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Abstract

Exploration seismology utilizes the seismic wavefield for prospecting oil and gas. The seismic

reflection experiment consists on deploying sources and receivers in the surface of an area

of interest. When the sources are activated, the receivers measure the wavefield that is

reflected from different subsurface interfaces and store the information as time-series called

traces or seismograms. The seismic data depend on two source coordinates, two receiver

coordinates and time (a 5D volume).

Obstacles in the field, logistical and economical factors constrain seismic data acquisition.

Therefore, the wavefield sampling is incomplete in the four spatial dimensions. Seismic data

undergoes different processes. In particular, the reconstruction process is responsible for

correcting sampling irregularities of the seismic wavefield.

This thesis focuses on the development of new methodologies for the reconstruction of mul-

tidimensional seismic data. This thesis examines techniques based on tensor algebra and

proposes three methods that exploit the tensor nature of the seismic data. The fully sam-

pled volume is low-rank in the frequency-space domain. The rank increases when we have

missing traces and/or noise. The methods proposed perform rank reduction on frequency

slices of the 4D spatial volume. The first method employs the Higher-Order Singular Value

Decomposition (HOSVD) immersed in an iterative algorithm that reinserts weighted obser-

vations. The second method uses a sequential truncated SVD on the unfoldings of the tensor

slices (SEQ-SVD). The third method formulates the rank reduction problem as a convex

optimization problem. The measure of the rank is replaced by the nuclear norm of the tensor

and the alternating direction method of multipliers (ADMM) minimizes the cost function.



All three methods have the interesting property that they are robust to curvature of the

reflections, unlike many reconstruction methods. Finally, we present a comparison between

the methods proposed in this thesis and other two reconstruction methods. This thesis

demonstrates the suitability of tensor completion techniques for solving the simultaneous

denoising and reconstruction problem.
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CHAPTER 1

Introduction

The seismic experiment consists of measuring the signal associated to the wavefields prop-

agating in the subsurface. This signal is generated by a source and measured by detectors

deployed on the ground. The sources are usually vibroseis, dynamite, air-gun and the de-

tectors are often named receivers (geophones in land and hydrophones in water) (Yilmaz,

2001; Sheriff, 2002). The sources cause seismic waves to propagate in the subsurface. En-

ergy partitioning occurs when the waves encounter a change in the elastic properties of the

media, commonly denoted as interface. In an interface, some energy is transmitted and

some energy is reflected. The steering vector orthogonal to the wavefront is the ray path

and the laws of optics, such as Snell’s Law, are used to simplify the analysis of wavefronts.

The signal captured by a receiver, a time series, is called a trace or seismogram. In an ideal

case of no background noise, a trace shows a wavelet or a wiggle shape at a time equal to

the travel-time from the source to the interface and back to the surface to the receiver. The

field data or “raw” data undergoes several processes both in the field and in a processing

facility to achieve an interpretable image of the subsurface. In particular, this thesis con-

cerns with one step of the seismic processing flow, called seismic data reconstruction. The

final image obtained can be interpreted with the purpose of delineating oil and gas reser-

voirs, for crustal modeling and for near-surface applications like mining and hydrology. In

hydrocarbon exploration, seismic data can be combined with well information to fill in the

gaps where no wells are available. Naturally, seismic exploration is more economical than

drilling wells and serves to minimize the possibility of drilling unproductive wells.

1
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1.1 2D Seismic Experiment

The 2D seismic experiment contains sources and receivers deployed over a line. Therefore,

this experiment will give a 2D image of the subsurface. Figure 1.1(a) shows the seismic

experiment in 2D for a horizontal reflector, while Figure 1.1(b) does it for a dipping reflector.

In these figures, the source is symbolized by a red star and the letter s, while the receiver

is symbolized by a blue triangle and the letter r. If we consider all the traces obtained in a

2D seismic experiment, we obtain a 3D volume D(t, s, r) with one coordinate for the source,

one coordinate for the receiver and time. The point that lies midway between the source

and the receiver is called “midpoint”, and its coordinate is m = s+r
2 . The distance between

the source and the receiver is called “offset”. The midpoint and offset coordinates are often

used as an additional domain to sort the traces (Yilmaz, 2001). Seismic processing operates

in one or either domains and often seismic data are transformed back and forth among these

domains. It is a common practice to group the traces that contain a common coordinate,

such as common source, common receiver, common midpoint (CMP) or common offset. In

the midpoint domain, the travel time for a reflected wave can be described by a hyperbolic

function (Lay and Wallace, 1995). In a real experiment we also find other arrivals like the

direct wave and ground roll, but we are not concerned about these in this thesis.

When the interface is horizontal, the surface midpoint m coincides with the depth midpoint;

refer to Figure 1.1(a). However, when the interface contains dip, the surface midpoint is not

a projection of the subsurface point of reflection and these two are different; refer to Figure

1.1(b), where the projection of the grey point to the surface is not m. The depth point

is the point of reflection on the subsurface interface, while the midpoint is its projection

on the surface. Therefore, grouping traces under CMP is not the same as grouping traces

under common-depth point (CDP) when the interfaces contain dip. In other words, in the

presence of dip CMP traces do not sample the same subsurface area. This discrepancy is

alleviated by processes like dip moveout (DMO) and migration (Derȩgowski, 1991; Gray

et al., 2001). These processes take care of making this error as small as possible. In both 2D

and 3D acquisition, sources and receivers are relocated in the field such that we can obtain

more than one trace per midpoint (in an area around the midpoint, a midpoint bin more

precisely). The number of traces per midpoint is the fold number for that midpoint. In

the data processing stage, traces are grouped per common midpoint and averaged together

(stacked) to attenuate the noise and obtain a rough image of the subsurface (Mayne, 1962).
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(a) Horizontal reflector
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s rm
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(b) Dipping reflector with dip equal to φ.

Figure 1.1: 2D Seismic Experiment. The red star is the source, the blue triangle
the receiver and the grey dot is the midpoint in the subsurface.

1.2 3D Seismic Experiment

In the 3D seismic experiment, the sources and receivers are not confined to a line. The seis-

mic volume obtained through this type of acquisition depends on four spatial dimensions and

time: two coordinates for the source and two coordinates for the receiver D(t, sx, sy, rx, ry).

Figure 1.2 clarifies this idea for the orthogonal acquisition case, where the receiver lines are

orthogonal to the source lines (Sheriff, 2002). Only one ray path is shown in this figure.

The plane view for one source and one receiver is displayed in Figure 1.3. Figure 1.4 gives

an example of marine acquisition.

In this thesis, the real data we used for testing algorithms were recorded using an orthogonal

geometry for land surveys (Figure 1.5). In this setting, the receiver lines are orthogonal to

the source lines. This is the most usual geometry for onshore surveys because it is simple

to deploy in the field (Cordsen et al., 2000). In general, all sources in an area are activated

and some receiver lines are “rolled along” such that the receiver patch covers a new area.

This procedure is repeated as many times as necessary until the whole area of interest has

been surveyed. The direction along the receiver lines is called “inline” direction while the

one along the source lines is called “crossline” direction. Other acquisition patterns used

in land surveys are the brick geometry (Figure 1.6), non-orthogonal geometry (Figure 1.7),

and zig-zag geometry (Figure 1.8) (Cordsen et al., 2000).

When the data sorting is implemented according to the source-receiver coordinates sx, sy,

rx, ry, the data is said to be sorted in the source-receiver domain. However, other domains
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xy

z

Figure 1.2: 3D seismic experiment, 3D view. Sources are represented by red stars
and receivers by blue triangles. Notice that different source-receiver combinations
do not lie over a line. The coordinates x, y can represent East and North or any
other arbitrary direction, while z represents depth (or time in a seismic gather).
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Figure 1.3: 3D seismic experiment, plane view. The red star is the source and the
blue triangle is the receiver. The grey dot is the midpoint.
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Figure 1.4: 3D seismic experiment, 3D view, marine survey. Sources are represented
by red stars and receivers by blue triangles. The slightly transparent boats, sources
and receivers show the boat at previous and later times. The dotted line is the
ray-path for one source-receiver configuration.
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Figure 1.5: Land orthogonal geometry. The red stars represent the sources and the
blue triangles the receivers.
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Figure 1.6: Brick geometry. The red stars represent the sources and the blue
triangles the receivers.
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Figure 1.7: Non-orthogonal geometry. The red stars represent the sources and the
blue triangles the receivers.
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Figure 1.8: Zig-zag geometry. The red stars represent the sources and the blue
triangles the receivers.
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appear frequently in seismic processing and we will utilize them in the following chapters.

For example, the midpoint-offset domain is an alternative domain where the new coordinates

are obtained through the following transformation

mx =
sx + rx

2
, my =

sy + ry
2

, hx =
sx − rx

2
, hy =

sy − ry
2

, (1.1)

where mx,my are often referred to as inline-crossline and hx, hy as inline offset and crossline

offset, respectively. In matrix notation, the transform between coordinates is

1

2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1







sx

sy

rx

ry




=




mx

my

hx

hy




(1.2)

The midpoint-offset-azimuth domain contains the absolute value of the offset and the az-

imuth

h =

√
hx

2 + hy
2, az = tan−1

(
hx
hy

)
. (1.3)

We often assume that the azimuth is measured from the North, although other conventions

could be adopted as well.

“Prestack” seismic data are the data before averaging all traces falling on the same midpoint

bin, or before averaging along the offset dimension. This data volume depends on four spatial

dimensions and time. The time sampling rate in seismic exploration is typically 2 or 4 ms

and the samples are rarely discontinuous in time. The same cannot be said about the spatial

coordinates. These are often poorly sampled in most or part of the survey because of physical

obstructions, legal boundaries and limitations arising from logistic factors (Trad, 2009).

This thesis will focus on designing algorithms for reconstruction of prestack volumes while

simultaneously attenuating incoherent noise. In particular, we investigate the potential of

tensor analysis for the solution of multidimensional reconstruction and denoising problems.

Reconstruction of seismic data is a relevant research topic because many processes are

affected by missing traces. Processes that are sensitive to inproper spatial sampling are:

Surface-related multiple removal (SRME) (Verschuur et al., 1992): the 3D implemen-

tation of SRME requires a dense distribution of sources and receivers on a grid; i.e. complete

source-receiver reciprocity. Conventional marine and land acquisition do not lead to an ade-

quate sampling. Both reconstruction and extrapolation become a necessity for this method.

In fact, Van Dedem and Verschuur (2005) designed a different method to tackle the 3D

surface-related multiple prediction due to the sampling problem in the crossline direction.

They use sparse inversion along the crosslines to accomodate for the sparse sampling in
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that direction. Van Dedem and Verschuur (1998) compare two interpolation/extrapolation

techniques prior to applying SRME on marine data. Van Borselen et al. (2004) give rec-

ommendations for the acquisition design and the processing flow to remediate the sampling

irregularities in SRME. They propose to create a shooting overlap, decreasing the crossline

spacing (given by the sail line) and making the crossline spacing a multiple of the streamer

spacing. On the processing side, they recommend to recover missing traces, recover the near

offsets via extrapolation and potentially upsample the shots. Baumstein and Hadidi (2004)

outline a DMO-based reconstruction scheme that aims at missing shots recovery and regu-

larization. Hanson et al. (2006) propose wavefield regularization first in the inline direction,

followed by a 3D interpolation in the crossline direction. The final volume is the input to 3D

SRME. Cai et al. (2009a,b) focus on the reconstruction problem in wide-azimuth surveys

prior to 3D SRME. They show that interpolation and regularization with a Fourier-based

method improve the results of SRME, wavefield extrapolation and reverse time migration

(RTM) at the same time.

Shear-wave splitting analysis: the reconstruction of multicomponent data is usually

implemented separately for each component. Stanton and Sacchi (2013a) present a tech-

nique for simultaneous reconstruction of all components using quaternions and projection

onto convex sets (Abma and Kabir, 2006), denoted vector reconstruction. They claim that

good quality 5D vector-reconstructed multicomponent datasets can be better than using

the super-binning technique for the analysis of shear wave splitting. Stanton and Sacchi

(2013b) show how 5D vector reconstruction can be used to populate the azimuths prior to

shear wave splitting compensation. These effects are easier to identify after reconstruction

and the reconstructed data are better prepared for the estimation of shear wave splitting

parameters.

Amplitude-versus-offset (AVO) and amplitude-versus-azimuth (AVAz) analysis:

The AVO/AVAz effect is a variation of the amplitude with the source-receiver distance or the

angle of incidence. This variation occurs because of velocity, density and/or Poisson’s ratio

changes. The AVO/AVAz response is an indicator usually used for reservoir characterization

and to distinguish between oil and gas. There are different classes of AVO/AVAz effects

that depend on the impedance contrast of the surrounding rocks. AVO/AVAz is measured

in prestack data and thus the presence of noise and incomplete sampling can affect its

estimation (Sheriff, 2002). Sacchi and Liu (2005) analyze the effect of reconstruction with

minimum weighted norm interpolation (Liu and Sacchi, 2004) before wave-equation AVA

imaging. They show that the AVA curves extracted from common-image gathers follow the

theoretical AVA trends, unlike the curves extracted from the incomplete datasets. Gray and

Wang (2009) compare several workflows for extracting AVO attributes, including the role

of interpolation via 5D minimum weighted norm interpolation. They prove that the best

workflow includes 5D interpolation before imaging. Hunt et al. (2010) present a case study
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where interpolation of prestack data prior to prestack migration and AVO analysis produces

improved results on the AVO attributes, compared to other techniques like superbinning.

They focus on increasing the offset sampling, necessary for AVO analysis, and using an

interpolation technique that preserves the amplitudes. AVO analysis is also sensitive to the

presence of noise. Therefore, an interpolation technique that can also provide some level of

noise attenuation provides a better AVO estimation.

Migration: Abma et al. (2007) demonstrates with an example that, when using Kirchhoff

migration, the irregularity of the azimuth distribution generates artifacts. In this type

of migration, the sampling irregularities in the traces that are involved in the sum for

a particular trace can introduce artifacts in the final migrated trace. Spatial aliasing (a

sampling problem) is an important source of artifacts in migrated images. The spatial

aliasing effect on the imaging operator in Kirchhoff is an issue addressed in the article

by Biondi (2001). Instead of adapting the imaging operator to handle alias, we could

implement a dealising interpolation method like the one proposed by Naghizadeh and Sacchi

(2007) prior to conventional Kirchhoff migration. However, operator aliasing can still arise

despite of correct data sampling. In this case, we need to also add constraints in the

operator frequencies. The work from Sacchi and Liu (2005) is also a good example of

reconstruction improving imaging. Trad (2008) shows the improvement of the image with

interpolation before prestack migration on real data examples. The 3D implementation

of wave-equation migration from Claerbout (1971) is also sensitive to the source-receiver

coverage. Other imaging technique which requires correctly sampled midpoint and offset

coordinates is common-azimuth migration (Biondi and Palacharla, 1996).

Survey merging: Merging is necessary when datasets acquired in different periods of time

on adjacent or overlapping areas need to be processed as one survey. Often we desire to

merge surveys because it is more economic than acquiring a new survey over the whole

area (Gierse et al., 2010). Furthermore, time-lapse seismic monitoring involves acquiring

different datasets over time to monitor reservoir changes. The repeatability of the seismic

survey is key for the comparison between datasets (Leggott et al., 1999; Morice et al., 2000;

Eiken et al., 2003) and regularization is able to improve it (Schonewille, 2003). In both of

these cases we need to make several surveys homogeneous under the same grid. Although

the repeatability problem in time-lapse monitoring has recently been minimized with the

use of ocean bottom seismic (OBS) surveys, regularization can still be useful for merging

new and vintage surveys.
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1.3 Review of previous work

For more than a decade, with reservoirs becoming mature and approaching the end of its

productivity, interest has arisen to lower seismic data acquisition costs. In this situation,

reconstruction methods can help alleviate the costs of acquisition. However, reconstruction

cannot fully replace field measurements. Many methods exist to alleviate the problem of

spatial sampling irregularities using different numbers of spatial dimensions.

Reconstruction methods for seismic data can be divided into four groups, listed in the

subsections below.

1.3.1 Reconstruction methods based on signal processing principles

These methods are the type of methods most commonly used by industry for production

processing. This group of methods exploit the property of the signal in a supplementary

space such as Fourier, curvelet and Radon domain. The reconstruction problem is under-

determined and becomes an inverse problem where the coefficients of a transform are the

by-product of an inversion. In general, constraints are imposed on the signal or on the co-

efficients to better condition the inverse problem. The most commonly exploited property

is sparsity in the frequency-space (F − X) domain. Furthermore, most of these methods

have a linear event assumption; i.e. the signal in the frequency domain is a superposition of

plane waves. Methods in this category may be divided into two, according to their ability

to preserve the original trace locations:

a) Methods which are able to preserve the exact location of the traces: these methods usually

require the use of the discrete Fourier transform (DFT) and are unable to take advantage of

its faster counterpart, the fast Fourier transform (FFT). Naturally, the DFT implementation

is more computationally intensive than the FFT. In the presence of an irregular grid, the

DFT is often referred to as the nonuniform DFT (NDFT). Duijndam and Schonewille (1999)

propose the nonuniform fast Fourier transform (NFFT) and show an improvement on the

computation time of the NDFT, although the cost is still higher than that of the FFT.

Zwartjes and Gisolf (2007) use the NFFT in an inversion scheme that includes non-quadratic

weights to stabilize the inversion. Furthermore, Zwartjes and Sacchi (2007) also utilize the

NFFT in an inversion but only in the lower unaliased frequencies, based on the ideas from

Gulunay (2003), followed by an estimation of a weight matrix to perform the inversion of

the higher frequencies. Their method is called Fourier reconstruction via sparse inversion

(FRSI). They construct the weight matrix applying FRSI in two passes: the first pass

estimates coefficients that in the second pass allow them to distinguish between aliased and

unaliased coefficients in the spectrum. The antileakage Fourier transform from Xu et al.



CHAPTER 1. INTRODUCTION 13

(2005) is the most popular method from this group. This method proposes to estimate

the largest Fourier coefficient on an irregular (multidimensional) grid and subtract it from

the spectrum, with the assumption that the largest coefficient causes most of the spectral

leakage. The method continues iteratively with a new input until it estimates all Fourier

coefficients. The non-equispaced curvelet reconstruction with sparsity-promoting inversion

(NCRSI) from Hennenfent et al. (2010) is a method that exploits sparsity in the curvelet

domain and it can handle irregular sampling. This method is only able to handle up two

spatial dimensions, because no practical implementation for higher dimensions exists today.

b) Methods which require binning to a regular grid: these methods require binning the

data before the reconstruction. The process of binning implies placing the sampled traces

on a regular grid. For each bin, we assign the trace that is closest to that bin in the grid

and discard the rest of the traces within that area. In a few words, we perform a nearest

neighbor interpolation of the traces to the grid. After binning, the grid contains bins with

traces and empty bins. This grid is the input to a reconstruction method. Binning is

not an ideal process and it can produce artifacts on the final image. Especially when the

data contains curvature, binning can introduce jitter in the reflections travel-time curves.

Therefore, binning usually follows a normal-moveout (NMO) correction to mitigate the

binning errors (Trad, 2009). Despite the disadvantages of the binning process, literature

abounds in reconstruction methods which require binning. The methods in this category

operate one frequency slice at a time. The best known method in this area is minimum

weighted norm interpolation (MWNI) from Liu and Sacchi (2004). This method is based

on the inversion of a cost function that contains a misfit term and a term that constrains

the solution to be bandlimited with a prior spectral shape. This algorithm uses conjugate

gradients and the FFT for fast matrix-vector multiplications. MWNI is currently a widely

used method in industrial applications. Projection onto convex sets (POCS) from Abma

and Kabir (2006) is an iterative method that after performing FFT on a frequency slice, it

thresholds the amplitudes, performs inverse FFT and reinserts the original traces in the final

volume. The threshold value changes with the number of iterations from a large to a small

value. The methods in this category frequently struggle when the missing traces pattern in

the grid is regular. For instance, a grid in the source-receiver domain has regularly missing

traces if we want to up-sample the source and/or receiver lines. In other words, if we want to

create new lines of sources and/or receivers lines among existing ones, the sampling pattern

will be regular in one or two directions in the survey. This type of sampling introduces

spatial alias and constraints are needed to remove the alias. The generalized F −K trace

interpolation (GFKI) from (Gulunay, 2003) uses a replication of the original transform and

a multiplication between this replica and an operator designed to reinforce the non-aliased

coefficients. GFKI has been designed explicitly to deal with the up-sampling problem.

MWNI in its original form by Liu and Sacchi (2004) does not lead to satisfactory results
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in the presence of spatial alias and its performance is best when the sampling is random

in all spatial dimensions (Naghizadeh and Sacchi, 2010b; Cary, 2011). However, strategies

including spectral weights and bootstrapping (Naghizadeh and Sacchi, 2010b; Naghizadeh,

2012) aid to some extent in the presence of alias, especially when the aliased spectrum does

not overlap with the original spectrum.

The Radon transform is an alternative to the Fourier transform and is exploited in the

methods from Kabir and Verschuur (1995) and Trad et al. (2002). These methods use the

parabolic Radon transform and hyperbolic and elliptical Radon transforms, respectively.

They are mostly used for regularization of CMP gathers.

1.3.2 Reconstruction methods based on prediction filters

These methods use the property of linear prediction of the signal in the F − X (Spitz,

1991; Porsani, 1999) or the F −K (Naghizadeh and Sacchi, 2007, 2010c) domain. In these

methods, the data from the low frequencies are used to estimate prediction error filters

that can recover data from the high frequencies. Spitz (1991) introduced the original idea.

Spitz’s method constructs prediction error filters in the F −X domain that are the solution

to a linear system of equations that originates in the spatial predictability of the signal when

assumed to be a superposition of plane waves. This method is able to upsample the data

in a grid and it is not designed for randomly missing patterns. Porsani (1999) improved on

the work of Spitz by simplifying the system of equations to solve for the filters. Naghizadeh

and Sacchi (2007) use MWNI to reconstruct the unaliased low frequencies followed by a

calculation of the prediction error filters to dealias the higher frequencies. Naghizadeh and

Sacchi (2009) derive adaptive prediction error filters by exponentially weighted recursive

least squares to avoid windowing and the linear events assumption. In other words, this

method is able to reconstruct not only spatially aliased events, but reflections containing

curvature.

1.3.3 Wave-equation based methods

Wave-equation based methods reconstruct seismic data through wave propagation princi-

ples. In general, the reconstruction is achieved by inverting an operator that links the

subsurface model to the data. The operator is built using linearized wave-equation op-

erators and its inversion maps the data to the desired geometry. These methods require

knowledge of the velocity field, contrary to methods based on signal processing. Although

computationally more expensive than methods in a) and b), wave-equation based methods

are able to preserve the original position of the sampled traces and have the advantage



CHAPTER 1. INTRODUCTION 15

that they use the physics of wave-propagation when generating new traces. Ronen (1987)

proposed DMO to reconstruct aliased data. He creates a system of equations where the

inverse DMO operator maps the zero-offset section to common offset sections, while missing

traces are considered zeros. He proposes using a conjugate gradients scheme where each

iteration involves DMO stacking and transpose DMO stacking, combined with a spectral

balancing procedure. Nemeth et al. (1999) propose using least-squares migration for the

reconstruction of seismic data. They modify the normal equations and add regularization

to the preconditioned conjugate gradients scheme. The migrated sections are then used to

predict missing data. The intention of this method is to improve Kirchhoff migration in the

case of incomplete data. Stolt (2002) creates data mapping operators suitable for infilling

missing data and regularization. The operators are based on a straight ray assumption and

contain a time-dependent weight factor for each trace which depends on the original gather.

Fomel (2003) designs a finite-difference offset-continuation filter in the log-stretch frequency

domain that can interpolate seismic data. Malcolm et al. (2005) deal with the reconstruc-

tion problem in the presence of caustics. They concatenate an imaging operator, a modeling

operator and a restriction operator that map the input data to the desired data. Kaplan

et al. (2010) use shot-profile migration and demigration operators to obtain reconstructed

gathers assuming a constant velocity. They incorporate these operators in a least-squares

migration scheme, allowing them to penalize the aliased components. Their model space

is parametrized by pseudodepth and lateral position. They are able to separate between

signal and alias in the model space exploiting the band limitation of the adjoint operator

according to the maximum dip of the reflectors.

1.3.4 Rank reduction methods

Rank reduction methods perform rank reduction on matrices or tensors in the F−X domain.

These methods make the assumption that seismic data in F −X is low-rank, where the data

is described by a Hankel or Toeplitz matrix or by a tensor. The low-rank assumption is

analogous to the sparsity assumption from the methods in the first category listed before.

Methods in this category require binning prior to reconstruction and are not able to preserve

the exact location of the traces. Interpolation with rank reduction methods also requires to

develop an antialias strategy. The latter has been recently shown by Naghizadeh and Sacchi

(2013). We divide this group of methods into two:

a) Methods which perform rank reduction on matrices: the frequency slices are matrices that

contain a Hankel structure, as many Hankel matrix levels as dimensions, so that prestack

data reconstruction requires block Hankel matrices. Trickett et al. (2010) first proposed

Cadzow reconstruction for both reconstruction and random noise attenuation of seismic

data. For prestack seismic data, the matrix used is a four level Hankel matrix. The rank
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reduction operation by itself is not enough to recover the missing observations. The authors

claim that they resort to matrix completion to recover the missing elements. The final

reconstructed trace is obtained by averaging along the antidiagonals of the Hankel (or block

Hankel) matrix. The method from Oropeza and Sacchi (2011), called multichannel singular

spectrum analysis (MSSA), is similar to Cadzow’s method and uses the truncated SVD

for the rank reduction. The authors present a POCS-like reinsertion algorithm for the

recovery of the missing traces. Furthermore, they propose to use the randomized SVD

to avoid calculating the SVD on the large Hankel matrices. An important fact regarding

Cadzow/MSSA is that if the data is a superposition of k plane waves in the F −X domain,

the rank of the Hankel matrix is also k. Therefore, adopting small spatio-temporal windows

where the linear event assumption is valid guarantees that the rank reduction operation will

preserve most of the signal. Gao et al. (2013) introduce a fast version of Cadzow/MSSA

where they embed the data in block Toeplitz matrices instead of Hankel matrices. The rank

reduction operation uses the Lanczos bidiagonalization algorithm instead of the truncated

SVD. This algorithm is faster than doing SVD on large Toeplitz matrices because it uses the

FFT to multiply matrices and vectors (it avoids storing in memory large Toeplitz matrices).

Naghizadeh and Sacchi (2013) adapts Cadzow/MSSA to the reconstruction of aliased data.

They use the rank-reduced Hankel matrix from the low frequencies for the rank reduction

of the Hankel matrix in the high frequencies, with the aid of an upsampling matrix.

b) Methods which perform rank reduction on tensors: Rank reduction on tensors does not

require a Hankel structure and it is the topic of this thesis. Frequency slices are multidimen-

sional arrays or tensors that are subject to the low-rank assumption. However, tensor rank

is not equivalent to matrix rank and there are several ways to define it. In this thesis we use

the concept of n-rank of a tensor (refer to Chapter 2). We assume that the n-ranks of the

fully sampled volume are small, similarly to matrix rank reduction techniques. Appendix

A explores the validity of this assumption. In this thesis, we present three methods based

on tensor completion; namely, the HOSVD reconstruction method (Kreimer and Sacchi,

2012d) in Chapter 3, the SEQ-SVD method (Kreimer and Sacchi, 2012a) in Chapter 4 and

nuclear norm based reconstruction method (Kreimer and Sacchi, 2012c) in Chapter 5. The

main difference between the tensor methods and the matrix methods is that the former are

robust to curvature in the reflections. In other words, they are not subject to the plane

wave assumption as much as the latter methods are.

Recent work by Trickett and Burroughs (2013) combines groups a) and b) and is called

Hankel tensor completion. They form Hankel tensors by creating two tensor orders in each

dimension. Therefore, with four spatial coordinates they create an eighth-order tensor.

They use the CP decomposition immersed in a ALS algorithm (refer to Chapter 2) for

the rank reduction step. They compare the performance of this method with Cadzow and

notice that the former method is more robust to large gaps and large levels of sparsity than



CHAPTER 1. INTRODUCTION 17

Cadzow. No comparison exists between the Hankel tensor completion method and any of

the methods proposed in this thesis.

Throughout the thesis, we use the term “reconstruction” to imply filling empty bins with

new traces and/or denoise existing traces. The term “interpolation” should be reserved for

methods that attempt to infill regularly sampled data. In other words, this thesis deals with

the reconstruction problem and no attempt has been made to utilize the proposed methods

for seismic trace interpolation. Other techniques can be effectively used to upsample regular

data (Spitz, 1991).

1.4 Convex optimization methods

The alternating direction method of multipliers will be the basis of the algorithm to re-

construct seismic data elaborated in Chapter 5. To understand this method, we first need

to review the classical method of multipliers, the quadratic penalty method and the dual

ascent method. These methods have in common that they solve a series of subproblems

instead of the original problem. They do so by adding the constraints as additional terms

in the objective function (Nocedal and Wright, 2006).

As a reminder for the reader, a convex set X is a set where any two points inside the set

form a line segment that is contained in the same set. A function f on a convex set X is

convex if f(ax1 + (1 − a)x2) ≤ af(x1) + (1 − a)f(x2), for any a ∈ [0, 1] and any points

x1, x2 ∈ X. The function f is said to be strictly convex if the inequality in the previous

expression is strict (no equal sign). For example, any vector norm |x|p with p ≥ 1 is convex,

the exponential function is strictly convex, etc.

The classical equality-constrained convex optimization problem consists of

minimize f(x)

subject to h(x) = 0, (1.4)

where the function f : Cn → C is convex and h : Cn → Cm. For simplicity, we will consider

only equality constraints. However, constrained convex optimization problems often have

a mix of constraints which are equalities and inequalities. Notice that we can rewrite

any equality constraint as an expression h(x) = 0. For example, we can reformulate the

constraint Ax = b for x ∈ X, where X is a subset of Cn, as h(x) = Ax− b = 0.
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1.4.1 Penalty function method

The basic concept of the penalty method involves creating a cost function where we add

a sum of penalty terms consisting of the constraint violations to the function we want

to minimize, multiplied by a positive coefficient called the penalty parameter. As this

coefficient grows, the constraints are given more weight, such that the minimum to the

unconstrained problem is closer to the solution space of the constrained problem. We will

consider quadratic penalties. The objective function for this method is

Lqp(x) = f(x) +
β

2
|h(x)|2, (1.5)

where β > 0 is the penalty parameter. As β →∞ the violations to the constraints (solutions

which do not satisfy h(x) = 0) are penalized harder. The quadratic penalty method solves

the series of problems

minimize Lqp,βk
(1.6)

subject to x ∈ X, (1.7)

where βk is a series of penalty parameters that satisfy 0 < βk < βk+1 ∀k, βk → ∞. This

method requires increasing β sequentially to converge. The minimization of Lqp,βk
is an

unconstrained minimization such that any method suitable for unconstrained minimization

serves the purpose (e.g quasi Newton, conjugate gradients, Newton, steepest descent, etc).

If there is a good initial guess β0 and well chosen stepsizes for β, this method can converge

in a few iterations for a certain βk. The gradient of the objective function Lqp,βk
is often

taken as a proof that a reasonable solution xk has been reached. For more details on the

convergence of this algorithm refer to Bertsekas (1996). Numerical instabilities can arise

when βk becomes very large, mainly because of the ill conditioning of the Hessian ∇Lqp,βk

near the minimum. Newton’s method seems the best one to use for large βk although it can

fail if the choice of the starting point xk is not close enough to the solution. In synthesis,

the method of quadratic penalty functions implies choosing a good compromise between the

speed of the convergence and the possibility of ill-conditioning.

1.4.2 Dual ascent

The dual ascent method solves problem 1.4 by maximizing the dual of the cost function

(Boyd et al., 2011). The cost function for this problem is defined as the conventional
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Lagrangian

Lda(x,w) = f(x)−wTh(x), (1.8)

where w is the vector of Lagrange multipliers, also called dual variable. Minimizing the

objective function in equation 1.8 is what we call the primal problem. The Lagrange dual

function is defined as

g(w) = inf
x
Lda(x,w) = inf

x

(
f(x)−wTh(x)

)
. (1.9)

The dual function can take values of −∞ when x does not have a lower bound. The

dual problem consists on maximizing the dual function in equation 1.9 over w. When

strong duality applies, we can assume that the best values for the Lagrangian (equation 1.8)

and the Lagrange dual (equation 1.9) coincide. Therefore we can use an optimal value w̃

found by maximizing the dual to obtain the optimal value x̃ of the primal problem solving

arg min
x

Lda(x, w̃).

The dual ascent method utilizes gradient ascent to solve the dual problem. We assume that

∇g(w) exists, which in our formulation is equal to the constraint function (Boyd et al.,

2011). First, we obtain a minimum for x with x† = arg min
x

Lda(x,w) and we evaluate

∇g(w) = h(x†). The dual ascent method works iteratively by solving

xk+1 = arg min
x

Lda(x,wk)

wk+1 = wk − µk h(xk), (1.10)

where µk > 0 is the step-length. If µk is chosen conveniently, the dual increases with

each iteration g(wk+1) > g(wk) and therefore the name of the method refers to the ascent

of the dual. Under certain conditions and if µk is chosen correctly, xk and wk should

converge to the primal and dual optimal points, respectively (Boyd et al., 2011). However,

the conditions of this method are often not fulfilled in practice and this method cannot be

used. A useful property of the method of dual ascent is that if the function f(x) is separable

(can be expressed as a sum of functions for each of its variables), the minimization step in

the algorithm 1.10 can be split into separate minimization problems and implemented in

parallel computing (Boyd et al., 2011).

1.4.3 Method of multipliers

The method of multipliers (Hestenes and Stiefel, 1952; Powell, 1969) uses the same cost

function as the penalty method, equation 1.5, with the addition of a term with Lagrange
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multipliers. This new cost function is called the augmented Lagrangian and has different

properties than the cost function in equation 1.5. The method of multipliers is a blend of

the penalty function and dual ascent methods. With a particular choice of µk, it can be

interpreted to be the method of dual ascent with f(x) replaced by f(x) plus the addition

of a quadratic term containing the penalty constraint.

The augmented Lagrangian for problem 1.4 is

Lm(x) = f(x)−wTh(x) +
β

2
|h(x)|2, (1.11)

where β > 0 is the penalty parameter, as before, and w is the vector of Lagrange multipliers.

Hestenes and Stiefel (1952) proved in a theorem that

“if x̃ is a nonsingular minimum of problem 1.4, then it exists a multiplier w and

a constant β such that x̃ is an unconstrained local minimum of the cost function

1.11”.

According to this theorem, it is also valid that

“if x̃ is a minimum of function 1.11 and also h(x̃) = 0 then x̃ is a constrained

minimum of f subject to h = 0”.

Through this theorem we guarantee the equivalence of the constrained and unconstrained

problems.

According to Hestenes and Stiefel (1952), the method of multipliers operates by minimizing

the cost function 1.11 successively for a certain vector of Lagrange multipliers wk and a

penalty parameter βk (starting from certain values w0 and β0). If the minimum found is

denoted xk at iteration k, the Lagrange multiplier is updated by the following rule

wk+1 = wk − βk h(xk). (1.12)

Subsequently, the penalty parameter is increased such that βk+1 ≥ βk and the process

continues. One of the important advantages of this method over the quadratic penalty

method is that β does not need to be increased rapidly to achieve convergence. This method

does not suffer from the ill-conditioning of the quadratic penalty method and the choice of

the starting value x0 is not that critical. Furthermore, the convergence rate of this method is

improved with respect to the method of penalty functions and it has a linear or superlinear

convergence rate. A drawback from the method of multipliers is that if the function f is

separable, the minimization of Lm(x) cannot be separated in the minimization step because

of the presence of the quadratic term, which is a problem in some applications (as we will
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see later). For convergence properties and theorems, refer to Bertsekas (1996) and Nocedal

and Wright (2006).

The reason for the multiplier update in equation 1.12 can be explained by the Karush-Kuhn-

Tucker (KKT) conditions (Kuhn and Tucker, 1951; Karush, 1939). These are first-order

necessary conditions that guarantee that if a local minimum x̃ exists for problem 1.4, there

is a Lagrange multiplier w̃ satisfying the properties

∇Lm(x̃, w̃) = 0 (1.13)

h(x̃) = 0 (1.14)

w̃ h(x̃) = 0. (1.15)

These properties utilize the gradient of the cost function 1.11, which is the reason they are

called “first-order” conditions. The property 1.15 means that either the constraint is active

or the Lagrange multiplier is zero, or both (Nocedal and Wright, 2006). In our case, the

KKT conditions are summarized in the expression

∇Lm(x̃, w̃) = ∇f(x̃)− ( w̃ − β h(x̃) )∇h(x̃) = 0. (1.16)

By theorem 17.2 from Nocedal and Wright (2006), w̃ satisfies one of the KKT conditions if

∇f(x̃)− w̃ ∇h(x̃) = 0, (1.17)

and because of equation 1.17, x̃ becomes a KKT point of problem 1.4 with the unique

Lagrange multiplier w̃. Comparing expressions 1.16 and 1.17 we can extract the useful for-

mula for updating the Lagrange multipliers given in equation 1.12. Compare the expression

between brackets in equation 1.16 with w̃ in equation 1.17.

1.4.4 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) (Arrow et al., 1968; Glowinski

and Marrocco, 1975; Gabay and Mercier, 1976) is a combination of the method of dual

ascent and the method of multipliers. ADMM solves problems of the type

min f(x) + g(Ax)

subject to x ∈ C1, Ax ∈ C2, (1.18)

where the functions f : Cn → C and g : Cm → C are convex, A ∈ Cm×n and C1 ⊂
Cn, C2 ⊂ Cm are nonempty polyhedral sets (convex sets formed by a finite collection of linear
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inequalities) (Bertsekas and Tsitsiklis, 1989). Performing a change of variables y = Ax, y ∈
Cm, the problem 1.18 becomes

min f(x) + g(y)

subject to x ∈ C1, y ∈ C2, Ax = y. (1.19)

The augmented Lagrangian corresponding to problem 1.19 is

Ladmm(x,y,w) = f(x) + g(y)−wT (Ax− y) +
β

2
‖Ax− y‖22. (1.20)

ADMM is an iterative method that minimizes one variable at a time (alternating sequen-

tially, like the method’s name), followed by an update of the Lagrange multipliers, in the

following way

xk+1 = min
x
Ladmm(x,yk,wk)

yk+1 = min
y
Ladmm(xk+1,y,wk)

wk+1 = wk − β (Axk+1 − yk+1). (1.21)

Notice that the Lagrangian now is minimized not jointly in the two variables x,y but

separately and consecutively, alleviating the separability problems of the classical method

of multipliers and even making the problem easier to parallelize. Notice that in contrast

to the method of multipliers, the scalar β is not changed with the iterations. However,

He et al. (2000) proposed a self-adapting technique to update β every certain amount of

iterations for problems of variational inequalities. For convergence details refer to Bertsekas

and Tsitsiklis (1989).

It is interesting to notice that when either f or g are strictly convex, another method similar

to ADMM exists denoted alternating minimization algorithm (AMA) (Tseng, 1991). The

AMA algorithm follows the steps in algorithm 1.21 with the difference that the cost function

to problem 1.19 is the classical Lagrangian instead of the augmented Lagrangian. The

advantage of using the classical over the augmented Lagrangian is that the cost function in

equation 1.20 can be sometimes difficult to minimize in the presence of the quadratic term.

For the interested reader, please refer to the articles by Hestenes (1969); Powell (1969);

Bertsekas and Tsitsiklis (1989); Bertsekas (1996); Nocedal and Wright (2006); Boyd et al.

(2011) for more details on ADMM.
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1.5 Classes P, NP, NP-complete and NP-hard

A (computational) problem is a question that needs to be answered and usually contains

parameters with an undefined value (Garey and Johnson, 1990). The problem generally

specifies the meaning of the parameters and the requirements that the answer, or solution,

needs to fulfill for this particular problem. An alternative definition is that a problem

describes the relationship between the input (data) and output (solution to the problem)

(Reiter and Johnson, 2012). A problem’s instance is a specific version of the problem for

a certain choice of parameters. A decision problem is a problem with only two possible

solutions “yes” or “no”. All computational problems can be transformed into decision

problems and they are analogous. The theory of P, NP and NP-complete problems generally

refers to decision problems.

An algorithm consists of a sequence of steps for solving computational problems and it solves

the problem if it always produces a solution, no matter the instance of the problem being

solved (Garey and Johnson, 1990). The efficiency of an algorithm is usually determined

by the time it takes to the algorithm to find a solution (which we have referred to as

computational running time and also called time complexity). An algorithm is considered

efficient when it requires a polynomial number of steps proportional to the input size of

the problem. In other words, if n is the input length, an algorithm is efficient when its

running time is O(p(n)), for some polynomial p. Notice that the running time does not

need to be polynomial exactly, but has to be bounded by a polynomial function. But

why is polynomial time considered efficient? The reason is that algorithms that are not

bounded by a polynomial generally increase too fast to be considered efficient (exponential or

superpolynomial algorithms). Parallelizing exponential time algorithms does not help much

either in making the problem more efficient. Exponential time algorithms generally resemble

exhaustive search, while polynomial time algorithms require a deeper understanding of the

problem (Garey and Johnson, 1990). A problem is tractable (or feasible) if a polynomial time

algorithm exists that solves the problem, and it is intractable otherwise. The set of problems

that have polynomial time algorithms form the class P. Notice that problems considered

to be intractable might become tractable when someone finds a suitable polynomial time

algorithm to solve it.

The Turing machine model is a model of a computer that helps in definitions and proofs of

concepts to avoid referring to a particular computer. The (deterministic) Turing machine

has a large memory (infinitely large such that no algorithm can waste all its memory) and

read/write capabilities to the memory tape (the tape has discrete squares). The function of

the Turing machine is to find a “yes” or “no” answer for a certain input string (Reiter and

Johnson, 2012). The machine operates by reading the memory one square at a time, possibly
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making changes and moving left or right to continue to the next step. The Turing machine

contains a set of instructions or orders that indicate what to do when reading a specific

portion of the string. Schematically, the Turing machine consists of an infinitely long tape

with symbols and a read/write head pointing to one of the symbols in the tape. The head

is connected to a control that contains the instructions for the head (Reiter and Johnson,

2012). The Turing machine stops working (halts) when it reaches either an “accept” (yes)

state or a “reject” (no) state. The formal definition for the Turing machine can be found in

the books from Garey and Johnson (1990) and Reiter and Johnson (2012) and go beyond

the scope of this thesis.

Nondeterministic instructions (in a Turing machine) are those that when acting on a certain

symbol can result in different options. With these type of instructions, the action on a string

has different possible effects and can sometimes reach the accept state, or the reject state or

loop indefinitely, while acting on the same string. This is an unwanted effect and motivates

the following definition. A nondeterministic Turing machine (NDTM) accepts a string only

if some (or any) of its instructions lead to an “accept” state (Reiter and Johnson, 2012). This

means that the NDTM will operate on a string only if it has (even one) chance of halting

with the “accept” state. A deterministic Turing machine is a particular case of an NDTM

where only one outcome is possible when acting on a certain symbol. It is interesting to

notice that every nondeterministic Turing machine has an equivalent deterministic Turing

machine, although running times for the latter are increased as a power of 2 (Theorem

5.9 in Reiter and Johnson, 2012). An NDTM can be summarized in two steps: guess and

check (Tourlakis, 2012). Guess is the step where it chooses a string (it chooses correctly a

string which will lead to an “accept” state) and check is the step in which it verifies (in a

deterministic manner) whether that string leads to the “accept” state.

The class of nondeterministic polynomial type problems (NP) are not easy to solve as the

P-problems but its solutions are easy to verify. For any “yes” instance of a problem in

NP, an NDTM reaches the “accept” state in an amount of time bounded by a polynomial

proportional to the size of the input (Reiter and Johnson, 2012). If otherwise the instance

is a “no” instance, then the NDTM will never reach the “accept” state and it can reach the

“reject” state or compute forever.

The class of NP problems is such that P is included in NP (P ⊆ NP). Therefore, at least

some problems in NP have polynomial time algorithms and, so far, no proof exists that all

problems in NP have polynomial time algorithms (Reiter and Johnson, 2012). Also, some

problems in NP do not have a polynomial solver. The question “P = NP?” is one of the

biggest mysteries in computer science and mathematics.

A problem P1 can be reduced to another problem P2 through a polynomial transformation

that maps all instances of P1 to all instances of P2. The transformation is possible only if
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calculated in polynomial time (proportional to the size of the input). Moreover, all mapped

“yes” instances of P1 are “yes” instances of P2, and the same with the “no” instances.

Theorems prove that if P1 is in P, then P2 is in P. Also, if P1 is in NP, then P2 is in NP.

Finally, we are able to define the last two important groups classes. A problem Z is NP-

hard if any other problem Y in NP can be polynomially reduced to Z. A problem Z is

NP-complete if it is NP-hard and it is also in NP (Reiter and Johnson, 2012; Tourlakis,

2012). While the class P is considered the collection of problems which are “easiest” to

solve, the NP-complete class encompasses the “hardest” problems in NP. If we could find

only one NP-complete problem that can be solved in polynomial time, then all problems that

are NP-complete would be solved similarly. An interesting aspect about NP-hard problems

is that they do not need to be in NP necessarily, as long as we can polynomially transform

any problem in NP to them. Therefore, NP-hard problems are said to be “at least as hard”

as the NP-complete problems, or “at least as hard as the hardest problem in NP” (Garey

and Johnson, 1990). We also call problems that are NP-hard to be “intractable”, whereas

those problems in P are referred to as being “tractable”. The reason why NP-hard problems

are intractable is that nobody has presented yet a polynomial time algorithm to solve an

NP-hard problem (although we can not discard that someday someone will) and no proof

exists that NP-hard problems cannot have a polynomial time solver. Figure 1.9 contains

diagrams with the P, NP, NP-complete and NP-hard classes for both the cases of P=NP

and P6=NP. In these diagrams, the arrows at the right hand side point towards the groups

of increasing complexity. Notice that the NP-hard group is not completely included inside

NP. Additionally, the dashed line in Figure 1.9(b) indicates that P=NP does not necessarily

imply that NP-hard problems can be solved in polynomial time.

1.6 Motivations

The motivation for this thesis is to establish tools from the field of tensor algebra in the

particular application of reconstruction and random noise attenuation of seismic wavefields.

The objective is to design reconstruction methods with the following properties:

? Exploit the multidimensional characteristics of prestack seismic data.

? Robustness to curvature of the reflections.

? Allow large levels of sparsity and low signal-to-noise ratio.

? Simple parameterization.
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Figure 1.9: Problem classes for the two potential scenarios.

1.7 Contribution

The contributions from this thesis are the following:

? We propose the use of tensor analysis in seismic processing. In particular, we focused

on the problem of reconstruction of prestack seismic data and noise attenuation of

incoherent noise.

? We introduce the Higher-Order Singular Value Decomposition (HOSVD), an extension

to the singular value decomposition for tensors, to perform rank reduction on the tensor

representation of the seismic data for trace recovery and denoising.

? We present a rank reduction strategy that is different from the HOSVD, based on

truncating the SVD of unfolded tensors (SEQ-SVD).

? We test novel ideas in the field of compressive sensing encompassing tensor completion

as a convex optimization problem.

? We compare all three methods proposed in this thesis with synthetic examples and a

real data example.
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1.8 Overview

Chapter 2 gives an overview of the notation that will be used throughout this thesis, as well

as definitions of vector spaces, tensor product of vector spaces and tensors. Furthermore, it

covers other definitions pertaining to tensor unfoldings and tensor products. An important

part of this chapter concerns with tensor decompositions and definitions of rank and n-rank,

including the algorithms to calculate truncated decompositions.

Chapter 3 introduces the higher-order singular value decomposition (HOSVD) reconstruc-

tion method. This method utilizes the truncated HOSVD as the rank reduction strategy

and also includes a modified imputation algorithm to aid in the reconstruction of missing

traces. Synthetic data examples show that this method is robust to curvature in the reflec-

tions, low signal-to-noise ratios and high levels of sparsity. The real data example from the

Western Canadian Sedimentary Basin serves to assess the algorithm’s behavior in a more

realistic scenario.

In Chapter 4, we present a variation of the rank reduction strategy presented in the

previous chapter. Instead of using the truncated HOSVD, we implement rank reduction

through iterative hard thresholding of the singular values of the unfoldings of the tensor (an

F −X slice of the data to reconstruct). For seismic data with a high SNR, this procedure is

equivalent to solving the non-convex problem of rank minimization one unfolding at a time.

Despite having larger running times than HOSVD, the results obtained with this technique

are very similar to the results with HOSVD and it is conceptually simpler than HOSVD.

Because the method in this chapter exploits the tensor nature of the data, it has similar

properties than the method in the previous chapter: it is robust to curvature and operates

in scenarios of low SNR and sparsely sampled data.

Chapter 5 deals with an approach that is quite different from Chapters 3 and 4. For

each frequency, the goal is to find a fully sampled low-rank tensor that fits the observations

up to the level of the noise. We achieve the latter by formulating our goal as an inverse

problem: find the low-rank tensor subject to the observations. This formulation has a

great disadvantage, because measuring the rank of a tensor is an NP-hard and non-convex

problem. Therefore, we replace the measure of the rank by the sum of the nuclear norm

of the unfoldings of the tensor, turning the problem into a convex one. The alternating

direction method of multipliers is the method used for the minimization of the objective

function and it leads to a simple algorithm. Our tests with synthetic data indicate that the

method in this chapter benefit from the same features as the methods from the previous two

chapters. Our real data example is from a heavy oil field in Alberta and implied performing

reconstruction on several spatial windows that cover a crossline swath.

Chapter 6 includes the comparison of the three methods presented in this thesis (Chapters
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3, 4 and 5) with two other widely known reconstruction methods: Cadzow/MSSA (Trickett

et al., 2010; Oropeza and Sacchi, 2011) and minimum weighted norm interpolation (Liu,

2004). First we present the comparison on different synthetic tests with linear events (low

and high SNR) and with curved events (low and high SNR), both cases with 70% of

the samples randomly removed. For these examples, we evaluate both the quality of the

reconstruction and the running time for all methods. The second part of this chapter

concerns with a simulation of the binning parameters over field data from the Western

Canadian Basin. We establish the concepts of grid population and redundancy of the grid

to be those defining the suitability of a grid to perform reconstruction. In short, we consider

that the reconstruction results are more successful and observed traces are better utilized

when the grid contains only a few zeros and the redundancy is small. At the end of this

chapter, we show the results for the reconstruction with the five methods on one of the grids

that we consider suitable, according to our predefined measures.

Chapter 7 contains the conclusions of this thesis given by our contributions, some of the

limitations of the proposed methods and future work.



CHAPTER 2

Review on tensor algebra 1

2.1 Introduction

This thesis concerns with applications of tensor algebra in the field of reconstruction and

denoising of prestack seismic data. As such, this chapter focuses on establishing a foundation

to understand the subsequent chapters. It is important to stress that the tensors used in this

thesis are not the tensors used in quantum mechanics or in some fields of engineering (e.g.

the stress tensor or the inertia tensor), often referred to as “tensor fields”. In physics and

engineering, a tensor is a multidimensional array that obeys certain rules under a change of

basis. However, in mathematics tensors are considered to be just multidimensional arrays,

an element of a space formed by the tensor product of vector spaces, while the change of

basis properties arise from using the tensor product and the rule of change of basis for

vectors (De Silva and Lim, 2008).

2.2 Notation

We will utilize the notation from the work of Kolda and Bader (2009). Scalars are denoted

with italics (a or α), vectors with boldface lower-case letters (a) and matrices with boldface

upper-case letters (A). Higher-order arrays, or tensors, are denoted with boldface Euler

script letters (X ). The (i, j) element of a matrix A is denoted by the scalar Aij , the

element (i, j, k) of a third-order tensor (N = 3) X is denoted by Xijk and similarly, the

element (i, j, k, l) of a fourth-order tensor (N = 4) X is denoted by Xijkl. For practicality,

1Parts of this chapter have been published in Kreimer and Sacchi (2012a), Geophysics,
http://dx.doi.org/10.1190/geo2011-0399.1
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the indices will vary from 1 to their capital version, for instance i = 1, · · · , I, unless otherwise

stated. A vector space will be written with a capital letter V .

2.3 Definitions

A vector space V over a certain field K (assuming V is non-empty) is a space with “addition”

(+) and “multiplication” (·) operations defined obeying the following properties (Hackbusch,

2012):

a + b = b + a, a,b ∈ V
(a + b) + c = a + (b + c), a,b, c ∈ V
a + 0 = a, a ∈ V and where 0 is unique in V

a + (−a) = 0, a ∈ V and where −a is unique in V

α · (a + b) = α · a + α · b, a,b ∈ V and α ∈ K

(α+ β) · a = α · a + β · a, a ∈ V and α, β ∈ K

α · (β · a) = (αβ) · a, a ∈ V and α, β ∈ K

1 · a = a, a ∈ V and 1 is the multiplicative unity in K

0 · a = 0, a ∈ V, 0 is the additive unity in K and 0 the zero element of V. (2.1)

In this thesis, K = C and V = Cn. The tensor product of two vector spaces is defined by

a vector space and a bilinear map. If V,W,X are three vector spaces, a bilinear map from

V ×W → X is a function H : V ×W → X that satisfies

H(αv1 + v2, w) = αH(v1, w) +H(v2, w), v1, v2 ∈ V,w ∈W,α ∈ K

H(v, αw1 + w2) = αH(v, w1) +H(v, w2), v ∈ V,w1, w2 ∈W,α ∈ K. (2.2)

The tensor product of two vector spaces V,W is also a vector space denoted V ⊗W associated

with a bilinear map η : V ×W → V ⊗W with the property that for every other vector spaceX

and every bilinear map H : V ×W → X, it exists a linear mapping T : V ⊗W → X and H =

T ◦ η, where ◦ denotes the composition of two functions (Kamnitzer, 2011). The elements

of a tensor product of two vector spaces are matrices. The definition can be extrapolated

to products of N vector spaces. A tensor of order N is an element of the tensor product

of N vector spaces. Notice that each vector space can have its own coordinate system.

Addition and scalar multiplication will be defined as point to point operations. According

to De Silva and Lim (2008), it can be considered that CI1 ⊗CI2 ⊗· · ·⊗CIN ∼= CI1×I2×···×IN
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and therefore it is equivalent to define a tensor by a Nth-order array or as a sum of tensor

product of N vectors.

The order or dimensionality of a tensor is denoted N (dimension is also referred to as mode).

For instance, a tensor of order N = 1 is a vector and a tensor of order N = 2 is a matrix. The

definitions that follow will be based on tensors of order four, which we will use throughout

the following chapters. The slices of tensor X are obtained by fixing all coordinates but two.

For example, X (i, j, :, :) and X (:, :, k, l) are slices of the tensor X . A fiber is obtained by

fixing every index of the tensor except one. By convention, fibers are column vectors. For

example, X (:, j, k, l), X (i, :, k, l), X (i, j, :, l) and X (i, j, k, :) are mode-1, mode-2, mode-3

and mode-4 fibers, respectively, from a fourth-order tensor X .

2.3.1 Unfoldings

A tensor of order N can be unfolded or flattened in N different ways. The flattening of a

tensor is in essence the reordering of its elements into a matrix. There are various ways of

unfolding a tensor. In Chapter 3 we adopt the n-mode flattening described by Bader and

Kolda (2006) and Kolda (2006). The latter is the convention used by the HOSVD algorithm

in the Tensor Toolbox described in the article from Bader and Kolda (2010). In Chapters 4

and 5 we will use a different convention.

A tensor of order N = 3 has three modes n = 1, 2, 3, whereas a tensor of order N = 4 has

four modes n = 1, 2, 3, 4. The n-mode fibers are the columns of the n-mode unfolded matrix.

The flattening of a tensor X in its n-mode is symbolized by the matrix X(n). Figure 2.1

exemplifies the n-mode flattening of a tensor of order three. For example, let X ∈ C4×3×2

be a third-order tensor defined by its two frontal slices

X (:, :, 1) =




X111 X121 X131

X211 X221 X231

X311 X321 X331

X411 X421 X431



, X (:, :, 2) =




X112 X122 X132

X212 X222 X232

X312 X322 X332

X412 X422 X432



.

The three ways one can unfold this tensor are given by

X(1) =




X111 X121 X131 X112 X122 X132

X211 X221 X231 X212 X222 X232

X311 X321 X331 X312 X322 X332

X411 X421 X431 X412 X422 X432



,
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X(2) =



X111 X211 X311 X411 X112 X212 X312 X412

X121 X221 X321 X421 X122 X222 X322 X422

X131 X231 X331 X431 X132 X232 X332 X432


 ,

X(3) =

(
X111 X211 X311 X411 X121 X221 X321 X421 X131 X231 X331 X431

X112 X212 X312 X412 X122 X222 X322 X422 X132 X232 X332 X432

)
.

The numbering of each unfolding varies according to the author and is irrelevant as long

as there is consistency in the calculations. In general, mapping from a tensor to a matrix

requires knowing the size of the tensor, the dimension (or mode) that we want to map to the

rows of the matrix and which mode we map to the columns of the matrix (Kolda, 2006). In

mathematical terms, given a tensor X ∈ CI1×I2×···×IN , the mode-n unfolding is such that

the element (i1, i2, · · · , iN ) maps to a matrix element (in, j) given by the expression (De

Lathauwer et al., 2000a; Kolda and Bader, 2009)

j = 1 +

N∑

k=1
k 6=n

(ik − 1) Jk, Jk =

k−1∏

m=1
m6=n

Im . (2.3)

2.3.2 Products

The product between a tensor and a matrix can be expressed by using the concept of n-mode

product. In the case of a fourth-order tensor X ∈ CI1×I2×I3×I4 , the n-mode product of this

tensor with a matrix B ∈ CJ×In with n = 1, 2, 3, 4 is denoted by Y = X ×n B. The four

products are

(X ×1 B)ji2i3i4 =

I1∑

i1=1

Xi1i2i3i4Bji1 , with B ∈ CJ×I1 (2.4)

(X ×2 B)i1ji3i4 =

I2∑

i2=1

Xi1i2i3i4Bji2 , with B ∈ CJ×I2

(X ×3 B)i1i2ji4 =

I3∑

i3=1

Xi1i2i3i4Bji3 , with B ∈ CJ×I3

(X ×4 B)i1i2i3j =

I4∑

i4=1

Xi1i2i3i4Bji4 , with B ∈ CJ×I4 .

The Kronecker product of two matrices A and B of sizes m×n and p× q is another matrix
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(a)

(b)

(c)

Figure 2.1: Unfolding or flattening of a third-order tensor X . (a) 1st mode, (b)
2nd mode, and (c) 3rd mode. We followed the unfolding convention provided in the
Tensor Toolbox (Bader and Kolda, 2010).
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of size mp× nq

A⊗B =




A11B A12B · · · A1nB

A21B A22B · · · A2nB
...

...
... · · ·

...

Am1B Am2B · · · AmnB




(2.5)

= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · an ⊗ bq−1 an ⊗ bq], (2.6)

where ai,bi are the columns of matrices A,B, respectively.

The Kronecker product of two vectors x and y of length m and n (Laub, 2004), respectively,

is

x⊗ y = [x1y
T · · · xmyT]T

= [x1y1 · · ·x1yn x2y1 · · · xnym−1 xnym]T. (2.7)

Some properties that will prove useful are:

(A⊗B)T = AT ⊗BT, (2.8)

rank(AT) = rank(A), (2.9)

rank(A⊗B) = rank(A) rank(B), (2.10)

rank(A B) ≤ min(rank(A), rank(B)). (2.11)

The Khatri-Rao product between two matrices A of size m × n and B of size p × n is a

column-wise Kronecker product and gives a matrix of size mp× n

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn]. (2.12)

Particularly, if A = a and B = b, i.e. if the product is among two vectors, the Khatri Rao

product is equivalent to the Kronecker one a� b = a⊗ b.

The Hadamard product between two matrices A,B of size m×n is an element-wise product

symbolized by “·” such that

A ·B =




A11B11 A12B12 · · · A1nB1n

A21B21 A22B22 · · · A2nB2n

...
...

... · · ·
...

Am1Bm1 Am2Bm2 · · · AmnBmn



. (2.13)
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The inner product of two tensors X ,W is the sum of the products of their entries (element

to element product), which for two fourth-order tensors with elements in C is

< X ,W >=

I1∑

i1=1

I2∑

i2=1

I3∑

i3=1

I4∑

i4=1

Xi1i2i3i4Y
∗
i1i2i3i4 , (2.14)

where ∗ indicates the complex conjugate of element Yijkl. Like other inner product spaces

(vector spaces associated with a certain norm), < X ,X >= ‖X‖2F . The Frobenius norm of

a matrix A ∈ CI×J is defined as the square root of the sum of the squared absolute values

of the elements of the matrix ‖A‖2F =
I,J∑
i,j=1

|Aij |2. Similarly, the Frobenius norm of a tensor

of order N = 4, X ∈ CI1×I2×I3×I4 is defined as

‖X‖2F =

I1∑

i1=1

I2∑

i2=1

I3∑

i3=1

I4∑

i4=1

|Xi1i2i3i4 |2. (2.15)

Clearly, one can extend these definitions to tensors of order N > 4.

2.4 Tensor decompositions and tensor rank

A tensor of order four X ∈ CI1×I2×I3×I4 is said to have rank one if it can be expressed as

X = u(1) ◦ u(2) ◦ u(3) ◦ u(4), such that (2.16)

Xijkl = u
(1)
i u

(2)
j u

(3)
k u

(4)
l , (2.17)

where u(i), i = 1, · · · , 4 are vectors and ◦ is the outer product between vectors (Figure 2.2).

If the length of the vectors are I1, I2, I3 and I4 for u(1),u(2),u(3) and u(4), respectively, the

size of X is I1 × I2 × I3 × I4. For a second-order tensor X, i.e. a matrix, this definition

reduces to X = u(1)u(2)H
.

A matrix can be approximated by another of lower rank via the Singular Value Decomposi-

tion (Eckart and Young, 1936). This is a familiar concept in linear algebra. For instance, a

matrix A of rank r can be approximated by one of lower rank Ã = UsΣsV
H
s , s < r, where

Us and Vs are orthogonal matrices with s columns and Σs of size s × s is the associated

diagonal matrix of the s largest singular values of A (the singular values are the square

roots of the eigenvalues of AAH and AHA). The matrix Ã is the best rank-s approxima-

tion of A with respect to the Frobenious norm. In many signal processing problems one

wants to approximate a matrix by one of lower rank. Examples of the latter are methods

for eigenimage-based denoising (Freire and Ulrych, 1988), Cadzow filtering (Cadzow, 1988)

and wave extrapolation (Fomel et al., 2010). The SVD is our preferred rank reduction tool
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I3

I1

=

I2

I1

u(2)

u(3)
I3

I2

X u(1)

Figure 2.2: Third-order tensor X of rank 1.

when we have a data structure that can be expressed in matrix form. However, there are

applications where one wishes to consider multidimensional data structures saved in ten-

sorial form. The basic question is if a tensor can also be approximated by one of lower

rank, in a similar manner the SVD can be used to approximate a matrix by one of lower

rank (Omberg et al., 2007). The SVD can be generalized to higher-order tensors via the

CANDECOMP/PARAFAC (Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970)

decomposition and the Tucker/Higher-Order Singular Value Decomposition (Tucker, 1963;

De Lathauwer et al., 2000a,b).

2.4.1 CP decomposition

A precursor of the CP decomposition was first proposed by Hitchcock (1927) and followed

later by Cattell (1944). However, the CP decomposition became more popular mostly in

the psychometrics community with the works of Carroll and Chang (1970), who called it

canonical decomposition (CANDECOMP), and Harshman (1970), who suggested parallel

factors (PARAFAC). This decomposition is commonly known as CP, as an abbreviation of

both names (Kiers, 2000). The CP decomposition expresses a tensor as a sum of rank one
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I3

I1

=

I2

I1

I3
u
(3)
1

X u
(1)
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(2)
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u
(1)
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+

u
(1)
R

u
(2)
R

I2 I2 I2

I1

I3I3

I1

+

u
(3)
R

· · ·+

Figure 2.3: CP decomposition of a third-order tensor X .

tensors (Figure 2.3). A fourth-order tensor X ∈ CI1×I2×I3×I4 can be approximated as

X ≈
R∑

m=1

u(1)
m ◦ u(2)

m ◦ u(3)
m ◦ u(4)

m ,

Xijkl ≈
R∑

m=1

U
(1)
im U

(2)
jm U

(3)
km U

(4)
lm , (2.18)

where u
(j)
m ∈ CIj ,m = 1, · · · , R, j = 1, 2, 3, 4 are vectors and R ∈ N+. It is a common

practice to make the columns u
(j)
m ,m = 1, · · · , R (for each j) normalized and capture the

normalization constants in a vector of length R that is added in the previous expression

after the summation sign (Kolda and Bader, 2009).

If the approximation sign in equation 2.18 is an equal sign, the integer R = rank(X ).

Namely, the rank of a tensor X is the smallest amount of rank-one tensors added together

needed to synthesize that tensor (Hitchcock, 1927; Kruskal, 1977). For tensors, there is

not a unique concept of rank. Although the tensor rank is defined as the matrix rank, a

particularity of the rank of a tensor is that there is not a straightforward way of calculating

it, it is an NP-hard problem (refer to section 1.5 in Chapter 1). For example, the rank of a

tensor can be different over R or C (Kruskal, 1983) or sometimes the rank cannot even be

determined (Kruskal, 1989). These difficulties give rise to other definitions of tensor rank

involving statistics. For an extensive definition of tensor ranks and its calculation refer to

Comon et al. (2009) and Kolda and Bader (2009).

When the decomposition in equation 2.18 is applied to matrices, the decomposition is not

unique while SVD is unique because of the orthogonality conditions of U,V and the ordering

of the elements in the diagonal matrix Σ. On the other hand, the CP decomposition is unique

when applied to tensors of order greater then two, up to a permutation of the components
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and scaling (Kruskal, 1977, 1989; Sidiropoulos and Bro, 2000).

The CP decomposition can be used for finding a low-rank approximation of a tensor. The

SVD of a matrix A of rank R is expressed as

A = UR ΣR VH
R =

R∑

m=1

σi um ◦ vm, (2.19)

with σi ordered in decreasing magnitude. As we specified before in the previous section,

the best R-rank approximation is achieved by truncating the SVD of A. As the CP decom-

position and the SVD decomposition seem very similar, we would like to achieve the best

R-rank approximation of a tensor in the same way. In the SVD, the low-rank approximation

is found sequentially; i.e. the R+1-rank approximation and the R-rank approximation share

the same information up to the R-component. However, this is not the case for tensors and

the R,R + 1 rank approximations can be very different (Kolda, 2001). Furthermore, the

best rank-R approximation might not exist, a problem called degeneracy.

The computation of the CP decomposition requires knowing the amount R of rank-one

tensors to involve in the sum (equation 2.18). Most algorithms calculate many alternative

decompositions to find the one that fits the best. Nevertheless, this fit criterion can fail

when the data tensor contains noise (as it is in most cases). One of the most used and

robust algorithms is the alternating least squares (ALS) algorithm (Carroll and Chang, 1970;

Harshman, 1970). This method calculates R components (with R given by the user) as in

equation 2.18 that, when combined together, give the best fit to the original data in terms of

the Frobenius norm. Let us group all u
(j)
m ,m = 1, · · · , R in matrices U(j), j = 1, 2, 3, 4. The

ALS algorithm operates by fixing all matrices U(j) but one (reducing the problem to just

one variable) and solving the least squares problem of finding that matrix which offers the

best fit. After finding the best fit matrix, it continues with the other matrices which were

fixed before and so on until achieving convergence (defined beforehand). Kolda and Bader

(2009) present the ALS algorithm for a tensor of order N . Naturally, the ALS algorithm

can be also used to compute a rank-reduced version of X by specifying an appropriate

rank value (smaller than R). Despite being the most widely used method for finding this

decomposition, ALS can be slow to converge and can reach a local minimum or plateau (if it

reaches it at all). Several authors have proposed improvements to ALS (Rajih and Comon,

2005; Tomasi, 2006; Tomasi and Bro, 2006; Navasca et al., 2008).

2.4.2 Tucker/HOSVD decomposition

The Tucker decomposition owes its existence to L.R. Tucker, who presented it in his article

in 1963 (Tucker, 1963) and subsequent articles by him and others (Levin, 1963; Tucker,
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1964, 1966). As for CP, the Tucker decomposition is considered a higher-order extension

of the SVD and principal component analysis (PCA). For a tensor X ∈ CI1×I2×I3×I4 , the

Tucker decomposition expresses it as

X ≈ G ×1 U(1) ×2 U(2) ×3 U(3) ×4 U(4) =

I1∑

i=1

I2∑

j=1

I3∑

k=1

I4∑

l=1

Gijkl u
(1)
i ◦ u

(2)
j ◦ u

(3)
k ◦ u

(4)
l

Xmnop =

I1∑

i=1

I2∑

j=1

I3∑

k=1

I4∑

l=1

Gijkl U
(1)
miU

(2)
nj U

(3)
ok U

(4)
pl , (2.20)

where G is called the core-tensor, it has the same size as X and measures the connection

between the matrices U(j). The matrices U(j), j = 1, 2, 3, 4 are often orthogonal, they have

sizes Ij × Ij and contain information about its respective component j. It is interesting to

notice that the CP decomposition is a special case of the Tucker decomposition when the

core-tensor is superdiagonal (Gijkl 6= 0 only when i = j = k = l) and I1 = I2 = I3 = I4.

Other variations of the Tucker decomposition exist, such as Tucker-1 and Tucker-2 (Tucker,

1966).

De Lathauwer et al. (2000a) formalized the Tucker decomposition as a higher-order exten-

sion of the SVD and called this decomposition Higher-Order SVD (HOSVD). The HOSVD

theorem states that every tensor X ∈ CI1×I2×I3×I4 can be expressed as in equation 2.20

with the following properties:

• The matrices U(1), U(2), U(3) and U(4) are the unitary matrices containing the left

singular vectors of the four matrices that one can obtain by flattening the tensor X
(Kolda and Bader, 2009). In other words, U(n) is obtained via the SVD of X(n), the

n-mode matrix unfolding of the tensor X

X(n) = U(n)Σ(n)V(n)H
, (2.21)

where U(n) and V(n) are the left and right side matrices of singular vectors, respec-

tively. The matrix Σ(n) represents the diagonal matrix containing the singular values

of X(n).

• The core-tensor G ∈ CI1×I2×I3×I4 satisfies: the subtensors

G(α, :, :, :) and G(β, :, :, :), 1 ≤ α, β ≤ I1 (2.22)

(formed by fixing one index of the 1st coordinate) are orthogonal to each other with the

definition of inner product as given in equation 2.14 and the same for all subtensors

obtained when fixing the second, third and fourth coordinates. Furthermore, the

Frobenius norm of these subtensors do not increase as their respective indices increase.
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Since U(1), U(2), U(3) and U(4) are orthogonal, the core-tensor G can be easily estimated

via the following expression (Omberg et al., 2007)

G = X ×1 U(1)H ×2 U(2)H ×3 U(3)H ×4 U(4)H
, (2.23)

where U(i)H
denotes the complex conjugate transpose of U(i). For a proof of this property

we refer the reader to Theorem 4.1 in De Lathauwer et al. (2000b). The core-tensor G plays

a role similar to that of the matrix of singular values Σ in the SVD. In fact, one can reduce

the rank of the tensor by truncating the core tensor.

The n-rank of a tensor X of size I1 × I2 × I3 × I4 is defined as the rank of its mode-n

unfolding (the column rank of X(n)). Assuming that rank(X(j)) = Rj , j = 1, 2, 3, 4, then

we say that X has rank-(R1, R2, R3, R4). Notice that the n-rank is a multi-rank definition,

as we are looking for the rank of each of its matrix unfoldings, which is very different from

the tensor rank definition we gave in section 2.4.1. Naturally, n-rank = Rn ≤ In and Rn

are not necessarily the same for all n. Furthermore, even if all n-ranks are equal they will

always obey Rn ≤ R, where R = rank (X ).

Unlike the CP decomposition, the Tucker decomposition is not unique (Kolda and Bader,

2009). However, the orthogonality conditions in the core-tensor given in the HOSVD cause

uniqueness in the n-mode singular values (the singular values of X(n)) and uniqueness in

the factor matrices U(n) up to the product with a particular kind of block-diagonal matrix

(Property 4 in De Lathauwer et al., 2000a). An interesting property of the HOSVD is that

when used for matrices (tensors of order two), the HOSVD reduces to the classical SVD

(refer to Properties 5 and 12 in De Lathauwer et al., 2000a).

The “truncated” HOSVD consists of the representation of the fourth-order tensor X ∈
C I1×I2×I3×I4 by the product of four unitary matrices Ũ(1), Ũ(2), Ũ(3) and Ũ(4) of sizes

Ij ×Rj , Rj < Ij , respectively, and a small core-tensor G̃ ∈ CR1×R2×R3×R4

X ≈ X̃ = G̃ ×1 Ũ(1) ×2 Ũ(2) ×3 Ũ(3) ×4 Ũ(4). (2.24)

We denote X̃ the rank-reduced approximation of tensor X . Clearly, the matrices Ũ(n),

n = 1, 2, 3, 4 in equation 2.24 contain the first Rn left singular vectors of the unfolded

matrix X(n).

The decomposition of equation 2.24 is exact if G̃ is a rank-(I1, I2, I3, I4) tensor (equivalent

to equation 2.20). On the other hand, if the decomposition is truncated by reducing the

size of the core tensor (R1, R2, R3, R4), with Rj < Ij for at least one j, the equation 2.24

provides the desired low-rank approximation to the tensor X (De Lathauwer et al., 2000a).

The truncated HOSVD of equation 2.24 is not an optimal approximation in terms of the

Frobenius norm of the difference ‖X − X̃‖2F . Furthermore, the error in the Frobenius norm
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when truncating the HOSVD is

‖X − X̃‖2F ≤
I1∑

i1=R1+1

σ
(1)
i1

2
+

I2∑

i2=R2+1

σ
(2)
i2

2
+

I3∑

i3=R3+1

σ
(3)
i3

2
+

I4∑

i4=R4+1

σ
(4)
i4

2
, (2.25)

where σ
(j)
ij
, ij = Rj + 1, . . . , Ij , are the smallest n-mode singular values in the matrix un-

folding D(j). The error bound is composed of the sum of the squared Ij − Rj remaining

singular values along each mode, which is an extension of the error expression for the SVD

(De Lathauwer et al., 2000a).

The truncated HOSVD is taken as the first approximation of an iterative ALS algorithm (as

for the computation of the CP decomposition). The matrices and core-tensor are updated

iteratively starting with equation 2.24. The problem to solve is

min
G̃,Ũ(1),Ũ(2),Ũ(3),Ũ(4)

‖X − X̃‖F =
∥∥∥X − G̃ ×1 Ũ(1) ×2 Ũ(2) ×3 Ũ(3) ×4 Ũ(4)

∥∥∥
F

such that G̃ ∈ CR1×R2×R3×R4

and Ũ(n) ∈ C In×Rn are unitary, n = 1, 2, 3, 4. (2.26)

The square of the cost function to minimize in equation 2.26 can be rewritten as

‖X‖2F −
∥∥∥X ×1 Ũ(1)H ×2 Ũ(2)H ×3 Ũ(3)H ×4 Ũ(4)H

∥∥∥
2

F
, (2.27)

for the proof of this refer to the work of Andersson and Bro (1998), De Lathauwer et al.

(2000b) and Kolda (2006). As X is a constant, problem 2.26 reduces to maximizing the

second term in equation 2.27. To simplify the problem even more, we can maximize this

term while fixing all matrices except one and solve for one matrix at a time. In mathematical

terms this means that for a certain 1 ≤ n ≤ 4, we solve the following problem

max
Ũ(n)

∥∥∥X ×1 Ũ(1)H ×2 Ũ(2)H ×3 Ũ(3)H ×4 Ũ(4)H
∥∥∥
F

subject to Ũ(n) ∈ C In×Rn is unitary. (2.28)

Let us assume that n = 1. We can rewrite the cost function from equation 2.28 in matricial

form

∥∥∥X ×1 Ũ(1)H ×2 Ũ(2)H ×3 Ũ(3)H ×4 Ũ(4)H
∥∥∥
F

= ‖Ũ(1) V‖F , where

V = X(1)(Ũ(4) ⊗ Ũ(3) ⊗ Ũ(2)). (2.29)
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The norm is maximized by calculating the SVD of V and making Ũ(1) equal to the first R1

left singular vectors of V. The algorithm stops when it ceases to improve the approximation

or it reaches a maximum number of iterations (Kolda and Bader, 2009). This iterative

method belongs to the family of ALS methods, and is called Higher-Order Orthogonal

Iteration (HOOI, De Lathauwer et al., 2000b). In Chapter 3 we have adopted the Tensor

Toolbox from Bader and Kolda (2010) to compute the truncated HOSVD. This toolbox uses

the HOOI, delineated in Table 2.1. However, we noticed that our application does not need

HOOI and only one iteration of HOOI (equivalent to using the plain truncated HOSVD) is

sufficient.

Input X , R1, R2, R3, R4

Initialize matrices U(1),U(2),U(3),U(4) using HOSVD (equation 2.20)

While fit decreases or maximum number of iterations not reached

Z = X ×2 U(2)H ×3 U(3)H ×4 U(4)H

U(1) is formed with the R1 left singular vectors from Z(1)

Z = X ×1 U(1)H ×3 U(3)H ×4 U(4)H

U(2) is formed with the R2 left singular vectors from Z(2)

Z = X ×1 U(1)H ×2 U(2)H ×4 U(4)H

U(3) is formed with the R3 left singular vectors from Z(3)

Z = X ×1 U(1)H ×2 U(2)H ×3 U(3)H

U(4) is formed with the R4 left singular vectors from Z(4)

end

G = X ×1 U(1)H ×2 U(2)H ×3 U(3)H ×4 U(4)H

Output G,U(1),U(2),U(3),U(4)

Table 2.1: HOOI - ALS algorithm to compute the truncated HOSVD with n-ranks
(R1, R2, R3, R4) of a tensor X of size (I1, I2, I3, I4) (De Lathauwer et al., 2000b).

Figure 2.4 depicts a representation of the truncated HOSVD decomposition for a third-

order tensor X ∈ C I1×I2×I3 . Clearly, the expression for the truncated HOSVD provided in

equation 2.24 reduces to X ≈ G̃ ×1 Ũ(1) ×2 Ũ(2) ×3 Ũ(3) with G̃ ∈ CR1×R2×R3 . According

to De Lathauwer et al. (2000a), the computational cost of the HOSVD is proportional to

calculating four matrix SVD (as many SVD as dimensions) of the four matrix unfoldings.

The products between the matrix unfoldings to calculate the core-tensor and the cost of

computing X̃ contribute to the total cost of the algorithm. The cost of calculating the SVD

depends on the algorithm. The cost of computing U,Σ,V of a matrix A of size m × n is
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Ũ(2)

G̃

Figure 2.4: Truncated-HOSVD decomposition of a third-order tensor X .

about O(n3) (Golub and Van Loan, 1996). In the case of a matrix with m << n, other SVD

algorithms exist which only compute the first m or n singular values (whichever is smaller),

with their respective rows and columns of U and V, usually denoted “economy” size SVD.

In this case, the computational cost decreases significantly and it is about O(mr2), where

r is the amount of singular values computed. The algorithms of Chapters 3 and 4 use the

more efficient aforementioned solvers for the SVD, because the matrix unfoldings naturally

satisfy m << n. A similar implementation could be used in the algorithm of Chapter 5.



CHAPTER 3

HOSVD-based reconstruction 1

3.1 Introduction

This chapter describes a new seismic signal enhancement and reconstruction algorithm that

falls under the category of methods that are based on rank reduction techniques. A con-

siderable body of work exists in the area of signal-to-noise enhancement via rank reduction

methods. For instance, Freire and Ulrych (1988) and Trickett (2003) employ eigenimage fil-

tering to attenuate random noise. Eigenimage filtering operates in the T −X and F −X−Y
domains. Consequently, eigenimage methods can only be used to process data that depend

on one or two spatial dimensions. Trickett (2008), Burroughs and Trickett (2009) and Trick-

ett and Burroughs (2009) propose to use Cadzow filtering for denoising data that depend

on more than two spatial coordinates. In a subsequent article, Trickett et al. (2010) ap-

ply Cadzow filtering to solve the trace reconstruction problem. The Multichannel Singular

Spectrum Analysis (MSSA) algorithm proposed by Sacchi (2009) and Oropeza and Sacchi

(2011) is equivalent to the Cadzow method proposed by Trickett (2008) for denoising and

reconstructing seismic volumes. Cadzow and MSSA algorithms replace the block Hankel

matrix of the incomplete and noisy multidimensional observations by its low-rank approxi-

mation. Averaging along the anti-diagonals of the rank-reduced Hankel matrix permits to

recover the complete data volume (Trickett and Burroughs, 2009; Sacchi, 2009). Cadzow

and MSSA algorithms can be easily implemented using the Singular Value Decomposition

(Sacchi, 2009). Computational efficiency is gained by replacing the SVD with fast meth-

ods to iteratively estimate the eigen-decomposition of large Hankel matrices (Halko et al.,

2011a,b; Gao et al., 2013).

1A version of this chapter has been published in Kreimer and Sacchi (2012b) and in Kreimer and Sacchi
(2012d), Geophysics, http://dx.doi.org/10.1190/geo2011-0399.1
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In this work, rather than embedding multidimensional spatial data in a block Hankel ma-

trix, the proposed algorithm operates directly on the seismic tensor (Kreimer and Sacchi,

2012d). In other words, we propose to apply rank reduction to the multidimensional seismic

volume represented via a fourth-order tensor. While there is a unique definition of rank for

matrices (Strang, 2006), there is no unique decomposition for tensors and, therefore, the

definition of rank depends on the decomposition that one adopts to represent the tensor

(Bergqvist and Larsson, 2010). This work adopts the HOSVD to represent the data ten-

sor by one of lower rank (refer to Chapter 2). The rank-reduced version of the prestack

seismic tensor is used to estimate data at unrecorded positions. It is important to stress

that other tensor decomposition methods could be adopted. For instance, CP (Carroll and

Chang, 1970; Harshman, 1970) could be used instead of the HOSVD. However, an optimal

CP decomposition does not always exist (De Silva and Lim, 2008), and an algorithm for

the CP decomposition can give a “degenerate” solution (refer to Chapter 2). Our numerical

experiments produced high quality results when the proposed algorithm was implemented

via the HOSVD. It is important to stress that the HOSVD can be viewed as a generalization

of the classical SVD for tensors. The latter leads to a tensor decomposition that resembles

the more familiar decomposition of matrices via the SVD.

We also clarify that noise attenuation and seismic data reconstruction are often treated as

separate problems. However, here we follow the framework proposed in Oropeza and Sacchi

(2011) and present an algorithm that performs simultaneous multidimensional random noise

attenuation and reconstruction.

3.2 Theory

3.2.1 The tensor completion problem in seismic data processing

Our analysis considers patches of 4D spatial data in the frequency-space domain. In other

words, a large prestack volume is segmented in windows or patches of data consisting of

a desired number of midpoints in the inline and crossline direction, and their associated

inline and crossline offsets. Therefore, we will identify the prestack seismic volume with the

symbol Dobs(ω, x, y, hx, hy) where ω represents temporal frequency, x and y are midpoint

coordinates, and hx and hy are inline and crossline offsets, respectively. Naturally, the spatial

coordinates could also be source-receiver or midpoint-offset-azimuth (refer to Chapter 1).

We consider the case where seismic traces are attributed to a regular midpoint-offset grid

through binning. In this case, the data can be represented via the fourth-order tensor Dobs,

with elements Dobs
ijkl, where i, j, k, l are bin indices for the spatial coordinates x, y, hx, hy,

respectively. Notice that we have dropped the dependency on ω but bear in mind that the
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proposed reconstruction method is applied to all frequencies. In the case that more than

one trace is assigned to a bin, we average them to retain only one observation in each bin.

The ideal survey contains an observation in each element of the 4D tensor D. In real

situations, however, mapping seismic traces from irregular source-receiver coordinates to

midpoint-offset bins leads to a highly sparse tensor. In other words, a large number of bins

i, j, k, l are empty. This point will become clear in our field data example. The ideal survey

D and the observed data Dobs are related through a 4D sampling operator T

Dobs = T ·D, (3.1)

where the product (·) is in the Hadamard sense (element to element). The sampling operator

is defined in the following expression

Tijkl =

{
1 if the grid point ijkl contains an observation

0 if the grid point ijkl does not contain an observation .
(3.2)

It is clear that Dobs = T .Dobs. Our goal is to recover the ideal tensor D from Dobs. The

problem stated by equation 3.1 is underdetermined because there are more unknowns than

observations. Clearly, equation 3.1 admits an infinite number of solutions. Typically, one

way of solving this problem is through constrained inversion methods. Minimum Weighted

Norm Interpolation (Liu, 2004), for instance, attempts to reconstruct the data by minimizing

a spectral norm that imposes sparsity on the wave-number spectrum of the ideal data set.

In this article, however, we propose to estimate the missing observations by assuming that

the ideal data D can be represented via a low-rank tensor (Liu et al., 2009; Acar and Yener,

2009). We present the proof of this statement (for the noise-free case) in Appendix A.

3.2.2 Reconstruction and denoising via tensor completion

We assume that the ideally sampled data can be approximated with great fidelity by equation

2.24, given in the previous chapter. The reason for this is that missing traces and noise

increase the rank of the tensor, such that decreasing its rank will have the desired effect.

In the presence of missing observations we propose to recover the ideal tensor by a single

imputation algorithm (Nelson et al., 1996; Grung and Manne, 1998; Walczak and Massart,

2001; Tomasi and Bro, 2005; Oropeza and Sacchi, 2010)

Dν = Dobs + (1 − T ) · D̃ν−1
, (3.3)

where ν denotes iteration number and 1 is a tensor of ones having the same dimensions of

T . We remind the reader that the tensor D̃ (see equation 2.24) is the rank-reduced version
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of the tensor D.

This formula was also used by Oropeza and Sacchi (2009) where it was mentioned its sim-

ilarity to the method of Projection onto Convex Sets (POCS) (Abma and Kabir, 2005).

It is important to stress that the rank reduction operator does not conform a convex set

(Dologlou et al., 1996). Therefore, we cannot use the asymptotic property of POCS for

a large number of iterations to analyze the convergence of the proposed algorithm. The

rank reduction operation (equation 2.24) is not sufficient to recover the missing data and

for this reason the data to be rank-reduced is replaced by the expression on the right hand

side of equation 3.3. Notice that the new variable Dν does not contain missing values.

This imputation algorithm can be considered to be an Expectation Maximization (EM)

method when the variables involved are normalized and the residuals are independent. The

convergence properties of equation 3.3 have been studied by Tomasi and Bro (2005) who

derived the algorithm using the EM method (Little and Rubin, 1987; McLachlan and Kr-

ishnan, 1997; Hastie et al., 2001). The EM method is an iterative method used to solve

maximum-likelihood estimation problems in the presence of missing data and dates back

to 1925 (M’Kendrick, 1925). The EM method is based on two steps: given a first approxi-

mation of the missing values, the E-step finds the conditional expectation of the likelihood

function. The M-step estimates the maximum likelihood of the parameters disregarding the

missing samples. In our application, the likelihood function is ‖Dν − D̃ν−1‖F , same as the

one defined in equation 2.26. Given a first approximation of the HOSVD of D, the E-step

consists of the calculation of this cost function, the expected value of the likelihood function,

including the imputation step in equation 3.3. The M-step involves maximizing this cost

function as shown for equation 2.28, which is simply using HOOI to rank-reduce the newly

imputed data.

The imputation algorithm preserves the original data in their original spatial bins. Missing

observations, on the other hand, are replaced by rank-reduced estimates of the tensor (1 −
T ) · D̃ν−1

computed from the previous iteration. The latter can result in a solution that

contains traces with different character (noisy traces at observed positions and filtered traces

at recovered positions). This problem can be alleviated by a modified imputation algorithm.

Essentially, we replace Dobs in expression 3.3 by the average aDobs + (1− a)T D̃ν−1
, such

that now the algorithm becomes

Dν = a Dobs + (1 − a T ) · D̃ν−1
, (3.4)

where a is a scalar, a ∈ [0, 1] (Oropeza, 2010). For datasets with high SNR, equation 3.3

applies, and therefore a = 1. For data with low SNR, the parameter a < 1 and is found by

examining the reconstruction error. In other words, we compute the difference between the

observed data and the reconstructed data at observed grid points and alter the parameter a
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until finding a suitable one where the reconstruction error shows little coherent energy. This

parameter is kept constant throughout the iterations (refer to synthetic experiment in the

following section). The last iteration is a denoising step, in which we perform rank reduction

on the reconstructed volume to correct for the possible discrepancies in SNR that might

still be present. It is important to stress that at the present time there is no automatic way

of finding the optimal core-tensor size and the optimal parameter a.

In Cadzow or MSSA filtering and reconstruction the rank is proportional to the number of

distinct plane waves (Sacchi, 2009). In tensor completion, the n-ranks, or the size of the

core-tensor, have an upper bound proportional to the number of distinct plane waves or

curved events (Appendix A). However, the curvature of the events has to be separable in

the different coordinates. For a non-separable curvature there is no such a clear theoretical

justification for parameter selection and we acknowledge that more research is needed to

understand ways of selecting the size of the optimal core-tensor for these type of reflections.

3.3 Synthetic examples

We design a series of synthetic models to test the proposed method. The models are designed

to evaluate the robustness of the method to curvature. They are not physically realistic

and contain three parabolic events in four spatial dimensions to simulate the extreme case

of curvature in all axes. We use a grid size of 12×12×12×12 and a SNR = 1 and 100

(where SNR is defined as the variance of the data divided by the variance of the noise).

Furthermore, we randomly remove 25, 50, 75 and 90% of the generated traces. A maximum

number of iterations of 20 is used in the iterative algorithm for all examples. We test

two scenarios. First, the noise-free case (SNR = 100) where a = 1. Second, a case with

SNR = 1 where a = 0.9. The algorithm is applied in the frequency − space domain for

frequencies in the 1− 70 Hz range. We use a Ricker wavelet with central frequency of 20 Hz.

The midpoint increments in x, y are 50 m. The offset increments in x, y are 100 m. The

synthetic events start to show aliasing at a temporal frequency of about 20− 25 Hz.

To examine the performance of the algorithm we calculate the quality Q of the recovered

data in dB in the time domain

Q = 10 log
‖Dtrue‖2F

‖Drecovered −Dtrue‖2F
, (3.5)

where Dtrue is the non-decimated seismic volume with no noise and Drecovered is the re-

constructed and denoised volume. The parameter Q is calculated using all the traces and

Table 3.1 displays this scale linearly with respect to the quotient in equation 3.5. Values of

Q larger than 10 dB can be considered satisfactory.
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Q (dB) ‖Dtrue‖2F = α‖Drecovered −Dtrue‖2F
α

2 1.6
4 2.5
6 4
10 10

Table 3.1: Linear scale interpretation of the quality of the reconstruction Q. The
scalar α is the proportionality value between the Frobenius norm of the misfit and
the Frobenius norm of the fully sampled volume.

Figure 3.1 portrays Q values for the simulation. As expected, the quality of the reconstruc-

tion decreases for volumes with a large amount of missing traces and low values of SNR.

For completeness, we plot the convergence curve for three of the frequencies in the 1−70 Hz

range for the case of SNR = 1 (Figure 3.2). In particular we measure the normalized

change of the solution using the expression ‖Dν
ω −Dν−1

ω ‖2F /‖Dν−1
ω ‖2F , where D0

ω are the

observations Dobs. We have used the subindex ω to emphasize that this normalized change

has been computed for three fixed frequencies ω1, ω2 and ω3. It is evident that a simple

stopping criterion can also be used to terminate the reconstruction prior to reaching the

maximum number of iterations. In our simulations a relative change of 0.5% is sufficient to

terminate the iteration.

Figure 3.3 displays the synthetic, decimated and recovered data for the case of 90% dec-

imation and SNR = 100 and 1. We stress that we are plotting only a subset of the

12× 12× 12× 12 spatial cube. The Q values for these two examples are 12.6 and 8.36 dB,

respectively. This means that the Frobenius norm of the original data are approximately 18

and 7 times larger, respectively, than the Frobenius norm of the reconstruction error. The

fold map for this synthetic is shown in Figure 3.4. The running time for each of these exam-

ples is of 1 minute 36 seconds in a desktop computer with an Intel Core 2 Duo processor with

a speed of 3.06GHz, running MATLAB in a single processor. For this example we select a

core-tensor of size 3× 3× 3× 3 and a parameter a = 0.9. We have already stressed that the

choice of these parameters is done by inspecting the residuals. At the present time, we have

not found an automatic way of estimating these parameters. It is interesting to notice that

the curvature of the events does not affect the quality of the reconstruction. This appears

to be an important advantage with respect to reconstruction methods based on Fourier syn-

thesis (Liu, 2004). Fourier reconstruction methods assume that the data are composed of a

superposition of plane waves, the sparsity or simplicity assumption is utilized to retrieve a

model that consists of a few dominant wavenumbers that honour the observations. Clearly,

the plane wave model assumption is invalid in the presence of curvature. We have applied
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Figure 3.1: Quality of the reconstruction of the reconstructed volumes for different
sparsity levels and SNR.
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Figure 3.2: Normalized change between iterations for frequencies 17, 33 and 50 Hz.
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Figure 3.3: (a) Synthetic prestack volume. The data consist of 12×12×12×12 bins.
A small subset of the data is portrayed. (b) 90% decimated data with SNR = 100.
(c) Data recovered from (b). (d) 90% decimated data with SNR = 1. (e) Recovered
data from (d).

Minimum Weighted Norm Interpolation (Liu, 2004) to the same data set and the results

were always of very low quality. For instance, 90% decimation and SNR = 100 results in

a quality figure of Q = 2 dB. One way to overcome this shortcoming is by running Fourier

reconstruction methods on small spatio-temporal windows. We stress that in this example

the tensor completion is applied on the 12× 12× 12× 12 spatial cube without segmenting

the cube into small spatio-temporal windows.

In the previous examples we have used a reinsertion parameter a = 0.9 based on a sensitivity

experiment in which we try different values for a and examine the residual panel. The

synthetic model used in this test is the same one described at the beginning of this section,

with SNR = 1 and 70% missing traces. Figure 3.5 shows the results. Values of a larger than
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Figure 3.4: Fold map for synthetics portrayed in Figure 3.3. The area of the circles
is proportional to the fold. The maximum fold is 24 and the minimum fold is 6.
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Figure 3.5: Sensitivity of Q to the change of the reinsertion parameter a.

0.4 lead to the best balance between the reinsertion of observed traces and conservation of

rank-reduced traces. Between 0.4 and 0.9, very little variation of Q manifests in the curve.

In our tests with real data, a = 0.9 was the value that gave the best results. We chose to

use this value throughout all the tests.

Performance of tensor completion for 2D, 3D and 4D spatial volumes

We propose a test to assess the benefits of reconstructing higher-order arrays over lower-

dimensional volumes. We simulate 2, 3 and 4D spatial volumes of sizes 12n, n = 2, 3, 4

containing two parabolic events with opposite curvatures. We randomly remove 50% of

the data and add random noise with SNR = 100 and 1. We use core-tensors of sizes

2n, n = 2, 3, 4 and a parameter a = 0.9 . A maximum iteration number of 20 is utilized

for each frequency in the range of 1 − 16 Hz. The time sampling is 2 ms and the number

of time samples is 128. The midpoint and offset increments are 10 m. We present the

quality of the reconstruction Q for these examples in Table 3.2. The standard deviation

σQ is calculated creating different realizations of random noise and sampling operators. It

is clear from the table that using 4D spatial reconstruction for both cases of high and low

SNR leads to an improved value of the reconstruction quality. In other words, by increasing

the dimensionality of the survey, we also increase the number of traces and the redundancy
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Number of Spatial Q ± σQ [dB]

Dimensions SNR = 100 SNR = 1

2 14.0± 2.4 1.3± 0.4

3 16.7± 0.03 9.8± 0.15

4 19.1± 0.006 16.7± 0.1

Table 3.2: Quality of the reconstruction for different number of spatial dimensions.

that is needed for the data completion algorithm. This is also discussed by Trad (2009) in

the context of MWNI reconstruction.

3.3.1 Synthetic tests on different degrees of curvature

Most reconstruction methods currently in use assume that seismic events are linear in a

window, e.g. MWNI (Liu and Sacchi, 2004), POCS (Abma and Kabir, 2006), ALFT (Xu

et al., 2005). However, diffractions often appear in prestack data, because of fractures, or

small-scale features such as channels. The aforementioned methods either fail to reconstruct

these features, or they smooth them. As a consequence, prestack migration is not able

to collapse the energy of these points effectively. Reconstruction methods are generally

criticized because of their inability to handle non-linear events inside a window.

Reconstructing events with curvature and aliased in space requires the use of methods such

as the one from Naghizadeh and Sacchi (2009), which is a modification of Spitz (1991)

to handle spatially variant dip. Both of these methods make use of prediction filters and

reconstruct aliased events using information from un-aliased low frequencies, and can deal

with regularly missing data. However, the former method does not make the assumption

of linear events in a window, and can deal with irregularly missing traces as well. Curvelet

reconstruction (Naghizadeh and Sacchi, 2010a) can also be used for reconstructing curved

events that are aliased in space. However, curvelets assume local linear events and therefore

will not be able to reconstruct large gaps.

The next example comprises testing the algorithm with three different degrees of curvature,

low, moderate and strong, in three spatial coordinates. We create synthetic data with one

event and another synthetic with two events. The size of the volume used is 150×20×20×20.

We randomly remove 50% of the traces in all these synthetics. In these examples we use

different sizes for the core-tensor, with the intention of determining the influence of the
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core-size on the reconstruction of events with curvature. We also add two different levels of

noise.

Figure 3.6 displays the quality of the reconstruction Q for the case of one curved event versus

the core-tensor size, and SNR = 100 and 1. The core-tensor size should be interpreted as

the number given in the horizontal axis to the power of 3. The dotted line represents

events with low degree of curvature, the continuous line represents events with moderate

curvature, and the dashed line represents events with strong curvature. We can extract

some conclusions from this figure. First, the core-tensor size does not seem to influence the

quality of the reconstruction for the different types of curvature. However, the core-tensor

size does influence the quality of the recovery when the SNR is low. In this case, the

smaller the core-tensor size is, the more effectively the method can filter the noise. Figure

3.7 displays the case of SNR = 1 for one CMP gather, and for the three different curvatures

designed. The core-tensor size in this case is 1. The F −K plots for the same gathers from

Figure 3.7 are displayed in Figure 3.8. The frequency and wavenumber axis in this figure

and Figure 3.13 are normalized, such that one needs to divide by ∆t or ∆x respectively to

obtain the axis in Hz or in Cycles/m.

Figure 3.9 displays the quality of the reconstruction Q for the case of two curved events

versus the core-tensor size, and SNR = 100 and 1. The same convention for the lines as in

Figure 3.6 applies. In this case, it is more important for the quality of the reconstruction to

use an appropriate core-tensor size. As a general criteria, we deduce from this experiment

that is preferable to use a larger rather than a smaller core-tensor size. We also see that

the lower the curvature of the events, the better the quality of the reconstructions. This is

true if the data have a low level of noise. Another observation we make is that both cases

of moderate and high curvature are better represented by a core-tensor of size 43 when the

SNR = 100. We cannot observe the same in the case of low SNR, most probably because

the noise is filtered by a small sized core-tensor. The case of two events and SNR = 1 is

portrayed in Figure 3.10, for only one CMP gather, and for the three different curvatures.

For the results shown in this figure we used a core-tensor size of 23. Figure 3.11 shows

the F − K plots for the gathers presented in Figure 3.10. As before, the frequency and

wavenumber axis are normalized.

3.3.2 Core-tensor size role

In the previous examples, we used a core-tensor size that gave a reasonable value of Q. To

explore this important parameter for the reconstruction algorithm, we design the following

test. We create synthetics with two curved events, and a volume size of 150× 20× 20× 20.

There are four different synthetics in this experiment, as follows
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Figure 3.6: Quality of the reconstruction for one curved event with different degrees
of curvature, three different core-tensor sizes, and different SNR.
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Figure 3.7: CMP-x gather number 10 with CMP-y = 10 for three different degrees
of curvature, and SNR = 1. (a) CMP gathers with SNR=100 and no decimation.
(b) Decimated gathers with noise added, SNR = 1. (c) Data recovered from (b).
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Figure 3.8: F −K plots from the gathers shown in Figure 3.7. First row shows the
complete data with SNR = 100, second row shows the decimated data with noise
added (SNR = 1) and third row shows the reconstructed and denoised data. The
columns correspond to the low, moderate and strong curvature case, respectively,
from left to right.
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Figure 3.9: Quality of the reconstruction for two curved events with different degrees
of curvature, four different core-tensor sizes, and different SNR.
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Figure 3.10: CMP-x gather number 10 with CMP-y = 10 for three different degrees
of curvature, and SNR = 1. (a) CMP gathers with SNR=100 and no decimation.
(b) Decimated gathers with noise added, SNR = 1. (c) Data recovered from (b).
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Figure 3.11: F −K plots from the gathers shown in Figure 3.7. First row shows the
complete data with SNR = 100, second row shows the decimated data with noise
added (SNR = 1) and third row shows the reconstructed and denoised data. The
columns correspond to the low, moderate and strong curvature case, respectively,
from left to right.
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a) SNR = 100 and no missing traces, symbolized by the blue line in Figure 3.14.

b) SNR = 100 and 50% missing traces, symbolized by the black line in Figure 3.14.

c) SNR = 1 and no missing traces, symbolized by the green line in Figure 3.14.

d) SNR = 1 and 50% missing traces, symbolized by the red line in Figure 3.14.

As in the previous examples, the core-tensor size should be interpreted as the number given

in the horizontal axis in Figure 3.12, to the power of 3. For each synthetic we use different

sizes for the core-tensor, from 1 to 203. The optimal value of Q depends on the level

of decimation and the level of SNR. From Figure 3.12, we can see that case a) has an

optimal Q for a core-tensor size of 203. This is the only case from all the examples in which

compressing the core-tensor does not lead to a higher value of Q. The reason for this is

that this volume is full, no missing data, and has a very small amount of noise. Therefore,

the compression of the core-tensor has the unwanted effect of removing part of the signal.

Case b) has an optimal Q value for core-tensor sizes ranging from 43 to 73. The effect of

shrinking the core-tensor in this case is not to filter noise, but to aid in the reconstruction

of the missing traces. Case c) and d) have similar behaviour, with the best values being

those of case c). For both cases, using a core-tensor of size 23 gives the optimal value of Q.

In this case, reducing the core-tensor size has the simultaneous effect of filtering most of the

random noise and recovering the missing traces.

3.4 Field data example

Figure 3.13 displays the shot and receiver geometry for an orthogonal survey from the

Western Canadian Sedimentary Basin. The area in the center of the patch highlights the

midpoints that are reconstructed using the distribution of sources and receivers portrayed

in the figure. In addition, the fold map for this area is included in Figure 3.14. The area

of the circles is proportional to the fold. The maximum fold is 66 and the minimum fold is

25. The x and y coordinates represent Easting and Northing in metres, respectively. Figure

3.15 displays five common-midpoint gathers for a fixed CMP-y = 7 and offset-y = 6. The

position of these gathers is indicated by the dashed line rectangle on Figure 3.14. Figure

3.16 portrays four common-offset gathers for a fixed CMP-y = 10 and offset-y = 5. The

midpoint-offset grid has dimensions 16 × 18 × 12 × 12 (16 × 18 midpoint bins and 12 × 12

offset bins). The CMP numbers are indicated in the corners of the fold map in Figure 3.14.

The midpoint spacing in x is 47 m and 84 m in y. The minimum offset is −3400 m in x

and −2600 m in y, and the maximum is 3000 m , in both x and y directions. The total

amount of traces in the original data patch is 16060. The midpoint-offset grid contains
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Figure 3.12: Quality of the reconstruction for all core-tensor sizes. The blue line
with square icons represents the case of SNR = 100 and no missing traces. The
black line with circle icons represents the case of SNR = 100 and 50% missing
traces. The green line with triangular icons represents the case SNR = 1 and no
missing traces. The red line with rhombus icons represents the case SNR = 1 and
50% missing traces.
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16 × 18 × 12 × 12 = 41472 grid points. In essence, only 39% of the 4D grid is populated.

In other words, the proposed algorithm recovers 61% of the traces. To confirm that the

reconstruction has not created new events in the volume, Figure 3.17 shows the stack of the

non-reconstructed and reconstructed volumes. In this case the algorithm operates on each

frequency of the NMO-corrected dataset, in the band 0 to 120 Hz using a maximum number

of 30 iterations per frequency. We also add the stopping criteria where a normalized change

of 0.5% between two iterations is sufficient to terminate the iterations. The relaxation

parameter a = 0.9 is selected.

Figure 3.18 contains the spectrum before and after the reconstruction, for a common offset

gather and a fixed inline. The distribution of singular values before and after rank reduction

is highlighted in Figure 3.19 for three frequencies (low, mid and high frequencies). For

each unfolding of the 4D tensor, we calculate its singular value distribution and, as all the

magnitudes are similar for all modes, we average them to display just one curve. We use

a core-tensor size of 5 × 5 × 5 × 5 for the rank reduction, which is evident from Figure

3.19, where we can observe that the singular values are nearly 0 after the fifth singular

value after reconstruction. Although we do not observe a sharp decrease in singular values

magnitude until the 12th singular value, for all three frequencies, the rank reduction to a

smaller number of singular values is still effective for the reconstruction because the signal

information is mostly concentrated in the first singular values. It is clear that tests with

more complex datasets are required to fully understand the limits of the algorithm presented

in this chapter.

This particular example took about 2 minutes on a single processor Intel Xeon(R) running at

3.16Ghz using MATLAB. This is not too far off from the time needed by our own MATLAB

implementation of Fourier reconstruction using MWNI (Trad, 2009) and sparse inversion

(Zwartjes and Hindriks, 2001; Zwartjes and Gisolf, 2007). We stress that commercial codes

for seismic data reconstruction are designed using a plethora of cost-cutting strategies that

are often not discussed in scientific journals. It is difficult, without having access to industrial

codes, to perform proper time comparisons to access the computational efficiency of various

existing algorithms.

3.5 Conclusions

We have introduced a new method for reconstructing and denoising prestack data that

depend on four spatial dimensions. The HOSVD was utilized to develop a rank reduction

strategy for tensor denoising and completion. The algorithm operates in the frequency −
space domain and solves the tensor completion problem at each temporal frequency via an

iterative algorithm.
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Figure 3.13: Distribution of sources and receivers for an orthogonal survey in x, y
coordinates. The figure is given in true aspect ratio. The area in the center of
the patch highlights the midpoints that are reconstructed using this distribution
of sources and receivers. Triangles represent the receivers and stars represent the
sources.
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Figure 3.14: Fold map corresponding to the rectangle in Figure 3.13. The figure is
given in true aspect ratio. The area of the circles is proportional to the fold. The
dashed line rectangle indicates the position of the data shown in Figure 3.15. Num-
bers in brackets are CMP numbers corresponding to the corners of the rectangle.
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Figure 3.15: Common-midpoint gathers, a portion of the data, associated to the
acquisition patch shown in Figure 3.13. The position of these gathers is indicated by
the dashed line rectangle on Figure 3.14. (a) Observations prior to reconstruction.
(b) Reconstructed data via tensor completion.
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Figure 3.16: Common-offset gathers, portion of the data associated to the acqui-
sition patch shown in Figure 3.13. (a) Observations prior to reconstruction. (b)
Reconstructed data via tensor completion.
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Figure 3.17: Portion of the stack associated to the acquisition patch shown in Figure
3.13. (a) Stack prior to reconstruction. (b) Stack after reconstruction.
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Figure 3.18: Spectrum of a common-offset gather (offset-x = offset-y = 6) for
CMP-x = 1 before and after reconstruction.
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A synthetic simulation was utilized to gain understanding of the limits of the proposed

tensor completion strategy. In particular, we found that the method is robust to curvature,

additive noise and can tolerate high levels of data sparsity. The algorithm is controlled by

a series of parameters: size of the core-tensor, maximum number of iterations, and a scalar

a that permits to add denoising capabilities to the reconstruction process. Furthermore, we

verified with synthetics that 4D spatial volumes lead to more accurate reconstructions than

those with 2D and 3D spatial volumes.

Reconstruction of prestack data is an underdetermined inverse problem. Any method to

solve the reconstruction problem needs to make a hypothesis about the data in order to

estimate realistic reconstructions. Techniques like MWNI (Liu, 2004) or Fourier interpo-

lation via sparse inversion (Sacchi et al., 1998; Zwartjes and Gisolf, 2007), for example,

impose a constraint in the Fourier spectrum of the data to deal with this indeterminacy.

Here we assume that the ideal data can be represented via a low-rank tensor in the F −X
domain. Cadzow (or MSSA) filtering and reconstruction (Trickett and Burroughs, 2009;

Trickett et al., 2010) makes the same assumption. However, the Cadzow method utilizes

Hankel matrices in its calculations. In contrast, the low-rank approximation with HOSVD

takes full advantage of the tensor structure. Our synthetics show that the presented method

can reconstruct curved events.

It must be stressed that the approach presented in this chapter cannot handle spatially

aliased data, but only irregularly missing traces in a regular grid. There is no constraint

imposed in the spectrum nor a prediction made from the non-aliased low frequencies as in

Spitz (1991) or Naghizadeh and Sacchi (2007, 2010a). Therefore, with the proposed method,

both the aliased and non-aliased data are recovered with the low-rank assumption.

Most reconstruction methods in the literature require windowing to be successful. The use

of windows allow us to assume locally linear events. The linearity assumption is one of the

most common assumptions made by reconstruction techniques. Our experience with the

synthetic simulations showed that tensor completion with HOSVD is not affected by the

curvature of the events.

Our experiments with the core-tensor size reveal that when the level of the noise is low,

a core-tensor size that is slightly larger than the number of events in the data permits to

recover the data with a good quality. When there is a larger level of noise present, we

might want to adopt a core-tensor size that is around the amount of events in the data. It

is preferable to over-estimate the size of the core-tensor rather that using one that is too

small. However, noisy data with missing traces need a smaller size (or lower rank) for the

core-tensor than when the data have low level of noise.

Real data from the Western Canadian Sedimentary Basin with a very sparse geometry were

also tested. The running time for this patch was comparable to the time needed by our
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Fourier reconstruction algorithm. The stack section present a similar aspect before and

after applying tensor completion. The latter confirms that the method is not introducing

artifacts in the reconstructed data.



CHAPTER 4

Reconstruction via sequential SVD 1

4.1 Introduction

In the previous chapter we introduced a simultaneous reconstruction and noise attenuation

strategy that used the HOSVD on the frequency slices of prestack data to perform rank

reduction. In this chapter we investigate a new method that uses the unfolding of the 4D

frequency slices to perform sequential rank reduction and we will call it SEQ-SVD. The

only difference between the algorithm presented in the previous chapter and the algorithm

presented in this chapter is the rank reduction “engine”. Although simple in nature, in

practice the procedure suggested in this chapter proves to be comparable to the HOSVD.

As in the previous chapter, this algorithm leads to a reconstruction algorithm where the

multidimensional seismic data does not need to be embedded in multi-level Hankel matrices

(Trickett et al., 2010; Oropeza and Sacchi, 2011).

4.2 Theory

Consider a seismic volume with four spatial coordinates D(t, x1, x2, x3, x4). The DFT can be

used to transform the volume to the f−x1−x2−x3−x4 domain. For each temporal frequency

f , this volume can be arranged into a fourth-order tensor that depends on x1, x2, x3, x4. The

spatial coordinates can correspond to source-receiver, inline-crossline-offset (as in Chapter

3) or inline-crossline-offset-azimuth (refer to Chapter 1).

Assuming that each one of the unfolded matrices obtained from the tensor is a low-rank

structure (Appendix A), we propose an algorithm that applies rank reduction sequentially

1A version of this chapter has been published in The Recorder, Kreimer and Sacchi (2012a).
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to each unfolded tensor (Table 4.1). The tensor is unfolded in its first mode, followed by a

shrinkage of its singular values (the user specifies the amount of shrinkage) and folding to a

tensor structure. Next, it continues with its second mode in the same way as with the first

mode and continues until the shrinkage has been applied to all the modes. Notice that the

shrinkage of the singular values is not implemented in one mode only, but in all four modes

sequentially. We tested the possibility of doing the shrinking in all modes but one, in only

one mode, etc, but the results from these tests were not as successful as the ones obtained

via the algorithm in Table 4.1.

Input fourth-order tensor D
Initialize with D̃ = D
for i = 1 to 4

D(n) = unfold
(
D̃
)

[U,Σ,V] = SVD
(
D(n)

)

D
(n)
r = Ur Σr VH

r

D̃ = fold
(
D

(n)
r

)

end

Output D̃ is the low-rank tensor

Table 4.1: Sequential rank reduction on the unfoldings of tensor D.

The abovementioned algorithm can be expressed in operator form via D̃ = R(D) and we

will call it SEQ-SVD. The rank r is the desired rank and it is possible for the n-ranks to be

different for each unfolding. Unfold and fold are the operations of creating a matrix from a

tensor and a tensor from a matrix, respectively (refer to Chapter 2).

This procedure performs denoising of multidimensional seismic data in a similar way F −
X − Y eigenimage filtering (Trickett, 2003) implements denoising of data that depend on

two spatial dimensions. While the tensor rank reduction in our algorithm is implemented

via shrinking, Tomioka et al. (2011) suggest to minimize the nuclear norm of one particular

unfolding, among other strategies for rank reduction for tensors. Clearly, the nuclear norm

minimization could be applied iteratively for each mode, replacing the shrinkage we use in

algorithm 4.1. Refer to Chapter 5 for definition of nuclear norm.

The algorithm in Table 4.1 consists of applying a hard-thresholding operation to the singular

values of the matrix unfoldings D(n). Methods developed for matrix completion are based
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on a hard-thresholding operator when trying to address the non-convex problem

minimize rank (D(n)) subject to T(n)D(n) = D(n),obs, (4.1)

where T(n) is a matricized version of the sampling operator T and D(n),obs are the observa-

tions in matrix format. Jain et al. (2010) and Goldfarb and Ma (2011) developed methods to

solve this problem, known as Singular Value Projection (SVP) and Iterative Hard Thresh-

olding (IHT) algorithms, respectively, and presented recovery conditions for these methods.

The update given in equation 4.2 (for a = 1) added to the rank reduction algorithm given in

Table 4.1 is very similar to the methods proposed by the aforementioned authors, with the

exception that they focus on the matrix completion problem, while we deal with tensors.

However, if we split our problem in matrix completion problems for each mode n, we can

find a good analogy between them.

The rank-minimization problem is non-convex and NP-hard and thus no tractable algorithm

solves the problem unless we introduce some relaxation or constraint into the problem.

For instance, setting an optimum bound for the amount of missing elements is a possible

constraint. Jain et al. (2010) and Goldfarb and Ma (2011) introduced a constraint in the

form of the sampling operator. Their sampling operator satisfies the restricted isometry

property, popular in compressive sensing. It is interesting to notice that the formula in

equation 4.2 for a = 1 can be interpreted as a gradient update of D(n), or the gradient

of the misfit ‖T(n)D(n) −D(n),obs‖2F (Goldfarb and Ma, 2011). According to Tanner and

Wei (2012), most matrix completion algorithms are iterative and based on updating D(n) to

decrease the misfit measure, which is achieved by updating it in the direction of the negative

gradient of the misfit. This is the same as in equation 4.2 for a = 1 and considering tensors

instead of matrices. We will later focus on the convex relaxation of problem 4.1 for tensors

in Chapter 5.

4.2.1 A reconstruction algorithm

The rank reduction iterative algorithm adopted in the previous chapter for simultaneous

denoising an reconstruction is given by

Dk = aDobs + (1− aT )R(Dk−1), (4.2)

where a is a parameter between 0 and 1 that controls the level of reinsertion of noisy

observations. As in the previous chapter, the parameter a is equal to 1 when trying to

reconstruct data with a high SNR. The operator T is the sampling operator with the same

dimensions of the data, filled with zeros in the bins with missing traces and ones in the bins
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containing samples. The index k indicates iteration number. The operator R symbolizes

the rank reduction operation. In this case, it is equivalent to rank reduction via the SEQ-

SVD. This algorithm is similar to reconstruction via Projection Onto Convex Sets (POCS).

However, we notice that the POCS algorithm is implemented via an iterative amplitude

thresholding process (Abma and Kabir, 2006), whereas expression 4.2 applies tensor rank

reduction in each iteration.

4.3 Examples

4.3.1 Synthetic data

To demonstrate in practice that unfolded tensors are a low-rank structure we design a

volume of size 128 × 12 × 12 × 12 × 12 that contains three plane waves (for a theoretical

proof, refer to Appendix A). Figure 4.1 displays the distribution of singular values averaged

over the four unfoldings. The line with circular icons belongs to the fully sampled data

with SNR = 100. Clearly, only a few singular values are different from zero. The line with

asterisk icons corresponds to the case where the data were decimated and contaminated

with noise (SNR = 1). The spectrum of singular values shows three dominant components

immersed in smaller ones that model the noise subspace. The line with triangular icons

represents the singular value distribution of the reconstructed data, which follows closely

the distribution of the fully sampled data.

Figure 4.2 shows the result of applying the rank reduction procedure explained in the pre-

vious section. We have kept the first three singular values in each unfolding and used a

parameter a = 0.3. Column (a) in the figure is the non-decimated data prior to noise con-

tamination, the column (b) is the decimated data after addition of noise (SNR = 1). The

latter is also the input to our algorithm. Column (c) is the reconstructed and denoised data

and column (d) is the difference between the first and third column. The reconstructed and

noise attenuated volume has negligible errors. One can confirm that SEQ-SVD is able to

recover the events with a high degree of accuracy. The reconstructed volume has a Frobenius

norm that is about 32 times the Frobenius norm of the reconstruction error (Q = 33 dB). As

a comparison, we also use the truncated HOSVD from the previous chapter (Kreimer and

Sacchi, 2012d). The results are very similar to those obtained with the proposed algorithm.

Additionally, we show five consecutive CMP gathers in Figure 4.3.

We also examine the spectrum of singular values averaged over all unfoldings for a data set

composed of three curved events with 50% decimation and contaminated with noise. Fig-

ure 4.4 displays the distribution of singular values for this exercise, averaged over the four

unfoldings. The line with circular icons belongs to the fully sampled data with SNR = 100.
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Figure 4.1: Distribution of singular values averaged over all four unfoldings, for one
frequency. Case of data with linear events, 50% missing traces.
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Figure 4.2: Reconstruction and noise attenuation for a 5D seismic volume with
three linear events and SNR = 1. Only a subset of the volume is displayed in the
figure.

The spectra of singular values does not show an abrupt change in amplitude; a feature that

can be used to reveal if the underlying data are a low-rank structure. The line with aster-

isk icons corresponds to the case where the data were decimated and contaminated with

noise (SNR = 1). The line with triangular icons represents the singular value distribution

of the reconstructed data. The quality of reconstruction slightly degrades with curvature.

However, the reconstruction results are within an acceptable level of accuracy. The recon-

structed volume has a Frobenius norm that is about 19 times the Frobenius norm of the

reconstruction error (Q = 29 dB). Figure 4.5 highlights four CMPs prior to decimation and

after reconstruction.

As we did in Chapter 3, we perform a sensitivity experiment in which we tried different

values for a. A priori, we cannot assume that the same reinsertion parameter that gave

satisfactory results for HOSVD will have the same effect in the method presented in this

chapter. The synthetic model used in this test coincides with the one used in the same

experiment in Chapter 3. Figure 4.6 shows the results. Overall, we observe the same

sensitivity to the change of a as in the case of HOSVD. Between 0.4 and 0.9, we see very

little difference between different choices of the parameter a. As in the case of HOSVD,

a = 0.9 was the value that gave better results with real data and we utilized this value for

all our implementations.
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Figure 4.3: Reconstruction and noise attenuation of a 5D seismic volume with three
linear events and SNR = 1. Only five CMPs are displayed in the figure. a) Ideal
noise-free and fully sampled data. b) Decimated and noisy data. c) Reconstructed
and noise attenuated data.
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Figure 4.4: Distribution of singular values averaged over all four unfoldings, for one
frequency. Case of data with curved events, 50% missing traces.
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Figure 4.5: Reconstruction and noise attenuation of a 5D seismic volume with three
curved events and SNR = 1. Only four CMPs are displayed in the figure. a) Ideal
noise-free and fully sampled data. b) Decimated and noisy data. c) Reconstructed
and noise attenuated data.
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Figure 4.6: Sensitivity of Q to the change of the reinsertion parameter a.

4.3.2 Real data

Our real data example is from the Western Canadian Basin. The reconstruction is carried

out in the inline/crossline midpoint-offset domain, with a grid of size 16×18×12×12 (same

grid as that used in the real data example in Chapter 3). The input is NMO corrected and

contains 16060 traces, populating 39% of the grid. Figures 4.7 and 4.8 show five CMP

and offset gathers prior and after reconstruction, respectively. Comparing these figures to

Figures 3.15 and 3.16 in Chapter 3, we notice that the results obtained with SEQ-SVD are

comparable to those of HOSVD. To assess the presence of any damage to the data during

the reconstruction process, we present five stacked CMPs in Figure 4.9. As expected, we

can observe some level of noise attenuation in the stacked data after the reconstruction. To

confirm that the reconstruction process has not damaged the data, we plot the spectrum of

a CMP gather and a fixed inline. The total running time is approximately one minute on a

single processor Intel Xeon(R) running at 3.07 Ghz using MATLAB.

4.4 Conclusions

We have presented an application of the singular value decomposition for rank reduction

of a tensor (SEQ-SVD). The algorithm operates directly on matrices obtained by unfolding
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Figure 4.7: WCB data. CMP gathers for the 9th CMPx bin and the 4th offset-y
bin. a) Input to the reconstruction algorithm, b) Output. Only five CMP gathers
are shown in this figure.
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Figure 4.8: WCB data. Offset gathers for the 8th CMPy bin and the 1st offset-y
bin. a) Input to the reconstruction algorithm, b) Output. Only five offset gathers
are shown in this figure.
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Figure 4.9: Stacks prior and after reconstruction. Only five CMPs are displayed.
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Figure 4.10: Spectrum of a common-offset gather (offset-x = offset-y = 6) for
CMP-x = 1 before and after reconstruction.
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the tensor that represents the prestack seismic data in the frequency-space domain. The

proposed method applies an iterative rank reduction that permits to denoise and reconstruct

seismic data. We made an interesting connection between SEQ-SVD for the noise-free case

and the problem of minimizing the non-convex function containing the rank of the unfolded

tensor subject to the observations. The shrinkage of the singular values that we use in

SEQ-SVD can be considered to be a hard thresholding operation. The importance of this

will be better understood in the next chapter.

As we observed in the previous chapter, this method is robust to curvature in the reflections

as well as low levels of signal-to-noise ratio. The sensitivity test proved that the SEQ-SVD

is not very sensitive to the choice of the reinsertion parameter for values larger than 0.4.

The implementation in a real dataset from the Western Canadian Basin showed satisfactory

results, similarly to those obtained with synthetic datasets.

Although the iterative procedure presented in this chapter is simpler than HOSVD-based re-

construction, it is surprising to notice that both methods give comparable results in practice.

We present a more thorough comparison with other methods in Chapter 6.



CHAPTER 5

Nuclear norm reconstruction 1

5.1 Introduction

In this chapter, we venture into the problem of tensor completion from a completely different

perspective than in Chapters 3 and 4. We still make the same assumption as before: the

fully sampled volume is a low-rank tensor in F − X. As we mentioned before, noise and

missing traces increase the rank of the tensor. Consequently, the reconstruction problem is

posed as a low-rank tensor completion problem that we solve via convex optimization. We

base our reconstruction on an algorithm for tensor completion proposed by several authors

(Gandy et al., 2011; Signoretto et al., 2010; Tomioka et al., 2011). The completion problem

entails finding the fully sampled data tensor with minimum nuclear norm. The nuclear

norm is the sum of the singular values of the tensor across all its unfoldings and plays a role

similar to that of the `1 norm in compressive sensing (Candès and Recht, 2009; Candès and

Plan, 2010). In fact, when a matrix is diagonal, minimizing its nuclear norm is equivalent

to minimizing its `1 norm, namely finding the sparsest approximation (Fazel et al., 2001).

The algorithm used for the optimization is the alternating direction method of multipliers

(ADMM), a modification of the more classical method of multipliers (Hestenes, 1969; Powell,

1969). The algorithm iteratively estimates the low-rank tensor in the F −X domain that

fits the data up to the level of the noise and fills the missing entries, while forcing the final

tensor unfoldings to have minimum nuclear norm (a solution dominated by a few singular

values).

1Parts of this chapter have been published in Kreimer and Sacchi (2012c) and Kreimer and Sacchi
(2013).

90
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5.2 Theory

5.2.1 The tensor completion problem

Prestack seismic data in the F − X domain form a 4D structure. We map the prestack

seismic volume Dobs to a regular grid by binning. For instance, Dobs
ijkl(ω) represents a trace

from the volume Dobs in the bin ijkl, where ijkl can represent binned inline, crossline,

offset and azimuth coordinates. We will drop the reference to ω and we will refer to a 4D

frequency slice by Dobs. Naturally, some bins of Dobs do not contain traces and are zero.

The fully sampled ideal volume is called D. We make the assumption that this volume D,

with all its samples, is such that its n-ranks are small. If the volume contains missing traces

and/or random noise, the n-ranks of the tensor increase. This is demonstrated in Figure

5.5 in the section devoted to examples. Under this assumption, the problem of recovering

missing traces is equivalent to minimizing an objective function that contains a measure of

the misfit between the original observations and the reconstructed volume, and a measure

of the rank of the tensor unfoldings. In mathematical terms, this is equivalent to solving

the following problem

minimize

4∑

i=1

rank(D(i)) subject to TD = dobs, (5.1)

where D(i) are the mode-i matrix unfoldings of the tensor D and dobs is the vector of

observations, both in the F − X domain. The operator T is the retrieval operator that

extracts the observations from tensor Dobs and maps from CI1×I2×I3×I4 → Cm, m being

the amount of observed traces (notice that the retrieval operator here is not equal to the

sampling operator defined in Chapters 3 and 4). Problem 5.1 is often referred to as the

tensor completion problem. This problem is non-convex and NP-hard (Fazel et al., 2001;

Candès and Recht, 2009), as defined in Chapter 1. Fazel et al. (2001) approximated the

solution by replacing the rank of a matrix A by the nuclear norm of this matrix, defined as

‖A‖∗ =
∑n
i=1 σi, where the σi’s are the singular values of the matrix A. The latter leads

to a tractable convex optimization problem. The objective function to minimize becomes

minimize J =

4∑

i=1

‖D(i)‖∗ +
λ

2
‖TD − dobs‖2F , (5.2)

where λ is a trade-off parameter that balances the terms of the objective function J . Notice

that the nuclear norm for tensors is defined as the sum of the nuclear norm of the four matrix

unfoldings D(i), i = 1, 2, 3, 4 of the fourth-order tensor D (Liu et al., 2009; Signoretto et al.,

2010).
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In Chapter 3 we proposed using the HOSVD as a tool for reconstructing and denoising

prestack seismic volumes. The method is based on the truncated HOSVD of 4D F − X
slices, followed by an imputation/reinsertion expectation-maximization (EM) algorithm to

recover the missing traces. The truncated HOSVD is the tool used for rank reduction while

the modified EM algorithm is responsible for the completion. The HOSVD requires the

specification of the rank of the tensor and a parameter that controls the reinsertion. On

the other hand, the method proposed in this chapter does not require selecting the rank

of the tensor and uses the optimization of a cost function to find the reconstructed data.

Nevertheless, our new method requires certain parameters to be tuned before the inversion.

5.2.2 Alternating direction method of multipliers for tensor com-

pletion

For the minimization of the objective function in equation 5.2 we use the ADMM method

(Arrow et al., 1968; Glowinski and Marrocco, 1975; Gabay and Mercier, 1976) as proposed

for tensor completion by Gandy et al. (2011), with a minor modification (refer to Chapter

1 for an explanation of the method).

We need to rephrase the algorithm presented above for our particular problem (equation

5.2). First, the ADMM method requires the introduction of a new variable. Therefore, each

unfolding of the data tensor will constitute a new tensor variable called Yi, i = 1, 2, 3, 4 (one

Yi per mode-i, same as the variable Wi), such that D(i) = Y
(i)
i , i = 1, 2, 3, 4. This means

that the unfolding in mode-i of Yi coincides with the unfolding in mode-i of D. With these

new variables Yi, we add four additional constraints to the original objective function in

equation 5.2, that is Yi = D, i = 1, 2, 3, 4. The algorithm needs one variable Yi per mode

i to iterate individually in each unfolding. The latter turns the problem of minimizing the

original objective function (equation 5.2) into smaller minimization problems. The same

explanation applies to the Lagrange multipliers Wi, i = 1, 2, 3, 4. The variables Yi,Wi

could be labeled differently (for instance, K,L,M,N ). However, we use subscripts to

denote the four different variables for Y and W to keep the notation and equations compact,

as we will notice in the next paragraphs. We remind the reader that the superscript (i)

denotes unfolding in mode-i.

Let us identify the two convex functions that ADMM will use to solve the original problem

(refer to section 1.4.4 in Chapter 1). These are

f(D) =
λ

2
‖TD − dobs‖2F (5.3)

g(Yi) =

4∑

i=1

‖Y(i)
i ‖∗. (5.4)
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The relation between the split variables D and Yi will be D = Yi, i = 1, 2, 3, 4, or

equivalently

Y1 = D, Y2 = D, Y3 = D, Y4 = D. (5.5)

We have written g(Yi) implying g(Y1,Y2,Y3,Y4) with the intention of shortening the

notation and the same applies for the following formulas. In our problem, where the argu-

ments of the objective function are tensors, the third term of equation 1.20 is rewritten as

< Wi,D − Yi >. The symbol <> denotes the inner product in CI1×I2×I3×I4 , the sum of

the (element-to-element) product of the entries of the tensor arguments (refer to Chapter

2). The matrix G in equation 1.20 is the identity operator in CI1×I2×I3×I4 in our case (the

unit superdiagonal tensor).

The augmented objective function to minimize is

J(D,Yi,Wi) =
λ

2
‖TD − dobs‖2F +

4∑

i=1

(
‖Y(i)

i ‖∗− <Wi,D −Yi > +
β

2
‖D −Yi‖2F

)
.

(5.6)

The ADMM method works by minimizing the objective function (equation 5.6) first with

respect to D assuming all other variables constant. Second, it minimizes J with respect to

Yi for all i while keeping all other variables fixed. Finally, the multipliers Wi are updated

and iterations continue until the algorithm converges.

5.2.3 Minimization of J with respect to Y i

The minimum of J with respect to Yi can be computed by using the following theorem.

Given a matrix A and a scalar τ ≥ 0, let B be an approximation to A such that B has

minimum nuclear norm. In other words,

B = arg min
B

{
‖B‖∗ +

1

2τ
‖B−A‖2F

}
. (5.7)

The solution to this problem (Cai et al., 2010) is given by

B = shrink(A, τ) = UΣ̃VH , (5.8)

where

Σ̃ = diag[max(σ1 − α, 0) . . .max(σr − α, 0)] (5.9)

and A is given by A = UΣVH. In other words, the solution to equation 5.7 is the SVD

representation of A with singular values given by equation 5.9.
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Now consider D,Wi fixed. For simplicity, we minimize the cost function with respect to

Yi. The minimum of the objective function given by equation 5.6 with respect to Yi is

denoted Ỹi and it is given by

Ỹi = arg min
Y

(i)
i

{
‖Y(i)

i ‖∗− < W
(i)
i ,D(i) −Y

(i)
i > +

β

2
‖D(i) −Y

(i)
i ‖2F

}
. (5.10)

By completing the square, the last expression can be rewritten as follows

Ỹi = arg min
Y

(i)
i

{
‖Y(i)

i ‖∗ −
1

2
‖W(i)

i ‖2F +
1

2
‖W(i)

i ‖2F− < W
(i)
i ,D(i) −Y

(i)
i >

+
β

2
‖D(i) −Y

(i)
i ‖2F

}

= arg min
Y

(i)
i

{
1

β
‖Y(i)

i ‖∗ +
1

2

∥∥∥∥Y
(i)
i −

(
D(i) − 1

β
W

(i)
i

)∥∥∥∥
2

F

− 1

β
‖W(i)

i ‖2F

}
. (5.11)

The last term in equation 5.11 is a constant and is unaffected by the derivative with respect

to Y
(i)
i . Using the property in expression 5.8, the minimum for Yi is

Ỹi = fold

(
shrink

(
D(i) − 1

β
W

(i)
i ,

1

β

))
, (5.12)

where “fold” means transforming a matrix into a tensor. This expression applies to all four

variables Yi, i = 1, 2, 3, 4.

5.2.4 Minimization of J with respect to D

To find D, we consider the other two variables Yi,Wi fixed. The gradient of equation 5.6

is

∂J(D)

∂D = λ T ′ (TD − dobs)−
4∑

i=1

Wi + 4βD −
4∑

i=1

βYi (5.13)

where T ′ denotes an operator that maps from Cm → CI1×I2×I3×I4 . This operator obeys

T ′dobs = Dobs and satisfies the following property

T ′T (D)
∣∣
ijkl

=





Dijkl if ijkl contains an observation

0 if ijkl is empty

, (5.14)
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equivalent to the operator presented by Liu and Sacchi (2004). Setting equation 5.13 equal

to zero, we obtain

D̃ = (λT ′ T + 4β I)−1

[
4∑

i=1

Wi +

4∑

i=1

βYi + λ T ′dobs
]
. (5.15)

If A represents the argument in brackets in equation 5.15, the inverse of (λT ′ T + 4β I)

depends on which element of tensor A it is applied to

[(λT ′ T + 4β I)−1(A)]
∣∣
ijkl

=





(λ+ 4β)−1Aijkl if ijkl contains an observation

(4β)−1Aijkl if ijkl is empty

(5.16)

Therefore, the minimum of D is

D̃
∣∣
ijkl

=





(λ+ 4β)−1

[
4∑

i=1

Wi +

4∑

i=1

βYi + λDobs

]

ijkl

if ijkl contains an observation

(4β)−1

[
4∑

i=1

Wi +

4∑

i=1

βYi

]

ijkl

if ijkl is empty

,

(5.17)

where we replaced T ′dobs = Dobs and we accounted for Dobs
∣∣
ijkl

= 0 when the bin ijkl is

empty. The ADMM algorithm needs two parameters λ and β to be specified. In contrast

to the algorithm presented by Gandy et al. (2011), in our implementation λ and β remain

constant throughout the iterations. However, we acknowledge that the trade-off parameter

λ should be dependent on the frequency to better suit the reconstruction problem at each

particular frequency ω. The main difference between our implementation and that from

Gandy et al. (2011) is that we apply this algorithm for each frequency. Consequently, the

cost of the algorithm if we have N frequencies will be N times the cost of applying it for one

frequency. The cost of ADMM is dominated by the cost of the shrinkage operation. The

computational cost could be reduced if we adopted the Lanczos bidiagonalization algorithm

to replace the SVD calculation (Golub and Van Loan, 1996; Gao et al., 2013).

5.2.5 Final Tensor Completion Algorithm

Finally, we present the algorithm that solves equation 5.2 in Table 5.1. The proof of the

convergence of this algorithm is presented in Gandy et al. (2011). We want to stress that, for

a particular frequency, this algorithm converges to a rank that is constant for all unfoldings
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(same n-ranks for all n). However, Tomioka et al. (2011) proposed an alternative formulation

where not all the tensor unfoldings are assumed to be jointly low-rank. Their algorithm is

able to automatically detect the lowest rank possible in each mode without constraining all

of them to have the same rank. An approach like this could be used if we wanted to allow

more freedom for the rank reduction operation to adjust to different ranks across different

modes.

Initialize D0, Y0
i ,W0

i , i = 1, 2, 3, 4 with the null tensor

Repeat until maximum number of iterations kmax is reached

Dk+1 as in equation 5.17

for i = 1, 2, 3, 4

Yk+1
i = fold

(
shrink

(
D(i) k+1 − 1

β
W

(i) k
i ,

1

β

))

Wk+1
i = Wk

i − β
(
Dk+1 −Yk+1

i

)

end

end

Output is Dkmax

Table 5.1: ADMM algorithm applied to the tensor completion problem, for one
frequency slice.

5.3 Examples

5.3.1 Synthetic examples

In order to explore the performance of the presented algorithm, we consider a simple 3D

model that contains two dipping planes with normals

n1 = (0.02, 0.05, 0.99) and n2 = (0.03, 0.02, 0.99). (5.18)

The velocities used are 1500 m/s and 2300 m/s for the top and bottom planes, respectively,

and the intersections of these planes with the vertical axis occur at 250 m and 1000 m (Figure

5.1). The travel-times are calculated in the midpoint-offset domain. The volume corresponds

to a spatial tensor of size 12 × 16 × 12 × 16 (midpoints x, y-offset x, y), 512 time samples

and a time sampling rate of 2 ms. Additionally, we randomly remove 50% of the traces and

add random noise to produce a volume with SNR = 1, where SNR =
σ2
data

σ2
noise

(σ2
data is the
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Figure 5.1: Model of two dipping planes used in testing the parameters of the
algorithm. The colorbar on the right indicates depth. The normal to the planes are
n1 = (0.02, 0.05, 0.99) and n2 = (0.03, 0.02, 0.99) for the first and second reflector,
respectively. We compute synthetic data from this model using ray tracing.

variance of the data and σ2
noise is the variance of the noise). Figure 5.2 shows a portion of

the simulated data.

A common concern when using these type of algorithms is how to correctly choose the pa-

rameters λ and β. With the aid of synthetics, we investigate the behaviour of the algorithm

for different values of these parameters. We compute the quality of the reconstruction for

different values of λ, β while keeping one of them fixed. As in previous chapters, the quality

of the reconstruction in dB units is Q = 10 log ‖Dtrue‖2
‖Dout−Dtrue‖2 , where Dtrue is the complete

and noise-free volume and Dout is the reconstructed and noise-attenuated volume (in time).

If Q = 2 dB, the Frobenius norm of Dtrue is 1.6 times bigger than the Frobenius norm of

the misfit; while if Q = 10 dB, the Frobenius norm of Dtrue is 10 times bigger than the

Frobenius norm of the misfit. Overall, we consider any result with a Q larger than 10 dB an
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Figure 5.2: Portion of the data generated using the model from Figure 5.1, for fixed
mx and hy. The fast varying coordinate is hx, while the slow varying coordinate
is my. a) is the fully sampled volume with SNR = 100 and b) is the decimated
volume with SNR = 1.
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Figure 5.3: Quality of the reconstruction Q versus λ for β = 1, 15 and 30. A higher
value of Q indicates a higher reconstruction quality. For a fixed value of β, quality
tends to decrease as λ increases.

acceptable reconstruction. We use 200 iterations for each frequency to allow the algorithm

to converge. We must stress that these tests have not been developed for one frequency

but for all the frequencies. In other words, we are analyzing the global behaviour of the

parameters λ and β.

Figure 5.3 shows the variation of the quality of the reconstruction Q with the trade-off

parameter λ for different values of β. We observe that Q deteriorates for the lowest value

of β and a few combinations of λ, β give comparable values of Q. From these tests, we

conclude that larger values of β and smaller values of λ give the best reconstruction. The

value λ = 2.5 gives the best Q when β = 15. These tests demonstrated that values of β

larger than 30 tended to deteriorate the reconstruction. We will use the values of β = 15

and λ = 2.5 throughout the rest of our calculations. An alternative to our choice of β was

given by Boyd et al. (2011, p. 20).

The parameter β controls the fit of D to Yi, i = 1, 2, 3, 4 and contributes to the robustness

of the algorithm. In theory, the quality of the reconstruction Q is weakly affected by the

parameter β since it does not influence the fitting of the results to the observations (actually,

it controls the fit between the dummy variables and the data). Our simulations support this

except for small values of β, which might be caused by an insufficient number of iterations
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Figure 5.4: Quality of the reconstruction Q versus β, for λ = 3, 7 and 11.

or the presence of noise in the data. As observed in Figure 5.4, different combinations of

λ, β give a good reconstruction quality. As a general rule, smaller β requires smaller λ and

larger β requires larger λ, similarly to what we observe in Figure 5.3. As expected, we also

find a large value of Q when λ ' 2.5 and β ' 15 in Figure 5.4.

The presented algorithm provides an automatic rank determination. The user does not need

to specify the rank value to perform rank reduction, such as in the algorithm in Chapter 3

(Kreimer and Sacchi, 2012d). We need to confirm that the singular value distribution for a

fixed frequency before the decimation and after the reconstruction remain similar. Figure 5.5

displays the distribution of singular values for one frequency in the reconstruction. Each of

the curves represent the average of the singular values for the four unfoldings of the tensor.

For each of these unfoldings, the singular values are similar in magnitude, therefore we do

not lose information by averaging them. The black asterisk line represents the singular

value distribution for the complete and noise-free volume, while the red open circle line

corresponds to the decimated and noisy volume. The blue triangle line belongs to the

reconstructed and denoised volume. From this figure, we see that the reconstructed volume

has a similar singular value distribution to the original volume. Furthermore, we notice that

the singular values for the noisy, decimated volume never approximate zero.

Using the optimal values of λ and β found with our simulations, we reconstruct a larger 5D

synthetic volume of size 512 × 20 × 19 × 20 × 19. The model (Figure 5.6) is similar to the
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Figure 5.5: Normalized singular values distribution for one frequency. Each curve
is an average of the singular values for the four unfoldings of the 4D tensor. The
line annotated with asterisks identifies the complete and noise-free volume, the line
marked with open circles corresponds to the decimated and noisy volume. The
line annotated with triangles indicates the reconstructed and denoised volume. The
proposed reconstruction method results in a singular values distribution that is
much closer to the intended target than the input decimated data.
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one considered previously and contains two dipping planes with normals

n1 = (0.26, 0.17, 0.95) and n2 = (0.12, 0.16, 0.98). (5.19)

The intersection of the planes with the vertical axis occurs at 350 m and 1000 m and the

velocities coincide with those in the previous model. We remove 40% of the traces randomly

and add randomly distributed Gaussian noise with a SNR = 1. Figure 5.7 shows CMP

gathers, for a subset of the data, with two spatial coordinates fixed. Furthermore, Figure 5.8

displays offset gathers, with two spatial coordinates fixed. The quality of the reconstruction

for this case is Q = 20 dB and the running time is 4 h 28 min in MATLAB (on the same

computer specified in the field data section). It is important to notice that the reflections

have significant curvature in some dimensions. NMO correction is not applied prior to

reconstruction. This is an important difference compared to Fourier based reconstruction

methods that use sparsity in the wave-number domain, where NMO is needed to minimize

the number of distinct dips in the data (Trad, 2009).

We perform some simple tests to visualize the difference between the HOSVD-based re-

construction algorithm and the presented ADMM-based technique (more thorough testing

presented in Chapter 6). We apply both methods on the first synthetic example presented

in this section. We set the number of iterations to 200 per frequency for the ADMM-based

tensor completion, 20 iterations per frequency for the HOSVD-based tensor completion and

randomly remove from 10% to 90% of the samples. Each decimation percentage is achieved

by using 10 different seeds for the random number generator. Therefore, the quality of

the reconstruction Q has a standard deviation associated with its mean value. Figure 5.9

contains the results from this simulation. The sampling ratio is defined as the ratio of input

traces to the total amount of traces in the grid we want to reconstruct. We see that the

ADMM-based method gives slightly better reconstruction results for the whole decimation

range, although at a larger computational cost. For this example, the average running

time for the ADMM method is 45 minutes while the average running time for HOSVD is 2

minutes. Stanton et al. (2012) presented a comparison between commonly used reconstruc-

tion methods and HOSVD. Although we did not reproduce the tests in their article for the

ADMM-based method, we expect a similar behaviour with our new method versus POCS

(Abma and Kabir, 2006) and MWNI (Liu and Sacchi, 2004). Stanton et al. (2012) found

that the tensor completion method was robust to both low and high SNR and surpasses the

other methods especially in the presence of high levels of decimation and curvature. In their

real data example, they observed that tensor completion gave a small amount of amplitude

smearing in the near offsets and offered more denoising capabilities than MWNI (although

denoising is not always a desired feature in reconstruction).



CHAPTER 5. NUCLEAR NORM RECONSTRUCTION 103

Figure 5.6: Model of two dipping planes corresponding to the data in Figures 5.7
and 5.8. The colorbar indicates depth.
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Figure 5.7: Common midpoint gathers with 40% randomly decimated traces and
SNR = 1. (a) Portion of the 5D desired volume. (b) Decimated and noisy data.
This is the input to the algorithm. (c) Reconstructed data.
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Figure 5.9: Quality of the reconstruction versus sampling ratio for a synthetic
volume. The quality of the reconstruction increases as the sampling ratio increases
for both the proposed method and HOSVD reconstruction.
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5.3.2 Field data example

Our real data example is from an orthogonal survey acquired over a heavy oil field in

Alberta, Canada. The target in this field is the McMurray formation. The Clearwater

formation overlays the reservoir at ∼ 400 ms while the Paleozoic lays under the McMurray

at ∼ 800 ms. The McMurray formation produces heavy oil and it is exploited by a thermally

assisted technique. It is believed that this technique induces increased stress within the

reservoir interval. In this field, Horizontal-Transversely Isotropic (HTI) effects are better

characterized when having a complete azimuthal sampling.

It is a common practice in the reconstruction of seismic data to use overlapping windows

in both space and time. The main reasons for using windows are that the assumptions

of stationarity of the wavefield and sparsity are better satisfied in smaller windows. In

addition, the reconstruction tends to be computationally faster in smaller pieces of data.

We reconstruct a crossline swath from this survey by dividing it into 21 overlapping blocks

of inline/crossline (13 inlines overlap length). For each block, the dimensions of the grid

used are

Inline (CMPx): n1 = 26, increment = 5 m (with an inline overlap

of 13 CMP positions)

Crossline (CMPy): n2 = 26, increment = 5 m

Offset: n3 = 5, increment = 100 m, [ min, max ]=[50, 450] m

Azimuth: n4 = 8, increment = 45◦, [ min, max ] = [22.5◦, 337.5◦]

The azimuth is measured counterclockwise from East. Furthermore, we use overlapping

time windows of 200 samples for the reconstruction of each block, where the total number

of samples is 1000 (5 windows in total with an overlap of 10 samples plus a smaller sixth

window). Figure 5.10 displays the shots and receivers that form the 21 blocks of data

and highlights both the 21 blocks and the region spanned by the midpoints used in the

reconstruction. Figure 5.11 contains the distribution of azimuth and offset for only one

block. For clarity, we present the source-receiver geometry for one midpoint bin in the

centre of the survey after binning in Figure 5.12, before and after reconstruction. The total

number of grid points per block are 26 × 26 × 5 × 8 = 27040 whereas the total amount of

traces in the area are such that 40-45% of the grids are populated. The data are NMO-

corrected and low-pass filtered below 100 Hz prior to the reconstruction. The frequencies

considered in the algorithm are from 0.1 to 100 Hz, with a sampling rate of 1 ms. From

the analysis implemented with synthetic tests, we set λ = 2.5, β = 15 and the number of

iterations to 200. The running time on a single processor Intel Xeon(R) running at 3.16

Ghz using MATLAB is approximately 1 h for each block.

Figure 5.13 shows a CMP gather for a fixed crossline and inline. The panels on top of (a)



CHAPTER 5. NUCLEAR NORM RECONSTRUCTION 107

Figure 5.10: Survey geometry for the real data example, in true aspect ratio. Stars
indicate sources and triangles indicate receivers. The grey area shows the midpoints
that were reconstructed with the proposed algorithm. We use 21 blocks of size
26 × 26 midpoints with an overlap of 13 inline CMP positions. Each block is
represented by two adjacent rectangles.

and (b) display the distribution of offset and azimuth for this gather in red and blue lines,

respectively. Notice that because we are performing the reconstruction in 5D, the algorithm

makes use of the information of these dimensions for each CMP. The four dimensions con-

sidered aid in the reconstruction of larger gaps than possible when fewer spatial coordinates

are involved and increase the robustness of the method.

We portray common offset/azimuth gathers in Figures 5.14-5.16 for three different offset

ranges, a constant crossline and for az = 22.5◦ and 112.5◦. Figure 5.17 displays the power

spectrum of the gather shown in Figure 5.14 before and after reconstruction, demonstrating

that the reconstruction has not damaged the spectrum of the data. Furthermore, Figure 5.18

contains a stack section for a constant crossline with and without reconstruction. Many of

the reflections, especially below 0.4 s, are denoised when using reconstruction and look

continuous, in contrast to what was observed in the stack without reconstruction.

5.4 Conclusions

In this chapter, we formulate the problem of prestack seismic data reconstruction and de-

noising as an inverse problem, where we minimize the nuclear norm of the tensor subject

to data constraints. The objective function is minimized utilizing the alternating direction
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Figure 5.12: Source receiver geometry for the bin with its center at (564, 311)m.
The black dot marks the position of the midpoint, triangles indicate receivers and
stars indicate sources. (a) Position of the available source-receiver pairs before
reconstruction. (b) Source-receiver pairs after reconstruction.

method of multipliers one frequency at a time. Contrary to other multidimensional recon-

struction techniques, the proposed method is based on tensor completion and minimizes the

nuclear norm of the 4D tensor in the F −X domain. This strategy leads to an automatic

rank determination of the reconstructed data, bypassing the need for the user to know the

optimal rank. The trade-off parameters of the algorithm are tuned by running simple tests.

Using the correct parameters for the inversion leads to a high-quality reconstruction even

in the presence of dipping events and low SNR. Considering this method’s assumptions

to be similar to those of HOSVD-based reconstruction, we verify that both methods give

practically the same results. Our land data example demonstrates the performance of the

algorithm in a real case scenario.

Although the running times for the proposed algorithm are longer than for HOSVD, ADMM-

based reconstruction presents an explicit formulation to the rank reduction based reconstruc-

tion problem. The set-up for this problem is along the same lines as current research in the

compressive sensing field (more precisely, the matrix/tensor completion problem). So far

the method presented here has proven to be computationally too expensive to be attrac-

tive for industrial applications. Further research should be focused on finding an automatic

case-independent tuning of the parameters λ and β and improving the convergence rate of

the algorithm.
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Figure 5.13: CMP gather for a fixed inline and crossline. (a) Before reconstruction.
(b) After reconstruction.
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Figure 5.14: Near offset gathers (50 m) for a constant crossline. Panels (a) and
(b) have a constant azimuth of 22.5◦ while (c) and (d) have a constant azimuth of
112.5◦. (a)-(c) Before reconstruction. (b)-(d) After reconstruction.
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Figure 5.15: Mid-offset gathers (250 m) for a constant crossline. Panels (a) and
(b) have a constant azimuth of 22.5◦ while (c) and (d) have a constant azimuth of
112.5◦. (a)-(c) Before reconstruction. (b)-(d) After reconstruction.



CHAPTER 5. NUCLEAR NORM RECONSTRUCTION 113

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

300 600 900 1200 1500
Inline (m)(c)  

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

300 600 900 1200 1500
Inline (m)(d)  

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

300 600 900 1200 1500
Inline (m)(a)  

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

300 600 900 1200 1500
Inline (m)(b)  

Figure 5.16: Far offset gathers (450 m) for a constant crossline. Panels (a) and
(b) have a constant azimuth of 22.5◦ while (c) and (d) have a constant azimuth of
112.5◦. (a)-(c) Before reconstruction. (b)-(d) After reconstruction.
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Figure 5.17: Power spectrum in dB before and after reconstruction for the gathers
shown in Figure 5.15(a) and (b).
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Figure 5.18: Stack of all 21 blocks for a constant crossline: (a) Without reconstruc-
tion. (b) With reconstruction.



CHAPTER 6

Comparison of methods

In the previous chapters we have covered three different ways of performing rank reduction

on tensors for simultaneous reconstruction and noise attenuation. In our synthetic exper-

iments and in the real data implementations all three methods gave satisfactory results.

In this chapter we want to compare these three methods with Cadzow/MSSA (Trickett

et al., 2010; Oropeza and Sacchi, 2011), which also belongs to the rank reduction class

of reconstruction methods (operating on Hankel matrices). Furthermore, we will compare

the methods presented in previous chapters with Minimum Weighted Norm Interpolation

(MWNI) (Liu, 2004), a Fourier based reconstruction method which is a “classical” method

commonly used in industrial applications. Our intention is to evaluate all methods with the

same synthetic examples and real data example. Additionally, we will present a simulation

on the binning parameters with the purpose of obtaining a suitable grid for reconstruction.

In this chapter we will adopt the following nomenclature for the methods we will compare:

HOSVD: the method presented in Chapter 3.

SEQ-SVD: the method presented in Chapter 4.

ADMM: the method presented in Chapter 5.

CADZOW/MSSA: First proposed by Trickett et al. (2010) and later expanded by Oropeza

and Sacchi (2011) and Gao et al. (2013), this method is based on rank reduction of Hankel

or Toeplitz matrices. For a 2D problem and one frequency ω, we implement rank reduction

on a Hankel/Toeplitz matrix formed with the F −X slice, followed by the averaging along

the antidiagonals, to obtain the rank-reduced data. An important property is that if the

data is composed by a superposition of r sinusoids, the rank of the Toeplitz matrix is r. This

property is very useful at the time of implementing this method in synthetic examples (and

116
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in real data, up to certain extent). For the multidimensional (5D) problem, each dimension

forms a Hankel or Toeplitz matrix in levels, such that the final Topelitz matrix is a level-4

block Toeplitz matrix (Gao et al., 2013). This method utilizes Lanczos bidiagonalization

for the low-rank approximation and circulant matrices for fast matrix-vector multiplica-

tions. Finally, the same modified imputation algorithm as in Chapter 3 and 4 performs the

reconstruction. The codes from Gao et al. (2013) are used here for our simulations.

MWNI: Minimum weighted norm interpolation is a Fourier-based reconstruction method

developed by Liu and Sacchi (2004). This method operates by minimizing a cost function

that contains a misfit term and a model norm term, as follows

J = ‖Tx− y‖2F + ρ2‖x‖2W , (6.1)

where ρ is the trade-off parameter, T is the sampling operator, x is the data on a regular

grid and y are the observations (also on a regular grid). The model norm is defined as

‖x‖2W =
∑

k∈K

X∗kXk

P 2
k

, (6.2)

where K is the region of spectral support of the signal, the ∗ sign denotes the conjugate and

Pk are spectral domain weights that resemble the ones from the signal to reconstruct. In

practice, the weights are calculated with the smooth periodogram of the data.

6.1 Synthetic examples

Our first synthetic example contains three linear events in a 5D volume. The grid size is

12 × 12 × 12 × 12, the sampling rate is 2 ms and the volume contains 256 time samples.

The wavelet’s central frequency is 20 Hz and it is a Ricker wavelet. The sampling operator

removes 70% of the traces randomly according to a uniform distribution. We present two

different cases of this example, one with SNR = 100 and another with SNR = 1 (randomly

distributed Gaussian noise). As a reminder, we measure the quality of the reconstruction

in dB in the time domain as

Q = 10 log
‖Dtrue‖2F

‖Drecovered −Dtrue‖2F
. (6.3)

For all the examples in this chapter, we parametrized each of the methods using the following

values:

HOSVD: A maximum of 20 iterations per frequency, core-tensor size 3×3×3×3, reinsertion

parameter a = 1 when SNR = 100, and a = 0.9 when SNR = 1 (the real data example
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used the latter value of a).

SEQ-SVD: A maximum of 20 iterations per frequency, rank r = 3 per unfolding, reinsertion

parameter a = 1 when SNR = 100, and a = 0.3 when SNR = 1 (the real data example

used the latter value of a).

ADMM: A maximum of 150 iterations per frequency, parameters β = 15, λ = 2.5.

Cadzow/MSSA: A maximum of 10 iterations per frequency, rank r = 5, reinsertion pa-

rameter a = 1 when SNR = 100, and a = 0.8 when SNR = 1 (the real data example used

the latter value of a). These values were based on those from Gao et al. (2013).

MWNI: A maximum of 15 internal and 3 external iterations for the conjugate gradients

solver. When SNR = 1, the trade-off parameter for MWNI is ρ = 10. We determined this

value by the evaluation of Q using different parameters. When SNR = 100, ρ = 0 and the

number of iterations replaces this parameter, according to Liu and Sacchi (2004).

We do not show a figure of the results for the example in which SNR = 100 because all the

values of Q are higher than 15 dB, making it impossible to distinguish the results from one

another. The running times on a single processor Intel Xeon(R) running at 3.07 Ghz using

MATLAB and quality values for the reconstructions appear in Table 6.1. From the values

in the first column of the table, we know that all methods perform the task efficiently, being

HOSVD, SEQ-SVD, Cadzow/MSSA and MWNI the best ones. The result for ADMM has a

Q = 13.6 dB. It is possible that this value is not larger because the parametrization is based

on a noisy example (Chapter 5), instead of a noise-free one. The most costly algorithm is

ADMM, for all the examples presented in this section, because of the SVD calculation on

the large unfolded matrices (inside the shrink function).

We reconstruct the same synthetic volume with a SNR = 1 using all five methods. In

this case there is a larger difference among the results, therefore we display them as CMP

gathers (for a fixed CMP-y and offset-y) in Figures 6.1 and 6.2. All panels in both figures

have the same clip, so they are a fair visual comparison. The running times and quality for

the reconstructions for this case appear in Table 6.1. Cadzow/MSSA gives the best results

for this example, followed by tensor completion methods. Naturally, all running times are

similar to the previous example.

Our third example is similar to the one presented before, with the exemption that the events

contain curvature in all directions (the curvature is separable on all four spatial dimensions).

The running times and quality for the reconstructions appear in Table 6.1, as the previous

examples. The parameters used for the reconstruction are the same as those for the linear

events example above with the exemption that now the reinsertion parameter is equal to

0.9 for HOSVD, 0.3 for SEQ-SVD and 0.8 for Cadzow/MSSA. As expected, tensor-related

methods (presented in previous chapters) are the only ones that can achieve a satisfactory



CHAPTER 6. COMPARISON OF METHODS 119

1.0

1.2

1.4

T
im

e
 (

s
)

(d)  

         2                    3                   4                    5                   6

CMPx number

1.0

1.2

1.4

T
im

e
 (

s
)

(c)  

         2                    3                   4                    5                   6

CMPx number

1.0

1.2

1.4

T
im

e
 (

s
)

(b)  

         2                    3                   4                    5                   6

CMPx number

1.0

1.2

1.4

T
im

e
 (

s
)

(a)  

         2                    3                   4                    5                   6

CMPx number

Figure 6.1: (a) Synthetic prestack volume with linear events. The data consist of
12× 12× 12× 12 bins. A small subset of the data is portrayed. (b) 70% decimated
data with SNR = 1. (c) Data recovered with HOSVD. (d) Data recovered with
SEQ-SVD. Continues on Figure 6.2.
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Figure 6.2: Continuation of Figure 6.1. (e) Data recovered with ADMM. (f) Data
recovered with Cadzow/MSSA. (g) Data recovered with MWNI.
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Method Linear Linear Curved

SNR = 100 SNR = 1 SNR = 1

HOSVD 41.8 dB 15.6 dB 15.3 dB

1.3 min 1.2 min 1.2 min

SEQ-SVD 42.1 dB 14 dB 13.7 dB

0.2 min 0.2 min 0.4 min

ADMM 13.6 dB 15.6 dB 12.1 dB

15.6 min 18.2 min 18.1 min

Cadzow/MSSA 30 dB 21.2 dB 4.17 dB

5 min 5.4 min 4.6 min

MWNI 21.5 dB 7.5 dB 5.5 dB

0.3 min 0.3 min 0.3 min

Table 6.1: Quality of the reconstruction (in dB) and running times (in minutes) for
three different examples for all five methods.

Q in the presence of curvature in the reflections. We notice that Cadzow/MSSA tends to

“linearize” the events no matter which rank r we choose. We tried a few combinations of

higher values for r and none of them gave a satisfactory result. MWNI seems to better

preserve the curvature although it contains a different SNR for original and reconstructed

traces, an undesired characteristic in the reconstructed result. As we mentioned previously,

MWNI does not contain a reinsertion formula as HOSVD, SEQ-SVD and Cadzow/MSSA

algorithms. Furthermore, the conjugate gradients implementation of MWNI is not capable

of handling this SNR discrepancy in the same way as the other methods. However, in real

data scenarios with a moderate level of noise MWNI provides satisfactory results (refer to

Figure 6.10).

6.2 Simulation for binning parameters on real data

The choice of the binning parameters is fairly arbitrary in practice. A rule of thumb is

to choose the size of the grid in all four dimensions according to the acquisition geometry.

In an orthogonal acquisition geometry, the inline/crossline spacing are roughly ∆mx =

RI/2,∆my = SI/2 (Cordsen et al., 2000), where RI is the receiver interval and SI is the
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Figure 6.3: (a) Synthetic prestack volume with curved events. The data consist of
12× 12× 12× 12 bins. A small subset of the data is portrayed. (b) 70% decimated
data with SNR = 1. (c) Data recovered with HOSVD. (d) Data recovered with
SEQ-SVD. Continues on Figure 6.4.
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Figure 6.4: Continuation of Figure 6.3. (e) Data recovered with ADMM. (f) Data
recovered with Cadzow/MSSA. (g) Data recovered with MWNI.
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source interval (refer to Figure 6.5). The choice of ∆h and ∆az is not that well defined and

seems to be more arbitrary.

We propose two ways to measure the suitability of a grid for reconstruction:

a) Redundancy of the grid: we calculate this as one minus the ratio of the amount of traces

used in the binning to the amount of observed traces; it varies between 0 and 1.

b) Grid population: we calculate this as the ratio of the amount of traces used in the binning

to the size of the grid; it varies between 0 and 1.

Given a certain grid, if more than one trace falls in the same bin, it is common practice

to keep the one that is closer to the center of the bin (in 4D sense) or to average all of

them. Ideally, a grid with as little redundancy as possible would be preferred (a bin size

that does not discard too many traces when picking one to represent each bin); i.e. the

closer to 0 is the ratio in a), the less redundant our grid will be. On the other hand, it

would also be preferable to have a grid that has the least amount of empty bins so that

reconstruction methods are easier to implement; i.e. the ratio in b) should be as close to

1 as possible. These two criteria are conflicting up to a point. It is natural to expect that

the more populated the grid is, the larger the bin size needs to be and therefore the more

traces will be discarded in the binning process. If we increase the bin size too much, we

tend to smear details and make a larger error in binning and the continuity among nearby

traces may be damaged. At the same time, if one wishes to preserve the original locations of

the traces as much as possible, one needs a very fine grid that leads to a sampling operator

with too many zeroes. It is clear that a compromise between both measures is required to

achieve a favorable grid.

To test the aforementioned concepts, we implement a simple simulation on the land data

presented in Chapter 3. For this survey, the shot line spacing is 780 m, the shot spacing

is 120 m, the receiver line spacing is 500 m and the receiver spacing is 60 m. The grid is

designed in the inline-crossline-offset-azimuth domain (different domain than the one used

in Chapters 3 and 4) and assumes a standard bin size of 30 m for inline spacing, 50 m for

crossline spacing, 100 m for offset (absolute offset) and 24◦ for the azimuth. These values are

extracted according to the original acquisition geometry (Figure 3.13), while the offset and

azimuth spacing are chosen to be small but reasonable values according to the acquisition.

After binning for various multiples of the standard bin size, the calculation of the measures

a) and b) determines which combination offers a good compromise between them. Figures

6.6 and 6.7 show the inline, crossline, offset and azimuth spacings versus redundancy and

grid population. The lines in the plots are densely sampled because every multiple of any

coordinate is combined with the rest of the possible coordinates, resulting in a total of

40656 different grid scenarios. Figures 6.6 and 6.7 show the distribution of inline, crossline,
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Figure 6.5: Standard bin size according to an orthogonal geometry. The grey shaded
lines show the offset between different combinations of source-receivers and the black
dots are their respective midpoints. The pattern of midpoints follows approximately
the rule ∆mx = RI/2,∆my = SI/2, where RI is the receiver interval and SI is
the source interval.
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(d) Crossline spacing versus grid population

Figure 6.6: Inline and crossline spacing versus redundancy and grid population.

offset and azimuth spacings independently from the values adopted by the other coordinates.

Notice that prestack seismic data needs a 4D grid and the redundancy and grid population

measures have taken into account all four dimensions in their calculation. However, we

can extract some conclusions from these figures. Overall, only the smaller inline/crossline

spacings can achieve a redundancy close to 0% which, at the same time, can also lead

to a small number for the grid population. Naturally, this leads to a very fine grid in

inline/crossline. The offset and azimuth coordinates have a similar behavior. Nevertheless,

we can still observe some combinations outside the set of smallest bin sizes that achieve a

similar effect on the grid.

We search for grids that simultaneously achieve a redundancy between 0-30% and a grid

population larger than 15%. We consider that with a grid population of less than 10-15%

reconstruction methods tend to be not too robust. From all the grids filtered by these

limits, we apply the specified techniques on some of the grids and we present results from

one combination that gave satisfactory results. This grid is of size 26× 16× 13× 8, where
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(d) Azimuth spacing versus grid population

Figure 6.7: Offset and azimuth spacing versus redundancy and grid population.
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∆mx = 30 m, ∆my = 100 m, ∆h = 200 m and ∆az = 48◦. The fold map in this case (Figure

6.8) is different from the one presented in Figure 3.14, as we are using a different grid. For

this grid choice, the grid population is 16% and 72% of the observed traces were used to fill

the grid (redundancy is 28%). Figures 6.9-6.10 and Figures 6.11-6.12 contain common mid-

point gathers and common offset gathers (for fixed crossline and azimuth) for this example,

respectively. This example highlights the sensitivity of the reconstruction to the choice of

the grid. We observe similar results in all gathers reconstructed by those methods presented

in this thesis. Moreover, gathers reconstructed by tensor methods seem to retain more de-

tails than those reconstructed by Cadzow/MSSA and MWNI. As we mentioned in Chapters

3, 4 and 5, the methods based in tensor algebra are robust to curvature, which is not the

case with Cadzow/MSSA and MWNI. Some of the reflections in the gathers reconstructed

with tensor methods are not completely flat (for example, the reflection at 1.1 s), while we

do not recognize the same in gathers e) and f) in Figure 6.10. A similar observation applies

to Figures 6.11 and 6.12 (for example, notice those reflections slightly below 1.2 s). With

real data we do not know the “true” answer, as we do with synthetic data. Therefore we

cannot assess if the best solution arises from the tensor methods or the other methods. The

flatness of the reflections given by Cadzow/MSSA seems unrealistic, considering that the

input gathers in Figure 6.11 a) (offset number 10) do not show a completely flat signature.

The tensor methods have preserved the characteristics of the sampled traces. The same

can be said about MWNI up to some extent, while Cadzow/MSSA have changed them to

appear flatter.

We show the offset and azimuth distribution for the grid used in the reconstruction in Figures

6.13 and 6.14, respectively. The sampling of the offsets increases with the bin number, except

for the last bin. On the other hand, the sampling of the azimuths is more homogeneous

than for the offsets, averaging approximately 900 traces for most azimuth bins.

6.3 Conclusions

In this chapter we tested the tensor methods introduced in this thesis versus Cadzow/MSSA

and MWNI methods. We designed simple synthetic models to evaluate the behavior of the

different methods in the presence of high and low SNR, sparsity and curvature of the

reflections. All the methods showed similar results for the case in which the reflections are

linear and contain a high SNR. When the SNR is low, MWNI is the only method unable to

correctly deal with the SNR discrepancy among observed and reconstructed traces. When

the reflections present curvature, we observed that only the tensor methods are capable of

achieving a high quality reconstruction. We also evaluated the running times for the different

algorithms and found that the most computationally expensive algorithm is ADMM.
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Figure 6.8: Fold map for the chosen grid. The radius of the circles are proportional
to the fold. The maximum fold is 35 while the minimum fold is 0 (we observe the
minimum in the 1st row of circles in the fold map).
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Figure 6.9: Common midpoint gathers for a grid populated 16% and a redundancy
of 28%. a) Input gathers. b) Reconstructed gathers using HOSVD. c) Reconstructed
gathers using SEQ-SVD. The figure continues in Figure 6.10.
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Figure 6.10: This figure is a continuation of Figure 6.9. Common midpoint gathers
for a grid populated 16% and a redundancy of 28%. d) Reconstructed gathers using
ADMM. e) Reconstructed gathers using Cadzow/MSSA. e) Reconstructed gathers
using MWNI.



CHAPTER 6. COMPARISON OF METHODS 132

1.0

1.2

1.4

1.6

T
im

e
 (

s
)

(c)  

         8                    9                  10                  11                  12

Offset number

1.0

1.2

1.4

1.6

T
im

e
 (

s
)

(b)  

         8                    9                  10                  11                  12

Offset number

1.0

1.2

1.4

1.6

T
im

e
 (

s
)

(a)  

         8                    9                  10                  11                  12

Offset number

Figure 6.11: Common offset gathers for a grid populated 16% and a redundancy of
28%. a) Input gathers. b) Reconstructed gathers using HOSVD. c) Reconstructed
gathers using SEQ-SVD. The figure continues in Figure 6.12.



CHAPTER 6. COMPARISON OF METHODS 133

1.0

1.2

1.4

1.6

T
im

e
 (

s
)

(f)  

         8                    9                  10                  11                  12

Offset number

1.0

1.2

1.4

1.6

T
im

e
 (

s
)

(e)  

         8                    9                  10                  11                  12

Offset number

1.0

1.2

1.4

1.6

T
im

e
 (

s
)

(d)  

         8                    9                  10                  11                  12

Offset number

Figure 6.12: This figure is a continuation of Figure 6.11. Common offset gathers for
a grid populated 16% and a redundancy of 28%. d) Reconstructed gathers using
ADMM. e) Reconstructed gathers using Cadzow/MSSA. e) Reconstructed gathers
using MWNI.
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Figure 6.13: Offset distribution for the grid chosen to reconstruct the field data.
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Figure 6.14: Azimuth distribution for the grid chosen to reconstruct the field data.
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Reconstruction methods that require binning the data to a regular grid greatly depend on

the choice of that grid. We believe that choosing a suitable grid plays a big role on the recon-

struction process itself, as these methods are in general sensitive to the data distribution on

the grid and the percentage of data that populates the grid. We ran a simulation to obtain

well suited grids, with respect to the measures of sparsity and grid redundancy. We imple-

mented reconstruction in one of the grids indicated by our simulation and the results were

satisfactory. We noticed some differences between the tensor methods and Cadzow/MSSA

and MWNI. In some of the gathers in which we had enough input traces to appreciate

the effect, we observed that Cadzow/MSSA and MWNI modified the character of some of

the reflections by flattening them (Cadzow/MSSA to a larger extent than MWNI). On the

other hand, the tensor methods did not have this effect and preserved the signature of the

reflections.

Although not presented in this chapter, we reconstructed the same patch of data on grids

not that well suited (with respect to our measures) and confirmed our assumption about the

grid sensitivity. This last statement seems to discourage the use of reconstruction methods

that require binning (e.g. MWNI, Cadzow, etc.) and encourage the use of methods that

can preserve the original trace locations (e.g. ALFT from Xu et al., 2005, and others). The

binning process is inconvenient and often damaging for some features of the data that are

affected by moving traces from their actual location, but it is necessary for some processes

such as reconstruction and multichannel denoising (Yilmaz, 2001, p. 1019). Our simple

experiment shows that, starting from the standard bin sizes given by the acquisition geom-

etry, it is very simple and fast to implement a simulation to obtain a few grids that can be

suitable for reconstruction.



CHAPTER 7

Conclusions

This thesis focuses on the application of tensor algebra techniques to the problem of mul-

tidimensional seismic data reconstruction. More precisely, we use tensor decomposition

(HOSVD), sequential rank reduction (SEQ-SVD) on the unfoldings of the data tensor and

tensor nuclear norm minimization (via ADMM). We have covered both aspects of the tensor

multi-rank minimization problem:

• the SEQ-SVD algorithm is closely related to the minimization of the non-convex ob-

jective function containing the misfit and the n-rank of the tensor, while

• the nuclear norm minimization algorithm deals with the minimization of the objective

function containing the closest convex approximation to the n-ranks.

The HOSVD algorithm is an iterative approach that exploits the existence of the core-tensor

to reduce the rank of the data. We compared the performance of the proposed methods to

another rank reduction method (Cadzow/MSSA) and a Fourier-based method (MWNI). All

methods presented comparable results except in the presence of curved events, in which the

tensor methods predominated. Another noticeable difference was that the tensor methods

seemed to better preserve the details of the signal.

7.1 Contributions

The contributions of this dissertation are the following:

? We introduce the use of tensors, or multidimensional arrays, in seismic signal process-

ing. Although tensor analysis techniques are common in other areas (chemometrics,

137
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bibliometrics, biomedical signal processing, etc.), only one article has been published

in exploration geophysics that utilizes tensor analysis (Vrabie et al., 2006). We envi-

sion that tensor algebra can have other applications in seismic signal processing, such

as coherent noise removal, denoising and imaging.

? We propose the use of a multidimensional extension of the widely known Singular

Value Decomposition (SVD) to tensors, called Higher-Order Singular Value Decom-

position (HOSVD, Chapter 3). As the SVD contains a diagonal matrix with the

singular values of the decomposed matrix in its diagonal, the HOSVD contains a core-

tensor that plays a similar role. Although the core-tensor is not hyper-diagonal and

is actually a full tensor, we can perform rank reduction on the decomposed tensor by

truncating the core-tensor (as we would do with the diagonal matrix in the SVD). This

procedure followed by a modified imputation algorithm is what we call HOSVD-based

reconstruction. By implementing it iteratively, the imputation algorithm allows the

reconstruction of the missing traces while balancing the SNR of original and recon-

structed traces. A novelty of this method is that it is quite robust to curvature and to

low signal-to-noise ratios. Most reconstruction methods resort to the use of windows

to avoid local changes of dip. With HOSVD this is unnecessary.

? We suggest a rank reduction strategy different from the truncated HOSVD. The

sequential-SVD (SEQ-SVD) uses the matrix unfoldings of the data tensor and applies

a hard thresholding of the singular values of each matrix sequentially (one unfolding

after the other). This algorithm uses the same modified imputation algorithm for the

reconstruction as the HOSVD method. For the noise-free case, we found that SEQ-

SVD is equivalent to solving the non-convex problem of tensor rank minimization one

unfolding at a time. As HOSVD-based reconstruction, SEQ-SVD is quite robust to

curvature and to low signal-to-noise ratios.

? We use the nuclear norm to approximate the non-convex problem of tensor n-rank

minimization (Fazel et al., 2001). The alternating direction method of multipliers

(ADMM) is the algorithm used in the minimization of the cost function of the problem.

The solution to the rank minimization problem is a low-rank solution that reveals

the best rank possible subject to the constraints. Although more computationally

expensive than the HOSVD approach, this method solves the inverse problem of tensor

completion via optimization and a theorem guarantees its convergence. Similarly

to the HOSVD and the SEQ-SVD methods, ADMM is robust to curvature of the

reflections and to low signal-to-noise ratios.

? We compared the tensor completion methods introduced in this thesis with Cad-

zow/MSSA and MWNI. To make the comparison as fair as possible, we used the
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parameters suggested by Gao et al. (2013) for Cadzow/MSSA and we obtained pa-

rameters from synthetic tests for MWNI (we chose those parameters that gave the

best results). However, we acknowledge that we lack industrial codes for this meth-

ods, which tend to be more robust than codes designed for academic purposes. We

performed simple synthetic tests to evaluate the difference between these methods in

the presence of linear events, curved events, sparsity and low/high SNR. We measured

running times and quality of the reconstruction for all the examples. All methods,

except MWNI, were robust to noise and only the tensor methods were robust to curva-

ture. Additionally, we run a simple simulation over the binning parameters from a real

dataset in the Western Canadian Basin (for a grid in the inline-crossline-offset-azimuth

domain) to obtain a grid size that achieves a good compromise between redundancy

and grid population. We chose one “optimal” grid (that balances the redundancy and

grid population for the given grid) and reconstructed the data with all the methods.

The tests with real data indicated a clear difference between the tensor methods and

the other two, especially in the presence of not completely flat events. While Cad-

zow/MSSA resulted in flat reflections with a high SNR, the tensor methods seemed

to better honor the sampled traces, verified where traces were available, and retained

more details or noise.

7.2 Limitations and future work

Missing fiber/slice

The main drawback from using a tensor completion approach for the reconstruction of

prestack data is that these strategies are unable to reconstruct missing tensor slices and

missing fibers. Candès and Recht (2009) mention this limitation in the matrix completion

case. They claim that a matrix cannot be recovered when a row or a column is completely

missing and that we need at least one observation from a row or column to be able to

recover it. Furthermore, they prove that reconstruction algorithms perform optimally when

the samples are randomly missing, as it is the case in the theory of compressive sensing

(Donoho, 2006). In general, matrix completion makes use of the nuclear norm, the “tightest

convex relaxation” of the rank of a matrix (Fazel et al., 2001), to minimize using a convex

optimization algorithm. Minimizing the nuclear norm of a matrix is equivalent to making the

singular values of that matrix sparse. When the sampled observations of the matrix are such

that one full column or row is missing, the minimum of the nuclear norm is not a sufficient

assumption to recover them. The reason for this is that the singular value distribution from

the incomplete matrix is already sparse (i.e. the matrix is already low-rank) in the presence

of this missing row or column. Intuitively, we can think of “which is the matrix with lowest

energy that can explain the missing row/column pattern?”. The answer is “a matrix that
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contains zeros in that same row/column”. Obviously, any non-zero elements placed instead

of zeros in that row/column increases the energy measured by the nuclear norm.

In the tensor completion case, we encounter the same problem in higher-order dimensions.

Additionally, to make the problem worse, in our prestack data reconstruction application we

rarely encounter randomly missing samples. The missing row/column problem for matrices

manifests itself in the missing fibers and missing slices for tensors. Let us consider the

midpoint-offset-azimuth domain. It is often the case, especially in land data acquisition,

that a certain azimuth or offset is not sampled in the whole patch to be reconstructed

(because of the regularity of the orthogonal geometry). This problem can be alleviated

by using grids that are not too fine, although these grids can bring other problems. The

reconstruction is still going to recover other parts of the tensor in which we have at least

one sample in that dimension, but it will fail in recovering a completely missing azimuth

and/or offset. Narita et al. (2011) addressed this problem by using additional information

when using ALS in CP and Tucker decompositions. The additional information is added as

an extra regularization term in the ALS objective function in the form of what they refer

as “similarity matrices”. These matrices have some measure of the relationship between

different dimensions (for instance, smoothness, if adjacent dimensions behave similarly).

Their experiments consider the missing fiber/slice problem and they show a significant

uplift with respect to classical ALS methods, which ignore these problems, as well as in the

cases when having extremely sparse observations. We believe that such a strategy could be

implemented in our applications as well, although more research is needed to understand

which property could be used as a similarity matrix.

Spatial aliasing

All the methods proposed in this thesis have not been designed as de-alias methods, com-

pared to methods such as the ones by Spitz (1991) and Naghizadeh and Sacchi (2010c). We

refer to the type of alias known as spatial alias, originating from regularly missing samples

or regular decimation (e.g. inline/crossline infilling/upsampling problem). In the absence of

any other constraint, the low-rank hypothesis is not enough to dealias seismic data because,

in the F − X domain, the aliased events have the same amplitude as the original events.

Therefore, reconstruction via rank reduction will recover both original and aliased events.

However, a similar modification to the one introduced by Naghizadeh and Sacchi (2013) for

Cadzow/MSSA could be implemented in the tensor methods.

Binning

Binning is the process through which seismic data is mapped to a regular grid in a certain

domain (for instance, inline-crossline-offset-azimuth). Another seismic processing method

that requires binning is multichannel denoising (such as F −X or F −X−Y deconvolution).

Binning is a far from ideal procedure, as it relocates the traces to a different location from
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the original one. Once we choose the bin size (in 4D sense), we group the traces according

to those bins and “create” a new dataset whose traces locations are now at the center of the

bin. Because we cannot have more than one trace per bin, we generally choose the trace

falling the closest to the bin center as the “representative” trace for that bin. This is the

reason why choosing a grid that does not imply discarding too many original traces is ideal

(refer to Chapter 6). Binning tends to distort the small features of the signal as it displaces

the trace from its original location, although this can be minimized by choosing a grid size

that is small enough (and this brings other problems such as large grid sparsity, see next

paragraph) and by applying NMO-correction prior to binning. Reconstruction methods

that use original trace locations, such as the antileakage Fourier transform (Xu et al., 2005)

seem the only option to avoid binning. However, it is interesting to notice that MWNI, a

well known reconstruction method widely used in industrial applications, is used intensively

despite its need for binning. The simulation of binning parameters in Chapter 6 was a

toy example attempt at minimizing the redundancy of the grid while keeping a reasonable

portion of the grid populated. A similar exercise could be implemented for other real data

examples. Incorporating an operator that can map more efficiently from original to binned

trace locations is a missing task in this thesis.

Extreme sampling sparsity

The tensor based methods presented in this thesis will not work properly when trying

to reconstruct seismic data in cases of extreme sparsity. Real data scenarios often lead

to reconstruction with only 2-3% of the grid being populated. These “extreme” levels of

sparsity imply that at least one fiber or slice will be completely missing in the 4D spatial

tensor. Although a strategy such as the one proposed by Narita et al. (2011) might alleviate

this problem, it embodies the biggest limitation of these methods.

Acquisition designed for reconstruction

The best scenario for a reconstruction method is given when the data sampling satisfies the

method’s optimal conditions. This condition is rarely satisfied. We could try to approximate

the “ideal” conditions by having an acquisition that aims at satisfying them. For the tensor

methods of this thesis, the ideal acquisition would need to be such that, for example, in the

inline-crossline-offset-azimuth domain the traces are randomly sampled. However, random

sampling in the inline-crossline-offset-azimuth domain would not lead to an “organized”

(traditional) sampling in the source-receiver domain. Jittered sampling (Hennenfent and

Herrmann, 2008) might offer a good alternative as well as the work from Sacchi et al.

(2013), although we have not explored these possibilities in this thesis.
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7.3 Final remarks

This thesis presents for the first time reconstruction algorithms for multidimensional seis-

mic data that are based on multilinear algebra. Reconstruction algorithms based on wave-

form synthesis (MWNI, POCS, ALFT, curvelets) have been tested with different degrees

of success. My contribution is to introduce tensor algebra to the problem of 5D seismic

data reconstruction. Although more testing is needed to truly understand the limitations

of these tools, I believe that tensor algebra can positively contribute to the field of seis-

mic processing. These techniques belong to a newly opened and buoyant field in applied

mathematics. I envision that tensor completion tools can benefit seismic exploration where

multidimensional data processing is required.
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APPENDIX A

Rank of a tensor composed of separable events

A.1 Model containing one linear event

In the F −X domain, a seismic volume with three spatial coordinates can be represented

by a third-order tensor. A seismic volume with one linear event can be modeled as

s(t, x, y, z) = w(t− px− qy − rz), (A.1)

where p, q, r are the ray parameters in x, y, z respectively. Taking the Fourier transform

with respect to time and using the shift theorem, equation A.1 becomes a plane-wave with

the following expression

S(ω, x, y, z) = W (ω) exp−jωpx exp−jωqy exp−jωrz, (A.2)

where W (ω) is the frequency dependent amplitude of the reflection, j2 = −1 is the imaginary

unit and ω is the frequency. Assuming regularly sampled data x = i1∆x, y = i2∆y and

z = i3∆z. To make our notation more compact, we define α = p∆x, β = q∆y and γ = r∆z.

Therefore, the elements of the cube in F −X are

Si1i2i3 = W (ω) exp−jωαi1 exp−jωαi2 exp−jωβi3 , (A.3)

As a simplification, this model can be rewritten as

Si1i2i3 = ai1 ◦ bi2 ◦ ci3 , (A.4)
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Figure A.1: Model of seismic volume with 3 spatial coordinates and 1 linear event,
for a fixed frequency.

where we have adopted W (ω) = 1 for simplicity. The vectors a,b, c represent the vectors

exp−iωαi1 , i1 = 1 · · · I1, exp−iωαi2 , i2 = 1 · · · I2 and exp−iωαi3 , i3 = 1 · · · I3, respectively.

Figure A.1 shows a sketch of this model for one frequency.

Equation A.4 is equivalent to a CP decomposition with one term (Carroll and Chang, 1970;

Harshman, 1970) (refer to Chapter 2). This expression can be rewritten in matricial form

for each of the unfoldings of S (Kolda and Bader, 2009):

S(1) = a(c� b)T

S(2) = b(c� a)T

S(3) = c(b� a)T. (A.5)

We intend to prove that the unfoldings of tensor S are low-rank. For this purpose, we

will use the properties specified in Chapter 2. Let us focus on the unfolding in mode-1

S(1). Notice that because a,b, c are vectors, we can replace the Khatri-Rao product by the

Kronecker product. Therefore

S(1) = a(c� b)T = a(c⊗ b)T. (A.6)

Next, we estimate the rank of the preceding expression. Following equation 2.9 and equation
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2.10,

rank((c⊗ b)T) = rank(c⊗ b) = rank(c) rank(b). (A.7)

Finally,

rank(S(1)) = a(c⊗ b)T ≤ min(rank(a), rank(c) rank(b)), (A.8)

using the property 2.11. Because a,b, c are vectors, their ranks are equal to one. Therefore,

rank(S(1)) ≤ min(rank(a), rank(c) rank(b))

= min(1, 1 � 1) = 1. (A.9)

The rank of the unfolding in mode-1 of S cannot be less than one. In consequence, its rank

is one. For the other two unfoldings, the proof is analogous with a change of order of a,b, c.

In conclusion, for a 3D model with one event, the tensor S is low-rank. More specifically,

S has n-ranks equal to one when containing one linear event.

For four spatial coordinates, the proof is very similar. For this case, we have another vector

added to the outer product, e.g. a vector d. The unfolding in mode-1 of tensor S will be

S(1) = a(d� c� b)T.

Because again a,b, c,d are vectors, the Khatri-Rao product can be replaced by the Kro-

necker product. The properties that we used in the proof are all applicable to the four-

dimensional (4D) case. For this reason, we reach the same conclusion as for the 3D case

that the tensor S is low-rank (and its n-ranks are equal to one).

A.1.1 Extension to separable events

Let us assume now that our model consists of one event with variable dip. In addition, we

will assume that the seismic volume can be modeled as

s(t, x, y, z) = w(t− Φ1(x)− Φ2(y)− Φ3(z)). (A.10)

Again, expression A.10 can be written as follows

S(ω, x, y, z) = W (ω) exp−j Φ1(x) exp−j Φ2(y) exp−j Φ3(z), (A.11)

where the functions Φi can have either the form for linear events jωpx, for parabolic events

jωpx2, or other form. Notice that all the derivations from the previous section are still valid
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for model A.11. The important fact is that s(t, x, y, z) can be decomposed as a product of

separable components of x, y, z. As a result, the tensor S is low-rank also in the presence

of curved events, if the event travel-time is separable in the coordinates x, y and z.

A.2 Model containing two linear events

Following the model proposed in the previous section, a seismic volume with two linear

events and three spatial coordinates can be modeled as

s(t, x, y, z) = w(t− p1x− q1y − r1z) + w(t− p2x− q2y − r2z), (A.12)

where pi, qi, ri, i = 1, 2 are the ray parameters in x, y, z respectively for events 1 and 2,

respectively. In the F −X domain, the model becomes

S(ω, x, y, z) = W (ω) exp−jωp1x exp−jωq1y exp−jωr1z

+W (ω) exp−jωp2x exp−jωq2y exp−jωr2z, (A.13)

where W (ω) is the frequency dependent amplitude of the reflections, j2 = −1 is the imagi-

nary unit and ω is the frequency. Assuming the same compact notation as in the previous

section, the elements of the cube in F −X are

Si1i2i3 = a1i1 ◦ b1i2 ◦ c1i3 + a2i1 ◦ b2i2 ◦ c2i3 , (A.14)

where we have adopted W (ω) = 1 for simplicity. Figure A.2 shows a sketch of this model

for one frequency.

Like in the previous section, equation A.14 resembles the CP decomposition with two terms.

To make the analysis more simple, we can form matrices A,B,C with column vectors

a1,a2,b1,b2 and c1, c2 respectively, as explained in Chapter 2, section 2.4.1. The unfold-

ings of S are (Kolda and Bader, 2009):

S(1) = A(C�B)T

S(2) = B(C�A)T

S(3) = C(B�A)T. (A.15)

As with the case containing one event, we want to prove that the tensor S is low-rank.
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Figure A.2: Model of seismic volume with three spatial coordinates and one linear
event, for a fixed frequency.

Focusing in the unfolding in mode-1 and using property 2.12, the following applies

S(1) = A(C�B)T

= A([c1 ⊗ b1 c2 ⊗ b2])T. (A.16)

The Kronecker product c1 ⊗ b1 is a vector, from property 2.7. Therefore, it has rank

one. The same applies to the product c2 ⊗ b2. The components ai,bi and ci represent

coordinates of the event i. If we assume that both events are not related, i.e. they contain

different dips, then the product c1 ⊗ b1 is linearly independent from c2 ⊗ b2. The rank

of the matrix [c1 ⊗ b1 c2 ⊗ b2]T with this assumption is two (or one if the dips are not

different in each coordinate). In the same manner, the matrix A is rank two because it

contains vectors representing one coordinate for two different events. Using property 2.11,

the rank of the unfolding S(1) becomes

rank(S(1)) ≤ min(rank(A), rank([c1 ⊗ b1 c2 ⊗ b2]))

= min(2, 2) = 2. (A.17)

In conclusion, we have proved that the unfolding in mode-1 of tensor S is low-rank for three

spatial coordinates and two events. The proof for the other two unfoldings is irrelevant, as

it only implies a change in the ordering of the matrices A,B,C.

The expansion to four spatial coordinates is, like in the preceding section, trivial. Instead of

having three vectors in the model representation, we will have four. The product (C�B)

becomes (D�C�B) instead. This Khatri-Rao product of matrices is equivalent to the



APPENDIX A. RANK OF A TENSOR COMPOSED OF SEPARABLE EVENTS 158

matrix [d1 ⊗ c1 ⊗ b1 d2 ⊗ c2 ⊗ b2]. The same reasoning as the one made before applies

for this case as well, such that the tensor S for the 4D case is also low-rank. As before, we

also proved that the n-ranks of S are less or equal to two for this case.

A.2.1 Extension to separable events

As we did in section A.1.1, the seismic volume can be modeled as

s(t, x, y, z) = w(t− Φ1(x)− Φ2(y)− Φ3(z)) + w(t− Φ4(x)− Φ5(y)− Φ6(z)), (A.18)

which in F −X is equivalent to

S(ω, x, y, z) = W (ω) exp−j Φ1(x) exp−j Φ2(y) exp−j Φ3(z)

+W (ω) exp−j Φ4(x) exp−j Φ5(y) exp−j Φ6(z), (A.19)

where Φi can be the expression for a linear event, a parabolic event or other expression.

The derivations from the previous section are still valid with model A.19. Therefore, the

tensor S is low-rank in this case as well, as long as it can be decomposed into a sum of two

outer products of separable components in x, y and z.

A.3 Model containing n linear events

If the seismic volume contains n events that are not related, i.e. contain distinct dips, similar

arguments as those presented above will apply. The number n has to be small enough

compared to the sizes of the matrix unfoldings such that the matrices can be considered

to be low-rank. In the case of two events, we observed that the model leads to a sum

of two outer products of three vectors (or four for the 4D case). For n events, we will

have a sum of n outer products of three (or four) vectors. The matrices that we used for

compacting the notation will therefore have n columns instead. The relationship C�B

will be equal to [c1 ⊗ b1 c2 ⊗ b2 · · · cn ⊗ bn] for the 3D case. It is not difficult to observe

that the same properties as those used for the case of two events can be used for the case

of n events. Therefore, the n-ranks of S for the case of n linear events will be less or equal

than n. Furthermore, following A.1.1 and A.2.1, n − rank(S) ≤ n when the model can be

decomposed as a sum of n outer product of separable components, where these components

can represent, for example, linear or parabolic events.
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A.4 Validity of the separability assumption

Throughout this appendix, we have assumed that the waveforms can be approximated by a

product of separate functions of the spatial coordinates. In other words, we have assumed

that the following model

s(t, x, y, z) = w(t− Φ(x, y, z)), (A.20)

which in the F −X domain is represented as

S(ω, x, y, z) = W (ω) exp−jωΦ(x,y,z), (A.21)

is such that Φ(x, y, z) = φ1(x) + φ2(y) + φ3(z). With this assumption, the exponential in

equation A.21 is separated into the product of three exponentials and the developments

from sections A.1 and A.2 follow. However, this assumption is not valid in some situations

and we will analyze this using a general travel-time expression for a dipping plane in 3D.

We will utilize the formulation in the article by Fomel (2011). The 3D dipping reflector model

in Figure A.3 will be used in the following analysis (after the article by Levin (1971)). The

general equation for the plane is

x cosα+ y cosβ + z cos γ = d, (A.22)

where α, β and γ are the normal angles between the x, y and z axes, respectively, and the

normal to the dipping plane (γ is the dip angle of the reflector as well). These angles also

satisfy cos2 α + cos2 β + cos2γ = 1. The travel-time equation for the geometry of Figure

A.3, where the source and receiver are located on a horizontal plane, is given by (Slotnick,

1959; Levin, 1963)

t(mx,my, hx, hy) =
2

v

√
D2 + h2

x + h2
y − (hx cosα+ hy cosβ)2, where (A.23)

D = d−mx cosα−my cosβ. (A.24)

D is the length of the normal to the reflector in the midpoint location, whereas d is the

constant in the plane’s equation (equation A.22). The variables mx,my, hx and hy are the

inline, crossline, inline offset and crossline offset, respectively. The constant v is the local

propagation velocity. For the particular case where the source is located at (0, 0, 0), d is

also the length of the normal to the reflector in the source location. Figure A.3 assumes the

source is located at (0, 0, 0), but the former equation applies also to the more generic case

where the source is positioned at an arbitrary location.
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Figure A.3: 3D dipping reflector model, after Levin (1971).

The travel-time equation A.24 is clearly not separable as a sum of functions dependent of

mx,my, hx and hy. However, this formula can be approximated by a second order Taylor

series. The second order Taylor expansion at the point (0, 0, 0, 0) = 0 is given by:

t(mx,my, hx, hy) ≈ t(0) +mx
∂t

∂mx
(0) +my

∂t

∂my
(0) + hx

∂t

∂hx
(0) + hy

∂t

∂hy
(0)+

+
1

2

[
m2
x

∂2t

∂m2
x

(0) + 2mxmy
∂2t

∂mx∂my
(0) +m2

y

∂2t

∂m2
y

(0) + 2mxhx
∂2t

∂mx∂hx
(0) + h2

x

∂2t

∂h2
x

(0)+

+2mxhy
∂2t

∂mx∂hy
(0) + h2

y

∂2t

∂h2
y

(0) + 2myhx
∂2t

∂my∂hx
(0) + 2myhy

∂2t

∂my∂hy
(0)

]
. (A.25)

Replacing all derivatives evaluated at 0 in expression A.25, the second order Taylor approx-

imation becomes

t(mx,my, hx, hy) ≈ 2d

v
− 2

v
mx cosα− 2

v
my cosβ +

1

vd
h2
x sin2 α+

+
1

vd
h2
y sin2 β − 2

vd
hxhy cosα cosβ (A.26)

This equation is also not separable with respect to hx, hy. However, let us analyze two

particular cases:
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• If α = 90◦ and β = 90◦ (flat reflector case):

t(mx,my, hx, hy) ≈ 2d

v
+

1

vd
h2
x +

1

vd
h2
y, (A.27)

which is separable with respect to hx, hy and is the expression of a paraboloid.

• If β = 90◦ (source-receiver direction aligned to the dip direction):

t(mx,my, hx, hy) ≈ 2d

v
− 2

v
mx cosα+

1

vd
h2
x sin2 α+

1

vd
h2
y, (A.28)

which is also separable with respect to hx, hy and is the expression of a paraboloid.

• If α = 90◦ (source-receiver direction perpendicular to the dip direction):

t(mx,my, hx, hy) ≈ 2d

v
− 2

v
my cosβ +

1

vd
h2
x +

1

vd
h2
y sin2 β, (A.29)

which is also separable with respect to hx, hy and is the expression of a paraboloid.

In conclusion, the second-order Taylor approximation to the travel-time equation A.26 is

only separable in the particular cases in which the angles α = 90◦, β = 90◦ and when

both angles are equal to 90◦. These are the cases in which the source-receiver direction is

perpendicular to the dip direction, the case in which the source-receiver direction is aligned

to the dip direction and the case of a flat reflector, respectively. Any other combination

of α and β will violate the separability assumption. However, the examples presented

in Chapter 5 are generated using α and β angles which are not equal to 90◦ and the

reconstruction is successful. More research is needed to understand the impact of violating

the separability assumption.
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