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Abstract

Learning about many things can provide numerous benefits to a reinforcement
learning system. How to behave to best learn a collection of predictions in
parallel in the reinforcement learning setting remains an open problem. The
research presented in this work explores the behavior, and effect, that different
intrinsic reward mechanisms drive in this multi-prediction, parallel learning,
setting. The setup of this thesis is a staple thesis in which the core of the work
is an accepted journal paper, with a new introduction and conclusion written
by the author. The additional introduction and conclusion are original works.
They serve to demonstrate the author’s knowledge of the subject matter and
journal paper in question, the author’s individual perspective on topic area,
and the future directions for research that the author would like to pursue.
Adapting Behavior via Intrinsic Reward: A Survey and Empirical Study, has
been accepted into the Journal of Artificial Intelligence Research (JAIR). The
paper is co-authored by Cam Linke (the author of this thesis), Nadia M.
Ady, Martha White, Thomas Degris and Adam White. The paper was a
collaborative work that began as a proposed conference paper, was accepted
as an extended abstract into the Reinforcement Learning and Decision Making
(RLDM) conference, and finally was accepted into JAIR. The author’s specific
contributions were the open-sourced code and notebook for replicating the
empirical work; writing sections of the intro, experiments and conclusion; and

contributing to the large survey of previous literature performed in the paper.
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Preface

The setup of this thesis is a staple thesis in which the core of the work is an
accepted journal paper, with a new introduction and conclusion written by
the author. The additional introduction and conclusion serve to demonstrate
the author’s knowledge of the subject matter and journal paper in question,
the author’s individual perspective on topic area, and the future directions for
research that the author would like to pursue. Adapting Behavior via Intrinsic
Reward: A Survey and Empirical Study, has been accepted into the Journal
of Artificial Intelligence Research (JAIR)'. The paper is co-authored by Cam
Linke, Nadia M. Ady, Martha White, Thomas Degris and Adam White. The
paper was a collaborative work that began as a proposed conference paper,
was accepted as an extended abstract into the Reinforcement Learning and
Decision Making (RLDM) conference, and finally was accepted into JAIR. The
author’s specific contributions were the open-sourced code and notebook for
the empirical work to be replicated; writing sections of the intro, experiments
and conclusion; and contributing to the large survey of previous literature

performed in the paper.
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Chapter 1

Introduction

Adaptation of behaviour based on learning can help autonomous agents, nat-
ural or artificial, operate effectively in a changing world. A kitten sneaking
up on a leaf helps it learn to hunt, two mice wrestling allows them to learn
to fend off future attackers, and a baby playing in its crib allows it to learn
about the effects that it can have on objects around it (e.g. Gopnik, Meltzoff,
and Kuhl, 1999). While later in life having learned these things can become
useful, at the time they are interesting to the animal without knowing if it will
be useful in the future. Instead, improving the ability to predict and control
their environment is its own reward. Learning feels good to the agent, which
encourages it to learn to broadly interact with its environment, without hav-
ing to specifically know what the future holds (e.g. Barto, 2013). Like their
natural counterparts, artificial agents also need to be able to learn in a general
manner in order to operate independently in the world. A self-driving vehicle
could experience far more diverse situations throughout its life than it could
learn just from human training. Similarly, a garbage picking robot will likely
won’t know every environment, situation, or piece of trash it will need to deal
with. If we want to have independent agents, we need them to be able to
broadly learn many things on their own, without necessarily knowing what
the future may require of them.

An agent’s understanding of the world can be thought of as its ability to
make predictions about what will happen in the future. These predictions can

be thought of as an agent’s knowledge of the world (as shown by A. White,



2015). For our garbage picking robot its knowledge of its environment can
be thought of as the prediction of the streams of data coming in through its
sensors. These sensorimotor streams give the robot a rich set of data from
which to learn. Predicting whether or not it will keep moving after running
into an object becomes the robot’s “knowledge” of what a wall vs an object it
can push is, without both specifically being labeled. The difference between
a soda can, which the robot should throw out, and a reusable water bottle,
which it shouldn’t, becomes a prediction of its “not garbage” sensor turning
on when it drops the item off. Building up on knowledge this way allows basic
sensor streams to be combined into rich predictions that give the agent a strong
overall understanding of its environment. Ring (in preparation) presented a
thought experiment in which The ability to build layers of this predictive
knowledge was shown—with a basic contact sensor is enough for a small robot
to build up a rich understanding of the rooms it is in.

We would like our agents to constantly improve its predictions as soon as
new data is acquired, to learn them online, and not have to wait to update
them at some later point in time. This ability to incorporate new data both
helps to keep the agent’s predictions as up to date as possible, and helps
the agent deal with non-stationarity—changes in the environment or sensors
that could cause its predictions to become inaccurate. We don’t want our
agent’s predictions to become fixed or to have to wait until some later point
to incorporate the effects of these changes. In addition to learning online we
want our agent to be able to learn about the effects that different ways of
behaving, called policies, that the agent could be doing instead of just its
current behavior. Learning predictions for the same way of behaving is called
on-policy learning. An effective agent will learn both on-policy as well as learn
to make predictions about what would have if it behaved in different ways—
off-policy learning. These off-policy predictions can give our agent a more
robust understanding of what will happen if it chooses any number of ways
of behaving. For example, from the same stream of experience our robot can
learn to predict what will happen to its streams of data if it behaves in a more

aggressive manner or a more cautious manner. These both may be necessary
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modes of moving about the lab at different times, and we would like our robot
to learn them both simultaneously. Using off-policy learning has shown the
ability for agents to learn to predict many signals at the same time, online,
while the agent is in operates in the world (A. White, 2015).

Learning many signals has been shown to be helpful in a variety of settings.
The signals can be seen as hints that help a neural network to learn (Suddarth
and Kergosien, 1990). Similarly, executing temporally extended sequences of
actions can help in sparse reward environments, where there is little or no
reward signal. In these environments the agent may otherwise have little to
learn from and will dither around looking for a signal (Riedmiller et al., 2018).
Regularization of the network can be achieved by learning other predictions,
beyond the main target of learning (such as the reward signal), in a deep
reinforcement learning setting (Jaderberg et al., 2016). An agent can use the
predictive signals as a knowledge of the world to predict what is “next”, giving
it a general awareness of its environment (Modayil, White, and Sutton, 2014).
Parameterizing over possible goals allows an agent to generalize over goals as
well as states (Schaul, Horgan, Gregor, and Silver, 2015).

Given an agent that can learn many things at once a question still remains:
how should the agent behave so that it can best learn a set of predictions. This
process of learning for the sake of learning can has been called many things in
literature, including: curiosity, self-supervised learning, intrinsic motivation,
or even the more general term of exploration. No matter the name, the heart
of the activity is adapting the agent’s behaviour to best improve all of the
predictions it is trying to learn over time. Here we will use the terms intrinsic
motivation to refer to the mechanism of adapting an agent’s behaviour based
on learning, and intrinsic reward to refer to the reward given to the agent to
encourage this behaviour.

This these has three main contributions. The first is a simplified testbed
that focuses on the core mechanism driving each intrinsic reward. The second
is an empirical comparison evaluating many of the commonly used intrinsic
rewards on this testbed. Third, we provide insight into the effect on the

behavior of intrinsic rewards of introspective learners—learners that update
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their learning rate based on learning progress.

In order to compare various intrinsic rewards we propose a new test bed to
allow for a clear evaluation of the behavior of each proposed reward. Many in-
trinsic rewards have been proposed as to how learning focused behavior could
be driven. These intrinsic rewards have been evaluated in different environ-
ments each with its own set of complications. Aspects such as function approx-
imation can vary between rewards and have a large impact on the difference
between the behavior and results of each of the intrinsic reward. Our testbed
simplifies problem down to the basic decision that a curious agent has to make
at each step—what action will maximize learning. The proposed testbed is a
bandit like environment in which each action returns a scalar signal. These
signals mimic the types of signals a real world agent may encounter: highly
noisy signals, constant signals, and signals which changes over time. The agent
seeks to learn to predict the expected value of the signal received from taking
each action. In order for the agent to maximize learning it needs to chose the
action that allows it to make the most learning progress. An agent that does
well will adapt its behaviour to best learn over time and its predictions will
track any changes in the environment.

We evaluated multiple existing methods in this testbed. The goal was not
to exhaustively evaluate all methods, but to evaluate representative methods
to show the effects of different classes of methods. We primarily focused on
literature in the reinforcement learning setting, although in many cases the
choice of intrinsic reward was originally inspired by a different domain such as
child psychology. We focused on methods that would specifically apply to our
problem domain where the agents behaviour would need to be adapted over
time to best learn a number of sensorimotor predictions. We concentrated our
efforts on model-free methods both to focus the problem and due to the single
state nature of our problem domain.

Finally, our review of of different intrinsic reward mechanisms brought us
insight into the effect introspective learners can have on an agent. Introspec-
tive learners are ones which are able to adapt their learning rate up or down

based on the learning progress that the agent is making. We demonstrate that
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introspective learners can be helpful with many intrinsic reward mechanisms.
We show that a simple, but effective, intrinsic reward is the change in weights

of the agent’s predictions when those predictions are learned introspectively.

1.1 The Curiosity Test Bed

Many demonstrations of intrinsic motivation exist, and results have been
shown in various experimental environments. However at times, the compli-
cated nature of these environments can make it difficult to evaluate an intrinsic
reward mechanism. Was it something in the method of function approximation
that caused the behaviour? Was it intrinsic mechanism itself? For this reason
we propose a simplified testbed that will allow us to focus specifically on the
effects of intrinsic reward while holding out as many confounding factors as
possible.

The testbed is similar to a multi-armed bandit. The agent is in one state
and at each time step takes an action that returns it to that same state.
Each action taken returns a signal to the agent. Each of the actions has a
learner that is trying to predict the expected value of the signal received from
that action. The signals received from each demon are of three types: 1) A
constant signal always returning the same constant value, 2) a noisy signal that
has a constant expected value, but returns a random number from a normal
distribution around that value, 3) a slowly drifting signal whose value changes
by a small random number at each time step.

This setting mimics the types of signals an intrinsically motivated agent
could receive at each time step. Consider a robot that has sensor signals it is
receiving at a given time. An intrinsically motivated robot will want to learn
to predict those signal in order to effectively navigate its world. The signals
themselves will have different properties as to their properties that effect their
predictability. Some will be constant and will be easily learnable by the robot.
Others, as popularized by the noisy tv problem (Schmidhuber, 1991a), will
have a constant expected value, but at any given time step will have a large

amount of noise in the signal. While some sensors are learnable and will need
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to have their prediction constantly updated to keep the prediction up to date
in a changing world. Each of the above signals is designed to distill the above
scenarios to their essence. A robot may have a sensor that gives it a steady,
constant stream of data. Here the signal is almost perfectly learnable and the
robot should not spend much time on it after having learned its prediction.
This is exemplified by the first, constant, signal in the testbed. The second
type of signal a robot could encounter is one which is extremely noisy, but has
a constant expected value. Static from a television, snow falling captured by a
visual sensor, or a broken sensor returning noise, are all captured by the second
type of signal in the testbed. These signals have learnable expected values but
are highly noisy and will cause the agent’s prediction error to be very high. In
order to maximize learning the robot should quickly learn the expected value
and ignore these signals, despite the high prediction error on any given step.
Finally a robot should have many sensors capturing rich, learnable information
about the world. A bump sensor will tell it when it has run into something,
a distance sensor will tell it how close it is to different objects, and various
sensors for things like battery levels will help it have an understanding of the
environment it is operating in. All of these predictions will change over time
as the environment, and sensors themselves, change. The third signal in the
testbed represents these types of signals—ones which represent an expansive,
constantly changing, environment. A robot that learns well will consistently
take actions that update these predictions.

The testbed provides three different situations that simulate common pat-
terns a learning agent will face. The Drifter-Distractor problem creates the
most basic setting in which the agent has four signals it seeks to learn—one
drifting signal, two noisy signals, and one constant signal. As mentioned previ-
ously this mimics a common set of signals a robot could receive as it operates.
A well performing agent will learn to largely ignore the noisy and constant
signals once their expectation has been learned—ultimately focusing on the
learnable drifting signal.

The second problem, Switched Drifter-Distractor, switches the signals as-

sociated with each action after 50,000 timesteps. After this change there is
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one noisy signal, one constant signal, and two drifting signals. This tests the
agent’s ability to adapt to large changes in the environment. A well perform-
ing agent should not become so rigid in what it has learned that it cannot
adapt when there are changes to its environment. Additionally with two drift-
ing signals a well performing agent will not prefer one drifting signal over the
other, instead checking both with the same frequency to keep the predictions
of both up to date.

Finally the Jumpy Eight-Action problem is designed to stress test a learn-
ing agent that requires signals to be sampled at different frequencies in order
to perform well. The environment has two constant signals, three signals that
drift at different rates, and three noisy signals. This simulates a scenario
where the signals may change in a large, but somewhat regular, pattern. In
order to perform well an agent will have to sample different signals at different
frequencies—where the frequency is based on both the amount of drift and the
amount of noise in the signal. An effective agent will need to learn ignore the
noisy signals and focus on regular sampling of the drifting signals based on
the amount they drift. A behavior that samples uniformly will perform quite
poorly in this environment since the time away from focusing on the quickly

drifting arms will cause the prediction error to increase rapidly.

1.2 Introspective agents

Introspective agents are ones which can adapt their rate of learning based
on their learning progress. Some of examples of these are line search, the
commonly used Adam optimizer (Kingma and Ba, 2014) used in deep neural
networks, or AdaGain (Jacobsen et al., 2019) which adapts the rate of learning
for stability. Introspective agents are able to use the rate of learning as a proxy
for learning progress as an adaptive method will drive down the rate of learning
on predictions that are not improving, and drive up the rate of learning where
the agent’s predictions are improving.

In our case we used a variant of the Autostep algorithm (Mahmood, Sutton,

Degris, and Pilarski, 2012), Auto, to adapt the agent’s step size parameter.
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Autostep is a meta-descent method which seeks to adapt the step-size based
on the partial derivative of the error. The basics of how it work are to keep
a trace of the prediction errors and to lower the step-size if the sign of the
error changes, indicating a lack of learning progress. If the sign stays the same
learning is progressing and the step-size is increased. As an example, the noisy
signal will cause the agent’s prediction to have positive error at some points,
and a negative error at others—the sign will flip back and forth. This will
cause Autostep to drive the step-size of that learner down. Auto builds on top
of IDBD (Sutton, 1992) and Autostep to extend it to the multi-state setting
and provides some heuristics to allow for robust performance.

To see how being introspective could be helpful let us return to our three
signals from the testbed. In the case of a constant signal the agent should be
able to get to accurate predictions quickly. In this case the step-size would be
driven up since the agent’s predictions are good and the prediction error would
remain low or zero. For the noisy signal at each time step the agent prediction
error would be high and little to no learning progress would be made. Here
the lack of learning progress will drive down the step-size. Finally in the case
of the drifting arm the agent is able to continually make progress on learning
the signal, keeping the step-size of the predictor high.

To see why this can help, consider a case where an agent was non-introspective
and did not adapt its learning rate. If the learning rate was set high—say close
to 0.5—the agent would be able to quickly learn the constant signal. The agent
likely would be able to track the drifting signal as it would update its predic-
tion to close to the expected value at each time step. However the noisy signal
will pose a large problem as the prediction will constantly chase the noise
of the signal, leading to a large prediction error. If the learning rate was set
low—say 0.0001—the constant signal could be learned, albeit slowly. Learning
the expected value of the noisy signal could be possible as it would average
over many timesteps. However the prediction of the drifting target would not
update quickly enough to keep its prediction up to date. Without adapting
the step-size for each signal there is not an ideal step-size in between the large

and small step-sizes. Either a step-size would need to be chosen ahead of time
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based on prior knowledge of the signal’s characteristics, or we need to use an
introspective learner that adapts its learning rate.

We propose a simple intrinsic reward, weight change, that uses the change
in the weights of a prediction. When combined with introspective learners,
weight change is shown to be an effective intrinsic reward for driving learning
progress. Weight change as an intrinsic reward can be thought of in two parts:
first, the error signal seeking to focus the agent on the signal that the agent
could potentially learn the most about. Second, since the adaptive learning
rate adjusts up or down based on the learner’s ability to make progress on
predicting the signal, this tempers the amount weights are updated based on
whether progress can be made. Combined, the change in the weights at each
step are shown to be a good intrinsic reward. Reward increases when both error
and learnability are high, and decreases when either error or predictability is

low.

1.3 Summary

This work has three main contributions: proposing a new testbed for eval-
uating intrinsic reward mechanisms, an empirical evaluation of 14 intrinsic
rewards representing common intrinsic reward categories, and proposing an
intrinsic reward, weight change, that is shown to be simple and effective when
combined with introspective learners.

The testbed itself represents a distilled version of the full problem of in-
trinsic reward. To look at what a full setting could be consider the Horde
setting (Sutton et al., 2011) where an agent is learning thousands of predic-
tions online as it operates in the world. Most of these predictions—called
demons—are learned off-policy. The first step will be moving beyond the sin-
gle state, bandit-like setting, to a multiple state setting. The behavior learner
would use a temporal difference learning method, either a value based method
such as SARSA (Sutton and Barto, 2018) or a policy gradient method such
as Actor-Critic (Sutton, McAllester, Singh, and Mansour, 2000). The agent

would have to learn what states and actions over time will lead to the most



learning progress across all of the demons. The learners are not independent
of each other, as they are in this testbed, so different actions could lead to
different amounts of learning for multiple predictors at the same time. In the
full setting an agent will need to learn to take actions that can balance the
learning of many predictions simultaneously.

The learners themselves would also need to move on from the single state,
least means squares (LMS), learners used here. The predictors could leverage
an online, off-policy, learning method such as gradient TD. The introspective
learning mechanism will also need to be able to deal with the multi-state
setting. Auto, used here, could be used in the multi-state setting. Other
methods such as TIDBD (Kearney, Veeriah, Travnik, Sutton, and Pilarski,
2018), AdaGain (Jacobsen et al., 2019), and Adam (Kingma and Ba, 2014),
have all been shown to be effective in different settings and are all candidates
for being used. Research on the comparative effectiveness of different step-size
adaptive methods remains an outstanding research question.

The world is large and complex, so the prediction learners will not be
able to store every state that the agent visits. The learners will need some
sort of function approximation mechanism to be able to generalize from one
state to another. Tile coding has been shown to be an effective mechanism
in this setting (Sutton et al., 2011) where the agents are able to learn online.
More complex methods, such as artificial neural networks (ANNs), have been
shown to be effective function approximators for dealing with large state spaces
(e.g. Mnih et al., 2015). The combination of ANNs and reinforcement learning
often requires a number of moving parts, such as experience replay and target
networks (Mnih et al., 2015), in order to be effective. How that will interact
with a system such as this is the subject of further research.

In this setting the challenge of exploration and exploitation returns. The
agent will have to trade off exploiting the areas where it knows learning
progress can be made, while exploring to find areas where it learning could be
higher. At its most basic the system could use a simple epsilon-greedy method
to mix exploration in. More complex methods such as pseudocounts (Belle-

mare et al., 2016) have been shown to perform better than epsilon greedy and
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could be used here to help the agent explore more to find areas of maximum

learning.

1.4 Thesis Structure

The structure of this thesis is not typical for a master’s thesis. The setup is a
staple thesis, also known as a sandwich thesis, in which the core of the work is
an accepted journal paper. In addition to the paper, the author wrote a new in-
troduction and conclusion. They serve to demonstrate the author’s knowledge
of the subject matter and journal paper in question, the author’s individual
perspective on the topic area, and the future directions for research that the
author would like to pursue, and in some instances, is already pursuing.
Adapting Behavior via Intrinsic Reward: A Survey and Empirical Study,
has been accepted into the Journal of Artificial Intelligence Research (JAIR).
The paper is co-authored by Cam Linke, Nadia M. Ady, Martha White,
Thomas Degris and Adam White. The paper was a collaborative work that
began as a proposed conference paper, was accepted as an extended abstract
into the Reinforcement Learning and Decision Making (RLDM) conference,
and finally was accepted into JAIR. The author’s specific contributions were
the open-sourced code and notebook for replicating the empirical work; writ-
ing sections of the intro, experiments and conclusion; and contributing to the

large survey of previous literature performed in the paper.
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Abstract

Learning about many things can provide numerous benefits to a reinforcement learning
system. For example, learning many auxiliary value functions, in addition to optimizing
the environmental reward, appears to improve both exploration and representation learn-
ing. The question we tackle in this paper is how to sculpt the stream of experience—how
to adapt the learning system’s behavior—to optimize the learning of a collection of value
functions. A simple answer is to compute an intrinsic reward based on the statistics of each
auxiliary learner, and use reinforcement learning to maximize that intrinsic reward. Unfor-
tunately, implementing this simple idea has proven difficult, and thus has been the focus of
decades of study. It remains unclear which of the many possible measures of learning would
work well in a parallel learning setting where environmental reward is extremely sparse or
absent. In this paper, we investigate and compare different intrinsic reward mechanisms
in a new bandit-like parallel-learning testbed. We discuss the interaction between reward
and prediction learners and highlight the importance of introspective prediction learners:
those that increase their rate of learning when progress is possible, and decrease when it is
not. We provide a comprehensive empirical comparison of 14 different rewards, including
well-known ideas from reinforcement learning and active learning. Our results highlight a
simple but seemingly powerful principle: intrinsic rewards based on the amount of learning
can generate useful behavior, if each individual learner is introspective.

1. Balancing the Needs of Many Learners

Learning about many things can provide numerous benefits to a reinforcement learning
system. Adding many auxiliary losses to a deep learning system can act as a regularizer
on the representation, ultimately resulting in better final performance in reward maximiza-
tion problems, as demonstrated with Unreal (Jaderberg et al., 2016). A collection of value

(©2020 AI Access Foundation. All rights reserved. 12
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functions encoding goal-directed behaviors can be combined to generate new policies that
generalize to goals unseen during training (Schaul et al., 2015). Learning in hierarchical
robot-control problems can be improved with persistent exploration, given call-return ex-
ecution of a collection of subgoal policies or skills (Riedmiller et al., 2018), even if those
policies are imperfectly learned. In all these examples, a collection of general value functions
(see Sutton et al., 2011) is updated from a single stream of experience. The question we
tackle in this paper is how to sculpt that stream of experience—how to adapt the learning
system’s behavior—to optimize the learning of a collection of value functions.

One answer is to simply maximize the environmental (extrinsic) reward. This was the
approach explored in Unreal and it resulted in significant performance improvements in
challenging visual navigation problems. However, it is not hard to imagine situations where
this approach would be limited. In general, the reward may be delayed and sparse: what
should the agent do in the absence of external (environmental) motivations? Learning
reusable knowledge such as skills (Sutton et al., 1999) or a model of the world might result
in more long-term reward. Such auxiliary learning objectives could emerge automatically
during learning (Silver et al., 2017). Most agent architectures, however, include explicit skill
and model learning components. It seems natural that progress towards these auxiliary
learning objectives could positively influence the agent’s behavior, resulting in improved
learning overall.

Learning many value functions off-policy from a shared stream of experience—with func-
tion approximation and an unknown environment—provides a natural setting to investigate
no-reward intrinsically motivated learning. The basic idea is simple. The aim is to accu-
rately estimate many value functions, each with an independent learner—where there is no
external reward signal. Directly optimizing the data collection for all learners jointly is dif-
ficult because we cannot directly measure this total learning objective and because actions
have an indirect impact on learning efficiency. There is a large related literature in active
learning (Cohn et al., 1996; Balcan et al., 2009; Settles, 2009; Golovin and Krause, 2011;
Konyushkova et al., 2017) and active perception (Bajcsy et al., 2018), from which to draw
inspiration for a solution but which do not directly apply to this problem. In active learning
the agent must sub-select from a larger set of items to choose which points to label. Active
perception is a subfield of vision and robotics. Much of the work in active perception has
focused on specific settings—namely visual attention (Bylinskii et al., 2015), localization in
robotics (Patten et al., 2018) and sensor selection (Satsangi et al., 2018, 2020)—or assumes
knowledge of the dynamics of the world (see Bajcsy et al., 2018).

An alternative strategy is to formulate our task as a reinforcement learning problem.
We can use an intrinsic reward, internal to the learning system, that approximates the total
learning across all learners. The behavior can be adapted to choose actions in each state
that maximize the intrinsic reward, towards the goal of maximizing the total learning of the
system. The choice of intrinsic rewards can have a significant impact on the sample efficiency
of such intrinsically motivated learning systems. This paper provides the first formulation
of parallel value function learning as a reinforcement learning task. Fortunately, there are
many ideas from related areas that can inform our choice of intrinsic rewards.

Rewards computed from internal statistics about the learning process have been explored
in many contexts over the years. Intrinsic rewards have been shown to induce behavior that
resembles the development stages exhibited by young humans and animals (Barto, 2013;

13
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Chentanez et al., 2005; Oudeyer et al., 2007; Lopes et al., 2012; Haber et al., 2018). Internal
measures of learning have been used to improve skill or option learning (Chentanez et al.,
2005; Schembri et al., 2007; Barto and Simsek, 2005; Santucci et al., 2013; Vigorito, 2016),
and model learning (Schmidhuber, 1991b, 2008). Most recent work has investigated using
intrinsic reward as a bonus to encourage additional exploration in single task learning (Itti
and Baldi, 2006; Stadie et al., 2015; Bellemare et al., 2016; Pathak et al., 2017; Hester
and Stone, 2017; Tang et al., 2017; Andrychowicz et al., 2017; Achiam and Sastry, 2017;
Martin et al., 2017; Colas et al., 2018; Schossau et al., 2016; Pathak et al., 2019). Few have
investigated the impact of making these internal measures the main objective of learning
(Berseth et al., 2019), however previous studies have noted that intrinsic reward is useful
even in single-task problems with a well-defined external goal (Bellemare et al., 2016).

It remains unclear, however, which of these measures of learning would work best in our
no-reward setting. Most prior work has focused on providing demonstrations of the utility of
particular intrinsic reward mechanisms. One study focused on a suite of large-scale control
domains with a single scalar external reward (Burda et al., 2018), comparing different
learning systems that use an intrinsic reward based on model-error as an exploration bonus.
A large study has been conducted on learning progress measures for curriculum learning for
neural networks (Graves et al., 2017), where the goal is to learn from which task to sample
a dataset to update the parameters. Variants of their measures are related to the intrinsic
rewards explored in this paper, but their setting differs substantially in that learning is
offline from batch supervised learning datasets and the underlying problems are stationary.
To the best of our knowledge, there has never been a broad empirical comparison of intrinsic
rewards for the online multi-prediction setting with non-stationary targets.

A computational study of intrinsic rewards is certainly needed, but tackling this problem
with function approximation and off-policy updating is not the place to start. Estimating
multiple value functions in parallel requires off-policy algorithms because each value func-
tion is conditioned on a policy that is different than the exploratory behavior used to
select actions. In problems of moderate complexity, these off-policy updates can introduce
significant technical challenges. Popular off-policy algorithms like Q-learning and V-trace
can diverge with function approximation (Sutton and Barto, 2018). Sound off-policy algo-
rithms exist, but require tuning additional parameters and are relatively understudied in
practice. Even in tabular problems, good performance requires tuning the parameters of
each component of the learning system—a complication that escalates with the number of
value functions. Finally, the agent must solve the primary exploration problem in order to
make use of intrinsic rewards. Finding states with high intrinsic reward may not be easy,
even if we assume the intrinsic reward is reliable and informative. To avoid these many
confounding factors, the right place to start is in a simpler setting.

In this paper, we investigate and compare different intrinsic reward mechanisms in a
new bandit-like parallel learning testbed. The testbed consists of a single state and multiple
actions. Each action is associated with an independent scalar target to be estimated by
an independent prediction learner. An ideal behavior policy will focus on actions that
generate the most learning across the prediction learners. However, the overall task is
partially observable, and learning is never done. The targets change without an explicit
notification to the agent, and the task continually changes due to changes in action selection
and learning of the individual prediction learners. Different configurations of the target
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distributions can simulate unlearnable targets, non-stationary targets, and easy-to-predict
targets. Our new testbed provides a simple instantiation of a problem where introspective
learners should help achieve low overall error. An introspective prediction learner is one
that can autonomously increase its rate of learning when progress is possible, and decrease
learning when progress is not—or cannot—be made.

This paper summarizes a comprehensive empirical comparison of different intrinsic re-
ward mechanisms, including several ideas from reinforcement learning and active learn-
ing. Our computational study of learning progress highlighted a simple principle: intrinsic
rewards based on the amount of learning (e.g., Bayesian Surprise and simple change in
weights) can generate useful behavior if each individual learner is introspective. Across
a variety of problem settings we find that the combination of introspective learners and
simple intrinsic rewards was most reliable, performant, and easy to tune. We conclude
with a discussion about how these ideas could be extended beyond our one-state prediction
problem to drive behavior in large-scale problems where off-policy learning and function
approximation are required.

2. Problem Formulation

In this section we formalize a testbed for comparing intrinsic reward using a stateless pre-
diction task and independent learners. This formalism is meant to simplify the study of
balancing the needs of many learners to facilitate comprehensive comparisons.

We formalize our multiple-prediction learning setting as a collection of independent,
online supervised learning tasks. On each discrete time step t = 1,2, 3, ..., the behavior
agent selects an action A; € {1,..., N} corresponding to task i € {1,..., N}, causing a
target signal to be sampled from an (unknown) target distribution, ¢;; ~ 0(t, ), where Ct ;
denotes the random variable with distribution é(¢,4). This distribution (¢, ) is indexed by
time to reflect that it can change on each time step; this enables a wide range of different
target distribution to be considered, to model this non-stationary, multi-prediction learning
setting. We provide the definition we use in this work later in this section, in Equation (3).

Associated with each prediction task is a simple prediction learner that maintains a
real-valued vector of weights w;;, to produce an estimate, ¢;; € R, of the expected value
of the target, ¢ ; ~ E[Cy;]. On a step where task i is selected, wy; could be updated using
any standard learning algorithm. In this work, we use a 1-dimensional weight vector, and
so the update is a simple delta-rule (least-mean-squares (LMS) learners):

Wit 4 Wi + Q304 (1)

where oy ; is a scalar step-size parameter and d;; o cti — we; is the prediction error of
prediction learner 7 on step t. On a step where task 4 is not selected, wy; is not updated,
implicitly setting w41, to wy ;.

1. To clearly separate the action selected by the agent and the prediction task, we use A: to denote the
action selected at time ¢ and ¢ to denote prediction task. A; is uppercase to indicate it is a random
variable, with lowercase a corresponding to an actual action selected. In our setting, taking action a
corresponds to observing data for task ¢, and so there is an equivalence between the actions and tasks.
More generally, such as in the full reinforcement learning setting, this is not the case; for extensions on
this work, it is useful to clearly delineate between actions and prediction tasks.

15



ADAPTING BEHAVIOR VIA INTRINSIC REWARD: A SURVEY AND EMPIRICAL STUDY

The primary goal is to minimize the Mean Squared Error up to time ¢ for all of the NV
learners:

1 N
> N 2 (i — E[Cr.q))>. (2)
k=1 =1

MSE(t) &

~ | =

The behavior agent does not get to observe this error, both because it only observes one of
the targets c;; on each step, rather than all NV, and because that target is a noisy sample
of the true expected value E[C};]. The agent can nonetheless attempt to minimize this
unobserved error.

In order to minimize Equation (2), we must devise a way to choose which prediction
task to sample. This can be naturally formulated as a sequential decision-making problem,
where on each time step ¢, the behavior agent chooses an task i (corresponding to action
A;), resulting in a new sample of ¢;;, and an update to w;. In order to learn a preference
over actions we associate an intrinsic reward R, € R with each action selection, and thus
with each prediction task. We investigate different intrinsic rewards. Given a definition of
the intrinsic reward, we can use a bandit algorithm suitable for non-stationary problems;
we discuss two options below in Section 2.1.

The targets for each prediction learner are intended to replicate the dynamics of targets
that a parallel auxiliary task learning system might experience, such as sensor values of a
robot. To simulate a range of interesting dynamics, we construct each 6(¢,7) as a Gaussian
distribution with drifting mean:

0t i) = N (i, 02;) (3)
for pury1, < Hi_5050) (1,0 +N(0, 531))

where 1;; € R, UZZ- € RT controls the sampling noise, ftzﬂ- € RT controls the rate of drift
and II_50 50 projects the drifting ji; back to the range [—50,50] to keep it bounded.
The variance and drift are indexed by t because we explore settings where they change
periodically. These changes are not communicated to the behavior agent, and the individual
LMS learners are prevented from storing explicit histories of the targets. The purpose of
this choice was to simulate partial observability common in many large-scale systems (e.g.,
Sutton et al., 2011; Modayil et al., 2014; Jaderberg et al., 2016; Silver et al., 2017). Given
our setup, both prediction learners and the behavior learner would do well to treat their
respective learning tasks as non-stationary and track rather than converge (Sutton et al.,
2007), as long as 5152,1' is greater than zero. Each sample c;; ~ 0(t,i), and p; is bounded
between [—50,50], and p; is updated on each step ¢ regardless of which action is selected.
Our formalism is summarized in Figure 1.

2.1 Non-stationary Bandit Algorithms for Prediction Learning

We do not focus on the bandit formalism itself nor bandit algorithms in this work. Rather,
our goal is to investigate intrinsic rewards and their utility for learning multiple predictions,
in the simplest setting in which we can obtain meaningful insights: a bandit-like setting. Our
choice of bandit algorithm, therefore, is simply to facilitate this investigation, rather than
investigate the properties of the bandit algorithms themselves. We use two different bandit
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Figure 1: Our parallel multi-prediction learning formulation.

algorithms—a Gradient Bandit and an extension of Dynamic Thompson Sampling (DTS)—
S0 as to ensure our conclusions are not due primarily to the choice of bandit algorithm. We
describe these two algorithms below, as well as the reasons for choosing them.

We cannot simply pick any bandit algorithm, as our prediction learning setting differs
from the usual multi-armed bandit setting in at least two ways. First, the distributions of
the targets are non-stationary. Non-stationary learning problems have been studied under
dynamic bandits, also called restless bandits. The general problem setting is known to be
hard, but under some restrictions, some progress can be made. Some algorithms assume
piecewise stationarity, such as Discounted UCB or Sliding-Window UCB (Garivier and
Moulines, 2011), or those with a variation budget, which is used to decide how to restart
stationary bandit algorithms (Besbes et al., 2014). More suitable for our setting is work
assuming restrictions on drift, such as Brownian motion, including State-Oblivious UCB
(Slivkins and Upfal, 2008) and Dynamic Thompson Sampling (DTS) (Gupta et al., 2011),
or State-Oblivious UCB (Slivkins and Upfal, 2008) and the Gradient Bandit (Sutton and
Barto, 2018).

Second, our objective is to minimize error across all learners, but we only see an intrinsic
reward corresponding to the target we selected for that step. The need to minimize error
across all learners—our second issue—is related to partial monitoring (see Lattimore and
Szepesvari, 2019 for an overview). In partial monitoring, the learning system only receives
limited feedback about the true loss incurred. For our prediction setting, the true loss is
the MSE over all the predictions. The feedback is only about the prediction for the action
selected, and, depending on the intrinsic reward, it is a noisy and indirect measure of the
MSE for that prediction. Partial monitoring encompasses a wide range of problems, but it
is difficult to develop algorithms and regret bounds for the fully general setting. To the best
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of our knowledge, current algorithms rely on finite outcomes and involve estimating distri-
butions over outcomes. Given the difficulty of even that restricted setting, the additional
complication of non-stationarity does not as yet seem to have been tackled.

Fortunately, for our prediction setting, the structure of our problem (described in Section
2) admits a simple approach that performs well in practice: to err on the side of taking
an action periodically. Selecting any action is not detrimental, as it provides information
about one of the targets. Particularly in a non-stationary setting, each action should be
taken periodically, to check if expected reward estimates remain accurate. One reasonable
strategy is to obtain a distribution over the actions—mnot find the single best action—and
sample proportionally to that distribution, as is done by the Gradient Bandit. For DTS,
we prevent the variance for the Bayesian estimate for each action from dropping below a
minimum level, both to account for non-stationarity and to increase the probability that an
action will be selected. We find these simple choices to be sufficient for reasonable behavior
in our multi-prediction problem setting.

We now describe these two bandit algorithms. The Gradient Bandit, specified in Sutton
and Barto (2018, Section 2.8), attempts to maximize the expected average reward by mod-
ifying a vector of action preferences h € RY—indexed by action—based on the difference
between the reward and average reward baseline:

hi(a) + a(Riy1 — 7)(1 = m(a)) if Ay = a;
hua(a) { hi(a) — a(Rti —7)m(a) otherwise.

where 7 € R is the average of all the rewards up to time ¢, maintained using an unbiased
exponential average (introduced by Sutton and Barto (2018) [Eq. 2.9]), and 7 and hg(a)
are both initialized to zero. Actions are selected probabilistically according to a softmax
distribution which converts the preferences to probabilities:

A def eht(@)
P?"{ t—a}—’ﬂ't(a)—m

The Gradient Bandit will sample all the actions infinitely often, though if an action pref-
erence is very low then that action will be rarely taken. Notice that the Gradient Bandit
algorithm is similar to policy gradient methods in reinforcement learning.

The second non-stationary bandit algorithm we use is Dynamic Thompson Sampling
(DTS) (Gupta et al., 2011). The algorithm maintains a posterior distribution over the
expectation and variance of the reward for each action, using a Bayesian update. The
posterior variance is increased after each update, to account for non-stationarity in the
rewards. This ensures that, before the posterior is treated like a prior for the next update,
it reflects the uncertainty in that prior information, due to the fact that the environment
is non-stationary. Otherwise, the posterior would concentrate over time. The distribution
over expected rewards is then used in the standard way in Thompson sampling: an estimate
is sampled for each action, and the action with maximal sampled value is executed.

The algorithm we use is an extension of DTS, which was only specified for Bernoulli
rewards. We extended the approach to Gaussian rewards. The behavior agent assumes
the rewards for each action (indexed by a) come from a Gaussian distribution, A (i, 02)
with unknown mean g, and unknown variance o2. The behavior agent maintains Bayesian
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estimates, meaning it maintains a normal-inverse-gamma (NIG) distribution over (jq,02),
which is the conjugate prior for a Gaussian with unknown mean and unknown variance. For
each action, we maintain three parameters for a NIG: (mg, v4, 1), where m,, is an estimate
of the mean, n, maintains a count and v, is an estimate of n, times the variance.”? To
sample a mean p, for each action, to use for action selection, you first sample o2 from an
inverse-gamma with parameters (n,/2,v,) and then sample p, from N(m,,o2/n,). After
picking action A; = a with the largest u,, the behavior agent receives a reward r for taking
that action and updates the estimate for a. These parameters are updated with the standard
Bayesian update:

ng (r—mg)?

~ % ~
va Ua+na+1 2
NgMg + 7
mg <= ————
ng + 1

ng < ng+ 1

in the order specified above. If the problem was stationary, then this is the complete update.

But, the problem is non-stationary, due to the fact that the rewards can change over
time. Notice that the posterior variance for p,, which is % for this NIG, would
gradually shrink to zero as the count n, increases. To account for non-stationarity, the
simple idea behind DTS is to increase this posterior variance after the update in such a way
as to minimally impact the mean. For an NIG, this means that we would modify the count
and variance parameter for the selected action using

— max((1 — a)vgz, 1072)

]
ot

ng < (1 —a)ng

for decay o € (0,1), that behaves like a step-size parameter. The count is decayed by 1 — «,
providing an exponential decay on older samples and providing an upper bound on n, of
> 2o(1—a)t =1/a. The v; is similarly decayed. The max with 1072 is to ensure v, never
goes to zero, and so that the variance remains at a minimal level. The new variance of p,,

according to the NIG after decaying v2!'d and n2l9, is a strict increase
Vg B (1 — a)vold B pold
ma2—na (=o)L= Qg2 —ng®) ~ (1= a)(mg")?/2 — ng
Ugld

>
(g7 /2 = gl

where we assume n%'4 > 2. The mean value mg, though, remains unchanged when we
increase the posterior variance. During the standard update to m, above, however, notice
that is resembles an exponential moving average because older values are multiplied by n,,
using ngomg. The algorithm requires an initial mean estimate m, = my—a good choice being
a large positive value for mg to encourage exploration—with the initial estimate v, = m3.

2. A NIG typically has four parameters. For us, the parameter typically called «, which is used to normalize
Uq, exactly equals n4/2, so we do not maintain it explicitly. It is only used to sample the action, using
inverse-gamma parameters (o, vq) = (14 /2,va).
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3. Simulating Parallel Prediction Problems

We consider several prediction problems corresponding to different settings of fzi and afﬂ-
to define task distribution 6(t,4) in Equation (3). We introduce three problems, with target
data simulated from those problems show in Figure 2.

The Drifter-Distractor problem has four targets, one for each action: (1) two (stationary)
high-variance targets as distractors (2) a slowly drifting target and (3) a constant target,
with 5152,1‘ and azi for each of these types in Table 2. A distractor target is simply a noisy,
stationary target: the variance is high enough such that an agent might oversample the
target even after the mean estimate is accurate. This is inspired by the noisy TV problem
(Schmidhuber, 2008).

The Switched Drifter-Distractor problem is similar to Drifter-Distractor except, after
50,000 time-steps the associations between the actions and the target distributions are
permuted as detailed in Table 2. To do well in this problem, the learning system must be
able to respond to changes. In addition, in phase two of this problem, two targets exhibit
the same drift characteristics; the behavior agent should prefer both actions equally.

The Jumpy Fight-Action problem is designed to require sampling different prediction
tasks with different frequencies. In this problem, there are two drifters and three distractors,
with different drifting rates and different amounts of sampling variance, as summarized in
Table 3. The best approach is to select several actions probabilistically depending on their
drift and sampling variance. We add an additional target type, that drifts more dramatically
over time, with periodic shifts in the mean:

pe+1,6 < T_5050) (ftt+1,6) (4)
where fii116 < pt6 + ¢:Bernoulli(0.005)N (10, 1.0)

and where indicator ¢y = 1 and (; € {—1,1} switches sign if |fis+1,6] > 50. The sample
from a Bernoulli ensures the jumps are rare, but the large mean of the Gaussian makes
it likely for this jump to be large when it occurs, as shown in Figure 2. This problem
simulates a prediction problem where the target changes by a large magnitude in a semi-
regular pattern, but then remains constant. This could occur due to changes in the world
outside the prediction learner’s control and representational abilities.

target type 4o o &2
constant uniform(-50,50) 0 0
distractor 0 1 0
drifter 0 0 0.1

Table 1: These parameters define each target distribution used in the Drifter-Distractor
and the Switched Drifter-Distractor problems. The parameter g specifies the initial mean
of each target, o2 is the sampling variance, and &2 is the drift variance.
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Figure 2: Each subplot shows the target data generated by one run of the problem, with
Drifter-Distractor (left), Switched Drifter-Distractor (middle), and Jumpy Eight-Action
Problem (right).

phase 2

target 1 distractor drifter

target phase 1 —
%

target 2 drifter — distractor
%
_>

target 3  constant drifter
target 4 distractor constant

Table 2: The target distributions in the Switched Drifter-Distractor change part way
through the task. Phase one lasts for 50,000 time steps, then targets are permuted and
remain fixed for the remainder of the experiment (another 100,000 steps). The initial pa-
rameters for each target type—constant, distractor and drifter—are the same as in the
Drifter-Distractor Problem described in Table 1

Task 1 2 3 4 5 7& 8

o? 0.1 05 1.0 0.01 0.01 0.0
£2 0.0 00 00 0.010 005 0.0

Table 3: Parameters defining 0(t,4) for each prediction task in the Jumpy Eight-Action
problem, where o2 is the sampling variance and ¢2 is the drift variance for Equation (3).
The first three prediction tasks have distractor targets; four and five have drifter targets;
and seven and eight have constant targets. The distractors range from low variance to high
variance, and the drifters with low drift to higher drift. Prediction Task 6 is special,
defined in Equation (4).
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4. Introspective Prediction Learners

The behavior of a learning system that maximizes intrinsic rewards relies on the underlying
prediction learning algorithms as well as the definition of the intrinsic reward. In this section
we introduce a distinction between two categories of learners, for which behavior can be
substantially different: introspective and non-introspective learners. We consider a learner
to be introspective if the algorithm can modulate its own learning without help from an
external process. More concretely, an introspective learner stops updating if it cannot make
progress. For example, in the case of prediction learning, an introspective learner would
regulate its updates to mitigate noise in its prediction targets. A non-introspective
learner, on the other hand, will continually update regardless of learning progress.

In this paper we consider two basic settings representing non-introspective and intro-
spective learners, used as prediction learners in our multi-prediction problem. We use basic
LMS learners with a constant step-size parameter as our non-introspective learner. With
a constant step-size parameter, the LMS algorithm will always try to adapt its estimates
toward the sample targets on each time step. It does not matter if the target exhibits high
variance—say centered mean zero—or if the target is actually constant; the LMS algorithm
will continue to adapt its estimates attempting to track each target in the online setting.
Consider how a constant global step-size parameter would work on our Drifter-Distractor
Problem discussed above. If the step-size parameter value is too large for the distractor
target, then the prediction learner will continually make large updates due to the sampling
variance, never converging to low error. If the step-size parameter is too small for the
tracking target, then the prediction learner’s estimate will often lag, causing high-error. A
constant global step-size parameter cannot balance the need to track the drifter targets,
and the need to learn slowly on the distractor targets.

To create a simple introspective learner for our setting, we simply combine our LMS
predictors with a step-size adaption method called Autostep. Autostep is a simple meta-
learning algorithm that adapts the step-size parameter of each LMS learner over-time (Mah-
mood et al., 2012). The basic idea behind Autostep is to increase the step-size parameter
when learning is progressing, and lower the step-size parameter value when learning is
not progressing. It does so by keeping a trace, h € R, of the previous prediction errors.
Roughly speaking, if the error changes sign often then the predictions are not improving
and the step-size parameter value should be lowered. If the error is mostly of the same sign,
then the step-size parameter value should not be reduced. Autostep has one key hyper-
parameter, the meta learning-rate: this controls how quickly the algorithm changes the
step-size parameter (a)). The full pseudocode, specialized to our stateless tracking tasks,
is given below.? Note that Autostep changes the step-size parameter with a multiplica-
tive exponential, which allows geometric or rapid changes to the LMS learners step-size
parameter.

To give some intuition about how Autostep changes the step-size parameter, consider
what happens when we apply it to the Drifter-Distractor Problem in Figure 3. Here we
simply plot « over time for four LMS learners—one for each target—with each step-size

3. Our implementation of Autostep clips the step-size in step 3, given by Degris and White (2020), and so
differs slightly from the form given by Mahmood et al. (2012).
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Algorithm 1 : The Autostep algorithm specialized to stateless prediction

K is the meta learning-rate parameter

n and h are scalar memory variables initialized to 1 and 0

J is the prediction error and « (initialized to 1.0) the step-size parameter of predictor i

1: procedure AUTOSTEP(J)

2: n + max(|6h|, n + gz (|0h] — n))
3: a < min(«a exp(/ﬁ%)7 0.5)

4: h < h(l —a)+ad

parameter adapted by Autostep. We used the Gradient Bandit and Weight Change reward *
to generate the behavior. The initial a of each LMS learner were set to one. The lines for
the constant target (blue) and drifter target (green) are overlapping, and the lines for the
distractor targets (red and black) are overlapping. Autostep progressively decreases « for
the distractor targets, as the updates oscillate around zero. The update magnitude (or error)
for the constant target goes to zero, and so Autostep stops changing a. This makes sense:
why change the « if the prediction is perfect. Autostep keeps the o high for the learner
estimating the drifter target, because continual progress is possible. On each time step
the LMS learner moves its estimate towards the recent sample and most of these updates
are in the same direction, at least over a recent window of time. In terms of prediction
performance, Autostep significantly improves tracking, enabling different update rates for
different prediction learners and reducing o on unlearnable targets or noisy targets once
learning is complete—as you will see in our main experiments below.

5 o (constant target)
o
E o (drifter target)
o
3
o 25
N .
@ o (distractor target)
o
g
n 0 o (distractor target)

10000 50000

Figure 3: Sample run showing how Autostep changes the step-size parameters (a) over
time with Weight Change reward. The lines for the constant target (blue) and drifter
target (green) are overlapping, and the lines for the distractor targets (red and black) are
overlapping.

We experimented with other step-size adaption methods, including AdaDelta and RM-
SProp, but the results were qualitatively similar. In this study we chose Autostep because
(a) it was specifically designed for non-stationary, incremental, online tracking tasks like

4. The details of the intrinisic reward function used to generate the data do not matter for the purpose of
the this experiment. Nevertheless, the Weight Change reward will be defined in the next section.
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ours, (b) it uses a simple and easy to interpret update rule, and (c) there is a long literature
demonstrating the practical utility of this method dating back to its origins in the IDBD
method (Sutton, 1992).

The choice of using meta-learning to obtain introspective learners not only works well
in our multi-prediction tasks, but also should scale to larger tasks with function approxi-
mation in future work. Step-size adaption methods like Adam and RMSProp can speed up
training in neural networks and make learning more robust to non-stationarity. In online
reinforcement learning, extensions of Autostep have shown to improve prediction and con-
trol performance with function approximation (Kearney et al., 2018; Giinther et al., 2020).
We discuss these extensions, and how our results go beyond stateless tracking at the end of
the paper. It is worth emphasizing that introspective learners are not optimal learners and
that they are in fact the most common type of agent used in deep reinforcement learning.
The main criterion is that an introspective agent should regulate its own updates based on
an internal measure of learning progress.

5. Intrinsic Rewards for Multi-prediction Learning

Many learning systems draw inspiration from the exploratory behavior of humans and an-
imals, uncertainty reduction in active learning, and information theory—and the resulting
techniques could all be packed into the suitcase of curiosity and intrinsic motivation. In
an attempt to distill the key ideas and perform a meaningful yet inclusive empirical study,
we consider only methods applicable to our problem formulation of multi-prediction learn-
ing. Although few approaches have been suggested for off-policy multi-task reinforcement
learning—approaches by Chentanez et al. (2005); White et al. (2014) as notable exceptions—
many existing approaches can be used to generate intrinsic rewards for multiple, independent
prediction learners (see the excellent summary by Barto, 2013). We first summarize meth-
ods we evaluate in our empirical study. The specific form of each intrinsic reward discussed
below is given in Table 4, with italicized names below corresponding to the entries in the
table. We conclude by mentioning several rewards we did not evaluate, and why.

Several intrinsic rewards are based on violated expectations, or surprise. This notion
can be formalized using the prediction error itself to compute the instantaneous Absolute
Error or Squared Error. We can obtain a less noisy measure of violated expectations with
a windowed average of the error, which we call Ezpected Error. Regardless of the specific
form, if the error increases, then the intrinsic reward increases encouraging further sampling
for that target. Such errors can be normalized, such as was done for Unexpected Demon
Error (White et al., 2014), to mitigate the impact of noise in and magnitude of the targets.

Another category of methods focus on learning progress, and assume that the learn-
ing system is capable of continually improving its policy or predictions. This is trivially
true for approaches designed for tabular stationary problems (Chentanez et al., 2005; Still
and Precup, 2012; Little and Sommer, 2013; Meuleau and Bourgine, 1999; Barto and Sim-
sek, 2005; Szita and Lorincz, 2008; Lopes et al., 2012; Schossau et al., 2016). The most
well-known approaches for integrating intrinsic motivation make use of rewards based on
improvements in (model) error: including Error Reduction (Schmidhuber, 1991b, 2008), and
model Error Derivative approach (Oudeyer et al., 2007). Improvement in the value function
can also be used to construct rewards, and can be computed from the Positive Error Part
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(Schembri et al., 2007), or by tracking improvement in the value function over all states
(Barto and Simsek, 2005). As our experiments reveal, however, intrinsic rewards requiring
improvement can lead to less desireable behavior in non-stationary tracking problems.

An alternative to learning progress is to reward amount of learning. This does not
penalize errors becoming worse, and instead only measures that estimates are changing: the
prediction learner is still adjusting its estimates and so is still learning. Bayesian Surprise
(Itti and Baldi, 2006) formalizes the idea of amount of learning. For a Bayesian learner,
which maintains a distribution over the weights, Bayesian Surprise corresponds to the KL-
divergence between this distribution over parameters before and after the update. This
KL-divergence measures how much the distribution over parameters has changed. Bayesian
Surprise can be seen as a stochastic sample of Mutual Information, which is the expected
KL-divergence between prior and posterior across possible observed targets. We discuss this
more in Section 6. Other measures based on Information Gain have been explored (Still and
Precup, 2012; Little and Sommer, 2013; Achiam and Sastry, 2017; de Abril and Kanai, 2018;
Berseth et al., 2019). In the tabular case different variations of information-gain reward
perform similarly to Bayesian Surprise empirically (Little and Sommer, 2013).

Though derived assuming stationarity and Bayesian learners, we provide an approach to
approximate Bayesian Surprise for our non-stationary setting with non-Bayesian learners.
The prediction learner’s main objective is to estimate an unknown mean. A Bayesian learner
maintains a distribution over this unknown mean, based on the chosen distribution for the
targets. A simple choice is to use a Gaussian distribution for the targets, with an unknown
mean but a known variance, giving a Gaussian conjugate prior. The variance is not actually
known; we maintain an estimate vgy) of the variance of the target Var[C;].> The posterior
uses the learner’s mean estimate and the posterior variance for a Bayesian update, which
is proportional to vgy) /t. Effectively, the approximate Bayesian surprise is maintaining a
posterior, but uses the learners mean estimate instead of its own. To additionally account
for non-stationarity, we use the same idea behind DTS: increasing the posterior variance
after each update (see Table 4 for the formula).® We make no claims that this is the ideal
strategy to approximate to Bayesian Surprise for non-Bayesian learners in non-stationary
problems; it is rather a reasonable simple strategy in an effort to include it as best as
possible in our experiments.

We can additionally consider non-Bayesian strategies for measuring amount of learning,
including those based on change in error (Error Derivative), Variance of Prediction, Uncer-
tainty Change—how much the variance in the prediction changes—and the Weight Change,
which we discuss in more depth in the next section. Note that several learning progress
measures can be modified to reflect amount of learning by taking the absolute value, and
so removing the focus on increase rather than change (this must be done with care as we
likely do not want to reward model predictions becoming worse, for example).

5. Typically, a Bayesian learner would simply maintain a distribution over both the mean and variance, if
they are both unknown. Our goal here, though, is to approximate Bayesian surprise for a non-Bayesian
learner. Since the learner only estimates the mean, we assume that the corresponding Bayesian learning
can only maintain a distribution over the mean.

6. The count n is decayed by 1 — 3, and the variance is prevented from decreasing below 1072, To keep the
update simpler, we assume the initial variance for the prior is very large—which is in fact reasonable as
it implies no prior knowledge about the unknown mean. Therefore the initial variance can be omitted
in the posterior variance, as it has a negligible affect.
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Reward Name Ry

RN 2 1 2
Error Derivative ﬁ Z 6t_j_m~ — m Z 5t_jﬂ-
(Oudeyer et al., 2007) j=0 §=0

7 < n < t, where n specifies the length of the window and 7 the amount of overlap

Expected Error EB

)

@'B =(1- B)ét_uﬂ + [0y, is the exponentially weighted average, with 0 < 8 < 1

Step-size Change |1, — v
Error Reduction |0e—1.4] — 02,4
(Schmidhuber, 1991a)

Squared Error 521‘

(Gordon and Ahissar, 2011)

1
Bayesian Surprise - log, (

(Itti and Baldi, 2006) 2

V= max(vt(y)/nt, 10~3) where n; = (1—B)n;_1+1. Note vy,; is the posterior variance es-

Vi ) S s (Gr-1,i — &3)*

1
Vi1, 204 2

timate and vt(y) an estimate of the target variance Var[Cy ;] obtained using an exponential

average variant of Welford’s algorithm: vlgy) =(1-0) f@l + B(cri — Ci—14)(cei — Cri)-

O
Unexpected Demon Error .ttt
(White et al., 2014; White, 2015) Var[0;] + €

€ is a small constant, set to 1079 in our experiments. Var[é;] is a standard sample variance.

Uncertainty Change |Var[é;—1 ;] — Var[é: ]|
Variance of Prediction Var(é; ;]

where variances Var[¢; ;] are estimated using an exponential average variant of Welford’s
algorithm: v; = (1 — ,3)1}15_1 + B(ét,i — Et—l,i)(ét,i — Et,i) for 0 < B < 1, with Ctj =
(1 — B)¢—1,i + Bér; the exponential average of the predictions.

Weight Change lwei — w14l = aelléei — é—1.il
Absolute Error* |0t

(Schmidhuber, 1991b)

Positive Error Part* max(d;,0)

(Mirolli and Baldassarre, 2013)

Variance of Error* Var|[dy ;]

Uncertainty Reduction* Var[é,—1,] — Var[¢ ;]

Figure 4: Intrinsic rewards investigated in this work. Separate statistics are maintained for
each task i, and only updated when task i is selected by the behavior agent. Starred rewards
performed poorly and where excluded from the results. Sample averages are computed using
an unbiased exponentially-weighted average introduced by Sutton and Barto (2018)[Eq 2.9].
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There are several strategies which we omit, because they would (1) result in uniform
exploration in our pure exploration problem, (2) require particular predictions about state
to drive exploration, (3) are designed for the offline batch setting, or (4) are based on
statistics of the targets rather than the statistics generated by the prediction learners.
Count-based approaches (Brafman and Tennenholtz, 2002; Bellemare et al., 2016; Sutton
and Barto, 2018) are completely unsupervised, rewarding visits to under-sampled states or
actions—resulting in uniform exploration in our problem. Though count-based approaches
are sometimes used in learning systems, they reflect novelty rather than learning progress
or surprise (Barto et al., 2013).

The second set of strategies we omit are methods that use a model to encourage ex-
ploration (Schmidhuber, 2008; Chentanez et al., 2005; Stadie et al., 2015; Pathak et al.,
2017, 2019) such as by using Bayesian Surprise for next-state prediction (Houthooft et al.,
2016). Subgoal discovery systems (Kulkarni et al., 2016; Andrychowicz et al., 2017; Péré
et al., 2018) define rewards to reach particular states. Empowerment and state control
systems are explicitly designed to respect and use the fact that some tasks or regions of the
state-space cannot be well learned. Often such systems use only unsupervised signals relat-
ing to statistics of the exploration policy, ignoring the statistics generated by the learning
process itself (Karl et al., 2017). Like count-based approaches, unsupervised measures like
this would induce uniform exploration in our stateless task.

Curriculum learning—Ilearning what task to sample next—is closely related to our multi-
prediction problem. Graves et al. (2017) introduce several measures for batch curriculum
learning that are related to the ideas underlying the intrinsic rewards discussed above.
Most related, Prediction Gain corresponds to Error Reduction, albeit assuming a batch
of data rather than an online instance. An approximation, called Gradient Prediction
Gain, corresponds to the norm of the gradient; for our setting, this is the same as the
Absolute Error. Several of Graves’ measures require the ability to sample new batches of
data, such as Supervised Prediction Gain and Target Prediction Gain. Finally, Graves et
al. investigated several Complexity Gain measures for the neural networks, measuring KL
divergence between the posterior and a learned prior. The prior is updated towards the
previous posterior, and so the resulting KL is related to Bayesian surprise. The KL itself,
though, is not used: rather, the gain in complexity is measured by looking at the difference
in two KLs, before and after an update. These approaches require Bayesian learners with a
separate prior distribution to be learned just to measure the complexity. The most simple
and computationally feasible of these is L2 Gain, which is simply the difference in £5 norm
of the weights before and after and update: |lw:;||3 — ||wi—1]|3. This rewards the learning
system for making the weights smaller, and performed worse than random for curriculum
learning (Graves et al., 2017).

Finally, we do not test intrinsic rewards based only on targets, such as variance of the
target. To see why, consider a behavior that estimates the variance for a constant target, and
quickly determines it only needs to select that action a few times. The prediction learner,
however, could have a poor estimate of this target, and may need many more samples to
converge to the true value. Separately estimating possible amount of learning from actual
amount of learning has clear limitations. Note that in the stationary bandit setting, with
a simple sample average learner, the variance of the prediction target provides a measure
of uncertainty for the learned prediction (Audibert et al., 2007; Garivier and Moulines,
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2011; Antos et al., 2008), and has been successfully applied in education applications (Liu
et al., 2014; Clement et al., 2015). When generalizing to other learners and problem settings,
however, variance of the target will no longer obviously reflect uncertainty in the predictions.
We therefore instead directly test intrinsic rewards that measure uncertainty in predictions,
including Uncertainty Change and Variance of Prediction.

6. Optimal Behavior for Multi-prediction Learning, and Approximations

One natural question given this variety of intrinsic rewards, is if there is an optimal ap-
proach. In some settings, there is in fact a clear answer. In a stationary, stateless problem
where the goal is to estimate means of multiple targets, it has been shown that the behavior
agent should take actions proportional to the variance of each target to obtain minimal re-
gret (Antos et al., 2008). For a stationary setting, with state, an optimal approach would be
to take actions to maximize Information Gain—the reduction in entropy after an update—
across learners (Orseau et al., 2013). We therefore use Information Gain as the criterion to
measure optimal action selection. In this section, we describe how to maximize Information
Gain in an ideal case, and how to approximate it otherwise. The goal of this section is
to provide intuition and motivation, as we do not yet have theoretical claims about the
approximation strategies.

We first show that Information Gain is maximized when maximizing expected Bayesian
surprise, assuming Bayesian learners. A Bayesian learner updates weights w for a parame-
terized distribution p,, on the parameters 6 needed to make the prediction ¢. The parameters
can be seen as a random variable, ©, with distribution p,,. The goal is to narrow this dis-
tribution around the true parameters * that generate c—that is, ¢ is sampled from p(c|6*).
After seeing each new sample, the posterior distribution over parameters is computed using
the previous distribution p,,, (6) and the new sample, ¢, using the update

e - PCilOpu (0)
pwt+1(0) = Pw, (9| t) pwt(Ct) .

The term in the denominator is dependent on w; because py,(ct) = [ p(c|@)pw, (0)d6. A
Bayesian learner is one that uses exact updates to obtain the posterior. We assume the prior
is appropriately specified so that py, (c) # 0, and so p(f|ci,. .., ¢,) has non-zero support as
n — oo almost surely for any stochastic sequence cq, ..., cy,.

Bayesian surprise is defined as the KL divergence between the distribution over param-
eters before and after an update (Itti and Baldi, 2006)

Pwii1 (0)
Puy (0)

The Bayesian surprise is high when taking an action that produces a stochastic outcome
¢; that results in a large change in the prior and posterior distributions over parameters.
The expectation of the KL-divergence over stochastic outcomes, with a Bayesian learner,
corresponds to the Information Gain. This result is well-known, but we explicitly show
it in the following theorem for completeness. Notice that Information Gain defined in
Equation (6) is relative to the model class of our learner, rather than some objective notion
of information content.

KL (Do |[pr) = / Pursr (6) log ao. (5)
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Theorem 1 Assume targets C € C are distributed according to true parameters 6%, with
density pg= : C — oo and event space . For a Bayesian learner, that maintains distribution
Dw, over parameters ©, the mutual information (also called the Information Gain) I(C,0O)
equals the expected KL-divergence between the posterior and prior

I(C,0) = E[KL(pw, ||Pw,)] (6)
where the expectation is over stochastic outcomes C' that produce wyy1 from wy.

Proof

Do~ w( 0)
1(C,0) // « (¢, 0) lo d dedf > Do w, (¢, 0) = po+(¢)puw, (0]c
Po t gpe*( )pwt(e) Po~, t( ) p9(>p t( ’)

/ / Do+ (€)Pw, (8] )log A (0 ’)) dedf > pg«(c) cancels in the fraction

= /pg*(c) [/pwt(éyc) log Pwt(9| )dﬂ] dc 1> pg«(c) does not involve 6

Pu: (0)
- pwt+1(9) _
- /pO* (C) [/pwt+1(0) log Wde} de > Pwiiq (6) - pwt(9’6>
= /pe* (C)KL(pleprt)dC > Equation (5)

= E[KL(Puw,., |[Puwr)]

The weights wy;1 are dependent on the observed c. By definition, this integral gives an
expected KL, across possible observed c. |

To make this more concrete, consider Bayesian surprise for a Bayesian learner with
a simple Gaussian distribution over parameters. For our simplified problem setting, the
weights for the Bayesian learner are w; = (u,07) for the Gaussian distribution over the
parameters 0, which in this case is the current estimate of the mean of the target, ¢;. The
Bayesian surprise is
ot n of + (e — pe41)® 1

KL =lo
(pwt+1 ’ |pwt) g Ut2 2Ut2+1 2

We can make this even simpler if we consider the variance o? to be fixed, rather than
learned. The Bayesian surprise then simplifies to

2 2 2
o o° + (U)t - wt+1)
KL(pw, 1 |[Pw,) = log pois -

N —

202
2 2
g (wt — wt+1) 1
—_ O - —
+ 202 + 202 2
(wt - wt+1)2

This value is maximized when the squared change in weights (w; — w;11)? is maximal.
Therefore, though Bayesian surprise in general may be expensive to compute, for some
settings it is as straightforward as measuring the change in weights.
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Additionally, we can also consider approximations to Bayesian surprise for non-Bayesian
learners. A non-Bayesian learner typically estimates the parameters 6; directly, such as by
maximizing likelihood or taking the maximum a posteriori (MAP) estimate

Or41 = arg mgxp(&]cl, A

Now instead of maintaining the full posterior p(f|c1,...,c;) as py,,,, the prediction learner
need only learn 6,1, directly. Because 0;y; is the mode of the posterior, for many distribu-
tions 6,41 will actually equal a component of w; 1. For the Gaussian example above with
a learned variance, 041 equals the first component of w1, the mean pq 1. For a fixed
variance, 6,11 exactly equals wy1q1. Therefore, the non-Bayesian learner would have the
exact same Information Gain, measured by the Bayesian surprise in (7). Note that MAP
makes the same probabilistic assumptions for the posterior as the Bayesian learner, but is
considered non-Bayesian here because it does not maintain the parameters of this posterior.

This direct connection, for Bayesian and non-Bayesian learners, only exists for a limited
set of distributions. One such class is the natural exponential family distribution over
the parameters. Examples include the Gaussian with fixed variance and mean w; and the
Gamma distribution with a fixed shape parameter and scale parameter w;. Each natural
exponential family has the property that the KL-divergence between two distributions with
parameters w; and wy41 corresponds to a (Bregman) divergence directly on the parameters
(Banerjee et al., 2005). For a Gaussian, this divergence is the squared error normalized
by the variance, as above in Equation (7). Another distribution that has this connection
is a Laplace distribution with mean w; and fixed variance 2b%>. Then the KL-divergence is
K L(Pun s 1Puy) = [0 — wia] /b

This connection is limited to certain posterior distributions, but is true for general
problem settings, even the general reinforcement learning setting. The distributions before
and after an update, p,, and py,,, respectively, are over the parameters of the prediction
learner. These parameters are more complex in settings with state—such as parameters
to a neural network—but we can nonetheless consider exponential family distributions on
those parameters.

This discussion motivates a simple proposal to approximate Bayesian surprise and
Bayesian learners for a general setting with non-Bayesian learners: using weight change
with introspective learners. An introspective learner is not a precise definition, but rather
a scale. A perfectly introspective learner would be a Bayesian learner, or in some cases the
corresponding MAP learner. A perfectly non-introspective learner could be a random up-
date. The more closely the learner approximates the weights to the perfectly introspective
learner, the better its solution and the better the Bayesian surprise reflects the Information
Gain. Further, because the underlying distribution may not be known, we use the change
in weights as an approximation.

For concreteness, consider the following learning system. Each prediction learner is aug-
mented with a procedure to automatically adapt the step-size parameter oy ;, based on the
errors produced over time (d; .x). In this paper we use the Autostep algorithm (Mahmood
et al., 2012) described in Section 4. Recall, that the Autostep algorithm automatically
reduces oy, ; towards zero if the target is unlearnable, increase as; when successive errors
have the same sign, and does not change «y; if the error is zero. We call a learner with
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a fixed step-size parameter, on the other hand, non-introspective, because the learner will
forever chase the noise. The weight change for such a learner would not be reflective of
Information Gain, reflecting instead only the inadequacy of the learner. A learner equipped
with Autostep, on the other hand, like a Bayesian or MAP learner, will stop learning once
new samples provide no new information.

This proposal reflects a simply reductionist philosophy: there should be an explicit
separation in the role of the behavior agent and the role of the prediction learners. The
behavior agent should balance data generation amongst parallel prediction learners. The
prediction learner’s primary responsibility is to estimate their target accurately. If the
behavior agent trusts that the prediction learners are using the data appropriately, then
the learning system can make use of intrinsic rewards based solely on the prediction learner’s
parameters, such as the change in the weights. The alternative is to assume that the intrinsic
rewards must be computed to overcome poor learning. This approach would require the
learning system to recognize when a prediction learner is non-introspective, and decrease the
reward associated with that learner. If the learning system can measure this, though, then
presumably so too can the prediction learner—they are after all part of the same system.
The learner should then be able to use the same measure to adjust its own learning.

In this work, we define the change in weights using the ¢; norm,

Weight Change(w, wit1) = [[we — witalf1- (8)

In our setting, the Weight Change is simply Absolute Error scaled by the step-size pa-
rameter, emphasizing the role that learner capability plays in ensuring an effective reward.

llwe — w1 lr = ouillCri — C—1,4ll1 = il 64 9)
Remark: The above discussion applies to the non-stationary setting, by treating the
non-stationarity as partial observability. We can assume that the world is stationary, driven
by some hidden state, but that it appears non-stationary to the learning system because it
only observes partial information. If a Bayesian prediction learner had the correct model
class, it could still maximize Information Gain. For example, the prediction learner could
know there is a hidden parameter ¢ defining the rate of drift for the mean of the distribution
over C. It could then maintain a posterior over both ¢ and the mean and covariance of
C, based on observed data. As above, it would be unlikely for the prediction learner to
have this true model class. It remains an important open theoretical question how such
approximations influence the behavior agent’s ability to maximize Information Gain.

7. Experimental Setup

We conducted five experiments, across the three problems described in Section 3. The
goal of these experiments is to (a) assess the utility of different intrinsic rewards in our
testbed with many different target distributions, and (b) to understand how the ability of
the underlying prediction learners—introspective or not—impact the results.

Each component of the learning system is modulated by several hyper-parameters that
interact in different ways. The behavior agent (gradient bandit) makes use of a step-size
parameter « and the step-size parameter of the average reward estimate «,. For non-
introspective learners, each prediction learner makes use of a (shared) step-size parameter
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Hyper-parameters

Behavior agent Step-size parameter o €{278, 277, ... |
272}

(Gradient Bandit) Average Reward rate
ar €{107°, 1074, ... , 1071}

Behavior agent Step-size parameter « 6{2*8, 2=7 ...,
272}

(Dynamic Thompson Sampling) Initial mean estimate m, = 100

Non-introspective prediction learner || Step-size parameter

(LMS with a constant step-size parameter) ap {277,276, .., 272}, with oy = q

Introspective prediction learner Meta learning-rate

(LMS with Autostep) k €{0.01, 0.05, 0.1}

Initial step-size ag; = 1.0

Smoothing parameter
(Variance of Prediction, Uncertainty Change, || 6{10_7, 1076, ..., 10_1}
Bayesian Surprise, UDE, Expected Error)
Error Derivative Window n €{1, 5, 10, 25, 100, 1000}
(all combinations s.t. n > 7) T €{1, 5, 10, 25, 100}

Table 5: The hyper-parameter configurations investigated across all three experiments.
There was a total of 50,000 combinations of intrinsic reward function and hyper-parameter
setting, with each of these evaluated using 200 independent runs.

oy, with a; = ay, for all 4. For introspective learners, the step-size adaption method Autostep
uses a meta learning-rate parameter k. Finally, many of the intrinsic rewards have their
own tunable parameters. For example, UDFE uses an exponential average of recent errors
which requires a smoothing parameter 5. Oudeyer’s Error Derivative reward makes use of
two windows of recent errors determined by scalar parameters 17 and 7. In most cases the
key parameters of the prediction learner, behavior agent, and intrinsic reward correspond to
different timescales—slower or faster—and so required noticeably different values. Because
these choices have such a big impact on behavior, as we show, we needed extensive sweeps
and analysis to gain insight into the methods. This warranted investigating each result
deeply, to communicate a nuanced picture.

We extensively sweep all the key performance parameters of every learner and reward
function, to ensure an accurate characterization of performance. Table 5 lists all the param-
eter settings we tested. In some cases we report results for several parameters to gain more
specific insights into the behavior induced by an intrinsic reward. When providing overall
results, we report the best performance of the learning system for each intrinsic reward,
using the best performing parameters across all parameters tested. The best performing
parameters were those that achieved the lowest total RMSE (defined in Equation 2) over
the duration of the experiment, averaged over 200 independent runs. All told we tested
over 50,000 parameter configurations, 200 times each across our three experiments.
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When reporting results under the best parameters, we jointly tune hyper-parameters
for the intrinsic reward and the prediction learners. These hyper-parameters are all part of
the agent; the best hyper-parameters reflect the best the agent could do for that intrinsic
reward and prediction learner. Even under ideal circumstances, many intrinsic rewards can
fail to induce the desired behavior, highlighting issues with the intrinsic rewards or with
the use of non-introspective learners.

Nonetheless, reporting the best parameters does not provide the full picture, and though
we attempt to highlight certain key results for other hyper-parameters, we cannot and do
not attempt to show the full picture. Ideally, we could slice down further, to provide this
nuance. At the extreme, this could consist of showing all possible intrinsic rewards— Error
Derivative with the smallest step-size parameter, Error Derivative with a the largest step-
size parameter, and so on—for each of the many combinations of prediction learner and
behavior agent (with different hyper-parameter settings). This is infeasible’, and part of
the role of the empirical analysis is to summarize key outcomes. We have provided what
we believe are the key slices: different intrinsic rewards (under their ideal circumstances)
with two types of prediction learners (non-introspective and introspective). When intrinsic
rewards fail under idealized scenarios, this reflects how they might perform across hyper-
parameter settings. When intrinsic rewards result in near-ideal behavior, we then dig deeper
to understand if this was an accident of idealized hyper-parameter tuning, or more generally
a characteristic of the intrinsic reward.

We follow the same basic template in the presentation of the results. First we report the
behavior of the best configuration for each reward function using non-introspective learners
(i.e., without Autostep). For a given reward, the behavior is depicted by the probability
of selecting each action over time according to the behavior agent’s policy. This gives us
insight into how each reward drives action selection over time. We then investigate the
RMSE over time, plotting both the error of each predictor and the average. Finally, in
each experiment we investigate the performance sensitivity of several intrinsic rewards with
respect to the tunable parameters. This provides more detailed understanding of how the
parameters interact and helps explain when some intrinsic rewards produce unexpected
behaviors.

As a final note, the behavior plots (showing the action selection probability) do not
include error bars. The error bars over 200 runs are negligibly small, except in some cases
where action probabilities across runs varied significantly for poorly performing intrinsic
rewards (e.g., the selection of the distractor targets with Squared Error reward in Figure
9). The variance across runs, however, can both make the plots difficult to read and hides
how the action probabilities can vary over time within one run. For these plots, therefore,
we instead show a sampling of individual runs. All learning curves (plotting RMSE) include
standard error bars. The error bars in all learning curves for Experiments One and Two
are not visible because they are smaller than the width of the mean line. In Experiment
Three the error bars are visible and the results are significant.

7. To enable the reader to do this on their own, we have provided a python notebook to explore the full
set of data, at http://jair.adaptingbehavior.com .
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8. Experiment One: Drifter-Distractor

We start with our simplest task: the Drifter-Distractor problem. This problem has 1
constant target, 2 distractor targets and 1 drifter target (see Figure 2 in Section 3). This
four-action problem highlights some key features we want out of our learned behaviors.
The behavior should not be continually distracted by noisy or unlearnable things (the two
distractor targets). It should be able to quickly learn about simple targets (the constant
target), and ultimately focus action selection on targets that result in continual learning
progress (the drifter target). We test if such a behavior is learned, with non-introspective
and introspective learners, under different intrinsic rewards.

Let us first be more precise about how the behavior should look in this problem. Consider
the ideal setting, where we have a Bayesian prediction learner. The behavior should try out
all the actions in the beginning. The prediction learner associated with the constant target
should quickly narrow the posterior—quickly reduce its error—and the behavior should
stop selecting the corresponding action. The prediction learners associated with the high-
variance distractor targets will take longer to learn due to the target variance, but eventually
the posterior for these narrows as well and the learner converges to the correct prediction of
zero. Once that happens the behavior should stop choosing the actions corresponding to the
distractor targets. Finally, the prediction learner corresponding to the drifter target cannot
ever reduce its error to zero: unending learning progress is possible. A Bayesian learner for
the drifter target is effectively performing filtering, and needs to see samples constantly to
track the changing mean. Therefore the behavior should eventually settle on selecting the
action corresponding to the drifter target the majority of the time. This behavior is the
ideal behavior, in that it most efficiently gathers the data needed for each prediction tasks.

There are a few common degenerate behaviors that are possible in this problem. The first
is over-selecting the actions corresponding to the distractor targets. Every time the behavior
takes one of these actions, the corresponding non-introspective prediction learner updates
toward a random target and so its predictions can oscillate around the optimum. Over short
windows of time, the variance of the drifter target is smaller than the distractor targets;
within that window, the errors generated by the distractor targets will appear larger. This
results in the behavior frequently selecting the distractor targets, occasionally selecting the
drifter target and cycling between the three. Any methods that rely on prediction learners
to not chase noise should exhibit this degenerate behavior, such as Weight Change. With
non-introspective learners, this can only be prevented if the intrinsic reward can somehow
distinguish between distractor targets and drifter targets.

The other common degenerate behavior is selecting all actions nearly equally. This
strategy does not result in the lowest possible RMSE, but it does result in lower RMSE
than other behaviors such as mostly selecting the actions corresponding to the distractor
targets. The uniform strategy emerges because there is no setting of the parameters of the
intrinsic reward to force the behavior to follow the ideal strategy described above.

8.1 Results with Non-introspective Learners

Figure 5 summarizes the behavior of the Gradient Bandit with several intrinsic reward func-
tions, with non-introspective learners. The bold dash lines reflect the probabilities averaged
over 200 runs, while the light stroke solid lines depict probabilities of individual runs. Sev-
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Figure 5: Behavior in the Drifter-Distractor problem, with Non-Introspective
Learners. Each subplot corresponds to the behavior of the Gradient Bandit with a dif-
ferent intrinsic reward. Each line depicts the action selection probabilities learned by the
behavior agent, over 50000 steps. The bold dashed lines show the mean probability of each
action, averaged over 200 repetitions of the experiment. The light stroke solid lines show
the probabilities computed by the Gradient Bandit for each action on individual runs—we
only show a small random subset of 15 runs for readability. The green line corresponds to
the drifter target, the blue line corresponds to the constant target, and the red and black
lines correspond to the distractor targets. Intrinsic rewards based on variance estimates
and averaging errors over time induce near-ideal action selection.

eral rewards induced the ideal behavior described above to varying degrees. Rewards based
on simple moving averages of each learner’s prediction error, including Fxpected Error and
UDE, quickly latch on to the action corresponding to the drifter target. The parameter
sweep chose a short averaging window, because the § are more consistently the same sign
for the drifter target, making the Expected Error higher for the drifter target. Using the
variance of each predictors estimate, as in Variance of Prediction and Uncertainty Reduc-
tion, the behavior also converges to mostly selecting the action corresponding to the drifter
target, after exploring the actions corresponding to the constant and distractor targets
initially a bit longer. A parameter corresponding to a long window is used, because the
predictions for the drifter target change much more over time than those for the distractor
targets. Perhaps unsurprisingly the Squared Error and Error Reduction produce inappro-
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priate behavior. Bayesian Surprise and Weight Change cause the Gradient Bandit to be
distracted by the distractor targets resulting in sub-optimal behavior. The Error Derivative
reward induces behavior that looks near-ideal in expectation, albeit there is more variance
across runs than exhibited by other intrinsic reward functions.
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Figure 6: The impact of varying the window length parameters 1 and 7 of Error Derivative
reward, in the Drifter-Distractor problem, with Non-introspective Learners. Each
subplot depicts the behavior of the Gradient Bandit algorithm with Error Derivative reward
for many combinations of 7, 7 as indicated by the labels. As in Figure 5, each subplot shows
both the average action selection probability for each action over time, and a small subset
of individual runs. A large diversity of behaviors can be induced by changes to the window
length parameters. Only one setting induced correct behavior: n = 1000,7 = 100. This
explains why the initial action selection was uniform in Figure 5: the reward is zero until
the windows fill, which takes 1000 steps for n = 1000.

Performance in the Drifter-Distractor problem with non-introspective learners is largely
dependent on setting the hyper-parameters of the each reward correctly. To illustrate this
sensitivity, consider the Error Derivative reward, which is parameterized by two scalars n
and 7. The n parameter controls the size of the window used to average recent errors, and
7 controls how much each of the two windows overlap. Figure 6 shows the behavior of the
Gradient Bandit, in terms of action selection probability over time, for every combination
of n and 7. For each pair of (n, 7) we selected all the other hyper-parameters in the
learning system to minimize the total RMSE; each subplot of the figure represents the best
performance possible for a given (7, 7) pair according to RMSE. Across these combinations,
we see the full gamut of behaviors. Only one setting out of twelve exhibited the described
good behavior; most were uniform or focused on the distractor targets.

The hyper-parameters of the other components of the learning system also interact with
the reward function. Figure 7 shows the best behavior—in terms of RMSE—of the Gradient
Bandit for different values of the LMS predictor step-size parameter c,,. As the predictors
learn faster, the Error Derivative reward induces nearly uniform action selection. If we slow
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Figure 7: The impact of varying the LMS step-size parameter «;, with the Error Deriva-
tive reward, in the Drifter-Distractor problem, with Non-introspective Learners.
Each subplot depicts the behavior of the Gradient Bandit algorithm with Error Derivative
reward for for different values of oy, as indicated by the labels. Large oy, —faster target
tracking—induces a uniform behavior, and smaller «;, produce action selection more similar
to the ideal behavior but RMSE is higher because predictions are learned slowly. The third
subplot, corresponding to cy, = 0.03125, achieved the lowest total RMSE, because it allowed
for somewhat faster learning for the predictions, but was still slow enough for the behavior
to estimate learning.

the prediction learners updates with a smaller step-size parameter value, then the behavior
strongly favors the action for the drifter target. This makes sense because with a small
o, the intrinsic reward for the distractor targets becomes smaller and much bigger for the
drifter target because the step-size parameter value is not large enough to track quickly.
Though the action selection by the behavior is correct, this is not what we want from the
learning system: we want the prediction learners to learn quickly, rather than artificially
slowly so that the behavior can more easily track what they know. In fact, with small
step-size parameter values, the RMSE is much worse than we can get with the introspective
learners, where it is much easier to estimate learning progress and prediction learners can
learn more aggressively.

Finally, let us investigate the error over time for each intrinsic reward. Figure 8 shows
the exponential average of the RMSE over time for each reward function. We choose an
exponential average to smooth the results (with a decay constant of 0.999). We plot both
the error of each target, and the error average across targets. All rewards except UDFE result
in perfect prediction of the constant target; even UDFE has near-zero error, indicating only
minor under-selection of the action for the constant target. Rewards that induce nearly
uniform action selection generate larger prediction error in aggregate (Error Reduction and
Surprise). Reward functions that do not induce a strong preference for the drifter target
exhibit high or growing error ( Weight Change). Rewards that induce strong preference for
the distractor targets do achieve better error on those predictions at the cost of accuracy in
predicting the drifter targets (Squared Error). Achieving the lowest overall error requires
first selecting the actions for the constant and distractor targets at first, and then focusing
on the drifter target (i.e., UDE, Uncertainty Change, and Variance of Prediction).
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Figure 8: RMSE over time corresponding to each intrinsic reward function in the Drifter-
Distractor problem with Non-introspective Learners. Each subplot corresponds to a
different reward as labelled. The line colors correspond exactly as in the previous plots:
green drifting, black and red high-variance, and blue constant. Each line is the expo-
nentially weighted moving average of the LMS predictor’s RMSE. The RMSE is computed
with an exponential average, with a decay 0.999. The final results are averaged over 200
independent runs (standard error bars are plotted but not visible). The heavy stroke black
dashed line reports average of the other four. Although many rewards induce similar action
selection strategies, they can produce different RMSE curves.

8.2 Results with Introspective Learners

In this section we analyze the impact of different intrinsic rewards with introspective learn-
ers. We use LMS learners with Autostep, a step-size adaption method, to obtain introspec-
tive prediction learners. First let us recall how the step-size parameter for each LMS learner
might change over time (see Figure 3 in Section 4 for reference), based on the errors gener-
ated by each of our three target types. The distractor targets are noisy—even if the mean
is stable—so the LMS learner will experience positive and negative errors. The Autostep
algorithm will reduce the step-size parameter corresponding to these targets, allowing each
LMS learner to mitigate the variance and converge to the correct prediction of zero. The
constant target on the other hand is easy to predict. Autostep will keep the step-size param-
eter large because the errors will be of the same sign. However, the error on the constant
error can easily be reduced to zero with repeated sampling. Once the prediction error is
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zero Autostep will modify the step-size parameter no further. The drifter target has noise,
like the distractor targets, but the mean is not centered at zero, and it exhibits temporal
structure. Consequently, the Autostep algorithm will keep the step-size parameter value
high for the duration of the experiment. It is not hard to see that introspective learners
should efficiently reduce error across all the targets, at least compared with a global, con-
stant step-size parameter value. More subtly, an intrinsic reward that takes into account
the dynamic values of the step-size parameter could exploit this additional information to
adapt behavior to reduce error even faster.
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Figure 9: Behavior in the Drifter-Distractor problem with Introspective Learners.
Each subplot corresponds to the behavior of the Gradient Bandit with a different intrinsic
reward. Each LMS learner uses the Autostep algorithm to adapt the step-size parameter
over time. The line coloring, labelling, and semantics mirror Figure 5. With Autostep,
Weight Change induces near-ideal action selection. FError Derivative and Expected Error
rewards, on the other hand, induce inappropriate action selection.

The setup of our second experiment was identical to the first except that each LMS
learner maintained its own step-size parameter a;; updated via Autostep. We also include
an intrinsic reward based on the change in the step-size parameter to assess the utility of
rewarding action choices that caused changes in the step-size parameter values. This reward
only makes sense if the step-size parameter can change over time, and thus was not included
in the previous experiment.

The results of our second experiment are summarized in Figure 9. As before we plot the
action selection probabilities to summarize the behavior. Weight change reward now induces
near-ideal action selection. The step-size parameters for the distractor targets decay to a
relatively small values causing the weight change to reduce—those actions become less and
less rewarding. Autostep keeps the step-size parameter value relatively high for the drifter
target, on the other hand, and the change in weights remains relatively high. Finally, even
though the step-size parameter does not decay to zero for the constant target, the prediction
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error for the constant target does go to zero. Consequently, the magnitude of the update
also goes to zero, meaning the weight change goes to zero and preference for the constant
target diminishes over time. Bayesian Surprise induces similar behavior as Weight Change
as suggested by our analysis in Section 6. The variance-based rewards and UDFE induce the
same overall action preferences as without Autostep.

Across the board there is an improvement in RMSE reduction as shown in Figure 10.
The RMSE is about half of that for the non-introspective learners. The differences in RMSE
between the intrinsic rewards appear more minor, but the differences are meaningful. The
total RMSE is well correlated with our definition of ideal behavior in this domain—reward
functions that result in lower error exhibit the expected action preferences over time. To
see larger differences, though, we need more actions. This first experiment was primarily
designed to investigate qualitative behavior; the final experiment uses more actions and
provides a better insight into quantitative differences.

Error Derivative Expected Error Step-size Change Error Reduction Squared Error

—
o
=
i
el
D 25
G |\S====m—ooooo
S o0
o
‘2 Bayesian Surprise UDE Uncertainty Change Variance of Prediction Weight Change
]
o]
>
B 1
]
&
5
25
0 50000 50000 50000 50000 50000
Time steps

Figure 10: RMSE over time corresponding to each intrinsic reward function in the Drifter-
Distractor problem with Introspective Learners. Results averaged over 200 runs, and
standard error bars included. In this experiment, reward functions that induce similar action
preferences produce similar RMSE reduction over profiles. Using Weight Change reward
produces the lowest RMSE (0.108), however both UDE (0.109) and Uncertainty Change
(0.110) result in similar performance. Squared Error results in the worst performance overall
(0.292), and rewards that induce uniform action selection like Error Derivative result in
larger error (0.124) compared with Weight Change.

For non-introspective learners, we observed that careful tuning of hyper-parameters al-
lowed for the correct behavior for certain intrinsic rewards, by slowing prediction learning.
This was the case for the Error Derivative, where in Figure 7 we observed that if the predic-
tors learned too quickly, the drifter target did not produce the highest Error Derivative. For
introspective learners, prediction learning cannot be slowed: they increase learning when
learning is possible. We might expect Error Derivative to therefore perform poorly, and
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be unable to find an appropriate hyper-parameter setting. We find this is the case: Error
Derivative with Autostep does not induce the action selection preferences we expect—it
causes nearly uniform action behavior—and no setting of the window parameters resulted
in appropriate action preferences (Figure 11).

Overall, the preference for the drifter target is less pronounced with introspective learn-
ers, as seen in Figure 9. Instead, the behavior selects the actions for the distractor targets
for longer. This is because step-size adaption is a meta (or second order) learning process,
and so a non-trivial amount of data is required to recognize that learning is oscillating.
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Figure 11: The impact of varying the window length parameters n and 7 of Error Deriva-
tive reward in the Drifter-Distractor problem with Introspective Learners.

One might therefore wonder if rewards like the Weight Change reward simply hide the
hyper-parameter tuning issue inside the step-size adaption algorithm. This seems not to
be the case: the parameters of Autostep are straightforward to tune, and the behavior
is largely insensitive to these choices as shown in Figure 12. Small meta learning-rate
parameter values slow learning but do not prevent preference for the drifter target. The
results of our first experiment highlight the utility of both simple intrinsic rewards—one’s
without hyper-parameters—and introspective learners in multi-prediction learning systems.

One final point of note is the surprising difference between UDFE and Ezpected Error. In
the previous experiment, with non-introspective learners, they performed similarly. In this
experiment, with introspective learners, Expected Error results in uniform action selection
whereas UDFE provides the correct behavior. This is surprising, as UDE corresponds to
Ezxpected Error divided by the long-run sample standard deviation of the target. If we look
more closely at the behavior induced by Fzxpected Error with different smoothing parameters
B, in Figure 13, it becomes more clear why this is the case. A small 8 in this problem
results in early errors dominating the moving average; consequently, the constant target
is preferred, as it generates high error at first. A larger S is needed to avoid this issue,
but this unfortunately causes poor estimates of the true expected error for the distractor
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Figure 12: Action selection probabilities for the Gradient Bandit with Weight-Change
reward under different meta learning-rate parameter values k, in the Drifter-Distractor
problem with Introspective Learners.

targets (which should be zero). In fact, it makes the errors for those target appear higher.
Consequently, for the four smaller 3, the constant target is preferred and for the two large,
the distractor targets are preferred; there is no 8 amongst our set that lets the behavior
focus on the drifter target.

UDEFE, on the other hand, has a way to overcome this: the long-run variance estimate
makes the drifter target appear better. The variance of the drifter target appears small in
the beginning of learning, and it takes many steps to start to recognize that it is actually
high variance. In contrast, the variance estimate for the distractor targets are learned
quickly, and the variance for the constant target looks higher initially due to consistent
decrease in the error. This behavior is perhaps a bit accidental, and again highlights the
complex interactions between all these hyper-parameters. This only further motivates the
utility of intrinsic rewards with no hyper-parameters, that rely on introspective prediction
learners.
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Figure 13: The impact of varying the smoothing parameter 8 of Expected Error reward
in the Drifter-Distractor problem with Introspective Learners.

8.3 Results with Another Bandit Algorithm

A natural question is if the above results are specific to the Gradient Bandit behavior
learner. To verify that our conclusions were not somehow overfit to the Gradient Bandit
algorithm, we also repeated Experiment One with a Dynamic Thompson Sampling (DT'S)
algorithm, described in Section 2.1. This bandit algorithm is representative of a different
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class of algorithms used in online learning: DTS estimates action-values instead of action-
preferences and uses optimism (Thompson sampling) to increase exploration.
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Figure 14: Behavior in the Drifter-Distractor problem, with Non-Introspective
Learners where the behavior is learned using Dynamic Thompson Sampling.
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Figure 15: Behavior in the Drifter-Distractor problem, with Introspective Learners
where the behavior is learned using Dynamic Thompson Sampling.
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The qualitative conclusions are similar, shown in Figures 14 and 15. The primary
difference is that the DTS algorithm is less likely to settle on uniform random behavior;
rather it is more likely to exhibit a preference. This could be because the algorithm is
inherently designed to identify the best action, under drift, whereas the Gradient Bandit
samples according to preferences. The Gradient Bandit algorithm is less greedy: if two
actions have similar action preferences, even if one is clearly higher than the other, then
the Gradient Bandit will spend time selecting both actions. Deterministic methods select
the action with the highest value. Despite this difference, we observed the same basic
behaviors and the same qualitative differences amongst different intrinsic rewards. The only
noteworthy difference is the behavior with Error Derivative and non-introspective learners:
with DTS this reward no longer induces the expected action selection. As we saw, Error
Derivative only worked for a narrow range of its hyper-parameters in Experiment One, and
so it is not surprising that it was not a stable result.

9. Experiment Two: Switched Drifter-Distractor Problem

Our second experiment is similar to the first except we introduce an unexpected change
in the target distributions to tax the reward function’s ability to help keep track of the
relevant actions. Our first experiment reveals that several intrinsic rewards could help the
Gradient Bandit algorithm ignore unhelpful actions and focus on the one corresponding
to a drifting prediction target. The intrinsic rewards that were most helpful are based on
moving estimates of the error or the variance of the prediction itself.

To further evaluate these rewards we introduce a simple unpredictable change in the
targets. For the first 50,000 steps the task is the same as Experiment One, then the targets
suddenly switch according to Table 2. The ideal behavior before the switch should be the
same as Experiment One: choose the actions corresponding the constant and distractor
targets until their error is reduced, then focus on the drifter. After the switch, two of the
targets drift. So the ideal behavior should focus on those two actions equally after some
initial transient period due to the change.

This task is partially observable by design. The idea is to simulate a situation where the
learning system encounters an unexpected change. The question is how does the sudden
change interact with each reward function’s internal estimates? Can we find a setting of
the smoothing parameter and window lengths the help the intrinsic reward identify the
appropriate actions?

9.1 Results with Non-introspective Learners

Figure 16 summarizes the behavior of the Gradient Bandit with several intrinsic reward
functions. In the first phase of the experiment, the behavior is fairly similar to Experiment
One. Weight Change, Squared Error, FExpected Error, Bayesian Surprise and the variance-
based rewards perform almost the same, though there is reduced selection of the action for
the drifter target. Notably both Error Derivative and UDFE exhibit substantially different
behavior. Error Derivative induces uniform action preferences for the entire duration of the
experiment. UDFE has trouble inducing a strong preference between the drift and constant
targets in phase one. In the second phase UDFE incorrectly focuses action selection on only
one of the two drifter targets.
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Figure 17: The impact of varying the smoothing parameter § with the UDE reward in
the Switched Drifter-Distractor problem with Non-introspective Learners. Large
JS—more emphasis on recent errors—induces the correct behavior in phase one, but not in

phase two.

Let us take a closer look first at UDFE to get a better sense of why its behavior is so
different in Experiment Two. Figure 17 illustrates how the behavior changes as of function
of the smoothing parameter of UDE. As in Experiment One, a large value of S induces
strong preference for the drifter target in phase one. In phase two, however, mainly one
of the drifter targets is selected, resulting in higher RMSE. The best RMSE is achieved
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Figure 18: The impact of varying the step-size parameter «;, of LMS with the UDE re-
ward in the Switched Drifter-Distractor problem with Non-introspective Learners.
Interestingly very small oy,—slow prediction learning—induces the action preferences closer
to what we expect. Unfortunately when oy, = 0.0078125 the RMSE is 1.376, compared to
a RMSE of 0.313 when «a), = 0.25.
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Figure 19: The impact of varying the window length parameters n and 7 of Error Deriva-
tive reward in the Switched Drifter-Distractor problem with Non-introspective
Learners.

with smaller 8 that (a) over-selects the action for the constant target in phase one, (b)
over-selects the distractor target in phase two, and (c) under-selects both actions for the
drifter targets in phase two. Figure 18 illustrates how the behavior changes as of function
of the step-size parameter cy,. We see the same phenomenon here with UDE that we saw
with Error Derivative in Experiment One. If o, is small, then the prediction of the drifter
target is less accurate and thus the behavior induced by UDF favors the drifter target, but
results in much higher overall error.

The Error Derivative has similar problems. The behavior of the Gradient Bandit with
Error Derivative does not exhibit the expected shape under any configuration of the window
length parameters we tested (see Figure 19). If we inspect the behavior changes as a function
of the step-size parameter o, (Figure 20), then again we observe that slower learning is
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Figure 20: The impact of the step-size o, with the Error Derivative reward in the
Switched Drifter-Distractor problem with Non-introspective Learners. When
ap = 0.0078125 the behavior looks somewhat similar to the ideal behavior but the RMSE
is 0.650. With «;, = 0.25 the RMSE is 0.300, the behavior induced is uniform.
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Figure 21: Behavior in the Switched Drifter-Distractor problem with Introspective
Learners, with the Gradient Bandit.

required for the Error Derivative reward to be highest for the drifter target, at the cost of
high RMSE.

9.2 Results with Introspective Learners

The results of our second experiment, this time with Autostep, are summarized in Figure
21. As before we plot the action selection probabilities to summarize the behavior. As
before, Weight Change and Surprise rewards now induce near-ideal action selection. As in
Experiment One, Expected Error and Error Derivative do not induce the expected behavior
because Autostep increases the effective learning rate of the LMS predictors. UDE induces
similar behavior on this problem with or without Autostep.
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10. Experiment Three: Jumpy Eight-Action Problem

Our final experiment, in the Jumpy Eight-Action problem, quantitatively compares the
best performing intrinsic rewards in a setting where the behavior agent should prefer sev-
eral different actions. To achieve good performance, the agent must continually sample
three actions, with different probabilities, and eventually ignore three noisy targets and
two constant targets. The jumpy target follows a pattern increasing towards 50 and then
decreasing toward -50 repeatedly. The idea was to design a problem where the intrinsic
rewards based on variance would induce the wrong preferences over arms. The jumpy tar-
get exhibits high variance, as do the other two drifter targets. Intrinsic rewards based
exclusively on the variance of the predictions might over-reward the jumpy-target action.

This final experiment provides the quantitative comparison for performance, so we in-
clude a baseline uniform random behavior. There are eight targets and three of them
continually drift. The drift is fast enough that wasting action selection will result in high
error. By the design of the experiment, therefore, uniform behavior should not be optimal,
and we should expect some of the intrinsic rewards to significantly outperform uniform
random behavior. We exclude rewards that did not succeed in inducing useful behavior in
Experiments One and Two, and so have little hope to provide improvements here. This
includes Error Reduction and Squared Error rewards.

Error Derivative Expected Error Step-size Change Bayesian Surprise

—————

[

25 %stant target

UDE Uncertainty Change  Variance of Prediction Weight Change
distractor target

fast drifter target

\ St =

O50,000 500000 50,000 500000 50,000 500000 50,000 500000

Jumpy target

distractor target

Action selection probability

Time steps

Figure 22: Behavior in the Jumpy Eight-Action problem with Introspective Learn-
ers. Plotted is the probability of selecting each action versus time (averaged over 400 runs),
with Autostep prediction learners.

Figure 22 shows the behavior of the Gradient Bandit with eight different intrinsic re-
wards. We report the results using the hyper-parameter settings that resulted in the lowest
total RMSE. We expect the behavior should initially select all the actions, eventually learn-
ing to ignore the constant and distractor targets once they have been learned. Let us inspect
the behavior with Weight Change. Initially, the actions corresponding to the high-error con-
stant targets are preferred. Next the action corresponding to the distractor target (with
variance 1.0) is strongly preferred for a while, as is the other other distractor target (with

48



LINKE, ADY, WHITE, DEGRIS & WHITE

.75

Bayesian Surprise

RMSE
averaged
over
400 runs

.5

AR G R

Weight change
500000

Uncertainty reduction

50000

time steps

Figure 23: RMSE for the Jumpy Eight-Action problem with Introspective Learn-
ers. Standard error of 400 runs is shown as shading around each line. We include the
performance of the uniform behavior to provide a baseline of comparison. The behavior
agent based on Weight Change learned the fastest and achieved the lowest RMSE at the
end of learning. Most of the differences in the final RMSE are significantly different, in
that the 95% confidence intervals do not overlap (2 times the standard error), except for
the difference between Uniform and Step-size Change and between Uncertainty Reduction
and Error Derivative.

variance 0.5). The remaining noisy target (with variance 0.1), is easy to quickly learn and
is not preferred after the beginning. Eventually the steady-state behavior selects the action
for the jumpy target most often, followed by the actions for the two drifter targets. As
you can see in Figure 23, the behavior induced by Weight Change significantly outperforms
uniform action selection, and all other intrinsic rewards we tested.

Several rewards cause the behavior to over select the action for the jumpy target, at
the cost of under selecting the actions for the two drifter targets. Bayesian Surprise and
Variance of Prediction eventually select the jump action nearly 100% of the time. In Figure
23 we can see that both these rewards results in high RMSE compared to uniform action
selection. This makes sense for intrinsic rewards based on variance because the variance of
the jumpy target is significantly higher than the others. Bayesian Surprise likely did not
work because our distributional assumptions are wrong—recall we assumed all targets were
Gaussian with a moving estimate of the variance of the target, to provide an approximate
Bayesian surprise for non-Bayesian learners. This is simply a problem with using Bayesian
surprise outside its intended use-case—it should be used with Bayesian learners. But, as
motivated above, we wanted to verify if a more explicit form of Bayesian surprise, rather than
the much simpler Weight Change, could provide benefit, even for non-Bayesian learners.

Many of the other rewards also over selected the action for the jumpy target, though
less excessively. Ezpected Error takes a long time to induce a preference for the jumpy
target, initially favoring the high-variance ones. UDFE induces a preference for the correct
actions, but over-rewards the action for the jumpy target—especially toward the end of
the experiment. This resulted in increasing RMSE over time, as we see in the upward
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trend of the error of UDE in Figure 23. Uncertainty Change eventually induces near-ideal
action selection, though it starts by over selecting the action for the jumpy target. Error
Derivative, after 500,000 steps, also appears to be trending towards over selection of the
action for the jumpy target, while Step-size Change seems to be getting it all wrong. Weight
Change induces a preference for all three non-stationary targets after initially selecting all
the actions. We cannot say if this is the optimal behavior, but it does cause the prediction
learners to learn faster and achieve lower error compared with all other intrinsic rewards
we tested.

11. Adapting the Behavior of a Horde of Demons

The ideas and algorithms promoted in this paper may be more impactful when combined
with policy-contingent, temporally-extended prediction learning. Imagine learning hundreds
or thousands of off-policy predictions from a single stream of experience, as in the Unreal
(Jaderberg et al., 2016) and Horde (Sutton et al., 2011) architectures. In these settings,
the behavior must balance overall speed of learning with prediction accuracy. That is,
balancing action choices that generate off-policy updates across many predictions, with the
need to occasionally choose actions in almost total agreement with one particular policy. In
general we cannot assume that each prediction target is independent as we have done in this
paper; selecting a particular sequence of actions might generate useful off-policy updates
to several predictions in parallel (White et al., 2012). There have been several promising
investigations of how intrinsic rewards might benefit single (albeit complex) task learning
(see Pathak et al., 2017; Hester and Stone, 2017; Tang et al., 2017; Colas et al., 2018; Pathak
et al., 2019). However, to the best of our knowledge, no existing work has studied adapting
the behavior based on intrinsic rewards of a model-based or otherwise parallel off-policy
learning system.

Simple intrinsic reward schemes and the concept of an introspective learning system
should scale nicely to these more ambitious problem settings. We could swap our stateless
LMS learners for Q-learning with experience replay, or gradient temporal difference learning
(Maei et al., 2010). The Weight Change reward could be computed for each predictor with
computation linear in the number of weights. It would be natural to learn the behavior
policy with an average-reward actor-critic architecture, instead of the gradient bandit al-
gorithm used here. Finally, the notion of an introspective learner still simply requires that
each prediction learner can adapt its rate of learning. This can be achieved with quasi
second order methods like Adam (Kingma and Ba, 2015), or extensions of the Autostep
algorithm to the case of temporal difference learning and function approximation (Kearney
et al., 2018, 2019; Giinther et al., 2020; Jacobsen et al., 2019). It is not possible to know if
the ideas advocated in this paper will work well in a large-scale off-policy prediction learning
architecture like Horde, however they will certainly scale up.

In this paper we focused on (non-Bayesian) mean prediction learners. This is a natural
first step, as most prediction algorithms in reinforcement learning form point estimates (e.g.,
value functions). It is possible, however, to go beyond mean predictions, both for our testbed
and for the Horde setting. For example, it is straightforward to use distributional prediction
learners—those that estimate the distribution over the targets. For mean prediction learners
we used the normed difference between weights before and after an update; for distributional
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learners, we could use a KL divergence between the distribution over targets before and after
an update. Note that this differs from Bayesian surprise, which is the KL divergence between
the distributions over the weights before and after an update. We expect similar conclusions
with distributional prediction learners, as conceptually the definition of Weight Change
simply uses a modified difference measure—a norm versus a divergence. The extension
to Bayesian prediction learners—for either the mean or distribution over targets—is more
complex, though improvements in Bayesian neural networks make it a more feasible line of
investigation.

Maximizing intrinsic reward as presented in this paper is not a form of exploration, its the
objective of the learning system—the agent must explore in order to maximize the intrinsic
reward. The intrinsic rewards do not provide a bonus to help improve exploration. In
our stateless prediction task, sufficient exploration was provided by the stochastic behavior
policy. This will not always be the case, and additional exploration will likely be needed.
Efficient exploration is an open problem in reinforcement learning. Combining the ideas
advocated in this paper with exploration bonuses or planning could work well, but this
topic is left to future work.

12. Conclusion

The goal of this work was to systematically investigate intrinsic rewards for a multi-
prediction setting. This paper has three main contributions. The first is a new benchmark
suite for comparing intrinsic rewards. Our bandit-like task requires the learning system to
demonstrate several important capabilities: avoiding dawdling on noisy outcomes, track-
ing non-stationary outcomes, and seeking actions for which consistent learning progress is
possible. Second, we provide a survey of intrinsically motivated learning systems, and em-
pirically investigated 10 different analogs of well-known intrinsic reward schemes. Finally,
we found that simple intrinsic rewards based on amount of learning, can induce effective
behavior—avoiding classic degenerative behavior—if the base prediction learners are intro-
spective. Introspective prediction learners can decide for themselves when learning is done.
Previous work focused on designing more complex intrinsic rewards to mitigate bad behav-
ior. Our results suggest the opposite: we should focus on designing better learners and use
simple (ideally parameter-free) intrinsic rewards. We found that intrinsic rewards based
on amount of learning—like Weight Change—can perform well in problems specifically de-
signed to distract the learning system. This work provides several new insights into the
strengths and weakness of different intrinsic reward mechanisms, and may provide guidance
for constructing larger more complex intrinsically motivated reinforcement learning systems
where an extensive and systematic study like ours is not feasible.
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Chapter 3

Conclusion and Future Work

In this work we propose a testbed that simplifies the problem of intrinsic moti-
vation for the learning of many predictions down to its most simple essence—
what action should the agent take to maximize learning. The testbed is setup
to evaluate common issues that intrinsically motivated agents face. The con-
stant signal represents continuous signals that can quickly be learned. The
noisy signal represents signals which have a learnable expected value, but are
extremely noisy. This is commonly seen as the noisy tv problem that intrinsic
rewards need to be able to handle. The drifting signal represents the signals
that an agent could receive that are learnable but require the agent to regu-
larly track and update its predictions in order to keep them accurate. Together
these signals comprise a testbed that allows us to investigate the core of each
intrinsic reward.

The testbed itself has three main environments: Drifter Distractor, Switched
Drifter Distractor, and the Jumpy Eight Action problem. Each of these utilize
the three signal types to test the different reward mechanisms. In the pro-
posed testbed we used these three environments to evaluate 14 representative
intrinsic rewards. This work empirically looked at how each method behaved
when trying to decide what action to take to best learn to predict the sig-
nals the agent was receiving. The chosen rewards covered different classes of
representative methods commonly proposed in intrinsic motivation literature.

We propose that a simple method, weight change, can be a simple but

effective method for producing an intrinsic reward to drive behaviour. This
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is shown throughout the three testbeds to be effective at learning the right
behavior and tracking the signals to achieve strong performance on predicting
each of the signals. While extensive tuning is often needed in order for intrin-
sic rewards to perform well, weight change has few parameters and performs

robustly across many parameter combinations.

3.1 Future Work

This work represents a first step in evaluating model-free methods of intrinsic
motivation and using introspective learners to improve the agent’s ability to
adapt behaviour based on learning. Building on this there are a number of
paths forward to continue in this line of research.

The first is to expand this beyond a one state setting to a full reinforcement
learning environment, with multiple states and prediction demons that will all
be learned over time. The effect of off-policy learning methods, and introspec-
tive learners in that context remains to be fully evaluated - even in the tabular
setting. Scaling this research up to a Horde (Sutton et al., 2011) of off-policy
prediction learners, each learning a variety of signals over multiple timescales,
could first be done in the tabular setting to evaluate if the results of the dif-
ferent learning methods hold. Similar to this testbed the demons should have
representative signals the demon is learning to predict—some noisy, some con-
stant, and some drifting over time. A good intrinsically motivated agent will
need to combine the learning of all of these demons in producing its intrinsic
reward.

Moving beyond the tabular setting, the effect of function approximation
methods needs to be evaluated. Evaluating how these methods scale in the
linear and non-linear settings can be important. Methods such as tile-coding
(Sutton and Barto, 2018) has been shown to scale efficiently while learning on
a robot powered by a standard laptop (see A. White, 2015). Using an artificial
neural network as a function approximator, with multiple predictions (Jader-
berg et al., 2016) has been shown to be an effective combination in complex

vision problems. How function approximation affects both the demons and the
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behaviour learning itself needs to be evaluated. Whether or not weight change
is still effective when moving from the linear to non-linear setting could be of
particular interest.

The effect of different methods for the introspective learners remains to be
explored. Different meta-learning methods adapt their learning rate in differ-
ent ways. Different step-size adaptation methods, such as RMSProp (Tieleman
and Hinton, 2012), were tried and they had similar results to Auto. However
a full exploration into the effect of different classes of introspective learners
needs to be evaluated to understand if there are any major differences between
methods.

The tradeoff between exploration and exploitation returns when we scale
up the setting. The agent must explore to find the areas it can exploit to
learn the most in. Exploration is an ongoing area of research in reinforcement
learning and the effect of different exploration methods on the agents learning
remains to be explored. The relative importance of different policies may also
come into play. Demons will likely have different policies and the agent may
care more about learning some policies over others.

The focus of this paper was on model-free methods of reinforcement learn-
ing. In order to be fully effective at adapting its behaviour for learning, an
agent will likely need to move into the model based reinforcement learning
setting (Sutton and Barto, 2018). Using a model could allow the agent to
“think” about parts of the state space it hasn’t visited, or perhaps hasn’t vis-
ited in a while. These areas could be more interesting to the agent and could
be visited to improve the agent’s predictions. The effect of mechanisms such
as experience replay (Lin, 1992) or Dyna (Sutton, 1991) on an intrinsically
motivated agent is a further area of research.

When moving out of simulation into the real world the ability to run large
parameter sweeps become infeasible. The ability for intrinsic reward mecha-
nisms to rely on as few parameter sweeps as possible becomes very beneficial
in a real world setting. We show in the paper that some methods were able
to perform well without introspective learners. However, this required a large

number of parameters to be swept to find the right combination that worked
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Figure 3.1: Drifter Distractor problem with Dynamixel robot. The robot
chooses where to look on the screen and tries to predict the pixel values the
camera captures.

for that intrinsic reward. This has been another line of research that I have
begun to follow. An initial step was the implementation of the Drifter Dis-
tractor, and Switched Drifter Distractor, on a robot (Figure 3.1). The robot
consisted of two dynamixel servos with a webcam attached. At each step
the robot chose where on a laptop screen it wanted to focus its camera. On
the screen was a noisy tv section, a constant section, and a section whose
color drifted over time. The robot seeks to predict the pixel values coming in
through the camera. The implementation details remained largely the same
to the experiments in the paper—gradient bandit for behavior and Autostep
for introspective learners. Here running even 5000 steps taking 100ms/step
took over eight minutes per run. Weight change, using the proposed standard
Autostep parameters (see Mahmood et al., 2012), proved effective in this set-
ting with little to no parameter sweeps. Most of the other methods proved
too difficult to parameter tune to reach the same level of performance as those
with introspective learners. In order for intrinsic reward to be effective in the
real world, we would like to understand the methods that can allow for as little
parameter tuning as possible.

Finally, showing the effects of the combination of all of these components
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on the ultimate behaviour and performance of an agent remains to be seen.
The drive to continue to grow competence in predicting and controlling its
world should lead an agent to display ever more complex and masterful skills
(as shown by R. White, 1959). Both showing the qualitative behaviour im-
provement, and that quantitative reward improvement of this type of agent

remains an outstanding challenge.
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