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Abstract

The main focus of this work is on detection of causal relationships or couplings be-

tween different processes or systems. Identification of these causal relationships has

applications in many disciplines including physics, economics, biology, neuroscience,

and climatology. As these couplings or causal relationships are inherently hidden in

the underlying dynamics of the system and are not necessarily accessible, we develop

methods to discover these interactions by some observations of the system measured

in the form of a time series.

In the first part of our work, we propose a new method called the coupling spec-

trum (CS) for inference of the directed coupling in a deterministic system. We will

observe that this method can identify the direction of coupling in sever conditions

such as bidirectional couplings, nonlinear dynamics, nonidentical and multivariate

systems, small sample sizes, weak couplings, as well as multi-scale and noisy data.

Later, we study a biological and a financial application of the CS method. First,

we analyze the microarray data for inference of the gene regulatory networks, one

of the most important biological networks that their identification has immediate

applications in cancer prediction. Then, the CS method is used for detection of

the temporal causality between the stock prices of two companies. The analysis

of empirical data in these applications show the successful performance of the CS

method in real-world problems.

In the last part of our contributions, we propose a new method for inference of

the distributional causality, a kind of causality that its inference has applications in

finance and econometrics. Our method provides information about the influence of

the causality on the underlying distribution of the processes. The analysis of the

simulated and empirical financial data shows the success of our method.
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Chapter 1

Introduction

1.1 Causality

Causation has always been a central topic in philosophy, logic, and science. De-

tection of causal relationships among variables, events, or phenomena have been

the fundamental question of most natural and social sciences, such as physics, fi-

nance and economics, biology, physiology, social science, and climatology. The Nobel

prizes 2003 and 2011 were awarded in economic sciences for studies corresponding

to cause-effect relations, a fact that reveals the importance of this field of science.

As Granger, the winner of the Nobel prize 2003, expresses in [1], there is not a

universal accepted definition of causality. Granger says:

“Attitudes towards causality differ widely, from the defeatist one that it

is impossible to define causality, let alone test for it, to the populist view-

point that everyone has their own personal definition and so it is unlikely

that a generally acceptable definition exists. It is clearly a topic in which

individual tastes predominate, and it would be improper to try to force

research workers to accept a definition with which they feel uneasy. My

own experience is that, unlike art, causality is a concept whose definition

people know what they do not like but few know what they do like. It

might therefore be helpful to present a definition that some of us appear

to think has some acceptable features so that it can be publicly debated

and compared with alternative definitions.”
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1.2 Philosophical Causality

Throughout the history, there have been plenty of discussions in philosophy regard-

ing the definition of causality. Two famous definitions used in philosophy are:

Necessary cause: If A is the necessary cause of B, it means provided that B

presents, A has occurred necessarily beforehand (or if A does not happen,

B will not happen); however, the presence of A does not imply the presence

of B. For example, being a female is a necessary cause for pregnancy, i.e., if

one person is pregnant, she is necessarily female, however, being a female does

not mean being pregnant.

Sufficient cause: If A occurs, B must occur, i.e., occurrence of A is sufficient for

occurrence of B. However, the presence of B does not reflect the presence of A

(B may occur due to another cause C ). For instance, missing the final exam

is a sufficient cause for failing, however, failing does not mean necessarily that

the student missed the final exam and it can be because of other factors.

These definitions are considering only a unique causal relationship in a deterministic

situation and they are abstract and not addressing all real world situations.

1.3 Probabilistic Causality

The real-world systems are not strictly deterministic and their behavior are not

predictable with certainty. Therefore, the probabilistic definitions of causality are

more appealing than philosophical definitions for scientists, even though probabilis-

tic definitions are more complicated. Hence, rather than saying “If A occurs, B must

occur”, probabilistic statements such as “The occurrence of A increases or alters the

likelihood of B” are more realistic for scientific applications. Indeed, these kind of

definitions reflect the probabilistic nature of the real-world systems or our imperfect

knowledge of a deterministic system. For example, smoking increases the probabil-

ity of lung cancer, but it does not mean that a smoker will necessarily get cancer.

Therefore, a new kind of causality arises here that conveys uncertainty about cause

and effect relationship [2]:

Contributory cause: It is a cause (among many other causes) of an effect that

precedes the effect and changing it alters the effect, but is neither necessary nor
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sufficient for the effect. By this definition, smoking is a contributory cause of

lung cancer as it can increase the probability of getting lung cancer. However,

it is unnecessary (cancer can be due to other reasons) and insufficient (not all

smokers suffer from cancer) for cancer.

By the advent of this viewpoint, different probabilistic definitions were proposed

such as

1. A causes B if (i) A precedes B in time; (ii) P (A) ≠ 0; (iii) P (B∣A) > P (B) [3].
2. A causes B provided that P (B∣A) > P (B∣ not A) [4].

Although these kind of definitions of causality are mathematically formulated and

appealing, there are some serious criticisms about them (e.g., see [1] and [5]). For

example, Otte in [5] claims that Suppes’ definition in [3] cannot distinguish among

genuine and spurious causes and direct and indirect causes.

By applying the graph theory, Markov model, and Bayesian probability, new

probabilistic models of causality were vastly studied in the late 80’s and 90’s lit-

erature, e.g., belief networks by using the Markov models [6], graphical modeling

and Bayesian networks [7–9], and influence diagram [10–13]. These models have

been the center of attention in different disciplines such as computational biology,

neuroscience, learning theory, and social science.

1.4 Intervention vs. Observation

The best way to study the causal effect of A on B is forcing A to change and study

the effect of this change on B. For instance, to study the effect of one gene on

activation/deactivation of other genes in the cell, we can activate (deactivate) that

specific gene and study the effect of its presence (absence) on other genes. However,

in many practical cases, this intervention or manipulation is infeasible, illegal, or

unethical. For example, to study the effect of thousands of genes on each other, it

is impracticable to study the effect of each gene alteration on the other genes. Also,

for studying the effect of smoking on lung cancer, it is illegal and unethical to force

somebody to smoke.

Accordingly, in many real-world situations, to study the causal effect of A on B

we cannot find the interventional probability P (B∣do(A)). Consequently, we have

to use conditional probability P (B∣A) which can be estimated from observed data.
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As a result, rather than finding“the probability of getting cancer for a person forced

to smoke”, we can find “the probability of observing cancer in smokers”.

Most of the earlier research on probabilistic causality attempts to interpret the

Bayesian network as the causal networks. However, these directed networks con-

structed by conditional probabilities does not necessarily reflect the cause-effect

relationships. Indeed, we can detect the causal relationships by applying the inter-

ventional probabilities. Hence, Pearl proposes the theory of causal calculus to find

interventional probabilities from conditional probabilities in the Bayesian network

framework [10]. Accordingly, the influence diagram is presented based on Bayesian

networks [10–13].

1.5 Predictive Causality

The first quantifiable and measurable definition of causality was proposed in 1956

by Wiener [14]:

“For two simultaneously measured signals, if we can predict the first sig-

nal better by using the past information from the second one than by

using the information without it, then we call the second signal causal to

the first one.”

This definition presents a new kind of causality called predictive causality. There is a

fundamental difference between the predictive and interventional causal definitions

[15]. Predictive and interventional causality answer two different questions:

Predictive causality: If I know the current state of the cause, how much does it

help to predict the future state of the effect?

Interventional causality: If I change the current state of the cause, to what ex-

tent does it change the future state of the effect?

In other words, the predictive causality determines the amount of information pro-

vided by the cause for prediction of the effect. In interpretation of many predictive

causality results, these two concepts are not distinguished and misinterpreted inter-

ventional causal relations are drawn from predictive methods [15].

Many of causality inference methods originate fromWiener’s definition. The first

causality inference method developed based on predictive causality for analyzing the

time series data was proposed by Granger [16], that is known as Granger causality.
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This method applies the linear regression model to predict the future value of the

effect time series. Provided that this prediction improves by including the past

samples of the cause time series, we conclude the existence of Granger causality.

This method has been applied in many disciplines due to its simplicity, robustness,

and extendability.

1.6 Nonlinear Dynamic Causality

In the fields of physics and nonlinear dynamics, predictive causal relations are typi-

cally investigated in the sense of coupled systems where the driver system influences

the response system. Identifying the couplings between the sub-systems of a complex

system is essential for understanding the functionality of the interactions and con-

trolling them. This area of study has immediate applications in various disciplines,

such as physics, process and control engineering, chemical engineering, economics,

biology, physiology, ecology, and climatology. Synchronized systems are one example

of the coupled systems in which the coupling strength increases very much and the

response system becomes synchronized with the driver system [17]. For example,

many physiological signals, such as heartbeat and breath rate, are synchronized [18].

Synchronized systems are observed in physical [19], physiological [18, 20–22], and

chaotic systems [23], as well as neural signals [24,25].

The challenging issue in identifying the interactions between the coupled systems

is that the couplings are inherently hidden in the underlying dynamics of the system

and are not necessarily accessible. That is to say, we commonly have access to

some observations of the system measured in time series. Hence, methods that

based on the available observations determine whether these time series originate

from coupled or decoupled sub-systems are much needed. This task will be more

complicated if the goal is to determine the direction of coupling, i.e., identifying the

driver and response systems. Detecting directed couplings sheds light on identifying

the cause-effect relationships in causal networks.

One of the challenging issues in the task of causality inference is the analysis of

time series with nonlinear dynamics. Nonlinearity complicates the inference methods

as they need to utilize advanced statistical and information theoretical tools. For

example, different extensions of Granger causality have been proposed for dealing

with nonlinear dynamics of the systems [26–28]. We will introduce the Granger

causality and its extensions and other nonlinear inference methods in Chapter 2.
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1.7 Causality Strength vs. Causality Probability

In probabilistic causality, we attempt to determine with which probability we should

expect the occurrence of the effect B conditioned on having the cause A. Although

identification of the probabilistic behavior of the causal interactions between the

subsystems can provide a deep understanding of the system, in many practical

cases we need to measure the strength of the causal influences or couplings, rather

than only their probabilities. For example consider a deterministic coupled system

realized by the Hénon map [29], given by

dt = 1.4 − d2t−1 + 0.3 dt−2 (1.1a)

rt = 1.4 − r2t−1 + 0.3 rt−2 + cD→R(r2t−1 − d2t−1). (1.1b)

where the driver system D drives the response system R, denoted by D → R. Here,

the last term of (1.1b) reflects the couplingD → R and cD→R determines the strength

of this coupling. In many application, not only we want to identify the direction

of coupling, but we also want to detect its strength, especially when we are dealing

with bidirectional couplings. For instance, if the stock prices of two companies are

influencing each other, it is desirable to know which of them has more severe effect

on the other one, indeed, which of them is stronger.

1.8 Deterministic and Distributional Causality

Here, we categorize the causal relationship from different viewpoint. Generally,

the causal relationship between two processes D and R can be categorized into

deterministic and distributional causality. Consider two time series {dt} and {rt}
observed from processes D and R, respectively, and suppose D causes R. In the

absence of the noise, the deterministic causality means that the future value of {rt}
is a deterministic function of the lagged values of {dt}.

In the case of distributional causality, however, the lagged values of {dt} affect
the underlying probability distribution of {rt}. In other words, the future value of

{rt} cannot be represented as a deterministic function of the lagged values of {dt}.
This kind of causality is typically observed in financial time series [30]. For example,

in modeling of financial time series that exhibit time-varying volatility clustering,

Autoregressive Conditional Heteroscedasticity (ARCH) models are commonly used

[30]. In the case of a bivariate ARCH process, the variance of time series {rt}
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can be determined from the lagged values of time series {dt} . Here, {dt} and {rt}
would be uncorrelated but dependent and many existing causality inference methods,

including linear Granger causality, are unable to detect the causal relationship from

uncorrelated data. Hence, new methods capable of handling the uncorrelated data

for inference of the distributional causality are required.

Although some methods, such as nonlinear extensions of the Granger causality

test [26, 27], can detect the existence of causal relationships in the case of distri-

butional causality, they cannot determine whether this causality is deterministic or

distributional.

1.9 Summary of Contributions and Thesis Organization

In real-world problems, we usually deal with systems composed of non-identical

sub-systems with fundamentally different structures as well as non-linear dynamics.

Furthermore, in many cases, the available sample size is small, e.g., biological and

genetic data. In addition, in many practical cases, the strength of couplings is very

weak and/or asymmetric bidirectional couplings between components of the system

exist. All of these scenarios are challenging for identification of causality and directed

couplings. Hence, the first goal of our research is to address these challenges for the

problem of identification of directed couplings. The method proposed to achieve the

first goal can be categorized as a deterministic causality inference method. To infer

the distributional causality and find the affected moments or distribution parameters

of the underlying distribution of the effect system, we present a new method. Indeed,

this method is capable of distinguishing between deterministic and distributional

causality.

In Chapter 2, we introduce some existing methods for inference of directed

coupling and nonlinear dynamic causality. These methods are i) linear/nonlinear

Granger causality; ii) state-space reconstruction method; iii) phase synchronization

method; and iv) information theoretic method.

In Chapter 3, we propose a new method to discover the direction of couplings

between two or more time series in a driver-response system based on the concept of

predictive causality. This method is called the coupling spectrum (CS) method. The

simulation results show that the CS method can detect the direction of coupling cor-

rectly for identical and non-identical sub-systems, nonlinear dynamics, small sample

sizes, as well as weak coupling strength. This method can also detect the stronger
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couplings in asymmetric bidirectional couplings. Moreover, unlike some informa-

tion theoretic methods, the CS method is invariant to data scaling and it is also

applicable for bivariate and multi-variate couplings.

In Chapter 4, two applications of the CS method in biology and finance are

presented. In the first part of this chapter, the CS method is applied for inference of

biological networks. Gene-gene regulatory interactions in the cell can be considered

as a driver-response coupling. The CS method can be a candidate to detect these

interactions as it is capable of identifying directed couplings in severe practical

conditions such as unidirectional and bidirectional coupling, nonlinear coupling, and

time series with small sample sizes. The results of applying the CS method for

identifying a known regulatory network from microarray data show that this method

can detect these regulatory interactions with a high level of accuracy.

In the second part of Chapter 4, the CS method is applied for detection of causal

relationships between financial time series. As in many financial cases the direction

of causality changes with time, we combine the CS method with overlapped moving

window technique to detect time-varying causality. The simulation results show

the success of the windowed-CS method for detecting time-varying causality in a

simulated temporal nonlinear causal system. The results are then compared to a

moving window adaptation of a nonlinear extension of the Granger causality test

proposed in [26]. We also apply these two methods for detecting the temporal causal

relationships between the stock prices of Apple Inc. and Microsoft Corporation in

more than a decade. The simulated and empirical results show that the CS method

is more robust than the nonlinear Granger causality method.

In Chapter 5, a new method is proposed for inference of distributional causality

between two time series. This method not only is able to detect the existence of

causality, but is also capable of identifying the type of the moments or distribution

parameters influenced by the distributional causality, e.g., mean, volatility, or higher

order statistics. The results of our method is compared with a nonlinear extension

of the Granger causality proposed in [27]. The simulation results show that with

a large sample size of data, e.g., financial data, and contingent on the existence of

the distributional causality, our proposed method can be superior to the nonlinear

Granger causality. Identification of the causal relationships between the stock return

and volume is a well-known problem in finance and econometrics. Here, we use our

method to study daily S&P500 stock return and percentage change in its volume. We
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will find that not only the return causes the volume change, it also affects the mean

of the volume change and not its volatility. Identifying the type of the moments or

distribution parameters influenced by the distributional causality was not possible

based on existing nonlinear Granger causality method.

The conclusion of this dissertation and the future research directions are pre-

sented in Chapter 6.

9



Chapter 2

Nonlinear Dynamic Causality

Inference

In this chapter, we introduce different methods proposed for inference of nonlinear

dynamic coupling or causality from time series data. These methods can be divided

into four major categories: (i) Granger causality [16, 26, 31]; (ii) state-space recon-

struction methods [24, 32, 33]; (iii) phase synchronization approaches [34, 35]; and

(iv) information theoretical methods [36,37].

2.1 Notations

Consider a coupled system consisting of a driver system D and a response system

R, denoted by D → R. The samples of D are denoted by a finite time series {dt},
consisting of N samples. Now, define Dt−1 = (dt−1, dt−2, ..., dt−Ld

)T the time-delayed

vector with the maximum lag value Ld. Similarly, for {rt} we can define Rt−1 with

the maximum lag value Lr. Figure 2.1 depicts two time series {dt} and {rt}, and
the corresponding Dt−1 and Rt−1, respectively, for Ld = 3 and Lr = 4.

{dt}

tt-1t-4 t-3 t-2t-5

dt-1dt-3 dt-2

rtrt-1rt-3 rt-2rt-4

Dt-1

Rt-1

{rt}

Figure 2.1: Two time series derived from systems D and R with Ld = 3 and Lr = 4.
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2.2 Granger Causality

2.2.1 Linear Granger Causality

One of the first attempts to infer the causal relationships between time series is

based on the concept of Granger causality (G-causality) [1, 16]. The principle idea

of this method is that the cause happens prior to the effect and it contains some

information about the future value of the effect. In linear G-causality method, a

linear regression based model is applied. Initially, we use an autoregression model

for predicting the current sample of R (i.e., rt) by its own past samples (i.e., Rt−1)

rt = α0 +α
TRt−1 + ǫ

r
t (2.1)

where ǫrt indicates the prediction error and α0 and α are determined by autore-

gression to minimize ǫrt . If we also consider the past samples of D to predict rt, we

have

rt = α0 +α
TRt−1 + β

TDt−1 + ǫ
r∣d
t . (2.2)

If σ2
ǫrt

and σ2

ǫ
r∣d
t

denote the variance of the prediction errors ǫrt and ǫ
r∣d
t , respectively,

then σ2

ǫ
r∣d
t

< σ2
ǫrt

reveals that the prediction of rt improves by considering D. Hence,

D is a Granger cause of R. To test the hypothesis of no causality, we can use the

Granger-Wald test [38] defined as follows

GWT = N
RRRRRRRRRRRRRR
σ2
ǫrt
− σ2

ǫ
r∣d
t

σ2

ǫ
r∣d
t

RRRRRRRRRRRRRR
. (2.3)

For Ld = Lr = L, the GWT statistic follows the chi-squared distribution with L

degrees of freedom (χ2
L) under the null hypothesis of no causality, i.e., σ2

ǫrt
= σ2

ǫ
r∣d
t

.

2.2.2 Nonlinear Granger Causality

The assumption of linearity can be violated in real applications and nonlinear causal

relationships are not detectable by linear approaches [39]. Hence, different nonlinear

extensions of G-causality method were proposed, e.g., a non-parametric method

using the correlation integral [26] and non-parametric approaches based on Fourier

or Wavelet transformation [28].

Hiemstra and Jones present a non-parametric and nonlinear extension of the

G-causality method, called the HJ test [26]. The HJ method tests the hypothe-

sis ‘D does not cause R’. This hypothesis is tested by the following conditional

11



independence

Ho ∶ f(rt∣ rt−1, dt−1) = f(rt∣ rt−1) (2.4)

where f(⋅) denotes the probability density function. Here, we consider the maximum

time lag of 1. Rejection of Ho means that the past value of dt affects the future

value of rt, i.e., D Granger causes R. The HJ method uses the correlation integral

for computation of the probabilities in the hypothesis Ho as follows

Ho ∶
Cǫ(rt, rt−1, dt−1)
Cǫ(rt−1, dt−1) =

Cǫ(rt, rt−1)
Cǫ(rt−1) . (2.5)

Here, the correlation integral Cǫ(⋅) represents the distribution f(⋅). For instance,

Cǫ(rt, rt−1, dt−1) is defined as the following probability

Cǫ(rt, rt−1, dt−1) = Pr (∣rt − rt′ ∣ ≤ ǫ, ∣rt−1 − rt′−1∣ ≤ ǫ, ∣dt−1 − dt′−1∣ ≤ ǫ) (2.6)

= 2

N(N − 1)
N−1

∑
t=1

N

∑
t′>t

I(∣rt − rt′ ∣ ≤ ǫ)I(∣rt−1 − rt′−1∣ ≤ ǫ)I(∣dt−1 − dt′−1∣ ≤ ǫ).
Here, I(⋅) is an indicator function. Other probabilities in equation (2.5) are repre-

sented by the correlation integral similarly.

Under the assumption that {dt} and {rt} are strictly stationary, Hiemstra and

Jones introduce the following test statistic

TVAL =√N (Cǫ(rt, rt−1, dt−1)
Cǫ(rt−1, dt−1) −

Cǫ(rt, rt−1)
Cǫ(rt−1) ) (2.7)

where it can be shown that the asymptotic distribution of TVAL under the null

hypothesis Ho (2.5) is Normal(0, σ2(Ld,Lr, ǫ)). The variance of this normal dis-

tribution is a function of Ld, Lr, and ǫ. This variance and its estimated value is

presented in [26]. By using the observed value of TVAL, we can make a conclusion

about Ho. Provided that the hypothesis Ho is rejected, we conclude the existence of

the causality D → R.

Studies of Diks and Panchenko in [27] shows that the HJ test over-rejects the

null hypothesis Ho. In other words, we detect spurious Granger causal relationships

by this test. To resolve the over-rejection of the HJ test, [27] proposes the following

hypothesis

H1 ∶ E ([f(rt∣ rt−1, dt−1) − f(rt∣ rt−1)] f2(rt)) = 0 (2.8)
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where E(⋅) is the expected value. In hypothesis (2.8), f2(rt) is a positive weight

function determined by the stability criterion studied by the Monte Carlo simula-

tions. The hypothesis H1 in (2.8) can be simplified as

H1 ∶ E (f(rt, rt−1, dt−1)f(rt) − f(rt, rt−1)f(rt, dt−1)) = 0 (2.9)

Here, the local density estimator is used instead of correlation integral for esti-

mating f(⋅). For example, for estimating f(rt, rt−1, dt−1), we define the vector

Wt = [rt, rt−1, dt−1] and the density estimator is as follows

f̂(Wt) = (2ǫ)−Lw

N − 1

N

∑
t′=1,t′≠t

IWtt′ (2.10)

where IWtt′ = I(∣∣Wt −Wt′ ∣∣ ≤ ǫ) and Lw is the dimension of the vector W . Hence, the

expected value in (2.9) can be estimated by

T (ǫ) = (N − 1)
N(N − 2)

N

∑
i=1

(f̂(rt, rt−1, dt−1)f̂(rt) − f̂(rt, rt−1)f̂(rt, dt−1)) . (2.11)

Studies of [27] shows that to prevent the increasing of the false detection rate

with the sample size, we have to reduce ǫ by increasing the sample size N . Hence,

they introduce the following bandwidth

ǫN = CN−β (2.12)

where C is a constant value and β ∈ (1
4
, 3
4
). Equation (2.12) may lead to large

bandwidths for small N , hence, the bandwidth is restricted by

ǫN =min(CN−β,1.5). (2.13)

In the next chapters, we refer to this modified test by the NLG-Diks test.

2.3 State-Space Reconstruction

The principle idea of this method is that if the driver system D drives the response

system R, then the closeness of the points in the driver space implies the closeness

in the response space. For example, provided that D → R exists in Fig. 2.2, the

closeness of the pair points Dt1 and Dt2 (Dt3 and Dt4) in the driver space results

in the closeness of Rt1 and Rt2 (Rt3 and Rt4) in the response space. Different

methods are proposed to quantify the dependency between the closeness in driver
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Figure 2.2: The main idea of state-space reconstruction method is shown in this
figure. In the case of D → R, the closeness of the points in the driver space (pair
points (Dt1 , Dt2) or (Dt3 , Dt4)) implies the closeness in the response space (pair
points (Rt1 , Rt2) or (Rt3 , Rt4), respectively).

and response spaces [24, 32, 33]. We explain the approach of [32] that is the most

famous method in the literature.

Let for t = 1, ...,N and k = 1, ...,K, md
t,k and mr

t,k denote the time indexes of

the K nearest neighbors of Dt and Rt, respectively. For each Rt, one can define

two different mean-squared Euclidean distances as follows:

∆K
t (R) = 1

K

K

∑
k=1

∣Rt −Rmr
t,k
∣2 (2.14)

∆K
t (R∣D) = 1

K

K

∑
k=1

∣Rt −Rmd
t,k
∣2 (2.15)

where mr
t,k in (2.14) is replaced by md

t,k in (2.15). More explicitly, (2.14) is the

distance of Rt with its K nearest neighbors and (2.15) is its distance from the points

in the response space with the time indexes derived from K nearest neighbors of Dt

in the driver space. If D → R, the closeness in the driver space implies the closeness

in response space; hence, md
t,k ≈ mr

t,k and consequently ∆K
t (R∣D) ≈ ∆K

t (R). On

the other hand, if D and R are decoupled, then there is no particular relationship

between md
t,k and mr

t,k and it follows ∆K
t (R∣D)≫∆K

t (R). Therefore, the following

measure can be defined to reveal and quantify the coupling between D and R

SK
t (R∣D) = ∆K

t (R)
∆K

t (R∣D) (2.16)

where 0 < SK
t (R∣D) ≤ 1 and the larger SK

t (R∣D) means the stronger coupling.

The main drawback of this method is that for weak couplings and noisy data, the

detection of coupling is difficult.
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2.4 Phase Synchronization

This approach is applicable for oscillatory systems that the dynamic exhibits oscil-

lation and the instantaneous phase of the oscillations are well-defined [34, 35, 40].

Generally, the phase is not well-defined for an arbitrary signal. The Hilbert trans-

form can be applied for phase estimation from time series [41]. In this method, the

direction of coupling is determined by analyzing the relation between the phase of

the sub-systems. Let φd(t) and φr(t) denote the unwrapped phase of D and R

(not restricted to [0,2π]), respectively. Provided that R is driven by D, the phase

of R is influenced by the phase of D, which can be represented as

φr(t + τ) = φr(t) + Fr(φr(t), φd(t)) + ξr(t) (2.17)

where τ is a time delay and ξr(t) is a zero-mean random process . Fr, repre-

senting the dependency of R to D, can have different forms such as a trigonometric

polynomial form

Fr(φr, φd) = ∑
m,n

[am,n cos(mφr + nφd) + bm,n sin(mφr + nφd)] . (2.18)

The strength of coupling is determined by dependence of Fr on φd, i.e.,
∂Fr

∂φd
.

The principle drawback of this method is that in most cases the phase of the

system is not well-defined, hence, this method is not applicable.

2.5 Information Theoretical Methods

Information theory has successfully found its significance in different disciplines such

as communications, physics, finance, genetics, psychology, and neuroscience. Indeed,

information theory can be applied to the problems dealing with nonlinear dynam-

ics, complex systems, and non-deterministic and probabilistic processes. Hence,

information theory can be a candidate for dealing with the problem of causality

inference.

A causal relationship can be understood in terms of a ‘flow’ between the cause

and effect processes. In the case of the information theory, this flow can be con-

sidered as the flow of information from the cause system toward the effect system.

However, most existing information theoretic measures, such as mutual information,

do not consider cause-effect (or driver-response) relationship due to their symmetry

15



property. Hence, breaking this symmetry enables us to discover the causal relation-

ships.

In this section, we begin by defining the basic information theoretic measures.

Then, the transfer entropy [36] proposed for breaking the symmetry property to

detect the direction of information flow will be introduced.

2.5.1 Definition of basic information theoretic measures

In this section we define the basic information theoretic measures for the continues

random variable X with the probability density function f(x) [42].

2.5.1.1 Self-Information

The amount of information contained in a probabilistic eventX, called self-information,

is defined as follows

IX = log ( 1

f(x)) (2.19)

where log is the natural logarithm, and consequently, IX is measured in nats. IX

has the following properties:

1. The smaller the probability of an eventX, the larger its self-information. This,

for example, means observing an event with small probability brings a lot of

information to the observer;

2. IX is positive;

3. IX is additive, i.e., the self-information of a pair of independent events X and

Y is IX + IY .

2.5.1.2 Differential Entropy

Entropy is the average value of self-information IX of the random variable X. For

the continuous random variable X, differential entropy HX is defined as follows

H(X) = E [IX]
= −∫ f(x) log f(x)dx (2.20)

where E[⋅] is the expected value. Provided that the above integral exists, H(X) ≥ 0.
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H(Y)H(X)

H(X,Y)

H(X|Y)H(X|Y) I(X,Y) H(Y|X)

Figure 2.3: This diagram shows the relation between the entropies of two random
variables X and Y and their mutual information, joint entropy and conditional
entropies.

Consider two continuous random variables X and Y with a joint probability

distribution function f(x, y) and marginal distribution functions f(x) and f(y).
Similar to (2.20), the average information obtained by observing X and Y can be

measured by

H(X,Y ) = −∬ f(x, y) log f(x, y)dxdxy. (2.21)

Hence, the conditional entropy H(X ∣Y ) can be defined by

H(X ∣Y ) = −∬ f(x, y) log f(x∣y)dxdy. (2.22)

By considering f(x∣y) = f(x,y)
f(y) , we can rewrite (2.22) as

H(X ∣Y ) =H(X,Y ) −H(Y ). (2.23)

Indeed, the conditional entropy H(X ∣Y ) measures the average amount of new in-

formation obtained by observation of X, after observing Y .

Figure 2.3 depicts the Venn diagram showing H(X),H(Y ),H(X,Y ),H(X ∣Y ),
and H(Y ∣X).
2.5.1.3 Mutual Information

To measure the mutual information (MI) between the random variables X and Y ,

denoted by I(X,Y ), (i.e., the intersection of H(X) and H(Y ) in the Venn diagram
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shown in Fig. 2.3) we can use the following formulas

I(X,Y ) =H(X) +H(Y ) −H(X,Y ); (2.24)

=H(X) −H(X ∣Y ); (2.25)

=H(Y ) −H(Y ∣X). (2.26)

Indeed, the MI can be interpreted as the amount of information about X gained

from Y . By using the joint probability density function f(x, y) and the marginal

distributions f(x) and f(y), we have

I(X,Y ) = −∬ f(x, y) log ( f(x, y)
f(x)f(y))dxdy. (2.27)

The mutual information I(X,Y ) has the following properties:

1. I(X,Y ) ≥ 0;
2. Symmetry property: I(X,Y ) = I(Y,X).

2.5.2 Measurement of Information Flow

As it is mentioned before, the causal relationship (coupling) X → Y can be con-

sidered as the flow of information from cause (driver) X to effect (response) Y .

However, it is seen in Sec. 2.5.1.3 that the mutual information between the random

variables X and Y is symmetric, i.e., I(X,Y ) = I(Y,X). Therefore, the mutual

information itself cannot show the flow of information between X and Y . Hence, to

detect the flow of information between two coupled systems we have to use asymmet-

ric measures. Here, we introduce some asymmetric information theoretic measures

for detection of the flow of information.

2.5.2.1 Directed Information

One way to break the symmetry property of the mutual information is using the

conditional MI. Massey used this idea and proposed the directed information as

follows [43]

I(DN
→RN) = N

∑
t=2

I(Dt, rt∣Rt) (2.28)

where Dt = [d1, d2,⋯, dt] and Rt = [r1, r2,⋯, rt]. As it is obvious, I(DN
→ RN) ≠

I(RN
→DN) and the flow of information is measurable by directed information.
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2.5.2.2 Transfer Entropy

The most popular asymmetric measure to identify the direction of coupling is

transfer entropy (TE) [36], which determines the direction of information flow be-

tween two random variables. Generally, TE can be defined based on two informa-

tion [36,37]:

1. Ir∣R,D: Information about the current sample rt gained from past samples of

R and D;

2. Ir∣R: Information about the current sample rt gained from past samples of R.

Accordingly, TE is defined by

TE(D → R) = Ir∣R,D − Ir∣R (2.29)

that is the information flow from D to R. According to this definition, if there is

no causality between D and R, we cannot get any information about rt from D.

Consequently, Ir∣R,D and Ir∣R would be the same, and therefore, TE(D → R) = 0.
On the other hand, provided that D → R, we obtain more information about the

current sample rt by considering the past samples of both R and D rather than only

R. Hence, Ir∣R,D is greater than Ir∣R and consequently TE(D → R) > 0.
The mathematical form of TE is [44]

TE(D → R) =H(rt∣Rt−1) −H(rt∣Rt−1,Dt−1)
=H(rt,Rt−1) −H(Rt−1) −H(rt,Rt−1,Dt−1) +H(Rt−1,Dt−1) (2.30)

which can be written as

TE(D → R) =∭ f(rt,Rt−1,Dt−1) log f(rt∣Rt−1,Dt−1)
f(rt∣Rt−1) drt dRt−1 dDt−1. (2.31)

TE can be estimated by [44]

TE(D → R) = N

∑
t=1

log
g(rt∣Rt−1,Dt−1)

g(rt∣Rt−1) (2.32)

where g(⋅) is the density function which can be estimated from observed data by

using the kernel estimator [45]

ĝ(Rt−1,Dt−1) = 1

N∗
∑
t′

1

hLr
r h

Ld

d

Lr

∏
j=1

K (rt−j − rt′−j
hr

) Ld

∏
j=1

K (dt−j − dt′−j
hd

) . (2.33)

19



Here, N∗ = N −max{Lr,Ld} , K(⋅) is the kernel function, and hd and hr are the

bandwidth of the kernel function. We use the Gaussian kernel function defined by

K(u) = 1√
2π

e
−u2

2 . (2.34)

The optimal value of the bandwidths hd and hr in (2.33) to estimate a normal

distribution with the standard deviation σ is σN−1/(L+1) where L is the maximum

lag value [46].

The main problem with TE is that the direction of detected coupling is affected

by data scaling, i.e., the detected direction may reverse by scaling the data [44].

This problem, in particular, is more severe for multi-nature data that are physically

different and are not comparable. For example, for a set of physiological data con-

sisting of the ‘heart rate’ (H) and ‘breath rate’ (B) time series, different scalings

alter the inferred direction of coupling (Fig. 2.4) [44].

It is noteworthy to mention that the studies of [47] demonstrates the relationship

between the Granger causality, directed information, and transfer entropy.

Figure 2.4: Direction of coupling derived by TE for different scalings between ‘heart
rate’ (H) and ‘breath rate’ (B) time series (ǫheart and ǫbreath represent the scaling
factors of H and B, respectively): ∎ H→B ◻ B→H [44].
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Chapter 3

Coupling Spectrum Method

3.1 Introduction

In the fields of nonlinear dynamics and time series analysis, identifying the cou-

plings between the sub-systems of a complex system is essential for understanding

the functionality of the interactions and controlling them. This area of study has

immediate applications in various disciplines, such as physics, economics, biology,

physiology, ecology, and climatology.

The challenging issue in identifying the interactions is that the couplings are

inherently hidden in the underlying dynamics of the system and are not necessarily

accessible. That is to say, we commonly have access to some observations of the

system measured in time series. Hence, methods that based on the available ob-

servations determine whether these time series originate from coupled or decoupled

sub-systems are much needed. This task will be more complicated if the goal is to

determine the direction of coupling.

Methods that are proposed to detect the directed coupling can be divided into

four categories: (i) regression-based methods (Granger causality) [16,31]; (ii) state-

space reconstruction methods [24,32]; (iii) phase synchronization approaches [34,35];

(iv) information theoretic methods [36,37,48]. These methods are compared in [40,

49,50]. Comparisons in [40] between state-space and phase-synchronization methods

show that the phase synchronization methods rely on a meaningful definition of

the phase and this is not always accessible in real data. Hence, between these

two methods, state-space approaches are generally preferred. Also, studies of [49]

suggest that transfer entropy (TE) [36], which is an information theoretic method,

is generally more reliable than regression-based and state-space methods.

In real-world problems, we usually deal with systems composed of non-identical
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sub-systems with fundamentally different structures. The data derived from these

systems may have different dynamics with non-comparable scales. Some methods

need to scale data sets to make them comparable; for example, the data are nor-

malized to unit variance. However, in some cases, the scaling reverses the direction

of the inferred coupling. For instance, [44] shows that the direction of coupling ob-

tained by TE may alter by data scaling. Furthermore, in many cases, the available

sample size is small and the strength of coupling is very weak, making most of the

proposed methods erroneous.

To resolve the mentioned difficulties of the real-world data, inspired by [51],

we propose a new method to identify the direction of coupling1. The work of [51]

proposes a method to identify the dependencies between the samples of a single

time series. Here, we generalize this method to discover the direction of couplings

between two or more time series. According to different kinds of causal relationships

and definitions described in Chapter 1, this method is developed for inference of

deterministic causality based on the definition of predictive causality. Moreover,

the simulation results show that it is not applicable for detection of distributional

causality. Generally, this method can be considered as a member of the state-space

reconstruction methods which are working based on the closeness of the points in

the driver and response spaces.

The simulation results show that our method can detect the direction of coupling

correctly for identical and non-identical sub-systems, nonlinear dynamics, small sam-

ple sizes, as well as weak coupling strength. The proposed method can also detect

the stronger couplings in asymmetric bidirectional couplings. Moreover, our method

is invariant to data scaling. Same as other kinds of state-space reconstruction meth-

ods, the proposed method is sensitive to noise.

In this chapter, we first propose our method for a simple bivariate coupling

system and show its successful performance. Then we generalize our method for

multivariate systems.

3.2 Bivariate Coupling

Consider a finite time series {rt}, consisting of N samples and define the time-

delayed vector Rt−1 = (rt−1, rt−2, ..., rt−Lr) with the maximum lag value Lr. We use

1The results of this work were published as a journal paper entitled ‘Finding weak directional

coupling in multi-scale time Series’ in Physical Review E, vol. 86, no. 1, pp. 16215, Jul. 2012.
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the maximum norm to measure the distance between Rt−1 and Rt′−1, i.e.,

ρRtt′ = ∥Rt−1 −Rt′−1∥ = max
1≤k≤Lr

{∣rt−k − rt′−k ∣} . (3.1)

Accordingly, we define

ρrtt′ = ∣rt − rt′ ∣ . (3.2)

Similarly, for another time series {dt}, we can define Dt−1 with the maximum lag

value Ld, ρ
D
tt′ , and Dt′−1 and ρdtt′ .

Consider a coupling system consisting of the driver system D and the response

system R with corresponding samples {dt} and {rt}, respectively. The goal is to

identify the existing directed coupling between these two systems from observed

samples. If a coupling exists from D to R, denoted by D → R, the current sample

of R should be predictable by the past samples of R and D, i.e.,

rt = f(Rt−1,Dt−1) + ηt. (3.3)

where f(⋅) is a continuous function and ∂f/∂Dt−1 ≠ 0. Here, ηt denotes the in-

determinable part which originates from the real noise or insufficient considered

dimension of the system [51]. To characterize the dimensions of the system cor-

rectly, it is sufficient that Ld and Lr be greater than the minimum lag values of D

and R, respectively, and in this case, ηt vanishes for a noiseless scenario. Hereafter,

we assume that there is no noise.

If the distance between Rt−1 and Rt′−1 is smaller than δr > 0, i.e., ρRtt′ < δr, and
provided that the distance of Dt−1 from Dt′−1 is smaller than δd > 0, i.e., ρDtt′ < δd,
then the probability that the distance between the corresponding outputs of (3.3),

i.e., rt and rt′ , is smaller than a fixed value ǫro > 0 is denoted by

P (ǫro∣δr, δd) = P (ρrtt′ < ǫro∣ρRtt′ < δr, ρDtt′ < δd). (3.4)

Studying the behavior of P (ǫro∣δr, δd) as a function of δr and δd sheds light on

developing a method for identifying the directed coupling D → R.

1. If δd →∞, then P (ǫro∣δr, δd →∞) = P (ǫro∣δr).
2. Provided that D → R, for a fixed δr = δro , by increasing the distance of Dt−1

from Dt′−1, the probability that rt stays in the ǫro neighborhood of rt′ reduces.

Hence, P (ǫro∣δro , δd) decreases monotonically as δd increases.
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3. Lack of coupling from D to R, denoted by D ↛ R, yields P (ǫro∣δr, δd) =
P (ǫro∣δr).

According to the above statements 2 and 3, the existence of coupling from D to

R can be verified by the following rules for a fixed δr = δro .

R→: P (ǫro∣δro , δd) is a decreasing function of δd ⇒ D → R

R↛: P (ǫro∣δro , δd) does not vary by δd ⇒ D ↛ R

We can visualize P (ǫro∣δr, δd) by a two-dimensional representation, here referred

to as coupling spectrum (CS), denoted by CS(D → R) (see Figs. 3.1(a) and 3.1(b)).

In CS, the value of the conditional probability is mapped to a color for each pair

of (δr, δd). The horizontal and vertical axes of CS(D → R) correspond to δr and

δd, respectively. Therefore, if we observe a change of color in each column of the

CS, meaning that R→ is satisfied, we conclude that the coupling D → R exists.

Otherwise, if all the columns of the CS lack the color change, the rule R↛ is satisfied

meaning that the coupling does not exist.

We now explain how to determine the fixed value of ǫro in P (ǫro∣δr, δd). Obviously,

for specific values of δr and δd, P (ǫro∣δr, δd) increases with ǫro and this probability

saturates to 1 for large value of ǫro and small values of δr and δd. By generalizing

the discussion of [51], in presence of noise, P (ǫro∣δr, δd) will not saturate to 1 as ǫro

drops below ∆ηmax where ∆ηmax is the maximum distance of the noise samples, i.e.,

max{∣ηt − ηt′ ∣}. Indeed, ǫro > ∆ηmax provides more space for the fluctuation of the

neighbor points due to the noise. Hence, to determine the value of ǫro, we try to

have the saturation level of 1 in the CS to be able to tolerate the noise (or we try to

find a value of ǫro that results the closest saturation level to 1). On the other hand,

for very large values of ǫro, P (ǫro∣δr, δd) saturates approximately to 1 for all values of

δr, δd. Hence, ǫro should be neither too larger nor too small. Thus, we first consider

the smallest value of ǫro for which the maximum of P (ǫro∣δr, δd) equals 1. However,

in that case, it is possible P (ǫro∣δr, δd) to be close to 1 for all values of δr and δd.

Hence, no color change will be visible in CS(D → R). To prevent this situation, we

further reduce ǫro such that the minimum of P (ǫro∣δr, δd) is smaller than a threshold,

e.g., 0.75. This way, the change of color in each column becomes more visible in the

presence of any existing coupling. It is noteworthy to mention that in presence of

noise, generally, the value of ǫro becomes larger that that of the noiseless scenario.
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Moreover, ρD ≤ max{ρd} and ρR ≤ max{ρr}; hence, there is no need to consider

δd >max{ρd} and δr >max{ρr}.
Now, let us provide numerical results. Firstly, counting is used to calculate

P (ǫro∣δr, δd) from the time series, i.e.,

P (ǫro∣δr, δd) = n(ρrtt′ < ǫro, ρRtt′ < δr, ρDtt′ < δd)
t(ρRtt′ < δr, ρDtt′ < δd) (3.5)

where n(⋅) is the number of pairs satisfying the distance constraints.

Secondly, to avoid statistical fluctuations, we disregard values of P (ǫro∣δr, δd) de-
rived by n(⋅) < nmin in (3.5). Finally, as mentioned earlier, TE generally outperforms

other existing methods. Hence, we compare CS against TE. For estimation of the

TE, we use the kernel density estimator (2.33). If a specific value is not mentioned

for hr and hd in simulation results, the optimal bandwidth of normal distribution is

used.

As an example, consider an identically coupled system realized by the Hénon

map [29], given by:

xt = a − x2t−1 + bxt−2 + cy→x(x2t−1 − y2t−1) (3.6a)

yt = a − y2t−1 + byt−2 + cx→y(y2t−1 − x2t−1) (3.6b)

where a = 1.4, b = 0.3, N = 1000, Lx = Ly = 2, and nmin = 10. The initial values of x0

and y0 are uniformly distributed in [0, 0.5]. To have a unidirectional couplingX → Y ,

we set the coupling strengths cy→x = 0 and cx→y = 0.2. As Fig. 3.1(a) shows, for

δy < 0.2, the color of each column in CS(X → Y ) changes drastically by variation of

δx, which means the dependency of P (ǫyo ∣δyo , δx) to δx. Hence, CS(X → Y ) confirms

the existence of coupling from X to Y . On the contrary, as Fig. 3.1(b) reveals, the

color of no column in CS(Y → X) changes with δy, which indicates Y ↛X.

Since variation of color over the columns of the CS is a qualitative measure, we

suggest using a quantitative measure of variability, e.g., standard deviation. In fact,

we calculate the standard deviation of the values of P (ǫro∣δro , δd) in each column for

different values of δd. This measure is denoted by σcs. The corresponding σcs of

Figs. 3.1(a) and 3.1(b) are plotted in Fig. 3.2 where σcs(X → Y ) is considerably

greater than σcs(Y →X). Hence, one concludes that X → Y exists.

For non-identical and structurally different systems, a direct comparison of

σcs(D → R) and σcs(R →D) maybe become meaningless. This means that we need

a way to measure the significance of each standard deviation individually. Hence,
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(a) The change of color over each column for δy < 0.2 shows the existence of X → Y .
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(b) The color of each column is fixed, indicating the lack of coupling from Y to X .

Figure 3.1: The coupling spectrum (CS) for the coupling X → Y realized by the
unidirectional Hénon map
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Figure 3.2: The standard deviation of each column of CS (σcs) is shown for both
directions of coupling between X and Y for the coupling X → Y realized by the
Hénon map. The significance of σcs is assessed by the 95% confidence interval
derived by permuting the driver time series.
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we use the permuted {dt}, represented by {dpt }, to destroy any inherent coupling

hidden in the dynamics of the system. To assess the significance of σcs(D → R), we
obtain the 95% confidence interval (CI95% ) of σcs(Dp

→ R) based on the percentile

bootstrap method1 [52]. Provided that σcs(D → R) lies outside the CI95%, we

confirm that σcs(D → R) is significant, i.e., D → R; otherwise, that coupling does

not exist. Let us return to the unidirectional Hénon map explained above and

illustrate the upper bound of the CI95% (UCI95%) with the permuted time series

of the driver in Fig. 3.2. Obviously, σcs(X → Y ) for δy < 0.09 is higher than

UCI95%(Xp
→ Y ); consequently, the hypothesis X → Y is accepted. Conversely, for

all values of δx, σcs(Y →X) lies lower than UCI95%(Y p
→ X); hence, Y ↛X.

To illustrate the capability of the CS method to detect the asymmetric bidirec-

tional coupling, consider cy→x = 0.13 and cx→y = 0.07 in (3.6). Thus, the coupling

Y → X is stronger than X → Y . Fig. 3.3 shows that both σcs(X → Y ) and

σcs(Y → X) are greater than their corresponding UCI95%; however, the maximum

of σcs(Y →X) is larger than that of σcs(X → Y ), which indicates that the coupling

Y → X is stronger than X → Y .

Let us investigate the effect of the sample size on the CS method for the uni-

directional Hénon map described above. For each value of N , σcs(X → Y ) and

σcs(Y → X) are computed for 1000 different initial values of x0 and y0 in (3.6).

The mean of max{σcs} over 1000 trials is plotted in Fig. 3.4, where the error bars

indicate the corresponding standard deviations. Fig. 3.4 reveals that the error bars

are distinctly separated for N ≥ 80. Repeating this simulation with TE reveals that

N ≥ 80 is required again for error bars to be separated. Thus, CS is as strong as TE

in handling small sample size.

One important feature of the CS method is that it suits non-identical processes

with fundamentally different structures. Let us consider a non-identical coupling

system that the driver is a three-dimensional discrete-time Rössler hyperchaotic

system [53] defined by

1In percentile bootstrap method, the time series {dt} is permuted Np times . For each permuted
time series we calculate the corresponding σcs(D

p → R), and then, these values are sorted. The
upper bound of α% confidence interval is the (1 − α

2
) percentile of σcs(D

p → R) values, i.e., the
value below which 100 × (1 − α

2
) percentage of σcs(D

p → R) values fall which is the value of the
⌈(1 − α

2
)Np⌉-th sorted σcs(D

p → R).
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Figure 3.3: The CS method is applied to a bidirectional coupling between X and Y

in which the coupling from Y to X is stronger. The CS method shows a significant
coupling for both directions as well as the larger maximum of σcs for the stronger
coupling, i.e., Y →X.
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Figure 3.4: The maximum of σcs(X → Y ) and σcs(Y →X) are depicted against the
number of the samples for a unidirectional Hénon coupling X → Y . The CS method
can identify the direction of coupling correctly for N ≥ 80.
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xt = αxt−1(1 − xt−1) − β(zt−1 + γ)(1 − 2yt−1) (3.7a)

yt = δyt−1(1 − yt−1) + ζzt−1 (3.7b)

zt = η [(zt−1 + γ)(1 − 2yt−1) − 1] (1 − θxt−1) (3.7c)

and the response system is the two-dimensional discrete Lorenz system [53]

x′t = (1 + ab)x′t−1 − b x′t−1y
′
t−1 (3.8a)

y′t = (1 − b)y′t−1 + b x′t−1
2
+ µxt−1. (3.8b)

The driving term µxt−1 is applied to (3.8b) of the response system where µ is the

coupling strength. The parameters of the Rössler system are set to α = 1.25, β = 0.75,
γ = 0.35, δ = 3.78, ζ = 0.2, η = 0.1, and θ = 1.9 and the parameters of the Lorenz

system are a = 1.25, and b = 0.75. To have a stable coupling, the initial conditions

of (3.7) and (3.8) are uniformly distributed as x0 and y0 ∈ [0.5,1], z0 ∈ [0,0.25], and
x′0 and y′0 ∈ [0,0.5]. Two variables X and Y ′ are observed and both Lx and Ly′ are

set to 2. Fig. 3.5(a) depicts the maximum of σcs(X → Y ′) and σcs(Y ′ → X) versus
µ over 500 distinct realizations with N = 1000. The error bars show the standard

deviation of max{σcs} for each value of µ. It is obvious in Fig. 3.5(a) that the error

bars are separated for µ > 0.03. For the similar scenario of simulation for TE, Fig.

3.5(b) shows that the minimum coupling strength that is detectable by TE is 10

times greater than that of CS. Hence, the CS method is more applicable for weak

directional couplings.

Invariance to scaling is an important feature when working with multi-scale data,

specially when the data is derived from structurally different systems. Interestingly,

σcs is independent of scaling. If two time series {dt} and {rt} are scaled as d′t = αdt
and r′t = βrt, then we have ρD

′

tt′ = αρDtt′ , ρR′tt′ = βρRtt′ , and ρr
′

tt′ = βρrtt′ . Consequently, it
can be shown that

P (ρr′tt′ < ǫr′o ∣ρR′tt′ < δr′ , ρD′tt′ < δd′) = P (ǫro∣δr, δd) (3.9)

where ǫr
′

o = βǫro, δ
r′ = βδr, and δd

′ = αδd. Therefore, σcs(D′ → R′) obtained from

P (ǫr′o ∣δr′ , δd′) is equal to σcs(D → R). Here, the CS method is compared with TE

for different relative scalings of data. As it is mentioned in [44], the relative scaling

of two samples {dt} and {rt} is equivalent to varying the corresponding bandwidth

of each data set in the kernel function, i.e., hd and hr in (2.33). Similarly, {dt} and
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Figure 3.6: TE and CS methods are compared for different scalings of unidirectional
Hénon map data. ◻: X → Y and Y ↛ X are deduced; ∎: wrong directions of
couplings are detected.

{rt} are scaled with hd and hr, respectively, to be used in the CS method. The

unidirectional Hénon map X → Y corresponding to Fig. 3.1 with different scalings

hx and hy is considered here. The permuting method is performed to evaluate the

significance of the results. In Fig. 3.6, white boxes denote regions where a correct

coupling direction is detected, i.e., X → Y and Y ↛ X are deduced. Black boxes

represent regions over which the direction of couplings between X and Y is wrongly

detected. Fig. 3.6 reveals that the TE method finds the correct direction of coupling

just in a specific range of scaling, however, the CS method performs successfully for

the whole range.

In the presence of noise, σcs(X → Y ) corresponding to the coupling X → Y

reduces and becomes closer to σcs(Y → X), and consequently, they are not dis-

tinguishable for strong noise. To examine the effect of noise on the CS and TE

methods, the unidirectional Hénon map explained above with power σs contami-

nated by additive white Gaussian noise with power ση is considered. In Fig. 3.7,

success rate represents the probability of max{σcs(X → Y )} >max{σcs(Y →X)} for
CS method and probability of TE(X → Y ) > TE(Y →X) for TE method. Fig. 3.7

depicts the success rate for each noise to signal power ratio (NSR), i.e. ση/σs, where
500 different noisy signals are generated for each value of NSR. For CS method, the

direction of coupling is detected with a probability greater than 0.9 for NSR smaller

than 0.12 and 0.06 with 1000 and 100 samples, respectively. For the same level of
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Figure 3.7: The effect of noise on the CS and TE methods are depicted for X → Y

realized by the Hénon map with 100 and 1000 samples. The success rate shows the
probability of max{σcs(X → Y )} >max{σcs(Y →X)} for CS method and probability
of TE(X → Y ) >TE(Y →X) for TE method.

success rate, the maximum NSR of the TE method is 4-5 times greater than that of

the CS method.

It is noteworthy that for calculation of bivariate CS, we should calculate P (ǫro∣δr, δd)
for a mesh grid of δr and δd values. Therefore, if we have Nδ values for each of δr

and δd, P (ǫro∣δr, δd) is calculated N2
δ times. However, it is possible to optimize the

implementation of the code to prevent a whole calculation for each grid point. In

our implementation, the execution time is in the order of seconds on a 2.8 GHz

CPU with C-MEX implementation in MATLAB® without any optimization in the

code. For example, for 1000 samples, the calculation of CS and σcs takes around 35

seconds. In comparison, the TE method calculates the TE just for specific values

of the bandwidths of the kernel estimator and it is faster. However, as we showed

in Fig. 3.6, we do not know whether the selected bandwidths result in the correct

direction of coupling. Thus, despite the low computational cost of TE, the results

are not reliable for multi-scale data.
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3.3 Multivariate Coupling

Now, we modify the CS method to discover the couplings in a multivariate system.

The proposed CS method can be used for each pair of variables in a multivariate

system. Indirect coupling commonly appears when a pairwise measure is used to

detect the couplings between more than two processes. For example, consider a

coupled system as R1 ← D → R2. Aside from the obvious couplings D → R1 and

D → R2, two indirect couplings represented by R1 ⇢ R2 and R2 ⇢ R1 are also

observed. Indeed, this indirect couplings are due to the common driver D hidden

in the underlying dynamics of both R1 and R2. As another example, the indirect

coupling D ⇢ R2 may be seen in D → R1 → R2.

To deal with indirect couplings, we generalize the bivariate measure of the CS

method to a triple-variate measure. Consider a coupling system as D ← C → R

that the CS method detects C and D as the drivers of R. The goal is to examine

whether the couplings C → R and D → R are direct or indirect. We can exclude

the influence of the common driver C in P (ǫro∣δro , δd) by conditioning on C, i.e.,

P (ǫro∣δro , δco, δd). Hence, in the presence of C in the conditional probability, all the

potential couplings from D to R are covered by C, and consequently, D becomes

ineffective and we have P (ǫro∣δro , δco, δd) = P (ǫro∣δro , δco). In contrast, if the coupling

D → R really exists, P (ǫro∣δro , δco, δd) depends on δd and varies by it. Therefore, we

can modify the rules R→ and R↛ for a triple-variate system for the fixed values of

δr = δro and δc = δco as

R
′

→: P (ǫro∣δro , δco, δd) is a decreasing function of δd ⇒ D → R∣Co

R
′

↛
: P (ǫro∣δro , δco, δd) does not vary by δd ⇒ D ↛ R∣Co

where conditioning on Co represents the conditioning on C for a specific δc = δco.
Likewise P (ǫro∣δr, δd), P (ǫro∣δr, δc, δd) can be represented by a three-dimensional

coupling spectrum, denoted by CS(D → R∣C), where the x-axis, y-axis, and z-axis

correspond to δr, δd, and δc, respectively. In fact, on each xy-plane of CS(D → R∣C)
a two-dimensional CS for D → R with corresponding δc = δco can be seen, which is

denoted by CS(D → R∣Co). Hence, the changes of the color in each column on the

plane, which can be quantified by the concept of σcs denoted by σcs(D → R∣Co),
determines whether R

′

→ or R
′

↛
is satisfied. To accept the hypothesisD → R, σcs(D →

R∣Co) should be independent of Co for all the planes, i.e., R
′

→ should be met for all
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values of δco. Therefore, it is required to check the satisfaction of R
′

→ in all the xy-

planes of CS(D → R∣C). Provided that R
′

→ is satisfied in all the planes, existence of

coupling from D to R is accepted, otherwise the observed coupling is indirect. As

an illustration, consider a coupling system X ← Z → Y achieved by a three-variable

Hénon map as follows

zt = a − z2t−1 + bzt−2 (3.10a)

xt = a − x2t−1 + bxt−2 + czx(x2t−1 − z2t−1) (3.10b)

yt = a − y2t−1 + byt−2 + czy(y2t−1 − z2t−2) (3.10c)

where Z affects Y by one delay more than X. Here, a = 1.4, b = 0.3, czx = czy = 0.2,
Lx = Ly = Lz = 2, and N = 5000. As Fig. 3.8(a) represents, σcs(Z → Y ) is large,

indicating a coupling from Z to Y . Moreover, for all values of δx, σcs(Z → Y ∣Xo)
fluctuates in close proximity of σcs(Z → Y ), which means that R

′

→ is satisfied for

all the planes. In other words, the coupling from Z to Y is independent of X,

and consequently, Z → Y is a direct coupling. Similarly, Fig. 3.8(b) shows that

σcs(X → Y ) represents a significant coupling from X to Y in the lack of conditioning

on Z. Albeit, for δz →∞, σcs(X → Y ∣Zo) equals σcs(X → Y ). The effect of Z is more

severe when δz reduces and as Fig. 3.8(b) shows, smaller δz makes σcs(X → Y ∣Zo)
less significant. Hence, Z affects X → Y , and thus, this coupling is indirect.

3.4 Relationship Between CS and HJ

Before finishing this chapter, it is noteworthy to mention the relationship between

the CS and HJ methods. In Section 2.2.2 we introduced the HJ test as a nonlinear

extension of the G-causality method. Here, we show that the HJ test is a specific

case of the CS method and explain the common underpinnings of both the HJ test

and the CS method. The CS method is developed based on the following probability

P (ǫro∣δr, δd) = P (ρrnn′ < ǫro∣ρRnn′ < δr, ρDnn′ < δd). (3.11)

On the other hand, the HJ test is a hypothesis test for the following hypothesis

Ho ∶D does not Granger cause R. (3.12)

If we define Pǫ(ǫro∣δr, δd) = P (ǫro = ǫ∣δr = ǫ, δd = ǫ) for all ǫ > 0, the hypothesis Ho of

the HJ test presented in (2.5) can be rewritten as follows

Pǫ(ǫro∣δr, δd) = Pǫ(ǫro∣δr). (3.13)
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Figure 3.8: Conditional σcs is depicted for a triple-variate coupling X ← Z → Y .
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Therefore, the TVAL value introduced in (2.7) can be presented as

TVAL =√N (Pǫ(ǫro∣δr, δd) −Pǫ(ǫro∣δr)) a∼ Normal (0, σ2(Ld,Lr, ǫ)) . (3.14)

It is noteworthy that Pǫ(ǫro∣δr, δd) used in the HJ test is a specific case of

P (ǫro∣δr, δd) in the CS method where ǫro = δr = δd = ǫ. In other words, the HJ method

considers the coupling spectrums in Fig. 3.1 only for one pair of (δr, δd) = (ǫ, ǫ)
and ǫro should also be equal to ǫ. As we see in Section 4.2.2, the value of ǫ has a

severe impact on the results of the HJ method. However, in the CS method, we

investigate P (ǫro∣δr, δd) for the whole range of δr and δd values and ǫro is determined

independently of δr and δd. In Section 4.2.2, we illustrate how the flexibility and

generality of the parameters in the CS method makes it more robust than the HJ

test.

3.5 Conclusion

We proposed a new method for identifying the directed couplings between time

series. It was observed that this method identifies the direction of coupling in differ-

ent scenarios such as unidirectional and bidirectional couplings, nonlinear dynamics,

identical and non-identical sub-systems, multivariate systems, small and large sam-

ple sizes, weak and strong couplings, and in the presence of the noise. Moreover,

this method is invariant to scaling of the data. These features of our method make

it suitable for practical applications where we deal with multi-structure systems as

well as small sample sizes and weak couplings. Comparing our method against TE,

it was revealed that our method better detects weak couplings. Unlike TE, it is

invariant to scaling. In terms of handling small sample size, it is as strong as TE,

but for noisy data TE performs better.
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Chapter 4

Applications of Coupling

Spectrum Method

In this chapter, we focus on some of the applications of the coupling spectrum (CS)

method, proposed in Chapter 3. In particular, we study applications in biology and

finance1. In biological applications that provide time series data, the CS method can

be used for the inference of the biological networks. In other words, we can apply

the CS method to detect the interactions between biological components of the cell.

The main challenges in identification of biological networks are the small sample

size of data and noise. Here, we use the CS method for inference of gene regulatory

networks (GRN), one of the most important biological networks in the cell. We try

to detect a GRN known by the biological studies. The results of biological data

analysis show the successful performance of the CS method for inference of GRNs.

Identifying dynamic causal relationships between financial data has many appli-

cations in finance and econometrics. As most of financial data are available in time

series form, we can use the CS method for identification of the causal relationships

between these data, e.g., the existing causality between the return and volume of

a stock price, inflation and unemployment rate, or the effect of the stock price of

a company on that of another company. Since the causal relationships are usually

studied during a long time, for example over a decade, the direction of causality may

changes over time. Hence, we combine the CS method with moving window tech-

niques to deal with temporal causality. Here, we apply the CS method to detect the

1The results of biological application of the CS method were accepted in GlobalSIP 2013 Sympo-
sium on: Bioinformatics and Systems Biology (IEEE), Austin, Texas, U.S.A., Dec. 2013; however,
it was withdrawn for publishing in a journal. Moreover, the financial application of the CS method
is published as a conference paper entitled ‘The Coupling Spectrum: A new method for detecting

temporal non-linear causality in financial time series’ in proceeding of the 7th International Days
of Statistics and Economics, Prague, Czech, Sep. 2013.
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temporal causal effects of the stock prices of Apple Inc. and Microsoft Corporation

on each other in more than a decade.

4.1 Biological Application

4.1.1 Introduction

Traditionally, the research in molecular biology has been restricted to studying single

components of the cells one at a time. However, the biological entities of the cell

interact with each other and work as a network rather than a collection of single

biological components. To gain a thorough understanding of biological phenomena

and diseases, e.g. cancer and diabetes, and the underlying processes, we need to

see the cell as a whole and to unravel the interaction of molecular components

involved in cellular networks. This idea yields a newly emerging multidisciplinary

field termed ‘Systems Biology’, which provides a system-wide view of the cell and

alternative solutions in medicine and biotechnology.

During the last decade, owing to the development of high throughput genomic

and proteomic measurement technologies, e.g., DNA microarray and ChIP-on-chip

technique, molecular biology is rapidly evolving into a quantitative science and it

increasingly relies on mathematics, physics, engineering, and computing science to

model and infer the biological networks. Consequently, a new discipline called ‘Com-

putational Systems Biology’ has recently emerged that its aim is to discover the cel-

lular networks through computational methods. To infer these biological networks

from quantitative data, we need promising computational tools such as information

theory and Bayesian networks.

Gene regulatory networks (GRNs) are one of the most important biological net-

works that their identification has immediate applications in cancer prediction and

drug development [54]. Indeed, GRN represents the regularity interactions of the

genes, proteins, and other molecules that yield activation or suppression of other

genes. Modeling or reconstruction of GRNs based on experimental data is called

‘network inference’ or ‘reverse-engineering’.

Different approaches were applied to infer GRNs such as differential equations

[55], Boolean networks [56], Bayesian networks [57], and Information theory [58].

The CS method presented in Chapter 3 can be a candidate to infer the GRNs as

it is capable of identifying directed couplings in severe practical conditions such as
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unidirectional and bidirectional coupling, nonlinear coupling, and time series with

small sample sizes.

In this section, we apply the CS method to infer the GRN of E2F1 transcription

factor from microarray data. The microarray data analysis by the CS method shows

the successful performance of this method for inference of GRNs.

This section is organized as follows. In Section 4.1.2, we introduce the biological

background of this biological application. The results of analysis of the biological

data is presented in Section 4.1.5, and finally, conclusions are drawn.

4.1.2 Biological Background

4.1.2.1 DNA and Gene

Proteins are the main components of the cell with vital functions in the cell and

body, e.g., enzymes. Briefly, we can say that proteins are the essential components to

control all the cell processes and reactions. Proteins are produced by the instructions

encoded into DNA [59].

DNA is the information carrier molecule in a cell, which contains the genetic

instructions. DNA molecules store the needed information for construction of pro-

teins. A gene is a segment of DNA from which the information can be read as recipes

to construct a particular protein. The process by which cells produce proteins from

genes is called ‘gene expression’. As it is shown in Fig. 4.1, gene expression has two

major steps:

Gene

DNA

RNA

Protein

Transcription

Translation

Figure 4.1: Gene expression.
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1. Transcription: a copy of the encoded information in the gene is created, which

is called RNA

2. Translation: the decoding phase of RNA where the protein is made from en-

coded data in the RNA.

4.1.2.2 Gene Regulatory Network

Different cell types in different tissues have similar DNA. Therefore, the cellular

differentiation originates from differences in gene expression. In other words, not all

the genes are active in all the cells and the combination of switched ‘on’ and ‘off’

genes determines the type of the cell. An important question in biology is how the

genes are switched on and off, i.e., how genes are regulated.

Let us see a simple example of a GRN shown in Fig. 4.2(a). When a gene is being

expressed, the produced protein can regulate the expression of other genes directly

(A → B and B → C) or indirectly (A → C). A GRN, which is consisting of these

interactions, is often modeled as a graph composed of nodes (genes or proteins) and

edges (gene-gene, protein-DNA, and protein-protein interactions). Fig.4.2(b) depicts

the gene-gene graph representation of the GRN corresponding to Fig. 4.2(a).

Microarray is a technology to answer the question, what genes are expressed in a

particular cell type, at a particular time, under particular conditions. Indeed, DNA

microarray measures the expression levels of large numbers of genes simultaneously

[60]. The data can be observed in a series of time-points to make the dynamics of

the system visible.

The regulatory interaction between two genes can be considered as a driver-

response coupling, i.e., the regulatory and regulated genes are the driver and re-

sponse, respectively. Provided that the expression level of each gene is observed as a

time series, we can identify the regulatory interactions by analyzing the time series.

Hence, a GRN can be inferred by identifying the couplings in a set of coupled genes.

4.1.2.3 Biological Data

The advances in high-throughput technologies and providing the quantitative data

promote the reconstruction of GRNs through computational methods. Here, we

briefly introduce different kinds of data showing cellular interactions, and challenges

these data pose for GRN inference.
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DNA

RNA

Protein

Transcription

Translation

(a) An example of a GRN in three different levels (DNA, RNA, and protein).

A

CB

(b) The gen-gene graph representation of the GRN shown above.

Figure 4.2: A gene regulatory network (GRN) and its graph representation.
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● Different types of data show various kinds of interactions in the cell:

1. Transcriptome data are measured in RNA level by DNA microarrays (also

known as gene chip or DNA chip). Indeed, DNA microarray measures the expres-

sion levels of large numbers of genes simultaneously [60]. DNA microarray data

are more accessible and cheaper, hence, they are traditionally used for reverse-

engineering.

2. Proteom data show protein-protein interactions in the cell. Remarkably, the

total number of proteins is much higher than the number of protein-encoding

genes. Hence, proteomic studies are complex and difficult [61].

3. Interactome data show the whole set of molecular interactions in cells. For

example, protein-DNA interaction measured by ChIP-on-chip technology.

● The data can be observed in two scenarios:

1. Static (steady state): for each perturbation (i.e., experimental conditions), the

observation is accomplished at the steady state of the biological system. The

dynamics of the system is missed herein.

2. Dynamic (time series): after perturbation, we do the measurement in a series of

time-points and the dynamics of the system is visible at the cost of time, effort,

and more expenses.� There are two challenging problems regarding microarray data that impede all

the GRN inference methods:

1. Dimensionality problem: we are dealing with thousands of genes, but the

number of samples for each gene is small.

2. Noise: the signal to noise ratio in biological data is usually extremely low.

4.1.3 Gene Regulatory Network Inference Methods

A number of computational approaches have been proposed for inference of GRNs.

Generally, there are two types of models used by inference methods:
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1. Undirected Models: Some methods are merely looking for associations and

dependency between genes. Hence, they ignore the cause-effect relationships,

i.e., the obtained graphs by these methods are undirected. The simplest example

is the correlation network [62] that the weight of edges in the graph represents

the correlation coefficient. Correlation networks consider the linear dependency

between genes. Besides the correlation method, the mutual information, which

is an information theoretical measures, has been used widely which makes no

assumption about the dependencies between the genes [63,64].

2. Directed Models: These models consider causation on top of dependency re-

sulting in a directed graph of GRN. Different approaches have been proposed

such as applying differential equations [55], Boolean networks [65], Bayesian net-

works [57,66], and information theory [58].

As the main goal of this thesis is directed network inference of GRNs, here we

briefly introduce the proposed methods for inference of this kind of networks. Here,

it is assumed that the transcriptome data is used.

4.1.3.1 Differential and Difference Equations

Consider we have N genes and xi denotes the level of transcription of the ith gene.

Hence, a GRN can be modeled as a system of differential equations as follows [55]:

dxi

dt
= fi (x1, . . . , xN) . (4.1)

Different forms of fi can be considered, however, the linear form is mostly used for

simplicity and less required amount of data [67], i.e.,

dxi

dt
= ∑

j

wijxj + pi. (4.2)

As the derivative can amplify the measurement errors, one can use the discrete

model and apply the difference equations as follows [68]:

xi(n) = ∑
j

wijxj(n − 1) + pi. (4.3)

Although the linear model is simplified, it cannot cope with nonlinear nature of

GRNs and it is not successful in large-scale GRNs.
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4.1.3.2 Boolean Network

A set of Boolean (binary) variables that their state is determined by other variables

in the network form a Boolean network. Boolean network was initially proposed as

a random model of GRNs [65]. ‘0’ and ‘1’ states represent the active (up-regulated)

and inactive (down-regulated) genes, respectively. The Boolean network consists of

N nodes, representing genes, with k inputs to each node representing regulatory

interactions, .i.e.,

xi(n) = fB
i (x1i (n − 1), . . . , xki (n − 1)) (4.4)

where xki denotes the binary state of the kth regulator of xi and fB
i is a Boolean

function made up of Boolean operations such as AND, OR, and NOT.

The first step to infer a Boolean network is converting the transcript data to bi-

nary data. However, in the presence of the noise, choosing the appropriate threshold

for discretization is not trivial. Furthermore, the inference methods of Boolean net-

works require large amount of data. As the regulators are represented by k inputs of

a node, each of 2k states of the regulatory nodes should be observed in experimental

measurements to be able to find the Boolean function fB
i . However, this complete

data is not available in most cases. Moreover, although the Boolean network is a

dynamic model for the GRN, the underlying processes of gene expression cannot be

described perfectly in a two-state system.

4.1.3.3 Bayesian Network

Bayesian network (BN) presents a probabilistic model for GRN that considers the

transcription level of the gene as a random variable X [57, 66]. This model is rep-

resented by a directed acyclic graph (DAG) that each node is associated with a

gene and the direction of each edge is from regulatory toward regulated gene. The

regulatory genes of Xi are known as its parents, denoted by Pa(Xi). Let us consider

N random variable X1, ...,XN representing N genes. By applying the chain rule,

the joint probability distribution P (X1, . . . ,XN) has the form

P (X1, . . . ,XN) = N

∏
i=1

P (Xi∣Pa(Xi)). (4.5)

For instance, the graph of the GRN depicted in Fig. 4.2 is shown again in Fig. 4.3

and the corresponding probability distribution P (X1, . . . ,XN) is as follows:
P (X1, . . . ,XN) = P (XA)P (XB ∣XA)P (XC ∣XA,XB). (4.6)

45



A

CB

Figure 4.3: Gene regulatory network graph

To model a GRN by a BN, two sets of parameters should be found: (1) network

topology, which is determined by the interconnections between the genes; (2) the

conditional probabilities P (Xi∣Pa(Xi)).
The probabilistic nature of the BN enables us to deal with the inherent noise of

the data as well as the incomplete data and hidden variables (e.g., lack of proteomic

data) [69]. Furthermore, BN can combine different types of data and it can consider

the prior knowledge in the model [70].

Despite the benefits of the BN, the acyclic feature of the DAG prevents the

existence of a loop in the inferred network, which commonly exists in GRNs [71].

To resolve this restriction, the Dynamic BN (DBN) or Temporal BN can be applied

by using the time series data [72,73]. The DBN is defined as follows:

P (X1(t), . . . ,XN(t)) = N

∏
i=1

P (Xi(t)∣Pa(Xi(t − 1))) (4.7)

and its representation for a given graph is depicted in Fig. 4.4. Although the

(a) (b)

A

B

A(t-1) A(t)

B(t-1) B(t)

Figure 4.4: (a) Graph with loops; (b) Dynamic Bayesian Network (DBN).
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inference of loops is possible by applying the DBN, it considerably increases the

data demand of the inference method that is not easily accessible by biological data.

4.1.3.4 Information Theory

Some efforts have been made to infer the GRN through TE [58]. The characteri-

zations of TE that make it a promising tool for network inference of GRN are as

follows:� Discovering one and bi-directional interactions (applicable in directed and cyclic

graphs).� Dealing with time-series to capture the dynamic behavior of the system.� Handling the continuous data (instead of quantized data that suffers from quan-

tization noise).� There is no assumption about the underlying distribution of the samples.

Despite the advantages of the TE method, the direction of detected interactions

by the TE method depends on the scaling of the data and rescaling may reverses

the direction (see Section 2.5). Scaling is commonly used for biological data; hence,

this drawback of the TE method can make the results of GRN inference derived by

the TE method erroneous.

A summary of these methods is shown in Fig. 4.5

A

CB

Figure 4.5: Different inference methods used for modeling a GRN are presented. In
the graph, → denotes ‘activation’ and ⊣ represents ‘deactivation’.
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4.1.4 Biological Application of the CS Method

Consider a gene regulatory interaction D → R as two coupled genes that the regula-

tory gene D is the driver gene and the regulated gene R is the response gene. The

transcription level of genes D and R are measured in N samples as a time series,

denoted by {dn} and {rn}, respectively.
The goal is to identify the direction of the existing coupling between genes D

and R from observed samples by using the CS method. Fig. 4.6 depicts the CS de-

rived by analyzing the microarray data to detect the regulatory interactions between

E2F1 and CCNA1 genes (for more details about analyzing the microarray data see

Sec. 4.1.5). Biological evidences prove the existence of E2F1→CCNA1 regulatory

interaction [74, 75]. Fig. 4.6(a) represents CS(E2F1→CCNA1) that we observe a

change of color in each column of the CS, meaning that E2F1→CCNA1 exists. On

the other hand, Fig. 4.6(b) depicts CS(CCNA1→E2F1) where all the columns of

the CS lack the color change; hence, the regulatory interaction CCNA1→E2F1 does

not exist.

The standard deviation of the values of P (ǫro∣δro , δd) in each column of the CS, i.e.,

σcs, and the corresponding values of UCI90% of Figs. 4.6(a) and 4.6(b) are plotted

in Figs. 4.7(a) and 4.7(b), respectively. As σcs(E2F1→CCNA1) lies outside the

UCI90%(E2F1→CCNA1), we confirm the significance of σcs(E2F1→CCNA1), i.e.,

E2F1 regulates CCNA1. Conversely, for all values of δE2F1, σcs(CCNA1→E2F1)
is below the UCI90%(CCNA1→E2F1); hence, CCNA1 is not a regulatory gene of

E2F1.

To measure the significance of σcs(D → R) relative to UCIα%(Dp
→ R), we add

those values of σcs that are greater than UCIα% together as follows

SIGcs(D → R) = ∑
δr
[σcs(δr) −UCIα%(δr)] × I (σcs(δr) −UCIα%(δr)) (4.8)

where I(⋅) is an indicator function that I(x > 0) = 1; I(x ≤ 0) = 0. We can

see in Fig. 4.7(a) that for some values of δCCNA1, σcs(E2F1→CCNA1) is greater

than UCI90%(E2F1→CCNA1); therefore, SIGcs(E2F1→CCNA1)> 0 and we can say

that the regulatory interaction E2F1→CCNA1 exists. On the other hand, Fig.

4.7(b) shows that σcs(CCNA1→E2F1) is smaller than UCI90%(CCNA1→E2F1) for

all δE2F1; therefore, SIGcs(CCNA1→E2F1)= 0 and we conclude CCNA1↛E2F1.
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Figure 4.6: The coupling spectrum (CS) of the regulatory interactions between E2F1
and CCNA2 genes.
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Figure 4.7: σcs, UCI90%, and SIGcs of the coupling spectrum shown in Fig. 4.6,
corresponding to regulatory interactions between E2F1 and CCNA1.
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4.1.5 Biological Results and Discussion

In this section, we apply the CS method for analyzing the microarray data in order

to infer the GRNs from transcriptional data. Here, we use the microarray time series

data set of the cell cycle in a human cancer cell line (HeLa) studied in [76]. The

results of five different experiments are available in this data set. Here, we use the

time series of the second and third experiments consisting of 26 and 48 time points,

respectively, i.e., we have a total of 74 samples. Because of the differences between

experiments, the vector of the lagged values of each experiment are constructed

separately and all of them are combined together to be used in the CS method.

The E2F1 gene encodes the E2F1 protein that is a member of the E2F family of

transcription factors. This family plays a critical role in control of the cell cycle by

regulating the transcription of different target genes. Table 4.1 represents 18 genes

recognized as the E2F1 target genes as well as the references providing the biological

evidences for these regulatory interactions.

Here, the goal is to apply the CS method for inference of the GRN consisting

of the transcriptional regulatory interactions of E2F1 with the target genes (TG)

listed in Table 4.1. We calculated SIGcs(E2F1→TG) and SIGcs(TG→E2F1) with

nmin = 10 and the lag values Ld = Lr = L. The results of the microarray data

analysis show that the CS method detects the most number of the interactions

with L = 3. Hence, the results obtained by L = 3 are reported in the following.

Moreover, we performed the permutation 500 times to obtain UCI90%. Then, the

Table 4.1: List of E2F1 target genes.

Target gene Reference Target gene Reference

CCNA1 [74], [75] MYB [74], [75], [77]

CCNA2 [74], [75] MYC [78]

CCNB1 [75] PCNA [74]

CCNE1 [74], [75], [77] POLA2 [74], [75]

CDC2 [74], [75], [77] RANBP1 [79]

CDC6 [75], [77] RRM2 [75]

CDKN1A [75] TFDP-1 [74], [75]

CDKN2C [80] TK2 [74]

DHFR [74], [75] TS [74], [75]
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values of SIGcs are sorted and the interactions that their SIGcs is greater than 0.1

are selected. The values of SIGcs(E2F1→TG) and SIGcs(TG→E2F1) for different

target genes of E2F1 transcription factor are listed in Table 4.2.

Figure 4.8 depicts the schematic of the E2F1 regulatory network inferred by the

CS method. The thickness of the arrows in Fig. 4.8 represent the value of SIGcs in

three different intervals: 0.1 ≤ SIGcs < 0.3, 0.3 ≤ SIGcs < 0.5, and 0.5 ≤ SIGcs. Except

the target genes CCNE1, CDKN2C, and POLA2, all other E2F1→TG regulatory

interactions are successfully detected. On the other hand, the CS method identifies

the reverse TG→E2F1 interactions for the target genes CDKN1A, CDC6, CCNE1,

CCNA2, RRM2, and CDKN2C.

The transcription factor E2F1 activates itself [74, 77]. This fact can lead us to

find a biological evidence for some detected interactions TG→E2F1. The studies

of [81] and [82] show that the proteins expressed by CDKN1A and CCNA2 genes

bind to E2F1 transcription factor and inhibit its activity. Hence, this inhibition

can influence the transcription level of E2F1 gene, and consequently, results the

CDKN1A→E2F1 and CCNA2→E2F1 interactions in transcription level.

The regulation of E2F1 transcription factor by Rb protein can provide a bio-

logical evidence for CCNE1→E2F1 interaction. Indeed, Rb can bind to E2F1 tran-

scription factor and inhibits its transcriptional activity. However, CCNE1-CDK2 is

one of the cyclin-Cdk combinations that phosphorylates Rb during the G1 phase in

cell division cycle and prevent it from binding and inactivating E2F1 [83]. Hence,

Table 4.2: List of SIGcs(E2F1→TG) and SIGcs(TG→E2F1) for different target genes
(TG) of E2F1 transcription factor. The interactions that their SIGcs is greater than
0.1 (bold numbers) are considered as detected interactions.

TG E2F1→TG TG→E2F1 TG E2F1→TG TG→E2F1

CCNA1 0.99 0 TK2 0.21 0

PCNA 0.98 0.06 MYC 0.16 0

CDKN1A 0.91 0.38 DP-1 0.15 0

CDC6 0.77 0.29 MYB 0.14 0

CCNB1 0.68 0 RRM2 0.12 0.14

TS 0.53 0.08 RANBP1 0.12 0

CDC2 0.47 0 CCNE1 0.03 0.48

CCNA2 0.36 0.13 CDKN2C 0.02 0.13

DHFR 0.34 0 POLA2 0.02 0
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Figure 4.8: GRN of E2F1 transcription factor inferred by the CS method.
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CCNE1 can influence the activity of E2F1 protein, and consequently, its transcrip-

tional level. We did not find any biological evidence in the literature for other reverse

regulatory interactions TG→E2F1.

According to the GRN inferred by the CS method shown in Fig. 4.8, the sensi-

tivity (true positive rate) and specificity (true negative rate) of the inference method

are 86% and 80%, respectively. These values show the high level of the certainty of

the CS method for GRN inference.

4.1.6 Conclusion of Biological Application

In this work, we applied the coupling spectrum (CS) method for inference of tran-

scriptional gene regulatory networks. The analysis of the microarray data showed

the successful performance of the CS method for inference of GRNs from biological

data that their sample size is very small. Here, we compared the inferred GRN of

E2F1 transcription factor by the biological supported regulatory network of E2F1.

The results revealed that the CS method is able to infer GRNs with high level of

certainty.
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4.2 Financial Application

4.2.1 Introduction

The Granger causality (G-causality) test [1, 16] is a statistical hypothesis test for

identifying causal relationships between time series. This method estimates a lin-

ear regression model with lagged values of the time series {dt} (the driver time

series) used to predict the future values of {rt} (the response time series) in the

presence of lagged values of {rt}. If the error of prediction is reduced by inclusion of

{dt}, {dt} is the Granger-cause of {rt}. The assumption of linearity in G-causality

test can be violated in real applications and it cannot detect nonlinear causal re-

lationships [39]. Many investigations in the literature provide evidence of linear

and nonlinear causality between financial time series [26, 84]. Hence, different non-

linear extensions of G-causality (NLG-causality) were proposed to detect nonlinear

causality in financial data [26–28].

In many financial data sets, the direction of causality changes over time. To

deal with temporal causality, causality inference methods can be combined with

moving window techniques to identify possible causality changes over time. In this

work, we extend the CS method by using a moving window technique and com-

pare its performance on a simulated temporal nonlinear causal system to a moving

window adaptation of the HJ test proposed in [26]. In Section 3.4, we introduced

the relationship between the CS method and the HJ test. Here, We compare their

performance on a real data set -the stock prices of Apple Inc. and Microsoft Cor-

poration. The simulated and empirical results show that the CS method is more

robust than NLG-causality method.

The financial application of the CS method is presented in the following order:

The simulation results and the real data example are presented in Sections 4.2.2 and

4.2.3, respectively. Then, we conclude with a discussion in Section 4.2.4.

4.2.2 Simulation Results

In this work, the goal is to discover causal relationships between two time series

where the direction of causality is changing over time. To find the temporal changing

causality, we use the overlapped moving window technique to detect the direction

of causality in a small period of time.

Here, we evaluate the performance of the HJ and CS methods on simulated data

55



to detect temporal changing causality. Again consider two time series {xt} and {yt}
having a causal relationship by the Hénon map [29]

xn = a − x2n−1 + bxn−2 + cy→x(x2n−1 − y2n−1) (4.9a)

yn = a − y2n−1 + byn−2 + cx→y(y2n−1 − x2n−1) (4.9b)

where a = 1.4, b = 0.3 and the initial values of x0 and y0 are uniformly distributed

in [0, 0.5]. The strength of causalities between X → Y and Y →X are controlled by

cx→y and cy→x, respectively. To have a temporal causality in the model, cx→y and

cy→x change with time as shown in Fig. 4.9(a). As Fig. 4.9(a) represents, there are

three combinations of causality: part (i) is a unidirectional causal relation and parts

(ii) and (iii) are bidirectional causalities with two different forms of overlapping of

the coupling strengths. Here, we use the overlapping window with window length

Nw. In each step, the window moves Nf < Nw time points further. In the simulation,

we used Nw = 300 and Nf = 60. The lag-lengths Ld and Lr are set to 2. A significant

level of 5% is used for the HJ test and we estimate the UCI90% for the CS method.

Figure 4.9 shows the comparison of the CS and HJ methods for 50 trials with

different initial values of x0 and y0 in equation (4.9). The mean of the σcs and TVAL

values over the 50 trials are plotted. Figure 4.9(b) shows that the outcome of the

CS method is consistent with the real causal relationships. In other words, the CS

method

1. correctly detects the direction of causality in all three parts (the detected

causality X → Y in part (i) is very weak);

2. distinguishes the strong and weak causality in the bidirectional scenarios;

3. finds for each direction of causality the correct ratios of causality strengths in

different parts that are proportional to real ratios.

Figures 4.9(c) and 4.9(d) show the performance of the HJ method for ǫ = 0.2 and

ǫ = 1, respectively. For ǫ = 0.2, HJ does not detect any X → Y causality in part (i).

In parts (ii) and (iii), HJ performs as well as CS. However, Fig. 4.9(d) illustrates

that increasing ǫ adversely affects the HJ method. In this case

1. the causality Y →X in part (i) is not detected;

2. weak and strong causalities in bidirectional scenarios are not distinguishable;

56



1 5 10 15 20 25
0

0.1

0.2

C
au

sa
li
ty

st
re
n
gt
h

Real causality strength

cx→y

cy→x

5 10 15 20 25
0

0.2

0.4

0.6

0.8

S
IG

c
s

CS

X → Y
Y → X

5 10 15 20 25
0

1

2

3

4

5

6

T
V
A
L

HJ (ǫ = 0.2)

5 10 15 20 25
0

1

2

Block#

T
V
A
L

HJ (ǫ = 1)
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3. for each direction of causality, the ratios of causality strengths in different

parts are not proportional to the real ratios.

Indeed, as HJ considers P (ǫro∣δr, δd) just for a specific value of ǫ, the validity of the

HJ results depends severely on ǫ and in all practical applications ǫ will be unknown.

4.2.3 Empirical Results

In this section, we investigate the temporal causality between the stock prices of

Apple Inc. (AAPL) and Microsoft Corporation (MSFT). A total of 3199 daily stock

prices during the time between January 2000 and August 2012 are used. To render

each time series weakly stationary, we carry out a piecewise linear detrending. We

select a window length of five month and Nf is the duration of one month. The

lag-lengths Ld and Lr are set to 5, i.e., we investigate the causal effect of the stock

prices of past five business days on the price of the next business day. In addition,

a test significant level of 5% and ǫ = 0.7 are used in the HJ method (this value of ǫ

results in larger TVALs). UCI90% is estimated for the CS method.

The temporal causalities AAPL→MSFT and MSFT→ AAPL derived by the CS

and HJ methods are plotted in Figs. 4.10 and 4.11, respectively. The months in

these figures represent the middle month of each block. As an evidence for detected

causality, the timeline of AAPL and MSFT major products are depicted by arrows

in subplots (a) and (b), respectively. Figures 4.10 and 4.11 reveal the following

results:� The direction of causality between these two companies changes over time. There-

fore, to investigate causality between financial time series over a long period of

time, we have to use a moving window to deal with this time-varying causality.� Most of the products of each company affect the other one’s stock price immedi-

ately or a couple of months after each product release. However, the number of

the causal relationships detected by the HJ method is less than that of the CS

method.� There are detected causalities that could be due to other factors other than prod-

ucts releases, e.g., detected causalities in the second half-year of 2008 in MSFT→

AAPL.� In general, for both methods, it can be concluded that the causal effect of AAPL

on MSFT’s stock price is greater over time than vice versa.
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4.2.4 Conclusion of Financial Application

The dynamic causal relationships between many financial time series have a non-

linear and time-varying nature. In this paper, we extended a recently proposed

approach called the coupling spectrum (CS) to detect temporal nonlinear causali-

ties between financial time series. We compared two nonlinear causality inference

methods, the HJ and CS methods, and used the overlapping moving window tech-

nique to deal with temporal causalities. Examination of these two methods on a

simulated nonlinear causal relationship showed that due to the generality of the CS

parameters over the HJ parameters, the performance of the CS method is more

robust than the HJ method. In other words, HJ can be severely affected by its

parameter value selection. In the final section we applied the CS and HJ methods

to the stock prices of two companies, Apple Inc. and Microsoft Corporation, over a

decade to detect the temporal causal effects of their stock prices on each other. We

found that the direction of causality changes over time, especially around the advent

of new products. Hence, in conclusion, in analyzing causality between financial time

series over long periods of time, we have to use moving window techniques to deal

with the time-varying causality.

4.3 Conclusion

In this chapter, we applied the CS method to biological and financial applications. In

the case of biological application,the results of applying the CS method for inference

of the regulatory interactions between E2F1 and its target genes showed that the

CS method can detect this regulatory network with a high level of certainty.

To study the performance of the CS method for finding the time-varying causal

relationships between financial time series, we combined the proposed CS method

by moving window techniques. Then, we performed the windowed-CS method to

detect the temporal causalities between the stock prices of Apple Inc. and Microsoft

Corporation for more than a decade. Moreover, we compared the CS results with

those of the nonlinear Granger causality test (HJ test). The results revealed that

the time-varying causality should be considered in long-term financial data analysis.

Moreover, the detected causal relationships found by the CS method were more

consistent with the advent of new products of theses two companies than those of

the HJ test.
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(b) The temporal causality MSFT→AAPL.

Figure 4.10: The temporal causal effect of the stock prices of past five business days
on the price of the next business day between the stock prices of Apple Inc. (AAPL)
and Microsoft Corporation (MSFT) detected by the CS method.

60



0

5

10

15

20

25

30

35

40

45

Ja
n-
00

Ju
l-0

0

Ja
n-
01

Ju
l-0

1

Ja
n-
02

Ju
l-0

2

Ja
n-
03

Ju
l-0

3

Ja
n-
04

Ju
l-0

4

Ja
n-
05

Ju
l-0

5

Ja
n-
06

Ju
l-0

6

Ja
n-
07

Ju
l-0

7

Ja
n-
08

Ju
l-0

8

Ja
n-
09

Ju
l-0

9

Ja
n-
10

Ju
l-1

0

Ja
n-
11

Ju
l-1

1

Ja
n-
12

T
V
A

L
(A

A
P

L
→

M
S
F
T

)

 

 

P
w

r
M

ct
os

h
G

4
iB

o
o
k

P
w

rB
k

G
4

iB
o
o
k

P
w

r
M

ct
os

h
G

4
S
er

v
er

G
4

iP
o
d

iM
ac

G
4
/
iB

o
o
k

X
se

rv
e

iM
ac

G
4

P
w

r
M

ct
o
sh

G
4

iB
o
o
k

G
4

iM
a
c

G
4

C
in

em
a

D
is

p
.

iM
ac

G
5

M
a
c

m
in

i

P
w

r
M

ct
os

h
G

5
iM

ac
M

cB
k

P
ro

-1
5
/
M

a
c

m
in

i
M

cB
k

P
ro

-1
7
/
M

a
c

m
in

i

iP
h
o
n
e

iM
ac

/M
ac

m
in

i
iP

o
d

M
cB

k
A

ir
/M

a
c

P
ro

M
cB

k
/M

cB
k

P
ro

/
iP

o
d

iM
ac

iP
h
o
n
e

3
G

iP
o
d

M
cB

k
M

cB
k
/M

cB
k

P
ro

M
ac

M
in

i/
iM

a
c/

M
a
c

P
ro

/
iP

o
d

X
se

rv
e

M
cB

k
P

ro
/
A

ir
/
iP

h
o
n
e

3
G

S
M

a
c

O
S

iP
o
d

iM
A

c/
M

cB
k

iP
a
d

M
cB

k
M

a
c

M
in

i/
iP

h
o
n
e

3
G

S
/
4

M
a
c

P
ro

iP
o
d
/A

p
p
le

T
V

M
cB

k
A

ir
iP

h
o
n
e

4
/
M

cB
k

P
ro

iP
a
d

2
iM

ac
M

cB
k

A
ir

/
M

a
c

M
in

i/
M

a
c

O
S
iO

S
5
/
iC

lo
u
d
/
iP

h
on

e4

(a) The temporal causality AAPL→MSFT.
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(b) The temporal causality MSFT→AAPL.

Figure 4.11: The temporal causal effect of the stock prices of past five business days
on the price of the next business day between the stock prices of AAPL and MSFT
detected by the HJ test.

61



Chapter 5

Distributional Causality

Inference

5.1 Introduction

As mentioned in Sec. 1.8, we can generally categorize the causal relationship between

two processes X and Y as deterministic or distributional causality. Consider two

time series xt and yt observed from processes X and Y , respectively, where X causes

Y (X → Y ). In the absence of the noise, a deterministic causality means that the

future of yt is a deterministic function of the lagged values of xt (and maybe as well

as yt). In the case of distributional causality, however, the lagged values of xt affect

the underlying probability distribution of yt. In other words, the future of yt cannot

be obtained from the lagged values of xt (and maybe as well as yt), but its statistical

properties can.

Because of the importance of the temporal dependencies in the moments of

financial data, studying the distributional causality has many applications in econo-

metrics. For instance, in modeling of financial time series exhibiting time-varying

volatility clustering, Autoregressive Conditional Heteroscedasticity (ARCH) model

and its various extensions are now commonly used. For a survey of ARCH model

see [85] and [86]. The progressive development of multivariate and nonlinear ex-

tensions of ARCH model implies that financial data can influence the underlying

probability distribution of each other in an extremely complicated manner. There-

fore, the inference of distributional causal relationships between financial time series

can provide the insight needed to thoroughly analyze the financial data.

Many of currently proposed causality inference methods identify the causality

based on the correlation between the time series, e.g., linear Granger causality test
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( [16]). However, in the case of distributional causality, the autocorrelations and

cross correlations between the time series can be zero, e.g., in ARCH model-based

data. Therefore, these kind of inference methods will fail in the analysis of un-

correlated data. Even though some methods, such as the nonlinear extension of

Granger causality presented in [26], can handle uncorrelated time series, they only

detect the existence of causality X → Y , but not the type of it, i.e., deterministic or

distributional causality. In other words, these methods do not identify the type of

influenced moment or other statistical properties of the underlying distribution of

the effect time series. As an example, assume that the financial indicator X causes

the stock price of the company Y distributionally, e.g., X influences the volatility of

the stock price of Y. In this case, the currently proposed causality inference methods

detect the causal relationship X → Y ; but they do not determine whether the mean

of Y or its volatility is affected by X. To answer these questions, which are fruitful

for many applications such as portfolio selection and risk management, we need to

develop new causality inference methods for detection of distributional causality.

In this chapter, we propose a new non-parametric method for inference of distri-

butional causality between two time series1. This method is capable of identifying

the type of the moments or distribution parameters influenced by the distributional

causal relationship, e.g., mean, volatility, or higher order statistics. In the first step,

we propose a method to estimate the temporal moments or distribution parameters

of the underlying distribution of the time series. Then, we propose our new method

for detection of distributional causality from the estimated temporal moments or

distribution parameters.

In the next step, we numerically compare our method with a non-distributional

causality inference method which is the modified nonlinear Granger causality test

presented in [27], denoted by NLG-Diks test. The simulation results show that in

applications with a large sample size of data, e.g., financial data, and contingent on

the existence of the distributional causality, our proposed method can be superior to

the NLG-Diks method. Accordingly, we present a guideline for using the proposed

method and the NLG-Diks test in different situations.

We also use our method to study daily Standard and Poor’s 500 index (S&P500)

1The results of this work were published as a conference paper entitled ‘A new method for

detecting non-linear causality in time series’ in proceeding of the Complex Data Modeling and
Computationally Intensive Statistical Methods for Estimation and Prediction (SCo2013), Milan,
Italy, Sep. 2013. Moreover, the journal paper of this work is under preparation for submitting to
the Journal of Econometrics.
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stock return and percentage change in its volume. Consistent with the results of the

NLG-Diks test, we find that return causes the volume change, but we also realize

that the return affects the mean of the volume change and not its volatility.

The chapter is structured as follows. Section 5.2 introduces the proposed method

for inference of the distributional causality. The performance of the proposed

method and the comparison with the NLG-Diks test studied by simulations are

presented in Section 5.3. Next, the performance of the proposed method for analyz-

ing the empirical financial data is studied in Section 5.4. Finally, we conclude with

a discussion.

5.2 Distributional Causality

Consider two time series xt and yt with N samples observed from processes X and Y ,

respectively. We denote the underlying probability density function of yt by fy(Θy,t)
where the distribution parameter Θy,t depends instantaneously on the lagged value

of xt. By considering the maximum time lag of 1 we can say that Θy,t = hΘy(xt−1)
where we assume hΘy(⋅) is a continuous deterministic function. Here, the process X

causes the process Y . Note, however, that instead of direct influence on yt, X affects

the parameters of the underlying distribution of Y , here denoted by X → Θy. We

refer to this case by saying X causes Y distributionally (in contrast with X being

a deterministic cause of Y ). Obviously, such causal relationships can be linear or

nonlinear.

5.2.1 Estimation of Θy,t

To detect distributional causality between X and Y , it is first necessary to estimate

the time-varying parameter Θy,t from xt and yt. The continuity of hΘy(⋅) indicates
that for two different time points t and t′ and for any ǫ > 0, there exists δx > 0

such that ∣xt−1 − xt′−1∣ < δx ⇒ ∣Θy,t − Θy,t′ ∣ < ǫ. From continuity of hΘy(⋅), it is

understood that when xt−1 is close to xt′−1, Θy,t would be close to Θy,t′ . Therefore,

the underlying distribution of yt and yt′ are approximately equivalent, i.e., fy(Θy,t)
is close to fy(Θy,t′). Consequently, the subset of the samples {yt′} can be treated as

the observed samples of the distribution fy(Θy,t). Hence, we present the following

estimation method for Θy,t:

1. Find the time index t′ of the neighbor points of xt−1 such that ∣xt−1−xt′−1∣ < δx.
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2. Construct the subset {yt′}.
3. Estimate Θy,t from {yt′}.

The estimation of Θy,t is denoted by Θ̂y,t(Yt∣Xt−1 = xt−1). In this method, δx can be

a fixed number or determined by the standard deviation of the time series xt, σx.

For instance, one can use δx = σx/m where m ≥ 1.
In addition to xt, the lagged value of yt can also affect the distribution of the

future of yt, i.e., Θy,t = hΘy(xt−1, yt−1). Therefore, when studying the causal relation

X → Θy, the causal effect of Y on Θy,t (denoted by Y → Θy) should be excluded. For

this reason, let us focus on detection of Y → Θy by estimating Θ̂y,t(Yt∣Yt−1 = yt−1).
In this case, we first find the time indexes t′′ such that ∣yt−1 − yt′′−1∣ < δy. Then,

we estimate Θ̂y,t(Yt∣Yt−1 = yt−1) from the subset {yt′′}. Similarly, for X → Θy, the

time indexes t′ are found such that ∣xt−1 − xt′−1∣ < δx. Then, Θ̂y,t(Yt∣Xt−1 = xt−1)
is estimated from the subset {yt′}. To exclude the causal effect of yt on its future

values, we simply exclude the common members of {yt′} and {yt′′}. In other words,

we define {yt∆} = {yt′} − {yt′′}. Using {yt∆}, Θ̂y,t(Yt∣Xt−1 = xt−1, Yt−1 ≠ yt−1) is

estimated rather than Θ̂y,t(Yt∣Xt−1 = xt−1). Note that another way to obtain {yt∆}
is to find time indexes t∆ such that ∣xt−1 −xt∆−1∣ < δx and ∣yt−1 − yt∆−1∣ ≥ δy. Hence,
the steps of the parameter estimation can be modified as follows:

1. Find the time indexes t∆ such that ∣xt−1 − xt∆−1∣ < δx and ∣yt−1 − yt∆−1∣ ≥ δy.
2. Construct the subset {yt∆}.
3. Estimate Θ̂y,t(Yt∣Xt−1 = xt−1, Yt−1 ≠ yt−1) from {yt∆}.

Again, we suggest choosing δy = σy/m where σy is the standard deviation of the time

series yt and m ≥ 1.
It is noteworthy that if the parameter Θy,t is a function of q lagged values of

xt, i.e., Θy,t = hΘy(X(q)t−1) where X
(q)
t−1 = [xt−1,⋯, xt−q], then to estimate Θy,t, we

can find the time indexes t∆ such that ∣∣X(q)t−1 −X
(q)
t∆−1
∣∣ < δx and ∣yt−1 − yt∆−1∣ ≥ δy.

Here, ∣∣X(q)t−1 −X
(q)
t∆−1
∣∣ denotes the distance between the vectors X

(q)
t−1 and X

(q)
t∆−1

. In

this case, δx should be set appropriately based on the type of the norm used for

measuring the distance between X
(q)
t−1 and X

(q)
t∆−1

.
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5.2.2 Causality inference method

5.2.2.1 The proposed method

In this section, we propose a method to detect the causal effect of X on the underly-

ing distribution of Y . Since this method identifies the distributional causality, we call

it DC method. In the DC method, we detect the distributional causality by studying

the distribution of the estimated parameter Θ̂y,t(Yt∣Xt−1 = xt−1, Yt−1 ≠ yt−1), denoted
by f(Θ̂y,t). In order to distinguish the existence or lack of causality, we first per-

mute the time series xt, denoted by x
p
t , to destroy any possible existing causality

between X and Y . Let us denote the parameter Θy,t estimated from x
p
t and its

distribution by Θ̂p
y,t(Yt∣Xp

t−1 = xpt−1, Yt−1 ≠ yt−1) and f(Θ̂p
y,t), respectively. Now, by

comparing f(Θ̂y,t) and f(Θ̂p
y,t) one can decide the existence or lack of distributional

causality between X and Y .

First, assume that the process X does not influence the parameter Θy,t, denoted

by X ↛ Θy. In this case, there is no relationship between xt and yt, and hence, the

subset {yt∆} derived by the time indexes of the neighbors of xt−1 is just a random

selection of the samples of time series yt. Hence, permutation of xt cannot have

a significant effect on this random selection. Consequently, it is likely that the

estimated parameters Θ̂y,t(Yt∣Xt−1 = xt−1, Yt−1 ≠ yt−1) and Θ̂p
y,t(Yt∣Xp

t−1 = xpt−1, Yt−1 ≠
yt−1) have the same distribution, i.e., f(Θ̂y,t) is close to f(Θ̂p

y,t). Therefore, if we

measure the distance of these two distributions, it should be a small value.

On the other hand, provided that X → Θy, {yt∆} is not a random selection of the

samples of yt. Hence, permutation of xt can severely affect the estimated parameter

of fy(Θy,t), and consequently, it is unlikely that f(Θ̂y,t) and f(Θ̂p
y,t) be close. As a

result, there should be a large distance between these two distributions.

By permuting the time series xt several times, say Np times, and estimating

Θ̂p
y,t(Yt∣Xp

t−1 = xpt−1, Yt−1 ≠ yt−1) for each permutation, we will have Np distributions

fi(Θ̂p
y,t) for 1 ≤ i ≤ Np that all of them are close to each other. Hence, the av-

erage distribution of fi(Θ̂p
y,t)s, denoted by f̄(Θ̂p

y,t), can be used as a distribution

representing the non-causal scenario. Accordingly, we can detect the existence of

causality in the original time series by measuring the distance between f(Θ̂y,t) and
f̄(Θ̂p

y,t). If this distance is close to zero, we conclude X ↛ Θy; otherwise, X → Θy.
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5.2.2.2 Measuring the distance between two distributions

A common measure of the distance between two distributions p(x) and q(x) is the
Kullback-Leibler divergence (KL), introduced in [87], defined by

KL(p(x)∣∣ q(x)) = ∫ ∞

−∞
ln(p(x)

q(x)) p(x)dx. (5.1)

KL(p(x)∣∣ q(x)) is always non-negative and there is no upper bound on its value.

Moreover, this measure is asymmetric, i.e., KL(p(x)∣∣ q(x)) ≠ KL(q(x)∣∣ p(x)). To

have a symmetric divergence measure, we can use KL(p(x)∣∣ q(x))+KL(q(x)∣∣ p(x)).
However, this measure still does not have an upper bound. To have a bounded

symmetric divergence measure, the Jensen-Shannon divergence (JS) is proposed

by [88], defined by

JS(p(x)∣∣ q(x)) = 1

2
[KL(p(x)∣∣ m(x)) +KL(q(x)∣∣ m(x))] (5.2)

where m(x) = p(x)+q(x)
2

and we have 0 ≤ JS(p(x)∣∣ q(x)) ≤ ln(2). In this work, JS is

used as a measure of the distance between two distributions.

5.2.2.3 Significance threshold of JS

As mentioned in Section 5.2.2.1, to detect the causal effect X → Θy, we estimate Θy,t

by the original and permuted time series and obtain the corresponding distributions

f(Θ̂y,t) and f̄(Θ̂p
y,t), respectively. To obtain the distance of these two distributions,

JS(f(Θ̂y,t)∣∣f̄(Θ̂p
y,t)) is calculated, denoted by JSΘ. If JSΘ has a significant value, we

conclude that X → Θy exists; otherwise, X ↛ Θy. Thus, we need to set a threshold

against which the significance of JSΘ is decided. If JSΘ is greater than this threshold,

we decide that the distance is significant and therefore causality exists; otherwise,

we decide the causality is non-existent.

Recall that the permutation of xt is performed Np times and the correspond-

ing distribution fi(Θ̂p
y,t) is obtained for each permutation. The distance of all

distributions fi(Θ̂p
y,t) with the average distribution f̄(Θ̂p

y,t) can be used to find

a threshold for the significance level of JSΘ. For this reason, we first calculate

JS(fi(Θ̂p
y,t)∣∣f̄(Θ̂p

y,t)) for 1 ≤ i ≤ Np, denoted by JSi
Θp . Then, the α% one-sided con-

fidence interval (CIα%) of JS
i
Θp values can be considered as a threshold, denoted by

JSTHR. The percentile bootstrap method ( [52]) can be used to find CIα%, i.e., the

values of JSi
Θp are sorted and ⌈ α

100
Np⌉-th sorted value is considered as JSTHR (see

Sec. 3.2 for more information about the percentile bootstrap method).
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Now, to make a decision on the existence of causality, if JSΘ >JSTHR, the distance

between f(Θ̂y,t) and f̄(Θ̂p
y,t) is significant, hence, X → Θy. Otherwise, f(Θ̂y,t) and

f̄(Θ̂p
y,t) are close to each other, and consequently, we conclude X ↛ Θy.

5.3 Simulations

In this section, numerical results are used to illustrate different aspects of the DC

method and to study its performance. Comparison with the NLG-Diks test is also

provided from which some recommendations are made about when to use each

method. We take note that our method is more general than NLG-Dicks in that it

provides more information such as whether the time series xt affects the mean or

volatility of the time series yt, while the NLG-Dicks test can only find the existence

or lack of the causal effect of X on Y .

Consider a modified bivariate ARCH(q) process defined by

xt = σx,t × zx,t + byt−1 (5.3a)

yt = σy,t × zy,t (5.3b)

where

σ2
x,t = σ2

y,t = a0 + a1x2t−1 +⋯+ aqx2t−q. (5.4)

σ2
x,t and σ2

y,t are the instantaneous variance of xt and yt, respectively. Moreover,

zx,t and zy,t are independent and identically distributed random variables with zero

mean and unit variance, i.e., iid(0,1). Typically, the standard normal distribution

is used for zx,t and zy,t. In this bivariate process, the time series xt influences σ2
y,t

(i.e., X → σ2
y) and yt affects the the mean of xt, denoted by µx,t (i.e., Y → µx).

First, Let us demonstrate the performance of the parameter estimator for ARCH(1)

with a0 = 1, a1 = 0.4, and b = 0.2. The simulation is performed with N = 2000 sam-

ples, δx = σx/4, and δy = σy/4. Figure 5.1 depicts the actual and estimated variances

corresponding to detection of both directions of causality. For more visibility, the

first 200 out of 2000 samples are shown. As it can be seen in Fig. 5.1(a), in the

case of the existence of causality, the parameter estimator, almost always, accurately

estimates the time-varying variance. The estimation is erroneous for very large val-

ues of σ2
y,t due to large value of xt−1. Indeed, large values of xt−1 are observed

infrequently. Hence, we can find only a small number of the neighbors of xt−1, and

consequently, the subset {yt∆} has only a few members. Therefore, the larger the
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Figure 5.1: Actual and estimated values of the time-varying variance of the ARCH
model for (a) X → σ2

y and (b) Y ↛ σ2
x.
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value of xt−1, the smaller the size of {yt∆}, and consequently, the more erroneous is

our estimation. In some cases, {yt∆} has just one member or even it becomes empty.

Hence, the estimated variance is zero or undefined, e.g., the estimated variances of

the time points 35 and 172 in Fig. 5.1(a). In these cases, we can use ∣yt∣2 as an

estimation of σ2
y,t.

Figure 5.1(b) illustrates σ2
x,t and σ̂2

x,t(Xt∣Yt−1 = yt−1,Xt−1 ≠ xt−1) for detection

of Y → σ2
x. As in the ARCH model (5.3), σ2

x is not affected by yt−1, no relationship

is visible between the actual and estimated variances in Fig. 5.1(b). The same

situation is visible for estimation of µx,t and µy,t, i.e., for the existing causality

Y → µx, µx,t and µ̂x,t(Xt∣Yt−1 = yt−1,Xt−1 ≠ xt−1) are matched together (except for

the large values of µx,t). However, for the reverse direction that there is no causal

effect on the mean of Y , µy,t and µ̂y,t(Yt∣Xt−1 = xt−1, Yt−1 ≠ yt−1) are totally different.

Now, let us investigate the properties of f(Θ̂) where Θ is the mean or variance.

This distribution is estimated by the Gaussian kernel density estimator with optimal

bandwidth of the Gaussian kernel ( [89]). Np = 200 permutations are performed and

CI95% is considered as JSTHR.

Figure 5.2(a) demonstrates f(µ̂y,t) and f̄(µ̂p
y,t) for detection of X → µy. In the

bivariate process (5.3), µy,t is not affected by xt; hence, permutation does not change

the distribution of µ̂y,t severely. Therefore, f(µ̂y,t) and f̄(µ̂p
y,t) are very close to each

other, and consequently, their distance is a small value, i.e., JSµy = 0.05. In this

case, JSµy < JSTHR showing X ↛ µy. On the other hand, for the reverse direction of

causality Y → µx, Fig. 5.2(b) depicts that f(µ̂x,t) and f̄(µ̂p
x,t) are totally different.

For this case, JSµx = 0.3 and JSTHR = 0.07, i.e., JSµx is greater than JSTHR indicating

the large distance between f(µ̂x,t) and f̄(µ̂p
x,t). Therefore, we conclude Y → µx.

Figures 5.3(a) and 5.3(b) represent f(σ̂2) and f̄(σ̂2
p) for detecting X → σ2

y and

Y → σ2
x, respectively. Since in process (5.3) we have X → σ2

y , the distributions

f(σ̂2
y,t) and f̄(σ̂2

y,t

p) differ considerably in Fig. 5.3(a). Here, JSσ2
y
= 0.5 is larger

than JSTHR = 0.08 showing the existence of causality X → σ2
y. However, in Fig.

5.3(b), JSσ2
x
= 0.02 is smaller than JSTHR = 0.07 indicating the closeness of the

distributions and lack of causality, i.e., Y ↛ σ2
x. The results shown in Figs. 5.2 and

5.3 illustrate how the distance between the distributions f(Θ̂) and f̄(Θ̂p) represents
the existence or lack of distributional causality.

Different permutations of xt result in slightly different distributions fi(Θ̂p). The
gray areas in Figs. 5.2 and 5.3 represent the area in which all these distributions
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Figure 5.2: Distributions f(µ̂) and f̄(µ̂p) are depicted for the distributional causal
relationships Y → µx realized by the ARCH(1) model. (a) and (b) show the causal
effect of one time series on the mean of the other one. The lack of causality in (a)
results in the closeness of f(µ̂y,t) and f̄(µ̂p

y,t), and consequently, JSµ < JSTHR and
Smin-max = 0. In the case of the existence of the causal effect in (b), f(µ̂x,t) and
f̄(µ̂p

x,t) are totally different and JSµx > JSTHR and Smin-max > 0.05.
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lie. We call this area the non-causality area because in a non-causal scenario, we

expect the distribution f(Θ̂) to be in the gray area. In other words, it should be

indistinguishable from permuted distributions. When causality exists, however, we

expect f(Θ̂) not to lie entirely inside the gray area. Figure 5.2 and 5.3, clearly

demonstrates this idea.

The upper border of the non-causality area represents fmax(Θ̂p) = max
1≤i≤Np

{fi(Θ̂p)}.
Similarly, the lower border is fmin(Θ̂p) = min

1≤i≤Np

{fi(Θ̂p)}. Provided that X ↛ Θy, we

expect f(Θ̂) to be always between fmin(Θ̂p) and fmax(Θ̂p). However, for X → Θy,

f(Θ̂) is not entirely inside the non-causality area, i.e., it would be below fmin(Θ̂p) or
above fmax(Θ̂p) in some parts. According to the relative position of f(Θ̂) compared

to fmin(Θ̂p) and fmax(Θ̂p), we define a new measure Smin-max to determine weather

f(Θ̂) is entirely inside the non-causality area. Smin-max is defined as the area en-

closed between f(Θ̂) and fmax(Θ̂p) where f(Θ̂) > fmax(Θ̂p), plus the area enclosed

between f(Θ̂) and fmin(Θ̂p) where f(Θ̂) < fmin(Θ̂p). In the case of the non-causal

relationship, Smin-max = 0 (see Figs. 5.2(a) and 5.3(b)). However, in presence of

causality, Smin-max > 0. For example, in Figs. 5.2(b) and 5.3(a) corresponding to

Y → µy and X → σ2
y, respectively, Smin-max equals 0.23 and 0.4, respectively. It

can be shown that always Smin-max ≤ 2. To obtain an upper bound on Smin-max, for

X → Θy assume that the non-zero parts of f(Θ̂y,t) and f̄(Θ̂p
y,t) are not overlapped

and all of fi(Θ̂p
y,t) distributions are equal. Therefore, fmin(Θ̂p) and fmax(Θ̂p) are

same as f̄(Θ̂p
y,t). In this case, Smin-max has its maximum value that is equal to

the summation of the area under f(Θ̂y,t) and f̄(Θ̂p
y,t). Hence, the maximum value

of Smin-max is 2. However, in most of the cases, the observed value of Smin-max

is less than 1. Based on the simulation results and provided that JSΘ >JSTHR,

Smin-max > 0.05 is sufficiently significant to conclude the existence of causality. As

we will see in the following simulation results, the extra condition of Smin-max > 0.05
can reduce the false detection rate of the DC method.

The normal distribution is too light-tailed for modeling the financial data. Hence,

in the following simulations, we use the student’s t-distribution with degree of free-

dom ν > 2 as zx,t and zy,t in bivariate ARCH model (5.3), denoted by t-ARCH. The

samples of the student’s t-distribution are normalize by its standard deviation (i.e.,√
ν

ν−2 ) to be unit variance.

Now, let us investigate the true detection rate (TDR) and false detection rate

(FDR) of the DC method against the sample size and compare them with those
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Figure 5.4: Comparison of the true and false detection rates of the DC method (with
and without conditioning on Smin-max) and those of the NLG-Diks test.

of the NLG-Diks test. Here, we simulate the bivariate t-ARCH process X → σ2
y

for different sample sizes with a0 = 1, a1 = 0.4, b = 0, and ν = 4 in equation (5.3).

For each sample size, 1000 different data sets are generated and for each of them

1000, 500, and 300 permutations are performed for N =100 –1000, N = 2000, and
N = 5000, respectively. CI95% is used as JSTHR and δx = σx/10 and δy = σy/10.
The DC method is used to detect the distributional causality for both directions of

X → σ2
y and Y → σ2

x. As there is no causal effect on µx,t and µy,t, we do not show

the results of mean any more. Since the current setup realizes X → σ2
y and Y ↛ σ2

x,

the detection probabilities corresponding to X → σ2
y and Y → σ2

x determine the

TDR and FDR, respectively. Similarly, we find the TDR and FDR of the NLG-Diks

test with the approximate optimal asymptotic bandwidth presented in [27] that is

ǫN =min(8N−2/7,1.5).
As Fig. 5.4 shows, without considering Smin-max, the NLG-Diks method is su-

perior to the DC method, i.e., the TDR and FDR of the NLG-Diks method are
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Figure 5.5: Distribution of JSTHR against different sample sizes (N = 100–5000)
shows that increasing the sample size yields smaller values of JSTHR.

higher and lower than those of the DC method, respectively. Moreover, Fig. 5.4

demonstrates that the FDR of both methods increases with the sample size. For

NLG-Diks test, this increase is reported in [27].

To explain the reason of the increase in the FDR of the DC method against the

sample size, the distribution of JSTHR is depicted in Fig. 5.5 for different sample

sizes. This figure shows that by increasing N , distribution of JSTHR has smaller

mean and variance. Therefore, larger sample sizes result in smaller values of JSTHR.

The reason for this phenomenon is that by increasing N , the deviation of distribu-

tions fi(Θ̂p) for 1 ≤ i ≤ Np from each other reduces, and consequently, their distance

from their average distribution decreases as well. Therefore, the value of JSi
Θp and

consequently CIα% or JSTHR reduces. On the other hand, in the case of the lack of

causality, the values of JSΘ does not change significantly with N . Therefore, for the

non-causal scenario, the ratio of JSΘ/JSTHR and consequently the FDR increases

with N .
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One way to deal with increasing the FDR for the large sample sizes is consid-

ering the additional condition Smin-max > 0.05. That is to say, we will conclude the

existence of causality if JSΘ >JSTHR and Smin-max > 0.05. As Fig. 5.4 shows for

N ≥ 2000, this additional condition reduces the FDR to 1% and it becomes 10-15

times smaller than that of the NLG-Diks test. However, for N < 2000, the condi-

tioning on Smin-max reduces both TDR and FDR of the DC method. Hence, this

extra condition is not recommended for the small sample size. Here, we can present

the following guidelines for using the proposed DC method and the NLG-Diks test

in different situations.� If the goal is just detecting the causal effect of X on Y , use the NLG-Diks

test for N < 2000 and apply the DC method with conditioning on Smin-max

for N ≥ 2000. Provided that no causality is found by the DC method for

large sample sizes, apply the NLG-Diks test to detect other kinds of nonlinear

causality rather than the distributional causality.� In the second case, the goal is further than just detecting X → Y . In other

words, the goal is detecting the distributional causality X → Θy and deter-

mining the type of Θy, i.e., mean, volatility, variance, or any other moments

or higher-order statistics of fy(Θy,t). In this case, the NLG-Diks test is not

applicable and it cannot identify the type of Θy. Therefore, we have to use the

DC method. In this case, for N < 2000 exclude the conditioning on Smin-max

and for N ≥ 2000 apply the condition Smin-max > 0.05.

5.4 Financial data

In this section, we apply the DC method to detect the causal relationships between

the daily volume change and return data for the Standard and Poor’s 500 index

(S&P500). For the period between January 1950 and December 1990, the studies of

[27] indicates that returns are influencing future volume changes strongly. However,

their results show that the evidence for volume causing returns is considerably weak.

To keep our results comparable with those of [27], the same period of time is

considered here for the daily stock prices of S&P500. We study the effect of one

time series on the mean and volatility of the other one. Periods without trading

activity due to for example weekends or holidays are excluded in stock prices and

the remaining parts of the original time series are reconnected afterwards. Hence,
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Table 5.1: The results of the DC method for inference of the distributional causality
between the daily volume change and return of the S&P500 index.

return→ µvolume volume→ µreturn return→ σvolume volume→ σreturn

JSΘ 0.15 0.1 0.08 0.12

JSTHR 0.08 0.07 0.095 0.13

Smin-max 0.075 0.035 0 0.02

we have 10307 samples for this period of time. The stock returns are calculated by

rt = 100 ln ( Pt

Pt−1
) where Pt is the daily closing prices. Moreover, to make the volume

stationary, the percentage change of volume derived by differencing is considered

here, i.e., vt = 100 ln ( Vt

Vt−1
) where Vt is the daily volume. Np = 100 permutations are

performed and CI95% is used to obtain JSTHR. Moreover, δx = σx/4 and δy = σy/4
are considered in parameter estimation. The results obtained with the DC method

are summarized in Table 5.1.

Examination of causality on the volatility of the volume change and return de-

notes that in both cases we have JSσ < JSTHR. Consequently, we conclude that

return↛ σvolume and volume↛ σreturn. On the other hand, for both cases of the

causal effect on the mean of the volume change and return, JSµ > JSTHR. However,

the condition Smin-max > 0.05 is satisfied only for return→ µvolume. For the causation

of the volume change on the mean of the return, the value of Smin-max = 0.035 pro-

vides a weak evidence for the existence of causality; hence, this result indicates the

lack of coupling, i.e., volume↛ µreturn.

Although our results are consistent with the results presented in [27], our results

yield more information about the nature of the causality between the volume change

and return. Indeed, instead of merely finding the causal effect of return on the

volume change, we can say that return does not influence the volatility of the volume

change and its effect is on the mean of the volume change. As the causal relationship

return→volume is discovered in [27] by excluding the linear causality between return

and volume change, we can conclude that the return affects the mean of the volume

change nonlinearly.
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5.5 Conclusion

In this chapter, we proposed a new method for inference of the distributional causal-

ity (DC method) between two time series. This method is able to detect the type of

the moments or distribution parameters influenced by the distributional causality,

e.g., mean or volatility. For distributional causality inference, we proposed a method

for estimation of the time-varying moments or distribution parameters. Then, we

detected the existence of distributional causality according to the distribution of the

temporal estimations of the moments or distribution parameters.

To study the performance of our method, we analyzed the simulated and empir-

ical data and the results were compared with those of the NLG-Diks method. The

simulation results showed that the DC method is superior to the NLG-Diks method

for large sample size of data. Then, we used the DC method to find the causality

between daily S&P500 stock return and percentage change in its volume. The result

was consistent with the result of the NLG-Diks test, i.e., return→ volume change.

However, our method also revealed that return affects the mean of volume change

and not its volatility.
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Chapter 6

Conclusion and Future Work

In this chapter, we first summarize the contributions of this dissertation and conclude

our work. Then, new problems are described for future research directions.

6.1 Conclusion and Summary of the Contributions

The main focus of this thesis was detection of causal relationships or couplings

between different processes or systems. As these couplings or causal relationships are

inherently hidden in the underlying dynamics of the system and are not necessarily

accessible, we developed methods to discover these interactions by some observations

of the system measured in the form of a time series. That is to say, for detection

of the coupling between the driver system D and the response system R (D → R),

instead of manipulating D to see its effect on R, we observed the outcome of these

systems and inferred the existence of coupling or causality based on these observed

data.

In Chapter 3, we proposed a new method called the coupling spectrum (CS) for

inference of the predictive causality or directed coupling in a deterministic system.

In this method, we introduced a conditional probability which shows the effect of

the past samples of the driver system D on the future value of the response system

R. It was observed that this method identifies the direction of coupling in different

scenarios such as unidirectional and bidirectional couplings, nonlinear dynamics,

identical and nonidentical subsystems, multivariate systems, small and large sample

sizes, weak and strong couplings, and in the presence of the noise. Unlike the transfer

entropy method that the direction of the discovered coupling may change by scaling

of the data, the CS method is scaling invariant.

Two applications of the CS method for inference of the existing couplings in
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biological systems and financial data were studied in Chapter 4. In the first part

of this chapter, the CS method was used for inference of the regulatory interactions

between genes. Hence, the microarray data were analyzed by the CS method for

inference of gene regulatory network of E2F1 transcription factor. We discovered

the regulatory interactions between E2F1 transcription factor and 18 known target

genes (TG) of E2F1, studied by biological experiments. We discovered 15 out of

18 known E2F1→TG interactions. We also detected 6, previously unknown, reverse

interactions TG→E2F1. Further investigations revealed biological evidences for 3 of

these reverse interactions.

The second application of the CS method studied in Chapter 4 is about the

causality inference between financial data. We studied the causal relationships be-

tween the stock prices of Apple Inc. and Microsoft Corporation over more than

a decade. Since we analyzed these data over a long period of time, we combined

the CS method with overlapped moving window technique to detect time-varying

causality. In this part, we compared the results of the CS method with that of the

HJ test (a nonlinear extension of the Granger causality test). The outcome of these

studies proved the existence of time-varying causality between financial data over

a long period of time. Therefore, the moving window techniques should be applied

for discovering the time-varying causality in financial data. Moreover, the results

showed that most of the products of each company influence the other one’s stock

price immediately or a couple of months after each product release.

Finally, we proposed a new method for inference of the distributional causality

(DC method) between two time series in Chapter 5. This method is able to detect

the type of the moments or distribution parameters influenced by the distributional

causality, e.g., mean, variance, or higher order statistics. For inference of the dis-

tributional causality, we have to deal with time-varying moments or distribution

parameters. Therefore, in the first step, we proposed a method for temporal estima-

tion of these moments or parameters. Then, according to these estimated moments

or parameters we detected the existence of distributional causality. To study the

performance of our method, we analyzed the simulated and empirical data and the

results were compared with those of the NLG-Diks method (a modified version of

the HJ test). The simulation results showed that contingent on the existence of the

distributional causality, the DC method is superior to the NLG-Diks method for

large sample size of data. Then, we used the DC method to find the causal rela-
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tionships between daily S&P500 stock return and percentage change in its volume.

The result was consistent with the result of the NLG-Diks test, i.e., return→ volume

change. However, our method provided more information about the distributional

nature of this relationship, i.e., it revealed that return affects the mean of volume

change and not its volatility.

6.2 Future Research Directions

In the following, we define some research problems which can be studied to extend

the scope of our presented works.

6.2.1 Improving the Multivariate CS Method

As presented in Sec. 3.3, the CS method is extendable to multivariate scenario.

However, multivariate cases demand a significantly larger sample size of data. Con-

sequently, in applications with small sample size, e.g., analyzing microarray data

for gene regulatory network inference, we cannot directly use the multivariate CS

method for detection of indirect regulatory interactions. Therefore, improving the

proposed multivariate CS method or finding another extension of the CS method to

multivariate scenario is important for applying the CS method to applications with

the small sample sizes.

6.2.2 Bootstrapping for Causality Inference

In the cases that we are dealing with the severe conditions, such as small sample

size of data or weak couplings, it is possible that we (do not) detect coupling in the

case of (D → R) D ↛ R. Therefore, under these difficult conditions, it is necessary

to validate the outcome of the causality inference method.

One standard way in statistics usable in this case is the bootstrapping method

[52, 90]. This method is used for estimating the distribution of an estimator or

test statistic by resampling the data. The simplest method of resampling a time

series is sampling the data points randomly with replacement. However, the data

derived from coupled systems are usually highly correlated, hence, random selection

of the samples does not generate correlated data. Therefore, we have to use block

bootstrapping [90], which divides the data into blocks of observations and samples

the blocks randomly with replacement. We can use non-overlapped or overlapped
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blocks [91]. Therefore, we are interested to implement a block bootstrap method for

the validation of the CS method or other kinds of causality inference methods.

6.2.3 Reducing the False Detection Rate of the DC method

As mentioned in Sec. 5.3, the false detection rate (FDR) of the DC method increases

with the sample size. In our proposed method, we used an extra condition based

on Smin-max to mitigate the adverse effect of the sample size on FDR. However, this

extra condition severely reduces the true detection rate (TDR) of the DC method

for small sample sizes. In fact, by this extra condition, the DC method becomes

inapplicable for very small sample size of data. Hence, finding another method for

reducing the effect of the sample size on the FDR (instead of Smin-max) which has

less destructive effect on TDR is necessary.

6.2.4 Applications of the Proposed Methods in Other Disciplines

Inference of the cause-effect relationships or couplings have applications in various

disciplines such as process and control engineering [92,93], chemical engineering [94],

and neuroscience [95]. As a future work of this research, we can apply the proposed

CS and DC methods to theses applications and compare the performance of these

methods with that of other existing methods.
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survey,”Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE), CORE Discussion Papers, 2003.

[31] Y. Chen, G. Rangarajan, J. Feng, and M. Ding, “Analyzing Multiple Nonlinear
Time Series with Extended Granger Causality,” Physics Letters A, vol. 324,
May 2004.

[32] J. Arnhold, P. Grassberger, K. Lehnertz, and C. Elger, “A robust method for
detecting interdependences: application to intracranially recorded EEG,”Phys-
ica D: Nonlinear Phenomena, vol. 134, no. 4, pp. 419 – 430, 1999.

[33] M. C. Romano, M. Thiel, and C. Kurths, J.and Grebogi, “Estimation of the
direction of the coupling by conditional probabilities of recurrence,” Physical
Review E, vol. 76, no. 3, 2007.

[34] M. G. Rosenblum, A. Pikovsky, and J. Kurths, Synchronization – A universal
concept in nonlinear sciences. Cambridge: Cambridge University Press, 2001.

84



[35] R. Q. Quiroga, T. Kreuz, and P. Grassberger, “Event synchronization: A simple
and fast method to measure synchronicity and time delay patterns,”Phys. Rev.
E, vol. 66, p. 041904, Oct 2002.

[36] T. Schreiber, “Measuring information transfer,”Phys. Rev. Lett., vol. 85, no. 2,
pp. 461–464, 2000.

[37] R. Marschinski and H. Kantz, “Analysing the information flow between finan-
cial time series,” The European Physical Journal B - Condensed Matter and
Complex Systems, vol. 30, no. 2, pp. 275–281, Nov. 2002.

[38] F. E. Harrell, Springer Series in Statistics: Regression Modeling Strategies,
corrected ed. New York, NY: Springer New York, Jan. 2010.

[39] W. A. Brock, “Causality, chaos, explanation and prediction in economics and
finance,” in Beyond Belief: Randomness, Prediction, and Explanation in Sci-
ence, J. Casti and A. Karlqvist, Eds. Boca Raton, FL: CRC Press, 1991, pp.
230–279.

[40] D. A. Smirnov and R. G. Andrzejak, “Detection of weak directional coupling:
Phase-dynamics approach versus state-space approach,” Phys. Rev. E, vol. 71,
no. 3, p. 036207, 2005.

[41] F. W. King, Hilbert Transforms. Cambridge: Cambridge University Press,
2009.

[42] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ: Wiley-Interscience, July 2006.

[43] J. L. Massey, “Causality, feedback and directed information,” Proc. Int. Symp.
Inf. Theory Applic. (ISITA-90), pp. 303–305, 1990.

[44] A. Kaiser and T. Schreiber, “Information transfer in continuous processes,”
Physica D: Nonlinear Phenomena, vol. 166, no. 1-2, pp. 43–62, 2002.

[45] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visual-
ization, 1st ed. New York: Wiley, Sep. 1992.

[46] D. W. Scott and S. R. Sain, ”Multi-Dimensional Density Estimation”. Ams-
terdam: Elsevier, 2004, pp. 229–263.

[47] P. O. Amblard and O. J. J. Michel, “The relation between Granger causality
and directed information theory: a review,” CoRR, vol. abs/1211.3169, 2012.

[48] M. Palus and A. Stefanovska, “Direction of coupling from phases of interact-
ing oscillators: An information-theoretic approach,” Phys. Rev. E, vol. 67, p.
055201, May 2003.

[49] M. Lungarella, K. Ishiguro, Y. Kuniyoshi, and N. Otsu, “Methods for quanti-
fying the causal structure of bivariate time series,” Int. J. Bifurcation Chaos,
vol. 17, no. 3, pp. 903–921, 2007.

[50] M. Palus and M. Vejmelka, “Directionality of coupling from bivariate time se-
ries: How to avoid false causalities and missed connections,” Phys. Rev. E,
vol. 75, p. 056211, May 2007.

[51] H. Pi and C. Peterson, “Finding the embedding dimension and variable depen-
dencies in time series,”Neural Comput., vol. 6, pp. 509–520, May 1994.

[52] B. Efron, The Jackknife, the bootstrap and other resampling plans. Philadel-
phia, PA, USA: SIAM, 1982.

85



[53] M. Itoh, T. Yang, and L. Chua, “Conditions for impulsive synchronization of
chaotic and hyperchaotic systems,” Int. J. Bifurcation Chaos Appl. Sci. Eng.,
vol. 11, no. 2, pp. 551–560, 2001.

[54] D. Bernardo, M. Thompson, T. Gardner, S. Chobot, E. Eastwood, A. Wo-
jtovich, S. Elliott, S. Schaus, and J. Collins, “Chemogenomic profiling on a
genome-wide scale using reverse-engineered gene networks,”Nature Biotechnol-
ogy, vol. 23, no. 3, pp. 377–383, 2005.

[55] T. Chen, H. He, and G. Church, “Modeling gene expression with differential
equations.” Pacific Symposium on Biocomputing. Pacific Symposium on Bio-
computing, pp. 29–40, 1999.

[56] S. Bornholdt, “Boolean network models of cellular regulation: Prospects and
limitations,” Journal of the Royal Society Interface, vol. 5, no. SUPPL. 1, pp.
S85–S94, 2008.

[57] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian Networks
to Analyze Expression Data.

”
” Journal of Computational Biology, no. 3-4, pp.

601–620.

[58] T. Tung, T. Ryu, K. Lee, and D. Lee, “Inferring gene regulatory networks from
microarray time series data using transfer entropy,” 2007, pp. 383–388.

[59] H. Lodish, A. Berk, C. Kaiser, M. Krieger, M. Scott, A. Bretscher, H. Ploegh,
and P. Matsudaira, Molecular Cell Biology, 6th ed. W. H. Freeman, 2007.

[60] F. Emmert-Streib and M. Dehmer, Eds., Analysis of Microarray Data: A
Network-based Approach. Wiley VCH Publishing, 2008.

[61] A. Pandey and M. Mann, “Proteomics to study genes and genomes,” Nature,
vol. 405, no. 6788, pp. 837–846, 2000.

[62] J. Stuart, E. Segal, D. Koller, and S. Kim, “A gene-coexpression network for
global discovery of conserved genetic modules,” Science, vol. 302, no. 5643, pp.
249–255, 2003.

[63] A. Butte and I. Kohane, “Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements.” Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing, pp. 418–429, 2000.

[64] R. Steuer, J. Kurths, C. Daub, J. Weise, and J. Selbig, “The mutual informa-
tion: Detecting and evaluating dependencies between variables,” Bioinformat-
ics, vol. 18, no. SUPPL. 2, pp. S231–S240, 2002.

[65] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed
genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3, pp. 437–467, Mar.
1969.

[66] A. Hartemink, D. Gifford, T. Jaakkola, and R. Young, “Using graphical models
and genomic expression data to statistically validate models of genetic regula-
tory networks.” in Pacific Symposium on Biocomputing, 2001, pp. 422–433.

[67] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear modeling of
mrna expression levels during cns development and injury.”Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing, pp. 41–52, 1999.

[68] E. van Someren, L. Wessels, and M. Reinders, “Linear modeling of genetic net-
works from experimental data.”Proc. Int. Conf. Intell. Syst. Mol. Biol. (ISMB),
vol. 8, pp. 355–366, 2000.

86



[69] G. Cooper, “A bayesian method for learning belief networks that contain hidden
variables,” Journal of Intelligent Information Systems, vol. 4, no. 1, pp. 71–88,
1995.

[70] A. V. Werhli and D. Husmeier, “Reconstructing gene regulatory networks with
bayesian networks by combining expression data with multiple sources of prior
knowledge,” in Stat. Appl. Genet. Mol. Biol, 6:Article 15. The Berkeley Elec-
tronic Press, May 2007.

[71] T. Lee et al., “Transcriptional regulatory networks in saccharomyces cerevisiae,”
Science, vol. 298, no. 5594, pp. 799–804, 2002.

[72] R. Van Berlo, E. Van Someren, and M. Reinders, “Studying the conditions for
learning dynamic bayesian networks to discover genetic regulatory networks,”
Simulation, vol. 79, no. 12, pp. 689–702, 2003.

[73] B. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alché Buc,
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[90] W. Härdle, J. Horowitz, and J. P. Kreiss, “Bootstrap Methods for Time Series,”
International Statistical Review / Revue Internationale de Statistique, vol. 71,
no. 2, pp. 435–459, 2003.

[91] P. Hall, “Resampling a coverage process,” Stochastic Process Applications,
vol. 19, pp. 259–269, 1985.

[92] L. Desborough and R. Miller, “Increasing customer value of industrial control
performance monitoring - honeywell’s experience,” vol. 98, no. 326, 2002, pp.
169–189.

[93] L. Chiang and R. Braatz, “Process monitoring using causal map and multivari-
ate statistics: Fault detection and identification,”Chemometrics and Intelligent
Laboratory Systems, vol. 65, no. 2, pp. 159–178, 2003.

[94] M. Bauer, J. Cox, M. Caveness, J. Downs, and N. Thornhill, “Finding the direc-
tion of disturbance propagation in a chemical process using transfer entropy,”
IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 12–21,
2007.

[95] R. Vicente, M. Wibral, M. Lindner, and G. Pipa,“Transfer entropy-a model-free
measure of effective connectivity for the neurosciences,” Journal of Computa-
tional Neuroscience, vol. 30, no. 1, pp. 45–67, 2011.

88


