

CGU HS Committee on River Ice Processes and the Environment

Presents

Short Course on River Ice Modelling

July 13, 2023 Coast Canmore Hotel Canmore, Alberta

Bow River at Canmore, Alberta. February 2011. Photo Courtesy Dr. Mark Loewen, University of Alberta.

Course Notes for

Short Course on River Ice Modelling

Presented by:

Canadian Geophysical Union, Hydrology Section, Committee on River Ice Processes and the Environment.

July 13, 2023

CRIPE Short Course Committee:

Jennifer Nafziger Michael Brayall Vincent McFarlane Julia Blackburn Kevin Lees Dan Healy Joe Groeneveld

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

This license allows re-users to copy and distribute the material in any medium or format in unadapted form only, for non-commercial purposes only, and only so long as attribution is given to the creator.

Please cite as:

Nafziger, J., Brayall, M., McFarlane, V., Blackburn, J., Lees, K., Healy, D., Groeneveld, J. 2023. CGU-HS Committee on River Ice Processes and the Environment Course Notes for Short Course on River Ice Modelling. Canmore, Alberta. July 13, 2023.

Short Course on River Ice Modelling

July 13, 2023 – Coast Canmore Hotel and Conference Centre, Canmore, AB

С	ontents
1.	Introduction to This Course6
	Course Welcome
	Course Developers7
	Course Contributors
	Disclaimer and Waiver
2.	Introduction to River Ice Processes and Modelling10
3.	Introduction to Your Case Study: The Peace River
4.	HEC-RAS Modelling Exercises
ſ	Module 1: The Open Water Model
	Task 1A: Background Information
	Task 1A Instructions: Launch HEC-RAS and Get Familiar with the Data and Analysis Windows 42
	Task 1B and 1C: Background Information53
	Task 1B Instructions: Run the HEC-RAS Model for the 1990 Open Water Event and Check Model Calibration 57
	Task 1C Instructions: OPTIONAL Check Open Water Model Calibration Against the Rating Curve
	Module 2: Modelling a Static Intact Ice Cover74
	Task 2A Instructions: Modify Open Water Geometry File to Add and Intact Ice Cover
	Task 2B Instructions: Enter the Observed Water Surface Calibration Data and Run the Model 94
	Task 2C Instructions: OPTIONAL – Review A Complete Intact Ice Calibration from Another Date
	Module 3: Simple Ice Jam Model
	Task 3A Instructions: Modify the Geometry File to Include a Simple Ice Jam and Run the Simulation
	Task 3B Instructions: Calibrate the Simplified Ice Jam Model
	Task 3C Instructions: Further Modify the Geometry
	Task 3D Instructions: Compare the Results of The Geometric Modifications
	Task 3E Instructions: OPTIONAL – Explore Sensitivity of Ice Jam Strength Parameters
	Module 4: Modify Ice Jam Width and Consider Overbank Areas
	Task 4A Instructions: Modify Channel Bank Stations

	Task 4B Instructions: Define the Ice Thicknesses in the Overbank Areas	158
	Module 5: Cross-Section Interpolation	169
	Task 5A Instructions: Compare Model Results with and without Interpolated Cross-Sections.	173
	Task 5B Instructions: Add In New Interpolated Cross-Sections	181
5.	Summary of Available River Ice Models	191
6.	Introduction to Ice Process Modelling	196
7.	Ice Process Modelling with River1D	203
	Module 1: Setting up the Model	203
	Task 1A: Setting up Thermal Ice Processes Modelling in River1D	203
	Task 1B: Setting up Atmospheric Zones	205
	Task 1C: Inputting Flow Boundary Conditions	212
	Task 1D: Inputting Ice Bridging Information	214
	Module 2: Running the Model with Default Settings (No Calibration)	216
	Task 2A: Steady State Simulation	216
	Task 2B: Transient Simulation	217
	Task 2C: Checking Outputs	222
	Module 3: Calibrating the Model	226
	Task 3A: OPTIONAL – Experimenting with the h_{wa} parameter	227
	Task 3B: Adjusting Parameters	231
	Task 3C: Steady State Initial Conditions	233
	Task 3D: Calibrated Transient Simulation	234
	Task 3E: Checking Calibrated Outputs	235
	Task 3F: OPTIONAL – Model Validation	238
	Module 4: OPTIONAL – Other River1D Features	241
	Task 4A: Starting a New River1D Project using the File Builder	241
	Task 4B: Converting a HEC-RAS File into a River1D File	243
8.	Helpful Resources	246
9.	References	246
Appendix A: River1D Model Parameters		248
	River1D Ice Process Modelling Parameters	249
	Appendix A References	252
Ap	pendix B: River Ice Model Summaries	254

1. Introduction to This Course

Course Welcome

Welcome to the CRIPE Short Course on River Ice Modelling!

This course will introduce current modelling practices for static ice covers, simple ice jams, and river ice processes through a combination of lecture material and hands-on exercises, all of which have been prepared by course developers with extensive river ice modelling experience. We hope that this course will serve as a practical introduction to those who do not have any river ice modelling experience, and a valuable refresher to those who do.

The learning outcomes for this course are:

- Obtain a basic understanding of river ice processes.
- Become familiar with the ice processes on the Peace River, and understand why we seek to model them.
- Become familiar with the HEC-RAS model for the purposes of:
 - modelling a static ice cover,
 - modelling a simple ice jam, and
 - using advanced features (e.g. modifying bank station, interpolating cross sections) to improve an ice jam model.
- Obtain a basic understanding of river ice process modelling.
- Become familiar with the River1D ice process model for the purposes of:
 - o setting up a thermal ice process model and
 - o calibrating a thermal ice process model.

We hope you enjoy the course!

~The CRIPE Short Course Committee

Course Developers

Julia Blackburn, Ph.D., P.Eng.

Julia is currently a Post-Doctoral Fellow at the University of Alberta. She recently completed her Ph.D. in Water Resources Engineering at the University of Alberta. She also completed her M.Sc. in Water Resources Engineering at U of A and her B.Sc. in Geological Engineering at Queen's University. Since 2007 she has either been working for the University of Alberta or working on her Ph.D. Most of this work has focused on the development and application of the University of Alberta's River1D model. Her current research is focused on integrating water quality modelling capabilities in to River1D for the purpose of studying winter water quality in rivers. She lives and works from her home near Salmon Arm, BC.

Michael Brayall, M.Sc., P.Eng.

Michael is a River Hydraulics and Ice Engineer with Alberta Environment and Protected Areas' River Forecast Centre. He has worked on a wide range of water resources projects for the past 15 years specializing in hydraulic modelling. Michael completed his M.Sc. at the University of Alberta with his project focusing on ice jam modelling in the Hay River delta. He has used HEC-RAS to simulate ice jams on rivers throughout Alberta and the Northwest Territories.

Joe Groeneveld, M.Eng., P.Eng.

Joe is a senior Water Resources engineer in the Hatch Calgary office with a solid background in hydraulics and hydrology developed through his 35 years of progressive experience. He completed his B.Sc. in Civil Engineering at the University of Alberta, followed by his M. Eng in Water Resources also at the University of Alberta. Over his career, Joe has been involved in a wide range of water resources projects and studies, including hydrology studies, dam safety studies, hydraulic structure design, flood hazard evaluation, and hydropower design. Joe has also accrued considerable expertise in river ice engineering and modelling, and has been the lead engineer for numerous ice related projects across Canada.

Dan Healy, Ph.D., P.Eng.

Dan is a Principal at Northwest Hydraulic Consultants Ltd. He has worked on a wide range of water resources projects for more than 20 years and has considerable experience leading and implementing both small and large flood studies. Dan's post graduate studies were completed at the University of Alberta where he focused on river ice processes, including physical ice jam model studies and a detailed comparison of the RIVJAM and ICEJAM ice jam profile models.

Kevin Lees, Ph.D., P.Eng.

Kevin is a Water Resources Engineer at Hatch Ltd. in Calgary. He completed his B.Eng. in Water Resources Engineering at the University of Guelph, and his Ph.D. in Civil Engineering at the University of Manitoba. Kevin's doctoral research focused on numerical modelling of ice-affected hydraulics and river ice processes in Northern Manitoba. He has over 10 years of experience between research and consulting, and has worked on a wide-range of water resources topics (including hydrometric monitoring, environmental impact assessments, flood hazard mapping, IDF/PMF modelling, and hydraulic structure design). Kevin provides river ice expertise to Hatch projects across Canada.

Vincent McFarlane, Ph.D., P.Eng.

Vincent is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of Alberta. He completed his B.Sc., M.Sc., and Ph.D. studies at the U of A, followed by a Postdoctoral Fellowship at the University of Manitoba, with his primary research focus on frazil ice formation, the river supercooling process, and the freeze-up energy budget. Most recently, Vincent worked on a wide range of projects as a hydrotechnical specialist with Stantec Consulting Ltd. before rejoining the U of A in his current role.

Jennifer Nafziger, Ph.D., P.Eng.

Jennifer is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of Alberta. She completed her Ph.D in Water Resources Engineering at the University of Alberta and her B.A.Sc. in Geological Engineering at the University of Waterloo. Jennifer has worked with river ice processes across Canada, including in Alberta, the Northwest Territories, New Brunswick, and Newfoundland. Prior to joining the University of Alberta, Jennifer was a River Hydraulics and Ice Engineer with Alberta's provincial River Forecast Centre and was on the ground during major ice jam flooding events in Alberta.

Course Contributors

Thank you to the following people who provided input to and/or reviewed the course materials, including the river ice model summaries: Spyros Beltaos, Steve Daly, Mikko Huokuna, Martin Jasek, Karl-Erich Lindenschmidt, Jarrod Malenchak, Yuntong She, Hung Tao Shen, Wael Taha, and Benoit Turcotte. Their assistance was invaluable, but we assume complete responsibility for any errors or shortcomings that may be in these materials. Thank you to Johnson Kau and Alyssa Sandeman for their extensive testing of the course materials and assistance with developing the printed version of the course notes. Thanks to Jason Kinsella and Heropa for help with providing the virtual machines for today's exercises.

Disclaimer and Waiver

River ice modelling programs are presented in this course for educational purposes only. These programs are large and extensive. We cannot cover their complete use in a course of this duration. The goal of this course is to provide participants with an introductory modelling experience using real world examples and based on real world engineering experience. However, many modifications have been made to the example data make them appropriate for an education environment. The modelling approaches illustrated in this course are based on the course developers' experience. It is important to recognize that this is not the only possible approach, and alternative methods may exist that yield equally viable results.

The content of this course is not a substitute for professional engineering advice nor is it a substitute for additional formal training or mentorship from experienced users. It is the responsibility of modellers to evaluate all model assumptions and approaches in the context of their particular application and to practise within their own competent scope of practise. By participating in this course, you acknowledge that the course content is not engineering advice.

The version of River1D used in this course is a special educational release. Publicly-available releases will differ somewhat from the version showcased here.

2. Introduction to River Ice Processes and Modelling

3. Introduction to Your Case Study: The Peace River

- Has flooded in various ways:
 - Open water flooding e.g. 1990
 - Freeze-up Ice Jam e.g. 1992
 - Breakup Ice Jam e.g. 1997
- We will model two of these floods:
 - 1990 and 1997

4. HEC-RAS Modelling Exercises

Module 1: The Open Water Model

Task 1A: Background Information

HEC-RAS 6.3.1		
File Edit Run View Options GIS Tools Help Image: State of the state of	C: (CRIPE Short Course R2/CRIPES C C: (CRIPE Short Course R2)(CRIPES C	- X
Geometry Fil	es	CRIPE
 River centrelines River cross-sections Junctions Bridges and culvers Etc. 	s s	<
 Roughness va Defined ice co 	alues (bed and i	ce)

Task 1A Instructions: Launch HEC-RAS and Get Familiar with the Data and Analysis Windows

Table 1: Model Files Used for HEC-RAS Module 1 - Task 1A and Task 1B

File Type Filename				
Plan	"Module 1: 1990 Flood Calibration"			
Geometry	"Module 1: Open Water"			
Steady Flow	"Module 1: 1990 Flood Calibration			

1. Double click on the HEC-RAS 6.3.1 icon on your desktop . The main interface window will open.

EC-RAS 6.3.1	-		×
File Edit Run View Options GIS Tools Help			
▨▣┴☲๋ェュュềॾॾॾॾॾ ≈ ◄ፇฅ८◙◺◛ฃฃฃ๏₅₅			I rii
Project:			- 🖻
Plan:			
Geometry:			
Steady Flow:			
Unsteady Flow:			
Description:	US Cus	stomary I	Units

Notice that the first time you open HEC-RAS the units will be set as 'US Customary Units'. The use of 'US Customary Units' or 'Metric' units is a setting in the project file.

😴 HEC-RAS 6.3.1	_		\times
File Edit Run View Options GIS Tools Help			
◙◨▯⊻▿ェュ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	35		ĬĸĬ
Project:			- <u>-</u>
Plan:			
Geometry:			
Steady Flow:			
Unsteady Flow:	_		
Description:	US (Customary	Units

2. Click on in the main interface to open the HEC-RAS project for this course. Browse to the file location: "C:\CRIPE Short Course R2" and is project file called "CRIPESHORTCOURSE_R2.prj"

Title	File Name	Selected Folder Default Project Folder	Docum	
CRIPE HECRAS Short Course_R2	CRIPESHORTCOURSE_R2.pr	C:\CRIPE Short Course R2		
CRIPE HECRAS Short Course. R2	CRIPESHORTCOURSE R2.pr)	C:1 C:CIPE:Short Course R2 Backup Features Projection		
OK Cancel H	elp Create Folder	, 🖃 c: [Windows]		
Select project to Open				

3. Click ОК ,

The main interface now shows the **plan**, **geometry**, and **steady flow** files that are currently loaded in the project. The files shown in your main interface may be different from the ones shown here:

📑 HEC-RAS 6.	3.1		_		×
File Edit Ru	in View Options GIS Tools Help				
F	<u>576 778 884</u>	♥ <u>♥</u> ♥ ∠ ♥ ⊾ ₪ ₪ ₽ □ss			ini
Project:	CRIPE HECRAS Short Course_R2	C:\CRIPE Short Course R2\CRIPESHORTCOURSE_R2.prj			- D
Plan:	Module 3: Simple Ice Jam_Final	C:\CRIPE Short Course R2\CRIPESHORTCOURSE_R2.p07			
Geometry:	Module 3: Simple Ice Jam_Final	C:\CRIPE Short Course R2\CRIPESHORTCOURSE_R2.g06			
Steady Flow:	Module 3: Simple Ice Jam	C:\CRIPE Short Course R2\CRIPESHORTCOURSE_R2.f06			
Unsteady Flow:					
Description:		<u>.</u>	SI Units	;	

4. Click on in the main interface to open the 'Steady Flow Analysis' window:

者 Steady Flow Analysis			_		Х
File Options Help					
Plan: Module 3: Simple Ice Jam_	Final	Short ID:	M3: Simple	Jam_Final	
Geometry File:	Module 3: Simple Ice Jam_	Final			-
Steady Flow File:	Module 3: Simple Ice Jam				-
Flow Regime © Subcritical © Mixed Optional Programs □ Floodplain Mapping	Plan Description				< >
	Compute				
Enter/Edit short identifier for plan	(used in plan comparisons)				

5. In the 'Steady Flow Analysis' window, click File and select the '*Open Plan...*' option. Select the plan file we are using for this Task: "**Module 1: 1990 Flood Calibration**".

🛓 Steady Flow Analysis		—	\times
File Options Help			
Plan: Module 1: 1990 Flood Cal	libration	Short ID: M1: 1990 Flood	
Geometry File:	Module 1: Open Water		•
Steady Flow File:	Module 1: 1990 Flood Calib	oration	•
Flow Regime © Subcritical © Supercritical © Mixed Optional Programs Floodplain Mapping	Plan Description		< >
	Compute		
Enter/Edit short identifier for plan	n (used in plan comparisons)		

Now the geometry file and the steady flow files for this Task are loaded. Note that the plan file we opened **"Module 1: 1990 Flood Calibration**" links together a geometry file and a steady flow file. The 'Short ID' of the plan file (**"M1: 1990 Flood**") is what is used in output results tables and figures in HEC-RAS:

🛓 Steady Flow Analysis		—	\times
File Options Help			
Plan: Module 1: 1990 Flood Cali	ibration	Short ID: M1: 1990 Flood	
Geometry File:	Module 1: Open Water		-
Steady Flow File:	Module 1: 1990 Flood Calib	ration	•
Flow Regime © Subcritical © Supercritical © Mixed Optional Programs Floodplain Mapping	Plan Description		< >
	Compute		
Enter/Edit short identifier for plan	n (used in plan comparisons)		

 \times

- 6. Close the 'Steady Flow Analysis' window by clicking the
- 7. Click on the in the main interface to open the 'Geometric Data' window:

File Edit Options View Tables Tools Gill Tools NVVer Area Area Area Area Area Area Area Area Area Area Area Area Area Area Image Area Area Area Area Area Area Image Area Area A	Plot WS exte		
Tools TWVEFT Storage 12 Flow SA/2D BC Reference 1C Reference 20Area 20Ar	Plot WS exte		
Calibrated Open Water		ents for Pro	file:
Editors	(none)		_
Junet			Â
Loss Section			
10.XS #01			
23422.439 XS #03			
Lateral \$309.021 X5 #06			
Structure			
50mg# \$1039512 X5#12			
413053.22 XS #14			
2D Flow			
1500 100 AS FIG			
5A/2D			
20683 87 VS 820			
Purp 2233 X5 #23			
22,244-95 AS 800 22,005 26 XS 803			
Hab \$27659,931%5#35 Param \$26777			
View 30/757.83 XS #38			
1000 33566.04 X \$#40			
V2/48_00 / X5 #42			
PH-1 39986 15 X5 #44			
\42705.21 X5 #46 #T\$\$\$\$\$ ¥45			
48296 97 XS #50			
€00/975 X 58422 ≤50/44 55 V 5 #53			
₹≰139.07 X3 #54			
			×
	-58020.5	7, 6261982	.25

icon in the Geometric Data window.

9. Un-check "Plot Terrain" and check "ArcGIS World Imagery" in the pop-up window:

	Background Layers on Schematic	
	Map Layers	
	Map Laver	
	ArcGIS World Imagery	
	Terrain (associated Terrain in Ras Manner)	
	Close	
10. Click Close		
🗙 Geometric Data - Module 1: Open Water		- 🗆 X
File Edit Options View Tables Tools GIS To Tools River Storage 2D Flow SA/2D BC Area Conn Lines	Inst Help Reference IC Reference 200 rea 20 Area Pump RS Description :	Plot WS extents for Profile:
Editors	Regions Calibrated Open Water	. (none) 💌
Brdg/Culv	0 XS #01	
Inline Structure	4480.899 XS #05 7554.073 XS #10	
Lateral	10385;12: XS #12 (10385;61: XS #13) (105322: XS #14)	
	15581.85 XS #16	
Storage Area	(1822/06/XS#113) (19733/33/XS#19) 20583/87/XS#20)	
2D Flow Area	22118.09 XS #28 23492.63 XS #31	
SA/2D Conn	20107.3T.AS#59 28888162 X #37 6160152 X #450	
	652(159 X5 #4)	
Station	0R-1 41405.55 X3 #45 4405132 X5 #47	
HTab Param.	49803.19 XS #51	and the second second
View Picture	54139.07 XS #53	

The 'Geometric Data' window shows the model geometry including the river centreline, model crosssection locations, junctions, bank stations, etc.

11. Look around the model domain by zooming in and out and panning. The tools for zooming and panning are in the View menu at top of the program. Alternatively, you can hold down the SHIFT key to pan and scroll to zoom.

Note that:

- The channel centreline is shown as a blue line
- The cross-section lines are shown as a green line
- The cross-sections are labeled with their location along the channel centreline (in meters) and a cross-section number (e.g. '24146.38 XS #32')
- Top of bank locations (also called "bank stations") are shown with red dots
- Levee locations are shown with open pink squares.

• The background image ('Base Map Layer') is supplied by HEC-RAS from a web mapping service, but your own imagery can be added.

The 'Cross Section Data' window show the cross-section geometry, the location of the left and right bank stations, the roughness values (Manning's *n*). Because this model has been run before, model results are available, so the water level (dark blue line) and filled in wetted area (cyan fill) are shown.

13. Browse the cross-sections by scrolling using the up and down black arrows, or selecting the crosssection from the dropdown list:

Some cross-sections have additional features such as levees, ineffective flow areas, and bridges. As you view different cross-sections, the cross-section you are currently viewing is highlighted on the plan view in the Geometric Data window.

14. View the Manning's *n* roughness values used for a cross-section in the 'Cross Section Coordinates' table.

 \times

In this open water model, the n-values are varied along the cross-section, by assigning a value at different stations. This is called the "Horizontal Variation Method". We will change this to the "Standard Method" (where roughness values are assigned only for the channel, left, and right overbanks) before simulating an ice cover.

- 15. Close the 'Cross Section Data' window and the 'Geometric Data' window by clicking on the on each window.
- 16. In the main interface click on the 5 to open the 'Steady Flow Data' window:

$\frac{\nabla}{\mathbb{Q}^{\rightarrow}}$ Steady Flow Data	- Module 1: 1990	Flood Ca	libration				_	-		×
File Options Help										
Description :							Å.		Apply D)ata
Enter/Edit Number of Pro	ofiles (32000 max):	þ	Reach Bo	undary Co	onditions					
	Loca	tions of Flo	w Data Chang	es						
River: 1 - Peace River	-					Add Multiple				
Reach: PR-1	▼ Riv	er Sta.: 5	4139.07 XS #	54 💌	Add A Flow	Change Location	Í			
Flow Cha	ange Location				Profile Na	mes and Flow Rate	es			
River R	Reach	RS	1990 Flood							
1 1 - Peace River P	PR-1	54139.07	7810							
2 1 - Peace River P	PR-1	28861.62	18250							
Observed Water Surface	es Entered									
J Edit Steady flow data for	r the profiles (m2/	-)								
jeure steady now data to	i the profiles (mo)s	9								

The 'Steady Flow Data' window is where the **Steady Flow** file is edited and viewed. The **Steady Flow** file is where the discharge (and discharge change locations), boundary conditions, observed water level, and rating curves are stored. Each flow file can have multiple "profiles" that can each have different discharges, boundary conditions, and observed water levels. This flow file has just one profile, called "**1990 Flood**". The flow changes at one location: the cross-section at station 28861.62, where the Smoky River tributary enters the Peace River. At this location for the 1990 Flood, the flow was 7,810 m³/s upstream of the Smoky River tributary, and 18,250 m³/s downstream of the Smoky River tributary:

ন্ট্র্ন Steady Flow Data	a - Module 1: 1990	Flood Calib	oration								_		\times
File Options Help	þ												
Description :											÷	Apply	Data
Enter/Edit Number of Pr	ofiles (32000 max):	1	Reach Bou	ndary (Condition	ns							
	Loca	tions of Flow I	Data Change	s									
River: 1 - Peace River	r 🔻					A	dd Multiple						
Reach: PR-1	▼ Riv	er Sta.: 5413	39.07 XS #5	4 💌	Add A	A Flow Cha	nge Location	1					
Flow Ch	ange Location						Profile Nam	nes and	Flow Rate	es			
River 1 - Peace River 2 1 - Peace River	Reach PR-1 PR-1	RS 19 54139.07 78 28861.62 18	990 Flood 310 3250										
Observed Water Surfa	ces Entered	-											
Edit Steady flow data fo	or the profiles (m3/s	s)											

17. View the boundary conditions by clicking on the

Steady Flow Boun	dary Conditions											
Set boundary f	Set boundary for all profiles Set boundary for one profile at a time											
Available External Boundary Conditon Types												
Known W.S.	Critical De	pth	Normal Depth	Ratin	g Curve	Delete						
	Sele	ected Boundary	Condition Locations and	Types								
River	Reach	Profile	Upstream		Downstr	eam						
1 - Peace River PR-1 all Normal Depth S = 0.00025												
Steady Flow Reach-Storage Area Optimization OK Cancel Help												
Select Boundary co	ndition for the upstr	eam side of sele	cted reach.									

Reach Boundary Conditions ...

button:

A downstream boundary condition using the "Normal Depth" method will be used for all simulations in this course. Using this method, HEC-RAS will calculate the water level at the most downstream crosssection assuming uniform flow and a water surface and energy grade line slope of 0.00025. This is a reasonable first guess for a downstream section. The location of the downstream boundary condition is chosen to reduce the effect of the boundary condition within the main model reach. It is the role of the modeller and study designer to choose boundary conditions to fit the physical situation and intended use of a model.

- 18. Close the 'Steady Flow Boundary Conditions' window by clicking
- 19. View the observed water surface elevations by clicking Options and selecting 'Observed WS...' in the 'Steady Flow Data' window

20. View the observed water surface elevations that are contained in the Steady Flow file.

C)bserv	ved Water Sur	faces for Comparis	son				
Ri	ver:	1 - Peace Rive	er 💌			Add I	Multiple	Delete Row
Re	each:	PR-1	▼ Riv	ver Sta.: 54139.07 XS	#54	▼ Add	d an Obs. WS	Location
			Observed	WS Location			Observe	d Water
	Rive	er	Reach	RS		Dn Dist	1990 Flood	▲
	1 1 -	Peace River	PR-1	48296.97 XS #50		0.48	323.925	
	2 1 - 1	Peace River	PR-1	42705.21 XS #46		0	323.173	
	3 1 - 1	Peace River	PR-1	41405.55 XS #45		1441.74	322.761	
	4 1 - 1	Peace River	PR-1	37246.26 XS #42		3.11	322.403	
	5 1 - 1	Peace River	PR-1	35284.69 XS #41		0.58	322.146	
	6 1 -	Peace River	PR-1	33566.04 XS #40		780.77	322.002	
	7 1 -	Peace River	PR-1	31899.57 XS #39		5.7	322.06	•
					OK	Ca	ancel	Help

Each observed water surface has a location and an elevation. The elevation is under the column called '1990 Flood'. This is because this profile is from the 1990 Flood, and the name of the profile is '1990 Flood'. The location is defined as a cross-section and River Station (RS), and the distance downstream of the cross-section ('Dn Dist', in meters), so that the locations of observed water surfaces can be located between cross-sections.

×

21. Close the 'Observed Water Surface for Comparison' window by clicking

22. Close the 'Steady Flow Data' window by clicking on the

Task 1B and 1C: Background Information

Task 1B Instructions: Run the HEC-RAS Model for the 1990 Open Water Event and Check Model Calibration

1. From the main interface, open the 'Steady Flow Analysis' window by clicking on the

A Steady Flow Analysis			×
File Options Help			
Plan: Module 1: 1990 Flood Cal	ibration	Short ID: M1: 1990 Flood	
Geometry File:	Module 1: Open Water		•
Steady Flow File:	Module 1: 1990 Flood Cali	bration	-
Flow Regime Subcritical Supercritical Mixed Optional Programs	-Plan Description		^
Floodplain Mapping			×
	Compute		
Enter/Edit short identifier for plar	n (used in plan comparisons)		

This is the window from where you will run the model. It shows the **Plan** file you are using ("**Module 1: 1990 Flood Calibration**") and the **Geometry** and **Steady Flow** file information that will be used for the model run.

2	Click	Compute	to run tho
Ζ.	CIICK		
	mode		

Write Geometry Information ayer: COMPLETE Steady Flow Simulation Wret: 1 - Peace River Jeach: PR-1 Profile: 1990 Flood Simulation: 1/1 Computation Messages Plan: Yhodule 1: 1990 Flood Calibration' (0 Simulation started at: 17Jun2023 05:22:24 PM Writing Geometry Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 Oc Finished Steady Flow Simulation	RS: Node Type:	54139.07 Cross Section			
Steady Flow Simulation Reach: PR-1 Profile: 1990 Flood Simulation: 1/1 Computation Messages Plan: Yhodule 1: 1990 Flood Calibration' (C Simulation started at: 17Jun2023 05:22:24 PM Writing Geometry Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 Oc Finished Steady Flow Simulation	RS: Node Type:	54139.07 Cross Section			
Address of the constraint	RS: Node Type:	54139.07 Cross Section	•		
Reach: PR-1 Profile: 1990 Flood Simulation: 1/1 Computation Messages Plan: 'Module 1: 1990 Flood Calibration' ((Simulation started at: 172un2023 05:22:24 PM Writing Geometry Completed Writing Geometry Writing Event Condition S Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 Oc Finished Steady Flow Simulation	Node Type:	Cross Section			
rofile: 1990 Flood simulation: 1/1 Computation Messages Plan: 'Hodule 1: 1990 Flood Calibration' (C Simulation started at: 17Jun2023 05:22: 24 PM Writing Geometry Completed Writing Geometry Writing Event Conditions Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 Oc Finished Steady Flow Simulation			-		
imulation: 1/1 Computation Messages Plan: 'Hodule 1: 1990 Flood Calibration' (C Simulation started at: 17Jun2023 05:22:24 PM Writing Geometry Completed Writing Geometry Writing Event Conditions Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 Oc Finished Steady Flow Simulation					
Computation Messages Plan: 'Hodule 1: 1990 Flood Calibration' (C Simulation started at: 173/un2023 05:22:24 PM Writing Geometry Completed Writing Geometry Writing Event Conditions Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 OC Finished Steady Flow Simulation					
Plan: 'Hodule 1: 1990 Flood Calibration' (Simulation started at: 17)un2023 05:22:24 PM Writing Geometry Completed Writing Geometry Writing Event Conditions Completed Writing Event Condition Data Steady Flow Simulation HEC-RAS 6.3.1 Oc Finished Steady Flow Simulation					
Steady Flow Simulation HEC-RAS 6.3.1 Oc					
Computations Summary					
	True Arbana				
Completing Geometry	nne(nnanna	<1			
Completing Event Conditions Steady Flow Computations		<1			
Complete Process		1			
1	,			-	

The 'HEC-RAS Finished Computations' window will open while the model runs and shows a summary of the model run information.

- 3. Click Close to close this summary.
- 4. Close the 'Steady Flow Analysis' window by clicking on the
- 5. In the main interface, click to view the model run results as a profile plot:

This shows the model results compared to the observed water surface data. This plot could be made a little clearer, as there are several things shown that aren't needed right now. You can control what is shown on this plot.

6. Go to Options and click 'Variables':

- 7. De-select the following options:
 - Energy Grade Elevation
 - Critical Depth Elevation
 - o Left Levee
 - o Right Levee

Notice that you can turn on the view of an ice cover if we were modelling ice.

8. Go to Options and click on the '*Lines and Symbols …*' option. Change the style options for the '*Observed WS 1*' to be larger and red:

Line Style Options									
 Current Plot Line 	styles		C Default	ine Styles					
	Lines			Lines			Symbols		Fill
Variable	Label	Line/Fill	Туре	Color	Width	Туре	Size (pts)	Color	Pattern
Culvert			none		1 pixel	none	1		
Gate (Open Air)					0.5	Δ	• 2		
XS Lid							[
WS Fill						$\vee \vee$	- 3 L		
Black SE	-				1.5	$\times \Leftrightarrow$	- 4		
Culvert Blockage						$\Box \Phi$	□ <u>5</u>		
Gate Door						0 0			7////
Ground	Ground					∇ \wedge			
Interp Ground	-				3.0	$\land \lor$			
WS1	WS 1990 Flood					$+ \diamond$	8		
Observed WS1	OWS 1990 Flood				4.0	☆ ≂	9		
Set WS	Set WS	<u> </u>			4 .5	* 🛦	10		
					0	к	Cancel	Rese	t Defaults

9. Close the 'Line Style Options' window by clicking . The observed water surface data now stand out a little better against the model results:

Notice that the modelled water surface (filled in cyan) matches the observed water surface data well. Therefore, the model was well-calibrated to these conditions.

- 10. Close the 'Profile Plot' window by clicking on the
- 11. Review the model results in a summary table by clicking on the III in the main interface.

Profil	e Output Table - Standard T	Table 1											_		×
File Opt	ions Std. Tables Locatio	ons Help													
		HEC-RA	S Plan: I	M1: 1990	Flood R	iver: 1 - I	Peace Rive	er Reach	: PR-1	Profile: 19	990 Flood			Reloar	d Data
Reach	River Sta	Profile	O Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl			
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)				
PR-1	54139.07 XS #54	1990 Flood	7810.00	317.01	325.48		325.72	0.000252	2.18	3591.75	707.01	0.31			
PR-1	52544.35 XS #53	1990 Flood	7810.00	316.17	324.89		325.26	0.000322	2.69	2901.61	514.83	0.36			
PR-1	50979.5 XS #52	1990 Flood	7810.00	314.48	324.53		324.81	0.000227	2.37	3301.13	510.93	0.30			
PR-1	49803.19 XS #51	1990 Flood	7810.00	314.72	324.30		324.56	0.000189	2.29	3403.26	481.39	0.28			
PR-1	48296.97 XS #50	1990 Flood	7810.00	313.23	323.96		324.28	0.000187	2.47	3161.31	423.34	0.28			
PR-1	47054.72 XS #49	1990 Flood	7810.00	313.17	323.76		324.02	0.000198	2.25	3469.46	523.97	0.28			
PR-1	45563.59 XS #48	1990 Flood	7810.00	314.89	323.50		323.70	0.000213	1.96	3979.31	818.97	0.28			
PR-1	44051.32 XS #47	1990 Flood	7810.00	314.45	323.28		323.44	0.000132	1.77	4553.79	833.66	0.23			
PR-1	42705.21 XS #46	1990 Flood	7810.00	313.88	323.15		323.28	0.000091	1.58	4962.77	735.32	0.19			
PR-1	41405.55 XS #45	1990 Flood	7810.00	311.17	322.91		323.11	0.000196	1.95	4027.65	888.27	0.29			
PR-1	39966.15 XS #44	1990 Flood	7810.00	312.09	322.68	317.19	322.89	0.000117	2.02	3968.74	534.53	0.22			
PR-1	38663.54 XS #43	1990 Flood	7810.00	309.54	322.52	316.57	322.72	0.000139	2.00	3907.91	639.18	0.24			
PR-1	37246.26 XS #42	1990 Flood	7810.00	312.35	322.36	316.65	322.55	0.000103	1.90	4116.00	509.97	0.21			
PR-1	35284.69 XS #41	1990 Flood	7810.00	310.17	322.19		322.35	0.000091	1.75	4517.51	601.19	0.20			
PR-1	33566.04 XS #40	1990 Flood	7810.00	309.67	322.06		322.21	0.000072	1.72	4537.82	477.95	0.18			
PR-1	31899.57 XS #39	1990 Flood	7810.00	308.37	322.00	315.09	322.09	0.000049	1.38	5639.71	618.29	0.15			
PR-1	30757.83 XS #38	1990 Flood	7810.00	307.65	321.94		322.02	0.000078	1.29	6297.25	1071.06	0.15			
PR-1	28861.62 XS #37	1990 Flood	18250.00	306.75	321.36		321.68	0.000254	2.53	7222.04	1312.72	0.34			
PR-1	28108.28 XS #36	1990 Flood	18250.00	310.19	321.27		321.53	0.000136	2.27	8056.23	923.80	0.24			
PR-1	27059.93 XS #35	1990 Flood	18250.00	309.46	320.96		321.34	0.000211	2.74	6682.91	997.00	0.34			
PR-1	26167.31 XS #34	1990 Flood	18250.00	307.81	320.91		321.14	0.000146	2.14	8534.62	1098.79	0.25			
PR-1	25065.26 XS #33	1990 Flood	18250.00	308.57	320.47	314.70	320.81	0.000876	2.55	7151.16	1017.77	0.31			
PR-1	24146.38 XS #32	1990 Flood	18250.00	307.11	319.80	314.31	320.39	0.000254	3.39	5389.42	527.76	0.34			
PR-1	23492.63 XS #31	1990 Flood	18250.00	305.26	319.54	313.95	320.20	0.000288	3.61	5054.46	494.71	0.36			
PR-1	23294.95 XS #30	1990 Flood	18250.00	305.05	319.36	314.62	320.13	0.000357	3.88	4704.55	486.58	0.40			
PR-1	22393 XS #29	1990 Flood	18250.00	303.80	319.01	313.40	319.82	0.000315	3.98	4586.04	410.85	0.38			
PR-1	22118.09 XS #28	1990 Flood	18250.00	303.45	318.98	313.23	319.72	0.000304	3.81	4787.20	442.80	0.37			
PR-1	22109.06 PR CN Rail Bridg		Bridge												
PR-1	22100.72 XS #27	1990 Flood	18250.00	303.54	318.71	313.10	319.46	0.000313	3.84	4758.47	443.77	0.37			
PR-1	22063.78 XS #26	1990 Flood	18250.00	303.01	318.71	313.16	319.45	0.000349	3.82	4776.02	449.71	0.37			
PR-1	22027.41 XS #25	1990 Flood	18250.00	302.93	318.70	313.20	319.43	0.000365	3.79	4816.46	454.75	0.37			
PR-1	22017.41 PR HWY 2 Bridge		Bridge												
PR-1	22007.4 XS #24	1990 Flood	18250.00	302.74	318.63	313.32	319.38	0.000319	3.82	4783.34	458.25	0.38			
PR-1	21735.96 XS #23	1990 Flood	18250.00	304.38	318.65	313.13	319.25	0.000293	3.42	5332.71	527.39	0.34			-
, Total flow i	n cross section.			1	1	1	1					1			

This table shows the results of the model run at each cross-section. This table can be exported to a text file or to the clipboard. This is HEC-RAS's standard table, but there are many variables that can be shown in an output table.

12. Go to Options and select '*Define Table ...*' to view the different variables that can be added to an output table. Scroll through the list to see the available variables.

Create a Table Heading											
Select Variabl	es Additional (Options									
		Table Colu	umn Headings								
Column	1	2	3	4	5						
Variable	Q Total	tal Min Ch El W.S. Elev Crit W.S. E.G. Elev									
Units	(m3/s)	3/s) (m) (m) (m) (m)									
Decimal Pts	2 2 2 2 2										
Delete Column Insert Column Clear All Table Headings											
Available Variables Filter:											
Hydr Radius L Hydraulic radius in left over bank.											
Hydr Radius R Hydraulic radius for right over bank.											
Ice Btm Chan The bottom elevation of ice in the main channel.											
Ice Btm LOB	The botto	m elevation of ic	e in the left overb	ank.							
Ice Btm ROB	The botto	m elevation of ic	e in the right over	bank.							
Ice Err	Converge	nce error in ice t	hickness for dyna	mic ice jam.							
Ice Thick Char	n Ice thickne	ess in the main d	hannel.								
Ice Thick LOB	Ice thickne	ess in the left ov	erbank.								
Ice Thick ROB	Ice thickne	ess in the right o	verbank.								
Ice Top Chan	The top el	evation of ice in	the main channel								
Ice Top LOB	The top el	evation of ice in	the left overbank								
Ice Top ROB	The top el	evation of ice in	the right overban	ik.							
Ice Vol Total	Cumulativ	e volume of ice ir	n an ice jam.								
Ice Vol. Chan Cumulative volume of ice in the main channel for an ice jam.											
Ice Vol. LOB	Cumulativ	e volume of ice ir	n the left overban	ik for an ice jam							
Ice Vol. ROB	Cumulativ	e volume of ice in	n the right overba	ink for an ice jar	n.						
Ice WS Err	Ice WS Err Convergence error in water surface for dynamic ice jam.										
I tooff El Loft	The clove	tion of the loft in	offective area			Ľ					
				OK	Cance	el					

Notice that there are several ice-cover-related variables available. Each variable has a short name that is displayed in the output table, and a description that is only viewable in this 'Create Table Heading' window.

- 13. Close the 'Create Table Heading' window by clicking
- 14. Close the 'Profile Output' window by clicking on the

Task 1C Instructions: OPTIONAL Check Open Water Model Calibration Against the Rating Curve

In this task we will check the open water calibration against a series of flows. The model bed roughness calibration worked well for the 1990 flood, but it is important to check the calibration against smaller floods using a rating curve. We will be using a different **Steady Flow** file, so we will also use a different **Plan** file. We will use the same **Geometry** file that we used in Task 1A and Task 1B.

Table 2: Model Files Used for HEC-RAS Module 1 - Task 1C

File Type	Filename
Plan	"Module 1: Open Water Rating Curve"
Geometry	"Module 1: Open Water"
Steady Flow	"Module 1: Open Water Rating Curve"

- 1. From the main interface, open the 'Steady Flow Analysis' window by clicking on the
- 2. Open the new **Plan** file by going to File and select '*Open Plan …*' Choose the "**Module 1: Open Water Rating Curve**" plan file.
- 3. Click OK
- 4. In the 'Steady Flow Analysis' window, note that the Steady Flow file is now changed to "Module 1: Open Water Rating Curve", but we are still using the same Geometry file ("Module 1: Open Water")

🛓 Steady Flow Analysis		_		×
File Options Help				
Plan: Module 1: Open Water Rating Curve	Short ID: M1:	OW Rat	ing Curve	2
Geometry File: Module 1: Open Water				•
Steady Flow File: Module 1: Open Water F	ating Curve			•
Flow Regime Plan Description Subcritical Mixed Optional Programs Floodplain Mapping				< ~
Compute				
Enter/Edit short identifier for plan (used in plan comparison	;)			

 \times

- 5. Close the 'Steady Flow Analysis' window by clicking on the
- 6. In the main interface, click the $5 \rightarrow 1$ to open the 'Steady Flow Data' window:

র্⊸ Steady Flow Dat	a - Module 1: Ope	n Water R	ating Curve								\times
File Options Hel	р										
Description :									÷	Apply D	ata
Enter/Edit Number of P	rofiles (32000 max):	14	Reach Bo	oundary Condi	tions				_		
	Loca	tions of Flo	ow Data Chan	ges							
River: 1 - Peace Rive	er 🗾				Ad	ld Multiple					
Reach: PR-1	▼ Riv	er Sta.: 5	4139.07 XS #	54 🔻 Ad	ld A Flow Char	nge Location					
Flow C	hange Location					Profile Name	s and Flow Ra	tes			
River	Reach	RS	00500cms	00700cms	00900cms	01200cms	01500cms	01800cms	02100cms	02500cms	03
1 1 - Peace River	PR-1	54139.07	500	700	900	1200	1500	1800	2100	2500	30
2 1 - Peace River	PR-1	28861.62	500	700	900	1200	1500	1800	2100	2500	30
Observed Rating Curv	/es										
Edit Steady flow data	for the profiles (m3/	s)									

Notice that this **Steady Flow** file (shown above) has many more profiles than did our previous steady flow file (shown below) did:

steady Flow Data - Module 1: 1990	Flood Calibration	_		\times
File Options Help				
Description :		÷	Apply Da	ata
Enter/Edit Number of Profiles (32000 max)	1 Reach Boundary Conditions			
Loca	tions of Flow Data Changes			
River: 1 - Peace River	Add Multiple			
Reach: PR-1 Riv	er Sta.: 54139.07 XS #54 🗨 Add A Flow Change Location			
Flow Change Location	Profile Names and Flow Rates			
River Reach	RS 1990 Flood			
1 1 - Peace River PR-1	54139.07 7810			
2 1 - Peace River PR-1	28861.62 18250			
Observed Water Surfaces Entered				
Edit Steady flow data for the profiles (m3/	3)			

7. Access the observed rating curve data from the 'Steady Flow Data' window by clicking Options and selecting '*Observed Rating Curves (Gauges)* ...'

Steady Flow - Observed Rating Curves					
Add Delete Gage Name: 07HA001		•	Rename		
Measured Rating Curve					
River: 1 - Peace River 💌	(Obseved Rating Curves			
Peach: PP-1		Stage (m)	Flow (m3/s] 🔺		
	1	311.081	75:		
River Sta.: 21329.29 XS : 💌	2	311.127	76(
Distance from the upstream	3	311.482	127(
RS to the reference:	4	311.615	133(
Description:	5	311.694	152(
	6	311.707	158(
Managered Daint Data	7	311.85	180(
Measured Point Data	8	311.948	182(💌		
Plot		OK	Cancel		

This rating curve is for the Water Survey of Canada (WSC) gauge "Peace River at Peace River" (#07HA001). The gauge is located at cross-section '21329.29 XS#22'. The data shown here is not the interpolated and extrapolated rating curve used by WSC, but only the raw discharge measurements. A range of 14 discharges and their associated water levels have been entered, covering a range of discharge measurements.

8. Click on ______ to view the rating curve as a flow-elevation plot:

9. Close the plot by clicking on the

- 10. Close the 'Steady Flow Observed Rating curve' window by clicking
- 11. Return to the 'Steady Flow Data' window:

ৰ্⊸ Steady Flow Dat	ta - Module 1: Ope	n Water F	Rating Curve						_		\times
File Options He	lp										
Description :									÷	Apply D)ata
Enter/Edit Number of F	Profiles (32000 max)	: 14	Reach Bo	oundary Cond	itions						
	Loca	tions of Fl	ow Data Chan	ges							
River: 1 - Peace Riv	er 💌				Ac	d Multiple					
Reach: PR-1	▼ Riv	/er Sta.:	64139.07 XS #	±54 ▼ Ad	ld A Flow Cha	nge Location	j				
Flow C	hange Location					Profile Name	s and Flow Ra	ites			
River	Reach	RS	02100cms	02500cms	03000cms	03750cms	04500cms	06000cms	08000cms	10000cms	5
1 1 - Peace River	PR-1	54139.07	2100	2500	3000	3750	4500	6000	8000	10000	
2 1 - Peace River	PR-1	28861.62	2100	2500	3000	3750	4500	6000	8000	10000	
											_) •
Observed Rating Curv	ves										
Edit Steady flow data	for the profiles (m3/	s)									

There are 14 profiles in the **Steady Flow** file. They have been named according to the flow conditions at the WSC gauge. It is helpful to name profiles logically with a description of the flow conditions. This is because it is this name that will be visible in output tables and plots.

12. In the Steady Flow Data window, choose Options and select 'Edit Profile Names ...':

HE	C-RAS		
	Edit Profile Names	. (16 Charact	ers Max)
	Profile #	Profile	e Name
1	1	00500cms	
2	2	00700cms	
3	3	00900cms	
4	4	01200cms	
5	5	01500cms	
6	6	01800cms	
7	7	02100cms	
8	8	02500cms	
9	9	03000cms	
10	10	03750cms	
11	11	04500cms	
12	12	06000cms	
13	13	08000cms	
14	14	10000cms	
		ОК	Cancel

This is the window where profile names are edited.

- 13. Exit this window by clicking Cancel
- 14. Exit the 'Steady Flow Data' window by clicking on the \times
- 15. In the main interface click to open the 'Steady Flow Analysis' window. Verify that the correct **Geometry** file and **Steady Flow** file are being used:

🛓 Steady Flow Analysis			_		×
File Options Help					
Plan: Module 1: Open Water Ra	ting Curve	Short ID:	M1: OW Ra	iting Curve	
Geometry File:	Module 1: Open Water				•
Steady Flow File:	Module 1: Open Water Rat	ting Curve			•
Flow Regime Subcritical Supercritical Mixed Optional Programs Floodplain Mapping	Plan Description				< ~
	Compute				
Enter/Edit short identifier for plan	(used in plan comparisons)				

10 Clink		Compute	to run the
model	The HEC-RAS Finis	ped Computations window will appear.	
HEC-RAS Finis	hed Computations		- 🗆 X
Write Geometry Inf Layer: COMPLETE	formation		
Steady Flow Simula	tion		
River: 1 - Pea Reach: PR-1	ice River RS: Node Type	54139.07 : Cross Section	
Profile: 10000	zms		
Simulation: 14/14			
Computation Messa	ages		
Plan: 'Module 1: Simulation started	Open Water Rating Curve' (CRIPESI at: 17Jun2023 06:58:02 PM	IORTCOURSE_R2.p02)	
Writing Geometry. Completed Writing	 Geometry		
Writing Event Con Completed Writing	ditions Event Condition Data		
Steady Flow Sin	nulation HEC-RAS 6.3.1 October 202	2	
Finished Steady Fl	ow Simulation		
Computations S	ummary		
Computation Task	Time(hh:n	<u>1m:ss)</u>	
Completing Geome	Conditions	<1 <1	
Complete Process	utations	1	
Pause	Make Snapshot of Results		(Close)

Notice that it took a little longer to run the model this time. We are now running 14 different flows for 14 different profiles, instead of the single profile we ran before.

17. Click Close this summary.
18. Close the 'Steady Flow Analysis' window by clicking on the \checkmark .
19. In the main interface, click to view the model run results as a profile plot:

The profile plot shows only one profile. We will need to add the remaining 13 profiles to the plot.

20. Click and check all 14 profiles:

Now the computed water surfaces of all 14 profiles are shown. We don't have observed water surface data for these 14 different flow conditions, so we can use the observed rating curve to understand how well our roughness calibration in the **geometry** file "**Module 1: Open Water**" matches the observed data at the gauge. Note that having properly-named profiles is useful when viewing data in this view.

- 21. Close the 'Profile Plot' window by clicking on the \times
- 22. In the main interface, click on the kind to open the 'View Rating Curve Results' window:

The window opens to show the computed rating curve at the most downstream cross-section (0 XS#01). A rating curve can be viewed at any cross-section. However, only the cross-section at the gauge has an observed rating curve.

23. Navigate using the black up and down arrows or the dropdown menu to the computed rating curve at cross-section '21329.29 XS #22' where the gauge is located:

Notice that the simulated rating curve is below the measured data. This is because in the **geometry** file used here ("**Module 1: Open Water**") the roughness at each cross-section does not vary with discharge. In the real world, bed roughness varies with discharge according to the "relative roughness" principle. In the example shown above, the roughness was calibrated for a discharge of 18,250 m³/s (the magnitude of the 1990 discharge at the gauge). However, all the flows shown above are less than 18,250 m³/s. This means that the roughness used by the model is too low for these lower water levels, making the computed flow travel faster, and thus have a lower water level than observed. HEC-RAS has tools to allow a modeller to vary bed roughness by discharge.

However, for our river ice modelling exercise, we will keep the bed roughness the same as the 1990 flood for all modules. This is partly for simplicity, but also because when modelling river ice, it is the composite roughness that is important.

Module 2: Modelling a Static Intact Ice Cover

Literature Ice Roughnesses

Table 1. Values of ice roughness coefficient (n_i) and composite roughness coefficient (n_c) calculated from discharge measurements.

(n _i)	(n _c)	Comment	Reference	
$\begin{array}{c} 0.010-0.06 + \\ 0.013-0.09 + \\ 0.015-0.10 + \\ 0.010-0.028^{**} \\ 0.004-0.013^{**} \\ 0.10 \\ 0.057-0.065, \\ \overline{n}_i = 0.060 \\ 0.010-0.015 \\ 0.013-0.040 \\ 0.033-0.041 + \\ 0.072 \\ 0.020-0.15 \end{array}$	0.010-0.012 0.008-0.010 0.018-0.027 0.015-0.022 0.090-0.109 0.041-0.046 0.053-0.142	Sheet ice, early winter* Sheet ice, late winter Ice cover formed from loose frazil* Ice cover formed from dense frazil* Ice cover formed from sheet ice* Sheet ice Breakup jams Breakup jam Breakup jam Breakup jams Freezeup jam* Freezeup jams Freezeup jams Freezeup jam, frazil deposits	Nezhikhovskiy (1964) Nezhikhovskiy (1964) Nezhikhovskiy (1964) Nezhikhovskiy (1964) Carey (1966) Carey (1967) Beltaos (1978) Andres (1980) Knowles and Hodgins (1980) Michel (1980) Beltaos (1981) Beltaos (1981) Beltaos (1983) Andres and Doyle (1984) Majewski and Grzes (1986)	
*Within three da †Higher values	ys of formation. for thicker accum	alations.		
**Lower values ttHigher values	earlier in the wint for thinner accur	er. nulations.		White, 1999
Litere Korbaylo and Shumilak (White and Acone (Tuthill and White (Tuthill and White (McGilvary et al. (Nogel and Root (Andres and Doyle (Knowles and Hodgins (Markinovskiv (Mezhikhovskiv (Nezhikhovskiv ((1999) (1998) (1997) (1996) (1996) (1996) (1984) (1984) (1984) (1984) (1984) (1984) (1986) (1	+OH x x x x x x x x x x x x x	DINESSES	CRIPE
		Ice Roughness, n		White 1999
	Figure 6	. Reported values of ice roughness.		Write, 1355

Task 2A Instructions: Modify Open Water Geometry File to Add and Intact Ice Cover

Table 3: Model Files Used for HEC-RAS Module 2 - Task 2A

File Type	Filename
Plan	"Module 2: Intact Ice_03_01_31_Student"
Geometry	"Module 2: Intact Ice_03_01_31_Student"
Steady Flow	"Module 2: Intact Ice_03_01_31_Student"

The geometry file above is a copy of the open water geometry file used in Module 1. We will be modifying this file to simulate the intact ice cover using ice measurements done around January 31, 2003

- 1. In the main interface click to open the 'Steady Flow Analysis' window.
- 2. Go to File and select the 'Open Plan...' option. Open the plan file for this task "Module 2: Intact

Ice 03 01 31 Student". Click

3. Verify that the correct Steady Flow and Geometry files have been loaded:

3 Steady Flow Analysis			_		×
File Options Help					
Plan: Module 2: Intact Ice_03-0	1-31_Student	Short ID: M2:	Intact_0	3-01-31_	Stud
Geometry File:	Module 2: Intact Ice_03-0	1-31_Student			•
Steady Flow File:	Module 2: Intact Ice_03-0	1-31_Student			•
Flow Regime © Subcritical © Supercritical © Mixed Optional Programs □ Floodplain Mapping	Plan Description				~
	Compute				
Enter/Edit short identifier for plan	(used in plan comparisons)				

×

- 4. Close the 'Steady Flow Analysis' window by clicking on the
- 5. Click on the $\stackrel{\checkmark}{}$ in the main interface to open the 'Geometric Data' window:
- 6. Click on Tables and select 'Manning's n or k Values (Horizontally Varied) ...'

Edit Manning's n or k Values												
Rive	r: 1 - Pe	ace River	·	- 🔏 🖻	d 🖪 🗸	Edit Interp	olated XS's	Chanr	nel n Values a light green	have		
Rea	ch: PR-1		•	- All Reg	gions			-	background	i i		
⊢Se	ected Area	a Edit Optio	ns									
	Add Consta	nt M	ultiply Fact	or 9	Set Values .	R	eplace	Redu	ice to L Ch I	R		
					1				1			
	ver Statio	irctn (n/K)	n #1	n #2	n #3	n #4	n #5	n #6	n #7	n #8	-	
1	54139.07	n	0.08	0.022	0.08	0.022	0.08					
2	52544.35	n	0.06	0.08	0.022	0.08	0.022	0.08				
3	50979.5	n	0.06	0.08	0.022	0.08						
4	49803.19	n	0.06	0.08	0.022	0.08						
5	48296.97	n	0.06	0.08	0.022	0.08						
6	47054.72	n	0.06	0.08	0.022	0.022	0.08					
7	45563.59	n	0.06	0.022	0.08	0.022	0.08	0.022	0.08			
8	44051.32	n	0.06	0.022	0.08	0.022	0.08					
9	42705.21	n	0.06	0.022	0.08							
10	41405.55	n	0.06	0.022	0.08	0.022	0.08					
11	39966.15	n	0.06	0.022	0.08	0.06	0.08					
12	38663.54	n	0.08	0.06	0.022	0.06	0.08					
13	37246.26	n	0.06	0.022	0.06	0.08						
14	35284.69	n	0.06	0.022	0.08							
15	33566.04	n	0.08	0.06	0.022	0.08						
16	31899.57	n	0.06	0.022	0.08							
17	30757.83	n	0.06	0.022	0.08	0.022	0.08					
18	28861.62	n	0.06	0.08	0.022	0.08	0.022	0.06	0.022	0.08		
19	28108.28	n	0.022	0.08	0.022	0.08						
20	27059.93	n	0.06	0.022	0.08	0.022	0.08					
21	26167.31	n	0.06	0.022	0.08							
22	25065.26	n	0.06	0.022	0.08	0.022	0.06					
23	24146.38	n	0.08	0.022	0.08							
24	23492.63	n	0.08	0.022	0.08							
	ОК					Cano	el				Help	

This table is another way to view the roughness values for each cross-section, instead of viewing them in the Cross Section viewer as we did in the previous module. The reason why the bed roughness is varied across the channel in this geometry file, is because islands and bars (which are included in the channel in this model) have a rougher bed than the normally-wetted channel.

For our ice jam model we must simplify the Manning's *n* roughness values into just 3 values for each cross-section: one for each of the Left Overbank, Channel, and Right Overbank.

7. Select all the cross-section by clicking the rectangle at the top left of the table:

	Edit Manning's n or k Values								
F	Rive	er: 1 - Pe	1 - Peace River 💌 👗 🗎 🖉 🗹 Edit Interpolate						
F	Rea	ch: PR-1		-	- All Reg	ions			
	Se A	lected Are Add Consta	a Edit Optio ant M	ns Iultiply Fact	or S	et Values .	Re	eplac	
		Ver Statio	inche (n.M)						
		ver Statu	TCUT (II/K)	n #1	n #2	n #3	n #4	n	
1	1	54139.07	n	0.08	n #2 0.022	n #3 0.08	n #4 0.022	0.0	
1	1	54139.07 52544.35	n n	0.08 0.06	n #2 0.022 0.08	n #3 0.08 0.022	n #4 0.022 0.08	n 0.0 0.0	
	1 2 3	54139.07 52544.35 50979.5	n n n	0.08 0.06 0.06	n #2 0.022 0.08 0.08	n #3 0.08 0.022 0.022	n #4 0.022 0.08 0.08	0.0	
	1 2 3 4	54139.07 52544.35 50979.5 49803.19	n n n n	0.08 0.06 0.06 0.06	n #2 0.022 0.08 0.08 0.08	n #3 0.08 0.022 0.022 0.022	n #4 0.022 0.08 0.08 0.08	0.0	
	1 2 3 4 5	54139.07 52544.35 50979.5 49803.19 48296.97	n n n n n	n #1 0.08 0.06 0.06 0.06 0.06	n #2 0.022 0.08 0.08 0.08 0.08	n #3 0.08 0.022 0.022 0.022 0.022	n #4 0.022 0.08 0.08 0.08 0.08 0.08	0.00	
	1 2 3 4 5 6	54139.07 52544.35 50979.5 49803.19 48296.97 47054.72	n n n n n n	n #1 0.08 0.06 0.06 0.06 0.06 0.06	n #2 0.022 0.08 0.08 0.08 0.08 0.08 0.08	n #3 0.08 0.022 0.022 0.022 0.022 0.022	n #4 0.022 0.08 0.08 0.08 0.08 0.08 0.022	0.00	

8. Select the button Reduce to L Ch R ... and choose 'Yes':

RAS		
Do you want to reduce mannings da selected range to just a left, channel	ta for the cross sect and right value?	ions in the
	Yes	No

The table of roughnesses will now be reduced to 3 roughness values per cross-section:

Edi	Edit Manning's n or k Values					
Rive	r: 1 - Peace River	🖌 👗 🖻 🗮	Edit Interpolated XS	's Channel n Values ha	ive	
Rea	ch: PR-1	 All Regions 		background		
Se	lected Area Edit Options					
A	dd Constant Multi	ply Factor Set Valu	Jes Replace	(Reduce to L Ch R .		
	Diver Station	Ercto (n/V)	n #1	n #2		
	54139 07 XS #54	Ficul (II/K)	0.08	0.08	0.08	
2	52544.35 XS #53	0	0.06	0.08	0.08	
3	50979.5 XS #52	n	0.06	0.022	0.08	
4	49803.19 XS #51	n	0.06	0.022	0.08	
5	48296.97 XS #50	n	0.06	0.022	0.08	
6	47054.72 XS #49	n	0.06	0.022	0.08	
7	45563.59 XS #48	n	0.06	0.022	0.08	
8	44051.32 XS #47	n	0.06	0.022	0.08	
9	42705.21 XS #46	n	0.06	0.022	0.08	
10	41405.55 XS #45	n	0.06	0.022	0.08	
11	39966.15 XS #44	n	0.06	0.022	0.08	
12	38663.54 XS #43	n	0.08	0.022	0.08	
13	37246.26 XS #42	n	0.06	0.022	0.08	
14	35284.69 XS #41	n	0.06	0.022	0.08	
15	33566.04 XS #40	n	0.08	0.022	0.08	
16	31899.57 XS #39	n	0.06	0.022	0.08	
17	30757.83 XS #38	n	0.06	0.022	0.08	
18	28861.62 XS #37	n	0.06	0.022	0.08	
19	28108.28 XS #36	n	0.022	0.022	0.08	
20	27059.93 XS #35	n	0.06	0.08	0.08	
21	26167.31 XS #34	n	0.06	0.022	0.08	
22	25065.26 XS #33	n	0.06	0.022	0.06	
23	24146.38 XS #32	n	0.08	0.022	0.08	
124	23492.63 XS #31	In	0.08	0.072	0.08	
	OK		Cancel		Help	

The channel roughness values are highlighted with a light green background.

9. Scroll through the table. Notice some anomalously high values for channel roughness in the table:

iver: 1 - Peace River each: PR-1	✓	Edit Interpolated X	(S's Channel n Values) a light green background	have
Selected Area Edit Options Add Constant	tiply Factor Set Va	lues Replace .	Reduce to L Ch R	
River Station	Frctn (n/K)	n #1	n #2	n #3 🔺
26 22393 XS #29	n	0.06	0.022	0.08
27 22118.09 XS #28	n	0.06	0.022	0.06
28 22109.06 PR CN Rail Bri	k Bridge			
29 22100.72 XS #27	n	0.06	0.022	0.06
30 22063.78 XS #26	n	0.06	0.022	0.06
31 22027.41 XS #25	n	0.06	0.022	0.06
32 22017.41 PR HWY 2 Bri	d Bridge			
33 22007.4 XS #24	n	0.06	0.022	0.06
34 21735.96 XS #23	n	0.06	0.022	0.08
35 21329.29 XS #22	n	0.06	0.024	0.08
36 20902.13 XS #21	n	0.06	0.024	0.08
37 20583.87 XS #20	n	0.06	0.08	0.08
38 19733.33 XS #19	n	0.06	0.08	0.08
39 18523.06 XS #18	n	0.08	0.024	0.06
40 16963.11 XS #17	n	0.08	0.024	0.08
41 15681.65 XS #16	n	0.06	0.024	0.08
42 14591.14 XS #15	n	0.06	0.024	0.08
43 13053.22 XS #14	n	0.08	0.08	0.08
44 11809.61 XS #13	n	0.08	0.024	0.08
45 10385.12 XS #12	n	0.08	0.024	0.08
46 9024.812 XS #11	n	0.08	0.024	0.08
47 7564.073 XS #10	n	0.06	0.024	0.08
48 6270.616 XS #09	n	0.06	0.024	0.08
4915365.335 XS #08	In	0.06	0.024	0.08

Upon review of the table, several channel roughness are quite high. This is where HEC-RAS has automatically used the value assigned for rough island areas to the channel.

For this course, we will use channel roughnesses in the channel and in the overbank areas. This will be consistent with the approach we will use in Module 4, when we modify the bank stations.

10. Correct the channel roughness values and also give the overbanks the same values as the channel. Select all 3 '*n*' columns and all rows from '*XS* #54' to '*XS* #23'. To select multiple values,

clic	k and	drag.	Once	selected,	click	Set Values	. Use	enter	а	value	of	0.022	and	click
	OK													

iver: 1 - Peace River each: PR-1	→ 🔏 🖻 🛱	Edit Interpolated X	S's Channel n Values a light green background	have
Selected Area Edit Option Add Constant	Is Iltiply Factor Set Va	lues Replace	. Reduce to L Ch R	L
River Station	Frctn (n/K)	n #1	n #2	n #3
17 30757.83 XS #38	n	0.022	0.022	0.022
18 28861.62 XS #37	n	0.022	0.022	0.022
19 28108.28 XS #36	n	0.022	0.022	0.022
20 27059.93 XS #35	n	0.022	0.022	0.022
21 26167.31 XS #34	n	0.022	0.022	0.022
22 25065.26 XS #33	n	0.022	0.022	0.022
23 24146.38 XS #32	n	0.022	0.022	0.022
24 23492.63 XS #31	n	0.022	0.022	0.022
25 23294.95 XS #30	n	0.022	0.022	0.022
26 22393 XS #29	n	0.022	0.022	0.022
27 22118.09 XS #28	n	0.022	0.022	0.022
28 22109.06 PR CN Rail B	ric Bridge			
29 22100.72 XS #27	n	0.022	0.022	0.022
30 22063.78 XS #26	n	0.022	0.022	0.022
31 22027.41 XS #25	n	0.022	0.022	0.022
32 22017.41 PR HWY 2 B	rid Bridge			
33 22007.4 XS #24	n	0.022	0.022	0.022
34 21735.96 XS #23	n	0.022	0.022	0.022
35 21329.29 XS #22	n	0.06	0.024	0.08
36 20902.13 XS #21	n	0.06	0.024	0.08
37 20583.87 XS #20	n	0.06	0.08	0.08
38 19733.33 XS #19	n	0.06	0.08	0.08
39 18523.06 XS #18	n	0.08	0.024	0.06
40 16963.11 XS #17	n	0.08	0.024	0.08

The first part of the table has been updated. The red values indicated that the table has been edited but not yet saved.

The calibrated roughness values transitioned from n = 0.022 to n = 0.024 between cross-sections "XS #22" and "XS #23". We will change the remainder of the x-sections to have a roughness of 0.024.

11. Select the remainder of the table (from 'XS #22' to 'XS #01') and click Set Values Use enter

a value of 0.024 and click

iver: 1 - Peace River	<u> </u>	🛃 🔽 Edit Interpolated X	S's Channel n Values a light gree	s have n
each: PR-1	 All Regions 		 backgroun 	d
Selected Area Edit Option	1S			
Add Constant Mu	Itiply Factor	aiues	. Reduce to L Ch	R
River Station	Frctn (n/K)	n #1	n #2	n #3
35 21329.29 XS #22	n	0.024	0.024	0.024
36 20902.13 XS #21	n	0.024	0.024	0.024
37 20583.87 XS #20	n	0.024	0.024	0.024
38 19733.33 XS #19	n	0.024	0.024	0.024
39 18523.06 XS #18	n	0.024	0.024	0.024
40 16963.11 XS #17	n	0.024	0.024	0.024
41 15681.65 XS #16	n	0.024	0.024	0.024
42 14591.14 XS #15	n	0.024	0.024	0.024
43 13053.22 XS #14	n	0.024	0.024	0.024
44 11809.61 XS #13	n	0.024	0.024	0.024
45 10385.12 XS #12	n	0.024	0.024	0.024
H6 9024.812 XS #11	n	0.024	0.024	0.024
7564.073 XS #10	n	0.024	0.024	0.024
48 6270.616 XS #09	n	0.024	0.024	0.024
49 5365.335 XS #08	n	0.024	0.024	0.024
50 4915.177 XS #07	n	0.024	0.024	0.024
51 4905.409 PR HWY 986	E Bridge			
52 4895.642 XS #06	n	0.024	0.024	0.024
53 4480.899 XS #05	n	0.024	0.024	0.024
54 3709.021 XS #04	n	0.024	0.024	0.024
55 2382.439 XS #03	n	0.024	0.024	0.024
56 1302.66 XS #02	n	0.024	0.024	0.024
57 0 XS #01	n	0.024	0.024	0.024

The table has now been updated with channel roughness values in the channel and both overbanks. Remember that these values were calibrated during the calibration of the open water model, and represent bed roughness values.

12. Click

I in the 'Edit Manning's n or k Values' window.

- 13. In the 'Geometric Data' window save the geometry file by choosing File and selecting 'Save Geometry Data'. DO NOT CLOSE THE GEOMETRY WINDOW.
- 14. In the main interface window, open the 'RAS Mapper' window, while keeping the geometry data window open.
- 15. Make sure "ArcGIS World Imagery" is checked on under "Map Layers":

'RAS Mapper' is a tool that allows the modeller to see data that is spatially referenced. This includes model geometry (if it is georeferenced), imagery, and additional data that may be relevant to your model.

In the pane on the left, different features can be turned on and off by clicking the check boxes next to the features. You can zoom and pan using the tools at the top of the window:

16. Check the boxes beside '*Ice Thickness Cross Sections – 2003-01-31*' and '*Module 2_Intact Ice_03-01-31_Student*' to turn them on in the viewer. Uncheck any other module geometries that may already be selected.

This will allow you to view the locations of several cross-sections where ice thicknesses and water levels were measured on January 31, 2003. These were saved in a shapefile and then added to 'RAS mapper'.

17. Zoom into the area near XS #30 to view the ice thickness cross-sections. XS #30 is near the middle of the model domain.

The red lines are the locations where ice-thicknesses were measured across the channel. Notice that the ice thickness locations do not correspond exactly with the locations of the model cross-sections. The labels for these cross-sections contains the measured ice thickness (top number) and the water level (bottom number), both in meters. These thickness values have been averaged across the channel, and the thermal ice and slush ice portions have been added together. In reality, ice thickness can vary significantly across the channel. Here is an example of the original ice thickness data:

Figure 1: Example of the measured ice thickness data from the Mackenzie Cairn site (modified from Trillium Engineering and Hydrographics Inc., 2004)

Next, we will enter the ice thickness data from 'RAS mapper' into the geometry file containing our crosssections.

18. Use the ice thickness information in 'RAS Mapper' to complete yellow blanks in the following table to help you keep track of the thicknesses that you will enter into the model geometry in the next steps.

For cross-sections between the measurements, please estimate the ice thickness using nearby measured values. Upstream and downstream of the area where ice thickness measurements were taken, adopt a thickness of 2.4 m.

Table 4: Ice Thicknesses for Adoption in the Model for Task 2A

Location	Measured Ice Thickness, m	Adopted Ice Thickness, m
XS #54 to XS #40	none	2.4
XS #39 McLeod Cairn	3.05	3.05
XS #38 to XS #37	none	
XS #36 Sawchuck's	2.52	2.52
XS #35 to XS #32	none	
Between XS #32 and XS #31 West Peace	2.38	NA
XS #31 to XS #30	none	
Between XS #30 and XS #29 Heart River	2.36	NA
XS #29 to XS #23	none	
XS #22 WSC Gauge	1.66	1.66
XS #21	none	
XS #20 Beweley Island	1.5	1.5
XS #19 to XS #01	none	2.4

19. Go back to the 'Geometric Data' window to enter the ice cover thickness data you filled in the above table. Go to Tables and click '*Ice Cover* ...'.

Edit Ice Cover Data													
River: 1 - Peace River	- *	🖻 🖪 F	Edit Inter	polated XS	5's								
Reach: PR-1	-												
-Selected Area Edit Options													
Add Constant Mult	ply Factor	Set Values		Replace									
River Station	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max
	Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Chan (y/n)	OB (y/n)	Angle		ratio	Velocity
1 54139.07 XS #54							0.916	n	n	45	0	0.33	1.524
2 52544.35 XS #53							0.916	n	n	45	0	0.33	1.524
3 50979.5 XS #52							0.916	n	n	45	0	0.33	1.524
4 49803.19 XS #51							0.916	n	n	45	0	0.33	1.524
5 48296.97 XS #50							0.916	n	n	45	0	0.33	1.524
6 47054.72 XS #49							0.916	n	n	45	0	0.33	1.524
7 45563.59 XS #48							0.916	n	n	45	0	0.33	1.524
8 44051.32 XS #47							0.916	n	n	45	0	0.33	1.524
9 42705.21 XS #46							0.916	n	n	45	0	0.33	1.524
10 41405.55 XS #45							0.916	n	n	45	0	0.33	1.524
11 39966.15 XS #44							0.916	n	n	45	0	0.33	1.524
12 38663.54 XS #43							0.916	n	n	45	0	0.33	1.524
13 37246.26 XS #42							0.916	n	n	45	0	0.33	1.524
14 35284.69 XS #41							0.916	n	n	45	0	0.33	1.524
15 33566.04 XS #40							0.916	n	n	45	0	0.33	1.524
16 31899.57 XS #39							0.916	n	n	45	0	0.33	1.524
17 30757.83 XS #38							0.916	n	n	45	0	0.33	1.524
18 28861.62 XS #37							0.916	n	n	45	0	0.33	1.524
19 28108.28 XS #36							0.916	n	n	45	0	0.33	1.524
20 27059.93 XS #35							0.916	n	n	45	0	0.33	1.524
21 26167.31 XS #34							0.916	n	n	45	0	0.33	1.524
22 25065.26 XS #33							0.916	n	n	45	0	0.33	1.524
23 24146.38 XS #32							0.916	n	n	45	0	0.33	1.524
24 23492.63 XS #31							0.916	n	n	45	0	0.33	1.524
25 23294.95 XS #30							0.916	n	n	45	0	0.33	1.524
26 22393 XS #29							0.916	n	n	45	0	0.33	1.524
27 22118.09 XS #28							0.916	n	n	45	0	0.33	1.524
28 22109.06 PR CN Rail Bri	lg Bridge												
29 22100.72 XS #27							0.916	n	n	45	0	0.33	1.524
•		1	; ;	1	1		1		1	1	1	1	•
ОК					Ca	ancel							Help

20. Enter the ice thickness data in the table for the Left Overbank (LOB), Channel, and Right Overbank (ROB) columns, give all three columns the same ice thickness for each cross-section.

To fill in multiple boxes at once, highlight the boxes and choose Set Values ... , enter the value

and then click

22. Set the ice roughness values for all cross-sections and the LOB, Channel, ROB to an initial value.

Select all the rows, and the three columns and choose Set Values ... I. Enter a value of 0.024. A single roughness value similar to the bed roughness is a reasonable first estimate because these values will be edited during calibration:

Note that you can expand the first column in this table (click and drag the border) to see the entire river station and cross-section number.

23. Click in the 'Edit Ice Cover Data' window.

24. Save the geometry file by going to File and select 'Save Geometry Data'. Close the 'Geometric

Task 2B Instructions: Enter the Observed Water Surface Calibration Data and Run the Model

In this task we will enter the observed water surface data for the January 31, 2003 ice cover. The observed data is stored in the RAS Mapper feature called "Ice Thickness Cross Section – 2003-01-31". However, the observation locations and the model cross-sections do not necessarily line up. We will record the water surface elevation and the distance downstream from a cross-section.

- 1. In the main interface window, open the 'RAS Mapper' mindow.
- 2. From the information in the 'RAS Mapper' window, complete the following table to record the location and elevation of the observed water surface elevation. For locations where the

measurement was not recorded on a model cross-section, use *RAS Mapper's measure tool* to determine the distance from model cross-section downstream to observation location. Measure along the centreline. Double click to end your line, or view the length in the box in the

bottom left of the window. To exit the measure tool, click on the arrow tool

Messages Views Profile Lines Active Features Layer Values (-18326.42, 6233571.67 Segment = 189.4 Length = 189.4 m)

Table 5: Observed Water Surface Elevations, January 31, 2003

Observation Location Name	Next Closest Model XS in Upstream Direction	Distance from Closest Model XS to Observation Location, m	Observed Water Surface Elevation, m
McLeod Cairn	XS #39 31899.57	0	319.26
Sawchuck's	XS #36 28108.28	0	318.23
West Peace	XS #32 24146.38		
Heart River	XS #30 23294.95		
WSC Gauge	XS #22 21329.29	0	
Beweley Island	XS #20 20583.87	0	315.03

- 3. Close 'RAS Mapper' by clicking on the
- 4. In the main interface, click the 5 to open the 'Steady Flow Data' window.

Х

5. Choose Options and select '*Observed WS*'. Then click Add Multiple...]. Add the 6 cross-sections from the above table, selecting each cross-section and clicking to add to the selection. Click

Initial Stage Locations		
Selected Locations		(a. 1
Nodo Tunco	Selected Locations	(6 selected)
INODE Types	1 - Peace River PR-1 31899.57	
River 1 - Reaco River	1 - Peace River PR-1 28108.28	
River. J1-Feace River	1 - Peace River PR-1 23294.95	
Reach: PR-1	 1 - Peace River PR-1 21329.29 	
RS: 37246 26 XS #42	1 - Peace River PR-1 20583.87	
35284.69 XS #41		
33566.04 XS #40		
31899.57 XS #39		
30757.83 XS #38		
28861.62 XS #37		
28108.28 XS #36		
27059.93 XS #35	2005	
26167.31 XS #34		
25065.26 XS #33		
24146.38 XS #32		
23492.63 XS #31		
23294.95 XS #30		
22393 XS #29		
22118.09 XS #28		
22100.72 XS #27		
22063.78 XS #26		
22027.41 XS #25		
22007.4 XS #24		
21735.96 XS #23		
21329.29 XS #22		
20902.13 XS #21		
20583.87 XS #20		
119733.33 XS #19 *		
	for an environment of the	1
	Clear Selected List OK	Cancel

6. Fill in the table in the 'Observed Water Surfaces for Comparison' window using the data in your table.

iver:	1 - Peace Rive	er 💌		Add N	Iultiple Dele	te Ro
each:	PR-1	▼ R	iver Sta.: 54139.07 XS #54	▼ Add	an Obs. WS Loc	ation
		Observed	WS Location		Observed W	ater .
Riv	/er	Reach	RS	Dn Dist	03-01-31	
11-	Peace River	PR-1	31899.57	0	319.26	
21-	Peace River	PR-1	28108.28			
31-	Peace River	PR-1	24146.38			
41-	Peace River	PR-1	23294.95			
51-	Peace River	PR-1	21329.29			
6 1 -	Peace River	PR-1	20583.87			

- 7. Click ok in the 'Observed Water Surfaces for Comparison' window.
- 8. Save your **Steady Flow** file by choosing File and select '*Save Flow Data*' in the 'Steady Flow Data' window.
- 9. Close the 'Steady Flow Data' window by clicking on the $\stackrel{\times}{}$
- 10. In the main interface click to open the 'Steady Flow Analysis' window.
- 11. Verify the correct **Geometry** file and **Steady Flow** file are queued and click

if there are no errors. Close the 'Steady Flow Analysis' window by clicking on the $\stackrel{\times}{}$

注 Steady Flow Analysis			-		×
File Options Help					
Plan: Module 2: Intact Ice_03	-01-31_Student	Short ID: M2	Intact_	03-01-31	_Stud
Geometry File:	Module 2: Intact Ice_03-	01-31_Student			•
Steady Flow File:	Module 2: Intact Ice_03-	01-31_Student			•
Flow Regime © Subcritical © Supercritical © Mixed Optional Programs	Plan Description				^
Floodplain Mapping					~
	Compute				
Enter/Edit short identifier for pla	an (used in plan comparisons	;)			

12. In the main interface, click to view the model run results as a profile plot. Turn on the view of the ice cover by choosing Options and select '*Variables*' and clicking the check box next to '*Ice*

The computed water surface (dark blue line) falls below the observed water surface (diamonds). Now we must calibrate our ice roughness values to make the computed water surface match the observed

surface. Because our computed water surface is too low, we must *increase* the ice roughness. This will result in a slower and deeper computed flow.

- 13. Click on the in the main interface to open the 'Geometric Data' window.
- 14. Go to Tables and select 'Ice Cover ...'
- 15. Edit the ice roughness values so that they are a higher value. You will then <u>iteratively</u> change the ice roughness, run the model, view the results, until the computed water surface matches the observed water surface reasonably well. The general steps are:
 - In the 'Geometric Data' window, go to Tables and select '*Ice Cover …*' Edit the ice roughnesses in the table. At all cross-sections, give the LOB, Channel, and ROB the same roughness.
 - Save the Geometric Data: Go to File and click 'Save Geometry Data'.
 - In the main interface click it open the 'Steady Flow Analysis' window, click 'compute'.
 - View a 'Profile Plot' of the results by clicking in the main interface. Or click
 Reload Data if the 'Profile Plot' window is already open. Compare model results to observations. If adjustments are needed, go back to step a) and change the roughnesses.
 - Repeat until a good agreement between the computer water surface and the observed water surface elevation points is achieved.
- 16. Some general guidelines for roughness calibrations are:
 - Start with a single roughness value for the entire reach that matches the most downstream observed water surfaces
 - Once the downstream observed water surfaces are matched well, change the roughnessess at cross-sections further upstream to match the more upstream observed water surface values.
 - Don't change the roughness values every cross-section, nearby cross-sections likely have similar channel roughness values. One to three unique values for a reach this size is reasonable.
 - Remember, you are matching the water surface elevation, not the top of the ice surface.
 - Expected ice roughness values for this site are between 0.040 and 0.050. This is on the high side for intact ice, but the observed data indicates significant slush ice (Figure 1), which may contribute to energy loss in the reach, and therefore higher apparent roughness values.

An example of results from a calibrated model are shown below:

Figure 2: Model results for the January 31, 2003 intact ice cover on the Peace River, showing good calibration results

17. Once you are happy with your calibration, we will review the composite roughness that HEC-RAS is using in the ice jam stability equation. You can do this in the summary output tables. Click on

the in the main interface.

📕 Profil	e Output Table - Standard	Table 1											_		×
File Opt	tions Std. Tables Locati	ons Help													
	Н	EC-RAS F	Plan: M2:	Intact_03	8-01-31_F	inal Rive	er: 1 - Pe	ace River	Reach:	PR-1 Pr	ofile: 03-0)1-31		Reload	d Data
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl			
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)				
PR-1	54139.07 XS #54	03-01-31	2100.00	317.01	325.64		325.68	0.000344	0.93	2264.67	566.55	0.15			
PR-1	52544.35 XS #53	03-01-31	2100.00	316.17	325.05		325.11	0.000375	1.07	1963.55	423.03	0.16			
PR-1	50979.5 XS #52	03-01-31	2100.00	314.48	324.51		324.56	0.000331	0.96	2178.19	500.18	0.15			
PR-1	49803.19 XS #51	03-01-31	2100.00	314.72	324.17		324.22	0.000254	0.91	2297.75	469.15	0.13			
PR-1	48296.97 XS #50	03-01-31	2100.00	313.23	323.84		323.88	0.000194	0.93	2267.05	370.51	0.12			
PR-1	47054.72 XS #49	03-01-31	2100.00	313.17	323.56		323.61	0.000256	0.93	2249.30	447.12	0.13			
PR-1	45563.59 XS #48	03-01-31	2100.00	314.89	323.09		323.14	0.000392	0.98	2140.40	543.06	0.16			
PR-1	44051.32 XS #47	03-01-31	2100.00	314.45	322.61		322.65	0.000273	0.85	2472.97	594.57	0.13			
PR-1	42705.21 XS #46	03-01-31	2100.00	313.88	322.28		322.31	0.000225	0.76	2754.96	674.39	0.12			
PR-1	41405.55 XS #45	03-01-31	2100.00	311.17	321.87		321.93	0.000383	1.09	1920.30	406.08	0.16			
PR-1	39966.15 XS #44	03-01-31	2100.00	312.09	321.46	317.32	321.50	0.000232	0.91	2309.26	443.04	0.13			
PR-1	38663.54 XS #43	03-01-31	2100.00	309.54	321.12	315.95	321.18	0.000276	1.01	2076.42	387.39	0.14			
PR-1	37246.26 XS #42	03-01-31	2100.00	312.35	320.76	316.81	320.80	0.000251	0.92	2290.03	461.38	0.13			
PR-1	35284.69 XS #41	03-01-31	2100.00	310.17	320.21		320.25	0.000311	0.95	2212.22	497.22	0.14			
PR-1	33566.04 XS #40	03-01-31	2100.00	309.67	319.78		319.82	0.000203	0.86	2434.82	458.64	0.12			
PR-1	31899.57 XS #39	03-01-31	2100.00	308.37	319.37	315.97	319.41	0.000299	0.88	2387.87	583.88	0.14			
PR-1	30757.83 XS #38	03-01-31	2100.00	307.65	318.86		318.93	0.000622	1.21	1738.18	456.13	0.20			
PR-1	28861.62 XS #37	03-01-31	2100.00	306.75	317.79		317.85	0.000520	1.10	1901.23	499.73	0.18			
PR-1	28108.28 XS #36	03-01-31	2100.00	310.19	317.48		317.51	0.000381	0.81	2595.36	861.83	0.15			
PR-1	27059.93 XS #35	03-01-31	2100.00	309.46	317.07		317.12	0.000371	0.93	2246.64	589.27	0.15			
PR-1	26167.31 XS #34	03-01-31	2100.00	307.81	316.66		316.71	0.000559	0.99	2112.23	686.32	0.18			
PR-1	25065.26 XS #33	03-01-31	2100.00	308.57	316.20	313.13	316.24	0.000336	0.90	2328.59	597.78	0.15			
PR-1	24146.38 XS #32	03-01-31	2100.00	307.11	315.91	311.97	315.96	0.000283	0.93	2269.33	493.38	0.14			
PR-1	23492.63 XS #31	03-01-31	2100.00	305.26	315.75	310.64	315.79	0.000226	0.92	2292.67	426.35	0.13			
PR-1	23294.95 XS #30	03-01-31	2100.00	305.05	315.68	310.47	315.74	0.000329	1.05	2003.42	404.03	0.15			
PR-1	22393 XS #29	03-01-31	2100.00	303.80	315.48	309.91	315.52	0.000182	0.90	2332.65	378.51	0.12			
PR-1	22118.09 XS #28	03-01-31	2100.00	303.45	315.43	309.47	315.47	0.000165	0.87	2416.68	382.04	0.11			
PR-1	22109.06 PR CN Rail Bridg		Bridge												
PR-1	22100.72 XS #27	03-01-31	2100.00	303.54	315.14	309.07	315.18	0.000170	0.87	2405.50	386.32	0.11			
PR-1	22063.78 XS #26	03-01-31	2100.00	303.01	315.13	309.26	315.17	0.000168	0.86	2428.61	393.30	0.11			
PR-1	22027.41 XS #25	03-01-31	2100.00	302.93	315.13	309.04	315.17	0.000167	0.85	2468.90	406.00	0.11			
PR-1	22017.41 PR HWY 2 Bridge		Bridge												
PR-1	22007.4 XS #24	03-01-31	2100.00	302.74	315.12	309.06	315.16	0.000169	0.85	2477.02	413.49	0.11			
PR-1	21735.96 XS #23	03-01-31	2100.00	304.38	315.08	309.52	315.11	0.000152	0.78	2697.24	476.80	0.10			-
Total flow i	n cross section.	1					1								

Create a Table Heading												
Select Variab	les Additional	Options										
		Table Colu	mn Headings									
Column	9	10	11	12	13							
Variable	Top Width	Froude # Chl										
Units	(m)											
Decimal Pts	Pts 2 2											
Delete Column Insert Column Clear All Table Headings												
Available Variables Filter:												
Length Left Downstream reach length of the left overbank.												
Length Rght Downstream reach length of the right overbank.												
Length Wtd.	Weighted	Weighted length based on flow distribution, in left bank, channel, and rig										
Levee El Left	The eleva	tion of the left lev	/ee.									
Levee El Righ	t The eleva	tion of the right le	evee.									
Levee Sta Le	ft Left levee	station.										
Levee Sta Rig	ght Right leve	e station.										
LOB Elev	The groun	d elevation at the	e left bank of the	e main channel.								
Mann Comp	Mannings	n value for main o	hannel based or	n composite rough	ness equatic							
Mann Wtd Ch	nl Conveyar	ice weighted Man	ning's n for the n	nain channel.								
Mann Wtd Le	ft Conveyar	ice weighted Man	ning's n for the le	eft overbank.								
Mann Wtd Rg	ht Conveyan	ice weighted Man	ning's n for the r	ight overbank.								
Mann Wtd To	tal Mannings	n value for the to	tal main cross se	ection.								
Max Chl Dpth	Maximum	main channel dep	th.									
Min Ch El	Minimum o	Minimum channel elevation.										
Min Ch El Sta	Station of	the minimum cha	nnel elevation.									
Min Ch Pilot	Minimum o	hannel elevation	(including pilot ch	nannels).								
Min El	Minimum a	worall costion alor	untion									
				ОК	Cancel							

The table will now look like this:

Profi	e Output Table - Standard	Table 1												_		\times
File Op	tions Std. Tables Locati	ons Help														
	н	FC-RAS F	Plan: M2:	Intact 03	-01-31 F	inal Riv	er: 1 - Pe	ace River	Reach:	PR-1 Pr	ofile: 03-0)1-31			Reloa	ad Data
Death	Diver Ste	Drefile	OTetal	Min Ch El	W.C. Elev	Crith W. C.	E.C. Elev	E.C. Sleep	Val Chal	Eleve Area	Tee Width	Erevela # Chi	Mana Witd Tatal			
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	vei Chhi	Flow Area		Froude # Chi	Mann Wtd Total			
PD-1	54130 07 VS #54	03-01-31	2100.00	317.01	325.64	(m)	325.68	0.000344	0.03	2264.67	566 55	0.15	0.032			
PD-1	52544 35 YS #53	03-01-31	2100.00	316.17	325.05		325.11	0.000375	1.07	1963 55	423.03	0.15	0.032			
PR-1	50979 5 XS #52	03-01-31	2100.00	314 48	324 51		324 56	0.000331	0.96	2178 19	500 18	0.15	0.032			
PR-1	49803, 19 XS #51	03-01-31	2100.00	314.72	324.17		324.22	0.000254	0.91	2297.75	469.15	0.13	0.032			
PR-1	48296.97 XS #50	03-01-31	2100.00	313.23	323.84		323.88	0.000194	0.93	2267.05	370.51	0.12	0.032			
PR-1	47054,72 XS #49	03-01-31	2100.00	313.17	323.56		323.61	0.000256	0.93	2249.30	447.12	0.13	0.032			
PR-1	45563,59 XS #48	03-01-31	2100.00	314.89	323.09		323.14	0.000392	0.98	2140.40	543.06	0.16	0.032			
PR-1	44051.32 XS #47	03-01-31	2100.00	314.45	322.61		322.65	0.000273	0.85	2472.97	594.57	0.13	0.032			
PR-1	42705.21 XS #46	03-01-31	2100.00	313.88	322.28		322.31	0.000225	0.76	2754.96	674.39	0.12	0.032			
PR-1	41405.55 XS #45	03-01-31	2100.00	311.17	321.87		321.93	0.000383	1.09	1920.30	406.08	0.16	0.032			
PR-1	39966.15 XS #44	03-01-31	2100.00	312.09	321.46	317.32	321.50	0.000232	0.91	2309.26	443.04	0.13	0.032			
PR-1	38663.54 XS #43	03-01-31	2100.00	309.54	321.12	315.95	321.18	0.000276	1.01	2076.42	387.39	0.14	0.032			
PR-1	37246.26 XS #42	03-01-31	2100.00	312.35	320.76	316.81	320.80	0.000251	0.92	2290.03	461.38	0.13	0.032			
PR-1	35284.69 XS #41	03-01-31	2100.00	310.17	320.21		320.25	0.000311	0.95	2212.22	497.22	0.14	0.032			
PR-1	33566.04 XS #40	03-01-31	2100.00	309.67	319.78		319.82	0.000203	0.86	2434.82	458.64	0.12	0.032			
PR-1	31899.57 XS #39	03-01-31	2100.00	308.37	319.37	315.97	319.41	0.000299	0.88	2387.87	583.88	0.14	0.032			
PR-1	30757.83 XS #38	03-01-31	2100.00	307.65	318.86		318.93	0.000622	1.21	1738.18	456.13	0.20	0.032			
PR-1	28861.62 XS #37	03-01-31	2100.00	306.75	317.79		317.85	0.000520	1.10	1901.23	499.73	0.18	0.032			
PR-1	28108.28 XS #36	03-01-31	2100.00	310.19	317.48		317.51	0.000381	0.81	2595.36	861.83	0.15	0.032			
PR-1	27059.93 XS #35	03-01-31	2100.00	309.46	317.07		317.12	0.000371	0.93	2246.64	589.27	0.15	0.032			
PR-1	26167.31 XS #34	03-01-31	2100.00	307.81	316.66		316.71	0.000559	0.99	2112.23	686.32	0.18	0.032			
PR-1	25065.26 XS #33	03-01-31	2100.00	308.57	316.20	313.13	316.24	0.000336	0.90	2328.59	597.78	0.15	0.032			
PR-1	24146.38 XS #32	03-01-31	2100.00	307.11	315.91	311.97	315.96	0.000283	0.93	2269.33	493.38	0.14	0.032			
PR-1	23492.63 XS #31	03-01-31	2100.00	305.26	315.75	310.64	315.79	0.000226	0.92	2292.67	426.35	0.13	0.032			
PR-1	23294.95 XS #30	03-01-31	2100.00	305.05	315.68	310.47	315.74	0.000329	1.05	2003.42	404.03	0.15	0.032			
PR-1	22393 XS #29	03-01-31	2100.00	303.80	315.48	309.91	315.52	0.000182	0.90	2332.65	378.51	0.12	0.032			
PR-1	22118.09 XS #28	03-01-31	2100.00	303.45	315.43	309.47	315.47	0.000165	0.87	2416.68	382.04	0.11	0.032			
PR-1	22109.06 PR CN Rail Bridg		Bridge													
PR-1	22100.72 XS #27	03-01-31	2100.00	303.54	315.14	309.07	315.18	0.000170	0.87	2405.50	386.32	0.11	0.032			
PR-1	22063.78 XS #26	03-01-31	2100.00	303.01	315.13	309.26	315.17	0.000168	0.86	2428.61	393.30	0.11	0.032			
PR-1	22027.41 XS #25	03-01-31	2100.00	302.93	315.13	309.04	315.17	0.000167	0.85	2468.90	406.00	0.11	0.032			
PR-1	22017.41 PR HWY 2 Bridge		Bridge													
PR-1	22007.4 XS #24	03-01-31	2100.00	302.74	315.12	309.06	315.16	0.000169	0.85	2477.02	413.49	0.11	0.032			
PR-1	21735.96 XS #23	03-01-31	2100.00	304.38	315.08	309.52	315.11	0.000152	0.78	2697.24	476.80	0.10	0.032			-
Total flow i	n cross section.											·	•			

19. Compare the 'Mann Wtd Total' to the ice roughness values you entered in the geometry file in this Task. Keep the 'Profile Output table' open, and open the 'Geometric Data' window by clicking

the \bowtie in the main interface. Choose Tables and select '*Ice Cover* ...' Or choose Tables and select '*Manning*'s *n* or *k* values (Horizontally varied) ...'

Reach: PR-1		A	Regions									
Selected Area Edit Op	tions				tor	Set Values	F	teplace	8-0	1-31		
Add Constant	Multiply	Factor	Set Values	Replace	ROB ice	LOB ice	Chan ice	ROB ice	c th	Froude # Chl	Mann Wtd Total	
River Station	:tn (n)	n #1	n #2	n #3	Thickness	Mann n	Mann n	Mann n				
1 54139.07 XS #54	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	55	0.15	0.032	
2 52544.35 XS #53	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04).)3	0.16	0.032	
3 50979.5 XS #52	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	18	0.15	0.032	
4 49803.19 XS #51	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	15	0.13	0.032	
5 48296.97 XS #50	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	51	0.12	0.032	
6 47054.72 XS #49	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	12	0.13	0.032	
7 45563.59 XS #48	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04)6	0.16	0.032	
8 44051.32 XS #47	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	57	0.13	0.032	
9 42705.21 XS #46	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	39	0.12	0.032	
10 41405.55 XS #45	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	38	0.16	0.032	
11 39966.15 XS #44	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	.)4	0.13	0.032	
12 38663.54 XS #43	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	. 39	0.14	0.032	
13 37246.26 XS #42	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	. 38	0.13	0.032	
14 35284.69 XS #41	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	. 22	0.14	0.032	
15 33566.04 XS #40	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	. 54	0.12	0.032	
16 31899.57 XS #39	n	0.022	0.022	0.022	2.4	0.04	0.04	0.04	. 28	0.14	0.032	
17 30757.83 XS #38	n	0.022	0.022	0.022	3.05	0.04	0.04	0.04	. 13	0.20	0.032	
18 28861.62 XS #37	n	0.022	0.022	0.022	2.9	0.04	0.04	0.04	. 73	0.18	0.032	
19 28108.28 XS #36	n	0.022	0.022	0.022	2.7	0.04	0.04	0.04	. 23	0.15	0.032	
20 27059.93 XS #35	n	0.022	0.022	0.022	2.52	0.04	0.04	0.04	27	0.15	0.032	
21 26167.31 XS #34	n	0.022	0.022	0.022	25	0.04	0.04	0.04	22	0.19	0.032	
22 25065.26 XS #33	n	0.022	0.022	0.022	2.45	0.04	0.04	0.04	72	0.15	0.032	
23 24146.38 XS #32	n	0.022	0.022	0.022	2.45	0.04	0.04	0.04	20	0.15	0.032	
24 23492.63 XS #31	n	0.022	0.022	0.022	2.9	0.04	0.04	0.04	20	0.14	0.032	
25 23294.95 XS #30	n	0.022	0.022	0.022	2.38	0.04	0.04	0.04		0.15	0.032	
26 22393 XS #29	n	0.022	0.022	0.022	2.37	0.04	0.04	0.04		0.15	0.032	
	Bed					lc	e Cov	/er			Composite	
		Ro	ughne	ess		Ro	ughn	ess			Roughness	
	(Geometry Data Table: "Manning's n or k values")				ĺ	(Geometry Data Table: "Ice Cover")				(Profile Output Table)		

Notice that the composite roughness values are intermediate to the bed and ice roughness values.

20. You can also view the volume of ice in the model domain. Choose the 'Profile Output Table' from the main interface. Choose Options and select '*Define Table …*' Add a new variable after the last column by double clicking on '*Ice Vol Total: Cumulative volume of ice in an ice jam*'. Click or

Create a Table Heading												
Select Variab	les	Additional (Options									
			Table Colu	mn Headings								
Column		9	10	11	12	13						
Variable	То	p Width	Froude # Chl									
Units		(m)										
Decimal Pts	Decimal Pts 2 2											
Delete Column Insert Column Clear All Table Headings												
Available Variables Filter:												
Ice Err Convergence error in ice thickness for dynamic ice jam.												
Ice Thick Cha	Ice Thick Chan Ice thickness in the main channel.											
Ice Thick LOB		Ice thickne	ess in the left ove	erbank.								
Ice Thick ROB	3	Ice thickne	ess in the right ov	verbank.								
Ice Top Chan		The top el	evation of ice in t	the main channel.								
Ice Top LOB		The top el	evation of ice in t	the left overbank.								
Ice Top ROB		The top el	evation of ice in t	the right overbank	c.							
Ice Vol Total		Cumulative	e volume of ice in	an ice jam.								
Ice Vol. Chan		Cumulative	e volume of ice in	the main channel	for an ice jam.							
Ice Vol. LOB		Cumulative	e volume of ice in	the left overbank	k for an ice jam.							
Ice Vol. ROB		Cumulative	e volume of ice in	the right overbar	nk for an ice jam							
Ice WS Err		Converger	nce error in wate	r surface for dyna	amic ice jam.							
Ineff El Left		The elevat	tion of the left ine	effective area.								
Ineff El Right		The elevat	tion of the right in	neffective area.								
Inflow		Total inflo	w into a storage	area.								
Invert Slope		The slope	from the invert o	f this cross sectio	n to the next cro	oss section d						
K Perc L		Conveyan	ce reduction from	n left encroachme	nt.							
LK Dore D		Convoyon	co roduction from	s right operandhm	ont							
					OK	Cancel						

Profil	🗰 Profile Output Table - Standard Table 1												
File Opt	ions Std. Tables Locatio	ons Help											
	H	EC-RAS F	Plan: M2:	Intact_03	-01-31_F	inal Rive	er: 1 - Pe	ace River	Reach:	PR-1 Pr	ofile: 03-0	01-31	
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	ice Vol Total
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m3)
PR-1	23492.63 XS #31	03-01-31	2100.00	305.26	315.75	310.64	315.79	0.000226	0.92	2292.67	426.35	0.13	1612180.00
PR-1	23294.95 XS #30	03-01-31	2100.00	305.05	315.68	310.47	315.74	0.000329	1.05	2003.42	404.03	0.15	1406230.00
PR-1	22393 XS #29	03-01-31	2100.00	303.80	315.48	309.91	315.52	0.000182	0.90	2332.65	378.51	0.12	0537250.00
PR-1	22118.09 XS #28	03-01-31	2100.00	303.45	315.43	309.47	315.47	0.000165	0.87	2416.68	382.04	0.11	0290900.00
PR-1	22109.06 PR CN Rail Bridg		Bridge										
PR-1	22100.72 XS #27	03-01-31	2100.00	303.54	315.14	309.07	315.18	0.000170	0.87	2405.50	386.32	0.11	0290900.00
PR-1	22063.78 XS #26	03-01-31	2100.00	303.01	315.13	309.26	315.17	0.000168	0.86	2428.61	393.30	0.11	0259680.00
PR-1	22027.41 XS #25	03-01-31	2100.00	302.93	315.13	309.04	315.17	0.000167	0.85	2468.90	406.00	0.11	0229710.00
PR-1	22017.41 PR HWY 2 Bridge		Bridge										
PR-1	22007.4 XS #24	03-01-31	2100.00	302.74	315.12	309.06	315.16	0.000169	0.85	2477.02	413.49	0.11	0229710.00
PR-1	21735.96 XS #23	03-01-31	2100.00	304.38	315.08	309.52	315.11	0.000152	0.78	2697.24	476.80	0.10	0008440.00
PR-1	21329.29 XS #22	03-01-31	2100.00	307.93	315.02	311.68	315.04	0.000205	0.71	2938.56	711.38	0.11	9594790.00
PR-1	20902.13 XS #21	03-01-31	2100.00	307.17	314.90	311.89	314.93	0.000332	0.80	2618.52	764.82	0.14	9061230.00
PR-1	20583.87 XS #20	03-01-31	2100.00	306.04	314.80	311.03	314.83	0.000283	0.81	2605.38	668.74	0.13	8680020.00
PR-1	19733.33 XS #19	03-01-31	2100.00	303.96	314.54	311.36	314.58	0.000309	0.86	2452.55	614.95	0.14	7576460.00
PR-1	18523.06 XS #18	03-01-31	2100.00	305.68	314.09	311.34	314.13	0.000460	0.86	2432.00	810.26	0.16	5221800.00
PR-1	16963.11 XS #17	03-01-31	2100.00	304.80	313.40		313.44	0.000424	0.92	2281.21	649.94	0.16	1942320.00
PR-1	15681.65 XS #16	03-01-31	2100.00	303.99	312.91		312.95	0.000351	0.90	2322.88	590.62	0.15	9722290.00
PR-1	14591.14 XS #15	03-01-31	2100.00	304.29	312.53		312.58	0.000324	0.94	2228.85	502.14	0.14	8094100.00
PR-1	13053.22 XS #14	03-01-31	2100.00	301.16	312.04	306.87	312.09	0.000310	1.01	2071.49	403.23	0.14	6226190.00
PR-1	11809.61 XS #13	03-01-31	2100.00	301.92	311.70		311.74	0.000252	0.83	2534.76	578.63	0.13	4674610.00
PR-1	10385.12 XS #12	03-01-31	2100.00	298.82	311.33		311.37	0.000260	0.95	2225.45	445.56	0.13	2715540.00
PR-1	9024.812 XS #11	03-01-31	2100.00	302.44	310.98		311.02	0.000255	0.89	2364.49	490.06	0.13	0976260.00
PR-1	7564.073 XS #10	03-01-31	2100.00	301.16	310.55	307.22	310.59	0.000344	0.88	2388.42	623.74	0.14	8916586.00
PR-1	6270.616 XS #09	03-01-31	2100.00	299.10	310.14	305.36	310.18	0.000289	0.95	2214.79	453.17	0.14	7135935.00
PR-1	5365.335 XS #08	03-01-31	2100.00	299.42	309.84	304.96	309.90	0.000347	1.02	2060.07	433.25	0.15	6037923.00
PR-1	4915.177 XS #07	03-01-31	2100.00	296.79	309.77	304.09	309.80	0.000136	0.75	2806.73	463.39	0.10	5493370.00
PR-1	4905.409 PR HWY 986 Bridg		Bridge										
PR-1	4895.642 XS #06	03-01-31	2100.00	298.69	309.56	303.92	309.59	0.000135	0.75	2818.35	464.95	0.10	5493370.00
PR-1	4480.899 XS #05	03-01-31	2100.00	298.85	309.48	304.93	309.52	0.000213	0.86	2438.16	456.91	0.12	5026170.00
PR-1	3709.021 XS #04	03-01-31	2100.00	299.51	309.28	305.46	309.33	0.000291	0.96	2193.85	444.14	0.14	4177761.00
PR-1	2382.439 XS #03	03-01-31	2100.00	297.93	308.81	303.70	308.86	0.000433	1.01	2073.72	520.34	0.16	2576504.00
PR-1	1302.66 XS #02	03-01-31	2100.00	298.73	308.44	304.55	308.48	0.000285	0.96	2179.90	430.79	0.14	1262168.00
PR-1	0 XS #01	03-01-31	2100.00	295.79	308.08	301.94	308.14	0.000250	1.04	2031.14	339.18	0.13	
l otal flow i	n cross section.												

This is the volume of ice (or ice jam) in the model. It provides the ice volume (in m³) in the reach downstream of each cross-section. This value is the volume of the ice cover, in order to obtain the volume of solid ice contained in an ice jam, the total volume must be multiplied by the solid fraction of the jam (1 - jam porosity). HEC-RAS will calculate the ice volume but it will not limit jam size based on volume.

21. Close all the open windows except the main interface.

Task 2C Instructions: OPTIONAL - Review A Complete Intact Ice Calibration from Another Date

- 1. If you are done, review another ice thickness and roughness calibration that has been completed for another date: January 20, 2004. Click <u>F</u> to open the 'Steady Flow Analysis' window.
- 2. Choose File and select '*Open plan…*'. Choose "**Module 2: Intact Ice_04_01_20_Final**" and click
- 3. Verify that the correct **Geometry** and **Steady Flow** files are chosen:

Table 6: Model Files Used for HEC-RAS Module 2 - Task 2C

File Type	Filename
Plan	"Module 2: Intact Ice_04_01_20_Final"
Geometry	"Module 2: Intact Ice_04_01_20_Final"
Steady Flow	"Module 2: Intact Ice_04_01_20_Final"

- 4. Run the model by clicking and then close.
- 5. Review the output profiles and geometry tables.

QUESTION: In what way is this ice cover different than the one in Task 2A?

Module 3: Simple Ice Jam Model

Module 3: Simple Ice Jam Model

What is our goal?

 Add an observed ice jam to our model. Modify the model geometry to obtain a more realistic ice jam simulation.

Main tasks:

- A. Modify geometry to add an ice jam
- B. Calibrate ice jam model
- C. Further modify geometry
- D. Compare modified models
- E. OPTIONAL: Explore sensitivity of ice jam strength parameters

Ice Jam Model

- Will edit the geometry file to tell HEC-RAS to solve the ice jam stability equation within the reach
- · Will be modelling a specific, observed ice jam
 - April 1997

• 4,000 residents were evacuated from the Town of Peace River

- 45 businesses flooded in downtown
- Damages over \$20 million (\$35 million in 2023)

Task 3A Instructions: Modify the Geometry File to Include a Simple Ice Jam and Run the Simulation

- 1. Click to open the 'Steady Flow Analysis' window.
- 2. Go to File and select '*Open plan...*' Choose "**Module 3: Simple Ice Jam_Student**" and click
- 3. Verify that the correct <u>Geometry</u> and <u>Steady Flow</u> files are chosen:

Table 7: Model Files Used for HEC-RAS Module 3 - Task 3A

File Type	Filename
Plan	"Module 3: Simple Ice Jam_Student"
Geometry	"Module 3: Simple Ice Jam_Student"
Steady Flow	"Module 3: Simple Ice Jam"

These files currently contain the following information:

Geometry File:

• The intact ice cover with the ice thickness observed on January 20, 2004 (from optional Task 2C). The ice roughnesses were calibrated to the water surface elevations observed on January 20,

2004. The bed roughness are the bed roughnesses calibrated from the 1990 open water event (the same as used in all previous tasks).

Steady Flow File:

- The flow in the Peace River is the estimated peak flow that occurred during the 1997 breakup ice jam event (3,600 m³/s).
- The observed water surface evaluations taken from high water marks observed after the 1997 breakup ice jam event.
- 4. Run the model by clicking and then close
- 5. View a 'Profile Plot' of the results by clicking in the main interface.

Notice that the computed water surface elevation is well below the observed water surface points.

QUESTION: Why is the computed water surface elevation below the observed water surface points? (HINT: think about where the roughness and flow values have come from).

6. Turn on the cross-section landmarks in the profile plot by choosing Options. From the drop down menu, select '*Landmarks*', and then '*Node Name*'. Now the location of the cross-sections are visible in the profile view.

Notice that the computed water surface matches the two most downstream observed water surface elevations better than the ones further upstream.

QUESTION: Based on the observed water surface elevations, approximately where in the study reach was the toe of the ice jam located in 1997?

For this exercise, we will assume the ice jam toe was located at XS #16, which agrees with field observations from when the ice jam occurred. The River Station (RS) value for <u>XS #16 is 15,681.65 m</u> (this value will come in handy in this task).

7. We will save a new version of the geometry file, so that we can edit the geometry and compare results. Open the 'Geometric Data' window by clicking the in the main interface. Go to File and select 'Save Geometry File As ...'. Change the 'Title' of the file to "Module 3: Simple Ice

Jam_Student_R1". Click

Save Geometry Data As		
Title	File Name	Selected Folder Default Project Folder Documents
Module 3: Simple Ice Jam_Student_R1	CRIPESHORTCOURSE_R2.g*	C:\CRIPE Short Course R2
Module 1: Open Water Module 2: Intact Ice_03-01-31_Student Module 2: Intact Ice_03-01-31_Final	CRIPESHORTCOURSE_R2.g01.h CRIPESHORTCOURSE_R2.g01.h CRIPESHORTCOURSE_R2.g02 CRIPESHORTCOURSE_R2.g02.h CRIPESHORTCOURSE_R2.g03	C:\ CIPE Short Course R2 Backup Features
Module 2: Intact Ice_04-01-20_Final	CRIPESHORTCOURSE_R2.g03.h CRIPESHORTCOURSE_R2.g04 CRIPESHORTCOURSE_R2.g04.h	
Module 3: Simple Ice Jam_Student Module 3: Simple Ice Jam_Final	CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05.h CRIPESHORTCOURSE_R2.g06	
Module 4: Ice Jam Width_Student	CRIPESHORTCOURSE_R2.g06.h CRIPESHORTCOURSE_R2.g07 CRIPESHORTCOURSE_R2.g07.h	
Module 4: Ice Jam Width_Final	CRIPESHORTCOURSE_R2.g08 CRIPESHORTCOURSE_R2.g08.h	
OK Cancel Help	Create Folder	C: [Windows]
Select drive and path and enter new Title.		

Notice that the file name that appears in the 'Geometric Data' window has changed to the new filename:

KGeor	metric Da	ita - Mod	lule 3: Sin	nple Ice Ja	im_Stud	ent_R1		
File Ed	it Optio River Reach	Storage Area	w Table 2D Flow Area	SA/2D Conn	GIS To BC Lines	ols Help Reference Lines	IC Points	Reference Points
Editors Junct.								
Cross Section								

- 8. We will now change the intact ice cover to an ice jam. In the 'Geometric Data' window choose Tables and select '*Ice Cover* ...' to open the 'Edit Ice Cover Data' window.
- 9. Select the '*Ice Jam Chan (y/n*)' from XS #53 (second most upstream section) up to and including XS #16 (the toe of the ice jam). Then select Set Values...]. Set the value as 'Yes'.

Ed	it Ice Cove	er Data															
Rive	er: 1-Pe	ace River	•	-	a 🖻 🗸	Edit Interp	olated XS's	5									
Dee	aby DD 1																
Rea	ich: [PR-1	- 540-6-		<u> </u>													
5	elected Area	a Edit Optic)ns Iultielu East		Cot Volues	_	oplace	1									
	Add Consta	nt	штру наст	.or	set values	R	epiace										
	ver Statio	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	Fixe	-
		Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Chan (y/n)	OB (y/n)	Angle		ratio	Velocity	Cohesion	Mann n	
17	30757.83	4.78	4.78	4.78	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у	
18	28861.62	2.8	2.8	2.8	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у	
19	28108.28	2.8	2.8	2.8	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у	
20	27059.93	2.8	2.8	2.8	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у	
21	26167.31	2.8	2.8	2.8	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
22	25065.26	2.8	2.8	2.8	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
23	24146.38	2.83	2.83	2.83	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
24	23492.63	2.83	2.83	2.83	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
25	23294.95	2.73	2.73	2.73	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у	
26	22393 X	2.73	2.73	2.73	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
27	22118.09	2.7	2.7	2.7	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
28	22109.06	Bridge													-		
29	22100.72	2.6	2.6	2.6	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
30	22063.78	2.6	2.6	2.6	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
31	22027.41	2.6	2.6	2.6	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
32	22017.41	Bridge					HEC-RAS								-	<u> </u>	
33	22007.4 :	2.5	2.5	2.5	0.04	0.04			Ten Jem				0.33	1.524	0	У	
34	21735.96	2.5	2.5	2.5	0.04	0.04			Ice Jam				0.33	1.524	0	У	
35	21329.29	2.4	2.4	2.4	0.04	0.04	Yes						0.33	1.524	0	У	
36	20902.13	2.4	2.4	2.4	0.04	0.04	C No						0.33	1.524	0	У	
$\frac{37}{20}$	20583.87	2.4	2.4	2.4	0.04	0.04			0	ĸ	Cancel	1	0.33	1.524	0	У	
38	19733.33	2.4	2.4	2.4	0.04	0.04		0.046		×	Concer		0.33	1.524	0	У	
39	18523.06	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
40	15963.11	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
41	15681.65	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
42	14591.14	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
43	13053.22	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У	
49	10295 12	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	40	0.4	0.33	1.524	0	У	_
+5	10385.12	2.4	2.4	2.4	0.04	0.04	0.04	0.910	n	n	Ст	0.4	0.33	1.524	U	y (•
	ОК	1						Cano	el							Help	
_		1															

Note that the most upstream and most downstream cross-sections in a HEC-RAS model cannot have ice jam (y/n) set to 'yes'.

10. Repeat the previous step for the '*Ice Jam OB (y/n)*' to also simulate an ice jam in the overbank area.

By adding an ice jam to both the channel and the overbank, the top width of the wetted area will be used as the width of the ice jam in the ice jam stability equation. The importance of the ice jam width will be explored further in Module 4.

11. Set the ice jam thickness to 2.4 m for all ice jam sections (in the channel and the overbanks) from XS #53 to XS#16 Select the 'LOB ice thickness', 'Chan ice Thickness', and 'ROB ice Thickness' columns for all rows with a 'y' in the 'Ice Jam Chan (y/n)' column. Click Set Values... and input the thickness. Click OK ... Click OK to exit the 'Edit Ice Cover' window.

Edi	t Ice Cove	r Data														
Rive	r: 1 - Pe	ace River		- 🔏 🗉	d 🖪 🗸	Edit Interp	olated XS's	1								
Rea	ch: PR-1			-												
Se	lected Area	a Edit Optio	ons													
	dd Consta	nt M	ultiply Fact	tor 🔤	Set Values	R	eplace	1								
_	ver Statio	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	Fixe 🔺
	22402.62	Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Jhan (y/n)	OB (y/n)	Angle		ratio	Velocity	Cohesion	Mann n
24	23492.63	2.83	2.83	2.83	0.04	0.04	0.04	0.916	у	У	45	0.4	0.33	1.524	0	У
25	23294.95	2.73	2.73	2.73	0.04	0.04	0.04	0.916	у	У	45	0.4	0.33	1.524	0	У
	22393 X	2.73	2.73	2.73	0.04	0.04	0.04	0.916	у	У	45	0.4	0.33	1.524	0	У
2/	22118.09	Z./ Bridge	2.7	2.7	0.04	0.04	0.04	0.910	у	У	40	0.4	0.33	1.524	U	У
20	22109.00	2.6	2.6	2.6	0.04	0.04	0.04	0.016			45	0.4	0.33	1 524	0	
29	22100.72	2.0	2.0	2.0	0.04	0.04	0.04	0.910	y 	y 	45	0.4	0.33	1.524	0	y
30	22003.70	2.0	2.0	2.0	0.04	0.04	0.04	0.910	y 	y v	45	0.4	0.33	1.524	0	y v
32	22027.41	Bridge	2.0	2.0	0.04	0.04	0.04	0.910	у	У	ч	V.T	0.55	1.324	•	<u>y</u>
33	22017.11	2.5	2.5	2.5	0.04	0.04	0 fure r				45	04	0.33	1 574	0	
34	21735.96	2.5	2.5	2.5	0.04	0.04	0 (HEC-R	(AS			45	0.4	0.33	1 524	0	y V
35	21329.29	2.4	2.4	2.4	0.04	0.04	0.1 Ento	r a amount t	o oot ootrik	n in	45	0.4	0.33	1.524	0	y V
36	20902.13	2.4	2.4	2.4	0.04	0.04	0.0	the selecte	ed range.	5111	45	0.4	0.33	1.524	0	y V
37	20583.87	2.4	2.4	2.4	0.04	0.04	0.0				45	0.4	0.33	1.524	0	y V
38	19733.33	2.4	2.4	2.4	0.04	0.04	0.0				45	0.4	0.33	1.524	0	y v
39	18523.06	2.4	2.4	2.4	0.04	0.04	0.0	la d			45	0.4	0.33	1.524	0	V
40	16963.11	2.4	2.4	2.4	0.04	0.04	0.0	2.4			45	0.4	0.33	1.524	0	V
41	15681.65	2.4	2.4	2.4	0.04	0.04	0.0	or	Conc	- 1	45	0.4	0.33	1.524	0	v
42	14591.14	2.4	2.4	2.4	0.04	0.04	0.0	UK	Cano		45	0.4	0.33	1.524	0	v
43	13053.22	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	v
44	11809.61	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	y
45	10385.12	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	y
46	9024.812	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	y I
47	7564.073	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
48	6270.616	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
49	5365.335	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
50	4915.177	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
51	4905.409	Bridge														
52	4895.642	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	y 🚽
•																
	OK							Cano	el							Help

This input ice thickness is the initial ice thickness used when solving the ice jam stability equation, as well as the *minimum* ice thickness that the final solution will have at each cross-section. For this reason, if you start with an ice jam ice thickness that is too high at this step, it will affect the final results. Note that here we have started with a thickness close to the intact ice thickness.

- 12. Save your changes to the Geometry file. Choose File and click 'Save Geometry Data'.
- 13. Click to open the 'Steady Flow Analysis' window.
- 14. Save a new plan by going to File and selecting 'Save Plan As...'. Then, type "Module 3: Simple

Ice Jam_Student_R1" in the 'Title' box and click

- 15. In the next window, give the plan a short ID of: "M3: Simple Jam_Student_R1"
- 16. Verify that the correct Geometry and Steady Flow files are chosen:

Table 8: Model Files Used for HEC-RAS Module 3 - Task 3A, Geometry Revision 1

File Type	Filename
Plan	"Module 3: Simple Ice Jam_Student_R1"
Geometry	"Module 3: Simple Ice Jam_Student_R1"
Steady Flow	"Module 3: Simple Ice Jam"

17. Click <u>Compute</u>. Wait for the simulation to complete. Notice that it takes longer for an ice jam to compute than an open water or intact ice model.

🚟 HEC-RA	S Finished Computations			_		\times
Write Geome	etry Information	_				
-Steady Flow						
River:	1 - Peace River	RS:	54139.07			
Reach:	PR-1	Node Type:	Cross Section			
Profile:	1997 Ice Jam					
Simulation:	1/1					
Computation	n Messages					
Plan: 'Mod Simulation s	Iule 3: Simple Ice Jam_Student started at: 19Jun2023 02:12:09 PM	_R1' (CRIPES	HORTCOURSE_R2.p10)			
Writing Geo Completed	metry Writing Geometry					
Writing Even	nt Conditions Writing Event Condition Data					
Steady Flo	ow Simulation HEC-RAS 6.3.1 Oc	tober 2022				
Finished Ste	eady Flow Simulation					
Computat	tions Summary					
Computatio	n Task	Time(hh:mm	<u>(22:</u>			
Completing	Geometry Event Conditions		<1 <1			
Steady Flov	v Computations		6			
Complete Pr	rocess		7			
		. 1		ſ	-1	
Pause	Make Snapshot of Re	sults		l.	Close	

51 iterations were performed to compute the ice jam. Depending on the modelled conditions, this may not be enough iterations for the ice jam thickness to reach its "fully developed" state. We will change the maximum number of iterations in the coming steps.

- 18. Choose ______ in the HEC-RAS Finished Computations window.
- 19. Edit the maximum number of iterations in the 'Steady Flow Analysis' window. Go to Options and select 'Set Calculation Tolerances ...'. Change this value to 40 (which is the maximum number of iterations).

HEC-RAS	
Set Calculation Tolerances	
Water surface calculation tol. (.00011 m)	.003
Critical depth calculation tol. (.00011 m)	.003
Maximum number of iterations (3 - 40)	40
Maximum difference tolerance (.1 - 1.0 m)	.10
Flow tolerance factor (.000105)	.001
Maximum iteration in Split flow (3-100)	30
Flow tolerance factor in weir split flow (.000105)	.020
Max difference in junction split flow (.001 1 m)	.006
OK Cancel Defaults	Help

The number of iterations HEC-RAS will perform for an ice jam analysis is 2.5 times the value in this table plus 1. Therefore, the maximum number of iterations HEC-RAS will perform in an ice jam model is 101.

- 20. Click or to exit.
- 21. Re-compute the ice jam profile but this time, get ready to pause the simulation at some point. Click Compute in the 'Steady Flow Analysis' window and then click Pause in the computation window during the simulation.
- 22. With the simulation paused, view the 'Profile Plot' window and then click Reload Data. The profile will now look different. An ice jam has been computed in the study reach, which looks like a thickened area of the ice, and a toe region.

- 23. Go back to the computation window and click Resume to finish the computation. Then click Close to exit the computation window.
- 24. To understand how the computed solution changes during iterations, we will repeatedly update the profile as the model runs. Get your windows set up so this is easier to achieve. Maximize the 'Profile Plot' window, and have the 'Steady Flow Analysis' window in front of it:

- 25. Click <u>Compute</u> on the 'Steady Flow Analysis' window, and then directly click on the 'Profile Plot' in behind, to bring it to the front. Click on the Reload Data button in the upper right of the 'Profile Plot' window repeatedly to see the results of the iterations as they occur.
- 26. Repeat the previous two steps a few times to see how the computed ice jam is changing as the model runs.
- 27. Once you have watched the model run a few times, inspect the model results in the 'Profile Plot'.

Notice that the computed water surface elevation does not go through the observed water surface data points. What still needs to be changed so that the points match?

QUESTION: What still needs to be changed so that the points match? In what way (increase/decrease) do we need to make that change?

28. Close all tabs and windows except the main interface.

Task 3B Instructions: Calibrate the Simplified Ice Jam Model

In Task 3A we changed the geometry file of the intact ice cover to include an ice jam. However, that geometry file still contained the ice roughnesses that were calibrated to the intact ice observations. In this task, we need to calibrate the roughness of the ice cover to match the observed water surface points.

1. We will save a new version of the geometry file, so that we can edit the geometry and compare results. Open the 'Geometric Data' window by clicking the in the main interface. Choose File and select 'Save Geometry File As ...'. Change the 'Title' of the file to "Module 3: Simple Ice

Jam_Student_R2", click

Save Geometry Data As		
Title	ile Name	Selected Folder Default Project Folder Documents
Module 3: Simple Ice Jam_Student_R2	CRIPESHORTCOURSE_R2.g*	C:\CRIPE Short Course R2
Module 2: Intact Ice_03-01-31_Student Module 2: Intact Ice_03-01-31_Student Module 2: Intact Ice_03-01-31_Final Module 2: Intact Ice_04-01-20_Final Module 3: Simple Ice Jam_Student Module 3: Simple Ice Jam_Final Module 4: Ice Jam Width_Student Module 4: Ice Jam Width_Final Module 3: Simple Ice Jam_Student_R1	CRIPESHORTCOURSE_R2.g01 CRIPESHORTCOURSE_R2.g01 CRIPESHORTCOURSE_R2.g02 CRIPESHORTCOURSE_R2.g02 CRIPESHORTCOURSE_R2.g03 CRIPESHORTCOURSE_R2.g03 CRIPESHORTCOURSE_R2.g03 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05 CRIPESHORTCOURSE_R2.g05	C:\CLPE Short Course R2
OK Cancel Help	Create Folder	□ [□ c: [Windows]

2. Change the roughness of the ice cover. Go to Tables and select '*Ice Cover* ...' to open the 'Edit Ice Cover Data' window. Set the ice cover roughness to *0.060*.

Ed	it Ice Cove	r Data														
Ed	it ice cove															
Rive	er: 1-Pe	ace River	-	- 👗 🗉	6 🖪 🖻	Edit Interp	olated XS'	s								
Rea	ch: PR-1		·	-												
⊢S∈	elected Area	a Edit Optic	ons													
	Add Consta	nt M	ultiply Fact	tor 🔤	Set Values	R	eplace	1								
1	une Challes		Chara inc	DOD int	1.00 :	Chan in	DOD :	Teo Consillo		Tee Jeen	Edition	Deverity	Charac K1	Maria	Tee	E.e.
	ver statio	Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	The Jam	OB (v/p)	Angle	Porosity	ratio	Velocity	Cohesion	Vann n
29	22100 72	2.4	2.4	2.4	0.04	0.04	0.04	0.916	shan (y/n)	00 (9/11)	45	0.4	0.33	1 524	0	Marin
30	22063 78	2.4	2.4	2.4	0.04	0.04	0.04	0.916	y V	y V	45	0.4	0.33	1 524	0	y V
31	22003.70	2.4	2.4	2.4	0.04	0.04	0.04	0.916	y V	y V	45	0.4	0.33	1.524	0	y V
32	22017.41	Bridge		2				0.010	,	,			0.00	1.02.1		,
33	22007.4 :	2.4	2.4	2.4	0.04	0.04	0.04	0.916	v	v	45	0.4	0.33	1.524	0	v
34	21735.96	2.4	2.4	2.4	0.04	0.04	0.04	0.916	v	v	45	0.4	0.33	1.524	0	v
35	21329.29	2.4	2.4	2.4	0.04	0.04	0.04	0.916	v	v	45	0.4	0.33	1.524	0	v
36	20902.13	2.4	2.4	2.4	0.04	0.04	0.04	0.916	v	v	45	0.4	0.33	1.524	0	v
37	20583.87	2.4	2.4	2.4	0.04	0.04	0.04	0.916	v	v	45	0.4	0.33	1.524	0	v
38	19733.33	2.4	2.4	2.4	0.04	0.04	0. HEC-E	245			45	0.4	0.33	1.524	0	y
39	18523.06	2.4	2.4	2.4	0.04	0.04	0.0				45	0.4	0.33	1.524	0	y
40	16963.11	2.4	2.4	2.4	0.04	0.04	0.0 Ente	er a amount i	to set entrie	es in	45	0.4	0.33	1.524	0	y
41	15681.65	2.4	2.4	2.4	0.04	0.04	0.0	the select	ed range.		45	0.4	0.33	1.524	0	y
42	14591.14	2.4	2.4	2.4	0.04	0.04	0.0				45	0.4	0.33	1.524	0	y
43	13053.22	2.4	2.4	2.4	0.04	0.04	0.0				45	0.4	0.33	1.524	0	у
44	11809.61	2.4	2.4	2.4	0.04	0.04	0.0	0.060			45	0.4	0.33	1.524	0	у
45	10385.12	2.4	2.4	2.4	0.04	0.04	0.0	10.0001			45	0.4	0.33	1.524	0	у
46	9024.812	2.4	2.4	2.4	0.04	0.04	0.0	ок	Cano	el 🗌	45	0.4	0.33	1.524	0	у
47	7564.073	2.4	2.4	2.4	0.04	0.04	0.(45	0.4	0.33	1.524	0	у
48	6270.616	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
49	5365.335	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
50	4915.177	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у
51	4905.409	Bridge														
52	4895.642	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У
53	4480.899	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У
54	3709.021	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У
55	2382.439	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У
56	1302.66	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	У
57	0 XS ;	2.4	2.4	2.4	0.04	0.04	0.04	0.916	n	n	45	0.4	0.33	1.524	0	у -
4																•
	ОК							Cano	el							Help
_																

Recall that in the previous run of our model, the computed water surface elevation was below the observed water surface elevations. This was true for the ice jam area and for the intact ice section downstream of the ice jam toe.

We want the computed water surface to go through the observed data points downstream of the ice jam toe so that we have the correct water level for the toe of the ice jam. This can be achieved by modifying the ice roughness or ice thickness in the intact ice section (or a combination of both).

- 3. Open the 'Profile Plot' ¹ from the main interface. Get your windows ready so that you can monitor the progress of the model run using the Reload Data button.
- 4. Click to open the 'Steady Flow Analysis' window.
- 5. Save a new plan by choosing File and select '*Save Plan As…*' and type "**Module 3: Simple Ice** Jam_Student_R2" in the 'Title' box and click
- 6. In the next window, give the plan a short ID of: "M3: Simple Jam_Student_R2"
- 7. Verify that the correct **Geometry** and **Steady Flow** files are chosen:

Table 9: Model Files Used for HEC-RAS Module 3 - Task 3B, Geometry Revision 2

File Type	Filename
Plan	"Module 3: Simple Ice Jam_Student_R2"
Geometry	"Module 3: Simple Ice Jam_Student_R2"
Steady Flow	"Module 3: Simple Ice Jam"

8. Click <u>Compute</u>. Monitor the progression of the model by clicking the Reload Data button repeatedly.

Notice that water level in the intact ice section is now higher than the observed water surface elevation. We now will modify the ice thickness in that section.

Note that the most upstream Observed Water Surface elevation is not being matched by the model. This could be a survey error, or perhaps the ice jam head didn't reach as far upstream as we have assumed. We have tried to match historical accounts, but the head location was not well described in historical records. For this exercise we will assume it is a survey error.

QUESTION: What direction (thicker/thinner) do we need to change the ice thickness? Why might this reasonable?

- 9. Open the 'Geometric Data' window by clicking the in the main interface, or switching to that window if it is still open.
- 10. Change the thickness of the *intact* ice cover. Go to Tables and click '*Ice Cover* ...' to open the 'Edit Ice Cover Data' window. Set the ice thickness to 1.5 m in only those cross-sections where

there is an "n" in the '*Ice Jam Chan* (y/n)' column. Click

Edi	t Ice Cove	r Data														
Rive	r: 1 - Pea	ace River		- 🔏 🗉	d 🖪 🗸	Edit Interp	olated XS's	;								
Rea	ch: PR-1		·	-												
⊢ Se	, lected Area	Edit Optio	ns — — —	_												
4	dd Consta	nt M	ultiply Fact	tor 🤇	Set Values	R	eplace									
	ver Statio	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	Fixe 🔺
		Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Chan (y/n)	OB (y/n)	Angle		ratio	Velocity	Cohesion	Mann n
29	22100.72	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
30	22063.78	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
31	22027.41	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
32	22017.41	Bridge														
33	22007.4 1	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
34	21735.96	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
35	21329.29	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
36	20902.13	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
37	20583.87	2.4	2.4	2.4	0.06	0.06	0.06	0.916	у	у	45	0.4	0.33	1.524	0	у
38	19733.33	2.4	2.4	2.4	0.06	0.06	0. HEC-F	RAS			45	0.4	0.33	1.524	0	у
39	18523.06	2.4	2.4	2.4	0.06	0.06	0.0			_	45	0.4	0.33	1.524	0	у
40	16963.11	2.4	2.4	2.4	0.06	0.06	0.0 Ente	er a amount t	o set entrie	es in	45	0.4	0.33	1.524	0	у
41	15681.65	2.4	2.4	2.4	0.06	0.06	0.0	the selected	ed range.		45	0.4	0.33	1.524	0	у
42	14591.14	2.4	2.4	2.4	0.06	0.06	0.0				45	0.4	0.33	1.524	0	у
43	13053.22	2.4	2.4	2.4	0.06	0.06	0.0				45	0.4	0.33	1.524	0	у
44	11809.61	2.4	2.4	2.4	0.06	0.06	0.0	15			45	0.4	0.33	1.524	0	у
45	10385.12	2.4	2.4	2.4	0.06	0.06	0.0	11.0			45	0.4	0.33	1.524	0	у
46	9024.812	2.4	2.4	2.4	0.06	0.06	0.0	ок	Cance		45	0.4	0.33	1.524	0	у
47	7564.073	2.4	2.4	2.4	0.06	0.06	0.				45	0.4	0.33	1.524	0	у
48	6270.616	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	у
49	5365.335	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	у
50	4915.177	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	y
51	4905.409	Bridge														
52	4895.642	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	у
53	4480.899	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	y
54	3709.021	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	у
55	2382.439	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	y
56	1302.66 1	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	y [
57	0 XS ;	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	1.524	0	у 👻
•																•
	ОК							Cano	el							Help

- 11. Save your changes to the Geometry file. Choose File and click 'Save Geometry Data'.
- 12. Run the model again, with the same files as last time. Click to open the 'Steady Flow Analysis' window. Click Compute

13. View the results in the 'Profile Plot'

Notice that the computed water surface matches the observed water surface elevations downstream of the ice jam better now.

14. Zoom in on the water surface profile where it goes through the bridges in the centre of the model domain. Go to Options and select '*Zoom in*' and draw your zoom area on the bridges.

HEC-RAS often does not compute a realistic ice jam profile through bridge openings. Therefore, bridges are often removed from the model geometry when modelling ice jams.

QUESTION: In what way does the ice jam profile computed through the bridge openings look unrealistic?

15. Close all tabs and windows except the main interface.

Brdg/Culk

Task 3C Instructions: Further Modify the Geometry

1. We will save a new version of the geometry file, so that we can edit the geometry and compare results. Open the 'Geometric Data' window by clicking the in the main interface. Go to File and select 'Save Geometry File As ...'. Change the 'Title' of the file to "Module 3: Simple Ice

Jam_Student_R3", click

- 2. In the 'Geometric Data' window, select the 'Bridge Culvert Data' editor =
- 3. Look thorough the 3 bridges in the model domain by choosing the different bridges from the dropdown menu.

Bridges are normally simulated in a HEC-RAS model with bridge sections as well as closely-spaced cross-sections upstream and downstream of the bridges. This facilitates the different manner in which HEC-RAS computes the water surface through bridges. However, convergence of the ice jam stability equation is improved if these closely-spaced cross-sections are also removed. We will remove the bridges and the extra cross-sections.

Delete the current bridge in the geometry by choosing Options and select '*Delete Bridge/Culvert*'.
 Then click Yes . Do this for each of the three bridges:

File View Options Help River: 1 - Peace River River Sta.: Apply Data Reach: PR-1 Bounding XS's: Distance between: (not set) (m) Deck/ Roadway Pier Fier Sloping No Data for Plot	4
River: 1 - Peace River Reach: PR-1 Description Bounding X5's: Distance between: (not set) (m) Pier Pier Stoping Abutment No Data for Plot	*
Reach: PR-1 River Sta.: Description Bounding XS's: Distance between: (not set) (m) Pier Pier Stoping Abutment No Data for Plot	4
Description Bounding XS's: Distance between: (not set) (m) Deck/y Pier Pier Stoping Abutment No Data for Plot	4
Bounding XS's: Distance between: (not set) (m)	4
Pier Stoping Abutment No Data for Plot	
Pler Pler Stoping Abutment No Data for Plot	
Stoping Abutment No Data for Plot	
Stoping Abutment No Data for Plot	
No Data for Plot	
Bridge Modeling	
Approach	
Multiple	
Opening Analysis	
HTab	
Param.	
HTab No Data for Plot	
Design	
	ř
, Select the river station for Bridge/Culvert Editing	-
Т	_
vort Data' window by aliaking on the	

- 5. Exit the 'Bridge Culvert Data' window by clicking on the
- 6. Save your changes to the Geometry file. Choose File and select 'Save Geometry Data'.
- 7. Find the closely-spaced cross-sections at the bridges and at the Heart River confluence. In the 'Geometric Data window', choose Tables and select '*Reach Lengths* ...'. Find the cross-sections that are 10s of meters apart instead of 100s of meters.

Edit Downstream Reach Lengths												
River: 1 - Peace River 💌 👗	tiver: 1 - Peace River 🗨 🔏 🛍 🛍 🔽 Edit Interpolated XS's											
Reach: PR-1 💌												
Selected Area Edit Ontions												
Add Constant Multiply Factor	Set Values Replace											
Had constant in harpy ractor in												
River Station	LOB	Channel	ROB 🔺									
3 50979.5 XS #52	1171.81	1176.31	1183.7									
4 49803.19 XS #51	1537.28	1506.21	1513.51									
5 48296.97 XS #50	1293.24	1242.25	1210.94									
6 47054.72 XS #49	1554.7	1491.13	1455.87									
7 45563.59 XS #48	1321.66	1512.27	1605.42									
8 44051.32 XS #47	1218.76	1346.11	1441.54									
9 42705.21 XS #46	1186.74	1299.66	1331.76									
10 41405.55 XS #45	1428.72	1439.4	1393.45									
11 39966.15 XS #44	1321.41	1302.61	1208.91									
12 38663.54 XS #43	1462.59	1417.28	1277.55									
13 37246.26 XS #42	1969.89	1961.57	1939.6									
14 35284.69 XS #41	1715.04	1718.65	1732.71									
15 33566.04 XS #40	1664.34	1666.47	1672.22									
16 31899.57 XS #39	1135.76	1141.75	1063.76									
17 30757.83 XS #38	1906.58	1896.2	2047.16									
18 28861.62 XS #37	638.93	753.35	869.66									
19 28108.28 XS #36	1051.09	1048.34	973.84									
20 27059.93 XS #35	874.37	892.62	912.9									
21 26167.31 XS #34	763.78	1102.04	1146.58									
22 25065.26 XS #33	613.77	918.88	961.63									
23 24146.38 XS #32	480.46	653.75	769.02									
24 23492.63 XS #31	203.26	197.68	199.12									
25 23294.95 XS #30	976.13	901.95	801.11									
26 22393 XS #29	274.95	274.92	274.46									
7 22118.09 XS #28	17.93	17.36	16.31									
28 22100.72 XS #27	36.99	36.94	36.95									
29 22063.78 XS #26	36.43	36.38	36.43									
30 22027.41 XS #25	20.03	20	20.1									
31 22007.4 XS #24	268.61	271.44	287.21									
32 21735.96 XS #23	420.3	406.68	407.84									
33 21329.29 XS #22	476.6	427.15	279.76									
ОК	Ca	ncel	Help									

- 8. Plan to delete the following cross-sections (check them off here when deleted in the next steps).
 - □ XS #6 from the Hwy 986 Bridge
 - □ XS #24 from the Hwy 2 Bridge
 - □ XS #25 from the Hwy 2 Bridge
 - □ XS #27 from the CN Rail Bridge
 - □ XS #28 from the CN Rail Bridge
 - □ XS #31 from the Hear River confluence

We will keep XS #26 from between the Hwy 2 and CN Rail Bridges.

- 9. Close the 'Edit Downstream Reach Lengths' window by clicking .
- 10. Open the 'Cross-Section editor' window from the 'Geometric Data' window by clicking
- 11. Navigate to each cross-section to be removed using the dropdown menu:

- 12. For each cross-section, choose Options and select 'Delete Cross Section ...'. Be sure to click Yes and Yes in the dialog boxes that follow. The second dialog box ensures that the distances between existing cross-sections are re-calculated.
- 13. Save your changes to the Geometry file. Choose File and select 'Save Geometry Data'.
- 14. Open the 'Profile Plot' ^{III} from the main interface. Get your windows ready so that you can monitor the progress of the model run using the Reload Data button.
- 15. Click to open the 'Steady Flow Analysis' window.
- 16. Save a new plan by choosing File and select the 'Save Plan As...' option. Type "Module 3: Simple Ice Jam Student R3" in the 'Title' box and click

17. In the next window, give the plan a short ID of: "M3: Simple Jam_Student_R3"

18. Verify that the correct **Geometry** and **Steady Flow** files are chosen:

Table 10: Model Files Used for HEC-RAS Module 3 - Task 3B, Geometry Revision 3

File Type	Filename
Plan	"Module 3: Simple Ice Jam_Student_R3"
Geometry	"Module 3: Simple Ice Jam_Student_R3"
Steady Flow	"Module 3: Simple Ice Jam"

19. Click <u>Compute</u>. Monitor the progression of the model by clicking the Reload Data button repeatedly. The model should complete in fewer

iterations than it did previously.

20. The shape of the ice jam toe is being affected by the parameter that limits the flow velocity under the toe of the jam. The default value of the parameter is 1.54 m/s. We will increase this value to a large value (*10 m/s*), effectively removing the limitation (see also Beltaos and Tang, 2013). Click on the \checkmark in the main interface to open the 'Geometric Data window'. Save a new version of the **Geometry File**. Choose File and select '*Save Geometry File As ...*'. Change the 'Title' of the

file to "Module 3: Simple Ice Jam Student R4", click

- 22. Close the 'Edit Ice Cover Data' window by clicking
- 23. Save your changes to the Geometry file. Go to File and select 'Save Geometry Data'.
- 24. Open the 'Profile Plot' ^{III} from the main interface. Get your windows ready so that you can monitor the progress of the model run using the Reload Data button.
- 25. Click to open the 'Steady Flow Analysis' window.
- 26. Save a new plan by choosing File and select the '*Save Plan As…*' option. Then, type "**Module 3**: **Simple Ice Jam_Student_R4**" in the 'Title' box and click
- 27. In the next window, give the plan a short ID of: "M3: Simple Jam_Student_R4"

28. Verify that the correct Geometry and Steady Flow files are chosen:

Table 11: Model Files Used for HEC-RAS Module 3 - Task 3B, Geometry Revision 4

File Type	Filename
Plan	"Module 3: Simple Ice Jam_Student_R4"
Geometry	"Module 3: Simple Ice Jam_Student_R4"
Steady Flow	"Module 3: Simple Ice Jam"

29. Click <u>Compute</u>. Monitor the progression of the model by clicking the Reload Data button repeatedly.

Notice the change in the shape of the ice jam toe region. The toe is much thicker and the water surface slope is much steeper. Remember that the vertical scale is much exaggerated.

Task 3D Instructions: Compare the Results of The Geometric Modifications

30. In the profile view choose Options and select 'Plans...'. Check off the 5 plans we built in Module

Here is a brief summary of the model plans that we ran. Make some notes on these differences if you wish.

Table	12:	Model	Files	Used	for	HEC	-RAS	Module	3
1 0010	•	111000	1 1100	0000				modulo	-

Plan	Description	Student Notes
"Module 3: Simple Ice Jam_Student"	Intact ice measured on January 20, 2004, (no ice jam computations) with peak 1997 breakup flow.	
"Module 3: Simple Ice Jam_Student_R1"	Ice jam computations using intact ice roughness values, with peak 1997 breakup flow.	
"Module 3: Simple Ice Jam_Student_R2"	Ice jam computations, with rougher ice and 1997 peak breakup flow.	
"Module 3: Simple Ice Jam_Student_R3"	Same as above with bridges removed.	
"Module 3: Simple Ice Jam_Student_R4"	Same as above with maximum under-ice velocity increased.	

31. Close all tabs and windows except the main interface.

Task 3E Instructions: OPTIONAL – Explore Sensitivity of Ice Jam Strength Parameters

In this optional task we will explore the effect of changing the parameters that control the strength of the ice jam mass. You will modify the default ice jam strength parameters in the "**Module 3: Simple Ice Jam_Student_R4**" plan to create a weaker and stronger ice jam and compare the difference in the water level profiles. Note there is little guidance in the literature about what K₁ values might be realistic. Choose from the following schemes to compare. Keep track of your plans in the following table.

Scheme	Porosity	Friction Angle (°)	K 1	μ	Plan Name
Default Parameters	0.4	45	0.33	1.15	Module 3: Simple Ice Jam_Student_R4
Reduce Friction Angle	0.4	40	0.33	0.76	
Increase Friction Angle	0.4	50	0.33	1.78	
Decrease Porosity	0.3	45	0.33	1.35	
Increase Porosity	0.5	45	0.33	0.96	
Decrease lateral stress coefficient	0.4	45	0.25		
Increase lateral stress coefficient	0.4	45	0.825		

Table 13: Possible Schemes for Comparing Ice Jam Strength Parameters

Equation for computing μ :

$$\mu = tan(\Phi)tan^{2}(45 + \frac{\Phi}{2})k_{1}(1 - P)$$

Where:

 μ = coefficient describing the internal strength of an ice jam

 Φ = angle of internal friction of ice accumulation

K1 = lateral stress coefficient

P = ice jam porosity

For your reference, here are some published values of μ (Table 2 of White, 1999):

Range of μ	Mean value	Reference
0.9–2.2		Beltaos (1978)
	1.0	Andres (1980)
0.8-1.3	1.2	Beltaos (1982)
	1.6	Beltaos (1983)
1.6, 2.0		Rivard et al. (1984)
	1.06	Prowse (1986)
0.8–2.7	1.6	Andres and Doyle (1984)
	1.2	Beltaos et al. (1996)
	1.17	Tuthill and White (1997)
	1.5	Korbaylo and Shumilak (1999)

Table 2. Values of the coefficient of internal strength (μ) calculated by various researchers.

- In the profile plot from the end of Task 3D, go to Options and select '*Plans …*'. Turn off all plans except "Module 3: Simple Ice Jam_Student_R4". Click
- 2. "Save As" the geometry data with a new name representing your scheme, such as "**Module 3**: **Trial_LessPorosity**"
- 3. Open the Ice Cover table in the 'Geometric Data' Table. Change the values for all cross-sections of the parameter(s) you are changing.

Ed	Edit Ice Cover Data															
River: 1 - Peace River 💽 🐰 🖹 🛍 🕅 V Edit Interpolated XS's																
Rea	ch: PR-1			-												
⊢Se	elected Area	a Edit Optio	ons													
	Add Consta	nt M	Iultiply Fact	tor !	Set Values .	R	eplace									
	Luce Charlie	Chara inc	DOD inc		Character		Teo Coo de		T 7	F alation	Density	Charles K4	Maria	T	Final	
-	ver Statio	Chan ice	ROB ICE	LOBICE	Chan ice	ROB ICE	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	Fixed	
	54120.07	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	unan (y/n)	OB (y/n)	Angle	0.4	ratio	velocity	Conesion	Mann n (y/i	<u>v</u>
	54139.07	2.4	2.4	0.06	0.06	0.06	0.916	n	n	40	0.4	0.33	10	0	y	-
	525 11 .35	2.7	2.4	0.06	0.06	0.06	0.910	y	У	45	0.4	0.33	10	0	У	-
	40902.10	2.4	2.4	0.06	0.06	0.06	0.916	y 	У	40	0.4	0.33	10	0	y	-
-	49206.07	2.7	2.7	0.06	0.06	0.06	0.910	y	У	45	0.4	0.33	10	0	y	-
-	40290.97	2.7	2.4	0.06	0.06	0.06	0.916	y 	y 	40	0.4	0.33	10	0	y 	-
	45562 50	2.7	2.7	0.06	0.06	0.06	0.916	y 	y v	45	0.4	0.33	10	0	y 	
l-ć	44051 22	2.7	2.7	0.00	0.00	0.00	0.910	y 	y 	15	0.4	0.33	10	0	y	
	42705 21	2.7	2.7	0.06	0.00	0.06	0.916	y 	y v	45	0.4	0.33	10	0	y v	-
10	41405 55	2.7	2.7	0.06	0.00	0.06	0.916	y 	y v	45	0.4	0.33	10	0	y v	-
11	30966 15	2.4	2.1	0.06	0.00	0.06	0.916	y v	y v	45	0.4	0.33	10	0	y v	
12	38663 54	24	2.1	0.06	0.06	0.06	0.916	y V	y V	45	0.4	0.33	10	0	y V	
13	37246.26	24	2.1	0.06	0.06	0.06	0.916	y V	y V	45	0.1	0.33	10	0	y V	-
14	35284.69	24	2.1	0.06	0.06	0.06	0.916	y V	y V	45	0.4	0.33	10	0	y V	
15	33566.04	2.4	2.4	0.06	0.06	0.06	0.916	y V	y V	45	0.4	0.33	10	0	y V	
16	31899.57	2.4	2.4	0.06	0.06	0.06	0.916	y V	y V	45	0.4	0.33	10	0	y V	
17	30757.83	2.4	2.4	0.06	0.06	0.06	0.916	v	y V	45	0.4	0.33	10	0	y V	
18	28861.62	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
19	28108.28	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
20	27059.93	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
21	26167.31	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
22	25065.26	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
23	24146.38	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
24	23294.95	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
25	22393 X	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
26	22063.78	2.4	2.4	0.06	0.06	0.06	0.916	v	v	45	0.4	0.33	10	0	v	
27	21735.96	2.4	2.4	0.06	0.06	0.06	0.916	y v	y	45	0.4	0.33	10	0	y	
28	21329.29	2.4	2.4	0.06	0.06	0.06	0.916	y	y	45	0.4	0.33	10	0	y	
29	20902.13	2.4	2.4	0.06	0.06	0.06	0.916	y	y	45	0.4	0.33	10	0	y	-
4			1	1	1	1	1		-	-					1.	•
	OK							Cano	el							Help

- 4. Open the 'Steady Flow Analysis' window and "Save Plan As" a new plan file with an appropriate name and short name. Check your desired **geometry** and **steady flow** files are chosen.
- 5. Compute the plan.
- 6. Repeat the above steps for the different schemes you would like to test.
- 7. Open the Profile Plot window, and choose Options and select '*Plans …*' Choose the plans you would like to display.

QUESTION: What did you notice about the ice jam profile when you varied a strength parameter?

8. Close all tabs and windows except the main interface.

Module 4: Modify Ice Jam Width and Consider Overbank Areas

What is our goal?

 Modify bank stations and overbank ice thicknesses to obtain a more realistic ice jam.

Main tasks:

- A. Modify channel bank stations using RAS Mapper
- B. Define the ice conditions and thickness in the overbank areas

Ice Jam Width

- Ice jam width is an important parameter in the ice jam stability equation
- A modeller needs to consider whether the modelled ice jam width is appropriate:
 - · How far across the cross-section should the ice jam width extend?
 - · Where should HEC-RAS apply the ice jam stability equation?
- Using the overbanks and bank stations is a useful way to control the ice jam width and location

Ice jam contained in the channel by trees, open water in the overbanks

Ice jam on both sides of an island

Contraction of the second s

Photo: Jennifer Nafziger, University of Alberta (Hay River)

Beweley Island Bank Stations

In the open water model the bank stations were on the outside of the entire river, so that the island was included in the channel.

Beweley Island Bank Stations

Observations indicate that in our case study ice jams are active down only one side of the island at a time.

Beweley Island Bank Stations

But both sides eventually fill with ice.

Beweley Island Bank Stations

Therefore, we will model:

- Active width on one side of the island
- Equally thick and rough ice on both sides of the island

Beweley Island Bank Stations

- Different scenarios and/or modelling approaches may be valid for other rivers
- Chosen approach should be based on observations and/or sound judgement

Beweley Island Bank Stations

- Active width on one side of the island
 (Task 4A: modify bank stations)
- Equally thick and rough ice on both sides of the island
- (Task 4B: define ice thickness in overbank) _____

Task 4A Instructions: Modify Channel Bank Stations

- Open the 'Geometric Data' window by clicking the in the main interface. Go to File and click 'Open Geometry Data ...'. Pick the Geometry File called "Module 4: Ice Jam Width_Student". Click
- Click on in the main interface to open the 'Steady Flow Data' window. Go to File and click 'Open Flow Data ...'. Pick the Steady Flow File called "Module 3: Simple Ice Jam". Click
 We will continue to use the same steady flow information that we used in Module 3.
- 3. Close the 'Steady Flow Data' window by clicking the

- 4. In the main interface window, open the 'RAS Mapper' mindow.
- 5. In the pane on the left, expand the "**Module 4_Ice Jam Width_Student**" layer. Turn on '*Cross Sections*'. Expand '*Rivers*', and turn on '*Bank Lines*'. Make sure all other layers are turned off, except for the '*Map Layers*' base layer.

The red bank lines shown on the map are generated from the open water geometry. They are straight lines that intersect each cross-section at the bank station defined in the geometry file.

The bank lines will be edited to reflect the active ice jam width instead of the open channel width. In this case study, the ice jam was found to shove along one side of the island at a time. Therefore, assuming that the entire river width on both sides of the island contributes to the active ice jam would be unrealistic.

We will start by editing the bank lines from the Hwy 2 bridge to around Beweley Island.

6. Start editing the Bank Lines feature under "Module 4_Ice Jam Width_Student". Select the 'Bank

Lines feature' (it will turn pink), then choose the 🧭 icon on top of the left pane.

🚟 RAS Mapper	
File Project Tools Help	
Selected Layer: Bank Lines	/ 🕞 🖑
Profile Lines Profile Lines Ice Thickness Cross Sections - 2003-01-31 Ice Jam Bank Lines_Final Ice Jam Bank Lines_Final Ice Jam Bank Lines_Final Ice Jam Module 1_ Open Water Ice Module 2_ Intact Ice_03-01-31_Student Ice Module 2_ Intact Ice_03-01-31_Final Ice Jam Student Ice Jam Student Ice Jam Student Ice Jam Student Ice Jam Kines Ice Jam Kines Ice Jam Kines Ice Jam Kines Ice Jam Cross Sections Ice Station Markers Ice Cross Sections Ice Station Markers Ice Cross Sections	

7. Pan to the area downstream of the Hwy 2 and CN Rail Bridges using the *pan tool*. We will start editing the bank lines downstream of the bridges and along Beweley Island.

8. Using the *arrow tool*, double click on the red bank line on the left bank. This will reveal the vertices of the bank line:

- 9. Using the *arrow tool* , move and re-draw the bank line so that the channel is defined only on the river right side of Beweley Island. Helpful tools and procedures include:
 - Move vertex: click on existing vertex and drag to new location
 - o Add new vertex: click on the line between two vertices, the new vertex can then be moved
 - o Delete vertex: click on the vertex and press delete
 - Undo last edit: press Ctrl + Z
 - You can use the pan tool while editing, but you must switch back to the arrow tool to continue editing.

There are several ways to choose where to place the new bank lines:

- Along the edge of the large, permanent vegetation (trees, not shrubs). The assumption here is that ice movement prevents the establishment of large trees
- Using a digital terrain file, and identifying the topographic feature that resembles a geomorphic top of bank
- Using field observations (aerial photographs) of actual ice jams in this area to determine where the active channel is and the extents of the active channel in a multi-channel environment.
- In all cases, care should be taken to ensure that the active width does not rapidly expand or contract, and that changes in width are gradual from cross-section to cross-section.
- 10. Save your changes to the bank lines feature by clicking on the stop sign 🤗 above the left panel,

and clicking <u>Yes</u> in the next dialog box. The bank lines will turn back to red.

11. Now, the new bank stations must be updated in the cross-sections in the Geometry File. Start

editing the bank lines by clicking on the pencil icon . Right click on the 'Bank Lines' layer and select 'Update Bank Stations on XSs'

When the bank stations have been computed, there will be a note in the message box at the bottom of the left panel:

🚟 RAS	Mapper			
File	Project	Tools	Help	
Selected	Layer: Ba	nk Lines		•
	eatures Profile I Ice Thic Ice Jam Cometrie Module Module Module Module	Lines kness Cr Bank Lin s 1_ Open 2_ Intact 2_ Intact 2_ Intact	ross Sectio les_Final Water Ice_03-01- Ice_03-01- Ice_04-01-	ns - 2 31_St 31_Fi 20_Fi >
Comput	ry 'Module ing Bank S es Views	a 4_ Ice J	done	Studen
messag	es views	Frome	Lines Acti	

12. Stop editing and save the bank stations by clicking the stop sign sign and then clicking Yes . Note the note in the Messages box, indicating that the geometry has been saved.

Section

13. Verify that the new bank stations have been incorporated into the model cross-sections. In the

Geometric Data window, click on the 'Cross Section Data' icon

14. Navigate to XS #19, which intersects Beweley Island in its middle:

Now the channel (the section between the two red square dots) is defined only on the right side of the island, instead of including the middle island area and the left channel as well:

Figure 3: Schematic of original channel and modified channel at XS #19

Manually drawing accurate bank lines can be a long and tedious process in RAS Mapper, but there is a way to copy the bank lines from an existing polyline. For example, one you have imported from a GIS or CAD program. We will try that method next.

- 15. Start by editing the '*Bank Lines*' feature under "**Module 4_Ice Jam Width_Student**". Click on the layer and then choose the pencil icon
- 16. Delete the existing two bank lines by clicking on each of the two bank lines and then pressing 'Delete' on your keyboard.
- 17. The "Final bank lines" to copy into our model are located under the 'Features' heading at the top of the pane on the left. Right click on that feature ('*Ice Jam Bank Lines_Final*'), and choose '*Copy All Features*'

🚟 RAS Mapper		
File Project Tools Help		
Selected Layer: Ice Jam Bank Lines	Final	1
Features Profile Lines Ice Thickness Cross Sec	ctions - 2003-01-31	^
	Layer Properties	
	Open Attribute Table	
Module 2_ Intact Ice Module 2_ Intact Ice Module 2_ Intact Ice	Edit Layer	
Module 2_ Intact Ice	Zoom to Layer	
Module 3_ Simple I	Remove Layer	
Rivers Rivers A	Remove Layer and Delete Source Files	
(15 Empty Layers)	Rename Layer	
Module 4_ Ice Jam	Move Layer	· · ·
□·· ▼ Rivers	Export Laver	
Bank Lines	Open Folder in File Explorer	
River Static	Copy All Features	
⊕ Cross Sections	Save Feature(s) to Profile Lines	
Storage Areas		
Bridges/Culverts		

18. Copy the new "Final" bank lines into the model bank line. Right click on the 'Bank Lines' layer in the Module 4 geometry, and choose 'Paste Features'.

File Project Tools He	p	
Selected Layer: Bank Lines		•
	Sections - 2003-01-31 inal r 13-01-31_Student 13-01-31_Final 14-01-20_Final Jam_Student Jam_Final	
····· (15 Empty Layers) □· ♥ Module 4_ Ice Jam Wi □· ♥ Rivers ··· □ Junctions ··· ♥ Bank Lines	dth_Student	
Flow Pat :	Layer Properties Open Attribute Table	
B. ♥ Cross Sectio Storage Area B. 2D Flow Area B. Bridges/Culv B. Inline Structu B. Lateral Struct D. Educations D. Drum Station	Stop Editing Update Bank Stations on XSs Create Bank Lines from XS Bank Stations Pull Bank Lines to XS Bank Stations Remove Duplicate Banklines	
Boundary Co	Zoom to Layer Remove Layer Move Layer	
	Import Features From Shapefile Export Layer	
E I Rivers E I Cross Sectio	Paste Features Ctrl+V	
(15 Empty Layer	Copy All Features Save Feature(s) to Profile Lines	×

- 19. Copy the new final bank stations to the Geometry File by right clicking on the 'Bank Lines' layer and select 'Update Bank Stations on XSs'
- 20. Stop editing by clicking on the stop sign editing at the top of the left pane.
- 21. Pan through the new "Final" bank stations and see how the channel is defined around islands.
- 22. Save the RAS Mapper data by choosing File and selecting 'Save'.

QUESTION: Does having a smaller ice jam top width result in a thinner or a thicker computed ice jam? Does this result in higher or lower computed water levels?

Task 4B Instructions: Define the Ice Thicknesses in the Overbank Areas

- 1. Click on the in the main interface to open the 'Geometric Data' window.
- 2. Go to Tables and select 'Ice Cover'.
- 3. Make sure the ice jam is in the geometry file. Ensure all cross-sections from 15681.65 to 52544.35 have the values of '*Ice Jam Chan (y/n)*' column set to '*y*'. Fix this if it is not set to '*y*'. Depending on how the geometry file was saved, it may need to be fixed.
- 4. Select all values the '*Ice Jam OB* (y/n)' column and choose '*no*'. Then click \bigcirc . Make sure to not change the 'Ice Jam Chan (y/n)' column.

Edi	Edit Ice Cover Data															
Rive	r: 1 - Pe	ace River	·	- 🔏 🗉	d 🖪 🗸	Edit Interp	olated XS's	3								
Rea	th: PR-1		·	-												
_ Se	ected Area	a Edit Optio	ns													
4	dd Consta	nt M	ultiply Fact	tor 🤤	Set Values	R	eplace									
	ver Statio	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	Fixe 🔺
		Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Chan (y/n)	OB (y/n)	Angle		ratio	Velocity	Cohesion	Mann n
20	27059.93	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	у
21	26167.31	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	y
22	25065.26	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	y
23	24146.38	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	y
24	23294.95	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	y
25	22393 X	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	y
26	22063.78	2.4	2.4	2.4	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	y
27	21735.96	2.4	2.4	2.4	0.06	ę oc	0.06	0.016			45	0.4	0.33	10	0	y
28	21329.29	2.4	2.4 2.4 0.06 (HEC-RAS 0.4 0.33 10 0 v										y			
29	20902.13	2.4	2.4	2.4	0.06	¢						0.4	0.33	10	0	y
30	20583.87	2.4	2.4	2.4	0.06			Ice Ja	am			0.4	0.33	10	0	y
31	19733.33	2.4	2.4	2.4	0.06	C Yes						0.4	0.33	10	0	v
32	18523.06	2.4	2.4	2.4	0.06	C C No						0.4	0.33	10	0	v
33	16963.11	2.4	2.4	2.4	0.06							0.4	0.33	10	0	v
34	15681.65	2.4	2.4	2.4	0.06	¢			OK	Can	cel	0.4	0.33	10	0	v
35	14591.14	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
36	13053.22	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
37	11809.61	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
38	10385.12	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
39	9024.812	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
40	7564.073	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
41	6270.616	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
42	5365.335	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
43	4915.177	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
44	4480.899	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
45	3709.021	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
46	2382.439	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
47	1302.66 1	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v
48	0 XS ;	1.5	1.5	1.5	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	v –
•		-	-	-												
	ОК							Cano	el							Help

- 5. Close the 'Ice Cover Data' window by clicking
- 6. Click on in the main interface to open the 'Steady Flow Analysis' window.
- 7. Go to File and select 'Open Plan ...'. Do not save other plans. Choose "Module 4: Ice Jam Width_Student". Click OK . Verify that the Geometry and Steady Flow files are correct:

Table 14: Model Files Used for HEC-RAS Module 4 - Task 4B

File Type	Filename
Plan	"Module 4: Ice Jam Width_Student"
Geometry	"Module 4: Ice Jam Width_Student"
Steady Flow	"Module 3: Simple Ice Jam"

8. Click _____

Compute

9. First, review the results in the profile plot

Notice that the computed water surface is again below the observed water surface elevations. Let's do some investigating to find out why, and then make some changes to the model.

10. Review the results by opening the cross-section viewer in the 'Geometry Data' window

Cross

11. Take a look at cross-section '*XS #21*' as an example, by choosing this cross-section from the drop-down menu.

Notice: That the ice cover is thicker in the channel portion of the cross-section. The overbank section has the default starting thickness (2.4 m) that we added to the geometry file earlier. However, the channel has the ice jam thickness that was computed by HEC-RAS using the ice jam stability equation. As the thickness in the channel increases, more discharge is being calculated in the overbank, where the conveyance is higher.

This "redistribution" of the discharge be seen in the computation detailed summary table.

12. Click on the detailed output icon in the main interface. (This is different than the Profile Output

Table, which looks like this:

13. View RS 20902.13 XS #21, by choosing it from the dropdown menu:

Cross Section Output	t			_	
File Type Options	Help				
River: 1 - Peace River	▼ Profi	le: 1997 Ice Jam	•		
Reach PR-1	▼ RS:	20902.13 💌	↓ 1 Plan: M4:	Jam Width_Stude	ent 💌
Plan: M	4: Jam Width_Stud	ent 1 - Peace River PR-1 RS: 2	0902.13 Profile:	1997 Ice Jam	
E.G. Elev (m)	318.93	Element	Left OB	Channel	Right OB
Vel Head (m)	0.03	Wt. n-Val.	0.060	0.044	
W.S. Elev (m)	318.90	Reach Len. (m)	486.27	318.27	255.54
Crit W.S. (m)	313.80	Flow Area (m2)	3138.46	1568.83	
E.G. Slope (m/m)	0.000467	Area (m2)	3138.46	1568.83	
Q Total (m3/s)	3600.00	Flow (m3/s)	2365.49	1234.51	
Top Width (m)	905.03	Top Width (m)	517.60	387.42	
Vel Total (m/s)	0.76	Avg. Vel. (m/s)	0.75	0.79	
Max Chl Dpth (m)	11.73	Hydr. Depth (m)	6.06	4.05	
Conv. Total (m3/s)	166566.9	Conv. (m3/s)	109447.8	57119.1	
Length Wtd. (m)	422.97	Wetted Per. (m)	1037.83	775.58	
Min Ch El (m)	307.67	Shear (N/m2)	13.85	9.27	
Alpha	1.00	Stream Power (N/m s)	10.44	7.29	
Frctn Loss (m)	0.21	Cum Volume (1000 m3)	16477.11	73410.84	1069.48
C & E Loss (m)	0.00	Cum SA (1000 m2)	3997.38	10486.66	496.61
		Errors, Warnings and Notes			
Warning: Divided flow co	mouted for this cro	ss-section.			
Note: Multiple critical	depths were found	at this location. The critical depth	with the lowest. v	alid, energy was i	used.
Select River Station					

Notice that the flow in the left overbank is *almost twice* the flow in the channel. This condition does not match observations of ice jam formation at the Town of Peace River. For the Peace River, ice jams have been observed to shove down one side of Beweley Island, and then shove down the other side. As modellers, we have interpreted these observations and made the following model choices/model goals:

- Have the active ice jam width (the part used in the ice jam stability equation) be only on one side of Beweley Island.
- Have the remainder of the wetted width (the overbanks) have an ice thickness equal to the computed ice jam thickness in the channel.

This highlights that it is up to the modeller to specify the ice conditions in the overbank. Effort should be focused on simulating a realistic ice configuration based on observations or expected ice jam behaviour. In different situations, overbank ice conditions could include:

- No water or ice (for example, where the water levels doesn't reach high enough into the overbank area)
- Open water conditions (for example where trees prevent ice escaping into the floodplains)
- Smoother, intact (i.e. non-ice jam) ice cover (for example where an ice jam has only pushed and formed in the channel are but not the over bank)

- Ice jam conditions that are not part of the ice jam stability computation
- Ice jam conditions that are part of the ice jam stability computation

We will next change the ice thickness in the overbank so that it is equal to the ice jam thickness in the channel, which is consistent with the observed ice jam behaviour. This must be done iteratively, because each time the ice thickness is changed, the flow partitioning changes and the computed ice jam thickness in the channel changes as well. In a real life, care should be taken to develop a model that has consistent flow along the same flow path. However, this is not always achievable with a 1D model, and complicated flow situations may be better simulated by a network (i.e. multi-channel) model or a two-dimensional model.

Based on experience, the most efficient way to make adjustments to the overbank ice thickness is to start with too large a thickness value and then iteratively make adjustments thinner. The goal is to have the same thickness in the overbank as in the ice jam. First we will make the overbank ice artificially think.

14. View the current computed ice jam thicknesses the 'Profile Output Table' by clicking on the in the main interface. Choose Std. Tables and select '*Ice Cover*'.

Profile Output Table - Ice Cover — 🗌 🗙													
File Opt	ions Std. Tables Lo	cations Hel	р										
		HEC-RAS F	Plan: M4:	Jam Width_	Student Rive	er: 1 - Peace	River Rea	ch: PR-1	Profile: 199	7 Ice Jam			Reload Data
Reach	River Sta	Profile	W.S. Elev	Ice Thick LOB	Ice Thick Chan	Ice Thick ROB	Ice Vol Total	Ice Vol. LOB	Ice Vol. Chan	Ice Vol. ROB	Mann Wtd Left	Mann Wtd Chnl	Mann Wtd Rgł 🔺
			(m)	(m)	(m)	(m)	(m3)	(m3)	(m3)	(m3)			
PR-1	49803.19 XS #51	1997 Ice Jam	328.68	2.40	3.91	2.40	5594310.00	9644613.00	48174290.00	7775414.00		0.04	
PR-1	48296.97 XS #50	1997 Ice Jam	328.24	2.40	3.90	2.40	3986730.00	9644613.00	46566700.00	7775414.00	0.06	0.04	0.0
PR-1	47054.72 XS #49	1997 Ice Jam	327.84	2.40	4.04	2.40	2426010.00	9515704.00	45162530.00	7747777.00	0.06	0.04	0.0
PR-1	45563.59 XS #48	1997 Ice Jam	327.35	2.40	3.61	2.40	0177940.00	9075336.00	43624770.00	7477833.00	0.06	0.04	0.0
PR-1	44051.32 XS #47	1997 Ice Jam	326.98	2.40	2.94	2.40	7881710.00	8581968.00	42473760.00	6825981.00	0.06	0.04	0.0
PR-1	42705.21 XS #46	1997 Ice Jam	326.74	2.40	3.07	2.40	5922190.00	8249477.00	41359550.00	6313164.00	0.06	0.04	0.0
PR-1	41405.55 XS #45	1997 Ice Jam	326.46	2.40	3.32	2.40	4083880.00	7657555.00	40113160.00	6313164.00	0.06	0.04	
PR-1	39966.15 XS #44	1997 Ice Jam	326.08	2.40	3.64	2.40	2170770.00	7200541.00	38657070.00	6313164.00	0.06	0.04	0.0
PR-1	38663.54 XS #43	1997 Ice Jam	325.71	2.40	4.02	2.40	9906180.00	7195915.00	37142860.00	5567401.00	0.07	0.04	0.0
PR-1	37246.26 XS #42	1997 Ice Jam	325.22	2.40	4.29	2.40	7517830.00	7195915.00	35325770.00	4996141.00		0.04	0.0
PR-1	35284.69 XS #41	1997 Ice Jam	324.53	2.40	4.34	2.40	4452600.00	7195915.00	32831760.00	4424921.00	0.06	0.04	0.0
PR-1	33566.04 XS #40	1997 Ice Jam	323.95	2.40	4.19	2.40	1948880.00	7053082.00	30697010.00	4198787.00	0.07	0.04	0.0
PR-1	31899.57 XS #39	1997 Ice Jam	323.45	2.40	4.45	2.40	9574920.00	7046005.00	28355810.00	4173104.00	0.06	0.04	0.0
PR-1	30757.83 XS #38	1997 Ice Jam	322.98	2.40	4.75	2.40	7404940.00	7042689.00	26637020.00	3725234.00	0.06	0.04	0.0
PR-1	28861.62 XS #37	1997 Ice Jam	321.89	2.40	4.53	2.40	2971450.00	7029498.00	24277820.00	1664129.00	0.06	0.04	0.0
PR-1	28108.28 XS #36	1997 Ice Jam	321.62	2.40	4.26	2.40	1306240.00	7011379.00	23402840.00	892016.20	0.07	0.04	0.0
PR-1	27059.93 XS #35	1997 Ice Jam	321.31	2.40	3.83	2.40	9470940.00	6648994.00	22219450.00	602496.80	0.06	0.04	0.0
PR-1	26167.31 XS #34	1997 Ice Jam	321.04	2.40	3.79	2.40	7783110.00	6087984.00	21100660.00	594471.00	0.06	0.04	0.0
PR-1	25065.26 XS #33	1997 Ice Jam	320.74	2.40	4.06	2.40	5747350.00	5656154.00	19496730.00	594471.00	0.06	0.04	
PR-1	24146.38 XS #32	1997 Ice Jam	320.46	2.40	4.39	2.40	4457960.00	5656154.00	18207330.00	594471.00		0.04	
PR-1	23294.95 XS #30	1997 Ice Jam	320.04	2.40	4.82	2.40	3286180.00	5656154.00	17035550.00	594471.00	0.07	0.04	0.0
PR-1	22393 XS #29	1997 Ice Jam	319.55	2.40	4.99	2.40	2112150.00	5653279.00	15868770.00	590097.80	0.06	0.04	0.0
PR-1	22063.78 XS #26	1997 Ice Jam	319.40	2.40	4.97	2.40	1694290.00	5653279.00	15450910.00	590097.80		0.04	
PR-1	21735.96 XS #23	1997 Ice Jam	319.25	2.40	4.92	2.40	1224670.00	5653279.00	14981300.00	590097.80		0.04	
PR-1	21329.29 XS #22	1997 Ice Jam	319.09	2.40	4.80	2.40	0616640.00	5653279.00	14373260.00	590097.80	0.06	0.04	
PR-1	20902.13 XS #21	1997 Ice Jam	318.90	2.40	4.45	2.40	9811020.00	5398294.00	13822630.00	590097.80	0.06	0.04	
PR-1	20583.87 XS #20	1997 Ice Jam	318.69	2.40	4.21	2.40	9085040.00	5000878.00	13494070.00	590097.80	0.06	0.04	
PR-1	19733.33 XS #19	1997 Ice Jam	318.19	2.40	4.02	2.40	7411700.00	4088591.00	12733010.00	590097.80	0.06	0.04	
PR-1	18523.06 XS #18	1997 Ice Jam	317.60	2.40	4.12	2.40	4960190.00	2658984.00	11711110.00	590097.80	0.07	0.04	
PR-1	16963.11 XS #17	1997 Ice Jam	316.30	2.40	5.44	2.40	1460020.00	1431782.00	9438139.00	590097.80	0.07	0.04	0.0
PR-1	15681.65 XS #16	1997 Ice Jam	315.47	2.40	2.40	2.40	9120038.00	1025287.00	7528151.00	566599.40	0.06	0.04	0.0
PR-1	14591.14 XS #15	1997 Ice Jam	315.15	1.50	1.50	1.50	8165867.00	809396.50	6789871.00	566599.40	0.06	0.04	
PR-1	13053.22 XS #14	1997 Ice Jam	314.62	1.50	1.50	1.50	7204562.00	463042.10	6174920.00	566599.40	0.07	0.04	0.0 🖵
•		1	1					1	1				
Ice thicknes	ss in the main channel.												

15. Highlight and copy (Ctrl + C) the column '*Ice Thick Chan (m)*'. Keep this window open.

16. Open the 'Geometry Data' window interface.

- 17. Choose Tables and select 'Ice Cover ...'
- 18. Highlight all the rows in the column '*LOB ice Thickness*', paste (Ctrl+V) the values into this column. With the column still highlighted, choose Multiply Factor ..., enter 1.5, click
- 19. Repeat the above step for the column 'ROB ice Thickness'.

Edi	Edit Ice Cover Data																
Rive	r: 1-Pe	ace River		- 🔏 🗉	6 🖻 🗸	Edit Interp	olated XS's	;									
Rea	ch: PR-1			-													
⊢Se	lected Area	a Edit Optio	ns	_													
	Add Consta	nt 🛛 M	ultiply Fact	tor 9	Set Values	R	eplace										
	ver Statio	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	Fixe 🔺	7
		Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Jhan (y/n)	OB (y/n)	Angle		ratio	Velocity	Cohesion	Mann n	1
1	54139.07	3.6	2.4	2.40	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	у	
2	52544.35	3.6	2.4	2.40	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
3	50979.5	5.475	2.4	3.65	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
4	49803.19	5.865	2.4	3.91	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
5	48296.97	5.85	2.4	3.90	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
6	47054.72	6.06	2.4	4.04	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
7	45563.59	5.415	2.4	3.61	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
8	44051.32	4.41	2.4	2.94	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
9	42705.21	4.605	2.4	3.07	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
10	41405.55	4.98	2.4	3.32	0.06	0.06	0.0 HEC-F	AS			45	0.4	0.33	10	0	у	
11	39966.15	5.46	2.4	3.64	0.06	0.06	0.0				45	0.4	0.33	10	0	у	
12	38663.54	6.03	2.4	4.02	0.06	0.06	0.C Ent	ter a amount	to multiply	by	45	0.4	0.33	10	0	у	
13	37246.26	6.435	2.4	4.29	0.06	0.06	0.0	alues in sele	cted range		45	0.4	0.33	10	0	у	
14	35284.69	6.51	2.4	4.34	0.06	0.06	0.0				45	0.4	0.33	10	0	у	
15	33566.04	6.285	2.4	4.19	0.06	0.06	0.0				45	0.4	0.33	10	0	у	
16	31899.57	6.675	2.4	4.45	0.06	0.06	0.0	1.5			45	0.4	0.33	10	0	у	
17	30757.83	7.125	2.4	4.75	0.06	0.06	0.0	12101			45	0.4	0.33	10	0	у	
18	28861.62	6.795	2.4	4.53	0.06	0.06	0.0	ОК	Cano	el	45	0.4	0.33	10	0	у	
19	28108.28	6.39	2.4	4.26	0.06	0.06	0.d		,		45	0.4	0.33	10	0	у	
20	27059.93	5.745	2.4	3.83	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
21	26167.31	5.685	2.4	3.79	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
22	25065.26	6.09	2.4	4.06	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
23	24146.38	6.585	2.4	4.39	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
24	23294.95	7.23	2.4	4.82	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
25	22393 X	7.485	2.4	4.99	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
26	22063.78	7.455	2.4	4.97	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
27	21735.96	7.38	2.4	4.92	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
28	21329.29	7.2	2.4	4.80	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у	
29	20902.13	6.675	2.4	4.45	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	у 🗸	-
•																•	
	ОК							Cano	el							Help	1
																	-

20. Select the ice 3 thickness columns for the cross-sections downstream of the ice jam toe (XS #01

OK

to XS #15), choose Set Values..., enter 1.5 then click

Edit	Edit Ice Cover Data															
River	: 1 - Peace Rive	r	- %	🖻 🛍 I	C Edit Int	erpolated)	(S's									
Read	h: PR-1		-													
-Sele	ected Area Edit On	tions														
	d Constant	Multiply Ea	actor	Set Value	•	Replace	1									
	de constant m	manapiyire		Det Valae		Replace i										
	River Station	LOB ice	Chan ice	ROB ice	LOB ice	Chan ice	ROB ice	Ice Specific	Ice Jam	Ice Jam	Friction	Porosity	Stress K1	Max	Ice	-
		Thickness	Thickness	Thickness	Mann n	Mann n	Mann n	Gravity	Chan (y/n) OB (y/n)	Angle		ratio	Velocity	Cohesion	
20	27059.93 XS #35	5.745	2.4	5.745	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
21	26167.31 XS #34	5.685	2.4	5.685	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
22 2	25065.26 XS #33	6.09	2.4	6.09	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
23	24146.38 XS #32	6.585	2.4	6.585	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
24	23294.95 XS #30	7.23	2.4	7.23	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
25	22393 XS #29	7.485	2.4	7.485	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
26	22063.78 XS #26	7.455	2.4	7.455	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
27 2	21735.96 XS #23	7.38	2.4	7.38	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
28	21329.29 XS #22	7.2	2.4	7.2	0.06	0.06	0.06	0.916	у	n	45	0.4	0.33	10	0	
29	20902.13 XS #21	6.675	2.4	6.675	0.06	0.06 HEC	C-RAS			n	45	0.4	0.33	10	0	
30	20583.87 XS #20	6.315	2.4	6.315	0.06	0.06				n	45	0.4	0.33	10	0	
31	19733.33 XS #19	6.03	2.4	6.03	0.06	0.06 E	nter a amou	int to set en	ries in	n	45	0.4	0.33	10	0	
32	18523.06 XS #18	6.18	2.4	6.18	0.06	0.06	the se	lected range	•	n	45	0.4	0.33	10	0	
33	16963.11 XS #17	8.16	2.4	8.16	0.06	0.06				n	45	0.4	0.33	10	0	
34	15681.65 XS #16	3.6	2.4	3.6	0.06	0.06				n	45	0.4	0.33	10	0	
35	14591.14 XS #15	2.25	1.5	2.25	0.06	0.06	1.5		_	n	45	0.4	0.33	10	0	
36	13053.22 XS #14	2.25	1.5	2.25	0.06	0.06	1		_	n	45	0.4	0.33	10	0	
37 :	11809.61 XS #13	2.25	1.5	2.25	0.06	0.06	OK	Ca	ncel	n	45	0.4	0.33	10	0	
38	10385.12 XS #12	2.25	1.5	2.25	0.06	0.06				n	45	0.4	0.33	10	0	
39 9	9024.812 XS #11	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
40 7	7564.073 XS #10	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
41 6	5270.616 XS #09	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
42 3	5365.335 XS #08	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
43 4	4915.177 XS #07	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
44 4	4480.899 XS #05	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
45 3	3709.021 XS #04	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
46 3	2382.439 XS #03	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
47 :	1302.66 XS #02	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	
48 (0 XS #01	2.25	1.5	2.25	0.06	0.06	0.06	0.916	n	n	45	0.4	0.33	10	0	-
•															Þ	
	ок						C	ancel							Help	

21. Close the 'Edit Ice Cover' window by clicking

22. Choose File and select 'Save Geometry Data' in the 'Geometric Data' window.

OK

23. Open the 'Steady Flow Analysis' $\frac{2}{2}$ window from the main interface. Click

24. View the model results in the 'Profile Plot' ¹/₂ window.

Notice that the computed water surface is above the observed water surface elevations.

QUESTION: Why has the computed water surface increased? How can you tell?

We will now continue our iterative procedure by replacing the overbank ice thickness with the new computed ice jam thickness (instead of 1.5 times the ice jam thickness). After 3 or 4 iterations, the overbank ice jam thickness should match the computed ice jam thickness (within ~ 0.02 m). Follow these steps for each iteration:

- 25. View the current computed ice jam thicknesses the 'Profile Output Table' by clicking on the in the main interface. Go to Std. Tables and select '*Ice Cover*'.
- 26. Highlight and copy (Ctrl + C) the column '*Ice Thick Chan (m)*'. Keep this window open.

- 27. Open the 'Geometry Data' window interface.
- 28. Choose Tables and select 'Ice Cover ...'.
- 29. Highlight all the rows in the column 'LOB ice Thickness', paste (Ctrl+V) the values into this column.
- 30. Repeat the above step for the column 'ROB ice Thickness'.
- 31. Close the 'Edit Ice Cover window' by clicking
- 32. Choose File and select 'Save Geometry Data' in the 'Geometric Data' window.
- 33. Open the 'Steady Flow Analysis' $\frac{-k}{2}$ window from the main interface. Click
- 34. View the model results in the 'Profile Plot' equal window.

The final calibrated profile will look like this:

35. Check the ice thickness results for Cross-Section XS #21 in the 'Geometry Data' window and the 'Profile Output Table' for Ice Cover:

Profile Output Table - Ice Cover —												\Box \times	
File Opt	tions Std. Tables Lo	cations Hel	р										
		HEC-RAS	Plan: M4	: Jam Width	_Final River	: 1 - Peace F	River Reac	h: PR-1 P	rofile: 1997	Ice Jam			Reload Data
Reach	River Sta	Profile	W.S. Elev	Ice Thick LOB	Ice Thick Chan	Ice Thick ROB	Ice Vol Total	Ice Vol. LOB	Ice Vol. Chan	Ice Vol. ROB	Mann Wtd Left	Mann Wtd Chnl	Mann Wtd Rgł 🔺
			(m)	(m)	(m)	(m)	(m3)	(m3)	(m3)	(m3)			
PR-1	54139.07 XS #54	1997 Ice Jam	329.94	2.40	2.40	2.40	3313750.00	2234200.00	52792870.00	8286686.00	0.07	0.04	0.0
PR-1	52544.35 XS #53	1997 Ice Jam	329.52	2.40	2.40	2.40	'1173180.00	1084800.00	51912210.00	8176179.00	0.06	0.04	0.0
PR-1	50979.5 XS #52	1997 Ice Jam	329.08	3.51	3.51	3.51	9758800.00	1084800.00	50718510.00	7955486.00		0.04	0.0
PR-1	49803.19 XS #51	1997 Ice Jam	328.78	3.73	3.73	3.73	8466410.00	1084800.00	49426120.00	7955486.00		0.04	
PR-1	48296.97 XS #50	1997 Ice Jam	328.39	3.68	3.69	3.68	6937250.00	1084800.00	47896960.00	7955486.00	0.06	0.04	0.0
PR-1	47054.72 XS #49	1997 Ice Jam	328.05	3.89	3.90	3.89	5593610.00	1084800.00	46553320.00	7955486.00		0.04	
PR-1	45563.59 XS #48	1997 Ice Jam	327.54	3.67	3.68	3.67	4078080.00	1084800.00	45037790.00	7955486.00	0.06	0.04	0.0
PR-1	44051.32 XS #47	1997 Ice Jam	327.12	3.12	3.12	3.12	1282350.00	0393320.00	43840380.00	7048649.00	0.06	0.04	0.0
PR-1	42705.21 XS #46	1997 Ice Jam	326.87	3.24	3.23	3.24	8994560.00	9957688.00	42662270.00	6374601.00	0.06	0.04	0.0
PR-1	41405.55 XS #45	1997 Ice Jam	326.55	3.51	3.50	3.51	6860580.00	9137902.00	41348070.00	6374601.00	0.06	0.04	
PR-1	39966.15 XS #44	1997 Ice Jam	326.14	3.81	3.80	3.81	5332300.00	9137902.00	39819790.00	6374601.00		0.04	0.0
PR-1	38663.54 XS #43	1997 Ice Jam	325.75	4.09	4.08	4.09	2841800.00	9137902.00	38264300.00	5439602.00	0.07	0.04	0.0
PR-1	37246.26 XS #42	1997 Ice Jam	325.27	4.25	4.24	4.25	1020410.00	9137902.00	36442910.00	5439602.00		0.04	
PR-1	35284.69 XS #41	1997 Ice Jam	324.62	4.15	4.14	4.15	8595250.00	9137902.00	34017750.00	5439602.00	0.06	0.04	0.0
PR-1	33566.04 XS #40	1997 Ice Jam	324.12	3.84	3.84	3.84	6596760.00	9137902.00	32019250.00	5439602.00		0.04	
PR-1	31899.57 XS #39	1997 Ice Jam	323.75	3.95	3.94	3.95	4492190.00	9137902.00	29914690.00	5439602.00		0.04	
PR-1	30757.83 XS #38	1997 Ice Jam	323.38	4.40	4.40	4.40	2935630.00	9137902.00	28358130.00	5439602.00		0.04	0.0
PR-1	28861.62 XS #37	1997 Ice Jam	322.32	4.63	4.64	4.63	7147890.00	9137902.00	26067800.00	1942184.00		0.04	0.0
PR-1	28108.28 XS #36	1997 Ice Jam	322.01	4.51	4.52	4.51	4857590.00	9137902.00	25153090.00	566599.30	0.07	0.04	0.0
PR-1	27059.93 XS #35	1997 Ice Jam	321.63	4.24	4.25	4.24	3005530.00	8568994.00	23869940.00	566599.30	0.06	0.04	
PR-1	26167.31 XS #34	1997 Ice Jam	321.31	4.25	4.26	4.25	0833320.00	7647483.00	22619240.00	566599.30	0.06	0.04	
PR-1	25065.26 XS #33	1997 Ice Jam	320.96	4.46	4.46	4.46	8354100.00	6950564.00	20836940.00	566599.30	0.06	0.04	
PR-1	24146.38 XS #32	1997 Ice Jam	320.66	4.53	4.51	4.53	6981550.00	6950564.00	19464390.00	566599.30		0.04	
PR-1	23294.95 XS #30	1997 Ice Jam	320.31	4.54	4.52	4.54	5828480.00	6950564.00	18311320.00	566599.30		0.04	
PR-1	22393 XS #29	1997 Ice Jam	319.97	4.31	4.29	4.31	4774500.00	6950564.00	17257340.00	566599.30		0.04	
PR-1	22063.78 XS #26	1997 Ice Jam	319.87	4.11	4.09	4.11	4421750.00	6950564.00	16904590.00	566599.30		0.04	
PR-1	21735.96 XS #23	1997 Ice Jam	319.79	3.94	3.92	3.94	4040130.00	6950564.00	16522960.00	566599.30		0.04	
PR-1	21329.29 XS #22	1997 Ice Jam	319.70	3.79	3.78	3.79	3557000.00	6950564.00	16039840.00	566599.30	0.06	0.04	
PR-1	20902.13 XS #21	1997 Ice Jam	319.57	3.61	3.63	3.61	2723800.00	6561220.00	15595980.00	566599.30	0.06	0.04	
PR-1	20583.87 XS #20	1997 Ice Jam	319.42	3.49	3.53	3.49	1855120.00	5967633.00	15320890.00	566599.30	0.06	0.04	
PR-1	19733.33 XS #19	1997 Ice Jam	319.09	3.29	3.35	3.29	9824010.00	4578746.00	14678670.00	566599.30	0.06	0.04	
PR-1	18523.06 XS #18	1997 Ice Jam	318.77	3.04	3.05	3.04	7077230.00	2640515.00	13870120.00	566599.30	0.07	0.04	
PR-1	16963.11 XS #17	1997 Ice Jam	318.30	5.25	5.24	5.25	3188340.00	809396.30	11812350.00	566599.30	0.07	0.04	0.0 -1
Calculated	water surface from energ	gy equation.											

36. Close all windows except for the main interface.

Module 5: Cross-Section Interpolation

Module 5: Cross-Section Interpolation

 Discover why we would want to add interpolated crosssections to an ice jam model, practise a method of how develop interpolated sections

Main tasks:

- A. Compare model results with and without interpolated crosssections
- B. Add interpolated cross-sections to our model geometry

Module 5: Cross Section Interpolation

Additional cross sections may be necessary to adequately resolve the variation in the calculated ice thickness profile.

Built-in HEC-RAS interpolation tools may not adequately define

- · the channel and overbank geometry between sections
- representative channel width used for solving the jam stability equation

In this modules we will (1) examine the effect of adding interpolated sections to the calculated ice jam profile and (2) introduce an alternative method for cross section interpolation.

Task 5A Instructions: Compare Model Results with and without Interpolated Cross-Sections

- 1. Open the 'Steady Flow Analysis' window by clicking on the 🖄 in the main interface window.
- 2. Go to File and select the '*Open Plan* ...' option and choose the "**Module 5: Ice Jam Interpolated_Final**" plan. In this plan interpolated cross sections have been developed throughout the study reach. As part of the interpolation process, the overbank ice thicknesses were assigned the same as was done in Module 4. Verify that the correct files have been selected:

Table 15: Model Files Used for HEC-RAS Module 5 - Task 5A

File Type	Filename
Plan	"Module 5: Ice Jam Interpolated_Final"
Geometry	"Module 5: Ice Jam Interpolated_Final"
Steady Flow	"Module 3: Simple Ice Jam"

- 3. Close this window by clicking on the
- 4. Open the 'Geometric Data' window by clicking on the in the main interface window.
- 5. Zoom in on any section of the model in plan view. Either use the scroll button on your mouse, or choose View and select '*Zoom In*'.

Notice that there are many more cross-sections than we saw previously. Cross sections have been interpolated between the surveyed cross sections and have been labelled INTERP for easier identification. Note that the INTERP label was added manually and is not the default HEC-RAS label for interpolated cross sections, which is a "*" (eg. 36182.2*). By manually changing the label of the interpolated cross sections, the HEC-RAS interface treats these sections differently (the user is not able to delete them with the interpolated cross section tool).

- 6. Pan around the plan view of the model (hold down the SHIFT key to pan, or choose View and select '*Pan (shift key)*'). Take a look at the bank stations for the interpolated cross-sections (marked), and compare their location to the background imagery.
- 7. Go to View and select 'Full Plot'. To bring the zoom back to the model domain.

- 8. Click on the **_____** on the top bar in the 'Geometric Data' window
- 9. Uncheck 'ArcGIS World Imagery' and make sure 'Plot Terrain' is checked. Click

Close

We have a small section of "Terrain" loaded into this model. This is a high-resolution digital elevation model showing the ground elevations. The data was collected using airborne LiDAR and verified with a third-party on-site survey. The terrain data has been "hydro-flattened", meaning that the area below the normal water surface is flat. The real life model has a terrain file that covers the entire model domain.

10. Zoom into the area where the terrain file is located. Choose View and select 'Zoom In'.

11. Click on the **introduct** to open the 'Cross Section Data' window. Choose a cross-section in the region where the terrain file is, such as '47472.59 *INTERP*' from the '*River Sta.*' dropdown menu.

This cross section was developed from a combination of the DEM in the overbank and on the island and an interpolated cross section in the wetted portion of the channel. Notice how the 'Current Terrain' line follows the 'Ground" line in the overbank and on the island but is nearly flat in both channels where the DEM has been hydroflattened.

- 12. Open the 'Steady Flow Analysis' window by clicking on the in the main interface window.
- 13. Check that the "Module 5: Ice Jam Interpolated_Final" plan is still active. Click

😸 HEC-RA	AS Finished Computations				_		×
Write Geometry Information							
Steady Flov	v Simulation						
River:	1 - Peace River	RS:	54139.07				
Reach:	PR-1	Node Type:	Cross Section				
Profile:	1997 Ice Jam						
Circulations	1/1			Ice jam calculations, iteration 67			
Simulation:	1/1						
Computatio	n Messages						
Plan: 'Mo Simulation :	dule 5: Ice Jam Interp_Final' (Cl started at: 29Jun2023 01:54:31 PM	RIPESHORTCO	OURSE_R2.p12)				<u>^</u>
Writing Geo	ometry Writing Geometry						
	winning oconically						
Writing Eve	Writing Event Conditions						
Completed	which gevent condition bata						
Ctoody El	au Cimulation NEC DAC 6 2 1 0	-tobox 2022					
Steady F	Steady Flow Simulation HEC-RAS 6.3.1 October 2022						
Eisishad Ob							
Finished St	eady Flow Simulation						
Computations Summary							
Computatio	Computation Task Time(hh:mm:ss)						
Completing	Completing Geometry 2						
Steady Flo	w Computations		11				
Complete P	Process		14				×
Dev	1 Mala Gazat I. Co.						
Pause	Make Snapshot of Re	esuits			L	Close	

Notice how many iterations it took for the ice jam simulation to run. In the above window, it took 67 iterations to converge.

14. Click	Close].	
15. Close	the 'Steady Flow	■ w Analysis' window by clicking on the	×
		1	

16. Open the 'Profile Plot' window by clicking on the ¹ in the main interface.

- 17. Open additional plans to compare against this one by go to Options and select '*Plans*'. Make sure the following 2 plans are selected:
- "Module 4: Ice Jam Width_Final"
- "Module 5: Ice Jam Interp_Final"

Plan Selection					
Plan Geometry and Results Comparison Compare Geometry as well as Output (can only select current plan + one more) Note: Geometry comparison only works for cross section and profile plots					
Select Plans (current plan = Module 5: Ice Jam Interp Final)					
Module 1: 1990 Flood Calibration (Short ID = M1: 1990 Flood					
Module 1: Open Water Rating Curve (Short ID = M1: OW Rating Curve					
Module 2: Intact Ice 03-01-31 Student (Short ID = M2: Intact 03-01-31 Stud					
Module 2: Intact Ice 03-01-31 Final (Short ID = M2: Intact 03-01-31 Final					
Module 2: Intact Ice 04-01-20 Final (Short ID = M2: Intact 04-01-20 Final					
Module 3: Simple Ice Jam Student (Short ID = M3: Simple Jam Student					
\square Module 3: Simple Ice Jam Einal (Short ID = M3: Simple Jam Einal G					
Module 4: Ice Iam Width Student (Short ID = M4: Iam Width Student					
Module 4: Ice Jam Width Final (Short ID = M4: Jam Width Final)					
Module 5: Ice Jam Intero Final (Short ID = M5: Jam Intero Final G					
Module 5: Ice Jam Interp Student (Short ID = M5: Jam Interp Student					
Select All Clear All Move Up Move Down OK	Cancel				

18. Click

The following table describes how each of the plans was generated. You can turn the plans on and off to see the various features better using Options and selecting '*Plans*'. You can also zoom in using your mouse scroll or use Options and click '*Zoom In*', etc.

Table 16: Description of plan files

Plan	Description	Notes	
Module 4: Ice Jam Width_Final	Model developed in Module 4. There are no interpolated cross-sections so the ave/max/min XS spacing in the jam is 1163 m/1962 m/318 m, respectively.	Toe area is longer (in the streamwise direction) and has a greater ice volume.	
Module 5: Ice Jam Interpolated_Final	Interpolated cross sections have been developed to resolve the ice plan profile, particularly the toe, in higher detail. The ave/max/min XS spacing in the jam is 413 m/513 m/198 m	The water level rise in the toe is much steeper and there is more variation is the thickness of the ice jam	

19. Close the profile plot by clicking on the by clicking on the $\stackrel{ imes}{\longrightarrow}$

Task 5B Instructions: Add In New Interpolated Cross-Sections

- 1. Open the 'Steady Flow Analysis' window by clicking on the in the main interface window.
- 2. Go to File and select '*Open Plan …*' to choose the "**Module 5: Ice Jam Interpolated_Student**" plan. Verify that the correct files have been selected:
- 3. Open the 'Geometric Data' window by clicking on the in the main interface window. The geometry file that is opened should be "**Module 5: Ice Jam Interpolated_Student**". Click

This geometry file is the same as we used in Task 5A, except two cross-sections have been removed between XS #48 and XS #49. We will be creating new interpolated sections for this area.

4. Zoom into the area where the terrain file coverage is located, like we did in Task 5A. Make sure

that the ArcGIS World Imagery layer is turned off by clicking on ______ in the top bar in the 'Geometric Data' window. Uncheck '*ArcGIS World Imagery*' and make sure '*Plot Terrain*' is checked. Click Close _____.

Notice the area missing interpolated cross-sections between XS #48 and XS #49.

5. Go to Tools, select 'XS Interpolation', and then select 'Between 2 XS's'.

6. Choose '47054.72 XS #49' from the dropdown menu beside 'Upper Riv Sta:'. The 'Lower Riv Sta:' box will automatically populate with XS #48.

7. The current distance between cross sections is 1491.12 m. The intent is to add two interpolated cross sections, dividing the space between the existing sections into thirds. Choose a 'Maximum Distance (m)' of *500 m* in the dropdown menu, and choose the "*Linearly interpolate cut lines from bounding XS's*" radio button.

8. Click

. Note how the 'Distance Between XS's' updates to 497.04 m.

The new cross-sections show up as grey lines in the preview window.

9. OPTIONAL: experiment with different ways to generate interpolated cross-sections. The Constant Distance (m) option interpolates cross sections at constant distance starting at the upstream cross section. The Set Location (m) option interpolates a cross section at the specified distance downstream of the upstream cross section. As long as you **don't click**

Close, you can trial different ways. Before moving on to the next step, make sure you have generated two new cross-sections that are a maximum of 500 m apart, as shown above.

10. OPTIONAL: Additional cords can be added to the interpolation using this button 2. To add a cord, click on one cross-section and drag and release at the other cross section. Added cords connect points for interpolation and cords cannot intersect. There are default cords between the bank stations and the end of the cross sections (shown in green) that cannot be removed with the

cut cord button \mathbb{X} . Keen students may recognize that because we are working with a geometry file where the bank stations have been adjusted, we are not able to do a reasonable interpolation to the split channels in XS 48.

11. Click **Close**. The new cross-sections will appear in the Geometric Data window. Note that they are labelled by their River Station and have an asterisk (*) beside the River Station, indicating that they have been interpolated.

- 12. Save the geometry file.
- 13. Click on the interpolated 'XS 46557.6* in the 'Geometric Data' window. It will turn pink. Click again and choose '*Edit Cross Section*' to open the 'Cross Section Data' window for this cross-section.

The interpolated cross-section is shown and compared with the DEM elevation (thin light gray line) along the alignment of the interpolated cross-section. The DEM cross-section is a better representation of the channel width. The next steps will look to combine the interpolated cross-section and the DEM cross-section.

14. Close the 'Cross Section Data' editor \times I. In the 'Geometric Data' window, select File and click on 'Save As'. Save the file as "Module 5: Ice Jam Interp_Student_DEM".

Cross

- 15. Open the 'Cross Section data' editor again and go to '46557.6*. Press Cut from Terrain to replace the cross section with the DEM elevations. Press Apply Data to see the updated cross section. Notice how the " * " is removed from the cross-section name. It is no longer coded in HEC-RAS as an interpolated cross section. Close the 'Cross Section editor' window.
- 16. In the 'Geometric Data editor' window, left click on the cross section and select '*Graphical Cross Section*' Editor. The 'Graphical Cross Section' Editor allows the user edit and combine cross sections visually.
- 17. Select 'RS: 46557.6' from the drop down menu. Click on 'Compare Geometry Files', then 'Update Compare XS', and then 'Merge Cross Sections'. Click the 'Geometry Files' button and select "10 Module 5: Ice Jam Interp_Student". It will automatically select the River and Reach, but you will have to select '46557.6* in the RS drop down. This shows a comparison of the interpolated cross section and the DEM cross section.

turn it off.

18. The 'Graphical Cross Section' Editor allows for assignment of the bank stations using the Bank Station Tools.

- 19. For example, the bank stations can be modified using the 'Set Bank Station' Button . Click on and then click on a point on the cross section and notice how the red bank station dots move. Notice as well how the Manning's roughness coefficient bands change as the bank stations are changed. Note changes in the 'Graphical Cross Section' Editor can be undone by pressing Ctrl + Z. When you are done adjusting the bank stations, the button needs to be pressed again to
- 20. The cross section can be modified in several ways. Right click on the screen to bring up the different options including 'Move Objects', 'Delete Objects', 'Add Sta/Elev Points', etc. Select '*Move Objects*' and experiment with moving around points on the cross section. Any changes can be undone.
- 21. To merge portions of the interpolated and DEM cross sections we use the '*Merge XS*' options. The Shift X and Shift Y boxes adjust the location of the light gray cross section.

-Merge XS — Shift X	10
Shift Y	1
559.247	1032.927
Merge: Ins	ide Outside

22. Enter a value of *-138* in the Shift X field. This matches up the intersection of the left bank of both cross sections. Notice how the width of the interpolated cross section (light gray colour) is less than the DEM cross-section.

23. For the exercise, we will replace the hydro-flattened portion of the DEM cross section (black colour) with the interpolated cross section. Notice the vertical red lines which define the portions of the cross section that will be replaced. The cursor changes when you hover over these lines.

Drag the *left red line* to intersect with the *left intersection of the black and light grey lines* and the *right red line* to intersect with the *right intersection*. Click the '*Merge: Inside*' button Merge: Inside Outside. Notice how the data is replaced between the red lines. Remember that this change can be undone if you don't like how it has turned out.

24. The hydro-flattened portion of the DEM cross section to the right of the red line can be modified using your engineering judgment. For example, we could assume that the right half of the channel is shallower and create a channel through a combination of deleting and adding points as shown in the image below. Deleting points can be done either one at a time or by selecting multiple in a selection box.

25. It would be worth while to compare the interpolated cross that we have developed to the Final interpolated cross section. Changing the data set that is loaded in the 'Graphical Cross Section' Editor can be a little glitchy when changing the files that are being compared. It is recommended that the window is closed and then reopened.

Close the window × and then reopen it my left clicking on cross section '46557.6' and selecting 'Graphical Cross Section' Editor. Click on '*Compare Geometry Files*' and '*Update Compare XS*'. Click the '*Geometry Files*' button and select "**9 Module 5: Ice Jam Interp_Final**". In the 'RS:' drop down menu, select '46541.66 INTERP'. The RS values are slightly different because the interpolated cross section was in a slightly different location.

5. Summary of Available River Ice Models

Steady/Unsteady & Network Representation

Steady/Unsteady

- · Hydraulics (e.g., flows, water levels)
- · Ice Processes (e.g., ice volumes, ice accumulations)
- · Models can have steady, unsteady, or quasi-steady capabilities

Network Representation

- Nodes
- Multiple channels
- Other hydraulic features (bridges, etc.)
- · Most models limited to a single channel for ice process simulations

Numerical Scheme

- Algorithmic descriptions that yield a solution to one or more mathematical equation
- Vary between models (with some commonalities), some models implement more than one

• Examples:

- · Weighted Four-Point Implicit Scheme (common for 1D models)
- Characteristic Dissipative Galerkin
- Streamline Upwind Petrov-Galerkin
- · Lagrangian Discrete Parcel Method with Smooth Particle Hydrodynamics

- Undercover Deposition and Transport of Ice:
 - submergence, depositing, and movement of ice floes under a static ice cover or dynamic surface ice cover. This can lead to the formation of a hanging dam.
- Anchor Ice:
 - ice that is attached to the bed of a channel or other submerged surface.

· Ice Jam Seepage and Ice Cover Seepage Flow:

• water conveyance through the ice units that comprise an ice cover.

Model-Specific Capabilities

Ice Process	CRISSP1D	CRISSP2D	HEC-RAS	ICEDYN	MIKE-ICE	ICEJAM	IJТ	RIVER1D	RIVICE	RIVJAM	SIMGLACE
Water Cooling	X	x	x	x	x		х	x	x		х
lce Generation	x	x		x	x		x	x	x		х
Border/Static Ice	x	x	х	x	x		x	x	x		x
Dynamic Ice	x	x	x	x	x	x	x	x	x	x	x
Thermal Growth/Decay	x	х		x	x		х	x	x		х
Undercover Ice	x	x		x	x		x	x	х		х
Anchor Ice	x	x		x	x				x		
Seepage Flow		x			x					x	

- See Appendix B for detailed descriptions of ice process models.
- Information provided to describe current state of development, and availability of the model.
- Accompanying reference list highlights works that discuss these, and other, ice process models.

6. Introduction to Ice Process Modelling

7. Ice Process Modelling with River1D

In this tutorial, we will demonstrate how to use River1D for thermal ice process modeling. The model will simulate the freeze-up and breakup of a river, which will include water temperature, ice production, ice accumulation, ice growth, and ice melt. This tutorial will use the Peace River in Alberta as an example. We will walkthrough steps to set up the model, compare its results with real world data, and how to calibrate the model based on this data.

Module 1: Setting up the Model

Task 1A: Setting up Thermal Ice Processes Modelling in River1D

- 1. Launch River1D.exe River1D.exe from the desktop, or from "Documents\River1D Peace River Model\River1D".
- 2. Click on *to open an existing file.* Navigate to the "Documents\River1D Peace River Model\Working Files" folder and open "**1 peaceriver open water.r1d**".
- 3. Go to File, and select 'Load Georeferenced Map Imagery' from the drop-down menu. From the

pop up window, click on under 'Map Imagery file name'. Find and open "**PR.jpg**" in the "Working files" folder. Likewise, browse and select "**PR.jgw**" for the 'world file name' field.

Then, click ______. (This step is not required, but allows you to visualize the river relative to the surroundings).

• NOTE: If you re-open a file, the imagery will need to be loaded again.

🍓 1 ·	- peaceriver open water.r1d - River1D	
File	Edit View Display Node Table Simulation Help	
	New Ctrl+N	1
Ī 🖻	Open Ctrl+O	
† 🛃	Save Ctrl+S	
<u> </u>	Save As	
	Convert HEC-RAS Geometry File	
8	Load Georeferenced Map Imagery	
	File Type Options	L
	Print Ctrl+P	
	Print Preview	
	Print Setup	
	11 - peaceriver open water.r1d	
	28 - peaceriver with calibrated global and nodal parameters - initial conditions.r1d	
	3 6 - peaceriver with bridging and default global and nodal parameters - initial conditions.r1d	
	4 4 – peaceriver with flow BCs.r1d	
	Exit	
_		-

Load Georeferenced Map Imagery	×
Man Imagery file name:	
C: \Users \Student \Documents \River 1D Peace	
Browse	
World file name:	
C:\Users\Student\Documents\River1D Peace	
Browse	
Load Cancel	

4. Click on the <u>Plan View</u> tab (bottom of the program screen) to see the domain with the background map.

- Go to File and click '*File Type Options…*'. Select '*Thermal Ice Processes*' from the 'River 1D File Type' drop-down menu. Click OK.
- 6. Go to File again and click 'Save As...'. You will get a prompt which asks, 'Do you want to save the file using the current file type?'. Click vest and save the file as "2 peaceriver converted to thermal.r1d" into the "Working Files" folder.

Now that the thermal processes file has been set up, we need to populate the model with the following information:

- Atmospheric zones
- Boundary conditions
- Ice bridging location

All of the required information is available in the "**Model Inputs Calibration.xlsx**" spreadsheet, which is saved in the "Working Files" folder. The following three tasks will guide you through the process of inputting this information.

Task 1B: Setting up Atmospheric Zones

1. We will first need to change the number of atmospheric zones in the model. Our model uses three zones. Click on Simulation at the top of the main River1D window and select '*Global Settings...*' from the drop-down menu. In the pop up, locate 'Number of Atmospheric Zones' (the default setting is 1).

ode Table	Simulation	Help			
0		Global Settings			×
		System of Units	Metric ~		
		Hydrodynamics Formulation	Natural Channel 🛛 🗸	Frazil Particle Shape Factor	1
		Hydrodynamics Upwinding Coefficient	0.25	Average Diameter of Frazil Granules in Coverload (m)	0.001
50 -		Hydrodynamics Upwinding Updating	Every Iteration \sim	Critical Flow Strength	0.041
		Water Temperature (°C)	Not Applicable	Minimum Water Temperature (°C)	-0.05
	\vdash	Hydrodynamics Flow Resistance Model	Composite Roughness \lor	Porosity of Anchor Ice	0.4
	-	Specific Gravity of Ice	0.917	Frazil Accretion Rate (m/s)	0.0001
5	-	Thermal Ice Upwinding Coefficient	0.25	Fraction of Bed Covered by Anchor Ice	0.25
25 -		Thermal Ice Unwinding Updating	Every Iteration V	Bed Material Average Diameter (m)	0.05
	E I	Number of Atmospheric Zones	1	Density of Bed Material (kg/m^3)	2650
	-	Minimum Water Depth (m)	0	Border Ice Equation Coefficient a	14.1
_	-	Frazil Seeding Concentration	1e-05	Border Ice Equation Coefficient b	1.08
DO –		Typical Frazil Particle Thickness (m)	0.0003	Border Ice Equation Coefficient c	-0.93
		Typical Frazil Particle Radius (m)	0.001	Border Ice Equation Coefficient e	0
	E	Nusselt Number for Typical Suspended Frazil Particle	4	Maximum Fraction of Channel Covered By Border Ice	0.7
		Coefficient of Turbulent Heat Exchange (Ws^0.8/m^2.6/°C)	1187	Maximum Velocity for Dynamic Border Ice Growth (m/s)	1.2
75 -		Rate of Frazil Rise (m/s)	0.0001	Velocity Mode For Border Ice Growth	Local Velocity At Edge of Border Ice \smallsetminus
-		Rate of Surface Ice Re-entrainment (1/s)	2e-05	Minimum Surface Ice Concentration	0.01
00	E I	Re-entrainment Velocity Threshold (m/s)	1.5	Maximum Surface Ice Concentration	1
- 0	F	Porosity of Frazil Slush	0.4	Maximum Froude Number for Juxtaposition	0.06
PU -	-	New Frazil Pan Thickness (m)	0.3	Porosity Between Ice Floes at Ice Front	0.4
	F	Solid Ice Initial Thickness (m)	0.001	Ice to Ice Friction Coefficient	1.28
DO -		Water Albedo	0.15	Ice Cohesion (Pa)	0
_	E	Ice Cover Albedo	0.5	Number of Ice Bridging Reaches	1
50 -	F	Snow Thickness	0		
0	E		07	Cancel	
	E I		UK	Carice	
- Oq					

Change the setting from 1 to 3.

• **NOTE:** You need to change the number of zones before you can set the nodal zone values to anything other than 1.

- 2. The thermal ice upwinding coefficient should also be changed from the default 0.25 to 1.0 for this tutorial. Then click .
- 3. Next click on the <u>Node Table Editor</u> tab (bottom of the screen). In order to see the table better, click either 🖾 or 🖂 in the toolbar to adjust the column widths to your preference.
 - The first one (outward arrows) expands all column widths to fit on one screen, which works well with big screens with small text size. (Expand to fit)
 - The second button adjusts the columns so that all of the headings can be read. (Auto size)
 We recommend this setting as it prevents columns from being hidden due to size constraints.

4. Locate the 'Atmospheric Zone Number' column (it should be on the far end of the table).

 Open the "Model Inputs Calibration.xlsx" spreadsheet. Inside the <u>Atmospheric Zones</u> tab, copy the column of data under the heading 'Atmospheric Zone Number'. Go back to the River1D program. Paste the information into the 'Atmospheric Zone Number' column in the <u>Node Table</u> <u>Editor</u> tab.

Tip: You can select a cell and use CRTL + Shift + Down to quickly select all data in a column in excel.

	් a			Denimu Minu Adding	0		Model Ing	outs Calibration.xlsx - Exc	đ							0 ×
Pile & Cut	t Calibri •	11 - A		Wrap Text	Gener	al •	Conditional Format as	Normal Bad	anatory	od N	Calculation		🗙 🚔 🛛 🛛 AutoSu		sign in	,≻, snare
 For 	mat Painter			- Meige & Cel	а. <i>э</i> .	70 - 100 +.0	Formatting * Table *		Chulman .	1	Model Inputs Cali	bration.xls	x - Excel	• Select •		
Cipboa	ra is Pont		- Gel	Augnment	14	Number			Styles							^
E10	• : × √ k 1															~
A	в	с	D	E	F	G H	1	J	K L	м	N	O P	q	R	s	т
1.	Set Number of Atmospheric Zones in Global Settings = 3		2.	Set Nodal Zones Number in Node Table Editor		3.	Set Atmospheric Zon Data in Plan View	ie in the second se								
						Zone 1	(Node 1 to 54)		Zone 2	(Node 55 to 17	9)	Zone 3 (Node 180 to 234)			
2			Node	Atmospheric Zone Number		t (hrs	T (* C)	d. (W/m ²)	t (hrs)	T of entries = 4) d. (W/m ²)	t (brs)	T = (° C)	. (₩/m ²)		
0				1 1		0	0	0	0	0	0	0	0	0		
1				2 1		1	-9.8	0	1	-6.6	0	1	-9.5	0		
2				3 1		2	-9.8	0	2	-6.6	0	2	-9.5	0		
8				4 1		3	-9.8	0	3	-6.6	0	3	-9.5	0		
			1.1	5 1		4	-9.8	0	4	-6.6	0	4	-9.5	0		
5				6 1		5	-9.8	0	5	-6.6	0	5	-9.5	0		
				7 1		6	-9.8	0	6	-6.6	0	6	-9.5	0		
				8 1		7	-9.8	0	7	-6.6	0	7	-9.5	0		
				9 1		8	-9.8	0	8	-6.6	0	8	-9.5	0		
-			1	0 1		9	-9.8	68.793	9	-6.6	68.793	9	-9.5	68.793		
-			1	1 1		10	-9.8	181.13	10	-6.6	181.13	10	-9.5	181.13		
			1	2 1		11	-9.8	265.358	11	-6.6	265.358	11	-9.5	265.358		
			1	3 1		12	-9.8	310.042	12	-6.6	310.042	12	-9.5	310.042		
			1	4 1 c 1		13	-9.8	311.081	13	-6.6	311.081	13	-9.5	311.081		
			1	1		14	-9.8	268.388	14	-6.6	208.388	14	-9.5	268.388		
			1	7 1		15	-3.0	74 287	15	-6.6	74 287	15	-9.5	74 287		
				8 1		10	-9.8	0	17	-0.0	0	17	-9.5	0		
Atr	nospheric Z	ones	;	9 1		18	-9.8	0	18	-6.6	0	18	-9.5	0		
				0 1		19	-9.8	0	19	-6.6	0	19	-9.5	0		
			2	1 1		20	-9.8	0	20	-6.6	0	20	-9.5	0		
			2	2 1		21	-9.8	0	21	-6.6	0	21	-9.5	0		
			2	3 1		22	-9.8	0	22	-6.6	0	22	-9.5	0		-
	Atmospheric Zones BC	#1 Upstrea	m Inflov	oundary Dere Lateral Inflo	at Node 28	BC#3 Later	ral Inflow at Node 123	BC#4 Outflow Rating	Curve Brid	ging Reach Info	Global and Nodal Paramete	ers 🕘 🕀		: 4		Þ
adv																

- 6. At this point, the 'Accept Changes' and 'Reject Changes' toolbar buttons will become active (at the top of the River1D window). Click on 'Accept Changes'.
- 7. Click on the <u>Plan View</u> tab, and then go to Display. Select '*Plan View Options…*' to open a new window.

8. In the 'Plan View Options' pop-up, check the '*Display Parameter*' box and then use the dropdown menu to select '*Atmospheric Zone Number*'. Then click Core. The three different atmospheric zones in the reach should now be highlighted by different colours.

Plan View Options	<								
Display Reach All Reaches									
Display Parameter Atmospheric Zone Number V									
Nodes									
✓ Elements									
Boundary Elements									
Junction Nodes									
Flow Arrows									
Georeferenced Map Imagery Background									
Node Numbers									
Node Stationing									
Reach Numbers									
Element Numbers									
Boundary Element Numbers									
Junction Node Numbers									
✓ Legend									
Scale Bar									
Reach Name									
Model Time									
OK									

- 9. Go to Simulation and click on '*Edit Atmospheric Zone…*'. The mouse pointer should turn into a cross. Click anywhere on the blue line to edit Zone 1. This will open the 'Edit Atmospheric Zone' Dialogue.
- 10. Change the 'number of entries' to 4393. Then, go to the <u>Atmospheric Zones</u> tab of the "**Model Input Calibration.xlsx**" spreadsheet. Copy and paste the data for Zone 1 into the 'Edit

Atmospheric Zone' window. When finished, click Apply and then Close

. 5	· ¢· ∓				~				Model inj	puts Calibration.xlsx - E	cel		
ile	Home Insert Page Layo	ut Formulas [Data F	Review View Add-ins	۲	fell me	what yo	u want to	do				
🚬 💑	Cut Calibri	- 12 - A A	= = =	🕳 🗞 - 📑 Wrap Text		Genera	al	÷		Normal Bad	ł	Go	od Neut
te 💉	Copy - Format Painter B I U -	- <u>A</u> - <u>A</u> -	= = 3	🔳 🖷 連 🖽 Merge & Cer	iter -	\$ -	% ,	€.0 .00 .00 →.0	Conditional Format as	Check Cell Exp	lanator	y Inp	ut Linke
Clip	board 5 Fo	ont 5		Alignment	G.		Number	5	Formatting * Table *			Styles	
												,	
0	• : X √ Jx	0											
A	В	С	D	E	F		G	н	1	J	К	L	M
1.	Set Number of Atmospheric Zones i Global Settings = 3	n	2. ^{Se}	et Nodal Zones Number in Node Table Editor				3.	Set Atmospheric Zon Data in Plan View	e			
								Zone 1	(Node 1 to 54)			Zone 2	(Node 55 to 179)
								Numbe	r of entries = 4393			Numbe	r of entries = 439
		Nod	e# At	tmospheric Zone Number				t (hrs)	Τ _α (° C)	ϕ_s (W/m ²)		t (hrs)	T a (° C)
			1	1				0	0	0		0	0
			2	1				1	-9.8	0		1	-6.6
			3	1				2	-9.8	0		2	-6.6
			4	1		-		3	-9.8	0		3	-6.6
			5	1		-		4	-9.8	0		4	-6.6
			7	1				5	-5.0	0		5	-0.0
			8	1				7	-9.8	0		7	-0.0
			9	1				8	-9.8	0		8	-6.6
			10	1				9	-9.8	68.793		9	-6.6
			11	1				10	-9.8	181.13		10	-6.6
			12	1				11	-9.8	265.358		11	-6.6
			13	1				12	-9.8	310.042		12	-6.6
			14	1				13	-9.8	311.081		13	-6.6
			15	1				14	-9.8	268.388		14	-6.6
			16	1				15	-9.8	185.849		15	-6.6
			17	1		-		16	-9.8	74.287		16	-6.6
			18	1				17	-9.8	0		17	-6.6
			19	1				18	-9.8	0	_	18	-6.6
			20	1				19	-9.8	0		19	-6.6
			21	1				20	-9.8	0		20	-0.0
			22	1				21	-5.0	0		21	-0.0
	Atmospheric Zones	BC#1 Upstream Infl	low Boun	ndary BC#2 Lateral Inflo	w at No	de 8	BC	#3 Latera	al Inflow at Node 123	BC#4 Outflow Ratin	g Curve	Bridg	ing Reach Info

- 11. Repeat steps 9 and 10 for Zone 2 (Green) and Zone 3 (Red).
- 12. Save file as "3 peaceriver with zones.r1d"

Task 1C: Inputting Flow Boundary Conditions

Next we will add in the flow boundary conditions. Our model contains an upstream boundary (blue dot), two lateral inflow boundaries (orange dots), and an outflow boundary at the downstream end (red dot).

- 1. Let's start with the inflow. You can either use the toolbar button or you can go to Simulation and select '*Edit Boundary Conditions…*'. This will turn the mouse into a cross and then you can click on the boundary dot that you want to edit. Click on the blue dot. This will open the 'Edit Inflow Boundary Condition' dialogue.
- 2. Go to the tab <u>BC#1 Upstream Inflow Boundary</u> in "**Model Input Calibration.xlsx**". Set the number of entries in River1D to the number indicated on this tab. Copy and paste the table data from the

spreadsheet into the River1D dialogue table. Click Apply, then

CRIPE Short Course on River Ice Modelling

	· · ·			Model in					
File Hom	ne Insert Page Lay	yout Formulas Data	Review View Add-ins 🖓 Tell m	e what you want to do	E and	Cont Number		Sign in	A. Share
Paste Copy	- BIU-		A B		E Bad Explanatory	Good Neutral Linked Cell	Note	Fill * Sort & Find &	
 Porma Clipboard 	ry	Font 19	BC#1 Upstream Infl	ow Boundary at No	de 1	tyles	Cells	Clear* Filter* Select* Editing	^
A4 *	r i × √ fx	0	Number of Entires	= 184					^
		3	t (hrs) Q_w (cms) T	$_{w}$ (°C) C _f (%) U _i	(m/				
	B C D	4	0 1600	6.66 0	0	RST	IVWXV		AC I
1 BC#1 Upst	ream Inflow Bound	y at Node 1							
3 t (hrs) Q	, (cms) T_w (° C) C_f (%) U _i (m/s) C _i (%) t	t _f (m) t _i (m)						
4 0 1 5 24 9	1600 6.66 0 977.6 6.66 0	0 0 0	0 0 0 0						
6 48 10 7 72 4	046.9 7.15 0 184.9 7.18 0	0 0 0	0 0 0						
8 96 6 9 120 1	6.99 0	0 0		e Data					
10 144 1	129.5 6.4 0	0 0	0						
12 192 1	202.5 6.81 0		0 0						
13 216 1 14 240 1	206.1 6.64 0 202.1 6.41 0	0 0 0	0 0 0 0						
15 264 1 16 288 1	181.5 6.19 0 229.3 6.15 0	0 0 0	0 0 0						
17 312 1 18 336 1	247.5 6.04 0 271.6 5.85 0	0 0 0	0 0						
19 360 1	248.8 5.75 0	0 0	0 0						
21 408 1	192.5 5.34 0		0 0						
22 432 10 23 456 1	074.7 5.02 0 199.8 4.63 0		0 0						
24 480 1 25 504 1	361.6 4.42 0 1365 4.38 0	0 0 0 3 .	.72 0 0	0 0	0				
26 528 1 27 552 1	315.2 4.21 0 237.7 4.2 0	0 0 0 3	.64 0 0	0 0	0				
28 576 1	145.7 4.08 0		3.5 0 0	0 0	0				
30 624 1	571.1 3.9 0	o o o o o	BC#1 Upst	ream Inflow Boundary	8C#2 Lateral Inflov	w at Node 28 BC#3	Latera		
32 672 1	374.4 3.72 0		7		-				
33 696 1 34 720 1	204.4 3.64 0 134.4 3.5 0		y 0						
Ready	Atmospheric Zone	BC#1 Upstream Inflow Bou	IC#2 Lateral Inflow at Node 28	BC#3 Lateral inflow at Node 123	BC#4 Outflow Rating Curve	Bridging Reach Info Global and I	iodal Parameters	: « 56.82 III E III - I	+ 100%
Ready	Atmospheric Zone	BC#1 Upstream Inflow Bou	C#2 Lateral Inflow at Node 28	BC#3 Lateral inflow at Node 123	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1	iodal Parameters	: < 56.82 III III -	+ 100%
Ready Edit Inflow	Atmospheric Zone	BC#1 Upstream Inflow Bou	ndary C#2 Lateral inflow at Node 28	BC#3 Lateral Inflow at Node 123	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1	Nodal Parameters	i 4 66.62 🔢 🗉 – 🖡	+ 100%
Ready Edit Inflow	Atmospheric Zone	BC#1 Upstream Inflow Bou	C#2 Lateral inflow at Node 28	8 BC#3 Lateral Inflow at Node 123	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1	iodal Parameters 🛛 💮 verage: 443.9312836 Count: 1472 Sum: 65346	: (. 6.52 III II	+ 100%
Ready Edit Inflow BC # 1 (v Boundary Con Type = Inflow Hy	BC#1 Upstream Inflow Bou dition ydrograph)	nnary CP2 Lateral inflow at Node 28	8 BC#3 Lateral Inflow at Node 123	BC#4 Outflow Rating Curve	Bridging Reach Info Global and I	iodal Parameters (: (. 	+ 100%
Edit Inflow BC # 1 (V Boundary Con Type = Inflow Hy	BC#1 Upstream Inflow Bou dition ydrograph)	ndary C#2 Lateral Inflow at Node 28	8 BC#3 Lateral Inflow at Node 123	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1	iodal Parameters	: (. 66.62 III III	* 1075
Edit Inflow BC # 1 (Inflow	V Boundary Con Type = Inflow Hy Boundary Option	scri Uptream Inflow Bou dition ydrograph)	ndary C#2 Lateral Inflow at Node 28	BC#3 Lateral inflow at Node 123	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1	iodal Parameters	: (66.62 III III III	+ 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option	sCr1 Uptream Inflow Bou dition ydrograph) IS	ndary C#2 Lateral Inflow at Node 28	BC#3 Lateral inflow at Node 123	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1	iodal Parameters	56.62 III II II	+ 100%
Edit Inflow BC # 1 (Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option	dition ydrograph)	ndary C42 Lateral willow at Node 28	BC#3 Lateral inflow at Node 123	BCR4 Outflow Rating Curve	Bridging Reach Info	iodal Parameters	56.62 III II II	* 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option	dition ydrograph) Is Number of Entries =	ndary C/2 Lateral without it Node 28	8 BC#3 Lateral inflow at Node 123	BCR4 Outflow Rating Curve	Bridging Reach Info	iodal Parameters	66.62 III II I	+ 1005
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option	ECFI Upstream Inflow Bou dition ydrograph) is Number of Entries =	ndary C+2 Lateral Inflow at Node 28	BCR3 Lateral inflow at Node 123	BCR4 Outflow Rating Curve	Bridging Reach Info	Iodal Parameters	Solid Ico This langua (- 1)	+ 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option Time (hours)	dition ydrograph) is Number of Entries = Discharge (cms) 1000	rdary Cr2 Lateral without at Node 28	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%)	BCR4 Outflow Rating Curve	Bridging Reach Info Global and T	Iodal Parameters	Solid Ice Thickness (m)	+ 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00	dition ydrograph) is Number of Entries = Discharge (cms) 1600,000	edary = 184 ∨ Water Temperature (*C) 6.660	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1 Clobal and	In the second se	6.6.2 III III III III IIII IIII IIIIIIIIII	* 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00	dition ydrograph) is Number of Entries = Discharge (cms) 1600.000 977.600	= 184 ∨ Water Temperature (*C) 6.660	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and T	Iodal Parameters ① Iverage: 443.912836 Count: 1472 Som: 63346 Frazil Slush Thickness (m) 0.000 0.000	Solid Ice Thickness (m) 0.000 0.000	* 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 48.00 000	dition ydrograph) is Number of Entries = Discharge (cms) 1600.000 977.600 1046.900	= 184 Water Temperature (*C) 6.660 7.150 7.150	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000	Ice Velocity (m/s) 0.000 0.000	Bridging Reach Info Global and T	Iodal Parameters	50lid Ice Thickness (m) 0.000 0.000	* 100%
Edit Inflow BC # 1 (Inflow	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 48.00 72.00	dition ydrograph) IS Number of Entries = Discharge (cms) 1600.000 977.600 1046.900 484.900	= 184 Water Temperature (*C) 6,660 7,150 7,180	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%) 0.000 0.000 0.000 0.000 0.000	Iodal Parameters	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000	+ 100%
Ready Edit Inflow BC # 1 (Inflow 1 1 2 3 4 5	Atmospheric Zone v Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 48.00 72.00 96.00	BCFI Upstream Inflow Boo dition ydrograph) IS Discharge (cms) 1600.000 977.600 1045.900 484.900 688.700	■ 184	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Iodal Parameters	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000 0.000	* 100%
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 48.00 72.00 96.00 120.00	ECFI Upstream Inflow Boo dition ydrograph) IS Number of Entries = Discharge (cms) 1600.000 977.600 1046.900 484.900 688.700 1017.300	■ 184	BCP3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Iodal Parameters Image: 4433912836 Count: 1472 Sum: 68346 Frazil Slush Thickness (m) 0.000 0.	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000	× 100%
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 7	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 48.00 72.00 96.00 120.00 144.00	ECFI Upstream Inflow Boo dition ydrograph) IS Number of Entries = Discharge (cms) 1600.000 977.600 1046.900 484.900 688.700 1017.300 1129.500	■ 184 ✓ Water Temperature (*C) 6.660 7.150 7.150 7.180 6.620 6.620 6.400	BCP3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%) 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Iodal Parameters Image: 443.912836 Count: 1472 Sum: 68346 Image: 443.91286 Count: 1472 Sum: 68346 Image: 453.91286 Count: 1472 Sum: 68346 Image: 454.91286 Count: 1472 Sum: 68346 Image: 45	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	× 1005
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 7 8	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 24.00 24.00 120.00 144.00 168.00	ECFI Upstream Inflow Bound dition ydrograph) is Number of Entries = Discharge (cms) 1600.000 977.600 1046.900 484.900 688.700 1017.300 11129.500 969.600	■ 184	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%) 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	In the second se	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 1005
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 7 8 9	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 24.00 24.00 120.00 120.00 144.00 168.00 192.00	ECFI Upstream Inflow Bound dition ydrograph) is Number of Entries = Discharge (cms) 1600.000 977.600 1046.900 1046.900 688.700 1017.300 1129.500 969.600 1202.500	■ 184	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%)	Indel Parameters ⊕ brerzage: 443.9172636 Count: 1472 Sum: 65346 Frazil Slush Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	× 1005
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 7 8 9 10	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 48.00 0.00 24.00 120.00 120.00 144.00 168.00 192.00 216.00	ECFI Upstream Inflow Bound dition ydrograph) is Number of Entries = Discharge (cms) 1600.000 977.600 1046.900 484.900 6688.700 1017.300 1129.500 969.600 1202.500 1202.500		BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BCR4 Outflow Rating Curve	Bridging Reach Info Global and 1 Ice Concentration (%)	Indel Parameters ⊕ brerzage: 443.9172636 Count: 1472 Sum: 65346 Frazil Slush Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Solid Ice Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	× 1005
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 7 8 9 10 11	Atmospheric Zone Atmospheric	ECFI Upstream Inflow Boo dition ydrograph) is Number of Entries = Discharge (cms) 1600.000 977.600 10164.900 484.900 688.700 1017.300 1129.500 969.600 1202.500 1202.500 1202.100	e 184 ∨ Water Temperature (*C) 6.660 7.150 7.180 6.620 6.620 6.620 6.620 6.620 6.640 6.810 6.810 6.640	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and I Ice Concentration (%)	Image: 443.9172636 Count: 1472 Sum 65346 Frazil Slush Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Solid Ice Thickness (m) 0.000	× 100%
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 7 7 8 9 10 11 12	Amospheric Zone A Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.00 24.00 24.00 120.00 144.00 120.00 144.00 120.00 144.00 120.00 144.00 120.00 144.00 120.00 144.00 168.00 192.00 240.00	ECFI Upstream Inflow Bound dition ydrograph) is Discharge (cms) 1600.000 977.600 1046.900 484.900 688.700 1017.300 1129.500 11202.500 1202.500 1202.100 1181.500	■ 184 ∨ Water Temperature (*C) 6.660 ● 6.660 7.150 ▼7.180 6.990 ● 6.620 6.400 ● 6.760 6.310 ● 6.640 6.410 ● 6.410 6.410	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and I Ice Concentration (%) 0.000	Isodal Parameters ⊕ berrage: 443.912896 Count: 1472 Som: 63346 Frazil Slush Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Solid Ice Thickness (m) 0.000	
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 6 6 7 7 8 9 10 11 12	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.000 24.00 48.00 72.00 96.00 120.00 144.00 168.00 120.00 144.00 168.00 240.00	ECFI Upstream Inflow Bound dition ydrograph) is Discharge (cms) 1600.000 977.600 1046.900 484.900 688.700 1017.300 1129.500 1129.500 1202.500 1202.500 1202.100 1181.500	■ 184 ✓ Water Temperature (*C) 6.660 ● 6.660 7.150 7.150 7.180 ● 6.620 6.400 ● 6.760 6.310 ● 6.640 6.410 ● 6.410 6.190	BCCP3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and I Ice Concentration (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	iodal Parameters ⊕ herrage: 443.912896 Count: 1472 Som: 63346 Frazil Slush Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Solid Ice Thickness (m) 0.000	+ 107%
Ready Edit Inflow BC # 1 (Inflow 1 2 3 4 5 5 6 7 8 9 10 11 11 12	Atmospheric Zone V Boundary Con Type = Inflow Hy Boundary Option Time (hours) 0.000 24.00 24.00 148.00 72.00 96.00 120.00 144.00 144.00 146.00 126.00 240.00	ECFI Upstream Inflow Boo dition ydrograph) is Discharge (cms) 1600.000 977.600 1046.900 484.900 688.700 1017.300 1129.500 969.600 1202.500 1202.500 1202.100 1181.500	e 184 ✓ Water Temperature (*C) 6.660 7.150 7.180 6.620 6.620 6.620 6.6400 6.6310 6.640 6.640 6.640 6.640 6.640 6.640 6.6190	BCF3 Lateral Inflow at Node 123 Frazil Concentration (%) 0.000	BC#4 Outflow Rating Curve	Bridging Reach Info Global and I Ice Concentration (%)	iodal Parameters ⊕ herrage: 443.912896 Count: 1472 Sum: 65346 Frazil Slush Thickness (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Solid Ice Thickness (m) 0.000	+ 102%

- 3. Repeat steps 1 and 2 for the 3 other flow boundaries. The data for each boundary are under separate tabs in "**Model Inputs Calibration.xlsx**".
- 4. Save the file as "4 peaceriver with flow BCs.r1d".

Task 1D: Inputting Ice Bridging Information

Now we will define the bridging location. For this model we are only considering 1 bridging location. If you wanted to consider additional bridging locations, you would have to change the number of bridging reaches in the '*Global Settings*' dialogue box.

1. To edit the bridging reach information, go to Simulation and select '*Edit User Defined Bridging Reaches…*'. This opens a dialogue box.

Edit User Defined Bridging Reaches								
	Bridging Reach #	Bridging Location (km)	Bridging Time (hrs)	Ice Front Location (km)				
	1	0.000	10.000	0.000				
				Apply Class				
				Appry Close				

- 2. The required information can be found in the <u>Bridging Reach Info</u> tab in the "**Model Input Calibration.xlsx**" file. Copy and paste this data into the dialogue box. Click <u>Apply</u>, then
 - **IMPORTANT**: The bridging location MUST coincide with the exact stationing for a node. It cannot be located between nodes. This is how the program is currently set up, but may change in future releases.

E ♦ C = = Ein Home Incert Panelacout Formulas Data Beniew View Add.ins	Model Inputs Calibration	Excel		EE − EI × San in O Share
$ \begin{array}{c c c c c c } \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	r + \$ + % + % + % + % + % + % + % + % + %	ad Good Neutral xplonatory Input Unked Cell Styles	Calculation	AutoSum * Av Fill * Sori & Find & Clear * Filter * Select * Editing ▲
A B C D Bridging Location (km) Bridging Time (hrs) Lee Front Location (km) 826.7 275 826.7	F G H I J K	L M N O P	Q R S T	U V W X Y C
8 50 51 52 53 53 55 55 56 57				
18 20 21 22 33 34 35 77 27 27 27	Curve Bridging Reach Info Clobal	and N		
28 29 30 31 32 33 34 35 ** Atmospheric Zones BC#1 Upstream Inflow Boundary BC#2 Lateral Inflo	at Node 28 BC#3 Lateral inflow at Node 123 BC#4 Outflow Rat	Ar Ing Cury Bridging Resch Info of obal and	J Nodal Parameters	

3. Save the file as "5 - peaceriver with bridging and default global and nodal parameters.r1d".

The file is now ready to run. It has all of the necessary boundary conditions and the bridging reach information, but it is using the default settings for all of the global and nodal parameters. Later, in module 3, we will calibrate these settings against real world data.

Module 2: Running the Model with Default Settings (No Calibration)

We will run the model in two simulations using its default setting: steady state and transient. The steady state simulation will generate the initial conditions needed for the transient simulation.

Task 2A: Steady State Simulation

- 1. Go to Simulation and select '*Steady…*'.Then hit
 - NOTE: You need to be in the <u>Profile View</u>, <u>Plan View</u>, or <u>Hydrograph View</u> tabs for the 'Steady...' menu item to be active.

2. Let the model run until the solution has converged. (The solution change should get very small and not change. The profile view of the solution should also no longer be changing).

3. Once the steady solution has converged, save the file as "6 - peaceriver with bridging and default global and nodal parameters - initial conditions.r1d".

Task 2B: Transient Simulation

Time to run the transient simulation. Before we do this, we will want to set up the model to output some results that we can use to compare to field observations to see how well the model performs with the default settings.

1. Go to Simulation and select '*Output Options…*'. This opens the 'Transient Output Options' dialogue. For this exercise, we are going to output '*Time Series*' and the '*Ice Front Location*' data. Check these boxes.

Transient Output Options	×
Time Series Uutput file name: Dutput to hydrograph(s) every Select output variables Water Surface Elevation Kater Discharge Ce Velocity Water Temperature Border Ice Fraction Water Surface Width Suspended Frazil Concentration Air Temperature Air Temperature Ce Velocity Ce V	Domain Snapshot Output file name: Dutput snapshot every Select output variables Water Surface Elevation Anchor Ice Thickness Water Discharge Frazil Slush Thickness Water Discharge Concentration Border Ice Fraction Water Surface Width Suspended Frazil Concentration Air Temperature Air Temperature Browse Dutput snapshot every Select output variables Browse Dutput snapshot every Select output variables Browse Select output variables Browse Browse Dutput snapshot every Select output variables Browse Browse Browse Browse Dutput snapshot every Select output variables Browse Browse Dutput snapshot every Select output variables Browse Browse Dutput snapshot every Select output variables Browse Browse Browse Dutput snapshot every Select output variables Browse Browse Browse Browse Browse Select output variables Browse Brow
Peak Values of Stage and Discharge Output file name: Browse Browse	River 1D Files Output folder: Browse Output River1D file every
Output file name:	Output file name:
Initialize Output	Close

2. For the time series data, click Browse... to determine the output file location. Navigate to the "Working Files" folder and name the output file "time series – calibration simulation with

Save

default parameters.csv". Click

Output Options			×
e Series	🖓 Save Time Series Output As		×
	← → × ↑ 📙 ≪ River1D Peace River Model - May 30 → Work	cing Files	✓ ♂ Search Working Files (Tutorial)
Output to hydrog	Organize 🔻 New folder		≣≡ ▾ (?)
ct output variables	Zotero ^ Name	Date modified Type	Size
ater Surface Elevation	💻 This PC	No items wetch several h	
ater Discharge e Velocity	🗊 3D Objects	No items match your search.	
ater Temperature	E. Desktop		
uspended Frazil Concentratic	Documents		-
urface Ice Concentration	Custom Offic		-
	River1D Peace		
k Values of Stage and Discha	River1D Pea		
Output rile name	HEC-RAS		
	Master File		
Front Location	River1D		
Output file name	📙 Working F		-
	📙 Working F 🗸		
Output ice front I	File name: time series – calibration simulation with default	parameters.csv	
	Save as type: Comma delimted files (*.csv)	•	~
	∧ Hide Folders		Save Cancel
l			ii.
		<u> </u>	

- 3. Choose '1 hour' for the frequency of hydrograph(s) output. Check the boxes for 'Water Temperature' and 'Solid Ice Thickness'.
- 4. For the ice front location data, click and navigate to the "Working Files" folder. Name the output file "ice front calibration simulation with default parameters.csv".
- 5. Choose '1 hour' for the frequency of ice front location output.
- 6. The dialogue window should look like this before continuing.

Time Series			Domain Snapshot		
Output file name:			Output file name:		
C:\Users\Student\	Documents\River 1D Peace	Browse			Browse
Output to hydrogra	ph(s) every 1 hour	~	Output snap	shot every	\sim
Select output variables			Select output variables		
Water Surface Elevation	Anchor Ice Thickness	Max Border Ice Thickness	Water Surface Elevation	Anchor Ice Thickness	Max Border Ice Thickness
Water Discharge	Frazil Slush Thickness	Water Depth	Water Discharge	Frazil Slush Thickness	Water Depth
Ice Velocity	Solid Ice Thickness	Water Velocity	Ice Velocity	Solid Ice Thickness	Water Velocity
✓ Water Temperature	Border Ice Fraction	Water Surface Width	Water Temperature	Border Ice Fraction	Water Surface Width
Suspended Frazil Concentration	Border Ice Width		Suspended Frazil Concentration	Border Ice Width	
				, in remperature	
Peak Values of Stage and Discharg	e		River 1D Files		
Output file name:			Output folder:		
		Browse			Browse
			Output River1	D file every	\sim
Output file name:					
C:\Users\Student\	Documents\River 1D Peace	Browse	SQLite Database		
			Output nie name:		Brauna
Output ice front loc	ation every 1 hour	~			browse
			Output dat	abase every	\sim

- 7. Click Initialize Output, then click Close
- 8. Now we are ready to run. Go to Simulation and select the '*Transient…*' option. This opens the 'Run Transient' dialogue box.
 - **NOTE**: You need to be in the <u>Profile View</u>, <u>Plan View</u>, or <u>Hydrograph View</u> tabs for the 'Transient...' menu item to be active.

🚜 6 - peaceriver with bridging and default	global and nodal parameters - initial conditions.r1d - Rive
File Edit View Display Node Table	Simulation Help
) 🗅 📂 🔛 🕺 🕹 📾 🖨 🥥	Transient
	Steady
	Edit Boundary Conditions
	Edit Manning's n Values
119.712, 7.407	Edit Atmospheric Zone
	Edit User Defined Bridging Reaches
- -	Output Options
	Global Settings
0 L L	
2 5 _	

9. Set the 'Final Time' to 4368 hrs (this is 182 days and stops just before the boundary conditions end), and set the 'Time Step Increment' and 'Max Time Step Increment' to 0.5 (*if it is not already*).

Run Transient Present Time (hrs) Final Time (hrs) Time Step Increment, Δt (hrs)	0 4368		
Present Time (hrs) Final Time (hrs) Time Step Increment, Δt (hrs)	4368	1	
Final Time (hrs) Time Step Increment, Δt (hrs)	4368		
Time Step Increment, Δt (hrs)			
	0.5		
Max Time Step Increment (hrs)	0.5		
Hydrodynamic Solution			
Implicitness, O	0.5		
Solution Change	4.3540E-14		
Solution Tolerance	1e-05	/	
# of iterations per Δt	1		
Max # of iterations per Δt	9		
Thermal Processes Solution (Tw Ec	quation)		
Implicitness, O	0.5		
Solution Change	9.5134E-15		
Solution Tolerance	1e-05		
# of iterations per Δt	1		
Max # of iterations per Δt	9		
Run			
	Time Step Increment, Δt (hrs) Max Time Step Increment (hrs) Max Time Step Increment (hrs) Hydrodynamic Solution Implicitness, Θ Solution Change Solution Tolerance # of iterations per Δt Max # of iterations per Δt Implicitness, Θ Solution Change Solution Tolerance # of iterations per Δt Max # of iterations per Δt Run	Time Step Increment, Δt (hrs)0.5Max Time Step Increment (hrs)0.5Max Time Step Increment (hrs)0.5Max Time Step Increment (hrs)0.5Solution Change4.3540E-14Solution Change4.3540E-14Solution Tolerance1e-05# of iterations per Δt 1Max # of iterations per Δt 9Thermal Processes Solution (Tw Equation)Implicitness, Θ Implicitness, Θ 0.5Solution Change9.5134E-15Solution Tolerance1e-05# of iterations per Δt 9RunRun	Time Step Increment, Δt (hrs)0.5Max Time Step Increment (hrs)0.5Max Time Step Increment (hrs)0.5Hydrodynamic SolutionImplicitness, Θ 0.5Solution Change4.3540E-14Solution Tolerance1e-05# of iterations per Δt 1Max # of iterations per Δt 9Thermal Processes Solution (Tw Equation)Implicitness, Θ 0.5Solution Change9.5134E-15Solution Tolerance1e-05# of iterations per Δt 1Max # of iterations per Δt 9Run

10. Hit

Run

11. Once the model has stopped running, close the dialogue and save the file as "7 - peaceriver with bridging and default global and nodal parameters - end.r1d".

Task 2C: Checking Outputs

- 1. Open the "2012-2013 Peace River Calibration Results with default parameters.xlsx" file in the "Working Files" folder. This excel file will be used to check the outputs of the model against real world data.
- Open the "ice front calibration simulation with default parameters.csv" file. Copy and paste the output data into the <u>Paste Ice Front</u> tab of the "2012-2013 Peace River Calibration Results with default parameters.xlsx" spreadsheet. The simulated ice front will automatically be plotted along with the observed ice front data for the 2012-2013 season in the <u>Ice Front Chart</u> tab.

CRIPE Short Course on River Ice Modelling

⊟•ాం	<u>.</u>									ik	:e front – ca	libration si	nulation with	n default para	meters.csv -	Excel										⊞ –	٥	×
File Hom	e Insert	Page Layou	E Formulas	Data	Review	View	Add-ins	🖓 Tell m	e what you i	want to do																Sig	nin A ₄ :	Share
Cut 🔏	Ca	libri	- 11 - A	A* = =	- ».	- 🗇 w	/rap Text	Gene	eral				Normal	Bad		Good		leutral	Calcul	ation		- 🖹	🛱 Σ	AutoSum ~	Aw I	ρ		
Paste Copy	· P	7 11 - 10	0. A. A			= =,	·		o/ .	-0 00 C	onditional	Format as	Check Cell							_			UUU Ţ	Fill *	21.			_
🗸 👎 Forma	t Painter	1 8 . 1	· · <u>· · · 4</u>	• = =			terge & Cente	1	70 /	.00 *.0 Fo	rmatting *	Table *	enecareen															
Clipboard	6	For	t.	5	A	lignment		5	Number	5				ic	e fror	nt – ca	alibra	tion s	imulat	tion v	vith d	efaul	t para	imetei	rs.csv	- Exc	el	^
A7 *	i x	$\sqrt{-f_{\rm X}}$	275																									^
																												_
A	В	C D	E	F	G	н	1.1	J.	к	L	M	N	0	P	Q	R	S	т	U	v	w	×	Y	z	AA	AB	AC	
1 Ice Front Loo	ation File																											
2 Ice Front Loo	ation file:C:	Users\Stude	nt\Document	s\River1D F	Peace River	r Model -	May 30-202	30612T202	336Z-001\F	River1D Pe	ace River	Model - I	1ay 30\Wori	king Files\io	e front – o	alibration s	imulation	with defa	ilt paramete	ers.csv								
3 River1D sour	rce file: C:\l	Jsers\Studen	t\Documents	River1D Pe	eace River	Model - M	May 30-2023	0612T2023	36Z-001\R	iver1D Pea	ice River N	Nodel - M	ay 30\Work	ing Files\6 -	peacerive	r with brid	ging and c	lefault gloi	al and nod	al paramet	ters - initia	ondition of the second se	ons.r1d					
4 Date: 6/13/2	023																											
5 6 Time (her) De	Idelea D Los	ation (Locati	an (her)																									
7 275	Toging K Loc	0 83	00 (Km)																									
8 276		0 80	7.5																									
9 277		0 75	7.9																									
10 278		0 78	8.3																									
11 279		0 7	8.7																									
12 280		0 76	i9.1																									
13 281		0 761.2	828																									
14 282		0 756.0	547																									
15 283		0 751.4	635																									
10 284		0 747.0	249																									
18 286		0 7	5.5																									
19 287		0 7	0.5																									
20 288		0 73	5.5																									
21 289		0 71	.5.4																									
22 290		0 708.3	606																									
23 291		0 703.1	232																									
24 292		0 696.0	951																									
25 293		0 689.4	692																									
20 294		0 680.2	226																									
28 296		0 674.9	056																									
29 297		0 669.2	002																									
30 298		0 662.8	012																									
31 299		0 66	1.8																									
32 300		0 65	6.4																									
33 301		0 65	6.4																									
34 302		0 65	6.4																									
35 303		0 65	6.4																									
< >	ice front -	calibration si	mulat	(+)													4											Þ
Ready				-															Average: 861	7.7157431	Count: 122	32 Sum: 1	0657284.76	IIII	n m			100%
– 5. d																											~	~
											2013 Peace I	River Calibi	ation Results	with default p	arameters.xl	sx - Excel												

- 3. Open "time series calibration simulation with default parameters.csv" and paste the data into the <u>Paste Time Series</u> tab in the same excel file.
- 4. Go to the tabs for <u>Ice Front Chart</u>, <u>Tw Chart</u>, and <u>Ice Thickness Chart</u> to see the results compared to the available data.

5. Notice that the ice front is progressing too quickly. Water temperature results are ok – the results at 112 km are the ones to focus on since this location never freezes over. The model seems to over and under predict the water temperature, suggesting that $h_{wa} = 20$ is probably too high. h_{wa} also affects the amount of ice being generated, so it will also affect the ice cover advancement. The model is also over predicting the ice thickness, which indicates that h_{ia} is also too high.

Module 3: Calibrating the Model

Now that we have compared the output using default settings to real life data, we can begin calibrating the model to increase accuracy.

As stated previously, $h_{wa} = 20$ is likely too high. We can begin by adjusting this parameter. In the following task, we will experiment with the h_{wa} parameter to improve the water temperature modelling. This task will help you to familiarize yourself with the effects of the model parameters.

Task 3B will show you the properly calibrated parameters if you want to skip the experimentation.

• **NOTE**: A complete list of the ice process modelling parameters used in River1D along with default values and values reported in literature is available in **Appendix A**.

Task 3A: OPTIONAL – Experimenting with the h_{wa} parameter

The following task will be similar to the previous tasks in module 2.

- 1. Re-open the River1D file for '6 peaceriver with bridging and default global and nodal parameters initial conditions.r1d'.
- 2. Click on the <u>Node Table Editor</u> tab. Find the column for h_{wa} . This is a linear heat transfer coefficient which affects how quickly heat is transferred between the water and the atmosphere.
- 3. We are going to modify the values in the column to calibrate the temperature model. To do this, select the heading. The entire column should be highlighted.

				_		
Ice Width (m)	Atmospheric Zone Nun	her	hwa (W/Sa m/°C)	iwa	W/Sa m/°C)	kwa (W/Sc
000	1		20,000	,	0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20,000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20,000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20,000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.000
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00
000	1		20.000		0.000	0.00

4. Next, go to Node Table near the top of the program. Select the 'Set Values...' option.

July	13,	2023
------	-----	------

🍓 6 - peaceriver with	brid <mark>ging and default glob</mark> a	l and nodal parameters - i	nitial conditions.r1d -	River1D										
File Edit View [Display Node Table Simu	lation Help												
🗋 💕 🛃 🐰 📭	a 🗶 🔤 🛄 🐜 🖓	es												
	Reject Change	s												
	Column Width	n 🔸												
	Show Output	Nodes Only	1											
Ê	Set Values													
Ice Concentration (%)	Anctor Ice Thickness (m)	Frazil Slush Thickness (m	Border Ice Fraction	Max Border Ice Thickness (m)	LDB Bor									
0.00000	0.000	0.000	0.00000	0.000										
0.00000														
0.0000	0.000	0.000	0.00000	0.000										
0.00000	0.000	0.000	0.00000	0.000										
0.00000	0.000 0.000 0.000	0.000 0.000 0.000	0.00000 0.00000 0.00000	0.000 0.000 0.000										
0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000										
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000 0.000										

- 5. Enter a value for the highlighted cells.
 - **HINT**: Since the model is currently over-exaggerating changes in water temperature, you should lower the coefficient. The recommended range for h_{wa} is approximately 8 to 20.
- 6. Click OK
- 7. Click on store the edits. Click on the Profile view tab.
- 8. Run the model in steady state to generate the initial conditions. Go to Simulation and select *Steady…*..Then hit .
 - **NOTE**: You need to be in the <u>Profile View</u>, <u>Plan View</u>, or <u>Hydrograph View</u> tabs for the 'Steady...' menu item to be active.
- 9. Let the model run until the solution has converged.
- 10. Go to Simulation and select '*Output Options…*'. This opens the 'Transient Output Options' dialogue. Check the boxes for '*Time Series*' and '*Ice Front Location*'.
- 11. For the *'Time* Series' data, click Browse... to determine the output file location. Navigate to the

"Working Files" folder and name the output file "time series – hwa.csv". Click

- NOTE: If this is after your first run, select "time series hwa.csv" instead. When you save, you will be asked whether you want to overwrite this file. Click
- 12. Choose '1 hour' for the frequency of hydrograph(s) output. Check the boxes for 'Water Temperature' and 'Solid Ice Thickness'.
- 13. For the *lce Front Location*' data, click browse... to determine the output file location. Navigate

to the "Working Files" folder and name the output file "ice front – hwa.csv". Click

- NOTE: If this is after your first run, select "ice front hwa.csv" instead. When you save, you will be asked whether you want to overwrite this file. Click
- 14. Choose '1 hour' for the frequency of ice front location output.
- 15. Click Initialize Output, then click Close
- 16. Now we are ready to run. Go to Simulation and select the '*Transient…*' option. This opens the 'Run Transient' dialogue box.
 - **NOTE**: You need to be in the <u>Profile View</u>, <u>Plan View</u>, or <u>Hydrograph View</u> tabs for the 'Transient...' menu item to be active.
- 17. Set the 'Final Time' to 800 hrs, and set the 'Time Step Increment' and 'Max Time Step Increment' to 0.5 (if it is not already).

- 19. Once the model has stopped running, open the "**hwa calibration checker.xlsx**" file in the "Working Files" folder.
- 20. Open the "time series hwa.csv" and paste the data into the <u>Paste Time Series</u> tab of the hwa calibration checker.xlsx.
 - **NOTE**: You can select the entire sheet to copy and paste the data into the checker tab by clicking on the corner of the sheet.

1 5-	¢••																					α		a x
File H	Home Insert				© Tel																			A Share
💼 💥 Cu	A Call				G	ineral			i 💷 l	Normal	Rad		Good		Neutral	Calcul	ation	~	*	Σ	AutoSum +	Aw C)	
Parte Co	opy *						A 0.0	Conditional	Formatian	Check Cell	- Crala	enton	leout		Linkod Coll	Noto		 Incert 	Delete E		Fill *	Z Find		
- V For	ermat Painter B				- 3	- %	00 -0	Formatting *	Table *	Check Cell	Explo	natory	input		Linked Cell	Note		- msen	*	* e	Clear *	Filter * Select	* !*	
Clipboa	ard G				G	Numb	er	6				Sty	les						Cells		Edit	ting		^
A1	* I X			A																				^
			1 Ti	no Sorio																				
				ne sene																				
	B					К		L M	N	0	P	0	R	s	т	U	v	W	х	Y	z	AA	AB	AC A
1 Time Ser	ries Output File		2							-				-		-								
2			-																					
3 Time Ser	ries output file:C:				e Rive	er Model	- June 16	Working Files	\time serie	es - hwa.csv														
4 River1D s	source file: C:\Us		2 Ti	mo Soria	River	Model - J	une 16\W	Vorking Files\6	- peaceriv	er with bridg	ing and de	fault globa	al and nod	al parame	eters - initia	l conditions	s.r1d							
5 Date: 6/2	23/2023																							
0 7 x = 20.44	kNode # = 1Time (brs)	Water Ter S	olid teo Thickness (ux)	= 112 km Node # = Time (h	(c) Mator	Ter Solid	Ion Thick	DOLL 1 X - 205 9	k Nodo #	- Time (hrd	Water Ter	Solid Ice T	hicknoss	- 272 B	k Node # -	Time (hrs)	Water Ter	Solid Ico T	hickness	(IN - 275 kg	Node #=	Time (hrs1)	Vator Tor S	olid Ice Thir
8	n node # = 1 mile (ms)	6.66	0	= 112 Kill NODE # = 2 Time (il	0 6.1	77	0	ness (1x = 255.0	I K NOUE W	- , me (ms) 0	5.038	0	inckness (X = 373.0	KNOUE # =	0	4.609	0	IIICKIIESS	(IX = 373 KI	I NOUE # =	0	4.601	0
9	1	6.624	0		1 6.1	51	0			1	5.021	0				1	4.592	0				1	4.585	0
0	2	6.633	0		2 6.1	01	0			2	4.988	0				2	4.559	0				2	4.552	0
1	3	6.632	0		3 6.0	154	0			3	4.955	0				3	4.526	0				3	4.519	0
2	4	6.631	0		4 6.0	12	0			4	4.922	0				4	4,493	0				4	4.486	0
13	5	6.631	0		5 5.5	67	0			5	4.89	0				5	4.461	0				5	4.454	0
4	6	6.631	0		6 5.5	17	0			6	4.857	0				6	4.428	0				6	4.421	0
5	7	6.63	0		7 5.8	63	0			7	4.824	0				7	4.396	0				7	4.389	0
6	8	6.629	0		8 5	.81	0			8	4.792	0				8	4.364	0				8	4.357	0
7	9	6.63	0		9 5.7	168	0			9	4.766	0				9	4.34	0				9	4.333	0
8	10	6.63	0		10 5.7	51	0			10	4.761	0				10	4.336	0				10	4.329	0
9	11	6.629	0		1 5.7	56	0			11	4.778	0				11	4.354	0				11	4.347	0
:0	12	6.627	0		12 5.7	74	0			12	4.808	0				12	4.387	0				12	4.38	0
1	13	0.020	0		13 5.7	92	0			13	4.842	0				13	4.425	0				13	4.417	0
2	14	6.624	0		14 5.8	03	0			14	4.871	0				14	4.458	0				14	4.45	0
24	15	6.623	0		5.8	103	0			15	4.884	0				15	4.476	0				15	4.409	0
5	10	6.622	0		17 57	150	0			10	4.072	0				10	4.473	0				10	4,400	0
6	17	6.623	0		18 5.7	32	0			18	4.050	0				18	4,443	0				18	4.409	0
7	19	6,622	0		19 5.7	12	0			19	4,743	0				19	4,385	0				19	4.377	0
8	20	6.621	0		20 5.6	194	0			20	4.697	0				20	4.353	0				20	4.345	0
9	21	6.62	0		21 5.6	72	0			21	4.651	0				21	4.321	0				21	4.314	0
30	22	6.619	0		22 5.6	45	0			22	4.607	0				22	4.289	0				22	4.282	0
1	23	6.618	0		23 5.6	15	0			23	4.563	0				23	4.258	0				23	4.25	0
12	24	6.617	0		24 5.5	85	0			24	4.518	0				24	4.226	0				24	4.219	0
13	25	6.699	0		25 5.5	53	0			25	4.472	0				25	4.194	0				25	4.187	0
34	26	6.712	0		26 5.5	17	0			26	4.424	0				26	4.162	0				26	4.155	0
35	27	6.729	0		27 5.4	71	0			27	4.374	0				27	4.13	0				27	4.124	0
26	29	6.75	0		0R 5/	12	0			78	/ 272	0				28	4 098	0				28	/ 091	
	cime series - hwa	(+)												•										Þ
Ready																Average: 2	9.45604706	Count: 56	69 Sum: 1	65248.424		I E		+ 100%

21. Open the "ice front – hwa.csv" file and paste the data into the <u>Paste Ice Front</u> tab of hwa calibration checker.xlsx.

- 22. Go to the tabs for <u>Ice Front Chart</u> and <u>Tw Chart</u>. Compare the model results to the previous default model. Does the predicted temperature and ice front location better match the real world data? What further adjustments should be made?
- 23. Close the River1D model and re-open it. Run the model again with a different hwa coefficient. Repeat the entire task again until you find a suitable fit.

Task 3B: Adjusting Parameters

- 1. Re-open the River1D file for '6 peaceriver with bridging and default global and nodal parameters initial conditions.r1d'.
- 2. Go to Simulation and select 'Global Settings...' to open the 'Global Settings' dialogue.
- 3. Change the global parameters that are listed on the <u>Global and Nodal Parameters</u> tab in "**Model Inputs Calibration.xlsx**". These parameters and their calibrated values are:
 - Ice cover albedo (set to 0.6)
 - Snow thickness (set to 0.1 m)
 - Frazil accretion rate (set to 0 m/s)
 - *Fraction of bed covered by anchor ice* (set to *0*)

Global Settings			×
System of Units	Metric ~		
Hydrodynamics Formulation	Natural Channel V	Frazil Particle Shape Factor	1
Hydrodynamics Upwinding Coefficient	0.25	Average Diameter of Frazil Granules in Coverload (m)	0.001
Hydrodynamics Upwinding Updating	Every Iteration \checkmark	Critical Flow Strength	0.041
Water Temperature (°C)	Not Applicable	Minimum Water Temperature (°C)	-0.05
Hydrodynamics Flow Resistance Model	Composite Roughness \lor	Porosity of Anchor Ice	0.4
Specific Gravity of Ice	0.917	Frazil Accretion Rate (m/s)	0
Thermal Ice Upwinding Coefficient	1	Fraction of Bed Covered by Anchor Ice	0
Thermal Ice Upwinding Updating	Every Iteration \checkmark	Bed Material Average Diameter (m)	0.05
Number of Atmospheric Zones	3	Density of Bed Material (kg/m^3)	2650
Minimum Water Depth (m)	0	Border Ice Equation Coefficient a	14.1
Frazil Seeding Concentration	1e-05	Border Ice Equation Coefficient b	1.08
Typical Frazil Particle Thickness (m)	0.0003	Border Ice Equation Coefficient c	-0.93
Typical Frazil Particle Radius (m)	0.001	Border Ice Equation Coefficient e	0
Nusselt Number for Typical Suspended Frazil Particle	4	Maximum Fraction of Channel Covered By Border Ice	0.7
Coefficient of Turbulent Heat Exchange (Ws^0.8/m^2.6/°C)	1187	Maximum Velocity for Dynamic Border Ice Growth (m/s)	1.2
Rate of Frazil Rise (m/s)	0.0001	Velocity Mode For Border Ice Growth	Local Velocity At Edge of Border Ice \smallsetminus
Rate of Surface Ice Re-entrainment (1/s)	2e-05	Minimum Surface Ice Concentration	0.01
Re-entrainment Velocity Threshold (m/s)	1.5	Maximum Surface Ice Concentration	1
Porosity of Frazil Slush	0.4	Maximum Froude Number for Juxtaposition	0.06
New Frazil Pan Thickness (m)	0.3	Porosity Between Ice Floes at Ice Front	0.4
Solid Ice Initial Thickness (m)	0.001	Ice to Ice Friction Coefficient	1.28
Water Albedo	0.15	Ice Cohesion (Pa)	0
Ice Cover Albedo	0.6	Number of Ice Bridging Reaches	1
Snow Thickness	0.1		
	ОК	Cancel	

- 4. Once you are finished, click
- 5. Click on the <u>Node Table Editor</u> tab. Change the nodal parameters that are also listed under the <u>Global and Nodal Parameters</u> tab in the spreadsheet. To do this, select the heading of the column of the parameter you are trying to change. The whole column should become highlighted.

		_		
lce Width (m)	Atmospheric Zone Nun b	er hwa (W/Sq m/°C)	jwa (W/Sq m/°C)	kwa (W/S
000			0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.0
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.
000	1	20.000	0.000	0.

6. Then go to Node Table near the top of the program. Select the 'Set Values...' option.

🍓 6 - peaceriver with bridging and default glogal and nodal parameters - initial conditions.r1d - River1D					
File Edit View D	Display Node Table Simul	lation Help			
🗋 🖆 🛃 👗 🗈	i 🔁 🔤 🛛 🔤 i	es			
	Reject Change	s			
	Column Width	· •			
	Show Output	Nodes Only			
j čõ	Set Values		1		
Ice Concentration (%)	Anctor Ice Thickness (m)	Frazil Slush Thickness (m	Border Ice Fraction	Max Border Ice Thickness (m)	LDB Bor
0.00000	0.000	0.000	0.00000	0.000	
0.00000	0.000	0.000	0.00000	0.000	
0.00000	0.000	0.000	0.00000	0.000	
0.00000	0.000	0.000	0.00000	0.000	
0.00000	0.000	0.000	0.00000	0.000	
0.00000	0.000	0.000	0.00000	0.000	

7. Enter the value for the highlighted cells (e.g. for the h_{wa} column enter 16.5). Click

Dialog	×
Enter a value to se	t cells in the selected range
	16.5
ОК	Cancel

- 8. Repeat for the h_{ia} field (enter 13).
- 9. Once you have made all edits, click on 🔽 to accept the edits.

Task 3C: Steady State Initial Conditions

With the calibrated parameters, run the model to steady state again to obtain the initial conditions for the calibration simulation. The steps are the same as Task 2A.

1. Go to Simulation and select 'Steady...'.Then hit

Run

2. Let the model run until the solution has converged.

3. Once the model has converged to a steady state, save the file as "8 - peaceriver with calibrated global and nodal parameters - initial conditions.r1d".

Task 3D: Calibrated Transient Simulation

The following steps are similar to Task 2B. The main difference is file names to which outputs are saved.

- 1. Go to Simulation and select '*Output Options…*'. This opens the 'Transient Output Options' dialogue. Check the boxes for '*Time Series*' and the '*Ice Front Location*'.
- 2. For the time series data, click Browse... to determine the output file location. Navigate to the "Working Files" folder and name the output file "time series calibration simulation with

calibrated parameters.csv". Click

- 3. Choose '1 hour' for the frequency of hydrograph(s) output. Check the boxes for 'Water Temperature' and 'Solid Ice Thickness'.
- 4. For the ice front location data, click Browse... and navigate to the "Working Files" folder. Name the output file "ice front calibration simulation with calibrated parameters.csv".
- 5. Choose '1 hour' for the frequency of ice front location output.
- 6. Click Initialize Output , then click Close
- 7. Now we are ready to run. Go to Simulation and select the *'Transient...'* option. This opens the 'Run Transient' dialogue box.
 - **NOTE**: You need to be in the <u>Profile View</u>, <u>Plan View</u>, or <u>Hydrograph View</u> tabs for the 'Transient...' menu item to be active.
- 8. Set the 'Final Time' to 4368 hrs (this is 182 days and stops just before the boundary conditions end), and set the 'Time Step Increment' and 'Max Time Step Increment' to 0.5 (*if it is not already*).

10. Once the model has stopped running, save the file as "9 - peaceriver with bridging and calibrated global and nodal parameters - end.r1d".

Task 3E: Checking Calibrated Outputs

The steps are also very similar to Task 2C.

- 1. Open the "2012-2013 Peace River Calibration Results with calibrated parameters.xlsx" file in the "Working Files" folder. This excel file will be used to check the outputs of the calibrated model with real world data.
- Open the "ice front calibration simulation with calibrated parameters.csv" file. Copy and
 paste the output data into the <u>Paste Ice Front</u> tab of the "2012-2013 Peace River Calibration
 Results with calibrated parameters.xlsx". The simulated ice front will automatically be plotted
 with observed ice front data in the <u>Ice Front Chart</u> tab.
- 3. Open "**time series calibration simulation with calibrated parameters.csv**" and paste the data into the <u>Paste Time Series</u> tab in the same excel file.
- 4. Go to the tabs for <u>Ice Front Chart</u>, <u>Tw Chart</u>, and <u>Ice Thickness Chart</u> to see the new results compared to the available data.
- 5. The simulated ice front location and ice thickness now match the observed data quite well. The model is still over predicting the water temperature, but not under predicting it like before. As well, since h_{wa} will affect both water temperature and ice front progression (because it affects the amount of ice), $h_{wa} = 16.5$ seems reasonable.

Task 3F: OPTIONAL – Model Validation

1. Open up "**2010-2011 Peace River Validation Results.xlsx**" in the "Working Files" folder to see the results of the validation run with the calibrated parameters.

Module 4: OPTIONAL – Other River1D Features

Task 4A: Starting a New River1D Project using the File Builder

River1D now has a file builder to simplify the process of starting a new project with simple, trapezoidal geometry. To use the file builder:

- 1. Launch River1D.exe River1D.exe from the desktop, or from "Documents\River1D Peace River Model\River1D".
- 2. Go to File and select *'New'* or click the *icon*. The 'New File' Dialogue will open. Here you can enter simple model parameters to use in generating cross-sections for a trapezoidal channel.
 - If you would like, you can try changing these parameters. However, we will leave the default values for the rest of this tutorial.

3. Click Browse... to give your new project a name. Navigate to the "Working Files" folder and save your new project as "New River1D Project.r1d".

- 4. Click Create
- 5. On the Profile View tab you will see the model has been generated. You can now run this model

to steady state by going to Simulation then selecting *Steady…* and clicking **Run**. The water surface elevation will not change visibly using the default parameters.

- 6. Try starting another new project. This time, set the "Inflow Discharge (cms)" to 100 instead of 300. Leave all other parameters as the default values.
- 7. Go to the <u>Profile View</u> tab and run a steady simulation. Note how the decreased discharge with the fixed outflow water surface elevation resulted in a backwater profile.
- 8. You can now edit this simple geometry using the <u>Cross Section Editor</u> tab in River1D.
 - Individual cross-sections can be selected and the number of data points for each section can be set using the drop-down menus in the top left.
 - \circ $\,$ The cross-section data can be entered in the tables.
 - o Try playing around with the interface to see how the cross-sections change. Once you are

done with a cross-section, click

Apply Changes in the top right.

CRIPE Short Course on River Ice Modelling

Task 4B: Converting a HEC-RAS File into a River1D File

River 1D has a built-in HEC-RAS Geometry Converter to convert HEC-RAS *.g* files into River1D open water files. However, the *.g* file must meet the following requirements:

- Contain only a single branch of a channel / river
- Cannot contain any structures
- The bed roughness must be defined using the LOB / channel / ROB format.

With a file in this format, the steps are as follows.

1. Go to File and select 'Convert HEC-RAS Geometry File...' to open the 'HEC-RAS Geometry File Converter' Dialogue.

HEC-RAS Geometry File Converter Dialog \times			
HEC-RAS Geometry file			
Browse			
HEC-RAS Geometry file system of units			
Metric O Imperial			
Initial Depth 0 m			
Initial Discharge 0 cms			
River1D file			
Browse			
Convert Cancel			

- 2. Select your HEC-RAS geometry file by clicking under the 'HEC-RAS Geometry file name' field. Navigate to the location of the file "ICEJAM_EXAMPLE.g02" this is from the HEC-RAS project for the short course. It is also found in the "HEC-RAS" folder. Select it and click
- 3. Select the system of units for the HEC-RAS geometry file. For this file, it is 'Metric'.
- 4. Specify an initial depth (10 m) and initial discharge (1600 cms).
- 5. For the 'River 1D file name' field, click Browse... to navigate to an appropriate folder. Save the converted .r1d file. For this task, save as "Peace River from HEC-RAS.r1D".

7. When the file is converted, a message will appear in the bottom left corner of the application 'Conversion complete!'

8. Open the converted file.

The converted file should run to steady state. See "Peace River from HEC-RAS - steady.r1d".

It can now be converted to a 'Static Ice Conditions' file type and then can be set up to simulate an ice jam. See "Peace River from HEC-RAS – static ice.r1d" and "Peace River from HEC-RAS – static ice jam converged.r1d".

8. Helpful Resources

- Ashton, G. 1986. River Lake Ice Engineering. Water Resources Publications, LLC. 480 pp. (second printing in 2004)
- Beltaos, S. (Ed.) 1995. River Ice Jams. Water Resources Publications, Highlands Ranch, Colorado. 390 pp.
- Beltaos, S. (Ed.) 2008. River Ice Breakup. Water Resources Publications, LLC. 480 pp.
- Beltaos, S. (Ed.) 2013. River Ice Formation. Published by CRIPE. 552 pp.
- Hicks, F.E. 2013. The Weird and Wonderful World of River Ice. CreateSpace Independent Publishing Platform. 52 pp.
- Hicks, F.E. 2016. An Introduction to River Ice Engineering. For Civil Engineers and Geoscientists. CreateSpace Independent Publishing Platform. 10 pp.
- Lindenschmidt, K.-E. 2020. River ice processes and ice flood forecasting a guide for practitioners and students. Springer Nature Switzerland AG. 267 pp.
- Michel, B. 1978. Ice Mechanics. Peeters Publishers & Booksellers, 1978
- Committee on River Ice Processes and the Environment (CRIPE) Publications and Workshop Proceedings: http://www.cripe.ca/en/publications

9. References

- Andrishak, R., Hicks, F. 2008. Simulating the effects of climate change on the ice regime of the Peace River. Canadian Journal of Civil Engineering 35: 461-472.
- Beltaos, S. 1995. Ice Jam Processes. In: Beltaos, S. (Ed.). River Ice Jams. Water Resources Publicaitons.
- Beltaos, S., & Tang, P. 2013. Applying HEC-RAS to simulate river ice jams: snags and practical hints. In Proc. 17th Workshop on River Ice, Edmonton.
- Blackburn, J., She, Y. 2019. A comprehensive public-domain river ice process model and its application to a complex natural river. Cold Reg. Sci. Technol. 163, 44-58.
- Daly, S. F., Brunner, G., Piper, S., Jensen, M., and Tuthill, A. (1998). "Modeling ice covered rivers using HEC-RAS." Proc., Cold regions Impact on Civ. Works, 9th Int. Conf. on Cold Regions Engrg., David E. Newcomb, ed., ASCE, Reston, Va.
- Daly, S. F., & Vuyovich, C. M. 2003.. Modeling river ice with HEC-RAS. In Proceedings of the 12th CGU-HS CRIPE Workshop on River Ice, Edmonton, Alta.
- Hicks, F. 2016. An introduction to River Ice Engineering for Civil Engineers and Geoscientists. CreateSpace Independent Publishing Platform.

- Hicks, F.E., Steffler, P.M. 1992. A Characteristic Dissipative Galerkin Scheme for Open Channel Flow. ASCE Journal of Hydraulic Engineering 118: 337-352.
- Kennedy, R.J. 1958. Forces involved in Pulpwood Holding Grounds I. Transverse holding grounds with piers. The Engineering Journal. Engineering Institute of Canada 41:58-68.
- Koenig, T. A., Bruce, J. L., O'Connor, J., McGee, B. D., Holmes Jr, R. R., Hollins, R., ... & Peppler, M. C. 2016. Identifying and preserving high-water mark data (No. 3-A24). US Geological Survey.
- McFarlane, V., Loewen, M., Hicks, F. 2014. Laboratory measurements of the rise velocity of frazil ice particles. Cold regions science and technology, 106, 120-130.
- Michel, B. 1971. Winter Regime of Rivers and Lakes (p. 130). U.S. Army Cold Regions Research and Engineering Laboratory.
- Northwest Hydraulic Consultants, 2021a. Peace River Hazard Study, Ice Jam Modelling Assessment and Flood Hazard Identification Report. Prepared for Alberta Environment and Parks. May 2021. Draft.
- She, Y., Hicks, F., & Andrishak, R. 2012. The role of hydro-peaking in freeze-up consolidation events on regulated rivers. Cold Regions Science and Technology, 73, 41–49.
- Trillium Engineering and Hydrographics Inc. 2004. "Summary of Observations of Ice Conditions on the Peace River, 2002-2003 and 2003-2004." Prepared for Alberta Environment, Glacier Power, and BC Hydro.
- US Army Corps of Engineers (USACE) Hydrologic Engineering Centre. 2022. HEC-RAS River Analysis System Hydraulic Reference Manual. Version 6.2 December 2022.
- White, K. D. 1999. Hydraulic and physical properties affecting ice jams. US Army Corps of Engineers Cold Regions Research and Engineering Laboratory. CRREL Report 99-1.

Appendix A: River1D Model Parameters

River1D Ice Process Modelling Parameters

Ice modelling parameter	Default Value	Values in Literature
Density of ice, ρ_i (kg/m ³)	917	Lal and Shen (1991)
	20	19.7 (Lal and Shen,1991)
		15 (Andrishak and Hicks, 2008)
Heat transfer coefficient,		14 (Howley et al., 2020)
h _{wa} (W/m²/°C)		20 (Blackburn and She, 2019; Timalsina et al., 2013; Calkins, 1984)
		8 – 20 (Andres, 1988)
		12.8 (Shen, 2005)
Heat transfer coefficient,	20	12.2 (Malenchak, 2011)
<i>h_{ia}</i> (W/m²/°C)		12 (Howley et al., 2020)
		10 – 20 (Ashton, 2011)
Frazil seeding concentration, C _{fo}	0.00001	0.00001 (Blackburn and She, 2019)
Typical frazil particle thickness,	0.0003	0.0003 (Wang, et al., 1995)
d_e (m)		0.00013 (Malenchak, 2011)
Typical frazil particle radius, r _o (m)	0.001	0.001 (Wang et al., 1995; Malenchak, 2011)
Nusselt number for typical suspended frazil particle, $N_u^{\ f}$	4.0	4.0 (Wang et al., 1995; Malenchak, 2011)
Coefficient of turbulent heat exchange, α _{wi} (Ws ^{0.8} /m ^{2.6} /°C)	1187	1187 (Ashton, 1973; Andrishak and Hicks, 2008)
	0.0001	0.001(Wang et al., 1995; Howley et al., 2020)
Rate of frazil rise,		0.0001 (Andrishak and Hicks, 2008)
η (m/s)		0.0004 (Jasek et al., 2011)
		0.00009 (Timalsina et al., 2013)

Ice modelling parameter	Default Value	Values in Literature
Rate of surface ice re- entrainment, β_{re} (1/s)	0.00001	0.00001 (Wang et al., 1995; Malenchak, 2011)
Re-entrainment velocity threshold, <i>U_{i_re}</i> (m/s)	1.5	1.5 (Blackburn and She, 2023)
Porosity of frazil slush laver	0.4	0.5 (Andrishak and Hicks, 2008)
<i>p_f</i>		0.4 (Lal and Shen, 1991; Wang et al., 1995)
		0.6 (Howley et al., 2020)
		0.3 (Andrishak and Hicks, 2008; Blackburn and She, 2019)
New frazil pan thickness,	0.3	0.2 (Timalsina et al., 2013)
		0.23 (Jasek et al., 2011)
		0.14 (Howley et al., 2020)
Solid ice initial thickness, <i>t'si</i> (m)	0.001	0.001 (Lal and Shen, 1991)
	0.15	0.15 (Howley et al., 2020)
vvater albedo		0.05 – 0.15 (Hicks, 2016)
	0.5	0.10 – 0.46 (snow free) (Bolsenga, 1969)
Ice cover albedo		0.4 – 0.9 (snow) (Hicks, 2016)
Snow thickness (m)	0	
Frazil particle shape factor.	1.0	1.00 ± 0.03 (Beltaos, 2013)
F		1.0 (Shen and Wang, 1995)
Average diameter of frazil	0.01	0.01 (Shen and Wang, 1995)
granules in cover load, <i>d_f</i> (m)		0.002 (Malenchak, 2011)
Critical flow strength for under- cover frazil transport, Θ_c	0.041	0.041 (Shen and Wang, 1995)

Ice modelling parameter	Default Value	Values in Literature
Porosity of anchor ice, p _a	0.4	0.4 (Malenchak, 2011)
Frazil accretion rate, γ (m/s)	0.00001	0.000001 (Wang et al., 1995) 0.000005-0.00025 (Malenchak, 2011) 0.0001 (Timalsina et al., 2013) 0.0 (Jasek et al., 2011)
Fraction of bed covered by anchor ice, <i>C_{an}</i>	0.25	0.25 (Blackburn and She, 2019)
Bed material average diameter, <i>d</i> s (m)	0.05	0.05 (Blackburn and She, 2019)
Bed material density, $ ho_{ m s}$ (kg/m³)	2650	2650 (Malenchak, 2011)
Border ice equation coefficient, <i>a</i>	14.1	14.1 (Michel et al., 1982)
Border ice equation coefficient, b	1.08	1.08 (Michel et al., 1982)
Border ice equation coefficient, <i>d</i>	-0.93	-0.93 (Michel et al., 1982)
Border ice equation coefficient, e	0	
Maximum fraction of channel covered by border ice, <i>f_{bmax}</i>	0.7	0.7 (Blackburn and She, 2019) 0.75 (Howley et al., 2020)
Maximum velocity for dynamic border ice growth, <i>U_{cr}</i> (m/s)	1.2	1.2 (Michel et al., 1982) 0.8 (Howley et al., 2020)
Maximum Froude number for juxtaposition, <i>F</i> _{r_jux}	0.06	0.06 (Lal and Shen, 1991) 0.04 (Wang et al., 1995)

Ice modelling parameter	Default Value	Values in Literature	
	0.00	0.08 to 0.13 (Ashton, 1986)	
		0.09 (Lal and Shen, 1991)	
Maximum Froude number for ice		0.094 (Calkins, 1984)	
$F_{r max}$	0.09	0.08 (Timalsina et al., 2013)	
_		0.09 (Wang et al., 1995)	
		0.13 (Howley et al., 2020)	
Space between ice floes in newly formed cover.	0.4	0.4 (Shen, 2016)	
p _c		0.6 (Howley et al., 2020; Jasek et al., 2011)	
Composite jam stress	1.28 (Parise 1.28 Lal and S	1.28 (Pariset and Hausser, 1961; Pariset et	
parameter,		al., 1966; Laland Shen, 1991: Wang et al., 1995)	
٣ 			
Ice cohesion		700 (Calkins, 1984)	
τ_c (Pa)	0	980 (Lal and Shen, 1991)	
		800 (Wang et al., 1995)	

Appendix A References

- Andres, D.D. 1988. Observation and prediction of the 1986 breakup on the Athabasca River upstream of Fort McMurray, Alberta. Alberta Research Council Report No. SWE-88/03.
- Andrishak, R., Hicks, F. 2008. Simulating the effects of climate change on the ice regime of the Peace River. Canadian Journal of Civil Engineering 35: 461-472.
- Ashton, G.D. 1973. Heat transfer to river ice covers. In Proceedings of the 30th Eastern Snow Conference, Amherst, Mass., 8-9 February 1973. Eastern Snow Conference, Monmouth, Maine, 125-135.
- Ashton, G.D. (Ed.) 1986. River and Lake Ice Engineering. Water Resources Publications, Littleton, Colorado, 485 pp.
- Ashton, G.D. 2011. River and lake ice thickening, thinning, and snow ice formation. Cold Regions Science and Technology. 68, 3-19.
- Beltaos, S. 2013. Chapter 7: Freezeup Jamming and Formation of Ice Cover. In: Beltaos, S. (ed) River Ice Formation. CGU HS Committee on River Ice Processes and the Environment, 181-255.
- Blackburn, J., She, Y. 2019. A comprehensive public-domain river ice process model and its application to a complex natural river. Cold Regions Science and Technology. 163: 44-58.

- Blackburn, J., She. Y. 2023. The simulation of ice jam profiles in multi-channel system using a onedimensional network model. Cold Regions Science and Technology. 208 (2023) 103796.
- Bolsenga, S. J. 1969. Total Albedo of Great Lakes Ice. Water Resources Research. Vol. 5, No. 5, 1132-1133.
- Calkins, D.J. 1984. Instream Ice Calibration of Computer Model. Alaska Power Authority Document no. 1122. 111 pp.
- Hicks, F. 2016. An Introduction to River Ice Engineering for Civil Engineers and Geoscientists. 159 pp.
- Howley, R., She, Y., Ghobrial, T. 2020. A Modeling Study of Complex River Ice Processes in an Urban River. 25th IAHR International Symposium on Ice, online.
- Jasek, M., Ghobrial, T., Loewen, M., Hicks, F. 2011. Comparison of CRISSP modeled and SWIPS measured ice concentrations on the Peace River. In: CGU HS Committee on River Ice Processes and the Environment Proc., 16th Workshop on River Ice, September 18-22, 2001, Winnipeg, MB, 249-273.
- Lal, A.M. W., Shen, H. T. 1991. A Mathematical for River Ice Processes, Journal of Hydraulic Engineering, ASCE, 117(7): 851-867.
- Malenchak, J. 2011. Numerical modelling of river ice processes on the Lower Nelson River. Ph.D. Thesis, University of Manitoba, Winnipeg, Canada.
- Michel, B., Marcotte, N., Fonseca, F., Rivard, G. 1982. Formation of border ice in the Ste. Anne River. Proceedings of the Workshop on Hydraulics of Ice-Covered Rivers, University of Alberta, Edmonton, Alberta, Canada, 38-61.
- Nezhikhovskiy, R. A. 1964. Coefficients of roughness of bottom surface on slush-ice cover. Soviet Hydrology (American Geophysical Union), 127-150.
- Pariset, E., Hausser, R. 1961. Formation and evolution of ice covers on rivers. Transactions of the Engineering Institute of Canada 5: 41-49.
- Shen, H.T. 2016. Chapter 9: River Ice Processes. In: Wang, L.K., Yang, C.T., Wang, M.-H.S. (eds) Advances in Water Resources Management, Springer International Publishing Switzerland, 483-530.
- Shen, H.T., Wang, D.S. 1995. Under Cover Transport and Accumulation of Frazil Granules, Journal of Hydraulic Engineering, ASCE, 121(2): 184-194.
- Timalsina, N., Charmasson, J., Alfredsen, K.T. 2013. Simulation of the ice regime in a Norwegian regulated river. Cold Regions Science and Technology, 94: 61–73.
- Wang, D.S., Shen, H.T., Crissman, R.D. 1995. Simulation and Analysis of Upper Niagara River Ice-Jam Conditions. Journal of Cold Regions Engineering, 9(3): 119-13

Appendix B: River Ice Model Summaries

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

Definitions to Accompany Model Summaries

Steady / Unsteady (Ice Processes): Refers to whether the model introduces ice into the model at a boundary and/or calculates ice volumes and accumulations within the model domain in a time-varying fashion.

Steady / Unsteady (Hydraulics): Refers to whether the model performs time-varying hydraulic calculations based on time-varying flows at a boundary.

Network Representation: Refers to capabilities to represent multiple channels, nodes, etc.

Numerical Scheme: Refers to algorithmic descriptions that yield a solution to one or more mathematical equations.

Water Cooling: Refers to the process of lowering the temperature of water to near/at/below its freezing point.

Frazil and Ice Floe Generation: Refers to formation of ice (frazil ice, frazil pans, skim ice, etc.) as a result of effectively supercooled conditions.

Border Ice and Static Ice Cover: Border ice refers to ice that originates at the channel banks and grows laterally into the channel (either thermally, or mechanically due to deposition/buttering). Similar to border/skim ice, static ice cover refers to a thermally grown ice cover that spans the entire water body.

Dynamic Surface Ice Cover Formation: Refers to the formation of either a surface jam, wide channel jam, or narrow channel jam.

Thermal Ice Growth/Decay: Refers to the thickening/thinning of an ice cover, and can include surface ice covers, border ice, static ice, or even ice floes.

Undercover Deposition and Transport of Ice: Refers to the submergence, depositing, and movement of ice floes under a static ice cover or dynamic surface ice cover. This can lead to the formation of a hanging dam.

Anchor Ice: Refers to ice that is attached to the bed of a channel or other submerged surface.

Ice Jam Seepage and Ice Cover Seepage Flow: Refers to water conveyance through the ice units that comprise an ice cover.

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

CRISSP1D

Developer(s): Clarkson University	Proprietary Status / Availability for Use: Proprietary
Initial Year of Development: 2005	Key Contact / Access Link: Dr. Hung Tao Shen (Clarkson
Current Status of Development: Ongoing	University)
Version Number / Date: 2005	Model Dimension: One-Dimensional
Associated Models: RICE, RICEN	Computational Method: Finite Difference (Hydraulics) and
	Lagrangian (Thermal/Ice)

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Unsteady
Steady / Unste	ady (Hydraulics)	Unsteady
Network Repr	esentation	Can model channel networks by assuming equal water levels at junctions
Numerical Scheme(s)		Weighted Four-Point Implicit Scheme, Local Partial Inertia (LPI) for model stability in mixed flow regimes (Potok & Quinn, 1979).
Water Cooling		Heat loss from water column calculated using linear heat-transfer approach, or detailed energy budget approach. Model simulates supercooling (accounts for heat flux between water and suspended frazil ice).
	Frazil and Ice Floe Generation	Volumetric ice production determined numerically, model simulates suspended frazil ice and frazil ice rise.
	Border Ice and Static Ice Cover	Border and skim ice simulated using criteria proposed by Matoušek (1984a). Model also includes dynamic border ice treatment.
Simulation Capabilities	Dynamic Surface Ice Cover Formation	Given that the Froude number is less than a user-defined maximum Froude number, ice cover progression will occur either via: (1) juxtaposition (if Froude number less than user-defined threshold for juxtaposition), or (2) by either hydraulic thickening and mechanical thickening (Pariset and Hausser, 1961), depending on which approach yields a larger ice thickness (Shen, 2005).
	Thermal Ice Growth/Decay	Both thermal thickening and thinning of an ice cover is represented.
	Undercover Deposition and Transport of Ice	Deposition and erosion of under ice deposits simulated based on ice transport capacity developed by Shen and Wang (1995).
	Anchor Ice	Model simulates anchor ice formation, decay, and release (Wang and Shen, 1993), released anchor ice assumed to become part of surface ice run.
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A
Other features, processes, notable characteristics		Model employs stream-tube method to calculate water velocities.
Examples of Recent Application(s)		St. Lawrence River, Niagara River, Yellow River, Ohio River, etc.

Notes:

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

CRISSP2D

Developer(s) : Clarkson University, University	Proprietary Status / Availability for Use: Proprietary /
of Manitoba, Manitoba Hydro	Available on request
Initial Year of Development: 2004	Key Contact / Access Link: Dr. Jarrod Malenchak (Manitoba
Current Status of Development: Ongoing	Hydro)
Version Number / Date: 1.3	Model Dimension: Two-Dimensional
Associated Models: DynaRICE, RICE, RICEN,	Computational Method: Finite Element, Discrete Parcel
CRISSP1D	Method

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Unsteady
Steady / Unsteady (Hydraulics)		Unsteady (subcritical, supercritical, and transitional flows)
Network Repre	esentation	Fully capable of modelling channel networks and irregular channel geometries using a triangular finite element mesh.
Numerical Scheme(s)		Hydrodynamics – Streamline Upwind Petrov-Galerkin formulation (Liu and Shen, 2003); Ice Dynamics – Lagrangian Discrete Parcel Method with Smooth Particle Hydrodynamics (Shen et al, 2000)
	Water Cooling	Heat loss from water column calculated using linear heat-transfer approach, or detailed energy budget approach. Model simulates supercooling conditions (accounts for heat flux between water and suspended frazil ice).
	Frazil and Ice Floe	Volumetric ice production determined numerically, model simulates suspended frazil ice generation and rise to contribute to surface ice layer
	Border Ice and Static Ice Cover	Border and skim ice simulated using criteria proposed by Matoušek (1984a). Model also includes dynamic border ice treatment Michel (1980).
Simulation Capabilities	Dynamic Surface Ice Cover Formation	Properties of ice 'parcels' are calculated using Smoothed Particle Hydrodynamics, which calculate applied forces as parcels converge and jam. Both applied and resistance forces are represented by the momentum equation, with internal stresses on ice parcels calculated using a Kelvin-Voigt viscoelastic constitutive model (Ji et al., 2005) with a Mohr-Coulomb yield criterion.
	Thermal Ice Growth/Decay	Both ice cover thickening and ice cover thinning represented (multi-layer formulation which includes snow, slush, snow ice, black ice, and frazil slush layers), based on method described by Shen & Lal (1986).
	Undercover Deposition and Transport of Ice	When the local Froude number is greater than the user-defined Froude number criteria, incoming ice floes will submerge under an ice cover to become a mobile undercover ice layer. Deposition and erosion of under ice deposits simulated based on ice transport capacity developed by Shen & Wang (1995).
	Anchor Ice	Model simulates anchor ice formation, decay, and release (Wang & Shen, 1993; Malenchak, 2011).
	Ice Jam Seepage and Ice Cover Seepage Flow	Flow through the surface ice layer is modelled using a seepage coefficient (related to porosity, shape, and size of the ice floes).
Other features, processes, notable characteristics		Simulation of the initiation of an ice jam primarily based on convergence of surface ice floes and without user intervention; Capable of simulating ice jam forces on river banks and in-water structures; Reach specific ice cover breakup can be automatic (water level or discharge change criteria) or at a user specified time and location.
Examples of Recent Application(s)		Upper Nelson River (Lees et al., 2023), Lower Vistula River (Kolerski & Raban, 2022), Lower Nelson River (Peters, 2021), Dauphin River (Wazney, 2018)

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

HEC-RAS

Developer(s): Hydrologic Engineering Centre of the US Army Corps of Engineers **Initial Year of Development:** 1995 **Current Status of Development:** Ongoing **Version Number / Date:** Version 6.4 Beta (June 2023) **Associated Models:** ICEJAM Proprietary Status / Availability for Use: Model in the public domain, currently available for use Key Contact / Access Link: https://www.hec.usace.army.mil/software/hec-ras/ Model Dimension: One-Dimensional Computational Method: Finite Difference

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Steady State (ice modelling only ¹)
Steady / Unstea	dy (Hydraulics)	Steady State (ice modelling only ¹)
Network Repres	sentation	A continuous ice jam and/or ice cover cannot be calculated across junction nodes
Numerical Sche	eme(s)	Steady flow: Standard step backwater method Unsteady flow: four-point implicit scheme
Water Cooli	Water Cooling	Water temperature can be simulated when the temperature is above 0°C based on a full energy balance at the water surface. Once the water temperature reaches 0°C further declines in water temperature cannot be modeled.
	Frazil and Ice Floe Generation	N/A
C: 1	Border Ice and Static Ice Cover	Thickness and roughness of a static ice cover can be user specified at each river section.
Simulation Capabilities	Dynamic Surface Ice Cover Formation	Only wide-channel jams can be simulated (using an initial condition of a user-specified minimum thickness at each cross-section).
	Thermal Ice Growth/Decay	N/A
	Undercover Deposition and Transport of Ice	N/A
	Anchor Ice	N/A
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A
Other features, processes, notable characteristics		Wide-channel jam solution approach based on Flato and Gerard (1986). The ice jam roughness can be user-specified or automatically estimated based on ice jam thickness.
Examples of Recent Applications		Peace River and Athabasca Rivers (Hatch and Golder Associates, 2022; Northwest Hydraulic Consultants, 2021a and 2021b). Ice Management Operations on the Pend Oreille River (Giovando et al, 2019). Several case studies summarized in Daly & Vuvovich (2003). See also Zufelt (2005).

Notes:

N/A = no simulation capability

1. HEC-RAS modelling system has many capabilities, but ice-cover and ice jam modelling are restricted to steadystate, one-dimensional simulations only.

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

ICEDYN

Developer(s): Hatch Initial Year of Development: 1973 Current Status of Development: Ongoing Version Number / Date: not available Associated Models: ICESIM, ICESIMAT, JAMSIM Proprietary Status / Availability for Use: Proprietary Key Contact / Access Link: Joe Groeneveld (Hatch) Model Dimension: One-Dimensional Computational Method: Finite Difference

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Quasi-Steady
Steady / Unste	ady (Hydraulics)	Steady (ICESIM), Unsteady (ICEDYN)
Network Repre	esentation	Single channel only
Numerical Sch	neme(s)	Weighted Four-Point Implicit Scheme
	Water Cooling	Heat transfer uses daily temperatures as proposed by Michel (1971). Equations can be customized to represent specific climatological settings. No capability to directly utilize full energy budget.
	Frazil and Ice Floe Generation	Volumetric ice production estimated analytically (Ashton, 1986).
	Border Ice and Static Ice Cover	Border ice extent based on ice growth equations (Newbury, 1968), no explicit skim ice calculations, user can specify static ice cover (extent and thickness).
Simulation	Dynamic Surface Ice Cover Formation	Simulates both wide channel and narrow channel jams (Michel, 1971).
Capabilities	Thermal Ice Growth/Decay	Applies heat-transfer and degree-days coefficients (Ashton, 1986) to simulate ice growth and decay.
	Undercover Deposition and Transport of Ice	Undercover frazil accumulation is governed by user input deposition and erosion velocity thresholds (Michel, 1971). Advancement by juxtaposition is governed by a user input limiting Froude number.
	Anchor Ice	ICEDYN has a capability to include a user specified anchor ice growth at a specified series of cross sections through bed elevation modification.
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A
Other features, processes, notable characteristics		Sediment transport calculations included ² . The model is also able to simulate the temporal smoothing of an ice cover/ice jam. The JAMSIM model includes the capability to identify possible ice jam lodgment locations. It does so by simulating the development of a jam assuming that any cross section in the reach could form the toe of the jam. Jam profiles are simulated and ice jam toe forces are computed for each possible toe location. Those with particularly low toe forces are considered to be possible candidate locations for an ice jam.
Examples of Recent Application(s)		Lower Churchill River (Zare et al., 2019), Nelson River, Saint John River, Yukon River, Churchill River, Saskatchewan River, Boyne River

Notes:

- 1. Growth/Decay calculations are only applicable for ICESIMAT.
- 2. Sediment transport calculations are only applicable for ICESIMAT.

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

ICEJAM

Developer(s): Flato and Gerard	Proprietary Status / Availability for Use: Available for Use
Initial Year of Development: 1986	(No Longer Supported)
Current Status of Development: None	Key Contact / Access Link: None / Flato 1988 (MSc Thesis,
Version Number / Date: Version 1.5, March	Appendix B)
1987	Model Dimension: One-Dimensional
Associated Models: None	Computational Method: Finite Difference

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unst	eady (Ice Processes)	Steady
Steady / Unst	eady (Hydraulics)	Steady
Network Rep	resentation	Single channel only
Numerical Scheme(s)		Iterative calculation procedure. Upstream-to-downstream: Ice jam thickness profile computation (solving ice jam stability equation) by <i>forward difference</i> scheme. Downstream-to-upstream: Gradually varied flow profile computation by a <i>standard step</i> algorithm with previously calculated ice jam thickness profile.
	Water Cooling	N/A
	Frazil and Ice Floe Generation	N/A
	Border Ice and Static Ice Cover	N/A
	Dynamic Surface Ice Cover	N/A
Simulation	Formation	
Canabilities	Thermal Ice Growth/Decay ¹	N/A
cuptionnes	Undercover Deposition and	N/A
	Transport of Ice	
	Anchor Ice	N/A
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A
Other features, processes, notable characteristics		Calculates thickness in the toe region using a maximum velocity criterion where ice is "floated" up from the downstream boundary in the upstream direction until ice jam stability criterion are satisfied.
Examples of Recent Applications		None

Notes:

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

JJT^{1,2} – The Finnish Ice Model

Developer(s): The Finnish River Ice Project (Mikko Huokuna) for Association of Finnish Power Stations and National Board of Waters, Finland **Initial Year of Development:** 1985 **Current Status of Development:** Only minor changes since the 1990s. **Version Number / Date:** 2019 (For real-time use)

Proprietary Status / Availability for Use: Not currently publicly-available. Plans to make it available in the future. Key Contact / Access Link: Mikko Huokuna mikko.huokuna@syke.fi and Niklas Dahlberg, Finnish Environment Institute Model Dimension: One-Dimensional Computational Method: Finite Difference

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Unsteady
Steady / Unst	eady (Hydraulics)	Unsteady ³
Network Rep	resentation	Can work in multi-channel environments.
Numerical Sc	heme(s)	Weighted Four-Point Implicit Scheme
Water Cooling Frazil and Ice Floe Generation	The heat exchange between water and air is calculated using a detailed energy budget approach. A simpler method is also available to the user.	
	Frazil and Ice Floe Generation	In addition to frazil ice floe generation within the model (based on user-specified thickness), moving skim ice is included in the model according to the method of Matoušek (1984b). The presence of skim ice also changes the heat transfer.
	Border Ice and Static Ice Cover	Border ice simulated using criteria proposed by Matoušek (1984b).
Simulation Capabilities	Dynamic Surface Ice Cover Formation	Narrow ice jam progression occurs when border ice or moving surface ice bridges across the river (based on empirical criteria and user-specified thresholds – top width, border ice conditions, flow conditions, and floe thickness), or where an ice boom location is specified. Wide channel ice jams are not included in the model.
	Thermal Ice Growth/Decay	Both ice cover thickening and ice cover thinning represented (includes snow, slush, snow ice, black ice, and frazil slush layers), based on method described by Shen & Lal (1986).
	Undercover Deposition and Transport of Ice	Incoming ice floes are submerged when a critical Froude number (calculated or user-specified value) at the upstream edge of the ice cover is exceeded. Erosion of deposited frazil occurs when the under-ice water velocity exceeds a user-input critical velocity.
	Anchor Ice	N/A
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A
Other feature characteristic	s, processes, notable s	Heat flux from the bed can be input as a constant value.
Examples of Recent Applications		Kokemäenjoki River, Finland (Houkuna et al. 2021)

Notes:

N/A = no simulation capability

1. The name JJT comes from the Finnish "Jokijää tutkimus" which is the name of the original project.

2. JJT was originally based on the model code of Shen and Yapa (1985).

3. Supercritical flow is forced to be subcritical with a Froude number of 0.98 to avoid trans-critical flow.

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

MIKE-ICE

Developer(s) : Hydro-Quebec, the	Proprietary Status / Availability for Use: Proprietary. Requests to
LaSalle Consulting Group and the	access and use MIKE-ICE have been granted by Hydro-Quebec and
Danish Hydraulic Institute (DHI)	DHI in the past.
Current Status of Development: Last	Model Dimension: One-Dimensional
updated in 2013	Computational Method: Finite Differences
	Version Number / Date: 2013, Works best with MIKE2008 in a
	Windows XP Environment

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Unsteady
Steady / Unstea	dy (Hydraulics)	Unsteady
Network Repres	sentation	Single channel only
Numerical Sche	eme(s)	Information not available
	Water Cooling	Detailed energy budget calculations available, supercooling simulated
	Frazil and Ice Floe Generation	Simulates frazil ice generation and frazil ice rise
	Border Ice and Static Ice Cover	Border ice simulated based on cooling rate and maximum flow velocity criteria (Timalsina et al., 2013)
	Dynamic Surface Ice Cover Formation	Juxtaposition simulated as a function of flow velocity, Froude Number, and ice thickness.
Simulation Capabilities	Thermal Ice Growth/Decay	Model can simulate ice growth and melt
	Undercover Deposition and Transport of Ice	Undercover accumulations of ice simulated using a critical velocity approach
	Anchor Ice	Can simulate anchor ice processes (formation, decay, and release)
	Ice Jam Seepage and Ice Cover Seepage Flow	Can simulate ice jam seepage
Other features, processes, notable characteristics		Model contains 2 modules: one for ice generation/transport/accumulation and one for ice jams. Interfaces with the MIKE model through MIKE ECO Lab.
Examples of Recent Applications		Romaine River, Quebec (Theriault, 2011), Orkla River, Norway (Timalsina et al, 2013; Gebre et al. 2014)

Notes:

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

River1D

Developer(s): University of Alberta **Initial Year of Development:** 1990 **Current Status of Development:** Ongoing **Version Number / Date:** July 28, 2021 **Associated Models:** CDG1D Proprietary Status / Availability for Use: Available for Use Key Contact / Access Link: Yuntong She (University of Alberta) (www.riverice.ca/modeling) Model Dimension: One-Dimensional Computational Method: Finite Element

MODEL DESCRIPTION		
Attribute		Description / References
Steady / Unsteady (Ice Processes)		Unsteady
Steady / Unste	eady (Hydraulics)	Unsteady
Network Repr	resentation	Single channel and multi-channel networks ¹
Numerical Scheme(s)		Characteristic Dissipative Galerkin (hydraulics) and Streamline Upwind Petrov-Galerkin (ice processes) finite element methods.
	Water Cooling	Supercooling calculated based on air temperature and net solar radiation at user specified time interval using linear heat-transfer (Andrishak and Hicks, 2008). No capability to utilize full energy budget ² .
	Frazil and Ice Floe	Analytical thermal frazil production based on Shen et al. (1995), no skim
	Generation	ice floe capabilities.
	Border Ice and Static	Border ice calculations include both static (Matoušek, 1984a) and
	Ice Cover	dynamic growth (Michel et al., 1982); user can specify static ice cover.
	Dynamic Surface Ice	Ice cover progression rate considers both wide channel and narrow
Simulation	Cover Formation	channel jam calculations ³ .
Capabilities	Thermal Ice	Applies heat-transfer coefficients. Rates of heat exchange based on
	Growth/Decay	Andrishak and Hicks (2008).
	Undercover Deposition and Transport of Ice	Undercover frazil transport and accumulation based on Shen and Wang (1995).
	Anchor Ice	Anchor ice growth and decay based on Shen (2010). Includes mechanical and thermal release.
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A
Other features, processes, notable characteristics		Separate module for calculating steady state ice jam profiles in single channel and multi-channel networks. Cohesive sediment transport, contaminant transport, and water quality simulation capabilities for ice- affected rivers currently under development.
Examples of Recent Applications		Ice processes - North Sask. River, AB (Howley et al., 2020; Yang et al., 2021); Alta River, Norway (Alfredsen and Saha, 2021); Susitna River, Alaska (Blackburn and She, 2019); Steady state ice jam profile modelling - Hay River Delta, NWT (Blackburn and She, 2023)

Notes:

N/A = no simulation capability

3. Does not presently consider ice cover consolidation after initial formation

^{1.} For open water and steady ice conditions (cover or jam) only

^{2.} A version with a full energy budget capabilities (Yang et al., 2023) has been developed and is available upon request for research purposes

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

RIVICE

Developer(s): KGS Group, Environment Canada, University of Saskatchewan Initial Year of Development: 2003 Current Status of Development: Ongoing Version Number / Date: 2013 Associated Models: ONE-D, RIVJAM, ICEPRO Proprietary Status / Availability for Use: Available for Use Key Contact / Access Link: Prof. Karl-Erich Lindenschmidt (University of Saskatchewan) (http://giws.usask.ca/rivice/) Model Dimension: One-Dimensional Computational Method: Finite Difference

MODEL DESCRIPTION					
Attribute		Description / References			
Steady / Unsteady (Ice Processes)		Unsteady (incoming ice volumes permitted)			
Steady / Unst	eady (Hydraulics)	Unsteady (limited to subcritical conditions)			
Network Representation		Cannot perform simulations where multiple reaches are connected to a node			
Numerical Scheme(s)		Weighted Four-Point Implicit Scheme			
Simulation Capabilities	Water Cooling	Heat loss from water column calculated using linear heat-transfer approach, or detailed energy balance approach (from water quality algorithms in ONE-D). Water temperature cooled down to (and not past) the freezing point.			
	Frazil and Ice Floe Generation	Volumetric ice production estimated analytically, no representation of suspended ice (only surface ice).			
	Border Ice and Static Ice Cover	Border ice can be defined by: user-input (based on maximum border ice width, and time required to reach maximum border ice width), Newbury method (1968), Matoušek method (1984a).			
	Dynamic Surface Ice Cover Formation	Occurrence of ice cover shoving assessed by applied (Michel, 1971; Pariset et al., 1966) and resistive (Michel, 1971) ice cover force; juxtaposition simulated; ability to account for cohesion to river banks.			
	Thermal Ice Growth/Decay	No capability for thermal thickening of an ice cover (Lindenschmidt, 2017), ice cover thinning represented.			
	Undercover Deposition and Transport of Ice	Deposition and erosion of under ice based on: (1) user-defined velocity, (2) limit based on Meyer-Peter equation, (3) deterministic Froude number.			
	Anchor Ice	User-specified representation of anchor ice.			
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A			
Other features or processes (e.g., aufeis, sediment transport)		Ice cover roughness represented using: (1) KGS method stemming from Nezhikhovskiy method (2) Beltaos method, (3) user-defined Manning's 'n' value; limited model performance for slow velocities ($< 0.3 \text{ m/s}$).			
Example Application(s)		Athabasca River (Lindenschmidt, 2023), Slave River (Zhang et al., 2022), Red River (Williams et al., 2021), Saint John River (Das et al., 2023), Peace River (Lindenschmidt et al., 2016), Dauphin River (Lindenschmidt et al., 2012)			

Notes:

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

<u>RIVJAM</u>

Developer(s) : Spyros Beltaos and	Proprietary Status / Availability for Use: Available for Use	
Jonathan Wong	Key Contact / Access Link: Spyros Beltaos / National Water	
Initial Year of Development: 1986	Research Institute	
Current Status of Development: Not	Model Dimension: One-Dimensional	
currently in development	Computational Method: Direct solution of two first order partial	
Version Number / Date: None	differential equations by Beltaos and Wong (1986).	
Associated Models: None		

MODEL DESCRIPTION				
Attribute		Description / References		
Steady / Unsteady (Ice Processes)		Steady		
Steady / Unsteady (Hydraulics)		Steady		
Network Representation		Single channel only		
Numerical Scheme(s)		Direct solution of two first order partial differential equations by a Runge-Kutta solution technique.		
	Water Cooling	N/A		
Simulation Capabilities	Frazil and Ice Floe Generation	N/A		
	Border Ice and Static Ice Cover	N/A		
	Dynamic Surface Ice Cover Formation	N/A		
	Thermal Ice Growth/Decay	N/A		
	Undercover Deposition and Transport of Ice	N/A		
	Anchor Ice	N/A		
	Ice Jam Seepage and Ice Cover Seepage Flow	Yes		
Other features, processes, notable characteristics		The RIVJAM model is unique in that it allows for seepage flow through the interstices of the ice. Thus, allowing the model to <i>predict</i> grounded toe conditions.		
Examples of Recent Applications		Peace-Athabasca delta (2003)		

Notes:

Short Course on River Ice Modelling Canmore, Alberta, Canada, July 13, 2023

SIMGLACE

Developer(s): S. Petryk of Rousseau, Sauve, Warren, Inc. Initial Year of Development: 1977 Current Status of Development: Not currently under development Version Number / Date: No longer available. Associated Models: Original title: "Simulation of Ice Conditions in Channels" Proprietary Status / Availability for Use: No longer available.
Key Contact / Access Link: None. No longer Available.
Model Dimension: One-Dimensional
Computational Method: Finite Difference

MODEL DESCRIPTION				
Attribute		Description / References		
Steady / Unsteady (Ice Processes)		Steady – select processes are dynamic or quasi steady, model considers changes in ice cover/ice jams as well as heat transfer conditions.		
Steady / Unsteady (Hydraulics)		Quasi-Steady – unsteady hydraulics are approximated with a series of steady-state solutions.		
Network Representation		Single channel only		
Numerical Scheme(s)		Backwater computations use the standard-step method. Computational steps outlined in Petryk et al. (1981)		
Simulation Capabilities	Water Cooling	Heat transfer calculated by a detailed energy budget or by a simple heat transfer coefficient and the accumulated degree days of freezing (Petryk, 1995; Petryk et al., 1981).		
	Frazil and Ice Floe Generation	Once water temperature drops to 0° C, the bulk volume of frazil ice is calculated using the latent heat of fusion for ice, and a porosity value (0.5 to 0.65) (Petryk, 1995).		
	Border Ice and Static Ice Cover	A stable border ice cover can be simulated. The stability of such a cover is controlled by a user-input limiting average flow velocity (Petryk, 1995).		
	Dynamic Surface Ice Cover Formation	Narrow and wide channel jams can be simulated. Stability of wide channel jams is governed by equations developed in Pariset et al. (1966).		
	Thermal Ice Growth/Decay	Thermal growth not captured. Thermal melting of the ice cover is simulated at the bottom by friction-generated heat, if the ice is thicker than a specified thickness. If the inflowing water is above 0°C, a length of ice cover is melted until the water temperature drops to 0°C at the new ice cover edge (Petryk, 1995).		
	Undercover Deposition and	Ice cover erosion based on Meyer-Peter sediment transport relation		
	Transport of Ice	from Pariset & Hausser (1961) (Petryk, 1995).		
	Ice Jam Seepage and Ice Cover Seepage Flow	N/A Unknown.		
Other features, processes, notable characteristics		None		
Examples of Recent Applications		Historically has been applied to the Peace River in BC/Alberta, and the La Grande River and Eastmain River among other rivers in Quebec (see Petryk, 1995).		

Notes:

CGU HS Committee on River Ice Processes and the Environment Short Course on River Ice Modelling *Canmore, Alberta, Canada, July 13, 2023*

Works Cited and Other Resources

General

- Ashton, G., 1986. River and Lake Ice Engineering. Littleton, Colorado: Water Resources Publications.
- Carson, R.W., Healy, D., Beltaos, S., Groeneveld, J., 2003. Tests of River Ice Jam Models – Phase 2. Proc. 12th Workshop on River Ice, Edmonton, Alberta.
- Flato, G., and Gerard. R., 1986. Calculation of ice jam thickness profiles. Proc. 4th Workshop on River Ice, Montreal, Quebec.
- Healy, D., and Hicks, F., 1999. A comparison of the ICEJAM and RIVJAM ice jam profile models. Journal of Cold Regions Engineering, 13(4).
- Matoušek, V., 1984a. Types of Ice Run and Conditions for Their Formation. Proc. 7th IAHR Symposium on Ice, Hamburg, Germany. 315–327.
- Matoušek, V., 1984b. Regularity of the freezing up of the water surface and heat exchange between water body and water surface. Proc 7th IAHR Symposium on Ice, Hamburg, Germany. 187-200.
- Michel, B., 1971. Winter Regime of Rivers and Lakes. Hanover, New Hampshire: Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers.
- Newbury, R., 1968. A study of subarctic river processes. Ph.D. Thesis, Johns Hopkins University.
- Pariset, E., and Hauser, R., 1961. Formation and evolution of ice covers on rivers. Transactions, Engineering Institute of Canada, 5(1), 41-49.
- Pariset, E., Hausser, R., and Gagnon, A., 1966. Formation of ice covers and ice jams in rivers. Journal of the Hydraulics Division, 92(6), 1-24.
- Shen, H.T., and Lal W.A.M., 1986. Growth and decay of river ice covers. Proceedings, Cold Regions Hydrology Symposium, A WRA, Fairbanks, pp 583 - 592.
- Shen, H.T., and Wang, D.S., 1995. Under cover transport and accumulation of frazil granules. J. Hydraul. Eng. 121(2), 184–194.

- Shen, H.T., Wang, D.S., and Lal, A.M.W., 1995. Numerical simulation of river ice processes. J. Cold Reg. Eng. 9(3), 107–118.
- Wang, D.S., and Shen, H.T., 1993. Frazil and anchor ice evolution in rivers. Report 93-09, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, N.Y.
- White, K, 1999. Hydraulic and Physical Properties Affecting Ice Jams, CRREL Report 99-11. U.S Army Engineering Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, N.H.

CRISSP1D

- Huang, F., Jasek, M., and Shen, H.T., 2021. Simulation of the 2014 Dynamic Ice Breakup on the Peace River. Proc. 21st Workshop on River Ice, Saskatoon, Saskatchewan.
- Lal, A.M.W., and Shen, H.T., 1993. A Mathematical Model for River Ice Processes, CRREL Report 93-4. US Army Cold Regions Research and Engineering Laboratory, Hanover, N.H.
- Potok, A.J., and Quinn, F.H., 1979. A Hydraulic Transient Model of the Upper St. Lawrence River for Water Resources Studies. Water Resources Bulletin. Vol. 15, No. 6.
- Shen, H.T., 2005. CRISSP1D Programmer's manual. Prepared by Department of Civil Engineering, Clarkson University, Potsdam, NY, for CEA Technologies Inc. CEATI Report No. TO12700-0401 (2005).
- Yapa, P.D., and Shen, H.T., 1988. Unsteady Flow Simulation for an Ice-Covered River. Journal of Hydraulic Engineering, ASCE, Vol. 112, No. 11, Nov. 1986, pp. 1036-1049, and Discussion Closure, Mar. 1988, p. 358.

CRISSP2D

Ji, S., Shen, H.T., Wang, Z., Shen, H.H., and Yue, Q., 2005. A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics, Acta Oceanol, Sin. 24.

CGU HS Committee on River Ice Processes and the Environment Short Course on River Ice Modelling *Canmore, Alberta, Canada, July 13, 2023*

- Kolerski, T., Raban, P., 2022. The Application of the Thermal Stabilization Prompted by the Ice Cover Expansion Considering the Energy Production Optimization in the Dam-Reservoir Coupled Systems on the Vistula River. Energies, 15(3).
- Lees, K., Clark, S.P., Malenchak, J., and Chanel, P., 2023. A novel methodology to quantify hydraulic conveyance through an ice-impacted lake-outlet system, Cold Regions Science and Technology, 206.
- Liu, L., and Shen, H.T., 2003. A two-dimensional characteristic upwind finite element method for transitional open channel flow. Report 03-04, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, N.Y.
- Malenchak, J. J., 2011. Numerical Modeling of River Ice Processes on the Lower Nelson River. Ph.D. Thesis, University of Manitoba.
- Michel, B., Marcotte, N., Fonseca, F., and Rivard, G. (1980) Formation of border ice in the St. Anne River, Proc. 1st Workshop on River Ice, Burlington, Ontario, 38-61.
- Peters, B. C., 2021. Investigation of the Ice Dam at Sundance Rapids on the Lower Nelson River. M.Sc. Thesis, University of Manitoba.
- Shen, H.T., Su, J., and Liu, L., 2000. SPH simulation of river ice dynamics, Journal of Computational Physics, 165(2), 752-771.
- Wazney, L. E., 2019. Investigation of River Ice Cover Formation Processes at Freezeup. Ph.D. Thesis, University of Manitoba.

HEC-RAS

- Beltaos, S., 2019. Numerical prediction of ice-jam profiles in lower Athabasca River. Canadian Journal of Civil Engineering, 46(8), 722-731.
- Beltaos, S., and Tang, P., 2013. Applying HEC-RAS to simulate river ice jams: snags and practical hints. Proc. 17th Workshop on River Ice, Edmonton, Alberta.
- Daly, S. F., Brunner, G., Piper, S., Jensen, M., and Tuthill, A., 1998. Modeling ice covered rivers using HEC-RAS.' Proc. Cold regions Impact on Civ. Works, 9th Int. Conf. on Cold Regions Eng., David E. Newcomb, ed., ASCE, Reston, Va.

- Daly, S.F., Haehnel, R., Sodhi, D., and Vuyovich, C., 2002. Ice Forces on Proposed Pedestrian Bridges, Grand Forks, ND. Report Prepared for the St. Paul District, Corps of Engineers. U.S. Army Engineering and Research Center, Cold Regions Research and Engineering Laboratory, Hanover, N.H.
- Daly, S. F., and Vuyovich, C. M., 2003. Modeling river ice with HEC-RAS. Proc. 12th Workshop on River Ice, Edmonton, Alberta.
- Giovando, J., Engel, C., Rocks, J., Daly, S.F., O'Connor, D., and Hamill, D., 2019. Ice Management Operations at Albeni Falls Dam. Cold Regions Research and Engineering Laboratory, ERDC/CRREL TR-19-21
- Hatch and Golder Associates, 2022. Fort McMurray River Hazard Study, Ice Jam Modelling and Flood Hazard Identification Report. Prepared for Alberta Environment and Parks. June 2022. Draft.
- Northwest Hydraulic Consultants, 2021a. Peace River Hazard Study, Ice Jam Modelling Assessment and Flood Hazard Identification Report. Prepared for Alberta Environment and Parks. May 2021. Draft.
- Northwest Hydraulic Consultants, 2021b. Fort Vermilion Flood Hazard Study, Main Report. Prepared for Alberta Environment and Parks. March 2021. Draft.
- US Army Corps of Engineers Hydrologic Engineering Centre, 2016. HEC-RAS River Analysis System Hydraulic Reference Manual. Version 5.0 February 2016.
- Zufelt, J. E., 2005. Modeling ice jams using HEC-RAS: The three creeks project, Proc. 13th Workshop on River Ice, Hanover, N.H.

ICEDYN

Zare, S., Groeneveld, J., McClean, C., and Porter, E., 2019. Numerical Simulation of the Ice Processes in the Lower Churchill River, NL, Canada. Proc. 20th Workshop on River Ice, Ottawa, Ontario.

ICEJAM

Flato, G., 1988. Calculation of ice jam profiles. M.Sc. Thesis, University of Alberta.

JJT – THE FINNISH ICE MODEL

- Huokuna, M., 1990. The Finnish River Ice Research Project-the Numerical Model in Use. Proc. 10th IAHR Symposium on Ice, Espoo, Finland. 215-230.
- Huokuna, M., 2007. Ice jams in Pori. Proc. 14th Workshop on River Ice, Quebec City, Quebec, 19-22.
- Huokuna, M., Havu, P., Triipponen, J. P., Koivisto, T., and Aaltonen, J., 2021. Ice forecasting model for the lower Kokemäenjoki River. Proc. 21st Workshop on River Ice, Saskatoon, Saskatchewan.
- Huokuna, M., Nikkarikoski, H., and Savolainen, H., 2001. Experiences of the Spring Break-up 2000 on the River Kalajoki. Proc. 11th Workshop on River Ice, Ottawa, Ontario.
- Shen, H.T., and Yapa, P.D., 1985. A Unified Degree-Day Method for River Ice Cover Thickness Simulation. Canadian Journal of Civil Engineering, V.12, pp. 54-61.

MIKE-ICE

- Gebre, S., Boissy, T., and Alfredsen, K., 2014. Sensitivity to climate change of the thermal structure and ice cover regime of three hydropower reservoirs. Journal of Hydrology, 510, 208–227. https://doi.org/10.1016/j.jhydrol.2013.12.023
- Thériault, I., 2011. Romaine river ice cover, natural and post project accessibility. Proc. 16th Workshop on River Ice, Winnipeg, Manitoba.
- Timalsina, N. P., Charmasson, J., and Alfredsen, K. T., 2013. Simulation of the ice regime in a Norwegian regulated river, Cold Regions Science and Technology, 94, 61–73. https://doi.org/10.1016/j.coldregions.2013.06.010

RIVER1D

- Alfredsen, K., and Saha, S.K., 2021. Assessment of regulation impacts on ice formation in river Alta, Norway. Proc. 21st Workshop on River Ice, Saskatoon, Saskatchewan.
- Andrishak, R., and Hicks, F., 2008. Simulating the effects of climate change on the ice regime of the Peace River. Canadian Journal of Civil Engineering 35: 461-472.

- Blackburn, J., and She, Y., 2019. A comprehensive public-domain river ice process model and its application to a complex natural river. Cold Regions Science and Technology. 163: 44-58.
- Blackburn, J., and She. Y. 2023. The simulation of ice jam profiles in multi-channel systems using a one-dimensional network model. Cold Regions Science and Technology. 208 (2023) 103796.
- Hicks, F.E., and Steffler, P.M., 1992. A Characteristic Dissipative Galerkin Scheme for Open Channel Flow. ASCE Journal of Hydraulic Engineering 118: 337-352.
- Howley, R., She, Y., and Ghobrial, T., 2020. A Modeling Study of Complex River Ice Processes in an Urban River. Proc. 25th IAHR Symposium on Ice, Saskatoon, Saskatchewan.
- Shen, H.T., 2010. Mathematical modeling of river ice processes. Cold Regions Science and Technology. 62, 3–13.
- Yang, J., Pei, C., She, Y, and Loewen, M., 2021. Modeling supercooling and anchor ice processes on the North Saskatchewan River. Proc. 21st Workshop on River Ice, Saskatoon, Saskatchewan.
- Yang, J, She, Y., and Loewen, M., 2023. Assessing the uncertainties in modeling water temperature during river cooling and freeze-up periods. Cold Regions Science and Technology. 210 (2023) 103840.

RIVICE

- Das, A., Budhathoki, S., and Lindenschmidt, K-E, 2023. Development of an ice-jam flood forecasting model framework for freeze-up/winter breakup. Hydrology Research, 54(5), 648-662.
- Lindenschmidt, K-E, 2017. RIVICE—A non-proprietary, open-source, onedimensional river-ice model. Water, 9(5), 314.
- Lindenschmidt, K-E, 2023. Extension and refinement of a stochastic modelling approach to assess ice-jam flood hazard. Hydrology Research 54(2): 149–164 https://doi.org/10.2166/nh.2023.042

CGU HS Committee on River Ice Processes and the Environment Short Course on River Ice Modelling *Canmore, Alberta, Canada, July 13, 2023*

- Lindenschmidt, K-E, Das, A., Rokaya, P., and Chu, T., 2016. Ice jam flood risk assessment and mapping. Hydrological Processes 30: 3754–3769. http://dx.doi.org/10.1002/hyp.10853
- Lindenschmidt, K-E, Sydor, M., and Carson, R., 2012. Modelling ice cover formation of a lake-river system with exceptionally high flows (Lake St. Martin and Dauphin River, Manitoba). Cold Regions Science and Technology 82: 36–48. http://dx.doi.org/10.1016/j.coldregions.2012.05.006
- Williams, B.S., Das, A., Johnston, P., Luo, B., and Lindenschmidt, K-E, 2021. Measuring the skill of an operational ice jam flood forecasting system. International Journal of Disaster Risk Reduction 52: 102001. https://doi.org/10.1016/j.ijdrr.2020.102001
- Zhang, F., Elshamy, M., and Lindenschmidt, K-E, 2022. Climate change impacts on ice jam behaviour in an inland delta: a new ice jam projection framework. Climatic Change 171: 13. https://doi.org/10.1007/s10584-022-03312-3

RIVJAM

- Beltaos, S., and Wong, J. 1986. Downstream transition of river ice jams. SCE Journal of Hydraulic Engineering. 112(2), pp. 91-110.
- Beltaos, S., 1988. Configuration and properties of a breakup jam. Canadian Journal of Civil Engineering, 15(4), pp. 685-697.
- Beltaos, S., 1993. Numerical computation of river ice jams. Canadian Journal of Civil Engineering, 20(1), pp. 88-99.
- Beltaos, S., 1997. User's manual for the RIVJAM model. National Water Research Institute Contribution No. 96-37, Burlington, Canada, 43 p.
- Beltaos, S., 2003. Numerical modelling of ice-jam flooding on the Peace-Athabasca delta. Hydrologic Processes. 17(18), pp. 3685-3702.

SIMGLACE

Petryk. S., 1995. Numerical Modelling. In: Beltaos, S., Ed. River Ice Jams. Water Resources Publications, LLC. Highland Ranch, CO.

CGU HS Committee on River Ice Processes and the Environment Short Course on River Ice Modelling *Canmore, Alberta, Canada, July 13, 2023*

- Petryk, S., Panu, U.S., Kartha, V.C., Clement, F., 1981. Numerical Modeling and Predictability of Ice Regime in Rivers. Proc. 6th IAHR Symposium on Ice, Quebec City, Quebec. Volume 1: 426-435.
- Petryk. S., 1988. Development of a Comprehensive Numerical River Ice Model. Proc. 5th Workshop on River Ice, Winnipeg, Manitoba.
- Rousseau, Sauve, Warren, Inc., and Hydro-Quebec, 1983. Simulation des conditions de glace en riviere documentation de programme. Montreal, Quebec, Canada.