d A  — y ■ dA
x V il\ ,y ‘ £dA

where <i4 represents the area of each pixel ( x , y ) (in this case, 1mm2), and 

summing across the entire cross-section. A centroid line jo ining the centroids of the 

cross-sections was generated (Fig. A2.4).

The variab ility due to posture was assessed by computing the standard deviations 

and root-mean-square errors in the widths of each cross-section for each posture
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Fig. A2.4: A, Calculation of the variability due to sway. D is the offset of the centroid from the 

vertical axis. B, Calculation of the effect due to breathing. H and L are the height and width of
the torso.

normalized for each volunteer. The distance D, between the centroid and a reference 

vertical line was computed at each cross-section. To assess the variab ility due to 

sway, standard deviations in D at each cross-section were calculated for each 

volunteer from the eight scans obtained per volunteer. The widths W, and lengths L, 

of each of the eight cross-sections obtained per volunteer were calculated. The 

variability due to breathing was assessed by computing the standard deviations in 

the values o f W and L at each cross-section from the eight scans obtained per 

volunteer.

A 2.3  RESULTS

Table A2.1 shows the analysis of the comments made by the six volunteers. I t  can 

be seen that most volunteers thought that holding two side supports (posture 2) was 

the best posture. All the volunteers thought that standing with the ir hands on their 

shoulders was the worst posture. One volunteer complained of a loss of balance 

during the rotation of the positioning frame while in postures 1 and 4 (free-standing 

and standing with hands on shoulders). Most o f the volunteers were most 

comfortable with a rotational speed of about 10 seconds per revolution. All the 

volunteers thought that a rotational speed of about 8 seconds per revolution was too 

fast. Table A2.2 shows the average value of the standard deviations and root-mean-
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Table A2.1: Summary of comments made by volunteers

Criteria Best Posture+ Next Best Posture4- Best Speed Next Best Speed

Volunteer 1 Posture 2 Posture 1 10 s/rev 12 s/rev
Volunteer 2 Posture 2 Posture 3 10 s/rev 12 s/rev
Volunteer 3 Posture 2 Posture 3 12 s/rev 10 s/rev
Volunteer 4 Posture 3 Posture 2 10 s/rev 12 s/rev
Volunteer 5 Posture 3 Posture 2 10 rev/s 12 s/rev

+Posture 1: Free Standing; Posture 2: Holding Side Supports; Posture 3: Holding Front Supports; Posture

4: Touching both hands on shoulders

Table A2.2: Average values of standard deviations and root-mean-square errors of the width
of each section for each posture

Posture 1+ Posture 2+ Posture 3+ Posture 4+

Standard Deviation 3.2 2.2 2.4 2.9
Root-mean-square error 3.6 2.3 2.6 3.3

+See Table A2.1

square errors in the widths of each cross-section for each posture normalized for 

each volunteer. Table A2.3 shows the standard deviations in the values of D obtained 

at cross-sections 1 to 20 for the volunteers (denoted by I, I I, I I I ,  IV and V), while 

Tables A2.4 and A2.5 show the standard deviations in the values of L and W, 

respectively obtained for each volunteer. Table 3 gives an indication of the variability 

due to sway while Tables 4 and 5 give an indication of the variab ility due to 

breathing. The tables show that the variability in D is less than 4.5 mm for each 

section, for all the volunteers. The variability in L and W are less than 2.7 and 3.2 

mm respectively at each cross section.

Table A2.6 shows the average values of the standard deviations in the values of 

D, L and W (shown in tables A2.3, A2.4 and A2.5) for the five volunteers.

A 2.4  D ISC U SSIO N

Results show that the maximum variability in sway or breathing was less than 4.5
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Table A2.3: Standard deviations (in mm) in D for each cross-section for volunteers I-V

Volunteer

I II III IV V

Section 1 1.2 1.4 1.3 1.5 1.0

Section 2 1.3 1.5 1.4 1.7 1.1

Section 3 1.4 1.5 1.5 1.8 1.1

Section 4 1.3 1.8 1.6 1.9 1.1

Section 5 1.2 2.0 1.6 1.9 1.0

Section 6 1.9 2.3 1.8 2.2 1.6

Section 7 2.6 2.5 2.0 2.4 2.1

Section 8 2.5 2.4 2.2 2.6 2.0

Section 9 2.4 2.3 2.4 2.8 1.9

Section 10 2.5 2.5 2.5 3.0 2.1

Section 11 2.5 2.6 2.6 3.2 2.2

Section 12 2.6 2.5 2.5 3.0 2.1

Section 13 2.6 2.3 2.4 2.8 1.9

Section 14 3.1 2.8 2.9 3.5 2.2

Section 15 3.6 3.3 3.4 4.1 2.4

Section 16 3.0 3.3 3.3 4.0 2.2

Section 17 2.4 3.3 3.2 3.8 1.9

Section 18 3.2 3.4 3.5 4.2 2.3

Section 19 3.9 3.5 3.7 4.5 2.6

Section 20 3.2 3.4 3.3 4.5 2.0

mm at each cross section for all the volunteers. From Table A2.6, it can be seen that 

the average variab ility due to sway (variability in D) was higher than the average 

variability due to breathing (W and L) at each cross section. Table A2.3 shows that 

larger values of variability in sway occur at the upper sections of the torso (sections 

6 -  10, corresponding to the thoracic region). This is not surprising as sway motion 

is anchored at the waist, and displacement due to sway increases from the waist 

upwards. I t  can also be seen that the variability due to breathing followed no obvious 

pattern across the sections. Furthermore, there was no clear relationship between 

the values o f L and W at each cross-section.
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Table A2.4: Standard deviations (in mm) in L for each cross-section for volunteers I-V

Volunteer

I II III IV V

Section 1 2.7 2.5 2.6 3.2 1.8

Section 2 1.8 1.6 1.8 2.2 1.3

Section 3 0.8 0.6 0.9 1.1 0.7

Section 4 0.9 0.6 1.0 1.2 0.8

Section 5 1.0 0.6 1.1 1.3 0.8

Section 6 1.4 1.0 1.3 1.5 1.0

Section 7 1.7 1.4 1.4 1.7 1.1

Section 8 1.8 1.6 1.5 2.0 1.3

Section 9 1.9 1.8 1.6 2.2 1.5

Section 10 1.8 2.1 1.8 2.5 1.4

Section 11 1.7 2.3 1.9 2.7 1.3

Section 12 2.1 1.8 2.2 2.8 1.5

Section 13 2.5 1.3 2.4 2.9 1.7

Section 14 1.8 1.0 1.8 2.1 1.3

Section 15 1.0 0.6 1.1 1.3 0.8

Section 16 0.9 1.0 1.1 1.3 0.8

Section 17 0.8 1.4 1.0 1.3 0.7

Section 18 1.3 1.6 1.1 1.5 1.1

Section 19 1.8 1.8 1.2 1.7 1.5

Section 20 1.7 1.5 1.6 1.2 1.8

The variability due to posture was smallest for scans taken while volunteers held 

on to side supports and from qualitative comments, that was also the most 

comfortable posture. A speed of 10 seconds per rotation was optimal. Variability due 

to re-positioning (sway and breathing) was less than 4 mm at each cross-section for 

both volunteers. Variability due to sway ranged from 0 -  3.5 mm while that due to 

breathing ranged from 0 - 3  mm. These results are contrary to published results on 

the best posture for taking back surface scans and radiographs.

Contrary to published results of the best posture for taking radiographs, the 

results obtained from this study showed that for obtaining a full torso image of male
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Table A2.5: Standard deviations (in mm) in W for each cross-section for volunteers I-V

Volunteer

I II III IV V

Section 1 0.6 1.0 0.8 1.0 1.2

Section 2 1.0 1.2 0.9 1.1 1.4

Section 3 1.3 1.3 1.0 1.2 1.5

Section 4 1.3 1.3 1.1 1.3 1.3

Section 5 1.2 1.2 1.2 1.4 1.0

Section 6 1.3 1.3 1.3 1.5 1.1

Section 7 1.4 1.3 1.3 1.6 1.1

Section 8 1.8 1.5 1.5 1.8 1.1

Section 9 2.2 1.7 1.6 1.9 1.0

Section 10 2.1 1.8 1.8 2.1 1.2

Section 11 2.0 1.8 1.9 2.3 1.3

Section 12 1.3 1.3 1.3 1.6 0.9

Section 13 0.6 0.7 0.7 0.8 0.5

Section 14 0.7 0.8 0.8 0.9 0.6

Section 15 0.7 0.8 0.8 0.9 0.6

Section 16 0.9 1.0 1.1 1.0 0.9

Section 17 1.0 1.1 1.3 1.0 1.2
Section 18 0.9 1.0 2.1 1.0 0.9

Section 19 0.7 0.8 2.8 0.9 0.6

Section 20 0.6 0.9 1.0 1.1 1.1

volunteers who have no scoliosis using a rotating positioning frame, holding side 

supports (posture 2) produced the least variability in stance and the best 

reconstruction accuracy. The results also show that images taken while the 

volunteers stood and touched the ir shoulders (posture 4) were least occluded by 

their arms, but were most affected by motion artefacts. Analysis of comments made 

by the volunteers showed that standing and holding side supports (posture 2) was 

the most comfortable posture. The system required four shots taken at 900 intervals 

within 8 to 12 seconds for optimum results. Analysis of the comments made by the 

volunteers showed that 10 seconds was the optimum time for taking the shots. As
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Table A2.6: Average values of the standard deviations in D, L and W for each cross-section

D L W

Section 1 1.3 0.9 2.5

Section 2 1.4 1.1 1.7

Section 3 1.5 1.2 0.8

Section 4 1.5 1.2 0.9

Section 5 1.5 1.2 0.9

Section 6 1.9 1.3 1.2

Section 7 2.3 1.3 1.5

Section 8 2.4 1.5 1.7

Section 9 2.4 1.7 1.8

Section 10 2.6 1.8 1.9

Section 11 2.7 1.8 2

Section 12 2.6 1.2 2.1

Section 13 2.4 0.6 2.2

Section 14 2.9 0.7 1.6

Section 15 3.4 0.7 0.9

Section 16 3.2 1.4 1.0
Section 17 2.9 2 1

Section 18 3.3 1.4 1.3

Section 19 3.6 0.7 1.6

Section 20 3.6 0.8 1.5

major torso features that are indicative of scoliosis are larger than 4 mm in 

diameter, the system assessed could be used to obtain complete torso images for 

clinically assessing and managing scoliosis. These results will be useful in the design 

of future complete torso imaging systems for assessing torso deformities such as 

scoliosis.
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A P P E N D IX  3

A D D IT IO N A L  B A C K G R O U N D  M A T E R IA L S

This appendix provides additional background materials on the Bezier curve 

approximation theory, the moving least squares approximation theory and the 

moving least squares projection theory.

A 3.1  BEZIER CURVE A P P R O X IM A TIO N  THEORY

The classical BC is a recursive linear weighted subdivision of the edges of a 

generated curve based on a set of points that form its control polygon for a 

particular weight t . A set of jV + 1 control points determine the shape of a BC of 

degree N . For an ordered set of points P = {p0,px,...,pN} , the m atrix form of the 

classical BC is

p{t) = PowN (t) * Bez N * PT,

where p(t) is the BC point for a particular t , PowN(t) represents the power basis

is the parametric operator which defines the location of the curve points, the number 

of which depends on the number of t values [1 ]. Thus, from the ordered set of 

points P , let the rectangular coordinates of p { be where i  = 0,1,...., N  .

Then the parametric equation of the BC is given by

JVY i
term of m atrix BezN is found from mtj = (-in .

I  ‘  A J J
. t

/=o v 1 y ( l )
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where p(t) = (x(t),y(t),z(t)) [1 ]. The number and location of the generated points in 

(A4.1) completely depend on the values of t . As t ranges from 0 to 1, the procedure 

m ight produce redundant or overlapping points or an insufficient number of points.

A 3.2  M O VIN G  LEAST SQUARES A P PR O XIM A TIO N  THEORY

The MLS approximation theory was proposed by Lancaster and Salkauskas [2 ] and 

has been used for smoothing and interpolating scattered data in 51d [3 ], [4 ]. Its 

simplest form coincides with Shepard's interpolation method [5 ], thus it can be seen 

as its extension. The MLS approximation scheme is as follows. Suppose a compact 

set Q. c= 9Td is given and a continuous function /  e C(Q) is to be reconstructed

from values f { x x),.,.,f{xN) on scattered pair-wise distinct centres X  - { x l ,...,xN} . 

For x e Q the approximate value of f ( x ) ,  p*(x) is given by

/ ( x )  = min|Z(/(*<•)~ P(x>))2w(x>x;): P  e Pj .  (2)

In (A4.2), i = 0,1,....,JV, P c; C(Q) is a finite dimensional subspace spanned by 

polynomials, and w : Q x Q —» [0,co] is a continuous function with a possible 

singularity at the diagonal w{x,x). This singularity would force the resulting function 

to interpolate /  at the centres x . : j  = 0,\,-—, N .

A 3.3  M O VIN G  LEAST SQUARES PROJECTION THEORY

The MLS projection theory is based on the MLS approximation theory. I t  aims to 

make the point-based representation as concise as possible while conveying the 

shape, in the sense that the point set is neither noisy nor redundant [6 ]. This is done 

by locally approximating the surface with polynomials using MLS approximation and 

sub-sampling the points appropriately.
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Let points P  = {p t ] define a smooth MLS surface Sp , and let a reduced set of P , 

= define an MLS surface SRI that approximates Sp . The typically smaller set 

R is called the representation po in t set [6 ]. Let points p i e R 3,i  e {l,...,A/’} ,  be 

sampled from a surface Sp . The goal is to project points rt e R 3 near Sp onto a two- 

dimensional surface SR that approximates p t . The first step involves computing a 

local reference plane H  for r  where

H  = {x|(w,x)-.D = 0,x e R3},n e -K3,||«| = 1

minimizes the local weighted sums of square Euclidean distances of points p t to H . 

Assume q is the projection of r  onto H and let q = r  + tn for some t e R , then H

N  2

is found by minimizing ' £ ( n , p i - r - t n )  9 ^ p i -  r  -  to||) where 0  is a smooth, radial,
(=i

positive, monotonically decreasing function. The approximation of single points is 

dictated by the radial weight function 9 which as suggested by Levin [4] is a 

Gaussian function such that

9(d)  = e~h2,

where h is a fixed parameter reflecting the anticipated spacing between 

neighbouring points.

The minimization function used to compute H  usually has more than one local 

minimum. Since H  should be close to r ,  the local minimum is chosen with the 

smallest t .  Alexa e ta /. [6 ] employed a standard iterative solver to ensure that the 

minimization function converges to a local minimum with a small t . The initial value 

for n is computed by setting t in the minimization function to zero, and equating the 

gradient of this new quadratic function in n to zero. Thus, when t = 0, the 

minimization function becomes
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t ( n , P i - r )  ei \P i - r \|)

and

^ 2 {n,Pi - r )  Oi\Pi -r||X/7,. - r )  = 0.

The computed initial value for n can be refined using Powell iteration [7 ]. In this 

case, n is substituted into the minimization function, and using an iterative 

procedure of increasing t from 0, is used to establish a local minimum after which 

the subsequent t is selected. The global minimum of the minimization function is 

reached for t - > c o .  To avoid this, the function can be normalized using the sum of 

weights G.

Next, a local bivariate polynomial approximation g ,  to the surface S , in a 

neighbourhood of r fro m  the computed local reference plane H  and the radial 

weights G \̂Pi - <j|) is computed. Let qt be the projection of Pi on toH , and f t be

the height of Pi over H , that is,

Another minimization function is constructed based on MLS approximation theory to 

compute the coefficients of g  thereby minimizing the weighted least squares error

coordinate system in H .

Finally, the projection of r  onto Sp which is the result of the MLS projection

procedure is given by the polynomial value at the origin, that is g+g(0,0)«. This

technique yields a smooth manifold surface that is C " smooth. A drawback is that

f i = n ( P i - q ) .

where ( x ^ y ^  is a representation of qt in the local
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interpolation often fails when the hole is greater than three times the average

spacing between points as is often the case under the arms of torso scans.
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