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ABSTRACT

The low-latitude boundary layer (LLBL) comprises a large fraction of the
magnetospheric boundary layer making it a potentially important site for
transport of mass, momentum and energy from the high-speed magnetosheath
plasma into the magnetosphere. I have examined, by computer simulation, the
processes involved in the spatial development of u 6.4 R, (Earth radii) long
section of the dayside LLBL from a thin and laminar boundary layer to a broad
and turbulent one capable of significan: transport. The computer simulation
developed for this purpose: ' "sed on the full set ofideal magnetohydrodynamic
(MHD) equations that gover:: 4lie dynamics of most magnetospheric plasmas
and uses a two-dimensional nonperiodic simulation gfeometry to permit the
realistic downstream development of the boundary layer.

Simulations started from several realistic initial conditions all exhibit the
formation of a LLBL that broadens with downstream distance, from an up-
stream thickness 0f0.12 R, to as much as ~0.7 R, downstream, and reproduces
many of the observed boundary layer characteristics. The broadening occurs
through the action of Reynolds and Maxwell stresses generated by the Kelvin-
Helmholtz (KH) instability in the boundary layer which dé’posit momentum and
energy into the LLBL. The KH instability also transports mass into the LLBL
by mixing plasma across the boundary layer through continuous vortex roll-ups
and mergings and also appears capable of aiding diffusive transpor. processes
by steepening density gradients at the magnetopause enough to trigger any of
a number of possible diffusion processes.

Simulations have also shown that the downstream development of the
boundary layer may be slowed and possibly stopped in the presence of a flow-
aligned component of the magnetosheath magnetic field. For exarnple, for a
magnetosheath magnetic field which is initialized to tilt 30° away from perpen-

dicular to the flow, the KH instability still develops, but fails to generate the



large, merging vortices necessary to the success of the transport processes
because the vorticeslose kinetic energy to magnetic field distortions as they wind
up the magnetic field. The magnetosheath magnetic field is thus capable of
nonlinearly stabilizing the KH instability in the LLLBL even though the LLBL is
linearly unstable to the KH instability.
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INTRODUCTION

All celestial bodies, ranging in size from asteroids to galaxies, are thought to
be surrounded by a tenuous but very energetic and electrically active gas-like
medium called a plasma. Some of these bodies possess a magnetic field which
pervades the adjacent plasma and communicates the presence of the body to the
plasma through a variety of electromagnetic and plasma processes. The region
of surrounding plasma having a magnetic field that may be traced back to the
body is known as the body’s magnetosphere?2.

The magnetosphere of 2 body situated in an infinite volume of unmagnetized,
stationary plasma fills all space since its magnetic field fills all space. In reality,
however, magnetospheres are often confined by the presence of a surrounding
magnetic field and the existence of plasma motions directed toward the body
supporting the magnetosphere. In most space plasmas, the magnetic field
behaves as if it is frozen into the plasma and follows the plasma motions [e.g.,
Parks, 1991] and in this way, the “upwind” regions of a magnetosphere are
pushed back toward the body supporting them. How much the magnetosphere
is compressed against the body depends on the speed of the flow and the strength
of the magnetic field. For example, the Earth’s magnetosphere is situated in a
high-speed stream of Sun-generated plasma called the solar wind. The speed of
the solar wind is great enough that the dynamic pressure associated with it
balances the magnetospheric magnetic field pressure at a distance of approxi-
mately 10 Earth radii (R;) upstream of the Earth. At times of exceptionally high
solar wind speeds, the solar wind dynamic pressure can be large enough to push
the subsolar point of magnetosphere to within 5 Ry of the Earth before the
Earth’s nearly dipolar magnetic field is strong enough to balance it.

The action of the solar wind pressure confines the terrestrial magnetosphere

2 This definition is strictly true only for a closed magnetosphere. Some regions of the Earth’s
magnetosphere actually appear to be permanently open to the surrounding plasma environ-
ment.



to a cavity. The cavity is ellipsoidal in shape at its sunward side [e.g., Spreiteret
al., 1966; Sibeck et al., 1991] and is stretched into a long tail on its downstream
side as shown in Figure 1. At the downstream side, the deflected solar wind
plasma exerts a confining dynamic pressure on the magnetosphere which
weakens with downstream distance as the interface between it and the solar
wind, the magnetopause, becomes increasingly aligned with the free-stream
solar wind velocity vector. The magnetopause stresses that arise from sclar
wind-magnetosphere interactions [Axford and Hines, 1961] keep the magneto-
sphere from closing under the influence of the other components of the solar wind
pressure and stretch it into a tail-like structure, the magnetotail, which extends
for at least 240 R; downstream [Tsurutani and von Rosenvinge, 1984].

Before the solar wind reaches the magnetopause, it passes through a shock,
the bow shock, created by the obstruction presented to the supermagnetosonic
(i.e.,moving faster than fast magnetosonic mode waves in the plasma) solar wind
by the magnetosphere. As in supersonic gas dynamics, information about the

obstacle is carried by waves which propagate only a finite distance upstream

—

low-latitude
boundary layer

high-latitude polar

boundary layer

magnetopause —

magnetosheath —

Figure 1. The outer magnetosphere and magnetosheath. The magnetopause and
field lines plotted come from an empirical magnetosphere model [Tsyganenko,
1989] with K, =0 and an untilted 30,500 nT R;* dipole.



before encountering a flow faster than the wave speed. The waves “pile up” at
that point and form a shock front across which the plasma slows, becoming
denser and hotter and often experiencing a change in the fluid pressure and
magnetic field [Spreiter et al., 1966]. The solar wind properties change suffi-
ciently across the shock to merit a new name for the region of post-shock solar
wind plasma: the magnetosheath.

The magnetosheath region completely surrounds the magnetosphere and is
the source of energy for almost all magnetospheric processes. The solar wind, and
thus the magnetosheath, carries in the vicinity of 10'® J of kinetic, thermody-
namicand magnetic energy tothe magnetosphere every second (see AppendixA).
Some fraction of that energy is transported through the boundary and into the
magnetosphere where it becomes available to drive magnetospheric processes.
The size of the fraction is determined by the ability of processes occurring at the
magnetospheric boundary to couple the solar wind to the magnetosphere.

The topology of the magnetospheric magnetic field leads to a natural division
ofthe magnetosphericboundaryintothreeregions (Figure 1). The smallestofthe
regions is the polar cusp. Though the cusp accounts for very little of the total
boundary area, its magnetic field is connected directly to the magnetosheath
thus providing a direct route for entry of magnetosheath plasma into the
magnetosphere. The cusp is bounded on all sides by field lines which extend into
the two other regions. The magnetic field lines at the tailward side of the cusp
connect to the high-latitude boundary layer (HLBL) and remain open to the solar
wind. Those at the sunward side of the cusp thread the low-latitude boundary
layer (LLBL) and continue to the cusp in the opposite hemisphere while
remaining closed to the solar wind. All of these regions contribute to the transfer

of energy from the solar wind te the magnetosphere.



SOLAR WIND-MAGNETOSPHERE COUPLING

The boundary layers found at and just inside the magnetopause—the only
magnetospheric boundary layers that I consider in this thesis—all contain a
tailward-moving plasma with characteristics intermediate between those of the
magnetosheath and magnetosphere [e.g., Lundin, 1988). The magnetosheath
plasma is dense and cool relative to the adjacent magnetosphere plasma and
meves tailward at high speeds [Hones et al., 1972] while the magnetosphere
plasma moves slowly and unsteadily sunward [e.g., Mitchell et al., 1990]. The
existence of a boundary layer of finite thickness between these two regions
indicates that solar wind mass, momentum and energy manage to coupleintothe
magnetosphere through boundary layer processes [Eastman et al., 1976].

It is possible for energy to be transported into the magnetosphere without
requiring the operation of any boundarylayer processes. Magnetohydrodynamic
(MHD) waves generated in the solar wind and magnetosheath are partially
transmitted through the magnetopause and carry a significant amountofenergy
into the magnetosphere [Verzariu, 1973}. Once there, they may drive processes
which trap the energy in the magnetosphere [e.g., Goertz and Smith, 1989;
Samson et al., 1992].

There are three basic categories of processes capable of transporting the mass,
momentum and energy required to produce the boundary layers observed:
magnetic merging ofmagnetosheath and magnetosphere magnetic fields, impul-
sive penetration of magnetosheath plasmas and diffusive mixing at the magne-
topause. All three categories are likely to be represented at the magnetopause,
but the large variation in plasma parameters and magnetic field over the
magnetopause could lead to regions where one of the boundary forming pro-
cesses 1s preferred over the others.

Magnetic merging occurs when two regions of plasma having antiparallel

magnetic fields are driven together by external forces. When the magnetic field



between the two regions is very small and plasma conductivity is finite, the field
will no longer be frozen to the piasma and field lines will be able to rearrange in
ways that are not possible when bound to a continuous fluid. In particular, the
field lines in the merging zone can change their topology and link formerly
distinct regions of plasma as shown in Figure 2. Such reconfigurations of the
magnetic fields introduce pressure gradient and magnetic field “tension” forces
which drive plasma out along the boundary between the two regions and make
continuous merging possible [e.g., Shivamoggi, 1985].

Magnetic merging is commonly thought to occur at the magnetopause in
regions where the magnetosheath flow drives magnetosheath magnetic fields
against antiparallel magnetospheric fields [Dungey, 1961]. Because the orienta-
tion of the magnetosheath magnetic field is continually changing, merging is
expected to occur at different patches on the magnetopause at different times.
For example, when the interplanetary magnetic field (IMF) carried by the solar
wind is directed southward with respect to the Earth’s geomagnetic axis, it
should merge at the subsolar region of the magnetopause while a northward-
directed IMF may be able to merge at the sunward edge of the HLBL near the
cusp. At a merging region, the magnetosheath plasma would gain access to thie

magnetosphere through the recently merged field lines which connect the two

123 4
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Figure 2. Magnetic merging of regions of antiparallel magnetic fields. Initially
parallel fields are driven together and merge where the field becomes very weak.
The field line labelled as “1” has merged with a field line from the other side of
the merging layer and now connects the two formerly distinct regions.




regions. Dense and cool magnetosheath plasma would then flow along such field
lines to form a boundary layer inside the magnetopause [Russell and Elphic,
1979]. In this scenario, the magnetic field threading the two regions aids in
transporting momentum and energy between them: the fast-moving magneto-
sheath plasma carries the field lines tailward and they in turn drag the lighter
magnetospheric plasma leading to a net transfer of momentum and energy into
the magnetosphere.

Impulsive penetration of irregularities in the solar wind plasma through the
magnetopause is another possible transport mechanism [Lemaire and Roth,
1978; Roth, 1992]. Observations have shown [Celnikieretal. , 1987]thatthe solar
wind momentum density varies over distances much shorter than the diameter
of the magnetosphere. These regions of higher momentum density are deflected
less than the background magnetosheath flow deflected around the magneto-
sphere and may have sufficient momentum density to be able to reach and
penetrate the magnetopause and partially populate the boundary layer with
magnetosheath-like plasma.

The last category of transport mechanism, and the one this thesisis concerned
with, relies on diffusive processes to carry mass, momentum and energy into the
magnetosphere. In conventional fluid dynamics, the presence of viscous molecu-
lar diffusion causes a velocity shear layer to thicken, resulting in transport
across the layer. The molecular collisions that lead to diffusion in conventional
fluid dynamics are far too infrequent in magnetospheric plasmas to be able to
account for the amount of magnetosheath plasma seen in the boundary layer.
However, wave-particle interactions that occur between small-scale plasma
turbulence and particles gyrating in response to the Lorentz force scatter the
particles in much the same way as Coulomb collisions would and are believed to
broaden the boundary layer enough to account for the observed magnetopause
thickness [Tsurutani and Thorne, 1982], but not the observed thickness of the
LLBL [LaBelle and Treumanr, 1988]. Simulations of the large-scale MHD



turbulence created by the Kelvin-Helmholtz (KH) instability in the LLBL show
that theinstability can broaden the boundary layer sufficiently to account for the
observed thickness [Miura, 1984]. Although the physical details of these pro-
cesses are quite different from classical molecular diffusion, both may be

described as diffusive processes [e.g., Ichimaru, 1973; McComb, 1990].

FORMATION AND DYNAMICS OF THE LLBL

The LLBL “forms” in the sense that it is observed to broaden with distance
from the subsolar point [Eastman and Hones, 1979] where the boundary layer
is thin, when present [Paschmann et al., 1978]. Tailward broadening of the
boundary layer is consistent with the operation of a viscous diffusion precess
which acts to smooth the sharp profiles often seen during satellite passes of the
layer [Sonnerup, 1980]. However, the profiles observed are not smooth enough
to be attributed solely to the action of a diffusive process (Figure 7). The detail
seen during satellite passes appears to be due to spatial and temporal variations
within the LLBL itself rather irregular motions of the entire LLBL past the
observing spacecraft[Sckopkeet al.,1981], so any process invoked to describe the
formation of the LLBL must be capable of producing such variations.

The KH instability is capable of both broadening an initially thin velocity
shearlayer and generating small-scale, time-varying structures in the resulting
boundary layer. The instability develops out of the free energy presentin a shear
flow by amplifying small displacements of the shear layer. The vorticity compos-
ing a perturbed shear layer protrudes into the ambient shear flows and is swept
by them into regions of enhanced vorticity which further perturb the boundary
layer (Figure 3) and eventually grow large enough to disturb the background
flow. The instability continues to develop in this manner until the perturbation
flow is of the same order of magnitude as the original background flow and is
unable to extract any more energy fromit. At the magnetopause, the speed of the

magnetosheath flow increases with distance from the subsolar point [Spreiter et



al., 1966] thus increasing the energy available to the instability and suggesting
that the instability, once started, will continue to develop for some distance
tailward.

The KH instability in an initially laminar shear layer grows at an exponential
rate through a linear phase of small perturbations and then enters a nonlinear

regime dominated by large vortices. Once in the nonlinear phase, the develop-

¢SO ©® .(‘0.0

Figure 3. The development of the KH instability in a thin shear layer [after
Batchelor, 1967]. The shear layer is equivalent to a line of vortices which, when
perturbed, are brought together by the ambient flow field and result in a
localized increase in the vorticity. That increase broadens the perturbation
region and further increases the vorticity enhancement leading t. an exponen-
tially growing perturbaticn.



ment of the instability slows as it runs out of free energy and turns instead to
multiple vortex mergings which make the boundary layer increasingly turbu-
lent. Throughout the development of the instability, the boundary layer continu-
ally broadens underthe influence of the turbulent diffusion[e.g., McComb, 1990]
associated with the instability.

There are a number of ways in which a velocity shear layer may be stabilized.
In conventional hydrodynamics, the presence of viscosity may broaden the shear
layer quickly enough to make it stable to all wavelengths of perturbations [e.g.,
Drazin and Reid, 1981] as will the absence of an inflection point in the velocity
profile [Rayleigh, 1880]. In MHD flows, the presence of a magnetic field
introduces another means of stabilizing the shear layer. When the flow is
perpendicular to the field, the instability behaves exactly as it does in the
hydrodynamic case [e.g., Miura and Pritchett, 1982] and is not stabilized by the
field. However, a flow-aligned component ofthe field can stabilize the shear layer
against perturbations by making the energy required to bend the field lines
greater than that available from the flow.

The absence of viscosity in magnetospheric plasmas and the velocity profile
ofthe shearlayer seen during satellite passes together ensure that the LLBL will
be unstable to the KH instability in those regions where the magnetic field is
perpendicular to the flow. Observations have shown [Eascman et al., 1976] that
the field on the earthward side of the boundary layer is dipole-like and directed
northward in the equatorial plane of the magnetosphere but may undergo a
rotation at the magnetopause which leaves it pointing in any direction roughly
tangential to the magnetopause in the magnetosheath. Additionally, the LLBL
field becomes increasingly tilted away from the northward direction with
increasing geomagnetic latitude. Together these two effects increase the stabil-
ity of the LLBL against the KH instability and have the potential to completely
stabilize large regions of the boundary layer through energy losses to magnetic

distortions.



The magnetic field lines that thread the LLBL cxtend to the Earth’s iono-
sphere and loosely couple the two regions together. The vortical motions
associated with the KH instability in the LLBL propagate along those field lines
to the ionosphere where they are damped and reflected, now having the opposite
sense of rotation, back to the LLBL [Lysak, 1990]. When they arrive at the
boundary layer, they should act to reduce the vortical motions that generated
them and thus damp the instability. However, the travel time required for the
vortical motionsto propagate to and from the ionosphere, >300 seconds [Samson
et al., 1992], is easily enough time for the KH instability to develop fully into its
nonlinear stage before the initial vortical perturbation launched by the instabil-
ity returns. Thus, ionospheric effects are irrelevant to the initial development of
the KH instability in the LLBL.

There are other processes besides diffusive broadening and the KH instability
that have been proposed to explain the existence of the LLBL. The impulsive
penetration mechanism provides a relatively straightforward means of passing
magnetosheath plasma into the magnetosphere but does not operate in quiet
conditions when the incident solar wind flow is relatively slew and carries fow
significant density irregularities. Like impulsive penetration, the flux transfer
evewrt [Russell and Elphic, 1979] is another intermittent process which this time
proceeds by merging magnetosheath and magnetosphere field lines at high
geomagnetic latitudes to produce a kink (e.g., field line “1” in Figure 2) which is
then swept through the LLBL by relaxation of the “tension” in the magnetic field.
Song and Russell [1992] have advanced a mechanism which also takes advan-
tage of high-latitude merging, but requires almost simultaneous merginginboth
hemispheres to connect a magnetosheath flux tube to magnetospheric field lines.
The merged magnetosheath flux tube sinks into the boundary layer and moves
tailward through the action of the interchange instability [Southwood and
Kivelson, 1987]. Sibeck [1992] explains the dynamics of the LLBL as the result

ofanotherintermittent process which calls upon high amplitude pressure pulses
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(8p/p = 1) convecting past the LLBL in the magnetosheath to deform the
magnetopause and temporarily bring a region of magnetosheath plasma across
the average position of the magnetopause. A satellite passing through the
boundary layer thus observes magnetosheath plasma inside the expected posi-

tion of the inagnetopause while still in the magnetosheath.

OBJECTIVES

The primary objective of my work has been to sirnulate the spatial develop-
ment of the LLBL using a realistic computer simulation started from realistic
initial boundary layer configurations. This emphasis on realism comes from the
paucity of observations of the LLBL. To date, all of the observations made of the
boundary layer have come from satellite passes which sample a very small
volume of the time-varying boundary layer and thus fail to provide enough
information to allow the development of a reliable theory of the LLBL as a whole.
A realistic computer simulation, on the other hand, wouald be capable of
reproducing the overall behaviour of the LLBL, provided that the assumptions
inherentinthesimulation are reasonable and that the simulationis started from
realistic initial conditions. Such a simulation, when tempered by satellite
observations, would serve as an excellent basis upon which to study the LLBL.

Once I had developed and verified the operation of a realistic LLBL simula-
tion, it became possible to ask specific questions about the formation and
dynamics of the LLBL and todeviseinitial conditions and simulation diagnostics
which would directly address the questions. In particular, I wanted to determine
whether the simulated LLBL would broaden with downstream distance and, if
so, for what conditions. Rapid downstream broadening of the boundary layer
would indicate that magnetosheath-magnetosphere transport processes were
active in the LLBL and would support theidea thatthe LLBL is a significant site
of solar wind-magnetosphere coupling.

Finding that the boundary layer does broaden rapidly with downstream

11



distance then led me to examine the mechanisms responsible for the broadening.
The KH instability quite obvicusly plays a large role in the early development of
the boundary layer, but saturates while the boundary layer is still quite thin
making it relatively unimportant downstream where the boundary is at its
broadest. I wanted to determine what other mechanism were responsible for
broadening the boundary layer and, in particular, why, for some initializations,

the boundary layer stops broadening.



LINEAR STABILITY

The statements made in the Introduction about the stability of velocity shear
layers are made possible by a linear stability analysis of the shear layer. The
stability analysis starts with a shear layer which is in equilibrium, though not

necessarily stable, and then subjects it to small perturbations of the form
fo() + & (y) exp[—i{kx — axt)), (1)

where fis a physical variable, x and y are the streamwise and cross-stream
coordinates, respectively and k and ware the complex wavenumber and complex
angular frequency of the perturbation. Substituting (1) into the equations
describing the fluid permits the equations to be linearized and makes a solution
for the perturbation eigenmodes possible. iJiura and Pritchett [1982] found a
numerically-soluble eigenvalue equation associated with these eigenmodes for
the case of a shear layer in an ideal MHD fluid with the Doppler-shifted
frequency, @ + kv,(y), as the eigenvalue. The shear layer is unstable when the
Doppler-shifted frequency has a positive imaginary component.

Setting either 2 or w to a real constant and then solving the eigenvalue
equation for the other quantity makes it possible to examine both the temporally
and spatially growing KH instabilities. When & (w) is a real constant, (1) shows
that the instability will experience no spatial (temporal) growth and only
temporal (spatial) growth will be possible. In both cases, the most unstable
eigenmode associated with a particular shear layer configuration may be
identified and, since it develops faster than any other mode, it should quickly
come to dominate the shear layer. To date, the stability of the LLBL has been
examined almost exclusively by assuming that only a temporally growing mode
is present {e.g., Ong and Roderick, 1972; Walker, 1981; Miura and Pritchett,
1982; Pritchett and Coroniti, 1984; Miura, 1984; Miura, 1987; Belmont and
Chanteur, 1989; Miura, 1990; Rajaram et al., 1991; Fujimoto and Terasawa,
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1991; Miura, 1992], with two exceptions [Wu, 1986; Wei et al., 1990], in spite of
the fact that the LLBL, like most physical shear layers, has a point of origin, the
subsolar point, and develops spatially with distance from it.

Assuming a temporally developing solution in a stability analysis of an
infinitely thin, incompressible shear layer permits derivation of a growthrate for
the KH instability [Southwood, 1979]:

_(&-B,) +(k-B,)*
Ho(py + p,)

Im(w)? = M—;(k (v,— vz))2

’ (2)
(pl + pz)

where pis the mass density and vis the velocity of the plasma, Bis the magnetic
field and the subscripts “1” and “2” indicate magnetosphere and magnetosheath
values, respectively. Equation (2) illustrates the relative importance of the
directions of the velocity, magnetic field and wave vectors: the instability grows
fastest when the wave vector of the perturbation is parallel, or antiparallel, to
the difference in velocities and perpendicular to the magnetic field. When the
magnetic field has a component directed parallel, or antiparallel, to the wave
vector, the growth rate is reduced and the shear layer can be completely
stabilized by the magnetic field “tension” represented by the k-B terms. When
the magnetic field and velocity vectors are aligned everywhere in the flow, the
shearlayeris everywhere stablesolongas [c,| . > (U — Umia )/2, Where ¢, isthe
Alfvén speed [Kent, 1968].

Equation (2) indicates that the growth rate of the instability becomes arbi-
trarily large for small wavelength perturbations. In reality, however, any
physical shear layer will have a finite thickness which reduces the growth rate
for short wavelength perturbations and introduces a lower limit on the pertur-
bation wavelength. A numerical stability analysis for a realistic LLBL configu-
ration (Case B, Table 1; the details of this configuration will be discussed later
in the thesis) using a shooting method [Press et al., 1986] to solve Miura and

Pritchett’s [1982] eigenvalue equation for the spatially growing modes gives the
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growth rate dependence on wavenumber shown in Figure 4. Instead of having an
arbitrarily large growth rate for large wavenumbers, the maximum growth rate
for this particular configuration of the LLBL occurs when , where is the half-
width of the shear layer.

Another useful result of the stability analysis is an expression for the phase

velocity of the instability wave [Axford, 1962]:
Von = (Re(C")/Re(kz))k = (Vi +P2V:)/ (P + p2)- (3)

This expression indicates that the shear layer perturbation is stationary in the
center of mass reference frame. Note that (3) comes from assuming an infinitely
thinshearlayerin anincompressible fluid. Amore general stability analysis that
includes compressibility and aliows the shear layer to have a finite thickness

gives phase velocities that can differ significantly from those given by (3).

—_2
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Re(k) (R:™)

Figure 4. The spatial growth rate of the KH instability found by a linearized
perturbation analysis for a realistic boundary layer configuration (Case B, Table
1; the details of this configuration will be discussed later in the thesis).
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SIMULATION

The simulation is based on the ideal MHD equations:

-

%‘t)+v.(pv)=0, (4)

%"_)Jr V-(pvv) =-V(p+B*/2p,)+(B-V)B/u,, (5)
2 +V-(vB)=(B-V)v, (6)
%+V°(PV)=“(Y—1)DV'V, (7)

where p, v, B, p and y are the mass density, velocity, magnetic field, plasma
pressure and adiabatic index (¥ = 5/3 in this paper) of the plasma and y, is the
permeability of free space. Equations (4) and (7), the continuity equation and the
adiabatic equation of state, take the same form as in conventional compressible
fluid dynamics. Equation (5), the equation of motion, is the same as that of a
conventional inviscid fluid with the addition of two terms which describe the
effect of the magnetic field on the plasma. The first termin (5), -V (B2 /21, ) ,isthe
pressure force associated with the magnetic field while the second term,
(B-V)B/u,, represents a “tension” force which attempts to straighten curved
field lines [e.g., Schmidt, 1979]. Equation (6), Faraday’s l1aw, has no equivalent
in conventional fluid dynamics. Writing the equationsin the formabove, with the
continuity terms on the left-hand side, facilitates their implementation in the
numerical finite difference scheme I use.

The relative simplicity of the ideal MHD equations makes them amenable to
simulation but at the expense of their ability to fully describe the boundary layer

plasma. Probably their most significant shortcoming is their inability to accu-
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rately represent structures which have one or more of their dimensions on the
order of one ion cyclotron radius { r; ) or less. Satellite passes of the magnetopause
have shown it to have 2a minimum thickness of only three or four r, [Berchem and
Russell, 1982; Sonnerup et al.,1990], a fact also borne aut by pariicle simulations
performed by Berchem and Okuda [1990] and Gary and Sgirc [1590]. thus putting
the suitability of the ideal MHD equations for simulations of'the boundary layer
into question.

Although by definition no diffusion of any sort (i.e., density diffusion, viscosity,
heat conduction or resistivity)is included in the ideal MHD equations, any grid-
based algorithm that is used to solve the equations inevitably intrcduces some
during the course of their solution. The finite difference scheme implemented in
the simulation permits the amount of numerical diffusion to be accurately tuned
so as to smooth only the sharpest features, those on the order of three numerical
cell-widths in size or less, while leaving all larger scales untcuched. The
simulation takes advantage of this built-in filter by defining the numerical cell-
width to be slightly greater than one r; so that any structures on the simulation
grid that begin to narrow so much that they are in danger of violating the large
r, condition are numerically diffused back to arelatively “safe” thicknessofthree
r;, much as they are in the particle simulations. Unlike physical diffusion
processes, the algorithm effectively filters away only the highest spatial frequen-
cies and so is able to preserve large features through many time steps without
smoothing them appreciibly. An ability to maintain large-scale structures is
essential to simulations: that attempt to follow forms that evolve slowly in
comparison to wave transit times, such as the nonlinear KH instability.

My simulation isbased on a modified version of the finite difference algorithm
ETBFCT [Boris, 1976; Book et al., 1981]. The modifications implement the
improvements suggested by Book and Fry [1984] and Zalesak [1981] and place
the algorithm in the multidimensional framework described by Zalesak [1979].
I further improved the algorithm by modifying it so as to reduce its tendency to
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create “terraces” on steep gradients (see Appendix B). This modified algorithm
is able toresolve sharp gradients while almost completely avoiding the effects of
numerical dispersion and permits tuning to introduce an adjustable amount of
short wavelength filtering while maintaining excellent amplitude and phase
accuracy. Grinstein and Guirguis [1992] have shown that a much simpler form
of this filter can emulate a physical viscosity thus suggesting that the new filter,
with its flexibility, is at least capable of reproducing the effects of physical
viscosity. Work under way by Boris [1990] may also confirm that the family of
monotone methods, of which the modified algorithm is a member, actually are
practical large eddy simulations [Reynolds, 1950] and as such, may be used to
reliably simulate volumes that are so large that the smallest scales of motion
must remain unresolved, as would be the case in fiture siniulations of the entire
LLBL or magnetosphere.

The simulation of the MHD equations that results from application of the

Figure 5. The density field some time after introducing a perturbation at the
bottom center of the frame. The perturbation is applied to an otherwise uniform
stationary plasma placed in an upward-directed magnetic field with its plasma
parameters chosensothat ¢, : ¢g: ¢ =3:4:5.Theblacklines correspond to the
analytically determined group velocity multiplied by the time at which the
simulation snapshot was taken.
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algoritiun to {4), (C.. (6) . ud (7) (see Appendix C) is capable of accurately
representing the wave n.udes asscciated with the ideal MHD equations as well
as the much slower dynamics seen in the development of the KH instability.
Figure 5 compares the MHD - . ave field that develops from an initially localized
density/pressure perturbation as simulated by the algorithm and the corre-
sponding group velocity, determined analytically. The simulation results are free
of numerically-generated dispersive ripples and agree well with the analytic
results,thou " the slow magnetosonic mode wavefront, the inner “triangle” seen
inFigure5, app..rsunder- solved. Simulations ofthe KH inscability also agree
well with the linear stability theory during the initial linear phase of the
instability. The growth rate predicted by the theory and found by simulation
agree to within 2% (Figure 6) and the details of the nonlinear phase of the
instability are well resolved, even on a low-resolution numerical grid.

I also investigated the sensitivity of the simulation to failures in the diver-

gence-free state required of the magnetic field, V-B = 0. Unlike DeVore [1991],

25¢ ~
'y linear theory 7
E 2 Y

g 62 x62 grid
=~ 1.5
2 31x 31 grid
i
4
0.5

0.2 0.4 0.6 0.8 1 1.2
t (minutes)

“ig--ve 6. The temporal growth of the KH instability found by simulation (solid
line :and predicted by a linear perturbation analysis (dashed line) for a realistic
boundary layer configuration (Case B, Table 1; the details of this configuration
will be discussed later in the thesis). The slope of the lines gives the growth rate.
lvylm is the maximum value of Iv,l found on the simulation grid.



I do not treat Faraday’s law, (6), any differently than the other ideal MHD
equations and so must ensure that the inevitable numerical errors in B which
make V-B nonzero do not introduce significant errors to any of the other
variables. The test initialization consists of a stationary uniform plasma, with
density and pressure set to the values used in the simulation, permeated by a
monopolar magnetic field which has been defined so as to be as large as the
largest V. B error observedin the simulation. The test showed that the mon opole
produced very small amplitude compressional waves but none of the field-
aligned accelerations seen by Brackbill and Barnes [1980]. There are typically
already many large amplitude compressional waves present by the time V-B
errors become large enough to generate even small waves, sc the effect of such
numerically-generated waves may easily be discounted.

A simulation of the spatially developing KH instability requires inflow and
outflow boundary conditions ratherthan the periodicones used in simulatingthe
temporally developing instability. Both boundaries should be nonreflecting so
that waves incident on the beundaries leave the simulation grid without
reflecting any energy back into the grid. In conventional fluid dynamic simula-
tions, these boundary conditions are often satisfied simply by considering only
these flows which are supersonic at both boundaries so that waves can neither
propagate upstream to the inflow boundary nor reflect from the outflow bound-
ary. In this case, the boundary conditions become quite simple: the inflow
boundary has all quantities specified and the outflow boundary has Neumann
boundary conditions with all boundary-normal gradients set to zero.

Unfortunately, the boundary conditions required of an LLBL simulation are
complicated by the presence of submagnetosonic flows on the earthward side of
the boundary layer which permit magnetosonic waves to propagate to and from
the inflow and outflow boundaries. To accommodate the effect that these waves
have on the inflow boundary, I implemented boundary conditions which would

both respond to downstream conditions and ensure that the incoming plasma
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has the desired plasma parameters. Much experimentation showed that inflow
boundary conditions that specified values for p, pv and B but let p float as much
as possible while being relaxed back to its fixed ambient value would allow the
boundary to respond to magnetosonic waves without introducing secular varia-

tions into any variable [Grinstein et al., 1991]. Specifically,

P1 = Pias (8)

(pv.), = (V) (P0y), = O, (9)
B =B, (10)

Py = Dy = 8(P2 — Pamy)» (11)

where the subscripts 1, 2 and “in” refer to a computational cell at the inflow
boundary (In every other section of this paper, the subscripts 1 and 2 indicate
magnetosphere and magnetosheath values, respectively), the cell immediately
inward of it and a value fixed at the inflow boundary, respectively, p,_, is the
ambient pressure, § = At/7 is therelaxation constant, A¢ isthe length of the time
step, t =1l/c_,. is the relaxation time, [ is a length scale characteristic of one
wavelength of the upstream propagating waves and c_,, is the speed of the
upstream waves at the inflow boundary. The coordinate system used in the
simulation is shown in Figure 1. The boundary condition on p is important
because it permits the development of cross-stream pressure gradients which
are essential for self-excitation of the shear layer [Grinstein et al., 1991]. I tried
to apply similar boundary conditions to B, but the fact that B is a vector quantity
that must everywhere satisfy a vector relation, V-B = 0, significantly compli-
cates the boundary conditions, particularly when one has the possibility of a
component of B normal to the inflow boundary as in the LLBL and magneto-
sheath.
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The outflow boundary condition is rather different from that for the inflow. In
addition to having to respond without reflections to magnetosonic waves, the
outflow boundary must also permit the convecting vortices generated by the KH
instability to exit the simulation without producing disruptions at the boundary.
Boundary conditions that assume that all structures leaving the simulation
space convect through the outflow boundary at the phase speed of the fastest
growing KH instability mode satisfy this condition. This convection or wave
boundary condition [Grinstein et al., 1991; Givoli, 1991] operates by assuming

that conditions at the boundary are well-represented by

d a
O

where frepresents p, pv,B orp, v,,, is the speed at which structures are carried

off the grid. Discretizing (12) gives

=1 —-——vjft (77 -1), (13)

wiere the superscripts indicate the time level and I denotes a computational cell
at the outflow boundary. Values for V,, are determined by first identifying the
most unstable spatially developing mode for a particular configuration of the
LLBL and then determining the phase velocity of that mode. After being
determined in (13), p;*' is relaxed towards p,__, using a condition similar to (11)
in order to better define what wouild otherwise be an under-specified boundary
condition on p.

The inflow and outflow boundary conditions described above are far from
ideal. Neither boundary condition can deal with transitory effects, such as
waves, without generating spurious waves of their own. Ideal boundary condi-
tions would permit waves and passively convected structures alike to be carried
across simulation boundaries as if those boundaries were not present. Work in

compressible hydrodynamics has come close to this ideal [Thompsor, 1990] but
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no similar set of general boundary condition for MHD fluids anas yet been
developed. Probably the most dangerous characteristic of the present boundary
conditions is that they reflect some of the outgoing wave energy back into the
simulation space. Hydrodynamic simulations have shown that numerical out-
flow boundary conditions are sometimes responsible for reinitiating the KH
instability through boundary-generated waves [Reynolds, 1990] and that physi-
cally-generated waves produced during the nonlinear stage ofthe instability can
also reinitiate the instability [Grinstein et al., 1991] thus indicating a need for
caution in dealing with waves of any origin in the vicinity of the boundaries.
The problem of boundary-generated waves may be dealt with by introducing
enough wave energy at the inflow boundary to overwhelm the upstream travel-
ling waves [Reynolds, 1990]. Adding a random perturbation to the pressure at
every cell on the magnetosheath side of the inflow boundary creates both non-
propagating “pseudosound” fluctuations [Matthaeus et al., 1991] and waves,
some of which impinge on the velocity shear layer where they introduce
perturbations which help initiate the instability. The disturbed conditions in the
simulated magnetosheath that result from these perturbations have a strong
basis in reality: the shocked plasma constituting the magnetosheath does
contain large amounts of wave energy [e.g., Engebretson et al., 1991] and will
likely act as a trigger for the development of the KH instability in the LLBL.
The remaining boundary conditions are straightforward. The boundaries
parallel to the magnetopause are perfectly conducting walls which act to reflect
all waves incident on them back into the simulation space. Work done in
hydrodynamics has shown that the distance between a wall and the shear layer
has little effect on the development of the shear layer for subsonic flows [Chen
and Morrison, 1991], but can significantly alter the development of a supersonic
shear layer by coupling together different regions of the shear layer through
wall-reflected shock waves [Zhuang et al., 1990]. The flows in the simulations

presented here are submagnetosonic so the sole criterion used in choosing the



wall positions is that they should be far enough away from the shear layer that
vortices generated by the KH instability do not touch them. The final two
boundaries, parallel to the equatorial plane and forming the floor and ceiling of

the simulation space, do not exist in this simulation because it is confined to two

dimensions.

SIMULATION BOUNDARY LAYER

Any simulation of the boundary layer must start from plausible initial
conditions. The observed boundary layer is the time-dependent result of compli-
cated interactions between the magnetosheath and magnetosphere plasmas and
is not well enough understood tc permit construction of an initialization that is
both realistic and physically self-consistent. Instead of trying to develop such an
initialization, I model the initial LLBL as a simple boundary layer between two
regions, the magnetosheath and magnetosphere, each consisting of a uniform
plasma with plasma properties based on actual satellite observations. Such a
configuration is simple enough to be made physically self-consistent and ensures
that the simulation starts from an initialization that is well-understood.

The magnetosheath and magnetosphere parameters used in the simulations
are based on those observed during an ISEE-1 satellite pass through the
boundary layer from 0130 to 0230 UT on 17 August 1978 [Eastman et al., 1985]
and shown in Figure 7. This pass is particularly well-suited to simulation
because the boundary layer at the time of the pass was broad and well-defined
with a single, sharp magnetopause cressing and an easily identified LLBL and
remained in approximate fluid and magnetic pressure balance for the duration
of the pass: having each pressure balance separately across the boundary layer
eliminates the possibility ofthe interchange instability [Southwood and Kivelson,
1987] developing and adding another element of complexity to an already
sufficiently complex situation. The crossing occurred in the dusk sector at 1636

LT, puttingitrelatively farupstreamin the LLBL and thus increasingthe chance
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Figure 7. The plasma and magnetic field parameters observed during the
inbound ISEE-1 magnetopause crossing of 17 August 1978 [from Eastmanei al.,
1985]. o is the angle between the bulk ion flow vector and magnetic field vector
and is equivalent to the parameter ¢ used in this thesis.



that the boundary was still relatively undeveloped. After slightly adjusting the
magnetosheath and magnetosphere values seen during the satellite pass in
order to put the tworegionsinto exact pressure balance, I obtain the values given
in the left two columns of Table 1. Some new parameters are introduced in the
table: n is the plasma number density, ¢ is the angle between B and v (both
vectors are assumed to be tangent to the magnetopause), a,;; and a,, are the
half-widths of the LLBL and magnetopause, respectively, yyp— ¥, is the
displacement of the magnetopause and LLBL centers, and M and M, are the
convective and magnetosonic Mach numbers, respectively. Here, and in the
remainder of this thesis (except where indicated otherwise) the magnetospheric
parameters are identified with the subscript “1” and the magnetosheath values
with the subscript “2”.

The parameters defining the simulated magnetosheath and magnetosphere
are given in the right two columns of Table 1 and are a compromise between
observational reality and computational necessity. The simulation parameters
are chosen to retain as much of the character of the observed parameters as
possible while increasing the efficiency of the simulation. A linear stability
analysis of the boundary layer based on the simulation values of the plasma
parameters shows that the fastest growing KH instability mode takes less than
half the tiine to develop as the same boundary layer configuration based or i ke
observed values. Using the observed values to define the boundary layer wewid
thus require more than twice as much computer time to reach a particular stage
in the evolution of the instability as using the simulated values would and yet
both sets of parameters result in boundary layers with approximately th same
spatial growth rate (Im(%__, ) in Table 1). Ensuring that the convective Mach
number, M, of the boundary layer remains near its observed value further
increases the similarity between the two parameter sets [Sandham and Rey-
nolds, 1989b]. Having both the spatial growth rate and the convective Macil

number associated with the values used in the simulation set as closely as
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observed @ used in simulation (case B) ®

magneto- magneto- magneto- magneto-
sheath sphere sheath sphere
n (cm?®) 40 0.8 2 1
v (km/s) 150 0 449 53
p (nPa) 0.77 0.77 0.39 0.39
B (T) 23 23 16.4 16.4
¢ © 140 90 120 90
r, (km) 49 344 217 307
a . (km) ? 382
ayp (km) ? 382
Ywp — Yruee (km) ? 573
Im(k_,,) (R;™) 2.46¢ 2.68¢
v, (km/s) 104¢ 225¢
My (= (v, —vg)/ee,) 0.288¢ 0.337¢
M, (=(v,—v,)/c) 0.94 0.13 0.78 0.55
cg (km/s) 139 981 439 621
¢, (km/s) 80 567 253 358
¢ (km/s) 160 1133 507 717
B (=2u,p/B*) 3.6 3.6 3.6 3.6

@ Parameters of the observed LLBL seen in Figure 7.
b Parameters of the simulated LLBL.
¢ Calculated using the simulation values for ¢,, a,,,,, a,, and y,, — ¥, and after

changing reference frames to inake v, = 0.

Table 1. Parameters of the LLBL crossing.



possible to those determined from the observations should make the simulation
results directly applicable to the LLBL.

In addition to specifying the magnetosphere and magnetosheath parameters,
the initialization must also describe the initial form of th> ' ransition between

them, the LLBL itself. The initial LLBL transition is specifie | by the functions

P¥)=p, + freL (V) p, -p1)s
Uo(y>=v, + fLLBL(Jf')(U‘z _vl)’ (14)

() =, + fMP(y)(‘pz - ¢1)’

where the subscript 0 indicates that the values are initialization values, v, = y,x

and the profile functions are defined as

fris{y) =1+ /2 tanh[(y = YuLsL )/aLLBL] ’

fup() = 1+ Y2tanh{(y — yyp)/aye).- (15)

The initial half-widths are set to make both the magnetopause and LLBL three
r; thick and the displacement between the magnetopause and LLBL centers,
Ymp ~ YiLeL, i setto 2.2 r;. The centers are displaced to satisfy observations (e.g.,
Figure 7) that indicate that the magnetopause is most often seen at the edge of
the boundary layer and to create conditions which make it easier for the
instability to develop [Ogilvie and Fitzenreiter, 1989; Rajaram et al., 1991].
The parameters given in Table 1, along with (14) and (15), constitute the base
configuration of the LLBL modelled in this paper, referred to as case B in the
remainder of this thesis. There are two other cases considered in what follows,
both of which have one aspect of their initializations changed but are otherwise
identical to case B: case A has no rotation of the magnetic field at the magneto-

pause and case C hnas coincident shear and current layers. The three cases are
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ordered according to the growth rate of the KH instability for each case, as given
in Table 2. The stabilizing effect of the magnetic field is responsible for reducing
the growth rates in cases B and C. A stability analysis has shown that for the
worst case of a magnetosheath magnetic field that is completely flow-aligned,
only the case C boundarylayer configuration is completely stabilized against the

KH instability.

Case

A B C

¢, =¢, =90° ¢, =90° ¢, =120° ¢, = 90°, ¢, = 120°

Yur ~ Yiio Yup ~ VLo Yamp = YLisi
=573 km =573 km
Re(2n/k,..) (Rg) 0.847 0.797 0.928
Im(k,,,) (R™) 2.16 2.08 1.65
Rel(w,,, /27) (mHz) 53.3 54.6 46.4
simple v, (km/s) 317 317 317
fullby,, (km/s) 288 277 274

¢ v, =(pv,+p,v,)/(p,+p,)

b from full linear stability analysis

Table 2. Parameters and phase velocities of the KH instability for the three
boundary layer configurations.



NUMERICAL RESULTS AND DISCUSSION

CASEB

To set the stage for the long, spatially developing LLBL simulations that
follow, I first present the results of a small simulation of the LLBL which uses
periodic boundary conditions at the inflow and outflow beundaries. The analyti-
cal and computational simplicity afforded by the choice of periodic boundary
conditions has made them a popular choice for many previous studies of the
LLBL, asindicated in the Linear Stability section. Periodic boundary conditions
permit an analytical solution for the temporally developing perturbation modes
of the KH instability in the LLBL which may then be used to initialize a
simulation. Finding the fastest growing perturbation ei genmode possible for the
base LLBL configuration (case B) described in the previous section and initial-
izing the simulation with it ensures that the instability develo ps from a pure
mode. Experiments with different grid sizes have shown that a square 31x31
grid (with two additional boundary cells in each direction) composed of square
0.025 R x0.025 Ry cells resolves the eigenmode well encugh to allow the
instability develop at the analytically determined rate without much diffusion.

Figure 6 compares the temporal growth rate found analytically for the fastest
growing mode with the growth rate found by simulation. The points plotted are
the maximum values of ivyl on the grid for each time step; the slopes of the curves
give the growth rate. The simulation growth rate agrees very well with the
analytic one early in the linear phase of the instability but decreases prema-
turely as gradients steepen and become susceptible to the numerical filter
(described in detail in Appendix B). Doubling the resolution of the simulation
almost completely eliminates the effect of the filter during the linear phase by
raising the threshold of the filter well above the spatial frequency associated

with the instability but requires eight times as much computer time and would
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require more memory for 2 simulation of the spatiaily evolving KH instability
than is currently available However, a slightly conservative growth rate for a
simulation of the temporally developing KH instability helps to increase confi-
dence in the results of later, more demanding simulations of the corresponding
spatially developing instability by ensuring that the structures that develop
during the course of such simulations are significant enough to have survived the
effects of the numerical filter.

In spite of the low resolution and slightly reduced growth rate of the small,
temporally developing simulation of the KH instability, the instability develops
into the nonlinear phase without suffering from any of the more obvious
numerical errors {e.g., see Appendix B). Figure 8 shows contour plots of the
density, the z-directed component of the current and vector field plots of the
planar components of the velocity and magnetic field after one minute. The
vortical velocity field is well-established and has begun to wind the density and
magnetic field up into spirals. The magnetic field is not as ‘wound up as the
density because the displacement of the magnetopause and LLBL centers means
that 2 vortex developing in the LLBL at the center of the shear layer must grow
for some time before it is large enough to begin to draw in the magnetosheath
magnetic field. The current layer (magnetopause) develops a paired current
sheet where the magnetic field is most distorted by the vortex and over the course
of the simulation, it more than doubles in strength at the leading edge of the
vortex where the magnetosheath flow compresses the field against the vortex.

Extending the simulation grid and changing the periodic boundary conditions
to inflow and outflow boundary conditions permits the simulation of long,
spatially evolving KH instabilities. The simulation grid is now 255x77 cells
(with two additional boundary cells in each direction), but has the same grid
resolution and is based on the same LLBL configuration (case B) as the small,
temporally developing simulation just described. Instead of attempting to find

an analytical form for the most unstable spatially developing shearlayer, I apply
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the noisy inflow boundary conditions described earlier. Figure 9 shows the
compressional wave field one minute into the simulation, before the KH insta-
bility has had enough time to develop appreciably beyond the noise level. Recall
that the perturbation is applied to the density and pressure values at the inflow

boundary on the magnetosheath side and generates short wavelength waves

Number Density (n) Velocity Field (v,)
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Figure 8. A snapshot taken at ¢ = 1.0 minute of a temporally developing shear
layer started from the boundary layer configuration of case B. The contours of
density are at intervals of 0.18 cm™ starting at 1.06 cm™, the contours of z-
directed current density are at intervals of 4.8x10° A/m? starting at
-7.2x10° A/m?.



which are subsequently smoothed by the numerical filter.

Figure 10 shows the spatial growth of the KH instability for three LLBL
cor igurations. Quantitatively demonstrating the spatial growth of the instabil-
ity is more difficult than showing temporal growth in a temporally developing
shear layer (see Figure 6) because of the difficulty in consistently identifying an
exponentially developing feature in a flow which both grows and oscillates in
space rather than one that just grows in time as the temporally developing
instability dees. The points plotted in Figure 10 correspond to the extrema of the
oscillating and growing transverse velocity, v,, extracted from sixteen consecu-
tive snapshot files spanning the period from 2 to 5 minutes. The extrema are
identified by first finding the absolute maximum of Ivyl for a fixed x, but varying
y-coordinate, and then finding all of the local maxima in the resulting series of

maxima:

y

Iv Lm = lmax[air’ﬁx[lvy(x’, y)”], (16)

where Imax[ ] findslocal maxima and an,l_ax[ ] finds the absolute maximum for

a fixed x.

Case B of Figure 10 (the cther cases will be discussed in the following section)

y (Re)
o

X (Re)

Figure 9. The compression wave field (V-v) generated by the noisy magneto-
sheath inflow boundary.
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Figure 10. The spatial growth of the KH instability for three boundary layer
configurations. The lines are the best fits to Ivylm in the regions of exponential
growth; their slopes give growth rates. For a given time step, |vy|mx is the set of
local maxima found from a series made up of the largest ]v,,| for each downstream

x position. The plot shows all of the ’”rlm for t =2.0, 2.2,...,5.0 minutes.
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shows that the shear layer . periences none of the rapid growth associated with
the KH instability until 1 R; downstream of the inflowboundary. Itislikely that
the instability is actually growing in this region but is obscured by the noisy
inflow conditions. Beginning at 1 R; downstream of the inflow boundary, the
perturbation velocity increases exponentially through two orders of magnitude
overa 1.5 R; long region to saturate at ~30% of the total velocity jump across the
shear layer. The solid line shown in the figure is the line that best fits the region
of exponential growth. The spatial growth rate given by the slope of this line is
20% lower than the maximum growth rate found analytically for the most
unstable mode, as indicated by comparison with Figure 4. The difference is likely
due to the numerical filtering already seen at work in Figure 6.

Note that the growth of the velocity perturbation associated with the devel-
opment of the KH instability is limited to a rather small region only 1.5 E; long.
Beyond that region, the maximum perturbation velocity remains relatively
steady but continues to drive nonlinear processes which are responsible for the
continued spatial development of the simulated LLBL. In the actual LLBL, the
total velocity jump across the layer increases with distance tailward as the
magnetosheath flow accelerates to solar wind speeds suggesting that the region
of growth for the velocity perturbation will be much more extended and will
continue to develop even as nonlinear effects become important.

Figure 11 shows snapshots of the state of the simulation taken at ¢t =3.4
minutes for the three LLBL configurations. Comparison of the spatially devel-
oping boundary layer that develops for the case B cenfiguration with that seen
in the corresponding simulation of the temporally developing LLBL (Figure 8)
shows that although the small-scale (vortex) structure is quite similar, the
overall structures ofthe boundarylayers are very different. For small differences
in velocity across the shear layer, the two scenarios are related by a Galilean
transformation [Kaul, 1988] which associates time in the temporal layer with

space in the spatial layer through the transformation
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Figure 11. Snapshots of the three simulated LLBL configurations taken at
¢t = 3.4 minutes. The contours of density are at intervals of 0.18 cm™ starting at
1.06 cm™ and the contours of z-directed current density are at intervals of
8.9x10™° A/m?, centered about the zero level. The current density and magnetic
field vector plots are missing for case A because the magnetic field is everywhere
directed normal to the plane of the simulation space.
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x=v,t’, (17)

where x is the downstream coordinate in the spatial layer, ¢° is time in the
temporal layer and v, is the phase velocity of the KH instability waves.
Although this transformation is rather inaccurate for all of the boundary layer
configurations considered in this thesis because of the large difference in velocity
acrossthe shear layer, it shows how events that occur early (late) in the temporal
layer map to upstream (downstream) regions of the spatial layer and indicates
that information that is carried upstream in the spatial layer would be equiva-
lent to information carried back in time in a temporal layer. For example, an
event,such as a vortex merging, occurringin a temporally developing shear layer
is certainly incapable of affecting the prior development of the layer but when
such an event occurs in a spatially developing shear layer, it can induce an
upstream change in the shear layer which subsequently alters the downstream
flow and the development of the instability [Grinstein et al., 1991].

The snapshot presented in case B of Figure 11 is taken shortly after the
instability assumes a quasi-stationary state in which the overall form of the flow
nc longer changes, although the details of the turbulence do. The turbulent
mixing consists of vortices which are generated, grow, sometimes merge and
then propagate off the simulation grid. The first two vortices, immediately
downstream of the inflow boundary as seen in the density plot, are similar in
form to the single vortex produced by the periodic simulation because they have
developed from the shear layer in much the same way as that vortex. The third
vortex appears somewhat confused in structure because it is the result of a
merging between two vortices and is in the process of merging with a third.
Vortexmerging occurs as a result of other, slowly developing subharmonic modes
of the KH instability which grow tc become large, but weak, vortices capable of
rotating a pair of smaller vortices into close proximity so that they merge [e.g.,
Corcos and Sherman, 1984]. Vortex merging creates large, persistent vortices

which appear able to survive far downtail in the magnetosphere [Sanderson et
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al., 1986].

Figure 12 shows a sequences of streakline snapshots leading up to the
snapshots presented in Figure 11. These plots show the lines traced out by
massless particles released into the flow field at the infiow boundary. The
particles are placed in the magnetosphere, magnetosheath and the center of the
shear layer at the inflow boundary and are left to move in response to the
continually evolving flow field. The first snapshot in the series is early in the
development of the instability beforz the entire shear layer has felt the effect of
the inflow perturbations. At the inflow end of the streakline positioned at the
center of the shear layer is a small kink that eventually develops into the third
vortex shown in Figure 11. As it develops, the vortex draws in material along the
shear-centered streakline leading to a concentration of the tracer particlesatthe
center of the vortex and an absence in the regions between it and neighboring
vortices, much as described by Rosenhead [1931], shown in Figure 3 and seen in
experimental fluid dynamics [e.g., Panides and Chevray, 1990]. Fluid continuity
requires that the plasma drawn into the vortex be replaced by plasma that comes
from somewhere else. That plasma comes from outside the shear layer and its
entry into the shear layer is responsible for distorting the magnetosheath and
magnetosphere streaklines and giving them their varicose appearance. The
regions in between the vortices develop into stagnation regions where flows
converge (seen clearly in the velocity field of Figure 8) and are always found
between the varicose pinches. As the instability develops further, the magneto-
sphere streakline becomes fully entrained into the shear layer and the tracer
particles onitareaccelerated downstream, asindicated by the increased spacing
between particles and seen by satellite [Mitchell et al. » 1987]. Note, however, that
the magnetosheath streakline remains relatively unaffected bythedevelopment
of the instability and is not entrained into the boundary layer in spite of its
proximity to the shear layer.

The streakline plots demonstrate how the roll-up and subsequent merging of
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Figure 12. Snapshots of streaklines for the three simulated LLBL configura-
tions. The upper streakline is in the magnetosheath, the middle one is at the
center of the shear layer and the lower one is in the magnetosphere. The
snapshots are taken at intervals of 12 seconds from ¢ = 1.8 to 3.4 minutes.



0.5

-y

-0.5¢

0.5f

-0.5¢

0.5F

-0.5¢}

0.5¢

-0.5¢

0.5f

-0.5¢

O.5F

-0.5¢

0.5f

-0.5¢

0.5f

-0.5}

0.5F

-0.5¢

x (Rg)

N}

42



y (Ae)

Case B

43



¥ (Re)

Case C

0.5¢

-0.5¢

0.5F

WM”

0.5F

'0-5 .

0.5F

-0.5}

0.5f

-0.5¢

0.5f

-0.5¢

4
4 a a a A " . i A 2
.l v \ v r v v - v r
. - s 2 L " " A A A
v v v v v v v v v

0.5F

-0.5¢

0.5F

-0.5}

0.5F

-0.5¢

N Y .
— v v . v r ~r v v v .
W E
N A N 5 N i a 2 A 2 4
v - v v — v v v v v v
A " . a a a " A a A A

44



vortices in the presence of diffusion can thoroughly mix the magnetosheath and
magnetosphere plasmas to form a boundary layer of roughly intermediate
properties. The vortex roll-up draws the dense plasma that has diffused across
the m: gnetopause from the magnetosheath and the lighter magnetosphere
plasma on the other side of the shear layer into close proximity at the two
stagnation regions that flanking a vortex. The boundary layer between the two
plasmas in the vicinity of the stagnation region is very thin in comparison to the
thickness of the magnetopause and is subject to diffusive processes such asthose
usually invoked to account for the magnetopause thickness (see Figure 13). The
thin sub-boundary layer between the two plasmas is maintained well into the
vortexasitrolls upbut may eventually succumb to diffusion and lead to a plasma
of intermediate properties at the center of the vortex where the diffusive process
has had the most time to work. Homogenization also occurs when vortices merge:
fine structure inside the vortices is lost to diffusion as the vortices are flattened,
one against the other, in a stretching and folding process characteristic of chaotic
flows [e.g., Ottino, 1990]. Through these processes, the magnetosheath and

magnetosphere plasma may be mixed to eventually become indistinguishable

0.5¢ .
> ~
0.5} -
-1t
1 2 3 4 5 6
x (Rg)

Figure 13. [Vp| at ¢ = 3.4 minutes forboundary layer configuration of case B. The
contour level is chosen to identify regions where |Vp| has increased beyond its
value at the inflow boundary and thus indicates regions which are susceptible
to diffusion.



from one another in the boundary layer. The density plot for case B in Figure 11
gives anindication of the extent to which this mixing has progressed in the third
vortex. The plasma in it is homogenizing under the combined effects of the

mixing process and the numerical filter built into the simulation.

CASES A, B AND C

Including the other two cases in the analysis now permits the discussion to be
expanded to examine the effect that the differences between the three cases have
on the development of the LLBL. Recall that cases A and C are variants of case
B (described in Table 1): case A has no rotation of the magnetic field at the
magnetopause and case C has coincident shear and current layers. The simula-
tions of all three cases are subjected to exactly the same noisy inflow boundary
condition through the same choice of initializing seed for the random number
generator.

Comparing the snapshots for the three cases (Figure 11) shows that the
different boundary layer configurations respond with striking similarity to the
noisy inflow boundary condition: all three sets of snapshots show three vortical
structures, the first two of which have never merged and the third of which has
merged once andisin the process of merging again. Thisisin spite of the fact that
the boundary layers simulated in the three cases are different enough from one
another to have rather different growth rates and wavelengths for the fastest
growing mode and indicates the importance of perturbations in determinin gthe
form of the boundary layer. Work in hydrodynamics has demonstrated the
importance of the inflow perturbation in controlling the spatial-development of
the shear layer [Sandham and Reynolds, 1989a); the same is certain to be true
for MHD and the LLBL.

The absence of a flow-aligned component of the magnetic field in case A
removes the inhibiting effect that such a magnetic field has on the development

of the instability. The vortices in case A are larger than those in case B because
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they grow without having to bend magnetosheath field lines, an action which
takes energy from the vortex and puts it into the magnetic field. The boundary
Iayer that develops in case C, for which the shear layer and magnetopause are
coincident, is strongly modified by energy transfer from the flow to the m.agnetic
field. Initially, the developing instability easily overcomes the “tension” of the
magnetic field lines and vortices develops, though slower than in cases A and B.
Eventually, however, the increasingly energy-intensive deformations of the
magnetic field require more energy than is available in the flow and the vortex
roll-up stops. The second and third vortices seen in the density and streakline
plots for case C appear to be cases of arrested vortex development. The second
vortex has only recently stopped develeping while the third vortex has stopped
and been partially detached from the body of magnetosphere plasma. This
detached vortex is connected to the magnetosphere by a thin filament of plasma
which continues to stretch in later timesteps.

Moffatt [1978] has described the effect of differential rotation, such as that
seen in any vortex generated by the KH instability, on an initially uniform
magnetic field which is perpendicular to the axis of rotation. He assumes an
incompressible infinitely conducting fluid with an azimuthal, axisymmetric flow

field to find a generated component of the field,
B, = ByrtQ'(") cos(6 — 2(r)t)8, (18)

where B, is the initially uniform field strength, p is the distance from the axis
of symretry, Q(r) = »(r)/r, v(r) isthe flow field and 0is the azimuthal coordinate
and 0 is its direction. The exact amount of energy put into the magnetic " .id in
this way, Uy, depends on the details of the flow field, but assuming a localized

rotational motion and integrating the energy over all space finds that
Up = (Byot), (19)

where v, is a velocity characteristic of the rotation. Thus, even for an exponen-
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tially increasing velocity field, such as that associated with developing KH
vortices, the rate at which energy is deposited into the magnetic field will
eventually increase faster than the rate ofincrease of flow energy and the vortex
roll-up will stop. In the simulations, the flow fields and the kinetic energy
associated with the vortices are seen to reach a steady-state when there is
flow-aligned component of the field, as for case A of Figure 10. In the presence
of a flow-aligned component of the field, such as case C, the flow kinetic energy
islost to magnetic field deformations as the vortices wind up and the shear layer
is thus stabilized.

The stabilizing effect of the magnetic field in case B is intermediate between
its effect in cases A and C. The shear layer develops vortices which are initially
free to grow without being impeded by the magnetic field but then slow their
development as they impinge on the magnetosheath (compare the size of the
third vortex seen in cases Aand B). The simulation grid used is too short to allow
the development of a large vortex to be followed long enough to see whether it
stops developing once it entrains enough magnetosheath field, astheydoin case
C, but the previous argument suggests that they will.

The presence of a flow-aligned magnetic field in the velocity shear layer, asin
case C, alsoinhibits the entrainment of plasma from outside the shear layer. The
magnetosphere sireakline is entrained at about the same rate for both cases A
and B, but much more slowly for case C. The magnetosphere streakline seen in
Figure 11 bounds a very thin filament of magnetosphere plasma which contrib-
utes little to the composition of the boundary. Even at a later time during a brief
interval without vortex merging (see Figure 14), the entrainment flows of cases
Aand Bare able to deliver large amounts of plasma from the magnetosphereinto
the boundary layer vortices while there is very little vortex-induced mixing
across the shear layer for case C.

In all three cases, the magnetosheath streakline remains mostly unentrained

for the length of the simulation grid. Case A does show the instability having
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some success in entraining the streakline while case B hardly entrains the
streakline at all because the flow-aligned component of the magnetic field resists
deformation by the entrainment velocity field. Even case C, with its shear layer
coincident with the magnetopause, only experiences marginal success before
losing too much energy to magnetic field deformations.

Averaging the results for each case over a one or two minute interval starting

at ¢t = 2.6 minutes illustrates the persistent features of the simulated LLBL
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Figure 14. Snapshots of streaklines for the three simulated LLBL configura-
tions. The upper streakline is in the magnetosheath, the middle one is at the

center of the shear layer and the lower one is in the magnetosphere. The
snapshots are taken at ¢ =5 minutes.

49



o
w
Density (n)

O
)

v T v Y Y v ) 14
A S S S I S
b L L A L I N S A N R I R D D R
05. I A A A R R R A A S P L P D P L L L L D 4 —
- IR L D I L L L R S R I I I S -
..4-.050..'.....'.'..Q'DDOAQQ,.Q.Q. >
t-qdqq---"‘lqvnnvOioq.o'-oocoo-.'o.
L T S N S R T D DAV I T R L BRI " M Rt e G P 0 S S
A SR N . B . . . I L IR S IR S L L N N I T T Y PO
o S S S BB B e W W e e wp e = - 5 b
LI R B R TR N R R R sy
;.......-l.lih----‘-.o_._..‘_. — — -o—-
a & & s & s e > v e s 4. 4 & x s 0 P o P * > w v memen o~ - =
LI S R S L N LML R L RC RO RO R R i S S Rt o T i (@]
- ‘.b-hb--'.I........“\“-‘OQ‘...".' . ———
. e & & & p » P T s T S 4t L S LYY YRR ewmew hafiiali I JJNE JIF " Tl R [+3)
a & & » & o » v o € d 6 6 5 8 ¥ ou B B - - - e e e e e - - o - -
® s &t 2 s P e P e s I L UL EE UBa LRI I R P gt >
s.-.-u-vvv“ah---‘--‘§‘-00000-0- > - -
® > ® 4 s s P e E Ee st YT EET S e o - - o - b AR R I M R P g
-1- L L R L L L R L D L S B B R I I S N O i e
LSS NI ISR IR R IR 2R R B R AR AP g e Mg Sy Sieg S gl -
MRS A A A R B EE IR R T IR S s T
L ' 2 a 2 P A A 2 Y
2 v v Y v 1 4 L2

o
o

o
n

Energy (U,,,)

x (Re)

Figure 15. Time-averaged boundarylayer for the three simulated LLBL configu-
rations. The velocity field shown is the average field minus the initial field. Case
A is averaged from ¢ =2.6 to 3.825 minutes, case B is averaged from ¢ = 2.6 to
3.75 minutes and case C is averaged from ¢ = 2.6 to 4.45 minutes. The contours
of density are at intervals of 0.18 cm™ starting at 1.06 em™ and the contours of
energy density are at intervals of 53 x 107% J/m?® starting at 690 x 10™'2 J/m?.
The magnetic field vector plot is missing for case A because the magnetic field is
everywhere directed normal to the plane of the simulation space.
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(Figure 15). Ideally, the averaging interval, T,..,willbelongenough to eliminate
all transient effects, but a long average is not practical for time-consuming
simulations such as these. Instead, I make use of the quasi-stationarity of the
shear flow and adjust T, to try and make the state of the boundary seen at the
end of the period match that seen at the beginning thereby minimizing the
spurious contributions made to the average by the starting and ending condi-
tions. This method approximates the continually evolving boundary layer by one
that goes through the same phase of development once every T, minutes and
allows a more reliable definition of the “appropriate period of time” used by Lu
and Wu [1991] in averaging the results of a hydrodynamical supersonic shear
layer simulation.

Time-averaging the sirnulated boundary layer makes a comparison possible
between it and satellite observations of the boundary layer which are also time-
averaged. Therelative absence of small-scale structure in the average simulated
boundary layer (see Figure 16), in comparison to the observed boundary layer
(see Figure 7), is not mere!y a result of the averaging: Figure 16 and case B of
Figure 15 come from a 69 second average during the course of the simulation
while each point plotted in Figure 7 is the result of a 128 second average of data
taken from instruments during the satellite pass [Eastman et al., 1985] thus
suggesting that the simulation average should show more structure than the
observed boundary. The fact that the observed boundary layer contains small-
scale structure even after undergoing a long average confirms that the boundary
layer is rot developing under the almost steady conditions assumed in the
simulation, but instead is significantly modified by variations in the surround-
ing plasma which are likely due to variations in the solar wind [Sibeck, 1992].

The large-scale features of the time-averaged plasma density, velocity and
magnetic fields seen in Figures 15 and 16 are similar to those seen during the
satellite pass shown in Figure 7. The magnetopause, as identified by the

magnetic field rotation for cases B and C, remains narrow in comparison to the
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Figure 16. Cross-section of the average shear layer along the line plotted in
Figure 15 for case B. The logs of n and v, are plotted and the coordinate axis
reversed to aid comparison with Figure 7.At ¢ = 0, the center of the velocity shear
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LLBLin spite of the verylarge perturbations made toit by the KH instability and
stays well outside of the shear layer, partially justifying the assumption of an
initial displacement between the centers of the velocity shear and current layers
which was made earlier in determining which LLBL configurations to study. The
transition from magnetosheath to magnetosphere density levels starts slightly
on the magnetosheath side of the average magnetopause and continues wellinto
the earthward side, showing a plateau with intermediate density in the middle
of the boundary, like that observed by Paschmann et al. [1978], thus supporting
Sckopke et al.’s [1981] proposal that eddies produced by the KH instability are
responsible for mixing the boundary layer plasma. The velocity boundary layer
extends slightly across the average magnetopause into the magnetosheath, but
most of it is situated on the earthward side of the magnetopause.

The boundary layers produced by each of the three cases presented in Figure
15 are once again rather similar despite the differences between the cases. In
each case, the boundary layer broadens with downstream distance and consists
of a tailward-moving plasma of intermediate density, as required by observa-
tions [Eastman et al., 1976; Paschmann et al., 1978; Eastman and Hones, 1979;
Sckopke et al., 1981; Mitchell et al., 1987] and clearly continues to broaden
beyond the exponential growth region, x = 1to 2.5 Ry, identified in Figure 10.
The broadening seen for p, vand U, confirms that the KH instability is indeed
transferring mass, momentum and energy across the magnetopause into the
magnetosphere. The differences between the three cases show themselves
primarily in the rate of development of the boundary layer which slows its
broadening as the magnetic field becomes more important in cases B and C, as
predicted by the linear stability analysis (see Table 2).

The plot of ¥~v, in Figure 15 demonstrates the development of a fast
bour<s -layeronthe earthward side of the magnetopause due to stresses acting
acr -+ *~e magnetopause. As the boundary layer develops, it draws in plasma

from the adjacent regions to replace the plasma removed by the downstream-
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accelerated flow. Since momentum is conserved and the mrr~— i fluxes
through all but the outflow boundary are fixed, these entrairi. - ‘lows must
draw the plasma they need through that boundary, thus leading to the upstream
flows seen on tie earthward side. For a larger simulation grid, the restrictions
imposed on the entrainment flows by the boundaries would be less severe and the
entrained flow would be free to come from directions other than downstream.
With the current simulation grid, the earthward side of the flow field has the
appearance of a sunward-flowing CPS plasma which is slowed as it is entrained
into the shear layer and may actually be a realistic flow configuration in spite of
the boundary conditions. When active, the entrainment process may reduce the
occurrence of magnetic merging on the dayside magnetopause by slowing the
CPS plasma enough before it reaches the merging region thatitisunable to help
drive the merging process.

The bcundary layer broadening is due to the action of the time-averaged
Reynolds and Maxwell stresses in transporting momentum into the magneto-
sphere. The Maxwell stress is already present in (5) and becomes identifiable as

such after collecting and rewriting the magnetic field terms:

J P dp Ot
E(Pvi)*'gx;(wivj):‘ér—;*' 3.::;’ (20)
where
ar; 1
Lo (VxB)xB‘. (21)
= (7 xB) ]

and t; is the magnetic component of the Maxwell stress tensor,
Ty = [E,-B i —3B- B5,~j] / U le.g.,Jackson,1975) and I have adopted the convention
of summing over repeated subscripts (e.g., ab, = a. b, + ab, +a,b, =a-b). Aver-
aging over (20) gives expressions for the time-averaged Reynolds and Maxwell

stresses but first requires a few definitions. The time average of a variable, e.g.,



v,, 1s defined by

122 1.
g = Tl Jv,.dt (22)
ave ‘-fT-vr

where T, is large compared to the turbulent time-scale. The definition of the
time average may be used to decompose v, into slowly and quickly varying parts,

v; = U; +v/. The Favre (density-weighted) average [Favre, 1965],
o; = pv, /P, (23)

)

gives another way of decomposing v;, 1. =, +v/”, and permits the effects of
compressibility to be included in the Reynolds stress by making an important

correlation zero [Hinze, 1975]:

E{’: = p(7; +vi”)
= 5+ 7T
=(p+p)o, +pvf
= po; + ?ﬁi +Fs‘”:

(24)

and by using (23) and noting that p’ = 0, the correlation pv” mustbe zere Time-

averaging (20) and substituting using p;, = 7, + p{ and v, = 3, + v gives

a — RY2™ ,,\ 9 — \Nf ~ oNf~ ” - aﬁ 3?11
5(([3‘ +p )(Ui +y; )}'Fg;-((p, +p )(U‘- +y; )(Uj +Uj )) = —'a: —éx_ (25)

i J
Expanding the left-hand side, using p” =0 and pv” = 0 (note that v” #0) and
rearranging the terms gives the time-averaged equation of motion,

)=-Zs 2

A

(]

d (- — = _ T
;(P i)+'aT(p iVj (Tij——pvivj)‘ (26)

s e

The new term, — v/vy, is the Reynolds stress. Making the substitution



8{

l‘l‘ll

P U] (27)

n& no

allows introduction of an anomalous viscosity, 7, le.g., Schlichting, 1968;
Miura, 1984}, into (20) and gives

—_ %0,
E™ (Pv.'vj) = —%'Fﬂm?%

J

()+

(28)

for constant 7, ,. The x-component of (28) describes the development of the

downstream component of the simulation flow

d - O e - 317 %0,
g(pvx) + -%’— (pvxvy) = &C F Nano 53 avz (29)
with the anomalous viscosity given by
7?am:) = (BxBy/"lO —p ” ’)/ (30)

A positive value of the anomalous viscosity therefore acts diffusively to broaden
the average boundary layer and a value for it may be calculated from simulation
results.

The Reynolds and Maxwell stresses, their sum and the transverse energy flux
(see Appendix A) are shown in Figure 17 for the three cases during the averaging
intervals used to produce Figure 15. Surprisingly, the total stress for the fastest
growing case, caseA, is the smallest of the three cases due to a largereversal near
the outflow boundary, indicating that momentum is being transferred back into
the magnetosheath flow. This reversal also manifests itselfin the corresponding
plot of U, in Figure 15 as a reduction in the rate at which the energy boundary
layer broadens; the same plots for cases B and C show steady broadening for the
entire length of the simulation.

Cases B and C both show total stresses that are favorable to continuous

(9]
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momentum transport into the magnetosphere, but due to different mechanisms.
The Reynolds stress is responsible for most of the transport in case B, likely
through vortex-tilting [e.g., Horton et al., 1987], while the Maxwell stress is
responsible in case C, supporting Miura’s [1984] findings for temporally devel-
oping simulations of the KH instability. Superposition of the shear layer and the
magnetopause in case C is responsible for increasing the Maxwell stress by
making it possible for the KH instability developing at the magnetopause to
compress the tilted field found in the stagnation regions, thus making B.B large

Case A

y(Re)
(@]

x (Rg)

Figure 17. Time-averaged shear stresses and energy flux for the three simulated
LLBL configurations. The averaging intervals are the same ag used in Figure 15.
The contours of stress are at intervals of 1.2x 107 kg - m/s?, centered about the
zero level and the contours of energy flux density ave at intervals of
1.7x107° J/m?-s, also centered about the zero level. There is no plot of Maxwell
stress for case Abecause the magnetic field is everywhere directed normal to the
plane of the simulation space.
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(see case C in Figure 11) and increasing the contribution to the total stress made
by the Maxwell stress.
The anomalous viscosity calculated from (30) using the averaged quantities

is always larger than the minimum value required to produce the LLBL.
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Sonnerup [1980] found that an anomalous kinematic viscosity, v,,, = 1,../P, of
10° m*/s is sufficient to produce the observed boundary layer broadening. The
anomalous viscosity found by calculating v, , from the averages presented in

Figures 15 and 17 is everywhere larger than 10° m?/s in the LLBL, from ~2 Ry
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downstream of the inflow boundary to the outflow boundary, and is almost

everywhere greater than 10'° m?/s for all three cases.



CONCLUSIONS

All of the boundary layer configurations considered in the previous section
show the spatial development of a tailward-broadening boundary layer just
inside the average position of the magnetopause, the low-latitude boundary
layer (LLBL), which is composed of a plasma having density intermediate
between the magnetosheath and magnetosphere plasma densities and moving
tailward at high speedsin accordance with observations. The broadening may be
described as the result of an anomalous viscosity representing the effects of the
Reynolds and Maxwell stresses. The values calculated for the anomalous
viscosity exceed the value required to produce the observed boundary layer
[Sonnerup, 1980} everywhere in the LLBL and for all of the configurations
considered.

As for conventional fluid viscosity, anomalous viscosity in the LLBL leads to
entrainment of the surrounding plasma into the developing boundary layer.
Practically ail of the plasma entrained comes from the magnetosphere where it
convects sunward under theinfluence of the cross-tail electric field [Baumjohann
et al., 1989]. Once in the boundary layer, it is accelerated tailward and returns
to the magnetotail from whence it came, perhaps completing a large-scale
circulation pattern.

For one of the boundary layer configurations considered, the total stress
showed a significant reversal over a large region of the LLBL. In this region,
momentum and energy were transferred into the magnetosheath from the
magnetosphere in a manner reminiscent of that observed by Lu and Wu [1291]
in hydrodynamical simulations of a supersonic shear layer. The other boundary
layer configurations showed total stresses that were only weakly reversed in
very small regions suggesting that the flow-aligned component of the magnetic
field present for those configurations was somehow responsible for assuring

almost continuous momentum and energy transport into the magnetosphere.
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The presence of a flow-aligned component of the magnetic field in the
magnetosheath slows the spatial development of the LLBL and reduces mixing
between the magnetosheath and magnetosphere plasmas due to the stabilizing
effectof magneticfield line tension. Aflow-aligned component ofthe field can also
prevent large, fully developed vortices from rolling up beyond their ability to
bend the field lines threading them. A vortex in such a situation first ceases its
roll-up and then appears to be sheared away from the magnetosphere by the fast
magnetosheath flow. The nonlinear stabilization of the boundary layer by the
magnetic field makes it unable to continue mixing plasma across the boundary
so that less efficient methods of transporting plasma into the magnetosphere
once again become important.

The process of wave-particle diffusion frequently invoked as a means of
transporting magnetosheath plasma intoe the magnetosphere [e.g., LaBelle and
Treumann, 1988] may be aided by the Kelvin-Helmholtz (KH) instability. The
large vortices created by the instability act as obstacles to the magnetosheath
flow and have magnetosheath plasma pressed against their upstream sides. The
sharp gradients that develop between the magnetosheath and magnetosphere
plasmasin these regions are steep enough to restart the wave-particle diffusion
process assumed to have produced the initial boundary layer. In this way,
magnetosheath plasma that would otherwise have been unable to enter the
LLBL because it was frozen onto field lines whose magnetic tension prevent
them from being entrained cun pass inte the boundary layer. Although the
simulation is at present incapable of treating this diffusion properly, it has
permitted identification of regions where it could be important.

Even though the simulation and initial boundary layer configurations have
been made as realistic as possible, there are incvitable shortcomings which both
aid and hinder the development of the spatial instability. Probably the most
significant shortcoming is the simulation’s current inability to deal with the

curved geometry necessary to include variations in the magnetosheath plasma
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parameters along the length of the simulation space. In reality, the magneto-
sheath velocity increases from zero at the subsolar point to faster than the solar
wind speed at the flanks of the magnetosphere with similar large changes
occurring to the other plasma parameters [Spreiter et al., 1966]. The changing
conditions along the magnetopa:use have the potential tointroduce new possibili-
ties for the development of the LLBL. For example, downstream variations ofthe
boundary layer parameters mean that the wavenumber and frequency of the
fastest growing KH instability mode will also vary, thus leading to the possibility
that the fastest growing mode atan upstream position will develop and dominate
the faster growing downstream modes simply because it has more spacein which
to develop.

A magnetosheath velocity which increases along the length of the magneto-
pause would provide a streamwise-increasing source of free energy with which
to drive the instability. The current simulation shows that the KH instability in
all three cases develops spatial at an exponential rate from the noise level to
saturation in approximately 1.5 Ry and then enters a phase of slow growth
characterized by vortex merging, diffusive smoothing and steady, linear broad-
ening of the boundary layer. With the continual addition of free energy made
possible by an increasing magnetosheath velocity, it is unlikely that the insta-
bility would ever truly saturate, but would experience a phase of exponential
growth as before and then enter a phase of intermediate growth having some of
the characteristics of both the exponential and slow growth phases. However, if,
as supposed, the boundary layer is nonlinearly stabilized by a flow-aligned
component ofthe magneticfield, the phase ofintermediate growth will be greatly
reduced but may also be aided by the downstream weakening of the magneto-
sheath magnetic field.

Another shortcoming of the simulation is its current inability to include three
dimensional effects. The equatorial plane of the LLBL where the initial bound-

ary layer configurations are situated is connected through the field lines



threading it to distani regions of the magnetosphere having rather different
plasma and flow paramsters. The fastest growing mode at the equatorial plane
may not be the fastest growing mode ir other regions on the same field lines so
the mode in the equatocrial plane may develop more slowly than predicted as it
loses energy in its attempts to get the other regions developing. On the other
hand, the field geo:1etry may be such that a fully-developed instability in one
region couples favorably to another region where the instability is barely
underway thus grzatly accelerating its development.

As well as addressingthese shortcomings, future work will exploresomeofthe
avenues of inquiry opened by this thesis. For example, a simulated satellite pass
through a deveivping LLBL would yield a “dataset” which could be compared
against actual satellite passes to further assess the role of the KH instability in
the observed boundary layer. Spatial and temporal energy spectra, as well as
other diagnostics available from fluid turbulence theory, would enable examina-
tion of the turbulent structure of the boundary layer [Lesieur et al., 1988} and
would indicate the degree to which turbulence theory may be used to understand
the development and dynamics of the boundary layer. A detailed energy buigat
of a vortex roll-upin the case of a coincident magnetopause and shear layer {;.c..
case C) would help (o further understanding of the nonlinear stabilization
process. Adding the effects of resistivity to the equations would permit consider-
ation of boundary layer configurations for which the magnetic field rotation at
the magnetopause is large enough to introduce the possibility of magnetic
merging.

This thesis has presented the results of simulations of the spatial develop-
ment of the LLBL (summarized in Figure 18) which confirm, once again, the
significance of the KH instability in determining the structure and dynamics of
the boundary layer. This work has striven to increase the realism of simulations
of the LLBL by investigating several realistic boundary layer configurations

using an ideal magnetohydrcdynamic (MHD) simulation implemented on a
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Figure 18. A model of the spatial development of the LLBL based on the three

simulated LLBL configurations.



nonperiodic grid with carefully constructed boundary conditions. The boundary
layer configurations were chosen to represent possible configurations of an
important region of the LLBL while remaining computationally feasible to
simulate and extend to three dimensions in later work. The simulation makes no
simplifying assumptions about the equations being solved and has been shown
to be capable of realistically simulating the ideal MHD equations in the LLBL.
The boundary conditions implemented permit the KH instabilityin the LLBL to
be followed well into its quasi-stationary state without compromising the quality

of the simulation results.
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APPENDIX A

SOLAR WIND ENERGY INCIDENT ON THE MAGNETOSPHERE

The total energy flux density in an magnetohydrodynamic MHD plasma is
given by

1 Y 1
=|=pv° +—— +—ExB, Al
q [ g PV y—1 P)" oL (A.1)
where the {irst term in the parenthesisis the kineticenergy and the second is the
combined internal energy and pressure work and the term outside is the
Poynting flux. Assuming infinite conductivity, E = —vx B, and B perpendicular

to v gives

1 Y 1 -
=|= +——p+—B°|v. A2
q (2 IR, (A.2)

With a few simplifying assumptions about the solar wind and magnetosphere,
I can obtain an estimate of the total amount of energy incident on the magneto-
sphere. Replacing the magnetosphere with a circular disk which is sriented

normal to the solar wind and has a radius, R

ms

»» equal to the radius of the

magnetosphere gives a total energy flux
P=qgnR2_. (A.3)

With values typical of the solar wind plasma, i.e., n=10cm®, p =0.003 nPa,
B =6.0 nT and v =350kmy/s, the total solar wind energy flux incident on a
magnetosphere 20 R; in radius is 19x1¢™* J/s. For comparison, the solar
radiation energy flux incident on a disk one Eq in radius is 170,000 x 102 J/s,

some 9000 times greater.
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APPENDIX B
REDUCING DISPERSION IN A

TIME-CENTERED FLUX-CORRECTED TRANSPORT ALGORITHM3

INTRODUCTION

The flux-corrected transport (FCT) technique was developed to deal with
problems that arise in the numerical solution of the one-dimensional continuity

equation

B Ew , (B.1)

where p is density and u is velocity. The most serious problems arise when the
numerical method being used to solve (B.1) is asked to convect a sharp feature
in p. Most simple algorithms have difficulties in dealing with the short wave-
lengths associated with such features and produce unwanted oscillations in the
vicinity of steep gradients which must somehow be removed (see Figure B.1).
Many algorithms add a dissipative term or use artificial viscosity to keap the
spurious short-wavelength features from becoming too large. More recent
algorithms, such as those based on the FCT [Boris, 1976a; Zalesak, 1979],
piecewise parabolic method [Carpenteretal., 1990} and total variation diminish-
ing [Hirsch, 1988] schemes, use nonlinear *echniques to inhibit the formation of
such features and represent the state ¢f t}:e art in finite difference algorithms.

The most widely used implementat:. . . the FOT technique, the ETBFCT
algorithm [Boris, 1976b; Book et al. 175}, still suffers from residual errors

which resultin the formation of “terrac:s” on steep gradientsin p. These terraces
p

3 A version of this appendix has been submitted to the Journal of Computational Physics.
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Figure B.1. A semicircular density profile after being convected by three
algorithms. The FTCS algorithm is unstable so the profile has been convected
only 9 cells whereas the other algorithms are stable and have convected the
profile 36 cells across the grid. (Courant number = 0.25)
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arise from an interaction between the dispersion error inherentin the algorithm
and the nonlinear limiter arcund which FCT algorithms are built. Although they
are usualiy anly cosmetic in nature, occasionally the appearance of terraces will
lead to serious errors in a simulation. The frequency of these errors prompted a
detailed examination of the original ETBFCT algorithm which has led to the
improvements presented here.

In this appendix, I describe ti:c ETBFCT algorithm and apply an analytical
technique to study its dispersion and stability characteristics. I then describe
Book and Fry's [1984] dispersion-reducing extension to the algorithm and show
how a very simple alteration of their algorithm reduces the dispersicn error still
further while introducing an element of flexibility. The stability characteristics
of both algorithms are examined in greater detail than before by considering
time-centered formulations of the algorithms. Finally, I describe three tests of

this improved algorithm and present the results of those tests.

SINGLE STEP ALGORITHMS

The simplest method of solving (B.1) is by finite differences. For example, a

simple finite difference form for (B.1), with u constant, is

n+l

Pl =P PPl g
At 24x

(B.2)

where At and Ax are the numerical timestep and spatial step sizes, respectively.
The superscripts identify different time levels, t = nAt, while the subscripts
identify different spatial positions, x = iAx. This particular difference scheme
(Forward-Time Centered-Space or FTCS) is unconditionally unstable for all At
and requires the addition of a diffusion term for stability to be possible. Even with
enough diffusion to guarantee stability, dispersion problems make the FTCS
scheme unsuitable for serious use. Stability and dispersion problems such as

these are present in all finite difference schemes. The degree to which these
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problems can be minimized determines the usefulness of an algorithm.

The ETBFCT algorithm [Boris, 1976b; Book et al.,1581] adds corrective fluxes
to the FTCS scheme which serve to reduce the algorithm’s stability and
dispersion problems. Writing (B.2) as

F" _ iy Al
[P s = PF ) LA 2 Ax[F""’]T (B.3)

where

[Fionl, = %uAt(pE‘u +p7) (B.4)

puts (B.2) into a form which makes the action of the fluxes clearer. [F,.’;W]T are
the transport flux terms and are responsible for convective transport of p
through the walls of the ith numerical cell at x = (i £ 1/2)Ax. The finite difference
method used in ETBFCT adds two more fluxes to the simple formulation given
in (B.3). The first diffuses the FTCS solution enough to guarantee stability and
remove all spurious oscillations, but does so at the expense of sharp gradients.
The second flux antidiffuses the diffused FTCS solution to bring back the
gradients which were smoothed away by the diffusive flux (see Figure B.1).
Before the antidiffusive flux is applied to the diffused FTCS solution, it is first
limited by a FCT limiter to prevent the numerical oscillations from reforming.

The difference equation used in ETBFCT is then

+ '[Fi,;’l"]n —[Fin-l/?][) _ [F"’:/l‘],a —[F;’_‘;]A ,

Pt =108 s — —

(B.5)

where

[Fr.), = vate{plis - o) and [F2], = Limit]u, a([005] rreg = (07 s )]
(B.6)

are the diffusive and antidiffusive fluxes and v, and u, are the diffusion and
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antidiffusion coefficients, respectively. The limiter used by ETBFCT, repre-
sented by Limit| ]in (B.6), and most other implementations of FCT is described
by Boris [1976b] and Book et al. [1981].

The diffusion and antidiffusion coefficients are chosen to minimize ETBFCT’s
stability and dispersion problems. One way of quantifying these errors is
through application of Von Neumann’s method of stability analysis[e.g., Fletcher,
1988]. The method examines the amplitude and phase of a single Fourier mode
as it is advanced in time by the finite difference scheme under test. Substituting

for p! in the difference scheme using
p:x = rnelhx - rnelikA: - rneIiB’ (B.7)

where I = /=1, r" istheamplitude ofthe mode with wave numberk and 8 = kAx,

n

gives an expression for p*'. The amplitude error of the scheme is then the

relative change in the amplitude of p; from one timestep to the nert,
A=|G]-1, (B.8)

where G = p**'/p? . The phase error of the scheme is the relative phase shift that
develops between the solution generated by the difference scheme and the exact

solution during a timestep:
R=2"—""=22_1, (B.9)

where x is the distance that the mode is propagated by the scheme in time Af and
€ is the Courant number, € = u At/Ax. The value of k& is related to G through
tank . = —-ImG/ReG. Applying Von Neumann’s method to (B.5) and then ex-

panding the amplitude and phase errors in terms of j gives:

34



A= [2(;1,, -v, )+ .e"][)‘2

+[(;1p - vp)(,up -v, —%)-é- (2#,, ——%)82],34 (B.10)
+0(°),

the amplitude error and

1 1
R = [_E+ Vp ——3“82]ﬁ2
1 1), (1 1,
+[E—26-'— Vp([lp -V, +Z)+(E— Vp)82 +384Jﬂ4 (B.11)

+0(p%),

the phase error. Thelinear Von Neumann method cannotdeal with the nonlinear
Limit[ ] operation applied in determining [F,-T;,‘,]A and must be replaced by the
identity operator while performing the stability analysis.

Appropriate choices for v, and pu, will minimize the algorithm’s amplitude

and phase error. The values originally used with ETBFCT [Boris, 1976b],
vp=—6:-l-+-:-)1’-£ and uy,rzl——e R (B.12)

were chosen so as to reduce both sources of error to fourth order (see Figure B.2).
The error that remains, however, is still sufficient £o create the “terraces” that
are the bane of FCT algorithms. Terracing is the result of residual phase errors
which cause the short wavelength modes present at a sharp edge to lag behind
the edge as it propagates across the grid. The limiter sees these modes as newly
created peaks which it tries to remove but instead merely flattens into plates s
or, if the new peaks form in the vicinity of a sharp gradient, terraces asin Figure

B.1.
It is possible to reduce the phase error still further by adding another source
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Figure B.2. The exact amplitude and phase error of the single step ETBFCT
algorithm for three sets of coefficients: Set I is Boris’s original set, Set Il is Book

and Fry’s extended phase accurate set and Set III (with v, =0.36467) is this

appendix’s tunable set (see Table B.1). The Courant number, e, has been doubled

to aid comparison with Figure B.3.



of diffusion [Book and Fry, 1984]. Prediffusing the FTCS solution used in
ETBFCT introduces a new diffusion coefficient, y,, which may be set so as to

reduce either the amplitude or dispersion error (but not both) to sixth order:

F, —[Fr
[p?+1]F7CSD = [p:“]ms +[ ‘h]’mDAx[ W]‘WD ’ (B.13)

where [F,.’;,,,]mu = ypr(p{'H -p! ) .The extended ETBFCT algorithm that results

isidentical to the original apart from the FTCSI? (FTCS Diffused) selution which
now replaces the FTCS solution everywhere in (B.5) and (B.6). Performing a
Von Neumann analysis o “. is, Book and Fry’s, extended ETBFCT algorithm

gives an amplitude error

A= [2(,up -v, —yp)+ 82][32

3 1) .
+{"—2Ypup + (:up “Vp— )’P)(#p Vo =7 -EJ +(2,Up —E)elJp‘ (B.14)
+0(B°)

and a phase error

1 1
R= [—-6-+vp +7, ..582—",32
1 1~ 1 )
+[ 120 Vet ¥ (VP + yp)(vp +7p —ZJ + (E Vo~ Yp )82 +»_5-£‘]ﬁ4
+O(ﬁ6),
(B.15)

Choosing

1 1 1 1
—1—582, Hy =fé'—6'82 and Y» =Z€2 (B.16)

v, =24
*76

reduces the algorithm’s amplitude error to sixth order while choosing



v, = ———+—2—£2, M, =1 1

6 6

and 7, N

5t (B.17)

reduces its phase error to sixth order.

Unfortunately, both sets of coefficients have their problems. The amplitude
accurate set given in (B.16) results in an algorithm which still suffers from phase
error as large as that of the original ETBFCT algorithm. Even the residual
amplitude error for this set of coefficients is not significantly improved from that
of the original set given in (B.12) (with y, =0).

The phase accurate set, (B.17), gives the algorithm very good phase proper-
ties, but at the expense of amplitude accuracy (see Figure B.2). The short
wavelength modes are strongly filtered as a result of the ielatively poor
amplitude accuracy of the algorithm (aithough it is still fourth order accurate).
The combination of filtering at short wavelengths and good phase properties is
desirable for many problems: the filtering removes those modes which could, if
permitted to persist, eventually suffer from phase errors. However, a slowly
evolving system simulated using such an algorithm may suffer from excessive
filtering because the filter will erode stationary and slow-moving structures: a

shear flow subjected to the Kelvin-Helmholtz instability is one such system.

TWO STEP ALGORITHMS

All of the algorithms presented in the previous section were assumed to
perform their time advancement in a single timesiep. In fact, most finite
difference methods use some sort of multiple step time advancement scheme to
time-center themselves. ETBFCT and other recent efforts made towards im-
proving it [Odstrcil, 1990; Grandjouan, 1990] are no exception. ETBFCT puts
the difference equation described in (B.5) into a predictor-corrector framework
in which the solution obtained during the predictor step is used to calculate the
transport and antidiffusive fluxes required by the corrector step. AVon Neumann

analysis ofthe full ETBFCT algorithm including both the predictor and corrector

88



steps shows that the coefficients given in (B.12), coefficients which work well in
a single timestep implementation of the algorithm, make the amplitude and
phase of the corrector step only second order accurate. Allowing the coefficients

to differ between the predictor and corrector steps and choosing

and g =L_£_ (B.18)

where the subscript ¢ signifies coefficients that are to be used during the
corrector step, increases the amplitude accuracy of the corrector step, and
therefore the algorithm as a whole, to sixth order and its phase accuracy to fourth
order. Unfortunately, a large amount of residual phase error couples with the
very good amplitude behavior to make the algorithm very susceptible to terrac-
ing errors as well as being weakly unstable to long wavelength modes.

The full predictor-corrector formulation of Book and Fry’s extension to
ETBFCT results in an algorithm with six coefficients. The availability of such a
large number of coefficients makes it possible to build very good amplitude and
phase properties into the algorithm. The finite difference equations composing
the full ETBFCT algorithm with Book and Fry’s extension are, for the predictor
step,

n n nﬂh n+\a
oy = [P0 ] presn * [P, Ax[F e, [P, [F""’ 4 (B19)

where

[Faol~{Fuly | [Fadn (Pl

[0 ]eep = 1 - = — (B.20)

with the fluxes
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[E:"’]T = %u?*W(A‘:-"2)(p:‘+l + p;n ):
[F~:¥‘l] = Ypr(p;‘+l - p:. )’
[ lﬂhJD = vax(p?n —P:') and

[Eﬁzw].a = Limit’[# pr([p ?:I’h]msn [p i ﬂh]F‘TCSD)]

(B.21)

(this is the most general 1-D form of the algorithm: u is permitted to vary in time

and space) and for the corrector step,

WO o Nl L i

pi P T

where

[pn-H] = pgl _ [F:’":;‘h T —[Fi’l‘:ﬁw T 4+ [F”:;‘h preD _-[F::/"f]pml)

Ax Ax

with the fluxes

DO | =

Lo B
[Fnvr),,.p = Yeax(pli - o),
[Fn], = veAx(ph. — P} ) and

[F231], = Limit]pa((pr2], [ ],0)}

u?:l/’fAt(Px e+ pf ﬂh)

(B.22)

(B.23)

(B.24)

The intermediate solution [p"“]w uses time-centered fluxes in a diffused

leapfrog (LD) difference scheme to make the algorithm second orderin time. The

LD algorithm plays the same role in the corrector step as the FTCSD algorithm

does in the predictor step. Note that setting v, =v,, g. =g, and 7, =

Y, =0

reduces (B.19)-(B.24) to those composing Boris’s original ETBFCT algorithm.
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Performing a Von Neumann analysis on the corrector step of the predictor-

corrector formulation of Book and Fry’s extended ETBFCT algorithm (this time

with u constant to ease the analysis) gives an amplitude error

A= [2(”c —V.— Yc)}ﬁ2

1
+[:(uc = Ve YC)(p'c VeV~ 5) - 2YC(”p =V, - Yp) - 2Y¢-.uc

1 (B.25)
-i-(u‘D =2(v, +7,)+ vc)z-:2 +ze‘]ﬁ‘
+0(°)
and a phase error
1 1 1
R= [—E+“" Ve ~TptVetgTe +Esz]ﬁz
1
+[-—+ Ho(Ve — ) = Vet + 1) =7 (v, +7,)
120
1 1 )
+(nup_Vp—7p+vc+§YcX_z+ﬂp+Vc+YC) (B.26)
1( 1 1 Yo 1 1.
=l -=+v +y += -
2( AL 2"‘} 20 ]B
+0(S°).

To ensure good amplitude and phase accuracy in the full predictor-corrector
formulation, the predictor and corrector step errors should be minimized
individually. Thus, each set of coefficients chosen must simultaneously reduce
the order ofthe amplitude and phaseerrorin(B.14)and (B.15)(the predictorstep
error) as well as in (B.25) and (B.26) (the corrector step error). An extensive
investigation of potential coefficient sets has produced several such sets, only

two of which have proven to be useful in actual simulations.



The first set of coefficients uses those given in (B.17), Book and Fry’s set, for
the algorithm'’s predictor step and those in (B.18), with 7. =0, for its corrector
step. (Note that the predictor step coefficients always have & = u(4t/2)/Ax since
the predictor step is a half timestep.) This set (Set 1I in Table B.1) makes the
amplitude error fourth order in the predictor and sixth crder in the corrector
while the phase error becomes sixth order in the predictor and fourth orderin the
corrector. Unlike Book and Fry’s uncorrected single timestep scheme, the
amplitude error does not persist from timestep to timestep (Figure B.3) because
the results of the predictor step, which suffer from significant attenuation at
short wavelengths, are used only to calculate the fluxes required by the corrector
step. The amplitude error of the corrector step is very small for low Courant
numbers (there is none at all for € = 0). The phase accuracy of the predictor step
is very good and likely serves to increase the time-centeredness of the whole
algorithm. The corrector step’s phase accuracy, however, is merely adequate: any
short wavelength modes that manage to develop lag their true positions and
persist from timestep to timestep because of the algorithm’s good corrector step
amplitude accuracy. To be of practical use, this set of coefficients would need to
be somehow modified to filter at short wavelengths so asto avoid theintroduction
of such modes and the subsequent generation of terraces.

The second set of coefficients found fo:* the predictor-corrector formulation of
Book and Fry’s extended ETBFCT algerithm manages to address the shortcom-
ings of the first by introducing a tunable element to the set. By requiring the
predictor step to be at least fourth order accurate and the corrector step sixth
order accurate in both amplitude and phase, the coefficients for the predictor

step become

1 1 3 . At
V, SqetomE, U, ==——¢& and 7, =~g+-i—6-82 with & =u———, (B.27)

and for the corrector step,
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Table B.1. Diffusion, antidiffusion and
prediffusion coefficient sets for the predic-
tor-corrector formulation of Book and Fry’s
extension to ETBFCT given in (B.19)-
(B.24). The subscripts p and ¢ indicate the
predictor and corrector step coefficients,
respectively. € = u(At/2)/Ax for the predic-
tor step coefficients and € = uAt/Ax for the
corrector step coefficients w]i/gh
K =[5(41s* +160(3v, ~ 1)(e* - 4)+64)| .
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Figure B.3. The exact amplitude and phase error of the corrector step of the
predictor-corrector ETBFCT algorithm for three sets of coefficients: Set I is
III (with v, = 0.36467) is this appendix’s tunable set (see Table B.1).



Sl 1, 1 1, 0 with £ =
V°_6 248’“"-6 248 andycu.Omthe—qu. (B.28)

These coefficients rnake the algorithm unstable due toresidual amplitude errors
in both the predictor ard corrector steps. However, leaving v, as a free
parameter and removing the requirenient of sixth order amplitude accuracy in
the corrector step givesthe algorithm an element of tunability while maintaining
at least fourth order amplitude accuracy in the corrector step. The new coeffi-
cients (Set IIT in Table B.1) are

1 1, i1, ] At
=———g, = — 4 — -— th U B2
M, 6”6 Yp 5 38 v, with ¢ u2 (B.29)
and
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V., = — i B o s R c:...____s +—.K’ c=—.—£ +_..._K’
6 48 240 H 6 48 240 v 8 120

K =[5(41¢* + 160{3v, - 1fe* - 4)+64)] " with e =u L.
(B.30)

Adjusting v, appropriately and substituting into (B.29) and (B.30) results in
sixth order phase accuracy during the corrector step and an adjustable amount
of filtering at short wavelengths which can be used to control the formation of
terraces (see Figures B.2 and B.3). Filtering at st =+ wavelengths and low phase

error are both essential in inhibiting the formauion «f i “rraces.

TEST PROBLEMS

To evaluate the performance of the predictor-corrector formulation of Book
and Fry’s extended ETBFCT algorithm for the different coefficient sets, I
subjected an implementation of the algorithm to three test problems. The first
problem, the semicircle test, examines the algorithm’s tendency towards phase,

amplitude and terracing errors in one dimension [Oran and Boris, 1987]. The
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second, the shock tube test, determines the algorithm’s suitability for one-
dimensional problemsinvolving shocks, discontinuities and rarefactions[Hirsch,
1988; Sod, 1978]. The third, the Kelvin-Helmholtz (KH) instability test, verifies
an algorithm’s ability to deal with two-dimensional hydrodynamic systems
having a wide range of convection velocities. This last test problem is much more
involved than the first two and has no analytic solution, but can point out
weaknesses in the algorithm that are missed by the other two tests.

In the sernicircle test problem a semicircular density profile is convected at a
uniform rate across a periodic simulation grid by repeated solution of (B.1). The
density is initially uniform everywhere except between cells 2 and 32 of the 80
cell simulation grid where it assumes a semicircular profile. The results of the
test are evaluated by comparing the algorithm-convected density profile against
the exact solution.

The shock tube test problem applies the algorithm to the solution of the one

dimensional hydrodynamic equations,

o, 9pv) _
E + Ew =0
Apuw) Aew’) o
3 + Eeanw (B.31)
oF | d(Eu) _ _9(pu)
dt ox &

where p is pressure, E = p/(y — 1)+ pu® /2 and y = 1.4, for a rapidly evolving one
dimensional physical system. The physical system modelled in the problem
consists of twe adjacent regions of stationary gas with different densities and
pressuresinitially separated by a diaphragm. To the left of the diaphragm, p=1
and p = 10° while to the right, p = 0.1 and p = 10* (values are in SI units). The
test starts with the disintegration of the diaphragm and follows the evolution of
the flows that develop. The simulation grid used in this test is 80 cells long with
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Ax = 0.125 and fixed boundary conditions. An exact analytic solution is possible
for this situation [Hirsch, 1988] and permits the results of the algorithm to be
objectively evaluated.

The KH instability test problem applies the algorithm to the two dimensional
set of hydrodynamic equations to examine how well it can model a slowly
evolving two dimensional fluid system. The test simulates the evolution of an
unstable flow consisting of two adjacentinfinite streams with different densities
and antiparallel velocities which are subjected to a small perturbation. For
appropriate initial conditions, the perturbation will grow exponentially at a rate
predicted by a stability analysis of the hydrodynamic equations [Drazin and
Reid, 1981; Miura and Pritchett, 1982]: this is the KH instability. The KH
instability is a particularly good test of the convective properties of the algorithm
because the component of velocity perpendicular to the flow in the infinite
streams is initially very small and increases exponentially as the instability
develops until it eventually becomes comparable with the fastest convection
speeds in the flow, thus effectively scanning the algorithm for its performance
over a widerange of convection velocities. Even in its saturated, nonlinearstage,
the KH instability still has a wide range of convection speeds and scale sizes
which continue to tax the algorithm.

The KH instability simulation uses a 48x46 (N,xN,) grid with
Ax =3.162x 10™ and Ay = 3.130x 10™* which has periodic boundaries at x =0
and x =0.0152 and slip wall boundaries at y =+7.2x10®. The problem is
initialized with p =1.013x10° and with =2 and 1 in the upper and lower
streams, respectively. The velocity jump across the shear layer is equal to the
sound speed in the lower stream, Av = 410.9, and the velocities of each stream
are chosen so as to put the instability into a stationary reference frame. The
density and velocity vary across the grid according to a hyperbolic tangent
function centered at y =0 with half-width a = 0.001. This unstable equilibrium

is then perturbed by an eigenmode solution of the linearized hydrodynamic
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equations [Miura and Pritchett, 1982] for the longest KH wave mode that will fit
the periodic simulation grid. Doing so ensures that no other mode will be
triggered into growth during the linear phase of the instability and reduces the
possibility that the small scale structures that sometimes appear in the nonlin-
ear phase of the test are due to physical processes rather than problems with the
algorithm.

The algorithm used in the tests is the predictor-corrector formulation of Book
and Fry’s extension to ETBFCT given in (B.19)<(B.24) with the Limit[ ]
operation replaced by a call tothe FLIMIT subroutine [Zalesak, 1979; Book et al.,
1981]. For the semicircle and shock tube tests, the logical variables JPRLIM,
PRLIM and FOLD passed to FLIMIT are all set false while for the KH instability
test problem, JPRLIM is set false and PRLIM and FOLD are set true. The latter
problem is a two dimensional one which requires that the algorithm be extended
to two dimensions: the FLIMIT subroutine makes such an extension relatively
straightforward. Note that there is an error in the listing of FLIMIT given in
Book et al. {1981]: line 240 should be moved to follow line 243.

TEST RESULTS AND ANALYSIS

The results of the semicircle test problem (Figures B.4 and B.5) confirm the
amplitude and dispersion properties of the algorithm previously determined by
the Von Neumann analysis (Figure B.3) and differ significantly from the results
of the single step algorithm (see Figure B.1). Comparison of Figure B.3 with
Figure B.2 shows that the favorable amplitude and phase properties seen for the
predictor step when using the original set of coefficients (Set I in Table B.1) have
been lost with the addition of the corrector step. A. region of positive amplitude
error has appeared at high Courant numbers in the corrector step making the
algorithm unstable for £ > 0.9 where it was stable in the predictor step. Alarge
region of strong attenuation affecting fast moving modes has also appeared and

is responsible for the diffusive behavior seen for € = 0.9 and 0.25 in Figure B.4.
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Figure B.4. A semicircular density profile after being convected 36 cells by the
predictor-corrector form of the original ETBFCT algorithm for a range of
Courant numbers.



This sizable amplitude error masks the effects of the positive phuse error by
eroding away those modes that would be most affected by the phase error before
the error can manifest itself. As the Courant number decreases further, the
amglitude error reduces to the point where the predictor-corrector form of the
algorithm produces results that are nearly identical to those of its single step
formulation (compare Figures B.1 and B.4).

The set of coefficients introduced in (B.29) and (B.30) (Set III in Table B.1),
however, give the opposite behavior in the semicircle convection test for appro-
priately chosen v,: rather than increasing with decreasing timestep size, the
phase and terracing errors decrease (see Figure B.5). Once again, the plots of
amplitude and phase error show why this is so (see Figure B.3). Setting
v, =0.36467 in this coefficient set adds attenuation to the algorithm which
serves to filter out short wavelength modes before the dispersion error experi-
enced by those modes becomes significant. The effect of filtering is strongest for
slow moving modes and makes the results of the semicircle test at low Courant
numbers appear more diffuse than for high values. For this particular value of
v,, the highest Courant number for which the algorithm is guaranteed to be
stable is ~0.4. In spite of this low value, the algorithm still produces results for
£ =0.9 which look as good as those produced for the Set I coefficients when
€ =0.025.

The Set III coefficients can give surprisingly bad predictor step performance
(see Figure B.2). The amplitude error of the algorithm for these coefficients, with
v, = 0.36467, makes the predictor step unstable for all but the longest wave-
length modes at most Courant numbers and gives the worst phase error of the
three coefficient sets in Table B.1. Fortunately, the predictor step results are
used only to determine values for the corrector step fluxes so the errors
introduced during the predictor step do not persist from timestep to timestep as
directly as they would for a single step algorithm. However, the errorsintroduced

by the predictor step lessen the accuracy of the time advance since the predictor
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Figure B.5. A semicircular density prefile after being convected 36 cells by the
predictor-corrector form of Book and Fry’s extended ETBFCT algorithm with
this appendix’s tunable coefficients (Set III in Tabie B.1 with v, = 0.36467) for
a range of Courant numbers.
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step exists primarily to make the difference scheme second order accurate in
time through a time-centered difference. Decreasing the size of the timestep
should help the algorithm recover from the errors created by the predictor step
without leading to the terracing problems that arise for small Courant numbers
when using the Set I coefficients.

The results of the shock tube test presented in Figures B.6 and B.7 further
confirm the performance characteristics of the Set I and III coefficients. The
density profile for the Set I coefficients is completely free from terracing errors
because the choice of € =0.9 for the simulation and the existence of high
convection velocities places the simulation in the trough of the amplitude error
shownin Figure B.3. Any phase errors that develop areimmediately attenuated,
thus accounting for the smoothness ofthe expansion fan extending from x = 2.57
to 4.85. Figure B.7 shows that the reduced attenuation afforded by the Set III
coefficients (with v, = 0.36467)is not strong enough to keep the phase error from
producing terraces in the expansion fan. The algorithm’s improved amplitude
accuracy also appears to be responsible for keeping the contact discontinuity at
x =6.90 quite steep. Interestingly, the region of positive amplitude error at
intermediate wavelengths and high Courant numbers for the Set I coefficients
in Figure B.3 has not introduced any significant errors into the solution, with a
possible exception being the leading edge of the shock (x = 8.53). This unex-
pected stability is probably a result of leakage from the unstable modes into
adjacent ones where there is attenuation.

The results of the KH instability test problem shown in Figure B.8 illustrate
the sensitivity of this test to terracing effects. When Boris’s original set of
coefficients (Set I) are used in the algorithm, the vortical structure that appears
in the nonlinear stage of the KH instability is beset by short-scale disturbances.
The disturbances originate near the stagnation point in the “braid” region of the
wave and have the effect of roughening the interface between the light and dense

streams. This roughened appearance is similar to the staircase appearance of
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Figure B.6. The one dimensional shock tube at ¢ = 6.496 x 107 for the predictor-
corrector form of the original ETBFCT algorithm. (Courant number = 0.9)



Figure B.7. The one dimensional shock tube at ¢ = 6.496 x 107 for the predictor-
corrector formofBook and Fry’sextended ETBFCT algorithm with thisappendix’s
tunable coefficients (Set IIIin Table B.1 with v, = 0.36467). (Courant number =
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Figure B.8. Density in the nonlinear stage of the KH instability using Boris’s
coefficient set (Set I in Table B.1) and this appendix’s tunable set (Set III in Table
B.1 with v, =0.36617). White indicates p < 1 while black indicates p = 2. The

“billow” is the spiral-shaped region and the “braid” is the straight section
connecting billows. (Courant number = 0.25)
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shocks generated during Woodward and Colelia’s [1984] test of the original
ETBFCT algorithm using a simulated supersonic wind tunnel. In both cases, the
structures on which the disturbances appear move very siowly relative to the
simulation grid and so would be expected to exhibit phase errors for the Set I
coefficients.

In the KH instability test, the small bumps that appear on the density
interface for the Set I coefficients are caught by the main flow and carried away
from the stagnation point and into regions of strong vorticity where they act as
seeds for the development of a secondary KH instability. The secondary instabil-
ity grows as the disturbances convect into the “billow” region and teward the
center of rotation. Soon the secondary instability is large enough to disturb the
braid region where it was initiated and begins a feedback process which breaks
the large organized vortical flow into many small vortices.

This appendix’s coefficient set (Set III in Table B.1) can be tuned to minimize
the dispersion error that causes the algorithm to fail for the original ETBFCT
coefficients (Set I). The value of v, used in the previous two test problems filters
too strongly in this case: the shear layer broadens because of excessive filtering
and loses the intermediate scale structures that are necessary to the develop-
ment of the nonlinear phase of the instability. A slightly larger value of v,
v, = 0.36617, reduces the filtering to a level that permits the nonlinear phase to
develop and prevents terraces from forming, but still causes premature broad-
ening of the shear layer. To avoid artificially widening the shear layer, the
simulation uses Book and Fry’s (Set II) coefficients during the linear stage of the
KH instability’s development when the gradients have little short wavelength
content. Those coefficients do not filter stationary structures, such as the cross-
stream density profile, but do suffer from phase errors at short wavelengths.
Once the instability has evolved to the point where gradients begin to steepen,
and thus generate short wavelength modes, the simulation switches over to the

Set III coefficients (with v, = 0.36617) to ensure that no such modes can persist
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long enough to cause the problems that lead to the secondary KH instakility.

DiSCUSSION AND CONCLUSIONS

The predictor-corrector formulation of the extended ETBFCT algorithm
presented by Book and Fry behaves rather differently for the new coefficients
presented in this appendix (Set III in Table B.1) when compared with Boris’s
original coefficients (Set I in Table B.1). For the Set I coefficients, the algorithm
has been shown to become increasingly sensitive to dispersion errors which lead
to terracing as the Courant number decreases, while for the Set III coefficients
with appropriately chosen v, the algorithm becomes less susceptible to terrac-
ing with decreasing Courant number (see Figure B.4 and B.5). Both types of
behavior are desirable, but for complementary physical problems. For problems
where structures move quickly across a simulation grid, such as the blast
problems for which ETBFCT was originally devised, Boris’s coefficient set is to
be preferred because the strong damping at high Courant numbers it affords
prevents terracing errors from developing. In fact, there is also an element of
tunability present for Boris’s coefficients: ifthe structures seenin a high Courant
number simulation appear too diffuse, reducing the Courant number will reduce
the attenuation that causes the diffusion and make those features sharper. For
problems which contain a wide range of convection velocities and require slow
moving structures to be accurately convected, the new coefficient set is prefer-
able. By adjusting the Courant number and tuning the coefficient V,, it should
be possible to achieve good performance for a wide range of fluid systems using
the new coefficients.

The KH instability test problem shows that there are limits to the abilities of
the new coefficients. To pass this test, the simulation used Book and Fry’s
amplitude accurate coefficients (Set II in Table B.1) during the linear phase of
the instability to avoid over-filtering the stationary structures crucial to the
development of the instability and then had to switch to the new coefficients
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during the nonlinear phase to filter away potential dispersion errors which
would otherwise disturb the flow. It seems preferable for the algcrithm touse a
single set of coefficients which are set once at the beginning of a simulation and
never changed<.

Although it does not appear possible to directly combine the excellent
predictor step properties of the Set Ii coefficients with the superior corrector step
properties of the Set III coefficients into a single set of coefficients, it may be
possible to achieve similar resuiis by blending the two sets together. By
switching between the two coefficient sets on alternate timesteps, a simulation
might derive the benefits of both sets of coefficients. Preliminary tests of such a
scheme show that the strength of the filter can be decreased in this way without
producing too much more dispersion. Further experiments suggest that an
adaptive blending of the two sets of coefficients in response to the presence of
short wavelength and potentially dispersive modes in the simulation will further
improve the dispersion and amplitude accuracy of the algorithm.

The efforts made here to reduce dispersion in the ETBFCT algorithm are also
useful in developing and improving the large eddy simulation (LES) properties
of the algorithm. Boris has argued [Boris, 1990] that the FCT technique has a
minimal LES filter and matched subgrid model already built-in. The modifica-
tions to the ETBFCT algorithm presented here alter that filter to ensure that the
short wavelength modes that are most susceptible to dispersion are filtered out.
Those same modifications make the filter less dependent on the convection
velocity {cempare the amplitude errors for the Set I and Set III coefficients given
in Figure B.3), a desirable attribute for a practical LES algorithm, and permit
the filter to be adjusted to give the best possible LES properties.

The advantages of the new set of ETBFCT coefficients (Set III in Table B.1)

presented in this appendix are many. Using the new coefficients in the extended

1 Ihavedeveloped such a set of coefficients since this paper was submitted. The new coefficients
are used in the simulations presented in the body of this thesis and in Appendix C.
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time-centered ETBFCT algorithm makes the solution to the continuity equation
always sixth order phase accurate and permits the algorithm to be tuned to give
an adjustable amount of short wavelength filtering while maintaining at least
fourth order amplitude accuracy. Tunable filtering allows the algorithm to be
adjusted to eliminate terracing in simple convection problems as well as
demandingtwo dimensional hydrodynamic simulations. The performance of the
algorithm becomes more predictable (i.e., terracing and phase errors become
less)asthe Courant numberdecreases thusincreasing the algorithm’sreliability
in slow flow simulations. Implementation of the new coefficients requires very
little modification of the existing ETBFCT algorithm and yet produces signifi-

cant improvements in the algorithm.
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APPENDIX C

THREE-DIMENSIONAL IDEAL MHD SIMULATION

The following is a slightly simplified version of the code I developed to perform
the simulations presented in the paper and discussed in Appendix B. As it is
currently configured, the program simulates the development of a localized
pressure perturbation in an otherwise uniform plasma using a mesh. The final
values of the physical variables in a small, two-dimensional subsection of the

simulation space immediately follow the program listing.

Computational resources required:
3.2 MBytes of program memory
13.5 minutes of CPU time (when run on an IBM RS/6000 PowerStation 320)

PROGRAM IMHD3D

C Simulate the evolution of an ideal, MHD fluid in three dimensions.
c The program must be compiled by a FORTRAN 77 compiler.

C The program was developed on DEC Vax and IBM RS/6000 computers

C and makes use of some of the extensions available on those machines:
c it will likely require some modification before it will run on

C other camputers.

C Created by:

C John R. Manuel

c Department of Physics / Canadian Network for Space Research

C University of Alberta

C Edmonton, Alberta

C T6G 2J1 CANADA

C Phone: (403) 492-2526

C E-mail (Intermet): manuel@space.ualberta.ca

INTEGER IT, ITMAX

REAL*8 CFL, DT, TIME, TMAX

COMMON /TIME/ DT, IT, ITMAX, TIME, TMAX, CFL

INTEGER NXM1, NYM1, NZMl, OUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, IDY2, IDZ2
CHARACTER BON*3, ID*8

COMMON /MISC/  OUT _NUM, NXM1, NYMl, NZzMl, IDX, IDY, IDZ, IVOL,
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2 I2DX, I2DY, I2DZ, IDX2, IDY2, IDZ2,
3 ID, EON(8)

REAL*8 OUTDT, OUTSTART

DATA OUTDT / 0.1D0 /

DATA OUISTART / 0.D0 /
PRINT *, ‘~—> DEBUGGING LINES ACTIVE <—'

Make the grid and cal. late some grid-dependent quantities. ..
CALL: MKGRID

Initialize the physical variables...
CALL, INITIAL

Set the initial timestep size...
CALlL, SETDT

Write out the initialization...
CALL DATA_ OUT

The main loop...
DO IT =1, ITMAX
TIME = TIME + DT
Time-advance the physics to step IT and time TIME...
CALL, ADVANCE_ALL
Set the timestep size every now and then...
IF (MOD(IT, 10) .BEQ. 0) CALL SETDT
IF (TIME .GE. OUTSTART
2 .AND.
3 MOD(TIME, OUTDT) .LT. DT) THEN
Dump physical variables at regular time intervals...
CALL, DATA_OUT
ELSE IF (TIME .GE. TMAX} THEN
CALL DATA_OUT
Quit when time limit exceeded...
PRINT *, ‘ TIME is’, TIME
PRINT *, ‘ TMAX exceeded.’
CALL FINISH
END IF
END DO
CALL: DATA_OUT
Quit when iteration count exceeded...
PRINT *, ‘' TIME is’, TIME
PRINT *, ¢ ITMAX exceeded.’
CALL, FINISH

END

SUBROUTINE MKGRID

Initialize the camputational grid. X(I}, Y(J)}, Z(K), and VOL

give the physical coordinates and volume of a cell centred on (I,J,K}.

111



INTEGER NNX, NNY, NNZ

PARAMETER (MNX = 22, NNY = 22, NNZ = 22)
INTECER NX, NY, NZ

REAL*8 X, Y, Z, DX, DY, Dz, VOL

COMMON /GRID/  X{(NNX), Y{NNY), Z(NNZ),

2 DX, Dy, DZ, VOL, NX, NY, NZ
INTEGER NXM1, NYM1, NZMl, OUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, 12Dz, IDX2, IDY2,
CHARACTER EQN*3, ID*8

COMMON  /MISC/
2

OUT_NUM, NXM1, NYMl, NZM1, IDX, IDY, IDZ,
I2DX, I2DY, I12DZ, 1DX2, IDY2, 1IDZ2,

3 ID, EON(8)
INTEGER I
REAL*8 OFFSET

PRINT *, ‘—> MKGRID'

OFFSET = -1.5D0*DX
DOI =1, NX

X{(I) = DX*I + OFFSET
END DO
OFFSET = -1.5D0*DY
DOI =1, NY

Y(I) = DY*I + OFFSET
END DO
OFFSET = -1.5D0*D7Z
DOI =1, N2

2{I) = DZ*I + OFFSET
END DO

VOL = DX*DY*DZ

Define some grid-related and often-used constants...

NXM1 = NX - 1
NYM1 = NY - 1
NZM1 = NZ - 1

IDX = 1.D0 / DX
IDY = 1.D0 / DY
IDZ = 1.D0 / D2
IVOL = 1.D0 / VOL
12DX = 0.5D0*IDX
I2DY = 0.5DO*IDY

12DZ = 0.5D0*IDZ
IDX2 = IDX**2
IDY2 = IDY**2
IDZ2 = IDZ**2

PRINT *, °‘<— MKGRID’
RETURN

END

IDZ2

IVOL,
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SUBROUTINE INITIAL
Initialize the physical variables.

The present initialization sets up a localized pressure
perturbation in an otherwise uniform plasma.

INTBGER NNX, NNY, NNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)

REAL*8 RHO, RVX, RVY, S, GAMMA, BX, BY, BZ, RVZ
CCOMMON /PHYSA/ RHO(NNX, NNY,NNZ) ,

2 RVX (NNX, NNY, NNZ) , RVY (NNX, NNY, NNZ) ,
3 S(NNX, NNY,NNZ), GAMMA

COMMON /PHYSB/ BX(NNX,NNY,NNZ), BY (NNX,NNY,NNZ), BZ(NNX,NNY,NNZ)

COMMON /PHYSC/ RVZ{(NNX, NNY, NNZ)

INTBEGER NX, NY, NZ

REAL*8 X, Y, 2, DX, DY, DZ, VOL

COMMON /GRID/  X(NNX), Y{NNY), Z{(NNZ),

2 DX, DY, Dz, VOL, NX, NY, NZ
INTEGER IT, ITMAX

REAL*8 CFL, DI, TIME, TMAX

COMMON /TIME/ Dr, IT, ITMAX, TIME, TMAX, CFL
REAL*8 BC

COMMON /BC/ BC(6, 8)

INTEGER NXM1, NYM1, NZMl, CUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, IDY2,

CHARACTER EQON*3, ID*8

COMMON /MISC/  OUT_NUM, NxXM1, NYM1, NzMl, IDX, IDY, IDZ,

2 I2DX, 12DY, 12Dz, 1IDX2, IDY2, IDZ2,
3 ID, EQN(8)

INTEGER I, J, K, UNIT_LEN

REAL*8 BO, €S, CA, CFf, 0, RHOO, RHOPERT

CHARACTER UNIT*80

PRINT *, ‘-—> INITIAL’

Define the polytropic index...
GAMMA = 5.D0 / 3.D0

PO = 1.D0
Choose RHOO and B0 to make CF/CS/CA = 1.0/0.8/0.6

RHOO = GAMMA*P(C/0.8D0**2
BO = 0.6DO*SQRT (RHO0)

CS = SORT (GAMMA*P0/RHOO}
CA = SQRT (BO**2/RHO0)

CF = SORT(CS**2 + CA**2)
DOK =1, NZ

DO J = 1, NY
DO I =1, NX

D22

IVOL,

RHOPERT = RHO0*0.1DO*EXP(-0.5D0* ((DBLE(I) - 11.5D0)**2

[\

+ (DBLE(J) - 11.5D0)**2

3 + (DBLE(K) - 11.5D0)**2))

RHO(I,J,K) = RHOO + RHOPERT
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RVX(I,J,K) = 0.D0

RVY(I,J,K) = 0.DO

RVZ(I,J,K) = 0.0D0

S(1,J,K) = PO + CS**2*RHOPERT
BX(I,J,K) = 0.D0

BY(I,J,K) = 0.D0

Bz(1,J,K) = BO

END DO
END DO
END DO

Do bourdary conditions...
CALL BCOND (RHO, RHO, 1)}
CALL BCOND (RVX, RVX, 2)
CALL BCOND (RVY, RVY, 3)
CALL BCOND (RVZ, RVZ, 4)
CALL: BCOND (S, s, 5)
CALL BCOND (BX, BX, 6)
CALL BCOND (BY, BY, 7)
CALL, BCOND (BZ, BZ, 8)
File to receive formatted snapshots of array subsections...
UNIT = ‘array_subs.dat’

UNIT_LEN = INDEX(UNIT, * *) -1

IF (UNIT_LEN .EQ. -1) UNIT_LEN = LEN(UNIT)

OPEN (12, FILE = UNIT{1:UNIT_LEN),

2 STATUS = ‘NEW’, FORM = ‘FORMATTED')

RETURN

END

SUBROUTINE SETDT
Calculate a timestep size that satisfies the Courant condition

INTEGER NNX, NNY, IMNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)

REAL*8 RHO, RVX, RvVY, S, GAMMA, BX, BY, BZ, RVZ
COMMON /PHYSA/ R {NNX,NNY, NNZ)},

2 VX (NNK,NNY, NNZ) , RVY (NNX, NNY, NNZ) ,
3 S {NNX, NNY,NNZ.),, GAMMA

COMMON /PHYSB/ BX(NNX, NNY,NNZ), BY (N'X,NNY,NNZ), BZ(NNX,NNY,NNZ)
COMMON /PHYSC/ RVZ (NNX, NNY, NNZ)

INTHGER NX, NY, NZ

REAL*8 X, Y, 2, DX, Dy, DZ, VOL

COMMON /GRID/  X(NNXj, Y(NNY), Z(NNZ),

2 DX, Dy, DZ, VOL, NX, NY, NZ
INTBGER IT, ITMAX

REAL*8 CFL, DI, TIME, TMAX

COMMON /TIME/ Dr, IT, ITMAX, TIME, ™AX, CFL
REAL*8 BC

COMMON /BC/ BC{6,8)
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INTEGER NXM1l, NYM1, NZM1, OUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, iDY2, IDZ2
CHARACTER EQN*3, ID*8

COMMON /MISC/ OUT_NUM, NxXM1, NYM1, NzMl, IDX, IDY, 1l@, 1VOL,

2 I2DX, I2DY, I12DZ, IDX2, IDY2, IDZ2,
3 ID, EQN(8)

2
3

2

3

INTEGER I, J, K
REAL*8 CA2, CS2, CMAX, DITEMP, DITEMPMAX, IRHO, VX, VY, VZ

PRINT *, ‘—> SETDT”

Scan for the maximum velocity...
DITEMPMAX = 0.D0
j9.0) ,» NZM1
2, NyMl
= 2, NXML
IRHO = 1.DO/RHO(I,J,K)
ABS (IRHO*RVX(I,J,K))
ABS (IRHO*RVY (I,J,K))
= ABS(IRHO*RVZ(I,J,K))
CS2 = GAMMA*S(I,J,K)*IRHO
CA2 = (BX(I,J,K)**2 + BY(I,J,K)**2 + BZ(I,J,K)**2)*IRHO
MAX = SQRT(CS2 + CA2)
DITEMP = (VX + CMAX)*IDX + (VY + OMAX) *IDY + (VZ + CMAX)*IDZ
DITEMPMAX = MAX(DITEMP, DITEMPMAX)
END DO
END DO
END DO

gor

SIS

&)

Calculate the new timestep...
Dr = CFL / DITEMPMAX

PRINT *, ‘<— SETDT'
RETURN

END

SUBROUTINE ADVANCE_ALIL
Advarice everything to the next time level.

INTEGER NNX, NNY, NNZ
PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 RHO, RVX, RVY, S, GAMMA, BX, BY, BZ, RVZ
COMMON /PHYSA/ RHO(NNX, NNY,NNZ),
RVX (NNX, NNY, NNZ) , RVY (NNX,NNY, NNZ) ,
S (NNX, NNY,NNZ), GAMMA
COMMON /PHYSB/ BX(NNX,NNY,NNZ), BY(NNX,NNY,NNZ), BZ(NNX,NNY,NNZ)
COMMON /PHYSC/ RVZ(NNX, NNY, NNZ)
REAL*8 RHON, RVXN, RVYN, SN, BXN, BYN, BZN, RVZN
COMMON /PHYSAN/ RHON (NNX, NNY, NNZ) ,
RVXN (NNX, NNY,NNZ) , RVYN{NNX, NNY, NNZ),
SN (NNX, NNY, NNZ)
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C

COMMGI T PHYSRN BXIN (NIX, NVY, MNZ ), BYN({NNX, NNY, NNZ) ,
Z BZN (NNX, NNY , NNZ)

CoadON /DHYSSY, CVEN{ED, NNY, NNZ)

INTHCER 130, 1Y, .7

REAL*8 X, Y, Z, . ..., D&, VoI

COMMOIN /GRIDY/ X{(NX), Y(NNY), Z(NNZ},

2 DX, DY, 72, VoL, NX, NY, NZ
INTBGER 1T, I'TMAX

REAL*8 CFL., DI, TIME, TM".

COMRMON /TIME/ Dr, 17, ITMAX, TIME, T™MAX, CFL
INIWGER 1, J, K

REAL*S DID2, FLX(NNX,NNY,NNZ), FLY(NNX,NNY,NNZ), FLZ(NNX,NNY,NNZ),

2 SOU (NNX, NNY, NNZ.)
PRIN '—> ADVANCE_ALL’
Dro2 = op

Predictor :istep...

CALL VELOCITY (RHO, RVX, RVY, Rvz, DID2, 1)

*%*NOTE: Be careful of the order in which the equations are solved...

CALL FLUX_N_SOURCE (‘KHO’, DID2, FLX, FLY, FLZ, SOU,

2
CALL

CALL

CALL

CALL

:

CALL

RHO, RVX, RVY, RVZ, s, GAMMA, BX, BY,
ADVANCE (RHO, RHON, FLX, FLY, FLZ, sOU, 1, 1, IT)

FLUX_N_SOURCE (‘RVX‘, 2, FLX, FLY, FLZ, SOU,
RHO, RVX, RVY, RVZ. S, GAMMA, BX, BY,
AIVANCE (RVX, RVXN, FLX, FLY, bt.o. OU, 2, 1, IT)

FLUX_N_SOURCE (‘RvY‘, UID2, FLX, FLY, FLZ, SO0U,
RHO, RVX, RVY, RVZ, S, GAMMA, BX, BY,
ADVANCE (RVY, RVYN, X, FLY, FLZ, sOU, 3, 1, IT)

FLUX_N_SOURCE (‘R.. , DID2, FLX, FLY, FLZ, SOU,
RiQ, RVX, RVY, RVZ, S, GAMMA, BX, BY,
AIVANCE (RVZ, =VZN, FLX, FLY, FLZ, SOU, 4, 1, IT)

FLUX_N_SOL, 8 (‘S ', DID2, FLX, FLY, FLZ, SOU,
RHO, RVX, RVY, RVZ, S, GAMA, BX, BY,
ADVANCE (S, SN, FLX, FLY, FLZ, SOU, 5, 1, IT)

FLUX_N_SCURCE ('BX ‘, DID2, FLX, FLY, FLZ, SOU,
RHO, RVX, RVY, RVZ, S, GaMMA, BX, BY,
ADVANCE (BX, BXN, FLX, FLY, FLZ, sSO0U, 6, 1, IT)

FLUX_N_SOURCE (’BY ‘, DID2, FLX, FLY, FLZ, SOU,
RHO, RVX, RVY, RVZ, S, GAMMA, BX, BY,
ADVANCE (BY, BYN, FLX, FLY, FLZ, sOU, 7, 1, IT)

FLUX_N_SOURCE (‘Bz °‘, DID2, FLX, FLY, FLZ, SOU,
RHO, RVX, RVY, RVZ, S, GAMMA, BX, BY,

B2Z)

BZ)

BZ)

BZ)

BZ)

BZ)

BZ)

BZ)
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C

CALL ADVANCE (BZ, BZN, FLX, FLY, FLZ, sOU, 8, 1, IT)

Corrector step...

CALL VELOCITY (RHON, RVXN, RVYN, RVZN, DT, 2)

CALL FLUX_N_SOURCE (‘RHO‘, DT, FLX, FLY, FLZ, SOU,

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (RHO, RHON, FLX, FLY, FLZ, sOuU, 1, 2, IT)

e

CALL FLUX_N_SOURCE (‘RVX’, DT, FLX, FLY, FLZ. SOU,

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (RVX, RVXN, FLX, FLY, FLZ, sQU, 2, 2, IT}

CALL FLUX_N_SOURCE (‘RvY’, Dr, FLX, FLY, FLZ, SOU,

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (RVY, RVYN, FLX, FLY, FLZ, SOU, 3, 2, IT)

CALL FLUX_N_SOURCE (‘RVZ‘’, DT, FLX, FLY, FLZ, SOU,

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (RVZ, RVZN, FLX, FLY, FLZ, SOU, 4, 2, IT)

CALL FLUX_N_SOURCE (‘S ‘, DI, FLX, FLY, FLZ, SOU,

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (S, SN, FLX, FLY, FLZ, SOU, 5, 2, IT)

CALL FLUX_N_SOURCE (‘BX ‘, oI, FLX, FLY, FLZ, SOU,

2
3

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (BX, BXN, FLX, FLY, FLZ, SOU, 6, 2, IT)

CALL FLUX_N_SOURCE (‘BY ‘, Dr, FLX, FLY, FLZ, SOU,

2
3

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADVANCE (BY, BYN, FLX, FLY, FLZ, sOU, 7, 2, IT)

CALL FLUX_N_SOURCE ('BZ ‘, DI, FLX, FLY, FLZ, SOU,

2
3

RHON, RVXN, RVYN, RVZN, SN, GAMMA,
BXN, BYN, BZN)

CALL ADNVANCE (BZ, BZN, FLX, FLY, FLZ, SOU, 8, 2, IT)

Make the new values the current values...
DG K=1, N2

DO J =1, NY
DOI=1 NX
RHO(I,J.K) = RHON(I,J,K)
RVX(I,J,K) = RVXN(I,J,K)
RVY(I,J,K) = RVYN(I,J,K)
RVZ(I,J,K) = RVZN(I,J.K)

11
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S5(I,J,K) = SN(I,J,K)
BX(1I,J,K) = BXN(I,J.K)

BY(I,J,K) = BYN(I,J,K)
BZ(T,J.K) = BZN(I,J.K)
END DO
END DO
END DO
D PRINT *, ‘<— ADNANCE_ALL’
RETURN
END

SUBROUTINE VELOCITY (RHO, RVX, RVY, RVZ, DT, PCQ)

C Calculate the velocity-dependent diffusion/antidiffusion coefficients.
C The values of the coefficients determine the trade-off between
C numerical diffusion and Qispersion in the algorithm (see Appendix B).
INTHGER NNX, NNY, NNZ
PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*& 27ZA, 7ZB, 2ZC, 22D, ZZE
PARAMETER (2ZA = 1.D0/6.DO, 228 = 1.D0/3.D0, 2ZC = 1.D0/48.D0,
2 27D = 1.D0/2880.D0, ZZE = 1.D0/8.D0)
INTEGER PC
REAL*8 RHO (NNX, NNY,NNZ},
2 RVX {NNX, NNY,NNZ), RVY (NNX, NNY,NNZ), RVZ(NNX, NNY,NNZ), DT
INTEGER NX, NY. NZ
REAL*8 X, Y, Z, DX, DY, DZ, VOL
COMMON /GRID/  X(NNMX),. Y(NNY), Z{(NNZ),
2 DX, DY, DZ, VOL, NX, NY, NZ
REAL*8 VXH, VYH, VZH, NUXH, NUYH, NUZH, MUXH, MUYH, MUZH,
2 GAXH, GAYH, GAZH
COMMON /VELOC/ VXH(NNX,NNY,NNZ}, VYH(NNX,NNY,NNZ),
2 VZH (NNX, NNY, NN2) , NUXH (NNX, NNY, NNZ) ,
3 NUYH (NNX, NNY, NNZ) , NUZH {(NNX, NNY, NNZ) ,
4 MUXH (NNX, NNY, NNZ) , MUYH (NNX, NNY, NNZ) ,
5 MUZH (NNX, NNY,NNZ) , GAXH (NNX, NNY,NNZ) ,
6 GAYH (NNX, NNY, NNZ) , GAZH (NNX, NNY , NNZ)
INTEGER NXM1, NYM1, NZMi, OUT_NUM
REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, IDY2, IDZ2
CHARACTER EQN*3, ID*8
COMMON /MISC/ OUT_NUM, NxM1, NYMi, NzMi, IDX, IDY, 1Dz, IVOL,
2 12D, 12Dy, 1202, IDX2, IDY2, IDZZ,
3 ID, EQN(8)
INTEGER I, J, K
REAL*8 IRHO, CX, CX2, CY, CY2, CZ, CZ2, TEMPX, TEMPY, TEMPZ
D PRINT *, ’--> VELOCITY'’

Ci

Calculate 0.5*velocity...
DOK=1, Nz
DOJ =1, NY
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C

DOI =1, X
IRHO = 0.5D0/RHO(I,J,K)
VXH(I,J,K) = RVX(I,J,K)*IRHO
VYH(I,J,K) = RVY(I,J,K)*IRHO
VZH(I, J,K) RVZ(I,J,K)*IRHO

END DO

END DO
END DO

I}

Calculate velocity-dependent diffusior antidiffusion coefficients...
IF (PC .EQ. 1) THEN
.. for the predictor step...
DO K =1, NZ2M1
DOJ =1, NYML
DOI =1, XMt

CX = ABS(VXH(I,J,K) + VXH{I+1,J,K))*DI*IDX
CX2 = CX**2
CY = ABS(VYH(I,J,K) + VYH(I,J+1,K))*DT*1Dy
CY2 = CY**2
C2 = ABS(VZH(I1,J,K) + VZH(I,J,K+1))*DT*IDZ
CZ2 = CZ**2
NUXH{I,J,K) = 11.D0/30.D0 - 1.D0/50000.D0
- 1.D0/300.D0*CX
NUYH(I,J,K) = 11.D0/30.D0 - 1.D0/50000.D0

- 1.D0/300.D0*CY
NUZH(I,J,K) = 11.D0/30.D0 - 1.D0/50000.D0
- 1.D0/300.D0*CZ
MUXH(I,J,K) = ZZA ~ ZZA*CX2
MUYH(I,J,K) Z2A - ZZA*CY2
MUZH(I,J,K) = ZZA - ZZA*CZ2

GAXH(I,J,K) = ZZA + ZZB*CX2 - NUXH(I,J,K)
GAYH(I,J,K) = ZZA + ZZB*CY2 - NUYH(I,J,K)
GAZH(I.J,K) = ZZA + ZZB*CZ2 - NUZH(I,J,K)
eND DO
END DO
END DO

ELSE IF (PC .BEQ. 2) THEN
... for the corrector step...
DO K =1, NZML
D0OJ =1, N\YM1
DOI =1, ML

CX = ABS(VXH(I,J,K) + VXH(I+1l,J,K))}*DT*IDX
CX2 = CX**2
CY = ABS(VYH(I,J,K) + VYH(I,J+1,K))*DT*IDY
CY2 = CYy**2
CZ = ABS(VZH(I,J,K) + VZH(I,J,K+1))*DI*IDZ
CZ2 = CZ**2
TEMPX = 11.D0/30.D0 - 1.D0/50000.D0
- 1.D0/300.D0* (0.5D0*CX)
TEMPX = SQRT(506880.D0 - (115200.D0 - 29520.DO*CX2)*CX2
- (1382400.D0 - 345600.D0*CX2) *TEMPX)
TEMPY = 11.D0/30.D0 - 1.D0/50000.D0
- 1.D0/300.D0* (0.5D0*CY)
TEMPY = SQRT(506880.D0 - (115200.D0 - 29520.D0*CY2) *CY2

119



2 - {1382400.D0 - 345600.D0*CY2) *TEMPY)
TEMPZ = 11.D0/30.D0 - 1.D0/50000.D0

2 -~ 1.D0/300.D0* (0.5D0*CZ)
TEMPZ = SQRT(506880.D0 - (115200.D0 - 29520.D0*CZ2) *CZ2

2 - (1382400.D0 - 345600 .D0*CZ2) *TEMPZ)
NUXH(I,J,K) = ZZA + ZZC*CX2 - ZZD*TEMPX
NUYH(I,J,K) = ZZA + 2ZC*CY2 - ZZD*TEMPY
NUZH(I,J,K) = 2ZA + 2ZC*CZ2 - ZZD*TEMPZ
MUXH(I,J,K) = Z2ZA - 5.D0*ZZC*CX2 + ZZD*TEMPX
MUYH(I,J,K) = ZZA - 5.DO*ZZC*CY2 + ZZD*TEMPY
MUZH(I,J,K) = 22A - 5.D0*ZZC*CZ2 + ZZD*TEMPZ
GAXH(I,J,K) = -ZZE*CX2 + 2.DO*ZZD*TEMPX
GAYH(I,J,K) = -2ZE*CY2 + 2.DO*ZZD*TEMPY
GAZH(I,J,K) = -2ZE*CZ22 + 2.DO*ZZD*TEMPZ

END DO
END DO
END DO
END IF
D PRINT *, ‘<— VELOCITY’
RETURN
END

SUBROUTINE FLUX_N_SOURCE (EQN_NAME, DI, FLX, FLY, FLZ, SOU,

2 RHO, RVX, RVY, RVZ, S, GAMMA,
3 BX, BY, BZ)
C Calculate the fluxes at the centres of the cells.

INTEGER NNX, NNY, NNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)

CHARACTER EQN_NAME*3

REAL*8 DT, FLX{NNX,NNY,NNZ}, FLY (NNX,NNY,NNZ), FLZ(NNX,NNY,NNZ),

2 SOU (NNX, NNY,NNZ) , RHO(NNX, NNY,NNZ}, RVX{NNX,NNY,NNZ),
3 RVY (NNX, NNY,NNZ) , RVZ(NNX, NNY,NNZ), S(NNX,NNY,NNZ), GAMMA,
4 BX (NNX, NNY,NNZ}, BY (NNX, NNY,NNZ), BZ(NNX,NNY,NNZ)

INTEGER NX, NY, NZ

REAL*8 X, Y, Z, DX, DY, Dz, VOL

COMMON /GRID/  X(NNX)

s Y(NNY), Z{NNZ),

2 DX, DY, DZ, VOL, NX, NY, N2

REAL*8 VXH, VYH, VZH,

[\9)

NUXH, NUYH, NUZH, MUXH, MUYH, MUZH,

GAXH, GAYH, GAZH

COMMON /VELOC/ VXH{(NNX,NNY,NNZ), VYH({NNX,NNY,NNZ),

AU W

VZH (NNX, NNY,NNZ) , NUXH (NNX, NNY, NNZ.) ,
NUYH (NNX, NNY, NNZ) , NUZH (NNX, NNY,NNZ) ,
MUXH (NNX, NNY,NNZ) , MUYH (NNX, NNY, NNZ) ,
MUZH (NNX, NNY, NNZ) , GAXH (NNX, NNY,NNZ) ,
GAYH (NNX, NNY, NNZ) , GAZH (NNX, NNY, NNZ)

INTEGER NXM1, NYM1, NzZM1, CUT_NUM

REAL*8 IDX, IDY, IDZ,
CHARACTER EQN*3, ID*8

IVOL, I2DX, I2DY, 12Dz, IDX2, IDY2, IDZ2

COMMON /MISC/  OUT_NUM, NXM1, NYMl, NzMl, IDX, IDY, IDZz, IVOL,
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2 I2DX, I2DY, 12Dz, IDX2, IDY2, IDZ2,
3 ID, EQN(8)

INTEGER I, J, K

REAL*8 DXLY, DXDZ, DYDZ, GAMM1, PTOT (NNX,NNY,NNZ)

D PRINT *, ‘'—> FLUX_N_SOURCE'

GAMM1 = GAMMA - 1.D0
DXDY = DX*DY
DXDZ = DX*DZ
DYDZ = DY*DZ

poI=1, 8
IF (EON_NAME .EQ. EQN(I)) GO TO 1
END DO
PRINT *, ‘ Equation name “‘, EQN_NAME, ’‘“ not recognized...'’
STOP

1 GO TC (110, 120, 130, 140, 150, 160, 170, 180) I

C Note that the nozero source terms calculated below, SOU(I,J,K}, are
C bad for I, J and K = 1, but those array elements are never used, so
C everything’s alright, though your campiler may not think so.

C Continuity equation...

110 CALL CONV_FLUX (RHO, FLX, FLY, FLZ, DT)
DO K = 1, NZM1
DO J =1, NYMlL
DOI =1, NXML
souU(1,J,K) = 0.DO

END DO
END DO
END DO
D PRINT *, ‘< FLUX_N_SOURCE’
RETURN
C Calculate the total pressure for use here and in the Y and Z-momentum equation...
120 DOK =1, NZ
DOJ =1, NY

DO =1, X
pTOT(I,J,K) = S(I,J,K) + 0.5D0*(

2 BX(I,J,K)**2 + BY(I,J,K)**2 + BZ{I,J,K)**2
3 )
END DO
END DO
END DO
C X~momentum equation...

CALL CONV_FLUX (RVX, FLX, FLY, FLZ, DT)
DO K =1, NZML
DOJ =1, NyMlL
DOI =1, NXML
SOU(I,J,K) = 0.5D0*(
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R}

(PTOT(T-1,J,K) - PTOT(T+1,J,K))*DYDZ +

3 BX(I,J,K)*{BX{I+1,J,K) - BX(I-1,J,K})*DYDZ +
4 BY (I,J,K)*{BX(I,J+1,K} - BX{I,J-1,K))}*DXDZ +
5 BZ(I,J,K)*(8X(I,J,K+1) - BX(I,J,K-1)}*DXDY
6 }*DT
END DO
END DO
END DO

PRINT *, ‘<— FLUX_N_SOURCE’
RETURN

Y-momentum equation...
130 CALL CONV_FLUX (RVY, FLX, FLY, FLZ, DI}
DO K =1, NzMl
DO J =1, NYM1
DOI =1, NxML
SOU{I,Jd,K) = C.5D0*(

2 {PTOT(I,J-1,K) - PTOT(I,J+1,K))*DXDZ +
3 8X{1,J,K)*(BY(I+1,J,K} - BY(I-1,J,K))*DYDZ +
4 BY(1,J,K)*(BY{I,J+i,K} - BY(I,J-1,K))*DXDZ +
5 BZ(1,J,K)*{(BY(I,J,K+1) - BY(I,J, K-1))*DxXDY
6 y*oT
END DO

END DO

END DO

PRINT *, ‘<~ FLUZ_N_SOURCE’
RETURI

Z-momentum equation. ..
140 CALL CONV_FLUX (RVZ, FLX, FLY, FLZ, DI)
DO K = 1, NZM1
DO J =1, NYM1
D0OI =1, XMt
SOU(1,J,K) = 0.5D0*(

2 (PTOT(I,J,K-1) - PTOT(I,J,K+1)}*DXDY +
3 BX({I,J,K)*(BZ(I+1,J,X} - B2{I-1,J,K))*DYDZ +
4 BY(I,J,K)*(BZ(I,J+1,K) - BZ(I,J-1,K))*DXDZ +
5 BZ(1,J,K)*(BZ{I,J,K+1) - BZ(I,J,K-1))*DXDY
6 ) *Dr
END DO

END DO

END DO

PRINT *, ‘<— FLUX_N_SOURCE’
RETURN

Thermodynamics equation...
150 CALL CONV_FLUX (S, FLX, FLY, FLZ, DT)
DO K=1, Nam1
DOJ =1, NYM1
DI=1, M
SOU(I1,J,K) = -GAMML *S(I,J,K)*{



123

2 (VXKH(I+1,J,K) - VXH(I-1,J,K))*DYDZ +
3 (VYH(I,J+1,K) ~ VYH(I,J-1,K))*DXDZ +
4 (VZH(I,J,K+1) - VZH(I,J,K-1))*DXDY
5 ) *DT
END DO
END DO
END DO
D PRINT *, ‘<— FLUX_N_SOURCE’
RETURN

X-magnetic field edquation...
160 CALL CONV_FLUX (BX., FLX, FLY, FLZ, DT)
DOK =1, NzMi
DCJ =1, NYM1
DOI =1, XML
SOU(I,J,K) = (BX(I,J,K)*(VXH(I+1,J,K) - VXH(I-1,J,K))*DYDZ +

2 BY(I,J,K)* (VXH(I,J+1,K) - VXH(I,J-1,K))*DXDZ +
3 BZ{I,J,K)*(VXH(I,J,K+1) - VXH(I,J,K-1))*DXDY
4 ) *DT
END DO
END DO
END DO
D PRINT *, ‘<— FLUX_N_SOURCE’
RETURN
C Y-magnetic field equation...

170 CALL CONV_FLUX (BY, FLX, FLY, FLZ, DT)
DO K =1, NZM
M J=1, hvm1
DOI =1, NXM1
SoU(1,J,K) = (BX(I,J,K}*(VYH(I+1,J,K) - VYH(I-1,J,K})*DYDZ +

2 BY(I,J,K}*(VYH(I,J+1,K) - VYH(I,J-1,K))*DXDZ +
3 BZ(I,J,K)* (VYH(I,J,K+1) - VYH(I,J,K-1))*DXDY
4 ) *DT
END DO
END DO
END DO
D PRINT *, ‘<— FLUX_N_SOURCE’
RETURN
C Z-magnetic field equation.. .

180 CALL CONV_FLUX (BZ, FLX, FL., FLZ, DT)
DO K =1, NzmM
DO J = 1, NYM1
DO I =1, NxMi
SOU{TI,J,K) = (BX(I,J,K)*(VZH(I+1,J,K) - VZH(I-1,J,K))*DYDZ +

2 BY(I,J,K)*(VZH(I,J+1,K) - VZH(I,J-1,K))*DXDZ +
3 BZ(I,J,K)*(VZH(I,J,K+1) - VZH(I,J,K-1))*DXDY
4 )*DT

END DO
END DO
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END DO

PRINT *, ‘<~ FLUX_N_SOURCE’
RETURN

END

SUBROUTINE CONV_FLUX (F, FLX, FLY, FLZ, DT)
Calculate the convective fluxes.

INTHGER NNX, NNY, NNZ
PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 DT, F(NNX,NNY,NNZ),
2 FLX (NNX, NNY, NNZ), FLY (NNX, NNY,NNZ), FLZ{NNX,NNY,NNZ)
INTBGER NX, NY, NZ
REAL*8 X, Y, Z, DX, DY, DZ, VOL
COMMON /GRID/  X(NNX), Y{(NNY), Z(NNZ),
2 DX, DY, DZ, VOL, NX, NY, NZ
REAL*8 VXH, VYH, VZH, NUXH, NUYH, NUZH, MUXH, MUYH, MUZH,
GAXH, GAYH, GAZH
COMMON /VELOC/ VXH(NNX,NNY,NNZ), VYH(MNX,NNY,NNZ),
VZH (NNX, NNY, NNZ) , NUXH (NNX, NNY, NNZ) ,
NUYH (NNX, NNY,NNZ) , NUZH (NNX, NNY, NNZ2) ,
MUXH (NNX, NNY, NNZ) , MUYH (NNX, NNY, NNZ},
MUZH (NNX, NNY, NNZj , GAXH (NNX, NNY, NNZ) ,
GAYH (NNX, NNY, NNZ) , GAZH (NNX, NNY, NNZ)
INTEGER NXM1, NYM1, NZM1, OUT_NUM
REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, IDY2, IDZ2
CHARACTER EQN*3, ID*8
COMMON /MISC/  OUT_NUM, NXM1, NYM1, NzMl, IDX, IDY, IDZ, IVOL,
2 12DX, I2DY, 12DZ, IDX2, 1IDY2, IDZ2,
3 ID, EQN(8)
INTEGER I, J, K
REAL*8 DXDYDT, DXDZDT, DYDZDT

t

AUV Wi

PRINT *, ‘—> CONV_FLUX’

Use ZIP fluxes [Zalesak, J. Comp. Phys., vol. 40, pp. 497, 19811...
DXDYDT = DX*DY*DT
DXDZDT = DX*DZ*Dr
DYDZDT = DY*DZ*DT

DO K =1, NZM
DO J =1, NYM1
DO I =1, NxM1

FLX(I,J,K) = DYDZDT*(
2 F{I,J,K)*VXH{I+1,J,K) +
3 F(I+1,J,K)*VXH(I,J,K)
4 )

FLY{I,J,K) = DXDZDT*{
2 F(I,J,K)*VYH(I,J+1,K) +
3 F{I,J+1,K)*VY{H(I,J,K)

4 )



FLZ(I,J,K) = DXDYDT*(

2 F{I,J,K)*VZH(I,J,K+1) +
3 F{I,J,K+1)*VZH({I,J,K)
4 )
END DO
BED DO
END DO

PRINT *, ‘<— CONV_FLUX’
RETURN

END

SUBROUTINE ADVANCE (F, FN, FLX, FLY, FLZ, €CU, IVAR, PC, IT)
Advance F and then diffuse, limit and antidiffuse it.
INTEGER IT, IVAR, NNX, NNY, NNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 F(NMX,NNY,NNZ), EN(NNX,NNY,NNZ), FLX{NNX,NNY,NNZ},

2 FLY (NNX, NNY,NNZ) , FLZ (NNX,NNY,NNZ), SOU(NNX,NNY,NNZ)
REAL*8 VXH, VYH, VZH, NUXH, NUYH, NUZH, MUXH, MUYH, MUZH,
2 GAXH, GAYH, GAZH

COMMON /VELOC/ VXH{NNX,NNY,NNZ), VYH(NNX,NNY,NNZ},
VZH (NNX, NNY,NNZ) , NUXH (NNX, NNY,NNZ},
NUYH (NNX, NNY,NNZ) , NUZH(NNX, NNY, NNZ),
MUXH (NNX, NNY,NNZ) , MUYH(NNX,NNY,NNZ),
MUZH (NNX, NNY ,NNZ) , GAXH (NNX, NNY, NNZ),
GAYH (NNX,NNY,NNZ) , GAZH (NNX, NNY,NNZ}
INTEGER NX, NY, NZ
REAL*8 X, Y, Z, DX, DY, DZ, VOL
COMMON /GRID/ X(NNX), Y(NNY), Z{\NZ),
2 DX, DY, Dz, VOL, NX, NY, NZ
INTEGER NXM1, NYM1, NZMl, OUT_NUM
REAL*8 IDX, IDY, IDz, IVOL, I2DX, I2DY, I2DZ, IDX2, 1IDY2, IDZ2
CHARACTER EQN*3, ID*8
COMMON /MISC/  OUT_NUM, NXM1, NYMl, NZM1, IDX, IDY, IDZ, IVOL,
2 I2DX, 12DY, 12Dz, IDX2, IDY2, IDZ2,
3 ID, EON(8)
INTEGER I, J, K, PC
REAL*8 FH(NNX,NNY,NNZ), FTD(NNX,NNY,NNZ)

W N

PRINT *, ‘—> ADVANCE’

Copy the half-step F for use in antidiffusion
when doing the corrector step...
IF (PC .EQ. 2) THEN
DO K =1, Nz
DOJ =1, NY
DOI =1, NX
FH(I,J,K) = FN(I,J,K)
END DO
END DO
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END DO
FND Ir

C Advance F...
DO K = 2, NZM1
oo J =2, N\l
DOI =2, M1
FN(I,J,K) = F(I,J,K) +

2 ((FLX(I-1,J,K) - FILX(I,J,K})) +
3 (FLY(I,J-1,K) - FLY(I,J,K)) +
4 (FLZ(1,J,K-1) - FLZ(I,J,K})
5 + SOU(I,J,K))*IVOL
END DO
END DO
END DO
C Prediffuse:
C the initial F when deing the predictor step...

IF (PC .EQ. 1) THEN
DO K =1, NzM1
DOJ =1, NiMl
DI =1, XML

FIX(I,J,K) = GAXH(I,J,K)*(F(I+1,J,K) - F(I,J,K))
FLY(I,J,K) = GAYH(I,J,K)*(F(I,J+1,K) - F(I,J,K))
FLZ(I,J,K) = GAZH(I,J,K)*(F(I,J,K+1) - F(I,J,K))
END DO
END DO
END DO
C the half-step F when doing the corrector step...

ELSE IF (PC .BQ. 2) THEN
M K = 1, NZM1
DoJ =1, NYML
DO I =1, XML
FLX(I,J, K} = GAXH(I,J,K)*(FH(I+1,J,K) - FH(I,J.K))
FLY(I,J,K) = GAYH(1,J,K)*(FH(I,J+1,K) - FH(I,J,K))

FLZ(I,J,K) = GAZH(I,J,K)*(FH(I,J,K+1) - FH(I,J.,K))
END DO
END DO
END DO
END IF

DO K = 2, NZM1
DO J = 2, NYM1
DI =2, NAM1
FN(I,J,K) = FN(I,J,K} + (FLX(I,J,K) - FLX{(I-1,J,K)) +
(FLY(1,J,K} - FLY{I,J~1,K)} +
(FLz(1,J,K) - FLZ({I,J,K-1))

W

END DO
END DO
END DO

IF (PC .EQ. 1) THEN

CALL BOOND (FN, F, IVAR)
ELSE

CALL BCOND (FN, FH, IVAR)



END IF

Calculate the diffusive fluxes...
DO K =1, NzM1

DO J =1, NYMI

DOI =1, N1

FLX(I,J,K) = NUXH(I,J,K)*(F{I+1,J,K) - F(I,J,K))
FLY({I,J,K} = NUYH(I,J,K)*(F(I,J+1,K) - F(I,J,K))
FLZ(I,J,K) = NUZH(I.J,K)*(F(I,J,K+1) - F(I,J,K))
END DO
END DO
END DO

Diffuse the advanced F...
DO K = 2, NaMi
DO J =2, NYM1
DO I =2, NML
FTD(I,J,K) = FN(I,J,K) + (FuX(I,J,K) - FLX(I-1,J,K)) +

2 (FLY(I,J.K) - FLY(I,J-1,K)) +
3 (F.2(1,5.,K) - FLZ(I,J,K-1))
END DO
END DO
END DO

IF (FC .EQ. 1) THEN

CALL BOOND (FTD, F, TVAi}
ELSE

CALL BCOND (FTD, FH, IVAR})
END IF

Calculate the antidiffusive fluxes...
DOK =1, NZ
DO J =1, NY
DO I =1, NxML
FLX(I,J,K) = MUKH(I,J,K)*VOL*(FN(I+1,J,K) - FN(I,J,K))
END DO
END DO
END DO
DOK =1, NZ
DO J =1, NYML
DOI =1, NX
FLY(I,J,K)
END DO
END O
END DO
DO K =1, NZM1
DOJ =1, NY

MUYH(T,J,K) *VOL* (FN{(I,J+1,K) - FN(I,J,K))

DDI=1, N
FLZ(I,J,K) = MUZH(I,J,K)*VOL*(FN(I,J,K+1) - FN(I,J,K))
END DO
END DO
END DO

Prelimit the antidiffusive fluxes (in all directions simultaneously)...
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CALL, PRELIMIT (FLX, FLY, FLZ, FTD, NX, NY, NZ)
Limit the antidiffusive fluxes (in all directions simultaneously) and
do it so that the errors of the HI and LO limiters cancel (somewhat)...
IF (MOD(PC + IT, 2) .!':'. 0) THEN

CALL HI_LIMIT (FLX, rLY, FLZ, FTD, VOL, F, IVAR)

CALL 1O _1.IMIT (FLX, FLY, FLZ, FTD, VOL, F, IVAR)
FISE

CALL LO_LIMIT (FLX, FLY, FLZ, FID, VOL, F, IVAR)

CALL, HI_LIMIT (FLX, FLY, ¥LZ, FID, VOL, F, IVAR)
END IF

Use the limited fluxes to calculate the best FN...
DO K = 2, NZM1
DO J = 2, NYM1
DOTI =2, XM
FN(I,J,K) = FTD(I,J,K) +

2 ({FLX(I-1,J,K) - FLX{I,J,K)) +
3 (FLY(I,J-1,K) - FLY(I,J,K)) +
4 (FLZ(I,J,K~1) - FLZ(I,J,K))
5 ) *IVOL
END DO
END DO
END DO

IF (PC .EQ. 1) THEN

CALL BCOND (FN, F, IVAR)
ELSE

CALL BCOND (FN, FH, IVAR)
END IF

PRINT *, ‘<— ADVANCE'
RETURN

END

SUBROUTINE BCOND (F, FOLD, IVAR)
Set the boundary conditions.

INTEGER IVAR, NNX, NNY, NNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 F (NNX,NNY,NNZ), FOLD (NNX, NNY, NNZ)
REAL*8 BC

COMMON /BC/ BC(6, 8)

INTEGER NX, NY, NZ

REAL*8 X, Y, Z, DX, Dy, Dz, VOL

COMMON /GRID/  X(NNX), Y(NNY), Z(NNZ),

2 DX, Dy, Dz, VOL, NX, NY, NZ
INTBGER IT, ITMAX

REAL*8 CFL, DT, TIME, TMAX

coMMON /TIME/ DT, IT, ITMAX, TIME, T™AX, CFL
INTBEGER NXM1, NYM1, NzMl, CUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, IDY2, IDZ2



CHARACTER EQN*3, ID*8

COMMON /MISC/  OUT_NUM, NXM1, NYM1, NZM1, IDX, IDY,

2 I2DX, I2DY, I2DZ, IDX2, IDv2, IDZ2,
3 ID, EQN(8)

INTEGER I, J, K

REAL*8 PBCX, PBCY, PBCZ, RBCX, RBCY, RBCZ

PRINT *, ‘—> BCOND'’

RBCX = BC(1, IVAR)
RBCY = BC(3, IVAR)
RBCZ = BC(5,IVAR)
PBCX = 1.D0 - RBCX**2
PBCY = 1.D0 - RBCY**2
PBCZ = 1.D0 - RBCZ**2

X boundary conditions...
DO K = 2, NzML
DO J = 2, NYMl
F(1,J,K) = PBCX*F(NXM1,J,K) + RBCX*F(2,J,K)
F(NX,J,K) = RBCX*F(NXM1,J,K)} + PBCX*F(2,J,K)
END DO
END DO

y boundary conditions...
DO K =1, Nz
DOTI =1, NX
F(I,1,K) = PBCY*F(I,NYMi,K) + RBCY*F(I,2,K)
F(I,NY,K) = RBCY*F(I,NYM1,K) + PBCY*F{I,2,K)
END DO
END DO

z boundary conditions...
DOJ =1, NY
DOTI =1, NX
F(I,J,1) = PBCZ*F(I,J,NZM1) + RBCZ*F(I,J,2)
F(I,J,NZ2) = RBCZ*F(I,J,NZMl) + PBCZ*F(I,J,2)
END DO
END DO

PRINT *, ‘<~ BCOND’
RETURN

END

SUBROUTINE DATA OUT
Write a snapshot of the simulation to a file.

INTBEGER NNX, NNY, NNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 RHO, RVX, RVY, S, GAMMA, BX, BY, BZ, RVZ
COMMON /PHYSA/ RHO(MNX,NNY,NNZ),

1Dz, IVOL,

129
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N

RVX (NNX, NNY,NNZ) , RVY (NNX, NNY,NNZ) ,

3 S(NNX, NNY,NNZ) , GAMMA

COMMON /PHYSB/ BX(NNX, NNY,NNZ), BY (NNX,NNY,NNZ), BZ(NNX,NNY,NNZ)

COMMON /PHYSC/ RVZ(NNX, NNY,NNZ)

INTBGER NX, NY, NZ

REAL*8 X, Y, Z, DX, DY, DZ, VOL

COMMON /GRID/  X(NNX), Y(NNY}, Z(NNZ},

2 DX, DY, DZ, VOL, NX, NY, N2

INTBEGER IT, ITMAX

REAL*8 CFL, DT, TIME, TMAX

COMMON /TIME/ DT, IT, ITMAX, TIME, TMAX, CFL

INTEGER NXM1, NYM1, NZM1, OUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, 12Dy, 12Dz, IDX2, IDY2, IDZ2

CHARACTER BON*3, ID*8

COMMON /MISC/  OUT_NUM, NxXM1, NyMl, NZM1, IDX, IDv, IDZ, IVOL,
I2DX. I2DY, 12D0Z, IDX2, IDY2, IDZ2,

3 ID, EGN(8)

INTEGER I, J, K, UNIT_LEN

CHARACTER CHAR_OUT_NUM*2, REMOVE_SPACES*80, UNIT*80

N

PRINT *, ‘—> DATA_OUT'

Name of file to write to... make sure that there are no spaces...
WRITE (CHAR OUT _NUM, ‘{I2.2)’) OUT_NUM

UNIT = ID // *-~* // CHAR_OUT_NUWM // ‘.dat’

UNIT = REMOVE_SPACES(UNIT)

UNIT_LEN = INDEX(UNIT, ‘ ‘) - 1

IF (UNIT_LEN .EQ. -1) UNIT_LEN = LEN(UNIT)

OPEN (9, FILE = UNIT(1:UNIT _LEN), STATUS = ‘NEW’,

2 FORM = ‘UNFORMATTED®)

PRINT *, '’ Snapshot file * s/ UNIT{(1:UNIT_LEN) // ‘' open...’

WRITE (9) NX, NY, NZ, NNX, NNY, NNZ
WRITE (9) X, Y, Z
WRITE (9) TIME, IT, GAMMA

CALL WRITE_R4 (RHO, NX, NY, NZ)
CALL WRITE_R4 (RVX, NX, NY, N2Z)
CALL WRITE_R4 (RVY, NX, NY, Nz}
CALL WRITE_R4 (RVZ, NX, NY, NzZ;
PRINT *, ¢ ...writing...’
CALL WRITE_R4 (S, NX, NY, N2)
CALL WRITE_R4 {BX, NX, NY, NZ)
CALL WRITE_R4 (BY, NX, NY, NZ)
CALL WRITE R4 (BZ, NX, NY, NZ)
CLOSE (9)

PRINT *, ...done.’

PRINT *, * TIME =’, REAL{TIME), ‘ DT =', REAL(DI), * IT =°¢, IT
PRINT *, ¢ '

OUT_NUM = OUT_NUM + 1

PRINT *, ‘<~ DATA_OUT’
RETURN
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END

SUBROUTINE WRITE_R4 (F, NX, NY, NZ)
Write out F in space-saving RFAL*4 unformatted form.

INTEGER NNX, NNY, NNZ
PARAMETER (NNX = 22, NNY =
INTEGER I, J, K, NX, NY, NZ
REAL*8 F (NNX, NNY,NNZ)
REAL*4 F4 (NNX,NNY, NNZ)

22, NNZ = 22)

PRINT *, ‘—> WRITE_R4’
DO K =1, NNZ
DOJ =1, NNY

DO I=1, NN\NX
F4(1I,J,K) = 0.

1
IJI K) = R-BAL(F(I,J, K))

WRITE (9) F4

PRINT *, ‘<— WRITE_R4’
RETURN

END

SUBROUTINE PRINT (F, NAME, STEP, ILO, IHI, JLO, JHI, KLO, KHI)

Print the array F. Be sure that IHI - ILO and JHI - JLO are .LE. 98.
CALL, PRINT (RHO, ‘ RHO’, IT, 2, 6, 2, 6, 14, 14)

INTEGER NNX, NNY, NNZ

PARAMETER {(NNX = 22, NNY = 22, NNZ = 22)

INTEGER I, ILO, IHI, J, JLO, JHI, K, KLO, KHI, STEP
REAL*8 F(NNX, NNY, NNZ)

CHARACTER COL,_NUM*2, FMTA*26, FMIB*21, NAME*4, CSTEP*6

PRINT *, ‘—> PRINT’

WRITE (CSTEP, °‘(16)°’) STEP
WRITE (12, *) NAME // ‘ at step number ’ // CSTEP
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WRITE (QOL_NUM, ‘(I2)*) THI - ILO + 1
FMTA = ‘(*K==, 12, * // "L NUM /7 *{IX, 12, 7X))'
FMIB = ‘(1P, I2, 2X, ‘ . COL_NUM // ‘Gl6.8)’

DO K = KHI, KO, -1

WRITE (12, FMTA) K, (1, I=ILO,IHI)

WRITE (12, PMIB) (J, (F(I,J,K), I=ILO,IHI}, J=JHI,JLO,-1)
END DO

WRITE (12, *) *

PRINT *, ‘<— PRINT’
RETURN

END

SUBRCUTINE FINISH

Print representative subsections of the arrays
and then stop the simulation.

INTHGER NNX, NNY, NNZ
PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 RHO, RVX, RVY, S, GAMMA, BX, BY, BZ, RVZ
COMMON /PHYSA/ RHO(NNX,NNY,NNZ),
RVX (NNX, NNY,NNZ} , RVY (NNX, NNY,NNZ),
S{NNX, NNY,NNZ), GAMMA
COMMON /PHYSB/ BX(NNX,NNY,NNZ), BY(NNX,NNY,NNZ), BZ(NNX,NNY,NNZ)
COMMON /PHYSC/ RVZ{(NNX, NNY,NNZ)
TNTRGFR IT, ITMAX
REAL*8 CFL, Dr, TIME, TMAX
COMMON /TIME/ DI, IT, ITMAX, TIME, T™™AX, CFL

CALL PRINT (RHO, ‘ RHO’, IT, 2, 6, 2, 6, 14, 14)
CALL PRINT (RVX, ‘ RVX', IT, 2, 6, 2, 6, 14, 14)
CALL PRINT (RVY, * RVY’, IT, 2, 6, 2, 6, 14, 14)
CALL PRINT (RVZ, ‘ RVZ’, IT, 2, 6, 2, 6, 14, 14)
CALL PRINT (S, ‘ s, IT, 2, &, 2, 6, 14, 14)
CALL PRINT (BX, ¢ BX‘’, IT, 2, 6, 2, &, 14, 14)
CALL PRINT (BY, * BY’, IT, 2, 6, 2, 6, 14, 14)
CALL PRINT (Bz, * BZ', IT, 2, 6, 2, 6, 14, 14)
STOP ‘... simulation done.’

END

CHARACTER* (*) FUNCTION REMOVE_SPACES {STRING)

CHARACTER STRING* (*})
INTEGER LENGTH, SPACE



LENGTH = LEN{STRING)

SPACE = INDEX(STRING, * )
DO WHILE (SPACE .NE. 0 .AND. SPACE .LE. LENGTH)
IF (SPACE .FQ. 1) THEN
STRING = STRING (SPACE+1 : LENGTH)
ELSE 1IF (SPACE .LT. LENGTH) THEN
STRING = STRING(1:SPACE-1) // STRING(SPACE+1 :LENGTH)
END IF
LENGTH = LENGTH - 1
SPACE = INDEX(STRING, * ‘)
END DO

REMOVE,_SPACES = STRING (1 :LENGTH)
RETURN

END

BLOCK DATA COMMON_INIT

INTBGER NNX, NNY, NNZ

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)
REAL*8 BC

COMMON /BC/ BC(6,8)

INTEGER NX, NY, NZ

REAL*8 X, Y, Z, DX, DY, Dz, VOL

COMMON /GRID/  X{(NNX), Y(NNY), Z{(NNZ),

2 DX, DY, DZ, VOL, NX, NY, NZ
INTEGER IT, ITMAX

REAL*8 CFL, DT, TIME, TMAX

coMMON /TIME/ DT, IT, ITMAX, TIME, TMAX, CFL
LOGICAL PRLIM, PROLD

COMMON /LIMIT/ PRLIM, PROLD

INTEGER NXM1, NYM1, NzZM1, OUT_NUM

REAL*8 IDX, IDY, IDZ, IVOL, I2DX, I2DY, I2DZ, IDX2, IDY2, IDZ2
CHARACTER EQON*3, ID*8

COMMON /MISC/  OUT_NUM, NXM1, NYM1, NzZM1, IDX, IDY, IDZ, IVOL,

2 I2DX, 12Dy, I2DZ, IDX2, 1IDY2, 1DzZ2,
3 ID, EQN(8)

Model 1ID:

DATA ID / 'thesis’ /

Number of the snapshot file to start from (make ronzero only for model restarts):

DATA OUT_NUM / 0 /
Number of cells in grid:

DATA NX / 22 /,

2 NY / 22 /,

3 NZ / 22/
Define the cell size:
DATA DX / 0.05D0 /,

2 DY / 0.05D0 /,

3 19./4 / 0.05D0 /
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Starting time, maximum time, initial timestep size:
DATA TIME / 0.D0 /,

2 TMAX / 0.4D0 /,

3 or / 0.25D-3 /

Minimum, desired, and maximum Courant numbers and max. # of iterations:
DATA CFL / 0.2500 /,

2 I™AX / 500 /

Switches controlling how the limiter is run:
DATA PRLIM / .TRUE. /,

2 PROLD / .TRUE. /

Equation/variable names:

DATA EON / *‘RHO’, ’'RVX’, ’‘RVY’, ’'RVZ’, ‘S “‘,

2 ‘BX *, ‘BY ‘, ‘BZ ' /

Define b.c.: xlo, xhi, ylo, vhi, zlo, zhi (xyzlo = xyzhi)
DATA BC / 1.p0, 1.p0, 1.DO, 1.DO, 0.DO, 0.DO, rhe
2 -1.00, -1.p0, 1.D0, 1.DO, 0.D0, 0.DO, rvx
3 i1.p0, 1.p0, -1.DO, -1.DO, 0.D0O, 0.DO, vy
4 1.p0, 1.p0, 11.0O, 1.D0, O0.DO, 0.DO, vz
5 1.p0, 1.p0, 1.DO0, 1.D0, 0.D0, 0.DO, s
& -1.p0, -1.D0, 1.DO, 1.DO, 0.D0, 0.DO, bx
7 i.p0, 1.p0, -1.p0O, -1.DO, 0.D0O, 0.DO, by
8 1.p0, 1.p0, 1.DO, 1.DO, 0.D0O, 0.DO / bz
END

The following code is a substantially mcdified version of subroutine
FLIMIT [Finite-Difference Techniques for Vectorized Fluid Dynamics
Calculations, D. L. Book {ed.), pp. 171, Springer-Verlag,

New York, 19811 which implements Zalesak’s multidimensional flux
limiter [Zalesak, J. Comp. Phys., vol. 31, pp. 335, 1979)

PRELIMIT, HI_LIMIT and LO_LIMIT together comprise a FORTRAN subroutine
which implements FLIMIT in a 3-D cartesian geometry. The subroutine is
broken into three parts to lend same flexibility to its application
(normally they are called one after the other). It incorporates a tweak
to the flux limiter that reduces some spurious fluxes {when PRLIM =
.TRUE.) and the ability to look back to the previocus timestep for upper
and lowz bounds on the new solution (when FOLD = .TRUE.) as options.

Modifications:
Bug fix - Oct '89
Tidying - Jun '90
2-D to 3-D ~ Sep '90
Full implementation of flux-zercing prelimiter - Jan ‘92
Moved boundary conditions to main program - Feb '92
Improved speed and memory use on IBM RS/6000 - Feb ‘92
Broken into blocks using the ENTRY statement - Mar ‘92

Calling sequence:

F1LX, FLY, FLZ - Raw (unlimited) antidiffusive fluxes. Dimensionally,
the fluxes should have the same units as FID (below)

multiplied by a volume. They must be real fluxes (like
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grams for eg.). They are ~orrected and returned for

use in the calling program.

FLX(I,J,K) - centred between FTD(I,J,K) & FTD(I+1,J,K)
- defined for I=1,NXMl1 J=1,NY K=1,NZ

FLY(I,J,K) - centred between FTD(I,J,K) & FI'D(I,J+1,K)
- defined for I=1,NX J=1,NYMl K=1,NZ

FLZ(I,J,K) - centred between FID(I,J,K) & FTD(I,J,K+1)
- defined for I=1,NX J=1,NY K=1,NzZMl

FID - Array containing the time-advanced, low order
(*transported and diffused”) solution.

NX, NY, Nz - Dimensions of mesh (restricted at compile time
by variable dimensioning to NX <= NNX, NY <= NNY and
NZ <= NNZ, where NNX, NNY and NNZ are defined in
a PARAMETER statement).

VOL - Volume of the cell centred at grid point (I,J,K)
calculated by DX*DY*DZ. In order to speed things up
and reduce storage requirements, the option of having
a variable mesh has been removed.

FAA - Array containing the solution from the previous
timestep (used only if FOLD = .TRUE.).

IVAR - Identifying number of variable being processed
{(for use in external boundary condition subroutine).

The COMMON block /LIMIT/ contains two scalar logical variables
which may be set by the user from outside the subroutine:

PRLIM Setting PRLIM = .TRUE. zeroes the flux using the
criteria given in equation (14') in [Zalesak, 1979].

FOLD Setting FOLD = .TRUE. allows the limiter to look back
to the solution from the previous timestep (which
must be stored in array FAA) to find upper and
lower bounds on the new solution.

The most conservative (i.e., most diffusive) choice is obtained by
setting PRLIM = .FALSE. and FOLD = .FALSE.. This is the recommended
choice for a first attempt.

SUBROUTINE PRELIMIT (FLX, FLY, FLZ, FID, NX, NY, NZ)

INTEGER NNX, NNY, NNZ, NX, NY, Nz, IVAR

PARAMETER (NNX = 22, NNY = 22, NNZ = 22)

REAL*8 FLX(NNX,NNY,NNZ), FLY (NNX,NNY,NNZ), FLZ(NNX,NNY,NNZ),
2 FTD(NNX,NNY,NNZ) , VOL, FAA (NNX, NNY,NNZ)

LOGICAL FOLD, PRLIM

COMMON /LIMIT/ PRLIM, FOLD

INTEGER I, J, K, NXMl, NyMl, NzMl, NxXM2, NYM2, NZM2



KEAL*8 SA, SB, SC(NNX,NNY,NNZ), SD(NNX, NNY,NNZ)

D PRINT *, ‘—> PRELIMIT’
N = NX - 1
NYMl = NY - 1
NZMl1 = N2 - 1
W2 = - 2
NYM2 = NY - 2
NZMZ2 = NZ - 2
IF ( PRLIM ) THEN
C Eliminate down-gradient antidiffusive fluxes...
D0 100 K =1, N2
DO 100 J =1, NY
DO 100 I = 2, NXM2
SA = FLX(I,J,K)*(FID(I+1,J,K) - FID(I,J,K))
SB = MIN(FIX{I,J,K)*(FID{(I,J,K) - FTD(I-1,J,K}),
2 FLX(I,J,K)*(FITD(I+2,J,K) - FTD(I+1,J,K))}
100 FLX(I,J,K) = FLX(I,J,K)*MAX{0.D0O, SIN(1.D0O, MaX{SA, SB}))
DO 103 K=1, N2
DO 103 J = 2, NYM2
DO 103 I =1, NX
SA = FLY(I,J,K)*(FTD(I,J+1,K) - FID(I,J,K))
SB = MIN(FLY(I,J,K)*(FTD(I,J,K) - FID(I,J-1,K)),
2 FLY(I,J,K)*(FTD(I,J+2,K) - FTD(I,J+1,K)))
103 FLY(I,J,K) = FLY(I,J,K}*MAX(0.DO, SIGN(1.DO, MAX(SA, SB}})
DO 106 K = 2, NZM2
DO 106 J = 1, NY
DO 106 I = 1, NX
SA = FLZ(I,J,K)*(FTD(I,J,K+1) - FID(I1,J,K)}
SB = MIN(FLZ({I,J,K)*(FTD{(I,J,K) - FID(I,J,K-1}),
2 FLZ(I,J,K)*{rTD(I,J,K+2) - FID(I,J,K+1}))
106 FLZ(I1,J,K} = FLZ(I,J,K)*MAX(0.D0, SIGN({1.DO, MAX(SA, SB))}
END IF
D PRINT *, ‘<— PRELIMIT’
RETURN
ENTRY HI_LIMIT (FLX, FLY, FLZ, FTD, VOL, FA2, IVAR)
D PRINT *, ‘—> HI_LIMIT'
IF ( FOLD ) THEN
C Use solution from previous timestep in limiter...

200

DO 200 K =1, NZ

DO 200 J =1, NY

D020 I =1, NX
SC(I,J3,K) = MAX(FID(I,J,K), FAA(I,J,K))
ELSE

Don’t use previous solution in limiter...
DO 203 K =1, NZ

DO 203 J =1, NY
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DO 203 I=1, NX

203 sC(I,J,K) = FID(I,J,K)
END IF
DO 210 K = 2, NZM1
DO 210 J = 2, NYM1
DO 210 I =2, NXML
Set limits on antidiffusive flux...
210 Sb{1,J,K) = (0.5D0*MAX(SC(I-1,J,K) + SC(I,J, K},
2 SC(I+1,J,K) + SC(I,J,K),
3 sC(1,J-1,K) + sC{1,J,K),
4 SC{I,J+1,K) + sC(I1,dJ,K),
5 sC(1,J,K-1) + sC(I1,J,K),
6 SC({I,J,K+1) + sC(1,J,K),
7 2.0D0*sC(T,J,K))
8 - FTD(I,J,K))*VOL
DO 220 K = 2, NZMl
DO 220 J = 2, NYM1
DO 220 I =2, rML

Calculate antidiffusive flux into cell {x-component}...
220 SC{I1,J,K) = MAX{(0.DO, FLX(I-1,J,K}) - MIN(0.DO, FLX(I,J,K))
DO 223 K = 2, NZMl
DO 223 J = 2, NyM1
DO 223 I =2, NXML

Calculate antidiffusive flux into cell (y-component)...
223 SC{I,J,K) = sC(I,J,K) +
2 MAX(0.DO, FLY(I,J-1,K)) - MIN(0.DO, FLY(I,J,K))
DO 226 K = 2, NZM1
DO 226 C = 2, NYM1
DO 226 1 =2, NXML
Calculate antidiffusive flux into cell (z-component)...
226 sC(I1,J,K) = sC(1,J,K) +
2 MAX(0.DO, FLZ(I,J,K-1)) - MIN(0.DO, FLZ(I,J,K))
DO 230 K = 2, N&ML
DO 230 J = 2, N\YM1
DO 2301 =2, M1
Calculate preliminary limiting factzor...
IF ( sC{(1,J,K) .LE. SD{(I,J,K) ) THEN
SD(I,J,K) = 1.D0
EISE IF ( sC(I,J,K) .BEQ. 0.D0 j} THEN
sD(1,J,K) = 0.DC
ELSE
sD(1,d,K) = sD{(1,J,K)/sC(1I,J,K)
END IF
230 CONTINUE
CALI. BCOND (SD, SD, IVAR)
DO 240 K = 1, NZ
DO 240 J = 1, NY
DO 240 I =1, NboML
Calculate final limiting factor and correct antidiffusive fiux..
240 FLX(I,J,K) = FLX({(I,J,K)*MAX(-SIGN(SD(I,J,K), FLX(I,J,K)),

2 SIGN(SD(I+1,J,K), FLX(I,J,K)))
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D0 243 K =1, NZ
DO 243 J = 1, NYM1
DO 243 1 =1, NX

243 FLY(I,J,K) = FLY(I,J,K)*MAX(-SIGN(SD(I,J,K), FLY(I,J,K)),
2 SIGN(SD(I,J+1,K), FLY(I,J,K)})
DO 246 K =1, NZM1

DO 246 J = 1, NY
DO 246 1 =1, NX
Calculate final limiting factor and correct antidiffusive flux...

246 FLZ(I,J,K) = FLZ(I,J,K)*MAX(-SIGN(SD(I,J,K}, FLZ(I,J.K)),
2 SIGN{(SD(I,J,K+1), FLZ(I,J,K)}))
PRINT *, ‘<— HI_LIMIT’

RETURN
ENTRY LO_LIMIT (FLX, FLY, FLZ, FID, VOL, FAA, IVAR)
PRINT *, ‘~> LO _LIMIT
IF ( FOLD ) THEN
DO 300 K=1, Nz
DO 300 J =1, NY
DO 300 I =1, X
300 SC(I,J,K) = MIN(FID(I,J,K), FAA(I,J,K))
ELSE
DO 303 K=1, Nz
DC 303 3 =1, NY
DO303 I=1, X
303 sc(1,J,K) = FID(I,J,K)
END IF
DO 310 K = 2, NZMl
DO 310 J = 2, NyML
DO 310 I = 2, NXM1

310 st.%,J,K) = (FID(I,J,K) -

2 0.5DO*MIN(SC(I-1,J,K) + SC(I,J,K),
3 SC(I+i,J,K) + SC(I,J,K),
4 SC(I,2-1,K) + S8C(I,J,K),
5 SC(T,J+1,K) + sC(I,J.K),
6 SC(I,J,K-1) + SC(I.J,K),
7 SC(I,J,K+1) + sC(I,d,K),
8 2.0D0*sC(1,J,K) ) ) *VOL
DO 320 K = 2, NZM1
DO 320 J = 2, NYM1
DO 320 I = 2, Ml

320 SC(1,J,K) = MAX(0.DO, FLX(I,J,K)) - MIN(0.DO, FLX(I-1,J,K))}

DO 323 K = 2, NZM1
DO 323 J = 2, NYMl
DO 323 1 =2, XML

323 SC(I,J,K) = sC(I,J,K) +

2 MAX(0.DO, FLY(I,J,K)) - MIN(0.DO, FLY(I,J-1,K))}

DO 326 K = 2, NZM1
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DO 326 J = 2, NYML
DO 326 I =2, N\xXM1
326 sC(I,J,K) = SC(I,J.K) +
2 MAX(0.D0, FLZ(I,J,K)) - MIN(0.DO, FLZ(Y,J,K-1))
DO 330 K = 2, NZM1
DO 330 J = 2, NYM1
DO 330 I =2, NxMt
IFr ( sC(1,J,K) .LE. sD(1,J,K) ) THEN
SD(I,J,K) = 1.0
EISE IF ( SC(I,J,K}) .BQ. 0.D0 ) THEN
sD(1,J,K} = 0.D0
EISE
sb(1,J,K) = sD{(I,J,K)/sSC(I,J,K)
END IF
330 CONTINUE

CALL BCOND (sD, SD, IVAR)

DO 340 K=1, NZ
DO 340 J = 1, NY
DO 340 I =1, NxM1
340 FLX(I,J,K) = FLX(I,J,K)*MAX{SIGN(SD(I,J,K), FLX(I,3,K)),
2 -SIGN{SD(1+1,J,K), FLX(I,J,K)))
DO 343 K =1, Nz
DO 343 J = 1, NYM1
DO 343 1 =1, NX
343 FLY(I,J,K) = FLY(I,J,K)*MAX(SIGN(SD(I,J,K}, FLY(I,J,K)}),
2 -SIGN(SD(X,J+1,K), FLY(I,J,K))}
0 346 K = 1, NzMl
DO 346 3 =1, NY
DO 346 I = 1, NX

346 FLZ(1,J,K) = FLZ(I,J,K)*MAX{SIGN(SD(I,J,K), FLZ(I,J.K)).
2 -SIGN(sSD(IX,J,K+1), FLZ(I,J,K)))
D PRINT *, ‘<— LO_LIMIT'
RETURN
END

Contents of file array_subs.dat:

RHO at step number
K=14 2

6 2.6058944
2.6041607
2.6041436
2.6041377
2.6041352

W

RVX at step number
K=14 2

98
3
2.6067593
2.6055345
2.6041941
2.6041538
2.6041378

98
3

4
2.6072901
2.6073553
2.6058104
2.6041946
2.6041435

5
2.6060160
2.6077075
2.6073543
2.6055413
2.6041652

NN NN

6
.6039584
.6059805
.6073008
.6067488
.6058940



6 - 31326E-04
5 -5.. 511878E-05
4 6.69537479E-05
3 1.73276104E-05
2 9.87263778E-06

RVY at step number
K=14 2
6  -7.22936542E-0G4

5 -3.41697276E-05
4 1.10006529E-05
3 1.57886367E-05
2 9.83132879E-06

RVZ at step number
K=14 2

6 3.40608502E-04
-1.60204022E-05
-7.94434777E-C6
-4.02303741E-06
-3.23785200E-06

N WA

S at step number
14 2
1.0011064
.99999655
.99998528
.99998147
.99957984

=

N W ol

BX at step number
K=14 2
6 1.68035446E-04
~7.1.8606775E-06
-1.36747117E-05
~-2.16588716E-06
-3.10797831E-07

N W Ut

BY at step number
14 2
8.81277820E-05
-7.10417599E-06
-3.85168675E-06
-1.60655087E-06
-3.17562587E~-07

¥
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BZ at step number

K=14 2

6 .96880628
5 .96824485
4 .96823742
3 .96823469
2 .96823372

-2.37242858E-03
-1.13347635E-03
~1.07664054E-04
1.09668048E-05
1.55672083E-05

98
3
-1.56882864E-03
—-8.35070996E-04
-3.52271503E-05
1.11236365E-05
1.73806023E-05

38
3
5.67204987E~94
3.39029754E-04
-1.55042186E-05
-6.70879%42E-06
-4.14460403E-06

98
3
1.0016608
1.0008874
1.0000221
.99999184
.99998152

98
3
.87664857E~04

Np AT T N
e QLU IV L Ut

-9.21373378E-06
-3.93793001E-06
-1.53251294E-06

oW

98
3
1.92430344E-04
1.10219529E-04
-7.07834017E-06
-3.94603104E-06
-2.14036296E-06

98
3
.96918127
.96876763
.96828156
.96824194
.96823471

-2.81210680E-03
-2.26227191E-03
-1.04655122E-03
-3.74160941E-05

1.09534899E-05

4
-2.18864181E-03
-2.23197203E-03
-1.04507625E-03
-1.07621633E-04

6.71253841E-05

4
6.66519950E-04
6.95448552E-04
3.60884336E-04

-1.58742287E-05
-8.60620342E-06

4
1.0020065
1.0020164
1.0010606
1.0000224
.99998521

4
4.53123984E-04
3.26837541C 04
1.35935385E-04

-7.10006136E-06
-4.24102759E-06

4
2.93876841E-04
3.11144796E-04
1.26007284E-04

-9.16420322E-06
-1.36189803E-05

4
.96943540
.96931533
.96885740
.96828184
.96823741

-2.01058194E-03
-2.67035978E-03
-2.23370273E-03
-8.37666216E-04
-2.57702897E-05

5
-1.60347910E-03
-2.67742988E-03
-2.25988261E-03
-1.13058346E-03
-6.39656574E-05

5
4.06719583E-04
7.28319981E-04
6.98779884E-04
3.39021035E-04

-1.68642277E-05

5
1.0011942
1.0022651
1.0020246
1.0008912
.99999933

)
.023929601E-04
.84748525E-04
.11649260E-04
.10911790E-04
.38391307E-06

= W

)
.68444810E-04
.85671363E-04
.2937184°%E~94
.52918859E-C14
~7.33077992E-06

=W

5
.96913802
.96953955
.96931412
.96877181
.96824538

-6.

-2

-2.
-2.
-9.
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.28009233E-04
.59182340E-03
.18767812E-03
.57072556E-03
.28720199E-04

6
37215412E-04
.01100766E-03
81490421E-03
37845593E-03
64717215E-04

6
.61510584E~05
.12297513E-04
.68178515E-04
.66098292E-04
.405017C1E-04

6
.99986541
1.0011844
1.0020045
1.0016538
1.0011058

&
.71381275E-04
.71365500E-04
.93835305E-04
.92962693E-04
.78128165E-05

6
.65144920E-04
.96821748E-04
.49548433E-04
.89996158E-04
.68364767E-04

6
.96861869
.96913296
.96942995
.96918137
.96880874
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