BIBLIOTHEQUE NATIONALE
OTTAWA

NATIONAL LIBRARY
OTTAWA

-----------------------------------------

QUi RRUCILE. E28. SLIDING.. AW D
IBCUE. . CHIGED, PARTICLE s
UNIVERSITY..... & / Aberta. ... -
DEGREE FOR WHICH THESIS WAS PRESENTED... PA D ...........
VEAR THIS DEGREE GRANTED......SPRIN.G. . [T 75......
Permission is hereby granted to THE NATIONAL LIBRARY
OF CANADA to microfilm this thesis and to lend or sell copies
of the film,
The author reserves other publication rights, and
neither the thesis nor extensive extracts from it may be
printed or otherwise reproduced without the author's

written permission.

(Signed).
PERMANENT ADDRESS:

-------------------------

DATED.. A0 ¢, . IS8 19 72 (o M//(

NL-91 (10-68)



THE UNIVERSITY OF ALBERTA

A UNIFORMLY TWISTED ELECTROSTATIC QUADRUPOLE FOR
GUIDING AND IMAGING CHARGED PARTICLES

by

<::::> EL-SAYED AHMED IBRAHIM YQUSSEF

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSPHY

DEPARTMENT OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

SPRING,1973



UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

P

The undersigned certify that they have read, and recommend
to the Faculty of Graduate Studies and Research, a thesis entitled
"A Uniformly Twisted Electrostatic Quadrupole For Guiding and Imaging
Charged Particles" submitted by E1-Sayed Ahmed Ibrahim Youssef in
partial fulfilment of the requirements for the degree of Doctor of

Philosophy.

M& ......

Supervisor
%WW wdi

uper jsor

ooooooooooooooooooooooo



ABSTRACT

A study is made of the guiding properties of a long electrostatic
quadrupole that has been uniformly twisted about its axis. Analytic
solutions have been developed for particle trajectories and they show
that stable orbits exist if the structure parameters are properly
chosen. A confinement criterion, which sets the acceptance limits of
the twisted structure, has been derived using the analytic solutions.

The accuracy of the analytic solutions and the validity of the confine-
ment criterion are examined by comparing the analytically computed
trajectories with those computed by numerical integration. The acceptance
limits of the twisted quadrupole structure are compared to those of the
classical electrostatic quadrupole chamnel. Twisted electrostatic
quadrupole structures of finite lengths are found to be capable of
identically reproducing the injection conditions of a system of particles.
Such lenses have been fabricated and their imaging properties have been
tested using a beam of contact charged microparticles. The experimental
results are in good agreement with the theoretical analysis. A study

has also been made of the effect of bending the axis of the twisted

structure, and it was found that stable orbits can exist.
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CHAPTER 1

1.1 Background

During the past few years an increased interest has developed
in the acceleration of very heavy charged particles. Serious efforts
are now being made to fonize and accelerate elements as heavy as

(]'5). The interest in obtaining energetic heavy ions is largely

argon
directed towards the emerging field of nucleosynthesis. However, the
interaction of such particles with atomic, molecular and biological
systems promises to yield much vital information in such areas as

the study of radiation damage in solids and the investigation of
cellular disorders. Also recently, attention has been focused on charged
micron-sized solid and 1iquid particles. When accelerated to high
velocities the applications for such particles range from sprayed ink
jets for extremely high speed printing(e)to mass expulsion systems for
spacecraft propu]sion(7). It has even been suggested(s) that micron-

A kilometers/sec

sized particles moving at velocities of the order of 10
could trigger thermonuclear reactions in a controllable manner. A
further use of these macroscopic particles, which is of particular
interest at the University of Alberta, is for the simulation of
micrometeoroids with velocities up to several tens of kilometers per

second. Such artificial micrometeoroids can be used to study impact
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phenomena and the resulting hazards to men and equipment outside the
earth's atmosphere. For example, high velocity aluminum particles, of
approximately 4 micron diameter, have been used to investigate the
abrasion of optical surfaces exposed to micrometeoroid bombardment(g).
Radio-frequency Tinear accelerators have been suggested as the
most suitable machines for producing very energetic heavy partic]es(]o).
In such accelerators an r.f. source is used to establish an electric
field across a linear array of accelerating gaps, as shown schematically

in figure (1.1).

r.f.
A A spurce

Z ‘ 27 }7_? (22272
- - - o - _. Z
- ——
accelerating  drift
gap tube

Figure (1.1) Accelerating Gaps and Drift Tubes of a

Heavy Ion Linear Accelerator

As particles pass along the axis of the structure they experience an

essentially field free region within each drift tube. However, the



dimensions of the drift tubes and of the accelerating gaps are so
adjusted that the particles reach each successive gap at a time when they
will be accelerated by the electric field. The field across a typical

accelerating gap is illustrated in figure (1.2).

“/—- electric field Tines

- i

Figure (1.2) Field Distribution Across a Typical Accelerating

Gap

Note that in the first half of the gap the radial component of the
electric field will exert a force on particles that is towards the axis
of the accelerator. In the second half of the gap the particles will
experience a defocusing force away from the axis. Since the accelerated
particles will spend less time in the second half of the gap, one might
imagine that the net effect would be a focusing force action tending to
keep the particles near the axis of the structure. Unfortunately, to
ensure longitudinal stability of the motion, particles must pass through
the gap when the amplitude of the r.f. field is increasing(]]). This
increase in the field is sufficient that the defocusing forces are

increased to the point where the net effect of the accelerating gap is
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to deflect particles away from the axis of the machine. Space charge
forces, stray fields, and misalignments have the effect of further
defocusing the particles. In a long accelerator it becomes essential to
compensate for these defocusing actions as well as to make provisions
for handling particles that enter the structure with non-zero transverse
momenta.

In electron and proton accelerators this compensation is almost
invariably provided either by axial magnetic fields or by magnetic
quadrupole lenses. Such focusing devices work well as long as the charge-
to-mass ratios of the particles are large. However, as the charge-to-mass
ratio, %, decreases, the required magnetic fields can become excessive.
Even the lightest of heavy ions have values of charge-to-mass ratios
that are several orders of magnitude smaller than that of an electron.
Singly charged argon for example has a charge-to-mass ratio of only
2.39 x 106 coultombs/kilogram. The values of %~for typical solid or
liquid microparticles are much smaller still and may range from as small
as 0.001 coulombs/kilogram to an upper limit of approximately 500,000

(]2'13). The use of magnetic fields to guide and contain

coulombs/kilogram
beams of such heavy particles is quite impractical. Consider, for example,
the problem of using an axial magnetic field to confine a particle with

a transverse velocity of u = 1000 meter/sec. The particle has a charge-
to-mass ratio of 1000 coulombs/kilogram and is to be confined within a

cylindrical aperture of radius, R = 2 cm. The required magnetic field is

easily calculated from
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In this case B = 500 kilogauss. At the present state of technology,

magnetic fields of this magnitude are almost impossible to maintain,
especially over large apertures(]4). Moreover, the ohmic losses associated
with the large magnet currents are prohibitively high. The power
requirements can be reduced using superconducting magnets but only at
the expense of costly cryogenic installations. On the other hand, electric
field focusing devices consume almost no power and the required fields
can be established in reasonably sized structures at modest voltages. In
the preceding example, an electric field of only 500 volts/cm is needed
to produce a force equal to that exerted on the particle by the magnetic
field.

The purpose of the present thesis is to present the amalysis,
design and testing of a novel electrostatic system for guiding and focusing
very heavy charged particles. It is intended that the structure be
compatible with the micrometeoroid simulator under construction at the

University of Alberta.

1.2 Some Existing Electric Field Focusing Devices

In conjunction with the development of heavy ion Tinear accelerators
two approaches have been proposed that use electric fields to provide the
necessary focusing forces(]s). The first approach is to simply modify
the radio frequency fields in the accelerating gaps so that the net effect
of the gaps will be a focusing action, Such modification of the r.f.
fields can be achieved through fitting the successive circular drift tubes

with foils, grids or fingers or by using rectangular drift tubes which
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are rotated 90° with respect to each other. In the second approach the
focusing action is provided by external electrostatic focusing devices
which are placed within the drift tubes. These devices almost always

consist of some form of electrostatic quadrupole.

1.2.1 Foils and Grids

When the entrance to the right hand drift tube of figure (1.2) is
closed by a metal foil thin enough for the beam to penetrate without
damage, electric field Tines in the accelerating gap are as shown in

fiqure (1.3)(]6).

electric field lines

o | @ar

- ..__._’Z

(/7]

L=
AP TTE
Y

Figure (1.3) Field Distribution Across a Gap Between Drift Tubes
with a Thin Foil on the Entrance of the Right Tube

It can be seen that the defocusing radial component in the second half of
the gap has disappeared and the whole of the gap is therefore convergent.
In practice it has been found that the foils cause unacceptable scattering
of the beam and cannot withstand even occasional breakdown between the
drift tubes. Moreover, the ability of the foils to dissipate thermal

energy is very low and the beam density is therefore extremely Timited.



It was then found that fitting the entrance of the right hand side
drift tube in figure (1.2) with a metal grid, which closes only a portion
of the aperture, modifies the r.f. electric field in a manner similar to
that of the foil. Several grid configurations have been suggested and

used successfu]]y(]7).

1.2.2 Rectangular Drift Tubes, Rotated Grids and Finger Structures

To obtain focusing in the radial direction while maintaining the
longitudinal stability of the motion, linear accelerators with drift tubes
of rectangular cross-sections have been proposed(]8)’(]9). The successive
rectangular drift tubes are rotated 90° with respect to each other, as

shown in figure (1.4a).

b

e

Figure (1.4a) Rectangular Drift Tubes
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AN
b
i

el

Figure (1.4b) Electric Field Distribution Across the Gap
Between Rectangular Drift Tubes in the X-Z and

the Y-Z Transverse Planes

As illustrated in figure (1.4b), the shape of the 1ines of force of the
r.f. field in a gap is such that there is focusing in one transverse
direction and defocusing in the other transverse direction. This action
is reversed from one gap to the next. Thus, as the particle travels
along the accelerator it will alternately experience focusing and
defocusing forces, in both the X-Z and the Y-Z planes of figures (1.4a)

and (1.4b). With proper choice of dimensions and accelerating voltages,
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this alternating force action can lead to net focusing in both transverse
directions.

A similar alternating force can be obtained when using circular
drift tubes whose entrances are fitted with two parallel wire grids.
From one drift tube to the next the direction of the grids is altered by

90°, as shown in figure (].5)(20).

e

Figure (1.5) Circular Drift Tubes with Two Parallel Wire Grids

Another structure that can provide an alternating force can be
constructed by fitting the entrances and the exits of the circular
drift tubes with fingers as shown in figure (1.6)(2]). The difference
in potential between the successive drift tubes,and hence between the
fingers will exert focusing forces on & particle traversing the gap in
one transverse direction and defocusing forces in the other transverse
direction. Across the next gap the action is reversed, hence the particle
will experience, in either one of the two transverse directions,
alternating focusing and defocusing forces. Proper choice of the

dimensions and the accelerating voltages again leads to a net focusing
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Figure (1.6) Drift Tubes with "Fingers"

action in both transverse directions.
The alternating force action provided by the structures described
above is known as alternating gradient focusing. Such action can also be

provided using external focusing devices as will be explained in detail

in Section 1.2.4,

1.2.3 Weak Electrostatic Lenses

Weak electrostatic lenses consist of two or more cylindrical
electrodes which are at different constant potentials, The focusing
action is provided by the weak radial components of the d.c. electric
field in the gap or gaps between the electrodes together with the smal]

accelerating or decelerating action of these gaps. One of the weak



1

/77-—777— quﬂ potenti al

surfaces

——T

1 ; h Particle trajectory
!

< ZZZ2Z2

Vyand Vpare the electrode potentials

Figure (1.7) A Unipotential Electrostatic Lens

electrostatic lenses used in linear accelerators is the unipotential
lens which may be in the form shown in figure (1.7)(22). The beam
entering the Tens is allowed to spread out and then is bent toward the
lens axis, with the focal spot near the end of the Tens. To provide
such action, the electrode potentials should be comparable to the beam

accelerating potential. Such weak Tenses often are used for shaping the

input beam for heavy ion acce]erators(zs)

Although this type of lens does not have widespread applications
for guiding heavy particles it is widely used for shaping and focusing

electron beams in electronic devices such as the cathode-ray tube or the

electron microscope.
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1.2.4 Electrostatic Quadrupoie Lenses

The basic principle of alternating gradient focusing, mentioned

(24) as it applied to magnetic

in Section 1.2.2, was first introduced
quadrupole focusing. The principle was later extended to electrostatic
quadrupoles. Since then, quadrupole structures have become an almost
universal feature of beam transport systems. Since the principle of
operation of the classical quadrupole structure is quite similar to that
of the lens system described in this thesis, its operation will be
reviewed in some detail.

The fields of a quadrupole section are provided by four symmetrical

electrodes, as shown in figure (1.8).

.-VOM

Figure (1.8) Symmetrical Hyperbolic Electrodes

The operation of an electrostatic quadrupole is based on having the

potential distribution within the aperture in the form

V= k(4 - v2) (1.1)
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which gives the fields as

= -2k,

and E, = 2kY . (1.2)

Such a potential distribution is obtained when hyperbolically shaped
electrodes extending to infinity are used, in which case k = —%- where V0
is the electrode focusing voltage and a is the aperture radiu:(zs).
Extensive investigations of the fields from electrodes of shapes other
than hyperbolic have shown that electrodes which are parts of cylindrical
cylinders give much the same field variation as that of equations (1.2),
over a limited portion of the aperture. More complex electrode shapes
also have been investigated and have been found to give suitable fields
over limited apertures(zs).

Equations (1.2) show that each quadrupole section will provide
focusing forces in one transverse direction and defocusing forces in the
other transverse direction. To provide focusing action in both directions,
doublet, triplet and multiplet combinations are used. These classical
combinations have a series of sections placed end to end with the potentials
reversed on alternate sections. Thus, a particle travelling along any of
these combinations will be acted upon, in both transverse directions, by
alternate focusing and defocusing forces. Through proper choice of the

parameters the net action on the particle in both transverse directions

can be focusing.
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Figure (1.9) Symmetrical Quadrupole Triplet

Figure (1.9) shows a symmetrical quadrupole triplet which consists
of a straight quadrupole section of length 2/2 followed by a drift space
of length d, then a second straight quadrupole section of Tength & on
which the potentials have been reversed with respect to the first section.
The reversal of the potential is equivalent to having rotated the second
section through 90° while leaving its electrode potentials unchanged. The

second quadrupole is followed by another drift space of length d, and a
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third quadrupole of length %uwhich is rotated a further 90° with respect
to the second quadrupole section. The first quadrupole section is
oriented such that its positive electrodes are aligned symmetrically
about the X-axis of a fixed (X,Y,Z) coordinate sytem. Thus,the forces
exerted on a positively charged particle at Z = 0 are focusing forces in
the X-direction and defocusing forces in the Y-direction. Therefore,the
X - Z plane can be referred to as the initially focusing plane of the
triplet and the Y - 7 plane can be referred to as the initially
defocusing plane of the triplet.

If the axial momentum of a particle travelling along the triplet
is assumed constant, the projections of the particle motion on the X - Z
and the Y - Z planes are uncoupled. Therefore,these projections can be
independently analyzed. In analyzing the motion it must be noticed that
the basis of operation of the quadrupole combinations as guiding and
focusing structures is the linear increase of the forces, focusing or
defocusing, with the increase of the distance from the Z axis.

Consider the motion of a particle along a triplet with properly
chosen parameters. A particle injected in the X - Z plane will experience
focusing forces during its travel along the first quadrupole section.
These focusing forces will decrease the X directed transverse momentum
of the particle and will tend to deflect it towards the Z axis. Due to
the action of these focusing forces, the particle, after coasting across
the first drift space, will enter the middle quadrupole section at a
point closer to the Z axis than if the focusing forces were absent. Hence,
the defocusing forces that the particle experiences as it travels along

the second quadrupole section are smaller than they might have been if
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the focusing forces of the first section were absent. The defocusing
forces of the middle quadrupole section will deflect the particle away
from the Z axis so that the particle, after traversing the second drift
space, will experience large focusing forces as it travels along the
third quadrupole section. Thus, the particle will experience alternating
focusing and defocusing forces as it passes along the triplet. However,
if the triplet parameters are properly chosen, the particle finds itself
farther displaced from the Z axis while experiencing focusing forces

than when experiencing defocusing forces. Since the fields and hence the
forces increase linearly with the distance from the Z axis, the effect of
the alternating forces will be a net focusing action on the particle.

A similar action occurs when a particle is injected intheY -1
plane. The particle will first experience defocusing forces that will
deflect it away from the Z axis so as the particle travels along the
middle quadrupole section it will experience large focusing forces. These
large focusing forces will tend to deflect the particle towards the Z
axis so that it experiences small defocusing forces as it travels along
the third quadrupole section. It has been found that the choice of
parameters that produces net focusing action in the X - Z plane will also
produce net focusing action in the ¥ - z plane(27).

Most beam transport and focusing systems in accelerators are chains
of triplets similar to that in figure (1.9). A chain of symmetrical
triplets, referred to as a classical quadrupole channel, is shown in

figure (1.10).
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Figure (1.10) A Classical Quadrupole Channel

An infinitely Tong classical channel will consist of a straight quadrupole
section of length &/2 followed by a succession of drift spaces of length,
d, and quadrupole sections of length, &. The successive quadrupole
sections will be rotated 90° with respect to each other. The mathematical
treatment of the particle motion along such a classical channel will be

outlined in Chapter 6.

1.3_The Present Study

Recently, studies have been carried out for incrementally rotated

magnetic quadrupole channels for which the angle of rotation between the

successive straight quadrupole sections was equal to 1%9— where

(28-29)'

n=3,4,5, ... These studies showed that the focusing

strength of the structure is improved as the angle of rotation between
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the successive straight quadrupole sections is decreased. Preliminary
investigations of continuously twisted magnetic quadrupoTe structures(30'3])
have shown that such structures provide better focusing action than either
the classical or the incrementally rotated magnetic quadrupole structures.

The purpose of the present study, as mentioned in Section 1.1, is
to develop a guiding and focusing system for heavy charged microparticles.
It is intended that the structure be compatible with the micrometeoroid
simulator under construction at the University of Alberta. The focusing
and guiding system must be an electrostatic structure if it is to be
capable of guiding the artificial micrometeoroids whose charge-to-mass
ratios are very low. In view of the results obtained by nrevious

authors(30'31)

during their investigations of the guiding properties of
uniformly twisted magnetic quadrupole structures, it was expected that

a uniformly twisted electrostatic quadrupole structure would provide good
focusing and guiding of heavy particle beams. Therefore, it was decided
to investigate, both theoretically and experimentally, the guiding and
focusing properties of a uniformly twisted electrostatic quadrupole
structure designed to handle beams of charged microparticles with very
Tow and variable charge-to-mass ratios.

The twisted quadrupole structure consists of four hyperbolically
shaped electrodes which have been uniformly and slowly twisted about the
structure axis as shown in figure (1.11). The radius of the circular
aperture of the twisted structure is much smaller than the periodic length

of twist of the electrodes. Each two nonadjacent electrodes are electrically

connected. Two nonadjacent electrodes are at a positive potential, + Vo’
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Figure (1.11) The Uniformly Twisted Electrostatic Quadrupole

Structure

while the other two are at a negative potential, - Vo' Thus, the force
exerted on a positive particle on the axis of the first electrode pair
is a focusing force while the force exerted on a particle on the axis of
the second electrode pair is a defocusing force.

In classical or incrementally rotated quadrupole structures the

change in the direction of the focusing and defocusing forces occurs
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suddenly as the particle leaves one straight quadrupole section to enter
the next. In the twisted structure as the particle travels along the
structure, the particle experiences forces that change gradually from
focusing to defocusing and so on. However, as in the case of the
classical triplet, the particle while experiencing the focusing forces
will be farther displaced from the structure axis than while experiencing
defocusing forces. Thus, the net action of these gradually alternating
focusing and defocusing forces will be a focusing action and the twisted
structure will be capable of guiding the particles.

Beside its present application as a guiding and focusing system
for heavy charged microparticles, the twisted electrostatic quadrupole
structure could also be used to guide electrostatically sprayed liquids
used in non-impact electrostatic printing(G) as well as for guiding
exhaust streams of colloidal propulsion devices(7).

The work of this thesis is described in the chapters which follow.
The theoretical analysis of charged particle motion along the slowly and
uniformly twisted electrostatic structure is developed in Chapter 2.
Then, Chapter 3 presents the derivation of the acceptance Timits of an
infinitely long structure and these Timits are discussed for some special
cases of injection. To examine the accuracy of the analytic solution
developed in Chapter 2, particle trajectories computed using the
analytical solution are compared, in Chapter 4, with the trajectories
computed using numerical integration of the original equations of motion.
The effect of earth's gravity on the motion of the heavy microparticles
is studied in Chapter 5. The guiding properties of the twisted electro-

static quadrupole structure are compared,in Chapter 6,with those of a
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classical electrostatic quadrupole channel.

A theoretical study of the imaging properties of a twisted
electrostatic quadrupole structure of finite length is presented in
Chapter 7, showing that the structure acts as a novel identical imaging
device, provided the structure parameters are chosen properly. This
imaging device is'capable of identically imaging the injection
coordinates and momenta of a beam of particles and the imaging occurs
with very small aberration. The imaging properties of a structure
constructed from two equal but oppositely twisted electrostatic
quadrupole sections are also studied in Chapter 7, showing this structure
provides identical imaging with less aberration than a single twisted
section. The theoretical studies are followed by experimental
investigations of the imaging and guiding properties of the twisted
channel. A high density beam of charged 3 micron carbonyl iron micro-
particles was used in the experimental investigations. The descriptions
and the results of the experimental investigations are in Chapter 8.

Finally, Chapter 9 presents the analysis of the motion of a
charged particle as it travels along a twisted electrostatic quadrupole
structure whose axis is bent in a circle. This analysis is relevant to
beam bending devices and to storage rings of heavy charged particle

beams.
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CHAPTER 2
PARTICLE DYNAMICS IN THE UNIFORMLY TWISTED ELECTROSTATIC QUADRUPOLE
STRUCTURE

The structure consists of a long electrostatic quadrupole whose
four hyperbolic shaped electrodes have been uniformly twisted about the
structure axis at the rate of 8 radians per meter. The objective of this
chapter is to determine the amalytic solutions for the motion of charged
particles travelling along the structure so that the guiding properties
of the structure can be easily established. Only non-relativistic solutions
are considered since the main objective is to provide a guiding system for
microparticles, which simulate micrometeoroids whose velocities range from

(32)

a fraction of a kilometer per second up to 72 kilometers per second ™ 7.

2.1 Coordinate Systems and Potential Distribution

Figure (2.1) shows the four hyperbclic shaped electrodes of the
structure. The distance a is the radius of the quadrupole aperture in
meters and V0 is the magnitude of the d.c. focusing voltage applied to each
of the electrodes in volts. The polarities of the d.c. focusing voltages
are shown in figure (2.1). In the analysis of the charged particle motion
along the structure two rectanguiar coordinate systems are used, namely
the (X,Y,Z) and the (x,y,z) coordinate systems.

The quadrupole structure axis is taken as the Z-axis of the fixed
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rectangular coordinate system (X,Y,Z). The axes (X,Y) coincide with the
electrode axes at the input plane of the structure, Z = 0. The (X,Y>2)
coordinate system is a rotating coordinate system whose axes (X,y)
rotate, as z increases, at the rate of 8 radians per meter so that the
axes (x,y) always coincide with the electrode axes at any distance z.

The Z and z axes of the two coordinate systems coincide. Figure (2.1)
shows the orientation of the quadrupole electrodes and the axes (x.y)
with respect to the fixed axes (X,Y) at a distance Z from the input plane
of the quadrupole structure.

It is shown in Appendix A that if the electrodes are slowly twisted

2

8
that is (Ba)2 << 1, then for hyperbolic shaped electrodes and for points

so that the pitch length L = = is much greater than the aperture radius a,

within the aperture, the potential distribution js given by
V= k[0® - Yoicos 287 + {2XY)sin 261] (2.12)

or

V= ki - yD (2.1b)

-
[p (=]

where k =

a
Equation (2.1b) shows that at any cross section of the twisted

structure the potential at points within the aperture in terms of the
rotating coordinates (x,y,z) is simply that of a conventional quadrupole

and is unaffected by the twisting action provided that

(82)% <« 1. (2.2)
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2.2 _The Hamiltonian and the Equations of Motion

Particle dynamics in the uniformly twisted straight electrostatic
quadrupole can be conveniently discussed in terms of the Hamiltonian
of particle motion, H. 1In the present case, H is a constant of the
motion since the potential and hence the fields do not. depend explicitly
on time(33). In terms of the fixed coordinate system (X,Y,Z), H is
simply the sum of the kinetic energy of the particle, T, and its potential

33)

energy( » qV, where V is the electric potential given by either equation

(2.7a) or equation (2.1b). Thus the Hamiltonian is

H=T+qV
or,
1 2 2
=gy 74,04 P, 71+ QU(K,Y,2) (2.3)
where q is the charge of the particle in coulombs and M is the mass of
the particle in kilograms. PX, PY and PZ are the mechanical momenta

canonically conjugate to the (X,Y,2) coordinates and are given by

Py =Mk,
Py =M,
P, = Moo, (2.4)

where the dot notation represents the total time derivative.

Substituting for the potential V, using equation (2.1a), H is
given by
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+ qk[{X2 - Y2}cos 267 + {2XY} sin 28Z] (2.5)

(34)

Using the canonical equations of Hamilton'™'’, the equations of motion

in the (X,Y,Z) coordinate system are found to be:

X = - Zﬁk [X cos 28 + Y sin 282]

y - -?-Jrjlﬁtx sin 267 - Y cos 267]
i=- %5 B[{2XYV} cos 267 - (X - Yoisin 2671 . (2.6)

These are three coupled nonlinear second order differential equations for
which no direct analytical solutions seem to exist.

At this stage the problem can be simplified by expressing H in terms
of the rotating coordinates (x,y,z) and the corresponding conjugate momenta
(px’ P, pz). The coordinates of the fixed and the rotating coordinate

y
systems are interrelated through the following equations

X=xcos gz-ysinpz
Y=xsingz+tycospz ,

1=z . (2.7)

Differentiating with respect to time gives:
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p

R = ML = {X cos Bz - ¥ sin Bz} - Bz{x sin gz + y cos 8z} s
Py

V= = (X sin Bz + y cos Bz} + p{x cos z - y sin gz}
P

7= MZ- = (2.8)

Using equations (2.8), the kinetic energy of the particle is given by

2

=_r21[).(2 AR R R RN R BT

Since the potential energy,qV = qk(x2 - yz),is velocity independent, the

momenta (px, py, pz) adjoint to the rotating coordinates are(34),

PX=£—=M[X~Biy] [)

=

3

p =a'=M[y+BZ.X] )

y

~<

P = = M2 + 60 - yi) + 620 + y2)3] = g + a(x Py~ ¥ )

(2.10)

Using equations (2.9) and (2.10), the kinetic energy of the particle in

terms of the rotating coordinates (x,y,z) and their adjoint momenta

(py» Pys P,) s given by
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1 2,02 ] ] 2
T=gplp," # 0+, - 8lxpy -y p ¥l

[ )

Hence, in the rotating coordinate system the Hamiltonian is given by,

H = bf+pf+{5~8hpy-yaﬂﬁ

=2~

+ qk(x2 - (2.11)

Examination of (2.11) shows that H is independent of z. Thus z is a

cyclic coordinate and P, is a constant of the motion given by

p, = Wi + Blx p - ¥ Py (2.12)

Using equations (2.7), (2.8) and (2.12) % can be shown that the momenta
(px, Pys pZ), in terms of the fixed coordinates (X,Y,Z) and their adjoint

mechanical momenta (PX, Pys PZ), are given by
Py = PX cos BZ + PY singl
py = - PX sin BZ + PY cos BL
p, =Pyt 8(XPy-Y P (2.13)

Y

Using the Hamiltonian given by equation (2.11), the equations of motion

in the rotating coordinate system are given as,
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W
!
bttt Tt elepy YRl Bk

Bp
- _ . X - -
Py =gy [p - slxp -y p )l 2k,
=M ] -
X-a%-M[%+eﬁ% Blxp, -y el
g=M_ Ll - -
y= by [py - #xtp, - 8lxpy -y )1 . (2.14)

Equations (2.14) are four first order nonlinear coupled equations in

Xy ¥s px and p_ and they can be used to obtain two second order nonlinear

y
coupled differential equations in x and y alone.

The nonlinear nature of equations (2.14) is removed when the
transverse momenta conjugate to the rotating coordinates are such that

2

P, {2 p
‘_X_ and (l <« 1. (2.]5)
P P,

It will be shown later,in Chapter 3,that these inequalities are satisfied
for all particles successfully guided by the structure, provided (ea)2 <« 1.
Under the conditions of equation (2.15), the Hamiltonian can be reduced to

12, 2,

] 2 2.2
H= g [p + Py 2, - 280, (x by -y p )]+ gk(x® - ¥)

[

(2.16)

This Hamiltonian can be used to generate the following linear, but coupled,

equations of motion
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by = %-LBPZ py - Makx]

[-8p, b, + 2Maky]

=|—

Py =
X=lb +8p. ¥yl

M SFx z !
y=glo, - o, (2.17)

There are two approaches for solving these four Tinear coupied
first order differential equations., The first approach is to resort once
more to Hamiltonian mechanics to generate, through contact transformation,
a new coordinate system in which the equations of motion are uncoupled.
The second approach is to put equations (2.17) in a matrix form and then
to solve the resulting linear first order vector differential equation.
Both of these approaches are used and described in the two sections which

follow.

2.3 Solution of the Equations of Motion by Contact Transformation

The difficulty encountered in solving equations (2.17) is due to the
fact that these equations are coupled. However, uncoupled equations of
motion can be obtained through contact transformation to a new set of
variables (X,y) and(ﬁ%, E&). The appropriate generating function(34)
is found to be

6 =X P Y P Y PPy (2.18)
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when the factor y is chosen properly.

Since G] is time independent, the value of the Hamiltonian remains
unchanged(34). The canonical variables of the rotating coordinate system
(X, ¥s Py py) and those of the new coordinate system (X, ¥, Ex’ Fy) are

related as follows (34)

% _
px=-ax—'=px ]

3G

1.5
-— aG] —
X= gb—-; =Xy Py ’
— aG‘I -
y =§3y_= y - Y px . (2.]9)

The Hamiltonian of equation (2.16), when expressed in terms of
(X, ¥s pys 'p_y) becomes:

2
Hoe gt %ﬁ [szn + 26p,y - 20K + 20K

n=J

2

; ‘Z—M [Ef{-] a1 - 200 ¢ 20k ]

+ o Ldakty - 29 3K B, - T3, (2.20)
The coupling between the variables (x,y) is represented by the Tast

term in equation (2.20) and in order to avoid such coupling the coefficient

of {x —y - YEX} should vanish. Thus,the proper choice of y is
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8p
ST (2.21)

The contact transformation generating function becomes

Bp
cyT VD -~ DD
6 =X Py *Y P Py (2.22)

and the transformation equations become

_ oy
X=X g Py

_ ey,
b 2qkM Py
PP
PPy (2.23)
From (2.20) and (2.21) the transformed Hamiltonian becomes:
= I+ (B 2s +1) + 20k )
=2 =2
- {py (s - 1)+ 2qkM y}] (2.24)
2 2
Bp
Z (2.25)

where § = ?—qr .

This Hamiltonian represents uncoupled motion in both the X and y

directions and the equations of motion are
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S
yE-ghls-1

y
Ml 29k x
Ey =2ky . (2.26)

Hence,the uncoupled differential equations in x, y are

X+ 8 (s 417 =0
Y8 -nF=0 (2.27)

Equation (2.25) shows that the sign of s is independent of the sign

of 8. Taking the above into consideration,it is clear from equations (2.24)

and (2.27) that the motion of the particle in the (X, Y, E;, E&) coordinate

system is independent of the sign of 8. On the other hand, equation (2.25)
shows that the sign of s is dependent on the sign of the charge of the
particle, q. For a particle with a negative charge,-q.the factor s will

be related to that of a particle with a positive charge,+q,as,

2 2
&P,

S.q 7 20 T 7 S
Substituting s_q into the Hamiltonian of equation (2.24) gives

g =g [0+ B, + 1) + 2-a)h B
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=2 2
" {py (s = 1)+ 2(-q)k ¥ 1]

or
_ 2 =2 ) =2
Ho = 7% [pZ - {p, (s+q 1) + 2qkM X}
-2 =2
+ +1) + 2qk
p, (s+q 1) + 2qkM ¥°}]
and the equations of motion of the negatively charged particle, obtained

by substituting 5. into equations (2.27), are

Comparison of H_q and the last two equations with equations (2.24) and
(2.27) shows that the change of the particle charge from +q to -q
corresponds to an interchange of X into y and ¥ into X.

Equations (2.27) represent stable harmonic motion with respect to
X and ¥ provided the factor S, which will be referred to as the stability

factor, satisfies the following condition:

22
B Z
|S| = lm-| > 1.0 (2.28)

The solutions for X, y, 5; and B& are found to be

X = C] cos F] s
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y = C2 €os F2 s

_ 860"
px = sin F ,

R

Cy(-1)"
Ey Z_\/.T- sin F . (2.29)

The solutions for X and y are direct solutions for equations (2.27). The
solutions for E and E& were derived by differentiating the solutions for
X and y w1th respect to time, then substituting the resulting expressions
for X and y into the first two equations of (2.26). In equations (2.29),
n =0 for g positive, corresponding to a counter-clockwise twist of the

electrodes, and n = 1 for 8 negative, corresponding to a clockwise twist

of the electrodes. The other parameters in equations (2.29) are
F] = f]t + o )
F2 = f2t ta,
fi \ﬁ-ﬁz\ﬁTT ;
SNl (2.30)

The values of the constants C], C2, o and o depend upon the conditions
of the particle at injection. Notice that in equations (2.29), (2.30)

and in all equations to follow a positive square root will be assumed.
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Thus, from equations (2.23) and (2.29) the motion of a charged
particle in terms of the rotating coordinates (x,y) and their adjoint

momenta (px, py) is given by

Vs

s -1
] Vs .o
y = Cy cos Fy - \ZE:iF;f (-1) G, sin B

X = C] €os F] + (-1)n C2 sin F2 ,

i g(-1)" -
p,=-p C, sinF
X 2[5 T 1 1

Py =tp, ;ﬁéi%%;:T Cy sin F2 . (2.31)
provided that the inequalities expressed by (2.15) are satisfied. These
equations give the rotating transverse coordinates and their adjoint
momenta as functions of the time t, where t = 0 at the instant of injection
of the particle into the structure at Z = 0,

For the particle trajectories to be completely determined it is
necessary to find the axial distance Z as a function of the time t and
the injection conditions of the particle. Equation (2.12) gives the axial

velocity Z as
I=1=¢ -ﬁ(xpy-ypx) (2.32)

The constant of the motion, p,» can be expressed in terms of the injection

conditions of the particle by using equation (2.13) as,
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p, =P, +8(X Py =Y P,)
z Z0 0 Y0 0 X0
p p
X 'Y ¥ X
MU, O+ () - 1 )] (2.33)
Z a P a P
0 Z0 Zo

where (XO,YO) are the coordinates of the particle at injection, and where
(PXO, PYO, PZO) are the components of the momentum of the particle at
injection. UZo is the axial velocity at injection. As shown in Appendix
B,equations (2.31), (2.32) and (2.33) give 7 as a function of the injection

conditions and the time t as

XYy X
- 0 0 _2 0
Z-Z-UZ[]+Ba{a—'p-—-ap-—}]
0 Z L
0 0
2p 6,2 C,?
+ _@__Z_[ 1 - 2 ]
7 M s + 1 (s - 1)
¢, C
8 172 :
+ B (f, - f,)sin(F; - F,)
¢, C
. % _];_2_ (f) + fz)sin(F] +Fy)
s -1
82 Py sz C12
ey s By s 2l (3

Integrating equation (2.34) with respect to time gives the axial

distance traversed by the particle as a function of the time t as,

t
1=z =.I 1 dt
0
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x vy P
=[I+Ba{;(l|3-9--—9p—°}].
2. ¢ 71
0 0
2h
WGy - ool

C
4 1

noj™

C
2
T [cos(F] + F2) - cos(F1 - Fz)]

c 2 C 2
P SR -
+ (-1) 4»@[(5-])3/2 sin 2F2 (s+l)32 sin ZF]]

2

[cos (o) + ap) - cosey - a,)]

s” -1
2 2

C C
B 2 . 1 .
e I /s'[-—-——TZ(S - ])3 sin 2, - __7.2.(5 - 1)3 sin 20,]

(2.35)

Equations (2.31) together with equation (2.35) completely specify
the particle trajectory in the rotating (x,y,z) coordinate system, with
n = 0 for B positive and n = 1 for B negative. The equations specifying
the trajectories in the fixed (X,Y,Z) coordinate system are obtained from
equations (2.31) by using the transform equations (2.7)

The constants Cys Cps 0q and a, can be e\)aluated in terms of the
injection conditions of the particle. Setting t = 0 in equations (2.7)
and (2.13), the relationships between the rotating and the fixed coordinate

systems are
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p.=P, +8{X P, -Y P, } . (2.36)
y4 Z0 0 YO 0 X0

Setting t = 0 in equations (2.31) and using the relations (2.36), the

constants C], CZ’ o and a, are found to be

2
.2, oo-$ ffgiz s S(s+1) PXo
1 0O B P 2 2
2 Phor2 (s - 1) PY2
i} s A2, s(s - 0
F AR B e ’
z 81,
~ P -
_\/;Vs + 1 {_fg&
Ot-l = tan P ’
% -2 —Yﬂ}
- ’ B pz o
h . ]
VaVs - 1 {_Xg*
n p
oy = tan™! (-1) BP Z . (2.37)
{y -i—xﬂ}
- ° sz o

2.4 Solution of the Equations of Motion by Matrix Techniques

The second approach to finding an analytical solution for the
particle trajectories utilizes a matrix formulation of the equations of

motion, (2.17). Thus,
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<
n
"
—
~<

F.)x Py
pr. Py, (2.38)
where, ~ W
sz 1
0 W 0
sz 1
[1]=
sz
-2qk 0 0 T
sz
L0 29k - T 0 (2.39)
Equation (2.38) is a first order linear vector differential equation of
the form,
n(t) = [TIn(t) (2.40)
where X
Yy
n(t] =
Px

For the case where the eigenvalues of [T] are distinct, the solution of

equation (2.40) is known to be(35)
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A]t xzt

+ A nn

m=A]n]e znze

At At

3n_3_e3+A4ﬁZe4 (2.42)

+ A
where STRYY Ay and Ay are the four eigenvalues of the transform matrix
(1] and ﬁ;} ﬁE} ﬁg'and ﬁ;[are the corresponding four eigenvectors. The
values of the constants A], AZ’ A3 and A4 depend on the components of
n(t) at t = 0, that is they depend on the injection values of x, y, Py
and py.

The four eigenvalues of [T] are the roots of the equation

[T -l =0 where I is the 4x4 unit matrix.

Substituting for [T], the above equation becomes

Bp
z 1
L R B
Bp
Z ]
'—M- - A 0 'M
= 0
Bpi
‘ZQk 0 - A T
Bp
0 20k -—M-Z--x
L ]
giving,
sz BPZ
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The solution of this equation gives the four eigenvalues as

A T L B

(2.43)

where f] and f, are the same as defined by equations (2.30). In other

words,
f, S\ T
1 M ’
£, A/ 51
2 VW VST

Each of the eigenvectors E;} i=1,2,3,4 satisfies the four algebraic

simultaneous equations,

Bp

z 1 _

SN YR Yo WY =0

8p
Z l_ = ’
RN N Yo vy © 0

sz —

- 2k vy Mgy ot 0

8,

Fokvg c gy At 0 - (24
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where

[ 7
i
— Y2'i

¥3i

Y4i]

Solving equations (2.44) for each of the eigenvalues gives the four

eigenvectors as,

1]
Bp, 8P,
n, = s Ny = )
] 0 2 19
20k 2k
BPZ fpz
8, Bp,
Ny = 1 ) Ny 1
2qK 20kt
BP, ép,
i 0 | L 0 (2.45)

Substituting equations (2.43) and (2.45) into (2.42) gives the solution

of equation (2.38) as
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" x ] R 1]
. sz ‘ sz
Y J EE_' _ =J EB—
z szt z -jfzt
= A] e + A2 e
px 0 0
p 20 20Kt
Y ;| B,
- '} -
o ;o
BPZ BPZ
1 1
jf.t -jf. t
+ A3 e’ 1" + A4 e vl
20k 20Kt
8D, B,
LO ] LO ] (2.46)

Stability of the solution implies real values for f] and fz. It is

apparent that f] and f2 are real provided

B2p 2

Z
Is| = loggrt > 1.0

This stability criterion is the same as that given in (2.28).
To evaluate the constants Ay, Ay, Ay and A4 consider equations (2.36)

rearranged in a vector form as
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- 1 b
xW xO X0
y Yo Yo
px px0 PX0
Py Py Py (2.47)
L) L 7o) | 0
t=0 i

Setting t = 0 in equations (2.46) and substituting from equation (2.47)

gives
f]M
X -A-|+A2 JE‘D—Z'(A3 A4) s
M
Y0=A3+A4+JEP—Z'(A'|'A2) ’
_ 2qkM

2qkM
P =—9——(A +A)
Y0 spz 1 2

Solving these four algebraic equations, the constants A], AZ’ A3 and A4

in terms of the injection conditions are:

_1°5% 15, P,
b=y Izt il

1 .1 sz sz
ho = g g Pyt E'N?E[Yo " 7k Pxo] '
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=17 1 4
Ay = 7 g Px()”Jsz][Xo 7ok on] ’
Bp Bp, 8
21z .17 z
ez dawte mwh ) (2.58)

As shown in Appendix C by substituting equations (2.48) into equations (2.46)
and by rearranging the terms, the equations describing the trajectories
of the particle in the rotating coordinate system are obtained as functions

of the injection conditions in the matrix form:

'xw -xJ i %1
Y Yo Y,
= [oft)] = [Q(t)] )
px px0 PX0
p p P (2.49)
Y | Yo) LY°-

where the matrix Q(t) is given by
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Appendix C shows that the solution given by equations (2.49) and
(2.50) is obtainable directly from equations (2.31) and (2.37) through the
expansion of the trignometric terms and the evaluation of the constants
C1, C2’ o and o in terms of the injection conditions. One feature of
the matrix approach is that it circumvents the need for determining a
suitable contact transformation.

The first form of the solution, given by equations (2.31) and (2.37)
is very useful for investigating the guiding properties of a long uniformly
twisted electrostatic quadrupole beam transport system. Equations (2.31)
can be easily used to obtain an expression for the radial displacement
of the particle and by imposing the condition that the maximum radial
displacement must be less than or equal to the aperture radius, it is
possible to derive the acceptance Timits of the structure.

The matrix form of the solution is useful for studying the imaging
properties of the twisted structure. By inspecting the different elements
of the transfer matrix, it is possible to investigate the parametric
changes required to obtain specific transformation properties for a
structure of finite length. For example, in Chapter 7 it is shown that it

is possible for Q(t) to be a unit matrix.



49

CHAPTER 3

GUIDING PROPERTIES

3.1 Stability

The analytical expressions for the particle motion, either
equations (2.31) or equations (2.49) and (2.50), show that the harmonic
motion of the particle will be bounded and stable if the two frequencies

f] and f2 are real, that is

£ oo Ak (s+1)>0

1 M !
and fg = 2%& (s-1)>0

These two conditions show that the motion of the particle is bounded and
stable if s satisfies the condition,

2 2
8 Z
‘S| = |m—] > 1.0 (3.])

Substitution for P, from equation (2.33) gives this stability condition
in terms of the structure parameters and the particle injection conditions

as,
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0 0 _0_ 0 092
Is| = lgapﬁ“l[] + (Ba){-'ﬁz— -l > 10 (3.2)
For particles which prior to injection have been axially accelerated from

rest through a potential V, the axial momentum is given by PZ = VZqMV.
0

For such particles equation (3.2) takes the form

Y
Is| = (ea)2|¥,;| [+ (sa){;‘lp—z2 . —9#}12 2 1.0 (3.3)

3.2 Particle Confinement

So far it has been shown that particle motion along the uniformly
twisted quadrupole structure will be stable and oscillatory provided that
the stability condition as well as the inequalities (2.2) and (2.15) are
satisfied. However, these conditions are not sufficient to ensure that
a particle will remain bounded within the aperture of the structure. For
a particle to be successfully guided, its maximum transverse displacement
from the axis of the structure must never exceed the aperture radius a.

In terms of the rotating coordinates
2= (84 < (3.4)

Substitution using equations (2.31) gives

ol = C% cos’ Fi+ 2(-1)"&;@}1-C]C2 sin F, cos Fy

S (2.l 2 .2
t =7 0y sin Fy + Gy cos™ Fy
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n 5 . S 2 .2
- 2(-1) \/g—;fnr C1C2 sin F] cos F2 YT C] sin F]

- olr...2 S inl
= C][COS F]+S—;—]-s1n F]]

2 2

S 2es - 1
t Cz['_E"" cos

- Fp + sin

F2]

+ 2(-1)n C]C2 /;—%—T [sin F2 cos F] < §—:—% sin F] €oS F2].

However, each of the three terms between brackets can only have a magnitude

equal to or less than unity. Thus,

2 oL YA s
Cehr e T GG

or

S
r< |C]| +"'S'—_'T|C2| (3.5)

Hence, to ensure successful guiding of the particle by the twisted
structure, |C]| and |C2| should be such that the maximum radial displacement

satisfies the confinement criterion

[ s
fax =~ 161 5T 1G] < 2 (3.6)

This inequality sets the limits for the maximum values that |C]| and |C2|

can have as
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|C a  when lC2| = 0.0

11max ;

and el =Ete when c] = 0.0 (3.7)

2|max S

In Chapter 2, the solutions for the particle motion were based on

p p
the assumption that (—502 and (—M)z are much Tess than unity. Consideration

of equations (2.31) shows that the peak values that (51)2 and (By-)2 can
z z
have are:
P2 g 2
p,‘max  s{s +1) 71 °?
P 2
We . _ 8 2
(pz)max s{s - 1) G - (3.8)

Substitution of the maximum values of G and C, from equations (3.7) into

equation (3.8) yields:

(_pl)Z < Ba 2 < 3232
p,max - s(s + 1) 2

and

(El)z < 62 (S - ]) 32 = 8232
p, max - s(s - 1) 3 S2

Thus, for any particle whose stable motion has a maximum radial displacement
less than the aperture radius,
Px

p
(5;)2 < (EZZF < (B2 (3.9)
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Since (Ba)2 << 1.0 and |s| > 1.0 for stability considerations, equation
(3.9) shows that the inequality (2.15) is satisfied as long as the
inequalities (3.1) and (3.6) are satisfied.

Substituting the values of |C]| and }CZI, given in equations (2.37),
into equation (3.6) gives the confinement criterion in terms of the

structure parameters and the particle injection conditions. Thus,

s 092 ,s(s+1) "0,1/2
l{[XO-BPZ]+J?_lp2} ]
p Ty
Xoq2 s{(s - 1) Y 1/2
VR o I ke = M EE B AL

When the injection conditions of a particle are such that this
confinement criterion is satisfied it will be successfully guided by the
structure without being intercepted by any of the four twisted electrodes.
A general discussion of these injection limitations is difficult and only

some special cases of injection are considered.

3.3 Special Cases of Injection

3.3.1 Parallel Beam

“When a charged particle is injected parallel to the structure axis,
the Z-axis, its transverse momenta PX and PY are zero and its initial
0 0
transverse displacements are given by X0 and Yo' Equations (2.37) under

these conditions show that,
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|C'|l : ‘Xol J |Czl = |Y0‘ (3.11)

Consideration of equation (3.10) shows that particies will be
contained by the uniformly twisted structure when X0 and Yo are within
the parallelogram - shaped region depicted by figure (3.1) (plotted for
s = 2,0 and (Ba)2 = 0.1). This region is bounded by the straight Tines

fy .ot
- R R (3.12)

Equation (3.12) shows that the maximum allowable value of Xo’
when Y0 = 0, is equal to the aperture radius irrespective of the value of
s. Equation (3.12) also shows the maximum acceptable value of Y, when
X0 = 0 is equal to §-§—l-a. Thus Y increases from zero to a maximum

omax

value equal to the aperture radius as s increases from 1.0 to infinity.

It is clear from equation (3.3) that for parallel injection

|s] = (sa) | |
Yo
For a given structure and fixed (sa), increasing s for a particular
particle corresponds to an increase of its accelerating potential at
injection or to a decrease of the quadrupole focusing voltage, Vo‘
Study of figure (3.1) shows that the twisted structure exhibits

a feature common to classical quadrupole structures. The maximum
allowable X-displacement for parallel injection in the initially focusing
X-7 plane is larger than the maximum allowable Y-displacement for

parallel injection in the initially defocusing Y-Z plane. A particle
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may be injected in the X-Z plane with an initial displacement as large
as the aperture radius. At first, the particle will be acted upon by
large electric fields that deflect it towards the Z axis. As it progresses
along the structure the forces acting on the particle will change and
tend to deflect it away from the axis. This defocusing action will be
followed by another focusing action as the forces change again and tend
to deflect the particle back towards the axis. Thus, the particle will
experience alternating focusing and defocusing forces as it passes along
the structure. However, each time the forces are focusing the particle
is farther away from the axis than it is during the time when it sees
defocusing forces. Since the fields and hence the forces increase
Tinearly with distance from the axis,the effect of those alternating forces
will be a net focusing action on the particles.

On the other hand, particles cannot be injected in the Y-7 plane
with Y0 close to or equal to the aperture radius. A particle injected
with Y0 initially larger than the limit 5—%—1 a will encounter large
defocusing forces that will deflect it away from the Z-axis so that its
transverse displacement will exceed the aperture radius and it will be
Tost. For values of Y0 equal to or less thaﬁ\/g:é:i_a, the particle will
be deflected away from the axis initially but the subsequent focusing
action will be sufficient to turn the particle back towards the axis
before it can be Tost. As before the alternating focusing and defocusing
forces will result in a net focusing action.

Unlike in classical quadrupole structures, the maximum acceptable
value of X0 for parallel injection along the twisted structure is dependent

on the initial Y0 displacement of the particle, as shown from equation
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(3.12) and figure (3.1). This dependence is due to the coupling between

the X and Y components of the particle motion along the twisted structure.

3.3.2 Point Source

For particles emerging from a point source at the input plane of
the structure the initial transverse displacements, X0 and Yo' are zero
at 7 = 0 and the injection transverse momenta are given by Px and PY .

0 0

In this case the confinement criterion shows that PX and PY are
0 0
limited to values within the momenta space bounded by the curve

1 By 2o s(s + 1Py nie
0 0

A e, 2o sls - 0y 21VE = [s e, (3.13)
s =1 Y0 z

Y

where by equation (2.33) b, = PZO. Equation (3.13) is plotted (see
Appendix D) for several values of s in figure (3.2). The axes have been
normalized with respect to PZ and the curves are plotted assuming

(Ba)2 = 0.1. It is shown in prendix D that the maximum allowable
transverse momenta in the X and Y directions are:

|a P, |

P - 0 1
| %uwx 'Vg Vs + 1 +st-1

when [Py | =0 (3.14)
0

and

|8a Py |
0
when [Py | =0 (3.15)
0

Py | =
Yo max 2
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]

«/s_ﬁ*s/m

. . oo P Py
Figure (3.2) Acceptance in the Normalized p—Q - Fil Transverse Momenta
0

Plane for Point Source Injectio%‘.’ L
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or values of s approaching unity, the value of |P |  approaches
|82 PZ Yo max

———7?—31— while |Pxo|maxapproaches zero. As s increases the value of

|PY0|maX decreases until it finally approaches zero as s approaches

infinity. On the other hand as s increases the value of |PX0|max increases

until s = 1.3295 is reached at which point |Pxo|max reaches a maximum

value of 0.226 |ga oni. For values of s larger than 1.3295, lPxolmaX decreases

as s increases until Py |  approaches zero as s approaches infinity.
Similar to class?cg?xquadrupo1e structures the allowable values of

[Py | are always greater than the values of [P | for all values of

0 max 0 max

s. Comparing the alternating focusing and defocusing forces near the

point of injection provides a qualitative explanation of this difference.

A particle injected on the axis with Y-directed transverse momentum

initially experiences a small defocusing force and is accelerated radially

away from the Z-axis. By the time the forces on the particle change from

defocusing to focusing, the particle will have been displaced a considerable

distance from the Z-axis. Here, the focusing forces acting on the particle

will be stronger than the defocusing forces previously encountered. Thus

the net force in this initial region of the structure will be focusing.

On the other hand, a particle injected with X-directed transverse momentum

first experiences a small focusing force followed by a larger defocusing

force as it moves away from the Z-axis. In this case the net force in the

region near the point of injection is defocusing. In other words,a particle

injected on the axis with X-directed momentum is initially defocused while

a particle injected with Y-directed momentum is initially focused. Thus,

it is to be expected that the allowable values of PY are larger than the

0

allowable values of PX .
0
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A comparison of the allowable transverse momenta for point source
injection in the case of the twisted and the classical quadrupole structures
will be presented in Chapter 6.

Considering the cases of parallel injection and point source
injection for the twisted structure, it is found that large values of s
are desirable for parallel injection while they result in a reduction of
the momentum acceptance for point source injection. A compromise value

of s = 2 seems appropriate for both cases.

3.3.3 Injection on the X-Axis with X-Directed Momentum

A particle injected on the X-axis with X-directed transverse
2\
I”‘l ’

v

momentum has Yo=P = 0. For such a particle b, = P; S| = (sa)
0 0

0
and equation (3.10) gives the confinement criterion for this case as,

P P
X X
+
I[X 2 + SfS ]! ( 0)2]]/2| +g f | 0 | <a
0 B2 PZ s -1 8P,
0 0
or
p P P
X X 3 X
2 042 .2 [s 0, S 4 0.2
Xo tsls + 1)) <a 2as\/S > It syie)
z VA VA
0 0 0
or
Px Px
2 s (RY 0 2 2 2
Xo - [_TS = ][(—sz )" - 2afs(s - ])I-B-P-Z—|+ a“s(s-1)] < a™(1 - s7)
0 0

Taking into consideration that |s| > 1.0, the confinement criterion finally
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becomes:

0 2 2
{,-BPT - a)s - S} X 2
0 0
- < 1,0 (3.16)

{a(s - 1 ]} {a/s2 - 1}2

Hsnce, for such a particle to be successfully guided by the structure,

X0 and ﬁ_g should be represented by a point within the area of intersection
of the twoohyperbolae represented by equation (3.16), as shown in Figure
(3.3). The axes in figure (3.3) have been normalized, X0 with respect to
a and PXo with respect to PZO. Three cases were plotted in figure (3.3)
for values of s = 1.5, 2.0 and 3.0. For all values of s the intersections
of the hyperbolae occur on the (59) axis at EQ =11,0. This result is in
agreement with the results obtained for the special Sase of parallel
injection since figure (3.3) clearly shows that for ﬁ“ = 0, together with
[ PYO = 0, the maximum allowable |X0| is equal to a° Figure (3.3) also
shows that as s increases, the allowable transverse momentum decreases.
Note that all values of s considered are larger than s = 1,3295 at which

|PX | reaches its maximun value. The values shown in figure (3.3) for
P, max

| | » at k= 0, are the same as those predicted by equation (3. 14)

for the values of s considered.

3.3.4 Injection on the Y-Axis with Y-Directed Momentum

A particle injected right on the Y-axis with Y-directed transverse
momentum has X0 = 0 and PX = 0. As was the case for the other special
0
cases, p, =P, and s = (Ba)2|¥—-. The confinement criterion for this
0 0

special case of injection, obtained by substituting in equation (3.10), is
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Py
Figure (3.4) Acceptance in the Z—Q - 5-3 Phase Plane for Injection on

the Y-Axis with Y-DirecteéoTransverse Momentum,
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p P
Y Y 2
s 0 S 2, s{s - 1) [_0y541/2
BP; [+ Ly * _L—7;?'L (PZ )1 e
0 0
or
PY P PY
s 2, 2042 .2 04, 80
s-T'0 8 (BPZ ) st 2as|BPZ |+ (BPZ )
0 0 0
or
P
Y Y
S 0,2 S |_0
T gl < (317
0

This equation shows tgat such a particle is successfully guided
by the structure if Yo and (519) are represented by a point within the
area of the intersection of the two parabolas represented by equation (3.17).
Several such parabolas are plotted in figure (3.4). The axes in figure

(3.4) have been normalized, Y0 with respect to a and PY with respect to
0

P Three cases were plotted in figure (3.4) for values of s = 1.5,

Z .
0

2.0 and 3.0, For the three values of s the intersection of the parabolas
occurs on the 59 axis, but the point of intersection depends on the value

of s. As expected from the special case of parallel injection, the

maximum allowable values of Y0 when PY = 0 are equal to a/§-§—l and
0
decrease as s decreases. Also as expected from the special case of point

source injection, the acceptable values of PY for a particle injected at
0
a point Y0 with Xo = PX = () decrease as § increases.
0

3.3.5 Point Source at a Distance d From Input Plane

Consider a point source a distance d from the input plane of the
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twisted structure. A particle emerging from this source will have its

transverse coordinates at the input plane, Z = 0, related to its momenta

by
PXo
XO = E— d ’
0
P
- Y0
Ve d (3.18)
Zo

Thus (X0 PYo - Y0 Pxo) = 0 and p, = PZO for such particles, Substituting

equations (3.18) into equation (3.10) gives the confinement criterion for

this special case as

2
X "o 1 X 12
d "o s _0 s(s + 0
B s s
i YA B a P
0 0 YA
0
Py n PY2
s d _0_5s 03,588~ 1) 0,172
s l{[a P ga P I+ 'j'TTTT—l 7 | <1.0 (3.19)
Z0 Z0 g a PZ
0

Equation (3.19) gives the values of the allowable divergence that
a beam, emitted from the point source distant d from the input plane, can

have so that all pargic]es will be guided. The acceptance area in the
X Y

transverse momentum 529-- 529 phase plane is bounded by an ellipsoidal curve
0

0 2
which is tilted because of the cross terms PXo PYO, PXO2 PYO, PXOPyo and

2
PXo PYo
sides of the inequality are squared. The degree of tilt of the acceptance

2 that will appear in the expression of equation (3.19) if both

curve is dependent on the value of g-considered as well as the structure

parameters.
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For % = 0.0, equation (3.19) will reduce to equation (3.13)
obtained for point source injection at the injection plane, Z = 0.0, and
in this case the acceptance curve will not be tilted.

Figure (3.5) shows the acceptance limits in the transverse normalized
momentum phase plane, The axes are normalized with respect to PZO. The
acceptance curves are for s = 1.25 and s = 2.0 for a counterclockwise

twisted structure, g positive, having (3a)2 = 0.1. The point source is

at a distance d = 5a from the injection plane.



68

CHAPTER 4

AN EVALUATION OF THE ANALYTIC SOLUTION

4.1 Introduction

The analytic solution developed in Chapter 2 is based on the
assumptions that (Ba)2 <« 1 and (25)2, (;yqz << 1. It was shown in
Chapter 3 that these assumptions aie just?fied for any particle whose
maximum radial displacement from the structure axis is less than the
aperture radius. Therefore, the approximate analytic solution is not
restricted to small displacements from the Z axis. Further, it was
' proved in Chapter 3 that a particle will be successfully guided if its
transverse coordinates and its momenta at injection satisfy the acceptance
or confinement criterion given by equation (3.10). The first objective of
this chapter is to establish the accuracy of the approximate analytic
solution and in particular to test the validity of equation (3.10) in
predicting the acceptance limits of the twisted structure. This objective
is achieved through comparison of the trajectories computed using the
analytic solution with the actual trajectories of the particles. The
latter trajectories are computed through numerical integration of equations
(2.6) which are the original equations of motion. These equations of

motion as well as the approximate analytic solution are based on the

approximate expression of the potential distribution given by equations
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(2.12) and (2.1b). The second objective of this chapter is to present

a mode theory that is based on the general examination of the nature of
the trajectories and which describes the projections of the particle
trajectories on the fixed X-Z and Y-Z planes in terms of four spatial
modes. This mode theory explains the apparent amplitude modulation in
some of the particle trajectories as well as the presence of small ripple
components superimposed on longer wavelength fundamental components.
Using the expressions provided by this mode theory, for X and Y parametric
in Z, it is possible to compute and plot average approximate particle
trajectories instead of using the long expressions of equations (2.31)
and (2.35).

A number of trajectories were computed and plotted using the analytic
expressions of equations (2.31) and (2.35). The trajectories were plotted
for a large number of injection coordinates and momenta satisfying equation
(3.10). These trajectories will be referred to as the analytic trajectories.
The first program Tisting in Appendix E shows the steps of computing these
analytic trajectories. A second set of trajectories was then computed
through the numerica] integration of equations (2.6), the original non-
linear coupled equations of motion, using the Runge-Kutta method of
numerical integration(36). These trajectories were plotted for the
same injection conditions considered for the analytic trajectories. The
steps of the computations of these trajectories also are shown in the first
program 1isting of Appendix E. They will be referred to as the Runge-Kutta
trajectories and will be taken to represent the actual trajectories.

The numerical solution provided by the Runge-Kutta method is a step-

by-step solution. The accuracy of such a step-by-step solution of
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differential equations is often difficult to determine(36). The Runge-

Kutta method has no error checking equations. However, the truncation

5

error is near the order of h” where h is the time interval used for

computing X, Y, Z. Improvement on the accuracy may be achieved by using
smaller time intervals. However, a decrease of the interval size, h,

adds to the amount of computing time and increases the possible round-off-
error. For choosing a suitable value of h so that both the truncation
error and the round-off-error will be negligible, a set of Runge-Kutta
trajectories were computed and their projections on the X-Z and the Y-Z
planes were plotted using different values of h for the same particle.

. L .
The value of h was varied from To00 U UP to ?K%TT-' , where L is the

/A z
periodic length of the twisted structufe and UZ is’the initial axial
0
velocity of the particle at injection. The computations were performed for

a structure whose length is 24 meters, that is 800 L approximately. It
was found that there is excellent agreement between the trajectories,
computed and plotted for this Tong structure, corresponding to values of h

from SOOLUZ up to ]25LUZ . The consistency of the trajectories for this

wide range 8¢ variation of h indicates that the value of h should be

chosen between 500LU and 125LU . It was decided to use a time interval

A A
§§5LU——-in°the computa%ions of the Runge-Kutta trajectories.
z

The same value of°h is used in computing points of the analytic trajector-

h equal to

ies.

For the purpose of assessing the accuracy of the approximate
analytic solution the analytic and Runge-Kutta trajectories are compared
for a structure having an aperture radius, a = 1.5 cm and a periodic

Tength L = 29.68 cm which corresponds to (Ba)z = (2%902 = 0.1, hence
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satisfying equation (2.2). As shown in Chapter 3, a stability factor
s = 2.0 will allow good use of the aperture for parallel injection and
it also yields a relatively symmetric transverse momenta acceptance
region for point source injection. It was also shown that for both
parallel and point source injection s = (Ba)2|¥—|. Therefore, s can be
set equal to 2.0, for parallel and point sourceoinjection, by setting
the quadrupole voltage, Vo’ equal to 1.5 KV for particles preaccelerated
from rest through a potential V = 30 KV. It is evident that for
particles with general injection conditions the value of s must be
calculated for each particle using
P P
5 = (Ba)zl%;|[1 + (Ba){ég-pgg - X9-§-94]2 (4.1)
0 0
The discussion and the 1isting of the computer program used to compute
and plot the analytic and Runge-Kutta trajectories are given in Appendix
E.

Since only electrostatic fields are involved and all the particles
are presumed to have been preaccelerated from rest through the §ame
potential prior to injection, the trajectory of a particle along the
structure is independent of the particle's charge to mass ratio. For
computation of the trajectories the particles were assumed to have a
charge to mass ratio equal to 30 coulomb/kilogram, which is typical of
particles used in micrometeoroid simulation studies. In order to compute
the analytic trajectories the values of the injection conditions Xo’ Yo’
PXO, PYO and PZ were used to evaluate the constants of motion s,

0
Cps Cos 0y, o and p, using equations (4.1), (2.33) and (2.37). Then
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by increasing the time t in steps, each equal to h seconds, and using
equations (2.31), (2.34) and (2.35), the values of (x, y, Py py) and
the corresponding values of the axial velocity Z and the axial distance
L were evaluated for each value of t. The analytic trajectories were
then plotted in terms of the fixed (X, Y, Z) coordinates using equations
(2.7). On the other hand, the Runge-Kutta trajectories computed using
equations (2.6) are already in terms of the fixed, (X, Y, Z) coordinates.
The computations of both sets of trajectories were carried out
using an IBM 360 digital computer and the projections of the trajectories
on the X-Z plane, the Y-Z plane and the X-Y plane as well as Z versus 1
were generated directly by the computer using a Calcomp Plotter model
770/663. The various trajectories are presented in figures (4.1) to

(4.19).

4.2 Comparison of the Analytic and the Runge-Kutta Trajectories

The trajectories discussed below have been computed and plotted for
a large number of injection conditions. Some of these injection conditions

were general, that means particles having nonzero values of Xo’ Yo’ PX
0
and PY . The restof the injection conditions considered were for the
0

special cases of parallel and point source injection at Z = 0.

Figures (4.1) to (4.7) show the X-Z, Y-Z and X-Y projections of the
trajectories for cases where the injection conditions are well within the
limits set by equation (3.10). Figures (4.1) and (4.2) B;e for the
gineral injection conditions (Xo = 0.1 cm, ;2 = 0.2 cm, 529 ;YO.OZ and
p-zﬂ = 0.02) and (X = 0.3 an, ¥, = 0.2 cm, 52 = 0,01 and * 52 = 0.01)

p P
0 ZO ZO
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respectively. Figures (4.3), (4.4) and (4.5) are for parailel injection
at the points (X0 =0.45 cm, ¥, = 0 )s (Xo = 0.337 cm, ¥ = 0.079 cm)
and (Xo = 0.225 cm, Y0 = 0.159 cm) respectively. For point source
injection figures (4.6) and (4p; show the Brajectories for psrticles with

)
injection transverse momenta (F—Q = 0.016, 5—9 = 0.011) and (5—9 = 0,007,
z

PY Zo Zo 0

529 = 0,022) respectively. For each of the particles, there is nearly
exdct agreement between the analytic and the numerical trajectories. For
all seven cases, figures (4.1) to (4.7) show that the X-Z and the Y-Z
projections of the trajectories feature a dominant oscillation superimposed
upon which there is a small ripple. The amplitudes and positions of the
dominant oscillations and the ripples for each of these seven examples are
found to be exactly the same in both the amalytical and the Runge-Kutta
trajectories. Moreover, the (X-Y) projections of the trajectories in
figures (4.1) to (4.7) show that the maximum displacement is always less
than the quadrupole aperture, a = 1.5 cm.

Figures (4.8) to (4.11) depict trajectories for particles with
injection conditions chosen such that, as expected from studying equation
(3.10), their maximum radial displacements are equal to or greater than
half the aperture radius. Figures (4.8) and (4.9) are for parallel
injection at (X0 = 0.675 cm, ¥, = 0.159 cm) and (X0 =0 , ¥, = 0.53 cm)
respectively. Figures (4p10) and (4.1;) are for point Bource injection

X
with transverse momenta (F—g = 0.017, 519 = 0,051) and(§—9-= 0.047,
A YA
0

A
Y 0 0
5-9-= 0.012) respectively. A1l four cases show substantial agreement

z
0
between the approximate analytic and the Runge-Kutta trajectories. The

-

agreement is nearly exact up to a length equal to approximately 6L, or
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about 1.8 meters, Af this point a difference appears between the analytical
and the Runge-Kutta trajectories in the form of an apparent phase shift
between the trajectories. This small apparent phase shift arises because
the numerical trajectories cross the Z axis before the corresponding
analytic trajectories. A study of the previous four cases shows that the
phase shift increases as the injection conditions approach the limiting
values. This is especially evident in the positions of the ripple
components. Note that the X-Y projections of the analytic and the Runge-
Kutta trajectories, shown in figures (4.8) to (4.11) show that, as
predicted by equation (3.10), the maximum radial displacements of the
particles are less than the apterture radius.

Figures (4.12) and (4.17) represent particles for which the
injection conditions are exactly equal to the lTimits set by equation
(3.10). Figures (4.12), (4.13), and (4.14) show the trajectory projections
for parallel injection at the limiting acceptance points (X0 =a=1.5¢cm,
Y0 = 0.0), (X0 = 1.125 cm, Y0 = 0.265 cm) and (X0 = 0,187 cm, Y0 = 0.928

cn). Figures (4.15), (4.16) and (4.17& are for poinE source ingection

X _ X
“with the Timiting transverse momenta (5= = 0.0599, 5= = 0), (5= = 0.052,
p p p z z z
Y X Y 0 0 0
5-9-= 0.038) and (p—g = 0, FJZ = 0,079). Even in these limiting cases the
/ z VA
0 0 0

essential features of the motions are quite accurately predicted by the
analytic solution. However, examination of the trajectory projections

again shows that the actual (Runge-Kutta) trajectory projections cross

the Z axis somewhat before the corresponding analytic trajectory projections.
In spite of the differences between the analytic and the actual trajectories

for these 1imiting injection conditions, it should be noted that the X-Y
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projections of the trajectories show that the maximum radial displacement
is equal to or very slightly Tess than the aperture radius. In other
words equation (3.10) has quite successfully predicted the acceptance
Timits of the twisted structure for these cases.

The study of all the above trajectories, both analytic and Runge-
Kutta, shows that for all injection conditions accepted by the twisted
structure the projections of the trajectories on the fixed X-Z plane and
the fixed Y-Z plane feature a dominant oscillation superimposed upon which
there is a shorter wavelength ripple. The study also shows that the
relative amplitudes and positions of the ripple component with respect to
the dominant oscillation depend on the particle's injection conditions.

For particles injected with small transverse coordinates (Xo’ YO)
and/or small transverse momenta (PXO, PYO), that is for particles whose
injection conditions are well within the limits set by equation (3.10),
the comparison shows excellent agreement between the analytic and the
Runge-Kutta trajectories. For such injection conditions, the amplitudes
and positions of either the dominant oscillations or the ripples are the
same in the amalytic and the Runge-Kutta trajectories. Such excellent
agreement indicates the degree of accuracy of the analytic solution and
shows that the approximate assumptions of equation (2,15) are well
justified for injection conditions well within the limits set by equation
(3.10).

The comparison of the analytic and the Runge-Kutta trajectories
for particles with injection conditions larger than those discussed above,
but still within the limits set by equation (3.10), shows that there is

still good agreement between the analytic and the Runge-Kutta trajectories.
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Any differences between the two solutions are not evident for the first
few periodic twists. Then a slight apparent phase shift starts to appear
between the projections, on the X-Z and the Y-Z planes, of the analytic
and the Runge-Kutta trajectories. The magnitude of this apparent phase
shift increases as the injection conditions of the particle are increased
towards the Timiting values set by equation (3.10). This apparent phase
shift arises because each time the Runge-Kutta trajectory projections
cross the 7 axis they do so earlier than the corresponding analytic
trajectory projections. It would appear that in the actual structure the
forces on the particle cause it to be returned towards the axis sooner
than indicated by the analytic solution. In other words, the focusing
action on the particles displaced from the Z-axis is actually somewhat
stronger than is predicted by the analytic solution.

For injection conditions equal to the limits set by equation (3.10),
there is still agreement in the general nature of the analytic and the
Runge-Kutta trajectories. However, the apparent phase shift is larger
than before indicating that the analytic solution fails to account fully
for the strong focusing action of the actual structure.

It is important to note that examination of all the X-Y projections
of the analytic and Runge-Kutta trajectories indicates that the maximum
displacements of particles whose injection conditions satisfy equation
(3.10) are equal to or less than the aperture radius, a. This result
strongly supports the validity of using equation (3.10) in predicting the

allowable injection conditions of the particles.
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4.3 The Axial Velocity Z

Equation (2.34) gives the axial velocity of the particle at any
position along the twisted structure as a function of its axial velocity
at injection, UZO, its injection transverse coordinates and momenta,
and the time, t, elapsed after injection. Equation (2.34) shows that /A
varies about UZo as the particle moves along the structure. It is also
shown in Appendix B that, for particles whose maximum radial displacements

from the Z axis are equal to or less than the aperture radius a, the

maximum deviation of Z from UZ is given by
0

2 2
[l - iﬁ%l—i 5 el [+ ﬁg%)-ﬂ

Uzo“' VAR A
[1+L-LS] [1-£—Ls]

for s = 2 and (3a)2 = 0.1

which indicates that the axial velocity of any particle successfully
guided by the structure is always approximately equal to the particle's
axial velocity at injection,UZO, at all points along the twisted
structure.

For the large number of injection conditions considered in the
comparison of the actual and analytical trajectories, the axial velocity
7 was plotted versus the axial distance Z. 1In all cases the deviation
between 7 and UZ was found to increase as the injection conditions of

0
the particle approached the acceptance Timits set by equation (3.10).
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It was also observed that for all actual numerical and analytic
trajectories investigated the deviation was less than 3%, as shown in
figures (4.18) a, b, ¢, d, e and f, for the particles with limiting
injection conditions whose trajectories are shown in figures (4.12),
(4.13), (4.14), (4.15), (4.16) and (4,17) respectively. Thus, without
significantly affecting the accuracy of the solution, it may be assumed

that, for particles confined by the twisted structure
1zl (4.2)

Figure (4.19) shows the trajectory projections for a particle with
the injection conditions, Xo =0.9cm, Y. =0.4cmand P, =Py, =0,
0 X0 Y0
The (X-Z) and the (Y-Z) trajectory projections at the top of figure (4.19)
were computed using equations (2.31) and the axial distance Z was computed

as

t
z =f 7dt as given by equation (2.35).
0
The X-Z and the Y-Z trajectory projections at the bottom of figure

(4.19) were computed using equations (2.31) and the approximate value of

the axial distance Z was computed as

Comparison of the two trajectories verifies that the accuracy of the
analytic solution is not significantly affected when using the above

approximation for Z instead of the value given by equation (2.35).
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4.4, Spatial Modes

The trajectories investigated exhibit three dominant features.
Each consists of a long wavelength motion upon which is superimposed a
small ripple of much shorter wavelength. Further, some of the
trajectories display a slow amplitude modulation. A1l of these
characteristics can be explained by expressing the trajectories in terms
of cosine - Tike and sine - like modes of four fundamental spatial
frequencies. It is shown in Appendix F that the trajectories given by
equations (2.31) can be transformed to the fixed (X,Y,Z) coordinate frame
by a simple rotation of coordinates, through an angle 8Z, using equations
(2.7). Thus, in terms of X, Y, Z and t the particle trajectories are

given by:

o] 1/2
X~+§C]{] + [m] }cos (f]t- BZ'I'OL-I)

1 ]1/2

-—C{l +[-(—-5- }sin(- 2t+BZ-u2)

] C]{] - [m]]/z}cos t+8l+ ct-l)
- % C2{1 - [zg—g—isillz}sin(fzt + Bl + az),
Ve 6+ [ Prsin(eyt - 62+ o)

1 s_4q1/2 )
5 G+ [=1" "eos(-f,t + 82 - ay)
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+ ]z'cl{] - [;%T]]/z}sin(f]t + 8l + a])
' % C11 - [S—fT]Vz}cos(fzt F AL+ ay). (4.3)

Using equation (4.2), the expressions for f;t and f2t for particles

confined by the structure become:
f.t =z f _l_.z = Jé;k{s + ]]]/2 _M~ 7 s {S + ]}]/ZBZ ,
1 1 UZ M PZ i
0 0

2 2 UZ M PZ S
0 0

Substituting equations (4.4) into equations (4.3), the trajectories become

linear combinations of modes at the following spatial frequencies:
o = (Fyt - sz = (e
oy = (At sz = (- 0

= (f,t +82)/1 = {[5—3;—]-]]/2 +18

U3 7\

oy = (fyt + BD)/1 = {14 GO T (4.5)

Consider the trajectory shown in figure (4.12). For this case

C, =a=15cm, C2 = (.0, o) * 0.0 and oy = 0.0. Hence from equations

1
(4.3), (4.4) and (4.5);
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%-a{] + E——-jﬂ /z}cos 0y

+ %-a{1 [ ] /z}cos 0l

Y=- — a{l + [ ——] /2}s1n w]

S+ 1]

V216 ol . (4.6)

1 S
72l - [l
Clearly, wy < wg and the X-Z and Y-I projections of the trajectory consist
of a dominant oscillation at Wy with corresponding wavelength,
1/2

A =1 3 1o,
[(s + 1)/ {77

upon which is superimposed a ripple at w35 with corresponding wavelength,
S1/2

Ay = i
3 s s )2 T

In figure (4.12), s = 2, thus Ay = 4.45L and Ay = 0.45L. Similarly if
injection conditions were such as to excite only the Wy and wy modes, as

in figure (4.9), the trajectory would consist of a dominant oscillation

at wy with Ay = 3.82L (s = 2) and a ripple at wy With Ay = 0.586L (s = 2).
In general, as in the other cases investigated in Section 4.2, all four
modes are excited and the interpretation in terms of the spatial frequencies
becomes more difficult. However, it is found that a general trajectory

will feature a dominant oscillation with an apparent wavelength between

A] and Az (approximately four times the periodic Tength of the twisted



102

structure for s = 2). Superimposed upon this oscillation will appear a
small ripple with an apparent wavelength between Ag and M (approximately
equal to half the periodic length for s = 2).

When all modes are present a slow beat will be evident between the
two large amplitude modes (w], “2)' As a result the dominant oscillation
will appear to be amplitude modulated. An excellent example of this
modulating effect is seen in figure (4.11). In this case equations (2.37)
show that C] = 0.561 cm, C2 = 0,448 cm, o = 258° and o = 169.6°. Thus,
from (4.3), (4.4) and (4.5) the expressions for X and Y become

w]) (w +U’)

(w - 27"
K= 1,02 cosl—mg 2 + 11,185 sin[—E—— 1 - 0.815°]
(wg = wq) (wg + ug)
- 0.1026 sin[—4—2—iz + 0.815°]cos[—-47~3—z - 11.185°]
+0.03 sin[wZZ +10.37°] - 0.0415 sin[m4Z - 10.37°] [em]

wp =¥ o ¥ up
Y = 1.02 sin[( 5 ) + 11.185°]sin[0—-7?—-42 - 0.815°]

+ 0

Wy = W )
42 32 + 0.815°Tsinl (<=2 - 11.185°]

- 0.1026 sin[(

- 0.03 cos(wZZ +10.37°) + 0.0415 cos(m42 - 10.37°) [em].

The major portion of the motion consists of an oscillation at a frequency
1ying midway between oy and wy which is amplitude modulated at a rate

equal to %(wz - w]). The corresponding modulating wavelength is given by:
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251/2

Ay = o 1
"o s )22

=29,6L for s =2
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CHAPTER 5

EFFECT OF EARTH'S GRAVITY ON PARTICLE TRAJECTORIES

As mentioned previously the main objective of the analysis of the
uniformly twisted electrostatic quadrupole is to provide a structure
capable of guiding heavy charged particles, in particular charged micron-
sized particles. Since the charge to mass ratios of such particles are
very Tow, the earth's gravitational force could noticeably affect the
motion of these particles along the twisted guiding channel. The
objective of this chapter is to determine to what extent gravity modifies
the particle trajectories and to find values of the focusing quadrupole

potential, Vo’ beyond which the gravitational effect can be neglected.

5.1 Particle Motion

Taking the horizontal axis of the twisted structure, the Z-axis,
as the zero gravitational potential level, the gravitational potential,
Vg, at any point is

Vg = MeY = MG(x sin Bz + y sin Bz) (5.1)

where the (X,Y,Z) and the (x,y,z) coordinate systems are the same as
defined in Chapter 2, where M is the mass of the particle and where G is

the gravitational acceleration.
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The earth's gravitational forces are accounted for by adding the
potential Vg to the Hamiltonian of motion given by equation (2.16). The

new Hamiltonian in terms of the rotating coordinates is,

2, .2,

1 2
Ho= gl + Py + P, - 28p,(x Py -y p,)]

+ qk(x2 - yz) + MG[x sin gz + y cos Bz] (5.2)

where Pys P and p, are as defined by equations (2.10) and it is still

Y

p p

assumed that (5502 and (5152 << 1, The equations of motion generated
z z

from (5.2) are linear, inhomogeneous and coupled. By resorting to

contact transformation using the generating function

Fo = X2 +¥ Dy - 7o Py Pytzp, (5.3)

a new coordinate system (X, y, z, 5x’ P, 52) is generated in which the

y
equations of motion are uncoupled provided the constant p is selected

properly. The new coordinates are related to the old ones as,

;(=E.F£=x-_BL-
9Py Mk Ty
w, 0k

- oF

-6

Z'EE'ZQ ’
o




e gili * B,y - 285,100 + ook BB,
S+ R B+ oK+ R B
- G+ o B1%1 + WeL(K + g B Jsin a3
+{y+ 25 P, Jeos 8z]

Rearranging these terms gives

2 2

%pp 82,?
z =2
Ho= ot —-{p {1 i iﬁﬁf} 2qMk X

2¥pp
0 - zﬁﬁ 24 5]

= iz, Bp - -
+ MG[x sin gz + 2K P, cos 8z]

y 5+ 8P 5
+ MG[y cos gz + 20K py sin gz]

+ g [26p - 285,10 5, - § 5]

106

(5.5)
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The following assumptions are now introduced:
1. It is assumed that 52 = Py This follows from (5.4) if the

first order quantity, 8(x p, - ¥ px), is neglected.

y
2. It was shown in Chapter 4 that the axial velocity 1= MZ

in -]

is essentially constant and equal to its value at injection UZ . It is
0
within the same degree of approximation to assume that

P, =Pz =My (5.7)

Taking (5.7) into consideration, equation (5.6) shows that the
term (x 5y -y 5X) is the only coupling term between the coordinates
Xs Vs ﬁx and 5y’ and this term vanishes if p is selected as,

(5.8)

=]
n
o1
"
-
N

Substituting (5.7) and (5.8) into (5.6), the Hamiltonian reduces to,

P, ¢ 282p22 2
S T N - S :
H= g * o Iy g + 1+ 20k X7
2. 2
-1—['2{—ZL-1}+2M|<'2]
Py ZqMk gk y
i
+ MG[x sin pz + ?ﬁﬁ% BX cos 8z]
8P
Z
+ MG[y cos gz + 7K 5y sin pz] (5.9)

From (5.9) the equations of motion are
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X + 29k (s0 +1)x = -[250 +1]6sing U, t

M L
y+ 2%5 (s, - 1)y = +{2s - 1acosgUy t (5.10)
0

and two similar equations for 5x and 5y where S is a stability factor.

It is evident from equations (5.10) that the motion is stable if

|sol > 1 where
2, ?
S0 = —zaﬁkg—' (5.”)

In equations (5.10) the approximation 231¢ Uzot is introduced. It
is evident from equations (5.4), (5.7) and the assumption that Z is
essentially constant, that this approximation is justified.

The solutions of the inhomogeneous differential equations (5.10)
consist of the homogeneous solutions, exactly analogous to the solutions
given by equation (2.29) for the particle trajectories in the absence of

gravitational forces, and the particular solutions given by

- _  Me .

X6 " K (250+ 1)sin 8 Uzot ,

- MG e

¥g = ?EE'(ZSO 1)cos 8 UZot . (5.12)

When transformed to the fixed (X,Y,Z) coordinate system, the particular

solutions resulting from the gravitational forces are,

MG

" 7K sin 282

XG =

_ MG
Y = 7K [4s - cos 28Z] (5.13)
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- <

Figure {5.1) The Mean Orbit of Particle Motion when the Effect
of Gravitational Forces is Taken into Consideration.

The projection of the particular solutions of equations (5.13) onto

the fixed X-Y plane is plotted in figure (5.1). This fiqure indicates
that the mean orbit of the particle trajectories, which was the
horizontal Z axis when gravitational forces were neglected, has been
modified to a helical orbit. The axis of this helical orbit is parallel
to the Z axis at a distance %%% 5, 0N the negative side of the Y-axis

and the radius of this helical orbit is %gi . As expected, equations
(5.13) and figure (5.1) show that the effect of the gravitational forces

becomes noticeable as a-decreases.
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For the effect of gravitational forces to be neglected, the
distance between the axis of the helical orbit and the Z axis should be
much less than the aperture radius. This condition implies choosing the

focusing potential to satisfy

MG
450—2H <a o,

that is

2

52 gl . (5.14)
@,

As stated before the value of % for micron sized charged particles
may be as Tow as 0,01 coulomb/kilogram. For G = 9,81 m/sec2 and a = 0.015

meter equation (5.14) becomes

2
m
204 s

Vo o>> —38C (5.15)
g
M

For s,= 2.0 the inequality (5.15) implies that

V0 >> 58.8 volts for % = 0,01 coulomb/kilogram.

The parameters of the lens structure which is considered in

Chapters 7 and 8 are

S5" 1.25
a = 0.015 meter
\l0 = 1200 volts .
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Equation (5.14) shows that for these parameters gravity becomes negligible

provided that the charge to mass ratios of the particles satisfy

% >> 0.0003 coulomb/kilogram .
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CHAPTER 6

A COMPARISON OF THE PROPERTIES OF THE UNIFORMLY TWISTED ELECTROSTATIC
QUADRUPOLE STRUCTURE AND THE CLASSICAL ELECTROSTATIC QUADRUPOLE CHANNEL

6.1 Introduction

The theoretical and experimental investigations of the guiding
properties of the uniformly twisted electrostatic quadrupole show that
it can successfully guide charged particles provided that equations
(3.3) and (3.10) are satisfied. It is of interest to compare the
guiding properties of the twisted structure with those of a classical
electrostatic quadrupole channel. The latter will be assumed to consist
of symmetrical quadrupole triplets. Each triplet consists of a straight
quadrupole section of length %-fo1]owed by a drift space of length d,
then a second straight quadrupole section of length & which is rotated
90° with respect to the first quadrupole section. The second quadrupole
section is followed by another drift space of length d, and a third
straight quadrupole section of length 2/2 which is rotated a further 90°
with respect to the second quadrupole section. The infinitely long
classical channel constructed using such symmetrical triplets, will
consist of a straight quadrupole section of length % followed by a

succession of drift spaces of length, d, and quadrupole sections of length,

%. The successive straight quadrupole sections will be rotated 90° with
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respect to each other.

Both the twisted and the classical structures to be compared will
be assumed to have the same aperture radius, a, and the same electric
field gradient. The classical channel has two symmetrical triplets in
the same axial length as one complete twist of the twisted structure, as

shown schematically in figure (6.1). Thus,

L = 4(g + d) (6.1)

where, d = Tength of the drift space between the quadrupole sections of

the classical channel.

% = length of a complete quadrupole section of the classical
channel.
L = periodic length of the twisted structure.

The fixed (X,Y,Z) coordinate system used in the previous chapters
is used in the comparison. The classical and the twisted structures are
oriented such that initially at Z = 0, the positive electrodes are aligned
symmetrically about the X-axis. Thus the forces exerted on a positively
charged particle at Z = 0, by either the classical or the twisted
structures, are focusing forces in the X direction and defocusing forces
in the Y direction. Therefore, the X-Z plane will be referred to as the
initially focusing plane while the Y-Z plane will be referred to as the

initially defocusing plane.
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6.2 Acceptance Limits

6.2.1 The (Classical Structure

If the axial momentum of a particle guided by the classical channel
is assumed constant and equal to its value at injection, PZO, the
projections of the particle motion on the X-Z and the Y-Z planes are
uncoupled. Therefore these projections can be independently analyzed.

In the X-Z plane the analysis of the motion of a particle along the ith
triplet gives the transverse coordinate Xi and the normalized transverse
momentum X% of the particle at the exit plane of the triplet in terms of
the transverse coordinate Xio and the normalized transverse momentum X%o

of the particle at the entry plane of the triplet as

g Ko [
mma| | = (6.2
g Mo o

where,

[T] = transformation matrix of the whole triplet in the X-Z plane,

[T]] = transformation matrix of the first half of the triplet in
the X-Z p]ane(37)
LA N} ¢ lan
] cosh 5 Y sinh 5 1 d{]cos > » sin 3
y sinh %& cosh %& 0 T{-y sin %ﬁ cos %&
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[Tz] = transformation matrix of the second half of the triplet in

the X-Z p]ane(37)

] 10 11 ]

? Lsin L o2 LsimZ
v 2 v ]

-y s1n%—2— cos%&_ 9 1_ L}(51’nh%l cosh%iJ
(6.3b)
The parameter y is the quantity,
1 Vo
vEoVT (6.4)

where a, V and Vo are the same as defined in Chapter 2.

It is readily shown by performing the indicated matrix multiplication

that the transformation matrix [T] can be put in the form,

cos u %—-sin u
X

[1] = ,
Yy sinpy  cos

i

where,

cos u = cos y& cosh y& + yd{cos y& sinh y& - sin y2 cosh y}

2.2

- 1—%— sin y2 sinh y4
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{sin y& cosh y& - sinh y2} + yd{sin y2 sinh y& - (1 - cos y2)cosh y2)
YX=Y o
{sin y& cosh v& + sinh y2} + yd{sin y2 sinh y2 + (1 + cos y&)cosh ya}

2,2
- 1—%— (1 - cos ya)sinh y2]'/2
T TTo0
+ g (1 + cos y&)sinh y& (6.5)

Then provided the stability condition

-l <cosp<+]
or
-1 < [cos y& cosh y& + yd{cos y2 sinh y2 - sin v% cosh y&}
2,2

- L sin vt sichyil <+ 1 (6.6)
is satisfied it is apparent that in the X-Z plane the triplet exerts an
overall focusing force on the particle. The projection of the particle's
motion on the Y-Z or initially defocusing plane can be described in an
analogous manner. Indeed, provided equation (6.6) is satisfied an
overall focusing action also will result in the Y-Z plane.

A Tong chain of such triplets can be used to guide charged
particies provided the components of the initial displacement and
momentum along the X and Y axes are suitably restricted. In order that
particles be confined within the structure it is necessary that the
maximum displacements in the X and in the Y directions be Jess than, or

at most equal to, the aperture radius of the structure. Thus, since the
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motion in the X-Z and Y-Z planes is uncoupled, |X|max <aand |Y|max < a.

Smith,L. et a].(38) have shown that these conditions will be

fulfilled when the following conditions are satisfied:

X X!
042 0 12
1+ o (6.7)
and
vy Y!
1092, 102
2+ Gl <1 (6.8)
where,
X0 = initial X coordinate of the particle at injection,
Px
X' = 2 , P, and P, are the injection X-directed transverse
0 PZ X0 Z0

momentum and the injection axial momentum respectively,

Y0 = initial Y coordinate of the particle at injection,

P
Y
Yé = ﬁ_g_, PY is the injection Y directed transverse momentum,
Z0 0
2 _ %22
Ve
1N

The parameters a1 and ayy are the two diagonal elements of the trans-
formation matrix [T]] of the first half of the triplet in the X-Z plane,
that is

coshﬁ lsinhﬁ T d cosﬂ- %—sinﬂ-

1 7 Y 7

y sinh %& cosh %& 0 1| [~y sin L s

91 42



119

Thus ,
cos L& cosh L2 + sin I sinh L2 + yd cos L sinh L
ll)2 . 2 2 2 2 2 2
Y cosh X2 - sin L2 sinh X2 - vd sin L cosh Y-
Cos 3 cosh 5 = siny sinh 5 vd sin 5 cosh 5

(6.9)

In the Timiting cases equations (6.7) and (6.8) describe the elliptic
boundaries of the acceptance areas of the classical channel in the X - X'
and the Y-Y' phase planes. For a particle to be successfully guided by
the classical channel its injection conditions in both the X-X' and the
Y-Y' phase planes should be within these elliptical boundaries. A
particle with injection conditions outside these elliptical boundaries
will have a maximum transverse displacement exceeding the aperture
available and the particle will be lost. The areas bounded by the
acceptance ellipses in the X-X' and the Y-Y' phase planes are equal and
given by

= g0

_ 2
oy ST Yy a (6.10)

X-X'
For the special case of parallel injection along the classical

structure, the maximum acceptable transverse injection conditions are

independent of each other and their values are obtained from equations

(6.7) and (6.8), by setting XS = (0 and Yé = 0, as

- a
IXolmax S |Yo|max 0 (6.11)

Therefore, the acceptance area of the classical structures in the X-Y



120

transverse coordinate plane is a rectangle whose area is

2
= %— , where y is given by equation (6.11)- (6.12)

X-Y
Similarly, for the special case of point source injection at Z = 0,

the maximum acceptable values of the normalized injection transverse

momenta are independent of each other and are obtained from equations

(6.7) and (6.8), by setting |X0| = 0 and |Y0| = 0, as

|X

= Yxa s |Y6| =y Yxa (6-]3)

|
ol

Therefore, the acceptance area of the classical structure in the X'-y!

normalized transverse momenta plane is a rectangle whose area is
2
Ail_Yl =y Yi a (6°]4)

6.2.2, The Twisted Structure

For the twisted structure values of X ax and Yoax cannot be specified
separately as was the case for the classical quadrupole channel. In order
that the particles be confined it was seen in Chapter 3 that the radial
displacement must be at most equal to the aperture radius, a. Thus
Max S & For particles confined within thiscircular aperture, equation
(3.10) gives the acceptance 1imits of the twisted structure and shows how

the maximum acceptable value of any of the injection conditions of a

particle depends on the values of the other injection conditions of this
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particle. It is difficult to compute the acceptance limits for particles
with general injection conditions and the comparison between the acceptance
limits will be restricted to the special cases of parallel injection,
point source injection, injection in the X-Z plane with X directed
transverse momentum and injection in the Y-Z plane with Y directed
transverse momentum. For these special cases the acceptance limits of the
classical and the twisted structures in the X-Y transverse coordinate plane,
in the X'-Y' transverse normalized momenta plane, in the X-X' phase plane
and in the Y-Y' phase plane will be compared. The twisted structure will
be assumed to have (Ba)2 = 0.1 in the computations which will follow.

The stability condition for the particle motion along the twisted
structure, given by equation (3.3), can be written in terms of the

normalized transverse momenta as,
2.2V 2
|s| = 87a |V;|[] + 8K Yo - Y15 > 1.0

For the special cases of injection to be considered in the comparison the
term(XoYé - YOX6) = (0. Also it was shown in Appendix B that for all
particles successfully guided by the structure, B(XoYé - Y0X6) <« 1,
Therefore, for all acceptable injection conditions the stability condition

can approximately be written as

5 2

I‘:

5| = dn I%—l "—[L—a 1?5 1.0

— |
0~
<<
o

or in terms of y as defined by equation (6.4)»
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2
B =§—[§r2>1 (6.15a)
From equation (6.15a) it is apparent that
0 < {L% (6.15b)

It is interesting to note that for particles guided by the classical

channel equation (6.6) leads to the condition
0 < {} < 1.873 (6.15¢)

when there is no driftspace.
For particles injected in the X-Z plane with X directed transverse
momentum, the acceptance 1imits are given by equation (3.14) which in terms

]
of X0 and X0 becomes

{|X$I- |8al\/s \fs - 1 ) X 2

- = 1" < 1.0 (6.16)
Baviéjis-]) aﬁz-1 )

Equation (6.16) represents the intersections of two hyperbolae and gives the

maximum allowable values of |X0| and |X6|, for particles injected with

=yl =
Y0 = Y0 0, as

X

"
o

- 1
0|max a when Xs

and
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RS —_— L6a] ] when X =0

OMX 5 AFFT 4+ sAE

The acceptance area bounded by the hyperbolae described by equation (6.16)

is

d

T _uf v

Ay_yi 4] X, dx
0

a
=4Baf[\/; s 1= (s - A0 ()P
0

- LOEVs 1 - (P - AL S et (e
where &n denotes the natural logarithm,
For the special case of injection in the Y-Z plane with Y directed
transverse momentum, the acceptance limits are given by equation (3.15) which

in terms of Y0 and Yé becomes

Y
S 042 S |

T2 TaT AN (6.18)

representing the intersection of two parabolas. Equation (6.18) gives the

maximum allowable values of [Y | and IY('J|, for a particle injected with

>,
n
><
O -
n
o

y 35

= S'] 1
IYolmax Vs a ? Y0

1
o

and
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; Bal =
|Yolmax 25 i Yo 0

The acceptance area bounded by the parabolas described by equation (5.18)

is,

(6.19)

For parailel injected particles the acceptable injection points
(Xo, Yo) should be within the parallelogram shaped area bounded by the
straight lines, given by the limit of equation (3.12),
X Y
0 S 0
lg‘l + s -1 ’5" <1 (6.20)
and the acceptance area of the twisted structure in the X-Y transverse

coordinate plane is
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For point source injection, equation (3.13) can be rewritten in
terms of X(') and Y(') to give the acceptance limits of the twisted structure

as

1/2 1/2
|[sz Yéz +s(s + ])X(.)Z] | + /s——f—TI[sz X(')2 +s(s - I)Y(')z] |

< [8a (6.22)

and the acceptance area of the twisted structure in the X' - Y' phase plane

is
Xl
: Oax
Ay =4 Y(‘) d X(') » where X(') and Y are related by equation
0
(6.22) and X! = ]
max Vs B+ 1+slfs-1
Xl
0
max
3 2 1/2
: 1 A4 228° -2 .2, s 4,74y
4] Je B0 - 8% (S_])x0+(s_”2xo] 0
0

No analytical expression was obtained for A)T(._Y. but its value can be
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calculated through numerical integration of equation (6.23).

6.3 Acceptance Comparison

The first objective of this section is to compare the acceptance
limits of classical structures having % =0 , 0.125 and 0.25 with those
of the twisted structure. Computation of the acceptance areas in the
X - X' and the Y - Y' ph&se planes is performed over the stable range of
V0 and hence the stable range of %L for each of these four guiding
structures. As mentioned before, the length of gach of the symmetrical
triplets constituting either one of the three classical channels is equal
to half the periodic length of twist of the twisted structure. Thus for any

value of %, v4 and %L are related by

el +9) (6.24)

For the classical structure with no drift space, % =0 , Y= %E

and from equation (6.15¢)

0 <3k 1.87 (6.25)
For the classical structures with % = 0.125 and 0.25 the stable range of
v& was computed using equation (6.6), then equation (6.24) was used to

compute the corresponding range of %L as

0.0 < 3}}< 1.89 for%= 0.125 (6.26)
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and
oo for d20.28 (6.27)
The acceptance areas in the X - X' and the Y - Y' phase planes,
Ai_x., A&-Y" A;-X' and A$-Y" were computed using equations (6.10), (6.17)

and (6.19). The computations were performed for the twisted structure and

the classical structures having % =0 ,0.125 and 0.25, over the stable

ranges of %L given by equations (6.15b), (6.25), (6.26) and (6.27)

respectively. Figure (6.2) shows these acceptance areas drawn versus %L.

It is clear that the increase of % from 0 to 0.25 decreases the acceptance

areas A&_X. and A$_Y. of the classical structures in the range 0 < %L

< 1.54 radians while it increases them over the range of %L-higher than

1.54 radians. It is also clear from figure (6.2) that for values of %L

up to 1.0 the acceptance areas A;_X. and A§-Y‘ of the twisted structure are

nearly equal to those of the classical structures. For the range 1.0 <

%L < 1.3, the acceptance areas of the classical structure having %-= 0

are larger than the X - X' phase plane acceptance area of the twisted

structure by less than 6% while they are larger than the Y - Y' acceptance

areas of the twisted structure by less than 12%. For the range %E > 1.3

the acceptance areas of the classical structure are much larger than those

of the twisted structure since the Tatter drop rapidly for %L > 1.3.
Equations (6.5), (6.7), (6.8), (6.9), (6.16) and (6.18) were used to

compute the acceptance limits in the X - X' and the ¥ - Y' phase planes for

the twisted structure and the classical structure having %-= 0. These

acceptance limits are shown in figures (6.3) and (6.4) for three different

values of quadrupole voltage corresponding to s = 1.5, 2 and3 or
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%L = 1.283, 1.11 and 0.907. These figures show clearly that even though

Ag_x. and Ag_y. are slightly larger than A;-X' and A;-Y' the acceptable

maximum values of the normalized transverse momentum at injection,

and |Y!

olmax® are considerably larger for the twisted structure

]
| XO |max

than for the classical structure. Note also that for s = 3, |V for

o|max
the twisted structure is slightly larger than |Y0|max for the classical

channel. For s =2 and s = 1.5 the values of |Yo|max for the twisted

structure become smaller than the corresponding values of lYo'max for the

classical channel.
Equations (6.7), (6.8) and (6.9) were then used to compute the
X - X' and the Y - Y' phase plane acceptance 1imits for the classical

structures having %-= 0.125 and 0.25 for one value of %L = 1.11 which

corresponds to s = 2. These acceptance 1imits, as well as those previously
computed for the twisted structure and the classical structure having %-=
at s =2 as %L = 1.11 radians, are shown in figures (6.5) and (6.6). It is

clear from these figures that as % increases the acceptable normalized

transverse momenta, |X' and |Y}| . » decrease for the classical structure.

olmax max’
For % = (.25 and %L = 1.11 radians, the value of |X6|max acceptable by the

classical structure is 0.0499 while that acceptable by the twisted structure

1s 0.0599. Also the value of |Y acceptable by the classical structure

6|max
having %-= 0.25, at %L = 1.11, is 0.0679 while that acceptable by the twisted
structure is 0.079.

For the special case of parallel injection, equations (6.9), (6.11)
and (6.20) were used to compute the acceptance limits in the X - Y
transverse coordinate plane. The computations were performed for the twisted

structure and for the classical structures having %-= 0, 0.125 and 0.25
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at s = 2 and the corresponding %L = 1.11 radians. The computed acceptance
limits are shown in figure (6.7) where the axes of the transverse coordinate
plane are normalized with respect to the aperture radius. The areas in the
X - Y plane available for parallel injection along the twisted structure and
the classical structures considered were computed using equations (6.12)

and (6.21) as

R RIS

iy = a2 e,
A, = 2.906476 o° for 4= 0025,
) = 2,939 o for $= 0.25

It is clear that the acceptance area in the X - Y transverse coordinates
plane for the twisted structure is much Tess than the acceptance areas in the
X - Y plane for classical structures with or without drift spaces. This
situation is due to the coupling of the motion in the X - Z plane and the

Y - Z plane of the twisted structure. Recall that in the case of the
classical structure [X] .. < a and V] oy < @ independently while for the

twisted structure (X2 + YZ) < a2.
max -

0f course the classical case is
samewhat idealized since it completely ignores all fringing effects.

For the special case of point source injection at Z = 0, equations
(6.9), (6.13) and (6.22) were used to compute the acceptance limits in the

¥' - Y' transverse normalized momentum plane. These acceptance limits are
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shown in figure (6.8) for the same quadrupole potential, s =2 , and the
same structures as considered in the case of parallel injection. The
acceptance areas in the X' - Y' plane were computed using equation (6.14)
and numerically integrating equation (6.23) using the approximate

expression

- 100 |Xo'max ' |
.X 100 [Yo. ) Yo.]
=0 il J

T
AXI_YI -

where Yo. is the value of Y0 evaluated from equation (6.22) at Xo = T00

The acceptance areas in the X' - Y' plane were found to be:

Ao ys = 0.0149

R yr = 0.0149 for 3= 0
Ay = 0.0145 for &= 0,125
Aoy = 0.0136 for &= 0.25

Based on the degree of accuracy of the numerical integration the
areas A;'-Y' and Ag'-Y' are essentially equal for %-= 0 while for the
practical values of &= 0.125 and 0.25 AL, . 1s Targer than Ay, ..

Figure (6.8) also shows, as was pointed out earlier, that |X6|max and

’Y$|max are significantly larger for the twisted structure than for the

classical structures having % =0 =+ 0.25.
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The above comparison shows that the X-Y acceptance of the
twisted structure is smaller than that of the classical structure with
or without drift spaces. However, the comparison shows that the twisted
structure allows more divergence of the beam than that allowed by the
classical structures, especially those with drift spaces. This larger
acceptance area of the twisted structure in the X' - Y' phase plane

makes it very suitable for guiding beams emerging from point sources.

6.4 The Focusing Strength

The focusing strengths of the twisted structure and the classical
structure having % =0 can be compared by tracing particle trajectories
along both structures. The projections of these trajectories on the
X-Z and the Y-Z planes were computed and plotted for each particle traced.
On the X-Z or the Y-Z planes, the projection of a particle trajectory
along the structure which has a higher focusing strength in the
respective plane should intersect the Z axis before the intersection of
the projection of the trajectory of the same particle along the other
structure.

Equations (2.31), (2.35) and the transformation equations (2.7)
were used to compute the X-Z and the Y-Z projections of the trajectories
along the twisted structure. For the trajectories along the classical
structure, the X-Z plane projections were computed using tﬁe matrix
representation of equation (6.2) along each of the symmetrical triplets.
The Y-Z projections along each of the triplets were computed using the

matrix representation(sg)
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=[n1 () , for the ith triplet.

i0

where [T]] and [Tz] are as defined by equations (6.3a) and (6.3b).

Particles with various injection conditions were considered in
the comparison of the focusing strengths of the twisted and the classical
structure. Some of these conditions were within the acceptance limits
of one structure only. For all cases considered, it was found that the
twisted structure has a higher focusing strength in either the X-Z plane
or in the Y-Z planes than has the classical structure.

Figure (6.9) shows the Y-Z projections of the trajectories of
a particle injected at Z = 0 with X0 = Y0 = Xé = 0.0 and Yé = 0.07.

These injection conditions are within the acceptance limits of both
structures. It is clear that the twisted structure has a higher
focusing strength in the Y-Z plane than has the classical structure.

For a parallel beam injected at X0 = % and Y0 = 0, figure (6.10)
shows the X-Z projections of the trajectories along the twisted and the
classical structures. Note that the trajectory along the c]éssica]
structure returns to X = 0 just after the return of the trajectory along
the twisted structure to X = 0. Again, the twisted structure has a
slightly higher focusing strength in the X-Z plane than has the classical
structure.

It is clear from the above examples that the twisted structure
is more strongly focusing than is the classical structure with no drift
space. Moreover, because of the absence of drift spaces, the classical

channel is itself stronger focusing than any practically realizable
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classical channel. This stronger focusing action of the twisted channel
indicates the possibility of shorter focusing structures than are

realizable with a classical structure.
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CHAPTER 7

THE ELECTROSTATIC TWISTED QUADRUPOLE AS A NOVEL IDENTICAL IMAGING LENS

7.1 Introduction

The analytic solution for charged particle trajectories along the
uniformly twisted electrostatic quadrupole was developed in Chapter 2
using two approaches. These were the contact transformation approach and
the Tinear algebra approach. The two different forms of the solution
were then shown to be equivalent in Appendix C. The first solution, shown
in equations (2.31) and (2.35) was successfully used for studying the
guiding properties of a long uniformiy twisted electrostatic quadrupole
channel. The second solution, shown in equations (2.49) and (2.50) and
describing the particle trajectories in a matrix form in terms of the
injection conditions is in suitable form to show that a finite length of
the twisted structure can serve as an imaging device.

Examination of the matrix Q(t) of equation (2.50) shows that all
elements are dependent on f]t, f2t as well as s, 8P, and 2qMk. Through
proper choice of the structure parameters the values of f] and f2 can be
adjusted so that at a certain time t] all nondiagonal terms of the matrix
will vanish while the four diagonal terms will all be + 1.0 or all be
- 1.0. Hence,at this time t],and at the corresponding length of the

structure,the transformation matrix Q(t1) will be either +I or -I, where I
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is the 4x4 identity matrix.

It will be shown in detail that the twisted lens structure with the
properly chosen parameters will provide identical imaging of the injection
conditions at Z = 0, the lens injection plane, into a target plane at
7 = g, the lens exit plane. Identical imaging means that the exit
coordinates and momenta in the target plane are equal, with or without
inversion, to the coordinates and momenta at injection. The target plane
has its axes rotated an angle 8% with respect to the fixed (X,Y) axes that
coincide with the electrodes axes at Z = 0 as defined in Chapter 2.

The study of the imaging of a single particle by the twisted lens
is followed by a discussion and a numerical study of the aberration that
takes place when a beam of particles is considered. It is shown that the
degree of aberration is small and that it can be further reduced by
following the twisted lens structure by an equal but oppositely twisted
Tens structure.

This chapter then presents a numerical study of the effect, on the
imaging properties of the lens, of detuning the quadrupole voltage, about
the exact imaging value. The study also discusses the characteristics of
the exit beam cross-section for various values of drift space beyond the
end of the lens. This last part of Chapter 7 forms the basis for the

experimental investigations of the lens properties described in Chapter 8.

7.2 Particle Imaging

The matrix representation of the motion of a charged particle along



145

the twisted structure is given by equation (2.49) as,

[ x(t) 1 X i
(t) y
! - [q(t)] 0
p,(t) b
() k
p(t p
y y
L ] i 0 ] (7.1)

where Xgs Yor Py and py are the initial transverse displacements and
0 0

their initial conjugate momenta at t = 0, Z = 0 with respect to the
rotating coordinate system (X,y,z). x(t), y(t), px(t) and py(t) are the
transverse displacements and their conjugate momenta at time t, also with
respect to the rotating coordinate system. For the convenience of the
reader the matrix Q(t) is reproduced on the following page and renamed
equation (7.2).

It is now clear that a particle's coordinates and momenta will
be imaged in the rotating coordinate system at some distance along the

structure, if at some time, t = t],
Q(t]) =+ [ (7.3)

where I is the 4x4 unit matrix. If Q(t]) = - I the particle's coordinates

and momenta will be imaged in an inverted form. In other words x(t]) = =Xy

y(t]) = Yy px(t]) = -pX0 and py(t]) = -pyo. The conditions which must be
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imposed on the elements of the matrix so that it becomes either +I or

-1 are:
coS f]t] = oS fzt] =+ ] R
sin f]t1 = sin fzt] =0
or
f‘] t] = Mn )
fzt] = nn

where m and n are integers, both odd or both even so that the term

gp

gaﬁg {cos fzt] - C0S f]t]} =0 . Substituting for f] and f2 in terms of

the stability factor s, equations (7.4) become,
\/3%5\/5 + | t]= mr
\'%ﬁﬁ t'|= nm

It follows that for imaging to occur at t = t], the stability factor s

must have the value

(7.5)

and m > n, Also, since the magnitude of s must be greater than unity,

neither m nor n can be zero.
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Thus, when the parameters of the twisted quadrupole structure are
chosen so that s assumes one of the values indicated by equation (7.5), the
particle will be identically imaged in the rotating coordinate system at

a time

1
) j 7 dt (7.7)

Appendix B shows that the axial velocity Z during the traversal
of the twisted structure differs only slightly from the axial velocity
at injection, UZO, and that the approximation i z UZo is within the same
degree of approximation used in deriving the amalytic solution of the
particle trajectories. In fact,during extensive computer calculation of
particle trajectories over a wide range of injection conditions no case
was found where 7 differed from UZO by more than 3%. Taking these results
into consideration, Z is assumed to be constant and equal to the axial

velocity at injection, UZ . Thus, the value of & may be approximatedlby

) 0
replacing Z with U, in equation (7.7). Thus,
0
Lzl, t
Z0 1
p
Zo M m2 - n2

1]
=2
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D e cm—— —— =

Substituting for s from equation (7.5) gives the length of the imaging

lens as

LI I (7.8)

Pas)

e
rojr—
)

At this point it has been shown only that it is possible to image a
particle in the rotating coordinate frame, where px(t) and py(t) are not
true mechanical momenta. Now consider a fixed coordinate system
(Xt’ Vs Z) whose axes Xps ¥y are rotated an angle BZ(t)'with respect to
the fixed coordinate system (X,Y,Z), Z(t) being the distance along the

structure given by

t
2(t) f (1) dt (7.9)
0

The axes Xt’ Yt of such a coordinate system coincide with the rotating
coordinate axes, x(t) and y(t), at the distance given by equation (7.9).
The transformation equations relating the two fixed coordinate

systems (Xt’ Y., Z) and (X,Y,Z) are

t’
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X=X cos pI(t) - Y sin g2(t)

Y =X, singZ(t)+ Y, cos gZ(t)

t

Py = PXtcos gI(t) - PYt sin 8Z(t)

Py =P

v sin gZ(t) + Py cos gz(t) (7.10)

Yt t

where PX and PY are the transverse mechanical momenta conjugate to Xt
t t

and Yt‘ Comparison of equations (7.10) with equations (2.7) and (2.13)

shows that x(t), y(t), px(t) and py(t) correspond identically to Xy, Yy,

p

P, , the latter being coordinates and momenta in the fixed coordinate

X’ Yt’

frame that coincides with the twisting axes at an axial distance given by
equation (7.9).

Thus from equations (2.7) and (2.13), it is apparent that at 7 = 0
Xgs Yoo pxo and pyo are identical to Xo’ Yo’ PXo and PYO. Similarly
equations (2.7), (2.13) and (7.10) show that in a fixed coordinate frame
(XT’ YT’ 1), which coincides with the twisting coordinates at the end of
the lens, x(t]) = XT’ y(t]) = YT’ px(t]) = PXT and py(t]) = PYT. Thus
for a structure whose parameters are chosen properly to satisfy equation

(7.5), it follows from equation (7.1) that,

] ]

XT Xo

YT Yo

=4 ]

p P

XT Xo
PYT PY (7.11)

L O
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It is evident from equations (2.32) and (2.33) that the axial momentum at
7 = & is then exactly equal to PZO, the axial momentum at injection. In
other words the initial transverse displacements and the initial momenta
of the particle are reproduced in the fixed target coordinate frame
(X

Yo, Z). The fixed XT’ YT axes coincide with the x, y axes at Z = ¢.

L

Thus, the target reference frame axes are rotated an angle g2 with

respect to the X, Y axes which coincide with the rotating axes at Z = 0.
It is now clear that the twisted electrostatic quadrupole lens

can image a single particle. The usefulness of any lens, however, Ties

in its ability to image a whole system of particies. In this respect the

twisted quadrupole will generally suffer from aberrations. For instance,

s is given by equation (4.1) as

a

X
s = ()Pl + (8a) 2 5 - g2 5] (7.12)
0 L 0

When a system of particles enters the quadrupole structure as either a
point source or a parallel beam, then

X P =0 , (7.13)

oY, ) YoPX0
and s has the same value for all particles. The value of s can then

be adjusted, for example by varying the quadrupole voltage Vo' to satisfy
equation (7.5) for these particies. However, when particles are injected
under general conditions of transverse displacements and momenta,s may be
different for the various particles in the beam. Condition (7.5) may not
be satisfied for every particle. Then,the nondiagonal terms of Q(t) do not

completely vanish for every particle and aberration will result. From
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equation (7.12) it is evident that this aberration will be minimal for
particles injected close to the axis with small transverse momenta.

Even though a system of particles may have a single value of s
and hence may not exhibit the aberration described above, a different
type of aberration may still be present. The latter appears because each
particle, according to its injection conditions, may have its own variation
of 7 about UZO, as described by equation (2.34). Thus, the required Tength
of the lens as given by equation (7.7) will differ slightly for each
particle. This in turn means that for each particle a different error is
incurred when computing the length of the Tens from equation (7.8). As a
consequence the degree by which the nondiagonal terms of the matrix Q(t])
will differ from zero varies for each particle according to its injection
conditions, thus giving rise to aberration.

Computer evaluation of many trajectories has shown this latter type
of aberration to be negligible when compared with the aberration resulting

from changes in the stability factor. This phenomenon will be illustrated

by examples of the trajectories shown in the following section.

7.3 Results

Using the analytic solution and the transformation equations (7.10),
sets of particles with a variety of initial conditions were traced through
the twisted quadrupole to graphically demonstrate the latter's imaging
properties. In each case the numerical computations were performed with
the aid of an IBM 360 computer. A listing as well as the discussion of

the program used are given in Appendix E. The trajectories were plotted
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directly by a Calcomp Plotter in the (X,Y,Z) fixed coordinate system.
Although trajectories of charged particles through such an electrostatic
lens are independent of the charge to mass ratios of the particles, for
the purpose of computation,particles with a charge to mass ratio of 30
coulomb per kilogram were considered.

The Tens was chosen to have a = 1.5¢m and (sa)2 = 0.1. Since the
parameters m and n have to be integers, both odd or both even and
m>n >0, the lens was chosen to havem = 3 and n = 1. These values of
mand n correspond to the shortest possible Tength of the imaging lens.

Thus at time tT’

and
sin f]t] = sin f2t1 =0 .
and Q(t]) = -1 for these particles which have

2 +

- i+ n-_ 39
2 9-

S

it I =125
The calculations were carried ouf assuming that every particle
entering the lens structure had been accelerated through the same potential,
V, and that the angle of divergence of the injected beam was very small,
such that each particle had an axial injection momentum, PZo z (2qMV)1/2.
The quadrupole potential, Vo, was adjusted so that the stability factor was
1.25 for particles injected from a point source or a parallel beam where

equation (7.13) was satisfied. In this case, from equation (7.12)
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PZ
2 0 2,V
s = (Ba) quVo = (Ba) |'\El

The accelerating voltage was assumed to be 30 KV which for (Ba)2 = 0.1
required a quadrupole potential of 2.4 KV.:

The required length 2 of the lens was calculated from equation
(7.8) to be approximately 33.3 cm, assuming either point source or
parallel beam injection. Hence, imaging should occur in a target frame
whose axes (XT, YT) are rotated with respect to the (X,Y) axes by the
angle g4 = 403° = 360° + 43°.

Figure (7.7a) shows the trajectories of a set of particles which
were injected from a point source at Z = 0.0. Each particle was injected
with the same value of PXO but a different value of PYO. It is evident
from figure (7.1a) that the point source is reproduced at Z = 2. Figure
(7.1b) showB a prBjection of the trajectories in momentum space onto

the fixed (5-9-, p-ﬁh normalized transverse momentum plane. For sake of
()} 0

clarity those trajectories for which PYo < 0 have been omitted. Notice
that the particles are imaged in inverted form in the target reference
frame.

Figure (7.2a) shows the trajectories of a beam which was parallel
at injection. Each particle was injected with the same value of X0 but
with different values of Yo‘ Notice that the emerging particies are again
travelling parallel to the Z axis at Z = 2. Figure (7.2b) shows a
projection of the trajectories in coordinate space onto the fixed (X,Y)

transverse coordinate plane. Again it may be seen that the injection

coordinates are imaged in inverted form in the target reference frame.
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Figure (7.12) X and Y versus Z for Point Source Injection.
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Figure (7.2a) X and Y Versus Z for Parallel Beam Injection.
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It should be noted that neither of the two foregoing examples
indicates the presence of aberration. Since the two examples respectively
illustrate point source and parallel beam injection, the only source of
any possible undetected aberration would be a variation in 1 which, by
equation (7.7), would mean that the length of the lens is not correct for

all particles.

Figure (7.3a) represents the injection and exit coordinates of 28
sets of particles. The injection coordinates 1ie along the periphery of
the rectangle whose sides are parallel to the X,Y fixed axes. Each cross
(+) represents five individual particles with the same value of X, and Y
but with different transverse injection momenta at Z = 0. These transverse
momenta are shown in figure (7.3b). They are represented respectively by
five (+) marks at the center and the four corners of the square whose sides
are parallel to the ;§ and ;ﬁ axes. Figure (7.3b) also shows the exit
transverse momenta. In general these particies do not have s = 1.25 and
therefore cannot be imaged without aberration. Figures (7.3a) and (7.3b)
clearly show the presence of this aberration which is due to the variations
in both s and Z.

Figures (7.4a) and (7.4b), which feature the same injection conditions
as figures (7.3a) and (7.3b), show the effect of joining to the first section
of twisted quadrupole a second equal but oppositely twisted section. For
this composite structure the transformation matrix Q(t) in equation (7.1)
is (-I)2 or +I. Therefore, the injection conditions are now reproduced in
a target plane without inversion or rotation.

The computation of the trajectories along the composite structure

was started by computing the trajectories along the first section, using
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equations (7.12) then equations (2.31) and (2.35). Then,for each
individual particle the axial momentum,PZ = M at Z = %.was calculated
using equation (2.34). The fixed target plane of the first section co-
incides with the fixed injection plane of the second section. Therefore,
the coordinates and momenta at the exit of the first section, in the fixed
target plane which is rotated 403° with respect to the (X,Y) axes, are

the injection coordinates and momenta to the second twisted section. For
each individual particle, its input transverse coordinates and momenta as
well as its input axial momentum to the second section were used to
calculate the value for the motion of this particle through the second
section, using equation (7.2). Equations (2.31) and (2.35)were then used to
calculate the trajectory of the particle through the second section.

Figures (7.4a) and (7.4b) show that the injection coordinates and
momenta are now reproduced without inversion in a target plane that co-
incides with the fixed (X, Y) plane. It is evident that some aberration
is still present. However, this aberration is greatly reduced when compared
to the results obtained with the single twisted quadrupole and shown in

figures (7.3a) and (7.3b).

7.4 Effect of Detuning s About Its Imaging Value

Equation (7.12) gives the stability factor s in terms of the parameters
v, V0 and (ea)2 and the injection conditions of the particle Xo‘ Yo’ PX ,
0

p, and PZ as

Y0 0

Is] = (8a) P [l + (Ba) G2 2 - ;"-523}12 (7.12)
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The twisted structure acts as an imaging lens if the structure parameters

and the particle's injection conditions are chosen to give a value of s

equal to
mZ ' n2
$=5,°7 ;Frif;?- where m and n are as defined by equation (7.5)
T A X,
Any deviation of V, V , (ga) or {=~5— - = —} from the proper values
a PZ a PZ

corresponding to s = S, will Tead to Qberratiof. In practice, an error

in the length of the imaging lens, an ervor in the value of the aperture
radius or any deviation of the fields from those derived from the focusing
potential of equations (2.1a) and (2.1b) may require adjusting the structure
parameters to values other than those corresponding to s = s, SO that imaging
will occur. Any deviation from this new setting of the parameters again

will lead to aberration.

In the present section the length, aperture radius and fields are
assumed to be exact and the effects of the variation of s, about Sp2 ON the
imaging properties of the lens are investigated. A study is also made of
how the emerging beam parameters are affected, for values of s equal to
and not equal to s, by introducing a drift space beyond the exit plane of
the lens.

A sketch of the arrangement for performing the foregoing studies
is shown in figure (7.5a). A beam of particles is assumed to originate
from a point source at a distance b from the injection plane of the lens
used in the numerical investigations of section (7.3). Before injection
the beam cross-section is shaped by using a rectangular aperture E

centered at X = Y0 = 0 and having its sides parallel to the fixed X, Y
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|
Representation is in the —se— Representation is in the

(X,Y,Z) reference frame

1.

LI

T,YT,Z) reference frame

- /’A .I_XTsLe

point source | o

|

! apﬁEture ! Lens } particle
' injection exit  detector
, plane plane

k- b se— Twisted lens —tp— 1, —]

Figure (7.5a) Schematic of the Arrangement Used for Studying the Effect
of Detuning s.

Lens
[Inversion +
Rotation 43°]

: 1
Wn (X,Y,2) frame | in (XT’YT’Z) frame
!

Figure (7.5b) Lens Equivalent at Imaging Values of s.

At s = 1.25 (V= 1200 volts) the effect of the lens is
inversion and "rotation of the coordinates and momenta.
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axes, with the longer side parallel to the X-axis. The dimensions of the
aperture E are chosen so that the dimensions of the injected beam
rectangular cross-section are 1 mm x 2 mm With this aperture the angle
of divergence of the injected beam will be less than 0.038 radians for
by = 6 cm, and the injection axial momentum of all particles will be
approximately given by PZO g /EEMV. Also, with this small aperture, the
injection conditions of the particles will be within the Timits set by the
confinement criterion of equation (3.10).

Figure (7.5a) shows that the coordinates and momenta of the

particles at the injection plane are related by

P

X
=g, 9
Xo 21' PZ i
0
PYo
Y0 =L . (7.14)
Zo

Thus, for all injected particles
xp, -Y P 1=0 ,
0 Yo 0 Xo

which together with the approximation PZ g\/ZqMV will give s as
0

- 'ng
|s| = (8a) |V

Thus, for the arrangement of figure {7.5a) and for the lens structure

considered in Section 7.3 for which 5o = 1.25, the exact imaging quadrupole
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voltage is V0 = 1200 volts when the accelerating potential is 15 KV.

In the numerical investigation, presented at the end of this
section only particles on the circumference of the rectangular injected
beam are considered. The coordinates and momenta of these particles at
the exit plane of the lens are computed using the transformation matrix
Q(t) given by equation (7.2). The time t; in which the particle

traverses the lens structure is approximated by

[}
113

I

U JFQT

With this approximation f]t] st and f2t1 =VE§:Z:£J& where
W Vv

% = 33,3 cm as computed in Section 7.3.
At the exact imaging voltage V0 = 1200 volts, corresponding to
$=5,° 1.25, the exit coordinates of the particles at the exit plane of

the Tens will be related to the coordinates at the injection plane by

X =-X and Y = -y (7.15)
Texit Texit 0

Therefore, with no drift space beyond the lens exit plane, the exit
coordinates of the particles will 1ie on the circumference of a rectangle
having the same dimensions as the injection rectangle and having its sides

rotated 43° with respect to the X and Y axes, that is parallel to the XT

and YT axes of figure (7.20). Moreover, the exit momenta will be
PZo PZo
p =P =..X—.—=X —
XT Xo 04 Texit i
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PZo PZO . (
P =-P, =-Y —=Y — 7.16)
Y Y 0 2, T oosr s
Texit 0 i exit "i
and thus [X P -y P ] = 0. Equation (2.32) gives
Tex1'1: YT Texit XT
exit exit

the axial exit momentum for such particles as

p =P, . (7.17)
Zex1't Zo

Equations (7.16) and (7.17) give the relations between the exit coordinates
and the exit momenta of a particle, when there is no drift space beyond the

lens exit plane, in terms of the (XT’ YT’ Z) coordinate system as

p =y Zexit
b Txit 4
exit
P
7.
=Y (7.18)
Texit exit i

Equations (7.15) and (7.18) show that the coordinates of a particle

at a distance L beyond the exit of the lens, as shown in figure (7.5a),

are
PXT
exit jle
ookt s ()
JLe exit Zexit i
L
_ e
- XO(] + 2_) ’
i
Yo
similarly Y. ==Y (1 +-=) ,
Tz 0 21.

e
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Tle
Py P TFI ’
T2 0'e j
e
T
ILe
A M) ,
TQ 0'e i
e
PZ = PZ . (7.19)
i, ‘o

Thus,at s = 5o ° 1.25, the introduction of a drift space Lo
beyond the exit of the lens will not change the geometrical shape of the

beam from that at the exit. The length of the sides, however, is

)
increased by the ratio (1 + I%). Thus at s = 5o = 1.25, the action of the
i

lens itself can be represented by the introduction of a rotation through
2r + 43° and inversion of the coordinates and transverse momenta as
presented schematically in figure (7.5b).

Having considered the properties of the image produced by the
experimental arrangement of figure (7.5a) at s = So = 1.25 without and
with a drift space %o beyond the lens exit, a study was made to determine
the effect of varying s by considering values of V0 other than 1200 volts.
It should be noted that for particles whose coordinates and momenta are
related by equations (7.14), the relations between these coordinates and
momenta and those at the exit of the lens are linear for all values of Uy
For values of V, different from 1200 volts the matrix Q(t) at Z = & will
be different from -I but the transformation described by equations (2.49)
and (2.50) will still be linear and can be writteﬁ, using equations (2.49)

and (7.14), as



[a(e)]

= [Q(s)]

7

Substituting for the elements of [Q(¢)] as Qij' i=1,2,3,4, ] = 1,2,3,4,

the above matrix relation can be put in the form

"
Wt s

(7.20)

where the elements Qijls are evaluated from (2.50) at the value of V,

considered. Equation (7.20) shows Xrs YT’ Py
T

combinations of X0 and Yo' The coordinates of such particles, whose

T

and PY to be linear

coordinates and momenta at the lens exit are given by equation (7.20), at
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distance Lo from the exit plane of the lens are,

X

=X + P
T "X P
2e T Zexit

Y

)

- e

. = YT + PYT PZ (7.21)
e exit

I

Substituting equations (7.20) into equations (7.21) gives

= [{ PZ ) L ( PZ )X,
X 0y *+ =20 t—Q 20
T 11 13 31 .33
ILe 1 Zex1t 1
1 b, 1,
F L * 2Oy e (O * 72 Ol
ex1t 1
Pz b 1,
YT)L = [(Qz] 1 Q23) + (Q“ 'i 043)]
e ex1t
Pz b Pz
Zex1t ]
or
XT2 =A-l XO+A2 YO ]
e
YTQ = A3 X0 + A4 Y0 ) (7.22)
e

where A], AZ’ A3 and A4 are functions of Lis Lo and the structure parameters

at the value of V0 considered.

Now, consider particles whose coordinates Xo’ Yo at Z = 0 lie on
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a straight line such that Xo’ Y0 are related by
Y0 = b] Xyt b2’ where b] and b2 are constants. (7.23)

Equations (7.22) and (7.23) give the relation between Xp and Y; s at

te Y

a distance %o from the exit plane, for a particle whose injection co-

ordinates are related by equation (7.23) as,

T +
ze 1 172 ze

+ by 7ﬁ—q;?q7§;—— (7.24)

Equations (7.23) and (7.24) show that particles injected with
their coordinates Tying on a straight line will have their coordinates at
any value of drift space from the lens exit plane lying on a straight line
defined by equation (7.24). The slope and intercept of the 1ine defined
by equation (7.24) is clearly dependent on the original orientation of the
line defined by equation (7.23), as well as on L5 4 and the structure
parameters.,

Exit coordinates and momenta of the particles on the circumference
of the injection rectangle were computed for different values of s by
considering values of V0 equal to 1150, 1180, 1200, 1210, 1220, 1250, and
1300 volts. The computations were repeated for values of Qe equal to 0.0,
1.0, 2.0 and 3.0 cm while L; was equal to 6 cm. The computed exit
coordinates in the target reference frame (XT’ YT’ Z) are shown in figures

(7.6), (7.7), (7.8) and (7.9) for b = 0.0, 1.0, 2.0 and 3.0 cm respectively.

Figure (7.6) shows the exit coordinates corresponding to
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V0 = 1200 volts, that is s = So ° 1.25, to be exactly on the circumference
of a rectangle whose sides are equal to those of the rectangular cross-
section of the beam at the input plane and are exactly parallel to the XT
and YT axes. As Vo is decreased below 1200 volts, corresponding to s
increasing to values larger than 1.25, the dimensions of the sides that
should be parallel to the XT axes decrease at a rate much higher than the

rate of decrease of the other sides that should be parallel to the Y. axis.

1
At the same time the exit rectangle is deformed into a parallelogram that

is rotated in a direction opposite to that of twist of the quadrupole
electrodes. The angle of rotation of the parallelogram increases and its
dimensions decrease as V0 decreases.

On the other hand, as Vo is increased above 1200 volts the exit
rectangle deforms into a parallelogram that is rotated in the same direction
as the twist of the lens electrodes. At the same time the lengths of the
sides increase and the sides that should be parallel to the XT axis increase
in Tength at a rate higher than the rate of increase of the other two sides.

Figures (7.7) to (7.9) show the exit coordinates of the particles
injected at Z = 0 on the circumference of the injection rectangle, at values
of drift spaces Lo beyond the lens exit plane, of 1 , 2 and 3 cm.The
value of B shown in figure (7.5a), is 6 cm as it was for the case Ly = 0
of figure (7.6). Figures (7.7) to (7.9) show that the sizes of the exit
parallelograms, at all values of V0 increase as %o is increased. The exit
coordinates at V0 = 1200 form a rectangle with its sides parallel to the
XT and YT axes for all values of Lo considered, as expected from equations
(7.18). The exit coordinates for values of V, Tess than 1200 volts are

parallelograms, as for Lo © 0 , rotated in a direction opposite to the



179

divection of twist of the lens electrodes. It is observed that the rotation
of these parallelograms increases as V0 is decreased and/or the value of

Lo is increased. For values of V0 larger than 1200 volts the exit
parallelograms are still votated in the same direction of twist as that

of the electrodes for all values of the drift space 2, beyond the lens exit.
It is also found that the degree of rotation increases as the length of

the drift space Lo is increased and/or the value of Vo is increased.

The investigations of this section are of great importance since
they are the basis for some of the experiments of Chapter 8. The
experimental arrangement used for investigating the imaging properties of
the twisted lens is exactly that of figure (7.6a), and the results of the

present section are used to check the experimental results of section (8.4).
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CHAPTER 8
EXPERIMENTAL INVESTIGATIONS OF THE IMAGING PROPERTIES OF THE TWISTED
ELECTROSTATIC LENS

The theoretical analysis for the motion of charged particles along
the uniformly twisted electrostatic quadrupele structure shows that the
trajectories and hence the guiding, focusing and imaging properties of
the structure are independent of the charge-to-mass ratios of the particles.
Therefore, either electron beams, ion beams or any other charged particle
beams can be used in the experimental investigations of the structure
properties. However, since the present work was aimed at providing a
successful guiding structure for microparticle beams, a charged micro-
particle beam was used in the experimental investigations. The microparticle
beam was generated through contact charging in a microparticle charger

specially designed to meet the requirements of the experiments.

8.1 High Vacuum System

The vacuum system that was used in all.experiments is a CHA High
Vacuum Pumping Station type SS-600-RAM. It consists of a 7 3/4 inch,
4-stage water cooled oil diffusion pump with Tiquid nitrogen trap.
Pressure measurements were made by means of two DV-6M thermocouple gauge
tubes and one Bayard-Albert hot wire 16-100-N ionization gauge tube. The

experimental chamber consisted of two pyrex glass crosses, one having
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symetrical arms both with inside diameters of six inches, the other
having arms with inside diameters of four inches and six inches. A
combination of aluminum and perspex end plates together with rubber
0-rings was used for sealing the system. The usual operating pressure
ranged from 1 x 10-7 torr to 5 x 10'7 torr. A schematic diagram of the

high vacuum system is shown in figure 8.1.

8.2 The Microparticle Charger

The charger was based on the technique of contact charging of the
micron-sized particles<40). Electric fields are then used to accelerate
these heavy charged particles. Several microparticle contact chargers
have been designed by other workers(40 - 41) to produce single particles
with the highest possible charge-to-mass ratios. The charging electrode
in each of these chargers is usua]]yla very small sphere, of radius less
than 100 microns, supported by a thin tapered needie. The small size
of the sphere, for a given sphere potential, assures a very high surface
electric field and consequently results in high charge-to-mass ratios
for the particles. On the other hand, the small size of the sphere also
means that charged particles are emitted at a very low rate. Such chargers
are best suited for providing single highly charged microparticles for

(41)

studying hypervelocity impacts or for evaluating microparticle

detectors(42).

In the present experimental investigations high charge-to-mass ratios
are not the main objective. As long as gravity effects are negligible and
provided all particles have been preaccelerated through the same potential,

particle motion in the structure is independent of charge-to-mass ratio.

However, since the microparticle beam cross-section is detected visually
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by intercepting the particles on a greased glass plate, the charger should
provide a large flux of microparticles for long periods of time, irrespective
of charge-to-mass ratio.

The present microparticle charger has a conical charging electrode
with a rounded tip. The large radius of curvature of the tip increases
the probability of emission of charged particles. Thus, a high density
microparticle beam is generated although the particles have charge-to-mass
ratios much lower than in the case of small spherical charging electrodes.
The charger has a microparticle reservoir from which particles are fed
mechanically into the charging chamber. The reservoir system permits
continuous operation of the charger for more than 12 hours.

The charger is shown schematically in figure 8.2, The charging
chamber consists of two brass circular walls, A and B, separated by the
insulating perspex wall, C, The stainless steel cylindrical charging
electrode with its conical charging tip, having a head angle of 60°, is
screwed into the central threaded hole of wall A. Two nuts are used to
set the distance that the charging electrode protrudes into the charging
chamber. Vertically above the charging electrode is a hole R in wall A.

P is the microparticle powder reservoir. It consists of a brass body to
which a vertical glass tube is fixed. P is vertically mounted on the
brass cylinder T and a vertical hole in T connects the interior of P to
the hollow interior of T. A threaded auger 0 passes through the
horizontal cylindrical hole inside T and protrudes into hole R. The
auger is mechanically coupled to a teflon insulating shaft which in turn
is fixed to a thin stainless steel shaft. The latter passes through a

rotary vacuum feed-through on the left hand side aluminum end plate of
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Figure (8.2) The Microparticle Charger.
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the 6-inch pyrex glass cross. The shaft is rotated by a synchronous
motor at a speed of 10 R.P.M. The charging electrode, wall A, and

the conducting parts of the feeding mechanism are at a p9tential of 15 KV
With respect to a common ground point to which wall B is connected.

The microparticies in P drop onto the auger 0 through the vertical
hole in T. As the auger is rotated it transports the particles toward
the charging chamber between walls A and B. The electric fields that
exist between the grounded brass peg G, which acts as a field intensifier,
and wall A induce charges on the particles that have fallen into R. The
charged particles in R are accelerated towards wall B. Striking either
the peg G or wall B, these particles exchange charge and are repelled
towards wall A. This process repeats itself many times and aids in the
deagglomeration of the microparticles entering the charger. The tapering
of the interior side of wall A causes the electric fields between A and B
to have components that force the charged particles, undergoing alternate
collisions between A and B, towards the center of the charging chamber.
This action enhances the flux of particles in the vicinity of the charging
electrode and, as described below, helps to increase the rate of emission
of charged particles.

Some of the particles at the center of the charging chamber will
enter the region of high electric field between the conical tip of the
charging electrode and the hemispherical depression in wall B. As the
particles contact the tip of the charging electrode, each particle gains
a high positive charge and is accelerated toward wall B. Some of these
particles pass through the aperture while others continue to alternately

collide with wall B and the charging electrode. The latter particles
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Figure (8.3) Exploded Front View of the Charging Mechanism.

Figure (8.4) Exploded Rear View of the Charging Mechanism.
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Figure (8.3) Exploded Front View of the Charging Mechanism.

Fiqure (8.4) Exploded Rear View of the Charging Mechanism.
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may pass through the aperture subsequently or they leave the region of
high electric field and settle on the interior of the insulating perspex
cylinder, C.

Since the emitted charged particles leave the tip of the charging
electrode at various angles, it was found necessary to place a second
aperture in the path of the particles. This second aperture, D, limits
the divergence of the emitted microparticle beam and helps to avoid
contamination of the vacuum system. Exploded views showing the components

of the microparticle charger are shown in figures (8.3) and (8.4).

8.2.1 Testing of the Charger

The charger was tested to determine the breakdown voltage between
the charging electrode and wall B. With no particles inside the charging
chamber, a potential of 30 KV was reached without breakdown. During the
experimental investigations the microparticle reservoir was filled with
3 micron carbonyl iron microparticies. When these particles were fed
into the chamber, breakdown occured at lower voltages. During these
experiments the value of the breakdown voltage was dependent on the distance
between the charging electrode tip and the hemispherical depression on
wall B and also on the rate of feeding of the particles. Through trial and
error it was decided to use an operating voltage equal to 15 KV in all
experiments.

It was then observed that after a period of operation, the auger
ceased to feed the particles into the charging chamber although the
particle reservoir P was still full. This failure was attributed to the

small sizes of the particles that cause them to stick together and to the
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Figure (8.5) Microparticle Charger and Tapping Mechanism.

Charge Sensitive Amplifier

V,lfo C-RO)

Faradoy Cup

Figure (8.6) Sketch of the Charge Detection Arrangement.
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Figure (8.5) Microparticle Charger and Tapping Mechanism.

Charge Sensitive Amplifier

v, C.RO)

Faraday Cup

Figure (8.6) Sketch of the Charge Detection Arrangement.
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walls of the reservoir. By tapping on the auger cylinder, T, it was found
that the feeding action could be restarted. During the experiments the
tapping was provided by a teflon-iron plunger actuated by an electrical
solenoid. Figure (8.5) shows the assembled microparticle charger with the
tapping mechanism mounted below the auger cylinder, T. The circuit used
to actuate the solenoid consists of a silicon controlled rectifier which
is triggered by pulses from a pulse generator, The repetition frequency
of the pulses was 10 cycles/sec and the width of the pulse was 8.33 msec.
When triggered, the SCR connects the terminals of the solenoid to the
secondary of a step-down transformer, whose primary is connected to the
mains via a manual switch. The latter also turns on the motor that drives

the auger mechanism.

8.2.2 Charge Detection

The objective of this experiment was to ensure that charged particles
were emitted from the charger. The position of the charging electrode tip
with respect to wall B, the rate of particle feeding, the rate of actuating
the tapping plunger, and pitch of the auger thread, were all adjusted
through trial and error until a reasonable rate of emission was obtained
without breakdown.

Since particles are not emitted from the charger as single particles
but rather as a continuous stream it was not readily possible to carry out
conventional time of flight experiments(43)to determine the charge-to-mass
ratios of the particles. However, it was possible to detect the charges
of the particles by using a Faraday cup that intercepted the particles

emitted from the aperture D. The Faraday cup was followed by a charge
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sensitive amplifier whose output was fed to a Cathode Ray Oscillograph as
shown schematically in figure (8.6).

Figure (8.7) depicts the typical output of the charge sensitive
amplifier and shows the wide range of the charges on the microparticles.
This wide variation is due in part to the size distribution of the
particles. Also, since the charge induced on each particle depends on the
particle shape, any irregularly shaped particle will accumulate a charge
different from that on a spherical particle of similar size. Even if all
particles have the same size and the same spherical shape, two or more of
these particles may agglomerate to form a larger irregularly shaped
particle. The latter, when charged, will have a charge on it different
from those on the single spherical particles. Another factor that may
cause similar particles to have different charges is the dynamic nature of
the contact charging process. Little is known about the Tatter, but it is
possible that the time constant of this process is much Targer than the
time of contact between the microparticle and the charging electrode.
~ Therefore, the microparticle could leave the charging electrode before
the charging is complete.

A typical value of the charge on the carbonyl iron particle, as
calculated from the detected output voltage of the charge sensitive
amplifier is

14

q=.56x10""" coulomb

Assuming spherical particles of carbonyl iron with a diameter of 3 microns

which equals the average size specified by the manufacturer, the mass of
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Figure (8.7) Photographs of Oscilloscope Trace of the
Typical Output from the Charge-Sensitive
Amplifier,

(a) Output recorded during a single sweep on
the C.R.0.

(b) Output stored during several sweeps on the
C.R.0.

Sensitivity: 5 mV/cm, 1 ms/cm,

Typically, g = 0.56.107"% coulomb, M = 1.13.10°
kilogram and % = 0.05 coulomb/kilogram.

13
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Figure (8.7) Photographs of Oscilloscope Trace of the
Typical Output from the Charge-Sensitive
Amplifier,

(a) Output recorded during a single sweep on
the C.R.0.

(b) Output stored during several sweeps on the
C.R.0.

Sensitivity: 5 mV/cm, 1 ms/cm.

Typically, g = 0.56.107"% coulomb, M = 1.13.107
kilogram and % = 0.05 coulomb/kilogram,

13
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a single particle is

3

M=zmpr

W

v x 8000 x (1.5 x 10°9)3

Wl

= 1.13 x 1073 Kilogram

Thus the typical value for the charge-to-mass ratio of the particle

produced by the charger is

2 0,05 coulomb/kilogram

=jo

It is evident that for V0 = 1200 volts the effect of gravity on these

particles will be negligible.

8.3 The Uniformly Twisted Quadrupole Structure

8.3.1 The Electrode Shapes

To provide the desired quadrupole field as given by equations (2.1a)

and (2.1b), the electrodes must be shaped to coincide with a set of

hyperbolic equipotential surfaces extending to infinity. If electrodes

of finite size are used the field will be distorted. However, in designing

the poles or electrodes for straight classical quadrupole sections it has
been found that even circular(44) or semi-circular(44) electrodes can give
acceptable quadrupole fields provided their dimensions are suitably

chosen(44).
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The electrodes for the uniformly twisted electrostatic structure
are most easily manufactured by producing a cylindrical mould with the
required electrode shape. As it is no more difficult to machine a mould
of hyperbolic cross-section than to machine a mould of circular cross-
section, it was decided to use moulds of hyperbolic cross-section. In
order to reduce the amount of truncation distortion of the fields within
the quadrupole structure aperture, the outer surface diameters of the

electrodes were made greater than 3 times the aperture diameter.

8.3.2 Structure Parameters

The aperture radius and the periodic length of the twisted structure
must satisfy the condition (sa)2 << 1, Choosing (Ba)2 = 0.1 and the
aperture radius a = 1.5 cm, the periodic length of twist is L = 29.68 cm.
To test the imaging properties of the twisted electrostatic lens, the
parameters of the structure were chosen to correspond to the minimum
possible length of the lens. It was shown in Chapter 7 that this minimum
Tength corresponds tom =3 and n = 1. These values in turn correspond to
s = 1.25 and give the length of the lens as ¢ ={§.L = 33.3 cm. Equation
(7.12) shows that for these values of s and (Ba)2 and an accelerating
potential of 15 KV, which is provided by the microparticle charger, the

magnitude of the quadrupole focusing voltage must be V0 = 1.2 KV,

8.3.3 Fabrication of the Twisted Structure

A mould is used to fabricate each of the twisted electrodes of the
structure. The mould, shown in figure (8.8), consists of a cylindrical

aluminum split sleeve which encases a machined aluminum cylinder. The
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(d)

Figure (8.8) The Mould that was Used to Fabricate the Twisted
Electrodes.

Photographs (a), (b), (c) show the mould for the
clockwise twisted lens at different stages of
assembly. The electrode is still inside the mould,
Photograph (d) shows the mould for the counter-
clockwise twisted electrodes.
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Figure (8.8)

The Mould that was Used to Fabricate the Twisted
Electrodes.

Photographs (a), (b), (c) show the mould for the
clockwise twisted lens at different stages of
assembly. The electrode is still inside the mould,
Photograph (d) shows the mould for the counter-
clockwise twisted electrodes.
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latter is manufactured by first mounting the aluminum cylinder on a
milling machine with its axis parallel to the horizontal bed of the
machine. Then, while the cylinder, through an appropriate gearing
mechanism, is slowly turning about its axis and while the mitling machine
bed is moving horizontally,a vertical cutting tool milis an initial small
groove. The vertical position of the cutting tool and the initial
angular position of the cylinder are then precisely adjusted for the milling
of a second groove. The process is repeated many times until a mould with
the desired hyperbolic cross-section is completed. The direction of twist
of the final electrodes is determined by the direction in which the aluminum
cylinder is turning during the milling process. The outer surface diameter
of the machined aluminum cylinder is 9.3 cm, greater than 3 times the
aperture diameter. The length of the cylinder is approximately 2 cm longer
than the required length of the imaging lens in order to allow for the
shrinkage of the moulding resin as it solidifies and in order that the ends
of the electrode can be finally machined to the exact required length
with the end faces exactly perpendicular to the axis of the cylinder.

Once the mould is machined, the fabrication of the electrodes is
started by spraying the mould with a standard release agent. The sleeve
is then placed around the mould. The two 1iquid components of a general
purpose rigid Tow temperature potting resin are then mixed together. The
mould is filled with the resin and it is left to cure under vacuum. Once
cured the solid electrode is withdrawn from the mould, the release agent
is cleaned off and the electrode's ends are cut to the prescribed length.
The surface of the insulating electrode, shown in figure (8.9a), is then

sprayed with a conductive silver paint. Four silver painted electrodes
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Figure (8.9%) A Clockwise Twisted Electrode Before Painting.

Figure (8.9b) Front and Side Views of the Clockwise, 8 - ve,
Twisted Lens Before Painting.
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Figure (8.9a) A Clockwise Twisted Electrode Before Painting.

Figure (8.9b) Front and Side Views of the Clockwise, g - ve,
Twisted Lens Before Painting.
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Figure (8.9c) The Uniformly, Clockwise, Twisted Lens After Silver
Painting.



Figure (8.9¢c) The Uniformly, Clockwise, Twisted Lens After Silver
Painting.
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are then assembled to form the twisted lens. The electrodes are held in
place by using perspex supporting sleeves. Figures (8.9b) and (8.9¢) show
the assembled lens before and after silver painting.

Two moulds were machined, one for the counter-clockwise twisted
electrodes, g positive, and the other for the clockwise twisted electrodes,
B negative. For each of the twisted lenses opposite electrodes are
connected by a high voltage cable. Two other high voltage cables supply
the focusing voltages + V0 and - V0 to two adjacent electrodes. The
focusing voltages + V0 and - V0 are supplied by a high voltage supply
built for this purpose. A circuit diagram of this supply is shown in
Figure (8.10). '

A breakdown test of the twisted lens was performed with one opposite
pair of electrodes grounded and the other pair at high potential. Breakdown
between adjacent electrodes occured at a potential of 3.5 KV. There was

no breakdown at the required operating potential difference of 2V0 = 2.4 KV,

8.4 Experiments

The schematic diagram of figure (8.11) shows the arrangement used
to investigate the imaging properties of the twisted lens. The micro-
particle charger and the twisted lens are mounted on a horizontal
insulating slab inside the vacuum system. The horizontal axes of the
charger and the Tens are carefully aligned to avoid aberration caused by
misalignment. The twisted structure is oriented such that the electrode
axes at the injection plane, Z = 0, that is the fixed X and Y axes of the

theoretical analysis, are in the horizontal and vertical directions.
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C e !
Representation is in the —se— Representation is in the

(X,Y,2) reference frame : (XT,YT,Z) reference frame

E Lens i
B s | L
point source | — 3
1 F 7 ‘1
apqrture L )
' E ens 4 particle
| injection exit  detector
| plane ‘ plane
lﬁ-—-d] -—-d.-dz-q-_ Twisted lens o d3

Figure (8.11) Sketch and Photograph of the Experimental
Arrangement Used to Test the Imaging
Properties of the Twisted Lens Structures.
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The imaging properties of the twisted lens are examined by shaping
the cross-section of the injected microparticle beam and then studying
the beam cross-section as the particles emerge from the lens. At first
two crossed thin wires were used to shape the injected beam cross-section.
It was found that these wires caused scattering of some of the particles
which gave these particles a large transverse momentum, which in turn
caused the injection conditions of these particles to 1ie outside the
acceptance limits of the structure. It was then decided to use a
rectangular aperture to give the injected beam a rectangular cross-section,
similar to that discussed in Section (7.4). The detected exit beam cross-
section can then be compared with the results obtained in Section 7.4.

The circular disc E, shown in figure (8.11), has a rectangular
aperture whose sides, equal to m= 1.56 mm and ny = 0.85 mm, are parallel
to the fixed X, Y axes. In order to detect the degree of rotation of
the emerging beam without ambiguity, the sides of the aperture are chosen
non-equal. The ratio between their lengths is approximately 11 : 6, the
Tonger side being in the fixed X-direction, as shown in figure (8.12).

To ensure that the tip of the charging electrode can be considered
as a point source and hence to make sure that the cross-section of the
injected beam at the input plane, Z = 0, is a rectangle; the following
experiments were performed.

The first experiment was to examine the microparticle distribution
at the plane of the aperture E to ensure full coverage of this rectangular
aperture. The experimental arrangement shown in figure (8.13a) was used.

The rectangular aperture was replaced by a greased glass slide. The




202

Figure (8.12) The Injected Beam Shaping Aperture.

The rectangular aperture E is mounted in
front of the lens injection plane to shape
the injected beam cross-section.

Shaping Aperture
E

P—————————

Twisted

Lens
-—.—;Z

I—

1\

L
|

Position of for figure (8.13b
Detector Plate

for figure (8.13¢) ———r

Figure (8.13a) Sketch of the Experimental Arrangement Used to
Test the Injected Beam Cross-Section,

The greased detector plate is first placed at
the plane of the aperture E and then at the
injection plane of the lens beyond the aperture
E.
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Figure (8.12) The Injected Beam Shaping Aperture.
The rectangular aperture E is mounted in
front of the lens injection plane to shape
the injected beam cross-section.

Shaping Aperture
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Position of for fiqure (8.13b)}—

Detector Plate
for figure (8.13c)

Figure (8.13a) Sketch of the Experimental Arrangement Used to
Test the Injected Beam Cross-Section.

The greased detector plate is first placed at
the plane of the aperture E and then at the
injection plane of the lens beyond the aperture



203

Figure (8.13b) Photograph of Injected Microparticle Beam Cross-
Section at the Plane of the Shaping Aperture E.

The detector slide was moved horizontally to
photograph the detected beam cross-section and
the aperture E simultaneously. The illuminated
circular area behind the rectangular aperture is
the reflection of Tight from the tapered hole in
perspex plate supporting the aperture E.

Figure (8.13c) Photograph of the Injected Beam Cross-Section
at the Lens Injection Plane.

The detector slide is still mounted at the lens
injection plane.
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Figure (8.13b) Photograph of Injected Microparticle Beam Cross-
Section at the Plane of the Shaping Aperture E.

The detector slide was moved horizontally to
photograph the detected beam cross-section and
the aperture E simultaneously. The illuminated
circular area behind the rectangular aperture is
the reflection of Tight from the tapered hole in
perspex plate supporting the aperture E.

Figure (8.13c) Photograph of the Injected Beam Cross-Section
at the Lens Injection Plane.

The detector slide is still mounted at the lens
injection plane.
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greased detector slide was mounted on the disc of the aperture E.

Figure (8.13b) shows the detected beam cross-section. The detector

slide was moved horizontally to be able to photograph the detected
cross-section. Figure (8.13b) also shows the rectangular aperture E

and shows that the detected beam cross-section is reasonably uniform.

The diameter of the circular aperture D was 1 mm and the distance

between it and the tip of the charging electrode was 28 mm, The distance
between the tip of the charging electrode and the surface of the greased
glass slide, the position of the aperture E, was 67.5 mm. The diameter

of the detected beam cross-section was equal to 2.4 mm which i35 equal to

1 mm. g%éi . This result indicates that the tip of the charging electrode
can be considered as a point source. Also the detected beam cross-section
at the position of the rectangular aperture ensures full coverage of this
rectangular aperture by the microparticle beam.

A second experiment was performed to insure that the microparticle
beam cross-section, at Z = 0, in the presence of the aperture E between
the charger and the lens as shown in figure (8.11), is a rectangle. A
greased glass slide was placed at the input plane, Z = 0. With no
quadrupole voltage and using a charger voltage equal to 15 KV, the
detected beam cross-section was, as shown in figure (8.13c) in which the
detector plate is still mounted on the entry of the lens, a rectangle.
This rectangle had its sides parallel to the electrode axes at Z=0,
that is parallel to thé sides of the aperture E. The microparticle
distribution over the detected rectangular cross-section was more or less

uniform. The sides of the rectangle were equal to 1.73 mm and 0.95 mm,
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the longer side being in the fixed X- direction.

The last two experiments show that the tip of the charging
electrode can be considered as a point source at a distance (d] + dz)
from the Tens input plane. Therefore the experimental arrangement of
figure (8.11) is exactly that of figure (7.5a). The injected beam at
Z = 0 has a rectangular cross-section centered at the center of the
quadrupole lens aperture. The sides of the injection rectangle are

parallel to the fixed X and Y axes and are equal to

d, +d

" ]d 2 9 7n3m
1
&y + 4,
n2 —H]_— = 0095 mm . (Bn])

where " and n, are the dimensions of the aperture E and (d],dz) are
as shown in figure (8.11).

Also by considering the tip of the charging electrode as a point
source, the transverse momenta of each particle at Z = 0 are related to

the coordinates of the particle at Z = 0 as,

z
T
o 1 72
PZo
PYO = WYO . (8.2)

where PZ is the axial momentum of the particle at injection. The
0

dimensions and the position of the aperture E during the experiments were
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chosen such that the angle of divergence of the injected beam is small.
Thus, the axial momentum of each particle at injection can be assumed
equal to its total injection momentum Po‘ Hence

1/2

Py = Py = (2gMV) ', where V is the charger high

0
voltage = 15 KV, (8.3)

The analysis of Section 7.4 shows that for an injected beam
having the rectangular cross-section provided by the aperture E and whose
particles have their coordinates and momenta related by equations (8.2)
and (8.3), the exit beam cross-section at the exact imaging values of
the Tens parameters should be a rectangle. This exit rectangle should
be at the center of the quadrupole aperture and its sides should be
parallel to the electrodes axes at the exit, the (XT,YT) axes. The beam
cross-section should be rotated 2 + 43° with vespect to the fixed X, Y
axes in case of the counter-clockwise twisted lens. The exit rectangular
cross-section should have the same dimensions as the cross-section of
the rectangular injected beam at Z = 0. Moreover, the mechanical

momenta of any of the exit particles in the fixed target plane should be

Pz

P T
T Gt

Pz
0y
Py = e o
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where XT and YT are the exit coordinates of the emerging particle with
respect to the (XT’ YT’ Z) fixed target coordinate frame.

According to the relations of (8.4), if a drift space d3 is
introduced beyond the lens exit, the particles should cover an expanded
rectangular area whose sides are still rotated 43° with respect to the
X, Y axes. The ratio between the lengths of these sides should be that
between the sides of the rectangular aperture E, that is nying & 11:6.

In the experiments, the microparticle beam cross-section was
detected on a greased glass slide as the beam emerged from the lens.
Arrangements were made so that the distance between the lens exit plane
and the greased face of the glass slide could be adjusted. Also a
ratchet and vacuum feed-through mechanism were used to move the greased
glass slide in the horizontal direction parallel to the exit plane so
that mdre than one experiment could be conducted without opening the

experimental vacuum chamber to air.

8.4.1 Experimental Results

(a) Single Twisted Electrostatic Quadrupole Lens

The experiment which is described below comprises two separate
experiments, one for the counter-clockwise twisted lens, the other for
the clockwise twisted lens. For all experiments the greased detector slide
was mounted exactly at the end of each of the single twisted lenses and
the charger high voltage was constant at 15 KV. For the initial part of

the experiment the quadrupole focusing voltage was adjusted to the exact
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theoretical imaging value of 1200 volts. The detected exit beam
cross-section at this focusing voltage closely approximated a rectangle
but the ratio between its sides was less than 11:6; the Tonger sides were
smaller than expected from equation (8.1). The angle of rotation of

the sides of this cross-section with respect to the fixed (X,Y) axes

(the horizontal and vertical axes) was slightly smaller than 2n + 43°.
The theoretical study, already described in Section 7.4 was then carried
out and it became apparent that the twisted lens was in effect slightly
detuned from its actual imaging value.

The previously mentioned ratchet mechanism was then introduced to
allow movement of the detector plate in the horizontal direction so that
several experiments could be carried out without letting the system up
to air. A series of experiments was then carried out while the focusing
voltage was varied in steps from 1150 volts up to 1250 voits. It was
found that a potential of 1210 volts produced the best image for both the
counter-clockwise and the clockwise twisted lenses. At this value of V ,
the detected beam cross-section is a rectangle whose sides are parallel
to the electrode axes at the exit (XT’YT)’ that is rotated 2n + 43° with
respect to the fixed (X, Y) axes. The dimensions of the rectangle are
equal to 1.73 mm and 0.95 mm, exactly equal to those of the injected beam
at Z = 0. Photos of the detected exit beam cross-section at V, = 1210
volts, with the detector plate mounted at the exit of the lens, are
shown in figure (8.14) for the counter-clockwise twisted lens and in
figure (8.15) for the clockwise twisted lens.

The detected exit beam cross-sections with no drift space beyond

the exit of the lens and at values of the focusing voltage less than,
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Figure (8.14) Beam Cross-Section at the Exit Plane of the
Counter-Clockwise, B + ve, Twisted Lens at
Vo = 1210 volts.

This is a rear view with the detector slide
sti11 mounted at the exit plane of the lens.

Figure (8.15) As in Figure (8.14) for the Clockwise, 8 - ve,
Twisted Lens.
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Figure (8.14) Beam Cross-Section at the Exit Plane of the
Counter-Clockwise, g + ve, Twisted Lens at
V0 = 1210 volts.

This is a rear view with the detector slide
still mounted at the exit plane of the lens.

Figure (8.15) As in Figure (8.14) for the Clockwise, 8 - ve,
Twisted Lens.
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Figure (8.16) Beam Cross-Sections at the Exit Plane of the
Counter-Clockwise Twisted Lens for Different
Values of Vo.

The values of Vo are (from left to right) 1190,
1200, 1210 and 1220 volts. The cross-sections
are photographed in the direction of incidence
of the beam on the detector.

Scale of reproduction: 1 cm on photograph + .21cm.

Figure (8.17) Beam Cross-Sections at the Exit Plane of the
Clockwise Twisted Lens for Different Values of
Vo'
The values of Vo are (from left to right) 1180,
1190, 1200, 1210 and 1220 volts. The cross-
sections are photographed in the direction of
incidence of the beam on the detector.

Scale of reproduction: 1 cm on photograph - .22 cm,
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Figure (8.16) Beam Cross-Sections at the Exit Plane of the
Counter-Clockwise Twisted Lens for Different
Values of Vo'

The values of Vo are (from left to right) 1190,
1200, 1210 and 1220 volts. The cross-sections
are photographed in the direction of incidence
of the beam on the detector.

Scale of reproduction: 1 cm on photograph + .21cm,

Figure (8.17) Beam Cross-Sections at the Exit Plane of the
Clockwise Twisted Lens for Different Values of
Vo'
The values of Vg are (from left to right) 1180,
1190, 1200, 1210 and 1220 volts. The cross-
sections are photographed in the direction of
incidence of the beam on the detector.

Scale of reproduction: 1 c¢m on photograph + .22 cm,
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equal to and greater than 1210 volts are shown in figure (8.16) for the
counter-clockwise twisted lens and in figure (8.17) for the clockwise
twisted lens. For values of V0 greater than 1210 volts, the detected
beam cross-sections are nearly rectangular parallelograms whose sides
are rotated with respect to the X, Y axes through an angle slightly
larger than 2n + 43°, The angle of rotation as well as the dimensions
of the parallelograms increase as the value of the focusing voltage
increases. Also the lengths of the sides that should be parallel to
the XT axis at V0 = 1210 volts, are observed to increase at a higher
rate than that of the increase of the other two sides.

As the focusing voltage is decreased to values less than 1210 volts,
the detected beam cross-sections are nearly rectangular parallelograms
rotated with respect to the X and Y axes through an angle less than
2n + 43°, The angle of rotation decreases as the focusing voltage is
decreased. The parallelograms detected at values of V0 less than 1210 volts
have smaller areas than the rectangu]ér cross-section detected at 1210
volts and it is found that the exit beam cross-section decreases as V0 is
decreased. It is also observed that the lengths of the sides that should
be parallel to the XT axis at 1210 volts decrease at a rate higher than
that of the decrease of the other two sides. The experimentally observed
phenomena are in good agreement with the theoretical results of Section
7.4. However, it is clear from figures (8.16) and (8.17) that the density
of the particles is higher in the middle of the exit beam cross-section
than on the boundaries. This exit beam density distribution is different

from the more or less even microparticle distribution over the rectangular
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Figure (8.18)

Beam Cross-Sections at a Distance dy = 7 mm
Beyond the Exit Plane of the Clockwise Twisted
Lens for Different Values of Vo‘

The values of Vg are (from left to right) 1150, 1180,
1200, 1210 and 1220 volts. Direction of photography
the same as figure (8.17). The bubbles in the
background are due to some moisture trapped under

the grease and heated during photography.

Scale of reproduction: 1 cm on photograph » .25 cm.

Figure (8.19)

Beam Cross-Sections at a Distance d3 = 17.5 mm
Beyond the Exit Plane of the Clockwise Twisted
Lens for Different Values of Vg.

The values of V, (from left to right) 1150, 1180,
1200 and 1210 volts. Direction of photography
the same as figure (8.17). The overlapping of
the second and third exit beam cross-sections was
due to insufficient movement of the ratchet
mechanism. The effect of trapped moisture is
more pronounced in this case.

Scale of Reproduction: 1 cm on photograph » .27 cm.
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Figure (8.18) Beam Cross-Sections at a Distance d3=7m
Beyond the Exit Plane of the Clockwise Twisted
Lens for Different Values of Vo'

The values of Vo are (from left to right) 1150, 1180,
1200, 1210 and 1220 volts. Direction of photography
the same as figure (8.17). The bubbles in the
background are due to some moisture trapped under

the grease and heated during photography.

Scale of reproduction: 1 cm on photograph + .25 cm.

Figure (8.19) Beam Cross-Sections at a Distance d3 = 17.5 mn
Beyond the Exit Plane of the Clockwise Twisted
Lens for Different Values of V.

The values of V, (from left to right) 1150, 1180,
1200 and 1210 volts. Direction of photography
the same as figure (8.17). The overlapping of
the second and third exit beam cross-sections was
due to insufficient movement of the ratchet
mechanism. The effect of trapped moisture is
more pronounced in this case.

Scale of Reproduction: 1 cm on photograph + .27 cm.
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Figure (8.20) Beam Cross-Sections at a Distance dy = 33 m
Beyond the Exit Plane of the Clockwise Twisted
Lens for Different Values of Vo'

The values of V, are (from left to right) 1150,
1180, 1200, 1210, 1220 and 1230 volts. Direction
of photography the same as figure (8.17).

Scale of Reproduction: 1 cm on photograph » .31 cm.
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Figure (8.20) Beam Cross-Sections at a Distance dq = 33 mm
Beyond the Exit Plane of the Clockwise Twisted
Lens for Different Values of Vo‘

The values of V, are (from left to right) 1150,
1180, 1200, 1210, 1220 and 1230 volts. Direction
of photography the same as figure (8.17).

Scale of Reproduction: 1 cm on photograph + .31 cm.
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beam cross-section at the injection plane. A discussion of this form
of aberration will follow the presentation of the remaining experimental
results.

While the foregoing series of experiments examined the imaging
of the particle coordinates, the series of experiments which is described
below examines the imaging of the particle momenta. Since the two lens
sections used in the previous series of experiments are identical except
for the direction of twist of the electrodes, it was decided to carry
out these experiments for the counter-clockwise twisted lens only. The
experiments were performed by using different values of drift space d3,
as shown in figure (8.11), between the exit plane of the lens and the
greased detector slide.

Figures (8.18), (8.19) and (8.20) show the exit beam cross-sections
at drift spaces equal to 7 mm, 17.5 mm and 33.6 mm respectively. At
V0 = 1210 volts, it is clear that the exit beam retains its rectangular
shaped cross-section and the ratio between the lengths of the rectangle's
sides is still 11:6. Also the directions of the sides are still parallel
to the XT and YT axes and the dimensions of the rectangular cross-sections
at V0 = 1210 volts in all three cases are exactly as theoretically
predicted in Section 7.4. In interpreting figures (8.18), (8.19) and (8.20)

it must be noted that their scales of reproduction are not the same.

(b) Two Oppositely Twisted Equal Sections

The oppositely twisted sections that were investigated separately
were mounted and electrically connected so as to have no drift space

between then, as shown in figure (8.21). The rectangular aperture E
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Figure (8.21)

Figure (8.22)

Photograph of a Lens Structure that Consists of
Two Adjoining Sections of Equal Length but
Opposite Twist.

Photograph shows the mounting base plate and the
focusing voltage calbes,

Beam Cross-Sections at the Exit Plane of the Lens
Shown in Figure (8.21) for Different Values of Vo‘

The values of Vy are (from left to right) 1190,
1200, 1210, 1220 and 1230 volts. Direction of
photography the same as figure (8.17).

Scale of Reproduction: 1 cm on photograph + .21 cm.
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Figure (8.21) Photograph of a Lens Structure that Consists of
Two Adjoining Sections of Equal Length but
Opposite Twist.

Photograph shows the mounting base plate and the
focusing voltage calbes,

Figure (8.22) Beam Cross-Sections at the Exit Plane of the Lens
Shown in Figure (8.21) for Different Values of Vo

The values of Vy are (from left to right) 1190,
1200, 1210, 1228 and 1230 volts. Direction of
photography the same as figure (8.17).

Scale of Reproduction: 1 cm on photograph - .21 cm.
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previously used was again employed in these experiments. As before the
sides of the rectangular aperture were kept parallel to the axes of the
electrodes of the first twisted Tens at Z = 0, that is the sides were
parallel to the horizontal and the vertical directions. According to
the theoretical analysis of section (7.3), the exit beam cross-section
at the exact imaging voltage should be a rectangle with its sides in the
horizontal and vertical directions. The dimensions of this rectangle
should be equal to those of the injected beam rectangular cross-section
at Z = 0, that is 1.73 mm in the horizontal direction and 0.95 mm in the
vertical direction. The two section Tens structure was tested at
different values of V0 and the corresponding beam cross-sections, detected
right at the end of the structure, are shown in figure (8.22). This
experiment verffied that exact imaging with no rotation with respect to the
fixed X, Y axes occurs at VO=1210 volts. The beam cross-sections at values
of V0 greater thén 1210.§o1ts are slightly expanded but their shapes are
still nearly rectangular parallelograms. These parallelograms are
slightly rotated with respect to the X, Y axes.

The results of the experimental investigations of either the
single twisted Tens or the structuré consisting of two oppositely
twisted sections show that these lenses are capable of identically imaging
the injection conditions of the particles of the microparticle beam at
V, = 1210 volts. Also the results shown in figures (8.16) to (8.20)
and in figure (8.22) are in good agreement with the theoretical analysis
of Chapter 7. However, these figures show that there is some aberration

that results in a higher microparticle's density at the middle of the
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exit beam cross-section than on the boundaries and in some slight
curvature of these boundaries.

This aberration is undoubtedly due to several factors, the
most important of which is the misalignment of the axes of the micro-
particle injector and the lens structure. In some preliminary
experiments the microparticle charger and the Tens structure were
separately mounted and aligned optically. The exit beam cross-sections
were so distorted as to be almost unrecognizable. Subsequently the
charger and the Tens were mechanically mounted to one rigid base plate
and then aligned optically, With this arrangement it was immediately
possible to obtain exit beam cross-sections that clearly demonstrated
the imaging properties of the lens. The effect of misalignment was
found to be most pronounced in the case where the structure consisted of
two oppositely twisted sections. In this case proper alignment was
most difficult to achieve. This sensitivity to misalignment is common
to all quadrupole structures(45).

During the experiments the quadrupole focusing voltage was
kept constant within a few volts by regulating the mains feeding the
quadrupole voltage supply. However, the mains feeding the charger high
voitage source was not regulated and some of the observed aberration
may be due to drift in the value of V during the experiments.

In Chapter 5 it was found that for Vo = 1200 volts, the
effect of gravitational forces is negligible if % >> 0,0003 coulomb/kilogram.
During the charge detection experiments described in Section 8.2.2 it was
observed that the values of the charge-to-mass ratios of the particles

fluctuate over a wide range. Some of the particles emitted from the
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charger may well have charge-to-mass ratios low enough that their
motion will be noticeably affected by the gravitational forces. Such
particles will not be properly imaged and hence contribute to the
observed aberration.

Further, fringing fields at the entry and exit planes of
the Tens structure as well as any tolerances in the Tength, radius,
mounting and cutting of the electrodes may be responsible for some of
the aforementioned aberration.

The aberrations discussed above are significant only in that
they affect the identical imaging properties of a lens section. They
are unimportant in terms of simply guiding and transporting a beam of
particles. The experimental results clearly indicate that in all
cases the injected particles are confined within the aperture of the
structure, inspite of any aberration. In the experiments described
above,particles have been successfully guided over a maximum distance
of approximately 67 cm. It is important to note that without the
twisted structure these same particles would be spread over an aperture
approximately 19.5 mm in diameter as opposed to the 1.73 mm x 0.95 mm

rectangle produced by the lens at V0 = 1210 volts.
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CHAPTER 9

THE CIRCULAR UNIFORMLY TWISTED ELECTROSTATIC QUADRUPOLE

9,1 Introduction

As a beam transport system is often required to bend the beam
to direct it to a certain experimental area, it is of interest to analyze
the effect on the particle motion caused by gradually bending the twisted
quadrupole structure. Such effect is studied in this chapter by analyzing
the motion of a charged particle which travels along a circular uniformly
twisted electrostatic quadrupole structure. Beside being of importance for
beam bending devices, the above analysis is also relevant to the design of
storage rings for heavy charged particies.

Figure (9.1) illustrates the coordinate systems used in the
analysis that follows. The (X,Y,Z) coordinate system is a fixed coordinate
system whose origin coincides with the circular axis of the bent structure,
which has a radius Ro’ at ¢ = 0. The coordinates (X', Y', ¢) are related

to the (X,Y,Z) coordinates as follows,

X =X'cos ¢+ Ro(l - C0S ¢)

1= (RO - X')sin ¢ (9.1)
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9.2 The Hamiltonian of the Motion

The kinetic energy of a particle of mass M in terms of the

(X'5 Y', ¢) coordinate system is

T=00te ity iy

L GRS ERN (N OLS (9.2)

If the radius of curvature of the circular axis of the structure,
Ro, is much larger than the aperture radius, a, and if (sa)2 << 1, then the
potential at any point within the aperture in terms of the coordinates X',

Y' and ¢ is
V(X',Y8) 2 KIEKE - v'2)cos 28R ¢ + {2X'Y'sin 28R 1.

Since V(X',Y',0) is velocity independent, the momenta conjugate to the

(X' Y', ¢) coordinates are(34)

Pyo = %%T - My
Pys = %%r= My
%=§=m%-wﬁ (9.3)

and the Hamiltonian of motion in the (X', Y', ¢) coordinate system

is
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2 [} [}
Ry W} +qUX'Y' 49) (9.4)
Equation (9.4) can be used to derive the equations of motion in the
(X', Y', ¢) coordinate system. However, the equations of motion thus
derived are found to be nonlinear and coupled. At this stage the problem
can be simplified by referring the motion to the rotating coordinate system

(x', y', ¢) where coordinates (x',y') are related to X', Y' by
X' = x' cos BR0¢ - y' sin BR0¢
Y' = x' sin BRo * y' cos BR0¢ (9.5)

Differentiating equations (9.5) and substituting into equation (9.2), the
kinetic energy of the particle in terms of the coordinate system (x', y' ¢)

is

R R A O

o=

R, - X'
+ 2RV %' - X y) ¥ BZR(Z, f? + 8] (9.6)

and the momenta conjugate to x', y', ¢ are

px' = X Mxt-M sR0¢y s
] T o
Pyr = 2! My"+ M eRox '
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p, = MR - XD MR (X' ¥ - Ry

o eZied + v

=Pyt BR, (' Pyt - y'p) (9.7)

Using equations (9.3), (9.4), (9.5) and (9.7) it now follows that the

Hamiltonian in the (x', y', ¢) coordinate system is

Dl
g g [p, -8R py -y Ryl

] y
H=—[p|+p|+ ]
eM =T y _ e
(R, - X')
+qV(x', y'y 9) (9.8)
If (9.8) is expanded and if all of
Py 2 Pyr 2 2 2 X'\2
(=), (), (8y") and ()7 << (9.9)
p¢/R0 p¢/R0 Ry
then to first order the above Hamiltonian becomes
el et (G - 2 py - v )
M P TPy TR Py =Y Byl R
2p :
+ -—§¢— (x* cos BR0¢ - y' sin 8R0¢)] + qk(x'2 - y'z)
R
0

(9.10)

The Hamiltonian of equation (9.10) leads to coupled equations of motion

and a new coordinate system must be generated in which the motion is
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uncoupled. It is found that the generating function

Ty BT i
B = X" Per * Y Py - ik Py Pyr ¥ 40, (9.11)
generates through contact transformation the coordinate system (X', ¥'y 4,
Py E;., E;) in which the equations of motion are uncoupled, provided that
the constant § is chosen properly. The new coordinates are related to the

old coordinates by(34)

1

p¢ === * (9'12)
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2- — —2
Bpp 2 2 p
—2n . _ b8P _sL
(- Gy 2qu) +
0
o
%
+R3 cosBR¢) ——Ex
0
_9 J—
2p 8D Py
- YAREY:
R3(mnw¢ﬂ 7174+mm( -3
0
PYP
- B P (- B) Y P - P (9.13)
y % 0

9,3 The Equations of Motion

The following approximations are now introduced:
1. It is assumed that E; = P¢. This follows from equations (9.7)
and (9.12) if first order quantities are neglected. Then from equations

(9.3), to the same degree of accuracy

enrs (9.14)

2. Based on the results for the straight uniformly twisted
electrostatic quadrupole, where by neglecting first order quantities it
was shown that the axial velocity 1 is essentially constant, it is now
assumed that the circumferential velocity, Ro$, is also constant. Thus

from equation (9.14)
p.=MR U (9.15)

where U0 is the initial circunferential velocity.
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The value of the constant p which appears in the generating

function G is now selected as
p=MU_ = A (9.16)

Finally at this stage, the equations of motion are derived from
equation (9.13). These equations are coupled. However, upon introducing
equations (9.15) and (9.16), the equations of motion become uncoupled and

appear as follows:

s P P 3

X' = M—-(1 + So) - 2 sin BR ¢
2M°R qk

— 3

Py p, B -

y' = M-Y—(l - So) + (2’ cos BR0¢
M Roqk

. p 2

—_— - 0 -

px, = -2gk x' - WO'COS BR0¢

: p 2

E;. = 20k y' + s1n 8R ¢ (9.17)

where the stability factor S is given by

2 2
B P,

S ='2Mq—k' (9.18)

It now follows immediately from equations (9.17) that

2

= - Py
+%£(S +1)x' = -(1 +25)——-—cos BUt
0 MZR
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2
. P
i+ 20k (s, - 17" = (1 - 2s,) 2 sin BU,t (9.19)

U R,
since, fron equations (9.12), (9.14) and (9.15) ¢ = (U /R )t.

One recognizes immediately that the homogeneous solutions of
equations (9.19) are exactly analogous to the solutions obtained in
Chapter 2 for X and y. The complete solutions of equations (9.19) are
the sum of these homogeneous solutions and the particular solutions,

where the latter are

po (1 + 25,)

X' = - cos BUot ,
Mok R,
] 902(1 - 2,)
I 2 o c———gin BUot
2Hgk R

When these particular solutions are transformed back to the X', Y', ¢

coordinate system, X' and Y' of these solutions are

s
L 0
XK'= - o (4s0 + coS 26R0¢) ,
B8R
0
S
y' = - - (sin 25R0¢) . (9.20)
8R
0

The projecfion of the particular solutions of equations (9.20)
onto the transverse plane X'-Y' is plotted in figure (9.2). This figure
indicates that the particle trajectories in the circular twisted structure
are in fact essentially the same as the trajectories in the Tinear structure,

except that the mean orbit of particles no Tonger lies on the structure axis.
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Instead, the mean orbit is now a helical orbit whosg axis is displaced

s
radially outward in the X-direction by an amount —-2—0-— . The radius of

So B Ro
this helical orbit is equal to -
B8R
0
Yl
|
ol
ol
BR |
o I
|
|
S I-—
I

—
Bt |

direction of R | 2B
, twist |
X |

S \__/

Figure (9.2) The Mean Orbit of Particles Along the
Circular Twisted Structure.

Because of the displaced mean orbit the acceptance conditions for the

circular structure are difficult to compute and no expression for the

confinement criterion is obtained, However, it is of interest to study at

least one specific example to illustrate what order of magnitude the radius

of curvature R0 must have relative to the aperture radius a.
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Example: Consider a particle which is injected with initial conditions

><
"
1
n1c>
—
_—
+
N
w
o
—
—-<
1]
o

=0 , Y= .00 (9.21)

><e
o -

As mentioned above the complete solutions of equations (9.19) are the sum
of the homogeneous solutions, analogous to those given by equations (2.31)
and the particular solutions. It can be shown that the trajectory of the
particle whose injection conditions are given by equations (9.21) is just
that of the particular solutions of equations (9.20) and the homogeneous
solutions for these particles are zero.

If the maximum radial displacement of this particle is now

chosen as a, then

SO
a = 5 (1+4s) (9.25)
0
B RO

Further, if one sets

S ° 2 and (Ba)2 =0,]
it then follows from (9.25) that R0 = 180a and that the circular twisted
quadrupole must execute a total of 57 twists in going once around the

circular structure.
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CONCLUSION

During the past few years special attention has been focused
on the charging and acceleration of heavy fons as well as heavy
micron-sized solid and liquid particles. The capability of the
uniformly twisted electrostatic quadrupole structure to guide beams
of heavy microparticles has been investigated in detail. A first order
analytic solution for particle trajectories has been developed. This
analytic solution shows that stable trajectories exist for particles
with arbitrary charge-to-mass ratios provided that the structure
parameters are properly chosen. It was shown that it is possibie to
confine particles stably provided their injection conditions are within
the acceptance Timits set by an analytically derived confinement
criterion. This criterion was used to study the acceptance limits of
the twisted structure for some special cases of injection. Comparison
of the analytically computed trajectories with those computed through
numerical integration of the exact equations of motion showed that the
analytic solution is accurate over the entire quadrupole aperture.
Furthermore the comparison showed that the confinement criterion
successfully predicts the acceptance limits of the twisted structure.
The effect of gravitational forces on the motion of heavy particles
along the twisted structure also has been studied, It was found that

the influence of gravity is negligible provided the charge-to-mass
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ratio of the particle is higher than a value that depends on the
structure parameters,

The guiding properties of the twisted structure were compared
with those of the classical electrostatic quadrupole channel. It was
found that the twisted structure has a stronger focusing action and
hence is especially suitable for guiding beams emerging from point
sources.

The investigation of the analytic solution showed that for
suitably chosen parameters a finite length of the twisted structure
can be operated as a novel type of lens. By using this imaging lens,
the initial injection coordinates and momenta of a system of particles
were found to be identically reproduced in a coordinate plane located
at the exit of the lens. The imaging takes place with a small amount
of aberration. Numerical investigations showed that this aberration
can be eliminated almost entirely by constructing the Tens of two equal
but oppositely twisted sections.

The identical imaging property of the twisted quadrupole has been
experimentally tested. The lens structures have been fabricated by
moulding. A microparticle contact charger was designed to provide the
high density microparticle beam that was used in the experiments. The
results of the experiments were in good agreement with the theoretical
analysis inspite of the presence of some aberration. It is expected
that this aberration can be reduced if more accurate methods of
alignment and machining are used.

Also, particle motion has been studied along a twisted structure

whose axis is bent in a circle. The results of this study are important



to the design of beam bending devices and to the design of storage
rings for heavy microparticles. The analysis showed that for proper
choice of the structure parameters stable trajectories exist and that
the mean particle orbits are displaced from the structure axis.

The twisted electrostatic quadrupole structures can be used as
beam transport elements in conjunction with very heavy ion accelerators,
or with accelerators for simulation of micrometeoroids. A further use
could be the guiding of electrostatically sprayed liquids, such as the
exhaust streams of colloidal propulsion devices. Another application
could be as a confinement device for clouds of positively and negatively

charged microparticles for the study of microparticle plasmas.
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APPENDIX A

POTENTIAL DISTRIBUTION IN THE UNIFORMLY TWISTED ELECTROSTATIC QUADRUPOLE.

The potential at any point in a charge free region should satisfy

Laplace’s equation, which in polar coordinates is

2 2 2

a Vv, 1 V 1 3°V, 37V
PR AR A
;;7 T ) ;;7

For an infinitely long, uniformly twisted structure,the potential at a
point (r, 6, Z) is exactly that at the points (r, 6 + g2, Z + 2) where

% can be any distance. Therefore the potential should be in the form

V(r, 8 - 1) ZR(rf(e BZ)
n=0

Substitution of this potential in Laplace's equation, and separation of

the variables gives

2

f;(e - L) +n fn(e -gl) =0

and
1 ] 1 n2 2
Rn(r) + ;‘Rn(r) + [~ ;7 - nB ]R (r) =

The solutions of these two diffesential equations give
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V(r, 0 - BZ) = ] In(nBr)[an cos n{6 - BZ) + B sin n(e - 82)]
n=0
where In(nsr) is the modified Bessel function of the first kind and
order n.

For a symmetrical twisted quadrupole structure the following

conditions must be satisfied (see figure (A.1))

V(r, 8 - 8Z) = V(r, -0 + 8Z)
V(r, 6 - 8Z) = V(r, 8 - BZ + )

V(r, 6 - 62) = -V(r, 6 - BZ+ ) .

These conditions imply that V(r, 8 - BZ) should be

V(r, 0 - BZ) = E o IZm(ZmBr)cos 2m(e - 8Z) (A1)
m=1,3,5
Equation (A.1) gives the potential produced by a twisted structure whose
electrodes can be of any shape and twisted at any rate. The coefficients,
o must be numerically evaluated by matching the potential at points on
the electrode surfaces with V(r, 8 - 8Z) of equation (A.1). This matching
produces a set of independent algebraic equations whose number is equal
to that of the points considered.
For the special case of slowly twisted structures the Bessel

functions of equation (A.1) can be approximated as follows:
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[ g

2042m

IZm(ZmBr) = 2mBr)

o1 2mer
5=0 2T{p42m)1 ( 2

mp on 2m[] N m282r2 ]

T " 2wy F e

(mg 2m

2m
I

for gr << 1

For guiding and focusing structures the only values of r which are
of interest are those within the aperture, r < a. Thus, the potential
at points within the aperture of a slowly twisted quadrupole structure,

with any electrode shape, is

6

Ve k]r2 cos 2(6 - BZ) + k2r cos 6(6 - 8Z)

+ k3r]0 cos 10(s - gZ) + ... (A.2)

provided only that (Ba)2 << 1. The coefficients k, can be evaluated by
potential matching at points on the electrode surfaces. For the special
case of hyperbolic shaped electrodes, the surfaces of the electrodes are

described by

(a) Positive electrodes, V = A

2

T T 3n 5n

2 _ Toom . am
r~ cos 2(s - 8Z) = a“ for - 7 <0 -8L< ;g < 0 BL< 7

(b) Negative electrodes, V = -V0

2 T _ .2 T In b5r In
r° cos 2(6 - pZ - 2) = 3° for 70 -BL< T - gL < 7
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Therefore, for the slowly twisted structure with hyperbolic electrodes,

the coefficients of equation (A.2) are

v

=0 =
K]"a ,km OfOY‘m>].

The potential at points within the aperture when (Ba)2 << 1 is thus given

approximately by

V=Kl cos 2(6 - BZ) where k = Y% (A.3)
a
Since
w2 =y %
and 6= tan"] %

equation (A.3) may be rewritten in terms of the fixed coordinates (X,Y,2)

as:
Ve KL - ¥%)cos 267 + (24Y)sin 267] (A.4)
Alternatively
RN
and 6 - gL = tan'] %

and in terms of the rotating coordinates (x,y,z)

(A.5)

Equation (A.5) shows that the potential of the slowly twisted
electrostatic quadrupole, when viewed in the rotating coordinate system,
is negligibly different from the potential distribution in a classical

quadrupole.
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APPENDIX B
THE AXIAL VELOCITY Z

The objective of this appendix is to obtain an expression for the
axial velocity of the particle, in terms of the transit time, the initial
axial velocity, and the values of the transverse displacements and
momenta at injection. It will also be shown that the axial velocity of a
particle in the structure varies only slightly from its initial value,

u, .
L
The axial velocity Z is given by equations (2.32) and (2.33) as,

va YP
1= [1+(Ba)—P——-— 2] - —[xp -y p,] (B.1)
0 Z0 0

But from equations (2.31)

8 Cy(-1)"
#e, yp]'-{sz-zr—s‘"Fz][C s B A ](” Gy sin Fyl

E{ : C S F ][C F — (- 1)" C, sin F,]
P sin oS sin
M 2 1&;}7‘ 2° S+ 1 1

g = )

2 .
sin F, cos F, + Z__ ¢ sin
M’ s &;‘:" 2 17 M(s -1 2

Fy
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el Fl cos Fy + i f sin” F,
—m_ sin Cos —(5_1—.”_ sin
B°P, C2 C%

= o L= (1 - 05 2Fy) - (1 - cos 2F)]

+

2 .
C,Ch{-1
+ E—E— ! 2( i [s1n(F] +F ) - s1n(F] - FZ)]

B

2

89, C1C(-1)"

+ 2 LE — [sin(F, + F,) + sin(F, - F,)]
M Vet 171 17"

2 2 2 '
gp, C C
= WZ [g—%—]' (] - C0S 2F2) - ;—H(] - Cos ZF])]

C1cz 2 K

+

]s1n(F] + F )

LT

]sin(F] - F2)

BC]C2 /
'Vs +1 'Vs -1
sz C Cf
-WT'E——_—“ -cosZFﬁ 'ETTT“ -cosZﬁ)]

BC C
2‘/;-2—— [(f + fz)sm(F] + F2) (f] - 'FZ)S'in(F-| - FZ)]

(B.2)
Thus,

7 - L _0_0_0
1= UZ 0+ (Ba){a 5 =7 H
0 Zo 0

(]

32 P C% “
+ -Z—M—['S—-T (] = C0S ZF]) - S—T-T(] - COS 2F2)]

+
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BC]CZ . .
- B (5, + £)sin(F, + Fy) - (f) - f,)sin(F, - F,)]

ZV%Z -1

(8.3)

Examination of equation (B.2) shows that the following upper

bound may be placed on the magnitude of the quantity g(x Py - ¥ px):

2 2
p 202

[ by - ¥ BII < |2 ol lz—/;f_=]' 2f |

n
w0
=i
~N
e
w ——
]
~

Therefore

c
|8(x Py-yp o lpax < 8 o Zv_z\/“ﬁ[lc | '\/ 7T 16l I

(B.4)

It is shown in Chapter 3 that for a particle to be confined within the

aperture,

Loy ]+ /5 161 Ty < @ (6.5)
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Thus, for particles confined by the structure

2 IC ‘max

|8(x py - ¥ Ryl < \/s—-—

But from equation (B.5) it is apparent that

s -1

—————

lc2|max ST

Thus,

242
l8x py -y Rl <50, (8.6)

At Z = 0, equation (B.6) implies that

lB(XOPY - YOPX H f S pZ (8'7)

Equation (2.32) gives the axial velocity 1 as

pz B
1=5101- p—(xpy-ypx)]
P B .
=_;(1[1 pz(x Py - ¥ p)] 5.8)
(P, /p.)
Z0 z
where
Pz

0. _E -
5 1 pz(X PYo Yo Py )
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Substituting this expression in equation (B.8) gives

[1-E—Z(XPy-ypx)]

Z B -
o[l - 5 (X, PYO ' pxo)]

1=1U

Using the inequalities (B.6) and (B.7) the axial velocity is found to be

bounded by

2
-l

2
1+ L2l
g — 7 slel :
o1+ {82

U —a
o - el

(8.10)

which for (Ba)2 = 0.1 and s = 2 gives

0.90, <Z<1.1y;
0 0
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APPENDIX C

DERIVATION OF THE MATRIX FORM OF THE ANALYTIC SOLUTION
Equation (2.46) gives the x coordinate as

. . f .
: jfot -jf,t jfit -jf t
x= A e 2t Ay e 2" - § Bp [A e’ 1 A4 ev'17]

Substituting for A A2’ A3 and A4 from equations (2.48) gives

'I’

B,  Ifpt, gifyt

- 2
X = g L ?
3ot - oI5t i
+E£—Tj—"_][v T X]
. il_ dht . e'jf1t]P
29k 2] X
0
Jf.t, If
[ ]][Xo"zgkmpv]

Thus,

Bp sin f2
= {cos f X+ {--—-

o e

——sin fzt}P
\/quM s -1 o
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*P
2qu (cos f,t - cos f1t}PYo (C.1)

Similarly,

sz
= {~ —= sin f t}X + {cos f t}Y
s+ 1

Bp

z
+ Eﬁfﬁ {cos f]t - C0S fzt}PXo

1
{—=—sin f,t -\/s - 1sin f t}P (c.2)
V2qu \/ ¥l 2

- _VngM .
Py { = 1s1n f]t}X0 + {cos f1t}PXO

Bp_ sin f]t

1Py (€.3)

and

sin f t sz sin fzt
= { 20kM —— Y e —=
s -1 V 2qkM Vs-
+ {cos f2t}PY0 (C.4)

Equations (C.1), (C.2), (C.3) and (C.4) can be combined in a matrix form
giving equations (2.49) and (2.50).

Further consideration of equations (C.1) to (C.4) shows that they
can be rearranged and the trigonometric expressions can be combined to
obtain the form of the trajectory solution given by equations (2.31).

Equations (C.1) to (C.4) can be rearranged to take the form



249

X = [X 2qu Y ]cos f t+ 2qu 0 ]t
BPZ
+ [m PYo]COS th
BP
+ ———————-— ]sin f t
Vogkmfs - \/s - \/qu X
N

y =1, TPX Jcos fzt-[_\/—q_k—_P Isin fot

0

sz
+ [m PXO]cos f]t

Bp
- [=% == Py ]s1n fit
VogkMVs + ] \/s + 1] \/Zq kM
P Bp
1 Z .
p, =V 2qkM [ -———cosft- {X - P, }sin f,t]
X W/——Zq W 7y © 2qkM Y0 1
=\/2qM " PO B, SR
py' q [‘m cos f, -\E{ 0 'm Xo}sm Zt]
(C.5)
Bp
Since, —— = —2. 1. )N B
2qkM  2qkm PP 6P,

equations (C.5) become

- - 1/ 3 n .
x = Dy cos f]t - D, sin fit + T (-1) [D3 sin fot + D, cos fzt]

- . <[ n .
y = Dy cos fzt - D4 sin fzt \SFT (-1) [D] sin fit + D, cos f]t]

P—-PZ [D cosft+D]s1nftJ

\/s +1
=P, —J—L—[D cosft+D3s1nf2t]
Y '\/S ~

P
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or
Afo? + p cos(f,t + tan - Dz
]+ 0y cosfy n
? a0
(- " D + D sin(f,t + tan ﬁg)
y S\/0 + 02 cos(f,t + tan”! ELL)
3+ 0y cosify 0,
D
. -1 72
- E"JSTT (.1)"\ /D% + Dg s1n(f]t + tan 'D']')
n D
b " - B] \/D+D§smft+tan —2')
1
D
0 -pz.._BLlL_ 03 +D sin(f t+tan D4) (C.6)
y P e 3
where,
P
Y
- .S _0
Dy =l - 551
2
D - '] nJg—“S + ] P
2 8P, X
P
X
3 s "o
D3 = [Yo - 'B"p—"]
z
) C ()
4 6P, Y

Comparing equations (C.6) and (C.7) with equations (2.31) and (2.37)
it is clear that equations (C.6) and equations (2.31) are the same and

that D], D2’ 03 and D4 are related to C] , (32, oy and % by



i
5= 0+ 0%
a = tan”! E
iy = tan™! -g—-
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APPENDIX D
COMPUTATION OF ACCEPTANCE FOR POINT SOURCE INJECTION

Equation (3.13) sets the limits for the transverse momenta at

injection, from a point source at Z = 0, as

1/2
![s P 24 s(s + l)PX ] |

A\ l[sP +S(s-1) ] | 63 P |
0

This equation is more easily interpreted when expressed in terms of the

polar coordinates:

2 2,1/2
P (Py “#P, %) )
TO XO Y0
P
Y
o = tan”! (5=
0 X0

Thus, PX = PT €os 47 PY = PT sin ¢To, and equation (3.13) becomes

0 0 0 0 0

= < ga]
L l[s2 +s cos? b ]1/2| +\/§-§—Tl[sz - s sind b7 ]]/ZI
0 0

(D.1)



253

This equation was used to plot the transverse momenta acceptange diagrams

X
shown in figure (3.5). These curves intersect the normalized P_o and

p
P_Yg_ axes at right angles since 0
L
PTO
d(5=)
o g oate, 20,5
Aoy T 2 2
0
It is also clear from equation (D.1) that
i |ga]
]
2 = A5 at g = 0,7
P max s T ’
Z, Vs+1+spS -1 0
and
Nl
oy . lea =1 3
|PZ ‘max 2s & ¢To 22 (0:2)
0
Consideration gf these 1imits shows that there will be a certain
Xy
value of s at which | reaches a maximum value. On the other
P2 "max
hand no such maximum exists for IF_I and it decreases witg any
Xo
increase in s. In order to find the va]ue S =85 at which |P 5—| has
o Max
a maximum value, the expression for | | 1s differentiated w1th
respect to S giving
P
dlp
Z, max |ga (- —-[\/s +s A\S(s - 1)1
— =0
ds 555 [Vsz+s+V—§/s-1 !
1 5‘51
or
2 3
Zs]+1 ] F]-1 3s] (s]-l)-s] -0 0.3)

+ =
2%]2 5 2\ 513 (s - 1)3
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Solving equation (D.3) numerically gives s, = 1.3295, Substitution of

P
this value of s; into the expression for |§—9| gives
L, max
PX0
|'p——| = 0.226|Ba|
1, Max|max

0.0714 for (sa)? = 0.1
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APPENDIX E
COMPUTER PROGRAMS LISTINGS

The first program in this Appendix was used for plotting the
two sets of trajectories that were used for the evaluation of the
analytic solution developed in Chapter 2. To obtain the first set
of trajectories, the analytic trajectories, equations (2.31), (2.34)
and (2.35) are used to compute the trajectory points in the rotating
(X,¥,2z) coordinate system. Then equations (2.7) and (2.13) are used
to refer these trajectories to the fixed (X,Y,Z) coordinate system.
The trajectories are then plotted in this fixed (X,Y,Z) coordinate
system. The second set of trajectories are computed directly in terms
of the fixed (X,Y,Z) coordinate system by numerically integrating
equation (2.6) using the Runge-Kutta method for numerical integration.

The Runge-Kutta method is a self starting method in which the
calculation of the variables at the end of each interval depends on the
values of the variables and their derivatives at the beginning of this
interval. For all intervals the values of the variables are computed
in the same manner by using for the initial values those at the
beginning of each interval. The method may be best understood by
sfudying Table E.T which illustrates the steps for solving a second

(36)

order differential equation in onevariable x This method was

easily applied to the system of differential equations, (2.6).
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The second program in this Appendix computes the trajectory
points of particles along a twisted electrostatic quadrupole lens
structure. The structure may be a single twisted section or it may
consist of two equal but oppositely twisted sections. The axial
distance traversed by the particle was computed using the exact
expression of equation (2.35). The value of s was determined for

each particle individually in terms of the injection conditions.
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FIRST PROGRAM 258

PROGKAK TO COMPUTE AND PLOT THE APPROXLMATE ANALYTIC TRAJECTORIES
AND THE ACTUAL TKAJECTORIES (RUNGE- KUTTA TRAJECTORIES) OF

A PARTICLE ALONG THE TWISTED ELECTROSTATLC QUADRUPOLE STRUCTURE.
THE ACTUAL TRAJECTORIES ARE COMPUTED THROUGH NUMERICAL INTEGRATION
OF THE SECOND ORDEK COUPLED UIFFERENTIAL EQUATIONS OF MOTION

USING THE RUNGE - KUTTA METHOD OF NUMERICA INTEGKATION.

DINENSION AX(8002),AY(8002) ,AZ(8002),DVAZ{8002)

CALL ELOTS

CREAT ORIGIN OF THE PLOTS

T CALL ELOT(0.0,1.0,-3)

JIM= NUMBER OF PARTICLES WHOSL TRAJECTORLES ARE TO BE COMPUTED

AND ELCITED, ONE AT A TIME.

REAL(5,16) JIM

16 FORMAT (I2)

= NUMBEK OF POINTS COMPUTED ON EACH OF THE TRAJECTORIES,

VO= ACCELEKATING POTENTIAL OF THE PARTICLES.

AR= RADIUS OF THEL APERTURE IN METERS.

QM= CHARGE TO MASS RATIO (COULOMB PER KILOGRAM).

S0000= STABILITY FACTOR WHEN ( XO * PYO -YO * PXO )=0.0.
REAL (5,1)d,V0,4AH,QH,50000

1 FORMAT (I4,4E12.5)

PI=3, 1415927

JJdd0=J

AL=2.%PI*SQKT (10.0) *AR

4J=259.

Jd=Ad

V= (2.%PI*Ak/AL) * (2, *PI*AR/AL) * (VO/50000)

C

VZ0=5QRT (2. *QN*V0)
AK=V/ (AR¥AR)
HO=AL/ (AJ*VZ0)
B=2,*PI/AL
DO 555 MIN=1,JIN
X0 , YO , 20 THE INITIAL COORDINATES OF THE PARTICLE.

DX0,DYO THE INITIAL NORMALIZED TRANSVERSE MONENTA OF THE PARTICLE.
DVZ0 THE NORMALIZED AXIAL INJECTION VELOCITY.

READ (5, 2) X0,Y0,20

REAL (5, 2) DX0O,DYO,DVZ0

2 FOFKAT (3E12.06)

XC0=X0

C,..

YYTT=Y0 T h

100=YC

200=20

DX00=DX0

DY0Q=DY0

S IHE STABILITY FACTOR OF THL PARTICLE COMPUTED ACCORDING TO ITS
INJECTION CONDITIONS.

"DELS=T, +B* (X0*DY0O-YO*DX0)

LEDS=1./DELS
S=S0000*DELS*DELS
FX=SQRT (2. ¥QM*¥AK* (S+1.))
FY=SQRT (2. *QM*AK* (5=1.) )
2211=20

X11=X0
TT11=0.0
TT=C.0
BPVZ11=DVZ0
DYYY1=LYO




313 ALB1=0.0

T30 TE(APT) 312,313,314

DXXX1=DX0
BuM=1

CCMPUTE THE CONSTANTS OF THE MOTION UI , VI , ALP1 AND ALP2.

AP1==SQRT (S* (S+1.) ) *DXO*LEDS/ABS (B)
BP1=X0-S*DYO*LEDS/B
IF(EP1) 309,310,311

259

312 ALE1=-F1/2,
GG 10 320

314 ALE1=PI/2.
G0 10 320

TG0 T6 320
311 CP1=AE1/BP1
ALB 1=ATAN (CP1)
GC T0 320
369 CP1=AE1/8P1
ALP1=ATAN (CP1) +PI

- 320 APZ=SCRT{S*(5-1.)) ¥DYO*LEDS/ABS (B)

UTEALFZ2=PI/Z,

e Y TETRTRY - o e e

C

B 1O O B 1

T OSQRTUSY¥S=T.)

BP2=Y0-S*DX0*LEDS/B

IF (EP2) 409,410,411
410 IF(AP2) 412,413,414
412 ALE2=-FI/2.

GO TO 420

GO TO 420

413 ALE2=0.0
GO TO 420

411 CP2=AEZ/BP2
ALB2=2TAN (CP2)

409 CP2=AP2/BP2
ALB2=ATAN(CP2) +P1

420 UI=SQRT {(KO-S*DYO*LEDS/B) *¥2+ (3% (S+1,) *DXO*DXO*LEDS*LEDS/ (B*B)))
VI=SQRT ({YO-S*DXO*LEDS/B) #¥2+ (S* (S=1,) *DYO*DYO¥LEDS*¥LEDS/ (B*B) ) )

THY20=2,*ALP1

TAY2C=Z.¥ALP2
THECO=ALP1+ALP2
THNOO=ALP1-ALP?2
IF (MMB=1) 44,044 ,45

45 THX=FX*TT+ALP1

THY=FY*TT+ALP2

THY2=2,*¥ThY
THP 12=THX+THY
THN12=THX-THY
REX0=DXO0
RPYO=CYO

VELGCITY PVZ11,

FOR EACH TINE TT COMPUTE RXIAL DISTANCE Z2271T AND AXTAL NORWALIZED =~

2211=VZO¥TT* (1, +B* (XO¥RPYO-YO*RPX0) +0.5%B4#SQRT (AK®S/VO) * ((UI*U1/ (S
141,) ) = (VIXVI/ (S=1.)) ) ) #0. 25%3% (SQRT (S/ (S=1. ) *¥%3) *VI*V1* (SIN (THY2)
2-SIN (THY20) ) =5QRT (5/(S+1.)**3) ¥UI*UL* (SIN (THX2) =SIN (THX20) ) ) +0, 5%

3BHUL#VL¥ (COS (THP12) =COS (THROV) ~COS (THN12) +COS (THNOD) )/

PVZ11=, 5%bxB¥ ((UT*UL/(S+1.) -VI*VI/(S-1.) )+ (VI*VI*COS (THYZ) /(S~1.)

1=UT*UI*COS (THX2) /(5+1.)) ~UI*VI* (SIN(THP12) * (1. /SQRT (S¥5$-5)
2+1./SQRT (S%5+S)) =SIN (THN12) * (1. /SQRT ($*S=S) =1, /SQRT (5%5+5) )) ) +1.

THZ=B*Z711

COMFU1L THL KOTATING COORLINAT:S AND THEIR ALJOINT NOKMALIZED




HOMENTA XXX,YYY,DXXX,DYYY.
YYY=VI*COS (THY) =UI*SQRYE (S/ (S+14)) #SIN (YHX) *ABS (B) /B
XXX=UI*COS (THX) +VI#SQR (5/(5=1.) ) *SIN (THY) *ABS (B) /B
DXXX==1,*ADBS (B) *UT*SIN (THX) /SQRT (5% (S+1.))
LYYY=AES (B) *VI*SIN (THY) /SQKT (S* (S=1.))
 COPUTE FIXED COORDINATES XX11,¥¥11,
{¥11=XXX*COS (Tiiz) -YYY*SIN (THZ)
YY11=XXX*SIN (THZ) +YYY*COS (THL)
DXXX1=DXXX*COS (THE) =DYYY*SIN (THZ)
DYYY1=CYXX*SIN (THZ) +DYYY*COS (THZ)
T711=T1T
STORE FIXED COORDINATES AX,AY,AZ AND NORMALIZED AX1AL VELOCITY
LVAZ. o o )
AX (#MH) =XX11%100,
AY (MMB) =YY 11% 100,
AZ (MMH) =22 11
DVAZ (MHM)=PVZ11
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MMM=NMMME1T - I

TT=TT+HO
IF (MMM-J) 45,45,46
, MANNN=0
PLOT FRAMES , AXES AND WRITE SCALES ON AXES, FOR PLOTTING AX , AY
AND CVAZ VERSUS AZ AND AY VERSUS AY ONCE FOR THE ANALYTIC
TKAJECTOKLES COMPUTED ABOVE AND FOR THE RUNGE - KUTTA
TRAJECTORIES COMPUTED BELOA. - T —
CALL PLOT(0.0,9.25,2)
CALL ELOT (6.0,9.25,2)
CALL PLOT (6.C,0.0,2)
CALL ELOT(0.0,0.0,2)
CALL SYMBOL (0.6,C.75,0.12,"ANALYTICAL',0.0,10)

TCALL AXIS(O.S,O.S,TE(H)',-H;§.0,0.0,1.0E10,1.0,20.0)"""”“”'
CALL SYMBOL (0.43,0.35,0.08,'0.0°,0.0,3)

CALL SYMBOL(1.43,0.35,0.08,'1.5',0.0,3)

CALL SYMBOL(2.43,0.35,0.08,'3.0',0.0,3)

CALL SYMBOL (3.43,0.35,0.08,'4.5',0.0,3)

CALL SYMBOL {4.43,0.35,0.08,'6.0',0.0,3)

" CALL SYHMBOL(5.43,0.35,0.08,%7.5%,0.0,3)

CALL Ax15(0.5,0.75,'X(cn)',S,u.0,90.0,1.0E10,1.0,20.0)

CALL SYMBOL (04 19,0.75,0.08,'=1.6,0.0,4)
CALL SYMBOL(0.19,1.75,0.08,'-0.8',0.0,4)
CALL SYMBOL(0.29,2.75,0.08,'0,0',0.0,3)
CALL SYMBOL (0.26,3.75,0.08,'0.8',0.0,3)
CALL'SYMBOL(O.2¢,&.75,0.08,'1.6',0.0,3)"
CALL SYMBOL(0.6,5.0,0.12," RUNGE-KUTTA',0.0,11)

CALL AXIS(O.S,S.O,'X(CM)',5,“.0,90.0,1.0E10,1.0,20.0)
CALL SYMBOL(0.19,5.00,0,08,'-1.6"',0.0,4)

CALL SYMBOL {0.19,6.00,0.08,'-0.8',0.0,4)

CALL SYMBOL (0.26,7.0,0.,08,'0.0',0.0,3)

CRLL SYMBOL (0.26,8.0,0. 08,7078V, 000,30
CALL SYMBOL(0.20,9.0,0.08,'1.6',0.0,3)

CALL ELCT(0.5,2.75,3)
CALL ELOT(5.5,2.75,2)
CALL ELOT(5.5,7.0,3)
CALL ELOT(0.5,7.90,2)

TKILW?IGTTE}O,T?fU}ljf”"“""””“

CALL ELOT(0.0,9.25,2)

CALL ELOT (6.0,9.25,2)

CALL ELOT(6.0,0.0,2)

CALL PLOT(0.0,0.0,2)

CALL SYMBOL(0.6,0,75,0,12, ANALYTICAL',0.0,10)




'0.0'
"CALL "SYMBOL(07726,8.7,0.08,70.87,0.0,7)
:0.0,

CALL AXIS(0.5,0.5,'2(M)*,~4,5.0,0.0,1.0E10,1.0,20.0)
CALL SYMBOL (0.43,0.35,0,08,'9,01,0.0,3)
CALL SYMBOL(1.43,0.35,0,08,'1.5,0.0,3)
CALL SYMBOL (2.43,0.35,0.06,%3.0,0.0,3)
CALL SYMBOL(3,43,0.35,0.08,'4.5,0.0,3)
CALL SYMBOL (4.43,0.35,0.08,'6.0',0.0,3)
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" CALL SYWBOL(5.43,0.35,0.08,77.57,0.0,3)

CALL AXIS(0.5,0.75,'Y(CM)',5,4.0,90.0,1.0E10,1.0,20.0)

CALL SYMBOL (0419,0.75,0.08,'~1.6',0.0,4)
CALL SYMBOL(0.19,1.75,0.08,'-0.8',0.0,4)
CALL SYMBOL {0.26,2.75,0.08,%0.0',0.0,3)
CALL SYMBOL(0.26,3.75,0.08,'0.8',0.0,3)

CALL 'SYNBOL(0.26,4.75,0.08,71.67,0.0,3)

CALL SYMBOL(0.6,5.0,0.12, ' RONGE-KUTTA',0.0,11)

CALL AXIS{0.5,5.0,'Y(CM)',5,4.0,90.0,1.0E10,1.0,20.0)
CALL SYMBOL(0.19,5.00,0,08,'=1,6',0,0,4)

CALL SYMBOL (0.19,6.00,0.08,%-0.8",0.0,4)

CALL SYMBOL(0426,7.0,0,08,%0.0¢ 3)

CALL SYMBOL(0.26,9.0,0.08,'1.6"
CALL FLOT(0.5,2,75,3)
CALL PLOT(5.5,2.75,2)
CALL ELOT(5.5,7.0,3)
CALL PLOT(0.5,7.C,2)

3)

CALL ELOT(1T. 0,0 0,-3)

CALL PLOT(0.0,9.25,2)

CALL ELOT(6.0,9.25,2)

CALL ELOT(6.€,0.0,2)

CALL FLOT(0.0,0.0,2)

CALL SYMBUL(0.6,0.75,0,12,"ANALYTICAL',0.0,1C)

“CELL AXTS(0.5,0.5, T2 (H) ¥, =4,5.0,0. 0, T.0ET0, 1. 0, 20.0)

CALL SYMBOL (0.43,0.35,0.08,'0.0',0.0,3)
CALL SYMBOL(1.43,0.35,0.08,'1.5',0.0,3)
CALL SYMBOL(2.43,0.35,0.08,'3.01,0.0,3)
CALL SYMBOL(3.43,0.35,0.08,%4,5',0.0,3)
CALL SYMBOL(4.43,0.35,0.08,'6.0',0.0,3)

- CALL 'SYNBOL {5.43,0.35,0.08,v7.57,0.0,37" T

CALL AXIS(0.5,0.75,'V2/VZ0',6,4.0,90.0,1.0E10,1.0,20.
CALL SYMBOL(0.26,0.75,0.08,'0.9?,0.0,3)
CALL SYMBOL(0.26,1.75,0,08,'0.3',0.0,3)
CALL SYMBOL{0.25,2,75,0.08,%0.61,0,0,3)
CALL SYMBOL (0.26,3.75,0.08,'0.9,0.0,3)

9)

ﬁlff"SYMBOL(O.ZG,U.15,0.08,'1.2',0.0,3)
CALL SYMBOL{0.6,5.0,0,12,"RUNGE~KUTTA',0.0,11)

CALL AXIS(0.5,5.0,'v2/V20',6,4.0,90.0,1.0£10,1.0,20.0)

CALL SYMBOL (0.26,5.00,0,08,'0.0,0.0,3)

CALL SYMBOL (0.26,6.00,0.08,'0.3,0.0,3)

CALL SYMBOL(0.25,7.00,0.08,'0.6',0.0,3)

CALL SYMBOL{0.25,8.00, 0,08, "0, 9V, 070,3) ~~~— ——
CALL SYMBOL (0.26,9.00,0.08,'1.21,0.0,3)

CALL ELOT(0,0,-12.0,-3)

CALL PLOT(0.0,9,25,2)

CALL ELOT(6.0,9.25,2)

CALL PLOT(6.0,0.0,2)

- CALL FLOT(0.0,0,0,2) 7 77— m T o e e

CALL SYMBOL (046,0.75,0.12,"ANALYTICAL',0.0,10)
CALL AXIS{(1.0,2.75,' *,1,4,0,0.0,1.0£10,1.0,20.0)
CALL SYMBOL (5.25,2.75,0.12,'X(CH)*,0.0,5)

CALL CIKCLE(4,875,2.75,0.0,360.,1.875,1,875,(.5)
CALL AXIS(3.0,0.75,* *,1,4,0,90.9,1.0E10,1,0,20.0)
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T CALL SYNBOL (3+1,4s6,0412, 1Y (CH)*,0.0, 5)

CALL ABIS(3.0,5.0,% *,1,8.0,90.0,1. 0£10,1.0,20.0)
CALL SYMBOL (3.1, 8.9,0.12, y{(ct)*,0.0,5)

CALL AXIS(1.0,7.0,% *,1,4.0,0.0, 1.0E10,1.0,20.0)
CALL SYMBOL (5.25,7.00,0.12,'%(CH)*,0.0,5)

CALL SYMBOL (0.6, 5.0,0.12, ' RUNGE- ~KUTTA?,0.0 141

""CALL CIRCLE (. 875 7.0,0.0,360.,1.875,

CALL ELOT(-10.5,0.75,-3)
60 TO 3333

567 H=HC

-~ TTTETI=X00

211=200
Y11=Y00

MIH=1

12 11=SQRT (2. *QU*V0)
D1%11=CX00%D1211
D1Y 11=DY00*D1211
AQH=-2, ¥QM*AK
AKX (W) =X11¥ 100,
BY (MIM) =Y11%100,
v20=D1211

AZ (MJH) =211

DVAZ (1Y) =D1211/VZ0

404 T11=0.

TH=2. FE¥4 11

C=CCS (TH)

50=SIN (TH)

D2X11=AGH* (X11#C+Y11¥S0)

DZY 11=AQH* (X11%50-111+C)

D27 11=AQN*B* (2, XX 11#Y 11%C+ (¥11¥¥11-X

1.875,0.5)

11%X11) ¥50)

3 112=T11+40.5%H

$12=X1140,5*%H*D1X 11
112=111+40. 5*A*D1Y 11
212=211+40, 5*H*D1Z 11
D1X12=D1X1140, 5%H*D2X 11
D1Y12=D1Y 1140, 5*H*D2Y 11

"D1Z12=D1211+0. 5*H*D2211

BT12=2.¥B*Z 12
€12=C0S (BT12)
$12=SIN (BT12)
D2X 12=AQN* (X12¥C 12+712¥512)
D2Y12=AQH* (X12%512-112%C12)

D2Z 12=AQM¥B¥* (<. FXT2FTT2FC T2+ (Y12%Y 12
T13=T11+0.5%H

¥13=X1140, 5%H*D1X12
113=Y1140,5*H*¥D1Y12
713=21140, 5%H*D1212
D1X13=D1X11+0, 5%H*D2X12

ST TISETY 11407 5FH¥D2Y12
D1213=D121140,5%H*D2212
BT13=2.%B*213

€13=CCS(BT13)

§13=SIN(BT13)

D2X 13=AQM* (X13%C13+Y13%513)
FIVTISROAF (K1 3#5TI-TTI#CTI]
D22 13=hAQN*B* (2. *X13*Y13*L13+(Y13*Y13
T14=T11+H

X14=X11+*D1X13

Y14=Y11+1*D1Y¥13

714=2 11+H*D 1213

=X12¥X12) ¥512)

x13*x13)*s13)




DIXT4=D1X11+H*D2X13
DY 14=D1Y11¢H*D2Y13
D1214=D1211+H*52213
BT14=2, ¥B*Z 14
C14=C0S (BT14)
S14=SIN (BT14)
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- D2XTU=RQM* (XTE*C TG4 Y TO¥5T8)

D2Y14=nON* (X14%S14-Y14*C14) -
D2Z1“=AQM*B*(2.*X1N*Y1U*C1U+(Y14*Y1Q-X1Q*X1“)*S1U)
X11a=311

1112=111

2112=7211

611

TTT=TT7+0
X11=Kl1+(H/6.)*(D1X11+2.*D1X12+2.*D1X13+D1X1U)
Y11=Y11*(H/6.0)*(D1Y11+2.*D1Y12*2.*D1Y13+D1Y1M
Z11=Z11+(H/6.0)*(D1Z11+2.*D1Z12+2.*D1Z13+D1Z14)
D1X1i=D1X11+(H/6.0)*(D2X11+2.*D2X12+2.*D2X13+DZX1M
D1Y11=D1Y11+(H/6.0)*(D2Y11+2.*D2Y12+2.*D2Y13+D2Y14)

DIZTT=DTZTT+ (/6. 0) ¥ (D22 11+ 2, ¥ D22 12+ 2, ¥D22 134022 14)
BT11=2,*B%211

C11=CCS (BT11)

S11=SIN (BT11)

D2X 11=AQN* (X1 1#C11+Y 11%511)

D2Y11=AQN* (X11#511-Y11%C11)

D22 TT=RQH¥B¥ { Z.¥ X TRy TTRC T+ (YTTRY TT=XTT*YTT) ¥5T7)
BI111=BT11/2,

P1X11=D1X11/D1211

P1Y11=D1Y11/D1211

MIM=NIN+1

AX (MJ¥) =X11%100,

1772
33

BY (RJN) =Y TT#100,

AZ (MIN) =211

DVAZ (MIM)=D1Z11/V20
IF (MN-J)3,3,33
MANNN=MANNN+1

GO TC 3333

- 3333

JITT=ITI0FT . -
JAJ2=333141

A2 (J331)=0.0

AZ(33J2)=1,5

AX (JJJ1)=-1.6

AX(3J32)=0.8

812
AR

ANEI=T1,5""" o
AY (J332)=0.8

DVAZ (JJJ1) =0.0

DVAZ (3JJ2) =0, 3

IF (MANNN) 811,811,812

CALL ELOT(0.0,4.25,-3)

CALL TINETAZ, KX, JJJ0;T,0;0) ~ ~ ===
CALL PLOT(0.0,12.0,~3)

CALL LINE(AZ,AY,JJJ0,1,0,0)

CALL PLOT(11.0,0.0,-3)

CALL IINE(AZ,DVAZ,JdJ0,1,0,0)

CALL FLOT(0.5,-12.0,-3)

821

822

CALL TINE(RX,AY, 30307 1,0,00—— —
IF(MANNN) 821,821,822

CALL FLOT(-11.5,0.0,-3)

GO TO 567

HANKN=0

CALL ELOT(11,0,-5.0,-3)




555 CCNTINUE
223 CALL ELOT(0.0,0.¢,999)
WRITE {6,6666)

6666 FORMAT (17H**PLOT FINISHED*¥)

STOP
'ILE

264




SECOND PROGRAM

265
C PROGRAM FOR TRACING PARTICLES ALONG THE TWISTED LENS STRUCTURES,
C FLUTS ARF PROCUCEE FOR THE X-Zy X
C PLOTS ARE PROCUCED FOR THE X=Zy Y=Z, PX=Z,y PY=Z, PX-PY AND X-Y
C PROGECTICNS OF THE MOTION.
C NUM = NO. OF (XOsY0) CCORDINATES CONSIDERED.
c KLJM = NOs OF (PXOsPYC) MCMENTA CONSIDERED FOR EACH INJECTION
o POINT (X04YO)e
C QM = CHARGE-TO-MASS RATIC (COULOMB/KGas)s
C AR = RADIUS OF APERTURE .
S M sN = DESIGN PARAMETERS SPECIFYING LENGTH OF THE LENS. BOTH M N
C ODD OR BOTH EVEN INTEGERS AND M>N>Oe
' NNN = PARAMETER SPECIFYING INITIAL CONDITION
C NNN = PARAMETER SPECIFYING DIRECTION OF TWIST OF THE ELECTRODES.
C NNN=0 FOR CCUNTER=-CLOCKWISE TWIST(B POSITIVE),
C NNN=1 FOR CLOCKWISE TWIST (B NEGATIVE)
C MAAA = PARAMETER SPECIFYING THE STRUCTURE CONSIDERED.
C MAAA= —1 FOR SINGLE TWISTED LENS.
C MAAA= 0 FOR THE STRUCTURE CONSISTED OF TWO OPPOSITELY
C TWISTED LENS SECTIONS.
C MTRA = 0.0 OR NEGATIVE TKE X=Y AND PX-PY CURVES ARE PLOTTED AND
C THE EXIT COORDINATES AND MOMENTA ARE MARKED.
C MTRA = POSITIVE ONLY THE EXTT COORDINATES AND MOMENTA MARKED.
' J = PARAMETER CEFINING THE ACCURACY IN COMPUT ING THE EXIT
C COORDINATES AND MCMENTA AT THE EXIT PLANE.IT IS THE NUMBER
C OF DIVISICNS OF THE TIME INTERVAL BETWEEN THE TRAJECTORY
C POINTS AS THE PARYICLE APPROACHES THE LENS EXIT.
C VO = ACCELERATING POTENTIAL OF THE PARTICLES.
C AM = NUMBER OF TRAJECTCRY POINTS COMPUTED PER PERIODIC LENGTH
C OF TWIST.

DIMENSION AX(2000)y»AY(2000),A2{2000),PX(2000),PY(2000)
DIMENSION RRPX(30)4RRPY{30),RRPZ{30)
CALL PLOTS
CALL PLOT{0e041404-3)
REAC(S5,2001)KLJM

20C1 FORMAT(12)
READ{S+101)JsMsNsAMyVOyARsGM

101 FORMAT(212,4E124€)
C COMPUTE TIMAGING VALUE OF S UGING MeNe

BAM=M

BAN=N
EAP=EAMXEAM+EANXBAN
BAD=RAMXBAM-BANKBAN
SO=EAP/BAC
PI =3.1415927
AL =2.%PI*ARXSQRT(1040)

¢ 77 UCOMPUTE "UENGTH OF LENS.
ALLENS=SQRT(BAP/8.,0)*AL
B=2.%PI1/AL
AK =8%B%*(Vv0/S50)
V =AK¥AR¥AR
REAC(5s102)NUMyNNN
READ(5, 102)MAAA, MTRA

102 FURMAT(212)

ANN =NNN
AB =COS(PI*ANN)

c PINT FRAMES 4 AXES AND PRINT SCALE ON THE AXES AND DASHED CIRCLE
CN THE X-=Y FLOT TC REPRESENT THE CUADRUPOLE APERTURE.




CALL PLOT(0e049e2542)

CALL PLOT(Ee049e2542)

CALL PLOT(664040404+2)

CALL PLOT(040+040+2)

CALL AXIS(14042,754? "41+4¢0¢06091¢0E1091404+2040)
. CALL SYMBOL (54254247590 e124*X{CM)*,040,5)

CALL CIRCLE(8487542475400(4360e91¢875¢1¢875¢005)
CALL AXIS(340+067590 1915440990609 1+0E1041e042040)
CALL SYMBOL{34134¢6404124'Y(CM)*404035)

CALL AXIS{340+540,* 9154409490609 1¢0E1041¢042040)
CALL SYMBDL(3|1p809’00120'PV/pZ'00¢035)

CALL AXIS(1404740y? 9144400000914 0EL04140452060)
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CALL SYMBOL{(S5¢2597405Cal12y*FX/PZ' 40¢0+5)
CALL PLOT(0403512404-3)

CALL PLOT(0404942542)

CALL PLOT{6401942%42)

CALL PLOT (640+040,52)

CALL PLOT(040404042)

CALL AXTS{06540¢55*Z{CM)* 4=5+50+0e0+1e0E10+120+2040)
CALL SYMBOL(0443+0435404084'040?9000,3)

CALL SYMBOL(1459043540408+98'4040,1)

CALL SYMBOL(245+1043590408416%,040,42)

CALL SYMBOL(3e5¢0435404085%24143040,2)

CALL SYMBOL{44550435404C8+%32¢,040,2)

CALL SYMBOL(5¢5+0435¢0408,?40%40.0+2)

CALL AXIS(O.SiOc?S,'X(CM)'v5940099000n100510910092000)
CALL SYMBOL(041940e7540eC8s9=146%300044)

CALL SY"BOL(Oolgylo?SoOoC&o"Ooe'OOCOQQ)

CALL SYMBOL(042692475+0eC8y*060%30e0+3)

CALL SYMBOL(062693¢754020835'0e8%43040,3)

CALL SYMBOL(002604075000080'106"0-093)
CALL AXIS(O-S.S-O.'Y(CN)'95040009000D100510010002000)
CALL SYMBUL(O.[9.5.0;0.08.'-1.6'g0.0od)
CALL SYMBOL(0e194640404084'-048%304044)
CALL SYMBOL(0019'700!0¢08|'000"0.003)
CALL SYMBOL(OOIGlBOOOOQCBQ'0.8"0.0'3,

CALL SYMBOL{0619+9¢0+0608,'1¢6%3060+3)
CALL PLOT(045+24754+3)

CALL PLOT(5e542475,52)

CALL PLOT(5454740+3)

CALL PLOT(0e5+74042)

CALL PLOT(104090404-3)

CALL PLOT(040+9.25,2)

CALL PLOT(640+942542)

CALL PLOT(6404+040,42)

CALL PLOT (040404042}

CALL AXIS(0-5o0o5o'Z(CM)'v'SoSoOoO-OolcOEqulcOnZOoO)
CALL SYMBOL(0.43p0035.0003"0-0'!000'3)
CALL SYMBOL{145+043540408,787,04041)

CALL SYMBOL(2 4590435404084 716%4060+2)

CALL SYMBOL(345+043540e08+%24?4040,2)

CALL SYMBOL (4454043510608 32%406042)

CALL SYMBOL{(545+10035504C8+140'4040,2)

CALL AX[S(O.S.O.?SQ'PX/PZ'0504o0990-00l-OElO:10002000)

CALL SYMBOL(0¢1940475904C89'=0e2" 40404+4)

CALL SYMBOL(06195147540¢084'=00e1'90e044)

CALL SYMBOL(0'1992075‘OOCB.'000'.0-003)

CALL SYMBUL(O.IQ‘3.7590.CE|'Ool'0000|3)

CALL SYMBOL(0019'4075IOOOBI‘002'l0l0|3)

CALL AXXS(O.S.S.O.'PY/PZ’.5'4.0o90.0-1.0510-1.0.20.0)




CALL SYMBOL(0s195Se¢05Ce08s'~0e2%0060+4)

CALL SYMBOL(0e19+64040e085%=041%404014) 267
CALL SYMBOL(0e269760404C89'0e0%¢04043)

CALL SYMBOL(0e2698¢0904C8y%041%904053)

CALL SYMBOL(042695¢090eC89%0e2%90404+3)

CALL PLOT(0e542075+3)

"CALL PLOT(545:247502)

CALL PLOT(S¢5474043)

CALL PLOT(0e5474092)

CALL PLOT(-10+0+-1240+-3)

DO 5566 [IL=1.KLJWV

READ{Ss 103)RRPX(IIL)sRRPY(TIL)»RRPZ(IIL)

DO 666 [EX=14NUM
READ (54+103)X0sYCs20N
D0 666 [ABC=14KLJW
RPX0O=RRPX{I1ABC)
RPY(O=RRPY (IABC)
RPZO=RRPZ( TABC)

103

FORMAT (3E1246)
PZO0 =140

P20 =RPZ20
200=040
THOO0=040

=0
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CALCULATE S FOR THE PARTICLE ACCORDING TO ITS INJECTION CONDITIONS.
PXO=RFEXO%PZ0

PYD =RFYO%PZ0O

PZ=PZ0* (14 +B%( XO%RPYC-YO*RPXQ))

LX0O =FXQ/P2Z

DYO =PYO/PZ

S =S0*%PZ%PZ

OMK =24 %QM¥AK

FX =SQRT(QMK*(S+14))

FY =SQRT(QMK#(S=14))

VZU=SQRT (2« *%QM*VQ)

START CALCULATICN OF TRAJECTCORY PCINTS USING ANALYTIC SOLUTION.

350

H=AL/ (AMXVZ0)

UT=SART{(X0-SQRT(VO%S/AK)¥FYO )*x¥2+(VO*(S+1.) *PXO¥PX0O/AK )}
VI=SQRT((YD-SQRT(VO*S/AK)*¥PXO )% #2+ (VO*(S-1.) *PYO¥PY0/AK))
AP1==SQRT (VO*(S+1)/AK)%PX0

BP1=(X0-SQRT(VO*S/AK)*PY0D)

IF(BP1)309+3104311

309

410
412

IF(AP1)312+313,314
ALP1=-Pl/2.

G0 TO 320
ALP1=P1/2,

GO TO 320

ALP1=0.0

0 To 3o~ - e e o e e

CP1=AP1/BP1
ALP1=ATAN(CP1)

GO TD 320

CP1=AP1/BF1
ALPI=ATAN(CP1) +PI
APZ=SORTTIVO¥*T(S-T. JZARY¥PYTL "~ 77 T T o
BP2=Y0-SQRT(VO*S/AK) ¥PXN
[F(BP2)409,410+411
IF(AP2) 41244134414
ALP2=-P1/2.

GO TO 420




414 ALP2=P1/2.

60 TO 420 268
413 ALP2=0.0

GO TO 420
411 CP2=AP2/BP2
ALP2=ATAN(CP2)
G0 TO 420
409 CP2=AP2/8P2

ALP2=ATAN(CP2) +P1
420 HO=H

KK=0

TT=040

211=0.0

520 ATHX=FX*TT
ATHY=FY%TT
CX=COS{ATHX)
SX=SIN(ATHX)
CY=COS{ATHY)

SY=SIN{ATHY)

FACTC=SQRT{VO/AK)

A11=CX

A12=AB®SY*SQRT(S/(S-1.))

A13= (SX*¥SQRT(S+14)-S*¥SY/SQRT(S-1.) ) *¥FACTO
A14=(AB%*SQRT(S)*¥(CY-CX) } *FACTO

A21=-AB¥SX*SQRT(S/(S+1.))

A22=CY

A23=-A14

A24=( (SX%S/SQRT{S+14})-SY#SGRT{S~1«) )¥FACTO
A31=-SX/SORT(S+1.)

A32=0.0

A33=CX%FACTO
A34=-A21%FACTO
A61=0.0
A42=SY/SQRT(S-14)
AG3=A12%FACTO
AB4=CY¥FACTO
AX11=A1 1XXO+A 12%YC+A13%PXC+A14%PYO
AY11=A21%X0+A22%Y0+A2I4PXC+A24%PYQ
PX11=(A31%X04+A324Y0O+A3I3*PX0+A34%PY0D) /FACTO
PY11=(A41%X0+A424YO+AL3*¥PX0+A44%PYO) /FACTO
THX=ATHX+ALP1
THY =ATHY +ALP2
THX2=2 ¢ ¥ THX
THY 2=2.%THY
THP12=THX+THY
THN12=THX=THY
211A=211
THX20=24¥ALP1
" THY20=2.%ALP2
THRGO=ALP1+ALP2
THNOO=THPOO-2 + XALP2
Z11=VZOXTTH (1o +B¥(XO*RPYO=YO*RPX0)+0+S*B*SART( AKXS/VO) % ((UT*UI/ (S
1#1e))=(VIRVI/(S—14))))40.25%B%{SART(S/(S=14) %% 3)FVI AV IX( SIN(THY2)
2-SIN(THY20) ) =SQRT(S/(S+1 ¢ )%%3)¥UL#UT* (SIN(THX2)=SIN(THX20)))+0.5%
T IBRUTRVIF(COS(THP12)-COS(THFOO) -COS (THN12) +COS(THNOO) )}/ T
4SQRT(S%S=14)
C CHECK THE AXIAL DISTANCE TRAVERSEC BY THE PARTICLE.
IF(Z11-ALLENS)601+6014602
602 TT=TT-HO
C CECREASE ThE TIME INCREMENT SO THE FINAL DISTANCE TRAVERSED BY THE
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601

PARTICLE BE FINALLY EGUAL TC THE LENS LENGTH WITHIN THE DEGREE OF
ACCURACY SPECIFIED BY Jo

HO=HO/2 ¢0

KK=KK+1

TT=TT+HQ

IF (J~KK) 530,530,520

1=0+1
TT=TT+HO
THO1=8%Z114THOQO
CCTH=COS{THOT)
SCTH=SIN(THOT)
AXI=AX11

AYI=AY11

AZI=711

PXI=PX11%P20

PYI=PY11%P20

PZI=PZ2-B¥(AXI*PYI-AYI*PX])

STORE TRAJECTORY POINTS IN TERMS OF THE FIXED COORDINATE SYSTEM.

ks Nalle)

6006

AX(1)=AX11¥CCTH-AY11%SCTH
AY(I)=AX11%¥SCTH+AY11%CCTH
PX(I)=(PX11%CCTH-PY11%SCTH) #PZ0/P 21
PY(I)=(PX11%SCTH+PYL1*CCTH)*PZ0/PZI
AZ(1)=2114200
FORMAT(SX45(E10e343X)414)

530

GO TO 520

MAAA=MAAA+]

I+ (MAAA)S305,5305+5306

FOR THE STRUCTURE CCNSTRUCTED CF TWO OPPOSITELY TWISTED SECTIONS
CONSIDER THETRANSEVERSE COORDINATES AND MCMENTA AT THE EXIT PLANE
OF THE FIRST SECTION IN THE ROTATING COORDINATE SYSTEM AS THE

5305

INJECTICN CONDITICNS GF THE PARTICLE FOR THE SECOND TWISTED SECTION,
X0=AX1

YO=AYI

200=AZ1

P20=PZ1

VO=VO*PZ [¥PZ1

RPXO=FXI/PZ0
RPYO=PYI/PZ0
THO0OU=B* 200
B=-8

HO=H

GO TO 1033

T1=1+1
[2=1+¢2
CREAT SCALES FOR PLOTTING THE TRAJECTORIES,.

AX(I1)=-04.016

AX(12)=0,008

AY(T11)=AX(11)

BVCTO SRR (TE ) - oo o o e e = e e
PX(I1})=-0.2

PX(12)=0.1

PY(I1)==0,2

PY(I2)=0.1

AZ{I11)=0.0

v e et IR ————— . s
CALL PLOT(1.040675+~3)

ABAXI=(AX(1)-AX(I1))/7AX(12)

ABAX2=(AX(I)=-AX{I1))/7AX(12)

ABAYLI=(AY (1)-AY(I1))/AY(I2)

ABAY2=(AY(1)-AY(11))/7AY(12)
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C MARK ENTRY AND EXIT TRANSEVERSE COORDINATES ON THE X-Y PLANE.
CALL SYMBOL(ABAX13ABAY1,06404+4003+0e09-1)
CALL SYMBCOL (AEAX23ABAY2,0e04401140e0,-1)
IF{MTRA) 105,105,106

105 CALL LINE(AXsAY»1451450,0)

106 CALL PLOT(0e04+44254-3)
ABPXI={(PX{1)~PX(I1))/PX(12)
ABPX2=(PX(T)=PX{I1))/PX(I2)
ABPRY1=(PY(1)~-PY(I1))/PY(I2)
ABPYZ=(PY(I)~RPY(I1))/PY(I2)

C MARK ENTRY AND EXIT TRANSEVERSE MOMENTA ON THE PX-PY PLANE.
CALL SYMBOL (AEPX1+ABPY1500044003+0e0s-1)
CALL SYMBOL (ABPX2+ABPY240e04+01140404-1)

C START PLOTYTING THE TRAJECTORY PROJECTIONS.
IF(MTRA) 115,115,116
115 CALL LINE(PXsPYs191450,0)
CALL PLOT(=045174754=3)
CALL LINE(AZyAXs141450450)
CALL PLOT(0e0+40254~3)
CALL LINE(AZ+AY 9yi914+040)
CALL PLOT(1040+0404+-3)
CALL LINE(AZ+PYo1s14040)
CALL PLOT({0+40+=64254-3)
CALL LINE(AZ+PXs1s1+040)
CALL PLOT(-10459=12475,~-3)
GO TO €66
116 CALL PLOT(=1409-500+-2)
666 CONTINUE
CALL PLOT(040+0405996)
WRITE(6,7788)
7788 FORMAT(10X,'*k%%* PLCT FINISHED *#¥k%1)
3333 FORMAT(10X,y *HHHHHHHH )
STOP
END




21

APPENDIX F

SPATIAL MODES OF THE MOTION ALONG THE TWISTED STRUCTURE

In order to express the analytic solution of the particie motion
along the twisted structure in terms of the fixed (X,Y,Z) coordinates,
equations (2.31) are substituted into equations (2.7). The X co-

ordinate of the moving particle will be,

><
u

X €0S Bz - y sin Bz
= [C1 cos Fy +V/§:§:% (-1)" Cy sin Fz]cos Bz
- [C2 cos Fy - [T (-1)" ¢y sin F]]sin Bz (F.1)
while the Y coordinate will be

Y = x sin gz + y cos Bz

= [C] cos Fy + ;—?—T (-1)" C, sin Fz]sin 82
5 n .
+ [CZ cos F2 “J5ET (-1) G sin F]]cos 8z (F.2)

where, Fy = f]t o and F2 = fzt t oy Equation (F.1), after the multi-

plication of the trigonometric terms becomes,
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X = C] cos(f]t + a])COS Rz

+\/s f 7 (-1)" C] sin(f]t + a])sin Bz

- G cos(fzt + az)sin Bz

HYE=T (1) € sinlfyt + a)oos g2

= ]E C][{cos(f]t - pz + a]) + cos(f]t t Bz + a-[)}
+ (-1)" ﬁ—] {cos(f]t - Bz + a]) - cos(f]t t gz + a])}]

- % Cz[{sin(ez - fot - a2) + sin(gz + fot + az)}
+ (~1)"‘/;—f~]- {sin(fyt + ap + Bz) + sin(f,t + uy - 62)}

= -;— c]{l + (-])n\/S—i]-}cos(f]t - Bz + oz])

+ % C1{1 - (-1)" ﬁ}cos(f]t + 8z + a])

-] Gyl + (-1)”,/S~fT}sin(-th + 82 - a)

- ;_— 02{1 - (-I)n\lgfﬁl}sin(fzt + 8z + az) (F.3)

~noj

Equation (F.2), after the muTtiplication of the trigonometric terms

becomes

Y = G cos(f]t + a])sin Bz

et ()" G sin(f,t + o;)cos gz
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+ C2 cos(fzt + az)cos Bz
. E_E—T (-1)" C, S-in(fzt + az)sin Bz
- ]7 C,Lisin(fyt + ay + 82) = sin(fyt + o - Bz))

- (-1)n‘/§—§—T {sin(f]t tog Bz) + sin(f1t tog - 8z2)1]

+ % Cz[{cos(fzt tayt BZ) + cos(-fzt -y ¥ gz)}

s (-1)“@—1 {cos (-F,t = oy * £2) - cos(fpt + oy * Bz)}]
=-%qﬂ+(4ﬂ¢§;%smﬁﬁ-sz+%)

+ ]7 ¢, - (-1)n\/§—‘"§‘T} sin(f]t t gzt G])

" ‘Eczﬂ ¥ (-1)“\/5—?——T} cos(-fot + 8z - a,)

e Lot - (0 coslfyt + 62 ¢ o) (F.4)



