
Toward Emphatic Reinforcement Learning

by

Jingjiao Ni

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Jingjiao Ni, 2020

Abstract

Emphatic-Temporal-Difference (Emphatic-TD) learning algorithms were re-

cently proposed based on the most central and widely used reinforcement

learning algorithms, Temporal-Difference (TD) methods. Emphatic-TD learn-

ing algorithms were originally designed to solve the divergence problem of con-

ventional TD methods when they are applied to off-policy training. However,

recent studies on Emphatic-TD learning have shown that Emphatic-TD meth-

ods can outperform conventional TD methods even in the on-policy case on

prediction problems. Thus we are interested in how Emphatic-TD methods can

in general be extended for on-policy control in this thesis. Also, Emphatic-TD

methods are sensitive to the step-size parameter, and inappropriate step-size

parameters will lead to divergence, which is called “the sensitivity problem”

in this thesis. We encountered this problem during the empirical studies on

Emphatic-TD methods, thus we provide a solution to this sensitivity problem.

In this thesis, we will make contributions in two separate but correlated

areas. First, we proposed new heuristics for reliably adapting step sizes to em-

phatic methods for the sensitivity problem of the step-size parameter. Second,

we extended the idea of emphatic methods to the on-policy control methods

and proposed the new n-step Emphatic-Sarsa method and Emphatic-Sarsa(λ)

method. We also conducted some empirical studies for them and our empir-

ical results showed that both the step-size heuristics and the new on-policy

emphatic control methods worked, and the new on-policy emphatic control

methods outperformed the corresponding non-emphatic methods in some par-

ii

ticular cases. A limitation of our work is that our empirical studies on the

on-policy control methods is only designed in the equal-interest case.

iii

Preface

No part of this thesis has been published before.

iv

To my parents

without them I would not be here.

v

The best time to plant a tree is 20 years ago. The second-best time is now.

– Chinese Proverb.

vi

Acknowledgements

I want to give my foremost thank to my supervisor Dr. Richard S. Sutton for

his help and contribution in completing this thesis. His wisdom and patience

not only help me in deepening my knowledge of reinforcement learning, but

also benefit me all my life.

I also want to thank the PhD student Sina Ghiassian for sharing his un-

derstand of the emphatic methods with me and helping revise my thesis. He

is an expert in the field of the emphatic methods, and I can learn a lot after

each talk with him.

Lastly, I would like to thank my parents Yan Liu and Xiaodong Ni for their

continuous support.

vii

Contents

1 Introduction 1
1.1 Temporal-Difference Learning 1
1.2 Emphatic Methods . 2
1.3 The Sensitivity Problem of the Step-size Parameter in Emphatic

Methods . 3
1.4 The Contribution of this Thesis 4

2 Background 5
2.1 Markov Decision Processes (MDPs) 5
2.2 Value Functions and Prediction Problems 6
2.3 Generalized Policy Iteration (GPI) and Control Problems . . . 6
2.4 Temporal-Difference (TD) Learning 7
2.5 TD Prediction . 8
2.6 On-policy TD Control: Sarsa 10
2.7 Tile Coding . 12
2.8 The Objective for Prediction: RMSVE 13

3 Emphatic Methods and New Step-size Heuristics 15
3.1 Emphatic Methods . 15
3.2 The Sensitivity Problem in Emphatic Methods and our Solution 17
3.3 The Step-size Heuristics in n-step Case 19
3.4 The Step-size Heuristics in Eligibility Traces Case 21
3.5 The Step-size Heuristics in Unequal-interest Case 23
3.6 The Step-size Heuristics in Other Special Cases 24

4 Experiments for Step-size Heuristics 27
4.1 The Random Walk Example 27
4.2 Experiments of the Sensitivity Problem in Emphatic Methods 28
4.3 The Equal-interest Setting . 31
4.4 The Unequal-interest Setting 38

5 The On-policy Control Emphatic Methods 41
5.1 The n-step Emphatic-Sarsa Method 41
5.2 The Emphatic-Sarsa(λ) Method 43
5.3 The Mountain Car Example 46
5.4 Step-size Heuristics Used for On-policy Control Emphatic Meth-

ods . 47
5.5 Experiments of n-step Sarsa versus n-step Emphatic-Sarsa . . 48
5.6 Experiments of Sarsa(λ) versus Emphatic-Sarsa(λ) 50

6 Conclusion 55

References 57

viii

Chapter 1

Introduction

In this chapter, an overview of our studies is presented. We will briefly intro-

duce the purpose, evaluation, contribution and scope of this thesis.

1.1 Temporal-Difference Learning

In recent years, the field of reinforcement learning is fast developed because

of the rapid growth of computational power, and Temporal-Difference (TD)

learning is undoubtedly the heart of reinforcement learning. Like most rein-

forcement learning methods, TD learning can be used to solve both prediction

problems and control problems. Given a dynamical system, a prediction prob-

lem is to compute the state-value function based on an arbitrary policy while

a control problem is to find an optimal policy. TD prediction methods use ex-

periments following the policy to update the estimate value of the state-value

for each non-terminal state. The update is based on the TD error, which is

the difference between the previous estimated state-value and a more precise

estimate based on the reward and the estimate of the next state-value. Be-

cause the update of TD methods estimate is based on a previous estimate,

we call this kind of methods the bootstrapping methods. Two popular TD

methods we used in this thesis are the n-step TD method (Sutton & Barto,

1998) and the TD(λ) method (Sutton, 1988). TD methods can also be used

to solve control problems by following the pattern of generalized policy itera-

tion (GPI). Instead of learning the state-value function in prediction problems,

TD control methods learn action-value functions. Depending on if the behav-

1

ior policy is the same as the target policy, control methods can be classified

into on-policy methods and off-policy methods. Sarsa (Rummery & Niranjan,

1994) is a common on-policy control algorithm while Q-Learning (Watkins,

1989) is a common off-policy control algorithm. Because we focus on the on-

policy emphatic control methods in this thesis, we will introduce the Sarsa

methods which are on-policy in more detail in the background chapter.

1.2 Emphatic Methods

In conventional reinforcement learning algorithms such as conventional TD

methods, all the states experienced are usually treated equally. This is based

on all the states experienced have same importance. However, in practice

there are situations where some states are more important than others or we

have more interests in some particular states. We can improve the perfor-

mance of algorithms by focusing on more valued parts due to the limitation of

computational resources when using function approximation. Another reason

for treating all the states experienced equally in conventional TD methods is

that the efficiency and stability of linear semi-gradient TD methods are only

guaranteed under on-policy distribution. In off-policy learning, we use im-

portance sampling to reweight the state transition, but the state distribution

remains unchanged in conventional TD methods so there is a mismatch in the

state distribution. Emphatic methods are designed to solve this problem by

emphasizing or de-emphasizing the updates with a scalar measure called em-

phasis. The first and typical emphatic method is the Emphatic-TD(λ) method

which is introduced as an off-policy method by Sutton, Mahmood, and White

(2016). The convergence proofs and some other studies on the Emphatic-TD

methods are developed by Yu (2015), Yu (2016), Mahmood, Yu, White, and

Sutton (2015), Hallak, Tamar, and Mannor (2015) and Hallak, Tamar, Munos,

and Mannor (2016). Then some studies such as Ghiassian, Rafiee, and Sut-

ton (2017) and Gu, Ghiassian, and Sutton (2019) showed that Emphatic-TD

methods also outperformed conventional TD methods as on-policy prediction

methods. This makes us interested in the performance of the possible em-

2

phatic on-policy control methods and their performance comparing to the cor-

responding non-emphatic methods. One of the few studies on emphatic control

methods such as the Actor Critic with Emphatic weightings (ACE) method

introduced by Imani, Graves, and White (2018) as an off-policy actor-critic

algorithm. Though the original ACE paper focuses on the off-policy learning,

the ACE method can be considered as an on-policy algorithm if the impor-

tance sampling ratio is set to 1, thus we would like to focus on extending the

idea of emphatic methods to the on-policy action-value methods. In particu-

lar, we extended the idea of emphatic methods to the conventional on-policy

action-value methods Sarsa and compared their performance empirically in

this thesis.

1.3 The Sensitivity Problem of the Step-size

Parameter in Emphatic Methods

The emphasis is the core of the emphatic methods, but the emphasis with in-

appropriate step-size parameters can together make the update too large which

leads to divergence. Thus it is hard for emphatic methods to find appropriate

ranges of step-size parameters, and we call it “the sensitivity problem” of the

step-size parameters in emphatic methods in this thesis. Karampatziakis and

Langford (2011) first demonstrated a problem of machine learning algorithms

when importance weights were large and developed the technique of sliding

step for dealing with it. The importance weights play a similar role as the em-

phasis of emphatic methods which makes these two problems correlated, but

Karampatziakis and Langford (2011)’s work covered nothing about reinforce-

ment learning or emphatic methods. Some previous studies of emphatic meth-

ods provided hints of the existence of the sensitivity problem of the step-size

parameter. The weak convergence properties of the Emphatic-TD(λ) method

with constant and slowly diminishing step-size parameters is presented by Yu

(2016) with some constraints and assumptions. Ghiassian, Patterson, White,

Sutton, and White (2018)’s work also showed that it is hard to find Emphatic-

TD(0)’s step size for which it converges to its best final performance. And

3

we found that the step-size parameter of the Emphatic-TD method is more

sensitive than the corresponding non-emphatic method during our empirical

studies so we would like to find a solution to this sensitivity problem. Tian

and Sutton (2019) extended Karampatziakis and Langford (2011)’s idea of

sliding step to the original Emphatic-TD method and formed an interesting

new algorithm without the sensitivity problem, the sliding-step Emphatic-TD

method. Because we would like to study the original Emphatic-TD method

in the on-policy control cases, we would like to find some techniques to help

find appropriate ranges of step-size parameters without changing the original

Emphatic-TD method. Thus in this thesis, we proposed new heuristics for

reliably adapting step sizes to emphatic methods, and they are used in our

empirical studies of emphatic on-policy control methods afterwards.

1.4 The Contribution of this Thesis

In this thesis, we will make contributions in two separate but correlated areas.

First, we showed the sensitivity problem specifically for emphatic methods

empirically, and proposed new heuristics for reliably adapting step sizes to

emphatic methods for the sensitivity problem of the step-size parameter. Our

step-size heuristics reveal the relationship between conventional TD methods

and Emphatic-TD methods which can help to find an appropriate range of

the step-size parameter. We analysed our step-size heuristics theoretically,

and some empirical studies were also conducted to evaluate them. Second, we

extended the idea of emphatic methods to the on-policy control action-value

methods and proposed the new n-step Emphatic-Sarsa method and Emphatic-

Sarsa(λ) method. We also conducted some empirical studies for them. Our

empirical results showed that the two new on-policy emphatic control methods

worked, and they outperformed the corresponding non-emphatic methods in

some special cases. A limitation of our work is that our empirical studies on

the on-policy control methods are only designed in the equal-interest case.

4

Chapter 2

Background

In this chapter, we will introduce some background information related to this

thesis including some terminologies and equations. Readers who are familiar

with these subjects can skip this chapter without any loss of continuity because

the following information are standard. Most content of this chapter is based

on Sutton and Barto (2018)’s book Reinforcement Learning: An Introduction.

The notations and terminologies in this thesis are also aligned with the

book Reinforcement Learning: An Introduction (Sutton & Barto, 2018).

2.1 Markov Decision Processes (MDPs)

Markov decision processes (MDPs) are discrete time stochastic control pro-

cesses (Bellman, 1957). MDPs provide an ideal mathematical framework for

the reinforcement learning problems because we can make strong theoretical

statements. In MDPs, we call the learner who makes decisions the agent. We

call anything outside the agent the environment. The agent interacts with

the environment at each of a sequence of discrete time steps t = 0, 1, 2....

The agent gets the representation of the environment which is called the state

St ∈ S and then it chooses a action At ∈ A(s) based on the state it observed.

At the time step t+ 1, the agent will receive the numerical feedback from the

environment which is called the reward Rt+1 ∈ R ⊂ R. At the same time, the

agent will be in a new state St+1.

5

2.2 Value Functions and Prediction Problems

In reinforcement learning, the goal of the agent is to find a policy to receive

the maximum cumulative total rewards which is defined as the expected return

Gt. To reach this goal, the agent needs to know how good for it to be in a given

state. We use value functions as a estimator of the quality of a state. The

value function of a state s under the policy π vπ(s) is defined as the expected

return the agent will receive in a given state s if it follows a particular policy

π. In MDPs, the value function can be defined as

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[

∞
∑

k=0

γkRt+k+1|St = s

]

, for all s ∈ S, (2.1)

where Eπ[·] is the expected value of · if the agent follows the policy π. The

discount-rate parameter γ determines the current value of the future rewards.

And how to compute such state-value function for policy π is referred as the

policy evaluation or the prediction problem.

There is also a similar action-value function for policy π which is defined

as the expected return the agent will receive after it takes action a in state s

if it follows a particular policy π afterwards. This is denoted as qπ(s, a):

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] = Eπ

[

∞
∑

k=0

γkRt+k+1|St = s, At = a

]

. (2.2)

2.3 Generalized Policy Iteration (GPI) and Con-

trol Problems

The goal of the agent is to find the optimal policy π∗ which can maximize

the expected return, and how to find such optimal policy is considered as

the control problem in reinforcement learning. First we can use the policy

evaluation to compute the value functions vπ under some arbitrary policy

π. Selecting the actions greedily based on the value functions can lead to a

better policy π′. This process is called policy improvement. After the policy

improvement, we can do policy evaluation again under the new policy π′ to

get the new value functions vπ′ , and then improve the policy again to get

6

a new better policy π′′. By alternately doing policy evaluation and policy

improvement, the policy is guaranteed to be better than the previous one

until the policy converged to the optimal policy π∗. The policy evaluation

and policy improvement can be done asynchronously and still guarantee the

convergence. And this general idea is called Generalized Policy Iteration which

is used for all control problems in reinforcement learning.

2.4 Temporal-Difference (TD) Learning

There are three basic classes of methods to solve the problems in MDPs: Dy-

namic Programming (DP) methods, Monte Carlo (MC) methods, and Temporal-

Difference (TD) methods. If we are given a perfect model of MDP, DP methods

can find the optimal policies. But due to the requirements of the perfect model

of the environment and it is also computationally expensive, DP methods have

lots of limitations in practice. Unlike DP methods, MC methods don’t require

the model of the environment, it only rely on experiments. The experiments

provide sequences of states, actions and rewards so that MC methods can use

them to compute the average sample returns to solve the problem. But classi-

cal MC methods can only work for episodic tasks because it can only get the

complete average sample returns until the end of the episode. MC methods

are thus considered as episode-by-episode incremental computation instead

of step-by-step incremental computation, which makes it unsuited for online

learning. TD methods are the combination of DP methods and MC methods.

Although they are more complex to analyse, TD methods retain some advan-

tages of both DP and MC methods. TD methods make estimates based on

some previous estimates just like DP methods, which is called bootstrapping,

thus TD methods do not need to wait for the completion of an episode like

MC methods. TD methods can learn form experiments like MC methods, so

they do not rely on the knowledge of the environment like DP methods.

7

2.5 TD Prediction

First we consider using TD methods for prediction problems. TD methods

use experiments to update the estimates V of state-value function vπ for any

non-terminal state St appeared in the the experiments. The updates of TD

methods are based on the error which is the difference between the target and

the old estimate. The target determines the desirable direction to move so the

TD methods can reduce the error. The simplest TD method waits just one

step to perform the update, and it uses the next reward Rt+1 and the estimate

Vt(St+1) of the state St+1 at time step t. In this case, the update target is

called the one-step return:

Gt:t+1
.
= Rt+1 + γVt(St+1). (2.3)

The error here is called the TD error :

δt
.
= Gt:t+1 − Vt(St)

.
= Rt+1 + γVt(St+1)− Vt(St).

(2.4)

And the update will be:

Vt+1(St)
.
= Vt(St) + αδt

.
= Vt(St) + α[Gt:t+1 − Vt(St)] (2.5)

.
= Vt(St) + α[Rt+1 + γVt(St+1)− Vt(St)]. (2.6)

This simplest TD method is called one-step TD or TD(0) because it is the

base case of the n-step TD method and the TD(λ) method.

If the TD method waits n steps instead of one step to make the update, it

becomes the n-step TD method. The target of the n-step TD update should

be the n-step return:

Gt:t+n
.
= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnVt+n−1(St+n), t+ n < T,

Gt:t+n
.
= Gt, t+ n ≥ T.

(2.7)

Similarly, the update then becomes:

Vt+n(St)
.
= Vt+n−1(St) + α[Gt:t+n − Vt+n−1(St)], 0 ≤ t < T. (2.8)

8

Note that if we use the ∞-step TD method, the ∞-step return will be the

complete return which is used in the Monte Carlo methods and the updates

will be the same likewise. The ∞-step TD method is just the Monte Carlo

method so we can also say that n-step TD method is a way to unify and

generalize TD methods and Monte Carlo methods. The Monte Carlo method

and the one-step TD method are two extreme cases of n-step TD method, and

intermediate methods are usually better than extreme methods.

The above one-step TD method and n-step TD method are introduced in

tabular cases which has limitations on the state spaces. In practice, the state

spaces are usually very large so we need a way called function approximation

to generalize the states. Function approximation can estimate the state-value

function vπ from policy π by using a weight vector w ∈ R
d. The approximate

value of state s given weight vector w is denoted by v̂(s,w) ≈ vπ(s), and the

approximate value v̂ can be a wide range of functions such as linear functions,

neural networks, decision trees, etc. In this thesis, we only consider the simple

linear function approximation. In this case, each state s is represented as a

real-valued vector called feature vector x(s)
.
= (x1(s), x2(s), . . . , xd(s))

>, where

the length of the feature vector d is the same as the length of the weight vector

w. And the estimate v̂(s,w) is just the inner product of the feature vector

and the weight vector:

v̂(s,w)
.
= w>x(s)

.
=

d
∑

i=1

wixi(s). (2.9)

By combining the linear function approximation and the tabular n-step TD

method with semi-gradient descent, we can get n-step semi-gradient TDmethod

which has the n-step return as:

Gt:t+n
.
= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnv̂(St+n,wt+n−1), t+ n < T,

Gt:t+n
.
= Gt, t+ n ≥ T.

(2.10)

The update is:

wt+n
.
= wt+n−1+α[Gt:t+n−v̂(St,wt+n−1)]∇v̂(St,wt+n−1), 0 ≤ t < T, (2.11)

9

where∇v̂(St,wt+n−1) is the column vector of partial derivatives of v̂(St,wt+n−1)

with respect to wt+n−1. And in the simple linear function approximation, the

gradient of the approximate value function with respect to the weight vector

is just the feature vector:

∇v̂(St,wt+n−1) = x(St). (2.12)

In addition to the n-step TD method, there is another way to unify and gen-

eralize TD methods and Monte Carlo methods which uses eligibility trace, and

we call it the TD(λ) method. The TD(λ) method is computationally better

than the n-step TD method because it just needs to store the eligibility trace

zt ∈ R
d which is a short-term memory vector parallels to wt ∈ R

d instead

of the last n feature vectors in the n-step TD method. In the semi-gradient

TD(λ) method, the eligibility trace zt will be:

z−1
.
= 0,

zt
.
= γλzt−1 +∇v̂(St,wt), 0 ≤ t ≤ T,

(2.13)

where λ is the trace-decay parameter which determines the speed of the decay

of the trace. If λ = 0, it is the algorithm TD(0) which uses the one-step semi-

gradient TD update. And if λ = 1, it is the algorithm TD(1) which uses the

update of Monte Carlo methods. The TD error of the TD(λ) method using

function approximation is:

δt
.
= Rt+1 + γv̂(St+1,wt)− v̂(St,wt). (2.14)

And the update of the TD(λ) method is based on the eligibility trace and TD

error:

wt+1
.
= wt + αδtzt. (2.15)

2.6 On-policy TD Control: Sarsa

There are two kinds of methods to solve the control problems in reinforce-

ment learning: on-policy and off-policy methods. On-policy methods use just

one policy to generate behaviours and evaluate that policy, whereas off-policy

10

methods use two different policies. Off-policy methods use one behavior pol-

icy to generate behaviours but evaluate another target policy. The on-policy

TD control method is called Sarsa. Based on the pattern of GPI, we need to

first learn the action-value function qπ(s, a) instead of the state-value function

vπ(s) for the policy evaluation. This can easily be derived from Equation 2.5

as:

Qt+1(St, At)
.
= Qt(St, At) + α[Gt:t+1 −Qt(St, At)] (2.16)

.
= Qt(St, At) + α[Rt+1 + γQt(St+1, At+1)−Qt(St, At)]. (2.17)

The name of this algorithm is Sarsa because the above update uses all the

elements in the quintuple (St, At, Rt+1, St+1, At+1). After the policy evaluation,

we can improve the policy π by making it greedy with respect to the action-

value function qπ using methods such as ε-greedy or ε-soft. The complete

algorithm is formed by continually alternating these two methods until the

policy π converges to the optimal policy.

Obviously this is the tabular one-step Sarsa method, and it can be extended

to the n-step version. We just need to change the state-value functions in the

n-step TD method to action-value functions and add the ε-greedy method for

policy improvement. Then the n-step return will be defined using the action-

value function as:

Gt:t+n
.
= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQt+n−1(St+n, At+n), t+ n < T,

Gt:t+n
.
= Gt, t+ n ≥ T.

(2.18)

The update of the action-value function is:

Qt+n(St, At)
.
= Qt+n−1(St, At) + α[Gt:t+n −Qt+n−1(St, At)], 0 ≤ t < T,

(2.19)

and all other action-value functions will not change.

It is straightforward to extend the Sarsa methods with function approx-

imation in episodic cases as we did for TD methods. The n-step return is

11

redefined in the function approximation form as:

Gt:t+n
.
= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnq̂(St+n, At+n,wt+n−1), t+ n < T,

Gt:t+n
.
= Gt, t+ n ≥ T.

(2.20)

The n-step update is redefined as:

wt+n
.
= wt+n−1 + α[Gt:t+n− q̂(St, At,wt+n−1)]∇q̂(St, At,wt+n−1), 0 ≤ t < T.

(2.21)

By combining the Sarsa method with eligibility traces, we will have the Sarsa(λ)

method (Rummery & Niranjan, 1994), and it is only slightly different from the

TD(λ) method. The Sarsa(λ) method has the same update as Equation 2.15,

but the eligibility trace for the Sarsa(λ) method should be:

z−1
.
= 0,

zt
.
= γλzt−1 +∇q̂(St, At,wt), 0 ≤ t ≤ T,

(2.22)

also the TD error is redefined in terms of the action-value function for the

Sarsa(λ) method as:

δt
.
= Rt+1 + γq̂(St+1, At+1,wt)− q̂(St, At,wt). (2.23)

2.7 Tile Coding

We have already described how to estimate the value of a state in linear func-

tion approximation case (2.9), and the feature vector is needed for that equa-

tion. There are a lot of ways to construct the feature vector, and we will

introduce Tile Coding here which is the only one used in this thesis. Tile

coding is a computationally efficient and flexible feature representation which

is widely used in practice.

Let us consider an example where the state can be naturally represented

in a two-dimensional space. There are some receptive fields of features called

tilings which are larger than the state space. All the tilings are of the same

size but lay in different places to fully cover the state space. And each tiling

is partitioned into some small pieces called tiles. If the state is inside a tile of

12

one tiling, the corresponding feature of that tile in that tiling will be 1 which

is said to be active or present, and the features of other tiles in that tiling will

all be 0 which is said to be inactive or absent. And a state will be active in

exact one tile for each tiling. If we have n tilings and each tiling has x × y

tiles, there will be n components having value 1 which are the corresponding

active tiles among the total of n× x× y components.

The above two-dimensional state space example is just the case of the

mountain car example in Section 4.1, but it can also be extended to other di-

mensions using the same idea such as the one-dimensional state space random

walk example in Section 5.3.

2.8 The Objective for Prediction: RMSVE

In this thesis, we will consider the function approximation cases instead of the

tabular cases, thus we need a continues measure of the quality of the estimate

in the prediction problems. Unlike the tabular cases, function approximation

cannot get the exact true value function. We can not just update for one

particular state, an update on one state will always influence other states. In

most cases, the size of the weights will be smaller than the size of the state

space which limits the total accuracy. Making one state more accurate leads

to other states being less accurate so we need to find a balance based on how

we care about each state. The objective function Root Mean Squared Value

Error weighted the error for each state by how we care about the error in that

state, which is denoted as RMSVE or
√
VE:

√

VE(w)
.
=

√

∑

s∈S

µ(s)[vπ(s)− v̂(s,w)]2, (2.24)

where the error in each state is the square of difference between the true value

and the estimate value which is the square bracket part. And µ(s) is the state

distribution which is how we care about the error in the state s. The state

distribution is non-negative µ(s) ≥ 0 and sum to 1
∑

s µ(s) = 1. In general,

the state distribution is the fraction of time spend in state s, but because we

consider the interest and emphasis in this thesis, the state distribution needs

13

to be reweighted based on the interest of states. Also, we only discuss the on-

policy episodic cases in this thesis so we only care about the state distribution

under on-policy training which is also called on-policy distribution. And the

episodic on-policy distribution is defined as:

µ(s) =
I(s)η(s)

∑

s′ I(s
′)η(s′)

, for all s ∈ S, (2.25)

where I(s) is the interest of state s. The expected number of visits to state

s per episode is denoted as η(s), and it is counted when the episodes start in

the state s or there is a transition to the state s from some preceding state s̄,

which is formally defined as:

η(s) = h(s) + γ
∑

s̄

η(s̄)
∑

a

π(a|s̄)p(s|s̄, a), for all s ∈ S, (2.26)

where h(s) is the probability that an episode will start in the state s.

14

Chapter 3

Emphatic Methods and New
Step-size Heuristics

In this chapter, we introduce the theoretical part of the first area of contribu-

tion of this thesis, the new heuristics for reliably adapting step sizes to em-

phatic methods. We start this chapter by introducing the emphatic methods,

then we analyse them and study the relationship between the emphatic meth-

ods and the corresponding non-emphatic methods. The relationship helped us

propose different sub-heuristics for different emphatic methods and situations.

3.1 Emphatic Methods

For all the algorithms we introduced in the background chapter, each state is

treated with equal importance. If we have different interests in different states,

the interest and the emphasis are two variables that can help. The interest

It ∈ [0, 1] is a scalar measuring the degree of interest to compute the value

functions precisely in time step t. When It = 0, it means that we have no

interest in the state at time t, and It = 1 indicates that we have full interest

in the state at time t. The emphasis Mt is a scalar used as a multiplication

rate of the update which can emphasize or de-emphasize the learning of the

algorithm in time step t. The general n-step update will be changed from

Equation 2.11 to:

wt+n
.
= wt+n−1 + αMt[Gt:t+n − v̂(St,wt+n−1)]∇v̂(St,wt+n−1), 0 ≤ t < T,

(3.1)

15

where the n-step return Gt:t+n remains the same as Equation 2.10. And the

emphasis is defined as:

Mt = It + γnMt−n, 0 ≤ t < T,

Mt = 0, t < 0.
(3.2)

Similarly, we can apply the emphasis to the Monte Carlo method and consider

it as a variation of the above equations:

wt+1
.
= wt + αMt[Gt − v̂(St,wt)]∇v̂(St,wt), 0 ≤ t < T,

Mt = It,
(3.3)

where the n-step return Gt:t+n is replaced by the complete return Gt. And

n = T − t in this case because Monte Carlo methods only update all at the

end of each episode. The emphasis is just the interest of the state because

Monte Carlo is not a bootstrapping method, and we don’t need to consider

the discounted emphasis of the states where the current state bootstraps from.

Now we will consider combining the idea of interest and emphasis with

the TD(λ) method. Recall that the TD(λ) method uses eligibility traces to

unify and generalize TD methods and Monte Carlo methods. When λ = 0,

it is TD(0) which is also the one-step TD method. When λ = 1, it is TD(1)

which behaves just like Monte Carlo methods. Turning to the Emphatic-TD(λ)

method, we still want such a method to lie between the one-step Emphatic-TD

method and the emphatic Monte Carlo method. Because the emphasis Mt is

a scalar to emphasize or de-emphasize the learning update and the update in

the TD(λ) method is affected by the degree of bootstrapping controlled by

λ, the emphasis in the Emphatic-TD(λ) method also needs to be adjusted by

λ. We then introduce another scalar variable, the followon trace Ft ≥ 0. It

keeps tracking the contribution of the interest of the visited states. And the

emphasis is the sum of the followon trace and the interest of the current state

but reweighted by λ. The complete algorithm of the Emphatic-TD(λ) method

16

will then be:

wt+1
.
= wt + αδtzt, (3.4)

δt
.
= Rt+1 + γv̂(St+1,wt)− v̂(St,wt), (3.5)

z−1
.
= 0,

zt
.
= γλzt−1 +Mt∇v̂(St,wt), (3.6)

Mt
.
= λIt + (1− λ)Ft, (3.7)

F0
.
= i(S0),

Ft
.
= γFt−1 + It. (3.8)

3.2 The Sensitivity Problem in Emphatic Meth-

ods and our Solution

As we discussed in Chapter 1, some previous work gave hints about the exis-

tence of the sensitivity problem in emphatic methods and we also encountered

this problem in Section 4.2. The interest It and the emphasis Mt together

play an important role in emphatic methods, but they also lead to a potential

problem. When the interest of most states are big (close to 1), the emphasis

Mt will increase really fast, especially when the discount rate γ is also big

(close to 1). The rapid growth of the emphasis will make the absolute value

of the update really large after just several time steps which usually leads

to divergence if the step-size parameter is inappropriate. Because one of the

most common settings is to set the interest of all states equally (usually set

the interest of all states to 1) 1, divergence caused by large update is not rare

in practice. Moreover, the large absolute value of the update also makes the

appropriate range of the step-size parameter narrower which makes finding an

appropriate step-size parameter a more difficult task. To solve this problem, a

natural idea is to find the relationship between the emphatic methods and the

corresponding non-emphatic methods. Thus we try to find the appropriate

1Technically this common setting is to set the interest of all states except the terminal
states to 1 and the interest of terminal states are set to 0. The value of terminal states is
always 0 so we do not care about them. And this applies to the rest of this thesis when we
say setting the interest of all states to 1.

17

range of the step-size parameter for emphatic methods by adapting the step

sizes of the corresponding non-emphatic methods.

We can also find some hints of the sensitivity problem in on-policy em-

phatic methods by studying the fixed point of the emphatic methods and

non-emphatic methods. The TD fixed point 2 is defined as:

wTD = A−1b. (3.9)

In on-policy TD(0), the A matrix is:

A = X>Dπ(I− γPπ)X, (3.10)

where X is the |S|×d matrix with the x(s) as its rows, Dπ is the |S|×|S| diag-
onal matrix with diagonal elements dπ which is the steady-state distribution

under π, Pπ is the |S| × |S| matrix of state-transition probabilities under π.

Because the behavior policy is the same as the target policy under on-policy

training, both D and P are under the same policy π, which makes on-policy

TD(0) stable. While in off-policy TD(0), the A matrix becomes:

A = X>Dµ(I− γPπ)X, (3.11)

where Pπ is under the target policy π but Dµ is under the behavior policy

µ. Thus there is a mismatch, which makes off-policy TD(0) unstable. And

emphatic methods were designed to solve this mismatch. Afterwards let us

consider the most simple and common case of the Emphatic-TD methods

where the interest of all states are 1. The Emphatic-TD fixed point is the

same as the TD fixed point (3.9), but the A matrix is different. In off-policy

Emphatic TD(0), the A matrix is:

A = X>F(I− γPπ)X, (3.12)

where F is a diagonal matrix with f(s)
.
= dµlimt→∞E [Ft|St = s] on its diago-

nal. And the vector f ∈ R
|S| with components [f]s

.
= f(s) is:

f = dµ + γP>
πdµ + (γP>

π)
2dµ + · · · (3.13)

= (I− γP>
π)

−1dµ, (3.14)

2The more detailed derivation and explanation of the TD fixed point (3.9), the A matrix
of on-policy TD(0) (3.10), off-policy TD(0) (3.11), off-policy Emphatic TD(0) (3.12) can be
found in Sutton et al., 2016.

18

where (I − γP>
π)

−1 help to make the state distribution dµ under behavior

policy µ match the target policy. And off-policy Emphatic TD(0) is stable.

However, the behavior policy and the target policy are the same for on-policy

cases, and the on-policy Emphatic TD(0)’s A matrix remains unchanged as

Equation 3.12, but the vector f of on-policy Emphatic TD(0) will be:

f = (I− γP>
π)

−1dπ, (3.15)

where the state distribution dµ is already under π. Then (I− γP>
π)

−1 is kind

of redundant, and we think that is the cause of the sensitivity problem in

on-policy emphatic methods.

Note that if the interest I, the decay-rate parameter λ, the discount-rate pa-

rameter γ and the importance sampling ratio ρ are all constant, the Emphatic-

TD fixed point is actually the same as the TD fixed point. But if any of the

four variables is not constant, the Emphatic-TD fixed point and the TD fixed

point will be different.

3.3 The Step-size Heuristics in n-step Case

Let us first consider the typical n-step TD case when the interest equals to 1

for all states. Let integer a = t div n and integer k be any integer smaller

19

than a, then the emphasis equation (3.2) will be:

Mt = 0, t < 0,

Mt = γnMt−n + 1

= γn(γnMt−2n + 1) + 1

= γ2nMt−2n + γn + 1

= γ2n(γnMt−3n + 1) + γn + 1

= γ3nMt−3n + γ2n + γn + 1

...

= γknMt−kn + γ(k−1)n + · · ·+ γn + 1

...

= γanMt−an + γ(a−1)n + · · ·+ γn + 1

= γan(γnMt−(a+1)n + 1) + γ(a−1)n + · · ·+ γn + 1

= γan + γ(a−1)n + · · ·+ γn + 1

= (γn)a + (γn)a−1 + · · ·+ (γn)1 + (γn)0,

(3.16)

and it is a geometric series so it can be simplified as:

Mt =
1− (γn)a+1

1− γn
. (3.17)

When t is approaching infinity, a will also be approaching infinity, so the above

equation can be more simpler:

Minf =
1

1− γn
, (3.18)

Mt ≤Minf . (3.19)

Because we are studying the episodic emphatic methods in this thesis, the

time step t will not reach infinity, but we still use Equation 3.18 instead of

Equation 3.17 for several reasons. One characteristic of geometric series is that

it increases fast at the beginning and more slowly as t approaches infinity, so

the result of Equation 3.18 is usually very close to the result of Equation

3.17 except when the episode is very short which will not make the emphasis

and update too large. Also, we are making a larger estimate than the true

20

value as shown in Equation 3.19. When we adapt the step sizes to make the

update smaller, a larger estimate will make the adapted step sizes even smaller

which is good for preventing divergence. Note that both Equation 3.17 and

Equation 3.18 hold when −1 < γ < 1, but the range for the discount rate γ

in reinforcement learning is 0 ≤ γ ≤ 1. Hence when γ = 1, we consider it as a

special case and will be discussed later.

Because Mt is the only difference between the n-step TD update (2.11) and

the n-step Emphatic-TD update (3.1), we can multiply the step size α by 1
M

to limit the growth rate of the update to prevent divergence. Let us denote

the step size of the n-step TD method as αTD and the step size of the n-step

Emphatic-TD method as αETD. We introduce a new variable adapting rate χ

which is used to adapt the step-size parameter α as:

αETD = χαTD,

χ =
1

Minf

= 1− γn.

(3.20)

3.4 The Step-size Heuristics in Eligibility Traces

Case

The step-size heuristics work for not only the n-step Emphatic-TD method but

also other emphatic methods such as the Emphatic-TD(λ) method. We still

consider the case when the interest of all states equal to 1 first. The followon

trace equation (3.8) in this case will be:

F0 = 1,

Ft = γFt−1 + 1

= γ(γFt−2 + 1) + 1

= γ2Ft−2 + γ + 1

...

= γtF0 + γt−1 + · · ·+ γ + 1

= γt + γt−1 + · · ·+ γ + 1.

(3.21)

21

This geometric series can be simplified as:

Ft =
1− γt+1

1− γ
, (3.22)

and when t =∞, it will be:

Finf =
1

1− γ
, (3.23)

Ft ≤ Finf . (3.24)

In addition to the reasons used in analyzing the n-step Emphatic-TD method,

we have one more reason to use Equation 3.23 instead of Equation 3.22. Using

the infinite version makes the afterward analysis simpler and easier, and it also

makes the heuristic independent of the time step t. The heuristic then only

depends on λ and γ, which makes it convenient for us to analyse the eligibility

trace equations.

Let us substitute Equation 3.23 into the emphasis equations (3.7), the

equations will become:

Mt = λ+ (1− λ)Ft

Minf = λ+ (1− λ)Finf (3.25)

Minf = λ+
1− λ

1− γ
, (3.26)

Mt ≤Minf . (3.27)

We will then analyse the equations of eligibility traces, and first let C = γλ

for simplification. We will use Minf instead of Mt because it is independent of

t from Equation 3.26. Then Equation 3.6 will be:

z0 = Minf∇v̂(S0,w0)

z1 = CMinf∇v̂(S0,w0) +Minf∇v̂(S1,w1)

= Minf(C∇v̂(S0,w0) +∇v̂(S1,w1))

z2 = CMinf(C∇v̂(S0,w0) +∇v̂(S1,w1)) +Minf∇v̂(S2,w2)

= Minf(C
2∇v̂(S0,w0) + C∇v̂(S1,w1) +∇v̂(S2,w2))

...

zt = Minf(C
t∇v̂(S0,w0) + Ct−1∇v̂(S1,w1) + · · ·+∇v̂(St,wt)). (3.28)

22

The part in the parentheses of the result is just the same as what we can

get from the equation of the eligibility trace of TD(λ) (2.13). Because the

other parts of the update (Equation 2.14 and Equation 3.5, Equation 2.15

and Equation 3.4) are the same, we can multiply the step-size parameter of

the emphatic method by 1
M

to limit the growth rate of the update to prevent

divergence. Then the adapting rate χ can be formulated as:

αETD = χαTD,

χ =
1

Minf

=
1

λ+
1− λ

1− γ

.

(3.29)

3.5 The Step-size Heuristics in Unequal-interest

Case

Now we will consider the case where the interest of states are not all equal.

Actually we can use the previous results because they can still guarantee that

the update is not too large to diverge. For the n-step Emphatic-TD method:

i(s) ≤ 1, ∀s ∈ S

M ≤Mt ≤Minf ,
(3.30)

and similarly for the Emphatic-TD(λ) method:

i(s) ≤ 1, ∀s ∈ S

F ≤ Ft ≤ Finf

M ≤Mt ≤Minf

z ≤ zt ≤ zinf ,

(3.31)

where F,M, z denotes the case when not all interest are equal to 1. The true

value is still smaller than the estimate in this case so it can prevent divergence.

The only problem it may cause is that if the true value is too small, the learning

will become much slower. This only happens when the interest of most states

are close to 0, which is not very common. Notwithstanding, we can still solve

23

this by redefining a more accurate adapting rate χ as:

χ =
|S|(1− γn)
∑

i(s)
, ∀s ∈ S, (3.32)

χ =
1

∑

i(s)

|S| (λ+
1− λ

1− γ
)

, ∀s ∈ S, (3.33)

where
∑

i(s) is the sum of the interest of all states and |S| is the number

of all the states. Equation 3.32 is for the n-step Emphatic-TD method and

Equation 3.33 is for the Emphatic-TD(λ) method.

In most situations, we recommend using the general versions (3.20) (3.29)

instead of the accurate versions (3.32) (3.33). We are trying to keep the

characteristics of emphatic methods on the basis of preventing divergence,

and the general version is enough for that goal. We first use the step-size

heuristics to find an appropriate range of the step sizes, then we still need to

use other classical parameter tuning methods to find the optimal results so

the accuracy is not really important for this heuristic at the beginning.

3.6 The Step-size Heuristics in Other Special

Cases

Then we will discuss the special case when it is an undiscounted task in which

γ = 1. When γ = 1, the adapting rate χ in Equation 3.20 will be 0 which makes

the algorithm does not learn, and Equation 3.29 does not work because 1−γ is

a denominator of Equation 3.29 and denominators cannot be 0. Also, because

the previous interest will not be discounted, the emphasis will continually

increase as the time step t increases, which makes the probability of divergence

really high. In this case, it is a better choice to use the sequence of step-size

parameters instead of constant step-size parameters. Let us consider the n-step

24

Emphatic-TD method first, from Equation 3.16 we can get:

Mt = (γn)a + (γn)a−1 + · · ·+ (γn)1 + (γn)0

= 1a + 1a−1 + · · ·+ 11 + 10

= a+ 1

= t div n+ 1

≈ t

n
.

(3.34)

The emphasis equation now depends on t which makes the adapting rate χ

not constant:

χ =
1

Mt

=
n

t
.

(3.35)

Similarly, the followon trace equation of the Emphatic-TD(λ) method (3.21)

will become:

Ft = γt + γt−1 + · · ·+ γ + 1

= t+ 1.
(3.36)

Then the emphasis equation will be:

Mt = λ+ (1− λ)Ft

= λ+ (1− λ)(t+ 1)

= t− λt+ 1. (3.37)

Because the eligibility trace equations (3.28) are not affected, the adapting

rate χ is:

χ =
1

Mt

=
1

t− λt+ 1
.

(3.38)

Note that because the one-step Emphatic-TD method and the Emphatic-

TD(0) method are identical, their corresponding adapting rates are the same

as well:

χ = 1− γn = 1− γ (from Equation 3.20)

χ =
1

λ+
1− λ

1− γ

= 1− γ. (from Equation 3.29)

25

For the Emphatic-TD(λ) method, when λ = 1, the adapting rate χ will

be:

χ =
1

λ+
1− λ

1− γ

= 1, (3.39)

which means that the step-size parameter does not need to be changed. This

is because when there is no bootstrapping and all the interest are equal, the

Emphatic-TD(λ) method is exactly the same as the TD(λ) method.

We have introduced and discussed our step-size heuristics in different cases

theoretically in this chapter. In the next chapter, we will design some experi-

ments to verify our step-size heuristics.

26

Chapter 4

Experiments for Step-size
Heuristics

In this chapter, we conduct some empirical studies on the new step-size heuris-

tics we introduced in the previous chapter. This chapter and the previous

chapter together compose the first area of contribution of this thesis. We start

this chapter by introducing the testbed we used throughout this whole chapter,

then we show the empirical results of the sensitivity problem of the step-size

parameter in emphatic methods. After that, we verify the step-size heuristics

empirically in different cases.

4.1 The Random Walk Example

For both the empirical studies of the sensitivity problem and the step-size

heuristics, we used a variation of the random walk example from Sutton (1988)

as the testbed. Let us consider a Markov reward process MRP with 100 states.

An MRP is a Markov decision process that we introduced in Section 2.1 with-

out actions, and we use MRP here because the discussions of the previous

chapter are all based on the prediction problems. In this MRP, the 100 states

are numbered from 1 to 100 in order from left to right. There are two terminal

states: state 0 on the extreme left and state 101 on the extreme right. If an

episode terminates on the left state 0, a reward of -1 will occur. If an episode

terminates on the right state 101, a reward of +1 will occur. And all other

rewards are 0. All episodes start in the state 50 which is close to the center,

27

then proceed to one of the 10 neighbouring states to the left, or to one of

the 10 neighbouring states to the right, with equal probability. If the current

state is close to the terminal state, it is possible that that side has less than 10

neighbouring states. Then the probability of transiting to the missing states

will be added to the probability of transiting to that terminal state in this

case. For example, there is a probability of 0.5 for state 1 and state 100 to

transit to the corresponding terminal states, and there is a probability of 0.25

for state 6 and state 95 to transit to the corresponding terminal states. We

used this version of random walk example throughout this whole chapter.

We used the tile coding introduced in Section 2.7 to construct the function

approximation feature vectors. More specifically, we had 5 tilings with 6 × 1

tiles for each tiling. Note for the above version random walk example, the state

is only represented by a number from 1 to 100, which is the one-dimensional

state space. That is the reason why the number of tiles for each tiling is in

n×1 form. The weights and eligibility traces (just for the TD(λ) method) are

all initialized to 0. Because we are comparing different methods or different

parameter settings for most experiments, we sample state transitions with

the corresponding rewards just once and apply different methods on that to

eliminate the bias.

4.2 Experiments of the Sensitivity Problem in

Emphatic Methods

First we would like to show why we want such heuristics for adapting step

sizes to emphatic methods. As we have discussed before, some existing studies

gave hints of the existence of the sensitivity problem, and we also encountered

this problem during our empirical studies in emphatic methods. Moreover, we

found that the main problem of the sensitivity of the step-size parameters is

that divergence would arise if inappropriate step-size parameters are used.

To study the sensitivity of the step-size parameters, we did the parameter

studies over the step-size parameter α between TD(0) and Emphatic-TD(0) on

our version of the random walk example. We also compared the two methods

28

the n-step Emphatic-TD method using step-size heuristics when n = 3. The

experiments all had 1000 episodes as one run and had 100 such runs, and the

results are shown in Figure 4.5. The right two sub-figures demonstrate the

complete learning curve of the averaged RMSVE, and the left two sub-figures

demonstrate the learned state value after 1000 episodes. And both the RMSVE

and the learned state value are averaged over 100 runs. The top two sub-figures

are under the discounted task where γ = 0.95. We used the n-step TD method

with the step-size parameter α = 0.01 and the n-step Emphatic-TD method

with α ≈ 0.0014 based on Equation 3.20. The bottom two sub-figures are

under the undiscounted task where γ = 1. The step-size parameter α of the

n-step TD method was also 0.01, while the n-step Emphatic-TD method used

the sequences of step-size parameters by Equation 3.35.

For both the state-value sub-figures and the learning curve sub-figures, we

could find that the lines for the n-step TD method and the n-step Emphatic-

TD method were overlapped, which means they were almost the same after

using the step-size heuristics.

Next we would run the experiments to see the effect of the step-size heuris-

tics on the Emphatic-TD(λ) method. And we started with comparing the

TD(λ) method with the Emphatic-TD(λ) method using different decay-rate

parameters for eligibility traces over different step-size parameters α on our

version of the random walk task. Again it is a discounted task (γ = 0.95) so we

could have a rough idea if Equation 3.29 holds. We only ran the experiments

for 10 episodes but repeated the process for 100 times, then we would have

Figure 4.6 as the result.

The y-axis of the figure is the average RMSVE over the episodes and runs.

Note that there is only one purple line in the figure representing Emphatic-

TD(1) and TD(1), this is because the TD(λ) method and the Emphatic-TD(λ)

method are exactly the same when λ = 1 and the interest of all states are equal.

For the same decay-rate parameter λ, the TD(λ) method and the Emphatic-

TD(λ) method both had an optimal range of α which had similar RMSVE,

and the relation between these two ranges followed the step-size heuristics.

For example, when the decay-rate parameter for eligibility trace λ was 0.4,

34

In Figure 4.10b, the averaged RMSVE of the Emphatic-TD(λ) method us-

ing the step-size heuristics also decreased more rapidly at the starting episodes

than the averaged RMSVE of the TD(λ) method and kept at a lower level af-

terwards. Comparing to the n-step experiments in Figure 4.9b, the averaged

RMSVE of the Emphatic-TD(λ) method using the step-size heuristics did not

drop that fast at the beginning, but there was a larger difference between

the emphatic methods and the corresponding non-emphatic methods after the

starting episodes in Figure 4.10b. Likewise, in Figure 4.10a, the approximate

values of the first 5 states of the Emphatic-TD(λ) method using the step-size

heuristics were also closer to the true state values than those of the TD(λ)

method in Figure 4.9a.

In this chapter, we demonstrated the effect of our step-size heuristics em-

pirically. We first conducted experiments to show the sensitivity problem

in emphatic methods and the significance of our step-size heuristics. Then

our experiments showed that both the n-step Emphatic-TD method and the

Emphatic-TD(λ) method using the step-size heuristics had almost the same

performance as the corresponding non-emphatic methods when the interest of

all states are equal. When the interest of states are not all equal, both the

n-step Emphatic-TD method and the Emphatic-TD(λ) method using the step-

size heuristics had better performance than the corresponding non-emphatic

methods which means our step-size heuristics can retain the advantages of the

emphatic methods. The empirical results are in agreement with our theoretical

results in the previous chapter.

40

Chapter 5

The On-policy Control
Emphatic Methods

This chapter concerns the second area of contribution of this thesis, and we

extend the idea of emphatic methods to the on-policy control methods Sarsa.

We first extended the idea of emphatic methods to Sarsa and introduced the

n-step Emphatic-Sarsa method and the Emphatic-Sarsa(λ) method. Then

we conducted some empirical studies to compare the performance of the two

new on-policy emphatic control methods with the corresponding non-emphatic

methods in different cases.

5.1 The n-step Emphatic-Sarsa Method

We would like to extend the idea of emphatic methods to the on-policy action-

value methods, and Sarsa should be the most fundamental and widely used

on-policy TD action-value method which is a good choice to see if emphasis

works in on-policy control cases. Thus we would develop the emphatic version

of the n-step Sarsa method and the Sarsa(λ) method. Let us first consider

the n-step version which is named the n-step Emphatic-Sarsa method. We

have introduced the n-step Sarsa method in Section 2.6. In the Emphatic-TD

prediction methods, the interest at time t is the measurement of how much

we care about accurately valuing the state. Proceeding to control methods,

the actions are another concern for us because action values are learned. Thus

for the Emphatic-Sarsa methods, the non-negative scalar variable interest It

41

Algorithm 1: Episodic semi-gradient n-step Emphatic-Sarsa for es-
timating q̂ ≈ q∗ (or qπ)

1 Input: a differential action-value function parameterization
q̂ : S×A× R

d → R

2 Input: a function parameterization i : S×A→ [0, 1] returning the
interest for each state-action pair

3 (Input: a policy π if estimating qπ)
4 Algorithm parameters: step-size parameter α > 0, probability of

taking a random action parameter ε > 0, an integer n > 0
5 Initialize the weight vector w ∈ R

d arbitrarily (e.g., w = 0)
6 Loop for each episode:
7 Initialize and store the starting state S0

8 Use ε-greedy with respect to q̂(S0, ·,w) to choose an action A0 (or
use the policy π to choose an action A0 ∼ π(·|S0)) to store

9 T ←∞
10 M0 ← i(S0, A0)
11 Loop for t = 0, 1, 2, ...:
12 If t < T :
13 Take action At

14 Observe the next reward Rt+1 and the next state St+1 and
store them

15 If St+1 is the terminal state:
16 T ← t+ 1
17 else:
18 Use ε-greedy with respect to q̂(St+1, ·,w) to choose an action

At+1 (or use the policy π to choose an action At+1 ∼ π(·|St+1)) to
store

19 If t+ 1 < n:
20 Mt+1 = i(St+1, At+1)
21 else:
22 Mt+1 = i(St+1, At+1) + γnMt−n+1

23 τ ← t− n+ 1
24 If τ ≥ 0:

25 G←
∑min(τ+n,T)

i=τ+1 γi−τ−1Ri

26 If τ + n < T :
27 G← G+ γnq̂(Sτ+n, Aτ+n,w)
28 w← w + αMτ [G− q̂(Sτ , Aτ ,w)]∇q̂(Sτ , Aτ ,w)
29 Until τ = T − 1

indicates the degree of our interest in accurately valuing the state-action pair

at time t. The other non-negative scalar variable emphasis Mt which can

emphasize or de-emphasize the learning by multiplying the update at time t

42

is still defined as:

Mt = It + γnMt−n, 0 ≤ t < T,

Mt = 0, t < 0.
(5.1)

Then we add the emphasis to the n-step Sarsa update (2.21) to define the new

update as:

wt+n
.
= wt+n−1+αMt[Gt:t+n−q̂(St, At,wt+n−1)]∇q̂(St, At,wt+n−1), 0 ≤ t < T.

(5.2)

And the n-step return is also redefined as:

Gt:t+n
.
= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnq̂(St+n, At+n,wt+n−1), t+ n < T,

Gt:t+n
.
= Gt, t+ n ≥ T.

(5.3)

The complete pseudocode of the n-step Emphatic-Sarsa method is given in

the box 1.

5.2 The Emphatic-Sarsa(λ) Method

Then let us take a look at the Emphatic-Sarsa method with eligibility traces,

which is named the Emphatic-Sarsa(λ) method by us. The interest here is the

same as that of the n-step Emphatic-Sarsa method which depends on both the

state and the action. And there is an additional non-negative scalar variable

which is the followon trace Ft:

F0
.
= i(S0),

Ft
.
= γFt−1 + It,

(5.4)

the emphasis Mt now depends on both the interest and the followon trace:

Mt
.
= λIt + (1− λ)Ft. (5.5)

The eligibility trace of the Emphatic-Sarsa(λ) method can be modified from

the eligibility trace of the Sarsa(λ) method (2.22). We can multiply the gradi-

ent part of the eligibility trace by the emphatic parameter, then the eligibility

trace is defined as:

z−1
.
= 0,

zt
.
= γλzt−1 +Mt∇q̂(St, At,wt), 0 ≤ t ≤ T,

(5.6)

43

Algorithm 2: Episodic semi-gradient Emphatic-Sarsa(λ) for estimat-
ing q̂ ≈ q∗ (or qπ)

1 Input: a differential action-value function parameterization
q̂ : S×A× R

d → R

2 Input: a function parameterization i : S×A→ [0, 1] returning the
interest for each state-action pair

3 (Input: a policy π if estimating qπ)
4 Algorithm parameters: step-size parameter α > 0, probability of

taking a random action parameter ε > 0, decay-rate parameter
λ ∈ [0, 1]

5 Initialize the weight vector w ∈ R
d arbitrarily (e.g., w = 0)

6 Loop for each episode:
7 Initialize the state S

8 Use ε-greedy with respect to q̂(S, ·,w) to choose an action A (or use
the policy π to choose an action A ∼ π(·|S))

9 F ← 0
10 M ← 0
11 z← 0
12 Loop for each time step in the episode:
13 Take action A, observe the next reward R and the next state S ′

14 F ← i(S,A) + γF

15 M ← λi(S,A) + (1− λ)F
16 z← γλz+M∇q̂(S,A,w)
17 If S ′ is the terminal state:
18 δ ← R− q̂(S,A,w)
19 w← w + αδz
20 Go to the next episode
21 Use ε-greedy with respect to q̂(S ′, ·,w) to choose an action A′ (or

use the policy π to choose an action A′ ∼ π(·|S ′))
22 δ ← R + γq̂(S ′, A′,w)− q̂(S,A,w)
23 w← w + αδz
24 S ← S ′

25 A← A′

and the TD error is now defined as:

δt
.
= Rt+1 + γq̂(St+1, At+1,wt)− q̂(St, At,wt), (5.7)

the update is just the product of the step-size parameter, the above eligibility

trace vector and the TD error:

wt+1
.
= wt + αδtzt. (5.8)

44

The complete pseudocode of the Emphatic-Sarsa(λ) method is given in the

box 2.

Note that the above equation of the eligibility trace (5.6) is based on the

eligibility trace of Sarsa(λ) (2.22), and the trace of (2.22) is called the ac-

cumulating trace. Accumulating traces are the most commonly used traces

because they are available in almost all situations. There is another kind of

traces called the replacing trace (Singh & Sutton, 1996), which usually has a

better performance than the accumulating trace. But replacing traces have

some limitations, they can only be used for tabular cases or binary feature

vectors. The replacing trace is defined based on whether each component of

the binary feature vectors is 0 or 1:

zi,t
.
=

{

γλzi,t−1 if xi,t = 0,

1 otherwise,
(5.9)

where zi,t is the ith component of the eligibility trace z at time t, and xi,t

represents the ith component of the binary feature vector x at time t.

If the constraint of the binary feature vector is met, an Emphatic-Sarsa(λ)

method using replacing traces is possible. And we come up with the emphatic

version of the replacing trace equation as:

zi,t
.
=

{

γλzi,t−1 if xi,t = 0,

Mt otherwise.
(5.10)

The complete algorithm of the Emphatic-Sarsa(λ) method using replacing

traces is similar to Algorithm 2. We only need to modify the line 16 of Algo-

rithm 2 to:

1 z← γλz
2 Loop for xi in X(S,A):
3 If xi = 1:
4 zi ←M

where X(S,A) is a function to return the binary feature vectors for the given

state S and action A.

45

5.3 The Mountain Car Example

We used the mountain car control problem1 as a testbed to compare the

Emphatic-Sarsa methods with the corresponding non-emphatic methods. Con-

sider the task of driving a car in a U-shaped mountain valley road. The position

and the velocity of the car are two state-related variables of this task. The

position of the car at time t is denoted as xt between -1.2 and 0.5, and the

velocity of the car at time t is denoted as ẋt between −0.07 and 0.07. The

action of the car at time t is denoted as At which can possibly be full throttle

froward (+1), zero throttle (0) and full throttle backward (−1). The relation

between the position xt, the velocity ẋt and the action At follows a simplified

physical model:

xt+1
.
= bound[xt + ẋt+1]

ẋt+1
.
= bound[ẋt + 0.001At − 0.0025 cos(3xt)],

where the operation of bound limits the position within −1.2 ≤ xt ≤ 0.5 and

the velocity within −0.07 ≤ ẋt ≤ 0.07.

In each episode, the car will start from a random position x0 ∈ [−0.6,−0.4)
which is near the bottom of the mountain valley at the velocity ẋ0 = 0. When

the car reaches the left bound xt = −1.2, the velocity ẋt will be reset to 0.

When the car reaches the right bound xt = 0.5, the goal is reached and the

episode will terminate. The reward of the task is−1 for each time step until the

goal is reached. If we take a good look at the physical model, we can find that

the gravity is larger than the accelerating ability which makes the car unable

to reach the goal directly even if it always chooses the action of full throttle

forward. To reach the goal, the car needs to first move toward the opposite

direction (left) to build up enough gravitational potential energy so it can then

take the action of full throttle toward right to reach the goal because of the

extra kinetic energy transformed from the gravitational potential energy. The

difficulty of this task is that something “bad” needs to be done before things

get better, which makes the mountain car example a great control problem.

1The mountain car example we used here is from Sutton (1996) which is based on a
similar example from Moore (1990).

46

We still used the tile coding introduced in Section 2.7 and used in Chapter

4 to construct the function approximation feature vectors. But unlike in the

random walk example, we have two state-related variables and the additional

actions in the mountain car task so the construction of the tile coding were

different. We still had 5 tilings, but we had different n×n tiles for each tiling.

The two state-related variables form a two-dimensional space which makes the

numbers of tiles for each tiling in n × n forms. Then the size of the feature

vectors is 5×n×n, and the size trebles to 3× 5×n×n when we consider the

three actions. The first 5 × n × n feature vectors represent the action of full

throttle forward, the second 5× n× n feature vectors represent the action of

zero throttle and the third 5×n×n feature vectors represent the action of full

throttle backward. The weights and the eligibility traces (just for the Sarsa(λ)

methods) are all initialized to 0. The interest for all states and actions are

equal to 1 and the probability of taking a random action parameter ε is 0.01

throughout this whole chapter.

5.4 Step-size Heuristics Used for On-policy Con-

trol Emphatic Methods

In the following sections, we compare our Emphatic-Sarsa methods with the

corresponding non-emphatic methods empirically on the mountain car exam-

ple. Because the mountain car example is an undiscounted task, divergence

will arise if a fixed step size is used as in the prediction problems. Thus we

multiplied the step-size parameter α by the adapting rate χ from Equation

3.35 for the n-step Emphatic-Sarsa method or from Equation 3.38 for the

Emphatic-Sarsa(λ) method. In this whole chapter, all the step-size parame-

ters of the emphatic methods actually used in the experiments are the step-size

parameters shown in the figure times the corresponding adapting rates, and

we will not explain this again.

47

accumulating traces. The performance of the Emphatic-Sarsa(λ) method using

replacing traces was similar to the Sarsa(λ) method using replacing traces, but

the performance of the Emphatic-Sarsa(λ) method using accumulating traces

was obviously better than the Sarsa(λ) method using accumulating traces.

The above experiments showed that the on-policy emphatic methods worked

in control problems. More specifically, the Emphatic-Sarsa methods performed

at least as well as the corresponding non-emphatic methods in all our experi-

ments. And in some special cases such as when using low resolution function

approximation and accumulating traces as eligibility traces, the Emphatic-

Sarsa(λ) method were better than the corresponding non-emphatic method.

54

Chapter 6

Conclusion

In this thesis, we did some studies on emphatic reinforcement learning and

made contributions in two separate but correlated areas.

First, we have designed new heuristics for reliably adapting step sizes to

emphatic methods. More specifically, our step-size heuristics provide a way

to transform the Emphatic-TD methods to the corresponding non-emphatic

methods by adjusting the step-size parameters when the interest of all states

are equal. Based on the same idea, we can use the step-size heuristics to

find the appropriate range for the step-size parameters of the emphatic meth-

ods. When the interest of states are not all equal, the Emphatic-TD methods

and the corresponding non-emphatic methods can not be the same, but there

still exists sub-heuristics of our step-size heuristics work in this case. In the

empirical evaluations of the step-size heuristics, the results showed that the

Emphatic-TD methods using the step-size heuristics and the corresponding

non-emphatic methods had almost the same performance when the interest

of all states are equal. When the interest of states are not all equal, the

Emphatic-TD methods using the step-size heuristics outperformed the corre-

sponding non-emphatic methods because our step-size heuristics can retain

the advantages of the emphatic methods.

Second, we also extended the idea of emphatic methods to the on-policy

control methods, and presented the new algorithms as the n-step Emphatic-

Sarsa method and the Emphatic-Sarsa(λ) method. We conducted some exper-

iments to compare the performance of the Emphatic-Sarsa methods with the

55

corresponding non-emphatic methods on the mountain car task. Because our

empirical studies did not cover all aspects, we are not able to give a definite

answer to the question if the new Emphatic-Sarsa methods are better than the

corresponding non-emphatic methods. In most cases we studied, we found no

significant difference between the performances of the Emphatic-Sarsa meth-

ods and the corresponding non-emphatic methods. In one particular case when

using low resolution tile coding and accumulating traces on the mountain car

task, we found that the Emphatic-Sarsa(λ) method performs better than the

corresponding non-emphatic method. In our opinion, the new Emphatic-Sarsa

methods may also be better than the corresponding non-emphatic methods

in other situations. This suggests that further empirical studies of the new

Emphatic-Sarsa methods in other situations such as using unequal interest

can be interesting future works.

56

References

Bellman, R. (1957). A Markovian decision process. Journal of Mathematics
and Mechanics, 6 (5), 679–684.

Ghiassian, S., Patterson, A., White, M., Sutton, R. S., & White, A. (2018).
Online off-policy prediction. arXiv: 1811.02597

Ghiassian, S., Rafiee, B., & Sutton, R. S. (2017). A first empirical study of
emphatic temporal difference learning. arXiv: 1705.04185

Gu, X., Ghiassian, S., & Sutton, R. S. (2019). Should all temporal difference
learning use emphasis? arXiv: 1903.00194

Hallak, A., Tamar, A., & Mannor, S. (2015). Emphatic TD Bellman operator
is a contraction. arXiv: 1508.03411

Hallak, A., Tamar, A., Munos, R., & Mannor, S. (2016). Generalized emphatic
temporal difference learning: Bias-variance analysis. In D. Schuurmans
& M. P. Wellman (Eds.), Proceedings of the thirtieth AAAI conference
on artificial intelligence (pp. 1631–1637). AAAI Press.

Imani, E., Graves, E., & White, M. (2018). An off-policy policy gradient
theorem using emphatic weightings. In S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Ad-
vances in neural information processing systems 31: Annual conference
on neural information processing systems 2018 (pp. 96–106).

Karampatziakis, N., & Langford, J. (2011). Online importance weight aware
updates. In F. G. Cozman & A. Pfeffer (Eds.), UAI 2011, Proceedings
of the twenty-seventh conference on uncertainty in artificial intelligence
(pp. 392–399). AUAI Press.

Mahmood, A. R., Yu, H., White, M., & Sutton, R. S. (2015). Emphatic
temporal-difference learning. arXiv: 1507.01569

Moore, A. W. (1990). Efficient memory-based learning for robot control (tech.
rep. No. UCAM-CL-TR-209). University of Cambridge, Computer Lab-
oratory.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connection-
ist systems (tech. rep. No. TR 166). Cambridge University Engineering
Department. Cambridge, England.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement learning with replac-
ing eligibility traces. Machine Learning, 22 (1–3), 123–158. doi:10.1007/
BF00114726

57

Sutton, R. S. (1988). Learning to predict by the methods of temporal differ-
ences. Machine Learning, 3 (1), 9–44. doi:10.1007/BF00115009

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In D. S. Touretzky, M. C. Mozer,
& M. E. Hasselmo (Eds.), Advances in neural information processing
systems 8 (pp. 1038–1044). Cambridge, MA, USA: MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning
(1st ed.). Cambridge, MA, USA: MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction
(2nd ed.). Cambridge, MA, USA: MIT Press.

Sutton, R. S., Mahmood, A. R., & White, M. (2016). An emphatic approach
to the problem of off-policy temporal-difference learning. Journal of Ma-
chine Learning Research, 17 (73), 1–29.

Tian, T., & Sutton, R. S. (2019). Extending sliding-step importance weighting
from supervised learning to reinforcement learning. In A. E. F. Seghrouchni
& D. Sarne (Eds.), Artificial intelligence. IJCAI 2019 international work-
shops (Vol. 12158, pp. 67–82). doi:10.1007/978-3-030-56150-5 4

Watkins, C. J. C. H. (1989). Learning from delayed rewards (Doctoral disser-
tation, King’s College, Cambridge, UK).

Yu, H. (2015). On convergence of emphatic temporal-difference learning. In P.
Grünwald, E. Hazan, & S. Kale (Eds.), Proceedings of the 28th conference
on learning theory (Vol. 40, pp. 1724–1751). JMLR.org.

Yu, H. (2016). Weak convergence properties of constrained emphatic temporal-
difference learning with constant and slowly diminishing stepsize. Jour-
nal of Machine Learning Research, 17 (220), 1–58.

58

	Introduction
	Temporal-Difference Learning
	Emphatic Methods
	The Sensitivity Problem of the Step-size Parameter in Emphatic Methods
	The Contribution of this Thesis

	Background
	Markov Decision Processes (MDPs)
	Value Functions and Prediction Problems
	Generalized Policy Iteration (GPI) and Control Problems
	Temporal-Difference (TD) Learning
	TD Prediction
	On-policy TD Control: Sarsa
	Tile Coding
	The Objective for Prediction: RMSVE

	Emphatic Methods and New Step-size Heuristics
	Emphatic Methods
	The Sensitivity Problem in Emphatic Methods and our Solution
	The Step-size Heuristics in n-step Case
	The Step-size Heuristics in Eligibility Traces Case
	The Step-size Heuristics in Unequal-interest Case
	The Step-size Heuristics in Other Special Cases

	Experiments for Step-size Heuristics
	The Random Walk Example
	Experiments of the Sensitivity Problem in Emphatic Methods
	The Equal-interest Setting
	The Unequal-interest Setting

	The On-policy Control Emphatic Methods
	The n-step Emphatic-Sarsa Method
	The Emphatic-Sarsa() Method
	The Mountain Car Example
	Step-size Heuristics Used for On-policy Control Emphatic Methods
	Experiments of n-step Sarsa versus n-step Emphatic-Sarsa
	Experiments of Sarsa() versus Emphatic-Sarsa()

	Conclusion
	References

