
If thou tastest a crust of bread, thou tastest all the stars and all the heavens.

– Robert Browning (1812-1889).

University of Alberta

Physically-Based Baking Animation Using Smoothed Particle Hydrodynamics for
Non-Newtonian Fluids

by

Omar Isidro Rodriguez-Arenas

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Omar Isidro Rodriguez-Arenas
Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof

may be printed or otherwise reproduced in any material form whatsoever without the author’s prior
written permission.

Examining Committee

Herb Yang, Computing Science

Pierre Boulanger, Computing Science

Faye Hicks, Civil and Environmental Engineering

Abstract

This thesis explores the mesh-free fluid simulation method of Smoothed Particle

Hydrodynamics (SPH), and its application in the modelling of the baking process.

A framework is proposed to generate dramatic-looking animations while maintain-

ing the simulation physically plausible. In this framework, SPH can successfully

model non-Newtonian fluids with the different physical changes that take place dur-

ing the baking process including 1) volume expansion due to the increase the fluid’s

inner pressure, 2) the fluid-solid phase change due to the change in the mechanical

properties of the fluid, and 3) the surface browning that gives the end result a more

realistic look. An adaptive field function is proposed for the purpose of reconstruct-

ing a surface from the results of the SPH simulation, allowing for the expansion of

the fluid to take place while maintaining its volume whole. A qualitative compari-

son is presented between the resulting animations and images of different types of

baked goods. Moreover, the future research to the SPH method is explored along

with a discussion on how the SPH method can be further improved to create better

animations of the baking process.

Acknowledgements

First and foremost, I wish to thank Dr. Herb Yang for his continuous support dur-

ing my studies; the pool of knowledge I tapped in his shared experiences and vast

knowledge helped to guide the final results of my research.

I would also like to thank the members of my examining committee Dr. Pierre

Boulanger and Dr. Faye Hicks for taking the time to examine my work in depth.

Their invaluable feedback improved greatly the quality of this report.

My gratitude also goes towards current and former members of the Computer

Graphics Lab at the University of Alberta: Xida Chen, Jason Gedge, Dr. Cheng

Lei, Dr. Daniel Neilson, Gopinath Sankar, Yufeng Shen and Yilei Zhang. The

knowledgeable conversations provided valuable insight to numerous aspects of my

thesis.

Furthermore, I would also like to thank my family: Roberto Rodriguez, Clarissa

Arenas and Sofia Arenas for their constant and unyielding support all through my

life.

And last but not least I would like to thank my life partner Mariana Paredes-Olea

who was by my side through this process to share ideas, help organize my thoughts,

and give meaning to my life. Without her, the work presented in this thesis would

not have been possible.

Table of Contents

1 Introduction 1

2 Previous work 5
2.1 Fluid simulation . 5
2.2 Smoothed particle hydrodynamics 7

2.2.1 SPH fundamentals . 7
2.2.2 Hydrodynamic phenomena with SPH 10

2.3 Surface reconstruction . 19
2.4 Mathematical modelling of the baking process 25

3 Smoothed particle hydrodynamics 38
3.1 SPH framework . 38

3.1.1 Kernel function . 38
3.1.2 Neighbour search . 41
3.1.3 Density . 47
3.1.4 Pressure . 48
3.1.5 Viscosity . 49
3.1.6 Stress tensor . 50
3.1.7 Surface tension . 54
3.1.8 Surface particles . 55
3.1.9 Collision detection and response 56

3.2 Numerical stability . 59
3.2.1 Velocity correction . 61
3.2.2 Artificial viscosity . 61

3.3 New phenomena . 65
3.3.1 Heat transfer . 65
3.3.2 Phase changes . 67
3.3.3 Volume expansion . 75

3.4 Numerical integration . 78
3.5 Surface reconstruction . 79
3.6 Summary . 87

4 Baking model 90
4.1 Heat transfer . 91
4.2 Volume expansion . 93
4.3 Solidification . 97
4.4 Surface colouring . 101
4.5 Results . 103
4.6 Summary . 109

5 Conclusions and Future Work 111

Bibliography 114

A Animation information 121

List of Figures

1.1 Examples of non-Newtonian fluids. 3

2.1 SPH support domain. 9
2.2 Thürey et al. [84] results on bubble and foam simulation. 11
2.3 Cleary et al. [14] results animating frothy and foaming liquids. . . . 12
2.4 Stora et al. [82] results on simulating lava flow. 13
2.5 Mao and Yang’s [52] results highlighting fluid bars with different

heat coefficients dropped onto a hot plate. 15
2.6 Keiser et al. [36] results showing solidification and melting phe-

nomena. 16
2.7 Melting results from Paiva et al. [70]. 18
2.8 Solenthaler et al. [79] stages of the phase change process. 19
2.9 Solenthaler et al. [79] results showing melting phenomena. 20
2.10 Poisson reconstruction in 2D from [35]. 22
2.11 Alpha-shape representation in 2D from [15]. 24
2.12 Fan et al. [25] representation of a gas cell in dough. 26
2.13 Marcotte et al. [54] algorithm for cake baking. 35
2.14 Initial mesh for Zhang’s simulation from [90]. 36
2.15 Zhang et al.’s [91] [92] [90] algorithm for the simulation of the

baking process. 37

3.1 A 2D example of the neighbour search operation using a grid-based
data structure. 42

3.2 A 2D ksyesd-tree. 44
3.3 The classical dam break test. 46
3.4 Stress affected by µesyes and λsyes through animation. 52
3.5 Side by side comparison of the effects of the stress tensor. 53
3.6 Local convex hull. 56
3.7 Example of possible collision detection and response problem. . . . 58
3.8 Particle collision detection and response. 59
3.9 Animation illustrating immiscible fluids. 60
3.10 Top-view comparison of the effects of ε. 62
3.11 Front-view comparison of the effects of ε. 63
3.12 Heat transfer screenshots from real-time view. 68
3.13 Effects of varying λ and µe based on temperature. 69
3.14 A melting animation illustrating the effects of varying λ and µe

based on temperature. 70
3.15 Animation of a fluid with low viscosity. 72
3.16 Animation of a fluid with high viscosity. 73
3.17 Animation illustrating the effects of variable velocity tuner. 74

3.18 Underestimating the volume of effect for field function. 80
3.19 Overestimating the volume of effect for field function. 81
3.20 Result of the Poisson reconstruction method showing temporal dis-

crepancy. 82
3.21 Subsequent frames showing temporal discrepancy using the RIMLS

algoritm. 84
3.22 Results of the alpha-shape algorithm from using the same alpha

value for the whole animation. 85
3.23 Result using a good marching cubes distance function. 87
3.24 Result using a good marching cubes distance function. 88

4.1 Baking time lapse for an angel food cake from [37]. 92
4.2 Temperature profile of a bread roll during the baking process. . . . 93
4.3 Qualitative comparison of volume expansion. 95
4.4 Results from different bubble particle distribution. 96
4.5 Fluid-solid phase transition. 99
4.6 Temperature profiles of parameters. 100
4.7 Result from calculating UV coordinates using the SPH formalism. . 103
4.8 Different stages of baking a bread roll. 105
4.9 Close up highlighting crust and crumb from Figure 4.8(f). 106
4.10 Images from baked bread rolls. 107
4.11 Animation sequence baking an angel food cake. 107
4.12 Animation sequence for baking the bread of the dead. 108
4.13 Bread of the dead. 109

List of Symbols

ψ 3D indicator function used in the Poisson surface reconstruction
method

A 3D position vector function
x 3D position
a Acceleration
Wv Activation energy for viscous flow
L Angular momentum
ω Angular velocity
λa Apparent thermal conductivity
η Apparent viscosity
Na Average number of neighbours of a 3D point
αφ Base radius of the adaptive field function
b Behaviour of powerlaw index
ρb Bubble density
Pb Bubble pressure
Vb Bubble Volume
O Bubble-dough particle differentiation function
xcm Centre of mass
ηc Cinematic viscosity
C∗b CO2 equilibrium concentration for a bubble
G Colour contribution function
C Colour property
Xc Concentration of CO2

γ Constant in Tait’s Equation
αΠ Constant in the computation of artificial viscosity related with

bulk viscosity
βΠ Constant in the computation of artificial viscosity related with

von Neumann-Richtmyer viscosity
εΠ Constant in the computation of artificial viscosity used to prevent

numerical divergences
Ca Cross section surface area

10

Dc Current working tree depth
tφ Density field function threshold
aφ Density field function user defined value
bφ Density field function user defined value
φ Density field function
ρ Density
d Depth of the root of the subtree
δ Dirac delta function
u Displacement from the material coordinates
rij Distance between particles i and j
rφ Distance to point in evaluation
P Distinct patch of ∂M
µe Elasticity coefficient
De Elasticity matrix
χ Equation whose answer defines an isosurface
f External forces
ρf Final density
A Finite point set
ζc Fluid consistency index
ζf Fluid flow index
B Gas constant
Rg Gas constant
ṁg Gas mass flow leaving the cake
Gp Gas phase partition coefficient
ḡ Geometric mean of the initial density estimates
εG Green strain
Q̇ Heat flow rate
kh Heat transfer coefficient
He Height
I Identity matrix
I Inertia stress tensor
D Intensity of deformation
J Jump number
W Kernel function
SK Kirchhoff stress
∆Hv Latent heat of water
Mf Mass fraction
K Mass permeability
m Mass

αe Matrix element
βe Matrix element
Mw Moisture
N Neighbouring particles that fall within the support of x
εn Non-elastic strain
N Normal vector
αc Normal velocity coefficient
Ns Normalized sum of the normal vectors belonging to the facets

with which particle collided
b N th time step
Nc Number of CO2 gas cells in dough
nCO2

Number of CO2 in moles
k Number of dimensions being subdivided in the k-d tree data

structure
d number of dimensions
Ns Number of particles in each search
Nt Number of particles that define a fluid
DL Overall CO2 transfer coefficient from dough to the bubble
εp Porosity
P Pressure
βφ Radius coefficient of the adaptive field function
r Radius
Rc Rate of CO2 generation
Cλ Relaxation time scaling factor
λ Relaxation time
R Rotational tensor
y Sample in Q
kg Scaling factor of the order of unity
εg Sensitivity parameter that exists in the interval 0 ≤ εg ≤ 1

S Set of points that will make up the kd-tree
Y Set of samples
F̃ Smoothing filter used in the Poisson surface reconstruction

method
h Smoothing length
Cheat Specific heat capacity
c Speed of sound
α Squared radius of the sphere used to construct the alpha-shape
εS Strain
S Stress tensor

βc Surface friction parameter
Surface in the Poisson surface reconstruction method

σ Surface tension
T Temperature
et Thickness
t Time
τ Torque vector
D′ Traceless stress tensor
F̃x Translation of the smoothing filter used in the Poisson surface

reconstruction method
M Unknown model in the Poisson surface reconstruction method
U Value to e used as the pair UV coordinates
V Vector field used in the Poisson surface reconstruction method
D Velocity gradient
v Velocity
µ Viscosity coefficient
Π Viscosity tensor
Ω Volume of the integral that contains x
V Volume
∆Hvap Water vaporization enthalpy
ε XSPH velocity tuner
E Youngs modulus

Chapter 1

Introduction

Fluid flow simulations are a problem of great interest for different fields ranging

from medicine to engineering to the entertainment industry. Goals and requirements

for simulating fluids are varied as well: its use by industrial and engineering settings

focus on accuracy as the main objective, and results obtained can be the difference

between a successful procedure or a disaster of great consequences. In applications

for the entertainment industry; however, accuracy may take the back seat in favour

of either speed for real-time software such as video games, or for a more dramatic

or visually appealing animation.

Also, for computer graphic researchers, many fluid phenomena have been of

interest in the past: water splashing, the movement of fire, smoke swirling in the

air, etc. This thesis presents another example. The simulation of the baking process

is an ever-present, and important part of our daily lives; furthermore, it presents

many interesting fluid phenomena such as volume expansion, and fluid-solid phase

change. Even though this process is generally perceived as a simple process, it is

very complex to simulate due to the many physical and chemical changes that oc-

cur but that are not completely understood. Our engineering understanding of the

baking process is very limited, and recently there has been an increase in research

interest for simulating and visualizing baking phenomena, resulting in varied at-

tempts to create an accurate mathematical model. One example is the work done by

Zhang et al. [91] [92] [90], Fan et al. [25], and Lostie et al. [49] (described in detail

1

in Chapter 2). However, the goal of the research presented in this thesis is to create

appealing animations with the purpose of entertainment. For this reason, different

assumptions will be made in contrast to more rigorous work where the result of a

dramatic animation will be favoured.

Due to the interesting research challenges posed by the problem of animating

fluids’ movements, there have been many models that are designed for simulating

specific phenomena, like Enright et al.’s [23] method for the animation and ren-

dering of photo-realistic water effects, Lenaerts et al.’s [42] work on porous flow

simulations, and Stora et al.’s [82] simulation of lava flows, to cite a few. How-

ever, the baking process has been largely untouched by researchers in the area of

computer graphics animation.

Dough can be difficult to model because it is generally a non-Newtonian fluid.

The difference between a Newtonian fluid (i.e. water, air, wine) and a non-Newtonian

fluid (i.e. mayonnaise, peanut butter, bread dough) is that for a Newtonian fluid,

viscosity is only dependent on temperature, whereas for a non-Newtonian fluid,

viscosity can change as the shear rate changes. Non-Newtonian fluids present very

interesting behaviours such as the Weissenberg effect where the fluid will climb up

a rod used to mix it inside a container. Such a phenomenon is often observed when

mixing batter with an electric beater. Another example is the “memory” effect,

characteristic of some non-Newtonian fluids, that causes them to maintain its shape

until a strong enough force is applied. Examples of non-Newtonian fluids can be

seen in Figure 1.1.

Due to the difficulty of accurately modelling non-Newtonian fluids in computer

graphics an often taken recourse is to fake the non-Newtonian fluid. On the contrary,

because the proposed framework will simulate the baking process, it has to be able

to model non-Newtonian fluids to represent the dough. To do so, the present work

builds upon the research done by Mao and Yang [51] [52] [53] using the Smoothed

Particle Hydrodynamics (SPH) framework.

The SPH framework is a mesh-free computational method for simulating fluid

2

(a) Honey holding on to a honey
dipper from [39].

(b) Peanut butter holding its shape from [41].

Figure 1.1: Examples of non-Newtonian fluids.

flow that was initially developed for astrophysical simulations by Lucy [50], Gin-

gold et al. [28]. Roy [74] along with Desburn and Gascuel [17] were the first to use

SPH for generating animations for entertainment purposes.

The work presented in this thesis expands the SPH framework with the follow-

ing contributions:

• An improved method to achieve the fluid-solid phase change based on the

work by Mao and Yang [51] [52].

• An original method to simulate the volume expansion of a fluid by modelling

the increase in pressure of gas trapped inside the fluid.

• An adaptive density function used to create a mesh that is capable of illustrat-

ing the results from the volume expansion.

These new phenomena are then used in tandem to create animations of the bak-

ing process, which takes into account volume expansion, solidification, and surface

browning phenomena that take place during baking.

The body of this thesis is organized as follows. Chapter 2 summarizes back-

ground information and related works on fluid simulation, smoothed particle hydro-

3

dynamics; also, mathematical models of the baking process are discussed. Chap-

ter 3 describes the implementation details of the SPH framework along with a de-

scription of the new phenomena; furthermore, the method for reconstructing sur-

faces from the results of the SPH framework are discussed. Chapter 4 includes

information on how the new phenomenon is put together to simulate the baking

process. Finally, Chapter 5 contains a discussion on the results obtained from ap-

plying the SPH framework to model the baking process, as well as a brief discussion

on possible future work.

4

Chapter 2

Previous work

The purpose of this Chapter is to present the background knowledge upon which

the work presented in this thesis is based. Section 2.1 provides a brief overview

of the equations that govern most fluid flow of interest to computer graphics ani-

mations known as the Navier-Stokes equations. In Section 2.2 an introduction to

the fundamentals of the framework used to create the animations presented in this

thesis is given as well as a review of different attempts at creating different hydro-

dynamic phenomena using the same framework. Section 3.5 gives a brief review

on the works of surface reconstruction, an important aspect used to visualize the

results of the fluids simulations. Finally Section 2.4 reviews some of the attempts

at modelling the baking process.

2.1 Fluid simulation

The goal of computational fluid dynamics (CFD) is to predict the behaviour of fluids

using the Navier-Stokes equations (NS) [67]. These equations can be solved using

either an Eulerian or Lagrangian representation of the fluid flow.

In the Eulerian representation the fluid’s properties are measured as it flows

through static control volumes. The NS equation for the flow of incompressible

Newtonian fluids is described on Equation 2.1:

5

∂v
∂t

+ v · ∇v = −1

ρ
∇P + µ∇2v + f (2.1)

where v is the flow velocity, t time, ρ the fluid density, P the pressure, µ∇2v the

viscosity, and f represents all the other external forces being exerted on the fluid

such as gravity or centrifugal force.

In contrast to the Eulerian representation, the Lagrangian representation works

as a particle system, where the fluid is discretized into particles each with its own

position and velocity. A Lagrangian model can have a mesh that connects these

particles or it can be mesh-free.

The NS equation for particle motion in its Lagrangian representation takes the

form described in Equation 2.2:

dv
dt

= −1

ρ
∇P + µ∇2v + f (2.2)

The Eulerian and Lagrangian forms of the NS equation are very similar, the

difference being in that the left hand side of the Eulerian form in Equation 2.1
∂v
∂t

+ v · ∇v is replaced by the substantive derivative dv
dt

in Equation 2.2 which can

be intuitively thought of a property’s time rate change of measured by an observer

moving with the specific particles under study. Because the particles move with

the fluid, the substantive derivative of the velocity field becomes the time derivative

of the velocities of the particles omitting the advection term v · ∇v. A detailed

comparison of the Eulerian and Lagrangian forms of the NS equation can be found

in References [72] and [64] .

The work presented in this thesis is based on the model known as smoothed

particle hydrodynamics (SPH) which is a mesh-free Lagrangian approach for sim-

ulating fluid flows.

6

2.2 Smoothed particle hydrodynamics

2.2.1 SPH fundamentals

The SPH method was initially developed by Lucy [50] and Gingold et al. [28] for

astrophysical simulations but since then it has been extended to different types of

fluid simulations.

The key aspect in the SPH formalism is known as the integral representation of

a function A(x). This concept begins with the following identity:

A(x) =

∫
Ω

A(x′)δ(x− x′)dx′ (2.3)

where A is a function of the 3D position vector x and Ω the volume of the integral

that contains x and δ(x− x′) the Dirac delta function

δ(x− x′)

{
1, x = x′

0, x 6= x′
(2.4)

An approximation to the integral representation of Equation 2.3 can be obtained

by replacing the Dirac delta function with a smoothing functionW (x−x′, h), where

h is called the smoothing length and it defines the radius of the volume of influence

of the smoothing function W .

Because in the SPH method the system is represented by a finite number of

particles, the integral representation must be further approximated using what is

known as particle approximation. This is achieved by converting Equation 2.3 into

a discretized form of summation over all the particles in the support domain as

shown in Figure 2.1.

The infinitesimal volume dx′ in Equation 2.3 at the location of particle subj can

be replaced by a finite volume of the particle ∆Vj:

A(xi) =
N∑
j=1

A(xj)W (xi − xj, h)∆Vj (2.5)

7

where N is the number of particles that fall within the support of position x, j the

particle index, and xj the position for particle j. The finite volume ∆V can be

expressed as

∆Vj =
mj

ρj
(2.6)

where ρj and mj are the particle’s density and mass respectively. With this the

continuous function A(x) can be written as

A(xi) =
N∑
j=1

mj

ρj
A(xj)W (xi − xj, h) (2.7)

Equation 2.7 states that the value of function A(x) at particle x is given by

using the average of the values of the function at all the particles that fall under

the support domain of particle x. Furthermore, the smoothing function W acts as a

weight function determining how much the valueA(xj) at the neighbouring particle

contributes to A(x).

Similar to A(xi) the gradient ∇A(xi) is given as

∇A(xi) =
N∑
j=1

mj

ρj
A(xj)∇W (xi − xj, h) (2.8)

and the Laplacian∇2A(x) is given by

∇2A(xi) =
N∑
j=1

mj

ρj
A(xj)∇2W (xi − xj, h) (2.9)

The weight function W can take different forms, modifying the accuracy and

stability of the simulation depending of the case when it is used. As stated by

Liu et al. [45] to get valid results the smoothing function must have at least the

following properties:

Unity The smoothing function must be normalized over its support domain.

8

khi

j

xij

i
W

Ω

Figure 2.1: SPH support domain.

∫
Ω

W (x− x′, h)dx′ = 1 (2.10)

Compact support The smoothing function should have a compact support.

W (x− x′) = 0, for |x− x′| > kh (2.11)

This property is mainly for algorithmic purposes making the SPH computa-

tion a local operation. Consider the use of a Gaussian smoothing kernel that is

not compactly supported, this would make the algorithm to have a complexity

of O(n2) rendering it impractical.

Positivity W (x − x′) ≥ 0 for any point at x′ within the support domain of the

particle at point x.

If negative values are allowed in the computation, simulations of physical

phenomena may give erroneous results with negative density and energy.

Decay The smoothing function value for a particle should be monotonically de-

creasing with the increase in distance away from the particle.

It is logical to think that the closer the particles are, the more they will affect

each other.

9

Delta function property The smoothing function should satisfy the Dirac delta

function condition as the smoothing length approaches zero.

lim
h→0

W (x− x′, h) = δ(x− x′) (2.12)

This property ensures that as the distance between the particles approaches

zero, the approximation of the value approaches the function value.

Symmetric property The smoothing function should be an even function.

Two particles at different positions but separated by the same distance should

be affected equally.

Smoothness The smoothing function should be sufficiently smooth, or in other

words, the smoothing function needs to be sufficiently continuous to obtain

good results.

An in-depth discussion on how each of the terms of the NS equation are approx-

imated using the SPH formalism on the work presented in this thesis can be found

in Chapter 3.

2.2.2 Hydrodynamic phenomena with SPH

Roy [74] showed how the SPH framework can be used in the context of computer

graphics by animating weakly compressible fluids. Later, Desburn and Gascuel [17]

introduced SPH to the computer graphics community in general with their work on

highly deformable bodies. Since then, the computer graphics community has em-

braced this method for simulating fluid flows extending it to simulate many hydro-

dynamic phenomena (for examples see below).

Due to the nature of SPH, a particularly interesting phenomena to recreate us-

ing this framework is bubbly liquids. The bubbles can be obtained by altering the

behaviour of a subset of the fluids particles.

10

Bubbles

Thürey et al. [84] propose a framework to create real-time simulations of bubbles

and foam by combining several fluid animation techniques. In their approach, the

volume of the fluid is represented with a shallow water simulation. The bubbles

inside the volume are represented with a particle based simulation. And finally the

foam on the surface of the water is represented with SPH. In the foam simulation,

each particle represents a bubble, but for the surface reconstruction of the foam the

entities are not separate; that is, there is no thin fluid sheet between them. Instead

they form the overall foam volume. Results from their hybrid approach can be seen

in Figure 2.2.

Figure 2.2: Thürey et al. [84] results on bubble and foam simulation.

Cleary et al. [14] also present their work on bubbling and frothing liquids with

a different approach than Thürey et al. [84]. In their work both the fluid and the

bubbles are simulated using SPH to create an animation offline. Firstly the fluid

volume is generated and in a second stage the motions of the bubbles are obtained

using a similar SPH framework adding buoyancy to the particles as well as spring

forces between the particles to avoid the overlap of bubbles. Because the animation

11

is generated offline and in two stages, this framework can handle a higher number

of particles when compared to the one proposed by Thürey et al. [84] as illustrated

by Figure 2.3.

Figure 2.3: Cleary et al. [14] results animating frothy and foaming liquids.

Fluid/Solid phase transitions

Stora et al. [82] use the SPH framework to model the flow of lava. To achieve a real-

istic animation, the viscosity of the lava flow is not considered constant throughout

the fluid. Instead, the viscosity at each particle is tied to its temperature. Two types

of heat transfer are considered in the simulation: the lava’s internal heat transfer and

the heat transferred that occurs between the lava’s surface and its surrounding envi-

ronment; this allows the lava to cool off as time progressed and the fluid’s viscosity

increases.

The heat transfer inside the material is modelled by integrating the general heat

equation:

12

dT

dt
= khint∇2T, (2.13)

where khint is the fluid’s internal heat coefficient and T is the particle’s temperature.

In their approach, they compute∇2T under the SPH formalism as

∇Ti =
∑
j 6=i

mj
Tj − Ti
ρj

∇W (xi − xj, h) (2.14)

∇2Ti =
∑
j 6=i

mj
∇Ti
ρj
∇W (xi − xj, h) (2.15)

The heat transfer at the boundary of the lava is modelled in the following manner

(
dT

dt

)
exti

= khext(Ti − Text)
r2
i

ρi
(2.16)

where khext is the fluid’s external heat coefficient and the small radius ri of the lava

being represented by particle i is computed as

4

3
πr3

i =
mi

ρ0

(2.17)

Figure 2.4 illustrates lava flowing down a volcano simulated using the method

proposed by Stora et al. [82].

Figure 2.4: Stora et al. [82] results on simulating lava flow.

13

Mao and Yang [51] [52] [53] proposed a SPH-based method to create anima-

tions with melting and solidification effects due to heat transfer in non-Newtonian

fluids along with immiscible fluid-fluid collisions. To create the animations for non-

Newtonian fluids Mao and Yang [51] [52] [53] add a stress tensor term describing

the fluid’s elasticity to the NS equation of momentum:

dv
dt

= − 1

ρ
∇P +∇ · S + µ∇2v + f (2.18)

As stated by Mao and Yang [68] [29], the stress tensor for a non-Newtonian

is a non-linear function of the velocity gradient and is too complex to compute

directly. One way of avoiding this complexity is to compute the stress tensor by

integrating the stress tensor rate, which is computed with the constitutive equation.

The constitutive equation presented in their work is based on a non-linear Maxwell

model [22]:

dS
dt

= R + µeD′ −
1

λ
S (2.19)

where S is the stress tensor, µe the elasticity constant, λ the relaxation time and R

a rotational tensor.

To achieve the melting and solidification effects the elasticity constant µe and

relaxation time λ are manipulated based on the particles temperature.

The proposed method manipulates the stress tensor to achieve the melting ef-

fects based on the particle’s temperature. In this work the heat transfer can occur

at the fluid-fluid and fluid-solid boundaries. Screenshots showing the results of

melting effects are shown in Figure 2.5.

Keiser et al. [36] propose a method to create fluid animations using the SPH

framework that combines the equations of solid mechanics with the NS equations

using a Lagrangian approach. In their method they combine the equation for an

elastic model

ρ
d2u
dt2

= ∇Ss(u) + f, (2.20)

14

(a) Fast heat transfer. Whole
fluid bar melts.

(b) Slow heat transfer. Half of
the fluid bar melts and the other
half looks like a solid.

(c) Very slow heat transfer.
Fluid bar melts only at the tip
and the rest looks like a solid.

Figure 2.5: Mao and Yang’s [52] results highlighting fluid bars with different heat
coefficients dropped onto a hot plate.

with that for an incompressible Newtonian fluid

ρ
d2u
dt2

= ∇Sf (v) + f, (2.21)

taking the form of

ρ
d2u
dt2

= ∇S(u, v) + f, (2.22)

where u is the displacement from the material coordinates, and S(u, v) = Ssolid(u)+

Sfluid(v) the sum of the elastic, viscous and pressure stress.

Their proposed method can output a wide array of phenomena since it can han-

dle the fluid’s stiffness, compressibility, plasticity, viscosity and cohesion between

particles as parameters. Figure 2.6 shows two of the published results from using

their method.

Changes in temperature are also the driving force behind the possible phase

changes animations. Heat transfer is performed in a similar way as it is done by

Stora et al. [82]. In order to achieve the phase change animations any of the afore

mentioned parameters can be linearly interpolated.

Paiva et al. [70] also developed a technique for simulating the fluid/solid phase

changes using the SPH framework. Their approach is to model solids as non-

15

(a) Freezing a quicksilver fluid which is poured into a glass. After removing the glass, the
elastic solid bounces onto the ground and fractures.

(b) An elastic solid is dropped onto a heated box and slowly melts into a viscous fluid.

Figure 2.6: Keiser et al. [36] results showing solidification and melting phenomena.

Newtonian fluids with very high viscosity. In order to do so, they employ the gen-

eralized Newtonian fluid model proposed by Mendes et al. [18]. The NS equation

for momentum is described as:

dv
dt

= − 1

ρ
∇P +

1

ρ
∇ · S + f (2.23)

where the viscoplastic stress tensor field S for a non-Newtonian fluid is computed

as the product of the apparent viscosity η—which is dependent on the intensity of

deformation D—and the velocity gradient D:

S = η(D)D. (2.24)

The intensity of deformation D is defined as:

D =

√
1

2
· tr(D)2 (2.25)

where tr is the trace operation defined in linear algebra as the sum of the elements

16

on the main diagonal of the matrix, and the velocity gradient D which describes the

difference in velocity between adjacent fluid layers is defined as:

D = ∇v + (∇v)T . (2.26)

The apparent viscosity η in Equation 2.24 is modelled as an exponential as

defined by Equation 2.27:

η(D) = (1− exp[1− (J + 1)D])

(
Db−1 +

1

D

)
. (2.27)

where b is the behaviour of powerlaw index and J is the jump number. The expo-

nential depends on the parameter J which incorporates many rheological properties

such as yield stress, low shear rate viscosity and the consistency index.

In order to simulate the melting phenomena, J is linearly interpolated based on

the particle’s temperature. Figure 2.7 illustrates the results of this method in melting

the Stanford bunny.

Solenthaler et al. [79] create a unified particle model for fluid-solid interactions

that facilitates creation of animations containing rigids, elastics, rigid-elastics, flu-

ids and the melting and solidification phenomena as well as the distinction between

multiple close deformable objects and parts of the same deformable object. Their

proposed model is similar to that proposed by Keiser et al. [36] when considering

the fluid and elastic aspects of the animation; however, Solenthaler et al. [79] take

a different approach when dealing with solids: the forces acting upon a rigid body

are accumulated and the movement of the body formed by the particles is restricted

to translations and rotations. Based on the work presented by Baraff [4] the rotation

is handled explicitly by computing a torque vector τi as

τi = (xi − xcm)× fi (2.28)

where xcm is the centre of mass of the body formed by the particles and fi is the

sum of all forces calculated with SPH exerted on particle i.

The total force applied to a body is given by

17

(a) Initial temperature (b) 500 iterations

(c) 1060 iterations (d) 3000 iterations

Figure 2.7: Melting results from Paiva et al. [70].

fbody =
∑
ibody

fi (2.29)

and similarly the total torque is defined as

τbody =
∑
ibody

τi (2.30)

After fbody and τbody are computed, time integration is performed by first iterat-

ing over a rigid object to calculate the linear and angular velocity of the body. The

angular velocity ω is defined as

ω = I−1L (2.31)

where I is the inertia tensor and L the angular momentum, which is updated at every

time step as

18

L← L + τ∆t (2.32)

The last step in the time integration is then to update the particles belonging to

the body to reflect the changes.

In Solenthaler et al.’s [79] work, the heat transfer between neighbouring parti-

cles and outside influences is modelled following the work proposed by

Stora et al. [82]. Aside from storing the current temperature, each particle stores

the melting and solidification points Tmelt and Tsolid respectively. Figure 2.8 shows

how the particle is handled based on the temperature giving way to the different

phase changes, it the particles’ temperature fall in the range of 0 ≤ T ≤ Tsolid

the particles behave as a rigid/elastic. As the particles’ temperature increases and

reaches the range Tsolid < T ≤ Tmelt they behave as an elastic material. Finally,

when the particles’ temperature reaches Tmelt < t the material takes the properties

of a fluid. Their results are illustrated on Figure 2.9.

Figure 2.8: Solenthaler et al. [79] stages of the phase change process.

2.3 Surface reconstruction

Once the positions of particles have been calculated, the next step towards creating

the animation is to render the scene. Rendering each of the individual particles can

give an idea of the shape of the fluid for each frame; however, this method lacks the

19

Figure 2.9: Solenthaler et al. [79] results showing melting phenomena.

shape description of the fluid. Another approach is to reconstruct a mesh based on

the positions of particles that will give a more accurate description.

Isosurface

Isosurfaces have been widely used for this purpose since the method was introduced

by Blinn [10]. An isosurface is a class of surface which can be defined as the

solution to some equation

χ(x, y, z) = 0 (2.33)

To generate the surface a density field is needed. This density field is generated

using a function φ which increases in value as the distance to the point where it is

evaluated grows smaller. An implicit surface would then be defined as the set of

points where the density function is equal to some threshold tφ:

χ(x, y, z) = φ(x, y, z)− tφ (2.34)

Once the density field has been computed the resulting mesh can be extracted

20

using the Marching Cubes algorithm [48].

Blinn [10] coined the term “blobby molecules” for his results by defining the

density function as

φ(rφ) = bφe
−aφr2

(2.35)

where aφ and bφ are user defined parameters that allow to alter the “blobbiness” of

the object.

A problem with using Equation 2.35 as the density function is that it has to be

evaluated everywhere, since it extends to infinity.

Wyvill et al. [88] propose another density function that avoids this problem as

described in Equation 2.36:

φ(rφ) =

aφ(1− r6
φ

9b6φ
+

17r4
φ

9b4φ
− 22r2

φ

9b2φ
) rφ ≤ bφ

0 otherwise
(2.36)

Here aφ also works as a scaling factor and bφ delimits φ function’s influence.

This function has a slight advantage over the metaballs in that it uses the squares of

the distance so it does not need to compute the square roots.

There are many approaches for constructing an isosurface from a set of points.

One of these methods is proposed by Kazhdan [35] as illustrated on Figure 2.10.

This method redefines the problem of reconstructing a surface starting from an ori-

ented set of points as a spatial Poisson problem (Figure 2.10(a)). As an implicit

function framework, the Poisson reconstruction method uses a 3D indicator func-

tion ψ which is defined as 1 when evaluated at a point inside the model and 0

otherwise (Figure 2.10(b)). The nature of this method is the integral relationship

between oriented points sampled from the surface of a model and the indicator

function of that model. That is, the oriented point samples can be viewed as sam-

ples of the gradient of the model’s indicator function because the gradient of the

indicator function is a vector field that is zero almost everywhere, except at points

near the surface, where it is equal to the inward surface normal(Figure 2.10(c)).

21

(a) (b) (c) (d)

Figure 2.10: Poisson reconstruction in 2D from [35].

Figure 2.10 illustrates this relationship.

The input data Y is a set of samples y ∈ Y , each consisting of a point y.x

and an inward-facing normal y.N assumed to lie on or near the surface ∂M of

an unknown model M . The goal of their method is to reconstruct a watertight,

triangulated approximation of the surface by approximating the indicator function

ψ of the model and finally extracting the isosurface.

In their work, Kazhdan et al. [35] describe the relation between the gradient of

the indicator function and the integral of the surface normal field with the following

lemma: Given a solid M with boundary ∂M , let ψM denote the indicator function

of M , N∂M(x) be the inward surface normal at x ∈ ∂M , F̃ (x′) be a smoothing

filter, and F̃x(x′) = F̃ (x′ − x) its translation to the point x. The gradient of the

smoothed indicator function is equal to the vector field obtained by smoothing the

surface normal field:

∇(ψM ∗ F̃)(x′0) =

∫
∂M

F̃x(x′0)N∂M(x)dx (2.37)

Because the surface geometry is not known, the surface integral cannot be eval-

uated. However, an approximation can be achieved making use of the information

provided by the input set of oriented points. Using the point set Y to partition ∂M

into distinct patches Py ⊂ ∂M , the integral over a path Py can be integrated by

22

the value at point sample y.x, scaled by the area of the patch:

∇(ψM ∗ F̃)(x′0) ≈ |Py|F̃y.x(x,)y.N ≡ V(x′) (2.38)

Once the vector field V is formed, the next step is to solve for the function ψ̃

such that,∇ψ̃ = V. Since V is generally not integrable, an exact solution will often

not exist. The best least-squares approximate solution is then found by applying the

divergence operator to form the Poisson equation

∆ψ̃ = ∇ · V. (2.39)

Levin [43] extended use of the method for the approximation of irregular data

known as the moving least squares (MLS) [77] for the use in surface reconstruction.

Later Alexa et al. [3] introduced it to the computer graphics community. The surface

was defined as the set of stationary points of an iterative projection operator: at each

step a polynomial approximation of the local neighbourhood is performed from a

local planar parametrization.

As Shen et al. [76] point out, this approach for reconstructing surfaces produces

good results when dealing with smooth surfaces. However, it cannot reconstruct

correctly surfaces with sharp features. In order to solve this problem Shen et al. [76]

propose that instead of fitting trivariate polynomials to the data, the standard MLS

be used o reconstruct tangential implicit planes prescribed at each input sample

position.

Kolluri [38] propose an implicit MLS (IMLS) method that makes use of con-

stant polynomials as the MLS basis. While this method yields a simple weighted

average, it also suffers from expanding and contracting effects when a global opti-

mization step is not applied [30].

To overcome this problem Öztireli et al. [69] borrowed techniques from robust

statistics [32] and build upon the work by Kolluri [38] to derive a new MLS surface

definition by formulating it as a local kernel regression minimization [83] using a

23

robust objective function. This approach is known as the robust implicit moving

least squares method (RIMLS).

Triangulation

Figure 2.11: Alpha-shape representation in 2D from [15].

Alpha-shapes in the plane were introduced by Edelsbrunner et al. [20] and were

later extended to higher dimensions [19] [21] as a geometric tool for reasoning

about the “shape” of an unorganized set of points.

Fischer [26] describes alpha-shapes intuitively as a huge mass of ice-cream

making up the space R and containing the points A as “hard” chocolate pieces.

Using one of these sphere-formed ice-cream spoons we carve out all parts of the

ice-cream block we can reach without bumping into chocolate pieces, thereby even

carving out holes in the inside (e.g. parts not reachable by simply moving the spoon

from the outside). We will eventually end up with an (not necessarily convex) object

bounded by caps, arcs and points. If we now straighten all round faces to triangles

and line segments, we have an intuitive description of what is called the alpha-shape

of A . Figure 2.11 illustrates an example of this process in 2D (where the ice-cream

spoon in the analogy is simply a circle).

24

In Fischer’s description α is the squared radius of the ice-scream spoon. Thus,

as α gets closer to 0 in value the alpha-shape degenerates to the point set A . On the

other hand, as α gets closer to∞ the ice-scream spoon becomes too large making

it impossible to get to the ice-cream located on the inside of A .

Formally an alpha-shape is a considered a subcomplex of the triangulation of A .

For any value of α, the alpha-shape includes all the simplices in the triangulation

which have a with squared radius equal or smaller than α that does not include any

points of A . As described by Edelsbrunner et al. [21], the alpha-shape of A is a

polytope that is neither necessarily convex nor connected and cavities may appear

and join to form tunnels and holes.

2.4 Mathematical modelling of the baking process

Fan et al. [25] propose a model for the expansion of dough during the baking pro-

cess. Their model is based on the growth of a single gas bubble composed of CO2

and water vapour inside the dough. The dough is considered a viscous fluid and

elasticity, an important aspect of dough, is not taken into account. CO2 generation

is not considered in their model, but rather the dough at the start of baking contains

an Nc amount of gas cells. The volume expansion is driven by the difference be-

tween internal and atmospheric pressure given by the diffusion of CO2 and moisture

from the surrounding dough into the bubble. The following assumptions are also

made:

• Gas cells contain only carbon dioxide and water vapour.

• Gas cells are considered closed and their number does not change through the

baking process.

• The dough behaves rheologically as a power law fluid.

• The dough temperature is uniform throughout the dough’s volume and it is

dependant on time.

25

The relative volume of the dough is calculated in this model from the bubble

radius as it increases with the rise of temperature and the specific number of gas

cells. Figure 2.12 shows a spherical gas cell with cell radius rcell(T) and a bubble

radius rb(T) inside the liquid dough. The equation of motion for the growth of the

bubble for a power law fluid is taken from the work by Ramesh et al. [73]:

Pb − Pa = ρd

(
r̈bṙb +

3

2
ṙb

2

)
+

4ζc(2
√

3)(ζf−1)

ζf

(
ṙb
rb

)ζ
f

+
2σ

rb
(2.40)

Gas bubble

Dough

r (T) b

r (T) c

Figure 2.12: Fan et al. [25] representation of a gas cell in dough.

where Pb− Pa is the difference between the bubble pressure and atmospheric pres-

sure, ρd is the dough’s density, rb, ṙb and r̈b are the bubble radius’ drb/dT and

d2rb/dT
2 respectively. ζc is the fluid consistency index, ζf is the fluid flow index, σ

is the surface tension. Pb− P∞ is the driving force behind the bubble growth in the

model. The dough viscosity is high and therefore the inertia term is ignored turning

Equation 2.40 into:

Pb − Pa =
4ζc(2

√
3)(ζf−1)

ζf

(
ṙb
rb

)ζ
f

+
2σ

rb
(2.41)

The bubble pressure Pb is the sum of the CO2 pressure Pc and water vapour

pressure Pv

26

Pb = Pc + Pv (2.42)

Water pressure Pv is determined by the water activity and the saturated vapour

pressure P 0
v at the temperature concerned. The changes in saturated vapour due to

the temperature are obtained using the Clausius-Clapeyron equation [63]:

P 0
v2 = P 0

v1 exp
[
−∆Hv

Rg

(
1

T2

− 1

T1

)]
(2.43)

where P 0
v1 and P 0

v2 the saturated vapour pressures in equilibrium at temperatures T1

and T2 respectively, and ∆Hv the latent heat of water.

In their model CO2 is assumed to behave as a perfect gas and to have a uni-

form concentration throughout the dough, although it varies with time. So the CO2

pressure Pc can be obtained in the following way:

Pc =
X0
cms + 4

3
πr3

b0
ρ0
c

ms
Kh

+
4πr3

bMc

3RgT

(2.44)

where Xc is the concentration of CO2, ms the mass of a cell, ρ0
c the initial CO2

density, symRg the gas constant, and Mc the molecular weight of CO2.

The temperature is considered uniform throughout of the dough’s volume and

the dough is heated at a constant heating rate kh.

dT

dt
= kh (2.45)

The relative volume of the dough is tied to the radius of a gas bubble by the

following equation:

Vr =
4

3
πr3

bNcρd + 1 (2.46)

where Nc is the number of CO2 gas cells in the dough.

The temperature dependent viscosity is taken from the work of Bloksma and

Niewman [11] and takes the form of:

27

µa = ζc0
ṙb
rb

(ζf−1)

exp
[
Wv

Rg

(
1

T2

− 1

T1

)]
(2.47)

where Wv is the activation energy for viscous flow.

Marcotte et al. [54] propose a framework to simulate the baking of cake with the

purpose of improving the quality of the product while saving energy in an industrial

setting.

The assumptions made for the development of this program are the following:

• The temperature and moisture remain consistent and constant during all of

the cake baking process.

• The cake takes the form of a cylinder and the dough is treated as a viscoelastic

material.

The model consists of a surface area and a centre area due to the big differences

in temperature and moisture content present within each area during baking.

The framework uses the Kelvin model to describe the volume expansion which

is driven by the difference in pressure between the oven air and the gas mixture

inside of the bubbles in the dough. The bubble pressure is assumed to depend on

the CO2 pressure and water vapour pressure similarly to Fan et al.’s [25] proposal;

that is, as the sum of the vapour pressure Pv and CO2 pressure Pc as shown in

Equation 2.42.

In their work Pv also takes the form described by the Clausius-Clapeyron equa-

tion 2.43 [63]. Pc on the other hand is defined as

Pc =
nRgT

V

Pc = (nCO20 + ∆n)
RgT

Vb0 + ∆Vb
(2.48)

∆nCO2 = 2DLπr
2
b (Xc − C∗b) (2.49)

28

where nCO2 is the number of CO2 in moles, DL the overall CO2 transfer coefficient

from dough to the bubble, and C∗b is the CO2 equilibrium concentration for the

bubble.

The bubble volume expansion is derived from the balance of strain-stress equa-

tion:

∆P = Eε+ µε (2.50)

Tret =
µ

E
(2.51)

Differentiating the two sides one gets:

tretεS + εS = 0

εS =
∆P

µe
+

(
εS0 −

∆P

µe

)
e−∆t/tret

εS =
∆He

Hei

+ εS0

∆He = Hei

[
∆P

µe

(
1− e−∆t/tret

)
+ εS0

(
e−∆t/tret

)]
(2.52)

where ∆P is the pressure difference, µe is the elastic coefficient, µ is the viscosity

coefficient, εS is the strain, He is the height of the cake, ∆He is the increased height

during time ∆t and tret is the retardation time.

Initially the surface and centre areas are considered uniform. The initial tem-

perature and moisture in the oven and inside the dough are constant and location

independent. Also, the initial CO2 concentration is constant on the surface and

centre areas. A diagram for Marcotte’s algorithm can be found in Figure 2.13.

Lostie et al. [49] define baking as a two stage process composed of a “heating

up” stage and a “crust and crumb” stage. Their claim is that the transition from the

first period to the second one can be easily observed on experimental baking curves,

taking place when the internal temperature and water content curves level off and

the curves for the drying rate and volume expansion pass through the maximum.

29

Their proposal is that of a vaporization front model for the “crust and crumb” stage

where the crumb area of the baked good participates in the heat and water vapour

transfer affecting the temperature and total pressure and ultimately having an effect

on the final shape of the volume.

There are several assumptions made in their model:

• The dough is composed of two layers a dry crust and a wet deformable crumb.

• The heat and mass transfer are unidirectional.

• The gas phase moves through the crust by permeation under a total pressure

gradient according to Darcy’s law [16]. Furthermore, the gas phase obeys the

perfect gas law.

• Heat is transferred through the crust by conduction according to Fourier’s

law.

• The heat and mass transfer in the mass is ignored causing the dough to have

uniform temperature, water content and pressure.

• The crumb is considered as a viscous compressible medium.

• Volume expansion is is given by the vaporization of liquid water and the local

deformation rate is proportional to the local overpressure.

• A local thermodynamic equilibrium exists.

• The dough is opaque to infrared radiation.

The vaporization front is located between the crust and crumb layers. The lo-

cation of the vaporization front will thus move over time as the crust advances

during the baking period. The heat arriving at the interface splits into two parts: the

first part evaporates water at the interface while the second part serves to raise the

crumb’s temperature and to evaporate some water within the crumb.

30

Since the usual continuity equation of heat and mass fluxes cannot be written be-

cause there are no state variables gradients in the crumb, Lostie et al. [49] introduce

an empirical coefficient that controls the velocity of the interface. This empirical

coefficient Gp called the gas phase partition coefficient is considered to be directly

generated by the advancing crust and the remainder (1 − Gp) is generated within

the crumb. Gp is defined by the following gas phase mass balance in the crumb:

dmwet
g

dt
= −(1−Gp)ṁg −

dmwet
l

dt
− mwet

l

mwet
s

ρdrys

dedryt

dt
Ca

−
mwet
g

mwet
s

ρdrys

dedryt

dt
Ca (2.53)

where m represents the mass, Gp the gas phase partition coefficient, ṁ the mass

flow rate, ρ the density, e the thickness, et the thickness, and Ca the cake cross

section surface area. The subscripts g, l, and s defines weather the variable belongs

to the gas phase, liquid water, and dry matter, respectively. The superscripts wet

and dry indicate that the variable is part of the crumb and crust, respectively.

The heat flow rate is given by :

Q̇ = −∆Hvap
dmwet

l

dt
+ (mwet

l Cheatl +mwet
s Cheats)

dTwet

dt
(2.54)

where ∆Hvap is the water vaporization enthalpy, Cheat the specific heat capacity,

and T the temperature. In Equation 2.54 the first term is the heat flow rate neces-

sary for water vaporization throughout the cake and the second term is the thermal

energy variation rate of the crumb.

The gas mass flow leaving the cake through the baking process is given by:

ṁg = −
dmwet

g

dt
− dmwet

l

dt
− ρwetg εdryp

dedry

dt
Ca (2.55)

where εp is the porosity.

The vapour mass variation rate within the crumb is given by :

31

d

dt
(Mf

wet
v mwet

g) = −dm
wet
l

dt
− mwet

l

mwet
s

ρdrys

dedryt

dt
Ca

−Mf
wet
v (1−Gp)ṁg −Mf

wet
v

mwet
g

mwet
s

ρdrys

dedryt

dt
Ca(2.56)

where Mf v is the mass fraction of water vapour.

The dry matter mass is given by:

mwet
s = mwet

s,ini − ρs(1− εdryp)Cae
dry
t (2.57)

where the first term is the initial dry matter mass in the crumb and the second term

in the equation is the removed dry matter mass from the crumb by the advancing

crust.

The difference between the total gas pressure and the atmospheric pressure that

will give way to the change in volume is defined in Equation 2.58. Since the be-

haviour of the crumb is assumed to be similar to that of a viscous compressible

medium, the volume strain is proportional to the gas overpressure.

Pwet − P atm = −µwet e
wet
t

mwet
s

d

dt

(
mwet
s

ewett

)
(2.58)

The crumb’s volume is given by the sum of the volumes occupied by the gas,

liquid water and the dry matter:

Cae
wet
t =

mwet
g

ρwetg

+
mwet
l

ρl
+
mwet
s

ρs
(2.59)

The gas and heat exchange rate between the cake and the oven air are given by

Equations 2.60 and 2.61 respectively.

ṁg =
Kdry
g

ηcg

Pwet − P atm

edryt

Ca (2.60)

Q̇ =

(
edryt

λdrya

+
1

khext

)−1

(T oven − Twet)Ca (2.61)

32

where K is the mass permeability,ηc the cinematic viscosity, λa the apparent ther-

mal conductivity, and khext the external heat transfer coefficient.

The gas phase density ρwetg and the vapour mass fraction Mf
wet
v in the crumb

are given by the perfect gas state equation and by the partial pressure additivity

equation for air and vapour pressure.

Zhang et al. [91] [92] [90] propose a mathematical formulation and numerical

implementation of the multiphase system in deformable porous media. To vali-

date the model it is applied to the bread baking process. In this work the dough is

considered a viscoelastic material with its mechanical properties defined by its tem-

perature and its deformation is caused by transport phenomena, that is, the changes

in temperature, moisture and pressure during the heating process.

Based on thermodynamic relations (i.e. the Gibbs phase rule [75]) when the

temperature and moisture content are known, the pressure is also known.

Pv = Pv(T,Mw) (2.62)

Zhang et al. et al. [91] [92] [90] base the governing equation for deformation

on the principle of virtual work. Using a nonlinear mechanics convention in the

Updated Lagrange format [87] the equation of deformation can be written as

∫
v

(SK + ∆SK)δεGdV =

∫
v

fδudV (2.63)

where the force term f is due to internal pressure and gravity, u is the displacement

increment vector, εG the Green strain, and SK the Kirchhoff stress that is defined

as:

∆SK = De(∆εG −∆εn). (2.64)

The elasticity matrix De can be expressed as

De = EDe0(v) (2.65)

33

where E is Young’s modulus and De0 is related to Poisson’s ratio.

The non-elastic strain εn is defined as:

∆εn =
(
De(n)

)−1 SK∆t (2.66)

In this model heat transfer occurs due to convection and radiation. In order to

fully model the heat transfer due to radiation the framework would need to take into

account the emissivities of bread, gas, oven surface as well as the computation of

the geometric relations between bread and oven. To simplify the inclusion of the

radiative effect an overall heat transfer coefficient is used.

The CO2 generation rate is modelled as

Rc = Rc0 exp
(
−T − Tref

∆T

)2

(2.67)

where Rc is the rate of CO2 generation. The parameters of temperature at the refer-

ence point Tref and temperature rate of change are chosen so that CO2 generation

occurs s mostly between 20◦ and 60◦C with a peak around 40◦C.

For the creation of this model experimental measurements of the rheological

properties were made because the data available for temperature during baking be-

low 60◦C were considered inconsistent. The relaxation time is formulated as a

function of the temperature [90]:

λ = 9

(
2

π
arctan

(
T − 65

2

))
+ 2 (2.68)

Zhang et al.’s [91] [92] [90] numerical implementation uses the Galerkin Finite

element method to solve the governing equations which use a triangular mesh to

represent the dough’s volume as shown in Figure 2.14. The solution procedure for

Zhang’s algorithm is shown on Figure 2.15.

34

Input

Finish

Properties are
calculated

Node temperature
and moisture are

calculated

Calculate volume
temperature for surface,
centre and whole dough

CO2 production

CO2 diffusion

Calculate pressure

Calculate volume
expansion

Baking
time

reached ?

Yes

No

Figure 2.13: Marcotte et al. [54] algorithm for cake baking.

35

Figure 2.14: Initial mesh for Zhang’s simulation from [90].

36

Set initial condition as Φ0

Iteration No. i=1. Φ
i
l + 1 = Φ

0
l

Ci and Ki vased on Φ0 and Φ0l

Compute force vector F l+1

Element equation assembly

Solve global equation Φ i_1 = K-1 Fl+1

Eij -> deS...

Eq = eq

Eq < limit ?

Update geometry

Save solutions at step l+1

Reach t end?

Finish

l = l + 1

i = i + 1

Figure 2.15: Zhang et al.’s [91] [92] [90] algorithm for the simulation of the baking
process.

37

Chapter 3

Smoothed particle hydrodynamics

3.1 SPH framework

As previously discussed in Chapter 2, SPH is a Lagrangian approach at solving the

Navier-Stokes (NS) equation for fluid motion as expressed in Equation 3.1.

dv
dt

= −1

ρ
∇P + µ∇2v + f (3.1)

This section describes the proposed framework’s implementation of the basic

SPH formalism concepts, as well as the evaluation procedures for the properties of

the simulated fluids.

3.1.1 Kernel function

The kernel function W (xi − xj, h) is an important part of the SPH formulation.

As explained in Section 2.2.1, this function obtains the weight value that is used to

compute particle pj’s contribution to the property of particle i (when computing any

property as explained in equation). The kernel function W (xi − xj, h) is usually a

function of the distance between two interacting particles rij = |xi − xj|, and for

short, it can be expressed as W (rij, h).

The kernel function can take any form as long as it complies with the require-

ments described on Section 2.2. Specialized kernel functions can be used for com-

puting different properties when required. For example, in Müller’s [64] framework

38

for interactive applications he proposes the use of the kernel function Wpoly6 3.2 for

computing all properties in their SPH framework (excluding the pressure force and

viscosity properties of the fluid, which will be dealt with shortly). The kernel func-

tion Wpoly6 takes the form of:

Wpoly6(rij, h) =
315

64πh9

{
(h2 − r2

ij)
3, 0 ≤ rij ≤ h

0, otherwise
(3.2)

with its gradient taken the form of:

∇Wpoly6(rij, h) =
315

64πh9

{
−6rij(h

2 − r2
ij)

2, 0 ≤ rij ≤ h

0, otherwise
(3.3)

and its Laplacian:

∇2Wpoly6(rij, h) =
315

64πh9

{
6(h2 − r2

ij)(7r
2
ij − 3h2), 0 ≤ rij ≤ h

0, otherwise
(3.4)

As mentioned before, two cases that need special care are the pressure force and

viscosity properties of the fluid. A drawback of using Equation 3.2 to compute the

pressure forces is that the particles start to form cluster as they grow closer to each

other. This takes place because the gradient of the kernel approaches zero at the

centre. To solve this problem, Desbrun and Gascuel [17] propose the use of a spiky

kernel with a non-vanishing gradient near the centre. This spiky kernel is also used

by Müller [66] and is defined as:

Wspiky(rij, h) =
15

πh6

{
(h− rij)3, 0 ≤ rij ≤ h

0, otherwise
(3.5)

and its gradient—which is used to compute the pressure forces—takes the form of:

∇iWspiky(rij, h) = Nij
15

πh6

{
−3(h− rij)2, 0 ≤ rij ≤ h

0, otherwise
(3.6)

It can be seen from Equation 3.6 that, as the distance between particles i and j

decreases, the magnitude of the gradient increases to approach a constant. In other

words, as the particles get closer, the repulsive force increases.

39

The second case that needs special care is the computation of the viscosity

forces. Viscosity is a phenomenon caused by the internal friction of the fluid. Thus,

it decreases the relative velocity of particles. However, if a standard kernel is used

for viscosity the simulation may become unstable because as particles get too close

to each other, the Laplacian of the smoothed velocity field (on which the viscosity

forces depend) can get negative resulting in an increase in the particles’ relative ve-

locities. To avoid this problem Müller [66] uses the kernel functionWviscosity(rij, h)

as defined by Equation 3.7:

Wviscosity(rij, h) =
15

2πh3

{
− r3

2h3 +
r2
ij

h2 + h
2rij
− 1, 0 ≤ rij ≤ h

0, otherwise
(3.7)

And its laplacian takes the form of:

∇2W (rij, h) =
45

πh6
(h− rij) (3.8)

The proposed framework makes use of two kernel functions. The viscosity is

calculated using Müller et al.’s [65] proposed viscosity kernel Wviscosity(rij, h), and

the rest of the attributes are calculated using a function known as the spline kernel.

The spline kernel Wspline(rij, h) was initially proposed by Monaghan [60] and it

takes the form of:

Wspline(rij, h) =
1

πh3

1− 1.5q2 + 0.75q3, 0 ≤ q < 1

0.25(2− q)3, 1 ≤ q ≤ 2

0, otherwise
(3.9)

where

q =
2rij
h

(3.10)

With its gradient and Laplacian described in Equation 3.11 and Equation 3.12,

respectively.

40

∇Wspline(rij, h) =

−3q + 2.25q2, 0 ≤ q < 1

−0.75(2− q)2, 1 ≤ q ≤ 2

0, otherwise
(3.11)

∇2Wspline(rij, h) =

−3 + 4.5q, 0 ≤ q < 1

1.5 ∗ (2− 1), 1 ≤ q ≤ 2

0, otherwise
(3.12)

The spline kernel Wspline(rij, h) is used in the present work because it complies

with all the requirements presented in Section 2.2 (namely unity, compact support,

positivity, decay, delta function property, symmetric property, and smoothness), and

it produces stable animations with the performed tests.

3.1.2 Neighbour search

Due to the nature of the SPH framework, locating the set of particles that lie within

a distance of a point in 3D space is an operation that is performed frequently. This

problem is known as neighbour search problem, and for a small number of parti-

cles, a brute force method would be preferred. However, a brute force method has

a complexity of O(N2
t) where Nt is the total number of particles, and a SPH frame-

work requires a large amount of particles to achieve realistic looking animations.

Since the neighbour search operation is performed at every time step it becomes a

good candidate for optimization.

A commonly used method to improve the speed of the neighbour search oper-

ation is the use of a grid-based data structure that divides the space occupied by

the fluid’s particles in cubic cells, each with a volume of h3 where h is the simu-

lation’s smoothing length. All of the particles are registered to the cell where they

are located. To obtain the particles that lie within the neighbourhood of a point in

space a search is performed on 27 cells: the cell that contains that 3D point and

the 26 surrounding cells. This approach has a complexity of O(NsNt); m is the

number of particles in each search and Ns ≥ Na where Na is the average number

of neighbours of the 3D point, but Ns will still be much smaller than Nt.

41

hx

Figure 3.1: A 2D example of the neighbour search operation using a grid-based
data structure.

Figure 3.1 illustrates an example of a 2D grid-based structure being used to

find the neighbours of the point marked as x. In this 2D example, the search is

performed on the 9 shaded cells, each particle’s position is tested to see if it falls

within the range of h. In this instance, only the three white particles are part of the

neighbourhood.

There are other data structures that perform better than the grid-based data struc-

ture for the neighbour search operation. One such structure is the kd-tree [7] [27].

The kd-tree is a generalization of octrees, were k represents the number of di-

mensions being subdivided. The difference between the kd-tree and octree data

structures is that where the octree subdivides the space along three dimensions, the

kd-tree divides the space along one dimension at a time.

To recursively construct a canonical kd-tree, the required parameters are the

complete set of points S that will make up the tree, and an integer d that will rep-

resent the depth of the root of the subtree that the recursive call constructs. On the

first call the parameter d will be set to zero.

In 3D, the space will generally be divided on the first recursion along the x axis

by finding the median of the points x component, followed by the y component,

42

then the z component, finally returning to the x component until the tree is finished.

This method results in a balanced kd-tree in which each leaf node is about the same

distance from the node.

Figure 3.2(a) shows a 2D illustration of a spatial decomposition performed using

the kd-tree, and Figure 3.2(b) shows its corresponding tree layout.

Algorithm 1: ConstructKDTree
Input: Set of points S in Rd, current depth Dc

Output: Root node of new khd-tree
1 if S is empty then
2 return null;
3 else

// Select axis based on depth so that axis
cycles through all valid values

4 splitAxis← Dc mod d;
// Sort point list and choose a pivot element

5 split← ChooseSplitPoint(S, splitAxis);
// Create node and construct subtrees

6 node.location← split;
// child hold the left and right partitions. 0

= near, 1 = far
7 node.child[0]← ConstructKDTree(points in S before split,Dc + 1);
8 node.child[1]← ConstructKDTree(points in S after split,Dc + 1);
9 return node;

10 end

Finding the median is an expensive operation that can potentially make a bal-

anced kd-tree a sub-optimal solution; however, using the median to divide the space

is optional. One way to avoid the overhead of sorting all the input points to find the

median when splitting the space in half is to sort a fixed number of points randomly

chosen from the input set, and find the median from this subset. Another approach

is to simply use a random point from the input set; this method offers no guarantee

of resulting in a semi balanced tree but in practice it can prove an effective solution.

Ericson [24] describes an elegant solution for visiting all of the nodes in a kd-

tree that are overlapped by a sphere. An adaptation of this solution implemented

43

P2

P3

P0

P4

P8

P5

P9

P6

P7

P1

(a) Spatial decomposition

(b) kd-tree layout.

Figure 3.2: A 2D kd-tree.

44

in the proposed framework is presented in Algorithm 2 to perform a range search

operation that finds the neighbours of point x. As Ericson [24] mentions, an inter-

esting problem when finding the points overlapped by a sphere is to correctly reject

the subtree volumes that do not contain a section of the sphere. One solution is to

maintain the point inside the volume closest to the sphere centre during traversal.

In Algorithm 2 the variable volNearPt is initially set to the query point p. As the

traversal recurses the far side of the splitting plane, the point is clamped to the split-

ting plane to determine the closest point on the volume boundary. With this, the

distance between volNearPt and the query point x can be used to cull subtrees.

Algorithm 2: RangeSearchKDTree
Input: node of khd-tree, point x in 3D space, squared of range r, point

volNearPt, empty neighbourhood N
Output: Neighbourhood N around x

1 if node is null then
2 return;
3 end
4 if sqrdDistance(node.location, x) < r then
5 N.add(node);
6 end
// Figure out which child to recurse into first

7 first = x[node.splitAxis] > node.location[node.splitAxis]
// Always recurse into the subtree point x is in

8 RangeSearchKDTree(node.child[first], x, r, volNearPt,N);
// Update (by clamping) nearest point on volume

when traversing far side. Keep old value on the
local stack so it can be restored later.

9 oldV alue← volNearPt[node.splitAxis];
10 volNearPt[node.splitAxis]← node.location[node.splitAxis];
11 if sqrdDistance(volNearPt, x) < r then
12 RangeSearchKDTree(node.child[first xor 1], x, r, volNearP t,N);
13 end
14 volNearPt[node.splitAxis]← oldV alue;

A range search query in a balanced kd-tree takes O(N
1− 1

k
t + N) time, where

Nt is the total number of points, N the number of the reported points, and k the

dimension of the kd-tree. When dealing with a large number of particles, the effi-

45

Figure 3.3: The classical dam break test.

cient search algorithm of the kd-tree outweighs the costly creation time making the

kd-tree a better choice compared to the grid search structure.

Several versions of the classical dam break animation were made to compare

the difference in running time: versions where the input data is sorted are compared

against versions where the data is unsorted. The same scene setting was used for

all the animations, each of which has a duration of 5 seconds and the fluid particle

count was increased for each animation.

Particle count Sorted data Unsorted data
2, 920 6 minutes 7 minutes
10, 180 41 minutes 42 minutes
22, 890 1 hour 52 minutes 1 hour 51 minutes
102, 975 9h 44 minutes 10 hours 1 minute

Table 3.1: Animation running time using kd-tree.

Table 3.1 shows the running times obtained using the proposed framework of

46

dam break simulations with an increasing number of particles for each test (the

animations were created in a computer with 2 dual-core 2.21 Ghz AMD Opteron

processors with 4 GB of ram). By comparing the results it is possible to see that

there is an insignificant difference in running time for creating an animation when

sorting the data during the building process of the kd-tree and simply selecting the

point stored in the middle of the input data vector. It can be argued that the reason

behind these results is that, due to their sequential creation, the input data is sorted

when the kd-tree is built. However, as the animation evolves, the positions of the

particles change greatly, modifying as well each of the particle’s neighbourhood.

To test if this was the case, a dam break scene animation of 45 seconds was created

with the fluid composed of 2, 920 particles. As the animation evolves changing the

particles’ positions drastically, so do the particles’ set of neighbouring particles;

yet, the results are similar with the sorted and unsorted data versions taking each 55

minutes to complete the animation.

3.1.3 Density

The SPH formalism usually computes the density of the particles using the density

summation as described on Equation 3.13.

ρi =
N∑
j

mjW (xi − xj, h) (3.13)

However, this method has a drawback in that the particles located at the surface

of the fluid will have an erroneously calculated lower density than their counter

parts inside the fluid, because the outlying particles have fewer neighbours even

when the particles are equally spaced apart. To get around this problem Mon-

aghan [61] proposes solving the continuity equation which under the SPH formal-

ism takes the form of:

dρi
dt

=
N∑
j

mj(vi − vi)∇W (xi − xj, h) (3.14)

47

This method requires the initial density ρ0 of the particles to be initialized to

some value, and the density changes are given only by the relative motion of the

particles.

The work presented in this thesis uses Equation 3.13 to compute the density of

the particles because this method achieves greater stability than the method pro-

posed by Monaghan [61].

3.1.4 Pressure

The purpose of the pressure term of the NS equation of momentum, as shown

in Equation 3.1, is to enforce the fluid’s incompressibility; however, as Liu and

Liu [45] explain, the actual equation of state of the fluid leads to prohibitive time

states that are extremely small. Also, although it is possible to include the constraint

of the constant density into the SPH formulations, the resultant equations are too

cumbersome.

The concept of artificial compressibility comes from the fact that a theoretical

incompressible flow is practically compressible. It is possible then to use a quasi-

incompressible equation of state to model the incompressible flow.

One way of calculating each particle’s pressure is by using the ideal gas law

equation

Pi = Bρ (3.15)

where B is a gas constant that depends on temperature.

Another popular quasi-incompressible equation is suggested by Desbrun et al. [17]:

Pi = B(ρi − ρ0) (3.16)

where ρ0 is the rest density. The offset introduced to Equation 3.15 by

Desbrun et al. [17] has no mathematical effect on pressure forces since pressure

forces, depend on the gradient of the pressure field. However, the offset does

48

make the simulation numerically more stable by influencing the gradient of a field

smoothed by SPH.

Premžoe et al. [72] make use of the particle-based formulation developed for

computational fluid dynamics known as Moving-Particle Semi-Implicit to animate

surface flows. In their work, the pressure term is evaluated in a process to compute

the Poisson equation for pressure. Mao and Yang [52] extend Premžoe et al.’s [72]

work to be used under the SPH formalism.

Monaghan [61] proposes the use of Tait’s Equation [6] to model free surface

flows:

Pi = B

((
ρ

ρ0

)γ
− 1

)
(3.17)

The framework presented in this thesis uses Tait’s Equation [6] because it en-

forces low density variations and is efficient to compute while maintaining the sim-

ulation stable. For Tait’s Equation [6] the constant B is set empirically and γ takes

the value of 7 following the work of Becker et al. [6].

After evaluating the pressure at all particles using Equation 3.17, the pressure

term in the NS Equation 3.1 is evaluated as:

1

ρi
∇Pi =

N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∇W (xi − xj, h) (3.18)

3.1.5 Viscosity

Informally, viscosity can be regarded as a measure the resistance of a material to

change in form. A fluid with lower viscosity, such as water, can be considered thin.

In contrast, a thick fluid such as honey has high viscosity making it harder for it to

flow.

The framework presented in this thesis can produce fluid animations where the

viscosity of the fluid evolves locally over time, based on the particle’s individual

temperature. To achieve this, the viscosity coefficient µ is stored independently at

each particle.

49

The viscosity force at particle pi is then computed under the SPH formalism

following the work by Müller et al. [66] as

µ∇2v =
N∑
j=1

µi + µj
2

mj
vj − vi
ρj
∇2W (xij, hij) (3.19)

meaning that the individual viscosity coefficients are averaged between interacting

particles achieving symmetry in their interaction.

3.1.6 Stress tensor

The mechanical properties of a Newtonian fluid are characterized by a single func-

tion of temperature: the viscosity, a measure of resistance of a fluid that is being

deformed by either shear or tensile stress. The flow properties of a non-Newtonian

fluids, on the other hand, are not only described by its viscosity. Non-Newtonian

fluids are very common, examples of them appear in our daily lives: mayonnaise,

egg whites, peanut butter, etc. Human bodily fluids like blood and mucus also fall

under the non-Newtonian category as well as geological phenomena such as lava,

mud flows, and glacier mechanics.

In CFD a fluid is considered non-Newtonian if the stress tensor cannot be ex-

pressed as a linear, isotropic function of the velocity gradient; otherwise, the fluid is

considered Newtonian [68]. This stress tensor defines the internal stress developed

by a fluid as a result of being deformed.

The framework presented in this thesis extends the work by

Mao and Yang [51] [52] on non-Newtonian fluids. As mentioned on Chapter 2, in

their work, the constitutive equation used to integrate the stress tensor rate is based

on a non-linear Maxwell model as defined on Equation 3.20:

dS
dt

= R + µeD
′ − 1

λ
S (3.20)

where S is the stress tensor, µe the elasticity constant, and λ the relaxation time.

The rotational tensor R is expressed as:

50

R =
1

2
(S · ω − ω · S) (3.21)

where ω is the fluid angular velocity expressed as the matrix:

ω = ∇v− (∇v)T (3.22)

and each matrix element ωαeβe is

ωαeβe =
∂vβe
∂xαe
− ∂vαe
∂xβe

(3.23)

D′ is a traceless stress tensor:

D′ =
1

2
D− tr(D)

c
I (3.24)

where D is the velocity gradient, tr(D) the trace of matrix D, and I is the identity

matrix. D is computed as:

D = ∇v +∇vT (3.25)

where each matrix element Dαeβe is

Dαeβe =
∂vβe
∂xα

+
∂vαe
∂xβe

(3.26)

The Greek indices α and β in Equation 3.26 denote 3D spatial coordinates.

Under the SPH framework, the partial velocity derivative at position x is evaluated

as:

∂vαe (x)

∂xβe
=

N∑
j=1

mj

ρj
(vαej − vαe)

∂W (x− xj, h)

∂xβe
(3.27)

The relaxation time λ that appears on Equation 3.20 is a characteristic of non-

Newtonian fluids that defines a memory the fluids have to retain their shape. In

essence, the higher the relaxation time, the stronger the non-Newtonian fluid will

51

(a) λ = 0.1, µe = 1000 (b) λ = 0.1, µe = 10000 (c) λ = 0.1, µe = 100000

(d) λ = 1, µe = 1000 (e) λ = 1, µe = 10000 (f) λ = 1, µe = 100000

(g) λ = 10, µe = 1000 (h) λ = 10, µe = 10000 (i) λ = 10, µe = 100000

Figure 3.4: Stress affected by µe and λ through animation.

try to keep its original shape. The elasticity constant µe defines how the fluid resists

to deformation. The higher µe is the stronger it will resist.

A more detailed description of how the stress tensor is computed can be found

in Reference [51].

Figure 3.4 shows the variations that can be obtained by manipulation the µe and

λ values of Equation 3.20 while Figure 3.5 shows a side-by-side comparison.

52

Figure 3.5: Side by side comparison of the effects of the stress tensor.

53

3.1.7 Surface tension

Surface tension is an effect within the surface boundary of a liquid that causes the

boundary to behave as an elastic sheet; it is this force that tends to make the liquid

surface smooth. It is because of surface tension that a liquid can resist an external

force. As Bridson [12] explains, surface tension is caused because the fluid particles

are more attracted to other fluid particles of the same type than to other particles of

another type, such as air particles. Thus, the fluid’s particles that are near to the

surface tend to be pulled in towards the rest of the fluid’s particles. This can be

thought of like the fluid minimizing its exposed surface area.

Müller et al. [64] model surface tension using the colour parameter. The colour

parameter is a property that takes the value of 0 everywhere except at each particle,

where it takes the value of 1. Following the SPH formalism the colour property can

be evaluated as follows:

Ci =
N∑
j

mj

ρj
CjW (rij, h) (3.28)

The surface particles and their normals can be found using the gradient of the

colour field:

Ni = ∇Ci =
N∑
j

mj

ρj
Cj∇W (rij, h) (3.29)

Particle i can be considered to be on the fluid’s surface if the magnitude of the

gradient is larger than a certain threshold value.

Finally, the surface tension can be computed as:

ftension = − σ
ρi
∇2Ci

Ni

|Ni|
(3.30)

where σ is the surface tension coefficient between the two fluids. It is worth noting

that if the magnitude of Ni is small numerical instabilities can occur. To avoid this

problem the surface tension is only calculated if |Ni| exceeds a certain threshold

value.

54

3.1.8 Surface particles

Keeping a record of the surface particles during simulation is important because

this record can be used either to reproduce different phenomena, or for rendering

the surface of the fluid. As described in Section 3.1.7 the gradient of the colour field

can be used to detect which particles are at the surface of the fluid. However, a dis-

advantage of using the colour field to detect the surface particles is that a threshold

value has to be estimated by the user to differentiate between the surface and inner

particles. A different approach that does not require trial and error is proposed by

Mao and Yang [51] using the concept of local convex hull.

The definition of convex hull of a set of points in 2D is the smallest convex

polygon that encloses all the points in the set; an often used intuitive example is

visualizing the convex hull as a rubber band that tightly surrounds an object assum-

ing its contour. Extending this definition to 3D, the convex hull is defined as the

smallest closed triangular mesh that encompasses the points in 3D.

A local convex hull is defined as a convex hull built using a particle and its

surrounding neighbours as data set to generate animations of immiscible fluids.

This convex hull is built with the purpose of detecting the fluid’s particles that lie at

the surface of the fluid, as well as for calculating its normals.

The proposed framework also uses Mao and Yang’s [51] [52] [53] concept of

local convex hull to detect the surface particles. The convex hull is generated us-

ing both the particle of interest, and its neighbouring particles; the particle will be

considered as being on the surface if the particle in question is closer than some

threshold value to one of the vertex or facets belonging to the local convex hull.

Figure 3.6 illustrates an example of the local convex hull in 2D. Here, the par-

ticle labeled A would be considered to be on the surface of the fluid. On the other

hand, particle B would be considered to be on the inside of the fluid.

The generation of the convex hull is implemented using the QuickHull algo-

rithm [5].

55

A

B

Figure 3.6: Local convex hull.

3.1.9 Collision detection and response

In order to detect collisions between solids and fluid particles, Karabassi et al. [34]

propose taking into account the particle’s volume and defining the solids as trian-

gular meshes, which reduces the problem to detecting the intersections between

cylinders with spherical caps (the particles’ trajectory), and triangles.

In Solenthaler et al.’s [79] work, no explicit collision handling methods are ap-

plied; instead, the solids themselves are defined using the SPH framework, and the

collisions are handled using a high gas constant B in the pressure term of the NS

equation. They clarify that this approach does not guarantee an effective collision

response when high forces are applied, but it works on most collision problems.

The focus of the work presented in this thesis is to show fluid motion using

solids solely as containers or obstacles along the path of the fluid to highlight the

fluid’s properties. For this reason, the fluid/solid interaction is one-way coupled,

meaning that the movement of the fluid will be modified by a solid, but solids will

remain immovable when a fluid exerts a force over them. Solids are represented as

meshes made up of triangular polygons, and a particle is considered to have collided

when its distance to the solid’s mesh is less than the length of the particle’s radius.

56

To be able to detect collisions, static particles are placed along the solids facets,

and are spatially organized before the simulation process begins with the kd-tree

structure. These static particles store to which facet they belong, and are placed at a

distance of h0/4 from each other, where h0 is the initial smoothing length, ensuring

that the fluid particles do not penetrate the facet.

To test if particle i has collided, a range search using the kd-tree over the static

particles is performed centred at xi position with a range of the particle’s radius.

After the range search has been performed, the subgroup of facets with which the

particle could have collided is identified from the information stored on the static

particles. If this subgroup is not empty, then the next step is to test if the particle’s

last movement was in the direction of each of the facets contained in that subgroup.

If the test is positive the framework will considered the particle in a collision state

and a response will need to be generated.

When testing for collisions using the direction of the particle’s movement, it is

required to take into account the orientation of the triangles that compose the mesh,

otherwise there is the possibility that particles may become stuck or show erratic

movements in the collision response stage.

Consider the problem illustrated in 2D in Figure 3.7, where a particle is ap-

proaching an edge of a solid, and the range search includes two opposing faces

marked as A and B in the illustration. If the orientation (marked by the arrows

protruding from the faces) is not considered, both A and B faces will be used for

the collision response stage, which could lead to the particle being stuck. A more

natural response is achieved by considering the direction of the mesh faces; in the

case of the example illustrated in Figure 3.7, the collision test would only be true

for face A, avoiding instabilities in the particle’s movement due to having wrongly

considered a collision with face B.

To perform the direction test, a ray is shot from the particle’s previous position

xt−1, to its current one xt. Müller et al.’s [56] method for detecting ray/triangle

intersection is used, which produces the location of intersection xc if it exists. If

57

A B

(a)

A B

(b)

Figure 3.7: Example of possible collision detection and response problem.

such an intersection is found, and the facet is oriented towards the particle, then the

particle is considered to be in a collision state, and the facet normal is stored for use

during the response stage.

Once a collision has been detected, the position of the particle in question is

reverted to its previous position xt−1. Its velocity also needs to be modified to finish

the response process. This is done by separating the particle’s velocity v into its

normal and tangential components:

vnormal = (v · Ns)Ns (3.31)

and

vtangent = v− vnormal (3.32)

where Ns is the normalized sum of the normal vectors belonging to all the facets

with which the particle collided. This case occurs when a particle comes close to

the mesh seams; this has to be taken into consideration to make sure the solids are

water-tight.

The velocity after the collision is computed as:

vnew = βcvtangent − αcvnormal (3.33)

where αc is the normal velocity coefficient that works as a dampening agent; βc is

58

Figure 3.8: Particle collision detection and response.

the surface friction parameter that enforces both the non-slip boundary condition

when βc = 0, and the free slip boundary condition when βc = 1

Figure 3.8 illustrates the collision detection and response process.

Although the focus of this framework does not deal with immiscible fluids, the

system can handle this phenomenon in a similar fashion to Solenthaler et al.’s work

by using a high kgas in the pressure term on the NS equation. Figure 3.9 shows

frames from two sets of animations with variations in the parameters to show a col-

lision between semisolids (Figure 3.9(a), Figure 3.9(c) and Figure 3.9(f)), viscous

fluids (Figure 3.9(b), Figure 3.9(d), and Figure 3.9(f)).

3.2 Numerical stability

Numerical instabilities can be introduced to a SPH fluid simulation if fluid parti-

cles occupy the same space. These numerical instabilities can manifest in the form

of small unnatural jittering up to explosions. Although the system treats the fluid

59

(a) Semisolids, Frame 10 (b) Viscous fluids, Frame 10

(c) Semisolids, Frame 25 (d) Viscous fluids, Frame 25

(e) Semisolids, Frame 60 (f) Viscous fluids, Frame 60

Figure 3.9: Animation illustrating immiscible fluids.

60

as quasi-incompressible using Tait’s Equation [6], it may not be enough avoid in-

stabilities due to particles getting too close together to the point that they occupy

the same space. For this reason the proposed framework implements two common

solutions for this problem in tandem, which are the use of velocity correction by

means of XSPH [57], and the use of artificial viscosity [86] .

3.2.1 Velocity correction

In order to avoid the problem of particle inter-penetration, Monaghan [57] proposes

the SPH Lagrangian averaged model where the velocity of particle pi is modified

with the XSPH technique for calculating smoothed velocity. This is defined as:

vi ← vi + ε
N∑
j

2mj

ρi + ρj
(vj − vi)W (xij, h) (3.34)

where εworks as a velocity tuner and its value is clamped in the range of 0 ≤ ε ≤ 1.

The smoothed velocity brings the particle velocity closer to the average velocity of

its neighbourhood, and makes the particles move in an orderly fashion.

Figures 3.10 and 3.11 show the results of a series of animations where the veloc-

ity tuner is set to different values. It is evident from the renderings that, as the value

of the velocity tuner ε increases, the particles move more orderly due to energy loss.

3.2.2 Artificial viscosity

Problems of hydrodynamics found when dealing with shockwaves need special

treatment, for simulation can develop unphysical oscillations in the numerical re-

sults around the shocked region. For the simulation to remain stable, the kinetic

energy needs to be transformed into heat energy in the shock wave front. This

transformation of energy can be physically represented as a form of viscous dis-

sipation. This last idea leads to the development of the von Neumann-Richtmyer

artificial viscosity [86] which makes the shock transition smoother without giving

up the physical correctness.

61

(a) ε = 0.0, Frame 100 (b) ε = 0.25, Frame 100

(c) ε = 0.50, Frame 100 (d) ε = 0.75, Frame 100

Figure 3.10: Top-view comparison of the effects of ε.

62

(a) ε = 0.0, Frame 200 (b) ε = 0.25, Frame 200

(c) ε = 0.50, Frame 200 (d) ε = 0.75, Frame 200

Figure 3.11: Front-view comparison of the effects of ε.

63

Monaghan et al. [58] [59] apply artificial viscosity under the SPH formalism

to facilitate shock simulation by providing the necessary dissipation to convert ki-

netic energy into heat at the shock front. Furthermore, their approach also prevents

unphysical penetration for particles approaching one another [40] [57]. The SPH

implementation of the standard artificial viscosity is:

dvi
dt
← dvi

dt
−

N∑
j

mjΠij∇W (xi − xj, h) (3.35)

where the viscosity tensor Πij is defined by

Πij =

{−αΠc̄ijµij+βΠµ
2
ij

ρ̄ij
vij · xij < 0

0 vij · xij ≥ 0
(3.36)

where

µij =
hvij · xij
|xij|2 + εh2

(3.37)

c̄ij =
1

2
(ci + cj) (3.38)

ρ̄ij =
1

2
(ρi + ρj) (3.39)

vij = vi − vj, xij = xi − xj (3.40)

In Equation 3.35 αΠ and βΠ are constants set to 1.0; εΠ is a constant that takes

the value of 0.01, introduced to prevent numerical divergences when |xij| = 0; ci

and cj represent the speed of sound at particles i and j respectively; and v is the

velocity vector.

The viscosity associated with αΠ produces a bulk viscosity while the term as-

sociated with βΠ is similar to the von Neumann-Richtmyer viscosity. Because the

proposed framework deals with viscosity explicitly using the SPH formalism as de-

scribed on Subsection 3.1.5, the term associated with αΠ is ignored since it could

64

lead to spurious large sheer viscosity. However, the term associated with βΠ is still

used to prevent particle penetration. By setting the value of αΠ = 0, the artificial

viscosity term Πij (used in the proposed framework) takes the form of:

Πij =

{
βΠµ

2
ij

ρ̄ij
vij · xij < 0

0 vij · xij ≥ 0
(3.41)

3.3 New phenomena

This section introduces the new heat-based phenomena developed using the SPH

framework, including fluid/solid phase changes based on the work by Mao and

Yang [51] [52] [53] and the newly proposed phenomenon of simulating volume

expansion given by bubbles trapped inside a non-Newtonian fluid.

3.3.1 Heat transfer

The simulation of heat transfer is a very important component of the presented

framework: the change in the fluid’s temperature is the main driving force in the

animation of the solid-fluid phase change and volume expansion. For simplicity’s

sake, only two types of heat transfer are considered: the heat transfer from external

sources such as air, and the internal heat transfer. This assumption distances the

proposed framework from a more physically accurate model that considers radia-

tion and heat from the water phase changes inside the dough while still keeping

the framework within the realm of physical-plausibility in generating a temperature

gradient throughout the baking process.

External Sources Heat Transfer

The external heat transfer takes place at the surface of the fluid on the fluid-air,

or fluid-solid interfaces. The present framework models this transfer following the

work by Stora et al. [82] using Equation 3.42:

65

(
dT

dt

)
exti

= khext(Ti − Text)
r2
i

ρi
(3.42)

which takes into account the surface area of the particles located at the interface

of the fluid. In Equation 3.42 khext is the external heat transfer coefficient, Text is

the temperature from the external object with which the heat transfer is occurring

(be it on the fluid-air or fluid-solid interfaces), and finally Ti, ρi, and ri are the

temperature, density, and radius (respectively) belonging to particle pi.

The radius of particle i can be computed using the following Equation:

4

3
πr3

i =
mi

ρ0

(3.43)

The external heat transfer takes place only on those particles determined to be

on the surface of the fluid using the local convex hull method that is described on

Section 3.1.8.

Internal Heat Transfer

A popular method for computing the internal heat transfer that takes place in both

grid [13] and particle-based fluid models [82] [62] [70] is using the general heat

equation:

∂T

∂t
= khint∇2T (3.44)

where khint is the internal heat transfer coefficient.

However, this approach assumes that the fluid’s density is a constant, an as-

sumption that is difficult to maintain under the SPH formalism since, regardless of

how the pressure term is computed, some variation in the particle’s density value

will occur. To avoid this problem Mao and Yang [52] [51] propose a more flexible

approach as described in Equation 3.45:

∂T

∂t
= khint

1

ρ
∇2T (3.45)

66

The assumption of a constant density is left behind and all that is needed to

obtain the rate of change of temperature is to compute the temperature Laplacian

for particle i which is computed under the SPH formalism as:

1

ρi
∇2T =

N∑
j=1

4mj

(ρi + ρj)2
(Tj − Ti)∇2W (rij, h) (3.46)

Figure 3.12 shows screenshots taken from the realtime view of the proposed

framework implementation illustrating the results from Mao and Yang’s proposal

for simulating internal heat transfer. Each screenshot shows the fluid’s particles at

increasing time periods with the changes in colour representing the changes in each

particle’s temperature, showing the temperature gradient in the dough.

3.3.2 Phase changes

Phase transition is an interesting phenomena that has been studied before under the

SPH formalities by Mao and Yang [51] [52] [53], and Paiva et al. [70]. The frame-

work presented in this thesis builds upon the work by Mao and Yang with Non-

Newtonian fluids for describing phase transitions, and extends it by implementing

non-uniform viscosity throughout the fluid, making it temperature-dependent. This

framework also makes use of the XSPH velocity tuner to absorb energy, making the

fluid-solid phase transition animation more realistic.

Elasticity

Mao and Yang [51] [52] present a method for creating animations of phase changes

by modifying the µe and λ values of the stress equation introduced to create anima-

tions of Non-Newtonian fluids. Figure 3.13 shows frames of an animation where

a solidification effect can be achieved by varying µe and λ based on temperature

change that takes place after the fluid comes into contact with the floating structure.

Figure 3.14 illustrates the opposite effect where µe and λ change due to the

increase in temperature from the floor, and the bunny structure melts away turning

into a fluid.

67

(a) Frame 72 (b) Frame 122

(c) Frame 172 (d) Frame 222

(e) Frame 272 (f) Frame 372

Figure 3.12: Heat transfer screenshots from real-time view.

68

(a) Constant λ and µe, Frame
95

(b) Constant λ and µe, Frame
135

(c) Constant λ and µe, Frame
400

(d) Temperature dependent λ,
Frame 95

(e) Temperature dependent λ,
Frame 135

(f) Temperature dependent λ,
Frame 400

(g) Temperature dependent
µe, Frame 95

(h) Temperature dependent
µe, Frame 135

(i) Temperature dependent
µe, Frame 400

(j) Temperature dependent λ
and µe, Frame 95

(k) Temperature dependent λ
and µe, Frame 135

(l) Temperature dependent λ
and µe, FSrame 400

Figure 3.13: Effects of varying λ and µe based on temperature.

69

(a) (b)

(c) (d)

(e) (f)

Figure 3.14: A melting animation illustrating the effects of varying λ and µe based
on temperature.

70

Viscosity

Viscosity is another parameter that is very important during the fluid-solid phase

transition. As a matter of fact, in Paiva et al.’s [70] model the solids are nothing

more than highly viscous fluids. In order to model the fluid with non-uniform vis-

cosity, the present framework implements the method proposed by Müller et al. [64]

where the viscosity at particle i is defined by Equation 3.47:

f viscosityi = µi
∑
j

mj

ρj
(vj − vi)∇2W (x− xj, h) (3.47)

where µi is the viscosity at each particle pi, and its value can be modified depending

on the temperature of particle pi. This approach is used by Stora et al. [82] with the

purpose of animating lava flows.

The changes in the fluid’s motion can be too subtle to notice due to gradually

varying viscosity. In order to better illustrate the effects of the viscosity parameter,

the used examples contain fluids with very different homogenous viscosity values.

Figure 3.15 shows a fluid with low viscosity that travels through the glass funnel

very easily. In contrast, Figure 3.16 shows a very viscous fluid: a closer look will

reveal that at the end of the animation there is a significant amount of fluid residue

still in the funnel.

Velocity tuner

As discussed in Section 3.2.1 the proposed framework uses the XSPH technique to

make the fluid particles move in an orderly fashion. Monaghan [62] describes this

version of XSPH, and mentions that it may not be optimal in some cases because

it introduces a loss in energy while correcting the particles’ velocities. However, a

goal of the proposed framework is to create phase transition in fluids; this energy

loss is actually required to achieve a relaxed state in the particles, and it can be

harnessed to create a more varied range of animations.

Figures 3.10 and 3.11 illustrate the effects of modifying the velocity tuner uni-

formly for the whole fluid; however, this parameter can also be modified in a non-

71

(a) v = 1, frame 66

(b) v = 1, frame 360

Figure 3.15: Animation of a fluid with low viscosity.

72

(a) v = 1× 105, frame 66

(b) v = 1× 105, frame 360

Figure 3.16: Animation of a fluid with high viscosity.

73

(a) (b)

(c) (d)

Figure 3.17: Animation illustrating the effects of variable velocity tuner.

uniform way throughout the fluid. Figure 3.17 shows a scene commonly used to

describe varying viscosity under the SPH formalism. Nevertheless, in this case the

viscosity remains fixed at a value, and we achieve a similar result by linearly inter-

polating the value of the velocity tuner based on the particles’ temperatures. In the

illustration it is noticeable how the lava that flows to the left and right of the volcano

cools of quickly, and stops flowing, whereas the lava that flows from the front of

the volcano keeps its high temperature for a longer period of time, and manages to

flow further down the volcano.

74

3.3.3 Volume expansion
Pressure changes

The pressure term from the NS equation of motion as described in Equation 3.1

is used to regulate the overall volume of the fluid, keeping the fluid in a quasi-

incompressible state by 1) adjusting the distance between the particles, exerting a

positive force between particles as they come closer to drive them apart, and 2) a

negative force that drives the particle together as the distance between them grows

too large. This pushing and pulling between the particles is in an effort to keep

the particle’s density as close as possible to its resting density value. As described

in Subsection 3.1.4 the proposed framework uses Tait’s Equation [6] to handle the

pressure term of the NS Equation. However, the pressure term can be manipulated

to make the fluid increase in volume in a controlled manner.

To achieve volume expansion the particles are tagged as being simple fluid par-

ticles, or particles that will be treated as bubbles of air trapped in the fluid. This

process make the fluid increase in volume due to temperature changes that augment

the overall volume of the fluid. For all intents and purposes, fluid and bubble par-

ticles will be treated in the exact same way except when dealing with the particles’

pressure. Initially, the bubble particles will use Tait’s Equation [6] to handle pres-

sure, but when the temperature begins to change Equation 3.48 is used to handle

the bubble particle pressure:

Pbi = B
ρi
ρ0

(
ρ0

ρbi
− 1

)
(3.48)

where B is a constant that scales the effects of the changes in pressure, ρi
ρ0

is a

throttling factor that reduces the effect of the pressure changes as the particles grow

apart. This throttling factor makes the animation more stable than relying only

on the SPH framework to attenuate the applied forces due to the distance between

the particles. The term
(
ρ0

ρb1
− 1
)

is the driver for the increase in pressure, and it

increases due to ρbi, which is the bubble density which is defined as:

75

ρbi =
ρ0

Vbi
(3.49)

the framework assumes the bubble to follow the ideal gas state law, and it assumes

that the process is of an isobaric nature so the bubble volume of the particle is

defined as:

Vbi =
Vb0Ti
T0

(3.50)

where Vb0 is the particles’ initial volume; for the purposes of our simulation this

parameter is set to 1.

By substituting Equation 3.49 and Equation 3.50 into Equation 3.48 we get the

final form of the pressure equation for bubble particles:

Pbi = B
ρbi
ρ0

(
V0Ti
T0

− 1

)
(3.51)

However, Equation 3.51 for bubble pressure cannot be used indefinitely since

the volume will continue to increase. In order to avoid this, the pressure term

changes back to the method defined by Monaghan [61] as described in Equation 3.17.

Changing back to Equation 3.17 for pressure allows a nonaggressive transition

from the increasing volume to a relaxed state avoiding instabilities in the animation

in the form of jittering in the particles movement. However, to keep the changes

in volume, Tait’s Equation [6] needs to be modified, or else, the fluid will return to

its initial state. The modification needed is quite simple: while the volume is in-

creasing by using Equation 3.48, the framework keeps track of the particles’ density

storing it as ρf i, and the final pressure equation takes the form of:

Pi = B

((
ρ

ρf i

)γ
− 1

)
(3.52)

76

Adaptive smoothing length

Due to the changes in volume, the system must compensate for the distance be-

tween particles so that they are “connected” by a dough medium and do not fall

apart as the volume increases. To avoid a breaking effect in the fluid, Mao and

Yang [52] [51] propose up-sampling the fluid particles as their positions evolve

over time, achieving a more realistic animation. The problem with this approach is

that, without their proposed method of calculating the particles’ pressure using the

projection method under the SPH formulation to conserve volume, the newly cre-

ated particles will present instabilities in the form of jittering motions in the initial

frames while the system stabilizes.

Liu and Liu [45] describe a method to adapt each particle’s individual smooth-

ing length h with the purpose of maintaining the number of particle’s neighbours

relatively constant. The method they describe is based on updating the smoothing

length using the particle’s density value as described in Equation 3.53:

hi = h0

(
ρ0

ρ

)1/d

(3.53)

where h0 and ρ0 are the initial smoothing length and initial density respectively,

and d is the number of dimensions. This method however becomes unstable for

particles located at the surface of the fluid if the adaptive smoothing length is not

restricted to a given range due to the problem described on Section 3.1.3, where the

density of the outlying particles is erroneously calculated.

A different approach to calculate the smoothing length is proposed by Siga-

lotti et al. [78] who use an adaptive smoothing length to enforce constant density at

the surface of the fluid. Their adaptive smoothing length method is similar to the

one described by Liu and Liu and takes the form of:

hi = kg

(
ρi
ḡ

)−εg
h0 (3.54)

where kg is a scaling factor of the order of unity, εg a sensitivity parameter that exists

77

in the interval of 0 ≤ εg ≤ 1, and ḡ the geometric mean of the initial estimates given

by:

log ḡ =
1

N

N∑
j

log ρj. (3.55)

As the value of the sensitivity parameter εg approaches 1, the smoothing length

hi becomes more sensitive to the density distribution, creating a longer smoothing

length as the density ρi of the particle decreases. On the contrary, when the value

of εg approaches 0, this method reduces the adaptive smoothing length to the fixed

smoothing length approach. Sigalotti et al.’s [78] approach produces much more

stable results by maintaining a medium between the particles as the fluid expands,

while also solving the problem of incorrect particle densities at the surface of the

fluid; for this reason their method is used in this work.

Because we are dealing with a varying smoothing length per particle depending

on each particle’s density a symmetric interaction must be enforced in some way;

otherwise, there will not guarantee that when particle i exerts force on particle j,

an equal and opposite reaction will occur, since the area of effect of each particles

may not be the same, violating Newton’s third law.

To achieve the symmetric interaction the framework averages the smoothing

lengths of the pair of interacting particles as described by Benz [8]:

hij =
hi + hj

2
. (3.56)

3.4 Numerical integration

After the properties of all the particles have been computed at the end of each time

step all that is needed to proceed is to integrate the movement of particles.

The proposed framework adopts the Euler integration method due to its ease of

implementation and low memory consumption. According to the Euler integration

method, the particle’s velocity is integrated as:

78

vb+1
i = vbi + abi∆t (3.57)

where b is the bth time step, ∆t the time step itself, and ai the particle’s acceleration

computed using the SPH framework as described in Section 3.1. After integrating

the particle’s velocity, the corresponding position is computed as:

xb+1
i = xbi + vb+1

i ∆t (3.58)

3.5 Surface reconstruction

After generating the fluid animation the results are in the form of points moving in

space rendered in real time. However, this is not the best solution for representing

the fluid since it does not show the volume of the fluid as it moves. In order to see a

more detailed description of the fluid, a mesh is created taking the points that define

the fluid as input.

Several methods were tested for creating such a mesh trying to avoid the com-

mon problem that occurs with the marching cubes algorithm when used with certain

field functions. In these cases, the resulting surface will often go beyond the vol-

ume defined by the fluid particles, penetrating the solid container. Furthermore,

when reconstructing the fluids surface, the volume expansion needs to be taken into

account so that the mesh of the fluid expands with the particles as they grow apart,

and we do not get particles suspended in space.

Figure 3.18 illustrates an extreme scenario with a very coarse particle distribu-

tion where the volume of effect of the field function is underestimated. The full

animation originally includes a fluid inside a container, but for clarity the container

is omitted. As it can be seen from the illustration, even though the initial volume is

rendered correctly (Figure 3.18(a)), the fluid breaks apart and levitates in an unre-

alistic way as the volume expands (Figure 3.18(b)).

The opposite case would be to naively use a large volume of effect for the field

function avoiding the levitating fluid as shown on a second animation in Figure 3.19.

79

(a) Frame 26 (b) Frame 586

Figure 3.18: Underestimating the volume of effect for field function.

In this frame, the volume has already expanded to its fullest. Although the fluid

does not levitate in this test, and the quality of the surface may be sufficient, if the

volume of effect is too large there is the risk that the fluid will penetrate the solid in

which it is contained, and this is not acceptable.

The methods tested emphasize on creating a mesh whose vertices are very close

to the points of the surface of the input data set. One of the several algorithms tried

is the Poisson surface reconstruction method [35]; this algorithm takes as input only

the points that lie on the surface of the fluid along with the normals at such points to

create a scalar field. The scalar field is eventually used to get the mesh of the fluid

using the marching cubes algorithm. This method turned out to be robust enough

when creating single frames, and it is very robust to outlier points. However, this

method is not optimal when creating a sequence of frames to make up the animation

because of the nature of the algorithm, which makes it non-deterministic, creating

frames that were not temporally coherent. Even more, when running this method

several times with the same data set, slightly different results are obtained. This

temporal discrepancy is shown in Figure 3.20 where four meshes are generated from

a single frame—each colour coded—and when they are superimposed their shapes

to not match and the colours show which is the mesh that extends the furthest.

80

Figure 3.19: Overestimating the volume of effect for field function.

Another method tested to create the fluid’s surface is the robust implicit moving

least squares method (RIMLS) approach [83]. Similarly to the Poisson reconstruc-

tion method, this method takes as input the positions of the particles on the surface

of the fluid along with their respective normals. However, contrary to the Pois-

son method, this method did give temporal coherent results, but unfortunately the

RIMLS approach is very sensitive to the changes in particle positions and their

normals. Figure 3.21 illustrates this problem with an early animation test using

the RIMLS approach. The surface reconstruction behaves as expected creating a

smooth expanding volume until it steps from frame 158 (Figure 3.21(a)) to frame

159 (Figure 3.21(b)). Here the normals of the surface particles change enough that

a drastic change takes place in the resulting animation, resulting in an unrealistic

jump on the surface of the fluid. To better illustrate the problem comparing static

frames, Figure 3.21(c) shows the rendering of both surfaces superimposed without

the container, applying a red material on the surface of frame 158, and a blue ma-

81

Figure 3.20: Result of the Poisson reconstruction method showing temporal dis-
crepancy.

82

terial on the surface of frame 159. It is evident that there is a big shift in the shape

of the surface in this frame transition. However, since meshes come from different

frames a change must be visible the animation comes from the slow increase in vol-

ume of the fluid and the change should be smoother; instead the result shows a big

deformation in the fluid which in the animation looks as the aforementioned unre-

alistic jump from one frame to the another, and although the rest of the sequence

is without fault, this problem makes this approach less than ideal for animation

purposes.

Another method tried in this work, which steps away from reconstructing the

scalar field, is the Alpha-shapes algorithm [20] [19] [21] . Due to the nature of this

method, the vertices of the resulting mesh share the same positions as those from the

input data set, and although the resulting mesh can be coarse, it can be smoothed out

using a smoothing technique such as the Loop subdivision algorithm [47]. How-

ever, this method had to be discarded as well because of the need of setting the

alpha parameter. This alpha parameter can be set to define the number of solid

objects we want based on the work of Bernardini and Bajaj [9]. Nevertheless, if

this approach is used for the entire animation, we would need to define the num-

ber of solid objects the input set would create for every frame: creating a natural

looking animation using this approach would be very difficult, and the alternative

is to calculate this value for the first frame, then continue to creating the rest of the

frames reusing this value. This approach is, again, not without problems: after the

particles start to move around there may be the case when the particles grow apart

(such as in the proposed volume expansion method), and the holes inside the alpha

shape could create other objects that create intersections with the main fluid mesh,

or even holes in the surface of the fluid. This last extreme example is illustrated on

Figure 3.22, where Figure 3.22(a) shows a complete mesh (left without smoothing

to better illustrate the results) and the last frame on Figure 3.22(b), where holes

have appeared and the notion of a continuous surface is gone.

As stated before, neither the Poisson reconstruction or RIMLS methods for cre-

83

(a) Frame 158 (b) Frame 159

(c) Side by side comparison

Figure 3.21: Subsequent frames showing temporal discrepancy using the RIMLS
algoritm.

84

(a) Frame 1

(b) Frame 1700

Figure 3.22: Results of the alpha-shape algorithm from using the same alpha value
for the whole animation.

85

ating the scalar field for the marching cubes algorithm nor the alpha-shapes method

for creating the surface mesh resulted in a high quality temporal consistent mesh

that could be used for the purpose of creating animations. It is for this reason

that the proposed method uses the popular field function attributed to the work by

Wyvill et al. [88] to create the scalar field as described in Equation 3.59.

φ(rφ) =

aφ
(

1− 4r6
φ

9b6φ
+

17r4
φ

9b4φ
− 22r2

φ

9b2φ

)
, rφ ≤ bφ

0, rφ > bφ
(3.59)

However, this approach alone does not take into account the issue that arises

from the newly proposed phenomenon of volume expansion; as the particles grow

apart the fluid’s mesh will disappear if the volume of effect of each particle is not

dynamically adapted as illustrated in Figure 3.18(b).

To solve this problem, the proposed framework uses the information available

from the SPH formalism to modify the particle’s volume of effect based on the

changes in each particle’s density, as described by Equation 3.60:

rφt = αφ +

(
βφ
ρ0

ρi

)
(3.60)

where rφt is the radius used to define the volume of effect around particle i at

frame t, αφ is the base radius when the particle’s density is in the relaxed state.

From Equation 3.60 it can be seen that the particle’s radius of the volume of effect

is inversely proportional to the changes in the particle’s density ρ, that is, as ρ

increases the radius of the volume of effect rφ decreases in length approaching αφ;

on the contrary, as ρ decreases, rφ increases in length.

This approach of modifying the volume of effect of each particle allows the

surface to grow as the fluid expands through the open areas of the container, fo-

cusing on the areas where the particles become more isolated with respect to their

neighbouring particles, while maintaining the volume of effect small where the par-

ticles are close together (such as in the containers surface where particles are being

pushed together avoiding the problem where the fluid’s mesh penetrates the con-

86

Figure 3.23: Result using a good marching cubes distance function.

tainer). The applicability of this approach is dependent on the particle count of the

simulation: that is, if there are too few particles there may not be enough to create

a complete shape avoiding levitating fluids. With Figure 3.23 we can compare the

results to those obtained with the static field function: starting with the same data

set this approach obtains a much better result.

Finally, Figure 3.24 shows the results from applying this approach to an anima-

tion with a higher particle count. The shape obtained is not as bulbous as the one

shown in Figure 3.19, and it has a rough texture present in many baking goods.

3.6 Summary

In this chapter the implementation of the SPH framework is presented showing

how the work by Mao and Yang [51] [52] [53] was expanded to create more flexi-

ble and stable phase transitions by adding a viscosity model which allows varying

viscosity throughout the fluid, as well as the XSPH velocity smoothing technique

87

Figure 3.24: Result using a good marching cubes distance function.

which introduces the velocity tuner ε parameter that gives greater flexibility to the

fluid-solid phase transition. Furthermore, the framework was made more stable by

adding artificial viscosity which helps prevent particle inter-penetration.

The SPH framework presented in this thesis can produce quality animations

representing thin and highly viscous fluids, fluids that try to maintain their original

shape, fluid-solid phase transitions including melting and solidification as well as

fluids that expand in volume due to changes in inner pressure.

One of the drawbacks of the SPH framework is that it requires a very large num-

ber of particles in order to create quality results. The animations presented in this

chapter handle tens of thousands of particles producing results in manageable times

by improving the efficiency of the range search function by means of the kd-tree

data structure, as well as the overall computational efficiency of the implementa-

tion by means of parallel computing using the OpenMP API [2]. However, there

is more room for improvement, currently the framework uses the Euler integration

88

method which leads to the need of small time steps; by changing the integration

method to the Leap-Frog scheme [46] the time step could be increased which will

in turn decrease the amount of time required to generate the animations along with

the possibility of using more particles. Furthermore, larger time steps could also

allow the use of a wider value range for the simulation parameters while keeping

the animations stable.

89

Chapter 4

Baking model

This chapter contains a description of results obtained from a combination of the

phenomena discussed in Chapter 3 to model the baking process by using data avail-

able from academic experimental results. Furthermore, this section contains the

resulting animations and the data collected during their creation, which was used

to perform qualitative comparisons of results presented from other mathematical

baking models.

The baking process is quite complex due to the many physical and chemical

changes that take place during that process. In order to reproduce the baking phe-

nomena with the goal of creating animations, this framework simplifies the baking

process to the following items (described in detail in the next subsections):

• Heat transfer

• Volume expansion

• Solidification

• Surface colouring

Figure 4.1 shows screenshots of a time-lapse recorded by Kolias [37] that show

the baking process for an angel food cake. The screenshots illustrate the four items

mentioned above that the present framework aims to simulate: the dough is inside

a conventional oven, and as Figure 4.1(b) shows, the dough begins to rise as time

90

passes and the temperature increases; gradually, the dough begins to show the char-

acteristics of a solid. Then, the surface of the dough begins to brown as it is subject

to heating; finally, as the baking process comes to an end, there is a recession in the

size of the dough.

4.1 Heat transfer

As mentioned in Section 3.3, an accurate simulation of heat transfer is important in

this framework because it is the driving force behind the phenomena that will come

together to animate the baking process.

In the same fashion, heat plays a very important role in the different baking

models described in Section 2.4. For the sake of simplicity, the authors of these

models add different assumptions to their approaches; one of these assumptions is

related to the way the dough’s temperature is treated, which can affect the outcome

of the simulation. For instance, a common assumption made in the mathematical

models proposed by Fan et al. [25], Lostie et al. [49], and Marcotte et al. [54] is that

temperature is considered uniform throughout the dough’s volume.

Although the method proposed by Zhang et al. [91] [92] [90] models heat trans-

fer differently from the approach presented in this thesis (Zhang et al.’s [91] [92] [90]

approach takes into account thermal conduction, convection and phase change—

evaporation-condensation—while the proposed framework only considers thermal

conduction and convection), both approaches consider the naturally occurring tem-

perature gradient that takes place during the the baking process in the crumb section

of the dough.

The proposed framework uses the heat transfer method described in Section 3.3.1

to simulate the temperature changes which are the driving force behind the baking

process. Figure 4.2 illustrates the temperature changes during a simulation of the

dough-baking process with a cylindrical shape container using the developed sys-

tem. As the graph shows, the results differ from those obtained by Zhang et al. [92]

in that there is no difference in the final temperatures at the crumb and crust section

91

(a)

(b)

(c)

Figure 4.1: Baking time lapse for an angel food cake from [37].

92

Figure 4.2: Temperature profile of a bread roll during the baking process.

of the baked good. However, this does not affect the final outcome in the anima-

tion, and the rates of change of temperature can be considered qualitatively similar

to those obtained by Zhang et al. [92] for the different sections of the dough.

It is important to note that even Zhang et al. [92] consider the temperature data

obtained in their observations to be of a qualitative nature; this is due to the difficul-

ties in taking accurate measurements inside the dough during the baking process.

4.2 Volume expansion

The dough’s final volume is one of the critical attributes used to measure the quality

of the baked good, giving it a particular look and overall texture.

There are different leavening agents that can be used depending on the desired

result to foment the dough’s increase in volume during the baking process, this in-

crease in volume is known as oven rise. Some leavening methods include chemical

leaveners, biological leaveners, and mechanical leavening.

93

Baking powder is a common rise agent used for baking that works by releasing

CO2 inside the dough by means of a chemical reaction either by reacting in the

wet dough with baking soda at room temperature, or by being triggered with the

increase in temperature. Another commonly used leavener is yeast, a biological

leavener classified as a Fungus that produces CO2 during its life cycle. Finally,

an example of mechanical leavening is creating foam by using a whisk tool on a

non-Newtonian fluid that can hold bubbles (such as egg whites): this is a common

technique when baking sponge cake and angel food cake.

Models geared more towards a realistic simulation generate the final dough ex-

pansion and deformation based on CO2 and water vapour generation; two examples

are presented by Fan et al. [25], and Zhang et al. [91] [92] [90]. In order to sim-

plify the proposed model, the bubbles are considered to be already trapped inside

the dough as was described in Section 3.3.3: the volume expansion is given by

the pressure buildup due to the increase in temperature during the baking process,

causing the volume of the bubbles themselves to increase. However, even under

this assumption, results obtained show that the proposed framework is capable of

producing realistic looking animations by modifying 1) the bubble-to-dough parti-

cle ratio, 2) the amount of force the bubbles exert on the dough as they increase in

volume, and 3) the bubble particle distribution inside the dough.

Figure 4.3 shows a side by side comparison between the results obtained from

Zhang et al.’s [92] mathematical model of bread baking, and the framework pro-

posed in this thesis. A noticeable difference between the two sets of results is that

the oven rise obtained from the simulation of this framework is much bigger than

that of Zhanget al.’s [92] model. Where they report an increase in relative volume

of 170%, the sequence presented on Figure 4.3 shows an increase in relative vol-

ume of 350%, which shows that the proposed model can handle very large volume

expansions.

The animation from Figure 4.3 was created using particles in the 20, 000 range,

out of which 40% were treated as bubbles distributed evenly throughout the dough.

94

(a) Zhang et al.’s [92] oven rise results.

(b) Frame 48 (c) Frame 180

(d) Frame 360 (e) Frame 720

Figure 4.3: Qualitative comparison of volume expansion.

95

(a) Bubbles evenly distributed,
frame 48

(b) Bubbles evenly distributed,
frame 940

(c) Bubbles distributed in the
center, frame 48

(d) Bubbles distributed in the
center, frame 940

Figure 4.4: Results from different bubble particle distribution.

However, it is important to note that as in real life, the distribution of the bubble

particles has a big impact on the final result of the baked good. Figure 4.4 illustrates

such a difference; here, the frames are from two animations set up in a similar

fashion; both of the animations have the dough start with a cylindrical shape, but

the initial bubble distribution is set up differently, in order to better visualize the

difference the dough particles are coloured in magenta while the bubble particles

have a light green tone. It can be seen in Figures 4.4(a) and 4.4(b) that the bubbles

are distributed evenly, whereas Figures 4.4(c) and 4.4(d) show the dough with the

bubbles distributed at the centre of the dough.

96

4.3 Solidification

The solidification phenomenon is simulated with the approach described in Sec-

tion 3.3.2. In order to correctly simulate the mechanical properties of the dough as

it bakes, the proposed framework modifies the solidification parameters based on

models created from empirical data. However, it is important to note that this data

comes from observations conducted on a specific type of dough. In order to make

the framework described in this thesis more flexible, the original equations have

been modified to give the end user the ability to scale behaviours of rates of change,

resulting in more control over the resulting animation.

Changes in dough viscosity are an important factor when simulating the baking

process. The proposed framework takes the rate of change for viscosity proposed

by Fan et al. [25], in which the viscosity decreases at the beginning of the baking

process, but steadily increases after a turning point in temperature is met. This

behaviour is reproduced with Equation 4.1:

µ =

{
µ0 + (T − T0)µc−µ0

Tc−T0
, T ≤ Tc

µc + (T − Tc)µf−µcTf−Tc
, T > Tc

(4.1)

where T is the current temperature, µ0, µf , and µc are the initial, final and turning

point viscosity coefficients respectively, and T0, Tf , and Tc are the initial, final, and

turning point temperatures respectively during the baking process.

Although the elasticity of the dough is one of its many properties that changes

during baking phenomena, it has largely been ignored in many attempts at mod-

elling the baking process. Zhang [90] mentions that elasticity is another variable

that could be added to his proposed model. Due to the lack of experimental data,

changes in elasticity in the proposed framework follow the same rate of change

given by the viscosity changes described in Equation 4.1, albeit with different range

in parameters. The final form of the changes for the elasticity parameter µe from

Equation 3.20 is defined in Equation 4.2:

97

µe =

{
µe0 + (T − T0)µec−µe0

Tc−T0
, T ≤ Tc

µec + (T − Tc)
µef−µec
Tf−Tc

, T > Tc
(4.2)

with µe0, µef , and µec as the initial, final and turning point elasticity coefficients.

In Zhang et al.’s [91] [92] [90] model, the relaxation time is based on the works

of McGee [55], Pan [71], and Steffe [81] (as defined in Equation 2.68). This

approach—modified for scaling—takes the form described in Equation 4.3:

λ = Cλ

[
2

π
arctan

(
T − 65

2

)
+ 1

]
+ 2 (4.3)

where Cλ is a user defined scaling factor.

As a final adjustment, the velocity tuner εi is linearly interpolated based on each

particle’s temperature as illustrated on Equation 4.4:

εi = ε0 + (Ti − T0)
εf − ε0
Tf − T0

(4.4)

where ε0 and εf are the initial and final values for the velocity tuner. The velocity

tuner makes the particles move in an orderly fashion, and thus, it has a big effect

on the result of the baking process simulation when determining whether the dough

will become solid. As a result of the tests performed, a value of εf = 0.5 is suitable

to allow for the phase transition to fully take place.

Table 4.1 presents an example of the possible values that the scaling parameters

can take in order to create animations of fluids with a fluid-solid phase transition

(such as the one illustrated on Figure 4.5). The profiles of these parameters in

relation to temperature increase are illustrated on Figure 4.6.

Because the viscosity and elasticity parameters follow a similar rate of change,

they can be combined thereby reducing the number of parameters to define the

fluid-solid transition phase from 12 to 9.

98

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Fluid-solid phase transition.

Parameter Value
T0 26
Tc 45
Tf 120
µ0 0.1
µc 1
µf 5× 103

µe0 1
µec 10
µef 5× 104

Cλ 450
ε0 0.05
εf 5

Table 4.1: Solidification parameters.

99

(a) elasticity (b) relaxation time

(c) viscosity (d) velocity tuner

Figure 4.6: Temperature profiles of parameters.

100

4.4 Surface colouring

Simulating the changes in dough surface colour is an important characteristic neces-

sary to achieve a more realistic animation of the baking process. As Zanoni et al. [89]

point out, changes in the surface colour depend both on the physicochemical char-

acteristics of raw dough (i.e. water content, pH, reducing sugars, and amino acid

content), as well as on the operating conditions applied during baking (i.e. temper-

ature, air speed, relative humidity, and modes of heat transfer).

Zanoni et al. [89] propose a mathematical model to predict the browning kinet-

ics of bread crust during baking. The surface browning is described as the colour

difference between the raw dough and a sample that is subject to heating. This

colour difference is represented as the Euclidean distance in 3D space with each

dimension representing the brightness, redness, and yellow difference between the

two samples. The colour difference is considered a function of temperature his-

tory, so in order to obtain the surface colour, the transport and deformation stages

are modelled. After this, the temperature history is obtained, and the surface is

coloured.

The purpose of the framework presented in this thesis is to create animations

geared towards visual effects; for this reason, a very important objective is giving

the user flexible control over the result of the surface colouring, rather than follow-

ing realistic browning by colouring the surface in any way desired as the baking

process takes place. This flexible level of control is achieved using the SPH for-

malism along with texture mapping to colour the vertices of the generated surface

mesh. The use of textures allows the user to create different results that would be

hard or difficult to reproduce in real life.

The surface colouring is made by applying a texture to the created mesh. This

texture is a diagonal gradient that contains the range of colours the surface will

acquire due to the change in temperature. In order to use this texture, every vertex is

assigned a UV coordinate that maps the lowest temperature to the lower-left section

of the texture, and the highest temperature to the top-right part of the texture.

101

To achieve smooth colouring transitions, the U and V coordinates of the texture

map for each vertex will have the same value, meaning that they will lie on a di-

agonal across the UV plane. However, the sets of particles could be treated in an

alternative manner by arranging the UV coordinates in different areas of the UV

map, thereby creating more interesting effects.

To get the values of the vertex UV coordinates, a range search is performed us-

ing the kd-tree data structure at each vertex of the mesh gathering the fluids neigh-

bouring particles. With the information of the neighbouring particles, the UV value

pair can now be obtained using Equation 4.5, following the SPH formalism.

Ui =
N∑
j=1

mj

ρj
G(xj)W (xi − xj, h) (4.5)

where Ui is the value that will be used for the UV coordinates at the ith vertex, and

G(xj) is a function that determines the value that particle j will contribute to the

final position of the UV coordinate. Different results can be obtained by modifying

the definition of G(xj). For instance, defining G(xj) as

G(xj) = 0.9

(
Tj − T0

Tf − T0

)
+ 0.05 (4.6)

creates a gradient colouring effect dependent on the particle’s temperature. On the

other hand, if the functionG(xj) is made to differentiate between bubble and dough

particles (as defined in Equation 4.7):

G(xj) = O(xj) + 0.8

(
Tj − T0

Tf − T0

)
+ 0.05 (4.7)

where

O(xj) =

{
0, if particle is bubble
0.1, if particle is dough

the areas in the fluid with a dense bubble particle distribution—which can be re-

garded as the crumb of the baked good—can be coloured differently.

102

(a) UV map (b) Coloured mesh

Figure 4.7: Result from calculating UV coordinates using the SPH formalism.

Figure 4.7(a) highlights in green the UV coordinates generated using SPH for-

malism placed along the diagonal from bottom left to top right while Figure 4.7(b)

shows the result of applying a gradient texture to the mesh using the generated UV

map.

4.5 Results

In this section different animations produced with the proposed framework are pre-

sented to show the framework’s flexibility in simulating the baking process for dif-

ferent and peculiar types of bread. Due to the lack of real-life measurements for the

mechanical properties of these types of bread, the values used for the simulations

were estimated based on empirical observations with the goal of creating appealing,

or dramatic-looking animations.

Bread roll animation

Results presented here show the final renderings of the classic bread roll used in

many mathematical models of the baking process. Figures 4.8(c) and 4.8(d) show

renderings from different viewpoints of the particle information illustrated in Fig-

ure 4.4(b), while Figures 4.8(e) and 4.8(f) are similar renderings of the the particles

103

shown in Figure 4.4(d).

The characteristic colour of the surface was obtained by using the bubble and

dough differentiating method described by Equation 4.7. An interesting naturally

occurring phenomenon is highlighted in Figure 4.9, where the difference between

crust and crumb can be easily observed in the areas where the crumb was torn apart

during the baking process. This happens because the bubble particle distribution

was not even throughout the dough as illustrated on Figure 4.8(f); when the dough

has an even distribution of bubble and dough particles the generated surface will

have uniform colouring as illustrated on Figure 4.8(d).

Figure 4.10 shows images of real bread rolls. Their initial shape was not com-

pletely cylindrical and thus their resulting shapes are different, however some key

features are comparable to the results obtained with the proposed framework. For

instance, Figure 4.10(a) shows a baked dinner roll with an uniform volume expan-

sion and surface browning. Figure 4.10(b) on the other hand shows the result from

baking no-knead bread which breaks at the top of the crust showing the inner crumb.

Angel food cake animation

Angel food cake is a type of sponge cake with an peculiar baking method. It requires

a special type of container that has a tube structure in its centre. This tube adds more

surface area to the dough, making it possible to heat it faster; also, it works as an

aid for the cake’s oven rise because the dough can cling to it as the oven rise takes

place. Another interesting fact about the angel food cake is that after it has been

fully baked it must be turned over, otherwise the cake deflates loosing much of its

light texture. Figure 4.11 illustrates an animation sequence showing a failed attempt

at baking this cake when it is left in its container at the end of the baking process

until it collapses.

As the animation progresses, the angel food cake is baked but the container is

not turned over during its cooling period, causing the dough to loose part of the

volume it gained during the oven rise. This animation is generated—as usual—by

104

(a) Initial dough state, front view (b) Initial dough state, side view

(c) Result from evenly distributed bubbles (d) Result from evenly distributed bubbles,
side view

(e) Result from bubbles distributed in the
centre

(f) Result from bubbles distributed in the
centre, side view

Figure 4.8: Different stages of baking a bread roll.

105

Figure 4.9: Close up highlighting crust and crumb from Figure 4.8(f).

raising the temperature of the particles, and after the cake is completely baked the

value for ρf in the pressure Equation 3.52 is increased and the elasticity variable

µe along with the relaxation time µ from Equation 3.20 are reduced to break the

bread’s structure.

Bread of the dead animation

The “bread of the dead” or Pan de muerto is a traditional Mexican bread that is

made during the Day of the Dead festivities. The name of the bread is also related

to its peculiar shape: a round mass is the bulk of the bread, and at the top, extra

dough pieces (shaped in a bone-like fashion) are placed to simulate crossed bones.

This is finished with another skull-like dough piece placed in the top centre.

In order for this shape to be held and maintained throughout baking, the dough

needs to be prepared in a way that it is smooth and elastic. Figure 4.12 illustrates

frames from an animation sequence showing the baking process for this type of

bread; it is possible to see that the raw dough holds this shape, and maintains it

even when the volume begins to increase as the baking process takes place.

106

(a) Bread roll from [33] (b) No knead bread from [80]

Figure 4.10: Images from baked bread rolls.

(a) (b)

(c) (d)

Figure 4.11: Animation sequence baking an angel food cake.

107

(a) Frame 28 (b) Frame 28

(c) Frame 148 (d) Frame 148

(e) Frame 376 (f) Frame 376

(g) Frame 1290 (h) Frame 1290

Figure 4.12: Animation sequence for baking the bread of the dead.

108

(a) Raw bread of the dead from [44].

(b) Baked bread of the dead from [1].

Figure 4.13: Bread of the dead.

To compare between the animations obtained from the framework an its real-

life counterpart Figure 4.13 shows images of real bread of the dead before and after

baking.

4.6 Summary

This chapter describes the results of applying SPH formalism to model the baking

process. These results show that the proposed framework is capable of reproducing

the baking process in a dramatic way, generating interesting animations that remain

109

physically plausible and are interesting to watch.

Furthermore, the results demonstrate that the proposed framework can create

animations for a wide array of bread types, by carefully selecting the parameters

that control the solidification and volume expansion phenomena in order to create

baked goods with different types of deformations. By manipulating the solidifi-

cation parameters the framework can simulate doughs that can hold their shapes

even when raw (like the bread of the dead), or thin batter that easily flows, (such as

the one used for pancakes). The oven rise is easily reproduced with the proposed

method for volume expansion; moreover, results achieve size increments that would

not be possible in real life.

However, with this level of flexibility comes the problem of parameter tuning;

as it currently stands, the number of parameters may be overwhelming for creating

a specific animation. Also, the solidification and volume expansion phenomena

are too tied together with each trying to achieve the opposite thing. This can lead

to overestimating a parameter that can, for example, solidify the bread too soon

while ignoring completely the contribution of volume expansion. On the contrary,

the force applied to expand the volume may be too much for the fluid to handle,

causing it to become unstable. The current method for dealing with these problems

is by trial-and-error, which is very time consuming. Further studies should be made

on how to better handle these two opposing forces, and on developing methods for

parameter estimation.

The final touch that gives the resulting animations a realistic look is the colour

transitions that take place during the baking period. The method used to colour the

surface of the mesh is a simple one, but it can handle the colouring of the dough

achieving realistic looking colour transitions as the bread bakes.

110

Chapter 5

Conclusions and Future Work

In order to simulate the baking process, the work by Mao and Yang [51] [52] [53]

was extended in a number of ways. First, the viscosity property is made to be

dependent on individual particles’ temperature, allowing for greater control over

the fluid-solid phase transition. The surface heat transfer is also modified following

the method proposed by Stora et al. [82]; after implementing this method, heat

transfer takes into account the area represented by each particle at the surface of the

fluid. Furthermore, the newly proposed method to generate the volume expansion

is developed, which takes into account the changes in volume of particles that are

treated as bubbles inside the dough. Such a change is driven by the change in

temperature.

Other improvements include a modification to the fluid-solid collision detec-

tion and response, which is changed from defining the solids with a limited set of

predefined structures to a more general approach. In particular, this new method

for detecting and responding to collisions can handle solids of any shape and size

by using particles to outline the surface of the solids. Although this is a slower

approach, the range of possible animations is much increased.

The running speed of the implementation is decreased by changing the neigh-

bour search function from using the grid-based data structure to the more efficient

kd-tree data structure. Also, the numerical stability of the simulation is improved by

adding XSPH to correct the particles’ velocities, and by adding artificial viscosity

111

to avoid particle inter-penetration.

The resulting animation sequences from the simulation of the baking process

prove to be qualitatively similar to their real world counterparts. The dough changes

from a fluid to a solid state, while it also gains volume as its temperature rises grad-

ually. Moreover, the method used to colour the surface is capable of creating a nice

browning effect that is similar to the one obtained in real baked goods. Furthermore,

the results show how the framework is capable of handling exaggerated versions of

the baking process such as generating increases in volume. Although these results

may look as a desirable product, they are next to impossible to create in the real

world.

There are different ways the proposed framework can be further improved or

extended to better simulate the baking process. For example, the running time

needed to create animations is lowered by adding support for shared-memory paral-

lel programming via the OpenMP API to the framework implementation; however,

the running time for the simulations could be shortened further still by using the

Graphics Processing Unit (GPU) to perform the computation of heavy sections of

the code. Although the implementation of such a feature is not trivial, Harris [31]

demonstrated that it is possible to achieve real-time animations with 10 times the

number of particles that were used to create the animations presented in this thesis;

Harris’ work yields animations of much higher quality at an even faster pace. This

increase in speed would be beneficial because there would be a faster turnover for

animation tests.

Another way to improve the speed of the framework implementation is to simply

change the integration method from the Euler approach to the Leap-frog scheme.

This would allow for much larger time steps in the animation that, as a result, would

decrease the running time of the implementation, and perhaps, make it more stable.

The final look of the rendered bread can be improved by using texture synthesis

techniques to render characteristics pertaining to baked goods, such as cracks in the

crust as the dough increases in volume, as well as rendering the bubbles themselves

112

as part of the crumb whenever it becomes visible. Also, more advanced techniques

could be used to generate the surface mesh; part of the problem was that the gen-

erated surface would extend well outside the volume defined by the particles, or it

would not fill the containers fully. And although a solution is proposed, there is still

much room for improvement: a possible direction of research would be to look into

the work by van der Laan et al. [85] that constructs a surface of particles that is as

smooth as possible respecting the particle positions. However, the question of how

to better handle the expansion of the volume would still need to be looked into with

more detail.

Due to the nature of SPH it would be easy to create a more realistic simulation

of the baking process by modelling the transport of water; this can be done using

the standard SPH formalism. The water content can be stored as a property of each

particle, and it could be modified as a function of temperature.

Another way for improving the simulation would be to add more sources for

the pressure buildup inside the dough by following Zhang et al.’s [91] [92] [90]

model. Pressure from the evaporating water, and the creation of CO2 could be used

to generate a more realistic simulation.

An interesting avenue of research is to look into the possibility of harnessing

a recurring problem that took place while simulating volume expansion. When

the parameters of solidification and volume expansion—for the particles tagged as

bubbles—were not set correctly, there would sometimes be explosions in the fluid

due to the quick release of high amounts of force. This, coupled with heat transfer

among particles, could result in very attractive effects for simulating explosions

coming from specific objects handling cracks in solids, and dispersion in granulous

materials.

113

Bibliography

[1] There is always thyme for... http://thereisalwaysthymefor.
blogspot.com/2008/11/blue-monday-and-weekend-recap.
html, November 2008.

[2] The OpenMP API specification for parallel programming. http://
openmp.org/, November 2010.

[3] ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D., AND
T. SILVA, C. Computing and rendering point set surfaces. IEEE Transactions
on Visualization and Computer Graphics 9, 1 (2003), 3–15.

[4] BARAFF, D. An Introduction to Physically Based Modeling: Rigid Body
Simulation IUnconstrained Rigid Body Dynamics. SIGGRAPH, 1997.

[5] BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. The quickhull
algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4 (1996), 469–483.

[6] BECKER, M., AND TESCHNER, M. Weakly compressible sph for free surface
flows. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzerland, Switzerland,
2007), Eurographics Association, pp. 209–217.

[7] BENTLEY, J. L. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

[8] BENZ, W. Smooth particle hydrodynamics - a review. In Numerical
Modelling of Nonlinear Stellar Pulsations Problems and Prospects (1990),
J.˜R.˜Buchler, Ed.

[9] BERNARDINI, F., AND BAJAJ, C. L. Sampling and reconstructing manifolds
using alpha-shapes. In In Proc. 9th Canad. Conf. Comput. Geom (1997).

[10] BLINN, J. F. A generalization of algebraic surface drawing. ACM Trans.
Graph. 1, 3 (1982), 235–256.

[11] BLOKSMA, A. H., AND NIEMAN, W. The effect of temperature on some
rheological properties of wheat flour doughs. Journal of Texture Studies 6, 3
(1975), 343–361.

[12] BRIDSON, R. Fluid Simulation. A. K. Peters, Ltd., Natick, MA, USA, 2008.

114

[13] CARLSON, M., MUCHA, P. J., VAN HORN, B. R., AND TURK, G.
Melting and flowing. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New York, NY,
USA, 2002), ACM Press, pp. 167–174.

[14] CLEARY, P. W., PYO, S. H., PRAKASH, M., AND KOO, B. K. Bubbling and
frothing liquids. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers (New
York, NY, USA, 2007), ACM Press.

[15] DA, F., AND YVINEC, M. 3d alpha shapes. http://www.cgal.org/
Manual/latest/doc_html/cgal_manual/Alpha_shapes_3/
Chapter_main.html, June 2010.

[16] DAROY, H. Les fontaines publiques de la ville de Dijon.

[17] DESBRUN, M., AND GASCUEL, M. P. Smoothed particles: a new paradigm
for animating highly deformable bodies. In Proceedings of the Eurographics
workshop on Computer animation and simulation ’96 (New York, NY, USA,
1996), Springer-Verlag New York, Inc., pp. 61–76.

[18] DESOUZAMENDES, P., DUTRA, E., SIFFERT, J., AND NACCACHE, M.
Gas displacement of viscoplastic liquids in capillary tubes. Journal of Non-
Newtonian Fluid Mechanics 145, 1 (August 2007), 30–40.

[19] EDELSBRUNNER, H. Weighted alpha shapes. Tech. rep., Department of Com-
puting Science, University of Illinois, Urbana-Champagne, IL, 1992.

[20] EDELSBRUNNER, H., KIRKPATRICK, D. G., AND SEIDEL, R. On the shape
of a set of points in the plane. Tech. rep., University of British Columbia,
Vancouver, BC, Canada, Canada, 1981.

[21] EDELSBRUNNER, H., AND MÜCKE, E. P. Three-dimensional alpha shapes.
In VVS ’92: Proceedings of the 1992 workshop on Volume visualization (New
York, NY, USA, 1992), ACM, pp. 75–82.

[22] ELLERO, M. Viscoelastic flows studied by smoothed particle dynamics. Jour-
nal of Non-Newtonian Fluid Mechanics 105, 1 (July 2002), 35–51.

[23] ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. Animation and rendering
of complex water surfaces. ACM Trans. Graph. 21, 3 (2002), 736–744.

[24] ERICSON, C. Real-Time Collision Detection (The Morgan Kaufmann Series
in Interactive 3-D Technology). Morgan Kaufmann, January 2005.

[25] FAN, J., MITCHELL, J. R., AND BLANSHARD, J. M. V. A model for the
oven rise of dough during baking. Journal of Food Engineering 41, 2 (August
1999), 69–77.

[26] FISCHER, K. Introduction to alpha shapes. http://www.inf.ethz.
ch/personal/fischerk/pubs/as.pdf.

[27] FRIEDMAN, J. H., BENTLEY, J. L., AND FINKEL, R. A. An algorithm for
finding best matches in logarithmic expected time. ACM Trans. Math. Softw.
3, 3 (1977), 209–226.

115

[28] GINGOLD, R. A., AND MONAGHAN, J. J. Smoothed particle hydrodynam-
ics: Theory and application to non-spherical stars. Monthly Notices of the
Royal Astronomical Society 181 (November 1977), 375–389.

[29] GOKTEKIN, T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. A method for
animating viscoelastic fluids. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers (New York, NY, USA, 2004), ACM, pp. 463–468.

[30] GUENNEBAUD, G., AND GROSS, M. Algebraic point set surfaces. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007),
ACM, p. 23.

[31] HARRIS, M. Fast fluid dynamics simulation on the gpu. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Courses (New York, NY, USA, 2005), ACM Press.

[32] HUBER, P. J., AND RONCHETTI, E. M. Robust Statistics (Wiley Series in
Probability and Statistics), 2 ed. Wiley, February 2009.

[33] JONES, M. Easy greens. http://tinyurl.com/ygq7mar, February
2010.

[34] KARABASSI, E.-A., PAPAIOANNOU, G., THEOHARIS, T., AND BOEHM,
A. Intersection test for collision detection in particle systems. journal of
graphics, gpu, and game tools 4, 1 (1999), 25–37.

[35] KAZHDAN, M., BOLITHO, M., AND HOPPE, H. Poisson surface reconstruc-
tion. In SGP ’06: Proceedings of the fourth Eurographics symposium on
Geometry processing (Aire-la-Ville, Switzerland, Switzerland, 2006), Euro-
graphics Association, pp. 61–70.

[36] KEISER, R., ADAMS, B., GASSER, D., BAZZI, P., DUTRE, P., AND GROSS,
M. A unified lagrangian approach to solid-fluid animation. pp. 125–148.

[37] KOLIAS, F. Angel food cake - time lapse. http://vimeo.com/
2764927, January 2009.

[38] KOLLURI, R. Provably good moving least squares. ACM Trans. Algorithms
4, 2 (2008), 1–25.

[39] LARKIN, W. K. Applied neuroscience institute. http://www.
appliedneuroscienceinstitute.com/index.php/blog/
2010/05/, May 2010.

[40] LATTANZIO, J. C., MONAGHAN, J. J., PONGRACIC, H., AND SCHWARZ,
M. P. Controlling penetration. SIAM Journal on Scientific and Statistical
Computing 7, 2 (1986), 591–598.

[41] LEFFLER, R. Lafleur de paris: the daily musings of an ameri-
can in paris. http://lafleurdeparis.blogspot.com/2009/
11/peanut-butter-and-jell-brie-children.html, Novem-
ber 2009.

[42] LENAERTS, T., ADAMS, B., AND DUTRÉ, P. Porous flow in particle-based
fluid simulations. ACM Trans. Graph. 27 (August 2008), 49:1–49:8.

116

[43] LEVIN, D. Mesh-independent surface interpolation. Geometric Modeling for
Scientific Visualization (2003), 37–49.

[44] LIMON, L. La cocina de leslie. http://www.lacocinadeleslie.
com/2009/11/pan-de-muerto.html, November 2009.

[45] LIU, G. R., AND LIU, M. B. Smoothed particle hydrodynamics: a meshfree
particle method. World Scientific Publishing, 2003.

[46] LIU, H., AND SHI, P. Meshfree particle method. pp. 289–296 vol.1.

[47] LOOP, C. Smooth subdivision surfaces based on triangles. Department of
mathematics, University of Utah, Utah, USA, Aug 1987.

[48] LORENSEN, W. E., AND CLINE, H. E. Marching cubes: A high resolution 3d
surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1987), ACM, pp. 163–169.

[49] LOSTIE, M., PECZALSKI, R., AND ANDRIEU, J. Lumped model for sponge
cake baking during the “crust and crumb” period. Journal of Food Engineering
65, 2 (November 2004), 281–286.

[50] LUCY, L. B. A numerical approach to the testing of the fission hypothesis.
Astronomical Journal 82 (December 1977), 1013–1024.

[51] MAO, H. Physical-Based Non-Newtonian Fluid Animation Using SPH. PhD
thesis, University of Alberta, 2006.

[52] MAO, H., AND YANG, Y.-H. Particle-based non-newtonian fluid animation
with heating effects. Tech. rep., Department of Computing Science, University
of Alberta, 2005.

[53] MAO, H., AND YANG, Y.-H. Particle-based immiscible fluid-fluid colli-
sion. In GI ’06: Proceedings of the 2006 conference on Graphics interface
(Toronto, Ont., Canada, Canada, 2006), Canadian Information Processing So-
ciety, pp. 49–55.

[54] MARCOTTE, M., AND CHEN, C. A computer simulation program for cake
baking in a continuous industrial oven. In 2004 ASAE Annual Meeting (2004),
ASAE.

[55] MCGEE, H. On Food and Cooking: The Science and Lore of the Kitchen.
Scribner, November 1984.

[56] MÖLLER, T., AND TRUMBORE, B. Fast, minimum storage ray/triangle inter-
section. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (New York, NY,
USA, 2005), ACM, p. 7.

[57] MONAGHAN, J. On the problem of penetration in particle methods. Journal
of Computational Physics 82, 1 (May 1989), 1–15.

[58] MONAGHAN, J., AND GINGOLD, R. Shock simulation by the particle method
sph. Journal of Computational Physics 52, 2 (November 1983), 374–389.

117

[59] MONAGHAN, J., AND J., P. Artificial viscosity for particle methods. Applied
Numerical Mathematics 1, 3 (May 1985), 187–194.

[60] MONAGHAN, J. J. Smoothed particle hydrodynamics. Annual Review of
Astronomy and Astrophysics 30, 1 (September 1992), 543–574.

[61] MONAGHAN, J. J. Simulating free surface flows with sph. J. Comput. Phys.
110, 2 (1994), 399–406.

[62] MONAGHAN, J. J. Smoothed particle hydrodynamics. Reports on Progress
in Physics 68, 8 (August 2005), 1703–1759.

[63] MOORE, W. J. Physical Chemistry, 4 ed. Prentice Hall College Div, 1972.

[64] MÜLLER, M., CHARYPAR, D., AND GROSS, M. Particle-based fluid simu-
lation for interactive applications. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation (Aire-la-Ville,
Switzerland, Switzerland, 2003), Eurographics Association, pp. 154–159.

[65] MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS, M., AND
ALEXA, M. Point based animation of elastic, plastic and melting objects. In
SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (Aire-la-Ville, Switzerland, Switzerland, 2004),
Eurographics Association, pp. 141–151.

[66] MÜLLER, M., SOLENTHALER, B., KEISER, R., AND GROSS, M. Particle-
based fluid-fluid interaction. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New York, NY,
USA, 2005), ACM, pp. 237–244.

[67] NAVIER, C. L. M. H. Memoire sur les lois du mouvement des fluides. Mem.
Acad. Sci. Inst. France 6 (1822), 389–440.

[68] OWENS, R. G., AND PHILLIPS, T. N. Computational Rheology. World
Scientific Publishing Company, July 2002.

[69] OZTIRELI, A. C., GUENNEBAUD, G., AND GROSS, M. Feature preserving
point set surfaces based on non-linear kernel regression. Computer Graphics
Forum 28, 2 (April 2009), 493–501.

[70] PAIVA, A., PETRONETTO, F., LEWINER, T., AND TAVARES, G. Particle-
based non-newtonian fluid animation for melting objects. Computer Graphics
and Image Processing, 2006. SIBGRAPI ’06. 19th Brazilian Symposium on
(2006), 78–85.

[71] PAN, B., AND CASTELL-PEREZ. Textural and viscoelastic changes of canned
biscuit dough during microwave and conventional baking. Journal of Food
Process Engineering 20, 5 (1997), 383–399.

[72] PREMOŽE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND WHITAKER,
R. T. Particle-based simulation of fluids. Computer Graphics Forum 22, 3
(2003), 401–410.

118

[73] RAMESH, N. S., RASMUSSEN, D. H., AND CAMPBELL, G. A. Numerical
and experimental studies of bubble growth during the microcellular foaming
process. Polymer Engineering & Science 31, 23 (1991), 1657–1664.

[74] ROY, T. Physically-based fluid modeling using smoothed particle hydrody-
namics. Master’s thesis, University of Illinois at Chicago, Chicago, Illinois,
1995.

[75] SANDLER, S. I. Chemical and Engineering Thermodynamics, 3 ed. Wiley,
August 1998.

[76] SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. Interpolating and ap-
proximating implicit surfaces from polygon soup. ACM Trans. Graph. 23, 3
(2004), 896–904.

[77] SHEPARD, D. A two-dimensional interpolation function for irregularly-
spaced data. In ACM ’68: Proceedings of the 1968 23rd ACM national con-
ference (New York, NY, USA, 1968), ACM, pp. 517–524.

[78] SIGALOTTI, L., DAZA, J., AND DONOSO, A. Modelling free surface flows
with smoothed particle hydrodynamics. Condensed Matter Physics 9, 2(46)
(2006), 359–366.

[79] SOLENTHALER, B., SCHLÄFLI, J., AND PAJAROLA, R. A unified particle
model for fluid-solid interactions. Computer Animation and Virtual Worlds
18, 1 (February 2007), 69–82.

[80] SOMA. ecurry. http://www.ecurry.com/blog/breads/
no-knead-bread/, April 2009.

[81] STEFFE, J. Rheological methods in food process engineering. Freeman Press,
1996.

[82] STORA, D., AGLIATTI, P. O., CANI, M. P., NEYERET, F., AND GASCUEL,
J. D. Animating lava flows. Proceedings of Graphics Interface 2, 4 (1999),
203–210.

[83] TAKEDA, H., FARSIU, S., AND MILANFAR, P. Kernel regression for image
processing and reconstruction. IEEE Transactions on Image Processing 16
(2007), 349–366.

[84] THÜREY, N., SADLO, F., SCHIRM, S., FISCHER, M. M., AND GROSS, M.
Real-time simulations of bubbles and foam within a shallow water framework.
In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (Aire-la-Ville, Switzerland, Switzerland, 2007),
Eurographics Association, pp. 191–198.

[85] VAN DER LAAN, W. J., GREEN, S., AND SAINZ, M. Screen space fluid
rendering with curvature flow. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games (New York, NY, USA, 2009), I3D ’09,
ACM, pp. 91–98.

119

[86] VONNEUMANN, J., AND RICHTMYER, R. D. A Method for the Numerical
Calculation of Hydrodynamic Shocks. Journal of Applied Physics 21 (Mar.
1950), 232–237.

[87] WANG, X., AND SHAO, M. Principles and numerical methods in finite ele-
ment method, second ed. Tsinghua University Press, Beijing, China, 1999.

[88] WYVILL, G., MCPHEETERS, C., AND WYVILL, B. Data structure for soft
objects. The Visual Computer 2, 4 (August 1986), 227–234.

[89] ZANONI, B., PERI, C., AND BRUNO, D. Modelling of browning kinetics of
bread crust during baking. Lebensmittel-Wissenschaft und-Technologie 28, 6
(1995), 604–609.

[90] ZHANG, J. Multiphase heat and mass transfer with large deformation in
porous media. PhD thesis, Cornell University, January 2003.

[91] ZHANG, J., AND DATTA, A. Mathematical modeling of bread baking process.
Journal of Food Engineering 75, 1 (July 2006), 78–89.

[92] ZHANG, J., DATTA, A. K., AND MUKHERJEE, S. Transport processes and
large deformation during baking of bread. AIChE Journal 51, 9 (2005), 2569–
2580.

120

Appendix A

Animation information

Name Reference Particle count Simulation time Animation time System
Velocity tuner
test 1

Figure 3.10(a) 28,072 6h 30m 14s A

Velocity tuner
test 2

Figure 3.10(b) 28,072 4h 10m 14s A

Velocity tuner
test 3

Figure 3.10(c) 28,072 4h 05m 14s A

Velocity tuner
test 4

Figure 3.10(d) 28,072 4h 22m 14s A

Elasticity test 1 Figures 3.13(a),
3.13(b), and
3.13(c),

8,982 1h 48m 30s B

Elasticity test 2 Figures 3.13(d),
3.13(e), and
3.13(f)

8,982 1h 46m 30s B

Elasticity test 3 Figures 3.13(g),
3.13(h), and
3.13(i)

8,982 1h 49m 30s B

Elasticity test 4 Figures 3.13(j),
3.13(k), and
3.13(l)

8,982 1h 51m 30s B

Melting bunny Figure 3.14 14,872 16h 52m 2m B
Viscosity test 1 Figure 3.15(a) 5,017 28m 15s B
Viscosity test 2 Figure 3.15(b) 5,017 28m 15s B
Volcano Figure 3.17 20,856 9h 33m 59s B
Fluid container Figure 4.5 19,958 5h 25m 33s B

Table A.1: Test animations

System specifications:

System A 2x Dual-Core AMD Opteron @ 2.21 GHz (4 cores in total), 4GB RAM

System B 2x Intel Core i7 CPU 920 @ 2.67GHz (8 cores in total), 6GB RAM

121

Name Reference Dough
particle
count

Bubble
particle
count

Total par-
ticle count

Simulation
time

Animation
time

System

Bread roll:
Uniform
bubble
distribution

Figures 4.8(c)
and 4.8(d)

11,586 8,224 19,810 3h 56m 39s B

Bread roll:
Centred
bubble
distribution

Figures 4.8(e)
and 4.8(f)

11,953 7,857 19,810 3h 47m 39s B

Angel food
cake

Figure 4.11 12,370 8,575 20,945 4h 39m 32s B

Bread of
the dead

Figure 4.12 12,880 8,890 21,770 5h 59m 48s B

Table A.2: Baking animations

122

