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ABSTRACT

Hydraulic jumps, which constitute the rapid transition
from supercritical to subcritical flow, have been
investigated extensively by many researchers, because of
their importance in energy dissipation. 7he present
knowledge on this subject has been reviewed with the
objective of summarizing the major contributions. The
following conclusions are formulated: the experimental
measurements on detailed internal flow structure of hydraulic
jumps are limited; and the existing prediction methods can
only predict the macroscopic aspects of hydraulic Jjumps and
some features of the mean velocity field.

Detailed measurements of the internal flow
characteristics of submerged hydraulic jumps in a horizontal
and rectangular channel have been made by the LDA (Laser
Doppler Anemometry) system. The experiments have covered ten
conditions with the submergence factor S varying from about
0.2 to about 1.7 and inlet Froude number F, approximately
equal to 3, 5.5 and 8. The experimental measurements include

surface profiles, mean velocity components u and v,

turbulence shear stress —u'v' and turbulence intensities
u'2 and ¥V v'2 . Major flow characteristics of submerged

hydraulic jumps are discussed and analyzed. The flow in the
fully developed region is found to have some degree of
similarity. It is also found that a submerged jump is three

dimensional in nature due to the aspect ratio influence. The

iv



roller lengths from the measurements have been compared with
those predicted by Stepanov's equation.

The two dimensional X-€ turbulence model is applied to
predict the characteristics of submerged hydraulic jumps.
An offset control volume method is originally proposed and
applied in this study. Further, the numerical prediction is
compared with the experimental measurements for three
conditions with supercritical Froude numbers F; ranging from
3.2 to 8.2 and submergence factors S ranging from 0.24 to
0.85. The prediction from X—¢€ model has also been compared
with that from the integral SIM method. Finally the numerical
performance is evaluated and discussed in detail. It is
concluded that the model is quite promising in predicting the
surface profile, mean velocity field and turbulence structure
of submerged hydraulic jumps, even though it has the
following shortcomings: overpredicted turbulence production
for the initial part of shear layer, no curvature effects on
turbulence, inadequacy of gradient diffusion assumption near
maximum velocity region and isotropic assumption not

representing the normal stresses properly.
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INTRODUCTION

Because of its importance in @Rergy dissipation in
hydraulic structure, hydraulic jumps have peen investigated
extensively by many researchers. Most Of the physical model
studies on hydraulic jumps have been directed t¢ obtain the
large scale features of the £10w and its energy
transformation <capability. There are g few detailed
measurements of free hydraulic jumps put only for a limited
range of flows. Very few studies have been performed on the
internal flow structure of submerd®d hydraulic jumps.
Furthermore, the existing prediction methods for hydraulic
jumps are of the integral type. They can Predict the
macroscopic aspects of hydraulic jumps and also some aspects
of mean velocity field. The internal Structure of the flow
is part of the assumptions rather than a part of the
predictions.

The current research project is directed toward
obtaining detailed experimental measUremepnts ©f submerged
hydraulic jumps in a horizontal and rectangular channel and
applying the widely tested ¥-€ turbulence model to predict the
macroscopic and internal structure of the fiow. This thesis
reports the results and major findings of this study.
Globally the thesis is divided into three main parts. The
first part reviews our present knowled9® on this subject with
the objective of summarizing the majoT contributions. The

second part of the thesis presents the Lpa (Laser Dpoppler



Anemometry) experimental measurements and the analysis of
data. The third part summarizes the numerical results from
the prediction. The prediction method is also discussed and

evaluated in detail in the final part of the thesis.



1. PART ONE - LITERATURE REVIEW

1.1 Introduction

Hydraulic jumps, which constitute the rapid transition
from supercritical to subcritical flow, have been studied
extensively because of their importance in.energy dissipation
in hydraulic structures. Experimental investigations of
physical models have been carried out to study both the
macroscopic and internal structure of the jumps, but most of
the studies have been directed to the macroscopic features of
the phenomenon. Macroscopic features of hydraulic jumps
include the relationship of sequent depths and different
length characteristics. Internal structure of hydraulic jumps
refer to their mean velocity distribution and turbulence
characteristics. Major contributions to this subject were
reviewed by Rajaratnam (1967) and more recently Dby
McCorquodale (1986).

Theoretical analysis of hydraulic jumps is based on the
conservation laws of mass and momentum. Simplification of
these governing equations leads to the well-known Belanger
equation which relates the ratio of the sequent depths to the
inlet supercritical Froude number. Rouse et al (1958) applied
these principles to analyze their experimental results and
obtained detailed information on momentum conservation and
energy transformation in the jumps. Numerical simulations of

hydraulic jumps using the integral approach have been made by



Narayanan (1975), McCorquodale and Khalifa (1983) and Madsen
and Svendsen (1983).

A very extensive literature exists on hydraulic Jjumps.
contributions to hydraulic jumps have been made by Rouse et
al (1958), Bowers and Tsai (1963), Rajaratnam (1965), Betchov
and Criminale (1967), vasiliev and Bukreyev (1967), Wisner
(1967), Keir et al (1969), Narayanan and Reynolds (1972),
Resch and Leutheusser (1972), Abdul Khader and Elango (1974),
Narayanan (1975), Narasimhan and Bhargava (1976), Mehrotra
(1976), Nece and Mahmood (1976), Song (1977), Smith (1976),
Khalifa and McCorquodale (1979) and many others. As pointed
out by McCorquodale (1986) one paper published by the ASCE
Task Force (1964) on energy Dissipation and Outlet Works
listed about 500 references. No attempt has been made to
review all the papers published to date on this subject.
However, major contributions related to the current thesis
topics are reviewed in this part of the thesis. At the end of
the review, the current research objectives will Dbe

presented.

1.2 Theoretical Framework
1.2.1 Introduction

Hydraulic jumps can be classified by either their
physical configuration or their inlet and outlet conditions.
In actual hydraulic applications, hydraulic jumps can take a

variety of forms, subject to bed slope, plan shape of



boundary;, shape of cross-section, appurtenance and
submergence to name a few,

The classical free hydraulic jump formed in a smooth,
wide and horizontal rectangular channel without submergence
as shown in Figure 1 is the simplest type. It has been the
focus of continuous researches for understanding the jump
phenomenon and establishing the theoretical framework. As a
simple but important example, the classical free jump is used

to define the jump problem discussed in this section.

1.2.2 Governing Equations
The equation of continuity and Reynolds-averaged
momentum equation for steady state and incompressible

turbulent flow in a generalized coordinate system can be

given as follows:

du-

=1 _

ax; = (1)
dui 1 9p  9(-uj'uj') oug

ujQXj - p oxi + axj' + vaxj'an X (2)

where xj or x5 denotes the coordinate; uj; is a time-averaged

velocity componeént/ p is the pressure: -uji'uj' is a Reynolds

stress component; P isthe density of water; V is kinematic

viscosity; and X; is a body force component per unit mass.



If the classical free Jjump 1is regarded as a two
dimensional problem, equations (1) and (2) can be further

simplified as follows,

ou ov

ox T oy 0 )
dp. -

Qy_ aV _ _:.L_.a_& i oyt aV —a—' -T VQy’

WSkt Vay T T 5 oy Tam TUVINR) oy (Vg )

Here the coordinate system as shown in Figure 1 is adopted. u
and v are the velocity components in the longitudinal (x) and

vertical (y) directions respectively. p. is the piezometric

pressure defined as

p- =P + Y (6)

where y is the vertical distance from the boundary (bed)

referred to as the wall and Y is the specific weight of water.

The system of equations from (3) to (5) is not closed,

because Reynolds stress terms like u'2, v'2 and u'v' are not

known. In order to obtain a solution, modelling relationships

to determine the Reynolds stresses are required.

1.2.3 Belanger Equation
Using the definition in Figure 1 the inlet Froude number

F, is defined as follows



poo= D (7)

b de,-

where U, 1is the supercritical velocity, Y, is the
supercritical depth and g is the acceleration due to gravity.

If it is assumed that the velocity distribution is
uniform and the pressure distribution is hydrostatic both at
the beginning and the end of the jump and if the boundary
shear stress on the Dbed and the turbulent velocity
fluctuations at the beginning and end are neglected,
integration of equations (3) to (3) results in the well-known

Belanger momentum equation

—=%—(‘\r1+8F12-1) (8)

where Y, is the subcritical depth at the end. Y,/Y; is called
the ratio of the sequent depths. This simple equation reveals
that the behavior of the classical free Jjump is mostly

determined by its inlet Froude number F,.

1.2.4 Integral Momentum Equation
The following analysis is adapted from Rouse et al
(1958) . Integrating equation (2) over the jump region by

using Green's theorem



ox
axj dv = j(b ds (9)

one obtains the following eguation

f puiuJ% ds + .{ p ui'uj'%gf ds

] S

) duj dx
.f piiff ds + I px; 4V + pai :ﬂf ds (10)
v s

S

here ® is any physical quantity; s denotes the surface of the

region over which the integration is performed; n the outward
normal to the surface; V the enclosed volume; and Y is the
dynamic viscosity. Equation (10) reflects the macroscopic
dynamics of hydraulic jumps. The terms at the left hand side
are the net flux of the mean flow and the turbulence out of
the region. The first term at the right hand side denotes
the mean normal force exerted externally on the surface of
the region. The second term represents the weight of the
fluid contained within the region; and the third accounts for
the mean tangential force exerted on the water surface.
Equation (10) provides a powerful tool to analyze different
forces acting upon a Jjump. If it is assumed that the
turbulence is negligible at the toe of the jump and that the
pressure distribution is hydrostatic throughout the Jjump,

then applying eguation (10) to a control volume delineated by



the initial section and any other section at a distance X

with a mean depth y gives

y Va y
I pu? dy - I pu? dy + j pu'? dy
0
b
2 2
0

The first two terms at the left hand side represent the mean
momentum at the respective sections, and the third term
represents the momentum flux of the turbulence. The first
two terms on the right represent the mean pressure forces,

and the last term represents the integrated bed shear stress.

1.2.5 Integral Energy Equations

Rouse et al (1958) also analyzed the integrated energy
equation within a jump. Using the same method as above the

energy equation for the mean flow can be obtained as

Y1 y

Y
2 3 12 tay?
f §§ u dy - J‘gg dy + J'u u +§v u'v dy
0 0 0
YX u'v' du dv u'2 - v'2 du
- ég { g (ay+ax + g ax] dydx = qy: = QY

Y yx
J‘%[Zug& + v(%+g—:)] dy - |J %[4(%1:;)2+ (%3"‘3—:)’] dydx (12)
00

0
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The first two terms on each side of the equation correspond
to those of the wusual one dimensional open channel
relationship, with due account taken of the variation in
velocity over the cross section. The third terms represent
work done on the end section by the turbulent and viscous
stresses. The last terms combine to indicate the rate at
which turbulence is produced by the mean motion and the rate
at which energy is dissipated by the mean viscous stresses.

The energy equation for the turbulent motion reads

Yy R
v'2 v'2y' YX u'v' 2'v' du av G'2-v'2 du
.f u dy + df 2g dy + jf =5 g (ay ox) g ox) dyax
Y —
y 12 — [] ]
0
0
x
IYJKE aa_zdydx (13)
oo ¥

The first two terms at the left hand side are the flux of
turbulent kinetic energy. The last term at the left hand side
is the production rate of turbulent kinetic energy. The
first two terms on the right hand side are the rates of work
by fluctuating pressure and viscous stresses of turbulence
respectively. The last term at the right hand side is the
rate of dissipation of turbulent kinetic energy.

Both the integral momentum and energy equations had been

used by Rouse et al (1958) to interpret their experimental
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results (to be discussed later) and explain the major

momentum and energy transport processes within a free jump.

1.3 Experimental studies
1.3.1 Introduction

For the following review of experimental studies,
attention is focused on two major types of jumps: the
classical free hydraulic jump and the classical submerged
hydraulic jump. The classical submerged Jjump (shown as in
Figure 2) is formed in a smooth, wide and horizontal
rectangular channel. Its tailwater depth Y. is greater than
the subcritical depth Y, of the corresponding free jump and
the tailwater advances over the jump resulting in a submerged
jump .

As discussed by Rajaratnam (1967) submerged jumps occur
mostly below barrages, weirs and canal head sluices, and in
some cases, when the tailwater depths are very large, below
spillways and river outlets. The classical submerged
hydraulic jump, together with the classical free jump, not
only represent most of practical jumps, but also constitute
two simplest cases which researchers can tackle by
experimenting in a physical model and obtaining scientific
data from measurements and for which theoretician «an
establish the mathematical formulation and solve them by
different techniques. Providing accurate and detailed flow
measurements of these two types of Jjumps have been the

continuous pursuits of many researchers.
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1.3.2 Main Length Characteristics

For the classical free Jjump the sequent depth Y.
predicted from Belanger equation is generally good for most
of engineering problems. Rajaratnam (1967) showed that the
effect of bed friction on Y,/Y, increased with increasing Fy,
reaching a reduction of 4% at F,=10. The length of the jump L,
is defined as the horizontal distance from the toe to the
section where the water surface becomes essentially level and
the mean surface elevation is maximum (Rajaratnam 19267). The
length of the surface roller L,y is the horizontal distance
from the toe to where the roller ends on the water surface.
The experimental results from Rajaratnam (1965), Rouse et al
(1958) and Safranez (1934) are reproduced as in Figure 3.
The Bradly-Peterka Curve (1957) in Figure 3 was developed
from practical considerations according to Rajaratnam (1967) .
It is clear from Figure 3 that L. is generally less than L,
and approaches L; as the supercritical Froude number F,
increases.

For the classical submerged Jjump the submergence factor

S is defined as

_ Ye-Y,
s =4, (14)

S becomes zero for a free jump but is large for deeply
submerged Jjumps. If the length of a submerged jump and its

surface roller are defined the same way as in a free jump,
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according to Rajaratnam (1967) the following empirical
equation holds

L.
=21 = 4,98 + 6.1 (15)
Y,

This equation shows that the length of the submerged jump
exceeds that of corresponding free jump by the term 4.9S and
that as submergence increases the length of the submerged
jump increases. According to Stepanov (1959) the length of

the roller L,y is given by the equation

Lrsj _ 3.31
Ve | [(Y.-Y3)/Y3/Fy]0-882 (16)

where y. is the critical depth and it is found that the

eguation (16) is satisfactory for S<2 and Froude numbers F; up

to about 8.

1.3.3 Mean Velocity Field

Rajaratnam's studies (1965a and 1965b) showed that in
the forward-flow portion of both free jumps and submerged
jumps, the distribution of the mean longitudinal velocity u
in y direction was similar to that in the wall Jjet.
Recognition of this aspect is not only of great assistance in
synthesizing the large number of the mean velocity
measurements but also in building an integral analysis. The

measurements for free 3jumps and submerged jumps from
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Rajaratnam (1965) are reproduced as in Figure 4 and Figure 5,
in which the term classical wall jet refers to a wall jet
with potential inflow in stagnant surroundings within a wide
flume with a flat bed. Actually this concept has been used by
several researchers as a basic assumption for numerical
prediction and more will be said about this in the next

section of Prediction Methods.

1.3.4 Main Flow Characteristics

A typical vertical distribution of velocity u for free
and submerged Jjumps is shown in Figure 6, which also serves
to define the symbols used in the following discussion. The
subscript m refer to a maximum in a vertical distribution.
The length scale b is for the mean velocity and u=u,/2 when
y=b and %% < 0.

If hydraulic jumps are analyzed as two-dimensional flows
as a first approximation, from dimensional analysis as by

Rajaratnam (1976), it is easy to show that

U X
w=f (3 FuS) an
b _ X
Y, = £ ( Y, ' Fi, S) (18)

These two equations are applicable for large Reynolds
numbers, under which the jumps are turbulent flows. The data

from Rajaratnam (1976) for both free Jjumps and submerged
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jumps are reproduced as in Figure 7 and 8. It is clear from
the figures that the decay of u, for hydraulic Jjumps is faster
than that of a wall jet and the length scale 1 grows faster
in hydraulic jumps. This will become obvious if hydraulic
jumps are considered wall jets under adverse pressure
gradient as proposed by Rajaratnam (1965). The adverse
pressure gradient slows down the velocity and also produces a
recirculating roller on top of the jet. This reversing flow
generates more mixing in a jump than in a wall jet so that

u,/U; decays faster in jumps than in wall Jjets.

1.3.5 Wall Shear Stress

Rajaratnam (1967) defined the skin friction coefficient

C, by the equation

U 2
T = C o (19)

where T, is the wall (or boundary) shear stress along the bed.

The experimental resuits for free jump are reproduced as in
Figure 9, in which the curve indicates the mean of different
experimental conditions with different inlet Froude numbers.
It was found that C; decreased from about 0.0037 at the
beginning of the Jjump to about 0.0001 near the end of the
jump. The effect of increasing submergence on the bed shear
stress was also reported by Rajaratnam (1965). It was found

that for any given Froude number at any section the reduction
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of the bed shear stress was slowed down by increasing
submergence. The experimental results by Rajaratnam (1965)
are reproduced in Figure 10, where the effects of

submergence are obvious.

1.3.6 Air Model Of Free Jumps

The paper on the air model of free hydraulic Jjumps Dby
Rouse et al (1958) was the first attempt to make detailed
turbulence measurements of hydraulic jumps. The paper was a
milestone in hydraulic Jjump research and provided insight
into the structure of the flow and energy transformation
related to hydraulic jumps. Even though air models were used
instead of the real jumps, the results were enlightening. As
McCorquodale (1986) put it, their work was a breakthrough in
the understanding of the internal mechanics of the hydraulic
jumps and had provided a framework for future research.

The air model they used conformed to the mean depth
configurations of natural free hydraulic jumps. The air duct
was shaped according to the profile of the free jump. This
model was justified analytically and experimentally by its
similarity in mean flow pattern and pressure distribution on
the boundaries to the natural free jumps. It was assumed
that, if the mean flow patterns were similar and the energy
changes and Reynolds number comparable, the patterns of
turbulence would also be similar. The turbulence field was
measured by hot-wire technique for inlet Froude numbers of

2, 4 and 6. The measurements included the mean flow, the
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turbulence intensities and the Reynolds stresses. The
maximum turbulence intensities for F,=2, 4 and 6 are 0.20,
0.24 and 0.28 U, respectively and the maximum turbulence
covariances are 0.024, 0.023 and 0.028 U,2 respectively.

Rouse et al (1958) calculated the integrals of the
distribution curves of the turbulence production, dissipation
and convection. The results showed that the maximum
turbulence production occurred at about x/Y,=1 and the maximum
turbulence occurred at a later section. It was clear that the
process of turbulence production to dissipation occurred in a
short distance (0<x/Y¥,<5).

The results from the calculation of energy
transformation by Rouse et al (1958) show that the velocity
head, pressure head and dissipation loss are the dominant
terms in the cpnservation of energy along the Jjump. The
kinetic energy of turbulence and work done by the Reynolds
stresses are significantly small. This further shows that
turbulence in hydraulic jumps mainly acts to transfer mean
energy to dissipation but had minor effects on the
conservation laws of the mean flow.

Air model studies by Rouse et al (1958) were a big leap
forward in the understanding of hydraulic jumps, but the air
model did not simulate all aspects of a real hydraulic jump.
The shortcomings resulted from its incapabilities to include
the effects of the surface gravity waves, the entrainment of
air and certain aspects of the actual pressure field. In

addition, the solid boundary of the air model at the surface
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introduced a shear stress which would be higher than the

corresponding stress for the air-water interface of an actual

jump .

1.3.7 Water Model O0Of Free Jump

The studies of Leutheusser et al (from 1972 to 1979) on
the real water model of hydraulic jumps threw some new light
on the internal flow structure of free jumps. They used the
hot-film anemometer to measure the turbulence field in
actual hydraulic jumps. Even though the measurements were
limited to two Froude numbers of 2.85 and 6.00, they made
some additional observations on the turbulence structure of
the flow with developed inflow.

Their results for the (almost) uniform flow were in
general agreement with the air model data by Rouse et al
(1958), but their results for the developed initial boundary
layer were quite different. The maximum turbulence
intensities and shear stress from their experiments are
listed in Table 1. It clearly shows that the turbulence
field of developed inflow was significantly stronger than
that of potential inflow.

They also found that the development of the initial
boundary layer affected the entrainment of air. For Jjumps
with developed inflow more air was entrained in the upstream
portion of Jjumps than was with potential inflow. The jumps
with developed inflow affected the flow separation as well.

They found, for example, that with developed inflow the range
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of potential separation was 5<x/Y,<7 for F;=4 while for

undeveloped inflow, it was about 3<x/¥,<7.

1.3.8 Summary

Major experimental studies in hydraulic jumps have been
reviewed. Because there are a great number of papers on this
subject, no attempt has been made to include all of them.
However, attention has been focused on the understanding of
the phenomenon and our current knowledge on the subject. Most
of the experimental studies on hydraulic jumps have been on
the macroscopic aspects of the phenomenon. Unfortunately,
the internal flow characteristics have received much less
attention. The turbulence measurements on free jumps by Rouse
et al (1958) in an air conduct and Leutheuséer and Kartha
(1972) in a water model are the only detailed data in the
literature and these data are limited. The experiments Dby
Rouse et al (1958) covered inlet Froude numbers of only 2, 4
and 6 (8 was not successful). The experiment by Leutheusser
and Kartha (1972) covered two inlet Froude numbers of 2.85
and 6.00. No detailed measurements are available beyond F;=6.
On submerged hydraulic jumps Rajaratnam (1965, 1972) and many
others collected a lot of data on the mean velocity fields,
but to my knowledge no detailed turbulence measurements are
available in the literature. It is of interest to make
accurate measurements both for free jumps and submerged

jumps.
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1.4. Prediction Methods
1.4.1 Introduction

Belanger equation is the most widely used equation to
calculate the sequent depth ratio of the classical free jump.
Some empirical relationships exist for calculating other
length characteristics, such as equation (15) on Lgy. The
rheoretical framework had been established some time ago,
1ike that by Rouse et al (1958), but the equations involved
are too difficult to solve. Some simple models of treating
hydraulic jumps as wall jets under adverse pressure gradient
have been tried by Rajaratnam (1965) and others. In the past
two decades, as computer power increased tremendously,
numerical simulations of hydraulic jumps using integral
approach Dbased on similarity assumptions have been made by
Narayanan (1975), McCorquodale and Khalifa (1983) and Madsen
and Svendsen (1983).

On the other hand turbulence modelling techniques have
become more and more sophisticated. The reviews by Rodi
(1980), Lakshminarayana (1986), Nallasamy (1987), ASCE Task
Committee (1988) and many others summarized the progress made
in the past two decades on turbulence modelling. Therefore,
equations (4) to (5) become relatively easier to solve with
less restrictive assumptions.

This section will review not only the major numerical
work done so far to simulate hydraulic jumps but also state-
of-the-art turbulence modelling to provide better prediction

methods for turbulent flows.
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1.4.2 Narayanan's Method

Narayanan's prediction method (1975), referred to as the
SIM (Strip Integral Method) for free hydraulic Jjumps is a
representative of the prediction techniques used during the
70s. His paper (1975) is selected for the review because it
reflects all the major contributions from the experiments and
theories up to that time.

The major assumption involved in Narayanan's method was
the significant experimental realization by Rajaratnam (1965)
that the mean motion in the jump behaved in a manner that was
typical of a plane turbulent wall jet. He divided the mean u
velocity profile into two distinct layers as shown in Figure

11 and further assumed

2 = (gjm (for inner layer) (20)
m
and
u, + u =
u = -u, + -E-E——i (1 + cosm i——) (for outer layer) (21)

where u, was the maximum u at a section of x; m was the
exponent varying with x; § denoted a vertical distance from
the bed where u=u,; H was the depth and u, was equal to the
reverse flow velocity u at y=H.

Equation (20) and (21) were substituted into the

equations of continuity and momentum and integration over the
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flow depth H was performed. In order to solve the resulting
equations further assumptions regarding the shear stresses at
different levels of flows were needed. Again he used the
experimental measurements on wall Jjets by Gartshore and
Newman (1969) and hydraulic jumps by Rouse et al (1958) and
Leutheusser and Kartha (1972) to extrapolate the information
on shear stresses.

The final equations were first order differential
equations which could be easily solved. The decay of the
maximum velocity u,, the surface profile, the variation of
surface velocity and the growth of the boundary layer could
pe predicted from this technique. The major characteristics
of jumps, such as the length of the roller and the extent of
the jump, could also be predicted. However, he found that
the prediction for the length characteristics was sensitive
to the turbulent stress. There was another obvious weak
point for this method, which relied too heavily on the
experimental results directly related to hydraulic jumps. Too
many assumptions were made and they were too specific and not
universal. Also this method can only be used to calculate the
mean flow. The turbulence field was a part of the assumptions

rather than a part of the prediction.

1.4.3 The Method of McCorquodale and Khalifa
McCorquodale and Khalifa (1983) refined the SIM method

of Narayanan (1975) as described below.
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(1) The Gaussian velocity distribution suggested by
Rajaratnam (1976) was used for the outer layer. So the

u velocity profile was assumed to have the form of

2 - (%)1’7 (for inner layer) (22)
and

y—
u = u. + upexpl-4c¢ 7;—37; ] (for outer layer) (23)

where u. was the velocity u as y went to infinity and c
was a constant;

(2) The effect of entrained air on the hydrostatic force
and on the turbulence shear was incorporated;

(3) The kinematic boundary condition was used at the water
surface;

(4) The turbulence pressure was included;

(5) The centrifugal force was included.

The resulting set of first order differential equations
was thus solved for. This method, like SIM by Narayanan,
could predict the mean characteristics of hydraulic Jjumps.
The study by McCorquodale and Kartha (1983) found that air
played a minor role in determining the shape of the jump; The
effect of turbulence pressure was to lower the water surface

near the beginning of the jump, although the length of the
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jump was not significantly changed; and the relative
importance of the centrifugal force increased as F,’.
Abdel-Gawad and McCorquodale (1984) also applied this
method to a radial hydraulic Jjump with and without
submergence. They also found that the roller length was
sensitive to the turbulent shear stress. Even though this
method improved the SIM of Narayanan to some extent, it still

had the same shortcomings as the SIM.

1.4.4 The Method of Madsen and Svendsen
Madsen and Svendsen (1983) developed an integral model
for the mean velocity field and the surface profile of

hydraulic jumps and turbulent bores based on a simplified x-€

model, in which they only allowed for non-equilibrium for
turbulent kinetic energy x. The assumptions involved in the
model were as follows:
(1) Pressure field was hydrostatic and F,? was greater than
2 to exclude the possibility of undular jumps;
(2) The horizontal 1length scale {or the flow was much
larger than the vertical scale, so equations (4) and

(5) were simplified as one equation

du . du 19p. 9 T,
uax + vg; - 0 % + ay (=u'v') (24)

(3) Boundary effects on the wall were neglected, so the

flow considered was like that shown in Figure 12;
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(4) The velocity profile for u was given by

u = ugx) (0 < y < a(x) ) (25)
and
u = ulx) (14 (x)£(3)) (a(x) <y < H(x)) (26)

where u,(x) was the velocity u on the bed. 0 was

defined as

_ oy - a(x)
6 = b (x) (27)

where b(x) was the height of the turbulent region, H(X)
was the flow depth and a(x) = H(x) - b(x). The function

£(8) was given by
£(8) = -A B+ (1+A)& (0 <8< 1) (28)

where A was a constant. I'(x) was given by

s

I'ix) = =1 (29)

where u, was the surface velocity u;
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(5) Using X—-& model proposed by Launder and Spalding
(1972), they further simplified it and obtained the

following:

—u'v' o= Ve (30)

ve = VK (H-a) (31)
\/;= X(x) g(d) (32)

where XK is the turbulence kinetic energy and finally

they obtained

—u'v' = u, (u - u) £'(d) (33)

where {; was the only empirical constant required.

Thus integral equations of continuity and momentum over
the flow depth could be solved for. This method could predict
the surface profile, velocity and shear stress variations
along the 3jump, but it neglected the bottom boundary layer
and shear stresses.

This method by Madsen and Svendsen (1983) used an

advanced K—& turbulence model. However, they limited their

efforts by presuming the profile for velocity u and

turbulence kinetic energy K. At the same time only the mean

flow characteristics of jumps could be predicted. Like the
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solutions provided through SIM by Narayanan and McCorquodale
et al, this method relied on the detailed measurements of
hydraulic jumps to determine the closure relationship and

shapes of u and X profiles.

1.4.5 Turbulence Modelling

From the review so far it becomes clear that a more
robust method with less restrictive assumptions and empirical
relationships is needed to provide a prediction not only for
the mean flow characteristics of jumps but also the detailed
internal flow structure. In order to achieve this objective
a more sophisticated turbulence model has to be used.
Therefore, the next section will review the major
achievements made in turbulence mcdelling so as to choose a
more universal and successful closure. Again a comprehensive
review on turbulence modelling is beyond the scope of the
this thesis. Instead major problems related to and state-of-

the-art of turbulence modelling are reviewed.

1.4.5.1 Strategies

At the present time a complete time-dependent solution
of turbulent flows by Navier-Stokes equations 1is almost
impossible even using the fastest computer in the world. This
is because turbulence is always three-dimensional and with a
wide spectrum of eddy sizes soO that even the biggest and
fa..est computer nowadays does not have the storage and speed

required. Therefore, alternative strategies like LES (Large
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Eddy Simulation, see reviews Dby Ferziger in 1981 and 1987)
" and closure schemes through Reynolds equations have been
developed. LES is still at a research stage and has not been
applied extensively. Turbulence modelling through Reynolds
equations can be traced back to Prandtl (1925). This strategy
enjoyed the popularity for the past 50 years and has
developed into a very mature stage. Up to date, a number of
models have been extensively tested and applied in a variety

of engineering problems.

1.4.5.2 Basic Concepts

The first important concept in turbulence modelling
through Reynolds equations is the Boussineqg's eddy viscosity.
It is assumed that, in analogy to the viscous stresses by the
molecular motion in laminar flows, that the turbulent
stresses are proportional to the mean velocity gradients.
This is also called gradient diffusion assumption. The eddy

viscosity concept can be generalized as

Ty duj , duy _ 2
usust = Ve Gl toaeg) T 39043 (34)

where V., is eddy viscosity; X is turbulence Kinetic energy;
and Sij is Kronecker delta. The turbulence stresses are thus
related to the mean flow.

Another important concept is the characterization of the

local state of turbulence by two parameters. From dimensional
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reasoning the eddy viscosity V. is proportional to a velocity

scale U, and a length scale L. characterizing the turbulent

motion

v, e U, L (35)

Thus the success of the turbulence models based on eddy

viscosity assumption relies on how well the distribution of U
and L, can be determined.
There are two shortcomings for this assumption. The eddy

viscosity concept breaks down when shear stresses (such as
0 .
-u'v') and velocity gradients {such as 5%) have opposite

sign. The implied isotropic eddy viscosity may be too crude

for certain types of turbulent flows.

1.4.5.3 Zero Egquation Model
This is also called mixing length model, which was

proposed by Prandtl (1925) for describing the distribution
of v,. It was designed for thin shear layer flows where the

only significant velocity gradient is g%. In this model the

eddy viscosity is related to the velocity gradient through

u
= 2
Ve = L la—ayl (36)

where 1, is called mixing length. Distribution of 1, over the

s1ow field has to be prescribed with the =aid of empirical
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information. The main drawback with this model is the
evaluation of 1, for different turbulent flows. Further
problems arise Dbecause the eddy viscosity and diffusivity
vanish whenever the mean velocity gradient is zero. This
close link with the velocity gradien implies that the model
is based on the assumption of local eguilibrium of
turbulence, which means that the turbulence is locally
dissipated at the same rate as it is produced. This
assumption neglects the transport and history effects. Hence
the mixing length model is not very suitable when these
effects are important as is the case in rapidly developing
flows and recirculating flows. Further, the model is of
little use in complex flows because of great difficulties in
specifying the distribution of the mixing 1length.
Incorporating the effects of curvature, buoyancy or rotation

in the model is totally empirical.

1.4.5.4 One Equation Model

This is also called the energy equation model. It

requires the solution of turbulent kinetic energy X from the

following eqguation

oK ok 0 ,V, 0K d v, 9K
2" oy " 3n \oxdx) "y \oxay

+ +G- 7
Yoax Y X Ok Ox dy 0x8y) & (37)
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where G and € are turbulence production and dissipation rates

respectively. This equation involves a gradient diffusion

assumption for diffusive transport of ¥ and the following

K3/2
g = Cp -E:- (38)

V. = C, \/;c— L, (39)

where C, and C, are assumed tO be constants. The length scale
L. is specified algebraically and hence is flow dependent.

One equation model is an important step forward from the
mixing length model, since it gives up the direct link
petween the fluctuating velocity scale and the mean velocity
gradients. It determines this scale from a transport
equation. The main limitation in equation (38) is that it
relates the small-scale turbulence associated with the
dissipation process to the length scale L., which
characterizes the large-scale and energy-containing eddies.
Because the amount of energy dissipated is controlled by the
energy fed from the large-scale motion through the spectrum
to the small motion, € may' be considered a parameter
characterizing the large scale motion. However, strictly
speaking, it is the rate of energy passed on by this motion
for dissipation at smaller scale, not energy itself. The one
equation model is not very popular since it performs only

marginally better than the zero equation model (Rodi, 1980).
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1.4.5.5 Two Equation Model
The need to calculate the length scale L characterizing
the size of energy containing eddies stimulated the efforts

to find a 1 equation. As discussed by Launder & Spalding

(1974) %—€ equation became the most popular model because of
the practical advantage that € equation requires no extra
terms near walls and also that € itself appears in the X
equation and the € equation requires no secondary source term.

It is obvious from equation (35) that L. can be
calculated if € is known, so looking for either € or L, is
identical for this purpose. An exact transport equation can
be derived from the Navier-Stokes equations for the
fluctuating vorticity and thus for €. The € equation contains
a number of complex correlations for which fairly drastic
model assumptions have to be introduced in order to make the

equation tractable. As a result, the resulting model eguation

has a highly empirical nature. The €equation reads

de % 0 v, 0 VO E e
uax+vay—ax Oc 0x +3y Cc Jy +C1KG—C2K (40)

The terms on the left hand side are the convective transports

of €. The first two terms on the right hand side are the
diffusive transports of €. The last two terms on the right
hand side are the generation and destruction of €. The main

limitation of € equation is the idea that & can be diffused,
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produced and destroyed through a simple balance equation
pased on local gradients of E.

The empirical constants C; and C, in € equation were
determined as described below. C; is the only constant
appearing in the simple case of grid turbulence and was found
from the measured decay rate of X pehind grids to lie in the
range of 1.8 to 2.0. For non-buoyant shear layers under local
equilibrium, production of turbulence is balanced Dby

dissipation at each point, so that equations (37) and (39)

can be combined to Cu=(u'v'/K)2. Measurements in these flows

yielded u'v'/Kk=0.3 so that Cy=0.09. In near-wall regions, a
logarithmic velocity profile prevails; G is approximately
equal to € and the convection of € is negligible. Therefore,
the € equation reduces to C1=C2—K2/(G§JE:). This relation fixes
the value of the constant C; when the values of the other
constants have been chosen. The diffusion constants Ox and Og
are assumed to be close to unity and they as well as C, were
tuned by computer optimization. The € equation is very
sensitive to the choices of C; and C; (Rodi, 1980).

The standard k—-€ model has been tested widely and has
been shown to predict, with the same empirical input, many
different turbulent flows, including separating and three
dimensional flows, with an accuracy sufficient for practical
purposes. However, the constants used in standard X—-€ model
need to be changed in order to accommodate the effects such
as curvature, low Reynolds number, presence of wall, etc.

(Rodi, 1980)
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1.4.5.6 Reynolds Stress Models

One of the limitations for X-g€ model is the assumption
of isotropic eddy viscosity. In order to account for the
different development of the individual stress, transport
equations for uji'uj' have to be introduced. A particular
advantage of the Reynolds stress model 1is that terms
accounting for buoyancy, rotation and other effects are in
principle introduced automatically. However, turbulent stress
transport equations contain higher order correlations to be
modelled. One such model was proposed by Launder et
al(1975). Models of this type are rather complex and
computationally expensive SO that they are not much in use
for practical applications. To reduce the computational
effort, Rodi (1976) proposed an algebraic relation for
calculating the Reynolds stresses. Together with the K-€
equations, the algebraic stress model accounts for most of
the effects described by full turbulent stress equations, and
thus appears to be sufficiently refined for most engineering
problems. However, algebraic stress relations are basically
like eddy viscosity formulations and therefore are not

applicable to cases where counter gradient transports occur.

1.4.6 Summary

For hydraulic jumps the existing prediction methods,
such as those by Narayanan (1972), McCorquodale and Khalifa
(1983) and Madsen and Svendsen (1983) are of the integral

type. The main characteristics of hydraulic jumps can be well
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predicted by these methods. However, all these methods rely
too heavily on detailed experimental measurements of
hydraulic Jjumps. The turbulence field is a part of the
assumptions instead of being a part of the prediction.
Therefore, in order to provide a better prediction method,
which is able to predict both the mean flow and turbulence

characteristics, a better turbulence model of differential

type is needed.

The current review of turbulence modelling shows that X-
€ model is the most widely tested and the most successful

turbulence model. The constants used are relatively universal

compared to most of the models tested co far. X-& turbulence
model is capable of dealing with a variety of turbulent flows

encountered in engineering applications.

1.5 Objectives

In this part of the thesis major contributions towards
our understanding of the hydraulic jumps have been reviewed.
It is the objective of this research program to provide more
thorough turbulence measurements of submerged hydraulic
jumps and test a prediction method, which can calculate not
only the mean flow characteristics but also the turbulence
structure of hydraulic jumps. Due to some major difficulties
encountered in both the experimental and numerical
techniques, which will be discussed in detail in the next two

parts, submerged hydraulic Jjumps in horizontal and
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rectangular channel were selected as the problem instead of
Pfree hydraulic jumps, in this study.

The detailed measurements of mean flow and turbulence in
submerged hydraulic jumps will be obtained using the LDA
(Laser Doppler Anemometry) system available at the T. Blench
Hydraulics Laboratory at the University of Alberta. These
measurements will, at the first time, provide detailed and
accurate experimental data under different conditions. These
data can then be used as a basis to test and improve the
prediction methods. If submerged hydraulic jumps are viewed
as transitional phenomena between free jumps and wall jets,
this study will then also serve the purpose of comparing
these three classes of flows.

The popular X-€ turbulence model will be applied in this
study to simulate submerged hydraulic jumps. The numerical
results will be compared with the measurements from the
experiment. Finally the performance of the model, which

includes its success and limitations, will be evaluated.



PART TWO - LDA EXPERIMENTAL STUDIES

2.1 Introduction

The experiments described in this part of the thesis

deal with submerged hydraulic jumps in a horizontal

rectangular of constant width. At the beginning of
the expcrimer T it was attempted to study the free
jumps us 'y - . LDA (Laser Doppler Anemometry) system

available at tne T. Bleoch Hydraulics Laboratory at the
University of Alberta but it was not successful. Because
free jumps entrained significant amount of air bubbles, the
laser beams were reflected and refracted by the air bubbles.
As a result the data acquisition rate was So low that it was
almost impossible to obtain data at a reasonable rate. The
measurement of free jumps was thus discarded altogether and
the effort was focused on the measurement of submerged
jumps.

The experiment was conducted by utilizing the existing
facilities of Hydraulics Laboratory, which included the
flume, pump, sump and laser equipment. The experimental set-
ups were designed by both the technicians in the Laboratory
and the author with the guidance of his supervisors. The
author was mainly responsible to obtain data and exercise
quality control in the measurement. The objective of this
experimental work was to use the LDA system to obtain
accurate and detailed measurements of mean velocities and

turbulent stresses. The measurements included surface

37
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profiles, mean velocity components u and v, turbulent shear

stress u'v' and turbulence intensities u'? and V v'? o,

The experimental results then can be used to study the
following:

(1) The major flow characteristics of submerged hydraulic
jumps, including the decay of the maximum mean
velocity, turbulence quantities and their related
length scales;

(2) Similarities of mean velocity and turbulence fields in
fully developed region of submerged jumps, which

include the similarity analysis of u velocity

profile, VVGTz ,\f?ﬁi and -u'v’ profiles;

(3) Three dimensional features of submerged jumps subject
to aspect ratio influence;

(4) Comparison among wall Jjets, free jumps and submerged
jumps, considering submerged jumps as transitional
phenomena between free jumps and wall jets;

(5) Testing and improving the prediction methods.

The current investigation covers ten experimental
conditions with the submergence factor S varying from about
0.20 to about 1.70 and inlet Froude number F, approximately
equal to 3.0, 5.5 and 8.0. The actual experimental

conditions are listed in Table 3.
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2.2 Facilities
2.2.1 Experimental Arrangement

The schematic diagram of the experimental layout is
shown in Figure 13, which also serves to define the symbols
used. The submerged jumps were formed just below a vertical
gate in a horizontal rectangular channel. .The channel is
0.467 m wide, 0.515 m deep and 7.5 m long with glass walls
on both sides of the flume and an aluminum bed. The
thickness of the glass wall is 12 mm. Water was supplied by
a 19 kW capacity and 0.22 m¥/s rated discharge pump. The
discharge was measured with an in-line magnetic flow meter,
which was digitized and was used to monitor the flow. There
were two valves along the pipe line so as to adijust the
discharge. In any experiment, ~he discharge and the water
level in the head-tank were maintained constant. Therefore,
the inlet velocity could be kept constant and thus the inlet
Froude number F,; at the entrance. In order to achieve a
relatively uniform stream at the gate, a special entrance
device with curved lower section was fitted to the gate.
This device was actually a quarter of a pipe with 0.152 m
radius and 0.457 m length. With this device the flow
contraction after the entrance was nearly eliminated.
Downstream water level was controlled by a vertical plate
that rose from the bed of the flume. By changing the
discharge and the inlet opening different inlet condition

could be achieved. By regulating the downstream level,
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different submergence condition could be obtained for any

given supercritical Froude number.

2.2.2 Measuring Equipment

The experimental results were collected using a two
color back-scatter LDA system. A detailed description of
this system has been written by Steffler (1984) . The
schematic diagram of the LDA setup is reproduced from
Steffler (1984) in Figure 14.

The LDA technigue is a non-intrusive, instantaneous
fluid velocity measurement method. Durst et al (1976) had
made an extensive review on the history, theory and
application of the LDA technigue. Buchave et al (1979)
discussed the expected accuracies of this technique.

The laser of this system was a 4 W Argon-Ion laser with
actual power of about 500 mW. The three laser beams, one
blue (488 nm), one green (514.5 nm) and one mixed, were
focused at a measuring point from one side of the flume. In
order to obtain the best signal quality and excellent
spatial resolution, the optical lens with focal length of
160 mm was selected for all the measurements. The nominal
measuring probe volume of the intersecting beams was an
ellipsoid with diameter 0.04 mm and length 0.64 mm. The
position of the mirror and lens in the traversing system was
controlled by a computer. The nominal position accuracy was

+ 0.01 mm.
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Counter proceusors were used to evaluate the Doppler
frequencies. Subsequent computer analysis consisted of

velocity bi.s averaging (to pe discussed later) and outlier

rejection. The number of samples taken at every point was
20,000. This corresponded to 2 sample averaging t e of
about 300 seconds. For submerged hydraulic juaps with

higher inlet Froude number and lower submergence, more air

was entrained into the flow. When air bubbles were
present, the data acquisition rate was lov, provided other
conditions were not changed. So for a region with

relatively high concentration of air bubbles the sampling
time was up to 900 seconds.

The sump used was a bag reservoir and was shared by a
number of users. In order to enhance the signals for the
LDA system because of the short focal length and small
measuring volume, the water was seedad with latex paint.
Since the sump was large, the latex paint had to be added
two or three times a day so ac to maintain a good data
acgquisition rate. The particle size of latex paint was
approximately 0.1 M. The ccncentration oif about 1 ppm (part
per million) gave the best data acgquisition rate.

Considering the thickness of the glass side wall of the
channel and the effect of refraction, the actual maximum
distanre of the measuring plane from the side wall was about

195 mm using the following formula:



sin?(y/2)
z = {z'=- z';) n '\/ 1 - -—-—i/-—L— (41)
cos (y/2) n

where z is the distance from the inside of the wall to the
measurinc point: z' the traverse reading; z', traverse
reading when measuring point was focused on the inside of
the wall; n refractive index of water (1.33) and ¥y is the
beam intersection angle.

The flume was constructed with a thick and heavy steel
plate at the Dbase. This plate projected ocut of the side wall
and restricted the downward movement of the focusing lens
mounted on the threaded tracks, if the lens was too close to
the side wall. This portion of the steel base could have
been cut, but doing so would have damaged the stability of
the existing equipment. Therefore, this option was
abandoned. Because c¢f this restriction, most of the
measurements were conducted at the plane of z=167 mm, i.e.
z/W=0.3%, where z is the transverse distance from the side

wall as shown in Figure 13.

2.3 Experimental Results

Takle 3 lists the ten experimental conditions with
serial numbers from S1 to S10. For series S1 to S$7 the
same inlet opening of Y, = 25 mm was used. For series S8 to
510 a smaller inlet opening of ¥, = 15 mm was used to chta’n
a higher inlet Froude number. U, listed in Table 2 is tne

averaged .ongitudinal velocity at the inlet opening; Y. the
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tailwater depth, £ the inlet Froude number ard K~; is the

inlet Reynolds number defined as

U, Y
Re; = lvl (42)

The surface profile H(x) and the downstream tailwater
depth Y, were measured with a point gauge. Because the
water surface along the Jjump was fluctuating, especially
for higher inlet Froude numbers and smaller submergences,
H(») was obtained as an averaged depth profile from the
point gauge readings. The results from the surface profile
measurements for all the experimental conditions are shown
in Table 4. The observations were nondimensionlized by Y¥; and
plotted in Figure 15, which can indicate the hydrostatic
pressure field along the jump.

For each experimental condition, detailed measurements
at the plane of z = 167 mm, i.e. z/W = 0.36, were carried
out to obtain vertical profiles of the internal flow
characteristics. These characteristics include the time-

averaged longitudinal component of velocity u and vertical

component v, kinematic turbulence shear stress -u'v’ and
turbulence intensities V u'2 and V v'2 . The number of
measured sections for each run ranged from 10 to 17
depending on different experimental conditions. More
sections were covered near the cé-¢ than downstream of the

recirculating zone. For each section about 20 data points
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were measured, with the variation of more data points used
for sections near inlet and for regions near the bed and in
the shear layer, and less data for the sections downstream
and the regions away from the wall jet. The raw experimental
data were too numerous to be included in this thesis.
Instead, they have been stored in a data bank and can be
archived from the T. Blench Hydraulics Laboratory at the

University of Alberta. The results of mean velocities u and

v, turbulence quantities V>u'2 ' d v'?2 and -u'v' f{rom the
measurements at z/W = 0.36 for all the conditions are

plotted from Figure 16 to 65. It should be noticed that all

the plots are nondimensionalized by a length scale Y; and a
velocity scale U,.

For each section, extra measurements were made in
vertical plancs with z/W=0.30 and 0.04. Usually only five
carefully selected data points at both these planes were
measured to check the spanwise variation of the flow.
Besides these measurements, another set of data points to
indicate spanwise variation were taken for each section at
the plane of y = constant. A cznstant y plane was selected
close to the surface and kept constant for each run. The
results of this spanwise variation for all the conditions
are plotted from Figure 66 t9o 75, where only the
measurements for longitudinal velocity u profiles are
plotted. The original intenticn for ~hese extra
messsrements was to validate the two dimensionality of

submerged Jjumps &s they were previously treated. Much to
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our surprise, the results revealed that the flow was very

three dimensional in nature due to influence of the side

walls of the flume. In light of this fact, three
representative sections at x/Y, = 4, 32 and 64 in the
condition of F, = 5.4Y and S = 0.63 were selected to undergo

more detailed measurements with 7 vertical profiles taken
from z/W = 0.02 to 0.36. The particular series S6 was
chosen, because its inlet Froude number and submergence

factor are in the middle range of the ten series. The

longitudinal velocity u and turbulence shear stress -u'v'
profiles from these measurements are plotted in Figure 76
and 77 respectively. These results will be further analyzed

in the next section.

2.4 Discussion and Analysis
2.4.1 Experimental Errors

The experimental errors could be introduced by using
point gauge in measuring surface profiles and by using LDA
in measuring velocities. Possible sources of errors in
obtainiig the experimental data were identified and
discussed in this section.

For the surface profile measurements along the center
plane, three rcadings from the point gauge were recorded for
each measuring point. The averaged value was presented in
Table 4. Since the accuracy of the reading relied on the
visual Jjudgement, the error introduced to the surface

profile data could cnly be estimated. For some experimental
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conditions, where the inlet Froude number was high and
submergence was low, the water surface could fluctuate up to
10 mm at locations closer to the gate. For example, the
lowest depth measured for S8 was 112 mm and this could lead
to about 9% fluctuation and approximately *5% accuracy in
obtaining the average value. This is the worst estimate
though. For distances further downstream, the water surface
fluctuated less and the accuracy would improve. For a still
water surface, the accuracy of point gauge was +0.5 mm.

The accuracy of position in longitudinal and vertical
directions was determined by the nominal position accuracy
of LDA traverse system i.e., #0.0lmm. 1In spanwise
direction, the pcsition accuracy was governed by both the
traverse system and the ruler, which was used to measure the
distance between the side wall and the lens. The accuracy
for the position in z direction would be about #0.5mm.

The instantaneous Doppler frequency measured by the LDA

system was given by

fg = fd - fo (43)

where Doppler freguency is denoted by fp; f4 is the shifted
Doppler frequeacy; and fo is the shifted frequency. The
shifted frequency £fo was introduced to enhance signal
guality and insure flow direction information. The shifted
Doppler frequency £g measured at the counter introduced

about *1% error, and the shifted freguency f, would
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introduce another +0.5% error. For example, a 1 MHz

frequency measured in the counter minus a 500 Hz frequency

shift would result in #£12.5 KHz or about #2.5% error in
calculating the Doppler frequency 5.
The instantaneous Doppler frequency was related to the

instantaneous velocity by the following relationship,

£
oh (44)
2sin (6/2)

Uin

where u;, is the instantaneous velocity; A is the wavelength;
and O is the intersection angle by one set of beams. The
error in measuring 6 was estimated at about #0.1°. For
example, if 0 was about 8°, fp about 5C0 KHz and A equal to
488 nm, the error in calculation u;, would be about +0.06 m/s
with a mean of 1.749 m/s, or uj, was in error by about *3%.
The accuracy of ui, is mainly controlled by the error in 0.
Extreme care was taken in the actual measurement to ensure
the accuracy of 0.1° in 6 was approximately achieved. It was
also noticed that the error introduced in £, was random,
whereas the error in 0 could be systematic.

The flow statistics obtained were the following,

Ug - mean velocity in green direction;
ug - mean velocity in blue direction;
u'c? - mean square turbulence intensity in green

direction;
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u'p? - mean square turbulence intensity in blue
direction;
'cu'! - i £ 1 i fl i
u'gu's covariance of velocity uctuation.

In calculating these average values, a velocity bias
correction method proposed by Bachave et al (1979) was
applied. Theoretically speaking, no bias would exist if the
particle residence time was measured and time average was
formed by integrating only during the time measurement. For
example, in an unbiased manner the mean velocity can be

approximated by

N
zu 1At
_i=l

N
Aty
i=1

u (45)

Since the residence time At; was not available for u;, an
alternative was to weigh each sample by a factor inversely
proportional to the measured velocity such as the formulas

used as in the following,

N
u :
Z G.l
e i=1 lull
Ug = N 1 (46)
)y
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2 Upji
—_— im] fuj |
o = S— (47)
1
{1 lugl
% u?e;
j=1 Iui| i
u'te? = 1N : - (ug)? (48)
Ei‘uii
% u?p;
R |ui| P
1=1
u'g? =y, T e (49)
z 1
i=1 Ju; |
% UgiUgj
_— {o1 luasl —_—
u'gu's = Ty . up Ug (50)
i=1 lu; |
where:
u; = Vupi? + ug;? (51)

N = number of accepted samples

The expected errors by using these formulas were discussed
in details by MclLaughlin and Tiederman (1973) .

The velocities obtained in the Dblue and green beam
directions were transferred to the horizontal and vertical

values by the following formulas:

u = ug CosA - uUg sink (52)
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v = ug sina + ug cosQ (53)
u'2 = u'g? cos?2a - 2 u'gu'p sinocosa + u'g? sin?a (54)
v'2 = u'g? sin20 + 2 u'gu'p sinoccosa+ u'g? cos?o (5%9)
u'v' = u'g? sinocosd + u'gu's (cosfo - sin?q)

+ u'g? sinocosO (56)

The angle of rotation of the optics o was set to 45° by

eyes. Estimated error of Ao, would be about *0.5¢. By

neglecting the errors of Aug and Aug,

calculated quantities from equations

approximated by the following,

Au = - v Ao
A-;z_u- Ao
Au'2 = -2 u'v' Aa

Av'2 = 2 u'v' Ao

the errors for the

(52) to (56) were

(57)

(58)

(59)

(60)

(61)
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In a region close to the bed, where velocity was dominantly

horizontal and v was in the order of 1% of u, the relative
error in-; could be 100%. For this reason, V could only be
considered at best to be of qualitative merit in these

regions. On the other hand, in a recirculating region where

u was about 1% of v, the relative error in u could also be

100%. In the strong shear layers, where maximum u'2, v'? and

—

u'v' occurred and u'2 was in the order of 3u'v' and v'?2 was

in the order of 1.7u'v', the relative error due to Ao for

u'? was about 0.6%, v'2 about 1% and u'v' about 0.7%.

However, in region away from the shear layer WiL.re u'v' was

— ——

smail but u'? and v'? were large, the re.acive error in

u'v' would be large and data in u'v’ would be more scatter.

2.4.2 1Inlet Condition

Despite the efforts to achieve an uniform inflow, the
measurements at the inlet still indicate a slightly skewed
longitudinal velocity distribution and downward vertical
velocities. The longitudinal velocity u at the inlet (above
the very thin boundary layer) can be well approximated by a

straight line with an averaged slope as

u _ A
U, = 0.99 + 0.02 Y, (62)

This gives about 2% difference in velocity with a maximum at

the top and a minimum at the bottom. The maximum downward



velocity is akout 2 to 6% of U, depending on different

conditions. The averaged turbulence intensities u'? and
v'2 at the inlet are about 3% of U;. The inlet turbulence
shear stress is almost zero. The flow at the inlet could

approximately be regarded as potential flow.

2.4.3 Major Flow Characteristics
Major flow characteristics referred to in this study
include the decay of mean velocity and turbulence guantities

and their 1length scales. For following discussion, the

typical vertical distributions of u and u'v' are shown in

Figure 78, which also serves to define the symbols used in

the following analysis. The subscript m always refers to a

maximum in a vertical distribution. The length scale b 1is
u

for the mean velocity and y = b where u = u,/2and 5; < 0.

The length scale d is for the shear stress and y = d where

(u'v') a u'v!' —
u'v' = _—jf—ﬂ and “LjET_L< 0. The symbol 8 defines the

d(u'v'
point at y where shear stress is zero and —iiET—L> 0.

If submerged jumps are analyzed as two dimensional
flows as a first approximation, equations (17) and (18) can
be obtained from dimensional analysis. These two equations
show that the decay of u,/U, and growth of b/Y, are
determined by x/Y¥;, F; and S. If the measurements from the
plane 2z/W=0.36 are selected as representative data for a

submerged jump, then the decay of u,/U, is shown as in

Figure 79(a). In this figure a length scale L is used
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instead of ¥,, where L is defined as the distance from the
inlet where u,/U;=0.5. This length scale turns out to be
capable of grouping all the major flow characteristics
together. In order to show this point, the data from
Rajaratnam (1972) were re-plotted in Figure 79(b). The data
in Figure 79(b) are slightly different from that of Figure
79 (a), because U; and Y, are defined differently by
Rajaratr.am (1972) where a sharp-edge sluice gate was used.
Nevertheless, Figure 79 rev=als an important observation
that if a length scale L is applied, the decay of u,/U;
pehaves more or less the same in free jumps, submerged jumps
and wall jets for x/L up to about 1.5. The decay behaviors
of u, in longitudinal direction deviate after x reaches L
from free Jjumps to wall jets. For example, at x/L=2, up
differs by 100 to 150% comparing free jumps and wall jets.

It is interesting to find out that this length scale L

is also capable of grouping the maximum (u'v')., u'? ),
and (V v'2 ), together for different submerged jumps. These
results are plotted in Figure 80, where the subscript mm
refers to the maximum value in the variation of the

sectional maximum value with x. Even though the decay of

shear stress (u'v'), demonstrates some degree of scatter,

the turbulence intensities (N ur? ), and (J v'2 ). are

petter correlated. It can also be ncticed that the mean

approximate curves in Figure 80(Db) and (c) are the same.

)mm

Figure 81 plots (u'v').., (¥ u'2) - and ( v'2

against inlet Froude number F; for all conditions. This
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figure shows a noticeable trend of decrease in these maximum
quantities with the increase of inlet Froude number. It is
also clear that submergence plays a role in difrf-r- ntiating

them but not as significantly as the inlet Froude number.

For example, Figure 81 shows that for F;=3.1 (u'v')p.
decreases from 0.023 to 0.018 U;2 with the increase of S from

0.26 to 1.69. The change is about 30%. However, with about

the same submergence factor 5=0.24, (u'v{)m1decreases from
0.023 to 0.012 U;2 with increase of inlet Froude number from
3.1 to 8.1. The change is about 90%. Even though there was
an uncertainty in determining the maximum shear stress and
intensities based on about 13 vertical profiles in this
experiment, Figure 80 has Dbeen used in extrapolating the
maxima from the limited data points. This procedure

warranted that the errors in determining the maximums would

be confined to about 10%. In Figure 82, (u'v'),, decrease
with increase cf submergence with the exception for F;=5.5.
This exception was considered due to the experimental error
and uncertainty. The increase of maximum turbulent
quantities with decrease of submzrgence could be explained
by the fact that smaller submergtince generated higher
curvature streamline in the mean flow soO that there was a
stronger centrifugal force and thus the turbulence

production.

The variations of length scales b/Y,, d/Y; and g/Y]

with x/Y, are plotted in Figure 83. This figure shows th:s:

bothk the mean velocity and turbulence shear stress diffuse



faster than those in the classical wall Jjet. This 1is
veacsonabie if a submerged jump is t =ated as a wall jet
nnder adverse pressure gradient. This can also explain why
the length scale of a submerged jump with lower st @, sence
grows faster than those with higher submergence. 1.Jjure 83
also shows that for a submergec Jjump the shear stress

diffuses faster than “he mean velocity.

2.4.4 An Equation for the Length Sca -~ L
The analysis above will become ver, valuable if the

length scale L can be determined for each condition. A

-~

relationship between L and F, and S is developed based on

the data from the present study and Rajaratnam (1972). The
derivation is given @s follows.

To develop an equation for the length scale L, which

is equal to x where u,/0,=0.5, the flow of a submerged jump

15 assumed to be two dimensional. Further the flow in the
fully developed regicn is assumed similar.

From the continuity eguation

du ov
ox T oy 0 (3)

the vertical velocity v can be expressed as

y
v o= - j
¢

o %)

i dy (63)

v
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(o2

- .suming hydrostatic pressure distribution alona the

jump the momentum eguation becomes

du ou _ _ _dH J(-u'v') 6a)
Yox oy =~ 9 ox oy (65
Assume
.V
u = up, S04
= U 505 £0 ) (65)
and
y - 0
-U'V' —= "-I_U'V'),, f'( o )
"3 a3
P y - o
= —(u'v"y. . £, T ) £'5( = ) (66)
mm 4 T, 3 d_s

If (u'v'),/U;° is acsumed to be a constant, which is

independent -f the inlet condition, then (W'Vv') e = C.nU:7,
where C,, is a constant. The present data and those from

wall jets show.g/d=0.07 to 0.15. If g/d is further assumecd

to be a constant, eguation (66) carn b~ replaced by

vt o= - v 20 By 0 (67)

Replacing y/k, =/L and y/d by
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= XL -z _ Y
X, =5 & %=1 X3 = 4 (68)
and .substituting wcuations (63), (65) to (68) in the
equation (64) and perfcrming the necessary derivation yield
. . B1dfy .. b u.?f, dfy £, df, y’f, df;
U/ E (T G T o @X en) T b ax, L ax, ¥ 7 2p? ax
db
dx)
du U, ¢f, df;,
= - = - T o (69)
9 dx d  dX,

Let x=L and y=b then X;=1, X,=1, X;=b/d and £., £, f3

£,, £.', £, £3', £, and (dH/dx),., Dbecome constants.

substituting these conditions into the equation (69) yields

L 1
aA (70
Cp + Co gyt F,7?

C, and C, are constants.

For a classical wall Jjet

dad,  _ L _
(301 = 0 and y- = 49

substituting these conditions into equation (70) yields

L 49
Y, dH ~ (71)

1+ Ca(a;)L 1




o
xn

‘. is a constant to be determined.

=3

From the present measurements and the data from
Rajaratnam (1972), it seems that (dH/dx),., 1is mainly
influenced by the submergence factors S as shown in Figure
84 (a) . An approximate equation is obtained fror. curve
fitting as

_d_H_ = . -C.55
(gy)L = 0.18x10 (72)

Substituting ecuation (72) in equation 71) yields

L 49 .
Y, =T+ C10°¢35 F,2 (73)

The constant C in equation (73) is the only constant
that needs to be determined. Using the data of L/Y, from
the present measurements and the data from Rajaratnam (1972)
a best fit curve with C = 27 is obtained as shown in Figure
84 /b). Then equation (73) is as follows,

L 49
Y, 1+ 27x107¢-58 F,"2

(74)

This equation is valid for free jumps, submerged jumps and

wall jets. Therefore, L/Y, can be estimated when S and F,

are known.
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Lo 42 (75)
(. T 1 + 27x107%-38F, 77

L/Y. can be calculated from this equation if F; and S are
kriown. As shown in Figure B4 (b), the dimensionless length
scale L/Y; from the experiments is in large degree of
scatter. The eguation (75) over predicts the length scale L
by up to 44% in one instance, and under predicts by up to
11% in another. Therefore, the empirical equation (75) can
only be used as a very rough estimate of the length scale L.
The large ..egree .f scatter is considered to be cau<-=d

both the semi-empirica: derivation of the equati ind the
error introduced in determining L from the experimental

data.

2.4.5 Fully Developed Region

From the flow development point of view a submerged
jump can be divided into three distinguishable regions.
These are the developing, the fully developed and the
recovering regions as shown in Ficure 13. The end of the
potential core denotes the end of the developing region and
the beginniag ot the fully developed region. If the length
of the roller L.gy is defined as the length of a submerged
jump as by Rajaratnam (1967), Lrsj denotes the end of the

fully developed region and the beginning of the recovering

region.
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The develoning region in a submerged Jjump is similar to
that of a wall jet. One difference is that th: “low nenr
the gate in a submerged jump undergoes acceleration due to
negative pressure gradient caused by falling water surface.
This trend is noticeable in Figure 79(a). Because this

region is limited to about 15% of Lrsy the folleowiny

discussion will concentrzate on the fully developed region
which occupies almost 85% of I.g4.

The data for classical wall Jets in a stagnant
surrounding +~ith a plane bed are taken from Wilson and
Goldstein (1976). For fuvrther information abkout the
experimental measurements on wall jets one can refer to a
recent critical review by Launder and Rodi (1981). The
reason that the data from Wilson and Goldstein (1976) are
chosen is because the data are consistent and close to most
of those from other reliable experiments.

The flow in +he fully developed region demonstrates
scme degree of similarity. Because the maximum vertical

velocity v in the recirculating zone for all submerged jumps
is only about 8% of U;, the attention will be placed on the
analysis of u. If u, and b at a section are selected as the
velocity and length =scales respectively, u/u, can be

plctted against y/b as shown from Figure 85 to 88. From

this figure it is obvious that u/u, profiles are similar to

those of a classical wall jet for y/b up to about 1.5.

Beyond this the profile of u/u, is mostly influenced by the

reversing flow. This observation validates the model
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propwsed by Rajaratnam (1965), in which a submerged jump 1is
considered as a wall jet under adverse pressure gradient.
Similar analysic can be made regarding the turbulence shear

—— ——

stress u'v' and intensities u'? and v'2 As shown in

Figure 80 the decay curves of (u'v'), and (V u'? ), are quite

different from that of u, but the decays of u'2 ) and

(V v'? are similar. This observation is quite different

Y

from a wall Jjet in which the decay of Lthcse quant.ties are

all similar. Because of this reason (u'v'), and (V u'? ),

are selected instead of u, as the scales for the turbulence

shear stress and turbulence intensities respectively. At
the same time d is used instead of b as a length scale for
the turbulence gquantities, since the observation shows that
b is not capable of correlating turbulence guantities as in

a wall jet. The results are plotted from Figure 89 to 100.

The shape of u'v'/(u'v')g profiles in submerged jumps 1is

almost identical to that of a wall jet . The shapes of
V ur2 /(Vfg'z ), and \ vz /(th'z ), distributions are

slightly different from those of a wall jet. Figure 93 to

100 also show that the shapes of Vuz/(Nu? ), and

vV ovr2 /(Vﬁu'z ), distributions are dependent on submergence

factors and that the background turbulence intensities in

the recirculating zone are about 30 to 40% of (J u'? ),
) 3 1] : ) [}

Furthermore, Figure 93 to 100 indicates that (V v'2 ), is

about 75% of (V u'? ), throughout the developed region.



2.4.6 Three Dimensional Features

Liu (1949) reported thz: there were two distinguishable
vortices on the water surface of a submerged jump at the
corners of the gate, but how they influenced the flow was
not clear. He speculated the effects as follows:

(1) Distorting the two dimensional characteristics of
the flow pattern, in that spiral motion will be
introduced; in the central region of the flow,
velocities are increased, and so near the boundary
velo .t ies are reduced;

(2) BAc.: . ounal energy is withdrawn from the mean flow.

The present study shows not only the ex.stence of such
vortex motion but also its significance. As shown in Figure
76 (a) the vortex motion near the gate extends from the water
surface to the center of the shear layer. Therefore, it is
reasonable to expect that its influence will be significant
under relatively high submergence. This vortex motion also
alters the downstream flow development quite significantly.

As shown in Figure 76(b) at x/Y¥,=32, u, near the center

plane of the channel is about 30% smaller than that near the

side wall. Further downstream at x/Y, = 64, which is near

the end of the fully developed region, the difference
between thLe maximum u, near the side wall and the minimum u,
near the center plane is up to 50% as shown in Figure 76(c}.
Another effect is that the length scale b for u near the
side wall is higher than that near the center plane. This

phenomena is called the "climb" of a wall jet near the side
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wall by George (1959) and Rajaratnam (1968). This climbing
effect is believed due to the influence of this vortex
motion. As shown in F.jure 76(a) the flow close to the bec
is two dimensional shortly after the inlet, but on top of
this there is vortex motion. This motion caus2s reversing
flow near the center plane and forward flow n ar the side
wall. As shown in Figure 77(a) the shear stress near the
center plane is about 50% nigher than that near the side
wall. Therefore, this vortex motion causes faster diffusion
near the center plane than near the side wall at locations
further downstream. The results are of course that u, near
the center plane is smaller than that near the side wall.

Let unit discharge q be defined as

H

g = g u dy (76)

and the unit kinematic pressure plus momentum flux be
defined as
H 2
- 2 gH”
M‘ = of udy + 5 (77)
The unit discharge and unit momentum distributions
along the plane of 2z/W=0.36 are calculated based on the u
velocity profiles and the results are shown in Figure 101 to

102. The unit discharge distribution near the center plane

strongly indicates that the flow is so three dimensional
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that the unit discharge close to the inlet is up to 100%
less than the inlet unit discharge q;, the value it should
have if the flow is two dimensional. Figure 101 shows that
the flow after the jump recovers to a constant unit
discharge d,., where the flow can be regarded as two
dimensional. The unit momentum distribution in Figure 102
shows that the maximum loss of initial momentum near the
center plane due to the loss of discharge is up to 30% even
when the loss of momentum due to friction is excluded.

When there are unit discharge and unit momentum losses
near the center plane, there should be unit discharge and
momentum gaians near t..» side wall to satisfvy the
conservation law:. That is exactly what Figure 103 shows.
In Figure 103 the spanwise unit discharge and momentum
distributions for three zross sections in the series S6 are
plotted. Figure 103 (a) shows an interesting observation
that at the plane of z/W = 1/4, or at the "quarter" piane,
the unit discharge app=ars tc be uonstant, i.e. q/q, = 1.

The influence of the vortex motion is believed to be
mainly confined to the reversing prart of the flow. The
forward part of the flow has a strong momentum in the
develozing and early part of developed regions so that this
portion of the flow is less influenced by the vortex motion.
For example, Figure 76(a) shows a 0.40Uy difference in u for
reversing paft whereas for the forward part there is no
difference. Even though the unit discharge varies a lot

along the plane closer to the center, the unit momentum
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varies much less than the unit discharge. This also
indicates that the forward part of the flow, which carries
most of the momentum, is 1less influenced by this vortex
motion. Moreover, its influence on thé turbulent field is
less important. Figure 77 shows only about 25% variation at
%/Y¥,=4 and about 20% at »/Y¥1=32.

This analysis raises a very important gquestion of
whether or not a cubmerged jump should be considered a two
dimensional flow. If a two dimensional prediction is
obtained, ijts limitation should be emphasizéd and its

results shouid be interpreted nroperly.

2.4.7 Length of the roller

The distance from the efflux section to the end of the
coller in submerged hydraulic jumps is defined as the
length of the roller. It is denote. py Lysy as shown in
Figure 13. In his review, McCerquodale (1986) pointed out
that length. of the rollers in submerged hydraulic jumps
were found to be in a large degree of scatter. The roller
lengths observed visually and determined by velocity
measurements are known to differ considerably.

In this esperiment, the roller 1length could not be
accurately determined, because only a few verticai profiles
were measured for each experimental condition. However, the
roller lengths could be estimated from extrapolating the

lines of zero longitudinal velocities of vertical profiles.
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The roller lengins determined this way only indicate those
on the plane of z/W=0.36, since the detailed measurements
were taken on this plane. The estimated roller lengths for
the ten experimental conditions are listed in Table 5.

For comparison, the roller lengths predicted from
empirical equation (16) by Stepanov (1959) are also listed
in Table 5, in which the ratio of predicted to measured
roller lengths are also included. Figure 104 shows the
variations of this ratio with both inlet Froude numbers and
submergence factors. For small submergence factors, say
$=0.25, Stepanov's equation underpredicts the roller lengths
by about 30%. For high submergence factor, say S=1, the
empirical relationship overpredicts by almost 190%. The
trend of discrepancies appears to be more closely related to
submergence factors than inlet Froude numbers.

The discrepancies could be partially due to the errors
in estimating roller lengths, but these =2rrors are
considered to be 1less than 10%., Another reason is the
position of measuring plane where roller lenogths are
determined. The spanwise measurements of u, as shown from
Figure 66 to 75, indicate that the distance of zero u
velocity from the inlet differs by 10 to 20%. Other factors,
such as inlet turbulence levels and aspect ratio influences
to the flow, could also contribute to the discrepancies

among different experimental results.
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2.5 Conclusions

The experimental measurements of submerged hydraulic
jumps under the ten conditions have been presented in this
part of the thesis. The extensive coverage of experimental
conditions provides, at the first time, detailed and
accurate data on internal structure of submerged hydraulic
jumps. Further these data can be used as a reference for
comparison with the theoretical predictions.

From the discussion and analysis of these data, the
following conclu-ions can be drawn from the present study of
submerged hydraulic jumps in a horizontal and rectangular

channel of constant width.

(1) If a length scale L is defined so that u,/U;=0.5 when

x=L, this length scale L 1is capable of grouping

all maior flow characteristics u,/Uq,
(W'v") o/ (a'V") e (# u'2 )/ (V u'? Ymm and

(Vrv'z)m/(v v'2 ). together for different submerged

jumps. The correlation is good for x/L up to about
1.5. An empirical eguation for L was proposed and it
car. be used to roughly estimate L, but the equation
can be in error up to about 45%. The maximum
turbulence quantities can also be estimated from F,
and S. Therefore, the major flow characteristics can
be epproximately determined for submerged jumps under
different conditions.

(2) It appears that there is a noticeable trend of

decrease in maximum turbulent stress and intensities
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with increasing inlet Froude number. For the same
submergence factor the maximum turbulent shear
stresses can be different by 90% from F;=3 to 8. The
maximum turbulent stress decreases with increase of
submergence.

(3) In the fully developed region of a submerged jump,
which occupies about 85% of rcller length L, .4, the
flow demonstrates some degree of similarity. The
sistribution of u/u, against y/b is similar to that of

a wall djet for y/b up to about 1.5. The shape of

u'v'/(u'v'), against (y;g)/(d:g) is almost identical

to that of a wall jet. The shapes VIEE /(Vru'2 )

and ¥V v'2 /(V u'? ), against y/d are self-similar
among different submerged jumps.

(4) Submerged hydraulic jumps are three dimensional in
nature. The climbing effect of mean velocity component
u near side walls is due to the vortex motion near the
gate. The losses of unit discharge g and unit
kinematic pressure plus momentum flux M at the center
plane occur along with their gains near the side
walls. After the jump the flow will recover into a
two dimensional flow. The influence of this vortex
motion has stronger effect on the reversing portion of
tne flow than that of the forward portion. Its
influence on the turbulent field is less significant.

(5) The lengths of the roiler from this experiment have

been compared with those predicted by Stepanov's
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equation. It is found that the equation can be in
error by a factor of two.

If LDA technique is used to obtain data on free
hydraulic Jjumps, the low data acquisition rate problem
discussed has to be resolved. Shooting the laser beams from
the bottom of the bed is one choice, but a three color type
LDA would have to be used otherwise the main shear stress
can not be obtained by using two color type. Using stronger
laser equipment is another choice. Certainly it is of
considerable interest to obtain detailed measurements of

free hydraulic jumps, especially for F, > 6.



PART THREE - NUMERICAL STUDIF"
USING k—-£ TURBULENCE MODEL

3.1 Introduction

The internal flow structure of submerged hydraulic
jumps is very complicated in nature. Numerical simulation of
all aspects of the flow is, therefore, difficult and
challenging. The integral approaches, such as the methods
of Narayanan (1975), McCorgquodale and Khalifa (1983) and
Madsen and Svendsen (1983), involved assumptions and
restrictive mathematical derivation. The resulting first
order partial differential equations through the integral
approach are relatively easy to solve numerically, but this
method can only predict the macroscopic features and certain
aspects of the mean flow. The turbulence field is a part of
the assumptions rather than a part of the predictions.

In order to test and provide a new prediction method
for submerged hydraulic jump, a two equation ¥X-g model
proposed by Launder and Spalding (1974) is applied and
tested in this study. This approach eliminates the need for
the macroscopic similarity assumption and is based on a more
refined turbulence model. This model has been widely and
successfully tested. It can predict not only the detailed
structure of mean flow Dbut also the major turbulent
stresses.

Submerged hydraulic jumps are selected instead of free

jumps as the problem to study for numerical simulation,

70
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because it is believed that submerged jumps are somewhat
easier to deal with both physically and numerically. Free
jumps entrain tremendous amounts of air, an extra transport
equation for the air-water mixture would be required and the
mechanism of air entrainment would need to be modelled.
Furthermore, free jumps have abrupt free surfaces, which
imposes difficultly in generating a solution grid. Unless
there is an economical way to deal with this problem, the
numerical calculation will become very inefZicient.

In the current numerical simulation a simple offset
contzol volume method 1is developed to handle the free
surface in submerged Jjumps. In addition, the hybrid
numerical scheme by Spalding (1972) and the SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) solution
algorithm by Garreto et al (1972) are implemented in the
present computing codes.

The numerical results are then compared with the
experimental measurements SO as to test and evaluate the
performance of the method. Even though the experimental
results reveal that the flow cf submerged hydraulic jumps is
three dimensional in nature due to actual aspect ratio
influence, a two dimensional model is used for testing how
well it will predict the flow and also for the sake of
simplicity. Three experimental ccnditions with serial
number S3, S5 and S8 as shown in Table 3 are selected as
numerical test cases. S8 has the highest inlet Froude number

(F, = 8.19) and smallest submergence (S = 0.24), whereas S3



has the smallest inlet Froude number (F; = 3.19) and deepest
submergence (S = 0.83) and S5 has moderate inlet Froude

number (F; = 5.49) and submergence (S = 0.63), among the ten

experimental conditions.

3.2 Problem Formulation

The flow configuration and dimensions of the problem
which is studied in this investigation are shown in Figure 2.
The governing equations and boundary conditions of the

problem are presented in the following sections.

3.2.1 Governing Equations

The equation of continuity, Reynolds' momentum equations
and k-t modelling equations for two dimensional, steady,
incompressible turbulent flow are given as follows (some of
the equations have been presented in the early part of the

thesis but listed here for convenience) :

0 0

=t 5 - 0O (3)
Qu, Bu 1 dpx  9(-u'?) . (-u'v')

WBx F Yoy T T p Ox + Tax  t dy (4)
v ov 1 OP * 8( -u v') a(JCTQL

Wax F Yoy T T P oy ox * oy (5)
ox, 2x D v 2wy

Uix t Vay T ox loxdx oxay’ TEE (37)
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%€ % 9 v.o, 9 Vo0t € e2

% 9 Ee- B 4

Yax " Yoy T ax (oeas) T3y Oeay) *C G Gy (40)

px = p +t7y (6)

- _2 du

u'z = %K= 2vi (78)

57 -2 -

\Y% =3K- vtay (79)
( ou dv ) 80

T T = e ——+-——
u'v ve L0t o (80)
KZ
= - 81

Ve c“s (81)
ou dv y 2 duy ? vy 2

G = V, [ ( ay'*ax ) + 2 (8x) + 2 (ay) ] (82)

Here u, v and px are the local Reynolds-averaged values of
the velocity components in the longitudinal (x) and vertical
(y) directions and the piezometric pressure respectively. p
is the local Reynolds-averaged value of pressure and y is the

vertical distance from the boundary (bed) referred to as the

wall. X and € are the Reynolds-averaged values of turbulent
kinetic energy and its dissipation rate respectively. V. is

turbulent eddy viscosity and G in X-€ equations is the
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turbulence production term. The constants used in the model

are listed in Table 2.

3.2.2 Boundary Conditions
3.2.2.1 1Inlet Condition

The inlet velocity and tﬁrbulence guantities are
specified as the inlet condition and taken to be the same as
those from the measurement. The longitudinal velocity u at
the inlet is approximated by a straight line as

u o XY
U, - 0.99 + 0.02 Y, (62)

The maximum downward velocity v is 2 to 6% of U; depending on
different conditions. Assuming that the turbulence 1is

locally isotropic and in equilibrium at the inlet, from the

experimental results the turbulence kinetic energy ¥ and

dissipation rate §, are worked out to be 1.4x1073 U,? and

2.2x10-5 U,3/Y, respectively.

3.2.2.2 Outlet Condition

The downstream depth Y. is specified and hydrostatic
pressure distribution is assumed. Other variables are assumed
to be unchanging in the downstream direction and can be
expressed as:

B _x_ 2

% " ox ox om0 (83)



3.2.2.3 Surface Condition
The surface pressure p is assumed to be zero. No mass Or

momentum fluxes are allowed across the free surface. It is

further assumed that the first derivatives of u, X and € with
respect to y are approximately zero. So the surface

conditions are:

P=20 (84)
Ve = %?{'us (85)
u _dx % _, 86
dy oy 9oy (86)

where u, and v, are the surface velocities in the longitudinal

and vertical directions respectively.

3.2.2.4 WwWall Condition
The wall function method proposed by Launder and
Spalding (1974) are used in this investigation due to the
following reasons:
(1) The turbulence model need not be modified to account
for the laminar effects near the wall;
(2) It saves a considerable amount of computer time and
storage, since the flow near walls is not solved for;
(3) The surface roughness can be introduced through some

model constants.
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To a good approximation the velocity profile of

turbulent boundary layer near a smooth wall is as follows:

u* = y* ; when y' <= 11.6 (87)
1 R
ut =y 1n(Ey*) ; when y* > 11.6 (88)
where u* = u/ux and y* = yux/V, and ux is the shear velocity

defined as ux =1,/p. k and E are given the values of 0.4 and

9 respectively. Imposing local equilibrium conditions near

the wall yields:

Cl»ll/z
_u 90
E = Ky (90)

The wall model iteration technique proposed by Benim and
zinser (1985) is employed. It is assumed that the first two
grid points in the solution domain are away from the viscous
layer, but within the logarithmic layer. At the beginning,
ux is assumed and u,;, Vair X5y and &g at node 1 can be
determined. These will be used as wall conditions. After

each iteration the information at node 2 is fed back to node

1 through the following relationship for the wall shear

stress:
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pkunzcu1/4xn:1/2

T, = -
w ln(Eynzcul/q‘(n;"‘/\')

Therefore, the ux can be corrected.

3.3 Offset Control Volume Method

Numerical calculation of free surface problems in
hydraulics (and other fields) is difficult owing to non-
rectangular and changing geometry. Even for steady state
situations the free surface must be adjusted iteratively
until the surface conditions are satisfied. Many methods for
generating "body fitted" coordinates are available and have
been used (e.g. in the review by Thompson et al (1982)) .
Disadvantages of this method include the necessity of
transforming the governing equations (no mean task for the
Reynolds' and X-£ equations) and the need to solve, in
effect, a potential problem for nodal locations whenever the
free surface changes. In addition, the transformed equations,
due to their complexity, may lose their simple physical
interpretations, in particular making it difficult t~< Jjudge
the relative importance of various terms.

Control volume formulations in general coordinate
systems likewise become very complex. Unless the transformed
coordinate system is orthogonal and the velocities are also
appropriately transformed, a profusion of extra boundary flux
terms arises. Significant coding effort (especially testing

and debugging) is therefore required.
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The approxzimate offset control volume method originally
proposed and used in this thesis circumvents most of the
above difficulties while capturing the essence of free
surface, variable geometry hydraulics problems. It is, above
all, a simple approach and is very easily included in
existing software. The success of the method relies on
assumptions that the water surface slope is relatively small
(say < 1:3), the channel bed is flat, the flow is dominantly
horizontal (u >> v) and that steep velocity gradients are
confined to a layer near the channel bed.

A typical discretization of offset control volumes is

shown in Figure 105. Up to an elevation of Y. the control
volumes are normal rectangles. Above Y. and up to H the

control volumes are also rectangular but of a thickness Ay

dependent on the local depth H, i.e.

Ay = —= (92)

where Ny is the number of offset control volumes. Note that
since the control volumes are rectangular, some extra space
above the water surface is included while other parts below
the water surface are excluded. This will be accounted for
with a form of kinematic surface boundary condition below.
Using a staggered grid approach (as in the SIMPLE
procedure) a typical offset control volume for the

conservation of mass is shown in Figure 106. Vertical
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velocities are evaluated at points n and s and horizontal
velocities at points w and e. While the calculation of
vertical transport of mass (or any other quantity) 1is
straightforward, the calculation of horizontal transports are
subject to some approximation. A simple approach is to use
the nodal velocities as representative of the velocity over
the entire side of the control volume, so that the net
horizontal inflow of mass into the control volume is

approximated by

g, = (Up -Up) Ay (93)

Clearly, this approximation is of a lower order of accuracy
compared to a centered approximation but may be expected to
converge correctly asdAy =-> 0. In practice, the
requirement that the points w and e lie on the control volume
boundary leads to a restriction on control volume aspect

ratio. Strictly

Ay

- > S 94

Ax | Sg | (94)
where S, is the water surface slope (S,=dH/dx) . Restricting

the point to the middle third of the volume face, or

selecting

Ay

> 3 S 5
Ax | S¢ | (85)
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results in a much improved accuracy. This approach, while
cimple and easy to apply., is obviously not conservative, in
particular when the value of u varies significantly in the
vertical direction or in other words the velocity gradient is
large.

For solution of the momentum and turbulence transport
equations such a method may be adequate. The modelling
relations are necessarily approximate to begin with and are
usually subject to uneven order numerical treatment (e.g.
upwinding) . Under these circumstances there is 1little
benefit to be gained Dby enforcing strict conservation of
momentum compared to the effort that would be required to
implement it. The exception, of course, is in the presence of
steep velocity gradients. The remedy adopted herein is simply
to use non-offset control volumes in the near-bed and shear
layer regions where these large gradients are expected.
Corrections similar to those outlined below for the mass
conservation egquation could also be used if desired, but
would be somewhat cumbersome to incorporate.

Conservation of mass is easily restored by changing only
the computation of mass imbalance in the SIMPLE procedure.

The mass flow across the west face, for example, is

calculated from (for Sg > 0)

qxw = uwn lnww + uWS lsww (96)
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where 1., and l,, are the distances between points nw and W

and between points w and sw respectively. u,, r which is
located midway between points nw and w, is linearly
interpolated between uy and up. In the same way u,,, which is

jocated midway between points W and sw, is linearly
interpolated between up, and ug. Now on any vertical section
between control volumes the total flow leaving the left
control volumes is equal to the flow enteririg the right
control volumes and the formulation is therefore conservative
of mass.

At the water surface the situation is as shown in Figure

107. The condition for mass conservation here is

Qe = qw_(external flow does not enter) (97)
and

Qyz = 9y2 (internal flow does not leave) (98)
or

dy; * QAx2 = 9y1 + Gy2 (99)

Approximating the flows by representative velocities yields

U,1, + U,l
v, = -l—lz;—l——z- (100)
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which is readily observed to be a form of the kinematic free
surface condition, i.e. equation (85) .

The offset control volume method thus offers a very
simple handling of the variable geometry free surface. All
that is required is an adjustment of nodal elevations
according to equation (92) for which only a value of H at
that vertical section is needed. Conservation of mass is
retained by modification of the imbalance calculation and a
careful statement of the free surface condition. Conservation
of momentum is only approximately satisfied but it 1is
expected that the resulting errors will be of the order of or
smaller than the errors resulting from other approximations
and uncertainties in these equations.

A complete conservation of mass and momentum can be
achieved by a more complex formulation. A similar problem
concerning the conservative scheme was encountered in the
zonal handling of a complex solution domain and has been
discussed by Rai (1984, 1986). Rai (1984) emphasized the
importance of maintaining conservation at nodal boundaries
and the necessity of excising extreme care to treat grid
points on the zonal boundaries. Rai (1986) also demonstrated
that this goal could be achieved to first order and second

order accuracy.
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3.4 Hybrid Numerical Scheme

For convection dominated problems, such as submerged
hydraulic Jjumps, careless numerical discretization of
transport equations will result in serious numerical
diffusion. The hybrid scheme of Spalding (1972) offers a
simple and economical approach. Careful selectiop of mesh or
grid spacings can help to avoid the serious numerical
diffusion involved. Other discretization schemes, such as
streamline upwind scheme by Hughes and Brooks (1979) and skew
upwind scheme by Raithby (1976), relax the restriction
imposed by hybrid scheme and limit the artificial diffusion
to the flow direction only. The QUICK (Quadratic Upwind
Interpolation for Convective Kinematics) scheme by Leonard
(1979) uses a higher degree upwind weighted interpolation to
achieve better accuracy and avoid artificial diffusion.

Due to the empirical nature of turbulence modelling,
not much could be gained by using high order numerical
schemes, so the hybrid scheme is applied in this study.
Because the hybrid scheme was originally used to develop the
k-€ turbulence model, there is an advantage to make full use
of the experience related to the scheme. Grid spacings will
be refined in the regions where serious numerical diffusion
can be identified.

For different transport equations different control
volumes have to be used. All variables, with the exception of

velocities, are located at the grid nodes. The latter are
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located midway between the pressures which drive them. Three
different control volumes are demonstrated in Figure 108.

The hybrid scheme combines both upwind and central
differences in approximating the transport terms considering
both the accuracy and stability of the finite difference
counterpart. What the hybrid scheme does is basically to
shift from upwind to central differences Or vice versa in
evaluating the convection terms according to local Peclet

Number. For example, the flux across BC is evaluated by

+ +
(ug 9"——2—93 - Kpc G * 0 ) 1pc ; when | Po | <2 (101)
Axpp
Uplplpc # when | P | > 2 (102)
Ugdplpc ¢ when | Pg | < -2 (103)

where ¢ is the transporting quantity; K is diffusivity, which
represents V¢ in the momentum equations, Vi¢/Ox in the X

equation and V¢/Ox in the € equation; and P, is the 1local

Peclet number and it is defined as:

U-Ax
p, = LEoXee (104)
Kpe

The detailed derivaton of the finite difference

counterparts of governing equations are attached in Appendix
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A, where the formulation procedure recommended by Runchal

(1972) was followed. The finite difference equations read

CopUp = CuUs + CuUs *+ CuUx * CusUs + Cup (105)
CopVp = CupVe + CunVy + CuyVy + CusVs + Cup (106)
CoKp = CugKs + CriKy *+ CuiKn + CusKs  + Cxp (107)
Ceofp = Cepfs + Coify + Coy * CesEs + Cap (108)
CopP'p = CpgP'y + CowP'w + ConP'n * CpsP's * Cpo (109)

3.5 Solution Algorithm

To solve the resulting set of finite difference
equations, the particular procedure Or solution algorithm
which is chosen is not very important, unless numerical
efficiency is a great concern. Otherwise, any solution
algorithm which has reasonable speed can be used to solve the
problem. Because SIMPLE by Garetto et al (1972) was
developed together with X—€ model, this procedure is applied
in the present study.

The followings will outline the basic steps in SIMPLE
and demonstrate how iteration is employed to achieve
convergence.

Firstly a field of intermediate velocities u and Vv are

obtained by solving the associated momentum equations using
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the assumed pressure Py turbulence ¥and € fields. Then
continuity is enforced by solving the equations for a
pressure correction p' and therefore determining the required
adjustments to the velocities and the pressures. The
equations for the remaining variables kxand € are then solved
in turn, and the whole process is repeated until a
satisfactory solution is obtained.

For the present calculation a line-iteration method has
peen employed, wherein the unknown variables along each grid
line are calculated by application of the tridiagonal matrix
algorithm, on the assumption that values on neighboring lines
are known. This operation is performed in turn on the sets of
lines lying in the Xx, ¥ directions: it usually suffices to
perform one such "double sweep" on the velocities (u and v)
and turbulence guantities, and three sweeps On P', per cycle
of calculation. This method is substantially faster than
point iteration. The above process is summarized in the
calculation flow chart as shown in Figure 109.

The computer programs are attached in this thesis as
Appendix B. Several important observations from numerical
computation are summarized as follows:

(1) Define a computational Reynolds' number as

R,. = (110)
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where U.,, L. and V.. are typical velocity and length
scales of the flow field and eddy viscosity
respectively. Small R, should be assumed at the start
of the calculation. Otherwise, numerical instability is
observed.

(2) ¥ and &€ are always positive scalars. Caution and
prevention measures should be taken to avoid negative
values occurring during actual computation.

(3) The simultaneous and nonlinear character of the
equations necessitates that special measures be
employed to procure numerical stability. These include
under-relaxation of the solution of the momentum and
turbulence equations with factors typically in the
range of 0.3 to 0.5 when the calculation starts and 0.1
to 0.3 when the iteration reaches the final stage and
linearization of the nonlinear source/sink terms in the
equations for X and &

(4) Numerical calculation indicates that the final results
are not sensitive to the inlet x and € at all and so

the inlet conditions for X and € should not be treated

as critical values rather than a way to help to start

the solution.

3.6 Results and Discussions
The numerical simulation was conducted or the Amdahl

5890 computer in the University of Alberta. Three different
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calculation grid meshes were used for the three different
conditions.

For illustration purposes, the actual grid mesh for
calculation and the final velocity vector fields for three
cases are plotted from Figure 110 to 115. Notice that the
lower grid lines are parallel to the ped and the upper grid
lines are slightly skewed and that the grid mesh is denser
near the shear region and inlet in order to avoid serious

numerical diffusion.

The prediction for water surface profiles, velocities u

and v, turbulence guantities u'2, v'2 and u'v' are compared
with the experimental measurements as shown from Figure 116
to 131. The pressure field predictions are also included
from Figure 132 to 134.

Before the performance of the numerical prediction is
evaluated, three basic sources of errors which might cause
the discrepancies between the measurements and predictions
are discussed as below:

(1) Due to the aspect ratio influence in the actual
experimental conditions, the roller of a submerged
hydraulic jump is three dimensional in nature. This
phenomenon is discussed in detail in the second part of
the thesis, according to which there is a strong
vortex-like motion near the gate on the water surface.
The effect is narrowing the passing area for the
reversing flow in the roller, so negative velocities in

the center plane will increase. The influence of this
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vortex motion is important to the mean flow especially
for the reversing portion. However, it is less
significant to the forward portion ot the mean flow and
the turbulent fields. To test how well a two
dimensional model can predict the flow, the two
dimensional numerical prediction is used to compare
with the detailed measurement at a plane closer to the
center line. The average longitudinal velocities at a
=constant plane and a few vertical profiles, which are
available from the detailed spanwise measurement, are
also used to compare with the two dimensional
prediction.
Numerical errors could be introduced due to the use of
offset control volumes in the region of reversing flow.
As an example an error analysis has been done for the
case of F;=3.19 and 5=0.85. The unit discharge
predictions are in error by up to 2% and the unit
momentum predictions are in error by up to 3% in this
case. The error for unit discharge is believed due to
incomplete convergence instead of the numerical method,
and the error for unit momentum is due to both the
discharge error and the numerical method itself. At
the same time the hybrid numerical scheme used can
cause numerical diffusion as well.
The K—-€ turbulence model has its own limitations when
it is applied to strong recirculating flows. As

pointed out by McGuirk et al (1979), the eddy viscosity
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hypothesis is inadequate in some parts of the flow: in
the initial region of the shear layer the turbulence
production far exceeds its dissipation; the strong
streamline curvature 1imits the applicability of the
hypothesis; the isotropic assumption does not represent
the normal stresses properly; towards the end of the
jump turbulence dissipation is much higher than its
production so that o is no longer a constant; finally
the gradient diffusion assumption breaks down near the
regions of maximum velocities, as found out for the
wall jet by Tailland and Mathieu (1967).

Based on the above reasoning, the performance of the

numerical prediction can be summarized as follows:

(1) As shown in Figure 116 the water surface profiles are
well predicted except for the central part of the jump.
In the numerical calculation the conservation of the
mass flux is imposed. Also the downstream depth 1is
fixed as a boundary condition. As a result the
predicted water surface is higher than the measured
profile, wherever the influence of three dimensional
characteristics of the flow is significant. This
discrepancy will eventually change the predicted
pressure field so that the velocity predictions are
.influenced by this factor as well. It seems that the
predicted surface profile is in better agreement with
the measurement for higher submergence and lower inlet

Froude number. For example, for F,=8.19 and S$=0.24, the
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surface profile is over predicted by up to 6% while
only up to 2% error is encountered for F;=3.09 and
S=0.85.

The prediction of the mean velocity component u for the
three tested cases are generally in good agreement with
the measurement as shown in Figure 117 tc 119. However,
a few discrepancies are observed when the predicted u
is compared with the measurement at a plane of
z/W=0.36. For the reversing portion of the flow near
inlet, the velocity u is over predicted by up to 0.1U;.
This is due to the three dimensional effect causing
stronger negative flow near the center plane. The
comparison of predicted u with the average u of
spanwise measurement indicates a much better agreement.
For example, for F;=5.49 and S=0.63 as shown in Figure
118, where detailed spanwise measurement is available
at x/Y¥;=4, the predicted u in reversing part of the
flow is only in error by up to 0.02U, when compared
with the average value. For the three tested cases, the
predicted u is generally in better agreement with the
average value than that at the z/W=0.36 plane,
especially for the reversing portion of the mean flow
where the effect of three dimensionality is more
important. In the forward portion of the mean flow,
where the three dimensional effect is less significant,
the predicted u is 1in good agreement with both the

value at the plane z/W=0.36 and the average u. For the



(3)

92

same example at x/Y;=4 under F;=5.49 and s=0.63 as
shown in Figure 116, the predicted up is almost the
same as both the u, at the plane z/W=0.36 and the
average u,. As shown in Figure 135 to 137, however, the
predicted um further downstream is higher than the
measurement at z/W=0.36 plane. This can be explained by
the fact that u, at the center plane is smaller than
that near the side walls as previously discussed.
Again, the comparison of the predicted un with the
average value for these regions indicates a better
agreement. For example, at x/Y,=64 under F;=5.49 and
s=0.63 as shown in Figure 118, where the detailed
spanwise measurement is available, the predicted un
agrees with tha average un while it over predicts the
u, at z/W=0.36 plane by 0.090,.

Since the measurement for the velocity component Vv is
not accurate as previously discussed, the comparison of
v between the prediction and measurement only has a
qualitative merit. As shown from Figure 120 to 122, the
trend of v distribution is in agreement between the
experimental data and prediction while the prediction
gives a better indication of v near the bed than the
measurement. For the three tested cases, the predicted
v can be in error by up to 0.04U; to the experimental

data, which give the maximum v of 0.06U; for all the

tested submerged jumps.
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Turbulence gquantities Vﬁ:TE ' JﬁtTE and u'v’ are
reasonably well predicted for three cases. The
gradient diffusion assumption breaks down near the
maximum velocity region, but the negative turbulence
production region is so small in comparison with the
whole flow depth that the X-€ model still works very
well in this particular application. The effect due to
imposing gradient diffusion assumption in this region
is to shift the u, closer to the bed, which will
eventually influence the shear stress prediction along

thLe bed to some extend. As shown in Figure 136, where

ped shear stress coefficient C; is defined as
Ce=27,/pPpU12%, bed shear stress is in error of up to
100%. As well known for hydraulic jumps the bed shear
stress, which can be neglected in traditional analysis,
is trivial in the conservation of momentum. So this

discrepancy does not bear any practical significance.

As shown from Figure 135 to 137, the maximum (u'v’'),
and (Q ETE)m and (V v'2 ), are under predicted up to
50% for the initial part of the shear layer, but are
well predicted further downstream. Also some

—

fluctuating behaviors of (u'v'), and (V u'? ), and

(v v'2 ). in the initial part of the solution domain
are also observed. This is believed to be caused by
the unrealistic turbulence production for the initial
part of the shear layer resulting from the numerical

calculation. The dominant term in calculating the
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turbulent production from equation (82) for the initial
shear layer is given by v:<au/ay)2. Depending on how
refined the Ay is near the shear layer, this production
term would result in a large vaiue. Figures 80 shows
that the maximum turbulent shear stresses develop from
zero at the inlet to a maximum at 5<x/Y¥;<10. The large
and unrealistic turbulent production would, therefore,

cause large turbulent stresses and lead to undulated

shape of (u'v')n distribution with regular Ax. There
are two ways to correct this ¢« .or. One is to modify
the turbulent production term calculation for the
initial part of the shear layer, but this would lead to
modifying the standard k-€ model, which is beyond the
scope of this thesis. Another way is to use a much
smaller Ax for the initial part of the shear layer.
This remedy would smooth the transition from a large
shear stress to a more realistic one further downstream
so as to smear out the undulated shape. However, this
approach would introduce a large number of grid lines
near the inlet causing much longer computation times.
This correction method would have generated smoother
curves, but it would still cause unrealistic turbulent
stresses near the inlet. In light of these facts, the
standard ¥—-¢ modelling relationships were used and no
correction was made in smoothing the undular shapes of

maximum turbulent stresses.
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(5) Because the pressure fields have not been measured, no
comparisons have been made for the pressure fields.
Instead, only the pressure fields from the prediction
are discussed Dbelow. A non-dimensional pressure

departure from hydrostatic can be defined by the

following,
H-y)-P
pU,2/2

where the depth of flow is denoted by H; the vertical

distance from the bed is expressed by y; P is the

pressure; U; is the inlet velocity; and P4 denotes the
non-dimensional pressure departure from hydrostatic.
The distribution of P4 for the three runs are presented
from Figure 132 to 134. It appears that the pressure
distributions are quite hydrostatic for x/¥1 2 50. Near

the inlet, the pressure can deviate from hydrostatic

distribution by up to 10% of pU;2/2. At about x/¥,=25,
the maximum Pyq is about 5%. This departure from
hydrostatic distribution is believed to be caused by
flow curvature, which induces centrifugal forces in the
recirculating region. It is also in accordance with
what was reported by Rajaratnam (1967) for free

hydraulic jumps.
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3.7 Comparison of K-€ Model and SIM

... order to demonstrate the advantages and disadvantages
of the differential and integral approaches in predicting
submerged hydraulic jumps, the results from the k-€ model
prediction will be compared with those from one of the
integral methods as discussed in the Literature Review in the
first part of this thesis. As previously discussed, the
integral method of McCorguodale and Khalifa (1983) refined
the SIM (Strip Integral Method) of Narayanan (1975), soO the
SIM by McCorguodale and Khalifa (1983) 4is chosen for
comparison. Because the integral method by Madsen and
Svendsen (1983) was based on the k-£ model, the results from
this method are expected toO be similar to this study.
Therefore, only the integral method by McCorquodale and
Khalifa (1983) is considered in this comparison.

The SIM of McCorquodale and Khalifa (1983) was applied
to predict submerged radial hydraulic jumps by Abdel-Gawad
and McCorquodale in 1984. The methodology described by Abdel-
Gawad and McCorquodale (1984) was adopted in this study to
predict submerged hydraulic jumps in rectangular channels.
The governing eguations, basic assumptions and numerical
methods of SIM applied to submerged hydraulic Jjumps were
summarized in the following.

(1) The governing equations read

du | v _

ox + oy 0 (3)
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du , Qu _ 148 109%
Wk t V§§ T g dx * P dy (112)

where hydrostatic pressure distribution is assumed. In

equation (112) 7T, denotes the turbulent shear stress

and it is given by

T = -p 'V’ (113)

(2) As defined in Figure 11, the following velocity

(3)

profiles are assumed for submerged hydraulic jumps,

U= Up (§)1/7 0 <y <8 (22
y-0
u=-us + ( up + us ) exp[—c(;——)ZJ (6 <y £H (23)

where the coefficient c¢c was optimized Dby Abdel-Adwad
and McCorquodale (1984) for submerged hydraulic jumps
and determined to be c=1.38*Y./Y;.

Integration is performed for the following egquations

petween different limits as given below,

dH
dy = -Usg, (114)

Q)lQJ
L0 [
QJ|QJ
E

H
dy = - |
0

]

5 Ju ) 8 4n 1 ddt
jua—xdy+fv3£dy=—gja-;dy+—fgjdy (115)
0 8 0 . P o

<
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oaw e _oveR 10

[ Yox dy * [ Voy dy = -9] gx 9 ¥ P [ 3y dy (116)
& ) 5 &

H du H du H gy 1 Hot

g Uz, dy + g vg; dy = —gg dx dy + o g 3y a (117

in which y* is the ordinate of the maximum turbulent

shear and it is defined by

S, 5 (118)
* = T
o V8c
Equations (114) to (117) contain four unknown

parameters Up, Uooy 8 and H, which are the variables to

be predicted.
Equations (114) to (117) introduce the shear stresses

at y=0, 8, yx and H, which are assumed to be given by

the following,

2
1. (y=0) = _0.0424 pEm_ (119)
u,d 2
(—)0.25
\Y
. (y=8) =0 (120)
—ox) = 2¢ (ugtuy) y-8
T, (y=y*) = -p(0.019x)2{ (H-d)2 exp[—c(H_a)?-]}2 (121)

1. (y=H) =0 (122)
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A set of four ordinary differential equations are
obtained by substituting the velocities from equations
(22) to (23) and the shear functions from equation
(119) to (122) into the integral equations (114) to
(118) . These equations are expressed in the form of

dH dd duceo du .
AL * Bigg * Cigg *Dige - Bi (L2340 (123)

The coefficients A;, B;, Ci, D; and E; are functions of
the unknowns H, 0, Ue and u,. These functions are given
in Appendix C.

In order to start the computation, the initial
condition at the end of the potential core has to be
determined. The method used herein is to assume a
uniform velocity distribution at the inlet and length
of the potential core about 6Y;. The continuity and
momentum equations are applied to the inlet section and

the end of potential core as below,
H

1Yy = [u dy (124)
0

H Y1
%‘Y(YSZ—HZ) - 6Y1T0 = P (] u? dy - [ U2 dy) (125)
o} 0
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Equations (124) and (125) can be solved for Uee and H by

assuming & and u, at the end of the potential core as

the following,

up = U (126)
(127)

The resulting sets of equations to be solved are listed
in Appendix C.

(7) A program was written to solve the set of ordinary
differential equations. The source code is attached in
Appendix D. The solution wprocedure is explained as the
following: the submerged depth Y 1is initially
estimated; this value is then uzed and calculation
proceeds downstream; at the end of the Jjump the
predicted depth 1is compared with Y. and the necessary
correction is made for the new starting value of Y¥;
and the routine is repeated several times until the
predicted Y. falls within a specified tolerance (1 mm
in this study).

The two important parameters H and u, predicted for the
conditions of serial S3, S6 and S8 are compared with the data
from the experiment and the prediction from X—€ model. As
shown in Figure 116 the predictions of surface profiles from

both methods are fairly good for low inlet Froude number and
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high submergence but not as good for high inlet Froude number
and low submergence. However, the differential approach
generally gives better prediction. For example, for the
condition of Fi=8.19 and S$=0.24 the prediction from K—-€ model
is in error up to 6% but the prediction from SIM method is in
error up to 20%. The comparison of u, from Figure 135(a) to
137(a) indicates that the differential method genefally gives
petter prediction than the integral approach. For example, as
shown in Figure 135(a) for the condition of F;=3.19 and
$=0.85, the SIM method can not predict the accelerated trend
of u, near the inlet. Near the end of the jump, the prediction
of u, from X—€ model is in error up to 10% while the
prediction from SIM method is in error up to 20%.

Even though this study indicates a slightly better
performance by K-€ model than SIM method, both methods are
believed to be in about same degree of success in predicting
the major flow parameters of submerged hydraulic jumps, such
as H and u,. The integral method is usually easy to apply and
it requires less computation efforts than the differential
approach. However, as pointed out in the Literature Review,
the assumptions for the integral method are problem specific
and less universal than k-€ model. Further, for the integral
method the turbulent stresses and velocity profiles are parts
of the assumptions rather than the solution. Finally, the
differential approach is capable of dealing with different
boundary and inlet conditions while the integral method 1is

less capable or even impossible.
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3.8 Conclusions

The two dimensional standard K-—€ turbulence model has
been applied to predict the characteristics of submerged
hydraulic Jjumps. The predicted surface profiles, mean
velocities and the turbulence stresses for the three tested
runs have been compared with those from the measurement. The
selected integral method SIM of McCorquodale and Khalifa
(1983) has also Dbeen applied for the three test cases to
predict the main flow parameters, in which the two important
variables H and up have been compared with Dboth the
measurement and the prediction from X-€ model. Based on this
numerical study, the following conclusions can be drawn.

(1) The offset control volume method was originally
developed in this study, and it has been successfully
applied in the numerical prediction of submerged
hydraulic Jjumps. The proper use of offset control
volumes, coupled with hybrid numerical scheme and
SIMPLE solution algorithm, can offer an economical
solution which is reasonably accurate. The errors
introduced in calculating the unit momentum using this
method are up to about 3% for the tested runs. Above
all, this method is simple and straightforward. Its
application may be a useful alternative in the solution
of other similar free surface problems in hydraulics.

(2) It appears that the ¥X-¢€ model has a slightly Dbetter
performance than SIM method in predicting the surface

profiles. For both methods, the predicted surface
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profile is in better agreement with the measurement for
high submergence and low inlet Froude number than for
low submergence and high inlet Froude number. In the
run of F;=8.19 and S=0.24, which has the highest inlet
Froude number and lowest submergence, the surface
profile is over predicted by up to 6% using X—€ model
and under predicted by up to 20% using SIM method.

The prediction of u velocity distributions using K-€
model is generally in fair agreement with the
measurement . Comparison of u profiles at z/W=0.36 from
the experiment with those from Kk-€ model indicates a
good agreement for the forward portion of the flow near
inlet but bad agreement with the reversing portion of
the flow and flow near the end of the jumps. However,
the predicted u is in good agreement with the average
value for both the reversing flow and the flow near the
end of jumps, since the average u smears out the three
dimensional effects. In the run of F;=5.49 and S$=0.63,
the predicted u can be in error up to 10%U; when
compared with the reveréing portion of the flow near
inlet at z/W=0.36 plane, but only up to 2%U,
discrepancy is observed when it is compared with the
average velocity. Near the end of the jump, up is over
predicted by up to 9%U; when compared with that at
z/W=0.36 plane, but it agrees well with the average up.
The predictions of u, along the jumps by both methods

are good, even though the differential approach gives
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petter prediction. The accelerated trend of u, near
inlet can not be predicted by SIM method. Near the end
of the jump, the prediction of u, from k—€ model is in
error up to 10% while the prediction from SIM method is
in error up to 20%.

The comparison of v profiles between the prediction and
the measurement has only a qualitative merit. The
difference of v between the experimental data and the
numerical results can be in error up to 4%U; or about
70% of maximum measured velocity V.

Turbulent gquantities are reasonably predicted. The

maximum (U'v')nms (V u'? Yo and (J v'2 ) are under
predicted by X-€ model by up to 50% for the initial
part of the shear layer, but are well predicted further
downstream. The standard k—€ model has several major
shortcomings when applied to the submerged hydraulic
jump. These include overpredicted turbulence production
for the initial part of shear layer, no curvature
effects on turbulence, inadequacy of the gradient
diffusion assumption near the maximum velocity region
and the isotropic assumption not representing the
normal stresses properly.

The pressure departure from hydrostatic distribution Pg
predicted by X-€ model shows about 5% near inlet. The
predicted pressure distributions are very close to

nydrostatic for x/¥;250 in the three tested runs.



The major processes of turbulence production and
diffusion in submerged hydraulic jumps are successfully
captured by the X-E turbulence model, so the present
prediction is quite promising in spite of the fact that the
model has a few shortcomings in strong recirculating flows.
The two dimensional numerical prediction for the mean
velocity fields compare fairly well with the average flows of
submerged hydraulic jumps.

It will be a challenging task to apply X-€ turbulence
model to free hydraulic Jjumps. More modelling relationships
have to be introduced to describe the transport of air-water
mixture and the mechanism of air entrainment. Numerically,
difficulties have to be overcome to create a solution mesh in
an easy way. Regarding the numerical schemes, better
discretization procedure such as QUICK can be implemented to
avoid the numerical or artificial diffusion. Regarding the
solution algorithm, a fully implicit method can be applied
to improve the overall numerical efficiency to reach a
converged solution. Nevertheless, more research has to be

done to resolve all these questions so as to apply X—-€ model

to free jumps successfully.



CONCLUSION

Major contributions towards our understanding of
hydraulic Jjumps have been reviewed. Among all the
experimental studies conducted so far, most of them
concerned with the macroscopic features of hydraulic jumps.
Many empirical relationships have been developed for
practical purposes. On the other hand, the internal flow
characteristics of hydraulic jumps have received much less
attention. The air model study of Rouse et al (1958) and
water model study of Resch and Leutheusser (1972) were the
only turbulence measurements available for free hydraulic
jumps. To my knowledge, there are no detailed turbulence
measurements on submerged hydraulic jumps in the literature.

The theoretical framework on hydraulic jumps has been
well established. The existing prediction methods are of the
integral type. The main length characteristics and some
aspects of mean velocity can be predicted by these methods.
However, all these methods rely too heavily on the
experimental data specifically related to hydraulic jumps.
The turbulence field in hydraulic jumps is a part of the
assumptions rather than being a part of predictions.

In the experimental part of this study, detailed and
accurate measurements have been made on submerged hydraulic
jumps. The data were collected by the LDA system available
at T. Blench Hydraulics Laboratory at the University of

Alberta. The experiments covered ten conditions with the

106
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submergence factor S varying from about 0.2 to about 1.7 and
inlet Froude number F1l approximately equal to 3.0, 5.5 and
8.0. From the analysis of the experimental data, the
following conclusions have been drawn.

(1) If a length scale L is defined so that u,/U,=0.5 when

=L, this length scale L is capable of grouping

all major flow characteristics u, /Uy,

(u'v")/(u'v') pno (\/ u'? )m/((ﬁ and

Ymm
(J ;TE)M/(Q v'2 ) together for different submerged
jumps. The correlation is good for x/L up to about
1.5. An empirical equation for L was proposed and it
can be used to roughly estimate L, but the equation
can be in error up to about 45%. The maximum
turbulence quantities can also be estimated from F,
and S. Therefore, the major flow characteristics can
be approximately determined for submerged jumps under
different conditions.

(2) It appears that there is a noticeable trend of
decrease in maximum turbulent stress and intensities
with increasing inlet Froude number. For the same
submergence factor the maximum turbulent shear
stresses can be different by 90% from F;=3 to 8. The
maximum turbulent stress decreases with increase of
submergence.

(3) In the fully developed region of a submerged jump,

which occupies about 85% of roller length L. 4 the

flow demonstrates some degree of similarity. The
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distribution of u/u, against y/b is similar to that of

a wall jet for y/b up to about 1.5. The shape of

u'v'/(n'v'), against (y;g)/(d:g) is almost identical

to that of a wall jet. The shapes V u'? /(Vﬁh'z ) m

and V v'2 /(Vﬁ;TE )m against y/d are self-similar
among different submerged Jjumps.
(3) Submerged hydraulic jumps are three dimensional in
nature. The climbing effect of mean velocity component
u near side walls is due to the vortex motion near the
gate. The 1losses of unit discharge g and unit
kinematic pressure plus momentum flux M at the center
plane occur along with their gains near the side
walls. After the jump the flow will recover into a
two dimensional flow. The influence of this vortex
motion has stronger effect to the reversing portion of
the flow than that of the forward portion. Its
influence to the turbulent field is 1less significant.

(4) The lengths of the roller from this experiment have
been compared with those predicted by Stepanov's
equation. It is found that the equation can be in error
by 190%.

In the numerical part of this study, a widely tested
two dimensional x—€ turbulence model is applied to simulate
submerged hydraulic jumps. An offset control volume method
is originally proposed and applied in this study. Further,

the results predicted from K—g€ model have been compared with

the measurements and those predicted from SIM method. Based
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on this numerical study, the following conclusions have been

drawn.

(1)

(2)

The ofrset control volume method was originally
developed in this study, and it has been successfully
applied in the numerical prediction of submerged
hydraulic Jjumps. The proper use of offset control
volumes, coupled with hybrid numerical scheme and
SIMPLE solution algorithm, can offer an economical
solution which is reasonably accurate. The errors
introduced in calculating the unit momentum using this
method are up to about 3% for the tested runs. Above
all, this method is simple and straightforward. Its
application may be a useful alternative in the solution
of other similar free surface problems in hydraulics.
It appears that the X-€ model has a slightly better
performance than SIM method in predicting the surface
profiles. For both methods, the predicted surface
profile is in better agreement with the measurement for
high submergence and low inlet Froude number than for
low submergence and high inlet Froude number. In the
run of F;=8.19 and S=0.24, which has the highest inlet
Froude number and lowest submergence, the surface

profile is over predicted by up to 6% using K-€ model

and under predicted by up to 20% using SIM method.

The prediction of velocity u distributions using X-€

model is generally in fair agreement with the

measurement . Comparison of u profiles at z/W=0.36 from
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the experiment with those from X—¢& model indicates a
good agreement for the forward portion of the flow near
inlet but bad agreement with the reversing portion of
the flow and flow near the end of the Jjumps. However,
the predicted u is in ‘wood agreement with the average
value for both the reversing flow and the flow near the
end of jumps, since the average u smears out the three
dimensional effects. In the run of F1=5.49 and s=0.63,
the predicted u can be in error up to 10%U; when
compared with the reversing portion of the flow near
inlet at =z/W=0.36 plane, but only up to 2%0,
discrepancy is observed when it is compared with the
average velocity. Near the end of the jump, up is over
predicted by up to 9% of U, when compared with that at
z/W=0.36 plane, but it agrees well with the average un.
The predictions of un along the jumps by both methods
are good, even though the differential approach gives
better prediction. The accelerated trend of up near
inlet can not be predicted by SIM method. Near the end
of the jump, the prediction of up from K—€ model is in
error up to 10% while the prediction from SIM method is
in error up to 20%.

The comparison of v profiles between the prediction and
the measurement only has a qualitative merit. The
difference of v between the experimental data and the
numerical results can be in error up to 4%U, or about

70% of maximum measured velocity V.
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Turbulent quantities are predicted reasonably well. The

maximum (u'v')q, (V u'z )n and <d v'2 Y are under
predicted by ¥X-g model by up to 50% for the initial
part of the shear layer, but are well predicted further
downstream. The standard X-€ model has several major
shortcomings when applied to submerged hydraulic jump.
These include overpredicted turbulence production for
the initial part of shear layer, no curvature effects
on turbulence, inadequacy of gradient diffusion
assumption near maximum velocity region and isotropic
assumption not representing the normal stresses
properly.

The pressure departure from hydrostatic distribution Pg
predicted by ¥X—€ model shows about 5% near inlet. The
predicted pressure distributions are quite hydrostatic
for x/Y;250 in the three tested runs.

The major process of turbulence production and
diffusion in submerged hydraulic jumps is successfully
captured by the X-€ turbulence model, so present
prediction is quite promising in spite of the fact that
the model has a few shortcomings 1in strong
recirculating flows. The ¢two dimensional numerical
prediction for the mean velocity fields compare fairly
well with the average flows of submerged hydraulic

jumps .
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3D TRAVERSE LDA OPTICS LASER
- ] C
COUNTER 1 COUNTER 2 FREQUENCY SHIFTER

COINCIDENCE FILTER and BUFFER

r

COMPUTER l———-—

MAIN COMPUTER

l

4

TERMINAL -

FLOPPY DISK PLOTTER. DISK, ETC.

Figure 14.

Schematic diagram of LDA setup

(Courtesy of P. M. Steffler)
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Figure 7¢. Three dimensional structure of the u
velocity for F;=5.49 and S=0.63.
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Figure 77. Three dimensional structure of -u'v'

for F;=5.49 and S$=0.63.
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Figure 79. u, /U, vs x/L plots

(a) Data from the present study;
(b) Data from Rajaratnam (1976).
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(c)

Figure 81. Variation of nondimensionalized maximum
turbulence shear stress and intensities
against inlet F,.
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profiles in fully developed region for
(a) F;=5.61 ans $=0.22;

(c) F;=5.43 ans $=1.01

(b) F1=5.49 ans S$=0.63;
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Figure 100. Similarity of vertical turbulence intensity
profiles in fully developed region for
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(c) F,=8.11 and S$=1.00.
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Figure 102.

(c)

Unit momeritum distribution along the jump at the
measuring plane of z/W=0.36 for all conditions.
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Figure 103. Unit discharge g and unit kinematic momentum
flux M distributions across the flume for three
cross sections for F;=5.49 and $=0.63.
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Figure 108. Different control volumes.
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Figure 116. Comparison of water surface profiles
from the prediction and ezperiment,
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Figure 135.
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¢ Experimental data

the experiment and the prediction for F;=3.19 and

S=0.85.

(a) u /U, vs x/Y,;
(c)Nu'Z /U, vs x/Y;; (d
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Figure 136.

Numerical prediction ¢ Experimental data

Comparison of major flow charateristics betwersn
the experiment and the prediction for F,=5.49
S=0.63.
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Figure 137. Comparison of major flow charateristics between
the experiment and the prediction for F,=8.19 and

S=0.24.
(a) u /U, vs x/¥;; (b) (u'v')m/Ul2 vs x/Yy;
(c)Nu'2 /U, vs x/¥;; (dNv'3/0; vs x/Y;.
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APPENDIX A - FINITE DIFFERENCE EQUATIONS

The finite difference counterparts of governing partial
differential equations are listed as follows for further
reference. Only the ' "gular treatment of control volumes like
Figure 108(a) to (c) is presented herein. Special
consideration should be made for the boundary control

volumes.

u Momentum FgJuation
Integrating u mcmentum equation over the control wvolume

shown in Figure 108 (b) yields the following formulas:

CpUp = CgUg + CyUy + CyUy + CgUg + Cy (128)
where

Ce= (Bg+ | Ag | + | Bg = IA; | | )/2 + B¢ (129)
Cw=(Bw+|AW|+|é;4-IAWI|)/2+Aw | (130)
Co = ( By + | By | = | By = IBy | | )/2 + By (131)
Cs = (Bg+ | Bg | + | Bg = |Ag | | )/2 + Bg (132)
Cp = Cg + C,; + Cy + Cg (123)
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Co= (Pxy = Pxp ) 1pp/p = 2(Xe = X) 1,0/3 (134)
and
A = (Up+ Ug) lpc/4 (135)
By = 2Vepclac/Axye (136)
B, = ( Up+Uy) Llap/d (137)
By, = 2Veaplap/AXuwe (138)
Ay = ( Vg + Vy) 1xs/4 (139)
By = Veaslan/AVre (140)
Ag = (Up+Uy) 1p/4 (141)
Bs = Vepclnc/BYen (142)

v Momentum Equation
Integrating v momentum equation over the control volume

shown in Fig.109(c) yields the following formulas:

CpVp = CeVz + CpVy + CyVy + CgVs + Gy (143)



where

and

= (Pxg - Pxp ) lag/P = 2(Ke = Kg) 1pg/3

( Bg + |

Cp + Cy +

( Usg + Ug ) 1lgc/4

Cy

+ Cg

2V pclpe/ By

( Up + Ug) 1pp/4

2V aplap/ Dxpg

( Vp+ Vy) 1a/4

Veaplas/ A¥ns

)/2

)/2

) /2

)/2
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(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)
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Ay = ( Up + Ug) Lpc/4 (156)
Bg = Vepelpe/ BYpss (157)

k¥ Egquation

Integrating K equation over the control volume shown in

Figure 108(a) yields the following formulas:

CoKp = CpKg + CyKy + Cyky + CsKs + Cy (158)
where
Cg= (Bg + | Ag | + | Bg = |Ag | | )/2 + Ag (159)
Cyu= ( By + | By | + 1 By~ IB¢ | | )/2 + By (160)
Cy= ( By + | Ay | + | By — IAy | | )/2 + By (161)
Co= (Bg + | Ag | + | Bg = IAg | | )/2 + BAg (162)
Cp=Cg+ Cy+ Cy+ Cg (163)
Co= (Gp = & ) lyglyp (164)

and
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A, = Uy lg/2 (165)
B, = Vypclac/Ox/Bxgp (166)
A, = Up 1pp/2 (167)
B, = Veaolap/Ox/B%yp (168)
B, = Vy lps/2 (169)
By = Veaslan/Ox/B%w (170)
Ag = Vp 1pc/2 (171)
By = Vepeloe/Ox/BXps (172)

€ Equation

Integrating € equation over the control volume shown in

Figure 108(a) yields the following formulas:

CpEp = CgEp + CuEy + Cp€y + Co€s t Co (173)

where

Cg=(BE+IAEI+|BE—IAE|l)/2+AE (174)
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Cy= ( By + | By | + 1 By = IRy | | )/2 + By (175)
Cy= ( By + | Ay | + 1 By = 1Ay | | )/2 + Ay (176)
Cs= (Bg+ | Ag | + | Bg - IAg | | )/2 + B (177)
Cp = Cg+ Cyt+t Cy+ Cg (178)
Co= (C1G &/k = Co€YK )p laglpp (179)
and
Ay = Ug 15./2 (180)
Bp = Vipclpe/ O/ Axgp (181)
A, = Up 1,p/2 (182)
By, = V:aplap/Oc/Axyp (183)
Ay = Vy 1,p/2 (184)
By = Viaplap/Oe/B%yp (185)

Ay = Vp 1pc/2 (186)



268

Bs = Vipclpe/Oe/Bps (187)

Continuity Equation

Define the pressure correction as:

(188)

Integrating continuity equation over the conurol volume

shown in Figure 108(a) yields the following formulas:

CoP'p = CgP'y + CyP'y + CyP'y + CsP's + Co (189)
where

Cg = AgY lgc (190)

Cy = BpY 1pp (191)

Cy = By lag (192)

Cs = Ag¥ Ipc (193)

Cp = Cg+ Cy+ Cyt+ Cq (194)

Co = —(Ug = Up)lpp = (Vy = Ve)lap (195)
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where C, is evaluated differently for the offset control
volumes as explained in the main text and AgY , AyY , AY and A

are evaluated from the u and v momentum equations.
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APPENDIX B - COMPUTER PROGRAM OF X-¢ MODEL

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C
of MAIN PROGRAM FOR SERIES S3 c
c C

CCCCCCCCCCCCCCCLLLLLQLLLLLLLLLLCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

EXTERNAL LEQT1B
DOUBLE PRECISION X{(71),H(71),Y(45),YP(45),U(71,45),
Vv1(71,45),TK(71,45),TD(71,45),P(71,45),

+

+ ‘TNU(71,45),ENU(71,45) ,A(71,3),B(71,1),
+ XL (138),UVXY(71,45),PP(71,45) ,AX0U(71,45),
+ AYV(71,45),TEMP(71,45)

M=71

N=45

Y1=.02%5

YT=.187

Ule«l.58

CALL GRID(M,N,X,Y, YP,H,¥YT)

NW=14
CMU=.09
CALL INLET(M,N,U,V,TK,TD,Y, TNU,CMU,Ul, Y1, NH)

CK=.4

CE=9.

CNU=1.E-6

CALL WALL(M,N,X,Y,U,V,TK, TD, TNU, ENU, Y1, U1, CMU, CE, CNU,CK)

CALL GUESS{M,N,U,V, TK, TD,CNU,CMU, H,P, PP, TNU, ENU, U1, X, NW)

MAB=69
OMEGAU=.3
OMEGAV=.3
OMEGAP=.3
OMEGAX=.5
OMEGAY=.5
OMEGAH=.3
OMEGAS=. 3
UREF=U1
VREF=U1/30.
PREF=YT*9.81E+3
HREF=YT
NS=27
TOL=.001

DO 1000 K=1,300

CALL UXMOM(M,N,X,Y,YP,U,V,ENU, P, OMEGAU, A, B, XL, LEQT1B, MAB,
+ DU, H, NS, OMEGAX, TEMP, UREF)

CALL VYMOM(M,N,X,Y,YP,U,V, ENU, P, OMEGAV, A, B, XL, LEQT1B, MAB,

Figure Bl. Computer program listing.
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+ DV, H, NS, OMEGAY, TEMP, VREF)

C
CALL PANDM(M.N,X,Y,YP,U,V,ENU,P,PP,OMEGAP, A, B, XL, LEQT1B,
+ MAB, DP, H, AXU, AYV, OMEGAH, DH, NS, PREF)
[of
CALL SURFH(M,N,P,H, YP,Y,NS, OMEGAS, DH, HREF)
C

WRITE(6,1001)K,DU,DV,DP, DH
1001 FORMAT ('UVPS~-K,DU,DV,DP,DH', 15,4E12.3)

(o
1000 CONTINUE
ot
OMEGAK=1.
OMEGAD=1.
OMEGAI=1.
OMEGAJ=1.
DELTAK=1.
DELTAD=1.3
Cl=1.43
C2=1,92
TKREF=.1
TDREF=1.
C
CALL PUVXY(M,N,NS,X,Y,YP,H,U,V, UVXY)
C
DO 2000 K=1,300
C
CALL TDRE(M,N,NS,X,Y,YP,H,U,V,UVXY, TK, TD, TNU, ENU,
+ DELTAD, C1,C2,0MEGAD,DTD, LEQT1B, A, B, XL, MAB,
+ TEMP, OMEGAJ, TDREF, CMU, CK)
o}
CALL TKEE(M,N,NS,X,Y,YP,H,0,V,UVXY, TK, TD, TNU, ENU,
A DELTAK, OMEGAK, DTK, LEQT1B, A, B, XL, MAB, CMU, CNU,
+ TEMP, OMEGAI, TKREF)
C

WRITE(6,2001)K,DTD,DTK

2001 FORMAT (' TKD-K, DTD, DTK', I5,2E12.3)
C
2000 CONTINUE
c

OMEGAU=.2

OMEGAV=.2

OMEGAP=.2

OMEGAX=.2

OMEGAY=.2

OMEGAH=.2

OMEGAK=.2

OMEGAD=.2

OMEGAI=.2

OMEGAJ=.2

OMEGAS=.1

OMEGAW=.2

TOL=.001

DO 3000 K=1,600

CALL UXMOM(M,N, X, Y, YP,U,V, ENU,P,OMEGAU,A,B, XL, LEOT1B, MAR,
- DU, H, NS, OMEGAX, TEMP, UREF, TK)

Figure Bl Continued
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3000

10
30

60
50
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(8]

CALL VYMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAV,A,B,XL,LEQTIB,HAB,
+ DV, H, NS, OMEGAY, TEMP, VREF, TK)

CALL PANDM(M,N,X,Y,YP,U,V,ENU,P,PP,OMEGAP,A,B,XL,LEQTIB,
+ MAB, DP, H, AXU, AYV, OMEGAH, DH, NS, PREF)

CALL PUVXY(M,N,NS,X,Y,YP, H,U,V,UVXY)

CALL TDRE(M,N,NS,X,Y,YP,H,U,V,UVXY,TK,TD,TNU,ENU,

+ DELTAD,C1,C2, OMEGAD,DTD, LEQT1B, A, B, XL, MAB,
+ TEMP, OMEGAJ, TDREF, CMU, CK)
CALL TKEE (M, N, NS, %, Y, YP,H,U,V,UVXY, TK, TD, TNU, ENU,
4+ DELTAK, OMEGAK, DTK, LEQT1B, A, B, XL, MAB, CMU, CNU,
4 TEMP, OMEGAI, TKREF)

CALL SURFH(M,N,P,H,YP,Y,NS, OMEGAS, DH, HREF)
CALL NALSHR(M,N,X,Y,U,V,TK,TD,CMU,CNU,CE,CK,OMEGAW,DW)

WRITE (6, 3001) K, DU, DV, DP, DH, DTD, DTK, DW
FORMAT('UVPKD—K,DU,DV,DP,DH,DTD,DTK,DW',IS,7E12.3)

CONTINUE

DO 30 I=1,M
po 30 J=1,N
WRITB(6,40)I,J,U(I,J),V(I,J),TK(I,J),TD(I,J),TNU(I,J),
+ P(I,J)
FORMAT (215, 6E12.5)
CONTINUE

DO 50 I=1,M
WRITE (6, 60) I . H(I)
FORMAT('I,H',I5,E15.5)

CONTINUE

STOP
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C
c MAIN PROGRAM FOR SERIES S6 C
C of

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCeCceeeceeeccccceccccccceet

EXTERNAL LEQT1B
DOUBLE PRECISION X(74),H(74),Y(50),YP(50),U(74,50),

+ Vv (74,50),TK(74,50),TD(74,50),P{74,50),

+ TNU(74,50),ENU(74,50) ,A(74,3),B(74,1),

+ XL(144),UVXY(74,50),PP(74,50),AXU(74,50),
+ AYV(74,50), TEMP (74, 50)

M=74

N=50

¥1=.025
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1001

1000

YT=.299
U1=2.72

CALL GRID(M,N,X,Y,YP,H,YT)

NW=14
CMU=.09
CALL INLET(M,N,U,V,TK,TD, Y, TNU,CMU, U1, Y1, NW)

CK=.4

CE=9.

CNU=1.E-6

CALL WALL(M,N,X,Y,U,V,TK, TD, TNU, ENU, Y1, U1, CMU, CE, CNU, CK)

CALL GUESS(M,N,U,V,TK, TD,CNU,CMU, H,P, PP, TNU, ENU, U1, X, NW)

MAB=72
OMEGAU=.2
OMEGAV=, 2
OMEGAP=.2
OMEGAX=.2
OMEGAY=.2
OMEGAH=. 2
OMEGAS=.2
UREF=U1
VREF=U1/30.
PREF=YT*9.81E+3
HREF=YT
NS=33

DO 1000 K=1, 300

CALL UXMOM(M,N,X,Y,YP,U,V, ENU,P,OMEGAU, A, B, XL, LEQT1B, MAB,

+ DU, H, NS, OMEGAX, TEMP, UREF)

CALL VYMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAV, A, B, XL, LEQT1B, MAB,

+ DV, H, NS, OMEGAY, TEMP, VREF)

CALL PANDM(M,N,X,Y,YP,U,V,ENU,P, PP, OMEGAP, A, B, XL, LEQT1B,

+ MAB, DP, H, AXU, AYV, OMEGAH, DH, NS, PREF)

CALL SURFH(M,N,P,H, YP,Y,6 NS, OMEGAS, DH, HREF)

WRITE(6,1001)K,DU,DV,DP,DH
FORMAT ( 'UVPS-K,DU,DV,DP,DH"®, I5,4E12.3)

CONTINUE

OMEGAK=.
OMEGAD=.
OMEGAI=.3
OMEGAJ=.3
DELTAK=1.
DELTAD=1.3
Ci=1.43
C2=1,92
TKREF=.1
TDREF=1.

[P N}
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CALL PUVXY(M,N,NS,X,Y,YP, H,U,V,UVKY)

DO 2000 K=1,300

C
[of

CALL
C

CALL
o

TDRE(M,N,NS,X,Y,YP,H,U,V,UVXY,TK,TD,TNU,ENU,
DELTAD,Cl,CZ,OMEGAD,DTD,LEQTlB,A,B,XL,MAB,
TEMP, OMEGAJ, TDREF, CMU, CK)

TKBE(M,N,NS,X,Y,YP,H,U,V,UVXY,TK,TD,TNU,ENU,
DELTAK,OMEGAK,DTK,LBQTIB.A,B,XL,MAB,CMU,CNU,
TEMP, OMEGAI, TKREF)

WRITE(6,2001)K,DTD,DTK
2001 FORMAT (' TKD-K, DTD, DTK', 15,2E12.3)

C
2000 CONTINUE
C
OMEGAU=.2
OMEGAV=,2
OMEGAP=.2
OMEGAX=.2
OMEGAY=.2
OMEGAH=.2
OMEGAK=.2
OMEGAD=.2
OMEGAI=.2
OMEGAJ=.2
OMEGAS=.01
OMEGAW= ., 2
C
DO 3000 K=1,80Q
C
CALL UXMOM(M,N,X.Y,YP,U,V,ENU,P,OMEGAU,A,B,XL,LEQTIB,MAB,
+ DU, H, NS, OMEGAX, TEMP, UREF, TK)
C
CALL VYMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAV,A,B,XL,LEQTlB,MAB,
+ DV, H, NS, OMEGAY, TEMP, VREF, TK)
o
CALL PANDM(M,N,X,Y,YP,U,V,ENU,P,PP,OMEGAP,A,B,XL,LEQTIB,
+ MAB, DP, H, AXU, AYV, OMEGAH, DH, NS, PREF)
of
CALL PUVXY(M,N,NS,X,Y,YP, H,U,V,UVXY)
of
CALL TDRE(M,N,NS,X,Y,YP,H,U,V,UVXY, TK, TD, TNU, ENU,
A DELTAD,C1, C2,0MEGAD, DTD, LEQT1B, A, B, XL, MAB,
+ TEMP, OMEGAJ, TDREF, CMU, CK)
C
CALL TKEE (M, N,NS,X,Y, YP,H,U,V,UVXY, TK, TD, TNU, ENU,
+ DELTAK, OMEGAK, DTK, LEQT1B, A, B, XL, MAB, CMU, CNU,
+ TEMP, OMEGAI, TKREF)
o
CALL SURFH(M,N,P,H,YP,Y,NS,OMEGAS, DH, HREF)
c
CALL WALSHR(M,N,X,Y,U,V, TK, TD, CMU, CNU, CE, CK, OMEGAW, DW)
C

WRITE (6,3001)K,DU,DV,DP,DH,DTD, DTK, DW
3001 FORMAT ( ' UVPKD-K, DU, DV, DP, DH,DTD, DTK, DW', I5, 7E12. 3}

o8

3000 CONTINUE
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OO0 000

275

DO 30 I=1,M
DO 30 J=1,N
WRITE(6,40)1,J,0(I,J),V(I,J),TK(I,J},TD(I,J),TNU(I,J),

+ P(I, T

FORMAT (215, 6E12.5)
CONTINUE

DO 51 I=1,M
WRITE(6,61)I,H(I)
FORMAT('I,H',I5,E15.5)

CONTINUE

STOP
END

CCCCCCCCCCCCCCCCCCCCCCeCcCCCecceeeceeccecececccececceccececeee

o} o
c MAIN PROGRAM FOR SERIES S8 c
C c

CCCCCCCCCCCCCCCCCCCCCCCCececeeeccececceceeeececcecececcececcee

EXTERNAL LEQT1B
DOUBLE PRECISION X(90),H(90),Y(45),YP(45),U(90,45),

+ v (90, 45), TK(90,45),TD(90,45),P(90,45),

+ TNU (90, 45) ,ENU(90,45) ,A(90,3),B(90,1),

+ XL(164) ,UVXY (90,45),PP(90,45),AXU(90,45),
+ AYV (90, 45), TEMP (90, 45)

M=90

N=45

Y1=.015

¥YT=.206

U1=3.14

CALL GRID(M,N,X,Y,YP,H, ¥YT)

NW=16
CMU=.09
CALL INLET(M,N,U,V,TK,TD,Y, TNU,CMU,Ul, Y1, NW)

CK=.4

CE=9.

CNU=1.E-6

CALL WALL(M,N,X,Y,U,V,TK,TD, TNU,ENU, Y1, U1, CMU, CE, CNU, CK)

CALL GUESS(M,N,U,v, TK, TD,CNU,CMU, H, P, PP, TNU, ENU, U1, X, NW)

MAB=M-2

OMEGAU=.
OMEGAV=.
OMEGAP=.
OMEGAX=.
OMEGAY=,
OMEGAH=.1

OMEGAS=.01

NN NON
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1001

1000

3001

3000

UREF=U1
VREF=U1/30.
PREF=YT*9.81E+3
HREF=YT

NS=30

DC 1000 K=1, 300

CALL UXMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAU,A,B,XL,LEQTlB,MAB,

+ DU, H, NS, OMEGAX, TEMP, UREF)

CALL VYMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAV,A,B,XL,LEQTIB,MAB,

+ DV, H, NS, OMEGAY, TEMP, VREF)

CALL PANDM(M,N,X,Y,YP,U,V,ENU,P,PP,OMEGAP,A,B,XL,LEQTlB,

+ MAB, DP, H, AXU, AYV, OMEGAH, DH, NS, PREF)

CALL SURFH(M,N,P,H,YP,Y,NS, OMEGAS, DH, HREF)

WRITE(6,1001)K,DU,DV,DP,DH
FORMAT { ' UVPS-K, DU, DV,DP,DR', I5,4E12.3)

CONTINUE

OMEGAK=.1
OMEGAD=.3
OMEGAI=.1
OMEGAJ=.3
DELTAK=1.
DELTAD=1.3
C1=1,43
c2=1,92
TKREF=.1
TDREF=1.

CALL PUVXY(M,N,NS,X,Y,YP,H,U,V, UVXY)
CO 2000 K=1,300

CALL TDRE (M, N, NS, X, Y, YP,H,U,V, UVXY, TK, TD, TNU, ENU,
DELTAD, C1,C2, OMEGAD,DTD, LEQT1B, A, B, XL, MAB,

+ "TEMP, OMEGAJ, TDREF, CMU, CK)

CcALL TKEE (M,N,NS,%,Y,YP,H,U,V,UVXY,TK, TD, TNU, ENU,

+ DELTAK,OMEGAK,DTK,LEQTIB,A,B,XL,MAB,CMU,CNU,
+ TEMP, OMEGAI, TKREF)

WRITE(6,2001)K,DTD, DTK
FORMAT ( ' TKD-K, DTD, DTK"', 15, 2E12.3)

CONTINUE

OMEGAU=.2
OMEGAV=.1
OMEGAP=.1
OMEGAX=.2
OMEGAY=.1
OMEGAH=.1
OMEGAK=.1
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3000
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0OO0O00000

OMEGAD=_, 2
OMEGAI=.1
OMEGAJ=,2
OMEGAS=.01
OMEGAW=. 2

DO 3000 K=1, 600

CALL UXMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAU, A, B, XL, LEQT1B, MAB,
DU, H, NS, OMEGAX, TEMP, UREF, TK)

CALL VYMOM(M,N,X,Y,YP,U,V,ENU,P, OMEGAV, A, B, XL, LEQT1B, MAB,

+ DV, H, NS, OMEGAY, TEMP, VREF, TK)

CALL PANDM(M,N,X,Y,YP,U,V,ENU,P,PP,OMEGAP, A, B, XL, LEQT1B,

+ MAB, DP, H, AXU, AYV, OMEGAH, DH, NS, PREF)

CALL PUVXY(M,N,NS,X,Y,YP,H,U,V,UVXY)

CALL TDRE(M,N,NS,X,Y,YP,H,U,V,UVXY, TK, TD, TNU, ENU,

+ DELTAD,C1,C2,0MEGAD,DTD, LEQT1B, A, B, XL, MAB,
+ TEMP, OMEGAJ, TDREF, CMU, CK)

CALL TKEE(M,N,NS,X,Y,YP,H,U,V, JVXY, TK, TD, TNU, ENU,

+ DELTAK, OMEGAK, DTK, LECT1B, A, B, XL, MAB, CMU, CNU,
+ TEMP, OMEGAI, TKREF)

CALL SURFH(M,N,P,H,YP,Y,NS, OMEGAS, DH, HREF)
CALL WALSHR(M,N,X,Y,U,V,TK, TD,CMU, CNU, CE, CK, OMEGAW, DW)

WRITE (6, 3001) K, DU, DV, DP, DH,DTD, DTK, DW
FORMAT ( ' UVPXD~K,DU,DV,DP,DH,DTD, DTK,DW’, IS5, 7TE12.3)

CONTINUE

‘DO 30 I=1,M

DO 30 J=1,N
WRITE(6,40)1,J,0(I1,J),V(I,J),TK(I, J),TD(I,J),TNU(I,J),
P(I,d)
FORMAT (215, 6E12.5)
CONTINUE

DO 51 I=1,M
WRITE(6,61)I,H(I)
FORMAT('I,H',IS5,E15.5)

CONTINUE

STOP
END

cceeececeeeceececcececeececccecccccceccccccccce

C Cc
ot SUBROUTINE GRID FOR S2 C
o C

ceceeeeeceeeeeeeeecceccecceeccceeccccecece
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THIS SUBROUTINE IS TO INITIALIZE THE GRID MESH.

SUBROUTINE GRID(M,N,X,Y,YP,H,Y¥T)
DOUBLE PRECISION X(M),Y(N),YP(N) H(M)

X{(1)=0.

X(2)=0.002
X(3)=0.004
X(4)=0.008
X{5)=0.015
X(6)=0.025

DX=.015

DC 10 I=7,21
X(I)=X(I-1)+DX

CONTINUE

DX=.025

DO 20 I=22,51
X(I)=X(I-1)+DX

CONTINUE

DX=.0375

DO 30 I=52,71
X{(I)=X(I-1)+DX

CONTINUE

Do 40 I=1,M
H(I)=YT
CONTINUE

Y(1)=,001

Y(2)=.002

DY=,002

DO 50 I=3,13
Y(I)=Y(I-1)+DY

CONTINUE

Y(14)=.025

Y(15)=.026

DY=.002

DO 60 I=16,27
Y(I)=Y(I-1)+DY

CONTINUE

NS=27
YP (NS) =0.
YP(28)=2./64.
DY=4,/64.
DO 70 J=29,45

YP (J) =YP (J-1) +DY
CONTINUE

DO 100 I=1,M
WRITE(6,110)I,X(I),H(I)
FORMAT('x,h',I14,2E13.4)

CONTINUE
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210
200

300

O0O0O00O00O0O0

O

O

1o

20

30

40

poO 200 J=1,NS

WRITE(6,210)J,Y(J)
FORMAT('y',14,E13.4)

CONTINUE

DO 300 J=NS+1,N

WRITE(6,210)J,Y (NS) +YP (J) * (YT-Y (NS))

CONTINUE

RETURN
END

cceeeeecceceeeececccccceccccecccceeccccee

c
o
C

SUBROUTINE GRID FOR S6

C
Cc
C

Ccceceeececeecceeecccececceeecceccceccecceece

THIS SUBROUTINE IS TO INITIALIZE THE GRID MESH,

SUBROUTINE GRID(M,N,X,Y,YP,H, YT)

COUBLE PRECISION X(M),Y(N),YP(N), H(M)

X(1)=0.

X(2)=0.002
X (3)=0.004
X(47=0,008
X(5)=0.015
X(6)=0,025
X(7)=0,035
X(8)=0.,050

DX=.020

po 10 I=9,18
X(I)=X(I-1)+DX

CONTINUE

X(19)=.275

DX=.035

DO 20 I=20,54
X(I)=X(I-1)+DX

CONTINUE

DX=.0865

Do 30 I=55,74
X(I)=X(I-1)+DX

CONTINUE

po 40 I=1,M
H(I)=YT
CONTINUE

Y(1)=.001
Y(2)=.002
DY=.002
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OO0 000000
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g}

Do 50 1=3,13
Y(I)=Y(I~-1)+DY
CONTINUE

Y(14)=.025

Y (15)=.,026

Dy=.002

Do 60 1=16,27
Y(I)=Y(I-1)+DY

CONTINUE

Dy=.004

Do 65 1=28,33
Y{(I)=Y(I-1)+DY

CONTINUE

N§=33

YP (NS)=0.
YP(34)=4./143.
YP (35)=10./143.
YpP (36)=18./143.
Dy=10./143.

Do 70 J=37,50

YP (J) =¥YP (J-1) +DY

CONTINUE

DO 100 I=1,M

WRITE(6,110)I,X(I),H(I)
FORMAT('x,h',I4,2E13.4)

CONTINUE

DO 200 J=1,NS

WRITE(6,210)J,Y(J)
FORMAT('y',I4,E13.49)

CONTINUE

DO 300 J=Ns+1,N

WRITE(6,210)J,Y (NS)+YP (J) * (YT-Y (NS) )

CONTINUE

RETURN
END

ccceeecceecccceecccecccecccceccecececcecc

C
C
c

SUBROUTINE GRID FOR S8

C
c
(o)

cceeecceeccceeeccceeeeccececccceecccecccceeee

THIS SUBROUTINE IS TO INITIALIZE THE GRID MESH.

SUBROUTINE GRID(M,N,X,Y,YP, H, YT)

DOUBLE PRECISION X (M), Y (N),YP(N), H(M)

X(1) =0,
X(2)=0.0005
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60

X(3)=0.001
X(4)=0,0015
X(5)=0.002
X(6)=0.003
X(7)=0,004
X(8)=0.006
X(9)=0.008
X(10)=0.012
X(11)=0.016
X(12)=0.022

DX=,012

po 10 I=13,31
X(I)=X(I-1)+DX

CONTINUE

DX=.015

DO 20 I=32,49
X(I)=X(I-1)+DX

CONTINUE

DX=.020

DO 3C I=50,58
X(I)=X(I-1)+DX

CONTINUE

DX=.025

DO 32 I=59,70
X(I)=X(I-1)+DX

CONTINUE

DX=.040

DO 34 I=71,90
X(I)=X(I-1)+DX

CONTINUE

DO 40 I=1,M
H(I)=YT
CONTINUE

¥ (1)=,0005

Y(2)=.,001

DY=.001

DO 50 I=3,15
Y(I)=Y(I~1)+DY

CONTINUE

Y(16)=.015

Y(17)=.016

DY=.001

DO 60 I=18,29
Y(I)=Y(I-1)+DY

CONTINUE

Y (30)=.030

N5=30

YP (NS)=0.
YP(31)=2./83.5
YP(32)=5./83.5
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70

110
100

210
200

300

000000000

0

10

20

¥P(33)=10./83.5
DY=7./83.5
DO 70 J=34,45

YP (J) =YP (J~1) +DY
CONTINUE

DO 100 I=1,M
WRITE(6,110)1,X(I),H(I)
FORMAT('x,h',14,2E13.4)

CONTINUE

DO 200 J=1,NS
WRITE(6,210)J,Y(J)
FORMAT('y',14,E13.4)

CONTINUE

DO 300 J=NS+1,N
WRITE(6,210)J, Y (NS)+YP(J) * (YT-Y(NS))
CONTINUE

RETURN
END

Cccceeeccececceceeceececeeccecceccceccececceece

C o
C SUBROUTINE INLET (o4
C C

ccceeceeceeeeccecececccecececcececccececececececccececcee

THIS SUBROUTINE IS TO INITIALIZE THE INLET CONDITION.
SUBROUTINE INLET(M,N,U,V,TK,TD,Y,TNU,CMU,U1, Y1, NW)
DOUBLE PRECISION U(M,N),V(M,N),TK(M,N),TD(M,N), Y (N), TNU(N, M)

UP=.04*U1
TKO=1.5*UP**2
TDO=.8*UP**3/Y1
TNUO=CMU*TKO**2/TDO

DO 10 J=1,NW-1

U(1,J)=01+1.4*(Y(J)-Y1/2.)
V(1,J)==1.8*Y(])
TK (1, J)=TKO
T™D(1,J)=TDO
TNU (1, J)=TNUO

CONTINUE

DO 20 J=NW,N
(1, n=.0
v(l1,J)=.0
TK(1,J)=.0
T™D(1,J)=.0
TNU(1,J)=.0
CONTINUE
V(1,NW)=~1.8*Y (NW)
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[of
RETURN
END
[of CCCCCeCeceecceececeeeeceececececccceccceccecccc
[of [of c
(o Cc SUBROUTINE WALL C
C o Cc
[ CCCCCCCeeeeeeeeceececccececceccecceceeceececece
[of
Cc
Cc THIS SUBROUTINE IS TO EVALUATE THE WALL BOUNDARY CONDITION.
C
SUBROUTINE WALL(M,N,X,Y,U,V,TK,TD,TNU,ENU,YI,UI,CMU,CE,CNU,
+ CK)
Cc
DOUBLE PRECISION X(M),Y(N),U(M,N),V(M,N),TK(M.N),TD(M,N).
+ TNU (M, N) , ENU(M, N)
(o]
DO 10 I=2,M
IF(X(I)/Y1.GE.50.)GO TO 11
CF=.0059*(.0001/.0059) **(X(I)/Y1/50.)
GO TO 12
11 CF=,0001
12 USTAR=SQRT (CF/2.) *Ul

TK({I, 1) =USTAR**2/SQRT (CMU)
TD (I, 1)=USTAR**3/CK/Y (1)
U(I,1)=USTAR/CK*DLOG(CE*Y (1) *USTAR/CNU)
V{I,1)=0.
TNU (I, 1) =CMU*TK(I,1)**2/TD(I, 1)
ENU(I,1)=TNU(I,1)+CNU

10 CONTINUE

Cc

RETURN

END
C
o4 CCCCeceeeceeeeececccecceecccececcceccceccecce
o C Cc
C C SUBROUTINE GUESS C
C C c
[ CCCCCCCCCCCCCCCCceecceecceeeeecceeeccecce
C
C
c THIS SUBROUTINE IS TO GUESS THE UNKNOWNS.
C

SUBROUTINE GUESS(M,N,U,V,TK, TD,CNU,CMU,H,P, PP, TNU, END, U1, X,
+ NW)

C

DOUBLE PRECISION U(M,N),V(M,N),TK(M,N),TD(M,N),H(M) , X (M),

+ P (M,N), PP (M, N), TNU (M, N),ENU(M,N)

c

TKO=.6

TD0=40.

DO 10 I=2,M

DO 20 J=2,N
U(1,J)=01/2.
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IF(J.GT.NW)U(I,J)=-U1/5.
IF(X(I).GT.X(M)/2.)0(1,3)-01'25./187.
v(1,J}=.01
IF(J.GT.NW)V (I, J)=~.01
IF(J.EQ.N-1)V(I,J)=.0
TK(I,J)=TKO
TD(1,J)=TDO
CONTINUE
CONTINUE

DO 30 I=1,M
DO 40 J=1,N

P(I,J)=9.81E+3*H(I)

IF (TK(I,J) .NE.0.)GO TO 50
TNU(1,J)=.0
ENU(I,J)=CNU
GO TO 40

TNU(I,J)=CMU*TK(I,J)**2/TD(I,J)

ENU(I,J)=TNU(I,J)+CNU

CONTINUE
CONTINUE

DO 60 I=1,M
DO 60 J=1,N
PP(1,J)=.0
CONTINUE

RETURN
END

CCCCCCCCCCCCCCCECCCCCCCCeCecCecececeecece

C o
[of SUBROUTINE UXMOM C
C . C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcecececeeee
THIS SUBROUTINE IS TO EVALUATE VELOCITY U.
MAB=MAX (M, N) -2

SUBROUTINE UXMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAU,A,B,XL,LEQTIB,
+ MAB, DU, H, NS, OMEGAX, TEMP, UREF, TK)

EXTERNAL LEQT1B
DOUBLE PRECISION U(M,N),V(M,N),ENU(M,N),X(M),Y(N),YP(N},

+ A(MAB, 3),B(MAB, 1) ,P(M,N) , XL{2*MAB) ,H(M),
+ TEMP (M, N) , TK(M,N)
DO 1 I=2,M
Do 1 J=2,N
TEMP (I,J)=U(I,J)}
CONTINUE
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DO 10 J=2,N-2
IF(J.GE.NS)GO TO 11

30

AX= (Y (J+1)-Y(J-1))/2.

DO 20 I=2,M-1

IF(J.LT.NS)GO TO 21
HAV=(H(I-1) +H(I))/2.-Y(NS)
DO 22 JJ=NS+1,N

Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE
AX=(Y(J+1)-Y(J-1})/2.

AY=X (I)~X(I-1)

IF(I.GT.2)GO TO 30
CL=(X(2)-X (1)) /2.
CU=0(1,J)
BW=ENU (1, J) *AX/CL
AW=CU*AX/2.
IF (CU*CL/ENU(1,J) .GT.1.)BW=.0
GO TO 40

CL=(X(I)-X(I-2))/2.
CU=(U(I,J)+0(I-1,J) /2.
BW=ENU (I-1,J) *AX/CL
AW=CU*AX/2.

CL=(X(I+1)-X(I-1))/2.
CU=(U(I,J)+U(I+1,T))/2.
BE=ENU (I, J) *AX/CL
AE=CU*AX/2.

CL=Y (J+1) -Y(J)
CU=(V(I-1,J+1)+V(I,J+1))/2.

CENU= (ENU (I, J)+ENU(I,J+1)+ENU(I~1,J)+ENU(I-1,J+1)) /4.

BN=CENU*AY/CL
AN=CU*AY/2.

CL=Y (J) =¥ (J-1)
CU=(V(I-1,J)+V(I,J))/2.

CENU= (ENU (I, J)+ENU(I-1,J)+ENU(I~-1,J-1)+ENU(I,J-1)) /4.

BS=CENU*AY/CL
AS=CU*AY/2.

STURB=-2./3.*(TK(I,J)-TK(I-1,J)) *AX
IF(I.EQ.2)STURB=0.

CE= (BE+ABS (AE) +ABS(BE-ABS(AE) ) ) /2.~AE
CW= (BW+ABS (AW) +ABS (BW-ABS(AW) ) ) /2. +AW
IF(I.EQ.2)CW=2.*AW+BW

CN= (BN+ABS (AN) +ABS (BN-ABS (AN) ) ) /2.~AN
CS= (BS+ABS (AS) +ABS (BS~ABS(AS))) /2. +AS
CP=CE+CW+CN+CS

CE=CE/CP

CW=CW/CP

CN=CN/CP

CS=CS/CP
CH=AX/1.E+3*(P(I-1,J)-P(I,J))/CP
CH=CH+STURB/CP

Figure Bl Continued



50

60

70

111

130

1F(1.GT.2)GO TO 50
A(I-1,1)=.0
A(I-1,2)=1.
A(I-1,3)=-CE

B(I-l,1)-CW'U(I-I,J)+CN'U(I,J+1)+CS’U(I,J-1)+CH

GO TO 20
1F(1.EQ.M-1)GO TO 60
A(I-1,1)=-CW
A(I-1,2)=1.
A(I-1,3)=-CE

B(I-1,1)=CN*U(I,J+1)+CS*U(I,J-1}+CH

GO TO 20
A(I-1,1)=~CW
A(I-1,2)=1.
A(I1-1,3)=.0

B(I-l,l)-CN’U(I,J+1)+CS*U(I,J-1)+CH+CE'U(I+1,J)

CONTINUE

CALL LEQT1B(A,M-2,1,1,MAB,B,1,MAB,0,XL, IER)

0o 70 I=2,M-1

U(I,J)-(l.-OMEGAU)‘U(I,J)+OMEGAU'B(I-1,1)

CONTINUE
U (M, J)=U(M~1,J)

IF(J.NE.N-2)GO TO 10
DO 80 I=2,M
U(I,N-1)=U(I, N-2)
U(1,N)=U(I,N-3)
CONTINUE

CONTINUE

DO 110 I=2,M-1
AY=X(I)-X(I-1)
HAV= (H(I-1) +H(I))/2.~Y (NS)
DO 111 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE

DO 120 J=2,N-2
AX= (Y (J+1)-Y(J-1)) /2.

IF(I1.GT.2)GO TO 130
CL=(X(2)-X(1))/2.
Cu=U(1,J)
BW=ENU (1, J) *AX/CL
AW=CU*AX/2.
IF (CU*CL/ENU(1,J).GT.1.)BW=.0
GO TO 140

CL=(X(I)-X(I-2))/2.
CU=(U(I,J)+U(I-1,J) /2.
BW=ENU (I-1,J) *AX/CL
AW=CU*AX/2.
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140 CL=(X{I+1)~-X(I-1))/2.
CU=(U(I, T +U(I+1,J))/2.
BE=ENU (I, J) *AX/CL
AE=CU*AY./2.

CL=Y (J+1) -Y (J)

CU=(V(I-1,J+1)+V(I,J+1))/2.
CENU-(ENU(I,J)+ENU(I,J+1)+ENU(I-1,J)+ENU(I-1,J+1))/4.
BN=CENU*AY/CL

AN=CU*AY/2.

CL=Y (J) -Y (J-1)

CU'(V(I"I,J)*V(I,J))/z.

CENU= (ENU (I, J) +ENU(I-1, J)+ENU(I-1,J-1}+ENU(I,J-1)) /4.
BS=CENU*AY/CL

AS=CU*AY/2.

STURB=~2./3.*(TK(I,J)-TK({I~-1,J))*AX
IF(I.EQ.2)STURB=0.

CE= (BE+ABS (AE) +ABS (BE-ABS(AE)))/2.-AE
CW= (BW+ARS (AW) +ABS (BW~ABS (AW) ) ) /2. +AW
IF(I.EQ.2)CW=2, *AW+BW

CN= (BN+ABS (AN) +ABS (BN-ABS (AN) ) ) /2.~AN
CS=(BS+ABS (AS) +ABS (BS-ABS(AS) ) ) /2.+AS
CP=CE+CW+CN+CS

CE=CE/CP

CW=Cy/CP

CN=CN/CP

CS=CS/CP
CH=AX/1.E+3*(P(I-1,J)-P(I,J))/CP
CH=CH+STURB/CP

IF(J.GT.2)GO TO 150
A(J-1,1)=.0
A(J-1,2)=1.
A(J-1,3)=-CN
B(J-1,1)=CW*U(I-1,J)+CE*U(I+1,J)+CS*U(I,J-1)+CH
GO TO 120
150 IF(J.EQ.N-Z)GO TO 160
A(J-1,1)=-CS
A(J-1,2)=1.
A(J-1,3)=~CN
B(J-1,1)=CE*U(I+1,J\+CW*U(I~1,J)+CH
GO TO 120
160 A(J-1,1)=-CS
A(J-1,2)=1.
A(J-1,3)=.0
B(J~1,1)=CE*U(I+1,J)+CW*U(I-1,J)+CH+CN*U(I,J+1)

120 CONTINUE

caLL LEQT1B(A,N-3,1,1,MAB,B,1,MAB,0,XL, IER)
DO 170 J=2,N-2
IF(I.EQ.2.AND.J.EQ.2)DU=.0
U0=U(I,J)
U(I,J)=(1.-OMEGAU) *U(I,J)+OMEGAU*B(J-1,1)
DU=ABS (U (I,J)-UO)+DU
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CONTINUE
U(I,N-1)=U(I,N-2)
U(I,N)=~U(I,N-3)

IF(I.NE.M-1)GO TO 110
DO 180 J=2,N
U(M,J)=0(M-1,J)
CONTINUE

CONTINUE

DU=DU/ (N=-3) / (M-2)
DU=DU/UREF

DO 2 I=2,M
DO 2 J=2,N

U(I,J)-(l.-OMEGAX)’TEMP(I,J)+OMEGAX'U(I,J)

CONTINUE

RETURN
END

288
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C SUBROUTINE VYMOM
(of
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C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

THIS SUBROUTINE IS TO EVALUATE VELOCITY V.

MAB=MAX (M, N) -2

EXTERNAL LEQT1B

SUBROUTINE VYMOM(M,N,X,Y,YP,U,V,ENU,P,OMEGAV,A,B,XL,LEQTIB,
MAB, DV, H, NS, OMEGAY, TEMP, VREF, TK)

DOUBLE PRECISION U(M,N),V(M,N),ENU(M,N),X(M),Y(N):YP(N),
A(MAB,B),B(MAB,l),P(M,N),XL(Z'MAB),H(M),

TEMP (M, N) , TK (M, N)

DO 1 I=2,M
Do 1 J=2,N
TEMP (I,J)=V(I,J)
CONTINUE

DO 5 I=2,M-1
DY1=(H(I)-H(I-1))/2.
DY2=(H(I+1)-H(I}) /2.
DX= (X (I+1)-X(I-1))/2.
V(I,N-l)-(U(I+1,N—2)*DY2+U(I,N-2)‘DY1)/DX
CONTINUE

DO 10 J=2,N-2
1¥(J.GE.NS)GO TO 11
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AX=Y (J) =Y (J-1)

11 DO 20 I=2,M-1
IF(J.LT.NS)GO TO 21
HAV=H (I) -Y (NS)
DO 22 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV

22 CONTINUE

AX=Y (J) =Y (J-1)
21 AY=(X(I+1)-X(I-1))/2.

CL=X(I+1)-X(I)
CU=(U(I+1,J)+U(I+1,0-1))/2.

CENU= (ENU (I, J) +ENU(I, J-1)+ENU(I+1,J) +ENU(I+1,J-1))/4.

BE=CENU*AX/CL
AE=CU/2.*AX

CL=X(I)=-X(I-1)
CU=(U(I,J)+U(I,J~1))/2.

CENU= (ENU (I, J) +ENU(I,J-1)+ENU(I~1,J) +ENU(I~1,J-1)} /4.

BW=CENU*AX/CL
AW=CU/2.*AX

CL= (Y (J+1)=~-Y(J-1))/2.
CU= (V(I,J+1)+V(I,J))/2.
CENU=ENU (I, J)
BN=CENU*AY/CL
AN=CU/2.*AY

IF(J.GT.2)GO TO 30
CL=(Y(2)-Y(1))/2.
CU=V(I, 1)
GO TO 40
30 CL=(Y(J)-Y(J-2)) /2.
CU=(V(I,J)+V(I,J-1))/2.
40 CENU=ENU(I,J-1)
BS=CENU*AY/CL
AS=CU/2.*AY

STURB=-2./3,.*{(TK(I,J)-TK(I,J-1))*AY

IF (J.EQ.2) STURB=0.

Civ= (BN+ABS (AN) +ABS (BN~-ABS (AN) ) ) /2.
CS=(BS+ABS (AS) +ABS (BS-ABS (AS))) /2.
CE= (BE+ABS (AE) +ABS (BE-ABS(AE)) ) /2.
CW= (BW+ABS (AW) +ABS (BW-ABS (AW) ) ) /2.
CP=CE+CW+CN+CS

CE=CE/CP

CW=CW/CP

CN=CN/CP

CS=CS/CP
CH=AY/1.E+3*(P(I,J-1)-P(1,J))/CP
CH=CH+STURB/CP

IF(I.GT.2)GO TO 50
A(I-1,1)=.0
A(I-1,2)=1.
A(I-1,3)=-CE

B(I-1,1)=CW*V(I-1,J)+CN*V(I,J+1)+CS*V(I,J-1)+CH
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GO TO 20
IF(I1.EQ.M~1)GO TO 60
A{I-1,1)=-CHW
A(I-1,2)=1.
A(1-1,3)=-CE
B(I-1,1) *V(I,J+1)+CS*V(I,J-1)+CH
GO TO 20
A(I-1,1)=-CW
A(I-1,2)=1.-CE
A(I-1,3)=.0
B(I-1,1)=CN*V(I,J+1)+CS*V(I,J-1)+CH

CONTINUE

CALL LEQT1B(A,M-2,1,1,MAB,B,1,MAB,0,XL, IER)

Do 70 I=2,M-1
V(I,J)-(l.-OMEGAV)*V(I,J)+OMEGAV*B(I—1,1)

CONTINUE

V(M, J) =V (M-1,J)

IF (J.NE.N-2)GO TO 10
DO 80 I=2,M-1

V(I,N)=V(I,N-2)
CONTINUE

CONTINUE

DO 110 I=2,M-1
AY= (X (I+1)-X(I-1))/2.
HAV=H (I) =Y (NS)
DO 111 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE

DO 120 J=2,N-2
AX=Y (J)-Y (J-1)

CL=X(I+1)-X(I)

CU=(U(I+1,3)+U(I+1,J-1))/2.

CENU= (ENU (I, J) +ENU (I, J-1) +ENU(I+1,J) +ENU(I+1,J-1)) /4.
BE=CENU*AX/CL

AE=CU/2.*AX

CL=X(I)-X(I-1)

CU=(U(I,J)+U(I,J-1))/2.

CENU= (ENU (I, J) +ENU (I, J-1) +ENU(I-1,J) +ENU(I-1,J-1}) /4.
BW=CENU*AX/CL

AW=CU/2.*AX

CL=(Y(J+1)-Y(J-1))/2.
CU=(V(I,J+1)+V(I,J)) /2.
CENU=ENU (I, J)
BN=CENU*AY/CL
AN=CU/2.*AY
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IF(J.GT.2)GO TO 130
CL=(Y({2)-Y(1))/2.
CU=V(I,1)

GO TO 140
CL=(Y(J)-Y(J-2))/2.
CU=(V(I,J)+V(I,J-1))/2.
CENU~ENU(I,J-1)
BS=CENU*AY/CL
AS=CU/2.*AY

STURB=~2./3.* (TK(I,J)-TK(I,J=1)) *AY
IF (J.EQ.2) STURB=0.

CN= (BN+ABS (AN) +ABS (BN-ABS (AN)))/2.~AN
CS= (BS+ABS (AS) +ABS (BS-ABS(AS))) /2. +AS
CE= (BE+ABS (AE) +ABS (BE-ABS(AE) ) ) /2. ~AE
CW= (BW+ABS (AW) +ABS (BW-ABS (AW) ) ) /2. +AW
CP=CE+CW+CN+CS

CE=CE/CP

CW=CW/CP

CN=CN/CP

CS=CS/CP
CH=AY/1.E+3*(P(I,J-1)-P(I,J))/CP
CH=CH+STURB/CP

IF(J.GT.2)GO TO 150
A(J-1,1)=.0
A(J-1,2)=1.
A(J-1,3)=~CN
B(J-1,1)=CE*V (I+1,J)+CW*V(I-1,J)+CS*V(I,J~1)+CH
GO TO 120
IF(J.EQ.N-2)GO TO 160
A{(J-1,1)=~CS
A(J-1,2)=1.
A(J-1,3)=-CN
B(J-1,1)=CE*V(I+1,J)+CW*V(I-1,J)+CH
GO TO 120
A(J-1,1)=-CS
A(J-1,2)=1.
A(J-1,3)=.0
B(J-1,1)=CE*V (I+1,J)+CW*V(I-1,J)+CN*V(I,J+1)+CH

CONTINUE

CALL LEQT1B(A,N-3,1,1,MAB,B,1,MAB,0, XL, IER)
po 170 J=2,N-2
IF(I.EQ.2.AND.J.EQ.2)DV=.0
Vo=V (I,J)
V(I,J)=(1.-CMEGAV)*V (I, J)+OMEGAV*B(J-1,1)
DV=ABS (V (I, J)-VO)+DV
CONTINUE
V(I,N)=V(I,N-2)

IF(I.NE.M-1)GO TO 110
DO 180 J=2,N
Vi{M, J)=V(M-1,3)
CONTINUE

CONTINUE
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DV=DV/ (N-3) / (M~2)
DV=DV/VREF

DO 2 I=2,M
DO 2 J=2,N
V(I,J)-(l.-OMEGAY)'TEMP(I,J)+OMEGAY'V(I,J)
CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Cc
C SUBROUTINE PANDM C
C c

CCCCCCCCCCCCCCCLLLLLLLLLL&LLLLLLLLLLLLLCC

THIS SUBROUTINE IS TO EVALUATE PRESSURE CORRECTION.
MAB=MAX (M, N) -2

SUBROUTINE PANDM(M,N,X,Y,YP,U,V,ENU,P,PP,OMEGAP,A,B,XL,LEQTIB,
MAB, DP, H, AXU, AYV, OMEGAR, DH, NS, PREF)

EXTERNAL LEQT1B

DOUBLE PRECISION U(M,N),V(M,N),ENU(M,N),X(M),Y(N),YP(N),
A(MAB:3),B(MAB,I),PP(M,N),P(M,N)'XL(Z*MAB),
H (M) ,AXU (M, N) ,AYV(M,N)

EVALUATE THE COEFFICIENTS FOR SOLUTIONS

DO 10 J=2,N-2
IF(J.GE.NS)GO TO 11
AX=(Y(J+1)-Y(J-1)) /2.

Do 20 I=2,M-1
IF(J.LT.NS)GO TO 21
HAV= (H(I-1)+H (X)) /2.-Y (NS)
DO 22 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE
AX=(Y (J+1)-Y (J-1)) /2.
AY=X(I)-X(I-1)

IF(I1.GT.2)GO TO 30
CL=(X{2)-X(1))/2.
cU=0(1,J)
BW=ENU (1, J) *AX/CL
AW=CU*AX/2.
IF(CU*CL/ENU(1,J) .GT.1.)BW=.0
GO TO 40

CL=(X(I)-X(I-2))/2.
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CU=(U(I,I)+U(I-1,))/2.
BW=ENU (I-1,J) *AX/CL
AW=CU*AX/2.

CL=(X(I+1)-X(I-1))/2.
CU=(U(I,J)+U(I+1,d))/2.
BE=ENU (I, J) *AX/CL
AE=CU*AX/2.

CL=Y (J+1) =Y (J)
CU=(V(I-1,Jd+1)+V(I,J+1))/2.

CENU= (ENU (I, J) +ENU(I, J+1) +ENU(I-1,J) +ENU(I-1,J+1)) /4.

BN=CENU*AY/CL
AN=CU*AY/2.

CL=Y (J) =Y (J-1)
CU=(V(I-1,N+V(I, ) /2.

CENU=(ENU (I, J)+ENU(I-1,J)+ENU(I-1,J-1)+ENU(I,J-1))/4.

BS=CENU*AY/CL
AS=CU*AY/2.

CE= (BE+ABS (AE) +ABS (BE-ABS (AE))) /2.
CW= (BW+ABS (AW) +ABS (BW-ABS (AW) ) ) /2.
IF(I.EQ.2)CW=2.*AW+BW

CN= (BN+ABS (AN) +ABS (BN-ABS (AN) ) ) /2.
CS= (BS+ABS (AS) +ABS (BS-ABS(AS))) /2.
CP=CE+CW+CN+CS
AXU(I,J)=AX/1.E+3/CP

CONTINUE
CONTINUE

DO 110 J=2,N-1
IF(J.GE.N5)GO TO 111
AX=Y (J) -¥Y (J-1)

DO 120 I=2,M-1
IF(J.LT.NS)GO TO 121
HAV=H(I) -Y (NS}
DO 122 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE
AX=Y (J)-Y(J-1)
AY=(X(I+1)-X(I-1))/2.

CL=X(I+1)=-X(I)
CU=(U(I+1,J)+U(I+1,J-1))/2.

CENU=(ENU (I,J) +ENU(I, J-1)+ENU(I+1,J)+ENU(I+1,J-1))/4.

BE=CENU*AX/CL
AE=CU/2.*AX

CL=X(I)-X(I-1)
CU=(U(I,J)+U(I,J-1))/2.

CENU=(ENU(I,J) +ENU(I, J-1)+ENU(I-1,J) 4ENU(I-1,J-1)) /4.

BW=CENU*AX/CL
AW=CU/2.*AX
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CL=(Y(J+1)-Y(J-1)) /2.
CU=(V(I,Jd+1)+V(I,J))/2.

CENU=ENU(I,J)
BN=CENU*AY/CL
AN=CU/2.*AY
C
IF(J.GT.2)GO TO 130
CL=(Y(2)-¥(1))/2.
CU=v(I, 1)
GO TO 140
130 CL=(Y(J)-Y(J-2))/2.
CU=(V(I,J)+V(I,J-1)}/2.
140 CENU=ENU(I,J-1)
BS=CENU*AY/CL
AS=CU/2.*AY
C
CN-(BN+ABS(AN)+ABS(BN-ABS(AN)))/2.-AN
CS= (BS+ABS (AS) +ABS (BS-ABS(AS))) /2. +AS
CEw (BE+iABS (AE) +ABS(BE~ABS(AE)))/2.-AE
CW-(BW+ABS(AW)+ABS(BW-ABS(AW)))/2.+AW
CP=CE+CW+CN+CS
AYV (I, J)=AY/1.E+3/CP
C
120 CONTINUE
110 CONTINUE
C
Croscnuxmmmennm
C SOLVE CONTINUITY EQUATION FOR PRESSURE CORRECTION
o THREE TIMES OF DOUBLE SWWEP
Commmmrmc oo ———
o)
DO 1000 K=1,3
C
Cremmrme e e————~- - -
C SWEEP IN X DIRECTION
[ ittt bttt
C
DO 310 J=1,N-2
C
C:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
C THIS IS THE SPECIAL TREATMENT WHEN Y=0 (ON THE BOTTOM WALL)
C i iveeenensosssasnassnssansssssssncos teesseessaesesscsssasesseerans
C
IF(J.GT.1)GO TO 311
AX=Y(2)/2.
DO 312 1I=2,M-2
AY=(X{I+1)-X(I-1))/2.
CE=AXU(I+1,2) *AX/4.
CW=AXU(I,2)*AX/4.
CS=-AYV (I, 2) *AY
CP=CE+CW+CS
CH=-3./4.*{U(I+1,1)-U(I,1))*AX+V(I,1)*AY-
+ (U(I+1,2)-U(I1,2))*AX/4.-V(I,2)*AY
PPIlﬂ(CP'PP(I,2)-CE'PP(I+1,2)-CW'PP(I-1,2)-CH)/CS
PP (I,1)=(1.-OMEGAP) *PP (I, 1) +OMEGAP*PPIl
312 CONTINUE
GO TO 310
C
C::::::::::2:::::::::::::::::::::::::::::::::::::::::::::::::::::::
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c THIS IS THE REGULAR TREATMENT FOR THE INTERIOR GRIDS
Covoveesossossasensssnsossnansannstosssansassosssstosssossonnos cveae
c
311 IF(J.GE.NS)GO TO 314

AX=(Y (J+1)-Y(J-1))/2.
314 DO 320 I=1,M-2

IF(J.LT.NS)GO TO 321
HAV=H (I)-Y (NS)
DO 322 JJ=NS+1,N
Y (JJ) =Y (NS) +¥YP (JJ) *HAV
322 CONTINUE
AX={Y(J+1)-Y(J-1)) /2.
321 IF(I.GT.1)AY=(X(I+1)-X(I-1)}/2.
IF(I.EQ.1)AY=(X(2)-X(1)}/2.

IF(I.GT.1)GO TO 323
CW=~AXU (2, J) *AX
CN=AYV (2,J+1) *AY/A4.
CS=AYV(2,J) *AY/4.
CH=-U(2,J) *AX~(V(2,J+1)=V(2,J) ) *AY/4.+U (1, J) *AX~3./4
+ *(V(1,J+1)=V(1,J))*AY~- (CN+CS) *PP (2, J)
CP=CHW
CW=CW/CP
CN=CN/CP
CS=CS/CP
CH=CH/CP
GO TO 324

323 CE=AX*AXU(I+1,J)
CW=AX*AXU(I,J)
CN=AY*AYV(I,J+1)
CS=AY*AYV(I,J)
CP=CE+CW+CN+CS

IF(J.GE.NS)GO TO 331
CH=- (AX* (U(I+1,J)-U(I,J))+AY* (V(I,J+1)-V(I,J))}
GO TO 332
331 HAV1=H (I~1)-Y(NS)
HAV2=H (I)-Y (NS)
HAV3=H (I+1) ~Y (NS)
IF(J.GT.NS)GO TO 333
YSW=Y (J-1)
YS=Y (J-1)
YSE=Y (J-1)
YW=Y (J)
YC=Y (J)
YE=Y (J)
YNW=Y (NS} +YP (J+1) *HAV1
YN=Y (NS) +YP (J+1) *HAV2
YNE=Y (NS) +YP (J+1) *HAV3
GO TO 334
333 IF(J.GT.NS+1)GO TO 335
YSW=Y (J~1)
¥s=Y(J-1)
YSE=Y (J-1)
YW=Y (NS) +YP (J) *HAV1
YC=Y (NS) +¥YP (J) *HAV2
YE=Y (NS) +YP (J) *HAV3
YNW=Y (NS) +YP (J+1) *HAV1
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334

332

324

330

340

YN=Y (NS) +YP (J+1) *HAV2

YNE=Y (NS) +YP (J+1) *HAV3
GO TO 334
YSW=Y (NS) +YP (J-1) *HAV1
YS=Y (NS) +YP (J-1) *HAV2
YSE=Y (NS) +YP (J-1) *HAV3
YW=Y (NS) +YP (J) *HAV1
YC=Y (NS) +YP (J) *HAV2
YE=Y (NS) +YP (J) *HAV3
YNW=Y (NS) +YP (J+1) *HAV1
YN=Y (NS) +YP (J+1) *HAV2
YNE=Y (NS) +YP (J+1) *HAV3

DY1=( (YC+YW) - (YC+YS)) /2.
Ul-U(I,J)+(U(I,J-1)-U(I,J))/(YC+YW-YS-YSW)*DY1

DY2=( (YC+YN) - (YC+YW)) /2.
U2'U(I.J)+(U(I,J+1)-U(I,J))/(YNW+YN-YC—YW)*DY2

DY3= ( (YC+YN) - (YC+YE)) /2.
U3-U(I+1,J)+(U(I+1,J+1)-U(I+1,J))/(YN+YNE-YC-YE)*DY3
DY4=( {YC+YE) - (YC+YS)) /2.
Ud-U(I+1,J)+(U(I+1aJ‘1)-U(I+1.J))/(YC+YE-YS-YSE)*DY4
CH--(U3'DY3+U4*DY4-Ul*DY1~UZ*DY2+AY*(V(I,J+1)—V(I,J)))

CE=CE/CP
CW=CW/CP
CN=CN/CP
CS=CS/CP
CH=CH/CP
IF(1.GT.1)GO TO 330
A(I,1)=.0
A(I,2)=1.
A(I,3)=-1.
B(I,1)=- (CN*PP(2,J+1)+CS*PP(2,J-1) +CH)
GO TO 320
IF(I.EQ.M-2)GO TO 340
A(I,1)=-CHW
A{I,2)=1.
A(I,3)=-CE
B(I,1)=CN*PP (I, J+1)+CS*PP(I,J-1)+CH
GO TO 320
A{I,1)=-CW
A(I,2)=1.
A(I,3)=.0
B(I,l)‘CN*PP(I,J+1)+CS*PP(I,J—1)+CE*PP(I+1,J)+CH

CONTINUE

CALL LEQT1B(A,M-2,1,1,MAB,B,1,MAB,0,XL, IER)
DO 380 I=1,M-2

PP (I, J)=(1.-OMEGAP) *PP (I, J) +OMEGAP*B(I, 1)
CONTINUE
IF(J.EQ.2)PP(1,1)=PP(1,2)

IF(J.NE.N~-2)GO TO 310
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DO 390 I=1,M-2

PP(I,N-1)=PP(I,N-2)
PP (I,N)=PP(I,N-3)
390 CONTINUE
c
R N R E R A R R R A R A R R R R R R A R R R R R R R R R/
[of
310 CONTINUE
c
c ____________________________________
Cc SWEEP IN Y DIRECTION
c_ __________________________________
(o}
DO 410 I=1,M-2
(o
SRR I I I R s A A R e R R E A R R R R R R E R R R R R R R R AR
c THIS IS THE SPECIAL TREATMENT WHEN X=0 (VERTICAL WALL)
Cuveeseesnossoosonssnssesssssnenssessosssassonossosaneans teeensssesenes
o}
IF(I.GT.1)GO TO 412
AY=(X(2) =X (1)) /2.
HAV=H (1) + (H(2)-H(1))/4.~Y (NS)
DO 415 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
415 CONTINUE
[of
DO 413 J=2,N-2
AX= (Y (J+1)~Y{(J-1))/2.
CW=-aXU(2,J) *AX
CN=AYV (2,J+1) *AY/4.
CS=AYV(2,J) *AY/4.
CH--U(Z,J)*AX-(V(Z,J+1)-V(2,J))*AY/4.+U(1,J)'AX—3./4
+ *(V(1,Jd+1)~V(1,J))*AY
CP=CW+CN+CS
PP1J=(CP*PP (2, J) ~CN*PP (2, J+1) ~CS*PP (2,J-1) -CH) /CKW
PP(1,J)=(1,~OMEGAP) *PP (1, J) +OMEGAP*PP1J
413 CONTINUE
PP(1,1)=PP(1,2)
PP(1,N-1)=PP(1,N=2)
PP (1,N)=PP(1,N-3)
GO TO 410
C
R R R R N I R R R R R R R R R R R R R R R AR R E R ER R RE
C THIS IS THE REGULAR TREATMENT FOR THE INTERIOR GRID POINTS
Chonerrennnsnonnns e eoseseseseesesrecneesatscaseaces s ettt s res o een
C
412 AY=(X{I+1)-X(I-1))/2.
HAV=H (I)-Y(NS)
DO 411 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
411 CONTINUE
C
DO 420 J=1,N=2
C

IF(J.GT.1)GO TO 421
AX=Y(2) /2.
CE=AXU(I+1,2)*AX/4.
CW=AXU(I,2)*AX/4.
CS=-AYV(I, 2) *AY

Figure Bl Continued



121

431

433

435

434

CP=CS

CH--3./4.'(U(I+1,1)-U(I,1))'AX+V(I,1)‘AY—
(U(I+1.2)-U(I,2))'AX/4.-V(I,Z)'AY-(CE+CW)'PP(I,Z)

CE=CE/CP
CW=CW/CP
Ccs=CS/CP
CH=CH/CP

GO TO 422

AX= (Y (J+1)-Y(J-1)) /2.
CE=AX*AXU(I+1,J)
CW=AX*AXU(I, J)
CN=AY*AYV(I,J+1)
CS=AY*AYV(I,J)
CP=CE+CW+CN+CS

1IF (J.GE.NS)GO TO 431

CH--(AX'(U(I+1,J)-U(I,J))+AY*(V(I,J+1)-V(I,J)))

GO TO 432
HAV1=H (I-1)-Y (NS)
HAV2=H (I)~Y (NS)
HAV3=H (I+1)-Y (NS)
IF(J.GT.NS)GO TO 433

YSW=Y (J-1)

YS=Y (J-1)

YSE=Y (J=1)

YW=Y (J)

YC=Y (J)

YE=Y (J)

YNW=Y (NS) +YP (J+1) *HAV1

YN=Y (NS) +YP (J+1) *HAV2

YNE=Y (NS) +YP (J+1) *HAV3

GO TO 434
IF(J.GT.NS+1)GO TO 435
YSW=Y {J=-1)
YS=Y (J-1)
YSE=Y (J-1)
YW=Y (NS) +YP (J) *HAV1
YC=Y (NS) +YP (J) *HAV2
YE=Y (NS) +YP (J) *HAV3

YNW=Y (NS) +YP (J+1) *HAV1

YN=Y (NS) +YP (J+1) *HAV2

YNE=Y (NS) +YP (J+1) *HAV3

GO TO 434

YSW=Y (NS) +YP (J-1) *HAV1
YS=Y (NS) +YP (J-1) *HAV2
YSE=Y (NS) +YP (J-1) *HAV3
YW=Y (NS} +YP (J) *HAV1
YC=Y (NS) +YP (J) *HAV2
YE=Y (NS) +YP (J) *HAV3
YNW=Y (NS) +YP (J+1) *HAV1
YN=Y (NS) +YP (J+1) *HAV2
YNE=Y (NS) +YP (J+1) *HAV3

DY1l=( (YC+YW)~(YC+YS)) /2.
Ul=U(I,J)+(U(I,J-1)-U(I,J))/(YC+YW-YS—YSW)*DYI
DYZ2= ( (YC+YN) ~ (YC+YW)) /2.
U2=U(I,J)+(U(I,J+1)-U(I,J))/ (YNW+YN-YC-YW) *DY2
DY3s ( (YC+YN) - (YC+YE)) /2.
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U3=U(I+1,Jd)+ (U (I+1,J+1)-U(I+1,J))/(YN+YNE-YC~YE)*DY3
DY4=( (YC+YE) - (YC+Y¥S)}/2.
U4=U(I+1,3)+(U(I+1,3-1)-U(I+1,J))/(YC+YE-YS~YSE)*DY4
CH=- (U3*DY3+U4*DY4-U1*DY1-U2*DY2+AY* (V(I,J+1)-V(I,J)))

432 CE=CE/CP
CW=CW/CP
CN=CN/CP
CS=CS/CP
CH=CH/CP

422 IF(J.GT.1)GO TO 430
A(J,1)=.0
A(J,2)=1.
A(J,3)=-1.
B(J,1)=-(CW*PP(I-1,2)+CE*PP (I+1,2) +CH)
GO TO 420
430 IF(J.EQ.N-2)GO TO 440
A(J,1)=-CS
A(J,2)=1.
A(J,3)=-CN
B(J,1)=CE*PP (I+1,J) +CW*PP(I-1,J) +CH
GO TO 420
440 A(J,1)=-CS-CN
A(J,2)=1.
A(J,3)=.0
B(J,1)=CE*PP(I+1,N-1)+CW*PP(I-1,N-1)+CH

20 CONTINUE

SOLVE THE EQUATION

R R N R R AR A I

CALL LEQT1B(A,N-2,1,1,MAB,B,1,MAB,0,XL, IER)
DO 450 J=1,N-2
PP(I,J)=(1.-OMEGAP) *PP (I, J) +OMEGAP*B(J, 1)
450 CCNTINUE
PP(I,N-1)=PP(I,N-2)
PP(I,N)=PP(I,N-3)

10 CONTINUE

000 CONTINUE

RELAX THE PRESSURE CORRECTION

EVALUATE THE NEW VELOCITY FIELD FOR RE-SOLUTION OF MTM-EON.
SUMMARIZE THE TOTAL PRESSURE CORRECTION FOR CRITERIOR CHECK.
RE-2ERO THE PRESSURE CORRECTION FOR RE-SOLUTION OF C-EQN.

0OO0O0O0000O0L 0000

DO 500 I=1,M-2
DO 600 J=1,N
P(I,J}=P(I,J)+OMEGAH*PP(I,J)
600 CONTINUE
500 CCNTINUE
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750

700

850

900

NnoOoOOoOO0OO0O0O0nn

(9]

0

DO 700 I=2,M-1
DO 800 J=2,N-2
U(I,J)-U(I,J)+AXU(I.J)'(PP(I-lyJ)-PP(I,J))'OMEGAH
V(I,J)-V(I,J)+AYV(I,J)'(PP(I,J-I)-PP(I,J))'OMEGAH
CONTINUE

U(I,N-1)=0(I,N=-2)

U(I,N)=U(I,N-3)

V(I,N)=V(I,N-2)

DY1=(H(I)-H(I-1))/2.

DY2=(H(I+1)-H(I))/2.

DX= (X (I+1)-X(I-1)}/2.
V(I,N-l)-(U(I+1,N-2)'DY2+U(I,N-2)'D¥1)/DX

IF(I.NE,M-1)GO TO 700
DO 750 J=2,N
U(M,J)=0(M-1,3J)
V (M, J) =V (M-1,J)
CONTINUE

CONTINUE

DP=.0
DO 850 I=1,M-2
DO 850 J=1,N-2
DP=ABS (PP (I,J)) +DP
CONTINUE
DP=DP/ (N-2) / (M~2)
DP=DP/PREF

DO 900 I=1,M
DO 900 J=1,N
PP(I,J)=.0
CONTINUE

RETURN
END

CCCCCCCCCCCCCeccecceececcececcecceccececece

C Cc
C SUBROUTINE SURFH C
o} of

CCCCCCCCCCCceeceeeeecceceeecceceeeccceccece

THIS SUBROUTINE IS TO CORRECT THE SURFACE PROFILE AND
CHANGE THE GRIDS FOR NEXT ITERATION.
SUBROUTINE SURFH (M, N,P,H,YP,Y,NS, OMEGAS, DH, HREF)

DOUBLE PRECISION P(M,N),H(M),YP(N),Y(N)

DHE=0.

DO 10 I=1,M-2

HAV=H (I) -Y (NS)

DY1=H(I)-YP (N-2) *HAV-Y (NS)
DY2= (YP (N-2) -YP (N-3)) *HAV
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(9]

20

10

o000

PSURF=P (1,N=-2)+(P(I,N-2)-P(I,N-3))*DY1/DY2
HNEW=PSURF/9,81E+3
HOLD=H (I) ’
H(I)=(1.-OMEGAS) *ROLD+OMEGAS*HNEW
DH=ABS (H (I) ~HOLD) +DR

CONTINUE

DH=DH/ (M-2)}
DH=DH/HREF

RETURN
END

CCCCeCCeeeceeceeecceccececcceeeecececceeccccecce

[of [of
C SUBROUTINE PUVXY c
Cc Cc

CCCCCCTCCCCCCCCCCCCCCCCCCeeecccccccccece

THIS SUBROUTINE IS TO EVALUATE THE VELOCITY GRADIENTS
FOR THE EVALUATION OF TURBULENCE PRODUCTION.

SUBROUTINE PUVXY(M,N,NS,X,Y,YP, H,U,V, UVXY)

DOUBLE PRECISION X(M),Y(N),YP(N),H (M), U(M,N), V(M N},
+ UVXY (M, N)

DO 10 I=2,M-1
AY= (X (I+1)-X(I-1})/2.
HAV=H (I) -Y (NS)
DO 11 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE

DO 20 J=2,N-2
AX=(Y(J+1)-Y (J-1)) /2.
DUDX=(U(I+1,J)-U(I,J))/AY
DVDY=(V(I,J+1)-V(I,J)) /AX
DUDY= ({U (I, J+1)+U(I+1,J+1)+U(I,J)+U(I+1,d))/4.~
+ (U(I,J)+U(I+1,J)+U(I,J=-1)+U(I+1,3-1))/4.)/AX
DVDX= ( (V(I+1,J+1)+V(I+1,J)+V(I,J+1)+V(I,J)}/4.~
+ (V(I,J+1)+V(I,J)+V{I-1,J+1)+V(I-1,0))/4.)/AY
UVXY (I, J)=2.* (DUDX**2+DVDY**2) + (DUDY+DVDX) **2
CONTINUE

CONTINUE
RETURN

END

CCCCCCCCCCCCCCCCCCeceeeecececceccecccecce

C (o]
C SUBROUTINE TDRE o
c C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceeeece
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THIS SUBROUTINE IS TO EVALUATE TURBULENCE KINETIC
ENERGY, DISSIPATION RATE AND TURBULENCE VISCOSITY.
MAB=MAX (M, N) -2

SUBROUTINE TDRE(M,N,NS,X,Y,YP,H,U,V,UVXY,TK,TD,TNU,ENU,
DELTAD,CI,CZ,OMEGAD,DTD,LEQTIB,A,B,XL,MAB,
TEMP, OMEGAJ, TDREF, CMU, CK)

EXTERNAL LEQT1B
DOUBLE PRECISION X{M),Y{N),YP(N) , H(M),U(M,N), V(M N),
UVXY (M, N) , TK(M, N}, TD (M, N) , TNU (M, N),

ENU (M, N) , A (MAB, 3) ,B(MAB, 1) ,XL(2*MAB),
TEMP (M, N)
DO 1 I=2,M
po 1 J=2,N
TEMP (I,J)=TD(I,J)
CONTINUE
DO 5 I=2,M
HAV=H (I) -Y (NS)
YF=H (1) -YP (N-2) *HAV
TD(I,N-Z)-(TK(I,N-Z)*SQRT(CMU))‘*1.5/CK/YF
CONTINUE

Do 10 J=2,N-2
IF{J.GE.NS)GO TO 11
AX= (Y (J+1)-Y(J-1)}/2.

DO 20 I=2,M-1
IF(J.LT.NS)GO TO 21
HAV=H (I) -Y (NS)
DO 22 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
CONTINUE
AX=(Y (J+1)-Y (J-1)) /2.
AY=(X(I+1)-X(I-1))/2.

CL=X (I+1)~X(I)

CU=U(I+1,J)

CENU= (ENU (I+1,J) +ENU(I,J))/2./DELTAD
BE=CENN*AX/CL

AE=CU/2.,*AX

CL=X(I)-X(I-1)

CU=U(I,J)

CENU={ENU (I, J) +ENU{(I-1,J)) /2./DELTAD
BW=CENU*AX/CL

AW=CU/2.,*AX

CL=Y (J+1) ~Y (J)

CU=V(I,J+1)
CENU=(ENU (I, J) +ENU(I,J+1))/2./DELTAD
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40

50

60

10

BN=CENU*AY/CL
AN=CU/2.*AY

CL=Y (J) =Y (J-1)

CU’V(I;J)

CENU=(ENU (1, J) +ENU(I, J~1)) /2./DELTAD
BS=CENU*AY/CL

AS=CU/2.*AY

CE= (BE+ABS (AE) +ABS(BE-ABS(AE))) /2.-AE
CW= (BW+ABS (AW) +ABS (BW-ABS (AW) ) ) /2. +AW
CN= (BN+ABS (AN) +ABS (BN-ABS (AN))) /2. ~AN
CS=(BS+ABS (AS) +ABS (BS-ABS(AS))) /2.+AS
CO=C2*TD (I, J) *AX*AY/TK(I,J)
CP=CE+CW+CN+CS+CO

CE=CE/CP

CW=CW/CP

CN=CN/CP

CS=CS/CP

CH=C1*TNU (I,J) *UVXY (I, J) *TD(I,J) *AX*AY/TK(I,J) /CP

IF(I.GT.2)GO TO 30
A(I-1,1)=.0
A(I~1,2)=1.
A(I-1,3)=-CE
B(I-1,1)=CW*TD(I-1,J)+CN*TD(I,J+1)+CS*TD(I,J-1)+CH
GO TO 20
IF(I.EQ.M-1)GO TO 40
A(I-1,1)=-CW
A(I-1,2)=1.
A(I-1,3)=-CE
B(I-1,1)=CN*TD(I,J+1)+CS*TD(I,J-1)+CH
GO TO 20
A(I-1,1)=-CW
A(I-1,2)=1.~CE
A(I-1,3)=.0
B(I-1,1)=CN*TD(I,J+1)+CS*TD(I,J-1)+CH

CONTINUE

CALL LEQT1B(A,M-2,1,1,MAB,B,1,MAB,0,XL, IER)

Do 50 I=2,M-1
TD(I,J)=(1.-OMEGAD) *TD (I, J) +OMEGAD*B(I-1,1)
IF(TD(I,J).LE..0)TD(I,J)=1.E-3

CONTINUE

TD (M, J)=TD (M-1,J)

IF(J.NE.N-2)GO TO 10
DO 60 I=2,M
TD(I,N)=TD(I,N-3)
TD(I,N-1)=TD(I,N-2)
CONTINUE

CONTINUE

SWEEP IN Y DIRECTION

aO0n0o0n0n
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DO 110 I=2,M-1
AY= (X (I+1)-X(I-1)}/2.
HAV=H (I} -Y (NS5)
DO 111 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
111 CONTINUE

DO 120 J=2,N-2
AX= (Y (J+1) =Y (J-1)) /2.

CL=X(I+1)-X(I)

CU=U(I+1,J)

CENU= (ENU (I+), J)+ENU(I,J))/2./DELTAD
BE=CENU*AX/CL

AE=CU/2.*AX

CL=X(I)-X(I~1)

CuU=U(I,J)

CENU= (ENU (I, J) +ENU(I-1,J))/2./DELTAD
BW=CENU*AX/CL

AW=CU/2.*AX

CL=Y (J+1) -Y{J)

CU=V(I,J+1)

CENU= (ENU (I, J) +ENU (I, J+1)) /2./DELTAD
BN=CENU*AY/CL

AN=CU/2,*AY

CL=Y (J) =Y (J-1)

cu=v(I1,J)

CENU= (ENU (I, J) +ENU(I,J-1))/2./DELTAD
BS=CENU*AY/CL

AS=CU/2.*AY

CE= (BE+ABS (AF) +ABS (BE-ABS (AE))) /2.-AE
CW= (BW+ABS (AW) +ABS (BW-ABS (AW) }) /2. +AW
CN= (BN+ABS (AN) +ABS (BN~ABS (AN) )} /2.-AN
CS= (BS+ABS (AS) +ABS (BS~ABS (AS) ) ) /2.+AS
CO=C2*TD (I, J) *AX*AY/TK(I,J)
CP=CE+CW+CN+CS+CO

CE=CE/CP

CW=CW/CP

CN=CN/CP

CcSs=Cs/CP
CH-CI*TNU(I,J)*UVXY(I,J)*TD(I,J)*AX*AY/TK(I,J)/CP

IF(J.GT.2)GO TO 130
A(J-1,1)=.0
A(J-1,2)=1.
A(J-1,3)=-CN
B(J—1,1)=CW*TD(I-1,J)+CE*TD(I+1,J)+CS*TD(I,J—1)+CH
GO TO 120
130 IF(J.EQ.N-2)GO TO 140
A(J-1,1)=-CS
A(J-1,2)=1,
A(J-1,3)=-CN
B(J-1,1)=CE*TD(I+1,J)+CW*TD(I-1,J)+CH
GO TO 120
140 A(J-1,1)=-CS
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A(J-1,2)=1.~CN
A(J-1,3)=.0
B{(J-1,1)=CE*TD(I+1,J)+CW*TD(I~-1,J)+CH

CONTINUE

CALL LEQT1B(A,N-3,1,1,MAB,B,1,MAB,0, XL, IER)
DO 150 J=2,N-2
IF(I.EQ.2.AND.J.EQ.2)DTD=.0
TDO=TD (I, J)
TD (I, J)=(1.-OMEGAD) *TD (I, J) +OMEGAD*B (J-1,1)
IF(TD(I,J) .LE.O0.)TD(I,J)=1.E-3
DTD=ABS (TD (I, J) -TDO) +DTD
CONTINUE
TD(I,N)=TD(I,N-3)
TD(I,N-1)=TD(I,N-2)

IF(I.NE.M-1)GO TO 110
DO 160 J=2,N
TD (M, J) =TD (M~-1, J)
CONTINUE

CONTINUE

DTD=DTD/ (N-3) / (M-2)
DTD=DTD/TDREF

DO 2 I=2,M
Do 2 J=2,N
TD(I,J)=(1.-OMEGAJ) *TEMP (I,J) +OMEGAJ*TD (I, J)
CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCeccececccecccecceec

C C
C SUBROUTINE TKEE o
ot C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecceeececce

THIS SUBROUTINE IS TO EVALUATE TURBULENCE KINETIC
ENERGY, DISSIPATION RATE AND TURBULENCE VISCOSITY.
MAB=MAX (M, N) -2

SUBROUTINE TKEE(M,N,NS,X,Y,YP,H,U,V,UVXY, TK, TD, TNU, ENU,
DELTAK, OMEGAK, DTK, LEQT1B, A, B, XL, MAB,
CMU, CNU, TEMP, OMEGAI, TKREF)

EXTERNAL LEQT1B

DOUBLE PRECISION X(M),Y(N),YP(N),H(M), U(MN) V(MN),
UVXY (M, N), TK(M,N) , TD(M,N) ,TNU(M,N),
ENU (M, N), A(MAB, 3) ,B(MAB, 1), XL (2*MAB},
TEMP (M, N)

DO 1 I=2,M
DO 1 J=2,N
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TEMP (I,J)=TK(I,J)
1 CONTINUE

DO 10 J=2,N-2
IF(J.GE.NS)GO TO 11
AX= (Y {J+1) =Y (J-1)) /2.

11 DO 20 I=2,M-1
IF (J.LT.NS)GO TO 21
HAV=H (I) -Y (NS)
DO 22 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV

22 CONTINUE

AX= (Y (J+1)-Y({J-1)) /2.
21 AY=(X(I+1)~X(I-1))/2.

CL=X (I+1)~X(I)

CU=U(I+1,J)

CENU= (ENU (I+1, J) +ENU(I,J))/2./DELTAK
BE=CENU*AX/CL

AE=CU/2.*AX

CL=X(I)-X(I-1)

cU=0(I,J)

CENU=(ENU (I, J) +ENU(I-1,J))/2./DELTAK
BW=CENU*AX/CL

AW=CU/2.*AX

CL=Y (J+1) =Y (J)

CU=V(1,J+1)

CENU=(ENU (I, J) +ENU(I,J+1))/2./DELTAK
EN=CENU*AY/CL

AN=CU/2, *AY

CL=Y (J) =¥ (J-1)

CU=V(I,J)

CENU=(ENU (I, J) +ENU(I,J-1))/2./DELTAK
BS=CENU*AY/CL

AS=CU/2.*AY

CE=(BE+ABS(AE)+ABS(BE-ABS(AE)))/2.-AE
CW=(BW+ABS(AW)+ABS(BW-ABS(AW)))/2.+Aw
CN= (BN+ABS (AN) +ABS (BN~-ABS (AN) ) } /2.-AN
CS-(BS+ABS(AS)+ABS(BS-ABS(AS)))/2.+As
CP=CE+CW+CN+CS

CE=CE/CP

CW=CW/CP

CN=CN/CP

CcS=CS/CP
CH=(TNU(I,J)*UVXY(I,J)—TD(I,J))*AX*AY/CP

IF(I.GT.2)GO TO 30
A(I-1,1)=.0
A(I-1,2)=1.
A(I-1,3)=-CE

Figure Bl Continued
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B(I-1,1)=CW*TK(I-1,J)+CN*TK(I,J+1)+CS*TK(I,J-1)+CH
GO TO 20
30 IF(I.EQ.M=-1)GO TO 40
’ A{I-1,1)=-CW
A(I-1,2)=1.
A(I-1,3)=-CE
B(I-1,1)=CN*TK(I,J+1)+CS*TK(I,J~1)+CH
GO TO 20
40 A(I-1,1)=~CHW
A(I-1,2)=1.-CE
A(I-1,3)=.0
B(I-1,1)=CN*TK(I,J+1)+CS*TK(I,J~1)+CH

20 CONTINUE

CALL LEQT1B(A,M~2,1,1,MAB,B,1,MAB,0,XL, IER)
DO 50 I=2,M-~1
TK(I,J)={1.-OMEGAK) *TK(I,J) +OMEGAK*B(I-1,1)
IF(TK(I,J).LE.O0.)TK(I,J)=1.E-3
50 CONTINUE
TK (M, J)=TK (M~1, J)

IF (J.NE.N-2)GO TO 10
DO 60 I=2,M
TK(I,N)=TK(I,N=-3)
TK(I,N-1)=TK(I,N-2)
60 CONTINUE

10 CONTINUE

SWEEP IN Y DIRECTION

[eNee e e

DO 110 I=2,M-1
AY= (X (I+1)-X(I-1))/2.
HAV=H (I} -Y (NS)
DO 111 JJ=NS+1,N
Y (JJ) =Y (NS) +YP (JJ) *HAV
111 CONTINUE

PO 120 J=2,N=-2
AX=(Y (J+1)-Y(J-1)) /2.

CL=X(I+1)~X(I)

CU=0(I+1,J)

CENU=(ENU (I+1,J)+ENU(I,J))/2./DELTAK
BE=CENU*AX/CL

AE=CU/2.*AX

CL=X(I)-X(I-1)

Ccu=U(I,J)

CENU=(ENU (I, J) +ENU(I-1,J))/2./DELTAK
BW=CENU*AX/CL

AW=CU/2.*AX

CL=Y (J+1) =Y (J)

CU=V (I, J+1)
CENU=(ENU(I,J)+ENU(I,J+1))/2./DELTAK
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140

120

150

160

110

BN=CENU*AY/CL
AN=CU/2.*AY

CL=Y (J) -Y (J-1)

CU=V(I,J)

CENU=(ENU (I, J) +ENU(I,J-1))/2./DELTAK
BS=CENU*AY/CL

AS=CU/2.*AY

CE-(BE+ABS(AE)+ABS(BE-ABS(AE)))/2.-AE
CW-(BW+ABS(AW)+ABS(BH-ABS(AW)))/2.+AW
CN-(BN+ABS(AN)+ABS(BN-ABS(AN)))/2.-AN
CS=(BS+ABS(AS)+ABS(BS-ABS(AS)))/2.+AS
CP=CE+CW+CN+CS

CE=CE/CP

CW=CW/CP

CN=CN/CP

CcS=CS/CP
CH-(TNU(I,J)*UVXY(I,J)-TD(I,J))*AX*AY/CP

IF(J.GT.2)GO TO 130
A(J-1,1)=.0
A(J-1,2)=1.
A(J-1,3)=~CN
B(J-1,1)=CW*TK(I-1,J)+CE'TK(I+1,J)+CS*TK(I,J-1)+CH
GO TO 120

IF({J.EQ.N-2)GO TO 140
A(J-1,1)=-C8
A(J-1,2)=1.
A(J-1,3)=-CN
B(J-l,l)-CE*TK(I+1,J)+CW*TK(I-1,J)+CH
GO TO 120 )

A{J-1,1)=-CS

A(J-1,2)=1.-CN

A(J-1,3)=.0

B(J-1,1)=CE*TK(I+1,J) +CW*TK(I-1,J)+CH

CONTINUE

CALL LEQT1B(A,N-3,1,1,MAB,B,1,MAB,0,XL,IER)

DO 150 J=2,N-2
IF(I.EQ.2.AND.J.EQ.2)DTK=.0
TKO=TK (I, J)
TK(I,J)'(1.-OMEGAK)*TK(I,J)+OMEGAK‘B(J-1,1)
IF(TK(I,J) .LE..0)TK(I,Ji=1.E-3
DTK=ABS (TK (I, J) -TKO) +DTK

CONTINUE

TK(I,N)=TK{(I,N-3)

TK(I,N-1)=TK(I,N-2)

IF(I.NE.M-1)GO TO 110
DO 160 J=2,N
TK (M, J) =TK(M-1,J)
CONTINUE
CONTINUE

DTK=DTK/ (N-3) / {M~2)
DTK=DTK/TKREF

Figure Bl Continued
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DO 2 I=2,M
Do 2 J=2,N
TK(I,J)={1.-OMEGAI)*TEMP (I, J) +OMEGAI*TK(I,J)
CONTINUE

DO 3 I=2,M
DO 3 J=2,N
TNU (I, J) =CMU*TK(I,J)**2/TD(I,J)
IF(TNU(I,J).GT.1.)TNU(I,J)=1.
ENU(I,J)=TNU(I,J)+CNU
CONTINUE

RETURN
END

cceeeeceecececeeceececcecececccecccceccecceiice

(o [of
o SUBROUTINE WALSHR C
Cc C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceee

THIS SUBROUTINE 1S TO CORRECT WALL SHEAR DISTRIBUTION
AND CHANGE THE WALL BOUNDARY CONDITION FOR NEXT ITERATION.

SUBROUTINE WALSHR(M,N,X,Y,U,V,TK, TD,CMU, CNU, CE, CK, OMEGAW, DW)
DOUBLE PRECISION X (M),Y(N),U(M,N),V(M,N),TK(M,R),TD (M, N)

UW1=U(1,1)
DW=.0
DO 10 I=2,M-1

IF(TK(I, 1) .LE..O0)TK(I,1)=1.E-5

DX1=(X(I)-X(I-1))/2.
DX2=(X(I+1)-X(I))/2.
DU1=U(I+1,1)-U(I,1)
DU2=U(I+1,2)-U(I,2)
R=DX1/ (DX1+DX2)
UCl=U(I, 1) +R*DUl
UC2=U(I, 2) +R*DU2

TW=1.E+3*CK*UC2*CMU** ,25*TK (I, 1) **.5/DLOG (CE*Y (2) *
CMU** ,25*TK(I,1)**.5/CNU)

IF(TW.LE,.0) TW=1.E-5
USTARO=SQRT (TK (I, 1) *CMU**_.5)
USTARN=SQRT (TW/1.E+3)
USTAR=(1.-OMEGAW) *USTARO+OMEGAW*USTARN
TKOLD=TK(I, 1)

TK(I,1)=USTAR**2/SQRT (CMU)
DTKW=ABS ( (TK(I, 1) -TKOLD) /TK(I, 1))
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TDOLD=TD (I, 1)
TD(I,1)=USTAR**3/CK/Y (1)
DTDW=ABS { (TD (I, 1) ~TDOLD) /TD (I, 1))

UOLD=UC1
UC1=USTAR/CK*DLOG (CE*Y (1) *USTAR/CNU)
DUW=ABS ( (UC1-UOLD) /UC1)
U(I,1)=(UW1+UC1) /2.

UW1=UC1l

DWMAX=AMAX1 (DTKW, DTDW, DUW)
DW=DW+DWMAX

CONTINUE

U(M, 1) =U(M-1,1)
TK (M, 1) =TK(M-1,1)
TD (M, 1)=TD(M~1,1)
DW=DW/ (M-2)

DO 20 I=2,M-1
AX=Y (1)
AY= (X {I+1) +X(I-1)) /2.
V(I,1)=AX/AY/2.*(U{I,1)~U(I+1,1))
CONTINUE
VM, 1) =V(M-1,1)

RETURN
END

Figure Bl Continued
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APPENDIX C - ORDINARY DIFFERENTIAL EQUATIONS OF SIM

The set of ordinary differential equations for SIM
(Strip Integral Method) is in the following form as discussed

in Part Three cf this thesis.

dH dé duco du )
Aig, + Bigy * Cige ¥ Di'am = E; (i=1,2,3,4) (123)

The coefficients A;, B;, Ci, Di and E; are functions of the
unknowns H, &8, ue and u,. These functions are listed as the

following.
A; = u +CJ2—2—u (196)
1 s '\,_C— t
B1=—Em+ut[1—e'°-CJ2’2—] (197)
8 Ve
CI2
Ci= (H-0{ —F—=-1 (198
1 NP } )
D; = 18+c12—:- (199)
! 8 Ve
El = 0 (200)
A, = gob (201)
By, = - L2 202
2 = 72 Um ( )
C2 = 0 (203)
49
D = 75 U0 (204)
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= - Zo (205)
p

_ A 1/3 2

= - CJ1 Guwut + CJ3 c Ut

+ (H-9) (206)

s
V8c

2
- CJl —— u«u
'_-C t

= Ukl [CJ1 ‘;—i: -2 (1-e-0-125) ] + u,2(l-e~0-25-CJ3 \’%)

o]

U.ug (CJ1 % -1+e-0.125 ) + %um(u*-—um) (207)

= é(ﬂ -8) (r - CI1) + %(H—a) (V2 c13 - 2CI1)
—(H-d - CI1 (208)
«/?( ) (\/— )

= _1'(H"8) ('\/E- CI3uf_ - 2CIlue - CIlu.) + lS(um-u*) (209)
Ve 8

= -(0.019x)2 2(—31-)2 @-0.25 (210)

2 5 4 2 ,

= u2 + g(H-8) - CJ2 T U + CJ4 \ Sue (211)

=2 (1-e )]

all=

= - -;—umz + Uoout[ch

+ u2(1 - e2c - cm‘\/% ) (212)

= 2u(u-8) (1- E£2) + B=(u-8) (V2 c14 - 2CI2) (213)
7t Ve

- Isu + =(u-8) (V2 CI4u, - 2CI2 214

= 8 Um \/—C—( ) ( CIdu I2u.) ( )

-0 (215)
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The inlet condition is given by the following two
equations to solve for u. and H at the end of the potential

core.
7 CI2

UiYy = g und + (H-0) ( Tou T Ueo) (216)
1 7

‘2"y(Y52—H2) - 6Y,Tp = p-s'um?-S - pUL2Y,

CI2 CI4

+P (H-8) (Ua? = 2Ualc = + —=ui? 217
p( ) (u u ut_\/'c— Vo ot ) ( )

For all the equations above CIi and CJi (i=1,2,3,4) are

constant integrals given by the following.

Val)

Cil = | exp (-2z2) dz (218)
0
1\s

CJl = | z2exp (-2z2) dz (219)
0

e

Ci2 = [ exp (-z2?) dz (220)
0
Ve

CJ2 = | z2exp (-z2) dz (221)
0
1/2

CI3 = § exp (-2z2) dz (222)
0
1/2

CJ3 = | z2exp (~2z2) dz (223)
0
Vac

CI4 = | exp(-z2) dz (224)



APPENDIX D - COMPUTER PROGRAM OF SIM

$0EBUG

THE FOLLOWING IS THE MAIN PROGRAM FOR PREDICTING THE
MAIN FLOW PARAMETERS OF A SUBMERGED JUMP

DECLARE VARIABLES

OO0 00

CHARACTER*20 FIN,FOUT

DOUBLE PRECISION C.ZUPPER,CI1.CJ1.CIZ.CJZ.CI3.CJ3.CI4.CJ4
DOUBLE PRECISION U1, Y1,HS,UINF  H,DELTA, UM, YT

DOUBLE PRECISION XD1ST,A(4,5),X(4),DX,0YT

(9]

INPUT DATA

WRITE(*,'(A\)')’ ENTER THE INPUT FILENAME:
READ(*, *(A)* FIN

WRITE(*,"(A\)')’ ENTER THE OUTPUT FILENAME: '
READ(*, *(A)* )FOUT

OPEN(S, FILE=FIN)

OPEN(6, FILE=FOUT)
READ(5.*)U1,Y1,HS,C, OMEGA, YT

DX=.002

KCOUNT=0

ZUPPER=1. /DSQRT(8B.)

CALL INTEGR{ZUPPER,CI1,CJ1)

ZUPPER=DSQRT(C)

CALL INTEGR(ZUPPER,CIZ,CJ2)

ZUPPER=.5

CALL INTEGR(ZUPPER,CI3,CJ3)

ZUPPER=DSQRT(2.*C)

CALL INTEGR(ZUPPER,C14,CJ4)
100 XDIST=6.*Y1

CaLL lNLET(C.U1.Y1,HS.UINF.H.DELTA.UM.OMEGA.CIZ.CIC)

KCOUNT=KCOUNT+1
WRITE(™,®)KCOUNT

00 10 1=1,1000

CALL COEFF(XDIST,C,UM,DELTA,UINF, H,A,
. €I1,€J1,C12,C32,C13,C43,C14,C04)

CALL SOLVE(A,X)
XDIST=XDIST+DX
H=R+X{1)*DX
DELTA=DELTA+X(2)*DX
UINF=UINF+X(3)#DX
UM=UM+X( 4 Y*DX

Figure D1 SIM Program Listing
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10 CONTINUE
IF(DABS(H~-YT).GT..001)THEN
DYT=YT-H
HS=HS+DYT*.5
GO 70 100
ENDIF

XDIST=4,*Y1
WRITE(6, 2000)HS
20CC FORMAT('FINAL SOLUTION WITH HS=',E12.4)

CALL INLET(C.U1.Y1.HS.UINF,H.DELTA.UM.OMEGA.CIZ.CId)

WRITE(6, 1000)XDIST,H,DELTA, UINF, UM
10C; FORMAT(*X,H,DELTA,UINF,UM' 5E12.4)
po0 20 1=1,1000
CALL COEFF(XDIST,C,UM,DELTA,UINF H,A,

+ €11,€d1,CI12,€J2,C13,CJ3,C14,C04)

CALL SOLVE(A,X)
XD1ST=XDIST+DX
H=H+X(1)*DX
DELTA=DELTA+X(2)*DX
UINF=UINF+X(3)*DX
UM=UM+X(4)*DX
WRITE(6,1000)XDIST,H, DELTA, UINF,UM
20 CONTINUE
c
STOP
END

OO0

SUBROUTINE INTEGR(ZUPPER,OUT1,0UT2)

DOUBLE PRECISION ZUPPER,OUT1,0UT2,
+ DZ,Z,ZTWO,VAL1,VALZ

NDEVID=10000
DZ=ZUPPER/FLOAT(NDEVID)
2=D2/2.
ouT1=0.
0UT2=0.

D0 10 I=1,NDEVID
1TWO=2%7
VAL1=DEXP(~ZTWO)
VAL2=VAL1*ZTW0O
OUTI=0UT1+VAL1I*DZ
0UT2=0UT2+VAL2¥0Z
222+

10 CONTINUE

Figure D1 Continuea

THIS SUBROUTINE NUMERICALLY INTEGRATES TWO FUNCTIONS
GIVEN THE UPPER LIMIT WITH A LOWER LIMIT OF ZERO

315



c
RETURN
END
c
C THIS SUBROUTINE ESTABLISHES THE INITIAL CONDITION AT THE END OF
C THE POTENTIAL CORE USING INFORMATION OF U1, Y1, C AND QUESSED HS
c
SUBROUTINE INLET(C.U1.Y1.HS.UINF.H.DELTA.UM.OMEGA.CIZ.CI4)
c
DOUBLE PRECISION C,U1,Y1,HS,UINF,H,
+ DELTA, UM, TO, HOLD, UT, DH,C12,CI4
c
DELTA=5.*SQRT(4.D-6*Y1/U1)
UM=U1
T0=. 0428D+3*UM*UM/2. / (UM*DELTA®1. D+6)**.25
c
C START T{E ITERATION

HOLD=HS
10 UINF=(—CIZ‘UM/DSQRT(C)+(U1*Y1—7./8.*DELTA‘UM)/(HOLD-DELTA))/
+ (C12/DSQRT(C)-1.)
UT=UINF+UM
HNEN=DELTA+1.D-3*(9.807D+3/2.*(HS‘HS-HOLD*HOLD)-
+ 7.D+3/9.*UM‘UM‘DELTA+1.D+3*U1*U1‘Y1-4.*T0*Y1)/
+ (UINF’UINF-Z.‘CIZ‘UINF*UT/DSQRT(C)+
C14/DSQRT(2.*C)*UT*UT)
DH=DABS( (HNEW-HOLD)/HS)
c WRITE(6, 1000)UINF ,HNEW, DELTA, TO, DH
C1000 FORMAT( *UINF,HNEW,DELTA,T0,DH®,5E10.3)
IF(DH.GT.1.D-6)THEN
HOLD=HNEW*OMEGA+HOLD*( 1. -OMEGA)
GO TO 10
ENDIF
H=HNEW

RETURN
END

THIS SUBROUTINE CALCULATES THE COEFFICIENTS OF THE MATRIX [A] IN
PREPARATION FOR THE SOLUTION OF [X] USING INFORMATION OF C, UM,
DELTA, UINF AND H FROM THE PREVIOUS STEP

O000o0

SUBROUTINE COEFF(XDIST,C,UM, DELTA,UINF,H,A,
+ c11,691,C12,C32,C13,C93,C14,C04)

DOUBLE PRECISION XDIST,C,UM,DELTA,UINF,H,A(4,5),

+ UT, TO, USTAR, DSQRC, US, HMD, DENC, DENP25,
¢n,ca,ciz,c02,c13,¢J3,C14,C04

Figure D1 Continued
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UT=UINF+UM
TO=.0424D+3/2. *UM*UM/ (UM*DELTA/1. D-6)**. 25
USTAR=-UINF+UT*DEXP(-.125)

DSQRC=DSQRT(C)

DENC=DEXP(-C)

US=-UINF+UT*DENC

HMD=H-DELTA

DENP25=DEXP(-.25)

THE FOLLOWING COEFFICIENTS DETERMINED FROM INTEGRATING THE
CONTINUITY EQUATION

A{1,1)=US+2.*CJ2*UT/DSQRC
A(1,2)=-UM/B. +UT*(1. -DENC-2. *CJ2/DSQRC)
A(1,3)=HMD*(CI2/DSQRC-1.)
A(1,4)=7./8.*DELTA+CI2*HMD/DSQRC
A(1,5)=0.

THE FOLLOWING COEFFICIENTS DETERMINED FROM INTEGRATING THE
MOMENTUM EQUATION FOR O<=Y<=DELTA

A(2,1)=9.807*DELTA
A(2,2)=-7./72.%UM*UM
A(2,3)=0.
A(2,4)=49, /72, *DELTA*UM
A(2,5)=-T0/1000.

THE FOLLOWING COEFFICIENTS DETERMINED FROM INTEGRATING THE
MOMENTUM EQUATION FOR DELTA<=Y<=YSTAR

A(3,1)=9.807*HMD/DSQRT (8. *C)-2. *CJ1*USTAR*UT/DSQRC

+ -4, *CIT*UINF*UT/DSQRC+DSQRT (2. /C)*CI3*UT*UT
A(3,2)=(4.*CJ1/DSQRC-2. *(1.-DEXP(-.125) ) Y*UINF*UT
+ +UT*UT*(1, -DENP25-DSQRT(2. /C)*CJ3)

+ +UT*USTAR*(2*CJ1/DSQRC-1. +DEXP(-.125))

+ +UM/8. *(USTAR-UM)

A(3, 3)=HMD/DSQRC*(2. *UINF*(1./DSQRT(8. }-CI1)

+ +UT*(DSQRT(2. )*CI3-2.*CIN)

+ +USTAR*(1. /DSQRT(8.)-CI1))
A(3,4)=7./8.*DELTA*(UM-USTAR )+HMD/DSQRC*(-CI1¥USTAR

+ +DSQRT(2. )*C13*UT-2. *CI1*UINF)

A(3,5)=-(.019%XDIST )**2%C/2, *(UT/HMD)**2*DENP25

THE FOLLOWING COEFFICIENTS DETERMINED FROM INTEGRATING THE
MOMENTUM EQUATION FOR DELTA<=Y<=H

A(4,1)=9.807*HMD+US*US+DSQRT (2. /C)*CI4*UT*UT
+ -4.*CJ2/DSQRC*UINF*UT
A(4,2)=-UM*FUM/8, +UT*UT*(1, -DEXP(-2.%C)-DSQRT(2. /C)*CJ4)

Figure D1 Continued
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+ +UINF*UT*(4.*CJ2/DSQRC-2.*(1. -DENC))
A(d.3)=HMD’UT/DSQRC‘(DSQRT(Z.)'CI4-2.‘CIZ)

+ +2. *UINF*HMD*(1. -C12/DSQRC)
A(4.4)=7./8.'DELTA*UM+HMD/DSQRC‘(DSQRT(2.)‘CI4*UT-2.‘C12*UINF)
A(4,5)=0.

RETURN
END

THIS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS USING
GAUSSIAN ELMINATION PROCEDURE

O 0O0Oo0

SUBROUTINE SOLVE(A,X)
DOUBLE PRECISION A(4,5),X(4)
DOUBLE PRECISION BIGGST,ABSLTE,TEMPRY,Y,PIVOT,C

START OVERALL LOOP FOR PIVOTS AND PIVOTAL REDUCTION

o

M=4
N=5
D0 10 I=1,M-1
BIGGST=0.
D0 20 K=I,M
ABSLTE=DABS(A(K,I))
IF ((ABSLTE-BIGGST).GT.0.) THEN
BIGGST=ABSLTE
L=K
ENDIF
20 CONTINUE
IF (BIGGST.LE.O.) THEN
WRITE(6,100)
100 FORMAT(*2ERO PIVOT WAS ENCOUNTERD. NO SOLUTION®)
RETURN
ENDIF
IF((I-L).NE.O)THEN
p0 30 J=1,N
TEMPRY=A(I,J)
A(1,0)=A(L,J)
A(L, J)=TEMPRY
30 CONTINUE
ENDIF
PIVOT=A(I,1)
NEXTRW=1+1
0O 40 J=NEXTRW,M
C=A(J,1)/PIVOT
DO 40 K=1,N
A(J,K)=A(J,K)-C*A(I,K)
40 CONTINUE
10 CONTINUE

Figure D1 Continued
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c
C PERFORM BACK SUBSTITUTION AND COMPUTE X(1)
c
DO 50 I=1,M
IRZV=M+1~1
Y=A(IRZV,N)
IF((IRZV-M).NE.O)THEN
D0 60 J=2,1
K=N+1-J
Y=Y-A(IRZV,K)*X(K)
60 CONTINUE
ENDIF
X(IRZV)=Y/A(IRZV, IRZV)
50 CONTINUE
c
RETURN
END

fig. M Continued



