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Abstract 

Life cycle assessment (LCA) is becoming a popular tool to quantify environmental impacts 

including greenhouse gas (GHG) emissions. Because of the high number of assumptions and low 

quality of available data, the results of LCA are often viewed with skepticism. It is common for 

studies to provide deterministic point estimates and a limited sensitivity analysis and not account 

for uncertainty in the data and assumptions used, which can also lead to a lack of confidence in 

the results. In order to further increase the usefulness of LCA results for decision makers, a 

robust methodological framework that can be used to accurately quantify uncertainties and 

communicate results is needed. Furthermore, obtaining accurate data of certain industrial 

activities requires complex engineering models that have long computing times, are difficult for 

non-experts to use, and may contain confidential data. Proxy modeling is investigated here to 

create an accurate, easy-to-use, black-box model that can be easily shared. 

A survey of the existing literature was performed to examine how practitioners are currently 

implementing sensitivity and uncertainty. The survey found sensitivity and uncertainty analyses 

were inconsistent and basic, and the methods/assumptions lacked proper justification. Multiple 

sensitivity and uncertainty methods were investigated, leading to the development of the 

Regression, Uncertainty, and Sensitivity Tool (RUST) and framework. The Morris and Sobol 

global sensitivity methods used in RUST were examined to determine whether they can 

accurately identify the key inputs that have the largest effect on overall output variance. RUST 

was validated using the previously published FUNdamental ENgineering PrinciplEs-based 

ModeL for Estimation of GreenHouse Gases in Conventional Crude Oils and Oil Sands 
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(FUNNEL-GHG-CCO/OS) and FUNNEL-GHG-Natural Gas Transmission Lines (NGTL) as 

case studies. After reviewing multiple proxy modeling methods, quadratic and artificial neural 

network (ANN) regression proxy models were investigated to create an accurate, easy-to-use 

black-box model that can be easily shared. Generating target values needed for training from the 

engineering software can be time consuming; hence, adaptive sampling methods were examined 

(random, spread, high error, and 50/50 random/high error).  

It was found that while both the Morris and Sobol methods can identify the key parameters, the 

Morris method requires fewer than 1/100th as many model evaluations as Sobol. RUST and the 

corresponding framework can be used to improve the quality of the LCA and reduce the time 

required by the practitioner. Quadratic proxy modeling works well for models that exhibit nearly 

linear behavior, but the ANN proxy models are superior for iterative non-linear models.  

The results found that ANN proxy models are more accurate than quadratic regression, and the 

high error sampling method reduced the maximum error but increased the average error. Because 

of uncertainty in LCA input values, reducing average error is less valuable than reducing 

extreme errors. The regression model can be easily published, it does not require a large effort to 

make a user-friendly version of the model, and it conceals confidential data if necessary. The 

simplified model makes it easy for policy makers to investigate how changes in critical 

parameters affect LCA results without having to learn how to use the full complex model.  
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1 Introduction 

1.1 Background and Motivation 

Life cycle assessment (LCA) is a popular tool used to quantify environmental impacts including 

greenhouse gas (GHG) emissions.6 LCA publications in the fields of energy, engineering, and 

environmental science have grown from fewer than 20 per year in 1990 to more than 2,700 in 

2020 (Scopus search). Several jurisdictions have used LCA to develop GHG emission reduction 

policies; the Canadian Clean Fuel Standard (CFS),7 the California Low Carbon Fuel Standard 

(LCFS),8 and the European Union Renewable Energy Directive9, 10 are a few examples. Though 

LCA is the most widely used environmental assessment tool, there is concern over the robustness 

of LCA results. This research focuses on theory-driven, process-based LCA of complex systems. 

In theory-driven LCA, inventory values are often generated using rigorous fundamental 

engineering-based models and calculations, which include complex interactions between the 

various model inputs. These complex interactions make it difficult for practitioners to understand 

the effect of each input value and assumption on the final output. Because of the large number of 

assumptions and low quality of available data, the results of LCA are often viewed with 

skepticism.11 For example, LCAs of transportation fuels from various crude oils have been 

conducted by several groups (Jacobs,12 TIAX,13 Oil Climate Index14) and produced a wide range 

of results. The differences in results make conclusions about which crudes have lower emissions 

unreliable. All the LCAs provided deterministic point estimates and a limited sensitivity analysis 

but did not account for uncertainty in the data and assumptions used, which can lead to a lack of 

confidence in the results.15 In order to further increase the usefulness of LCA results for decision 

makers, a robust methodological framework that can be used to accurately quantify 

uncertainties and communicate results is needed. Moreover, LCA models of complex energy 

systems (such as oil refineries) need to be made more accessible to non-experts by simplifying 

them while maintaining adequate accuracy. This thesis, therefore, aims to provide a novel 

contribution to the scientific community by addressing those two broad challenges.  

While ISO 14040/44 recommend performing sensitivity and uncertainty analysis (SUA) for 

LCA, they provide no guidance or formal requirements.16, 17 Currently, there is no standard 

framework or guideline for performing SUA. The quality of SUAs observed in our survey 
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(discussed further in Chapter 2) is inconsistent, and the SUAs generally have a narrow scope. 

Igos et al. examined how to treat uncertainty in LCA and discussed types of uncertainty along 

with the advantages and disadvantages of the various methods and how to communicate 

uncertainty results.18 That research built on the work of Heijungs and Huijbregts,19 Lloyd and 

Ries,20 Uusitalo,21 and Refsgaard et al.22 Igos et al. suggest using global sensitivity methods such 

as Morris and Sobol, rather than the local one-at-a-time (OAT) method, which is currently used; 

the local methods fail to account for interaction and non-linear effects. These review papers are 

excellent sources of information for practitioners looking to implement SUA into their LCAs 

because they provide a blueprint of how SUA should be done. 

Ross et al. reviewed 30 LCA studies published between 1997 and 2002, in particular examining 

how published LCAs currently handle SUAs.23 The review provides a deep examination of 

issues facing LCA practitioners attempting to implement SUA. Similar review studies (i.e., by 

Tu et al.,24 Byrne et al.,25 Ferretti et al.,26 Lloyd and Ries,20 and Budzinski27) also discuss the 

implementation of SUA in LCA. The results of these reviews highlight that a structured, 

methodical framework for performing and linking sensitivity and uncertainty analysis is 

required. Moreover, an up-to-date, deep review of how LCA practitioners address sensitivity and 

uncertainty is needed in order to identify areas for improvement.  

Conducting LCA can be expensive and time consuming,11 especially when dealing with a 

complex product system. One possible solution is proxy modeling. Proxy 

modeling/metamodeling regression techniques include linear, polynomial, multivariate adaptive 

splines, kriging, radial bias function, support vector machine, and artificial neural network 

(ANN).28 Agricultural LCA has used ANN models rather than analytical models to estimate crop 

yields based on field data for rice29, 30 and wheat.31, 32 Field-collected data has also been used to 

estimate energy and emission intensities.30, 33 When we perform a comparative LCA, we need 

accurate results in order to confidently state that one pathway is better than another. Obtaining 

accurate results for a complex process can be difficult, especially when good quality data is 

unavailable. For example, an LCA of transportation fuels from various crudes requires an 

accurate refinery model to compare the GHG intensity of the crudes. The current procedure is to 

use a simplified or a rigorous model. A simplified model is easier to use by non-experts but 

provides less accurate results. Rigorous models are more accurate but can require specialty 
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software, contain confidential data, and require expert knowledge to use. In the building design 

industry, for instance, ANN proxy models are used to overcome the high computational times of 

rigorous models in order to optimize LCA emissions and costs and produce a simplified model 

that can be used by non-experts.34-36 In order to reduce modeling error while keeping models 

simple and easy to use, proxy modeling could be used in the energy industry. Additionally, 

rigorous models can have long computing times, making it difficult to perform alternative 

scenario analysis and more rigorous uncertainty analysis methods. Therefore, computationally 

efficient proxy models can be used instead, allowing policy makers to quickly examine 

alternative scenarios. 

Proxy modeling, also known as metamodeling, comes in various forms depending on the 

complexity of the true model.28 Training a proxy model requires generating a training data set. 

This can be done through a classical design of experiments (DOE), space-filling methods, 

importance sampling, and sequential/adaptive sampling.28 Current research on adaptive sampling 

is focused on kriging models;37 however, kriging models are complex and not as accurate and 

flexible as ANNs.38 For rigorous models with moderate to long computing times, it is ideal to 

minimize the number of samples required for the training set through adaptive sampling. 

However, few high-dimensional proxy models that require large samples sizes have been 

developed.28 A proxy-modeling framework is needed to represent complex, high-dimensional, 

and moderate computing time models.  

A detailed literature review is provided in Chapter 2. Based on this literature review, the Chapter 

on research gaps was developed. 

 

1.2 Research Gaps 

In order to increase the robustness of LCA results so that they better support decision-making, 

methods of quantifying SUA need to be improved. Furthermore, complex LCA models need to 

be made more accessible to non-experts by simplifying them while still maintaining accuracy. In 

this context, the thesis attempts to address several gaps. 
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• Current LCA publications lack consistency in their sensitivity and uncertainty analyses as 

there is no accepted framework. While there are a number of reviews on sensitivity and 

uncertainty analyses, the reviews mainly provide a blueprint on how SUA should be 

done. They fail to examine how SUA is actually being implemented in current LCA 

practice.18-21 However, these reviews are excellent sources of information for 

practitioners planning to implement SUA. A few reviews examine the frequency and 

quality of SUA in LCA studies. Reviews on the limitations of SUA are necessary to 

identify shortcomings in the current studies and to produce a practical guide of mistakes 

to avoid. These reviews aim to provide a deeper examination of issues facing LCA 

practitioners attempting to implement SUA in their work. LCA reviews on the 

implementation of SUA are outdated23 or have a narrow focus.24-26 An updated survey is 

needed to identify the current quality and limitations of sensitivity and uncertainty 

analysis in published LCA studies. Once the shortcomings in the current work are 

identified, recommendations for improvements can be made. 

• The common LCA and Excel add-in software support Monte Carlo simulation only.39-42 

Including sensitivity methods such as Morris or hybrid methods such as CART could 

allow the underlying data to be further explored. While these methods are available in 

programs such as MATLAB and R, they require programming knowledge to use. To 

encourage the use of alternative sensitivity and uncertainty methods, an open source, 

easy-to-use tool is needed.  

• Adapting LCA results for specific case studies is time consuming and expensive, 

especially for policy and decision makers who lack a strong background in LCA.11 

Published models for complex energy systems that can be used to generate LCA 

inventory data are either rigorous models that provide a high level of accuracy but are 

difficult to use by non-experts and may contain confidential data or require specialty 

software; or simplified models that are easy to use but are less accurate.  

o While proxy models can be used to provide a simple, easy-to-use model, current 

proxy modeling approaches are limited to a small number of inputs or require 

large sample sizes.  
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• A standardized method to communicate uncertainty is needed. Understanding the 

uncertainty and limitations of LCA models is difficult given the limited information 

provided in current LCA studies.  

 

1.3 Objectives 

The goal of this research is to create a framework aimed at further improving the quality of LCA 

results so they can be used as reliable information to support decision-making in environmental 

protection and GHG emission reductions strategies in the energy sector. This goal will be 

achieved through the following sub-objectives: 

1) The development of a framework for improving the quality of LCA sensitivity and 

uncertainty analysis using a methodical, structured approach to improve end-user confidence 

in the model results by: 

a) Identifying the quality of sensitivity and uncertainty analyses in recently published LCAs 

by carrying out a detailed literature survey and identifying areas for improvement; 

b) Determining the ability of the Morris screening method to quickly and effectively 

identify key inputs and perform a case study; 

c) Developing an open-source tool to make performing sensitivity and uncertainty analysis 

easier for non-technical users to encourage broader use of sensitivity and uncertainty 

analysis; 

d) Developing a framework for effectively communicating sensitivity, uncertainty, and the 

limitations of an LCA’s results.  

2) The development of natural gas framework to improve the accessibility of LCA results for 

use by non-experts while maintaining a high level of accuracy using proxy models. This 

involves: 

a) Conducting a literature review and examining the different types of proxy models 

available; 

b) Developing a framework and demonstrating how linear regression can be used to create 

proxy models for simpler processes and performing a case study using the FUNdamental 

Engineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in 



6 | P a g e  

 

Conventional Crude Oils and Oil Sands (FUNNEL-GHG-CCO&OS) model and the 

Natural Gas Transmission Pipeline (FUNNEL-GHG-NGTL) model; 

c) The development of a framework and demonstrating how artificial neural networks 

(ANNs) can be used to create proxy models for complex processes; 

d) The identification of optimal sampling strategies to reduce the number of training 

samples needed. 

1.4 Scope, Challenges, and Limitations 

There are many types of LCA, as summarized in Figure 1-1. The sensitivity, uncertainty, and 

proxy modeling methods can be applied to all types of LCA but this work specifically focused on 

process-based, theory-driven carbon footprinting LCA as this is what is currently being used in 

the energy industry. A brief background on the implications of this restriction is provided. 

LCA methods include process-based, economic input-output-based, and hybrid-based methods. 

The economic input-output (EIO) method uses aggregated industrial sector transaction data to 

estimate emission changes due to industrial growth and large-scale industrial transitions.43 

Because of EIO’s aggregated nature, it typically has a wide scope, as it captures all the major 

economic sectors. Process-based methods determine input and output mass and energy balances 

for each step along a product’s life to determine its impact.43 Because of process LCA’s detailed 

nature, it can be used to compare alternative technology pathways44 and examine future 

technologies as required by the CFS.45 However, the level of detail required can make scope and 

boundary identification difficult and create cut-off errors, resulting in the underestimation of the 

true emission intensity.46  

Life cycle inventory analysis (LCIA) involves quantifying the input and output material and 

energy flows for each process along a product’s life. In a data-driven model, extensive data from 

industry and various databases are used to determine inventory values for each process. Data 

available to the LCA practitioner is typically aggregated, reducing the resolution and accuracy of 

the LCA model.47 Additionally, data may not be available for the specific process desired, so 

data from a similar process may need to be used, introducing additional sources of error.21, 46, 48, 

49 A theory-driven approach uses engineering fundamentals, computer simulations, and 

analytical calculations to determine mass and energy flows. For example, a rigorous Aspen 
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HYSYS model could be used to model a refinery using chemical kinetics and thermodynamics to 

determine the product yields, hydrogen consumption, and energy required.50 A theory-driven 

approach often requires less data from industry and can be used to model and compare 

alternative pathways, as required by the CFS, which would not be possible using aggregated 

data. However, a theory-driven approach also includes additional sources of uncertainty 

associated with the modeling process’ used and assumed operating conditions.51 Theory-driven 

LCA can also contain complex models that can benefit from proxy modeling. Typically, LCIA 

uses a combination of theory- and data-driven methods for different processes or data levels 

(foreground vs background) based on the information available. The purpose of an LCA varies; 

two common LCAs are hotspot identification and comparative LCA. Hotspot identification is 

used to identify which stage of the LCA is responsible for most of the emissions and is used to 

guide reduction efforts. Comparative LCA is used to compare the impacts of alternative 

products/pathways. Hotspot identification LCA requires less accuracy and can still be useful if 

aggregated data is used. However, comparative LCA requires a deeper examination of alternative 

pathways and a higher accuracy to make confident conclusions about which pathway and is 

therefore the focus of this study.15, 52 

LCA impact assessments can focus on a single impact factor or a combination of impact factors. 

These impact factors can then be grouped as mid-point categories (human toxicity, respiratory 

effects) and end-point categories (human health). Various methods exist for quantifying mid-

point and end-point impact categories such as CML, Eco-indicator 99, Eco-Scarcity, and 

ReCiPe.53  Alternatively, LCA can be performed with a narrower scope, focusing on a single or a 

subset of impact categories. For example, the Clean Fuel Standard,54 GREET,55 and FUNNEL44 

focus only on greenhouse gas (GHG) emissions (also known as carbon footprinting). Agrawal et 

al. performed a GHG and water footprinting LCA of the electricity sector.56 Single impact 

carbon footprinting LCAs are used to reduce computational resources needed for data collection, 

LCA interpretation, and proxy modelling. 
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Figure 1-1: Overview of LCA types included (black) and excluded (red) in the study 

The end goal of the proxy modeling effort is to create a simple-to-use upgrader and refinery 

model. However, as the Aspen upgrader and refinery models are still under development, the 

proxy modeling framework will be developed using a natural gas transmission pipeline model 

(NGTL). The NGTL model is like the upgrader model in that it has many inputs and uses an 

iterative non-linear solver; however, the NGTL model has a shorter calculation time and is easier 

to link to MATLAB, allowing for easier testing of alternative methods.  

 

1.5  Organization of the Report 

A visual of the report organization is provided below in Figure 1-2. The current chapter (i.e.,  

Chapter 1) provides background on the research and lists the objectives. Chapter 2 is a review of 

sensitivity and uncertainty implementation. Implementation reviews survey published LCA 

studies, examine how LCA practitioners perform SUA, and ask questions like: what methods 

were used, what is the quality of the analysis, etc. Chapter 3 describes the development of the 

Regression, Uncertainty, and Sensitivity Tool (RUST). The aim of RUST is to encourage wider 

use of various sensitivity and uncertainty methods in LCA. The chapter includes a case study 

illustrating how RUST can be used on both linear and non-linear models. Chapters 4 and 5 

discuss the practicality of using proxy modeling to produce an easy-to-use, computationally 

efficient, and sufficiently accurate alternative model. Chapter 4 describes simpler linear 

regression models including interaction, squared, and cubed terms. A case study examining the 
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accuracy of proxy models for linear and non-linear models is included. Chapter 5 describes the 

use of artificial neural networks (ANNs) to develop proxy models for complex processes. Since 

generating training data is time consuming, sampling strategies are explored in depth. A case 

study using a natural gas transmission line is used to evaluate the various ANNs and sampling 

strategies. Chapter 6 provides an overview of future work.  

 

 
Figure 1-2: Report organization 
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2 A Survey of How Practitioners Implement Sensitivity and 

Uncertainty Analysis in Life Cycle Assessments of Energy 

Systems* 

2.1 Introduction 

Life cycle assessment (LCA) uses either a bottom-up or top-down approach. A bottom-up 

approach is a process-based LCA that uses process-specific data based on engineering 

fundamental principles or operation data to calculate energy and mass balances for each major 

process unit. Aggregated generic databases can also be used for background systems. Top-down 

LCA uses aggregated economic data to estimate emissions of a particular product system but 

lacks the depth required to assess the effects of process changes and identify areas for 

improvement. Uncertainty can manifest in different forms such as parameter, normative, or 

model uncertainty. Parameter uncertainty can result from measurement or data uncertainty. Top-

down studies are more likely to suffer from aggregation error, while bottom-up studies suffer 

uncertainty in parameter values. Normative uncertainty is due to subjective decisions made by 

the practitioner such as what time horizon to use. Simplification and approximation result in 

modeling error.19 Typically, it is not possible to validate process-based LCA models because of 

the severe lack of data or because they are modeling technology that has not been implemented 

yet. Differences in results across numerous studies and unclear or unsupported assumptions lead 

to a lack of confidence in LCA results. Therefore, uncertainty needs to be quantified. 

While a common output of an uncertainty analysis is a range of values, it should not be the sole 

purpose of the analysis. By performing SUA, practitioners are forced to examine the limitations 

in their data, model structure, and understanding of the problem, and this can lead them to adjust 

their course of action and make a higher quality assessment. Furthermore, performing sensitivity 

 

*This chapter is based on Di Lullo, Gemechu, Oni and Kumar, "Investigation and discussion of how practitioners 

currently implement sensitivity and uncertainty analysis in estimation of GHG in life cycle assessments of energy 

systems and improvements needed". Submitted to Int. J. Life Cycle Assess. Oct 25, 2021.  
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analysis on preliminary versions of a model (and identifying insignificant processes, for 

instance) can reduce the time spent on data collection and model development. 

In this study, we discuss two types of reviews, method and implementation reviews. Method 

reviews examine the various methods available to perform sensitivity or uncertainty analysis and 

summarize the methods’ fundamental principles, strengths, and weaknesses along with a high-

level discussion of the limitations in performing SUA in LCA. Implementation reviews survey 

published LCAs and examine how SUA is performed by LCA practitioners, asking what 

methods the practitioners use, what the quality of the analysis is, etc. In summary, method 

reviews look at how practitioners can perform SUA, while implementation reviews look at how 

practitioners implement SUA. 

The most current method review, by Igos et al., examines how to treat uncertainty in LCA and 

discusses types of uncertainty, advantages and disadvantages of the various methods, and how to 

communicate uncertainty.18 Igos et al. built on the work of Heijungs and Huijbregts,19 Lloyd and 

Ries,20 Uusitalo,21 and Refsgaard et al.22 While these method reviews are excellent sources of 

information for practitioners who are looking to implement SUA into their LCAs, they only 

provide a blueprint of how SUA should be done without examining how SUA is actually being 

done. An implementation review is necessary to identify shortcomings in the current studies and 

to produce a practical guide of mistakes to avoid. An implementation review aims to provide a 

deeper examination of issues facing LCA practitioners attempting to implement SUA in their 

work. Ross wrote an implementation review that assessed 30 LCA studies published between 

1997 and 2002 to determine how SUA was being handled.23 We found additional 

implementation reviews/data, but they had a narrow focus and provided a limited analysis. Tu et 

al. examined 54 algae biofuel papers published between 2009 and 2016 and examined only 

whether they included a quantitative sensitivity or an uncertainty analysis; the authors did not 

analyze the methods used.24 Byrne et al. examined 256 LCAs of urban water systems published 

between 1998 and May 2017 and performed a word search for sensitivity to estimate how many 

included sensitivity analysis.25 Ferretti et al. performed a broad assessment of 66 papers 

published between 2005 and 2014 that included the term “sensitivity analysis” to examine trends 

in sensitivity analysis but did not examine uncertainty.26 Lloyd and Ries examined 24 LCA 
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studies published between 1996 and 2004 that included uncertainty.20 Budzinski examined 17 

LCA studies published between 2008 and 2011 that included Monte Carlo simulations.27  

Computer software and hardware have improved significantly over the last decade, allowing us 

to improve upon the previous implementation reviews both by looking at research from 2017 and 

by providing a broader and deeper analysis than the previous implementation reviews. 

Furthermore, unlike the more current method reviews that examined what methods are available, 

this study performs an implementation review and takes a deeper look to examine the quality of 

analysis currently being published with the aim of answering the following questions: 

• How frequently do LCAs include SUA? 

o Are ISO standards referenced?  

o Is the rate of implementation improving? 

• When included, is the SUA rigorous or simplistic? 

o How many inputs/assumptions are examined? 

o What types of uncertainty are examined? 

o How are results communicated? 

o Are non-linear or interaction effects examined? 

o Are correlation and dependency discussed or included? 

• What methods of SAU are most common and why? 

o What software is available? 

• What issues/limitations are observed? 

• How can the current works be improved? 

As a result of this work, for Excel-based LCA models, I have recently created an open source 

template that uses R to generate the samples and process the results and Excel macros to generate 

the output file and link the Excel and R codes.2 The template is called the Regression, 

Uncertainty, and Sensitivity Tool (RUST) and has been used in studies that have resulted in 

seven journal articles in the last three years. 57-64 

This chapter begins with high-level background information. To keep the chapter concise and 

avoid repeating information from the earlier method reviews, background data is provided as 
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needed to facilitate discussion (in Chapter 2.2). References for supplementary background 

information are provided as needed throughout the paper for interested readers. The screening 

method used to identify papers for the survey and the evaluation methods used are discussed in 

Chapter 2.3. In Chapter 2.4, the results of the survey, followed by the limitations observed in the 

current work, are discussed. Finally, Chapter 2.5 discusses recommendations for improving the 

quality of sensitivity and uncertainty in LCA. Appendix A includes a full list of the studies 

examined in this paper as well as a summary of the methods used in each paper.  

2.2 Background 

High-level background on terminology and types of SUA are provided here. More detailed 

background information is provided throughout the paper as needed. For a review of sensitivity 

and uncertainty methods available, the review by Igos et al. is well cited in the literature and is a 

good  start for the current analysis.18 

2.2.1 Terminology clarification 

We discuss three analysis methods for understanding the results of LCA models: contribution to 

variance, sensitivity, and uncertainty. Due to the overlap in methods to determine sensitivity and 

uncertainty, the two are often used interchangeably and this can lead to a great deal of confusion. 

The primary difference between them is the end goal. The goal of a sensitivity analysis is to 

identify which model inputs are important and to determine how a change in the input value will 

affect the output. The goal of an uncertainty analysis is to determine an output 

probability/possibility distribution, given ranges for each input value.65, 66 The primary difference 

between sensitivity and uncertainty is that a sensitivity analysis does not include a 

probability/possibility distribution, only a range. 

The difference between sensitivity and contribution to variance analyses is that the former 

examines how each input affects the output value, while the latter determines how each input 

contributes to the output variance. The inputs in a contribution to variance analysis use the same 

probability/possibility distributions as the uncertainty analysis.  

A source of confusion during our literature survey was the use of the terms “pathway” and 

“scenario”.67 For clarity, in this paper “pathway” is used to describe a unique product or 
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production process for which an impact assessment is required; it is not related to a sensitivity or 

uncertainty analysis. For example, an LCA comparing lithium ion (Li-ion) and nickel-metal 

hydride (NiMH) batteries would have two pathways, one for the Li-ion and one for the NiMH 

batteries. In this paper, “scenario” is used to describe the use of alternative input values, 

assumptions, and/or boundaries, and is related to sensitivity or uncertainty analysis. Another 

source of confusion comes when scenarios are used to perform either a sensitivity or uncertainty 

analysis. Normally in a sensitivity analysis, several scenarios are considered and different inputs 

are changed in each scenario. A one-at-a-time (OAT) sensitivity analysis uses scenarios in which 

only one input is changed at a time and the remaining inputs retain their base case values. 

Scenarios that change several inputs simultaneously can be used to explore the interaction effects 

between the parameters; this is still a sensitivity analysis. If all the scenarios change the same 

inputs, it is an uncertainty analysis, as the goal is to determine a reasonable range of output 

values for, for example, base case, best case, and worst-case scenarios. 

We realized during the survey that whether an alternative should be classified as a pathway or 

scenario also depend on the hypothesis being tested. For example, when performing an LCA of a 

single product that can be produced by several methods, whether the method is a scenario or 

pathway depends on the end goal of the analysis. If the goal is to compare the life cycle impact 

of the methods, each method is a pathway. If the goal is to determine the average life cycle 

impact of the product, then the method is part of a scenario. For example, one could perform an 

LCA of crude extraction in Northern Alberta (a province in Canada) using steam assisted gravity 

drainage (SAGD) with and without cogeneration. If the goal is to compare the GHG emission 

intensity of SAGD with or without cogeneration, each process is a pathway. However, if the goal 

is to compare the GHG emission intensity of SAGD-extracted crude with conventional crude, 

knowing SAGD is used with and without cogeneration allows us to assess scenarios with 

different cogeneration capacities as part of a sensitivity or uncertainty analysis. These definitions 

are not definitive or standardized but are used in this paper to help avoid confusion during the 

discussion of uncertainty approaches. Scenarios can also be used to describe future outcomes and 

trends; however, that definition is not used in this study as forecasting LCAs are outside the 

current scope. 
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2.2.2 Local vs. global sensitivity 

Sensitivity is simply a partial derivative; in other words, it looks at how the model output 

changes because of a change in the specified input. The partial derivative value for input xi can 

depend on the value of xi  itself (non-linear effect) or the values of the other model inputs xi*xj 

(interaction effects). There are two main types of sensitivity analysis, local and global. A local 

sensitivity analysis, also known as one-at-a-time (OAT) or one-factor-at-a-time (OFAT), is 

centered on a base case and only examines the sensitivity of individual parameters. OAT is often 

used since it is simple and does not require an algorithm to generate samples. The base case is 

used as a reference and each input is varied separately. The minimum number of model 

evaluations required is N=2*k+1, where k is the number of inputs.68 Alternatively, rather than 

using a single minimum and maximum value for each input, several values can be used to 

determine whether the model has a non-linear response. The OAT method does not examine 

interaction effects and therefore is only recommended for simple linear models with minimal 

interactions between inputs. Global methods such as the factored approach (also known as design 

of experiments [DOE]) examine the entire parameter space. A factored approach overcomes the 

OAT method’s limitations by allowing the possible interaction effects between inputs. However, 

a full factored approach requires 𝑁 = 𝐿𝑘, where L is the number levels and represents the 

number of unique values each parameter can take and k is the number of inputs examined. 

Generally, a full factorial approach is only used with two or three inputs and two levels, 

otherwise the number of model evaluations becomes overwhelming. Using only two levels is 

acceptable for linear models but can be misleading for non-linear models, especially if they are 

non-monotonic. Partial fractional designs can be used to reduce the number of samples required 

but at the expense of clarity.69 

Consider a model base case in which 5% of heat demand is supplied from a cogeneration unit 

and the rest from a conventional boiler; the actual share from cogen can range from 0% to 50%. 

With a local approach, the cogen unit efficiency would appear to be insensitive, while the boiler 

efficiency would appear to be sensitive. However, as the share of heat produced from the cogen 

unit increases, so would the sensitivity of the cogen unit efficiency. The global method accounts 

for variations in the inputs’ sensitivity because of non-linear and interaction effects, hence, it 

would prevent the underestimation of the cogen unit efficiency sensitivity by accounting for its 
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interaction with the “share of heat from cogen” input. Chapter 2.2.2 provides further discussion 

on local vs. global sensitivity. Reviews by Norton,68 Groen et al.,70 Iooss and Lemaitre,71 and 

Ravalico et al.72 provide additional background on sensitivity methods. 

 

2.2.3 Uncertainty analysis 

There is no standard way of classifying uncertainty (i.e., sources or types of uncertainty). 

Heijungs and Huijbregts examined six studies, all of which used different uncertainty 

classifications.19 Ascough et al. attempted to group uncertainty into knowledge (epistemic or 

reducible), variability (aleatory or irreducible), and linguistic.48 Uusitalo et al. further divided 

epistemic and aleatory uncertainty into 6 classes: inherent randomness, measurement error, 

systematic error, natural variation model uncertainty, and subjective judgement.21 Williams et al. 

examined uncertainty in LCA inventories and defined 5 uncertainty categories: data, cut-off, 

aggregation, geographic, and temporal.47  

Lloyd and Ries created a combined uncertainty topography table.20 The columns, taken from the 

United States Environmental Protection Agency (US EPA), show the parameter (input data), 

scenario (normative choices), and model (mathematical relationships).73 The rows, taken from 

Morgan and Herion, show random error and statistical variation, systematic error and subjective 

judgement, linguistic imprecision, variability, inherent randomness and unpredictability, expert 

uncertainty and disagreement, and approximation.46 This study groups uncertainty into 

parameter, normative, and model uncertainty. “Normative” is used instead of “scenario” to avoid 

confusion with the definitions of scenario vs. pathway given in Chapter 2.2.1. 

Lloyd and Ries’s table incorporates the various sources of uncertainty discussed in earlier studies 

such as spatial, variations due to location or time scale, temporal, measurement/data, error due to 

inaccuracies in the measuring or data collection process, natural variation/randomness, and 

aleatory variation due to inherent randomness primarily under parameter uncertainty.21, 46-49 

Normative uncertainty includes cut-off,47 allocation rules, and selecting distribution types 

(uniform vs. triangle).20 Modeling uncertainty includes using simplified models/correlations, 

measurement error in physical constants, numerical error (model convergence), and extrapolating 
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relationships to similar processes.20 Disagreement between experts can affect parameter, 

normative, and model uncertainty; many standards exist for developing uncertainty distributions 

from experts examining issues such as bias, weighting, and how to phrase the inquiry properly.74-

76  

Once uncertainty has been identified, probability distributions can be determined. Different types 

of distribution functions are used in Monte Carlo simulations including uniform, triangular, 

normal, log normal, and project evaluation and review technique (PERT). Uniform distribution is 

the simplest; it requires estimates of the minimum and maximum values only and assumes an 

equal probability for all intermediate values.77 It should be used when minimal information is 

available on the probabilities. Uniform distributions provide a conservatively wide output 

distribution. When a most likely or typical value is also known, triangle, PERT, or modified 

PERT distributions may be used. Typically, it is easier for experts and practitioners to estimate 

the minimum, maximum, and most likely values rather than the mean and standard deviations of 

a normal distribution.78 PERT and modified PERT distributions approximate the normal 

distribution, producing bell curves. The modified PERT’s optional factor, gamma, adjusts the 

shape of the bell curve. Large gamma produces a tall skinny bell with long tails, and low gamma 

produces a fatter bell. A gamma factor of 4 produces the basic PERT distribution. The main 

difference between the three distributions is how they handle the tails and the mean. The triangle 

distribution provides higher probabilities for the tails and a larger standard deviation, which 

produces a more conservative, wide output distribution. The PERT and modified PERT, with 

large gamma values, produce higher probabilities for the values closer to the mean. When a 

symmetric distribution is used, the mode value for all three distributions will be the most likely 

value. However, when asymmetric distributions are used, the mean value deviates significantly 

from the most likely value and can produce a skewed output distribution. When used in project 

planning, this can result in overly conservative project completion time estimates. The PERT and 

modified PERT calculate the mean as 𝜇 = (𝑎 + 𝛾𝑐 + 𝑏) (𝛾 + 2)⁄ , where a, b, and c are the min, 

max, and most likely values, respectively. The basic PERT uses γ=4, which means the most 

likely value is four times as influential to the mean as the min and max values are. Hence, if 

triangle distributions are used instead of PERT, the output distribution can be significantly 

skewed, leading to over/underestimation bias. This problem is further amplified in non-linear 
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models. Therefore, it is important to consider the impact of using a triangle distribution when the 

tails are severely asymmetrical; uniform distributions that are not symmetrical relative to the 

base case will also lead to bias issues.  

The normal distribution is often used since natural variation tends to follow a normal 

distribution. Two limitations of a standard normal distribution are that they must be symmetrical 

and are unbounded. Unbounded distributions can cause calculation errors within the model that 

can be avoided by truncating the distribution. A parameter X is lognormally distributed if 

Y=ln(X) is normally distributed. Lognormal distributions are typically used as they produce long 

tails; they are the default distribution used in ecoinvent v2.79 While ecoinvent deals primarily 

with linear models, care should be taken when using lognormal distributions for highly non-

linear models as the extreme tails can lead to calculation errors or unrealistic scenarios. 

2.3 Literature Survey Method 

The goal of the survey is to examine how practitioners executing an LCA address SUA. 

Therefore, in this review, we focus on research that performs LCA. Review papers or papers 

focused only on evaluating a new type of sensitivity or uncertainty analysis in a pre-existing 

LCA were not included. To reduce the number of papers selected, this survey focused on energy- 

and fuel-based LCA. A Scopus search for [“life cycle assessment,” “life cycle analysis,” or 

“LCA”] and [“energy” or “fuel”] in the title, abstract, or keywords and published in 2017 

resulted in 1630 papers. To further refine the search, [“greenhouse” or “global warming”] were 

added as required keywords. Because of the unique characteristics of medical studies and our 

desire to focus on energy-related studies, we excluded articles from the subject areas of 

medicine; biochemistry, genetics and molecular biology; immunology and microbiology; 

pharmacology, toxicology and pharmaceutics; and veterinary. Articles on economics were also 

excluded, as these are specialized analyses that build on conventional LCAs. The final Scopus 

search string resulted in 331 articles and is provided in the SI. The abstracts were reviewed and 

studies were eliminated that focused on LCA of building materials, waste disposal not focused 

on energy production, food crops and agricultural waste not focused on bioenergy production, 

forecasting future scenarios, and primarily economic-based analysis; once these studies were 

eliminated, 74 were left (Figure 2-1). The studies included in the survey are listed in Table A1.  
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One of the limitations of this approach is that it does not capture all of the LCA papers, and any 

conclusions drawn cannot be applied to LCAs in different fields. However, the filtering criteria 

were selected to reduce the number of papers to a reasonable level so that each may be read in 

detail.  
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Figure 2-1: Journal paper filtering process 

In addition to a key term word search, each paper was reviewed to determine the analysis that 

was performed. All the supplementary information included in the papers were also reviewed. A 
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include sensitivity, uncertainty, various software names, and common analysis names (fuzzy, 

Morris, etc.). 

For each paper, there was detailed focus on the methods and distributions, whether the 

distributions were justified, what types of uncertainty were included (parameter, normative, 

model), whether key statistics were mentioned, what software was used, whether correlation or 

dependency was mentioned, how results were presented, and whether the analysis was basic, 

moderate, or advanced, among others. In some cases, the authors of a paper were contacted to 

clarify information. 

2.4 Results and Discussion  

First, the papers were searched to see whether they referenced ISO 1404080 or 1404417 standards. 

In 2002, Ross’ implementation review assessed 30 LCA studies published between 1997 and 

2002 to determine how they handled sensitivity and uncertainty.23 Ross determined that only 

63% of the studies followed the ISO standards. Our review found that in 2017, 61% (45) of the 

examined studies referred to ISO 14040/14044 standards directly, showing a negligible change 

in 15 years.  

The use of sensitivity and uncertainty analyses has also increased. For example, in 2002, Ross 

assessed 30 LCA studies and found that while 47% of the studies reported uncertainty, only 13% 

explicitly discussed uncertainty in the results. Furthermore, only one of the studies included a 

quantitative uncertainty analysis and two included a qualitative analysis.23 Later, Tu et al. 

examined 54 algae biofuel papers published between 2009 and 2016 and found that 15% 

included a quantitative uncertainty analysis, while 36% included a quantitative sensitivity 

analysis.24 Byrne et al. examined 256 LCAs of urban water systems published between 1998 and 

May 2017 and found that 40% included a sensitivity analysis.25 Byrne’s results may be 

conservative as they simply searched the document for the words “sensitiv” and “sensitivity”; 

some of the studies may not have actually performed a sensitivity analysis. The trend suggests 

that SUA might be becoming more common, but improvement is still needed to meet ISO 

standards. Of the 74 studies included, 76% (56) include either a sensitivity or an uncertainty 

analysis, 69% (51) include a sensitivity analysis, and 27% (20) include an uncertainty analysis. 

The key figures from these implementation reviews are summarized in Table 2.1. The remainder 
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of this Chapter provides critical views on the implementation of SUAs in the 74 papers chosen in 

terms of method used, inputs distribution, and results presentation. Background information 

relevant to the discussion is provided as needed. 

Table 2.1: Frequency of sensitivity and uncertainty analysis in LCAs over time 

Paper Surveyed 

years 

# of 

Papers 

surveyed 

Sensitivity Uncertainty 

Ross et al.23 1998-2002 30 N/A 13% (47%) 

Byrne et al.25 1998-2017 256 40% N/A 

Tu et al.24 2009-2016 54 36% 15% 

This Work 2017 74 69% 29% 

 

2.4.1 Sensitivity analysis 

Of the 74 surveyed studies, 51 (69%) included a quantitative sensitivity analysis, which is a 

significant increase from the surveys by Tu et al. and Byrne et al., who found that only 36% and 

40%, respectively, included sensitivity. 

This work found that 78% (40) of the papers performed a one-at-a-time (OAT), 33% (17) a 

factorial approach, and 12% (6) included both. Ferretti et al. performed a broad assessment of 66 

papers that included the term “sensitivity analysis” published in either Science or Nature journals 

between 2005 and 2014 to examine trends in sensitivity analysis.26 Ferretti et al. determined that 

59% used a simple OAT approach, while the remaining 41% used global sensitivity methods. 

Global vs. local sensitivity is further discussed in Chapter 2.2.2.  

2.4.1.1 Sensitivity background 

As OAT and factored sensitivity were the only methods used in the surveyed work, a quick 

background is provided in Chapter 2.2 to aid in discussion. See Iooss et al.71, Ferretti et al.26, and 

Groen et al.70 for reviews of other methods. 

2.4.1.2 Inputs examined 

The OAT and factored approaches are used to examine both parameter and normative inputs. 

While advances in computing have made sensitivity analysis easier to perform, especially for 
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parameter inputs, most studies are still limited in scope; 28% of the OAT analyses examined 

only a single parameter of interest and 58% included three or less. Only 15% of the OAT 

analyses included 10 or more inputs. Since factored analysis requires more model runs, it is 

understandable that 76% examined four or fewer inputs. None of the studies assessed model 

inputs. Of the OAT studies, 68%and assessed parameter inputs, 78% assessed normative inputs 

(45% assessed both). Of the factored studies, 82%and assessed parameter inputs, 45% assessed 

normative inputs (47% assessed both). 

The normative inputs generally assessed in the surveyed papers include alternative allocation 

methods, boundary expansion scenarios, and alternative technology and implementation 

pathways. The parameter inputs in the surveyed papers include unit efficiencies, emission 

factors, consumption and production rates, and fuel properties.  

Further analysis found that 22% of the sensitivity analyses use identical generic ranges for all 

inputs,81 rather than parameter-specific ranges. Sensitivity analysis should avoid using a generic 

±x% for every input as this may lead to incorrect conclusions on significance (discussed further 

in Chapter 2.4.3.2).  

2.4.1.3 Presenting results 

Sensitivity in the surveyed studies is presented using bar charts/scatter plots (49%), tables (33%), 

tornado plots (16%), spider plots (16%), and error bars (8%). Tornado and spider plots are easy-

to-read, compact charts that present OAT results effectively. The more complex factored 

sensitivity results are usually presented with many grouped bar charts and error bars, which add 

several dimensions to a single figure and can be overwhelming for the reader.82 When there is 

more than one output, radar plots can be used in place of spider plots.83 

Factored designs can help us examine the effect of input interactions, but (as noted above) these 

produce an overwhelming number of outputs and are difficult to communicate properly.82 

Results are presented for each factored design, but the importance of each parameter or 

interaction effect is not ranked or quantified in the surveyed work; their analysis only looked for 

obvious trends.84 
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2.4.2 Uncertainty analysis 

Many studies examine uncertainty in LCA. This work found that uncertainty analysis is 

becoming more common. 27% of the surveyed studies include uncertainty compared to 13% and 

15% found by Ross et al.23 and Tu et al.24, respectively. Other reviews have examined LCAs that 

specifically include uncertainty analysis to determine which method is used. Lloyd and Ries 

examined 24 LCA studies published between 1996 and 2004 that include uncertainty.20 

Budzinski examined 17 LCA studies published between 2008 and 2011 that include Monte Carlo 

simulations.27 

Of the 24 LCAs that include quantitative uncertainty analysis, Lloyd and Ries determined that 

67% used Monte Carlo, 29% used scenarios, 17% used fuzzy data sets, 8% used interval 

calculations, 8% used uncertainty propagation, and 4% were unspecified.20 This study found that 

65% of the uncertainty papers reviewed used Monte Carlo, and 35% used scenario analysis. The 

increase in MC analysis may be a result of  LCA software such as SimaPro and GaBi integrating 

MC simulations into their programs (see Chapter 2.4.2.1).42, 85 That said, scenario analysis is 

easy and does not require any specialized software for simple monotonic models.  

2.4.2.1 Software currently used 

SimaPro86-89, ModelRisk44, 90, @Risk67, 91, GaBi92, and Crystal Ball93 are the main software 

programs used for Monte Carlo Simulations. ModelRisk, @Risk, and Crystal Ball are 

commercial Excel add-in programs.39-41 SimaPro and GaBi are commercial LCA programs; 

SimaPro and GaBi typically use the ecoinvent database.42, 53, 85 Overall, user-friendly software 

like SimaPro/ecoinvent and Excel add-ins make it easier to perform Monte Carlo simulations, 

which may explain Monte Carlo’s growing popularity among LCA practitioners. Ecoinvent also 

comes with default uncertainty distributions, further reducing the workload of a Monte Carlo 

simulation. 

The common LCA and Excel add-in softwares support Monte Carlo simulation only.39-42 The 

inclusion of sensitivity methods such as Morris or hybrid methods such as classification and 

regression trees (CART) could allow further exploration of the underlying data (discussed further 

in Chapter 2.4.3.9.3). For users interested in performing other methods, R/MATLAB libraries are 
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available for sample generation and output processing that can be linked to SimaPro through 

scripts or to Excel through macros, but these require basic programming knowledge to use. 

SimLab has created an open source user interface that uses the R algorithms and does not require 

coding experience if the model is created inside its interface.94 For Excel-based LCA models, I 

have recently created an open source template that uses R to generate the samples and process 

the results and Excel macros to generate the output file and link the Excel and R codes.2 GaBi 

currently does not support automation. 

 

2.4.2.2 Uncertainty method background 

Because the papers that were surveyed use either Monte Carlo or scenario analysis,  background 

information on these have been provided; Igos et al. describe other uncertainty analysis 

approaches.18 

One begins a Monte Carlo simulation by defining probability distributions for each parameter. N 

samples are generated for each input from their probability distribution and the model is run with 

each sample. The outputs are then displayed as a histogram or cumulative distribution function 

(CDF). Due to the random nature of Monte Carlo simulations, the resulting mean will vary 

between simulation runs; the variation is known as the sampling error (SE) and can be 

approximated as 𝑆𝐸 = 2.96 ∗ 𝜎/√𝑁, where σ is the output standard deviation and N is the 

number of samples.95 Modern computing allows large sample sizes and therefore sampling error 

is generally negligible. 

The best/worst case (BWC) method requires only min/max or best/worst values for each input 

and no information on probabilities.96 Additionally, for a monotonic model, only three model 

evaluations are required; these can be performed manually without the need to write automation 

code to perform thousands of iterations. However, an optimization approach is required for non-

monotonic models. The obvious disadvantage of the BWC method is that the calculated output 

range may be excessively large; furthermore, unlike a Monte Carlo simulation, no information 

on parameter importance is available.    
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2.4.2.3 Monte Carlo in the survey results 

This study determined that Monte Carlo is the most common form of uncertainty analysis used in 

LCA. The 13 Monte Carlo LCA studies from the survey were examined to determine the current 

state of research. Tu et al. gathered all the required information for distributions but did not 

actually execute the simulation.24 But their work has been included in this survey as the analysis 

was done well and the MC simulation will be part of their next study. Only 46% (6) of the 

studies provided adequate information about the Monte Carlo simulations;44, 67, 88, 90, 97, 98 this 

includes information on the number of samples, input distribution selection, justification for 

input distribution values, justification for which parameters are included in the simulation, and 

explanation of error bar values (min/max or percentiles).  

2.4.2.3.1 Sampling error and method 

Because of the random nature of Monte Carlo simulations, sampling error causes the results to 

differ between runs. Only 15% (2) of the survey studies mention sampling error and justify the 

number of samples used.44, 90 23% (3) do not provide the number of samples used;67, 91, 92 hence, 

sampling error cannot be approximated. However, since the number of samples used in the 

surveyed simulations ranged from 1,000 to 100,000, sampling error is likely minimal.  

Monte Carlo samples are generated randomly or using a Latin hypercube sample (LHS). While 

the most used Monte Carlo software uses random sampling (ModelRisk39, SimaPro85, GaBi42, 

and Crystal ball41), it can be inefficient and result in points that are either clustered too closely 

together or spread too far apart. The LHS method splits the sample space into subChapters and 

ensures that each subChapter is adequately sampled and that a well-spaced sample is produced. 

If model evaluations are computationally expensive, the LHS method can be used, as its 

sampling error is O(1/N), much lower than Monte Carlo’s O(1/sqrt[N]).99 While the LHS 

improves the sampling of a single distribution, it does not ensure input combinations are 

adequately sampled; therefore, LHS loses its advantage as the number of significant inputs 

increases. A model may contain hundreds of inputs, but if the output uncertainty is dominated by 

a single input, then the error in output distribution will be dominated by the error in the single 

input’s distribution.99 None of the studies mentions the use of a Latin hypercube sample. While 

the software used by the studies relies on random sampling, only four studies specifically 
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mention that random MC was used.44, 86, 89, 90 Overall, the more complex LHSs are only needed 

for computationally expensive models where small sample sizes are desired or where highly 

skewed distributions significantly affect the output distribution.  

2.4.2.3.2 Types of distributions used and their justifications 

When it came to justifying which Monte Carlo distributions were used and their key values 

(Figure 2-2), Budzinski, and Lloyd and Ries, found that 18% and 17% of the studies assessed, 

respectively, provided no information; in the papers that were reviewed, 23% used the 

SimaPro/ecoinvent defaults but provided no further explanation or justification.86, 87, 92 This 

review found that 23% of the studies used identical generic distributions for all parameters; two 

used normal distributions with a standard deviation of 5% and 10% of the mean91, 93 and one 

used GaBi, stating the uncertainty analysis results were produced using “Monte Carlo analysis 

(with a 20% variation rate).”92 Using identical generic distributions is at best a simplistic 

sensitivity analysis, not an uncertainty analysis (see Chapter 2.4.3.2). Only 23% (3) of the studies 

used a sensitivity analysis to screen key inputs to be included in the Monte Carlo simulation.44, 90, 

97 The other studies either arbitrarily included life cycle inventory (LCI) parameters with the 

distributions available86, 87 or specified key inputs based on author judgement.24, 67, 88, 98 

2.4.2.3.3 Distributions used 

In studies that used multiple distributions, the uniform and triangle distributions were the most 

common (Figure 2-2). The popularity of the lognormal distribution is most likely because 

SimaPro/ecoinvent, used in 46% (6) of the studies, defaults to lognormal distributions. 

Lognormal distributions are also commonly used with data quality indicators (DQI) (further 

discussed in Chapter 2.4.3.3). Budzinski found lognormal distributions used in 65% of the 

studies examined, and these studies primarily used SimaPro/ecoinvent.27 This study determined 

that error, Johnson, Weibull, and skew normal distributions were used in 8% of the studies. 

Uniform, triangle, PERT, normal, and lognormal distribution background information can be 

found in Chapter 2.2.3. 

  



28 | P a g e  

 

 
Figure 2-2: Distributions used in the 13 Monte Carlo Studies (4 of the studies in this work 

did not specify what distribution was used, but it is expected they used lognormal as that is 

the ecoinvent/SimaPro default) 

2.4.2.3.4 Presenting results 

The Monte Carlo results are presented primarily with error bars, 38% (5),86, 87, 91-93 histograms, 

23% (3),67, 97, 98 comparison charts/tables, 23% (3),24, 88, 89 and box and whisker plots, 15% (2) 

(Figure 2-3). Error bars reflect either a specified confidence interval86, 92, 93 or standard 

deviation;87 in one case, it was unclear what the error bars represented.91 Both 90% and 95% 

confidence intervals were most commonly used for the box and whisker and the error bar plots. 

Confidence interval should be used over standard deviation when the output distribution is 

skewed. Comparison bar charts show the percentage of samples where pathway A=>B. The 

number of comparisons is equal to the combination (p,2), where p is the number of pathways; 

this number can become overwhelming when more than 3 pathways are compared. Additionally, 

the comparison charts only show whether A=>B, but not how much greater A is than B. Tables 

and in-text discussion are also used to communicate key results.  Manadhar and Shah, and 

Nimana et al. extend their analysis by determining the cross-over point between two pathways 

based on a critical input such as distance or system capacity.90, 98 
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Figure 2-3: Uncertainty presentation methods 

2.4.2.3.5 Correlation and dependence 

LCA is commonly used to compare two or more alternatives. When conducting an uncertainty 

analysis for comparative LCA, it is important to consider dependency; however, 54% of the 

papers surveyed did not do so. Of the six studies that accounted for parameter correlations, three 

specifically included correlated inputs44, 67, 90 and three used a differential analysis to account for 

multiple pathways sharing random inputs.86, 88, 89 Consider an LCA of two technology 

alternatives A and B. While there may be uncertainty in the electricity carbon intensity (CI) if 

both projects are being considered for the same location and would use the same grid, it would 

not be appropriate to compare alternative A using low CI and alternative B using high CI 

electricity. In order to get an accurate comparison, the uncertainty for each model should be run 

simultaneously and the output should be the difference between the two alternatives. Not all 

inputs will be dependent, and some may be only partially dependent. For example, if alternatives 

A and B are located in different regions, their electricity CI would be independent. The issue of 

dependency in comparative LCA has been examined by Henriksson et al., who recommend 

performing statistical tests on the difference between pathways to determine if the results are 

statistically significant.100 

Dependency within ecoinvent, a commonly used LCA database, is currently being debated. Qin 

and Suh examined the possibility of using pre-calculated distributions for the ecoinvent database 
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to reduce computational times.101 Henriksson commented that the use of pre-calculated 

uncertainties cannot be used in comparative LCA as they do not account for dependency and will 

therefore overestimate uncertainty.102 Qin and Suh responded by examining the probability of a 

decision being reversed (from a>b to b>a) or moderated (from a>b to a≈b) if fully dependent 

samples are used instead of pre-calculated distributions. Their results indicated that no results 

were reversed and only 10.5% were moderated for similar processes.103 They further performed 

an empirical analysis of 100 ecoinvent processes to determine if the ratio of geometric standard 

deviation (GSD) with dependent sampling over pre-calculated distribution sampling was less 

than one, which would indicate that using pre-calculated distributions overestimates 

uncertainty.104 Their results indicated the GSD ratio ranged from 1.0681 to 1.0696 with a 95% 

confidence interval, indicating that using pre-calculated distributions will more likely result in a 

slight underestimation of uncertainty. While Qin and Suh’s work suggests that using pre-

calculated uncertainties will not result in inaccurate uncertainty estimations, their pre-calculated 

distributions were developed using dependent sampling and are therefore partially dependent. 

When users supply foreground data or their own uncertainty distributions for background data, it 

is up to them to ensure dependent sampling is accounted for. Furthermore, Qin and Suh found 

that the error associated with pre-calculate distributions is small 95% of the time but in a small 

number of cases could be significant (0.8>GSD ratio >1.5). It is therefore suggested that a 

sensitivity/screening analysis be used to identify potential risk. If uncertainty is dominated by the 

foreground data, then, even if there is an error in the background uncertainty due to dependency, 

it will have a negligible effect on the results. On the other hand, highly sensitive background 

inputs that are dependent indicate further investigation may be required.  

One of the largest challenges in assessing pathways with dependent inputs is the requirement to 

perform pairwise comparisons. As the number of pathways increases, interpreting and displaying 

results can become complicated (see Chapter 2.4.3.9 for further discussion). 

 

2.4.2.3.6 Contribution of variance 

Only one the papers calculated the contribution to variance (COV) of the uncertain inputs; 

however, no information on the method used was provided.93 Two papers used conditional mean 
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tornado plots derived from the Monte Carlo simulation data to rank each input’s impact on the 

mean value.44, 90 A contribution of variance analysis allows the practitioner to identify which 

inputs need to be further examined in order to improve the accuracy of the results. Unlike 

sensitivity analysis, COV uses probability distributions. While a COV analysis can provide 

additional insight, it is not a requirement, can be time consuming to perform, and, for simple 

models, can be redundant if a sensitivity analysis has already been done; therefore, its absence 

from the majority of uncertainty studies is not a critical flaw. 

2.4.2.4 Best/worst case scenarios in survey 

None of the seven best/worst case scenario (BWCS) studies used optimization to identify 

extreme scenarios and simply assumed the models are monotonic. The inputs included in the 

surveyed assessments were selected by the author’s judgement, and data ranges were selected 

from the literature. Commonly included inputs were use factors, production rates, efficiencies, 

and product lifetimes.81, 96, 105 Since a subjective approach was used to select the parameters 

included, the uncertainty may be underestimated if excluded parameters have a significant effect. 

All of the studies in this review examined parameter uncertainty using the BWCS method alone; 

however, alternative pathways,106 OAT, 96 and factored sensitivity107 were used in combination 

with BWCS to examine the effect of normative choices as well. Of the BWCS studies, three 

assessed over ten parameters105, 106, 108 and the remaining four assessed only 2-5 parameters.81, 96, 

107, 109 The results are primarily presented using bar charts,96 error bars,106 and tables.81  

BWCSs are not as rigorous as a Monte Carlo simulation. However, if resources are unavailable 

to perform a Monte Carlo simulation, BWCS can still be valuable. Using BWCS in combination 

with OAT or factored sensitivity can provide useful insight into the model’s behavior with 

minimal computational power, assuming the model is monotonic, as only a small number of 

samples are needed compared to Monte Carlo simulations. Additionally, given the small number 

of samples required, the analysis can be run manually and does not require specialty software or 

scripts.  
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2.4.3 Limitations and areas for improvement in current work 

This Chapter provides a review of the limitations observed in the current literature and includes 

recommendation for improvement.  

2.4.3.1 Global vs. local sensitivity methods 

As mentioned in Chapter 2.2.2, sensitivity analysis can use either a local or a global approach. A 

majority (73%) of the papers examined used a limited local sensitivity analysis. Saltelli and 

Annoni suggest that local sensitivity methods are favored as the base case is seen as the best 

estimate. Additionally, the model may become less accurate and even unstable/invalid for input 

combinations far away from the base case, and when the model does fail it is easier to identify 

the cause of failure when an OAT approach is used. OAT methods do not include noise, 

eliminating the possibility of type I errors.110 Saltelli and Annoni used a geometric proof to 

illustrate that as the number of parameters in the model increases, the fraction of the parameter 

hyperspace explored using an OAT rapidly approaches zero. Global approaches provide a better 

representation of sensitivity by accounting for non-linear and interaction effects. 

While a global method provides more detailed results that account for non-linear and interaction 

effects, the additional effort may not be required for simpler models. For example, consider an 

LCA of a crude oil pipeline. In model A, aggregated data is used to determine the carbon 

intensity (CI), and the model simply adds the aggregated CI from various stages (Y = 

X1+X2+…+Xn). In model B, a rigorous bottom-up approach based on engineering first principles 

is used. In model A, there is no benefit in running a global method over a local one as there are 

no interactions or non-linear effects. However, in model B, where complex calculations are 

performed, an input such as the pipeline diameter will propagate throughout the model and 

interaction effects could be significant. Therefore, a global approach will be beneficial. 

Furthermore, some models may lack sufficient depth to benefit from a global sensitivity method. 

For example, in a natural gas pipeline, several gas and fluid flow properties depend on both the 

gas temperature and the composition. In a model where the gas/fluid properties are provided by 

the user, rather than calculated based on the gas temperature and composition, the global 

approach would not be able to properly quantify the sensitivity of the gas temperature and 

composition. In this case, the benefit of using a global method over a local one is reduced. For 
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non-linear models, the sensitivities may be overestimated because of large sensitivities calculated 

at the extreme points dominating the analysis (when a small number of samples is used). 

Alternatively, local methods may underestimate parameter sensitivities by failing to account for 

non-linear and interaction effects.  

A factored approach using multiple levels provides a better estimate than the OAT approach and 

does not assume linearity. However, it still provides only a limited exploration of the parameter 

hyper-space.110 Linear regression can be used to calculate sensitivities via the predicted 

coefficient for each input. The advantages of linear regression include the ability to examine the 

averaged effect for each input over its entire range and to provide the sign of the effect on the 

output. However, the accuracy of the linear regression method is affected by the R2 value of the 

model. The parameter coefficients cannot be used to rank input sensitivities for a poorly fitted 

model (low R2 value). The regression sample can be used later by the Monte Carlo simulation to 

reduce computation times.110 While, like the local OAT method, linear regression is best used for 

purely additive models, it at least provides an indicator on non-additivity and non-linearity 

through the R2 value.110 Variance-based methods such as Sobol (Chapter 2.4.3.6) can be used as 

a sensitivity method; however, they require a large number of model evaluations, limiting their 

use to a small number of inputs and models with short computation times.  

To overcome local methods’ inability to identify interaction effects and the large sample 

requirements of the factored approach, the Morris method can be used. The Morris method (or 

elementary effect method) is a versatile and efficient global method that can be used for 

screening purposes. It works for non-linear and non- monotonic models. The Morris method uses 

an OAT approach but is not centered at the base case scenario. Each input is changed OAT, but 

instead of returning to the base case after each step, the next input is changed immediately; this 

results in a trajectory that randomly moves through the parameter hyperspace. After each input 

has been changed, a new starting point is selected and the process repeats. Therefore, within each 

trajectory a partial derivative is calculated for each input. As the number of trajectories used 

increases, the portion of the hyperspace explored increases, at the cost of additional model 

evaluations. The number of model evaluations required is N=r*(k+1), where r is the number of 

trajectories and k is the number of parameters. Saltelli and Annoni suggest that good but not 

quantitative estimates for screening purposes can be obtained using only 4 to 10 trajectories.110 
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The number of trajectories required depends on the model complexity; highly non-additive and 

non-linear models will require additional trajectories. In another study, it was found that there is 

negligible benefit in increasing the number of approaches above 60.2 While the number of model 

evaluations required is larger than OAT (N=2k+1), it is still significantly smaller than the 

samples required for the factored, linear regression, and Sobol approaches. It was also found that 

adequate estimates of parameter sensitivities obtained using Morris required fewer than 1/100th 

as many samples as those obtained using the Sobol method.2 Campolongo et al. developed an 

algorithm to select a small number of optimal approaches that provides the best coverage of the 

parameter space, rather than using randomly selected approaches, for situations when the number 

of model executions needs to be minimized.111 

The average and standard deviations (SD) of the r partial derivatives taken for each parameter 

are plotted on the Morris plot. The Morris average uses absolute values to ensure non-monotonic 

responses are accounted for. A higher Morris average indicates a greater sensitivity, while a high 

Morris standard deviation implies the sensitivity of the given parameter varies across the 

parameter hyper-space. The Morris SD can be thought of as the variation in the Morris mean 

(parameter sensitivity). To highlight the benefit of using the Morris over the commonly used 

OAT method, consider a scenario shown in Figure 2-4 for parameter X11. Depending on what 

value is used for the base case in an OAT approach, parameter X11 could be considered 

insensitive (point 1) or highly sensitive (point 2). The Morris method, however, shows that the 

sensitivity of parameter X11 varies widely, either because of a non-linear response or an 

interaction effect. Unlike OAT, the Morris method can account for global sensitivity while using 

fewer samples than a factored approach. The limitation of the Morris method is that it cannot 

differentiate between non-linear and interaction effects but can only indicate if neither occur 

(zero standard deviation). Technical details for the Morris method can be found in works by 

Campolongo et al. and Morris.111-113 
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Figure 2-4: Morris plot created using RUST2 

2.4.3.2 Sensitivity scope and quality 

As mentioned in Chapter 2.4.3.1, the use of a local sensitivity analysis may lead to sensitive 

inputs being misclassified as insensitive. Another cause of misclassification is the use of generic 

sensitivity ranges, as seen in 22% of the surveyed papers that performed sensitivity. While it is 

easier to simply change each input by ±10% to perform a sensitivity analysis, doing so may lead 

to faulty conclusions. For example, pipeline operating emissions depend on pump efficiency and 

pipe relative roughness. If a generic ±10% range is used for the sensitivity analysis, the pump 

efficiency would appear to be significant, while relative roughness appears insignificant. 

However, the relative roughness can vary by an order of magnitude and be significant.4 While 

the use of generic ranges in a sensitivity analysis could be defended as a simple exploratory 

approach, it cannot be applied to uncertainty analysis. Unless justification is used, applying 

generic distributions to a Monte Carlo simulation produces a meaningless output distribution, 

communicates a false sense of confidence in the results, and should not be performed for the sole 

purpose of adding error bars to the results. The Monte Carlo results could be used as a basic 

sensitivity analysis if they are analyzed using a conditional mean tornado plot, for example; 

however, the output histogram would be meaningless.  
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In the surveyed literature there was a notable lack of justification on which parameters were 

included/excluded in the sensitivity analysis (Chapter 2.4.3.2). Since the normative choices are 

generally subjective and depend on the purpose of the LCA, it makes sense that author 

judgement and stakeholder consultation are used to select relevant inputs; however, quantitative 

approaches are available for screening parameter inputs. The general approach observed in the 

surveyed papers is to include parameters for which a large range of possible values has been 

reported in the literature or the authors know will have a significant impact on the results. While 

this simple approach works in most cases, especially with simpler models, it can lead to 

significant inputs being ignored in more complex models. Even a small change in a sensitive 

parameter’s value can result in a significant change in the model output. In the author’s 

experience, performing an in-depth sensitivity analysis identifies important parameters that 

would have otherwise gone unnoticed and helps catch errors in the LCA model. Adequate 

documentation on which inputs/assumptions are included in the sensitivity analysis should also 

be provided to meet ISO requirements and improve the quality of the surveyed work.17, 80 

Additionally, a model’s credibility can be improved when a detailed sensitivity analysis is 

performed; instead of the authors stating they assumed an input is not important, they can 

confirm they verified that the input is insignificant. 

2.4.3.3 Data quality indicators and the pedigree approach for quantifying uncertainty 

When the uncertainty of an individual parameter is unknown, a pedigree approach can be used to 

approximate the uncertainties using DQIs. The pedigree method uses a qualitative ranking 

system and corresponding uncertainty factors. 

Ecoinvent v3 uses an updated pedigree matrix with five indicators and five levels to determine 

the additional uncertainty factors.114 The indicators with the top and bottom levels for each 

indicator are reliability (verified measurements vs. non-qualified estimates), completeness 

(representative data from all sites being considered vs. unknown representation), temporal 

correlation (data less than 3 years old vs. 15 years old), geographical correlation (data from study 

area vs. data from unknown or distinctly different area), and technological correlation (data from 

industry processes vs. data from similar process or laboratory study).114 Ecoinvent has developed 

default uncertainty factors for each indicator and level that range from 1 to 2.8. There are an 



37 | P a g e  

 

additional 27 basic uncertainty factors for different activities or emissions, such as methane 

emissions from combustion, thermal energy, etc.79, 115 If empirical data is available, then the 

basic uncertainty can be calculated using statistical analysis. 

The ecoinvent v2 uncertainty factors were determined using industry experts’ suggestions and 

are therefore subjective. In order to improve the accuracy of the uncertainty factors, Ciroth et al. 

used several databases to empirically determine each uncertainty factor for implementation in 

ecoinvent v3.114 Muller et al. further expanded the ecoinvent uncertainty analysis by calculating 

uncertainty factors for normal, triangle, PERT, and binomial distributions to overcome the 

restriction of requiring a lognormal distribution.79 

Overall, the pedigree method is easy to use, with minimal data requirements. Although an 

empirical method was used to calculate the uncertainty factors, the selection of levels is 

subjective, and the factors are technically only valid for the databases used to determine them. 

Additionally, the pedigree method only assesses parameter uncertainty in inventory values. Data 

values entered by the practitioner will not have default uncertainty distributions assigned to them 

but may still be a significant source or error. For example, a user can specify that 10 kg of steel is 

needed for each product Y, and ecoinvent will have default uncertainty values for various steel 

manufacturing processes but will not include any uncertainty in the amount of steel required (that 

specified by the user); a distribution needs to be specified by the user. Furthermore, not all 

database values include default uncertainty distributions. Since uncertainty is typically 

dominated by a small number of critical inputs, this lack of coverage could result in 

underestimating the total uncertainty. 23% of the studies included in our study stated “the 

SimaPro/ecoinvent defaults were used” and provided no further explanation or justification.86, 87, 

92 Given the severe lack of documentation in the examined literature, it is not clear if authors 

addressed or were aware of these gaps. 

In the authors’ opinion, the most significant pitfall of the ecoinvent defaults is their ease of use 

coupled with academic journals’ willingness to accept papers without discussion or 

documentation on the limitations of the uncertainty results. On the other hand, when used 

properly, the ecoinvent defaults can drastically reduce the time it takes practitioners to perform a 

rigorous uncertainty analysis. Practitioners can use a screening sensitivity analysis to determine 
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if the inputs that do not include default uncertainty distributions will have a significant effect on 

the results (see 4.3.6 for further details). Ecoinvent, SimaPro, and GaBi should consider adding a 

warning message/note to their interface informing users of the limitations of using only the 

ecoinvent defaults. 

2.4.3.4 Modeling uncertainty as a probability distribution or scenario 

Refsgaard et al. provide a taxonomy of imperfect knowledge to determine how to represent 

uncertainty. Based on this taxonomy, Refsgaard et al. recommend using probability distribution 

when some of the outcomes and their probabilities are known and using scenarios when only the 

outcomes are known but no probabilities.22 In the LCAs surveyed in this work, probability 

distributions are typically used to represent uncertainty in parameter inputs. If probabilities are 

not known, they are approximated using expert opinion or DQI methods.97 In addition, normative 

choices are commonly represented as scenarios.67  

It is often tempting to use probability distributions for all the uncertainties as this approach 

produces a single output distribution that is easy to present. However, it is not possible to 

identify the effect of any individual input on the results. Alternatively, a scenario approach can 

distinguish individual effects but requires that multiple results be displayed for each input; such a 

presentation can become overwhelming as the number of inputs increase. A factored design 

would be needed to incorporate interactions as well if multiple scenario inputs are included. 

Normative inputs, also called value parameters, often represent the preference of the decision 

makers.46 Morgan and Herion state that the value parameters tend to be values that policy makers 

are most unsure of and tend to be a source of debate.46 They suggest that including the value 

parameters as possibility distributions can mask their effect and lead to confusion; instead of 

using a scenario (parametric) analysis, policy makers should get a clear picture of how the value 

parameters affect the overall policy outcome.46 For this reason, Morgan and Herion suggest 

normative inputs should never be modeled using probability distributions. Alternatively, for 

discrete normative inputs in comparative LCA with dependent sampling, Huijbregts et al. 

suggest using a non-parametric bootstrapping method, which involves identifying two or more 

alternatives and assigning probabilities to each.116 The probabilities must sum to one and are 

determined subjectively by the decision maker. Huijbregts et al. assumed equal probabilities for 
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all alternatives, and one of the surveyed studies by the authors used historical data to determine 

the share of existing mills that implemented a methane capture technology.67, 116 While 

bootstrapping allows us to implement normative choices into Monte Carlo output results, the 

arbitrary application of a probability to each scenario will still mask the effect of the inputs and 

is not always logical. For example, assigning an equal probability to a 100-year and a 20-year 

time-horizon has no logical basis. However, using bootstrapping to represent scenario parameters 

can be useful when used in an exploratory manner. If a sensitivity screening analysis indicates 

the normative inputs have a negligible impact on the results, further investigation is not needed. 

See Chapter 2.4.3.7 for further information on dealing with normative choices. 

2.4.3.5 Discussion on the motivation for performing sensitivity and uncertainty analysis 

When performing LCA, the sensitivity and uncertainty analysis should not be thought of as 

something to add at the end of a study for the simple purpose of adding error bars to the results, 

which seems to be the case in the surveyed work. Sensitivity and uncertainty analyses should be 

integrated into the entire LCA process, with the goal of improving the quality of the analysis. 

The practitioner should, for example, determine what information is required, what aspects of the 

model need to be improved, and how policy or external factors will influence the results. 

Additionally, we recommend using an exploratory mindset when performing sensitivity and 

uncertainty analyses. The end goal is not to determine the exact range of values the output can 

take with certainty, as this is likely infeasible given data limitations. Instead, the goal should be 

to determine what assumptions or conditions will influence the results, develop a better 

understanding of the limitations of the analysis, and identify opportunities to improve the 

robustness and understand the conclusions. Klauer and Brown suggest using a subjective 

interpretation of uncertainty focused on the decision makers’ degree of confidence in the 

possible outcomes. This is similar to the Bayesian inference discussed by Ellison.117 While this 

method is subjective, and the practitioner could be overconfident, the results are still useful if the 

assumptions are transparent (a requirement of ISO standards17, 80), especially for the critical 

assumptions.  

This study found that sensitivity and uncertainty analyses provide multiple benefits to the 

practitioner that can offset the additional time spent performing the analysis. For example, when 
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the results from the Morris screening method do not align with the practitioner’s expectations, 

the practitioner is encouraged to further examine the model to explain the disagreement. Further 

examination will either identify calculation errors or provide the practitioner additional insight 

into their model. Furthermore, the screening method can be used to guide the practitioner’s time 

management. LCA involves collecting large amounts of data and developing various models and 

calculations. If the screening method suggests that a parameter such as some portion of a product 

shipped by rail vs. truck has a negligible effect on the outcome, then there is negligible benefit in 

finding the industry data. Furthermore, it may be unclear if a simple correlation will suffice or a 

rigorous sub-model is required. If the correlation is known to be accurate within ±25%, then the 

correlation output can be multiplied by an “accuracy” term that can range from 0.75 to 1.25 

during the sensitivity analysis. If the accuracy term is insensitive, the correlation is enough, and 

further work on a more rigorous model is not required. Overall, a detailed sensitivity and 

uncertainty analysis can save the practitioner time, while improving the quality of the analysis 

compared to a simpler alternative commonly seen in the surveyed works. 

2.4.3.6 Framework improvement 

This study found that two main approaches were used in the studied works, either sensitivity 

alone or an uncertainty analysis followed by a sensitivity or contribution to variance approach to 

identify critical inputs. That said, in another study the authors suggested using an iterative 

framework, which is summarized below.2 The framework aims to minimize the amount of time 

and effort put into uncertainty analysis while maximizing the usefulness of the analysis results. 

Since uncertainty in the output is a product of input uncertainty and input sensitivity, an 

insensitive input will have a negligible effect on the output uncertainty. Therefore, input 

uncertainty distributions are only required for the sensitive inputs to accurately estimate output 

uncertainty.  

In order to perform a sensitivity analysis, minimum and maximum values are required for each 

input. To reduce the workload, a conservatively wide estimate should be provided for each input; 

this also reduces the likelihood of incorrectly identifying a sensitive input as insensitive. The 

Morris method is then used to determine parameter sensitivities. Morris requires fewer samples 

than Monte Carlo and Sobol and is more effective at identifying key parameters than the OAT 
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method. Additional research/data collection is then performed for the sensitive inputs to refine 

their minimum and maximum ranges. The Morris analysis is repeated until the ranges for all the 

sensitive inputs have been refined. While the insensitive inputs still give conservatively wide 

ranges, their impact on the output uncertainty is negligible and further effort to refine the ranges 

is not necessary. Preliminary uncertainty distributions are then determined for the sensitive 

inputs identified in the final Morris iteration and a Monte Carlo uncertainty analysis is 

performed. Since this is a subjective approach, caution should be used to avoid prematurely 

eliminating sensitive inputs. If changes are made to the model, the Morris analysis should be 

rerun to ensure insensitive parameters have not become sensitive. When Morris screening is 

used, the number of inputs included in the Monte Carlo simulation can be significantly reduced 

and overall computing time decreased. 

To identify which inputs are the largest contributors to the uncertainty distribution, a contribution 

of variance (COV) analysis is performed. Since COV typically requires between 2,000 to 64,000 

model evaluations per input to determine accurate indices, only the sensitive inputs should be 

included. The practitioner should then attempt to further refine the distributions for inputs with a 

large COV index to improve the accuracy of the model. When this approach is used, less time is 

spent determining uncertainty distributions for insignificant inputs and the analysis is of a higher 

quality.  

Common COV methods are Sobol and the Fourier amplitude sensitivity test (FAST). The Sobol 

method is a decomposition of the variance approximation approach, which determines inputs and 

input interactions contributions to the output variance.118-120 The results are expressed as first 

order indices that represent each input’s share of the total variation as a percentage. Second order 

interactions determine the portion of variation because of the interaction between pairs of inputs. 

To overcome the computational expense of performing a Sobol analysis, the FAST method was 

developed. FAST can calculate the Sobol indices using fewer than 1/20th as many model 

evaluations as the Sobol method.121, 122  

The Sobol and FAST methods both assume a normal output distribution. In the case of multi-

modal or highly skewed distributions, the calculated indices can be misleading; therefore, 
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moment-independent methods such as entropy-based sensitivity and PAWN indices are 

needed.71, 123 

2.4.3.7 Discussion on framing analysis 

The goal and scope of the LCA affect how the sensitivity and uncertainty analyses are 

performed. The effect of the goal and scope on SUA was not discussed in the surveyed studies. 

As mentioned above, dependency can significantly affect the outcome of an LCA. In the 

surveyed study, sensitivity is performed for each pathway independently.90 However, if there is 

dependency between the pathways’ inputs, a sensitivity analysis of the differences in the 

pathways’ results is recommended. For example, both independent pathways may be sensitive to 

the electricity CI, but if they use the same energy source, the difference between the two results 

may be insensitive to the electricity CI. It may also be useful to group similar parameters and 

change them simultaneously rather than individually. For example, a pipeline model may allow 

the user to specify pump efficiencies for each pump station. If each pump’s efficiencies are 

changed independently, the practitioner can identify which specific stations would benefit from 

installing a higher efficiency pump. Alternatively, grouping the pump efficiencies would 

determine how the entire system’s emissions would change if all the pumps were upgraded.   

The audience and the goal of the LCA can affect the decision to represent uncertainty as a 

distribution or a pathway (see Chapter 2.4.3.4). For example, if a product is manufactured using 

two different technologies, pathways should be used if the goal is to compare the two technology 

pathways (i.e., gasoline from different sources), and if the goal is to find the average emission 

intensity of the product to be compared to an alternative product (gasoline vs. fuel cell vehicle), a 

distribution should be used. 

In cases where the uncertainty is dominated by a single input, scenarios could be used to provide 

additional insight. For example, the CI of electric cars is dominated by the electricity CI used to 

charge the battery pack. Rather than presenting a single output distribution for a wide range of 

electricity CIs, sub-scenarios can be used with low, mid, and high electricity CIs or to represent 

different regions.   
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2.4.3.8 Data fitting methods 

When adequate data is available, parametric (fit to existing distribution) or non-parametric (fit to 

data without assuming distribution shape) methods can be used. The surveyed literature provided 

limited discussion on data fitting methods used.   

Vose provides an excellent overview of several data fitting methods and suggests three key 

guidelines to data fitting.78 First, non-symmetric biased error is difficult to identify and account 

for and will not be captured by data fitting methods. In the oil and gas industry, for instance, 

flaring events are only recorded if these last longer than an hour or release more than a specified 

volume of gas; reporting in this way leads to underestimation. Second, the practitioner should be 

aware of how different distributions handle extremes. Some distributions will not extend beyond 

the extreme values in the data, while others, like the normal distribution, extend to infinity. To 

avoid impossible scenarios, i.e., negative mass or flow rates, distributions can be truncated. 

However, it is generally acceptable to allow the distribution to extend beyond the sampled data, 

as extremes are rarely captured in the data. Third, the practitioner should always examine data 

for outliers or errors prior to fitting. It should be noted that in certain scenarios, removing outliers 

is not recommended. For example, Zimmerle et al. found that a small number of super emitters 

were responsible for a significant portion of natural gas fugitive emissions and ignoring them 

would lead to an underestimation error.124  

2.4.3.9 Communicating results 

Rarely discussed in the surveyed works was the significance of overlapping uncertainty ranges 

for multiple pathways. It is important to account for dependency and properly communicate the 

level of overlap between distributions to determine if the results are conclusive. When multiple 

normative inputs are present, a hybrid approach can be used to present the results in an easy-to-

understand manner. 

2.4.3.9.1 Check statistical significance 

First, it is important to determine whether the difference in the pathway means is statistically 

significant. Because of the random nature of Monte Carlo simulations, the output mean 

(mentioned earlier as the sampling error) for each pathway will vary between runs. To test 
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significance, Beltran et al. suggest the null hypothesis significance testing (NHST) and modified 

NHST.52 Henriksson et al. state that statistical significance should always be checked to confirm 

results, but significance should be used with caution as it does not account for dependency.125 

Furthermore, significance of unique means is rarely relevant in uncertain comparative LCA, as 

the uncertainty is not strictly a result of natural variation because of the subjective nature of the 

analysis. Therefore, even if the results are statistically significant, it is not practical to claim one 

pathway is better than another if there is significant overlap.  

2.4.3.9.2  Quantifying degree of overlap 

When output distributions overlap, it is common to determine by how much. When examining 

histograms or a boxplot, it can be difficult to visualize how significant the overlap is. 

Quantitative measures can be used in these cases. Two approaches can be used to quantify the 

amount of overlap between two distributions. Post-hoc methods do not consider dependency 

between the distributions, and rigorous analytical methods can account for dependency. Post-hoc 

methods include assuming a normal or lognormal output distribution52 and using pattern 

recognition methods on the empirical histograms.52, 126 

Rigorous analytical methods include a basic discernability analysis that compares the results 

from each Monte Carlo run to determine the percentage of runs in which pathway A is greater 

than pathway B.52 Wei et al. suggest using reliability theory in comparative LCA to expand on 

the discernibility method to determine the confidence of the model decision.127 While an Monte 

Carlo sample can be used for differential analysis, the coefficient of variation (CV) of the 

decision confidence probability P𝐷 is 𝐶𝑉 = √(1 − 𝑃𝐷) (𝑃𝐷 ∗ 𝑁)⁄ .128 Hence, thousands of 

samples may be required to obtain an accurate result. If computational requirements are high, 

first and second order reliability methods (FORM and SORM) can be used. By focusing the 

analysis around the design point, the number of iterations required is reduced significantly 

compared to the MC method.127, 129, 130 

2.4.3.9.3 Classification and regression trees  

Classification and regression trees (CARTs) have two potential uses. First, if there is overlap 

between pathway output distributions, as discussed in Chapter 2.4.3.9.2, CART can be used to 
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determine whether one pathway is better. Second, when an LCA includes multiple normative 

inputs, CART can be used to present the normative effects in a condensed form (Chapter 

2.4.3.4). 

CART is used to partition the input space into sub-scenarios and can be read as a series of “if” 

statements. For example, in Figure 2-5, Pathway A is greater than B if X1 >0.25 and X2>0.25, 

and when X1>0.75 and X2<0.25. CART can be applied using both discrete and continuous 

values for the model inputs and outputs.  

Gonzalez et al. argued that CART is well suited for assessing Monte Carlo simulation results, as 

it is simple, automatically searches for non-linear effects and higher-order interactions, provides 

an easy-to-read output, and can identify important inputs.131 Therefore, when Monte Carlo 

simulation output distributions overlap, the CART method can identify the sub-scenarios when 

A>B and B>A. The disadvantage of performing CART on a continuous Monte Carlo sample is 

that the generated sub-scenarios will not have as clearly defined boundaries.  

As mentioned in Chapter 2.4.3.4, displaying and understanding results using scenarios with a 

large number of normative inputs can be difficult, while using probability distributions hides the 

effect of the normative inputs. Gregory et al. conducted a hybrid discernibility analysis using 

decision-tree portioning to identify sub-scenarios in which each pathway dominates.132 A full 

factorial approach was used for the normative choices and distributions for the parameter inputs. 

Normative inputs were either binary or had three discrete values. A Monte Carlo simulation with 

1,000 samples was executed for each of the 128 normative factored designs, requiring a total of 

128,000 model executions; this approach incorporated dependent sampling. For each normative 

factor, β, the percentage of runs in which A >B was calculated. The scenario was considered 

resolved if the value of β was larger than the specified cutoff value (90%). CART was then 

applied to the binary output (1 = resolved, 0 = unresolved) and to discrete normative inputs. The 

tree branches could then be used to identify critical normative choices; see Figure 2-5 for an 

example. 

The CART method uses a pairwise approach and is therefore ideal for fully understanding a 

situation in which one pathway is better than another, not for providing a high-level overview of 
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which pathway among many is best. As the number of normative choices and the degree of 

overlap increases, the tree size increases, resulting in an output that is overwhelming for the 

reader.  

 
Figure 2-5: Example of a Classification and Regression Tree (CART) generated using R133 

2.4.3.9.4 Discussion on required report information 

The lack of documentation was a common issue in the surveyed work. In order to meet ISO 

transparency requirements, adequate documentation is required.17, 80 While rigorous sensitivity 

and uncertainty analysis is not always possible or required, it is important to justify the method 

used and its limitations. Because of word limits in published papers, it may not be possible 

include everything in the main paper, but details can be added in an appendix. The method of 

selecting which inputs to include/exclude should be provided, along with any limitations of the 

analysis method used. A list of the inputs used in the sensitivity analysis with their value ranges 

should be provided. In cases where default Ecoinvent/SimaPro distributions are used, at a 

minimum user-specified data needs to be provided. While not required, a list of the Ecoinvent 

default inputs included in the analysis can be useful to the reader. If default distributions are 
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used, a discussion on any data gaps or limitations of the defaults should be mentioned and 

discussed. When Monte Carlo is used, the number of samples should be specified to provide 

context on the accuracy of the output distribution.  

If correlations between input distributions are suspected but not included, the impact should be 

discussed. If correlations are included, justification and relevant data should be provided. The 

effect of dependency and whether it was included should be discussed. While dependency is 

critical for comparative LCA, it is still important for attributional LCA, as there may be 

dependencies in the background data.  

 

2.4.3.10 Further consideration required: modeling error 

The surveyed papers only included parameter and scenario uncertainty, not model uncertainty. 

Refsgaard et al. suggest that modeling error is often the largest source of uncertainty in 

environmental modeling because of the complex nature of environmental systems.134 While 

LCAs of energy systems may not be as complex, structural error can still be significant. Because 

of the severe lack of data available to LCA practitioners, it is often not possible to validate 

models and quantify model uncertainty. When data is available, statistical tests of the model 

error or comparing the errors between training and validation data sets can be used to quantify 

model error.134 Ramin et al. demonstrated that a Bayesian averaging technique of multiple model 

structures could be used to reduce model structural error.135 McDonald and Urban demonstrated 

how increasing model complexity can decrease model accuracy because of overfitting the 

available data.136 

When data is not available for validation, Refsgaard et al. suggest a hybrid approach using 

multiple model formulations, expert opinion, and pedigree analysis to produce a subjective 

estimate of model uncertainty.134 When incorporating multiple model structures without 

validation data, Zelm and Huijbregts used the most complex model as a baseline to identify 

optimal model complexity by examining the trade-off between parameter and model 

uncertianty.51 While the more complex models require additional uncertain parameters, 

increasing overall uncertainty, Zelm and Huijbregts argue that an optimal model minimizes both 
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parameter and model uncertainty. However, their method approximates the model uncertainty in 

the less complex models by assuming the most complex model as the accurate baseline, which 

may be untrue. However, it can be argued that the increase in overall uncertainty from the 

complex model is a better representation of the true uncertainty, as unacknowledged uncertainty 

in the simpler model is acknowledged in the complex model. Zelm and Huijbregts suggest that 

final model selection should strive to minimize uncertainty and incorporate all critical 

processes.51 While the complex model increases parameter uncertainty, the additional detail can 

help guide future data collection to help reduce uncertainty.  

Overall, as model structure error is often difficult to quantify, the existing research suggests 

using multiple model structures. If quantitative methods are not possible, hybrid qualitative 

methods such as numerical unit spread assessment pedigree (NUSAP) can be used.137 Expert 

opinion can be used when data is scarce. However, because of the subjective nature of expert 

opinion, multiple frameworks have been developed for eliciting and weighting expert 

opinions.74-76  

2.4.3.11 Summary of basic and detailed analysis 

Figure 2-6 shown below provides an overview of characteristics of a basic vs. detailed SUA. In 

some cases a detailed SUA is not required; for example, when the LCA model uses a simple 

aggregated data approach. However, even when a basic analysis is acceptable, proper 

documentation should still be included.  
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Figure 2-6: Summary characteristics of a basic vs. detailed analysis 

2.5 Conclusion 

Current LCA practitioners are inconsistent in their implementation of sensitivity and uncertainty. 

Furthermore, sensitivity and uncertainty analysis should not be viewed as something that needs 

to be added on at the end of the project to produce error bars, but as a critical part of the analysis 

which is examined throughout the process. 

• For mathematically simple models, using aggregated data local sensitivity can be 

sufficient, but for larger models using complex calculations a global sensitivity method 

should be used to account for interactive and non-linear effects. 

o Global sensitivity can also help the practitioner develop a deeper understanding of 

the problem being studied. 

Basic Analysis Detailed Analysis

Local sensitivity Global sensitivity

Only small # of inputs examined, limited 
discussion of filtering criteria

Screening method used / justification 
provided to identify key inputs

Includes either sensitivity or uncertainty 
analysis

Includes both a sensitivity and uncertainty 
analysis

Includes parameter uncertainty only Includes parameter, normative, and model 
uncertainty

Basic description of method used, and inputs 
included

Detailed documentation of method used 
with critical parameters (ex. # of samples 

used in MC), documentation of input ranges 

used with references and justification of 
ranges / distributions used 

Minimal interpretation of results; ex. Only 
error bars presented

Discussion on limitations, potential affect of 
correlation, dependency and statistical 

significance

Software defaults used as is, with no 
additional discussion

Potential limitations/gaps of using defaults is 
discussed and/or addressed

SUA added on at end to produce error bars SUA incorporated in all stages from goal and 
scope development to final interpretation
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• For complex models, all inputs/assumptions should be included in the uncertainty 

analysis unless screening methods are used to identify insensitive inputs that can be 

ignored. Since uncertainty can be dominated by a small number of inputs, incomplete 

coverage can result in underestimating uncertainty. 

o Using LCA model (e.g., SimaPro/EcoInvent) defaults will not provide complete 

coverage; values input by the user should be screened to identify sensitive inputs 

which need to be included in the uncertainty analysis. For this reason, the analysis 

based just on the LCA model default uncertainties are not comprehensive. 

o Existing LCA software should integrate screening methods to identify critical 

inputs. When running an uncertainty analysis with default uncertainties software 

should identify which inputs are missing uncertainty distributions. 

• Generic uncertainty ranges such as ±50% for all inputs should not be presented as error 

bars on the output (uncertainty analysis) but should only be used as a basic sensitivity 

analysis to identify critical inputs. 

• The methodology should include a discussion on the type of sensitivity/uncertainty 

method used, limitations in the analysis, justification on what inputs are 

included/excluded, and key simulation parameters such as number of samples and types 

of distributions used.  

• Practitioners should consider how the project’s goal and scope will impact their 

sensitivity and uncertainty analysis. 

o When performing a comparative analysis, the differential method should be used 

to account for dependency. Both the sensitivity and the uncertainty analysis 

should focus on the difference between the pathways, rather than on each 

individual pathway. 

o How the timeframe used will impact the assumptions and goal/scope should be 

considered (historical, current, future). 

As a result of this work, for Excel-based LCA models, an open source template was created that 

uses R to generate the samples and process the results and Excel macros to generate the output 

file and link the Excel and R codes.2 The template is called Regression, Uncertainty, and 

Sensitivity Tool (RUST) and has been used in several studies  in the last three years.57-64  
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3 Development of the Regression, Uncertainty, and 

Sensitivity Tool (RUST)† 

3.1 Introduction 

Bottom-up-based life cycle assessment (LCA) approaches can be used to assess the greenhouse 

gas emissions of various products, including transportation fuels. Bottom-up, spreadsheet-based 

models involve numerous calculations and assumed values that are uncertain. Currently, most 

LCAs provide point estimates with a simple one-at-a-time sensitivity analysis, which provides 

limited insight into how the model assumptions affect the results. In order to improve the quality 

of LCAs, alternative sensitivity methods can be used.  

Campolongo et al.111 illustrated how a Morris sensitivity analysis can be used to accurately 

identify key parameters in a 60-parameter, non-linear model. Iooss and Lemaître,71 Campolongo 

and Braddock,138 Saltelli et al.,119 and Groen et al.70 examined global sensitivity, specifically for 

use in LCA models. Despite the numerous publications on global sensitivity analyses, simple 

OAT sensitivity analysis is still commonly used. 

 

† This chapter is based on the following papers:  

• Di Lullo, Gemechu, Oni and Kumar, "Extending sensitivity analysis using regression to effectively 

disseminate life cycle assessment results". Int. J. Life Cycle Assess. 2020, 25, 222-239. DOI: 

10.1007/s11367-019-01674-y 

• Oni, Anaya, Giwa, Di Lullo and Kumar, "Comparative assessment of blue hydrogen from steam methane 

reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing 

regions". Energy Conversion and Management 2022, 254, 115245. DOI: 

https://doi.org/10.1016/j.enconman.2022.115245 

• Di Lullo, Oni and Kumar, "Blending blue hydrogen with natural gas for direct consumption: Examining the 

effect of hydrogen concentration on transportation and well-to-combustion greenhouse gas emissions". Int. 

J. Hydrogen Energy 2021, 46, (36), 19202-19216. DOI: 10.1016/j.ijhydene.2021.03.062 

• Di Lullo, Oni, Gemechu and Kumar, "Developing a greenhouse gas life cycle assessment framework for 

natural gas transmission pipelines". J. Nat. Gas Sci. Eng. 2020, 75, 103136. DOI: 

10.1016/j.jngse.2019.103136 
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One of the key advantages of OAT local sensitivity analysis is its ease of implementation. Users 

do not require any statistics or programming background; they can simply use Excel data tables. 

While open source software such as SIMLAB by the Joint Research Centre (JRC) of the 

European Commission.94 and PSUADE120 simplifies global sensitivity analysis, the user still 

needs to automate the process of generating the output from the Excel model. R139 and 

MATLAB140 packages are available for both sensitivity and regression analyses but require 

programming experience and can be difficult to use. Excel add-ins such as ModelRisk by Vose 

Software39 and CrystalBall by Oracle41 are limited to performing Monte Carlo simulations. LCA 

software such as SimaPro,85 OpenLCA,141 and GaBi42 are also limited to Monte Carlo 

simulations only.  

In order to encourage the use of higher quality sensitivity analysis methods, which will improve 

the overall quality of the LCA, software that is easy to use is required. Hence, in this work, 

RStudio and Excel VBA were used to create an easy-to-use template called the Regression, 

Uncertainty, and Sensitivity Tool (RUST) that can be inserted into any Excel-based LCA model. 

We also created an iterative framework with the primary goal of producing a high-quality 

analysis while minimizing the data collection and computational workload. The developed 

framework and tool was then applied to the previously published FUNdamental ENgineering 

PrinciplEs-based ModeL for Estimation of GreenHouse Gases in Conventional Crude Oils and 

Oil Sands (FUNNEL-GHG-CCO&OS)44, 142-145 and the FUNNEL-GHG natural gas transmission 

lines (-NGTL) models.4 

3.2 Method 

The RUST framework for incorporating sensitivity and uncertainty analysis into LCA is 

illustrated in Figure 3-1. The primary goal is a high-quality analysis with minimal data collection 

and computational workload. Since output uncertainty is a product of input sensitivity and input 

uncertainty, the practitioner only needs to focus on collecting data for the sensitive inputs.  
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Figure 3-1: Overview of RUST framework and process flow diagram 

RUST was created to link Excel and R in a user-friendly format. The data processing is 

performed in R, and Excel is used for the user interface and LCA model. Several R packages are 

used in the template.139, 146-154 The RUST template can be used with any Excel-based LCA model 

and supports parallel computing to reduce computational time. The approach could also be 

extended to existing LCA software by creating application-specific interfaces, but that aspect is 

beyond the scope of this study. 

It is recommended that an exploratory mindset be used when performing sensitivity and 

uncertainty analyses. The end goal is not to determine the exact range of values the output can 

take with certainty, as this is likely infeasible given data limitations, especially for future/newer 

technologies. Instead, the goals should be to determine what assumptions or conditions will 

influence the results, to develop a better understanding of the limitations of the analysis, and to 

identify opportunities to improve the robustness and understanding of the conclusions. Klauer 

and Brown suggest using a subjective interpretation of uncertainty focused on the decision 

makers’ degree of confidence in the possible outcomes.155 This is similar to the Bayesian 

inference discussed by Ellison.117 While this method is subjective, and the practitioner could be 

overconfident, the results are still useful if the assumptions are transparent (a requirement of ISO 

standards),16, 17 especially for the critical assumptions.  

3.2.1 Sensitivity screening methods 

There are numerous reviews of the many methods available for performing sensitivity and 

uncertainty in LCA, the most recent from Igos et al.18 Existing sensitivity methods include 
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correlation, key issues, linear regression analysis, marginal, moment-independent modelling, 

Morris, OAT, scenario, and Sobol/FAST analysis.18, 26, 70 This study focuses on the Morris and 

Sobol methods as they have an optimal balance of flexibility and ease of use. These methods can 

be applied to non-linear and non-monotonic problems with large input variances. The Morris 

method, moreover, is faster than the factored scenario method as fewer samples are required. 

3.2.1.1 Morris method 

Sensitivity is a partial derivative that can be dependent on the value of the parameter in question 

(non-linear) or the values of the other parameters (interactions). The Morris method uses a 

design of experiments approach to evaluate the partial derivative across the parameter space.113 

The user selects the number of levels, p, and number of OAT designs/approaches, r. The number 

of model evaluations required is 𝑁 = 𝑟 ∗ (𝑘 + 1), where k is the number of parameters. Values 

for p and r should be even and r should be larger than p to ensure uniform sampling of the 

space.113 Typical r values are between 10 and 50.111 The level specifies the number of unique 

values each parameter can take. In Figure 3-2, p = 4, meaning each model parameter (x1, x2, x3) 

can take on a value of 0, 0.33, 0.67, or 1. The values are then scaled based on the input ranges 

provided. Figure 3-2 shows the sample path (blue line) in which a starting point is randomly 

selected. One input is changed at a time, from points 1-4 and 5-8, to calculate the partial 

derivatives of the respective parameters. From points 4 and 5, multiple parameters are changed 

simultaneously, which results in a new approach. The number of approaches, r, also sets the 

number of derivatives calculated for each parameter. Higher r values are required to ensure that 

the parameter space is adequately sampled. For example, Figure 3-2 shows that no samples were 

taken in the bottom corner. The red line represents an example model response and illustrates the 

effects of the number of levels. Since only 4 levels are used, the calculated partial derivatives 

will always be negative. However, a positive slope between x3 = 0.85 and 1 would be detected if 

more levels were used. The derivative in the x1 direction would incorrectly appear to be negative 

over the entire domain. For non-linear equations, large p values are required to ensure that 

variability in the sensitivity is accurately captured. Campolongo et al. introduced an optimization 

approach that started with 500-1,000 r approaches and then determined which 10 approaches 

provided the best spread of the parameter domain.111 When the model’s evaluation time is long, 

Campolongo’s method can reduce the number of model evaluations; however, the brute force 
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approach used to select the optimal approaches can be computationally expensive. Since the 

FUNNEL-GHG-CCO/OS model can calculate over 100 samples/s, it is quicker to simply assess 

a larger number of approaches than to use Campolongo’s optimization method. 

 
Figure 3-2: Example of Morris sampling with three parameters (k), two OAT designs (r), 

and four levels (p) 

The partial derivative, also known as the elementry effect, for parameter j is determined for each 

OAT design, i=1 to r, as:  

𝐷𝑗
𝑖 =

𝑓(𝑋𝒊 + ∆) − 𝑓(𝑋𝑖)

∆
 

(Eq. 1) 

where Xi is input (i=1,..,k ) and f(Xi) is the model output with the respective input. Delta is 

determined from the number of levels, p, as ∆ = 𝑠/(𝑝 − 1). The step size is generally set to 𝑠 =

 𝑝/2; in Figure 3-2 s = 1.146 To simplify the presentation of the results, the mean (µ) of the 

absolute partial derivatives and the standard deviation (σ) are calculated: 

𝜇𝑗 =  
1

𝑟
∑ |𝐷𝑗

𝑖|
𝑟

𝑖=1
 (Eq. 2) 
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𝜎𝑗 =  √
1

𝑟
∑ (𝐷𝑗

𝑖 −
1

𝑟
∑ 𝐷𝑗

𝑖
𝑟

𝑖=1
)

2𝑟

𝑖=1
 

(Eq. 3) 

  

The larger the µ, the more sensitive the model output is to the input value. The standard 

deviation (σ) shows how the sensitivity changes throughout the parameter domain. If σ is large, 

then either the partial derivative is affected by the input value as it moves across its range (non-

linear) and/or the slope depends on the values of the other parameters (interactions). The 

absolute value of the partial derivative is taken for the mean to ensure that non-monotonic 

parameters are not incorrectly labeled as insignificant; the standard deviation does not use 

absolute values as doing so would underestimate the true variation in a non-monotonic model. 

The mean and standard deviation values are normalized using the parameter ranges so that they 

are comparable. The Morris method groups the inputs into three main categories, those with 

negligible effects (small µ and σ), linear effects with negligible interactions (large µ and small 

σ), and non-linear/large interaction effects (large σ).  

 

3.2.1.2 Sobol method 

The Morris method identifies whether parameter sensitivities vary across the domain space; 

however, it cannot differentiate between non-linear and interaction effects. Nor can it identify 

which specific parameters are interacting. The Sobol method uses a decomposition of variance 

approach to identify what percentage of the overall variance can be attributed to each parameter 

or group of parameters.71, 118-120, 146 

An ANOVA analysis is used to compare the variation between groups to the variation within the 

groups and to identify whether the means of the groups are significantly different. The calculated 

first-order Sobol indices indicate the main effect of each variable, while the Sobol total indices 

indicate the contribution to variance due to the main and all interaction effects. Figure 3-3 shows 

how two n*k matrices can be used to generate k ABi matrices with column i from A and the 

remaining columns from B. The model is then run for all the samples in A, B, and ABi for a total 
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of N=n*(k+2) model evaluations, where n is the number of samples for each matrix (rows) and k 

is the number of inputs (columns). 

 
Figure 3-3: Sobol sample generation 

The 1st and total Sobol indices for each parameter, i, are then calculated as: 

𝑆𝑖 =

1
𝑛

∑ 𝑓(𝐵)𝑗 ∗ (𝑓(𝐴𝐵𝑖)𝑗 − 𝑓(𝐴)𝑗)𝑛
𝑗=1

𝑉𝑎𝑟(𝑌)
 

(Eq. 4) 

𝑆𝑇𝑖 =

1
2𝑛

∑ (𝑓(𝐴𝐵𝑖)𝑗 − 𝑓(𝐴)𝑗)
2𝑛

𝑗=1

𝑉𝑎𝑟(𝑌)
 

(Eq. 5) 

In layman’s terms, first order indicies take the variation in the results that occur from changing 

the value of the ith parameter (𝑓(𝐴𝐵𝑖)𝑗 − 𝑓(𝐴)𝑗), scaling the results using (𝑓(𝐵)𝑗 ∗) and 

normalizing the effect against the total variance using  𝑉𝑎𝑟(𝑌)⁄ . The sum of all primary and 

interaction terms equals 1; hence, in a purely additive model, the sum of the first-order indices 

will equal 1. Parameters with low total Sobol indices can be removed, as their effect on the 

overall variance is insignificant and will have minimal effect on the output.  

Matrix A [f(A) ] Matrix B [f(B) ]

X 1 X… X k X 1 X… X k

1 0.3 0.2 0.1 1 0.6 0.7 0.3

2 0.4 0.5 1.0 2 0.5 0.4 0.6

…. 0.1 0.7 0.2 …. 0.1 0.2 0.9

n 0.6 0.8 0.5 n 1.0 0.6 0.8

Matrix AB1 [f(AB 1 ) ] X 1 X… X k

1 0.6 0.2 0.1

2 0.5 0.5 1.0

…. 0.1 0.7 0.2

n 1.0 0.8 0.5

Matrix AB1 [f(AB...) ] X 1 X… X k

1 0.3 0.7 0.1

2 0.4 0.4 1.0

…. 0.1 0.2 0.2

n 0.6 0.6 0.5

Matrix AB1 [f(AB k ) ] X 1 X… X k

1 0.3 0.2 0.3

2 0.4 0.5 0.6

…. 0.1 0.7 0.9

n 0.6 0.8 0.8
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3.2.1.3 Morris and Sobol validation method 

Because the Morris and Sobol methods use random number generators to determine the sample 

points, the results vary between runs. In order to confidently use these methods to quantify 

uncertainty, their accuracy needs to be evaluated and the minimum number of model evaluations 

required to obtain an accurate result needs to be determined. For the Morris method, we ran each 

scenario 50 times and reported the average and standard deviation of the Morris µ and σ. 

Different r and p values were used in the scenarios to examine their effects.112 For the Sobol 

analysis, the group sizes, n=2x were varied from x = 3-15.  To determine the standard error for 

each index, we used the R codes’ built-in bootstrapping method.  

To determine if the Morris method can accurately identify sensitive inputs, we compared the 

Morris and Sobol results using the parameter ranks. The Morris method used µ and the Sobol 

method used the total indices instead of the 1st order indices to rank the parameters. We gave a 

rank of 1 to the parameter with the highest sensitivity. 

3.2.2 Case studies 

The RUST method’s ability to improve the quality of LCA is showcased through two case 

studies conducted earlier. By identifying which inputs are most sensitive using RUST, 

practitioners can focus their data collection efforts more effectively and reduce the error in the 

model. 

 FUNNEL-GHG-CCO/OS is a simple, nearly linear monotonic LCA model. Full details of the 

FUNNEL-GHG-CCO/OS LCA model are available in two papers by Di Lullo et al.44, 142 The 

bottom-up LCA model calculates the GHG intensity of gasoline produced from various crudes in 

gCO2eq/MJ of gasoline. that the first case study focuses on Maya, Bow River, and Athabasca 

mined bitumen. Maya is a heavy Mexican crude produced off the coast of Mexico using offshore 

drilling and nitrogen injection, Bow River is a heavy convectional crude produced using water 

flooding in southern Alberta, and Athabasca bitumen is produced in northern Alberta using open 

surface mining. Each crude has 44-65 inputs. The scope of the LCA includes the well drilling, 

crude production, surface processing, crude transportation, refining, transportation fuel 
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distribution, and combustion stages (Figure 3-4). The construction phase was not included, given 

its negligible contribution to total GHG emissions. The energy requirements for each piece of 

equipment and the associated GHG emissions were calculated using technical parameters such as 

unit efficiencies, production ratios, and operating temperatures and pressures (see Appendix C).  

 
Figure 3-4: FUNNEL-GHG-CCO/OS model boundary 

FUNNEL-GHG-NGTL is an iterative non-linear LCA model that calculates the GHG intensity 

of transporting natural gas through a high-capacity pipeline over a long distance.4 The Alliance 

pipeline scenario had 44 inputs. The LCA scope included pipeline construction, operation, and 

decommissioning. Only the main transmission line and compressor stations were included; 

gathering pipelines and storage tanks were excluded (Figure 3-5). Technical parameters included 

pressure, temperature, physical properties, efficiencies, system dimensions and properties, and 

emission factors (see Appendix C). 
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Figure 3-5: FUNNEL-GHG-NGTL model boundary‡ 

To determine the compressor energy requirements, custom Excel functions were written to 

calculate gas viscosity and compressibility, pipeline pressure drop, and required compressor 

power. The gas viscosity was calculated using a correlation by Carr et al.156 that uses the gas 

gravity, as well as nitrogen, carbon dioxide, and hydrogen sulfide molar fractions (Eq. B1-B6).  

The gas compressibility factor (Z) is determined using the Peng-Robinson equation of state for 

mixtures and depends on the gas temperature, pressure, molar composition, and component 

acentric and binary interaction factors. The custom function determines the attraction and 

repulsion parameters for the gas mixture using the acentric and binary interaction parameters 

from Aspen Technology Inc.50  

 

‡ This model is based on work published as Di Lullo, Oni, Gemechu and Kumar, "Developing a greenhouse gas life 

cycle assessment framework for natural gas transmission pipelines". J. Nat. Gas Sci. Eng. 2020, 75, 103136. DOI: 

10.1016/j.jngse.2019.103136 
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3.3 The general flow equation is used to calculate the pressure drop along the 

pipeline from friction and elevation losses.157, 158 The flow rate split 

between parallel pipes uses the Newton-Raphson method; hence, the 

partial derivative of pressure drop with respect to the flow rate is also 

calculated. An iterative approach is used to calculate the average 

temperature, pressure, and compressibility factors. The average 

temperature is calculated by accounting for heat loss to the ground and 

the effect of expansion cooling. See Appendix B for additional details on 

the calculations used. The NGTL paper examined the Alliance and 

Prince Rupert transmission pipelines, see Chapter 3.3.5.3 for a 

description of the two pipeline systems.4  Results and Discussion 

3.3.1 Application of Morris method 

To validate the Morris method, 50 runs are averaged for various r and p values. The number of 

runs used is arbitrary; 50 gives an adequate balance between accuracy and computing time. Two 

parameters were examined (shown in Figure 3-6) from the FUNNEL-GHG-CCO/OS Maya 

pathway, the gas-to-oil ratio (GOR) and the pipeline velocity for crude transportation to the 

refinery. For the Maya pathway, the GOR was the most significant parameter; it had the largest µ 

and σ on the Morris plot. The pipeline velocity parameter was examined as it results in a non-

linear response. For the NGTL model, the Alliance pipeline flow rate is examined because of the 

non-linear response due to iterative calculations. The coefficient of variation (CV) in the Morris 

µ and σ values over the 50 trials was examined; only the µ results are shown in Figure 3-6. If the 

CV is large, the Morris plot results will change each time the analysis is run and can lead to 

incorrect representations of the model sensitivity. The results of the case studies show that the 

CV decreases significantly as the number of approaches, r, increases; more approaches result in a 

better coverage of the parameter space. While increasing the number of levels, p, reduces the 

CV, the impact is less significant; more levels help better identify non-linear and non-monotonic 

behavior (see red spline in Figure 3-2). Overall, negligible benefit is seen in using r values 

greater than 40 in Figure 3-6, which align with Campolongo et al.’s suggestion of using 10-50 

approaches.111 The number of levels, p, can reduce the variance, especially when small r values 
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are used. However, in order to ensure uniform sampling, the number of levels, p, should be less 

than the number of approaches/OAT designs, r.113 

The Morris σ CV followed a similar pattern as the µ. The µ and σ values averaged over the 50 

trials were all within 5% of each other, indicating that they all converge to the same result if 

enough trials are used. The Morris method is meant to identify sensitive and insensitive inputs; 

the absolute values are not as important for initial screening purposes as the relative rank. 

Therefore, it is acceptable to use lower r values during initial screening. 

 
Figure 3-6: Variation in Morris mean over 50 runs for different levels (p) and approaches 

(r) 

3.3.2 Application of the Sobol method 

Using bootstrapping, we compared the Sobol indices’ accuracy for multiple sample sizes. The 

accuracy of the 1st order indices is approximately equal for all inputs regardless of their 

individual index value (Figure 3-7, left); therefore, the error is presented as a ± that can be 

applied to all first-order indices, regardless of their mean value. For example, a 1st order index 

with a mean value of 50% and std. error of 10% would range from 40% to 60%, while a 1st order 

index with an average value of 4% would range from -6% and 14%.  

The total order indices’ accuracy varies based on the index value for each parameter, but the CVs 

(std. error/mean) are approximately equal for all inputs (Figure 3-7, right). The error in Sobol 

indices does not appear to be dependent on the number of parameters, but further testing is 

needed to verify this.  
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Figure 3-7: Sobol index accuracy as a function of sample size: 1st order (left) and total 

(right) 

The index rankings using total indices stabilized with x = 4-8, compared to x = 8-10 for the 1st 

order indices (Figure 3-8). Therefore, using total indices is recommended if Sobol is used for 

screening purposes. Preliminary results suggest the number of inputs may impact Sobol index 

accuracy, but further testing is needed. 

 
Figure 3-8: Sobol index rank vs. sample size for Alliance (top) and Maya (bottom); each 

line represents an input 

3.3.3 Morris vs. Sobol for screening purposes 

To compare the Sobol and Morris methods, we examined the ranks for the 65-parameter 

scenarios. The Morris method used r = 60 and p = 32, the Sobol method used x = 13, and the 

OAT method used two samples per input plus the base case. The OAT, Morris, and Sobol 

methods required 131, 3,960, and 548,864 model evaluations, respectively. The parameter 

ranking between the OAT method and Morris can vary by up to 21 positions (Figure 3-9, left). 
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Unlike the Sobol methods, however, even the ranking of the most significant variables is 

inaccurate using the OAT method. While the ranks vary by up to seven positions for the Sobol 

method (see Figure 3-9, right), the ranks of the significant parameters are more stable; hence, 

both the Morris and Sobol methods can accurately identify the significant parameters. However, 

the Morris method requires fewer than 1/100th the number of model evaluations and is ideal for 

screening purposes. Once insensitive parameters have been removed by the Morris method, the 

Sobol method can be used to identify which parameters are interacting, if desired. 

Results from the OAT analysis showed that ignoring interaction effects can lead to an incorrect 

estimation of parameter importance. The inaccuracy of the OAT method will vary between 

models and depends on the extent of interaction and degree of non-linearity. While the FUNNEL 

model is non-linear, it is also monotonic, which benefits the OAT approach. Though Groen et 

al.70 suggest a linear regression model (without interaction terms) can be used for identifying 

important parameters, the model requires many samples, and the coefficients can only be used as 

importance measures if the model’s R2 is close to one, indicating a good fit. 

When using the Morris method 20-40 approaches (r) generally provided accurate results, with 

minimal benefits above 40 approaches. Parameter ranks varied by an average of ten positions 

between runs when only 4 approaches (r) were used. One parameter varied by 49 positions 

between runs; therefore, care should be taken when using a small number of runs. When 10 

approaches (r) were used, the average rank change fell to 5.5, with a maximum change in rank 

between runs of 14. The number of Morris samples needed will also depend on the complexity of 

the model; non-linear and highly interactive models require more samples, while linear additive 

models require fewer samples. Sobol requires 2*28 for screening purposes using the total indices. 

If the practitioner wants to determine whether interaction effects are occurring, then 2*212 

samples are needed. Determining second-order indices to identify specific interactions requires 

nearly doubling the sample size. 
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Figure 3-9: Variations in parameter rank for Maya: OAT (left), Sobol (right) (+ means the 

OAT/Sobol rank’s parameter is less important than the Morris method’s) 

Although the Morris and Sobol methods are restricted to uncorrelated inputs, they are still useful 

for screening purposes. Correlated inputs can be grouped and represented as a single output. 

While the grouped input method cannot determine the importance of the individual inputs and 

requires the correlation to be approximated as a direct link, it can identify whether the grouped 

parameter is significant or not. Alternatively, moment-independent methods such as entropy-

based sensitivity71 and PAWN indices can be used123. The Sobol method can also be extended to 

account for correlations with two additional indices159. Since background processes are not 

always rigorously modeled in process based LCA, correlations between background emission 

factors should be investigated. For example, the background emission factors of natural gas, 

diesel, and fuel oil may all depend on the emission factor of the electrical grid, which is used by 

all three processes104. By grouping the parameters as described above, one can investigate the 

potential impact of dependency. Data analysis techniques such as principal component analysis 

(PCA) and partial east squares regression (PLS) are useful when the data set available is 

correlated or has a limited sample size; however, since RUST generates an uncorrelated sample 

to train the regression model, these methods are not needed. Furthermore, since PLS emphasises 

developing a predictive model, it is not useful as an alternative to the Morris methods for 

screening out insignificant parameters160. 

3.3.4 RUST summary 

RUST includes a mapping macro, which can be used to easily run sensitivity and uncertainty in 

any Excel-based LCA model. Furthermore, the Morris and Sobol analyses are performed with 

scripts, which can be integrated into other programs such as SimaPro and OpenLCA in future. 

RUST can also be used with Excel models that are linked to speciality engineering software such 

as Aspen HYSYS. While the case study uses a maximum of  65 parameters, RUST is capable of 
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assessing larger input models as the 64-bit version of Excel is no longer limited to 2GB of 

RAM.161 Furthermore, the case study uses a single output, but multiple outputs can be specified 

in RUST for the Morris and Sobol analyses. Regression must be run one output at a time or with 

a weighted output. 

Currently, RUST, Monte Carlo, and Sobol support lognormal, normal, project evaluation and 

review technique (PERT), modified PERT, triangle, and uniform distributions. Monte Carlo uses 

Latin hypercube sampling. Unlike other Excel add-ins, it does support parallel computing. 

Output uncertainty is a product of input uncertainty and input sensitivity; therefore, probability 

distributions are only required for the sensitive inputs. The Morris global sensitivity method can 

be used to identify sensitive inputs and a Monte Carlo simulation can then be run using 

probability distributions for the sensitive inputs only, reducing data collection efforts. See 

Chapter 2 for an in-depth review of how uncertainty is performed.  

 

3.3.5 Qualitative results 

At the 2018 American Centre of Life Cycle Assessments (ACLCA) conference session on 

uncertainty, the question “How can consultant companies justify the additional cost of including 

a sensitivity and uncertainty analysis to their clients?” was asked.162 This research found that 

sensitivity and uncertainty analyses provide many benefits to the practitioner that can offset the 

additional time spent performing the analysis. For example, when the results from the Morris 

screening method do not align with the practitioner’s expectations, it encourages further 

examination, which can help identify calculation errors or provide the practitioner additional 

insight into their model. Furthermore, the screening method can be used to guide the 

practitioner’s time management. LCA involves collecting large amounts of data and developing 

various models and calculations. This section includes qualitative examples on how RUST can 

help improve the quality of LCA in the energy sector. 

3.3.5.1 What data is important 

In this example the fossil fuel industry requested a life cycle assessment of their open pit mine 

reclamation plan.163 The analysis required data from industry to complete, but industry had 
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limited resources to provide data. By using the Morris method, we were able to identify which 

pieces of data were critical and requested that industry provide these key data. The Morris 

method also identified which data was not important and allowed us to use rough estimates 

rather than wasting time collecting data from the industry. In this case using RUST reduced time 

spent on data collection, streamlining the process. The open pit modeled is used as an example, 

but this method can be applied to any model requiring external data. 

3.3.5.2 Correlation or rigorous model 

In the NGTL model, the Brills and Briggs correlation with an accuracy of ~±15% was originally 

used to calculate the gas compressibility, Z.164 In Morris, the gas compressibility, Z, was 

multiplied by an “accuracy” term, which can vary between 0.85 and 1.15. Since Morris identified 

the “accuracy” term as sensitive, the correlation was replaced with a more accurate Peng-

Robinson cubic equation of state solver (Appendix B.2).165, 166 Alternatively, if the correlation 

“accuracy” term was insensitive, then it would not be necessary to spend time developing a more 

rigorous model. Overall, a detailed sensitivity and uncertainty analysis can save the practitioner 

time while improving the quality of the analysis compared to a simpler alternative commonly 

seen in the surveyed works (Chapter 2). 

3.3.5.3 Why dependency matters when comparing similar systems 

As discussed in Chapter 2.4.2.3.5, dependency can have a large impact on model results. In an 

earlier study5 I performed an LCA to compare pipeline emissions transporting pure natural gas 

and a natural gas hydrogen blend (hythane). Two western Canadian pipelines were examined in 

the study, Alliance and Prince Rupert. Alliance has three 20 MW compressors at the first station, 

and stations 2-7 each have a 23 MW compressor. The stations are approximately 193 km apart. 

Prince Rupert uses two 26.4 MW compressors at each of its eight stations. The stations are 

roughly 100 km apart. Table 3.1 provides a summary of each pipeline’s key characteristics. 

Detailed calculations are provided in Appendix B. 

Table 3.1: Overview of Alliance and Prince Rupert Pipelines4 

Specification Alliance Pipeline 

(Built) 

Prince Rupert Mainline 

(Planned) 

Composition Rich NG (89.9% Conventional NG (96.1% 
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Specification Alliance Pipeline 

(Built) 

Prince Rupert Mainline 

(Planned) 

methane) methane) 

Route 3,000 km, BC/AB to 

Chicago, 1,361 km 

assessed 

878 km, Hudson’s Hope to 

Prince Rupert 

Capacity  

(million m3/d)  

47.2-52 56.6 (Phase 1)  

101.9 (Phase 2) 

Maximum allowable operating 

pressure (MAOP)  

12 MPa 9.9 MPa 

Diameter 914 mm / 36” 1219 mm / 48” 

Lower heating value (LHV) 36.9 MJ/m3 33.2 MJ/m3 

Differential analysis was performed for the pure natural gas pipeline and the 15% H2 hythane 

scenarios. Dependence is important to consider when examining two similar scenarios. For 

example, while there may be an error in the pipeline lengths considered, it would not be 

appropriate to compare a longer, pure NG pipeline to a shorter, hythane pipeline. Alternatively, 

because of the different gas properties, the shorter length may benefit the NG pipeline more than 

the hythane pipeline, thereby affecting the results. In this case, the error in the length was 

modeled as a dependent in sensitivity and uncertainty analysis, meaning that while the length 

will vary, both pathways will use the same length for each sample. Some of the inputs may have 

weak independency. For example, the facility piping pressure drop is primarily affected by the 

piping layout and the number of elbows and valves, etc. (dependent), but would also be impacted 

by the gas properties (independent). 

It is expected that the polytropic efficiency of the compressor and the turbine efficiency will be 

affected by the H2 content of the gas (moderately independent). For pure H2 compressors, faster 

impeller tip speeds or a large number of stages are required to achieve similar efficiencies to 

natural gas because of H2’s lower molecular weight.167 However, there is currently insufficient 

data to estimate how the existing compressor efficiencies will change as H2 is blended into the 

system. Six additional inputs – the cooler, scrubber, facility pressure drop, cooler outlet 

temperature, pipeline efficiency, and pipe-to-ground heat conductivity – are considered weakly 

independent. Since it is unclear how significant the independence is for the weak independent 

inputs, correlations cannot be used. Therefore, the uncertainty analysis included 3 cases to 

examine the effect of dependence between the inputs. In Case 1, both the moderately and weakly 
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independent inputs were modeled independently, and the remaining 17 inputs were dependent. In 

Case 2, only the two moderately independent inputs were modeled independently, and in Case 3 

all of the inputs were left as dependent. 

Steam methane reforming (SMR) of hydrogen with carbon capture and sequestration (CCS) was 

used for this work to determine hydrogen production emissions. The key outcome was to 

determine what CCS rate was needed to ensure that hythane well-to-combustion (WTC) 

emissions were lower than those of pure natural gas. The breakeven percent carbon reduction 

required (CRR) is calculated as the ΔWTC divided by the H2 SMR emissions for each sample. 

The required carbon capture rate would be slightly higher to account for the additional GHG 

emissions generated by the carbon capture system.  

Whether the inputs are modeled as dependent or independent has a negligible impact on the 

mean carbon reduction rate (~Δ1.5%); however, it does impact the confidence intervals (Figure 

3-10). As the degree of dependence increases, the confidence intervals shrink. The uncertainty 

ranges for polytropic (70% to 85%) and turbine (27% to 39%) efficiency are large to account for 

variations in equipment size, design, and operating conditions. It is likely that the change in 

efficiency caused by blending H2 into the gas will be significantly smaller. Therefore, the true 

results will lie between the Case 2 and 3 results and be closer to the Case 3 results. Figure 3-10 

illustrates why it is important to use a differential analysis and consider dependency when 

performing an uncertainty analysis; simply assuming all inputs are independent would 

overestimate uncertainty, while assuming they are all dependent would underestimate 

uncertainty.  
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Figure 3-10: Effect of dependency in differential analysis for 50 million m3/d Alliance 

3.3.5.4 Comparing pathways with differential analysis 

Oni et al.168 examined four blue hydrogen production pathways for Alberta; the results are shown 

in Figure 3-11. The goal of the project was determine which hydrogen production method would 

be cheapest. The first method, steam methane reforming (SMR) uses natural gas to produce 

hydrogen and can be done without carbon capture and sequestration (CCS) but this results in 

large CO2 emissions. To reduce emissions SMR can be done using mild CCS (52% reduction in 

CO2 emissions), or moderate CCS (85% reduction in CO2 emissions). The carbon capture 

intensity impacts the costs as additional equipment and energy is required. Autothermal 

reforming (ATR) also uses natural gas, but the reaction requires the use of pure oxygen instead 

of atmospheric air like SMR. ATR has the potential to reduce hydrogen emissions compared to 

SMR. ATR is examined with an aggressive 91% CCS rate as the process setup makes CCS more 

cost effective. Natural gas decomposition (NGD) uses natural gas to produce hydrogen and solid 

carbon instead of CO2. NGD still includes CCS for the natural gas consumed as fuel, the 

feedstock natural gas produces solid carbon. 
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It is unclear whether hydrogen from SMR-52% CCS is less expensive than natural gas 

decomposition (NGD)-CCS(Figure 3-11). However, when differential analysis is used to look at 

the difference between scenarios accounting for dependency in the inputs, it becomes clear that 

NGD-CCS costs more than SMR-CCS 52% (Figure 3-12). Differential analysis can only be done 

in a pairwise fashion; for four scenarios, six differential pairs are needed. If the difference is 

always positive for the A-B pair, then A is always larger than B. The reason for the large overlap 

in uncertainty ranges in Figure 3-11 is a result of all scenarios being sensitive to the hydrogen 

storage duration, natural gas price, and IRR, which are dependent inputs (see Figure 3-13 Morris 

plots). For ATR-CCS – SMR-52% CCS and SMR-85% CCS – NGD-CCS, the values are 

negative in approximately 5% of the scenarios. Further investigation into these scenarios using 

Morris/Sobol analysis on the differential results can be used to determine the conditions required 

for the conclusion on which is more expensive to be reversed. Figure 3-14 shows that the natural 

gas price and IRR are responsible for 89% of the variability in the ATR-CCS – SMR-52% CCS 

scenarios. For the SMR-85% CCS – NGD-CCS scenario, 90% of the variability is due to the 

CO2 transportation costs and natural gas price. Further investigation into the model’s response 

shows that SMR-52% is potentially cheaper than ATR-CCS when natural prices are low and IRR 

is high. SMR-85% CCS may outperform NGD-CCS if the CO2 transportation cost and natural 

gas price are low. 
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Figure 3-11: Uncertainty in cost results of blue hydrogen production technologies (from 

Oni et al.168) 

 
Figure 3-12: Comparative analysis of cost production for blue hydrogen technologies (from 

Oni et al.168) 
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Figure 3-13: The influence of economic parameters on the hydrogen cost from (A) SMR-

52%, (B) SMR-85% (C) ATR, and (D) NGD 
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Figure 3-14: Sobol results for the differences between SMR-52% - ATR-CCS (left) and 

SMR-85% - NGD-CCS (right) 

 

3.3.5.5 Importance of linked calculations 

To accurately model sensitivity and uncertainty, calculations should be properly linked. For 

example, instead of the temperature, pressure, density, and viscosity all being inputs, the density 

and viscosity should be calculated based on the temperature and pressure.  

It was important that the gas properties in the study by Di Lullo et al.5 on natural gas vs. hythane 

emissions were calculated based on temperature and pressure as they varied through the system 

and were critical to understanding the differences between the scenarios. If calculations are not 

linked, the sensitivity and uncertainty may be underestimated, leading the practitioner to draw 

faulty conclusions. 
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3.4 Conclusion 

When performing an LCA, the sensitivity and uncertainty analyses should not be thought of as 

something to throw on at the end for the simple purpose of adding error bars to the results, which 

was found in the literature review (see Chapter 2). Sensitivity and uncertainty analyses should be 

integrated into the entire LCA processes, with the goal of improving the quality of the analysis. 

For example, the user should determine what information is required, what aspects of the model 

need to be improved, and how policy or external factors will influence the results. When 

performing a comparative analysis, it is important to use a differential analysis and examine the 

difference between two scenarios. 

This work showed how the Morris and Sobol methods can be used to identify key model 

parameters by accounting for interaction and non-linear effects, unlike the one-at-a-time method. 

The Morris method was found to require fewer than 1/100th as many model evaluations as the 

Sobol method, making it an effective screening method. It was determined that 20-40 samples 

per input (approaches) are required to accurately use the Morris method for screening purposes. 

Using Morris screening, we reduced the number of inputs from 60-75 to 14 for Maya, Bow, and 

NGTL, and 16 for Athabasca.  

The developed RUST model allows practitioners to easily perform Morris and Sobol sensitivity 

in their Excel-based LCA models. RUST is currently being used within LCA publications57-64 

and industry/government projects.3, 163, 169   
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4 Development of Proxy Models with Linear Regression§ 

4.1 Introduction 

We investigated proxy modeling to fulfill two purposes, to improve both usability and accuracy. 

Proxy models attempt to replicate results from a complex model using a simpler model structure, 

which is computationally cheaper to evaluate than the original complex model. Proxy modeling 

for usability is relevant to policy makers because using LCA for policy purposes can be a 

difficult and time-consuming process. Results from published studies need to be adapted to 

specific regions or problems of interest. Ideally, an easy-to-use, simplified model should be made 

available to policy makers. Proxy modeling for usability is also relevant to LCA practitioners 

since proxy modeling can be used to streamline the publishing process for LCA models. 

Currently, even when authors want to publish their models, they may be unable to because of 

limited resources, data confidentiality issues, or specialty software requirements, or because the 

model requires expert knowledge to use. Proxy modeling for improved accuracy is relevant to 

both LCA practitioners and policy makers since obtaining accurate results for a complex process 

can be difficult. In order to reduce modeling error while keeping models simple and easy to use, 

proxy modeling could be used. Additionally, rigorous models can have long computing times, 

making it difficult to perform alternative scenario analysis and more rigorous uncertainty 

analysis. Therefore, computationally efficient proxy models can be used instead, allowing policy 

makers to quickly examine alternative scenarios. For example, the regression equation can be 

integrated into resource planning models (Long-range Energy Alternatives Planning System 

[LEAP]170), extending its usability. The regression equation can be calculated at significantly 

higher speeds than the full model can be run, allowing more detailed assessments such as hybrid 

Monte Carlo methods.171 

 

§ This chapter is based on the paper published as Di Lullo, Gemechu, Oni and Kumar, "Extending sensitivity 

analysis using regression to effectively disseminate life cycle assessment results". Int. J. Life Cycle Assess. 2020, 25, 

222-239. DOI: 10.1007/s11367-019-01674-y 
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Wang and Shan provide a detailed review of the various proxy modeling methods available.28 In 

this research, the focus is on polynomial regression and artificial neural networks (ANN). 

Polynomial regression is simple to perform and works well for primarily linear models. Artificial 

neural networks are flexible and can be applied to a wide range of problems, and the final proxy 

model is simple and computationally efficient.  

This chapter focusses on the application of multi-parameter least squares regression proxy 

modeling. The case studies from Chapter 3 are used to show how specific pathways of the 

FUNNEL model can be represented as a single equation rather than a large workbook with 

hundreds of cells. Both the crude oil to transportation fuels and the NGTL models are 

evalauated.4, 44, 142-145 Chapter 5 investigates ANN proxy modeling. 

4.2 Method 

 

 
Figure 4-1: Regression framework 

G
en

er
a

te
 R

eg
re

ss
io

n
 M

o
d

el
P

a
ra

m
et

er
 S

cr
ee

n
in

g

Perform parameter screening 

(Morris or Sobol)

Determine regression scope ranges for all inputs

Parameter sensitivities

Output Errors?

Eliminate insensitive inputs

End

Develop bottom-up engineering fundamental LCA model in Excel 

No
Yes

Refine regression scope to 

avoid errors if needed

Generate training data

Specify formula form Perform regression

Eliminate insignificant terms

Regression fit plots
Regression fit

acceptable?

Generate regression  model Check for overfitting

Overfit occurring?

Yes

No

No Yes



78 | P a g e  

 

 

The goal of this work is to improve the quality of LCAs and to make them more accessible to 

non-experts. To improve the quality of LCA, we developed a framework for identifying critical 

parameters, as described in Chapter 3. This chapter focusses on using regression to create a 

proxy model for improved accuracy and usability by non-experts. Linear regression is then used 

on the critical inputs to create an approximate model. The regression equation is then validated 

and checked for overfitting. Figure 4-1 shows the regression framework. 

4.2.1  Identifying critical parameters  

LCA models can have many inputs; however, uncertainty is generally dominated by a small 

percentage of key inputs, which can be identified using a sensitivity analysis. Because of the size 

and complexity of modern models, it is not feasible to perform an in-depth sensitivity analysis on 

all the inputs. Screening methods are used to quickly eliminate insignificant inputs. A sensitivity 

analysis can also aid modelers in identifying errors within the model by identifying unexpected 

responses. A global sensitivity method (Chapter 3.3.3) should be used to prevent underestimating 

the importance of any of the inputs. 

Since the regression model, described in the next Chapter, is only valid within the parameter 

ranges used to create the training data set, narrow ranges, which limit the regression model’s 

scope, should be avoided. In the first stage of a conventional sensitivity analysis, conservatively 

large ranges are used for simplicity and to ensure that no sensitive parameters are prematurely 

removed. Additional time is then invested to refine the parameters’ range for the sensitive 

parameters. In this case the ranges should not be refined and should be based on the scope of the 

desired regression model. Figure 4-1 provides a high-level overview of the modified sensitivity 

screening process. 

4.2.2 Developing the regression model 

The training data is generated using Latin hypercube sampling (LHS) in the open-source 

software R, rather than conventional Monte Carlo sampling. In Monte Carlo sampling, each 

point is generated independently using a random number generator. Relying on a random number 

generator is inefficient and can result in points being either closely clustered together or spread 
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far apart. LHS attempts to generate samples that are evenly spread across the entire parameter 

domain. Each input is split into N intervals and a sample is taken from each interval. As a result, 

LHS sampling error is O(1/N), significantly lower than Monte Carlo’s O(1/sqrt(N)).99 However, 

LHS’s advantage only applies to single distributions. When multiple parameter distributions are 

used, the LHS method ensures the samples for each parameter are evenly distributed, but does 

nothing to ensure an even sampling of parameter combinations.99 Therefore, LHS’s advantage is 

reduced as the number of significant parameters increases. While models can have over a 

hundred inputs, the output uncertainty is generally dominated by only a few inputs. Therefore, 

LHS can still be advantageous even in large models.99 

Uniform distributions should be used to ensure that the entire sample space is uniformly 

sampled. If triangle or normal distributions are used, there would be fewer training samples at 

the edge of the parameter space, which would lead to larger errors when extreme values are used. 

At least one sample is required for each term; however, a general rule of thumb is to use 10-15 

samples per term to avoid overfitting.172 More samples may be needed if there is a high degree of 

collinearity.  

Quadratic regression takes on the following form: 

𝑦 = 𝑐𝑛1𝑥1+. . . +𝑐𝑛2𝑥1𝑥2 + … + 𝑐𝑛3𝑥1𝑥2𝑥3 … + 𝑐𝑛4𝑥1
2 … + 𝑐𝑛4𝑥1

2𝑥2 
(Eq. 6) 

where the terms 1 to 3 represent 1st, 2nd, and 3rd order interactions, and the terms 4 to 5 refer to 1st 

and 2nd order non-linear terms, respectively. The starting quadratic model will contain all 

combinations of the various interaction and non-linear terms. The highest level of interaction is 

specified and includes all the lower interaction levels as well. For example, third-level 

interactions include every possible two- and three-term combination of the parameters. The total 

number of coefficients in the first iteration is calculated as: 

𝑁𝑐 =  ∑
𝑘𝑝!

𝐿! (𝑘𝑝 − 𝐿)!
+ 1

𝐿

1
 (Eq. 7) 
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where L is the order of interactions and kp is the number of proxy inputs. The number of proxy 

inputs is equal to the number of actual model inputs plus the number of non-linear inputs (𝑘𝑝 =

𝑘𝑎 + 𝑘𝑛𝑙). For example, a model with two inputs, x1 and x2, with squared and cubed terms for x1 

would have four proxy inputs (x1, x2, x1
2, x1

3). 

The goal in using a regression model is to find which combination of parameters and interaction 

terms best replicates the underlying model. There are multiple approaches to model selection, but 

none is perfect, and expert judgment is required.173-175 Models with a large number of parameters 

and levels of interaction can contain thousands of terms, resulting in billions of possible 

regression model combinations. Since it is not possible to evaluate every combination, a stepwise 

approach is used instead of a best subset approach.174, 175 The process starts by including every 

term and iteratively eliminating the terms with the highest p values. When a term’s p value is less 

than 0.05, there is less than a 5% chance that this term is irrelevant and that the coefficient is 

zero; hence, terms with larger p values are eliminated, as their coefficients are most likely zero. 

The two-sided p values are calculated within R using the t-statistic, which is calculated from the 

standard errors of the coefficients. Multicollinearity between terms leads to significant instability 

in the p values, which makes it difficult to determine which terms to eliminate.176 Since the 

interaction terms will be correlated with the individual parameter terms, multicollinearity will 

occur even if the parameters in the original model are not correlated (x1 correlated with x1*x2 

terms). By centering the data before running the regression analysis, we significantly reduce the 

multicollinearity of the inputs.176 Once a term is eliminated and the regression analysis is 

updated, the p values for the remaining terms will be updated, and, if there is multicollinearity 

within the data, a term that appears to be insignificant may become significant. As a result, terms 

are removed in an iterative fashion, rather than simultaneously, until only terms with p values 

less than 2*106 remain. 

To increase the accuracy of the regression model, non-linear squared and cubed terms may be 

required. In order to avoid multicollinearity between the primary (x1), squared (x1
2), and cubed 

(x1
3) terms, an orthogonal polynomial is required. An orthogonal polynomial uses a weighting 

function to ensure the dot product over a specified interval is equal to zero. This transformation 

is accomplished using the polynom library in R.153 Adding non-linear terms to the regression 

model can help improve accuracy; however, when the number of coefficients is increased, the 
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sample size and computing time increase. Therefore, non-linear terms should only be included 

for inputs that are suspected to have non-linear effects. Morris cannot be used to identify non-

linear inputs as it cannot differentiate between non-linear and interaction effects. To identify 

which inputs may have non-linear effects, an OAT approach is used. For each input, 5 samples 

are generated between the minimum and maximum values. Excel’s built-in trendline function is 

then used to fit 1st, 2nd, and 3rd order polynomial trendlines to the 5 samples. The R2 value is then 

calculated for each trendline. If the R2 value is equal to one for the 1st order trendline, then the 

input exhibits a linear trend. Alternatively, if the R2 value is less than one for the 1st order 

trendline, then either a squared or cubed term should be added to the regression model based on 

the trendline’s R2 value. 

4.2.3 Validating the regression model 

A valid regression model should have a high adjusted R2 value and a normally distributed 

residual error across the entire output domain. Low R2 values suggest a non-linear model may be 

needed. Alternatively, a higher level of interaction can improve the R2 value. To ensure that the 

errors are normally distributed, residual vs. fitted plots, normal Q-Q plots, and residual 

histograms are used. The residuals vs. fitted plots can be used to determine if the residuals are 

uniformly distributed along the output domain.177 The red line in Figure 4-2a&b (residuals vs. 

fitted) is a smoothed average of the residuals; ideally, it should be flat and equal to zero. In 

Figure 4-2a, the curved residuals indicate a common issue wherein the regression model is 

attempting a linear fit to a non-linear model. However, the conning effect (residual increases as 

fitted value increases) can indicate multiple non-linear effects are not being accounted for 

(Figure 4-2b). If the residuals are normally distributed, then the normal Q-Q plots should 

produce a straight diagonal line (Figure 4-2c&d).178 An upward curve on the right or a downward 

curve on the left of the residual normal Q-Q plots indicates a heavier than normal tail. A 

downward curve on the right or an upward curve on the left of the residual normal Q-Q plots 

indicates a lighter than normal tail.  

The histograms can be used to illustrate the Q-Q plots; the red line is an ideal normal distribution 

for comparison (Figure 4-2e&f). Ideally, the model residuals should match the red line, with the 

median at zero. A nonzero median suggests a bias in the model. Skewed distributions with a long 
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tail suggest the regression model is inaccurate within a portion of the parameter domain and may 

indicate insufficient coverage of the parameter domain within the training sample. 

 

 
Figure 4-2: Regression verification example with a poor fit (left) and a better fit (right) 

4.2.4 Developing and validating the regression model process 

The regression model is developed using the method shown in Figure 4-1. To avoid errors in the 

p values, the data is centered to reduce multicollinearity and a stepwise approach is used to 

determine the final regression model form. To avoid removing a large number of parameters at 

once, the p value cut-off point starts at 0.9 and progressively decreases to 2.5e-16.  
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Once the iterative calculation is completed, a text file is loaded into Excel with a summary of the 

output. The output includes the minimum, 5th, 25th, 75th, and 95th percentile, and maximum 

residual values; the number of terms in the regression model; the Akaike information criterion 

(AIC); and the mean squared error (MSE) for each iteration. The Akaike information criterion 

balances the goodness of fit and the number of terms in the regression model. The lower the AIC 

value, the more efficient the regression model. The user can select which model form to use by 

balancing trade-offs in accuracy and number of terms. Residual vs. actual plots, normal Q-Q 

plots, and residual histograms are then generated for the optimal model to verify that the 

residuals are normally distributed.  

Once the regression coefficients have been determined, it is important to check for overfitting. 

The regression model should replicate the true model; however, when overfitting occurs, the 

regression model begins to fit random patterns within the training data and falsely suggests an 

accurate regression model has been determined. If overfitting occurs, using new samples could 

result in significantly larger residuals. A general rule of thumb is to use 10-15 samples per term 

to avoid overfitting172, 175; however, more samples may be needed if there is a high degree of 

collinearity. The overfitting macro generates multiple samples using unique seeds and compares 

the average and standard deviation of the residual minimum, 5th percentile, 95th percentile, and 

maximum values. Large standard deviations indicate overfitting is most likely occurring. To 

prevent overfitting, the number of samples used to train the regression model should be 

increased. 

 

4.2.5 Model template 

RStudio is used to perform both the sensitivity and regression analyses. While RStudio can be 

used directly to perform the analyses, a template was created to make it user friendly. The users 

simply need to insert their existing Excel models into the RUST files and fill in the specified 

inputs. Excel macros programmed in VBA will prepare the data and execute Rscripts to perform 

the analysis. The main inputs are folder locations for saving .txt and .csv files, high-level inputs 

for the various functions, and the parameter table. The parameter table specifies the value ranges 

and provides the input cell address for each parameter. The Excel macros will then generate the 
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required sample file, run the samples through the user’s model, generate an output file, perform 

the desired analysis, and put out the results (Figure 4-3). A “mapping inputs” macro is provided 

to streamline the process. A demonstration of the process is provided in Appendix C. The Morris 

and Sobol analyses were run using Pujol et al.146 R library.145 

 
Figure 4-3: RUST background process flow diagram 

4.2.6 Case study  

The same case studies described in Chapter 3.2.2 are used here. The Maya, Bow River, and 

Mined Bitumen (MB) models are simple, nearly linear, monotonic LCA models, while the 

Alliance NGTL pipeline model is an iterative and non-linear LCA model. A list of inputs used is 

provided in Appendix C. These case studies are described in greater detail in Chapter 3.2.2 

 

4.3 Results and Discussion 

The Morris method was used with 60 OAT designs (r) and 32 levels (p), and the results were 

used to produce Figure 4-4. Each data point represents a parameter. The Excel template 

generates the Morris plot and adds data labels, so it is easy to identify each parameter. The data 
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labels were removed in Figure 4-4 to reduce the image size. The parameters in red box A were 

eliminated, as they were insensitive and did not have significant non-linear or interaction effects. 

It is important to look at the actual value of the Morris µ and σ when deciding when to eliminate 

parameters rather than just the relative position, as an excessively large parameter can skew the 

axis scale. Selecting the cut-off point between sensitive and insensitive is subjective. The axis 

scale should be considered, as well as the clustering of parameters. For example, a parameter can 

be deemed insensitive if the Morris mean is less than 1% of the base case value and has a low 

Morris standard deviation. For the Figure 4-4 Morris plot, the inputs in box B have similar 

sensitivities, hence they should all be either included or excluded as a group. The parameters in 

the top right with µ ≈ 6-8 and σ ≈ 4-5 gCO2eq/MJ illustrate the advantage of the Morris method. 

Depending on the base case used in an OAT local sensitivity analysis, these parameters could 

have sensitivities of 1-2 gCO2eq/MJ and be grouped with the insensitive parameters. The Sobol 

method was not required in this scenario as the Morris method sufficiently reduced the number 

of parameters.  
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Figure 4-4: Morris screening of the FUNNEL-GHG-CCO/OS Maya pathway 

 

4.3.1 Validating the regression model form 

The regression analysis was performed for the Maya pathway using the 14 critical parameters 

with 1st, 2nd, 3rd, 4th, and 5th level interactions. Three scenarios with training sample sizes of 

3,000, 5,000, and 10,000 samples were used for comparison. For 5 levels of interaction, a 

minimum of 3,472 samples is required; hence, 5th level interactions are not included in the 3,000-

sample scenario. Since an iterative method is used to narrow down which terms are included in 

the final regression model, the number of samples per term will increase as terms are eliminated, 

thereby reducing the chance of overfitting in the final model. Theoretically, if the number of 

samples is too small, then potentially significant terms could be eliminated during the initial 

A

B
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iterations. However, the results show that the number of samples used does not have a detectable 

effect on the accuracy of the final form of the regression model. The accuracy was strongly 

related to the level of interaction and the number of terms included (see Figure 4-5); this 

relationship will be model-specific. Caution should be used when assessing the accuracy of the 

regression model versus the number of terms included, as overfitting can occur. As shown in 

Figure 4-5, moving from 320 to 316 terms causes a jump from 2.05 to 2.27 gCO2eq/MJ in the 

residual variance (max residual – min residual). An overfit check with 100 runs of 1,000 samples 

each on both the 320 and the 316 term models found that the residual variance ranges were 1.8-

3.2 and 3.0-3.2 gCO2/MJ, respectively, indicating they both have the same level of accuracy 

when tested against new samples. The residual variance uses the maximum and minimum 

residuals to ensure there are no outliers. While it may be tempting to use a regression model with 

more terms to improve accuracy, the model should be verified with a new sample to ensure the 

improved accuracy is not due to overfitting.  

 
Figure 4-5: The effect of levels of interaction used (left) and number of terms included in 

the final regression model (right) on the residual (both use 5,000 samples in training data; 

right plot uses 5th level interactions) 

4.3.2 High-level checks 

For the Maya pathway, the 5,000-sample, 4th-level interaction regression model was used. The 

predicted vs. actual, residual vs. actual, normal Q-Q, and residual histogram plots were generated 

for the final regression model with 84 terms (Figure 4-6). The actual vs. predicted plot shows no 

large deviations/outliers; however, there is an indication that the regression model will 

underpredict emissions when actual emissions are large (Figure 4-6a). The residual vs. predicted 

plot confirms that the regression model underpredicts emissions for the extreme scenarios, and 

that there is a slight bias in the residuals (Figure 4-6b). The normal Q-Q (Figure 4-6c) plots’ 
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upward curve on the right indicates that the right tail is slightly longer than for a normal 

distribution, which is illustrated by the histogram (Figure 4-6d). Overall, the plots indicate that 

the residual is approximately normally distributed with no major problems, but it should be noted 

that the residual error will increase as the predicted value increases. This conning effect may 

indicate non-linear effects are not being accounted for. 

 
Figure 4-6: Regression residual verification for FUNNEL-GHG-CCO/OS Maya pathway 

 

4.3.3 Overfitting checks 

To check for overfitting, the range of residual variance (max residual – min residual) across 100 

runs, each with 1,000 samples, was compared to the training set residual variance (Table 4.1). 

When 4th level interactions are used with 14 parameters, the total number of terms is 1470; when 

all terms are included in the regression model, the number of samples per term is 2, 3.4, and 6.8 

for the 3,000, 5,000, and 10,000 sample scenarios, respectively, all of which are lower than the 

suggested 10-15 samples per term. As a result, the residual variances from the overfit check are 

significantly larger than the training set variances. The final form of the regression model 

includes only 46, 43, and 39 coefficients, which result in 77, 116, and 217 samples per term for 
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the 3,000-, 5,000-, and 10,000-sample scenarios, respectively; hence, their residual variance is 

similar to the training set and indicates that overfitting has not occurred (Table 4.1).  

Table 4.1: Maya range of residual variance (max – min) with 4th level interactions, ranges 

from 100 runs with 1,000 samples each (the same overfit check samples were used in every 

scenario) 

Scenario 
All Terms Final Form 

Overfit check Training set Overfit check Training set 

3,000 36,590-114,890 1.72 2.41-4.86 4.07 

5,000 13,670-53,290 1.95 1.94-4.08 3.84 

10,000 13,18-38,250 2.49 1.91-3.58 3.09 

 

4.3.4 Checking model response 

A well-fitted model should be able to accurately predict both the output values and sensitivities 

(partial derivative). The accuracy of the output values has already been addressed. To determine 

the accuracy of the partial derivative, the Morris method is used. If the regression model 

perfectly predicts the emission intensity, the µ and σ values of the partial derivative should be the 

same, providing the same sample is used. Overall, the regression model accurately captures the 

model response. The average and standard deviation values of the derivative are accurate to 

within 4% and 15%, respectively (Table 4.2). The large error in the Morris σ for the refinery 

emissions is acceptable since the value is approximately zero. The regression model 

underpredicts the σ in the crude low heating value (LHV) correction factor while maintaining 

accuracy in the µ, suggesting that there may be errors in the regression model’s predictions for 

the extreme scenarios. 

Table 4.2: Verifying the regression model response using Morris 

Parameter 
Morris µ Morris σ 

Orig. Regr. %Error Orig. Regr. %Error 

Crude LHV correction 5.72 5.61 -1.8% 2.96 2.53 -14.5% 

Land-use emissions 2.99 3.01 0.4% 0.48 0.50 3.3% 

Inj. GOR 7.14 7.09 -0.7% 4.65 4.59 -1.4% 

Prod. GOR 7.15 7.06 -1.2% 5.89 5.75 -2.3% 

Compressor energy 3.58 3.52 -1.7% 3.70 3.51 -5.0% 

Compressor driver eff. 2.23 2.14 -4.0% 2.14 1.94 -9.4% 

Electricity emission factor 5.07 5.06 -0.3% 3.29 3.25 -1.2% 

Fugitive gas volume 6.44 6.42 -0.3% 4.80 4.79 -0.3% 
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Flared gas 4.56 4.54 -0.4% 1.61 1.60 -0.2% 

Flaring efficiency 1.97 1.93 -2.0% 1.63 1.57 -3.9% 

Refinery Emissions 9.45 9.47 0.2% 0.00 0.00 14.9% 

Refinery Yield Factor 6.40 6.37 -0.5% 2.71 2.66 -2.1% 

CH4 GWP 5.00 5.01 0.1% 3.03 2.96 -2.1% 

NG Emission Factor 1.84 1.89 3.0% 1.42 1.46 2.1% 

 

4.3.5 Final regression models 

Once the regression formula has been determined, an Excel macro generates the final formula 

from the text file. Excel formulas are limited to 8192 characters; hence, long formulas may need 

to be split between two or more cells. Overall, the original FUNNEL-GHG-CCO/OS model, 

which includes hundreds of calculations and multiple Excel worksheets, can be simplified down 

to the 14-parameter regression model. The same approach was applied to the Bow River water 

flood crude and Athabasca mined bitumen crudes from Alberta, Canada; the regression 

accuracies are shown in Table 4.3. Each model contains between 58 and 96 terms and 1393 and 

2989 characters, well within Excel’s 8192-character limit. The regression model inputs include 

technology flows, emission flows, and characterization factors, as shown in Appendix C. 

The maximum and minimum residuals are less than 10% of the base case for the FUNNEL-

GHG-CCO/OS scenarios, while 90% of the residuals are within ±2% of the base case. The 

FUNNEL-GHG-NGTL regression models are less accurate with residuals up to ±30% of the 

base case; however, the residuals are within ±5% of the base case 90% of the time.  

Table 4.3: Regression summary for Maya nitrogen injection, Bow River water flood and 

Athabasca mined bitumen 

Residual (gCO2eq/MJ) Base Case Min  5th Percentile 95th Percentile Max # of terms 

Maya 26.5 -1.16 -0.44 0.53 2.68 58 

Maya (squared) 26.5 -0.63 -0.08 0.07 0.44 164 

Bow River 33.2 -1.17 -0.54 0.7 2.46 72 

Bow River (squared) 33.2 -0.38 -0.10 0.10 0.55 135 

Athabasca 36.4 -0.19 -0.12 0.17 0.34 96 

NGTL 1.28  -0.38 -0.04 0.06 0.27 54 

NGTL (squared) 1.28 -0.26 -0.04 0.05 0.27 80 

NGTL (cubed) 1.28 -0.25 -0.04 0.05 0.27 79 
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The original Maya and Bow River regression model exhibited conning of the residuals which 

may indicate non-linear effects that are not accurately accounted for. When we tested the models 

for non-linear inputs using the trendline approach described in Chapter 4.2.2, we found multiple 

non-linear inputs. However, none of the R2 values equaled one, indicating a more complex 

response was occurring (see Appendix C.3). To determine whether adding non-linear terms to 

the regression model would improve the fit, the Bow River and Maya crudes were rerun, since 

their residuals were larger than the Athabasca pathway. Maya included a squared term for the 

crude LHV and compressor driver efficiency, and Bow included crude LHV, pipeline capacity, 

and pipeline velocity. The results in Table 4.3 indicate that adding the non-linear terms reduced 

the residuals by 40-80% but increased the size of the formula by 65-90%. The non-linear models 

did not exhibit any signs of overfitting. Therefore, including non-linear terms can improve the 

regression model’s accuracy, at the expense of requiring longer computing times and producing a 

larger regression model. For the NGTL model, adding either squared or both squared and cubed 

terms did not significantly improve the accuracy but did increase the number of terms by 48%. 

4.4 Conclusion 

Unlike earlier studies, which simply examined the sensitivity methods available,18, 70 this work 

goes one step further by adding a multi-parameter regression model. While publishing the full 

LCA model is often preferable, it is not always possible because of difficulties making the model 

user friendly, non-disclosure agreements, or other confidentiality concerns. Furthermore, in some 

cases a simplified version of the LCA model is preferable. For example, non-technical policy 

makers may want to examine how the LCA results change when key inputs are adjusted without 

having to learn a complex model. Since journal papers need to be concise, researchers are often 

limited in how many scenarios/alternatives they can present. By including a regression model, 

the usefulness of an LCA to fellow researchers and policy makers is increased as they can 

examine scenarios specific to their needs. The regression model can also improve the life of a 

paper by allowing users to update key values such as methane’s GWP, which is updated each 

time a new assessment report is released by the IPCC.179   

The levels of interaction and number of terms need to be varied until a model with the desired 

accuracy is obtained. The FUNNEL-GHG-CCO/OS regression models have accuracies of: 
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Maya−1.2
+2.7, Bow−1.2

+2.5, and Athabasca−0.2
+0.3gCO2eq/MJ. To improve the fit for the Maya and Bow 

River pathways, non-linear terms were added, resulting in new accuracies: Maya−0.6
+0.4 and 

Bow−0.4
+0.6. For the FUNNEL-GHG-NGTL model, the accuracies were NGTL−0.38

+0.27 ,−0.26
+0.27 ,−0.25

+0.27 for 

the linear, squared, and cubed regression models, respectively. The NGTL model uses an 

iterative solver and is highly non-linear. In order to further improve its accuracy, we considered 

ANN modeling (discussed in Chapter 5). The regression formulas are small enough to fit into a 

single Excel cell, making it easy to publish the model.  

The uncertainty simulation can also be run using the regression model rather than the full model 

to reduce computational times for complex models. However, running uncertainty in the 

regression model introduces additional model uncertainty depending on the accuracy of the 

regression model. In the cases of the Maya, Bow, and Athabasca crude pathways evaluated in 

this work, the parameter uncertainty will be an order of magnitude larger than the regression 

model uncertainty, which would make the modeling error negligible. Given its low regression 

accuracy, the NGTL model should not be used for a sensitivity analysis. Since the regression 

model can be evaluated quickly, increasingly complex analysis such as hybrid and nested Monte 

Carlo methods, which attempt to separate aleatory (random) and epistemic (known with poor 

precision) uncertainty and require a large number of model evaluations, can now be performed in 

less time.171 

Alternative data analysis techniques such as principal component analysis (PCA) and partial east 

squares regression (PLS) are useful when the data set available is correlated or has a limited 

sample size; however, since RUST generates an uncorrelated sample to train the regression 

model, these methods are not needed. Furthermore, since PLS emphasises developing a 

predictive model, it is not useful as an alternative to the Morris methods for screening out 

insignificant parameters.160 Additionally, correlations are not required in training the regression 

model. If the model is accurate when trained with uncorrelated data, it will also be accurate when 

correlated inputs are used. 
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5 Development of Artificial Neural Network-based Proxy 

Models for Life Cycle Assessment of Energy Pathways** 

5.1 Introduction 

The motivation to create proxy models was discussed in Chapter 4. This chapter focuses on 

proxy modeling for complex non-linear models that multi-parameter linear regression is unable 

to accurately map. ANNs allow us to create easy-to-use, accurate models for complex processes 

in LCA, thus increasing their usefulness. 

Process models such as the NGTL model present unique challenges that multi-parameter proxy 

modeling cannot overcome. First, process models can have piece-wise characteristics; for 

example, friction loss of fluid flowing through a pipe experiences laminar, transitional, and 

turbulent flow regimes. Generating a proxy model that can correctly estimate friction loss across 

all three flow regimes requires more flexibility than multi-parameter regression can provide. In a 

large process model of an oil refinery, different units, physical laws, and chemical processes will 

dominate the results in different regions of the parameter space, leading to piece-wise responses. 

Second, the process models may not be valid at every point in the parameter space, and the 

boundary of the valid solution space may be unknown. For example, in the NGTL model a 

combination of high flow rate and high losses would result in a negative pressure in the pipeline, 

causing the model to fail. Third, the number of inputs may be large, leading to infeasible design 

of experiment (DOE) sample sizes (curse of dimensionality).  

ANNs were chosen because they have been demonstrated to be “general universal 

approximators.”181 Unlike in conventional regression, the user is not required to specify the 

functional form (linear, quadratic, etc.), thus removing a significant source of error.182 

Furthermore, the flexibility of ANNs can be used to address piece-wise, valid-solution space, and 

 

** This chapter is based on work published as: Di Lullo, Oni and Kumar, "Using  proxy models and adaptive 

sampling to integrate complex engineering models into life cycle assessments of energy systems". To be submitted 

to Energy Convers. Manage. 2022.  
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curse of dimensionality limitations of multi-parameter regression. Overall, ANNs generally have 

higher accuracy than alternative meta-modeling methods and are easy to use.183, 184 However, 

ANNs still suffer from the curse of dimensionality. In order to reduce the number of model 

evaluations required to generate training data for the ANN, an intelligent sampling strategy is 

required.  

In order to train a proxy model, samples need to be taken over the parameter space. Sampling 

strategies include design of experiments (DOE), one-shot space-filling, sequential space-filling, 

and adaptive designs.185 DOE uses a structured sampling approach designed for simple linear and 

quadratic regression models and was originally developed to perform physical experiments with 

a small number of inputs. DOE focuses on reducing random errors from physical experiments, 

with samples focused on the edge of the boundary space. Sacks et al.186 and Simpson et al.187 

state that as computer simulations suffer from systematic, not random error, space-filling designs 

are more appropriate than classical DOE methods. Through Monte Carlo sampling can be used 

for proxy modeling, it is inefficient.28 While one-shot space-filling may result in a better spread 

between samples, it is often not possible to know how many samples are needed to train a proxy 

model with adequate accuracy; therefore, sequential methods are needed. Sequential methods do 

not use any information related to the current proxy model accuracy; they simply attempt to 

supplement the current sample while maintaining optimal sample spacing or selecting new points 

that maximize information gain. However, maximizing information gain is only related to the 

model structure (linear, quadratic, etc.) but does not reflect whether the model structure 

accurately fits the underlying data. Improvements from sequential sampling decrease as the 

sample size increases. Further improvements may require sampling specific regions of space 

where complex behavior occurs. Adaptive sampling attempts to identify areas where additional 

samples would improve model accuracy. Adaptive methods include looking for areas with large 

residual errors and identifying areas of complex behavior (gradient methods).185 While the areas 

of classical and space-filling sampling have been thoroughly researched, the area of high 

dimensional, adaptive sampling requires further research.28, 185 This chapter describes the 

development of an adaptive method for high dimensionality problems. 

The objectives of this chapter are to: 
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1. Compare the accuracy of quadratic and ANN regression for proxy modeling of LCA 

models. 

2. Develop a new adaptive sampling method to minimize extreme error rather than mean 

squared error.  

3. Identify optimal sampling methods for reducing maximum error, while minimizing the 

number of model evaluations needed. 

 

5.2 Methods 

Proxy modeling involves three main time-consuming processes: generating samples, calculating 

target values for samples, and training the proxy model (Figure 5-1). The sample generation step 

involves selecting multiple test points (input value combinations). Sample generation is 

relatively quick when random sampling is used, but increases in time if space-filling or adaptive 

methods are used. Following sample generation, the samples are fed into the true model to 

calculate target values (output values). In this work, the true model is the complex engineering 

model that we are trying to replicate. The time required to generate the target values is dependent 

on the true computer model. For the natural gas transmission line (NGTL) model, generating 

target values takes <1s per sample; however, for complex engineering models, each sample can 

take minutes to hours. The time required for model training depends on the method (quadratic 

regression vs. ANN), structure (linear vs. non-linear, network size), the number of samples used, 

and the training algorithm selected. This work assumes target value generation is the most time-

consuming process. Therefore, this work examines methods to reduce the number of true model 

evaluations required, at the expense of increased sample generation and model training times. 

The model’s accuracy will be evaluated and if it is inadequate, additional samples will be 

generated. 
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Figure 5-1: High level proxy modeling method  

  

5.2.1 Case studies  

The same case studies used in Chapter 3.2.2 are used here. The scenarios have different numbers 

of inputs and mathematical complexity. The CCO/OS model for the Maya, Bow River, and 

Mined Bitumen (MB) scenarios are all deterministic, with no iterative calculations. The NGTL 

model includes multiple iterative solvers, resulting in a complex non-linear relationship between 

the inputs and outputs. The model inputs are provided in Appendix C. Bow and Maya have 14 

inputs, MB has 16, and NGTL has 10. The models used in this work are Excel-based models that 

have relatively short computing times (less than 1 s/sample), allowing rapid testing of different 

proxy modeling methods. Once a framework is established, this method will be applied to more 

computationally expensive Aspen HYSYS models.  

5.2.2 Standardized validation set 

In MATLAB, the ANN training algorithm splits the data set into training, validation, and testing 

data sets. The validation set is used to determine when to stop the solver and therefore indirectly 

affects the accuracy of the proxy model. To compare the accuracy of various experiments using 

different proxy model forms and sample generation strategies, an external data set is needed. The 

external validation data set contains 500,000 samples and is used only to determine the proxy 

model’s final accuracy and has no influence on model training. The external validation set is not 

the same as the MATLAB internal validation set. 
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5.2.3 Defining model accuracy 

Typically, the mean squared error (MSE) is used to quantify model accuracy; however, it is not 

always sufficient. Since LCAs contain significant uncertainties in their input values, small errors 

in the proxy model will be negligible in comparison. Therefore, reducing the error below a 

certain minimum will provide no additional value. However, an ideal proxy model should be 

reliable and able to produce accurate results over the entire input parameter domain. In this case, 

it would be acceptable for the average error to increase if the extreme error decreases.  

The acceptable level of error is subjective and depends on how the model is used. In this work, 

any error above 5% indicates an unreliable model with poor accuracy (unacceptable level of 

error). Ideally, we would like the error to be below 1% to provide reliable and relevant results 

(ideal level of error). A low error is required so that end-users can be confident that as they vary 

each input, the change in the output is due to the true model’s response, not modeling error. 

Because of the level of uncertainty in the model input values (from an LCA perspective), 

reducing the error below 0.1% provides no additional benefit (optimal level of error). 

5.2.4 Regression methods 

Two proxy methods were examined in this work: quadratic and ANN regression. Details on 

quadratic regression were provided in Chapter 4.2.2. 

Unlike in conventional regression, the user is not required to specify the functional form (linear, 

quadratic, etc.) for ANN models, thus removing a significant source of error.182 Rather than 

adding more orders of interaction or higher power polynomials to increase the model form’s 

complexity, ANN simply increases the number of nodes in the hidden layer. For complex 

abstract processes such as image recognition, multiple hidden layers can be used; however, a 

single layer is sufficient for mapping a continuous function.188 For a feed-forward ANN with a 

single hidden layer, the number of coefficients is calculated as: 

𝑁𝑐 = (𝑘𝑎 + 1) ∗ 𝐻𝑁 + (𝐻𝑁 + 1) (Eq. 8) 

where HN is the number of hidden nodes. 
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In this work, the common tanh transfer function is used for the hidden nodes and a linear transfer 

function is used for the output node. ANN training is performed in MATLAB. 

 

5.2.5 Evaluation methods 

Because of the random nature of numerical methods, results can vary between runs; the variation 

may be due to the solver converging to different solutions or using a different training sample 

set. As a result, in order to confirm that the difference between two proxy models is due to either 

the proxy model form or the sampling strategy used, multiple repetitions are required so that 

statistical significance can be checked. For quadratic regression, a deterministic solver is used, 

resulting in minimal variation in the results when the solver is rerun on the same sample. 

Therefore, only 5 repetitions using different sample seeds are used for verifying statistical 

significance and determining error bars of quadratic regression results. For ANN regression, 

large variations are observed in the proxy model’s accuracy due to both using different samples 

and running the solver multiple times on the same sample. Therefore, the ANN models are 

trained 10 times on each of the 5 samples, resulting in 50 repetitions. Because of the time 

required to generate the target values, only 5 seeds are used, while 10 repetitions are used to 

improve accuracy without drastically increasing the computing time. In order to determine if the 

results are statistically significant, a two-tailed t-test assuming unequal variance (heteroscedastic) 

is used.189  

To improve the stability in the results when using an automated process, the MATLAB (trainlm 

and trainNetwork) code was modified to save the weights and biases from the best epoch, rather 

than using the last epoch (see Appendix D.7). The maximum number of validation failure’s 

stopping criteria can significantly affect model accuracy: too low, and the solver will terminate 

prematurely; too high, and the final epoch can overfit the data. By specifying a higher number of 

max failures (20 instead of the default 6), premature termination is prevented; by using weights 

from the best epoch, the overfitting that occurs in the final epoch is avoided. This work found 

that using the best epoch weights and biases results in less variability when a model is repeatedly 

trained on the same data set, especially for models with small samples that were prone to 

overfitting the data. The max number of epochs was set to 10,000 to prevent premature 
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termination of the solver. The ANN training algorithm randomly splits the samples into train 

(70%), validation (15%), and test (15%) subsets. 

Table 5.1 provides an overview of the type of data recorded and what purpose that data serves. 

Data was recorded for each iteration to ensure results are statistically significant. 

Table 5.1: Experimental data recorded 

Sample Data Purpose 

Sample histogram bin frequency data (10 bins 

used) 

Used to examine differences in sample 

coverage of the various sampling algorithms 

(Appendix D.6). 

Proxy Model Data Purpose 

# of coefficients in final model Indicates model complexity and can be used 

to indicate if overfitting will occur. 

# of solver iterations/epochs Used to monitor stability and ensure solver is 

not terminating early. 

Proxy Model Performance Purpose 

For training data & external validation set 

residuals: min, max, 1, 5, 25, 75, 95, and 99 

percentile values  

Used to ensure symmetrical error distribution, 

determine if overfitting is occurring. 

For external validation set absolute residual: 

1, 5, 25, 50, 75, 95, and 99 percentiles, max 

and avg. values 

Used to determine if extreme errors occur due 

to lack of coverage/overfitting by examining 

tails of error distribution. 

Time required for input sample generation, 

target value generation, and proxy model 

training 

Used to examine trade-offs between longer 

sample generation and proxy modeling time 

vs. shorter target training times. 

 

The typical residual values include both positive and negative errors, which makes accuracy 

comparisons more difficult, as the results are not always symmetrical. Therefore, percentile 

values are calculated based on the absolute value of the residuals as it does not matter if the 

model over- or underestimates the output value. 

In some instances, the models may fail to converge and terminate prematurely. If the ANN 

training was done manually, the user would ignore this result and try again. Since we used an 

automated process, it was not possible to identify the failed scenarios. We compared the results 

from using all runs to the results using 50% of the best performing runs. The filtered results 

using the best runs reduced the upper error limit in the results caused by the skewed failed runs. 
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50% was selected as it insured poorly performing runs were ignored. Although the unfiltered 

results provide stronger support for our findings and conclusions, they are more prone to include 

scenarios where accuracy is extremely low, skewing the results. 

5.2.6 Experimental methods 

Key experiment parameters include sample size and model structure parameters. For quadratic 

regression, the starting sample size must be larger than the number of coefficients. For ANN, 

small starting sizes result in overfitting, so a starting size of 1,000 samples was selected based on 

preliminary experiments. The step size used has no effect when a random sample is used; 

however, it will affect the results when adaptive sampling methods are used. A preliminary step 

size of 500 and 1,000 samples was selected for the quadratic and ANN methods, respectively. 

Based on preliminary investigation, ANN networks will use 5, 15, 25, and 50 hidden nodes. The 

addition of squared terms for quadratic regression is based on previous work with the FUNNEL 

models.2 

5.2.7 Sampling methods 

There are many means of determining a sample with optimal spread between the points. 

Sampling-based methods include regular grid, random sequence, quasi-random (Halton, Sobol, 

Hammersley), stratified sampling, Latin hypercube designs (LHD), and randomized orthogonal 

arrays. Criterion-based methods include uniform design, max-min distance, tessellation, and 

statistical/entropy. However, all of these methods are limited to a small number of inputs because 

of long computing times. Additionally, sequential space-filling samples further increase 

computing times.185 The goal of maximizing the sample spread is to ensure the domain is 

adequately searched and no major features are missed. Iterative space-filling algorithms is an 

active area of research.190 

5.2.7.1 Spread method 

We required a simple method that would work in a high-dimensionality parameter space; 

therefore, a modified max-min method was developed for MATLAB. The Manhattan distance is 

used instead of the Euclidian distance, as it provides better representation in high dimensional 

space.191 A small seed sample (n samples) is generated using a Monte Carlo simulation with 

uniform distributions for each input. The minimum distance between each point and its nearest 
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neighbor is calculated. Since it is difficult to calculate the optimal spacing distance in high 

dimensional space,192 the 95th percentile is used as an approximate measure for the cut-off 

criteria (dCut). A new point will only be accepted if the distance to its nearest neighbor (dNN) is 

larger than a dNN of 95% of the existing samples. While dCut does not represent the optimal 

spacing, it does result in a better spaced sample than the conventional random approach (see 

Appendix D.6). 

The spread method begins by generating a random candidate point and calculating its dNN using 

the existing sample. Since calculating the dNN is time-consuming, a guess and check method 

was found to be inefficient; instead, an optimization method was introduced to move the original 

candidate point away from its close neighbors (CNs) (Figure 5-2:). Rather than using all previous 

n samples, a subset of NCN samples is used to determine what direction and how far to move the 

candidate sample. Using only NCN samples reduces the computational burden while still 

improving the sample spacing. In the original code, the inputs excessively took on values of 0 or 

1; therefore, Criterion 1 in Figure 5-2: was modified to evaluate the current sample spread and 

modify the starting area. To further decrease the number of samples taken at the parameter space 

surface, the original candidate starting point was also restricted. Further details are provided in 

Appendix D.6.  
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Figure 5-2: Optimized method to increase distance to nearest neighbour (dNN) by moving 

the candidate point (CN: closest neighbour, NN: nearest neighbour, Cand: candidate point, 

dMM: max movement distance, dCut: cut-off distance required) 

 

5.2.7.2 High error method 

An alternative method is to focus samples in areas where the model is currently producing poor 

estimates. Adaptive sampling needs to balance two objectives, local vs. global exploration. 

Global exploration is important to ensure all areas of the domain have been adequately 

investigated and to fill any gaps in the data. Local exploration aims to improve accuracy by 

adding samples in areas with complex behavior. Adaptive methods must attempt to balance the 
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two. Global exploration uses a distance criterion to ensure adequate sampling; however, in local 

regions of high complexity, clustered samples are needed to improve accuracy.  

In this work, we developed the high error adaptive sampling algorithm. We based this method on 

the principle of improving ANN performance through bagging and boosting.193 However, instead 

of trying to improve model accuracy by averaging the results of multiple models, we focused on 

using the disagreement between models to identify optimal new samples. ANN training requires 

splitting the samples into training, validation, and testing samples. Validation is used to 

determine when training should stop to avoid overfitting but is not used to identify node weights 

and biases. The testing sample is not involved in training and is used to evaluate overall 

performance. Training begins by randomly splitting the initial sample into five baskets; each 

basket is used by three ANNs, one as the training sample, one as the validation sample, and one 

as the testing sample. In this work, all five ANNs have identical configurations and numbers of 

nodes. Since the trained ANNs are computationally efficient, 1 million samples can be run 

through each of the 5 ANN models in under one second. For each sample, the maximum 

disagreement (MD) is calculated as the difference between the highest and lowest values from 

the five different ANNs. The NMD samples with the largest MD are then selected as potential 

candidates (PC) where 𝑁𝑀𝐷 = 10 ∗ 𝑁𝑁𝑆 and 𝑁𝑁𝑆 is the number of new samples needed.  

To prevent clustering, when many points are selected in a small region of subspace, a modified 

version of the spread algorithm is used. The cut-off criteria selection needs to balance local vs. 

global exploration. Too large, and it will not be possible to generate points close to areas of 

complex behavior. Too small, and multiple points may be selected too close to existing points 

limiting global exploration. In the original spread algorithm, dCut was based on the 95th 

percentile of the original sample. In the high error method, dCut will use the 50th percentile. 

Future work will examine how the value of dCut impacts the results.  

A candidate point is selected from the potential candidate set and the dNNs are calculated to the 

original sample. The candidate point is then moved away from its nearest neighbor (NN) until 

dNN>dCut. Since dCut is smaller for the high error method, this process has a low 

computational cost and Criterion 2 is not as restrictive. The algorithm then uses the same 3 

criteria as the spread algorithm to limit movement. However, instead of moving in the direction 
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that will maximize the dNN, the algorithm aims to maximize the MDs calculated from the 5 

ANN models. In this case, 100 test points are taken along each dimension between the current 

candidate position and the maximum movement distance (along the green arrows in Figure 5-2:). 

In MATLAB, it takes approximately the same amount of time to run a single point through all 5 

ANNs as it does to run thousands of points, so there is no benefit to minimizing the number of 

points used in a single run. The candidate is then moved to the location with the maximum MD 

and the process is repeated until improvements in MD fall below a minimum threshold. The 

candidate point is added to the sample and the next point in the potential candidate set is 

examined. 

Once all the samples and their target values are determined, a single ANN is trained on the new 

data set to produce the final proxy model. 
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Figure 5-3: High error sampling method (SS: subsample, MD: max disagreement, PCS: 

potential candidate set, dCut: cut-off distance required, dNN: distance to nearest 

neighbour, Pcand: candidate point) 

5.2.7.3 Combination and random methods 

In the combination sampling method, half the points were generated using the spread method and 

half using the high error methods. This was done to try to better balance local and global 

exploration. The random method uses Monte Carlo sampling with uniform distributions and was 

used as the baseline scenario. The non-random sampling methods were only applied to the ANN 

models as they are more flexible than the quadratic models. The quadratic models are limited by 

their functional form, rather than sample quality based on preliminary work. 

  

5.3  Results and Discussion 

The ability of various quadratic and ANN proxy models to replicate the underlying complex 

models was evaluated for various proxy model configurations and sampling methods. Additional 

results are provided in Appendix D for the four case studies and four network sizes. 

5.3.1 Quadratic regression  

While quadratic models are easy to understand, they have limitations in terms of accuracy. The 

accuracy of the linear and nonlinear quadratic regression models was assessed for various sample 

sizes and orders of interactions. The green, orange, and red lines in Figure 5-4: represent 0.1% 

(optimal), 1% (ideal), and 5% (unacceptable) levels of error (Chapter 5.2.3). Increasing the order 

of interactions above two does not improve performance for the linear models. For non-linear 

models, accuracy improves by increasing orders of interaction up to 4. Overall, increasing the 

sample size had a negligible impact on accuracy directly; indirectly, larger samples allowed 

fitting more complex regression models to the data, which improved accuracy. Results for Bow 

and MB are similar and are provided in Appendix D.1. For the NGTL model, switching from 

linear to non-linear and increasing the levels of interaction above 3 had a negligible effect on 

accuracy (Figure 5-4: and 1-3). The lack of improvement results from the limited flexibility of 

quadratic proxy models. If the underlying complex model does not follow a quadratic form, then 
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adding additional samples or interaction terms will not improve accuracy without the risk of 

overfitting the data. 

For Maya, Bow, and MB, the error is below the optimal error level 99% of the time for the 

NLO3&4 models; however, their maximum error is between the unacceptable and optimal levels 

and could still be improved. For the NGTL case study, the proxy model is less accurate, with 

maximum errors above the unacceptable level and 75% to 95% of errors above the optimal level 

(Appendix D.1).  

 

 
Figure 5-4: Maya quadratic regression absolute residual results: L=Linear, NL=Non-

linear, O#=Order of interactions  

5.3.2 ANN regression 

If the regression model’s accuracy is inadequate using quadratic regression, then ANN 

regression can be used to improve performance. As universal approximators, ANN’s functional 

forms are not limited to quadratic equations. Complex non-linear iterative models with long 

computing times should use ANN from the beginning. 
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Of the four sampling methods examined, only two, random and high error, are presented here. 

The differences between the spread and the random, and between the high error and the combo 

method, are not statistically significant. The spread and combo results are presented in Appendix 

D. 

Figure 5-5: shows how the ANN accuracy is affected by the number of nodes in the hidden layer. 

When only 1,000 samples are used, the 50-node proxy model is less accurate than the smaller 

networks. The 50-node network includes 801 coefficients and likely overfits the data as there are 

only 1.25 samples per coefficient. The larger the relative difference between the MSE from the 

MATLAB internal testing set over the training set, the higher the likelihood of overfitting.  

Figure 5-6: shows how the overfitting is related to the number of samples per coefficient for 

different sized networks. Error bars that extend below 1% indicate that in some instances the 

training MSE was less than the testing MSE. If fewer than ten samples are used per coefficient, 

the probability of overfitting is high, with the testing MSE being 100-10,000% larger than the 

training MSE. Figure 5-6:’s results line up with linear regression’s rule-of-thumb to use at least 

10 samples per coefficient.172 While smaller networks are less likely to overfit (in Figure 5-6:), 

this does not mean they are more accurate overall. For Maya’s using 5,000 samples, the training 

MSE was on average 146% and 5% larger than the testing MSE for the 50 and 5 node networks, 

respectively (Figure 5-5:); however, in Figure 5-5:, the 50-node network’s absolute residual error 

is lower than the 5-node network’s. Trends for Bow and MB were like Maya’s. The NGTL 

model, which is non-linear and includes an iterative solver, is more prone to overfitting. 
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Figure 5-5: Maya ANN regression absolute residual results: N=Nodes in hidden layer of 

ANN  
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Figure 5-6: Overfit check for Maya (top) and NGTL (bottom) using random sampling (test 

MSE>>train MSE indicates overfitting); error bars represent 90% CI 

5.3.2.1 Random ANN vs. quadratic 

In the NGTL scenario, the quadratic model performed poorly with a maximum error equal to 

approximately 8% of the model’s average output value (Figure 6). However, the large 50N Rand 

ANN model significantly improved the model’s accuracy; the average and maximum absolute 

residual were reduced by 89% and 70%, respectively. The Bow, Maya and MB results are 

similar and are provided in Table 5.2. 

 
Figure 5-7: Absolute residual results (Maya, Bow, NGTL use 10,000 samples; MB uses 

7,000 samples) NL_O5 =nonlinear quadratic with 5th order interactions, Rand 50N= 50 

node ANN with random sampling, HE 50N = 50 node ANN with high error sampling 
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To determine why the quadratic models perform better than the smaller ANN models, we 

compared the change in the average and max absolute residuals to the change in the number of 

coefficients used by each proxy model (Table 5.2). When an ANN model uses more coefficients 

than a quadratic model, the ANN average and max absolute residual values decrease. That said, 

some smaller ANN models outperformed the quadratic models. The NGTL 15-node ANN model 

used 35% fewer coefficients and still reduced the average and max absolute residuals by 67% 

and 68%, respectively. Similarly, the MB ANNs used fewer coefficients and still outperformed 

the quadratic model, except for the 5N scenario. Overall, the ANNs outperformed the quadratic 

models when the same sample size and a similar number of coefficients were used.  

Table 5.2: Change in the number of coefficients, average absolute error, and maximum 

absolute error from using ANN (random sampling) compared to the best performing 

quadratic regression proxy model 

# 

Hidden 

Nodes 

Maya 
  

Bow 
  

MB 
  

NGTL 
  

Coeff Avg. Max Coeff Avg Max Coeff Avg Max Coeff Avg Max 

5N -84% 2505% 686% -85% 2448% 1113% -91% 1007% 1042% -78% 143% 2% 

15N -53% 356% 69% -55% 296% 185% -74% -33% -3% -35% -67% -68% 

25N -22% 103% 1% -26% 47% 25% -57% -70% -53% 8% -81% -75% 

50N 55% -31% -61% 48% -51% -23% -13% -77% -80% 115% -89% -70% 

 

5.3.2.2 Random vs. high error 

While the average error of the FUNNEL and NGTL ANN models is below the acceptable error, 

the models still have the occasional high error (max absolute residual). Preliminary 

investigations into ANN configurations determined that adding more nodes continued to reduce 

the MSE but failed to reduce the maximum error. Figure 5-8 was generated using the NGTL 

model with 26 inputs and 50 k random Monte Carlo samples. Similar results were observed by 

Li and Marfatia.194  
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Figure 5-8: NGTL accuracy vs. # of coefficients (50,000 random samples, 26 inputs) 
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adding more data points or increasing the number of nodes in the ANN model will not 

significantly reduce maximum error; therefore, to reduce the maximum error, we used the high 

error adaptive sampling method. 

The results for the NGTL ANN proxy model with 50 nodes are shown below (Figure 5-9:). The 

MSE is larger for the high error method for most sample sizes; however, the maximum error was 

reduced by between 33% and 66%. The reduction in the max error is statistically significant for 

the larger sample sizes. The variability in the max error is also smaller using the high error 

method than with the random approach, even though both methods use a similar number of 

epochs during training; if one method were causing the solver to terminate early, it would reduce 

the number of epochs.  

Outliers appear in the max absolute residuals using the random method and a sample size of 

8,000. Using internal data, these model runs appear acceptable, as the large error only occurs in 

the external data set. Since a typical practitioner who does not have the large external validation 

set used in this work would be unaware of the potential for large errors, these outliers are left in 

the data, rather than being removed. 

Compared to the random sampling method, the high error method increases the mean absolute 

residual error (Figure 6, above). For the NGTL scenario, the increase in the mean absolute 

residual (overall accuracy) needs to be balanced against the reduction in maximum error (overall 

stability). In this case, the mean, P75, P95, and P99 absolute errors are still below the acceptable 

error limit (orange bar), so the slight increase compared to the random method is acceptable. 

Both the random and high error ANN methods outperform the quadratic model for a given 

sample size for the NGTL scenario.  
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Figure 5-9: NGTL 50N ANN MSE and max absolute error using external validation set (p-

value >5% implies the difference in means is not statistically significant; p values <5% are 

not shown); error bars represent 90%CI (Rand: random sample, HE: high error sample) 

 

 

  
Figure 5-10: NGTL 50N ANN MSE using internal and external validation samples (Rand: 

random sample, HE: high error sample) 

Figure 5-10: shows the MSEs for the internal and external data sets. The internal set includes all 
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would not have a large external validation set available and would have to rely on the internal set 

only.  

The high error method has a negative effect on the MSE when the internal data set is used, 

especially during the first iteration, increasing the sample size from 1,000 to 2,000 samples. This 

is likely due to the addition of samples in areas of complex model behavior. The ANN struggles 

with these areas, increasing the MSE. However, when we used the larger external set, the overall 

MSE decreases. To confidently use the high error method, an initial randomly generated 

validation set should be created and set aside to ensure the high error sampling method does not 

affect it. The creation of an external validation set may require generating more samples, 

offsetting some of the high error methods benefits. Future work would need to examine how 

large the external set needs to be. The external validation set may need to be iteratively increased 

along with the training set. 

 

5.3.2.2.1 Impact of the number of ANN nodes and sample size on HE benefit over Rand 

For the NGTL scenario, the improvement from using the high error method increases with 

sample size and number of nodes in the ANN (Figure D9 in the Appendix). The high error 

method reduces the absolute maximum error on average when 15 or more nodes are used in the 

hidden layer (Figure D10, Appendix). The MB and NGTL scenarios are the only ones to see an 

increase in the absolute maximum error for the smallest 5-node network. The MB scenario 

results are unique, as this is the simplest model and already has errors below the ideal criteria 

when random sampling is used (Figure 5-7:). Therefore, the benefit of using the high error 

method is reduced for the MB scenarios (Figure D10). For the NGTL scenario, using the high 

error sampling method with a small 5-node network will increase the maximum error by up to 

20% (Figure D10). 
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5.3.2.3 Combo sampling method 

160 scenarios were run: ten sample sizes from 1,000 to 10,000, 4 network configurations (5, 15, 

25, 50 nodes), and 4 models (Maya, Bow, MB, NGTL). In 83% of the scenarios, the difference 

between the high error and the combo sampling method average absolute maximum error is not 

statistically significant. Overall, the combo results were similar to the high error results and had 

less variability between runs than the random method. Therefore, only a portion of the new 

generated samples needs to use the high error method to improve results. In this work, combo 

assumes 50% of the samples are generated randomly and 50% using the high error method. 

Future work should investigate how to identify the optimal ratio that will reduce extreme errors 

while maintaining or reducing the MSE. 

 

5.3.3 Time required 

The iterative method has three time-consuming steps: sample generation, target value generation, 

and proxy model training. The target generation time is not significantly affected by the 

sampling strategy used or the final sample size (Appendix D.4). Small deviations between target 

generation times may occur if the underlying model relies on an iterative solver; high error 

points may be in regions where the true model has difficulty converging.  

The random method sample generation time is less than 0.001s/1,000 samples for all scenarios. 

Using the spread method increases sampling time to between 4 and 5s/1,000 samples. For the 

high error and combo methods, sampling time takes up to 6,000s/1,000 samples for MB and 

800s/1,000 samples for NGTL (Figure D12). Since the HE/combo sampling methods involve 

training 5 ANNs on the existing sample to identify new points, it is a time-consuming process. 

The more hidden nodes there are in the ANN, the longer sampling takes. Depending on the 

model, training time may not change based on the sampling strategy (see Figures D11 & D12). 

Figure 5-11: shows the cumulative time to generate samples, generate target values, and train the 

ANN using a step size of 1,000 samples. In this scenario, generating target values from the true 

model is the longest step for smaller sample sizes. However, as the sample size increases, the 

sample generation and ANN training take more time (Figure 5-11: & D11-13).  
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Figure 5-11: Cumulative time to produce proxy models for NGTL 50-node ANN (Rand: 

random sample, HE: high error sample) 

 

 

Ideally, the HE method’s longer sampling and training time will be offset by requiring fewer 

samples. For the NGTL scenario, Figure 5-12: shows the residual distributions for the one-shot 

random method with 10,000 samples compared to the cumulative HE method with multiple 

sample sizes.  

While the average MSE is always lowest for the random method, the HE max error is lower than 

the random methods when more than 3,000 samples are used (Figure 5-12:). Therefore, we could 

generate fewer target values and get an acceptable model using the HE method. The times shown 

in Figure 5-12: assume that the random method generates 10,000 samples in a single cycle and is 

not iterative. The HE method starts with 1,000 samples and iteratively adds 1,000 samples at a 

time. Figure 5-12: shows the cumulative time required to reach each sample size. In the NGTL 

scenario, the time required to train a 5,000-sample model using the cumulative HE method is 

comparable to training a one-shot 10,000 sample model using the random approach.  

When more computationally intensive models are used in the future, the benefit of the HE 

method will be further improved. The NGTL model currently takes ~0.06s/target value; if the 

target value generation took ~120s/target value then the HE method using 9,000 or fewer 

samples would take less time than the one-shot random method using 10,000 samples.  
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The combo method achieves similar reductions in the maximum error as the high error method 

but takes between 2% and 18% less time and also reduces the average absolute error (Tables D2-

4 in the Appendix). Similar to the random method, the combo method is less stable than the high 

error method (Figure 5-9:). Using the high error or combo method can decrease maximum error 

and reduce time required, but it will increase the average absolute error. The practitioner would 

need to decide if the trade-off is justified.  

 

 
Figure 5-12: One-shot random sampling vs. cumulative high error (HE) and combo 

sampling (k: thousand samples) 

5.3.4 Future improvements 

The high error method uses dCut to limit how close the new samples are to existing samples 

when searching for areas of disagreement. This work assumed dCut would be equal to the 50th 

percentile distance between existing samples. Future work should investigate adjusting the value 

of dCut to further improve performance.  

The combo method assumes a 50/50 split between random and high error samples. Reducing the 

number of high error samples selected would decrease sample generation time but may reduce 

the reduction in the maximum error. It may be possible to adjust the sampling ratio based on the 

ratio of the maximum and mode absolute error.  
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In this research, an external data set with 500,000 samples was used to compare the high error 

and random sampling results, which is not practical. Further investigation into an appropriate 

external sample size is needed. The external data set may need to be supplemented along with 

the training data. 

The adaptive method used here added 1,000 samples for each iteration. Using fewer samples per 

iteration could improve accuracy while reducing the number of samples needed to obtain an 

acceptable accuracy. However, it would increase sample generation and training time, as these 

would occur more frequently.  

Currently, the number of nodes in the ANN hidden layer is held constant as more samples are 

added. Future research should examine how adding additional nodes as the sample size increases 

impacts the sampling strategies. 

5.4 Conclusion 

This work found that easy-to-use proxy models could be created for various LCA models. While 

quadratic regression can work for simpler models, ANN performed better for the complex 

iterative NGTL model. 

At a certain point, adding additional samples no longer improves the accuracy of a quadratic 

model, as the proxy model structure limits it. Adding additional interaction coefficients or non-

linear terms will also fail to improve accuracy if the models do not follow a polynomial 

response. For the FUNNEL models, adding non-linear terms improved performance more than it 

increased the level of interaction; however, this is model-specific. 

For ANN models, if there was overfitting, increasing the number of nodes increased accuracy 

compared to adding more samples. Overfitting is significantly reduced if at least 10 samples are 

used per coefficient. For the complex NGTL model, the ANN proxy model outperformed the 

quadratic regression model using fewer coefficients when the sample sizes were equal; for the 

simpler models, ANN would outperform quadratic when it used more coefficients since it does 

not stall like quadratic models do. 
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While multiple spread sample approaches were examined in this work, none showed a 

statistically significant improvement on par with random sampling. The high error method 

reduced the maximum error and the variation in the maximum error across multiple samples and 

training sessions. However, the high error method increased the average and mode absolute 

error. While the random sampling method overestimated accuracy using the testing and 

validation sampling, the high error method underestimated accuracy when compared to the 

external data set. Therefore, the high error method is less likely to give a false sense of accuracy. 

Using the high error method, it is possible to reduce the maximum error while using fewer 

samples than the random method, which reduces overall computing time compared to the 

random method when the complex engineering model target value generation times are long. 

While the high error method can decrease the maximum error by up to 80%, it will increase the 

MSE and average absolute error. The high error method is therefore beneficial when the 

practitioner is willing to accept an increase in average error for a decrease in the maximum error, 

providing the end user with a more stable proxy model. The combo method found that only 50% 

of the samples need to be determined using the high error method to obtain similar results, which 

will decrease overall computing time. 

Future work will apply methods developed here to rigorous Aspen models of upgraders and 

refineries. This work found that proxy models can be used to accurately replicate complex 

engineering models while also providing an easy-to-use interface that conceals confidential data.  
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6 Conclusions and Recommendations for Future Work 

Overall, this research aimed at further improving the quality of LCA results so they can be used 

as reliable information to support decision-making in environmental protection and GHG 

emission reductions strategies in the energy sector. This was done by developing RUST and the 

corresponding framework. The work on proxy models will make LCA more flexible and allow 

practitioners to share models without having to worry about confidential data. 

The survey of how existing LCA practitioners implement sensitivity and uncertainty (Chapter 2) 

found that current methods are inconsistent and of low quality. It is recommended that sensitivity 

and uncertainty analysis should not be viewed as something that needs to be added on at the end 

of the project to produce error bars but as a critical part of the analysis included throughout the 

process. Key recommendations are: using global instead of local sensitivity, ensuring all 

inputs/assumptions are included in the screening analysis, avoiding the use of EcoInvent defaults 

without understanding their limitations, requiring acceptable levels of detail from journals, 

integrating screening software into existing LCA software, avoiding the use of generic 

uncertainty ranges, including appropriate justification for methods used/inputs included, 

considering the impact of goal and scope on sensitivity and uncertainty analysis, and using 

differential analysis for comparative LCA. Figure 6-1 provides an overview of what separates a 

simple and detailed sensitivity and uncertainty analysis based on findings from the literature 

survey. 
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Figure 6-1: Summary characteristics of a basic vs. detailed analysis 

Based on the survey findings, the Regression, Uncertainty, and Sensitivity Tool (RUST) was 

developed and validated in Chapter 3. This work showed how the Morris and Sobol methods can 

be used to identify key model parameters by accounting for interaction and non-linear effects, 

unlike the one-at-a-time method. The Morris method was found to require fewer than 1/100th as 

many model evaluations as the Sobol method, making it an effective screening method. Using 

Morris screening, we reduced the number of inputs needed for the Monte Carlo simulation from 

between 60 and 75 to 14 for Maya, Bow, and NGTL, and 16 for Athabasca. Figure 6-2 provides 

a overview of the RUST methodology. 
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Figure 6-2: Overview of RUST framework and process flow diagram 

While publishing the full LCA model is often preferable, it is not always possible because of 

difficulties making the model user friendly as well as non-disclosure agreements or other 

confidentiality concerns. In Chapter 4, it was showed that quadratic linear proxy models could be 

used to represent some LCA models, Figure 6-3 provides an overview of the methodology used. 

A stepwise approach was used to identify the optimal proxy model configuration. The process 

starts by including every term and iteratively eliminating the terms with the highest p values. 

Multicollinearity between terms leads to significant instability in the p values, or a term that 

appears to be insignificant may become significant once others are removed; hence, an iterative 

approach is used to avoid prematurely removing important inputs. The levels of interaction and 

number of terms were be varied until a model with the desired accuracy was obtained. The 

FUNNEL-GHG-CCO/OS regression models were found to have accuracies of Maya−1.2
+2.7, 

Bow−1.2
+2.5, and Athabasca−0.2

+0.3gCO2eq/MJ. By adding non-linear terms, the accuracies were 

improved to Maya−0.6
+0.4, and Bow−0.4

+0.6. For the FUNNEL-GHG-NGTL model, the accuracies were 

NGTL−0.38
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+0.27 for the linear, squared, and cubed regression models, respectively. 

Running uncertainty on the regression model introduces additional model uncertainty based on 

the accuracy of the regression model. In the case of the Maya, Bow, and Athabasca crude 

pathways evaluated in this work, the parameter uncertainty will be an order of magnitude larger 

than the regression model uncertainty, which would make the modeling error negligible. The 

NGTL model should not be used for a sensitivity analysis because of the low regression 

accuracy; a more accurate model is needed.   
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Figure 6-3: Quadratic Regression framework 

At a certain point, adding additional samples no longer improves the accuracy of a quadratic 

model, as the proxy model structure limits it. In Chapter 5, ANN proxy models are discussed as a 

means of improving the accuracy of the NGTL proxy model. An iterative approach was used as 

shown in Figure 6-4. Unlike quadratic regression, ANN models do not experience a stalling 

effect as the sample size increases. For ANN models, if overfitting does not occur, increasing the 

number of nodes increases the accuracy more readily than adding more samples. Overfitting is 

significantly reduced if at least 10 samples are used per coefficient. For the complex NGTL 

model, the ANN proxy model outperforms the quadratic regression model using fewer 

coefficients when the sample sizes are equal; for the simpler models, ANN outperforms 

quadratic when it uses more coefficients since it does not stall like quadratic models. 
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Figure 6-4: High level ANN proxy modeling method 

Multiple spread sample approaches were examined in this work, and none showed a statistically 

significant improvement over random sampling. Using the high error method, it is possible to 

reduce the maximum error while using fewer samples than the random method, which reduces 

overall computing time compared to the random method when the complex engineering model 

target value generation times are long (see Figure 6-5). While the high error method can decrease 

the maximum error by up to 80%, it will increase the MSE and average absolute error (see 

Figure 6-6). The high error method is therefore beneficial when the practitioner is willing to 

accept an increase in average error for a decrease in the maximum error, providing the end user 

with a more stable proxy model. The combo method found that only 50% of the samples need to 

be determined using the high error method to obtain similar results, which will decrease overall 

computing time. 
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Figure 6-5: Absolute residual results: Maya, Bow, NGTL use 10,000 samples; MB uses 

7,000 samples (NL_O5 =nonlinear quadratic with 5th order interactions, Rand 50N= 50 

node ANN with random sampling, HE 50N = 50 node ANN with high error sampling) 
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Figure 6-6: NGTL 50N ANN MSE and max absolute error using external validation set (p-

value >5% implies the difference in means is not statistically significant; p values <5% are 

not shown); error bars represent 90%CI 

 

6.1 Novelty 

This work produced a standardized approach to performing sensitivity and uncertainty analysis 

in LCA which was currently missing. The sensitivity and uncertainty framework lead to the 

development of the Regression, Uncertainty, and Sensitivity Tool (RUST). 

While the use of ANN for proxy modeling is not new, this work investigated new sampling 

strategies. The spread and high error sampling methods were developed for this work to reduce 

the number of samples needed for training a proxy model. 

The natural gas transmission (NGTL) model is the first LCA to examine gas pipeline emission 

intensities using a bottom-up approach. Our work on hythane pipelines is also new and was used 

to examine both the engineering and environmental performance of natural gas-hydrogen 

pipelines in Canada. 

6.2 Recommendations for Future Work 

The surveyed papers only included parameter and scenario uncertainty, not model uncertainty. 

Structural error can be significant, because of the severe lack of data available to LCA 
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practitioners, it is often not possible to validate models and quantify model uncertainty. While 

methods for validating models exist, the field requires further research.  

Current sensitivity and uncertainty analysis articles use a basic approach and often provide 

insufficient information for the reader to verify the methodology used. A guide of key 

requirements for sensitivity and uncertainty analysis in LCA should be developed and distributed 

to journal editors and reviewers. 

While the high error adaptive sampling method was shown to reduce the maximum absolute 

error in ANN proxy models the algorithm can be improved. This work showed that the high error 

and combo method produced similar results; further investigation should look into determining 

what share of new data points should use the high error method versus the random method to 

both minimize error and computing time. 

RUST model developed in this research and its corresponding framework are used by in several 

LCA publications57-64 and industry/government projects.3, 163, 169 There is a large number of 

research studies focused on developing Aspen models of various industrial process. In future, the 

proxy modeling framework developed here can be applied to these models to create simplified 

versions that can be integrated into existing LCAs. Work using the Long-range Energy 

Alternatives Planning (LEAP) software, an integrated resource planning model, can also use the 

framework to integrate accurate submodels into their Canada-wide analysis to further improve 

accuracy. LEAP models depend on interactions between energy systems; proxy models can help 

accurately model such interactions. 
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Appendix A: Surveyed Papers 

A.1. Scopus Survey Filter 

The following search string was used in Scopus on February 18, 2018: 

( TITLE-ABS-KEY ( [Life Cycle Assessment] )  OR  TITLE-ABS-KEY ( [Life Cycle Analysis] )  OR  TITLE-ABS-KEY ( [LCA] ) )  

AND  ( TITLE-ABS-KEY ( energy )  OR  TITLE-ABS-KEY ( fuel ) )  AND  ( LIMIT-TO ( SRCTYPE ,  "j" ) )  AND  ( EXCLUDE ( 

SUBJAREA ,  "MEDI" )  OR  EXCLUDE ( SUBJAREA ,  "BIOC" )  OR  EXCLUDE ( SUBJAREA ,  "IMMU" )  OR  EXCLUDE ( 

SUBJAREA ,  "PHAR" )  OR  EXCLUDE ( SUBJAREA ,  "VETE" ) )  AND  ( LIMIT-TO ( PUBYEAR ,  2017 ) )  AND  ( LIMIT-

TO ( LANGUAGE ,  "English" ) )  AND  ( LIMIT-TO ( EXACTKEYWORD ,  "Greenhouse Gases" )  OR  LIMIT-TO ( 

EXACTKEYWORD ,  "Global Warming" ) )  AND  ( EXCLUDE ( EXACTKEYWORD ,  "Costs" )  OR  EXCLUDE ( 

EXACTKEYWORD ,  "Economics" )  OR  EXCLUDE ( EXACTKEYWORD ,  "Economic Analysis" )  OR  EXCLUDE ( 

EXACTKEYWORD ,  "Cost Benefit Analysis" )  OR  EXCLUDE ( EXACTKEYWORD ,  "Recycling" )  OR  EXCLUDE ( 

EXACTKEYWORD ,  "Economic And Social Effects" )  OR  EXCLUDE ( EXACTKEYWORD ,  "Investments" )  OR  EXCLUDE ( 

EXACTKEYWORD ,  "Environmental Economics" )  OR  EXCLUDE ( EXACTKEYWORD ,  "Cost Analysis" )  OR  EXCLUDE ( 

EXACTKEYWORD ,  "Commerce" ) ) 
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A.2. Surveyed Work 

The surveyed work is listed below; a value of 1 in the adjacent columns indicates the study included the specified analysis. The 

column headers are sensitivity, one-at-a-time (OAT), factored design of experiments (Factored), uncertainty, Monte Carlo (MC), best 

worse case scenarios (BWCS), and contribution of variance (COV) analysis. 
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Life cycle assessment of a future central receiver solar power plant 

and autonomous operated heliostat concepts 
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Environmental impacts of producing bioethanol and biobased lactic 

acid from standalone and integrated biorefineries using a 

consequential and an attributional life cycle assessment approach 
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Potential pyrolysis pathway assessment for microalgae-based 

aviation fuel based on energy conversion efficiency and life cycle 
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Lifecycle GHG emissions of palm biodiesel: Unintended market 

effects negate direct benefits of the Malaysian Economic 

Transformation Plan (ETP) 
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Life Cycle Assessment of Power-to-Gas: Approaches, system 

variations and their environmental implications 
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Life cycle assessment of seaweed biomethane, generated from 

seaweed sourced from integrated multi-trophic aquaculture in 

temperate oceanic climates 
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Life cycle assessment of waste-to-energy (WtE) technologies for 

electricity generation using municipal solid waste in Nigeria 
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Life cycle assessment of thermal energy production from short-

rotation willow biomass in Southern Ontario, Canada 

Dias et al.199 1 1 0 0 0 0 0 

Comparative life cycle assessment of hydrogen, methanol and 

electric vehicles from well to wheel 

Bicer et al.86 0 0 0 1 1 0 0 

Life cycle assessment of nuclear-based hydrogen and ammonia 

production options: A comparative evaluation 

Bicer et al.200 1 1 0 0 0 0 0 

Uncertainty in well-to-tank with combustion greenhouse gas 

emissions of transportation fuels derived from North American 

crudes 

Di Lullo et al.44 1 1 0 1 1 0 1 

Environmental performance evaluation of a grid-independent solar 

photovoltaic power generation (SPPG) plant 

Akinyele201 1 0 1 0 0 0 0 

Aqueous hybrid ion batteries – An environmentally friendly 

alternative for stationary energy storage? 

Peters et al.202 1 1 0 0 0 0 0 

The policy recommendations on cassava ethanol in China: 

Analyzed from the perspective of life cycle “2E & W” 

Zhang et al.203 1 1 0 0 0 0 0 

Evaluating the environmental impacts of bio-hydrogenated diesel 

production from palm oil and fatty acid methyl ester through life 

cycle assessment 

Boonrod et al.204 0 0 0 0 0 0 0 

Environmental life cycle assessment of biogas production from 

marine macroalgal feedstock for the substitution of energy crops 

Ertem et al.205 0 0 0 0 0 0 0 

Generating low-carbon heat from biomass: Life cycle assessment of 

bioenergy scenarios 

Welfle et al.82 1 0 1 0 0 0 0 

Land use change implications for large-scale cultivation of algae 

feedstocks in the United States Gulf Coast  

Handler et al.206 1 1 1 0 0 0 0 

Coupling sorghum biomass and wheat straw to minimise the 

environmental impact of bioenergy production 

Serra et al.207 1 1 0 0 0 0 0 

Comparative assessment of the environmental impacts of nuclear, 

wind and hydro-electric power plants in Ontario: A life cycle 

Siddiqui et al.208 1 1 0 0 0 0 0 
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assessment 

Life Cycle Assessment of microtubular solid oxide fuel cell based 

auxiliary power unit systems for recreational vehicles 

Benveniste et al.92 1 1 0 1 1 0 0 

LCA perspective to assess the environmental impact of a novel 

PCM-based cold storage unit for the civil air conditioning 

De Falco et al.209 1 1 0 0 0 0 0 

A life cycle assessment of oxymethylene ether synthesis from 

biomass-derived syngas as a diesel additive 

Mahbub et al.210 1 1 0 0 0 0 0 

Environmental analysis of Spirulina cultivation and biogas 

production using experimental and simulation approach 

Rodríguez et al.211 0 0 0 0 0 0 0 

Carbon footprints of two large hydro-projects in China: Life-cycle 

assessment according to ISO/TS 14067 

Li et al.97 1 1 0 1 1 0 1 

Changes in carbon footprint when integrating production of 

filamentous fungi in 1st generation ethanol plants 

Brancoli et al.212 1 0 1 0 0 0 0 

Transportation biofuel efficiencies from cultivated feedstock in the 

boreal climate zone: Case Finland 

Uusitalo et al.105 0 0 0 1 0 1 0 

Alternative fuel for sustainable shipping across the Taiwan Strait Hua et al.213 1 1 0 0 0 0 0 

Environmental impact and sustainability study on biofuels for 

transportation applications 

Chang et al.214 1 0 1 0 0 0 0 

Life cycle assessment (LCA) of digested sewage sludge incineration 

for heat and power production 

Abuşoğlu et al.215 0 0 0 0 0 0 0 

Life cycle assessment of photovoltaic manufacturing consortium 

(PVMC) copper indium gallium (di)selenide (CIGS) modules 

Amarakoon et al.96 1 1 0 1 0 1 0 

Carbon Footprint and Energy Analysis of Bio-CH4 from a Mixture 

of Food Waste and Dairy Manure in Denver, Colorado 

Ankathi et al.216 0 0 0 0 0 0 0 

Are district heating systems and renewable energy sources always 

an environmental win-win solution? A life cycle assessment case 

study in Tuscany, Italy 

Bartolozzi et al.217 0 0 0 0 0 0 0 

Accounting for GHG net reservoir emissions of hydropower in Briones Hidrovo et al.87 1 1 0 1 1 0 0 
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Ecuador 

Spatially Explicit Life Cycle Analysis of Cellulosic Ethanol 

Production Scenarios in Southwestern Michigan 

Cronin et al.218 1 0 1 1 0 0 0 

Life cycle assessment of a mallee eucalypt jet fuel Crossin88 1 1 0 1 1 0 0 

Life cycle assessment of fuel ethanol produced from soluble sugar in 

sweet sorghum stalks in North China 

Ding et al.219 1 1 0 0 0 0 0 

Bioenergy and bioproducts from municipal organic waste as 

alternative to landfilling: a comparative life cycle assessment with 

prospective application to Mexico 

Escamilla-Alvarado et 

al.220 

1 1 0 0 0 0 0 

Streamlined life cycle analysis for assessing energy and exergy 

performance as well as impact on the climate for landfill gas 

utilization technologies 

Friesenhan et al.221 1 1 0 0 0 0 0 

Life cycle analysis of coal-based synthetic natural gas for heat 

supply and electricity generation in China 

Gao et al.222 0 0 0 0 0 0 0 

Cultivating Ciona intestinalis to counteract marine eutrophication: 

Environmental assessment of a marine biomass based bioenergy 

and biofertilizer production system 

Hackl et al.223 1 1 0 0 0 0 0 

Assessment of the carbon footprint, social benefit of carbon 

reduction, and energy payback time of a high-concentration 

photovoltaic system 

Hu et al.224 1 0 1 0 0 0 0 

Opportunity and challenge of seaweed bioethanol based on life cycle 

CO2 assessment 

Jung et al.93 0 0 0 1 1 0 1 

Review of the life cycle greenhouse gas emissions from different 

photovoltaic and concentrating solar power electricity generation 

systems 

Kommalapati et al.225 0 0 0 0 0 0 0 

Life cycle assessment (LCA) of biogas versus dung combustion 

household cooking systems in developing countries – A case study in 

Ethiopia 

Lansche et al.81 1 1 0 1 0 1 0 
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Evaluation of landfill gas emissions from municipal solid waste 

landfills for the life-cycle analysis of waste-to-energy pathways 

Lee et al.226 1 1 0 0 0 0 0 

Realizing low life cycle energy use and GHG emissions in coal based 

polygeneration with CO2 capture 

Li et al.109 0 0 0 1 0 1 0 

TC2015: Life cycle analysis of co-formed coal fines and hydrochar 

produced in twin-screw extruder (TSE) 

Liu et al.91 1 1 0 1 1 0 0 

Environmental impacts of electricity production of micro wind 

turbines with vertical axis 

Lombardi et al.227 1 0 1 0 0 0 0 

Life cycle assessment of palm-derived biodiesel in Taiwan Maharjan et al.228 0 0 0 0 0 0 0 

Life cycle assessment of feedstock supply systems for cellulosic 

biorefineries using corn stover transported in conventional bale and 

densified pellet formats 

Manandhar et al.98 1 1 0 1 1 0 0 

A life cycle assessment of perovskite/silicon tandem solar cells Monteiro Lunardi et al.229 1 1 0 0 0 0 0 

Life cycle assessment of co-firing coal and wood pellets in the 

Southeastern United States 

Morrison et al.230 1 0 1 0 0 0 0 

Life-cycle greenhouse gas and water intensity of cellulosic biofuel 

production using cholinium lysinate ionic liquid pretreatment 

Neupane et al.106 1 1 0 1 0 1 0 

Life cycle analysis of bitumen transportation to refineries by rail 

and pipeline 

Nimana et al.90 1 1 0 1 1 0 1 

Environmental life cycle assessment of producing willow, alfalfa 

and straw from spring barley as feedstocks for bioenergy or 

biorefinery systems 

Parajuli et al.231 1 1 0 0 0 0 0 

Environmental performance of manure co-digestion with natural 

and cultivated grass – A consequential life cycle assessment 

Pehme et al.232 1 1 0 0 0 0 0 

Environmental assessment of IGCC power plants with pre-

combustion CO2 capture by chemical & calcium looping methods 

Petrescu et al.233 0 0 0 0 0 0 0 

Life Cycle Assessment for supercritical pulverized coal power 

plants with post-combustion carbon capture and storage 

Petrescu et al.234 0 0 0 0 0 0 0 
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Green-house gas mitigation capacity of a small scale rural biogas 

plant calculations for Bangladesh through a general life cycle 

assessment 

Rahman et al.235 0 0 0 0 0 0 0 

Life cycle assessment of a sewage sludge and woody biomass co-

gasification system 

Ramachandran et al.236 1 1 0 0 0 0 0 

Waste wood as bioenergy feedstock. Climate change impacts and 

related emission uncertainties from waste wood based energy 

systems in the UK 

Röder et al.107 1 1 1 1 0 1 0 

Environmental and exergetic sustainability assessment of power 

generation from biomass 

Stougie et al.237 1 0 1 0 0 0 0 

Energy-efficient routes for the production of gasoline from biogas 

and pyrolysis oil - process design and life-cycle assessment 

Sundaram et al.238 0 0 0 0 0 0 0 

Meta-analysis and harmonization of life cycle assessment studies for 

algae biofuels 

Tu et al.24 0 0 0 1 1 0 0 

Potential for greenhouse gas emission reductions using surplus 

electricity in hydrogen, methane and methanol production via 

electrolysis 

Uusitalo et al.239 1 1 0 0 0 0 0 

Greenhouse gas emissions of electricity and biomethane produced 

using the Biogasdoneright™ system: four case studies from Italy 

Valli et al.240 0 0 0 0 0 0 0 

Environmental impacts of lithium metal polymer and lithium-ion 

stationary batteries 

Vandepaer et al.89 1 1 0 1 1 0 0 

Relevance of environmental impact categories for perennial 

biomass production 

Wagner et al.241 0 0 0 0 0 0 0 

Life cycle assessment of small-scale horizontal axis wind turbines in 

Taiwan 

Wang et al.242 0 0 0 0 0 0 0 

Effect of pretreatment on microalgae pyrolysis: Kinetics, biocrude 

yield and quality, and life cycle assessment 

Wang et al.243 0 0 0 0 0 0 0 

Production of hydrocarbon fuel using two-step torrefaction and fast Winjobi et al.244 1 1 1 0 0 0 0 
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pyrolysis of pine. Part 2: life-cycle carbon footprint 

Life-cycle assessment of torrefied coppice willow co-firing with 

lignite coal in an existing pulverized coal boiler 

Woytiuk et al.245 1 0 1 0 0 0 0 

Life cycle performance of cellulosic ethanol and corn ethanol from 

a retrofitted dry mill corn ethanol plant 

Zhang et al.108 1 1 1 0 0 1 0 
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Appendix B: NGTL Functions 

To determine the compressor energy requirements, custom Excel functions were written to 

calculate the gas viscosity and compressibility, pipeline pressure drop, and compressor power 

required. Additional calculations for determining emissions associated with end-of-life nitrogen 

purging are also included. 

B.1. Natural Gas Viscosity4 

The gas viscosity is calculated using a correlation by Carr et al.156 that uses the gas gravity as 

well as nitrogen, carbon dioxide, and hydrogen sulfide molar fractions (Eq. B1-B6).  

The gas viscosity at atmospheric pressure is given by:  

𝜇 =  𝜇𝐻𝐶 + 𝜇𝑁2 + 𝜇𝐶𝑂2 + 𝜇𝐻2𝑆 (Eq. B1) 

𝜇𝐻𝐶 = 8.188 ∗ 10−3 − 6.15 ∗ 10−3 log(𝛾) + (1.709 ∗ 10−5 − 2.062 ∗ 10−6𝛾) ∗ 𝑇 (Eq. B2) 

𝜇𝑁2 = [9.59 ∗ 10−3 + 8.48 ∗ 10−3 log(𝛾)] ∗ 𝑦𝑁2 (Eq. B3) 

𝜇𝐶𝑂2 = [6.24 ∗ 10−3 + 9.08 ∗ 10−3 log(𝛾)] ∗ 𝑦𝐶𝑂2 (Eq. B4) 

𝜇𝐻2𝑆 = [3.73 ∗ 10−3 + 8.49 ∗ 10−3 log(𝛾)] ∗ 𝑦𝐻2𝑆 (Eq. B5) 

where γ is the gas gravity and y is the molar fraction. 

The custom Excel function is defined as: 

𝐺𝑎𝑠𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦𝑆𝑇𝐷(𝛾, 𝑦𝑁2, 𝑦𝐶𝑂2, 𝑦𝐻2𝑆) (Eq. B6) 
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B.2. Peng-Robinson 

The gas compressibility factor, Z, is determined using the Peng-Robinson equation of state for 

mixtures and depends on the gas temperature, pressure, molar composition, and component 

acentric factors. The cubic root of the Peng-Robinson equation is approximated using Cardono’s 

method. The largest root is the compressibility factor for the gas, Z. Once Z is determined, it is 

plugged back into the Peng-Robinson equation to check its accuracy. If the absolute is greater 

than 10e-6, the Newton-Raphson method is used to calculate the root. To ensure the solver does 

not overshoot the correct root and converge to one of the smaller roots, an initial guess of Z = 

+0.05 is used and the maximum step size is set to 10% of the current Z estimate. The solver 

terminates when the change in the Z value is less than 0.001. 

The general cubic equation of state is: 

𝑝 =
𝑅𝑇

𝑣 − 𝑏𝑚
−

𝑎𝑚

(𝑣2 + 2𝑣𝑏𝑚 − 𝑏𝑚
2)

 (Eq. B7) 

where 𝑃 is pressure in MPa, 𝑇 is temperature in K, 𝑅 is the gas constant in m3MPa/mol.K, and 𝑣 

is the volume in m3/mol. When Z is defined as:  

𝑍 =
𝑝𝑣

𝑅𝑇
 (Eq. B8) 

the cubic equation can be rewritten as: 

𝑍3 + 𝐶1 ∗ 𝑍2 + 𝐶2 ∗ 𝑍 + 𝐶3 = 0 (Eq. B9) 

where the coefficients are defined as: 

𝐶1 =  
−1

𝐵
 (Eq. B10) 

𝐶2 = 𝐴 − 3 ∗ 𝐵2 − 2 ∗ 𝐵 (Eq. B11) 
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𝐶3 = −(𝐴 ∗ 𝐵 − 𝐵2 − 𝐵3) (Eq. B12) 

where A and B are dimensionless parameters: 

𝐴 =
𝑎𝑚 ∗ 𝑃

(𝑅 ∗ 𝑇)2
 (Eq. B13) 

𝐵 =
𝑏𝑚 ∗ 𝑃

𝑅 ∗ 𝑇
 (Eq. B14) 

and am and bm are the attraction and repulsion parameters of the gas mixture: 

𝑎𝑚 =  ∑ ∑ 𝑚𝑖 ∗ 𝑚𝑗(1 − 𝑘𝑖𝑗)√𝑎𝑖 ∗ 𝑎𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (Eq. B15) 

𝑏𝑚 =  ∑ 𝑚𝑖 ∗ 𝑏𝑖

𝑛

𝑖=1

 (Eq. B16) 

The binary interaction parameters, kij, are taken from Aspen HYSYS.50 The attraction and 

repulsion parameters of the pure components are calculated as: 

𝑎 = 0.457 ∗
𝑅2 ∗ 𝑇𝑐

2

𝑃𝑐
[1 + 𝜅 (1 − √

𝑇

𝑇𝑐
)]

2

 (Eq. B17) 

𝑏 = 0.0778 ∗
𝑅 ∗ 𝑇𝑐

𝑃𝑐
 (Eq. B18) 

where Tc and Pc are the critical temperature and pressure in K and MPa, respectively. The 

parameter κ is a function of the acentric factor, ω: 

𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 (Eq. B19) 
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Once the coefficients C1, C2, and C3 are calculated, the cubic roots can be approximated using 

Cardono’s method:246  

𝑄 =
𝐶1

2 − 3𝐶2

9
 (Eq. B20) 

𝑟 =
2𝐶1

3 − 9𝐶1𝐶2 + 27𝐶3

54
 (Eq. B21) 

If 𝑟2 ≤ 𝑄3, then three real roots exist and are calculated as: 

𝜃 = cos−1
𝑟

𝑄3/2 
 (Eq. B22) 

𝑍1 = −2𝑄0.5 cos (
𝜃

3
) −

𝐶1

3
 (Eq. B23) 

𝑍2 = −2𝑄0.5 cos (
𝜃 + 2𝜋

3
) −

𝐶1

3
 (Eq. B24) 

𝑍3 = −2𝑄0.5 cos (
𝜃 − 2𝜋

3
) −

𝐶1

3
 (Eq. B25) 

If 𝑟2 > 𝑄3, then we assume a positive square root and calculate: 

𝐷 =  −1 ∗ 𝑆𝑔𝑛(𝑟) (|𝑟| + √𝑟2 − 𝑄3)

1
3
 (Eq. B26) 

If 𝐷 = 0, then 𝐸 = 0, otherwise: 

𝐸 =
𝑄

𝐷
 (Eq. B27) 

The 1st root is: 
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𝑍1 = 𝐷 + 𝐸 −
𝐶1

3
 (Eq. B28) 

If 𝐷 ≠ 𝐸, then the remaining roots are zero; otherwise: 

𝑍2 = 𝑍3 = −
(𝐷 + 𝐸)

2
−

𝐶1

3
 (Eq. B29) 

The largest root is the compressibility factor for the gas, Z. Once Z is determined, it is plugged 

back into Eq. B9 to check its accuracy. If the absolute value of Eq. B9 is greater than 10e-6, the 

Newton-Raphson method is used to calculate the root. To ensure the solver does not overshoot 

the correct root and converge to one of the smaller roots, an initial guess of Z +0.05 is used and 

the maximum step size is set to 10% of the current Z estimate. The solver terminates when the 

change in the Z value is less than 0.001. 

 The custom Excel formula is: 

𝑃𝑒𝑛𝑔𝑅𝑜𝑏(𝑇, 𝑃, 𝑚𝑜𝑙𝑓𝑟𝑎𝑐) (Eq. B30) 

The user highlights the molar composition as a range ordered methane, ethane, propane, butane, 

pentane, carbon dioxide, hydrogen sulfide, and nitrogen. 

B.3. Compressor Power 

The compressor inlet and outlet pressure are calculated as:  

𝑃𝐶𝑜𝑚𝑝.𝐼𝑛 =  𝑃𝑃𝑖𝑝𝑒.𝑂𝑢𝑡 − 0.5Δ𝑃𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 − Δ𝑃𝑆𝑐𝑟𝑢𝑏𝑏𝑒𝑟 (Eq. B31) 

𝑃𝐶𝑜𝑚𝑝.𝑂𝑢𝑡 =  𝑃𝑃𝑖𝑝𝑒.𝐼𝑛 + 0.5Δ𝑃𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 (Eq. B32) 

where ΔPScrubber and ΔPFacility are the scrubber and facility piping pressure drops, respectively, in 

MPa. The compression ratio, CR, is dependent on the compressor pressures and the interstage 

cooler pressure drop. First, the number of stages are calculated as: 
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𝑁𝑆𝑡𝑎𝑔𝑒𝑠 =  ln

𝑃𝐶𝑜𝑚𝑝.𝑂𝑢𝑡

𝑃𝐶𝑜𝑚𝑝.𝐼𝑛

1 + Δ𝑃𝐶𝑜𝑜𝑙𝑒𝑟
ln

𝐶𝑅𝑚𝑎𝑥

1 + Δ𝑃𝐶𝑜𝑜𝑙𝑒𝑟
⁄  

(Eq. B33) 

where all pressures are in MPa, except ΔPCooler, which is a percentage. The actual CR is 

calculated from either the calculated or user-specified number of stages as: 

𝐶𝑅 =  [
𝑃𝐶𝑜𝑚𝑝.𝑂𝑢𝑡

𝑃𝐶𝑜𝑚𝑝.𝐼𝑛
∗ (1 + Δ𝑃𝐶𝑜𝑜𝑙𝑒𝑟)𝑁𝑆𝑡𝑎𝑔𝑒𝑠−1]

1/𝑁𝑆𝑡𝑎𝑔𝑒𝑠

 (Eq. B34) 

The compressor power is then calculated using a custom Excel function. Internally, the outlet 

temperature and compressibility factor are iteratively calculated for each stage. The heat capacity 

ratio is determined using the gas composition. An iterative approach is used were Zout is assumed 

to be 1 for the first iteration and then calculated using the PengRob function, which is dependent 

on the outlet temperature. The iteration terminates either after 20 iterations or when the relative 

error in Zout is less than 0.1%. The inlet temperature is taken as the pipeline outlet temperature 

for the 1st stage and as the cooler outlet temperature for the remaining stages. The interstage and 

outlet coolers drop the natural gas temperature down to 25-50°C; the base case assumes 40°C 247-

249. 

The outlet temperature is calculated using equations from Mohitpour et al.247 and 

Moshfeghian250:  

𝑇𝑜𝑢𝑡 = 𝑇𝑖𝑛 ∗ 𝐶𝑅
𝑘−1
𝑘∗𝜂𝑝  (Eq. B35) 

where Tout and Tin are the compressor temperatures in K, k is the heat capacity ratio, and ηp is the 

polytrophic efficiency.  

The compressor power for each stage is then calculated using equations from Mohitpour et al.247 

as:  



164 | P a g e  

 

𝐻𝑃

𝑀𝑀𝑆𝐶𝐹𝐷
= 0.15426 ∗

𝑘

𝑘 − 1

𝑇𝑖𝑛

𝜂𝑀
∗

𝑍𝑖𝑛 + 𝑍𝑜𝑢𝑡

2
∗ (𝐶𝑅

𝑘−1
𝑘∗𝜂𝐴 − 1) (Eq. B36) 

where ηM and ηp are the mechanical and polytrophic efficiencies. The total compressor power in 

kW is: 

𝑃𝑜𝑤𝑒𝑟 =  ∑ 𝐻𝑃𝑖

𝑁𝑆𝑡𝑎𝑔𝑒𝑠

𝑖=1

∗
0.7457

1177.17
∗ 𝑄 (Eq. B37) 

where Q is the flow rate in m3/hr. The custom 2 x 1 array Excel function for the compressor 

power is defined as: 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟𝑃𝑜𝑤𝑒𝑟(𝑇𝐼𝑛, 𝑇𝐶𝑜𝑜𝑙𝑒𝑟 , 𝑁𝑆𝑡𝑎𝑔𝑒𝑠, 𝐶𝑅, 𝑃𝐶𝑜𝑚𝑝.𝐼𝑛, 𝛾, 𝜂𝑝, 𝜂𝑀 , 𝑚𝑜𝑙𝑓𝑟𝑎𝑐 , 𝑃𝑃𝑖𝑝𝑒.𝑂𝑢𝑡, 

 Δ𝑃𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 , Δ𝑃𝐶𝑜𝑜𝑙𝑒𝑟 , 𝑃𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡, 𝑄) 

(Eq. B38) 

with the compressor power in kW and the outlet pressure in MPa as outputs.  

If the power required is larger than the station power limit, the outlet pressure is iteratively 

reduced. A simple step algorithm is used with the error equal to the power required minus the 

power limit. Pressure step sizes of -0.5, +0.05, and -0.01 MPa are used. The step size changes 

when the error value switches from positive to negative or vice versa. The function outputs both 

the compressor power requirement and pipeline inlet pressure. If the power is limited by the 

station limit, a cascade effect will occur wherein the pressure drops as the gas travels down the 

pipeline.  

The compressor power calculation accuracy is verified using Aspen HYSYS and is accurate 

within ±2%.50  

B.3.1. Compressor power calculation updates 

The following modifications were made to the compressor power macro in Di Lullo et al.5: 

1. Density is calculated using the GERG model instead of Equation B43 
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2. Compressibility is now calculated using the GERG model instead of the Peng-Robinson 

macro 

3. The gas-specific heat ratio (k) is calculated using GERG rather than being supplied by the 

user with 𝑘𝑎𝑣𝑔 = (𝑘𝑖𝑛𝑙𝑒𝑡 + 𝑘𝑜𝑢𝑡𝑙𝑒𝑡) 2⁄  

4. The molecular weight is calculated using GERG rather than assuming a typical value 

5. Equation B36 is updated to account for the mixture’s specific molecular weight 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑘

𝑘 − 1

𝑇𝑖𝑛 ∗ 𝑅

𝑀𝑊
∗

𝑍𝑖𝑛 + 𝑍𝑜𝑢𝑡

2
∗ (𝐶𝑅

𝑘−1
𝑘∗𝜂𝑝 − 1) Eq. B36  

where 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 is in MPa-m3/g, ηp is the polytrophic efficiency, 𝑇𝑖𝑛 is the compressor inlet 

temperature in K, 𝑍𝑖𝑛and 𝑍𝑜𝑢𝑡 are the inlet and outlet compressibility factors, 𝑘 is the heat 

capacity ratio, 𝐶𝑅 is the compression ratio, 𝑀𝑊 is the molecular weight in g/mol, and 𝑅 is the 

ideal gas constant in MPa-m3/K-mol. 

The old Equation B37 for the total compressor power in kW is now: 

𝑃𝑜𝑤𝑒𝑟 =  ∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖

𝑁𝑆𝑡𝑎𝑔𝑒𝑠

𝑖=1

∗
𝜌𝑠

𝜂𝑀 ∗ 𝜂𝑝
∗ 𝑄 ∗

1000 𝑔

1 𝑘𝑔
∗

1000 𝑘𝑊

1 𝑀𝑊
∗

1 ℎ𝑟

3600 𝑠
 

 

Eq. B37  

where ηM is the mechanical efficiency and 𝜌𝑠 is the density at standard conditions in m3/hr. The 

unit conversions are used to cancel out the MPa unit, which is equal to 1,000,000 kg-J/m3.  

 

B.4.  Pipeline Pressure Drop 

The user must specify either the inlet or outlet pressure and the function will calculate the other 

pressure. This is useful as it allows the user to specify a delivery pressure and then calculate the 

required compressor pressure. If a parallel is used, an iterative approach is used to determine the 

flow rate for both pipelines; the user must supply an initial guess for the flow rate split between 

the two Chapters.   

The Reynold number is calculated as: 
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𝑅𝑒 =
1.5616 ∗ 𝑄 ∗ 𝐺

𝜇 ∗ 𝐷
 (Eq. B39) 

where Q is the flow rate in m3/s, G is the gas gravity, µ is the gas viscosity in P, and D is the 

diameter in m.  

An initial friction factor/transmission factor estimate is determined from the White equation:158 

𝑡𝑟 = √
1

𝑓
=

1

√1.02
(log 𝑅𝑒)1.25 (Eq. B40) 

An iterative application of the Colebrook equation is then used until the relative error is less than 

0.001%:157, 158 

𝑡𝑟 = −2 log (
𝑒

3.7𝐷
+

2.51𝑡𝑟

𝑅𝑒
) (Eq. B41) 

where e is the absolute roughness in m.  

The average pressure is calculated as: 

𝑃𝑎𝑣𝑔 =
2

3
(𝑃𝐴 + 𝑃𝐵 −

𝑃𝐴 ∗ 𝑃𝐵

𝑃𝐴 + 𝑃𝐵
) (Eq. B42) 

where PA and PB are pressures in MPa. If the user specifies the inlet pressure, then 𝑃𝐴 = 𝑃𝑖𝑛, 

𝑠𝑜𝑙𝑣𝑒𝑠𝑔𝑛 = 1, and 𝑃𝐵 is the solved outlet pressure. If the user specifies the outlet pressure, then 

𝑃𝐴 = 𝑃𝑜𝑢𝑡, 𝑠𝑜𝑙𝑣𝑒𝑠𝑔𝑛 = −1, and 𝑃𝐵 is the solved inlet pressure. 

The density in kg/m3 is calculated as: 

𝜌 =  [𝑀𝑔  ∗  𝑃 ∗  10 / (𝑍 ∗  𝑅 ∗  𝑇)] / 1000 (Eq. B43) 

where Mg is the gas molar mass in g/mol and R is the ideal gas constant in bar.m3/K.mol. 
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The general flow equation is used and is broken down for simplicity as:157, 158 

𝐶 =
𝜋

4𝜌𝑠
∗ √

𝑀𝑔

𝑅 ∗ 1𝑒6
 (Eq. B44) 

𝑃𝐸 = 2𝑃𝑎𝑣𝑔 ∗ 1𝑒6 ∗ 𝜌𝑎𝑣𝑔 ∗ 𝑔 ∗ 𝐻 (Eq. B45) 

𝑘 = (
𝑄

𝐶 ∗ 𝜂𝑝𝑖𝑝𝑒 ∗ 𝑡𝑟 ∗ 𝐷2.5)

2

∗ 𝐿 ∗ 𝑇𝑎𝑣𝑔 ∗ 𝑍𝑎𝑣𝑔 (Eq. B46) 

𝑑𝑘

𝑑𝑄
=

2 ∗ 𝑄 ∗ 𝐿 ∗ 𝑇𝑎𝑣𝑔 ∗ 𝑍𝑎𝑣𝑔

𝐶 ∗ 𝜂𝑝𝑖𝑝𝑒 ∗ 𝑡𝑟 ∗ 𝐷2.5
 (Eq. B47) 

𝑃𝐵 = [√(𝑃𝐴 ∗ 1𝑒6)2 + 𝑠𝑜𝑙𝑣𝑒𝑠𝑔𝑛 ∗ (−𝑘 − 𝑃𝐸)] 1𝑒6⁄  (Eq. B48) 

𝑑𝑃𝐵

𝑑𝑄
= [−0.5 ∗ 𝑠𝑜𝑙𝑣𝑒𝑠𝑔𝑛 ∗

𝑑𝑘

𝑑𝑞
∗ (𝑃𝐴 ∗ 1𝑒6)2 +

𝑠𝑜𝑙𝑣𝑒𝑠𝑔𝑛

√−𝑘 − 𝑃𝐸
] 1𝑒6⁄  (Eq. B49) 

where ρs and ρavg are the gas density at standard and average conditions in kg/m3, g is the 

acceleration due to gravity in m2/s, H is the elevation change in m, ηpipe is the pipeline efficiency, 

L is the pipeline length in m, Tavg is the average temperature in K, and Zavg is the average 

compressibility.  

If required, the flow adjustments for the parallel Chapters are: 

𝑄𝑎𝑑𝑗𝑠 =
𝑃𝐵𝑖

− 𝑃𝐵𝑖−1

𝑑𝑃𝐵𝑖

𝑑𝑄
−

𝑑𝑃𝐵𝑖

𝑑𝑄

 
(Eq. B50) 

𝑄// = 𝑄// + 𝑄𝑎𝑑𝑗𝑠 (Eq. B51) 

𝑄𝑚 = 𝑄𝑚 − 𝑄𝑎𝑑𝑗𝑠 (Eq. B52) 



168 | P a g e  

 

The average temperature is calculated by accounting for heat loss to the ground and the effect of 

expansion cooling.251 The average Joules-Thompson expansion coefficient in K/m is:247 

𝐽𝐿 =
𝐽𝑇 ∗ |Δ𝑃|

𝐿
 (Eq. B53) 

where JT is the Joules-Thompson coefficient in K/MPa and ΔP is the pressure drop across the 

pipeline length. This analysis assumes the pressure drops linearly along the pipeline, which does 

not occur. The average temperature is then approximated as: 

𝐴 =  
𝜋𝐷 ∗ 𝑈

𝑄 ∗ 𝜌𝑠 ∗ 𝐶𝑝
 (Eq. B54) 

𝑇𝑎𝑣𝑔 = (
1

𝐿
𝑇𝑖𝑛 − 𝑇𝑠 +

𝐽𝐿

𝐴
) ∗

−1

𝐴
(𝑒−𝐴∗𝐿 − 1) + 𝑇𝑠 −

𝐽𝐿

𝐴
 (Eq. B55) 

where U is the overall ground-to-pipe heat conductivity in W/m2K, Cp is the gas-specific heat 

capacity in J/kgK, Tin is the gas temperature at the pipe inlet/compressor after cooler outlet, and 

Ts is the soil temperature. 

The custom 4 x 1 array Excel function is defined as: 

𝑃𝑎𝑟𝑟𝑎𝑙𝑙𝑒𝑙𝑃𝑖𝑝𝑒𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐷𝑟𝑜𝑝(𝐷, 𝜇, 𝛾, 𝑇𝑖𝑛, 𝑇𝑠, 𝜂𝑝𝑖𝑝𝑒 , 𝑃𝑃𝑖𝑝𝑒.𝐼𝑛, 𝑃𝑃𝑖𝑝𝑒.𝑂𝑢𝑡 , 𝑄, 𝐿, 𝐻, 𝑒, 

 𝑚𝑜𝑙𝑓𝑟𝑎𝑐, 𝑈, 𝐶𝑝, 𝐽𝑇, 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙, 𝐷//, 𝑄𝑔) 

(Eq. B56) 

with the inlet and outlet pressure in Pa, mainline flow rate in m3/hr, and fluid outlet temperature 

in K as outputs. 

B.4.1. Pipe pressure drop calculation update 

The following modifications were made to the pipeline pressure drop macro from Di Lullo et 

al.5: 

1. Density is calculated using the GERG model instead of Equation B43  

2. Compressibility is now calculated using the GERG model instead of the Peng-Robinson 

macro 
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3. The viscosity macro from Appendix B.3.1 is replaced with the new macro found in 

Appendix B.5 at average pipeline conditions; the new viscosity still uses the Peng-

Robinson instead of GERG (Appendix B.5.) 

4. JT in Equation B53 and Cp in Equation B54 are calculated using the GERG model at the 

average pressure and temperature 

 

B.5. Updated Natural Gas and Hythane Viscosity 

The following updates are from Di Lullo et al.5. 

Using Zéberg-Mikkelsen et al.’s equations  the total gas viscosity is:252 

𝜂 = 𝜂0 + 𝜂𝑓 Eq. B57 

where 𝜂0 is the dilute gas viscosity and 𝜂𝑓 is the residual friction term.  

The dilute gas viscosity in µP is calculated using Chung et al.’s equation:253 

𝜂0 = 40.785 ∗ 𝐹𝑐 ∗
√𝑀𝑊 ∗ 𝑇

𝑣𝑐
2/3

∗ Ω
 Eq. B58 

where 𝑇 is the temperature in K. 

The reduced collision integral is then calculated as: 

Ω =
1.16145

𝑇∗
+

0.52487

exp(0.773207 ∗ 𝑇∗)
+

2.16178

exp(2.437877 ∗ 𝑇∗)
− 6.435 ∗ 10−4 ∗ 𝑇∗0.14874

∗ sin (18.0323 ∗ 𝑇∗−0.76830 − 7.27371 
Eq. B59 

with 

𝑇∗ = 1.2593 ∗ 𝑇/𝑇𝑐 Eq. B60 

where 𝑇𝑐 is the critical temperature in K. 
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The 𝐹𝑐 factor is calculated as: 

𝐹𝑐 = 1 − 0.2756 ∗ 𝜔 Eq. B61 

where 𝜔 is acentric factor used in the Peng-Robinson EOS (Appendix B.2). 

For hydrogen and methane, the dilute gas viscosity in µP is calculated using equations from 

Zéberg-Mikkelsen et al.254 

𝜂0_𝐻2 = −1.55199 ∗ 𝑇0.5 + 2.92788 ∗ 𝑇0.645731 Eq. B62 

𝜂0_𝐶𝐻4 = 13.3919 ∗ 𝑇0.5 − 479429 ∗ 𝑇0.160913 Eq. B63 

 

The mixture’s critical viscosity is then calculated using the Wilke mixing rule:255 

𝜂0_𝑚𝑥 = ∑
𝑥𝑖 ∗ 𝜂0,𝑖

∑ 𝑥𝑗 ∗ 𝜙𝑖,𝑗
𝑛
𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 Eq. B64 

with 

𝜙𝑖,𝑗 =

[1 + (
𝜂0,𝑖

𝜂0,𝑗
)

0.5

∗ (
𝑀𝑊𝑖
𝑀𝑊𝑖

)
0.25

]

2

4

√2
[1 +

𝑀𝑊𝑖
𝑀𝑊𝑗

]
2  Eq. B65 

where 𝑥𝑖 is the mole fraction. 

The residual friction term can be further broken down as: 

𝜂𝑓 = 𝜅𝑎 ∗ 𝑃𝑎 + 𝜅𝑟 ∗ 𝑃𝑟 + 𝜅𝑟𝑟 ∗ 𝑃𝑟
2  Eq. B66 

where 𝑃𝑎 is the attractive pressure and 𝑃𝑟 is the repulsive pressure taken from the PR EOS.  
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For the n-alkanes, N2, CO2, and H2S, the pure component friction coefficients are calculated 

using the one-parameter f-theory used by Zéberg-Mikkelsen et al. for hythane mixtures:252 

𝜅𝑎 = �̂�𝑎 ∗
𝜂𝑐

𝑃𝑐
 Eq. B67 

𝜅𝑟 = �̂�𝑟 ∗
𝜂𝑐

𝑃𝑐
 Eq. B68 

𝜅𝑟𝑟 = �̂�𝑟𝑟 ∗
𝜂𝑐

𝑃𝑐2
 Eq. B69 

and the friction coefficients �̂�𝑎, �̂�𝑟, and �̂�𝑟𝑟 are then broken down into their temperature 

independent and dependent terms using Quiñones-Cisneros et al.’s method:256  

�̂�𝑎 =  �̂�𝑎
𝑐 + Δ�̂�𝑎 Eq. B70 

�̂�𝑟 =  �̂�𝑟
𝑐 + Δ�̂�𝑟 Eq. B71 

�̂�𝑟𝑟 =  �̂�𝑟𝑟
𝑐 + Δ�̂�𝑟𝑟 Eq. B72 

 

The temperature-dependent terms are then calculated for each component of the mixture as:  

Δ�̂�𝑎 = 𝜅𝑎,0,0(Γ − 1) + (𝜅𝑎,1,0 + 𝜅𝑎,1,1 ∗ 𝜓) ∗ (exp (Γ − 1) − 1)

+ (𝜅𝑎,2,0 + 𝜅𝑎,2,1 ∗ 𝜓 + 𝜅𝑎,2,2 ∗ 𝜓2) ∗ (exp (2Γ − 2) − 1) Eq. B73 

Δ�̂�𝑟 = 𝜅𝑟,0,0(Γ − 1) + (𝜅𝑟,1,0 + 𝜅𝑟,1,1 ∗ 𝜓) ∗ (exp (Γ − 1) − 1)

+ (𝜅𝑟,2,0 + 𝜅𝑟,2,1 ∗ 𝜓 + 𝜅𝑟,2,2 ∗ 𝜓2) ∗ (exp (2Γ − 2) − 1) 

Eq. B74 

Δ�̂�𝑟𝑟 = 𝜅𝑟𝑟,2,1 ∗ 𝜓 ∗ (exp(2Γ) − 1) ∗ (Γ − 1)2 Eq. B75 
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with 

Γ =
𝑇𝑐

𝑇
 Eq. B76 

and 

𝜓 =
𝑅 ∗ 𝑇𝑐

𝑃𝑐
 Eq. B77 

where 𝑅 is the ideal gas constant in cm^3-bar/mol-K and 𝑃𝑐 is the critical pressure in bar. 

The residual friction parameters are taken from Quiñones-Cisneros et al.256 and are only 

applicable to the Peng-Robinson EOS (Table B1).  

Table B1: Residual friction parameters from Quiñones-Cisneros et al.256 

�̂�𝑎
𝑐  -0.140464 

�̂�𝑟
𝑐 0.0119902 

�̂�𝑟𝑟
𝑐  0.000855115 

𝜅𝑎,0,0 -0.0489197 

𝜅𝑎,1,0 0.270572 

𝜅𝑎,1,1 -1.10473 * 10 ^ (-4) 

𝜅𝑎,2,0 -0.0448111 

𝜅𝑎,2,1 4.08972 * 10 ^ (-5) 

𝜅𝑎,2,2 -5.79765 * 10 ^ (-9) 

𝜅𝑟,0,0 -0.357875 

𝜅𝑟,1,0 0.637572 

𝜅𝑟,1,1 -6.02128 * 10 ^ (-5) 

𝜅𝑟,2,0 -0.079024 

𝜅𝑟,2,1 3.72408 * 10 ^ (-5) 

𝜅𝑟,2,2 -5.6561 * 10 ^ (-9) 

𝜅𝑟𝑟,2,1 1.3729 * 10 ^ (-8) 

Quiñones-Cisneros et al.’s method is also used to calculate the critical viscosity for C2 to C5 n-

alkanes as:256  

𝜂𝑐 = 0.597556 ∗ 𝑃𝑐 ∗ 𝑀𝑊0.601652 Eq. B78 

where 𝑃𝑐 is the critical pressure in Bar, and 𝑀𝑊 is the molecular weight in g/mol. 
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The constant values of 376.872 256, 317.985 257, and 174.179 256 are used for the critical 

viscosities for CO2, H2S, and N2 in µP. 

For hydrogen and methane, the friction coefficients 𝜅𝑎, 𝜅𝑟, and 𝜅𝑟𝑟 are determined as: 

𝜅𝑎 = 𝑘𝑎 Eq. B79 

𝜅𝑟 = 𝑘𝑟 Eq. B80 

𝜅𝑟𝑟 = 𝑘𝑟𝑟 ∗ Γ2 Eq. B81 

Table B2: Friction coefficients for hydrogen and methane254 

µP/bar Hydrogen Methane 

𝑘𝑟 -0.00185308 0.0731796 

𝑘𝑎 -0.332575 -0.382909 

𝑘𝑟𝑟 0.000135146 0.0000663615 

 

To calculate properties of the mixture, mass fractions are needed. We used Quiñones-Cisneros et 

al.’s method256 to approximate mass fractions from molar fractions and MW: 

𝑧𝑖 =
𝑥𝑖

𝑀𝑊𝑖
0.3 ∗ 𝑀𝑀

 Eq. B82 

with 

𝑀𝑀 = ∑
𝑥𝑖

𝑀𝑊𝑖
0.3

𝑛

𝑖=1

 Eq. B83 

The 0.3 power was taken from Quiñones-Cisneros et al.256 for PR EOS. The friction coefficients 

for the mixtures were then calculated as: 

𝜅𝑎_𝑚𝑥 = ∑ 𝑧𝑖 ∗ 𝜅𝑎,𝑖

𝑛

𝑖=1

 Eq. B84 
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𝜅𝑟_𝑚𝑥 = ∑ 𝑧𝑖 ∗ 𝜅𝑟,𝑖

𝑛

𝑖=1

 
Eq. B85 

𝜅𝑟𝑟_𝑚𝑥 = ∑ 𝑧𝑖 ∗ 𝜅𝑟𝑟,𝑖

𝑛

𝑖=1

 
Eq. B86 

 

The PR EOS was used to determine the attractive pressure 𝑃𝑎 and the repulsive pressure 𝑃𝑟 
258 as 

follows: 

𝑃𝑎 =
−𝑎𝑚 ∗ 𝑇

𝑉 ∗ (𝑉 + 𝑏𝑚) + 𝑏𝑚 ∗ (𝑉 − 𝑏𝑚)
 Eq. B87 

and  

𝑃𝑟 =
𝑅 ∗ 𝑇

𝑉 − 𝑏𝑚
 Eq. B88 

 

where 𝑎𝑚 and 𝑏𝑚 are calculated using the PR macro, Eqs. B15 and B16 from Appendix B.2. 

The volume was then calculated as: 

𝑉 = 𝑍 ∗ 𝑅 ∗
𝑇

𝑃
 Eq. B89 

where the compressibility Z is calculated using the PR macro. Since the various constants used in 

the viscosity model were developed using the PR, they must be used with the PR and not the 

GERG model.  
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Appendix C: RUST Demonstration and Input Ranges 

C.1. Rust Demonstration 

This Chapter provides an overview of RUST to illustrate how the research framework can be 

applied to any Excel-based LCA model. The underlying Rscripts that are used to generate the 

samples and process the results can be applied to other LCA software but require a new interface 

program and are outside the scope of this study.  

Step 1  

First the user must 

move their Excel 

model into the RUST 

template file. 
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Step 2  

The next step is to map 

the inputs and outputs. 

This can be done 

quickly by using the 

MapInputs macro, 

which is assigned to 

the Ctrl+a 

shortcut/hotkey. The 

user can alter the 

shortcut keys used by 

changing cells B2:B4 

on the SensMap sheet 

and clicking the 

Update Hotkeys 

button. 

 

Step 3  

In the LCA model 

sheets the user can 

then select the 

inputs/outputs and run 

the MapInputs macro, 

which fill in the 

SensMap sheet. 

Outputs should be 

listed last in the 

SensMap table. Inputs 

and outputs can also 

be specified manually, 

if desired. 
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Step 4  

Distributions can then 

be specified for each 

input. The uniform, 

triangle, PERT, 

normal, and lognormal 

distributions are 

available. In this study, 

uniform distributions 

are used.  

For the outputs, the 

user should specify the 

“Output” distribution. 

RUST can support 

multiple outputs. 

 

Step 5  

Next, the user should 

specify the distribution 

parameters (min, most 

likely, and max or 

mean and standard 

deviation) for each 

input’s distribution. 
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Step 6  

Clicking the Run 

UserForm button will 

activate the user 

interface. The user 

should elect the 

relevant tab and 

specify the required 

information. The 

number of cores to use 

can be specified on the 

Setup tab. 

 

 

Step 7  

Once the Morris 

analysis is complete 

the Morris sheet will 

be activated. 
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Step 8  

Similarly, once the 

Sobol analysis is 

complete the Sobol 

sheet will be activated. 

 

Step 9  

After the sensitivity 

analysis is completed, 

the regression analysis 

can be run using only 

the key inputs. The 

regression analysis 

must be done for one 

output at a time. 

 

After the Run 

Regression button is 

selected, the regression 

sheet will open and 

display the residuals 

for each iteration of 

the stepwise regression 

processes.  

Residual plots are then 

generated using the 

Check Reg Fit button 

for the specified 

regression model. 

 



180 | P a g e  

 

Step 10  

Once a satisfactory 

model is selected, the 

regression formula can 

be generated. For 

regression models with 

many terms the 

formula may need to 

be split into multiple 

cells as Excel limits a 

formula to 8,192 

characters. 
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Step 11  

The final regression 

model can then be 

used instead of the 

original model. In this 

example, the original 

model was relatively 

simple; however, the 

process works for 

complex models as 

well. The regression 

model helps simplify 

the model and hide 

any confidential data. 
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C.2. Original Input Ranges 

Table C1: Maya original input values (61 inputs total)†† 

Maya Units Min Max 

Crude API ˚API 18 26 

Crude LHV err. N/A 0.75 1.25 

Average field production rate bbl/d 605,833 1,817,500 

Well depth ft 4,583 13,749 

Well lifetime productivity bbl/well 23,725,000 71,175,000 

Land use emissions gCO2eq/MJ 0.00 2.00 

Gas injected ratio  scf/bbl 200 5,000 

Water production ratio m3/m3 0 10 

Gas production ratio scf/bbl 0 2,000 

Gas lift ratio scf/bbl 0 2,000 

Compressor energy kWh-d/scf 0.004 0.012 

Compressor driver efficiency % 60% 100% 

Suction pressure psi 100 500 

Discharge pressure psi 1,500 3,000 

Atmospheric temperature degrees R 450 600 

Suction temperature degrees R 550 700 

Compressibility factor N/A 0.8 1.2 

Specific heat ratio N/A 1.20 1.35 

Polytrophic index N/A 1.0 1.5 

Interstage cooling efficiency % 60% 100% 

Crude oil specific heat adjustment N/A 0.75 1.00 

Feed temperature ⁰F 80 160 

Process temperature ⁰F 250 450 

Heat loss % 0% 10% 

Pump efficiency % 40% 90% 

Amount of water in inlet gas lb of H2O/MMScf 30 70 

TEG to water ratio gal TEG/lb H2O 1 3 

Glycol pump discharge pressure psi 600 1,000 

Amine solution K value d-gal/min-MMscf 1.1 1.9 

Operating pressure psig 200 500 

Electricity intensity for produced water kWh/bbl 0.2 1 

Electricity intensity for imported water kWh/bbl 0.2 1 

Extraction electricity EF gCO2eq/MJ 200 1,000 

Surface processing elec. EF gCO2eq/MJ 200 1,000 

NG boiler eff. % 60% 100% 

 

†† Maya originally had 65 inputs when the OAT vs. Morris analysis was run (discussed in Chapter 3) but was later 

simplified to 61 to remove unnecessary inputs.   
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Maya Units Min Max 

Fugitive gas volume % 2.1% 7.0% 

Flared gas volume scf/bbl 0 150 

Flaring efficiency % 80% 100% 

Pipeline capacity bpd 100,000 800,000 

Pipeline velocity m/s 1.3 3.1 

Pipe length km 100 400 

Kinematic viscosity CST 10 350 

Absolute roughness m 0.0000046 0.00046 

Pipeline elec. EF gCO2eq/kWh 200 1,000 

Pipeline pump efficiency % 60% 100% 

Tanker distance km 600 2,000 

Ocean tanker weight DWT 160,000 320,000 

Average speed of tanker km/h 20 40 

Origin-to-destination load factor N/A 0.6 1.0 

Destination-to-origin load factor N/A 0.6 1.0 

Refinery emissions gCO2eq/MJ 14.2 23.6 

Ref. conversion factor MJ crude/MJ prod. 1.12 1.86 

Barge share gasoline transport % 0% 100% 

CH4 GWP 20.4 47.6 

N2O GWP 200 400 

Diesel EF err. N/A 0.75 1.25 

NG EF err. N/A 0.75 1.25 

Marine vessel combustion EF err. N/A 0.75 1.25 

LHV of residual oil err. N/A 0.75 1.25 

Barge EF err. N/A 0.75 1.25 

Rail EF err. N/A 0.75 1.25 

 

Table C2: Bow River original input values (54 inputs total) 

Bow River Units Min Max 

Crude API ˚API 22 27 

Crude LHV err. N/A 0.75 1.25 

Average field production rate bbl/d 267,041 801,123 

Well depth ft 1,640 4,920 

Well lifetime productivity bbl/well 160,088 480,264 

Land use emissions gCO2eq/MJ 0 2.5 

Water injection ratio m3/m3 0.5 8 

Water production ratio m3/m3 2 50 

Gas Production Ratio scf/bbl 100 4,000 

Discharge pressure psi 600 1,000 

Pump efficiency inj. % 40% 90% 

Pump efficiency lift % 40% 90% 
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Bow River Units Min Max 

Average pipe diameter in 1.75 3.75 

Well oil production bbl/d 8 16 

Dynamic viscosity of water cP 0.1 0.3 

Dynamic viscosity of crude cP 0.5 10 

Absolute roughness m 0.0000046 0.00046 

Average reservoir pressure psi 400 3,000 

Crude oil specific heat err. N/A 0.75 1.00 

Feed temperature ⁰F 80 160 

Process temperature ⁰F 250 450 

Heat loss % 0% 10% 

Heater efficiency % 60% 80% 

Pump efficiency stabilizer % 60% 100% 

Amount of water in inlet gas lb of H2O/MMScf 30 70 

TEG to water ratio gal TEG/lb H2O 1 3 

Glycol pump discharge pressure psi 600 1,000 

Amine solution K value d-gal/min-MMscf 1.1 1.9 

Operating pressure psig 200 500 

Electricity intensity for produced water kWh/bbl 0.2 1 

Electricity intensity for imported water kWh/bbl 0.2 1 

Extraction electricity EF gCO2eq/kWh 200 1,000 

NG boiler eff. % 60% 100% 

Fugitive gas volume % 2.1% 7.0% 

Flared gas volume scf/bbl 0 200 

Flaring efficiency % 80% 100% 

Pipeline capacity bpd 100,000 800,000 

Pipeline velocity m/s 0.8 3.8 

Pipe length km 2,000 3,200 

Kinematic viscosity CST 5 350 

Absolute roughness m 0.0000046 0.00046 

Pipeline elec. EF gCO2eq/kWh 200 1,000 

Pipeline pump efficiency % 60% 100% 

Gasoline refinery emissions gCO2eq/MJ 13.2 22.0 

Ref. conversion factor MJ crude/MJ prod. 1.07 1.79 

Barge share gasoline transport % 0% 100% 

CH4 GWP 20.4 47.6 

N2O GWP 200 400 

Diesel EF err. N/A 0.75 1.25 

NG EF err. N/A 0.75 1.25 

Marine vessel combustion EF err. N/A 0.75 1.25 

LHV of residual oil err. N/A 0.75 1.25 

Barge EF err. N/A 0.75 1.25 

Rail EF err. N/A 0.75 1.25 
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Table C3: Mined Bitumen (MB) original input values (40 inputs total) 

Mined Bitumen Units Min Max 

Crude LHV err. N/A 0.95 1.05 

Land use emissions gCO2eq/MJ 0.83 2.33 

Electricity consumption kWh/m3 bitumen 94.8 162.0 

Bitumen saturation % 10.61% 12.12% 

Shovel fuel consumption L/h 375 740 

Shovel rated payload t 218 363 

Shovel cycle times s 20 36 

Shovel fill factor % 85% 95% 

Shovel availability % 75% 95% 

Truck fuel consp. L/h 406 580 

Truck rated payload t 218 363 

Truck cycle times min 15.8 44.0 

Hot water consp. for sepr.  m3/m3 6 9 

Hot water temp. ˚C 50 75 

Inlet water temp. ˚C 2 25 

NG boiler eff. % 60% 100% 

Electricity credit g/kWh 50 990 

Cogeneration steam capacity % 0% 100% 

Extraction electricity EF gCO2eq/kWh 200 1,000 

Cogen modifier N/A 1 4 

Oil sands fugitive emissions gCO2eq/m3 bit 3,604 96,220 

Pipeline capacity bpd 100,000 800,000 

Pipeline velocity m/s 0.8 3.8 

Pipe length km 2,000 3,200 

Kinematic viscosity CST 5 350 

Absolute roughness m 0.0000046 0.00046 

Pipeline elec. EF gCO2eq/kWh 200 1,000 

Pipeline pump efficiency % 60% 100% 

Diluent ratio % 0% 30% 

Refinery emissions gCO2eq/MJ 18 24 

Ref. conversion factor MJ crude/MJ prod. 1.41 1.73 

Barge share gasoline transport % 0% 100% 

CH4 GWP 20.4 47.6 

N2O GWP 200 400 

Diesel EF err. N/A 0.75 1.25 

NG EF err. N/A 0.75 1.25 

Marine vessel combustion EF err. N/A 0.75 1.25 

LHV of residual oil err. N/A 0.75 1.25 

Barge EF err. N/A 0.75 1.25 

Rail EF err. N/A 0.75 1.25 
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Table C4: NGTL original input values (44 inputs total) 

NGTL Units Min Max 

Cooler pressure drop % 0 2% 

Scrubber pressure drop MPa 0 0.4 

Facility piping pressure drop MPa 0 0.2 

Interstage cooler outlet temperature C 25 55 

Polytrophic efficiency % 70% 85% 

Compressor mechanical efficiency % 9% 100% 

Turbine efficiency  % 27% 39% 

Absolute roughness m 5e-6 1.5e-5 

Pipeline efficiency % 90% 100% 

Ground temperature C 4 17 

Pipe thickness mm 10 25 

Length adjustment N/A 0.95 1.05 

Elevation adjustment N/A 0 1 

Fugitive adjustment N/A 0.1 3 

Joule-Thomson coefficient K/MPa 3.8 6.2 

Natural gas specific heat J/kg.K 2100 3200 

Pipe to ground heat conductivity U W/m2.K 0 3 

Pipeline average right-of-way width M 15 45 

% of right-of-way cleared % 50% 100% 

Pipeline steel density kg/m3 7470 8050 

Recycled steel mix % 0% 100% 

Pipeline lifespan yrs. 35 65 

Concrete density kg/m3 1740 2400 

Station parasitic electricity consumption kW 500 2000 

Station parasitic heat consumption kW 400 1600 

CH4 GWP N/A 20.4 47.6 

N2O GWP N/A 200 400 

NG turbine combustion EF adjs. N/A 0.75 1.25 

Virgin steel EF adjs. N/A 0.75 1.25 

Recycled steel EF adjs. N/A 0.75 1.25 

Concrete EF adjs. N/A 0.75 1.25 

Pipeline construction diesel EF adjs. N/A 0.5 1.5 

Biomass combustion kgCO2eq/m2 0.006 0.05 

Pig leakage rate % 0 50% 

Number of pig passes N/A 2 10 

N2 generation electricity consumption kWh/tonne N2 100 500 

N2 generation electricity EF gCO2eq/kWh 300 1100 

% pipeline filled with concrete % 0% 50% 

% pipeline removed % 0% 50% 

Utilization rate % 80% 100% 

Max allowable operating pressure (MAOP) MPa 10 12.2 

Pipe inner diameter mm 910 920 

Flow rate  m3/hr 1,554,792 1,945,833 

Inlet pressure to first compressor MPa 5 7 
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C.3. Refined Input Ranges 

The trendline R2 values are provided for a linear, 2nd order polynomial, and 3rd order polynomial 

fit for each input.  

Table C5: Maya refined input values (14 inputs total) 

Maya Units Min Max Trendlines R2 

Crude LHV err. N/A 0.8 1.25 0.98, 0.82, 0.70 

Land use emissions gCO2eq/MJ 0.00 2.00 1 

Gas injected ratio scf/bbl 200 5,000 1 

Gas production ratio scf/bbl 0 2,000 1.00, 0.91, 0.80 

Compressor energy kWh-d/scf 0.004 0.012 1 

Compressor driver eff. % 60% 100% 0.98, 0.82, 0.70 

Extraction electricity EF gCO2eq/kWh 200 1,000 1 

Fugitive gas vol. % prod. gas 2% 7% 1 

Flared gas vol. scf/bbl 0 150 1 

Flaring eff. % 80% 100% 1 

Refinery emissions gCO2eq/MJ 14.2 23.6 1 

Ref. conversion factor MJ crude/MJ prod. 1.12 1.86 1 

CH4 GWP N/A 20.4 47.6 1 

NG EF err. N/A 0.75 1.25 1 

 

Table C6: Bow River refined input values (14 inputs total) 

Bow River Units Min Max Trendlines R2 

Crude LHV err. N/A 0.75 1.25 0.98, 0.82, 0.70 

Land use emissions gCO2eq/MJ 0 2.5 1 

Water production ratio m3/m3 2 50 1.00, 0.93, 0.84 

Gas production ratio scf/bbl 100 4,000 1.00, 0.92, 0.82 

Elec. produce water kWh/bbl 0.2 1 1 

Extraction electricity EF gCO2eq/kWh 200 1,000 1 

Fugitive gas vol. % prod. gas 0.021 0.07 1 

Flared gas vol. scf/bbl 0 200 1 

Pipeline capacity bpd 200,000 600,000 0.93, 0.73, 0.60 

Pipeline velocity m/s 1.4 2.8 0.98, 0.98, 0.91 

Pipeline elec. EF gCO2eq/kWh 200 1,000 1 

Refinery emissions gCO2eq/MJ 13.2 22.0 1 

Ref. conversion factor MJ crude/MJ prod. 1.1 1.79 1 

CH4 GWP N/A 20.4 47.6 1 
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Table C7: Mined Bitumen (MB) refined input values (16 inputs total) 

Mined Bitumen Units Min Max 

Crude LHV err. N/A 0.95 1.05 

Land use emissions gCO2eq/MJ 0.83 2.33 

Bitumen saturation % 10.6% 12.1% 

Truck fuel consumption L/h 406 580 

Truck rated payload t 218 363 

Truck cycle times min 15.8 44 

Hot water consumption for sepr.  m3/m3 6 9 

Hot water temp. ˚C 50 75 

Inlet water temp. ˚C 2 25 

Extraction electricity EF gCO2eq/kWh 200 1,119 

Oil sands fugitive emissions gCO2eq/m3 bit 3,604 96,220 

Pipeline velocity m/s 0.8 2.0 

Refinery emissions gCO2eq/MJ 18 24 

Ref. conversion factor MJ crude/MJ prod. 1.41 1.73 

CH4 GWP N/A 20.4 47.6 

NG EF err. N/A 0.75 1.25 

 

Table C8: NGTL refined input values (10 inputs total)‡‡ 

NGTL Units Min Max Trendlines R2 

Pipeline pressure MPa 11.0 12.5 0.95, 0.77, 0.64 

Interstage cooler outlet temp. C 10 35 1.00, 0.93, 0.83 

Polytropic eff. % 70% 95% 0.97, 0.80, 0.67 

Turbine eff. % 20% 50% 0.99, 0.86, 0.74 

Absolute roughness m 5.00E-06 5.00E-05 1.00, 0.88, 0.77 

Length err. % 95% 105% 0.94, 0.74, 0.60 

Flow rate m3/hr 1,554,792 1,906,375  0.97, 0.99, 0.93 

Fugitive adjustment % 10% 300% 1.00, 0.92, 0.82 

CH4 GWP N/A 10 90 1.00, 0.92, 0.82 

NG EF err. % 50% 150% 1.00, 0.92, 0.82 

 

 

‡‡ As discussed in Chapters 3 & 4, Alliance used 11 inputs; this was reduced to 10 in Chapter 5. 
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Appendix D: Proxy Modeling Supplementary Results and 

Algorithms 

D.1. Quadratic Regression Results 

 
Figure D1: Bow quadratic regression absolute residual results: L=Linear, NL=Non-linear, 

O#=Order of interactions 
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Figure D2: MB quadratic regression absolute residual results: L=Linear, NL=Non-linear, 

O#=Order of interactions 

 
Figure D3: NGTL quadratic regression absolute residual results: L=Linear, NL=Non-

linear, O#=Order of interactions 
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D.2. ANN Regression Results 

 
Figure D4: Bow ANN regression absolute residual results: N=Nodes in hidden 
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Figure D5: MB ANN regression absolute residual results: N=Nodes in hidden 

 

 
Figure D6: NGTL ANN regression absolute residual results: N=Nodes in hidden 
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Figure D7: NGTL accuracy vs. # of coefficients (50,000 random samples, 26 inputs) 
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D.3. ANN Results vs. Sample Size and Method 

 
Figure D8: MSE and absolute max residual for 50N ANN proxy models (log-log scale) 
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Figure D9: Absolute max error for NGTL proxy model using 5, 15, 25, and 50 nodes in 

hidden layers 
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the difference in means is statistically significant)  
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6,000 81% 0% 7% 7% 

7,000 0% 0% 0% 8% 

8,000 1% 0% 17% 1% 

9,000 40% 0% 0% 3% 

10,000 2% 0% 2% 3% 

 

 
Figure D10: Change in absolute max error using random and high error sampling for 

proxy model using 5, 15, 25, and 50 nodes in hidden layers (uses external validation 

sample) 
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D.4. Computing Time Required 

 

 
Figure D11: Sample generation, target value generation, and ANN training time for 50-

node Maya (left) and Bow (right) proxy models 
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Figure D12: Sample generation, target value generation, and ANN training time for 50-

node MB (left) and NGTL (right) proxy models 
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Figure D13: Cumulative total time to produce proxy models for Maya (top), Bow (middle), 

and MB (bottom) 
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D.5. Summary of High Error and Combo Sampling Methods for 

NGTL 

Table D2: Cumulative combo vs. cumulative he sampling results [(Combo – HE)/HE] 

# Samples 2k 3k 4k 5k 6k 7k 8k 9k 10k 

Max 68% 4% 57% 0% -14% 17% 5% 0% -2% 

Avg -8% 8% -9% -5% -17% 0% -20% -8% -18% 

P50 -12% 2% -14% -10% -22% -6% -24% -14% -22% 

Time -2% -9% -12% -18% -18% -14% -7% -7% -12% 

 

Table D3: Cumulative combo vs. one-shot rand sampling results [(Combo – Rand)/Rand] 

# Samples 2k 3k 4k 5k 6k 7k 8k 9k 10k 

Max 137% 0% 20% -29% -45% -44% -53% -57% -63% 

Avg 474% 306% 172% 152% 103% 108% 49% 52% 28% 

P50 535% 364% 216% 194% 139% 145% 76% 77% 53% 

Time -78% -63% -41% -15% 17% 68% 139% 221% 328% 

 

 

Table D4: Cumulative HE vs. one-shot rand sampling results [(HE – Rand)/Rand] 

# Samples 2k 3k 4k 5k 6k 7k 8k 9k 10k 

Max 41% -4% -23% -29% -36% -52% -55% -57% -62% 

Avg 522% 278% 199% 164% 146% 108% 87% 65% 56% 

P50 622% 357% 266% 226% 205% 159% 132% 106% 95% 

Time -78% -59% -33% 3% 43% 94% 157% 244% 387% 
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D.6. Sampling Algorithms Explained 

In high dimensional space, the Manhattan distance is used instead of the Euclidian distance as it 

provides better representation in high dimensional space.191 The distance to nearest neighbor 

(dNN) is calculated for each sample and plotted as a histogram to evaluate sample spread. The 

spread algorithm was developed iteratively to address shortcomings of the previous versions. 

D.6.1. Brute force spread algorithm 

The first version used a brute force 

approach (S-Brute), shown in Figure D14. 

A small seed sample (n samples) is 

generated using a Monte Carlo simulation 

with uniform distributions for each input. 

The minimum distance between each point 

and its nearest neighbor is calculated; the 

95th percentile value is then used as the 

cutoff criteria (dCut). Random candidates 

are generated, and if their nearest neighbor 

distance is greater than dCut, the candidate 

is added to the sample. If insufficient new 

samples have not been found after Nc 

candidate samples have been checked, dCut 

is relaxed using a step criteria, and the 

process is repeated. To speed up the 

process, candidate points with dNN lower 

than dCut but higher than the relaxed dCut 

are saved and rechecked once dCut is 

lowered. See Chapter D.8 for the base code 

used for this research. 

 

Figure D14: Brute force spread algorithm (S-

Brute), *Rejected candidates are rechecked 

when dCut is reduced 
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D.6.2. Optimized spread algorithm (S-Opt1) 

Calculating the nearest neighbor distance (dNN) between the newly generated point and the 

existing sample is time consuming and becomes longer as the total sample size increases. An 

optimization method was introduced (Figure D15). The dNN is increased by moving the 

candidate sample away from its close neighbors. Rather than using all previous n samples, NCN 

samples were used to determine what direction and how far to move the candidate sample. Using 

only NCN samples reduces the computational burden while still improving the sample spacing.  

 
Figure D15: Optimized Spread Algorithm 

The number of close neighbors (CNs) to include in the analysis is unclear. Including too many 
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algorithm to terminate once criterion 3 is reached; the criterion 3 distance is dependent on the 

distance to the farthest CN. If the solver is forced to terminate by criterion 3, the algorithm must 

recalculate the dNN for all the samples and identify new CNs, increasing computing time. In this 

work we assumed NCN=2*p; this was found to be acceptable for between 10 and 14 inputs. 

Further study is needed to determine if this relationship holds true for models with more inputs. 

On average S-Brute, S-Opt1a and S-Opt1b increased the average dNN by 34, 43%, and 45%, 

respectively, while also reducing the 90% confidence interval by 72%, 72%, and 83%, 

respectively (Figure D16). In S-Opt1b, the starting dCut value was set to the average dNN from 

S-Opt1a, which increased computing time by setting a higher standard but also increased the 

average dNN. The performance boost between S-Brute and S-Opt1 depends on the sample size 

and initial dCut used. 

 
Figure D16: dNN distributions for random and spread sampling; 10,000 samples and 10 

inputs (red lines represent 5th, 25th, 75th, and 95th percentiles, respectively; green line 

represents average) 
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D.6.3. Optimized spread algorithm, preventing edge clustering (S-Opt2&3) 

When S-Opt1 was used to train the ANN, it was found to have no statistically significant impact 

on model accuracy compared to random sampling. In some scenarios, the spread algorithm 

performed worse than the random method. Unlike the random method, the spread sample 

favored points that had extreme values (<0.1 or >0.9) and under-sampled the center region 

(Figure D19). Therefore, to improve the spread algorithm, modifications were made to increase 

the number of samples in the center region and produce a uniform distribution of input values to 

match those found in the random sample. Figure D19 was generated by starting with 1,000 

randomly generated samples and then adding 1,000 samples/iterations using the specified 

algorithm until the final sample contained 10,000 samples. The S-Brute Algorithm had a similar 

spread profile as S-Opt1. 

In S-Opt2, the first criterion (Figure D15) was modified to limit the bounds used to avoid 

extreme values. The maximum move distance for each input was reduced by multiplying the 

original distances by a random number between zero and 1. S-Opt2 only minorly reduced 

extreme spread values.  

In S-Opt3, the first criterion was modified like S-Opt2, and the region where the starting 

candidate point was generated was restricted. In previous versions, the candidate point was 

generated randomly within the entire parameter space. In S-Opt3, Equations D1 & 2 are used to 

restrict the starting region close to the center. For each parameter, a value will be randomly 

generated and modified as follows: 

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑜𝑟 = 𝑚𝑖𝑛 [(
𝑁𝐴𝑑𝑑𝑒𝑑 + 10

𝑁𝑁𝑒𝑒𝑑𝑒𝑑 + 10
) + 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑟, 1] (Eq. D1) 

𝐶𝑎𝑛𝑑𝑝 = 0.5 + 𝑟𝑎𝑛𝑑[−0.5,0.5] ∗ 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑜𝑟 (Eq. D2) 

 

where 𝑁𝐴𝑑𝑑𝑒𝑑 is the number of samples that have already been added, 𝑁𝑁𝑒𝑒𝑑𝑒𝑑 is the number of 

samples needed, and 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑟 is a tunable parameter. The restrictor percentage reflects how 

close to the center the candidate starting point needs to be; a value of 50% means the input 
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values must range between 0.25 and 0.75. By forcing the candidate to be selected near the center, 

we first ensure the central region is adequately sampled. As more samples are added and it is 

more difficult to find points near the center, the restrictor is relaxed. The throttle value controls 

how quickly the restrictor is relaxed. Using a throttler of 1 makes S-Opt3 equivalent to S-Opt2. 

The restrictor is plotted in Figure D17. The effect of the throttler on sample spacing is shown in 

Figure D18 for throttle values between 0.2 and 1.  

While S-Opt3 could provide a near uniform spread, it requires the user to provide the tunable 

throttler parameter, which varies depending on the number of inputs in the sample. S-Opt4 

removes the need to have a tunable parameter by instead evaluating the sample distribution 

throughout the sampling process and modifying the restrictor equation as: 

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑜𝑟 = 𝑚𝑖𝑛 [(
𝑁𝐴𝑑𝑑𝑒𝑑 ∗ 𝑂𝑓𝑓𝑠𝑒𝑡𝑆𝑝𝑒𝑒𝑑 + 10

𝑁𝑁𝑒𝑒𝑑𝑒𝑑 + 10
) + 𝑂𝑓𝑓𝑠𝑒𝑡𝑆𝑡𝑎𝑟𝑡, 𝑂𝑓𝑓𝑠𝑒𝑡𝐸𝑛𝑑] (Eq. D3) 

The offset speed, start, and end were calculated automatically by evaluating the spread of the 

current sample. Offset values are updated every time 50 new samples are added. See the 

SpreadOptimized4.m file for further information on how offset values are determined. 

While the modifications to the optimized spread algorithms helped reduce oversampling the 

extreme tails, it did not improve the ANN accuracy. All S-Opt methods provided no statistically 

significant improvement compared to random sampling.  
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Figure D17: Restrictor as a function of throttler and share of required samples added 

 
Figure D18: Impact of S-Opt3 throttler on sample distribution (bold red line represents 

ideal uniform distribution, colored lines represent different inputs [p=10], 10,000 samples 

total) 
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Figure D19: Input distributions for various S-Opt algorithms (bold red line represents 

ideal uniform distribution, colored lines represent different inputs [p=10], 10,000 samples 

total) 

D.7. MATLAB code modifications 

In order to save the ANN weights and biases from the best epoch rather than the default last 

epoch, we modified the trainlm and trainNetwork codes. The best epoch weights are saved as 

“weightRecord.” “trainlm” is used with a single computer core, and “trainNetwork” is used with 

multiple cores. The best epoch weights are not currently available if a gpu is used. 

The trainlm code is found on the following path:  C:\Program 

Files\MATLAB\R2019a\toolbox\nnet\nnet\nntrain\trainlm.m 

Starting on line 291, the modified code is highlighted in yellow: 

% Track Best Network 
[worker.perf,worker.vperf,worker.tperf,worker.je,worker.jj,worker.gradient] = 

calcLib.perfsJEJJ(calcNet); 
if calcLib.isMainWorker 
    [worker.best,worker.tr,worker.val_fail] = nnet.train.trackBestNetwork(... 
        

worker.best,worker.tr,worker.val_fail,calcNet,worker.perf,worker.vperf,worker

.epoch); 
    %%%%%modified to export the weights for the best fit model instead of 
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    %%%%%the final epoch weights 
    try 
      wr = evalin('base','weightRecord'); 
    catch 
      wr = {}; 
    end 
    wr = calcLib.getwb(calcNet); 
    assignin('base','weightRecord',wr); 
    %%%%%%%%%%% 
end 

 

The trainNetwork code is found along the following path:   

sdwtrainNetwork.m   

Starting on line 178, the modified code is highlighted in yellow: 

% Update feedback (using values got from main worker) 
    main = mainC{mainWorkerInd 


