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Abstract. This paper is concerned with mathematical analysis of the ‘critical
domain-size’ problem for structured populations. Space is introduced explicitly
into matrix models for stage-structured populations. Movement of individuals is
described by means of a dispersal kernel. The mathematical analysis investigates
conditions for existence, stability and uniqueness of equilibrium solutions as well
as some bifurcation behaviors. These mathematical results are linked to species
persistence or extinction in connected habitats of different sizes or fragmented
habitats; hence the framework is given for application of such models to ecology.
Several approximations which reduce the complexity of integrodifference equations
are given. A simple example is worked out to illustrate the analytical results and to
compare the behavior of the integrodifference model to that of the approximations.

1. Introduction

In the ‘critical domain-size’ problem for structured populations, reproduc-
tion and maturation of the structured population take place locally within
an inhabitable patch or ‘reserve’, and loss from the inhabitable patch to
uninhabitable exterior regions takes place due to dispersal across the patch
boundary. This loss can be considered as a an ‘edge effect’ [9], where overall
population growth is diminished due to boundary loss.

Whereas the total reproductive rate of the population scales with patch
area, the dispersal loss scales with boundary length. Since surface area scales
with the square of the linear dimension, boundary loss dominates dynam-
ics of small patches but plays a diminished role in the dynamics of larger
patches. The assumption that a small population grows in the absence of
boundary loss leads to the existence of a critical size for the patch, be-
low which the population cannot persist, and above which populations can
grow. In turn, the critical domain-size provides a tool for reserve design and
conservation [2,4].
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A first model for critical domain-size in one space dimension, consist-
ing of exponential population growth, Fickian diffusion, and a completely
hostile exterior, was analyzed in [16] and [29]. These analyses have been ex-
tended to cover more complex spatial domains [30] and multiple interacting
species [5]. Such models are formulated using assumptions of continuous-
time reproduction and dispersal.

By way of contrast, in the absence of explicit spatial effects, stage- or
age-structured matrix models have been the ‘work-horse’ for ecologists inter-
ested in population growth and persistence [6]. The single most important
quantity in matrix models is the leading eigenvalue of the matrix. If it is
greater than one, then the population can grow or persist. Matrix models
have been applied in many different areas like fisheries [7], insects [15] or
tree management [28], to name but a few.

The addition of dispersal into discrete-time models results in integrodif-
ference equations [19]. It is appropriate if reproduction and dispersal occur
as discrete non-overlapping events. In the scalar case the critical domain-
size problem has been analyzed in detail [32]. The more realistic case, which
allows for both population and spatial structure and for stage-specific dis-
persal processes, is the stage-structured integrodifference model [26]. The
purpose of this paper is to analyze the critical domain-size problem for
the stage-structured integrodifference model, to provide the mathematical
framework to study the effects of habitat fragmentation, and to derive ap-
proximations that link the analysis to the simpler matrix model case.

2. Modeling Background
Simple difference equations of the form
Uy = fue) = b(ug)uy (1)

have been used widely to model the evolution of the density u; of a popula-
tion with discrete non-overlapping generations indexed by ¢. The function
f describes the net effect of production of offspring and removal of indi-
viduals, and b stands for the per capita production minus mortality rate.
Individuals are not differentiated with respect to age or stage. They are
lumped together over the spatial domain in which the population lives, and
environmental heterogeneity is neglected.
Extensions of (1) to stage-structured population models are written in
matrix form
u(t +1) = F(u(t)) = B(u(t))u(t), (2)

where now u = (u1,...,u,)? is the vector of densities of stages 1...m and
B is the matrix of net production rates. The entry b;; is the net rate with
which stage i is produced from stage j. The most comprehensive overview of
the setup and application of these matrix models together with a detailed
reference list can be found in [6]. Both model types, (1) and (2), exhibit
a wide range of possible behavior from approaching equilibria or cycles to
existence of strange attractors and chaotic behavior [6,18,31].
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An extension of (1) to include spatial locations and movement of individ-
uals assumes that population dynamics are governed by (1) and dispersal is
governed by a probability density function or kernel k(z,y) that describes
the likelihood of jumping from y to = in a single time step. When growth
and dispersal are separated in time, the integrodifference model results

u(t +1,2) = /Q k(e ) f (u(t,y). v)dy, (3)

where (2 denotes the domain of interest.

Although integrodifference models were initially formulated to study
population genetics, recent applications have been made to ecological prob-
lems. One problem is the study of speeds of invasions and shapes of fronts.
We will not address this question here, but give references for the sake of
completeness [17,24,35,36]. Another problem regards critical domain-size
and population persistence in fragmented habitats.

The first application of (3) to persistence in ecology was [19], where
the model was derived, linear analysis was performed and the shapes of
equilibrium solutions were studied numerically. Several aspects of density
dependence and the possibility of pattern formation in homogeneous habi-
tats was studied in [1]. A generalization of (3) to include temporal variation
is given in a series of papers [11-13]. Existence and stability of fixed points
and cycles were studied in the case where f varies periodically in time or
even stochastically. Different dispersal strategies were compared with re-
spect to persistence. The bifurcation structure of (3) was closely examined
in [32]. An approximation for the spatial shape of the equilibrium solution in
terms of the dispersal success function (see Section 5) was given. Persistence
in a periodically varying heterogeneous domain was studied.

Much as the scalar model (1) can be extended to equation (3), the stage-
structured model (2) can also be spatially extended. While this type of
spatial stage-structured model has been used to model biological invasions
[26], we are not aware of a systematic mathematical treatment of stage-
structured integrodifference models for persistence in fragmented habitats.
However, there is a growing interest amongst ecologists in applying such
models, e.g., to reserve design [2].

The first goal of this paper is to thoroughly formulate stage-structured
integrodifference models and to generalize the existence and bifurcation re-
sults of [32] (Section 3). In particular, Section 3.2.2 is somewhat technical
and can be skipped at first. In Section 4, the theoretical results on the crit-
ical domain-size are illustrated with an example and numerical simulations.
Then, several approximations are presented, which can be used to deter-
mine stationary solutions, their spatial shape and their stability without
using excessive computer power or demanding large datasets (Section 5).
Some effects of habitat fragmentation are discussed in Section 6. In Section
7, we extend part of the theory developed in Section 3 to the case where
certain stages are sedentary. A table of the most frequently used symbols is
included in appendix A.1.
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3. Formulation and Analysis of the Model
3.1. Formulation

We assume that the non-spatial model (2) for a population with m stages
and non-overlapping generations is given. To introduce space, we denote
2 C R™ as the spatial domain of interest. We exclude all points from (2
where the population cannot settle and reproduce. We account for possibly
varying conditions in the domain by allowing the matrix of production rates,
B(u,y), to depend on space explicitly. We assume that there is emigration
from the domain but there is no immigration into the domain. We assume
that (2 is closed and bounded.

To describe dispersal we denote k;;(x,y) as the probability that an indi-
vidual at stage ¢ which was produced from stage j at the point y € {2 settles
at x € 2 during one dispersal period. Together, these kernels form the dis-
persal matrix K(z,y) = (kij(x,y)). The dispersal matrix may depend only
on the signed distance K (x,y) = K (x — y) rather than on precise locations,

as is the case with the commonly used Laplace kernel with variance o2,

o) = e (—\/;x —y|> . (@

This kernel can be derived from the assumption that dispersers move ran-
domly and settle at a constant rate [3,27]. If habitat quality, habitat se-
lection, and boundary effects have to be taken into account [33], then the
simplifying symmetry assumption is, in general, not valid. Dispersal kernels
can also be constructed from observational data. If there is no mortality
due to dispersal, then for all y

/Q kij(z,y)dx < /n kij(z,y)de =1, (5)

since individuals are lost when they leave the domain. If there is mortality
due to dispersal, then the second integral is less than one.

Now, for each stage i we multiply its production with its dispersal kernel,
kijbijuj, and sum over all stages j to obtain the spatially explicit model for
reproduction and dispersal as (compare [26])

u(t +1,2) = Alu(t))(z) = /Q[K(x,y) o B(u(t,y), y)lu(t,y)dy,  (6)

where o denotes the Hadamard product of entrywise matrix multiplication.

3.2. Analysis

Biologically, we are interested in finding the critical domain-size, its depen-
dence on parameters, steady states and the long term behavior of solutions
of (6). Mathematically, this translates into finding the leading eigenvalue of
the linearization at zero, its dependence on parameters, bifurcations, and
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uniqueness and stability of fixed points. This section is devoted to provide
all these mathematical tools.

The compactness and differentiability conditions established in Lemma
1 below ensure that we can use the theory of completely continuous oper-
ators in the analysis to follow. We then establish the main result on the
linearization under quite strong assumptions (Theorem 1). In Section 3.2.2
we discuss how to relax these assumptions to include more biologically rel-
evant scenarios. The proofs and some formulations in this section are quite
technical and can be skipped at first. Section 3.2.3 explores dependence
on parameters. Lastly, we study existence and uniqueness of positive fixed
points if the zero state is unstable.

It is convenient to work in the product space £2 = (L*(£2))™ and its
positive cone. The following will be assumed throughout the paper.

(A1) The per capita production is bounded independent of the population
size, i.e., 0 < bjj(u,y) < bmax < 00 for all ¢,j. Furthermore, b;;(u,y) is
continuous w.r.t. ¥y and continuously differentiable w.r.t. u.

(A2) If b;; is nonzero then k;; satisfies k;; € (L*(£2))%.

Lemma 1. Under the assumptions (A1-2) it follows from Sections 17.3 and
17.8 in [21] that A : L* — L? as defined in (6) is positive and completely
continwous. From Section 17.5 and Theorem 17.1 in [21] we see that A is
strongly Fréchet differentiable at u = 0 w.r.t. the positive cone. Its derivative
the positive, completely continuous linear operator given by

AO0() = Do) = [ [K(e.9) o BOGo). (7

Assumption (A1) generalizes [13,32] where it was assumed that the to-
tal production f(u) = b(u)u is bounded independently of u. For a non-
structured population, this assumption is natural. It implies that b(u) — 0
as u — oo. This implication is too strong for the stage-structured model. In
the scalar case, (A1) reduces to saying that f is asymptotically linear.

The “dispersal behavior” of sedentary stages is described by the delta
distribution k;;(x,y) = 6(2 —y). This case is excluded by assumption (A2)
since the operator A in general fails to be compact then. The last section
of this paper is devoted to a more thorough investigation of this case.

3.2.1. Linear Analysis A linear operator is called superpositive [21] if it
has a simple positive dominant eigenvalue with positive eigenfunction, and
no other eigenfunction is positive. If an operator is superpositive then the
stability of zero and the asymptotic behavior of the equation are deter-
mined by the leading eigenvalue and the corresponding eigenfunction. In
what follows, we derive biologically relevant conditions under which D is
superpositive.

A matrix B is called primitive if some power of B has strictly positive
entries [6]. This condition is often satisfied in models for structured popu-
lations. We assume the following spatial version of primitivity.
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(A3) The matrix B(0,y) is primitive for each y € 2 and its sign structure
does not change throughout the domain, i.e., if b;;(0,y) is positive for
some y € (2 then it is positive for all y € (2.

In biological terms, if stage j produces stage ¢ somewhere in the domain,
then it does so everywhere, possibly at different rates.

Theorem 1. Assume (A1-3). In addition, assume that there are constants
0 < k< kij <& on §2 for all pairs (i,5) for which b;j is nonzero. Then D
1§ superpositive.

We give the proof in appendix A.3 by first showing that the operator is
up-positive in the sense of [20].

3.2.2. Relaxing the Assumptions The positivity assumption in Theorem 1
implies that dispersers can reach any point in the domain from any other
point within one dispersal period. This assumption seems unreasonable for
some species. In order to relax this assumption, we first assume the domain
2 to be connected. The condition on the kernels then becomes:

(A4) For all k;; # 0 there is a simultaneous non-negative symmetric con-
tinuous subfunction x(z,y) = k(y,z) < kijj(z,y) <R, and there is a con-
stant ¢ such that for all & € {2 the measure of the set {y € 2 | k(z,y) >
k& > 0} is at least d.

The last condition in (A4) says that each point in the domain is accessible
to individuals from an area of size at least 4. Assumption (A4) in particular
covers two cases of interest. If dispersers stay close to where they originated
then k;j(z,y) = 0 if |[v — y| is large. The area from which a point can be
reached then is a neighborhood of the point itself. In the other extreme, if
individuals move at least a certain distance from where they originated, then
the dispersal kernel is zero for x = y, as in the double Weibull kernel with
appropriate parameters [27]. Then (A4) requires that the minimal distance
which individuals travel is small enough compared to the domain size.

Proposition 1. Assume (A1-4) and that 2 is connected. Then D is super-
positive.

Finally, we write {2 = U7:1...FQV as a disjoint union of connected com-
ponents. Hereafter, Latin characters always refer to stage whereas Greek
characters refer to spatial domains. The connectivity matriz C = (cqp) for
continuous kernels k;; is given by
_ [ 1liffor some x € 24,y € 23,%,] : kij(x,y)b;;(0,y) >0
Co = { 0 else (8)

Then we need the following last assumption

(A5) The matrix C' is primitive.
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Assumptions (A4) and (A5) together imply that an individual of stage ¢ at
point x can get to any other location y € {2 and stage 7 through dispersal
and production in finitely many generations. This assumption is the natu-
ral generalization of the assumption in [13] that dispersers can reach any
point in the domain from any other point in finitely many generations. In
mathematical terms this means that the operator D is irreducible.

Proposition 2. Let 2 = U»y:l...F“Q’Y be the disjoint union of comnected
components and assume that (A1-5) hold. Then D is superpositive.

Proofs of both propositions are given in appendix A.3.

3.2.3. The relation between survival, growth and domain length We now
study the dependence of the leading eigenvalue A on some growth parameter
P and on the domain length L.

Lemma 2. (a) On a fizred domain, suppose that the matriz of production
rates B(0,y; P) is non-decreasing in P. Denote \(P) as the dominant eigen-
value. If at least one entry of B(0,y; P) is strictly increasing in P then so
is \(P).

(b) Fiz P, and let §2 = [0,L]. Assume that the kernel is of the form
K(z,y) = K(x —y) > 0 and denote \(L) as the leading eigenvalue. Then
ML) is a strictly increasing function of L.

Part (b) of the Lemma can be extended to higher dimensional domains
and more general kernels. The formulation becomes more complicated, for
example, one has to find an appropriate domain size parameter L. We for-
mulate a more general version in appendix A.3 where we also give the proof.

The implicit function theorem applied at the bifurcation point gives

dP/dL < 0, (9)

provided the conditions of the Lemma are satisfied. Hence, on smaller do-
mains the population needs a higher growth rate to survive. This conclusion
and inequality (9) were already reached in [32] for scalar integrodifference
models. The correct proof, however, is provided in the two preceding lem-
mas.

3.2.4. Nonlinear Analysis To ensure existence of a nonzero fixed point,
which is not the point at infinity, we impose the following condition.
(A6) There is some matrix-valued function B(oo,y) such that

const.

Lemma 3. Suppose (A1,2,6) are satisfied. Then, by 3.2.1 in [20] and The-
orem 17.2 in [21], the operator A has a strong asymptotic derivative at
infinity. It is given by the completely continuous operator

A (00)b(z) = / (K (2,) 0 B(oo,y)|é(y)dy. (1)

for large ||ul]- (10)
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Proposition 3 (Existence of fixed points). Assume (A1-6). Suppose
that the spectral radius of A'(c0) is less than one and that the dominant
eigenvalue of D is greater than one. Then by Thm. 4.11 in [20], A has a
positive fized point. In the scalar case, the condition on the spectral radius
at infinity reduces to the slant asymptote of f having slope less than one.

(A7) The production rates satisfy (0/0u;)b;, < 0 for all i,k,l, and the
inequality is strict for at least one set i, &, [.

Assumption (A7) states that the population experiences some population
pressure. In particular, we exclude the Allee effect that a population benefits
from an increase in density, at least for some intermediate density range.
Recall that the dominant eigenvalue A(L, P) of the linear operator D(L, P)
on 2 = [0,L] is increasing in the growth parameter P and the domain
length L under some conditions. We first fix L and denote by P* = P*(L)
the critical value where A(L, P*) = 1.

Lemma 4 (Bifurcation I). Assume (A1-7) are satisfied and the spectral
radius of A'(00) is less than one, independent of P close to P*. Assume
that the production rates b;; are non-decreasing in P and that at least one
of the rates is increasing in P. Then there is a transcritical bifurcation at
P = P*, i.e., a continuous branch of solutions intersects the zero solution.
The nonzero solution is positive for P > P*.

Vice versa, we can fix P and denote by L* = L*(P) the critical domain
length where A\(L*, P) = 1. To formulate the next lemma, it is convenient
to introduce the dispersal success functions

Sij(y)z/nkij(%y)dxv (12)

which we discuss in detail in Section 5.

Lemma 5 (Bifurcation II). Assume (A1-7) are satisfied and the spectral
radius of A'(00) is less than one, independent of L close to L*. Assume that
the dispersal success functions s;; are non-decreasing in L and that at least
one of them is increasing in L. Then there is a transcritical bifurcation at
L = L*, i.e., a continuous branch of solutions intersects the zero solution.
The nonzero solution is positive for L > L*.

The proofs are given in appendix A.3.

In the scalar case it is known [32] that the non-negative fixed point is
unique and stable whenever it exists, provided that the function f(u) =
b(u)u is monotone and concave. The Beverton-Holt growth function sat-
isfies the conditions but the Ricker function does not. The result can be
generalized to the stage-structured model as follows.

Proposition 4 (Uniqueness of fixed points). Let the assumptions of
Proposition 3 be satisfied. Assume in addition that the function

u— B(u)u (13)



Spatially-explicit matrix models 9

is increasing and that
t — B(tu) (14)

is decreasing for 0 < t < 1. Then A is concave and monotone and hence
by Thm. 6.3 in [20] the positive fized point is unique. By Thm. 6.6 in [20]
every solution with ug 7 0 converges to the positive fized point.

In appendix A.2, conditions (13), (14) are given in coordinates and some
examples that satisfy the two conditions are worked out. In natural popula-
tions, periodic cycles occur frequently and hence a unique stable fixed point
may be unrealistic.

4., Example and Simulations

We introduce dispersal into the matrix model from [25] on a connected
one-dimensional habitat patch. Simulations illustrate the theory above. In
particular, we ask: Keeping the dispersal parameters fixed, how does the
behavior of the spatial model compare to the one of the non-spatial model?
Vice versa, keeping the population vital rates fixed, how does the behavior
of the spatial model depend on dispersal?

The population in the matrix model [25] is divided into juveniles, uy,
and adults, us. Survival of stage j is given by the rate p;. Juveniles mature
at rate v, and adults produce juveniles at rate P. The model equation reads

w(t +1) = Bu(t) = (”1(1_7) P)u(t), w= <51> (15)

Py pe 2

In [25], a detailed study is given in the four cases that exactly one of the
parameters depends on the total density u; + us according to a negative
exponential. We concentrate on the case of density-dependent reproduction,
i.e., we replace the parameter P in (15) by Pe~(¥1+42) The results from [25]
in that case are: For small values P < Py the zero state is the unique stable
equilibrium of (15). At P = P, there is a transcritical bifurcation to a stable
positive equilibrium. For P > P, this equilibrium loses stability through a
series of flip bifurcations, which eventually lead to chaotic behavior ([25],
Figures 2a, 5a). The bifurcation values Py and P. as well as the population
level at the positive steady state and the basic reproductive number Ry are
computed explicitly ([25], Equation (9) and Tables 3, 4).

We choose each dispersal kernel as a Laplace kernel and, for simplicity,
assume that all kernels have the same variance, i.e., k;;(z,y) = k(z,y) asin
(4). We work on the normalized spatial domain 2 = [—1,1]. Changing the
domain to [—L, L] is equivalent to replacing the variance of the kernels by
0?/L?, [32]. Instead of P and L we work with P and o2.

The assumptions of Theorem 1 and Lemma 2 are satisfied. Therefore,
there is a leading eigenvalue, and it is increasing in P and L, and hence
decreasing in o?. Assumption (A6) is satisfied with

B(oc) = (m(l -7 0 ) ' (16)

Py P2
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0?=0.5 0?=0.08

density
density

spatial domain spatial domain

density

-1 1
spatial domain

Fig. 1. The true steady state (so!id line) and the dispersal success approximation
(dashed line) for P = 30 and o? = 0.5, 0> = 0.08 and o2 = 0.02. The upper
profiles show the juveniles, the lower ones the adults.

Hence, by Proposition 3 there is a fixed point in case that the leading
eigenvalue of the linearization is greater than 1. There is no Allee effect,
and hence by Lemmas 4 and 5 there are transcritical bifurcations from the
trivial steady state as P increases or o decreases.

Since we are interested in the effects of space, we concentrate on o2 and
fix the other parameters as in [25], i.e., p1 = 0.5,p2 = v = 0.1. Figure 1
shows, for fixed P, how the stable equilibrium emerges and changes shape
for decreasing variance o2 (or increasing domain length L). Both, juveniles
and adults, grow with the domain length. The dashed lines give the dispersal
success approximation as explained in Section 5. Simulations are done using
MATLAB, its FFT-routine and 4096 space points.

The exponential density-dependence Pe~(#11%2) does not satisfy the
concavity condition (13) for uniqueness of fixed points in Proposition 4.
Hence, we expect further bifurcations for appropriately chosen values of P.
All density profiles in Figure 1 are concave, which simply is an effect of
the loss of individuals through the boundary. It turns out that secondary
bifurcations, domain length and non-concave profiles are closely related.

In Figure 2 we give some examples of cycles with non-concave shapes.
The two local maxima near the edges of the domain in the 2-cycle result
from an interplay of loss through the boundary, the Ricker dynamics and
the small (relative to the domain size) dispersal distance. If the population
density at the boundary is lower than in the middle of the domain, then
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P=370, 0°=0.04 P=570, 0°=0.5

density

spatial domain spatial domain
P=700, 0%=0.02

1

density

pE=SEEE==—coosmzzmis R
-1 ] ] 1
spatial domain

Fig. 2. Non-concave shapes of cycles. The 2-cycle for P = 370 and o = 0.08
shows one non-concave profiles for juveniles (solid lines). Similarly, the 4-cycle for
P =570 and 02 = 0.5. The last plot shows a 4-cycle for P = 700 and o2 = 0.02,
in which also the adult stage has non-concave profiles.

the Ricker dynamics produce more individuals close to the boundary than
in the middle. Since dispersal is small, this pattern is still seen after the
smoothing effect of dispersal. In the next time step, the Ricker dynamics
produce only few offspring close to the boundary, some of which are then
lost through the boundary, and hence we are back to the beginning.

Since all the dispersal kernels are equal, we can explicitly compute the
relationship between the intrinsic growth rate and the domain length at the
first bifurcation point, thereby extending the results in [19,32]. We denote
¢ = (¢1, =) and write the linearized equation as

2ow) = [ e (— 'j%) Bo(y)dy, a7

with B as in (15). Differentiating twice leads to the equivalent formulation

o' =% (38-1) o) (18)

with boundary conditions

¢ (k1) £ \/gqs(ﬂ) =0. (19)
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At the bifurcation point, we have A = 1, which implies that the leading
eigenvalues of B is greater than 1. Solutions of the boundary value problem
(18), (19) are symmetric with respect to x — —z. The exponential ansatz
o(x) = 1es® leads to

2

¢ ==/ = 1, (20)

where p1 o are the eigenvalues of B with the corresponding eigenvectors
¥1,2. We have u; > 1, po < 1. Applying the symmetry condition, we are
left with the two possible solutions

11 cos (L_ll) , 15 cosh <7“1_'u2x> . (21)

02/2 02/2

Using the boundary conditions and the requirement that the solution be
positive, we can rule out the second possibility and arrive at the relation

2 tan (VA D) o)

o2 Vi — 1 ’

which for the scalar case was given in [19] equation (60), and [32] equation
(28). This argument generalizes to arbitrary dimension provided that all
eigenvalues of B are real and only the leading eigenvalue is greater than 1.

The leading eigenvalue p; of B obviously depends on the growth pa-
rameter P. We plot the relation between o2 and P in Figure 5, where we
compare it with approximative values derived in Section 5 and results from
numerical experiments.

5. Approximations

Dispersal matrices contain many parameters, and model (6) might require
intensive computing. In this section, we present some helpful approxima-
tions. These approximations are based on the redistribution function, the
dispersal success function, and the average dispersal success which we intro-
duce below. The patch approximation reduces the integrodifference equation
to a difference equation in some finite dimensional state space. It was first
mentioned in [13] for a non-structured population. The dispersal success
approximation gives the approximate spatial distribution of the stationary
solution of the integrodifference equation in terms of the stationary solu-
tion of the non-spatial model and some information about the dispersal
process. It was first worked out for a non-structured population on a single
habitat patch in [32] and for two patches in [14]. The underlying idea for
both approximations is to average over homogeneous habitat-patches. We
generalize both approximations to a stage-structured population on finitely
many habitat-patches. Then we derive approximations of the eigenvalues
which determine persistence and stability of a population.
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5.1. Characteristics of dispersal

Integrating the dispersal kernels with respect to point of settlement, we
obtain the dispersal success functions s;;j(y). These give the probability with
which an individual of stage i that was produced from stage j at location y
after the dispersal phase successfully settled in the domain (2. The matrix
of dispersal success functions is defined by

ﬂwzﬂyﬂawm=(ﬂﬁMawm)=@wwy (23)

If no individuals are lost through the boundary then s;;(y) = 1 (compare
(5)) but in general
0< si(y) < 1. (24)

The functions s;;(y) correspond to a point release experiment. At the point
y one releases individuals of stage ¢ produced from stage j, and after one
dispersal period one determines the fraction of individuals that are still in
the domain. The average dispersal success is given by

. 1 1 .
S = E/QS(y)dy: M/Q/QA (z,y)dydx. (25)

The redistribution functions r;j(z) correspond to an area release experi-
ment. Individuals of stage ¢ produced from stage j are distributed homoge-
neously over the whole domain with density N. After one dispersal period
the expected density of individuals at € {2 is Nr;;(z). The matrix of
redistribution functions is

re) = [ Ky = ( [ Bstends) = 0o @0

The function R is nonnegative but need not be bounded pointwise.

If the probability of dispersing from y to x is the same as the one from
x to y, the dispersal kernel is symmetric, K (z,y) = K (y, ), which implies
R = S. The Laplace kernel (4) is an example. Its dispersal success function
is given by

1 _ /=2 2
s(yy=1——e 7 cosh —, (27)
2 o2

see [32], and the average dispersal success is (see Figure 3)

§:1—%\/§<1—62\/?>. (28)

In general, the two functions R and S are different. Assume, for exam-
ple, that in a non-structured population (m = 1) the choice of settlement
location depends only on the quality of the habitat at that point. Then
k(z,y) = k(z), and so the redistribution function r(z) is just a multiple of
k whereas the dispersal success function s(y) is constant.
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average dispersal success
S
3

o
5}
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variance

Fig. 3. The average dispersal success § of the Laplace kernel (4) depending on
the variance o2

5.2. Patch approrimation

We assume that (2 is divided into disjoint connected components (2,, a =
1...7I each of which is spatially homogeneous. Recall that Greek letters to
refer to space and Latin ones to stage. Averaging the population over each
component, we get the vectors U (t) = (U2 (t),...,U2(t)T as

o) = u(t, x)dx
0= 1o /. it (29)

for each patch f2,. On each patch we get the matrix of production rates
B*(:) = B(-,y) 0. (30)

Substituting (29) and (30) into the right hand side of the master equation
(6) and integrating the result over habitat patch « we obtain the time
evolution of the population averages as the m x I'-dimensional system

(t+1) Z S8 o BA(UP ()] UP(t), (31)

where S5 are matrices of averaged dispersal success from patch 25 to £2,,

1
S8 — Iz |/ /Q K(z,y)dydz, a,B=1,...,I. (32)
s

On a single patch, formula (31) simplifies to an equation of the form (2):
Ut +1) =[S o BUW)U(t), (33)

where § is the average dispersal success given by (25).

Since the integration over space has to be performed only once instead of
at every time step, the iteration (31) is computationally faster than the full
model (6), in particular, if the integrals are not convolutions. If dispersal
is homogeneous within patches then the approximation (31) is indeed the
true solution of (6).
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5.3. Dispersal success approzimation

We briefly recall the approximation for an unstructured population and a
symmetric kernel as derived in [32]. Denote u*(x) as the nonzero equilibrium
solution of (3) and @ as its spatial average. If |u*(x) — @| is small, then the
dispersal success approximation

u*(z) = s(2)b(tg)Ug, (34)

is of first order in |u*(z) — @|. Integrating this equation on both sides gives
the spatial average @ as the approximate solution of the algebraic equation

Ug = §b(Ug) U, (35)

where s(z) and § are given by (23) and (25). The corresponding formula
in the case of two habitat-patches has been derived in [14]. Dropping the
assumption of symmetric kernels, we instead get the redistribution approz-
mation

u*(z) = r(z)b(tq)la, (36)
where r(x) is the redistribution function (26) for the kernel k and a, is still
given by (35). Recall that (34) and (36) can be quite different.

In the stage-structured case on a single habitat-patch (2, we denote by
u* the stationary solution of (6) and form the average

— — — 1 *
= (ty,...,0m) " = Tl /Qu (x)dx. (37)

We abbreviate F(w) = [K o B(w)]w. Using the fundamental theorem of
calculus, the steady state equation of (6) can be written as

u*(z) = / K (2,y) o B(a,y)]dy a
- (38)
+ /Q/O DF(eu* + (1 — £)a) dé (u* — @) dy,

where DJF denotes the derivative of . We now assume that the steady
state solution u* is close to its spatial average and that DJF is order 1. These
assumptions are valid if the domain is large with respect to the dispersal
distance and if the production rates are smooth functions of the density. We
also assume that the habitat is homogeneous such that B does not depend
on y. Then to first order we have

u(z) = [ | K@pidye B@|a= @ e B@a (9
2

and in the special case of symmetric kernels u*(z) = [S(z) o B(a)]a. Inte-
grating both sides and dividing by the volume of {2, we get the vector-valued
fixed-point equation R

Uq = [S 0 B(tq)]Ua, (40)
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with S as in (25), which determines @ to first order.
For several homogeneous habitat patches 2, « = 1...T, with BY(:) =
B(:,y) ., the redistribution approximation is given by

u*(z) =Y _[R*(x) o B*(a®)]a%, (41)

[e%

where R*(x) is the number of arrivals at = from patch (2,. For symmetric
kernels we obtain the dispersal success approximation by replacing R* with
S%, where S°(z) is the dispersal success from x into patch (2., compare (32).
The first-order approximation of the population average at the equlilbrium
solution is given by the fixed point of the matrix-valued equation

u® =[50 B?(u?)]u’. (42)
B

5.4. Example continued

Since all dispersal kernels in our example are assumed identical, the dispersal
success approximation of the spatial version of (15) simplifies to

w(z) = s(2)B(A)T,  Tia = $b(fia)fia. (43)

The result is plotted as the dashed lines in Figure 1. True and approximation
solution agree well for the adult stage but not quite as well for the juvenile
stage. In deriving the dispersal success approximation, we assumed that the
profile is sufficiently close to a constant. Whereas the adult stage is close
to a constant, the juvenile stage is not, and hence the difference was to be
expected.

5.5. FEigenvalue approximation

We now approximate the leading eigenvalue A\ of the operator D in (7).
We denote the corresponding eigenfunction by ¢ = (¢1,...,ém,)%. On each
patch 2, we get the average ¢® as in (29). Assuming again that B is
constant on each patch §2,, we integrate both sides of the equation A¢p = D¢
over the domain and substitute ¢ for ¢ to get the approximate equation

Ao =Y [$*7 0 B*(0)dy] o5, (44)
B

with §%% as in (32). On a single habitat patch the formula is
A6 =[$0B(0)] 4, (45)

which is exactly the eigenvalue problem for (33) linearized at zero.

Since individuals may be lost through the boundary, one expects that
the total number of individuals at steady state in the spatial model (6) is
lower than in the non-spatial model (2). Also, one expects that the leading
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eigenvalue of the linearization in the spatial case is smaller than the one for
the corresponding non-spatial model, i.e., in the spatial case, the population
needs to have a higher growth rate in order to persist. The following lemma
can be shown using the theory of positive operators [20].

Lemma 6. Denote by \, the leading eigenvalue of the linearization ¢ +—
B(0)¢ of the non-spatial model (2) and by Asp the leading eigenvalue of the
approzimation of the linearized spatial model (45). Then

Asp < An.

Neat, assume that both models (2) and (6) have a unique positive fized point.
Denote by 4 = F(a) = B(a)u the fized point of the non-spatial model and
by @, the fized point of the approximation of the spatial model, see (40). In
the case of only one stage (m = 1) assume that F'(i,) < 1. In the general
case assume that F is monotone and asymptotically sublinear. Then

G, < il

Finally, we find appoximate conditions for stability of the positive steady
state. We denote u*(x) and @ as above, and start with an unstructured
population on a connected habitat. Then, for some function w(t, z) close to
U4, the difference satisfies

w(t+1,2) —u*(x)
- / k(o) (wlt,y)) — F@)]dy + / k(e 9) [ () — £(u* (4))dy
~ / k() £ (@) w(t, y) — u* (v)]dy.

An approximation of the eigenvalue at the steady state of (3) is hence given
by the eigenvalue equation

b= f'(a) / k(e y)o(y)dy = (b(@) + V(@) / k(e 9)o(y)dy,  (46)

which has a simple dominant real eigenvalue of the same sign as f'(@) and
in absolute value less than f'(@). Replacing ¢ by its spatial average gives
an approximation in terms of the average dispersal success,

A~ 8f'(u) = 5(b(a) + V' (@)a). (47)

For m > 1 stages the eigenvalue of the steady state u.(z) is approximated
by the eigenvalue equation (compare [6] for the non-spatial case)

Ao = [S o B()]o + Z {5 o 833(1?) ] O (48)
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equilibrium values for u, and u

0.5 0.75 1.0
. A
average dispersal success 'S

Fig. 4. The equilibrium 41 (solid) and u» (dashed) as a function of 3.

5.6. Example continued

The approximate linearized model is ¢ — $B(0)¢. Hence, its leading eigen-
value Asp = 8\, is just a multiple of the eigenvalue of the non-spatial model
with § < 1. This was the first claim of Lemma 6. For the second claim,
we denote u(8) as the fixed point in (43) and @ as the fixed point of the
non-spatial model (15). Obviously, @(1) = 4. Both components of @ are
increasing functions of 3, as plotted in Figure 4, and hence, @ < 4.
Following [25], we can compute the first bifurcation point Py($) of (43),

(L—3p>)(1—3p1(1—9))
$2pay
The point at which the positive steady state loses stability is given by

3 = Pr(3) ox 25(1 = 8pa + 3p17)(p1(1 =) + p2)
Fel®) = Ro(8) p{<1+§p2—§m><1—stm)(l—épl(l—v))}' (50)

These two bifurcation points are approximations to the bifurcations of the
spatially explicit model according to the eigenvalue approximations (45)
and (48). In Figure 5 we plot Py and P, as functions of the variance o2. We
see that Py is a good approximation to the true value given by (22). We
also plot the results of some numerical experiments done on the spatially
explicit model. The bifurcation points predicted by the approximation and
the results from the numerical experiment agree quite well. The secondary
bifurcation point P, is decreasing for very small variances. This fact is some-
what surprising since dispersal in space usually has a stabilizing effect. But
the numerical results are independent of the number of grid points, and the
first order approximation shows the same behavior.

P0(§) = (49)

6. Application

We study the simplest occurence of habitat fragmentation, namely how
a gap in the domain affects population persistence and dynamics. More
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Fig. 5. True, approximate and experimental relation between P and o2 at the
first and second bifurcation point. The true relation at the first bifurcation as
given by formula (22) is plotted as the dash-dot line. It agrees quite well with the
function Py (solid) from the approximation (49) and with the bifurcation values
found in numerical experiments (stars). The relation at the second bifurcation
point cannot be computed explicitly. The approximation P, (dashed) as in (50)
agrees quite well with the experimental values (stars).

specifically, we show how the population is affected by a disturbance of fixed
size, depending on where the disturbance occurs. This investigation is by
no means complete since the number of parameters increases dramatically
as we add space and dispersal to matrix models. But it shows how the tools
developed above can be applied to real ecosystems.

We continue the example from Section 4 on the domain [—1, 1], from
which we delete a connected subdomain of length 0.1, i.e., 5% of the total
domain. Hence, the total domain consists of two patches

2=[-1,M —0.05]U[M + 0.05, 1], (51)

where M denotes the center of the gap. Since the dispersal kernel is sym-
metric, it suffices to look at 0 < M < 0.95.

First, we study how persistence of the population is affected depending
on which part of the domain is missing. In Figure 6 we plot the maximum
densities of uy and us and the approximate eigenvalue (45) as a function of
M. The parameters are P = 15 and o2 = 0.08. We see that the population
does not survive if the gap is in the middle of the domain, but it is estab-
lished if the gap is closer to the boundary of the domain. According to the
nonlinear model, the critical value is M = 0.15. The approximate eigenvalue
at M = 0.015 is A\, ~ 0.99 and hence, the approximation is within 1% of
the true value.
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Maximum density Approximate eigenvalue A

% 0.2 0.4 0 0.2 0.4
M M
Fig. 6. Persistence and gap location. The maximum density of u; and us shows
a transcritical bifurcation as the center point of the gap, M, is shifted from the
center of the domain (M = 0) to the boundary (M = 0.95). On the right, the
approximate eigenvalue is plotted.
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Fig. 7. Dynamics and gap location. With the gap in the middle, the population
reaches a stable steady state (left). Without gap, the population exhibits a two-
cycle (right). The solid lines represent u1, the dashed lines are u,.

Next, we show that for different parameters, P = 82,02 = 0.5 a popu-
lation might or might not exhibit cycles, depending on where the gap is in
the domain. Figure 7 shows the two extreme cases with the gap being in
the middle and the population at a stable steady state (left) and the case
without gap and the population exhibiting a two-cycle (right). As the gap
is moved outwards from the center, the amplitude of the cycles decreases
until the cycles disappear at some point.

7. Stages without dispersal

Not always do individuals move between two successive reproductive phases.
Mathematically, this “staying-in-place” strategy [12] is described by the
kernel k(x,y) = 0(x — y). In assumption (A2) we excluded this choice of k
since the operator A in (6) would not be compact. This problem was already
mentioned in [13], where, in order to make the theory applicable, the delta
distribution was replaced by some approximate kernel which insured the
necessary compactness properties.
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In the study of speeds and shapes of traveling fronts, compactness of
the operator A is not required. For a single population, in which some
proportion is not dispersing, the speed of the front was studied in [34]. For
structured populations the speed of a front was given in [26].

Sedentary stages occur naturally in structured populations. In many
cases, the theory developed in Section 3 can still be applied. The biological
reason for this is, that wherever one starts in the life cycle, one has to go
through some dispersal phase eventually. Mathematically, this means we
look at some power A™ of the operator A.

As an example, we first consider a biannual species, in which both age
classes reproduce. The matrix B is the simplest primitive Leslie matrix

(%)

where f3; is the production rate from stage j and p is the survivorship. If
we assume that dispersal occurs only at reproduction, then ky; = koo = 6.
We denote ki1 = ki, k12 = k2. Then

U1 (t + 17.77) = /kl (xvy)ﬁl (u(tvy))ul(tvy) + k2(x7y)BQ(u(tvy))U’?(tvy)dyv

uz(t +1,2) = pua (¢, ).
(53)

The operator A here is not compact. However, the operator A? given by
w(t+2:0) = [ ko)t + D+ Loy
+ [ () sa (s (),

us(t +2,2) = p / o (2, 9) B0 (ult, y))ua (£ 9) + ks (0, ) Bo (ut, ) Yz (2 )y,
(54)

is compact as long as p > 0 is independent of u. Hence, the theory developed
in Section 3 applies to A2.

To proceed with the general theory we first consider the linear case,
in particular the study of critical domain-size for the case with sedentary
stages. We restrict ourselves to the case of a connected habitat 2. We de-
compose the linear operator (7)

Do) = / K (2,9) 0 BO,)]o(y)dy = (D1 + Do)d(a),  (55)

such that D; contains all the entries where k;; satisfies (A2) and is zero
otherwise. The operator D contains the functions b;; where k;; = § and
is zero otherwise. Then D; is compact and Do is bounded. The following
lemma, is proved in appendix A.3.
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Lemma 7. Assume that Do is nilpotent of order ng, uniformly in y € (2.
Then D™ is compact for all n > ng. If, in addition, assumptions (A1,3)
hold and (A4) holds for the kernels in D1, then D is superpositive for some
n > ng. In particular, if the spectral radius of D is greater than one, then
the zero solution of (6) is unstable.

The conditions in the nonlinear case are somewhat more restrictive. We
now decompose the nonlinear operator (6)

Au)(x) = /K(a%y) o B(u(y),y)uly)dy = (A1 (u) + Az2(u))(z)  (56)

as above, i.e., such that A; contains all the entries where k;; satisfies (A2)
and is zero otherwise. The operator A, contains the functions b;; where
kij = 6 and is zero otherwise. Then A; is compact and As is bounded.

Lemma 8. Assume that As is linear in u and nilpotent of order n, uni-
formly in y € 2. Then A" is completely continuous.

If the assumptions of the previous lemma are satisfied, then existence
of fixed points for A™ can be studied as in Proposition 3. A fixed point of
A™, of course, corresponds to a periodic orbit of A, such that the period is
a divisor of n. However, the operator A" is likewise compact. If for both
powers, n and n + 1 existence of a unique fixed point can be established,
then this fixed point is also the unique fixed point for A.

To conclude, we discuss two examples. Structuring a population by age,
one obtains a Leslie matrix for B [23]. If dispersal occurs during repro-
duction, then the conditions of the previous lemma are satisfied. Grouping
individuals by some stage other than age, generally gives a positive prob-
ability that an individual stays in the same age class for more than one
time step. If the stages are ordered successively then B has the form of a
Lefkovitch matrix [22], which is a Leslie matrix with additional terms on
the diagonal. In that case, all the kernels on the diagonal must satisfy (A2),
i.e., individuals which remain in some age class must disperse, in order for
the assumption of the previous lemma to be satisfied. However, this seems
to be an artifact of the grouping. If one assumes that for each state there
is a maximum number of cycles for which an individual can remain in this
stage, then dividing each state into the maximal number of cycles within
that stage, one obtains a matrix B on a larger state space but with no di-
agonal entries. Hence, assuming dispersal only during reproduction is again
sufficient to satisfy the assumptions of the previous lemma.

8. Discussion

Analysis of the critical domain-size problem is a crucial aspect of the mathe-
matics of conservation. Stage-structured matrix models are well established
as models for populations at risk [6], but do not include explicit spatial as-
pects of the species’ habitat and dispersal. In this paper, we include these
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aspects into matrix models and analyze persistence and bifurcation of solu-
tions to the resulting matrix integrodifference equations.

The strength of such stage-structured integrodifference models is that
they allow explicit depiction of specific life stages and dispersal events. Al-
though the full model formulation is complex, various approximations al-
low us to simplify the explicit spatial model into a pseudo-spatial matrix
model. These are the dispersal success approximation and the redistribution
approximation. From these we can approximate the spatial solutions and
their bifurcation structure.

This work can be considered as an extension of Van Kirk and Lewis’ [32]
analysis of scalar integrodifference models to include stage-structure, frag-
mented habitats, and non-dispersing stages. The results in Section 3 are
similar to their results for non-structured populations in connected habi-
tats. The technical issues of compactness of the operator when there are
non-dispersing stages are not fully resolved (Section 7), although, for typical
models, the operator can be shown to be compact by analyzing population
dynamics over an extended time step.

In Theorem 1 and its generalizations, we list sufficient conditions for
the theory to work, mainly compactness, positivity and irreducibility. In
case compactness fails, Section 7 gave conditions under which the results
still apply. If irreducibility fails, for example if (A3) is violated, then the
eigenvalue need not be simple and the components of the eigenfunction need
not all be positive. Note that irreducibility requires an interplay between
population dynamics and dispersal. One can think of scenarios in which a
well-mixed population has a primitive matrix but spatial heterogeneity and
limited dispersal lead to a spatial operator which is not ug-positive. Vice
versa, one can think of a population on isolated sites that has reducible
matrices, yet given sufficient dispersal between the sites, the operator of the
spatial model can be irreducible.

Our hope is that the results in this paper will lay the foundation for
detailed analysis of population persistence in explicitly fragmented habitats.
As such, the model and its conclusions should be compared to other model
types, for example individual-based models or spatially-explicit stochastic
models [8]. As the population size decreases, we expect stochastic events
to play an important role. We also expect the average dispersal success to
be helpful for other types of spatial models such as metapopulation models
[10]. There, it is usually assumed that habitat patches are small relative to
their distance to other patches, and that dispersal between patches follows a
negative exponential function of the distance. The average dispersal success
is based on individual movement assumptions and gives a more detailed
description of dispersal between patches.
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A. Appendix
A.1. Table of frequently used symbols

u=(uy,...,u,) density of a population with m stages

u* density at equilibrium

U spatial average of u*

B,b per capita birth rate for structured/scalar population
F f total production for structured/scalar population
2,0, (component of) habitat

K, k, k;j (matrix of) dispersal kernels

S, s, 8ij (matrix of) dispersal success functions

S, 5 (matrix of) average dispersal success

R,rij (matrix of) redistribution functions

A,D integrodifference operator, linsarization

A leading eigenvalue of D

o= (d1,...,0m) (eigen-) function in linearization

P population growth parameter

L domain length measure

o2 variance of dispersal kernel

U« average of u on patch (2,

B~ the (constant) birthrate on patch (2,

S(z) dispersal success from « into patch (2,

Sehs Average dispersal success from patch (23 into (2,

A.2. Examples to Proposition 4

In the scalar case, the condition that f(u) = b(u)u is monotone and concave
can be written in terms of b as —b(u) < b'(u)u < 0. In the vector-valued
case, if we assume all production rates to be smooth we can write conditions
(13), (14) as Oxb;; <0 for all i, 4, k and

Z@kbij(u)uj Z —bik(u). (57)

Hence, we get lower bounds for the partial derivatives. In particular, if for
some ¢,k we have b;;, = 0 then necessarily 9,0;; = 0 for all j. This means,
if stage k does not produce stage ¢ then all the production rates b;; are
independent of stage k. In particular, the b;; cannot depend on the total
population in that case.

We consider an age-structured model with Leslie matrix

by b2 b3 ... bpy
g1 0 0 0
B = 0 (o) 0 0 . (58)

0 ... Om—1 0
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By the remark above, the survival rate o; can depend only on the age class
u;. The condition on ¢; for monotonicity and concavity then reduces to the
one-dimensional condition

—0oj(uj) < o (uj)u; <0 forall j. (59)

If each birth rate b; depends only on w; then conditions (13), (14) become
the one-dimensional condition as well. If each b; depends on the total pop-
ulation, then the conditions read

Z b (a)u; > — s%p bi(@) where = ZU]'. (60)
J J

If b; depends on some weighted sum, then the condition is
W, Z Vi(@)u; > —bi(a) forall k, where 0= ijuj (61)
] J
The Beverton-Holt model for a single population is b(u) = /(1 + fu). We
use this functional for each b;, i.e.,

s
b (@) = J 62
0= 5 (62)
In the special case §; = 1 for all j we can write out the conditions above as
QUj aj ( U )
E 4+ — - —1)<0. (63)
3 <
J,;M(l-i—u) 1+a\1+a
This leads to
g (aj —ag)uj —ag <0, (64)
J#k

from which we see that necessarily a;j = ay, for all k, j. Hence, the case of
equal birth rates b; (@) = /(1 + @) satisfies the condition for existence of a
unique fixed point. In case the b; depend on the weighed sum (61), i.e

@y

the condition reads QW an
J ] 66
z]: 1+a)? 1 +4 (66)
which gives
Z(wkaj — w]-ozk)uj S (778 (67)
J
Assuming all weights are positive, this condition is satisfied if
Wi _ % (68)
W Qayp ’

This means that classes have to be weighted exactly according to their
“productivity”-parameter a;.
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A.3. Proofs

Proof of Theorem 1:
We first show that if B™ is positive for some non-negative matrix B, then

B"*1 is positive and hence, B"*! is positive for all I > 0. The i, j-entry of
Bt is

Sha |l Do YD by bhag | (69)
=1

hi1=1 hp_1=1

By assumption, the terms in brackets are all positive. If the ¢, j-entry of
Bt was zero, then necessarily by = 0 for [ = 1...m. But this implies that
the ¢th row of any power of B is zero, which is a contradiction.

Since the b;; are continuous and the domain is compact, one can choose
the power n such that B™(0,y) is positive independently of y.

Taking powers of D and using Fubini’s Theorem we compute the i-entry

%o = [ o [0 T by (o) i) o
bi7l1 (yl) s blN—lj(yN)¢j(yN)dy1 .. .dyN.

We choose N large enough such that BY is positive. By assumption (A3),
for each pair (7,j), at least one of the products of the entries of B in (70)
is positive. Also from (A3) and continuity of B we get a lower bound b;; >
bmin > 0 for all nonzero b;;. By assumption, all the kernels are bounded
above and below. Hence, we get the estimate

(itbumin) ¥ / b(y)dy < DY o(z) < MmN (Rbmas) ™ / sy, (71)

Therefore, D is ug-positive with ug = 1 (see 2.1 in [20]). Then by Thm. 2.5
[20] there is at least one positive eigenvalue with non-negative eigenvector
® of D. The positive cone in £2? is reproducing, and so by Thm. 2.10, the
eigenvalue is simple. By Thm. 2.13, it is also dominant. Furthermore, by
Thm. 2.11 no other eigenvector is in the positive cone. It remains to show
that the eigenvector @ is positive. Suppose that there is a set {2y of positive
measure on which the i-th component of @ is zero. Then for sufficiently
large n we find

0= (\"®i(2))|0, = (P"®(x))i|0, >0, (72)

by (70), which is a contradiction. O

Proof of Proposition 1:

We first assume that the set ¥ contains an open neighborhood of the diag-
onal in 22, i.e., using assumption (A4) we find an ¢ > 0 such that for all
nonzero kernels we get

kij(x,y) 2 & for |z —y|<e (73)



Spatially-explicit matrix models 27

For a connected bounded habitat, there is a number Ny such that each
point is connected to each other point by a path of length less than Nye.
The mathematical expression for that fact is given by the Ny-fold iteration
of nonzero kernels being positive:

kny(2,y) :/~~~/kij(1'vy1)~~~khl(yNgvy)dy1~~~dyN0 > kMo, (T4)

Now choose N > Ny such that B is positive. Then, as above, one of the
products of the entries of B in (70) is positive and by assumption (A2) and
(74) the corresponding product of the kernels is also positive. Hence we get
the estimate (71) and the proof continues as above.

For arbitrary ¥ we observe that for all z € 2 by symmetry

k(o) = / ( y)w(y, )y = / k(e y)r(e.y)dy > 65> 0. (T5)

By continuity then, ko is positive for |z — y| small enough. Hence, using
twice as many iterations we are back to the first case. O

Proof of Proposition 2:

We first prove this proposition under the assumption that there is only
one stage, and that the kernel is continuous. The idea is that, given z €
2, and y € (23, we find a sequence of points y = z1,...,2y = & such
that k(z;,2;_1) > 0. We call such a sequence a connecting path. Then DV
satisfies inequalities (71) and hence D is superpositive.

Without loss of generality we can assume that the kernel k is positive in
some neighborhood of the diagonal of each 22. First, we use primitivity of
C to find a sequence 8 = v1,...,7, = a such that c,,,,,, = 1. This gives
a sequence of points y; € 2,, and 241 € £2,,,, such that k(ziy1,y;) > 0.
On each component (2,, we apply Proposition 1 to find a sequence z; =
y0, ..yt = y; with k(y/t",y?) > 0. Since £ is compact, there exists a
number Ny such that for any x,y € (2 a connecting path can be chosen with
length at most Nj.

In the case of m > 1 stages one combines the idea above with primitivity
of B as in Theorem 1. In the case that the kernels are not continuous one
defines the connectivity matrix C' as follows:

Cap = 1 if / ki]’ (%,y)bij (07y)dydl‘ >0 (76)
2. /025
for some i, j. Then the same arguments work. 0O
Proof of Lemma 2:

By assumption, we have B(0,y; Q) > B(0,y; P). Hence, D"*(Q) > D"(P)
and so A(Q) > A(P). We establish that in fact A\(Q) > A\(P). We write

D@Q)i(x) = D(P)b(z) + / [ (2,)0(B(0,y: Q) — B(0.y: P))}(w)dy. (77)
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Iterating, we get
D*(Q) =D"(P)+C(Q, P) (78)

for some linear operator C'(Q, P) > 0. Then
A (Q)o(5 Q) = DM(Q)o(+ Q)
=D*(P)o(; Q) + C(Q, P)o(; Q)
=D"(P)o(; Q) + f, (79)
where f is positive (see Theorem 1). For sufficiently large n we have
D*(P)f > e¢(+; P) (80)
for some € > 0. Then by Thm. 2.16 in [20] the equation

AMQ) =D(P)y + f (81)

does not have a solution for A\(Q) < A(P). But since ¢(+; Q) is a solution by
construction, we necessarily have \(Q)) > A(P). This completes the proof of
Lemma 2 (a).

We now formulate Lemma 2 (b) in greater generality. Suppose two do-
mains 2y, 25 C R" are given, with {2, C (2, such that {25\ {2; has nonempty
interior. Denote by D; the corresponding linear operators and by K; their
corresponding kernels.

(A8) Assume that on {21, Dy and D5 share the same population projection
matrix B and that the restriction of Ks to 27 equals K.

Then, the leading eigenvalue of D, is strictly larger than the one of D;.

To prove the claim, we view L2(§2;) as a subset of L2({2;). A function
pon (2 is extended to p on (25 by setting it to zero on {23\ 2;. On L?(§25)
we define the cut-off operator Z in a similar way as

_ ¢(v’0) T € “le
Zy(@) = { 0 z€ M\

We denote D; as the extension of D; to L2(§2y), i.e.

Diy = D1 Z9. (82)
In particular, for p € L?(£2;) we have

Dip = D1 Zp. (83)
Then we may write for ¢ € L2(12s),

Dyp=[Z+(I—-2)D[Z+(I-2)Y
= ZDy 73 + ZDy(I — Z) + (I — Z)DyZ0p + (I — Z)Da(I — Z)0)
= ZDy 71 + Gy, (84)
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where G is the sum of operators containing (I — Z). Due to assumption
(A8), we find that ZD,Z = D;. Equation (84) is has a form similar to (77),
and we proceed similarly as above. The positive eigenfunction ¢ of D> to
the eigenvalue A\, satisfies

A3 =Di'é + Gag, (85)

where G5 is some linear operator. In the definition of the domain in 3.1,
we assumed that points at which the species cannot settle and reproduce
are excluded from §2; ». Therefore, the operator G, is positive. The claim
follows as above.

Obviously, the claim of Lemma 2 (b) as stated in the main text follows
from the above. The condition K (z,y) = K(z — y) insures that the kernel
on the smaller domain is simply the restriction of the kernel on the larger
domain. The general formulation of the lemma applies in particular to fam-
ilies of domains of fixed shape with one size parameter L.

Proof of Lemmas 4 and 5:

We denote the positive eigenvector of D by @. The inner product on £? is
given by

©.0) = [ 0" (@)@ (56)

Then the adjoint operator of D is
D uly) = [IK (@) 0 BT O, ()do. (87)
The operator D* is superpositive if D is, we denote the corresponding pos-

itive eigenvector by ¥.
Fixing L, the operator A can be written as

A(P)(u) = D(P*yu+B(P*)u(P —P*)+C(P*)(u) +o(|lull*, [P~ P*|), (88)
where the linear operator B is given by
By = [ o 55 B0.5 P ul)dy (%9)

and the quadratic form C = (Cy, ...,Cp,) has entries

(P ) = [ W (DB:judy, (90)
where the [, j-th entry of the matrix DB; is given by

0 .
(DB;)ij = kij(xay)_a bij (0,y; P~). (91)
uy
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Following the argument 56.5 in [21] we have to show the following two
conditions: (B(P*)®q,¥y) > 0 and (C(P*)®q,¥y) < 0. The inner product

wwwwm:/z/z%mw%%@ww%@@%mw
l J

(92)
is positive if all b;; are non-decreasing in P and at least one b;; is increasing
in P. Similarly, the inner product (C(P*)®y,¥p) is negative by assumption
(AT). This completes the proof for fixed L.

Fixing P, we can write A(L) as in (88) with P, P* replaced by L, L*.
The linear operator 5 is now given by

. 9
B = [T K)o BO.w ulo)idy (98)
and C is just as above with the parameter L* appearing in K and the
parameter P* deleted from B. We only have to show that (B(P*)®, ) > 0.
Rearranging (92) we write in coordinates

/ZZ{%/klj(fv,y;lz)%l(x)dx} b (0,y)Po; (y)dy Poi(x)dx.  (94)
L

Since ¥, is positive, the assumptions on the dispersal success functions also
hold for the weighed dispersal success

sy L) = /klj (z,y; L)W (x)dz, (95)
and hence, the inequality holds. O

Proof of Lemma 7:

Since D; is completely continuous and Ds is continuous, both products
D1Ds and DyD; are completely continuous. The power of D can be written
as a sum of products of D; and Ds,

D" =D} + D} "Dy + DY >DsDy -+ + Dy~ ' Dy + DY, (96)

and the last term vanishes for n > ng, such that D™ is completely contin-
uous. Hence, all nonzero points in the spectrum of D™ are eigenvalues of
finite multiplicity. Therefore, by the spectral mapping theorem all nonzero
points in the spectrum of D are eigenvalues of finite multiplicity.

Assumptions (A1-4) ensure positivity of some sufficiently high power of
D in the same way as they did in Proposition 1, so that D" is superpositive
for some n. Denote by u the simple dominant positive eigenvalue of D™
with unique positive eigenvector 1. Denote by A any eigenvalue of D which
satisfies A = p and the corresponding eigenvector by ¢. Then

po = A"¢ =D"p (97)
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and hence by uniqueness ¢ = ¢ (up to scalar multiples). Therefore A has
to be positive. Monotonicity of the power function implies u > 1iff A > 1
and also that A is dominant. Finally, Theorem 2.10 in [20] gives that \ is
simple. O

Proof of Lemma 8:
The idea is the same as in the proof above. Due to nonlinearity one has to
be somewhat more careful. We write

A" () = Ay (AL (W) + Ao Ar (A" 2(w) + - - + A" LAy (1) + A™u. (98)

The last term vanishes since As is nilpotent, all other terms are compact.
O
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