This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

ATHABASCA RIVER MONITORING

PROGRAM - 1981

G. Byrtus Pesticide-Chemicals Branch Pollution Control Division Alberta Environment 1982

Abstract

The Pesticide Chemicals Branch of Alberta Environment conducted a monitoring program in 1981 related to two methoxychlor treatments of the Athabasca River for black fly (Diptera: Simulium arcticum) control. Three populations of black fly larvae were observed in 1981 and the first two populations were reduced by 95.4% (May 20/21 treatment) and 96.5% (June 19 treatment) respectively. Population reductions of non-target organisms due to methoxychlor was limited for the May 20/21 treatment but was considerable for the June 19 treatment. Water samples collected from the Athabasca River at Fort McMurray contained only trace amounts of methoxychlor. Adult black fly activity in the farming area peaked in late July, correlating with expected adult emergence.

Acknowledgements

I would like to express appreciation to all of the people that assisted in this program especially: K. Kilar, M. Schiller, L. Nickolas, Dr. B. W. Taylor, W. Boyd, B. Murray, H. Coli, Dr. Y. Kumar, and to P. Scholefield and J. McIntosh for reviewing this manuscript.

Table of Contents

Abstract	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i	
Acknowledgements	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		ii	
Table of Contents	; .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i	ii	
List of Figures .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		iv	
List of Tables .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v	
List of Appendice	s	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		vi	
Introduction	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
Sampling Sites .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	
Treatment	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	
Sampling Methods	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6	
Results	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	
Discussion	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		25	
Conclusions	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		34	
List of Reference	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			35	
Appendices		•	•		•	•		•	•	•	•	•	•	•	•	•	•	•		•		•		40	

List of Figures

Figure	1	-	Study area and sampling sites		•	•	3
Figure	2	-	Discharge of Athabasca River at Athabasca,	1981	•	•	5
Figure	3	-	Larval populations at treated and non-treated sites during 1981		•		11
Figure	4	-	Population fluctuations of <u>Baetis</u> at seven sites along the Athabasca River, 1	1981	•		16
Figure	5	-	Population fluctuations of Ephemerella at seven sites along the Athabasca River, 1	1981	•		16
Figure	6	-	Population fluctuations of <u>Heptagenia</u> at seven sites along the Athabasca River, 1	1981	•		17
Figure	7	-	Population fluctuations of <u>Rhithrogena</u> at seven sites along the Athabasca River, 1	1981	•		17
Figure	8	-	Population fluctuations of <u>Isogenus</u> at seven sites along the Athabasca River, 1	1981	•		18
Figure	9	-	Population fluctuations of <u>Isoperla</u> at seven sites along the Athabasca River, I	1981			18
Figure	10	-	Population fluctuations of <u>Cheumatopsyche</u> at seven sites along the Athabasca River,	1981	•		19
Figure	11	-	Population fluctuations of <u>Hydropsyche</u> at seven sites along the Athabasca River, 1	1981			19
Figure	12	-	Adult black flies collected on barrel traps during 1981	s • • •	•		24

List of Tables

Table	1	- Cumulative percent reductions of black fly larval populations in the Athabasca River (1981) following methoxychlor larviciding operations 9
Table	2	- Percent change in non-target invertebrate Orders between pre and post-treatment samples
Table	3	- Methoxychlor residues in water samples collected upstream of Fort McMurray
Table	4 -	Results of water sampling at Fort McMurray and area for methoxychlor residues

List of Appendices

Appendix	1 -	Distribution of black fly larval instars in Athabasca River, May 20-21, 1981. Pre-treatment
Appendix	2 -	Distribution of black fly larval instars in Athabasca River, May 25-26, 1981. Post-treatment
Appendix	3 -	Distribution of black fly larval instars in Athabasca River, June 2-3, 1981 42
Appendix	4 -	Distribution of blackfly larval instars in Athabasca River, June 9-10, 1981 43
Appendix	5 -	Distribution of black fly larval instars in Athabasca River, June 18, 1981. Pre-treatment
Appendix	6 -	Distribution of black fly larval instars in Athabasca River, June 22-23, 1981. Post-treatment
Appendix	7 -	Distribution of black fly larval instars in Athabasca River, June 29-30, 1981 . 46
Appendix	8 -	Distribution of black fly larval instars in Athabasca River, July 7-8, 1981 47
Appendix	9 -	Distribution of black fly larval instars in Athabasca River, July 14-15, 1981 . 48
Appendix	10 -	Benthic macro-invertebrates collected from the Athabasca River, May 13-14, 1981 49
Appendix	11 -	Benthic macro-invertebrates collected from the Athabasca River, May 20-21, 1981. Pre-treatment
Appendix	12 -	• Benthic macro-invertebrates collected from the Athabasca River, May 25, 1981. Post-treatment
Appendix	13 -	• Benthic macro-invertebrates collected from the Athabasca River, June 2, 1981 52
Appendix	14 -	Benthic macro-invertebrates collected from the Athabasca River, June 9-10, 1981 53

Appendix	15	-	Benthic macro-invertebrates collected from the Athabasca River, June 18, 1981. Pre-treatment	54
Appendix	16	-	Benthic macro-invertebrates collected from the Athabasca Ríver. June 22-23, 1981. Post-treatment	55
Appendix	17	-	Benthic macro-invertebrates collected from the Athabasca River, June 29-30, 1981	56
Appendix	18	-	Benthic macro-invertebrates collected from the Athabasca River, July 7-8, 1981	57
Appendix	19	-	Benthic macro-invertebrates collected from the Athabasca River, July 14-15, 1981	58
Appendix	20	-	Benthic macro-invertebrates collected from the Athabasca River, August 5-6, 1981	59
Appendix	21	-	Benthic macro-invertebrates collected from the Athabasca River, August 26-27, 1981 .	60
Appendix	22	**	Barrel trap sample data, 1981	61
Appendix	23	-	Methoxychlor residues-silt. Results and discussion	62

INTRODUCTION

As in 1979 and 1980, the Pesticide Chemicals Branch of Alberta Environment monitored a black fly (Diptera: Simuliidae) control program conducted along the Athabasca River in northern Alberta. The black fly control program was carried out by the County of Athabasca No. 12 to alleviate problems of black flies attacking cattle in the Grassland - Wandering River area (Figure 1). This area is subject to large and intense infestations of black flies (primarily <u>Simulium arcticum</u>) during the summer months and this has restricted expansion of livestock production in the area (Ryan and Hilchie, 1980).

There were a number of objectives involved in the 1981 program, namely;

- (1) To monitor black fly larval populations and correlate numbers and development with the consultant in charge of the control program.
- (2) To monitor the impact of the chemical (methoxychlor) on the non-target biota and to determine population reductions and recovery time,
- (3) To monitor methoxychlor residues in the river water upstream of the City of Fort McMurray and to inform the City of the expected arrival time of methoxychlor contaminated water.

- 1 -

- (4) To monitor methoxychlor residues in the silt bedload of the Athabasca River over the summer.
- (5) To monitor adult black fly populations in the affected farming area to assess the efficacy of the treatment program.

SAMPLING SITES

The sampling sites used in 1981 were the same as those used in 1980 (Byrtus, 1981b). Seven sampling sites were located along the river from 20 km upstream to 240 km downsteam of the Town of Athabasca (Figure 1). River characteristics at these sites and of this reach of river have been described by Kellerhals <u>et al</u>. (1972), Haufe and Croome (1980) and Byrtus (1981a). The discharge levels of the Athabasca River at the Town of Athabasca for 1981 is presented in Figure 2.

TREATMENT

Monitoring of black fly larval development indicated that one treatment in two parts would be required on or about May 20. 0n May 20 at 1700 hrs the first part of of the treatment was injected 59.5 km downstream from Athabasca. River flow was 552 cubic meters per second, (m³/s), velocity was 3.6 km/hr and 285.5 litres of methoxychlor (24% emulsifiable concentrate) was injected over 7.5 minutes to achieve а 276 parts per billion (ppb) concentration. The allowable treatment dosage of methoxychlor for the control of black fly larvae in the Athabasca River is 300 ppb

- 2 -

FIGURE 1 - Study Area and Sampling Sites

injected over 7.5 minutes. The second part of the treatment took place 100 km further downstream on May 21 at 1530 hours. River flow was again 552 m³/s, velocity 4.1 km/hr and another 272 litres of methoxychlor was injected over 7.5 minutes to achieve a 263 ppb concentration.

Subsequent post-treatment larval monitoring found that a second population of black flies was approaching the treatment threshold level. A second treatment was scheduled at 145 km downstream from Athabasca for June 19 at 1415 hours. River discharge was 722.3 m³/s, velocity 4.52 km/hr and 540 litres of methoxychlor was injected. As the second treatment was conducted under the auspices of an experimental research permit issued by Agriculture Canada, Ottawa (methoxychlor is currently registered for only one treatment per year in the Athabasca River), it was decided to lower the dosage rate and to extend the injection time to enable determination of the control efficacy at the lowered rate. The calculated dosage rate for the June 19 injection was 199 ppb of methoxychlor (injected over 15 minutes) as compared to 298 ppb (injected over 7.5 minutes) for the May 20 and 21 injections. The injection procedure and materials used are described by Depner et al. (1980a).

4

Figure 2 - Discharge of Athabasca River at Athabasca, 1981. (Water Survey of Canada Station No. 07BE001)

- 5 -

SAMPLING METHODS

Larval Sampling

Black fly larvae were collected from each of the seven sites, on a weekly basis, using the artificial substrate (plastic cone) method described by Depner <u>et al</u>. (1980a) and Pledger and Byrtus (1980). The larvae were then placed into 1 oz. Universal sampling vials filled with 95% ethanol, and taken back to the laboratory, where aging (Fredeen, 1976) and enumeration of the larvae were carried out.

Non-target Organism Sampling

Non-target invertebrate organisms were collected during the summer at each of the seven sites using the rock tumble method described by Depner et al. (1980b) and Pledger & Byrtus (1980).

A slight modification in sampling method was employed in 1981. Instead of disturbing an area of river substrate 0.6 m x 3.0 m for one minute to collect one sample, three areas of 0.6 m x 1.0 m were each disturbed for one minute to collect three replicate samples. This was to ensure a greater degree of reliability in the sample data. Non-target organism sample sites were established in riffle areas near to shore and adjacent to the black fly larval sampling sites. The samples obtained were preserved in 95% ethanol and taken back to the laboratory for sorting and identification. Specimens were identifed to genus where possible using the keys in Ward and Whipple (1959), Usinger (1973), Pennak (1953), Merritt and Cummins (1978) and Wiggins (1977).

- 6 -

Percent reduction was calculated using unadjusted percent changes in pre and post-treatment populations as well as using the modified Abbott's formula to adjust for changes at control sites (Charnetski, Depner & Beltaos 1980). Diversity indices for each sample was calculated using the Shannon-Weiner formula (D = $-\Sigma p_i \log_2 p_i$) as presented by Smith (1974).

Methoxychlor Residues - Silt

Silt from the river bottom was collected for methoxychlor residue analysis. Collection was carried out by placing three modified Bogardi samplers (Charnetski and Depner, 1980) at each sampling site on the downstream trip and picking them up on the return trip the next day. The collected samples were mixed and placed into clean polyethylene bags, taken back to the laboratory, frozen and sent to the Pollution Control Laboratory in Vegreville for analysis.

Methoxychlor Residues - Water

In order actual concentration of to determine the methoxychlor in river water prior to its arrival at the City of Fort McMurray (396 km downstream from the Town of Athabasca), water samples were collected one day after treatment from points approximately 150 km upstream of the City of Fort McMurray. These samples were flown to Pollution Control Laboratory, the immediately analyzed, and the results of the analysis telephoned to the water treatment plant at Fort McMurray. This procedure was conducted for both the May and June treatments. For the treatment

- 7 -

in May, additional water sampling was carried out at Fort McMurray. Samples were collected from the river, the water treatment plant, and the Syncrude water storage pond prior to and during the calculated passage of the methoxychlor contaminated water. Samples were not collected at the Suncor water storage pond as the plant was shut down for overhaul.

Barrel Traps

Barrel traps (Byrtus, 1981a) were again set out in 1981 in the farming area to monitor adult activity. Four traps were set up at various locations in the pasture of G. Lantz (SE1/4, Sec 29, Twp 68, Rge 19, W4th). The Tanglefoot® covered plastic on these traps was changed weekly and taken back to the laboratory where the black flies trapped on the sticky plastic were counted.

Results

Larval Sampling

Sampling for larval <u>S.</u> <u>arcticum</u> was conducted over a nine week period in 1981, commencing just prior to the first scheduled treatment on May 20/21. Sampling was discontinued four weeks after the second treatment. A graphical description of larval populations is given in Figure 3.

It is apparent from the graph that prior to treatment, larval populations were well above the treatment threshold level of 500 larvae/cone. The treatment threshold level was arbitrarily designated by Depner <u>et al</u>. (1980a) based on experience obtained during the research program conducted on the Athabasca River. Following each treatment however, larval populations were reduced severely. The cumulative percent reduction of larvae at each treated site is given in Table 1.

IICacment Dates	Tre	atm	ent	Dates
-----------------	-----	-----	-----	-------

Site Locations (km)	May 20/21	June 19
80	83.6	-
120	96.8	-
180	98.1	95.6
200	99.7	98.5
240	98.9	95.5

Table 1 - Cumulative percent reductions of black fly larval populations in the Athabasca River (1981) following methoxychlor

- 9 -

larviciding operations. (Adjusted by the modified Abbott's formula)

The percent reduction at all sites treated shows that methoxychlor had a considerable adverse effect on black fly larval populations based on the immediate post-treatment samples, reducing larval populations by 83.6 % to 99.7%.

The treatments were scheduled to reduce the larval population when it had become fairly mature (fifth and sixth instar) but before reaching pupation. It appears that hatching of the new population occurred during the expected pupation and emergence of the population undergoing development at the time. For example, in Appendix 6 (post-treatment), the data for the 120 km site (upstream of the treatment point) shows a very even distribution with the larval instars and pupae ranging from 9.8% and 16.4% of the the total number at that site. Yet in the next week's sample (Appendix 7), 61.4% of the larval numbers at 120 km are first and second instars. This also explains why the population reduction at 80 km is only moderate (83.6%). A contributing factor was low pre-treatment numbers, however subsequent to the treatment, 87.5% of the larvae that were collected at 80 km were first and second instar, indicating that a hatch had occurred at the time of treatment. There is also the possibility that a number of larvae drifted in from the untreated portion of the river upstream.

Although a considerable reduction in larval numbers was observed after each treatment, the second sampling period after each treatment shows a dramatic return to treatment threshold

- 11 -

levels (Figure 3). This large rebound in larval populations is due mainly to development of early instar larvae (Appendix 3 and 7), as very few mature larvae were present at these times.

A clearer picture of the impact of the chemical on the larvae is given in the immediate post-treatment samples (Appendix 2 and 6). It is apparent from Appendix 2 that sites 80, 120 and 180 km were subject to either; reinfestation of younger larvae from upstream or, hatching of black fly eggs following treatment. It is more likely that reinfestation from untreated areas occurred, since very few first and second instar larvae were present at 200 and 240 km. However at 240 km there were a number of sixth and seventh instar larvae. This would indicate that a few black fly larvae survived the methoxychlor treatment. It is possible that, due to low river flows, the methoxychlor became so dispersed and diluted that it was still passing 240 km at the time of sampling, affecting the younger larvae that had hatched, but too dilute to affect the older larvae.

Appendix 6 shows the same as Appendix 2; that the majority of larvae collected at the treated sites were immatures. A large number of pupae were present at 240 km, indicating that some larvae pupated prior to the arrival of the methoxychlor. (Because the mode of action of methoxychlor requires ingestion of the material, it does not affect the non-feeding pupae).

- 12 -

Non-target Organism Sampling

Sampling of non-target invertebrate organisms commenced on May 13 and continued weekly until July 15, with one series of samples taken during the first week and one during the last week of August. The data collected is presented in Appendices 10 - 21.

The effect of methoxychlor appeared to be quite considerable on some taxa but not on others (Table 2). For example, the effect on Plecoptera at all treated sites after treatment was substantial. However the effect on Ephemeroptera, the other major taxa found in the river, was variable. For the treatments in May, a decrease at the 80 km site was observed followed by increases at the other sites further downriver. Yet for the June 19 treatment, numbers decreased at all three treated sites. Other taxa showed variability at the treated sites. However the decrease in total numbers of invertebrates at the treated sites was consistent for both treatments.

More detailed analysis of the data (Figures 4 -11) shows which genera were affected by the methoxychlor and to what degree. Haufe <u>et al</u>. (1980) suggested that nine invertebrate genera found in the Athabasca River were sensitive to methoxychlor. Only eight are graphed here because the ninth genera (<u>Hastaperla</u>) occurred in very low numbers all summer. (Treatment la was on May 20 at 60 km, lb was on May 21 at 160 km and treatment 2 was on June 19 at 145 km.)

Figure 4 illustrates the population fluctuations of <u>Baetis</u> (Ephemeroptera) over the summer. Populations of Baetis were low

- 13 -

	40 km	80	km 120 km			18	0 km	20	0 km	240 km		
	Unadj.	Unadj.	Adj.	Unadj.	Adj.	Unadj.	Adj.	Unadj.	Adj.	Unadj.	Adj.	
EPHEMEROPTERA	-63.7	-82.6	-52.0	-58.4	+14.7	-55.3	+23.3	-46.7	+47.2	+0.9	+179	
PLECOPTERA	-14.7	-76.6	-72.6	-90.9	-89.3	-98.9	-98.8	-96.6	-97.0	-85.8	-83.4	
TRICHOPTERA	-57.1	-92.1	-81.6	-88.9	-74.2	-43.4	+31.9	-56.5	+1.3	-71.2	-32.8	
DIPTERA	-69.9	-87.4	-58.3	-81.1	-37.1	+12.7	+275	-96.8	-89.5	-51.9	+59.8	
OTHER INVERTS.	-44.8	-27.8	+30.6	-61.2	-29.8	0.0	+81.0	-50.0	-9.5	-100	-100	
TOTAL INVERTS.	-43.0	-80.3	-65.5	-80.5	-65.8	-87.1	-77.4	-87.3	-77.8	-64.7	-38.2	

May 20/21 treatment

June 19 treatment

	Control*	180	km	200	km	240 km		
	Unadj.	Unadj.	Adj.	Unadj.	Adj.	Unadj.	Adj.	
EPHEMEROPTERA	+127	-69.8	-86.7	-54.1	-79.8	-15.5	-62.8	
PLECOPTERA	+82.2	-82.1	-90.2	-96.2	-97.9	-95.1	-97.3	
TRICHOPTERA	+68.2	-72.5	-83.7	-73.1	-81.5	+102	+20.4	
DIPTERA	+32.4	-76.9	-82.6	-33.6	-49.8	+33.5	+0.8	
OTHER INVERTS.	-15.4	-91.9	-90.4	-18.2	-3.5	+344	+424	
TOTAL INVERTS.	+78.0	-77.7	-87.5	-80.5	-89.1	-14.3	-51.9	

*Mean value from sites -20, 40, 80 and 120 km

Table 2 - Percent change in non-target invertebrate Orders between pre and post-treatment samples (modified Abbott's formula used to adjust for changes at control sites)

- 14 -

at the time of the first treatment and no impact was observed but for the second treatment in June, a considerable reduction in numbers occurred. The data from the control sites show that at the time of the June 19 treatment Baetis populations were increasing. However at the treated sites, Baetis populations were reduced considerably, and recovery was not apparent until 4 to 7 weeks post-treatment. Figure 5 shows Ephemerella (Ephemeroptera) populations present at each site throughout the summer with no long-term disturbance in populations observed. Figure 6 shows that Heptagenia (Ephemeroptera) populations acted much the same as Baetis populations. Very few specimens were collected at the time of the first treatment with no effect noted. An effect was observed after the June 19 treatment, which seemed to cause a 3 to 4 week delay in population peaks, compared to the control. Figure 7 shows that the treatments had little observable effect on the genus Rhithrogena (Ephemeroptera).

Of all the genera, perhaps the genus most drastically affected was <u>Isogenus</u> (Plecoptera). Because populations at both control and treated sites were declining at the time of the first treatment on May 20/21, it is difficult to determine the effect of methoxychlor on <u>Isogenus</u>. A number of workers (Haufe <u>et al</u>. 1980, Murray, 1981) have observed Plecoptera exuviae on the shoreline of the Athabasca River prior to methoxychlor larviciding, suggesting that seasonal emergence is occurring at this time. However, the impact of the June 19 treatment on <u>Isogenus</u> populations had a considerable effect. Populations at the control sites were just

- 15 -

k

16 I

1

Figure 7 - Population fluctuations of Rhithragena at seven sites along the Athabasca River, 1981

- 17 -

ł

- 18 -

- 19

ł

Figure 10 - Population fluctuations of Cheumatopsyche at seven sites along the Athabasca River, 1981

Figure 11 - Population fluctuations of *Hydropsyche* at seven sites along the Athabasca River, 1981

beginning to increase at the time of treatment and peaked about 3 weeks later. At the treated sites though, it was seven weeks before sufficient numbers were collected to achieve some level of recovery. The effect of the methoxychlor on the <u>Isoperla</u> (Plecoptera) was much less dramatic and appeared to be of only a very short duration (less than two weeks for each treatment). The impact of methoxychlor on the two Trichopteran genera (<u>Hydropsyche</u> and <u>Cheumatopsyche</u>) is not evident from the graphs.

Although diversity indices were calculated for the non-target organism data (Appendices 10 to 21), they were not analyzed because they did not show any conclusive trends. The use of diversity indices for the numerical description of aquatic macro-invertebrate communities subjected to pollution has been described by Wilhm (1972). Diversity indices are best utilized under situations of continuous organic loading, and are not suited to situations of short-duration pesticide loading, which may be why inconclusive results were observed in this study.

Methoxychlor Residues - Silt

Results of the methoxychlor residue analysis of silt samples were not completed at the time of writing this manuscript. Results and discussion are attached as Appendix 23.

Methoxychlor Residues - Water

The results of the spot water sampling conducted prior to the methoxychlor reaching Fort McMurray is given in Table 3. The results for both May and June treatments indicate that after

- 20 -

roughly 20 hours in the river, the methoxychlor pulse had diluted or degraded to approximately 1-2/100 of the treatment dosage. These results correspond with results obtained by Charnetski, Depner and Beltaos (1980) during their research along the Athabasca River. An interesting observation is the two samples (2 and 3) collected near the east shoreline at 255 km for the first treatment with residue levels of 0.6 and 0.7 ppb. The other two samples (1 and 4) collected at 243 km and 259 km were collected near the west shoreline and had higher concentrations (2.3 and 2.0 ppb). It is possible that the House River, which drains into the Athabasca from the east at 239 km, may have diluted the concentration of methoxychlor, giving these odd results. The possibility of methoxychlor being carried on the west side of the river in this reach is remote, as the river is straight and very turbulent, being just upstream of the Grande Rapids.

The other aspect of the water sampling that was conducted at Fort McMurray for the treatment in May shows that very little methoxychlor was detected from the samples (Table 4). One unexpected piece of data is the trace level of methoxychlor in the sample of treated water collected on May 24 at 1900 hrs. It had been thought that with the low levels of methoxychlor in the river at Fort McMurray, the passage of the water through the settling pond (retention time of about four hours), and the water treatment process, no methoxychlor would find its way into the treated water supply. However, discussion with the research chemist involved in the analysis (Dr. Y. Kumar, pers comm.) suggests that at the low

- 21 -

levels of detection involved here, the reliability of the data is uncertain. As no methoxychlor was detected in the first sample of treated water obtained at that time nor in the settling pond at any time, it is likely that the sample in question is not an accurate depiction of the quality of the city's water supply.

Table 3

Methoxychlor residues in water samples collected upstream of Fort McMurray

	Sample site	Day	Sample Time	Elapsed Time(hrs)	Amount) Present (ppb)
	[May 20	(60 km @ 1700))/May 21 (1	60 km @ 15:	30) treatment]
1	243 km	May 22	13:45	22.2	2.3
2	255 km	May 22	14:00	22.5	0.6
3	255 km	May 22	14:00	22.5	0.7
4	259 km	May 22	14:10	22.7	2.0
		[June 19 (14	45 km @ 141	5) treatmen	nt]
5	0 km	June 20	07:15	17.0	0.0(check sample)
6	219 km	June 20	09:10	18.9	2.7
7	228.5 km	June 20	09.17	19.0	4.7

09.17

19.0

4.7

Barrel Trap Sampling

June 20

228.5 km

The barrel traps were placed in the farming area on May 28 and were reset every week for the next seventeen weeks. The results are graphed in Figure 12. Samples from trap A were graphed separately as the numbers were significantly higher than the samples from the other three traps (B,C and D). The variability between the samples of these three traps was more acceptable (Appendix 22) and the mean number of flies from those traps are graphed. Although the numbers are different, the curves

TABLE 4

Results of water sampling at Fort McMurray and area for methoxychlor residues

	l May	23	. May 24						
Sample locations	1600 (48.5 hrs)	2100 (53.5 hrs)	0500 (61.5 hrs)	1200 (68.5 hrs)	1900 (75.5 hrs)				
Athabasca River (384 km)	0	0	0	0	-				
Athabasca River - Ft. McMurray Br. (396 km)	0	0	Trace*	0	-				
Ath. River near city water intake (396 km)	0	Trace	0,0	Trace	-				
Ft. McMurray settling pond	0	0	0,0	0,0	0,0				
Ft. McMurray treated water	0	0	0	0,0	0,Trace				
Syncrude raw water intake (429 km)	-	-	-	0	0				
Syncrude settling pond	-	-	-	0	0				

* Trace - <1 ppb

(Time in brackets is time elapsed from May 21 treatment (160 km) at 15:30)

of the graph are very similar. Both curves show a steady increase with a peak during the week ending July 30, followed by a steady decline until a second small peak in early September.

- 24 -

Discussion

Larval Sampling

One of the more apparent observations from the data is that there were three definite populations of black fly larvae in the Athabasca River during 1981, which was also observed in 1979 (Byrtus, 1981a). The immediate rebound in populations after the effect of the two treatments could be related to hatching occurring concurrent to each treatment. The implications of this multiplicity of larval populations leads to the conclusion that if adult populations are to be controlled for a significant period of time during the summer, more than one treatment per year is required. Data collected during the research program conducted between 1973 - 1977 (Depner et al. 1980a) showed no more than two hatches of larvae in any individual year, and that the second hatch (with one exception) was much lower in total numbers than the first hatch, which was associated with ice break-up. Data from 1979 (Byrtus 1981a, Murray 1980) showed larval numbers were less in the two succeeding populations. Data from 1980 (Murray 1981) showed that the second population was lower in numbers than the first population. Data from 1981 (Figure 3) shows that the two succeeding populations, following the first treatment, were similar in larval numbers. While it remains theoretical at this point, successive years of monitoring larval populations is beginning to show that they are cycling more frequently and at higher levels during mid-summer. Whether this is due to natural rhythms in S. arcticum phenology or due to the external pressures

- 25 -

applied by six years of larvicide application remains uncertain. Shemanchuk and Anderson (1980), on the basis of data collected in 1974, suggested that "S. arcticum either had two generations per year, or that the eggs deposited by each seasonal 'wave' of flies diapause and hatch synchronously the following year", and they favoured the former theory. However, on the basis of the data presented here, showing hatches occur concurrently to emergence, this author favors their second theory. This second theory would explain why second and third populations of larvae have been getting larger in numbers. Supposedly with the initial population of larvae (associated with ice break-up) being reduced by repeated larvicide applications, ecological pressure (competition, non-sensitized host animals) on the adults of the succeeding populations is consequently being reduced. These surviving adults may thus be capable of producing more eggs that will hatch synchronously the following year. Therefore the purpose of the treatment is fulfilled by alleviating large numbers of adult flies in early June, but this may be creating larger populations of black flies later in the summer.

The effect of higher river discharge levels on treatment efficacy was easily observed in 1981. Compared to 1980, when low discharge levels (444 m³/sec) resulted in a gap of about 20-40 km of ineffective control (Byrtus 1981b), higher river levels in 1981 (552 m³/sec) resulted in consistent control levels throughout the monitored reach of river. Another factor was that spacing of the two-part treatment in May was 43 km closer than in 1980 (at 60 and

- 26 -

160 km rather than 60 and 203 km) and this in itself may have eliminated the gap of ineffective control, had discharge levels been lower.

In retrospect, it may appear that the first part of the May treatment should have been downstream of the 80 km site instead of above because of low pre-treatment larval populations at 80 km. However, reinfestation of the treated area would have likely been greater if the area upstream and downstream of 80 km had not been treated. As it was, repopulation of the treated area took place fairly quickly after treatment. It is difficult to assess the importance of larval drift as it relates to repopulation. It is still uncertain as to how far larvae will drift to find sites with sufficient water velocity for them to continue development. It is known that the adults of S. arcticum can travel great distances from their place of emergence to find host material (Fredeen, 1973; Rempel and Arnason, 1974), but the distance a larva can travel is uncertain, and would likely be dependent on river velocity, hydrology and substrate type.

- 27 -

Non-target Invertebrate Organism Sampling

The effect of the methoxychlor larviciding operations on non-target invertebrate organisms was limited for the May treatment because of the seasonal emergence of many invertebrate organisms. Haufe et al. (1980) showed a close correlation between phenology of non-target invertebrate organisms and S. arcticum larvae, concluding that "Phenological timing of river treatments is a major consideration in reducing the impact on non-target organisms as well as in achieving control of S. arcticum." This point is made more apparent by the effect on non-target organisms caused by the June treatment. In this case, mid-season populations of many invertebrates were increasing (Figures 4 - 11) when the methoxychlor application took place, causing a serious, long-term reduction in populations. This reduction was readily observed while collecting the samples in the field. The data from Table 2 substantiates these observations, where a decrease in control site non-target organism populations was observed between pre and post-treatment, thus indicating an emergence. On the other hand, control site populations for the June treatment were increasing, indicating build-up in populations.

The effect of the two treatments on sensitive genera appeared to be very similar to the results observed in 1979. Overall, the first treatment in both years did not have a major effect on any of the genera, while the second treatment, in both years, severely affected several of the genera. The impact on <u>Isogenus</u> populations was more noticeable than on the other genera, taking

- 28 -
up to seven weeks in 1981 to return to control site population levels. This is also the same length of time that was required in 1979 for recovery of <u>Isogenus</u> populations after a mid-summer treatment.

From the data presented, it appears that the phenology of the river system is such that a larviciding operation conducted for the first larval population (generally associated with ice break-up) will not have a significantly adverse effect on non-target organism populations. This is providing that the larviciding operation is always conducted at such a time to have an effect on the later instars of <u>S</u>. <u>arcticum</u> larvae. The phenology of the river system appears to work against a second treatment having little effect on non-target organisms. This is due to non-target organism populations undergoing a mid-summer increase at the same time that a second population of <u>S</u>. <u>arcticum</u> larvae

Another possibility for the June 19 treatment having a greater effect on non-target organisms is the change in dosage rates and total amount of chemical applied. Although the dosage was reduced by one-third (from 300 ppb to 200 ppb), the injection time was doubled (from 7.5 minutes to 15 minutes). 540 litres of methoxychlor were required for the June 19 treatment, whereas if the dosage has remained at 300 ppb over 7.5 minutes, only 406 litres of methoxychlor would have been required. It is difficult to pinpoint the change in dosage rates or injection time as the cause for the adverse effect on non-target organisms however, as

- 29 -

there is no previous data adequate enough regarding the effects of a mid-summer treatment of the Athabasca River on non-target invertebrates (the second treatment in 1979 was conducted during a period of high water, which masked the effect of the methoxychlor on non-target organisms, Byrtus 1981a). From population trends observed in 1979 and 1981, it appears that phenology, rather than slight changes in the dosage rate, has a greater influence in determining the effect of methoxychlor on non-target invertebrates.

Methoxychlor Residues - Water

The problem or possibility of methoxychlor contaminating the water supply of Fort McMurray was not addressed in the research program conducted between 1973 and 1977. However, Haufe (1980) made one reference to this aspect; "It is concluded on the basis of recovery ratios for methoxychlor in relation to hydraulics of river flow that required larvicidal treatments for black flies in the Athabasca River can be applied without any significant risk to quality of water and its associated washload. However, in the event of any future added dependence of industrial processing and community water supply on water resources downstream of treatments, re-evaluation will be necessary in relation to new patterns of water use." With results of water samples indicating that trace levels of methoxychlor are getting into the water treatment facilities [a trace of methoxychlor was detected in the raw water storage reservoir in 1979 (Byrtus 1981a) and in the treated water supply in 1981 (Table 4)], perhaps the time for a re-evaluation has arrived.

Health and Welfare Canada (1978), in establishing guidelines for drinking water quality, permit methoxychlor residue levels of up to 100 ppb. As well, Gardner and Bailey (1975) indicated that methoxychlor is readily metabolized by mammalian liver. Charnetski, Depner and Beltaos (1980) found residue levels of methoxychlor in river water at Fort McMurray to be less than 2 ppb during three years of sampling. Although the residue levels found at Fort McMurray appear to be of little consequence in regards to

- 31 -

public health, the thought that even trace amounts of a chemical, used to kill insects, may be in their drinking water can cause much concern to many residents. The fact that the chemical is deliberately applied and not an accidental spillage makes it appear much more preventable. One solution would be to shut down the raw water intake as the methoxychlor passes Fort McMurray. This was attempted in 1981, however the reservoir was not up to full capacity due to work being carried out on the pumps (A. Pentney, pers. comm.), and the intake had to be left open. A new water treatment plant is being designed for Fort McMurray and a raw water reservoir with 10 days storage capacity is being proposed (Stanley Associates Eng. 1981.). This reservoir would easily enable shut down of the raw water intake during the passage of methoxychlor contaminated water (10-20 hours in duration).

Barrel Traps

The purpose of the barrel trap samples was to identify when adult black flies were most numerous in the farming area, and to correlate this information with larval population data. The correlation shows that adult numbers were peaking (Figure 12) as larvae from the third population of 1981 were maturing in development (Appendix 9). The adult data also shows that the two treatments in May and June were effective in reducing adult populations on the farm early in the summer, as compared to later in the summer when the July population of larvae was allowed to emerge unhindered and reach high numbers of adults. As a point of reference, the number of adults collected per trap during 1981 was higher overall than the number collected during 1979 (Byrtus 1981a) and 1980 (Byrtus 1981b).

A distinction was made in graphing the data from trap A and those from the other three traps. The location of trap A on a fence post was more accessible to the livestock in the pasture than the other three traps and they frequently rubbed against the fence post. In doing so, the amount of time spent by the host around this trap was much greater, resulting in higher numbers of black flies being collected on it.

- 33 -

Conclusions

- Three distinct populations of black fly larvae were observed in the Athabasca River during 1981. Two of the three populations were reduced (by methoxychlor larvicide treatments) by 83.6 to 99.7% at monitored sites for the May 20/21 treatment, and by 95.5 to 98.5% for the June 19 treatment.
- 2. Non-target organism populations were only slightly affected by the May 20/21 treatment. The impact on non-target organisms for the June 19 treatment was considerably greater, especially on the Plecoptera.
- 3. Results of water sampling conducted at 80-100 km downstream of both May and June treatment points showed that methoxychlor residues in the water ranged from 0.6 to 4.7 ppb. Results of water sampling conducted at Fort McMurray for the May treatment showed only trace amounts of methoxychlor in the river.
- 4. Barrel trap data indicates that adult fly populations peaked in the farming area during late July. This correlated with the expected emergence of the third observed larval population.

- 34 -

- BYRTUS, G. 1981a. <u>Athabasca River Monitoring Program 1979</u>. Alberta Environment, Pollution Control Division. Edmonton. 69 pp.
- BYRTUS, G. 1981b. <u>Athabasca River Monitoring Program 1980</u>. Alberta Environment, Pollution Control Division. Edmonton. 61 pp.
- CHARNETSKI, W. A., K. R. Depner. 1980. Distribution and persistence of methoxychlor in Athabasca River mud and bedload. p 63-73 <u>in</u> Haufe W.O. and G.C.R. Croome <u>eds</u>. 1980. <u>Control of Black Flies in the Athabasca River</u>: <u>Technical</u> <u>Report</u>. Alberta Environment, Pollution Control Division. Edmonton. 241 pp.
- CHARNETSKI, W. A., K. R. Depner, S. Beltaos. 1980. Distribution and persistance of methoxychlor in Athabasca River water. p 39-61 <u>in</u> Haufe, W.O., G.C.R. Croome <u>eds</u>. <u>Control of Black</u> <u>Flies in the Athabasca River</u>: <u>Technical Report</u>. Alberta Environment, Pollution Control Division. Edmonton. 241 pp.
- DEPNER, K. R., W. A. Charnetski, W. O. Haufe. 1980a. Population reduction of the black fly <u>Simulium arcticum</u> at breeding sites in the Athabasca River. p 21-31 <u>in</u> Haufe, W.O. and G.C.R. Croome <u>eds</u>. 1980. <u>Control of Black Flies in the</u> <u>Athabasca River</u>: <u>Techical Report</u>. Alberta Environment, Pollution Control Division. Edmonton. 241 pp.

- 35 -

- DEPNER, K. R., W. A. Charnetski, W. O. Haufe. 1980b. Effect of methoxychlor on resident populations of the invertebrates of the Athabasca River. p 141-150 <u>in</u> Haufe, W. O. and G.C.R. Croome <u>eds</u>. 1980. <u>Control of Black Flies in the Athabasca River: <u>Technical Report</u>. Alberta Environment, Pollution Control Division. Edmonton. 241 pp.</u>
- FLANNAGAN, J. F., B. E. Townsend, B. G. E. DeMarch. 1980. Acute and long-term effects of methoxychlor larviciding on the aquatic invertebrates of the Athabasca River, Alberta. p 151-158 <u>in</u> Haufe, W.O. and G.C.R. Croome <u>eds</u>. 1980. <u>Control</u> <u>of Black Flies in the Athabasca River</u>: <u>Technical Report</u>. Alberta Environment, Pollution Control Division. Edmonton. 241 pp.
- FREDEEN, F. J. H. 1973. <u>Black Flies</u>. Agriculture Canada, Publication 1499. Ottawa. 19 pp.
- FREDEEN, F. J. H. 1976. The seven larval instars of <u>Simulium</u> arcticum (Diptera: Simuliidae). <u>Canadian Entomologist</u>. 108:591-600.
- GARDNER, D. R., J. R. Bailey. 1975. <u>Methoxychlor</u>: <u>Its Effects</u> <u>on Environmental Quality</u>. National Research Council of Canada. Ottawa. Publication No. NRCC 14102. 164 pp.
- HAUFE, W. O. 1980. <u>Control of Black Flies in the Athabasca</u> <u>River: Evaluation and Recommendations</u>. Alberta Environment, Pollution Control Division. Edmonton. 38 pp.

- 36 -

- HAUFE, W. O., G. C. R. Croome eds. 1980. Control of Black Flies in the Athabasca River: Technical Report. Alberta Environment, Pollution Control Division. Edmonton. p 1-20.
- HAUFE, W. O., K. R. Depner, W. A. Charnetski. 1980. Impact of methoxychlor on drifting aquatic invertebrates. p 159-168 in Haufe, W. O. and G.C.R. Croome eds. 1980. <u>Control of Black</u> <u>Flies in the Athabasca River</u>: <u>Technical Report</u>. Alberta Environment, Pollution Control Division. Edmonton. 241 pp.
- HEALTH AND WELFARE CANADA. 1978. <u>Guidelines for Canadian</u> Drinking Water Quality - 1978. Hull, Quebec. 76 pp.
- KELLERHALS, R., C. R. Neill, D. I. Bray. 1972. <u>Hydraulic and Geomorphic Characteristics of Rivers in Alberta</u>. Alberta Research Council, River Engineering and Surface Hydrology Report 72-1.
- KUMAR, Y. 1981. Alberta Environmental Centre, Chemistry Wing, personal communication.
- MERRITT, R. W. and K. W. Cummins <u>eds</u>. 1978. <u>An Introduction to</u> <u>the Aquatic Insects of North America</u>. Kendall/Hunt Publishing Company. Dubuque, Iowa. 441 pp.
- MURRAY, R. B. 1980. <u>Athabasca River Black Fly Monitoring and</u> <u>Abatement Program - 1979</u>. A report prepared for the County of Athabasca No. 12. 51 pp.

- MURRAY, R. B. 1981. <u>Athabasca River Black Fly Monitoring and</u> <u>Abatement Program - 1980</u>. A report prepared for the County of Athabasca No. 12. 35 pp.
- PENNAK, R. W. 1953. Freshwater Invertebrates of the United States. Ronald Press Co., New York. 769 pp.
- PENTNEY, A. 1982. Alberta Environment, Municipal Engineering Branch, personal communication.
- PLEDGER, D. J. and G. Byrtus. 1980. <u>Athabasca River Monitoring</u> <u>Program - 1978</u>. Alberta Environment, Pollution Control Division. Edmonton. 29 pp.
- REMPEL, J. G., A. P. Arnason. 1947. An account of three successive outbreaks of the black fly <u>S. arcticum</u>, a serious livestock pest in Saskatchewan. <u>Scientific Agriculture</u> 27:428-445.
- RYAN, J. K., G. J. Hilchie. 1980. <u>Black Fly Problem Analysis, A</u> <u>Survey of Biting Fly Problems in Athabasca County and</u> <u>Improvement District No 18</u>. A report prepared for Alberta Environment, Pollution Control Division. Edmonton. 80 pp.
- SHEMANCHUK, J. A., J. R. Anderson. 1980. Bionomics of biting flies in the agricultural area of central Alberta. p 207-214 <u>in Haufe, W.O. and G.C.R. Croome eds. Control of Black Flies</u> <u>in the Athabasca River: Technical Report.</u> Alberta Environment, Pollution Control Division. Edmonton. 241 pp.

- 38 -

- SMITH, R. L. 1974. <u>Ecology and Field Biology</u>. Second Edition. Harper and Row, New York. 850 pp.
- STANLEY ASSOCIATES ENGINEERING. 1974. <u>New Town of Fort McMurray</u>, <u>Engineering Study of Utility Systems</u>. A report to the New Town of Fort McMurray. Edmonton.
- STANLEY ASSOCIATES ENGINEERING. 1981. <u>City of Fort McMurray</u>, <u>Expansion of Water Supply and Treatment Facilities</u>. A report to the City of Fort McMurray. Edmonton.
- USINGER, R. L. 1963. <u>Aquatic Insects of California</u>. University of California Press. Berkely and Los Angeles. 507 pp.
- WARD, H. B. and G. C. Whipple. 1959. <u>Freshwater Biology</u>. Second Edition. Edited by W. T. Edmundson. John Wiley and Sons Inc., New York. 1248 pp.
- WIGGINS, G. B. 1977. Larvae of North American Caddisfly Genera (Trichoptera). University of Toronto Press. 401 pp.
- WILHM, J. 1972. Graphic and mathematical analysis of biotic communities in polluted streams. <u>Annual Review of</u> Entomology. 17:223-252.

- 39 -

			Site	loca	tions	(km	downs	tream	from	1 Town	of A	thaba	sca)			
		20	4	0	8	80	12	20	18	80	20	00	24	0	0ve	ra11
	N	%	N	%	N	%	N	%	N	%	N	0/ 19	N	%	N	%
1	43	11.2	25	5.9	99	10.4	358	13.3	1080	11.9	109	4.6	642	7.4	2356	9.2
2	211	55.1	219	52.3	321	33.6	840	31.2	2388	26.4	356	15.1	1054	12.1	5389	21.1
3	93	24.3	92	21.9	318	33.3	795	29.5	1828	20.2	331	14.0	1115	12.8	4572	17.9
1e 4	27	7.0	47	11.2	107	11.2	614	22.8	624	6.9	338	14.3	705	8.1	2462	9.6
nst 2	9	2.3	25	5.9	56	5.9	403	14.9	822	9.0	490	20.8	838	9.6	2643	10.3
6	0	0.0	8	1.9	48	5.0	402	14.9	1724	19.0	641	27.2	1704	19.6	4527	17.7
7	0	0.0	3	0.7	6	0.6	272	10.1	564	6.2	94	4.0	2643	28.3	3582	14.0
Pupae	0	0.0	0	0.0	0	0.0	0	0.0	20	0.2	0	0.0	0	0.0	20	0.1
									<u> </u>						ļ	
Total	3	83	L	+19		955	36	584	90	050	235	59	87	701	255	551
No of Cones		3		4		4		4		3		3		4		
x/cone	1	27.7	1	104.7		238.7		921.0	30	016.7	78	36.3	21	75.3		
Std. Dev.*		52.0		75.3		53.3		139.1		437.4	59	95.5	22	219.5		
		Contro	1							Т	reate	ed				
Total		80)2								247	749				
No of Cones			7									18				
x/cone		11	4.6								13	374.9				
Std. Dev.*		e	52.4								11	+07.7				

Appendix 1 - Distribution of black fly larval instars in Athabasca River

May 20-21, 1981 Pre-treatment

*Standard deviation derived from original data

- 40 -

÷.,

.

			Site	loca	tions	(km	downs	tream	from	ı Town	of A	thaba	sca)			
1	-	20	4	0	8	0	12	0	18	0	20	0	24	0	0ve	rall
	<u>N</u>	%	N	%	N	%	N	%	N	%	N	9	N	%	N	%
1	17	6.3	38	6.3	74	25.6	76	33.6	18	25.7	1	2.9	3	1.7	227	13.9
2	25	9.2	179	29.4	179	61.9	118	52.2	40	57.1	8	23.5	1	0.6	550	33.7
3	87	32.1	157	25.8	23	8.0	2	0.9	0	0.0	1	2.9	1	0.6	271	16.6
ue 4	40	14.8	114	18.7	5	1.7	1	0.4	0	0.0	2	5.9	4	2.3	166	10.2
rnst 2	47	17.3	61	10.0	1	0.3	1	0.4	0	0.0	6	17.6	5	2.9	121	7.4
6	18	6.6	46	7.6	5	1.7	5	2.2	0	0.0	10	29.4	38	21.8	122	7.5
7	6	2.2	8	1.3	2	0.7	3	1.3	0	0.0	5	14.7	60	34.5	84	5.1
Pupae	0	0.0	5	0.8	0	0.0	12	5.3	12	17.1	1	2.9	62	35.6	92	5.6
Total	2	40	(508		289		218	1 7	70		34	17	74	163	33
No of Cones		1		5		6	1	6		1		6		6		
x/cone	2	40	1	21.6		48.2		36.3	-	70		5.7		29	1	
Std. Dev.*		0.0	1	143.9		70.5		66.9		0.0		2.3		9.3	l	
		Contro	1							Т	reate	d				
Total		84	8								78	35			1	
No of Cones			6								2	25			:	
x/cone		14	1.3		{						3	31.4			I	
Std. Dev.*		13	37.4								1	+7.3			I	

Appendix 2 - Distribution of black fly larval instars in Athabasca River

May 25-26, 1981 Post-treatment

I

*Standard deviation derived from original data

41 -

1

			JILE	TUCA	LIOUS	(KIII	uuwiis	cr eam	1 I UII	TUWN	UT A	LIIdUd	scaj			
	-2	0	4	0	8	0	12	0	18	0	20	0	24	0	0ve	rall
	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%
1	12	18.5	23	37.7	36	15.4	183	16.0	1886	31.9	165	15.2	1135	33.4	3440	28.2
2	20	30.8	16	26.2	109	46.6	249	21.8	2050	34.7	509	47.0	1498	4 4.0	4451	36.5
3	6	9.2	9	14.7	56	23.9	355	31.0	1345	22.8	333	30.8	667	19.6	2771	22.7
tar 5	7	10.8	2	3.3	30	12.8	305	26.6	775	13.1	73	6.8	175	5.1	1367	11.2
Sul 5	6	9.2	6	9.8	5	2.1	34	3.0	20	0.3	1	0.0	24	0.7	96	0.8
6	9	13.8	5	8.2	12	4.8	17	1.5	3	0.0	1	0.0	0	0.0	47	0.4
7	5	7.7	0	0.0	0	0.0	2	0.2	0	0.0	0	0.0	1	0.0	8	0.1
Pupae	0	0.0	0	0.0	1	0.4	0	0.0	0	0.0	0	0.0	1	0.0	2	0.0
					ļ											
Total	(65	(51	21	49	11/	+5	607	79	10	082	350)1	121	82
No of Cones		6		5		6		4		5		6		6		
x/cone	1	10.8	1	12.2		41.5	28	36.3	12	15.8		180.3	58	33.5		
Std. Dev.*		10.9		11.9		13.8	19	92.6	162	23.2		118.2	27	76.5		
	C	ontro	1			<u></u>	-			Т	reate	d	.			
Total		12	6								120	057				
No of Cones		1	1									27				
x/cone		1	1.4								1	446.5				
Std. Dev.*		1	0.8		ł						7	787.5				

Appendix 3 - Distribution of black fly larval instars in Athabasca River June 2-3, 1981

Site locations (km downstream from Town of Athabasca)

*Standard deviation derived from original data

À

- 42 -

	-20	40	80	120	180	200	240	Overal1
	N %	N %	N %	N %	N %	N %	N %	N %
1	14 25.4	7 14.0	57 40.7	55 22.7	564 17.5	134 8.1	528 4.8	1359 8.3
2	7 12.7	19 38.0	54 38.6	38 15.7	865 26.9	240 14.6	5959 54.4	7182 44.1
3	14 25.4	9 18.0	21 15.0	15 6.2	635 19.7	330 20.0	1749 16.0	2773 17.0
tar 4	6 10.9	3 6.0	3 2.1	22 9.1	363 11.3	300 18.2	1765 16.1	2462 15.1
.su]	4 7.3	4 8.0	2 1.4	29 12.0	403 12.5	421 25.5	848 7.7	1711 10.5
6	5 9.1	3 6.0	5 3.6	54 22.3	298 9.3	194 11.8	86 0.8	645 4.0
7	3 5.4	5 10.0	2 1.4	21 8.7	66 2.0	31 1.9	17 0.2	145 0.9
Pupae	2 3.6	0 0.0	2 1.4	8 3.3	10 0.3	0 0.0	0 0.0	22 0.1
Total	55	50	146	242	3204	1650	10952	16299
No of Cones	3	6	6	4	5	3	6	
x/cone	18.3	8.3	24.3	60.5	643.4	550.0	1825.3	
Std. Dev.*	11.0	8.4	18.1	47.8	451.1	384.1	1500.6	
	Contro	1			T	reated		
Total	10)5				16194		
No of Cones		9				24		
x/cone	1	11.7				674.7		
Std. Dev.*		9.9				1030.4		

Appendix 4 - Distribution of black fly larval instars in Athabasca River June 9-10, 1981

Site locations (km downstream from Town of Athabasca)

*Standard deviation derived from original data

- 43 -

1	-20		80 1	120	180 1	200	2/10	Ovorall
	-20 N a/	40 N 0/	00 N a	120	100	200	240 N 0/	
	<u>N %</u>	<u>N %</u>	<u>N %</u>	<u>N %</u>	<u>N %</u>	N %	N %	<u>N %</u>
1	12 11.9	7 16.7	9 18.7	129 12.9	237 8.1	65 3.3	32 1.2	491 5.6
2	28 27.7	8 19.0	22 45.8	241 24.1	949 32.5	449 22.9	492 19.2	2189 25.1
3	22 21.8	5 11.9	4 8.3	146 14.6	459 15.7	327 16.7	476 18.6	1439 16.5
tar 5	25 24.7	8 19.0	9 18.7	114 11.4	469 16.1	334 17.0	492 19.2	1451 16.6
sul 2	9 0.9	1 2.4	1 2.1	137 13.7	380 13.0	281 14.3	652 25.5	1461 16.8
6	2 2.0	3 7.1	2 4.2	125 12.5	431 14.8	394 20.1	360 14.1	1317 15.1
7	3 3.0	5 11.9	0 0.0	51 5.1	82 2.8	103 5.3	52 2.0	296 3.4
Pupae	0 0.0	5 11.9	1 2.1	55 5.5	4 0.1	6 0.3	4 0.2	75 0.9
Total	101	42	48	998	3011	1959	2560	8719
No of Cones	3	3	4	4	3	6	3	
x/cone	33.7	14	12	249.5	1003.7	326.5	853.3	
Std. Dev.*	20.3	3.6	10.1	171.9	438.4	468.3	431.9	
	Contro	 1	- L eon for the last of the second second		Т	reated	<u> </u>	
Total		11	89			7530		
No of Cones			14			12		
x/cone			84.9			627.5		
Std. Dev.*		1	36.5			511.4		

Appendix 5 - Distribution of black fly larval instars in Athabasca River

June 18, 1981 Pre-treatment

Site locations (km downstream from Town of Athabasca)

*Standard deviation derived from original data

- 44 -

		Site loca	tions (km	downstream	from Town	of Athaba	sca)	
	-20	40	80	120	180	200	240	Overal1
	N %	N %	N %	N %	N %	N 0/ /3	N %	N %
1	3 2.0	8 36.4	18 25.4	90 11.6	85 69.7	9 60.0	75 43.8	288 22.0
2	15 10.2	0 0.0	12 16.9	76 9.8	24 19.7	0 0.0	4 2.3	131 10.0
3	15 10.2	6 27.3	11 15.5	99 12.8	5 4.1	2 13.3	2 1.2	140 10.7
Le 4	23 15.6	3 13.6	14 19.7	82 10.6	4 3.3	1 6.7	2 1.2	129 9.9
5 nst	26 17.7	4 18.2	6 8.4	106 13.7	0 0.0	0 0.0	1 0.6	143 10.9
6	30 20.4	1 4.5	7 9.9	92 11.9	1 0.8	1 6.7	5 2.9	137 10.5
7	33 22.4	0 0.0	2 2.8	127 16.4	3 2.5	2 13.3	1 0.6	168 12.9
Pupae	2 1.4	0 0.0	1 1.4	84 10.8	0 0.0	0 0.0	83 48.5	170 13.0
Total	147	22	71	775	122	15	171	1306
No of Cones	3	4	4	5	5	4	6	
x/cone	49	5.5	17.8	155	24.4	3.75	28.5	
Std. Dev.*	16.6	2.9	7.9	161.1	15.5	4.5	22.6	
	Contro	1			Т	reated		
Total		10	15			308		
No of Cones			16			15		
x/cone			63.4			20.5		
Std. Dev.*		1	06.1			19.2		

Appendix 6 - Distribution of black fly larval instars in Athabasca River

June 22-23, 1981 Post-treatment

*Standard deviation derived from original data

1 45 -

			Site	loca	tions	(km	downs	tream	from	Town	of A	thaba	sca)			
1	-2	0	4	0	8	0	12	0	18	0	20	0	24	0	0ve	rall
	N	%	N	%	N	%	N	%	<u>N</u>	%	N	0/ /2	N	%	N	%
1	2	3.8	0	0.0	15	20.3	126	45.5	1386	28.0	974	36.3	826	25.4	3329	29.4
2	16	30.2	3	20.0	33	44.6	44	15.9	1712	34.5	914	34.0	1441	44.4	4165	36.8
3	3	5.7	3	20.0	20	27.0	27	9.8	1161	23.4	554	20.6	813	25.0	2581	22.8
4 tar	2	3.8	2	13.3	6	8.1	10	3.6	541	10.9	225	8.4	146	4.5	932	8.2
Sul 5	7	13.2	1	6.7	4	5.4	12	4.3	79	1.6	10	0.4	3	0.1	116	1.0
6	13	24.5	3	20.0	3	4.0	21	7.6	38	0.8	1	0.0	2	0.1	81	0.7
7	10	18.9	3	3 20.0		4.0	22	7.9	24	0.5	4	0.1	2	0.1	68	0.6
Pupae	0	0.0	0	3 20.0		0.0	16	5.8	16	0.3	4	0.1	0	0.0	36	0.3
 Total	5	3		15	8	34	27	/8	495	57	268	36	323	33	1130	18
No of Cones		4		6		6		6		6		6		5		
x/cone	1	3.3		2.5		14.0	L	16.3	82	26.2	41	+7.7	61	16.6		
Std. Dev.*		6.6		2.5		6.2		39.5	20)3.3	11	i0.7	16	6.9		
	C	ontro	1							T	reate	d				
Total				4	30						108	878				
No of Cones					22							17				
x/cone					19.5						6	539.9				
Std. Dev.*					26.2						2	230.8				

Appendix 7 - Distribution of black fly larval instars in Athabasca River June 29-30, 1981

*Standard deviation derived from original data

. .

1 46 1

		Site loca	tions (km	downstream	from Town	of Athaba	sca)	
	-20	40	80	120	180	200	240	Overa11
	N %	N %	N %	N %	N %	N %	N %	N %
1	4 10.5	0 0.0	19 12.4	53 19.8	154 2.9	203 5.9	171 6.5	604 5.2
2	12 31.6	2 11.8	61 46.4	81 30.2	1161 22.2	397 11.6	593 22.5	2307 19.7
3	13 34.2	6 35.3	30 19.6	54 20.1	1094 20.9	448 13.2	371 14.1	2016 17.2
<u>ь</u> е, 4	4 10.5	7 41.2	22 14.4	38 14.2	915 17.5	894 26.2	496 18.8	2376 20.3
t su	2 5.3	2 11.8	11 7.2	8 3.0	1031 19.7	727 21.3	442 16.8	2223 18.9
6	3 7.9	0 0.0	6 3.9	3 1.1	617 11.8	578 17.0	499 18.9	1706 14.5
7	0 0.0	0 0.0	3 2.0	0 0.0	207 3.9	128 3.8	60 2.3	398 3.4
Pupae	0 0.0	0 0.0	1 0.6	1 0.4	46 0.9	33 1.0	6 0.2	87 0.7
Total	38	17	153	238	5225	3408	2638	11717
No of Cones	5	5	6	6	6	6	4	
x/cone	7.6	3.4	27.2	39.7	870.8	568	659.5	
Std. Dev.*	5.8	6.0	10.9	45.8	646.0	257.8	400.8	
	Contro	1		· · · · · · · · · · · · · · · · · · ·	Т	reated		
Total		4 1	16			11271		
No of Cones		2	22			16		
x/cone		2	20.3			704.4		
Std. Dev.*	ļ	2	23.6			460.8		

Appendix 8 - Distribution of black fly larval instars in Athabasca River July 7-8, 1981

*Standard deviation derived from original data

1 47 1

			Site	loca	tions	(km	downs	tream	from	Town	of A	thaba	sca)			
1	-2	0	4	0	8	0	12	0	18	0	20	0	24	0	0ve	ra11
	N	%	N	%	N	%	N	%	N	%	N	0/ /2	N	%	N	%
1	1	4.2	1	11.1	9	17.3	27	14.4	89	6.4	153	6.6	100	7.4	380	7.1
2	4	16.7	3	33.3	19	36. 5	75	39.9	472	33.9	336	14.4	314	23.3	1223	23.0
3	10	41.7	4	44.4	8	15.4	45	23.9	279	20.0	276	11.9	169	12.5	791	14.8
4 tar	3	12.5	0	0.0	4	7.7	12	6.4	270	19.4	461	19.8	229	17.0	979	18.3
Sul 5	2	8.3	0	0.0	4	7.7	7	3.7	174	12.5	419	18.0	228	16.9	834	15.6
6	4	16.7	1	11.1	6	11.5	14	7.4	91	6.5	387	16.6	183	13.6	686	12.8
7	0	0.0	0	0.0	2	3.8	7	3.7	15	1.1	262	11.3	87	6.4	373	7.0
Pupae	0	0.0	0	0.0	0	0.0	1	0.5	3	0.2	32	1.4	39	2.9	75	1.4
					ļ			••	 							
Total	2	.4		9		52	18	38	139	93	232	26	134	+9	53 ¹	11
No of Cones		4		6		6		6	1	4		6		4		[
x/cone		6		1.5		8.7		31.3	31	+8.2	38	37.7	33	37.3		
Std. Dev.*		3.4		1.4		4.6		25.9		90.4	10)1.6	8	31.8		
	C	ontro	1		•		, A			Т	reate	d				
Total				27	'3						50	96 8				
No of Cones				2	22							14				
x/cone				1	2.4						-	362.7				
Std. Dev.*				1	7.7							89.2				

Appendix 9 - Distribution of black fly larval instars in Athabasca River

July 14-15, 1981

*Standard deviation derived from original data

- 48 -

APPENDIX 10 - Benthic Macro-invertebrates collected from the

۰.

Athabasca River May 13-14, 1981

	Site Lecation		- 20			40			R D			120		·	180			200		·	240	······
TAXA	Sile Localion	1	2	3	1	2	3	٦	2	3	٦	2	3	1	2	3	י. ו	2	3	1	2	3
	RA				•						•											·
Agal Gur	ngs ings																					
Hele	ophorus										1											1
Opti	loservus		t				1															
DIDICOL	Jayros																					
DiFILKN Atlik	xirc																			 		I
Check Check	atopogonidae Lafoty				1		1					۱										
D01-	ronochdae ichopodidae	2	4	2	15	10	20	64	22	19	10	8	7	13	10	6	2	4	10	2	4	5
Erzo Hell	ortera Lus																					
Ecni ficxi	naromia atoma				1			4						1		1				1		-
Nusa Simi	lidae 21u−										2	2	Ę	L	1	,	4	2	11.		1.	2
Tirt	:2a											-	-		,	1		-	14		-	-
EPHEMERCI Amer	TERA Tropus																					
Barn Barn	is todes	18	10	20				2	3	8	4	4	5	2	3	2	******* ***	2	3	i	1	3
Can	nis Trontilum																			: / 		
Cin Cin	iyine⊎ Zama Jamola													**			i i					
Eper Eper	DIUS Therella	, ,	~											ĺ			ļ					1
I j hi I j hi Veri		2	9	1				13	6	4	4	3	2	15	18	4		1	2	6	5	7
her Hex	spensa Spensa	2	4	ь	5	1		3	1			۱	5	i i	6				1	1	۱	1
Len Len	uponia Lorhiebia		1																			
Net: Net:	retopus Liecr			1													•					
rar. Fhii	invlotus throacha	11	3 27	28		1		3	1		4	2	1 13	į			!	7	27	: 1 13	18	18
Sir: Tric	hlojlestnu porythodos																					
PLECOPTE	2 n				I									1						•		
Acr: Cla:	rneuria ssenia							ĺ														
Has: Iso:	taperla Jenus	174	205	2 233	5		3	28	8	7	1 30	24	3 55	30	63	22	2	37	6 86	1	1 59	57
Iso, Fte:	perla Conarcella	97 1	75	53	1 	١	2	6	5	6	3	1	2	28	39	1	3	3	1	2	ĩ	۱
Fte	ronarcus	2	3	1							1		3		2	۱	1	3	1	2	1	
TRICHOPTI Brad	LRA chycentrus													and an and a second second								
Che: Glos	umatopsyche ssosoma	3	4	7	1			3		1	2		2	2	6		4	4	6	5	6	9
Glo: Hyd:	ssosomatidae ropsycho	1	4	1				2				1	3	1	8		1	1	1	3	10	5
Lim Neu:	nophilidae r <i>eclersis</i>																					1
Pla: Psyi	t <i>ucentropus</i> chomyiidae													1			ļ					;
HEMIPTER	2																					
Cor	ixidae						1				2	2	1									1
ODONATA Oph.	iog om phus	2			2				1		2	1	1						1	1		
GASTROPO	AC				1			3	12	2 2												
HIRUDINE/ Glos	A ssiphonidae																		1			
PELECYPO	AC			1																		
OLIGOCHAI	TA						:															•
Gori Nai	didae				3	1	5	1		2	14	17	28	 	_1		1		5	2	1	_1
	TOTAL	316	350	354	3 5	14	32	132	59	69	8 0	6 7	136	100	157	38	44	64	165	94	112	110
NT 111	NO. OF TAXA		1	020 16	(81 12		:	260 13			283 18			295 15		:	273			316 ' 16
ועוט	LESTIN THUER		1	. 86	2	2	. 58		2	. 67			3.09		2	. 64		2.	62		2	.50

					40		1	00			120		,	180			200	1		240	, ,
TAXA Sample No.	1	-20	3	1	2	3	1	2	3	1	2	3	ı	2	3	1	2	3	٦	2	3
COLEOPTERA Acabus Cyrinus Heleophorus Hydaticus Optioservus Oreodytes																	1				
DIPTERA Athorix Ceratopogonidae Chelifera Chironomidae Dolichopogidae Erioptera		6	1 5	12	15	13	1 30	1 67	69	. 3	1	5	4	3	6		1 6	3	4	9	3
Helius Hemedromia Hexatoma Muscidae Simuliun Tipola	1						1	1	8 1			2	Management and an a second rest of the second se		1	27	31	27	n dalama na manaka mining na na kana di s	2 3	2
EPHEMEROPTERA Ametropus Baetis Bactodes Caenis Centroptilum Cinuoma	2	6	3				12	30	5	13	2	5	2	5	5	1	١	8	1	3	
Cinyamula Epoorus Ephemerella Ephorer	6	2	2				29	58	38	9	9	8	5	12	8	1	3	8	3	15	6
Findion Heptagenia Isonychia Leptophlebia Metretopus Neocleon Farameletus Rhithrogena Sublanlostor	6 28	4 46	7	2	20	29	3	14	5	7 26	3	4	2	6	5	6	6	4 38	20	2 47	26
Tricorythodes PLECOPTERA Acroneuria Classenia Hastaperla Isogenus Isoperla Fteronarcella Fteronarcys	4 97 35	4 186 27 2	4 3 20	8 15	2 12 15	3 29 12	3 59 18	10 180 13 1	2 31 4	2 100 27 3	5 91 17	3 74 15	36	105 3 8	1 77 79	1 35 42	5 51 39	7 98 73	3 84 16	7 137 21	3 89 20
TRICHOPTERA Brachycentrus Cheumatopsyche Glossosoma Elotsosomatidae	5	7	1		1	1	6	25	17	3	1	3	3		1	1	3	3	6	12	1
Hydropsyche Limnophilidae Neureclepsis Platycentropus Psychomyiidae	1	9					6	13	9	2	3	7	6	2	4				7	20	3
HEMIPTERA Corixidae					2																
ODONATA Ophiogomphus	2	1		1	1	7	1	2	4			۱							1	۱	
GASTROPODA				14	3	4	7	5	1		2										
HIRUDINEA Glossiphonidae																					
PELECYPODA																					
OLIGOCHAETA Gordidae Naididae		11		12	22	17	1	6	2	20	10	11	2	1		3		4	1	3	3
TOTAL Sum Total NO. OF TAXA Diversity index	188	301	83 572 15 2.16	66	104	123 293 11 . 07	186	446 2	197 829 18 . 02	215	157	170 542 15 .63	101	175 2	196 472 13	118	160	274 552 15 2.61	150	283	156 589 15

APPENDIX 11 - Benthic Macro-invertebrates collected from the

Athabasca River May 20-21, 1981 Pre-Treatment

- 50 -

		20			40			80			120			180		·····	200			240	 .
TAXA Sample No.	1	-20	3	1	2	3	1	2	3	1	2	3	٦	2	3	٦	200	3	۱	2	3
COLEOPTERA Agahus Gyrinus Heleophorus Hydaticus Optioservus Oreodytes																					
DIPTERA Atherix Ceratopogonidae Chelifera Chironomidae Dolichopodidae Frioptera Helius Kemedromia Hexatoma Muscigae Simulium Tipula				3	6	3	and and a second a second a second	10	1 4			2	8	7		The second		2	1	4	
EPHEMEROPTERA Ametropus Baetis Baetodes Caenis Centroptilum Cinugma Cinugmula				1			an a su anna anna anna anna anna anna an									o no o la mana mana ya ola a la canana mana mananana manana na mu					
Epectus Ephemerella Ephoron Heptagenia Hexarenia Isonychia Leptophlebia Metretopus		(a)		1 8	8	1	(Δ)	8	17	7 2	16 2	10 4	10	5	5	5	6 4	2 3	3	3 6	5
Neocieon Farameletus Rhithrogena Siphloplecton Tricorythodes				3	۱	1				2	8	3	3	4		6	15	3	49	50	1 10
PLECOPTERA Acroneuria Classenia Hastaperla Isogenus Isoperla Fteronarcella Pteronarcys				7 25	1 6 31	12		17	2 9 22	2 5	2 5 4	12 1	1	3		1 3	1 1 3	1 2	17	16 10	2 2
TRICHOPTERA Brachucentrus Cheumatopsyche Glossosoma Glossosomatidae Hydropsuche Limnophilidae Neureclepsis Platycentropus PSychomyidae					1			2	2		1	1	4		2	and an a first second	1	1	3	3 3	1
HEMIPTERA																					
Corixidae ODONATA																		_			
GASTROPODA				2	1 14	2			1		2	4				2		ł			i
HIRUDINEA Glossiphonidae				-							-	-1									
PELECYPODA																					
OLIGOC∺AETA Gordidae Naididae		+		5	7	15			2	2	8	1	2		1			1			
TOTAL SUM TOTAL NO. OF TAXA DIVERSITY INDEX				56	76 2	35 167 13 .68		38 2	71 109 11 .60	20	48 2	38 106 10 . 84	33	19	9 61 10 .91	22	32 2	16 70 11 .81	85	96 2	27 208 11

APPENDIX 12 - Benthic Macro-invertebrates collected from the Athabasca River May 25, 1981 Post-Treatment

* (a) Samples not collected due to rising water levels.
* (b) Sample lost.
- 51 -

- 51 -

	Site Location		-20			40			B 0			120			180			200	····-		240	
TAXA	Sample No.	1	2	3	1	2	3	1	2	3	١	2	3	1	2	3	1	2	3	٦	2	3
COLEOPTE Agah Gyri Hele Hyda Opti Orec	RA nus nophorus nticus oservus ndytes												1									- une
DIPTERA Athe Cera Chel Chir Doli Eric Heli Heme Hexa Muso Simu Tipu	erix itopogonidae lifera onomidae Chopodidae optera ius edromia itoma iidae liium lia				2	1	1	1	1 2 2	1	3	2 5	1	3		2		5	2	2		2
EPHEMEROF Amet Baet Baet Caer Cent Ciny	TERA tropus tis codes nis troptilum ngma				Ĩ		1	1	7		1		1			U.	3		1	-		
Ciny Epec Ephe Epho Hept	ggmula Drus Emerella DTon Lagenia		99 (M) (7	1	9	11	16	10	7		21	22	4	7	29	43 c	13	6	8	5
Hexa Isor Lept Metr	ngeria nychia cophlebía retopus		(a)							-			ī		,				L		ı	ر
Neoc Para Rhit Siph Tric	leon meletus throgenä nloplecton corythodes				1 15	24	20		2			1	2	and and a second se				۱		· 4 · 1	5	6
PLECOPTER Acro Clas Hast Isod Isop Pter Pter	RA preuria ssenia taperla renus perla conarcella conarcels				1 24	18	1 34	38	104	3 52	1	6	56	56	1 46	1 34	4 2 30	2 1 40	3 30 1	2	1 1 13	1
TRICHOPTE Brac Cheu	RA chycentrus imatopsyche					4	1 2	1 6	6	1	1		13	1	1	3	: 1 : 4	8	7	8	13	6
Glos Hydi Limr Neui Plat Psyc	sosomatidae ropsyche nophilidae reclepsis tycentropus chomyiidae										1		3	1			1			9	5	6
HEMIPTERA Cori) ixidae									1												
ODONATA Ophi	iogomphus				1		1		1	•	1						1	1				
GASTROPOL	AC				3	3			1			1					'	'			1	
HIRUDINEA Glos	a ssiphonidae																					Prince Prince Prince
PELECYPOD	AC																					
OLIGOCHAE Gorc Naid	TA Jidae Jidae		•				-						j.	12	10	Ŗ				3	12	4
DIVE	TOTAL SUM TOTAL NO. OF TAXA ERSITY INDEX				70	62 2	92 224 15 .63	60	143	75 278 16 .72	27	15 2	107 149 16 .64	100	65 1	55 220 10 .78	78	110	59 247 12 39	50	60 3	54 164 14 .43

APPENDIX 13 - Benthic Macro-invertebrates collected from the Athabasca River June 2, 1981 .

* (a) Samples not collected due to rising water levels. -52 –

APPENDIX 14 - Benthic Macro-invertebrates collected from the

	Site Location		-20		[40			8ú		 I	120			180			200			240	
TAXA	Sample No.	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	٦	2	3.
COLEOPTE Agab Gyri Hele Hyda Opti Crec	RA nus ophorus ticus oservus dytes										an en an				۱		No	1				, 1
DIPTERA Atim Cera Choi Chir Doli Eric Heli Hema Hema Musc	rix topogonidae <i>ifera</i> onomidae chopodidae ptera us dromia toma idae	3	6 2	1			2	1 3 2	2	1		1	3 2 1	ner menne finder von verste ander ander i vers vers verste verbier, meder verbier i verste met		2	and and a second a	7	5	3	5	7
Simu Tipu	lium la							1								١	1	6				
EPHEMEROP Amet Baet Caer Cent Circ	TERA ropus is odes is roptilum gma			1	4	1 3	2	1	6	2	1	1		- 1 million de veneraliste de la million	1		1	1				ī
Epec Ephe	mula mus merella	22	26	14	5	7	7	. 5	11	8	7	3	12	2	4	5	: - 65	101	102	16	24	29
Fphc Hert Hexa Ison Lept	ron agenia genia gchia ophlebia otopuc	11	14	10	8	12	6		1		1	2	1	3	2	4	10	5	6	4	5	1
Neoc Fara Rhit Sipl Tric	elojus leon meletus hrogena ioplector rorythodes	4	5	4	23	2 7	16	1	1		1	1					10	9	10	6	ŝ	¢.
PLECOPTER Acro Clas Hast Isog Isog Pter Fter	A neuria senia aperia enus veria onarcelia onarces	2 2 99	3 4 113 1	1 1 68	34	2 48	1 2 63	1 69	2 13 165	53	34	1 1 21	1 52	46	1 54	1 97	1 6 1 343	8 226	4 317	63	1 1 39 1	2 85
TRICHOPTE	RA	1							1										2			
Cheu Glos	matopsyche sosoma	3 9	18	34	4	3	1	2	13	1	12	11	10		1		69	85	47	7	11	10
GIOS Hydr Limn Neur Flat	SoSomatidae opsyche ophilidae eclepsis ycentropus	11	12	8					1		12	4	9				17	16	25	١	6	8
Psyc	homyiidae																					;
Cori ODONATA	xidae					1																1
Ophi GASTROPOD	ogomphus	I						2		1							1	2		4 4		i
HIRUDINEA	rinhonidaa																					
PELECYPOD	A																					
OLIGOCHAE Gord Naid	TA lidae lidae			1	_3	5			2		3		_5	2	6	<u>4</u>					2	_3
DIVE	TOTAL SUM TOTAL NO. OF TAXA RSITY INDEX	195	204	44 543 15 32	81	91 2 2	100 272 13	88	218	67 373 17 56	73	48 2	96 217 15 41	53	70 1	114 237 10	548	467	518 1533 15	103	104	166 373 14

				Į							205			100			D 0 0 0		·	240	
Site Location	٦	-20 2	2	1	40 2	2	1	80 2	q	1	120	3	1	180	3	1	200 2	3	; 1	240 2	3
COLEOPTERA Agabus Gyrinus Heleophorus Hydaticus Optioservus Oreodytes		2			2	1	 			1	<u> </u>				J.						
DIPTERA Athorix Ceratopogonidae Chclifera Chironomidae Dolicnopodidae Erioptera Helius Hemedromia Hexatoma Muscidae Simuliun Tipula	13	3	7	16	1 8	1 8		4	1	3	1 3	6	12	17	4	0,	1 15 3	12	12	19	17
EPHEMIROPTERA Ametropus Raetis Bactodes Caenis Centroptilum Cinyama Cinyama	7		1	4	2	3	13	3	1	7	5	26	32	11	16	1	7	2	6	15	6
Epeorus Ephemerella Ephoron Heptagenia Hexagenia Isonychia Leptophlebia Metretopus Neocleon	27	5	11 8	8	5 8	12	6	4 2	7 2	12	5 8	2 17 10	26 7	13	7 4	23	37 2	16 4	16 3	38 3	16 5
Parameietus Rhithrogena Siphloplecton Tricorythodes	2		2	. 1			3	2	2	1	۱		1	1		1	1		8	14	5
PLECOPTERA Acroneuria Classenia Hastaperla Isogenus Isoperla Pteronarcella Fteronarcys	9 2 145	1 1 27 2	10 85 1	2 1 148	1 113	2 100	1 118 142	1 5 50	1 7 67	2	1 1 66	2 97	109	2 65	2	1 1 125	1 146	1 122	3 1 58	1 2 67	1 51
TRICHOPTERA Brachycentrus Cheumatopsyche Glossosoma Glossosomatidae Hydropsyche Limnophiidae Neureclepsis Platycentropus Psychomyidae	32	14 6	33 18	16	13	12 1	49	1 8 4	25 10	43	6 7	29 34	8	8 13	1 2	28	69 18	18 5	119	1 29 12	8
HEMIPTERA																					
Corixidae ODONATA Ophiogomphus				1	۱		1	۱	2	1		1					2	2	1	١	
GASTROPODA				17	16	12		2	•	6	1	•					-	,		·	
HIRUDINEA Glossiphonidae																					
PELECYPODA																					
OLIGOCHAETA Gordidae Naididae			1	14	15	11	7			3	3	6	11			2	1	2	4		2
TOTAL SUM TOTAL NO. OF TAXA DIVERSITY INDEX	258	60 2	178 496 13 - 32	239	183	163 585 16	388	88 2	125 601 17 , 56	239	109	230 578 18 2.52	214	133	98 445 12 • 33	200	303	186 689 14	159	210	114 483 15

APPENDIX 15 - Benthic Macno-invertebrates collected from the Athabasca River June 18, 1981 - Pre-treatment

APPENDIX 16 - Benthic Macro-invertebrates collected from the Athabasca River June 22-23, 1981 Post-treatment

.

	Site Location		-20			40		1	80			120			180			200	-		240	
ΤΑΧΑ	Sample No.	1	2	3	<u>ו</u>	2	3	<u> </u>	2	3	1	2	3	1	2	3		2	3	1	2	3
COLEOPTE Agab Gyri Hele Hyda Opti Oreo	RA nus ophorus ticus oservus dytes							and the second se			· marter · · · · · · · · · · · · · · · · · · ·	1	2	an a substantia a s			and a sub-state of the sub-					•
DIPTERA Athor Cera Chel Chir Doli Erio Heli	rix topogonidae ifera onomidae chopodidae ptera us	6	3	13	5	12	12	6	5	1 13	1	3	8	2	2	5	8	14	4	26	28	20
Hexa Musc Simu Tiru	itoma itoma itoae Citur: ita						1										T SAMPLES INTERACTORY N	1	1	1	1	1
EPHEMEROP Amet Baet Baet Caen Cent Ciny	TERA ropus dis doden dis roptilum ngma	4	14	33	1 14	1 23	8	5	16	10	71	43	15	analyzing and also a subman and strategy a map interface with an		1	1	١	1	o grade la part e la companya de la mandal de la grade de la		1
Ciny Epec Erhe Epho Hert	amula rus merella ron agenia	11 4	13 8	13 11	1 20	4 33	2 24	27	38 9	12 5	10	9 15	4	8	8	12	2	14 7	6 5	37	25 3	26 7
Hexa Ison Lept Metr Neoc Fara Rhit Sinh	aenja nychia nophlebja netopus neen meletus nbrogenn Noplostor	6	22	5	2	1		9	7	11	1	3	1		4		and the address of a state of the state of t		1	4	4	2
Tric	corythodes				2			-														
PLECOPTER Acro Clas Hast Isog Isop Pter Pter	A preuria senia aporla denus perla conarcella conarcella	3 15 28 1	5 2 21 106	4 1 16 131	14 83 1	1 12 77	1 8 114	127 420 1	120 217	1 122 211 1	4 14 235	18 159	1 6 124 1 1	5	2 29	7	4	1 6 1	1 2	3	1	1
TRICHOPTE Brac Cheu	RA Dhycentrus Imatopsyche	4 56	4 66	1 87	2	1 10	1 8	1 29	38	2 29	3	7	3	1	1 5	1	4	27	3	4	1 38	22
Glos Glos Hydr Limn Neur Plat Psyc	sosoma sosomatidae opsyche lophilidae eclepsis gcentropus homyiidae	26	52	45		5	1	23	19	22	92	56	2 9	2			1	8	2	34	11	8
HEMI PTERA Cori	xidae						1											1				;
ODONATA Ophi	ogomphus				1		2	9	5	5	2		2				1	1		1	1	1
GASTROPOD	A					۱			9		1	2	1				1					
HIRUDINEA Glos	siphonídae																					
PELECYPOD	A																 					
OLIGOCHAE Gord Naid	TA li dae li dae				5	8	43			1	1	1	3		1		2		2	4	3	26
DIVE	TOTAL SUM TOTAL NO. OF TAXA RSITY INDEX	170	322 2	358 850 14 . 84	149	189 2	226 564 20 .54	670	484 1 2	447 601 18 . 20	477	318 1 2	212 007 19 . 30	20	53 2.	26 99 11 41	25	82 1 3.	27 34 15 04	181	116 2	117 414 15 .80

- 55 -

APPENDIX	17	-	Benthic	Macro-	invertebrates	collected	from	the
----------	----	---	---------	--------	---------------	-----------	------	-----

Athabasca River June 29-30, 1981

. •••

		-20			40			80			120			180		;	200	i		240	
TAXA Sample No.	٦	2	3	٦	2	3	٦	2	3	1	2	3	٦	2	3	1	2	3	١	2	3
COLEGPTERA Agahus Gyrinus Hele phorus Hydaticus Optioservus Oreodytes																					
DIPTERA Athorix Ceratopogonidae Chelifora Onironomidae Dolichopodidae Erioptora Helius Hemedromia Hexatoma Muscidae Simulium Tupula	1 34	5	23	13	9	29	28	30 1	18	15	20	17	18	13	15	12	9	35	10	30	13
EPHEMEROPTERA Ametropus Baetis Baetodes Caenis Centroptilum Cinuama	68	4	16	2	19	17	10	17	10	20	37	24				na mana	2		1	١	
Cingqmula Epeorus Ephemerella Ephoron Heptagenia Hexagenia Isonuchia	5 20	4 9	2 13	1	29 2	1 37 2	15	23 17	19 8 1	8	24 1 27	3 28	8	5 2	20 1	10	12 2	15 10	12	16 7	9 5
Leptophlebia Metretopus Neocleon Farameletus Rhithrogena Siphloplecton Tricoruthodes	5	2	2	1			7	4	2				merer - da mener - merer - ranner meter et mange			and a set of the set o			1	1	1
PLECOPTERA Acroneuria Classenia Hastaperla Isogenus Isoperla Pteronarcella	2 50 77	1 13 26	1 15 50	18	14 105	1 1 98	158	160 39	69 58	38	1 83 70	37 88	29	36	36	1 2 46	64	90	9	12	13
TRICHOPTERA Brachycentrus Cheumatopsyche Glossosoma Glossosomatidae Hydropsyche	7 68 146	1 21 21	2 27 68	5	10 7	1 9 14	110	3 67 70	38 41	22	3 37 150	2 14 22	53	2	1 3 10	26	2 33 10	2 1 19 4	3 1 6	7 16 59	1 24 70
Limnophilidae Neureclepsis Platycentropus Psychomyiidae HEMIPTERA		۱																	ar a subscription of the s		· · · · · · · · · · · · · · · · · · ·
Corixidae ODONATA																					
Ophiogomphus GASTROPODA				1	3 8	5 7	6	7	14 2	1	5 4	1	1				4	4	2	2	3
HIRUDINEA Glossiphonidae					-	,			-		•										
PELECYPODA																					
OLIGOCHAETA Gordidae Naididae			2	5	4	5	1	7	र	4	5	8	2	7	4	3		1		9	6
TOTAL SUM TOTAL NO. OF TAXA DIVERSITY INDEX	483	110	221 814 16 1.91	49	210	236 495 18 .74	455	, 446 1 2	284 185 16 .88	338	464 1 2	255 057 16 . 95	78	71 2	9 2 241 11 .93	117	138	181 436 14 . 43	51	161 2	145 357 12 2.87

Site Location		-20			40			80			120			180			200			240	 :
TAXA Sample No.	١	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
COLEGPTERA Agabus Gyrinus Heleophorus Hydaticus Optioservus Oreodytes							1				1										. 1
DIFTERA Atborix Ceratopogonidae Chelifera Chironomidae Dolichopodidae Erioptera Helius Homodromia Hexatomi Muscidae Simulium Tipula	19	6	8	11	14	32	1 93 1	45	2 B9	39	18	27	30	17	27 2	61	13	17	73	40 45	1 59 8
EPHEMEROPTERA Ametropus Baetis Bactodes Caenis Centroptilum Cinygma Cinygmula	58	51	66	17	2	4	37	16	30	42	17	19 2	1			3				1	
Epeorus Ephemerella		2	1		1		2	3	5	1	4		2	2	5	3	2		6	2	4
Ephoron Heptagenia Hexagenia Isonychia Leptophlebia Metretopus	30	48 4	27	20 1	13 1	27 4	4 52 7	3 43 10	3 41 15	1 78 4	1 40 4	1 63 10	11	2	12	14	4	10	10	8	11
Neosleon Farancietus Rhithrogena Siphloplecton Tricorythodes	3	1	1	2			15	6	2	4	2	۱	1				1				
PLECOPTERA Acroneuria Classenia Hastaperla Isogenus Isoperla Fteronarcella Fteronarcys	15 49 1	1 24 101	15 63	17 51	4 35	8 61	233 105	160 95	1 226 85	156 53	71 65	68 82	1	17	32	5	1 6	3	1	1 4	1 2 1 1 2 3
TRICHOPTERA Brachycentrus Cheumatopsyche	-	1	1	3	1	1 1	126	31	2 44	3 26	9	2 18	2	١		1	2	4	15	1 14	21
Giossosoma Giossosomatidae Hudropsuche Limnophilidae Neureclepsis Platucentropus Psychomyiidae	4	2	7	3		2	133	38	96	96	45	101	11	9	20	16	3	2	53	78	100
HEMIPTERA Corixidae																					
ODONATA Ophiogomphus		2		2	2	4	26	26	31	3	2	2	2			2		3	1	2	3
GASTROPODA				3			9	3	۱	6	2	3									1
HIRUDINEA Glossiphonidae																					
PELECYPODA								۱													l
OLIGOCHAETA Gordidae Naididae	2		1	5	16	2	3		1	8	4	2 9	7	2		5		1	1 2	_2	4
TOTAL SUM TOTAL NO. OF TAXA DIVERSITY INDEX	181	243 2	190 614 15 . 40	135	89 2	146 370 14 . 68	851	480 2 3	675 2006 23	520	285	410 1215 18 3.01	76	50 2	98 224 12 . 61	136	34	49 219 13 . 86	168	198	219 585 17 .40

APPENDIX 18 - Benthic Macro-invertebrates collected from the Athabasca River July 7-8, 1981

			A	PPEN	DIX	19 -	Ben Atr	thic nabas	: Mac ca R	ro-i iver	nver Ji	tebr Jly	ates 14-1	col 5, 1	1ect 981	ed 1	from	the			
Site Location		-20			40		1	80			120			180		!	200			240	
Sampie No.	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
GPTERA Agabus Gyrinus Heleophorus Hydaticus Optioservus Oreodytes	1																			1	

13 29 43 20 11 10 32 70 14

1 7 3 20

16 71

1

5 5 18

5 5

2

13 21 26

1

6 28 76,10 14 15

6 1 1

2 5 6

7

19 26 38

2 7

2 14

2

2

6

ł 1

3 12

2 17 64

2 3

1

42 75 169

286

15

2.75

7

5

3 20

360

2.99

15

7	18	32	4	7	13	25	43	57	9	13	6	23
2		2	١	1		1	7	1		2	2	1

5

1

24 32 31

31 34 26

١

1

2

2		2	١			1	7	1		2	•	1	1	2
52	43	46	15	25	74	43	67	81	60	71	31	13	25	18
5	8	7	1	3	6	5	6	11	10	7	16			
				1	1									
1.	2	4	2		2	1 10	• •	•••		15	2			
7	2	0	2		2	10	11	11	. 4	15	2			1

4	2	6	3		2	10	11	11	4	15	2	1		1	i	1	2
												1					1
						1											
								1									
71 48	25 13	73 21	23 22	11 29	31 16	100	136	175 23	81	103 30	62	14	11	17	3	3	3
1	1	۱						2	1		2	1		.,	1	-	
		•													i 1	_	
51	24	34	6	11	1 24	46	91	74	62	14	3	4	2	8	3 8	2 29	1 23
		1					1		2								

ļ		ļ					1		2								
108	71	87	5	1	3	35	53	69	99	46	27	.11	5	9	8	14	
												1					
		1															
[
1			۱	5	1	4	14	30	11	3			2			3	
			8	5	8		2	1	3	6	4	1					
								1									
	108	108 71	108 71 87 1	108 71 87 5 1 1 1 8	108 71 87 5 1 1 1 1 5 8 5	108 71 87 5 1 3 1 1 1 5 1 8 5 8	108 71 87 5 1 3 35 1 1 1 5 1 4 8 5 8	108 71 87 5 1 3 35 53 1 1 1 5 1 4 14 8 5 8 2	108 71 87 5 1 3 35 53 69 1 1 1 5 1 4 14 30 8 5 8 2 1	1 2 108 71 87 5 1 3 35 53 69 99 1 1 5 1 4 14 30 11 8 5 8 2 1 3 1	1 2 108 71 87 5 1 3 35 53 69 99 46 1 1 5 1 4 14 30 11 3 8 5 8 2 1 3 6	108 71 87 5 1 3 35 53 69 99 46 27 1 1 5 1 3 35 53 69 99 46 27 1 1 5 1 4 14 30 11 3 8 5 8 2 1 3 6 4	108 71 87 5 1 35 53 69 99 46 27 11 1 1 5 1 3 35 53 69 99 46 27 11 1 1 5 1 4 14 30 11 3 1 1 5 8 2 1 3 6 4 1	108 71 87 5 1 35 53 69 99 46 27 11 5 1 1 5 1 3 35 53 69 99 46 27 11 5 1 1 5 1 4 14 30 11 3 2 1 1 5 1 4 14 30 11 3 2 1 1 5 8 2 1 3 6 4 1	108 71 87 5 1 35 53 69 99 46 27 11 5 9 1 1 5 1 3 35 53 69 99 46 27 11 5 9 1 1 5 1 4 14 30 11 3 2 1 1 5 8 2 1 3 6 4 1	108 71 87 5 1 3 35 53 69 99 46 27 11 5 9 8 1 1 5 1 3 35 53 69 99 46 27 11 5 9 8 1 1 5 1 4 14 30 11 3 2 2 1 1 5 1 4 14 30 11 3 2 1 8 5 8 2 1 3 6 4 1 1	108 71 87 5 1 3 35 53 69 99 46 27 11 5 9 8 14 1 1 5 1 3 35 53 69 99 46 27 11 5 9 8 14 1 1 5 1 4 14 30 11 3 2 3 1 1 5 1 4 14 30 11 3 2 3 8 5 8 2 1 3 6 4 1

PELECYPODA OLIGOCHAETA Gordidae Naididae 2 2 7 1 1 2 11 2 TOTAL 114 131 216 299 480 582 379 321 173 386 240 341 52 119 189 120 138 160 SUM TOTAL 967 18 461 1361 873 418 19 17 16

3.07

2.94

NO. OF TAXA DIVERSITY INDEX

TAXA

DIPTERA

COLEOPTERA Agabus Gyrinus

Atherix Ceratopogonidae

Chelifera Chironomidae

Hexatoma Muscidae

Simulium

Baetodes Caenis

Erhoron Heptagenia

Hexagenia Isonychia Leptophlebia Metretopus Neocleon **Parameletus**

Rhithrogena

Acroneuria Classenia Hastaperla Isogenus

Isoperla

Pteronarcella Pteronarcys

Brachycentrus

. Glossosoma Glossosomati Hydropsyche

Cheumatopsyche

PLECOPTERA

TRICHOPTERA

HEMIPTERA

ODONATA

GASTROPODA

HIRUDINEA

Sighloglecton Tricorythodes

Centroptilum Cinygma Cinygmula Epeorus Ephemerel]

Tipula EPHEMEROPTERA Ametropus Baetis

Dolichopodidae Erioptera Helius Henedromia

2.99

2.99

2.82

APPENDIX 20 - Benthic Macro-invertebrates collected from the . Athabasca River August 5-6, 1981

	Site Location		-20			40			80		 	120		i	180		;	200			240	
TAXA	Sample No.	1	2	3	<u> </u> 1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
COLEOPTE Agab Gyri Hele Hyda Opti Oreo	RA us nus ophorus ticus oservus dytes																					
DIPTERA Athe Cera Chel Chir Doli Erio Heli Heme Hexa Musc Simu Tipu	rix topogonidae ifera onomidae chopodidae ptera us dromia toma idae lium la		1	1		2	4	1		3		3	3	32	2	4	and a second and the	,	7		2	5
EPHEMEROP Amet Baet Caen Cent Ciny Ciny Epeo	TERA ropus is odes is roptilum gma gma gmala rus	2	12	8	6	6	14	9	1 19	11	4	2	13	4	9	31	a second a s	6	4 22 1		14	26
Ephe Epho Hept Hexa Ison Lept Metr Neoc	merella ron genia genia ychia ophlebia etopus leon	18	20 6	8 2	14	19	30	4	24	1 34	3	8	١	20	20	14	(a)	31	157	(Б	55	83
Para Rhit Siph Tric	meletus hrogena iloplecton orythodes	6	18	12	1			· manufacture - Az dan Papa Az Yugan	3	4	2		1	2		3		8	36 2	:	16	44 1
PLECOPTER Acro Clas Hast Isop Isop Pter Pter	A neuria senia aperla enus erla onarcella onarcys	2 1 106	1 90	1 85 1	25	12	21	11	44	39	39	47	20	6	5	13 2		93 1	249	A CONTRACTOR OF A CONTRACTOR AND A CONTRACT	22 1 1	20 1 3
TRICHOPTE Brac Cheu Glos	RA hycentrus matopsyche sosoma	35	1 48	33	3	4	2	1	4	10	2	2	3			1		1	50		2 4	1 5
Glos Hydr Limn Neur Plat Psyc	sosomatidae opsyche ophilidae eclepsis ycentropus homyiidae	61	96	94				1		2	6	11						1	5		5	4
HEMIPTERA Cori	xidae																					
ODONATA Ophi	ogomphus			1	2	1		1	3		5	1	2	1		2						1
GASTROPOD	A							2		6		۱									3	4
HIRUDINEA Glos	siphonidae												1									
PELECYPOD	A 																					
ULIGOCHAE Gord Naid	IA idae idae		1		3	1			_1_				1		5	1						4
DIVE	TOTAL SUM TOTAL NO. OF TAXA RSITY INDEX	232	294 2	246 772 14 26	54	45 2	71 170 9 . 33	21	99 2	110 230 13 . 15	61	76 2.	44 181 12 17	40	42 2.	72 154 13 54		144	535 679 13 .01		125	205 330 15 .67

* (a) Sample lost. - 59 * (b) Sample lost.

^{.....}

Site Locatio	n	-20		[40			80			120			180		1	200			240	 I
T <u>AXA Sample No</u>	1	2	3	1	2	3	1	2	3	١	2	3	1	2	3	1	2	3	۱	2	3
COLEOPTERA Agabus Gyrinus Heleophorus Hydaticus Optioservus Oreodytes									:							معريا والمراجع والم					
DIPTERA <i>Atherix</i> Ceratopogonidae <i>Chelifera</i>	1							1			1		and a manufacture sector as a manufacture of						and a state of the	4	
Chironomidae Dolichopodidae <i>Erioptera</i> Helius	1	2	2	2	3	4	2	2	3	2	2	5	1	2	1	4	1	1			
Remedromia Hexatoma Muscidae Simulium Tipula		11					a a suman and a sum a sum a sum			2		4	and a second			10	3	1	30	4	9
EPHEMEROPTERA Ametropus Baetis Baetodes Caenis Centroptilum	28	15	9	1	3	3	19	16	24	16	24	1C 1	1	3	2	9	8	5	, 3		2
Cinyama Cinyamula Epeorus Ephemerella Ephoron Heptagenia	25	64	25	18	10	38	2	48	50	24	47	1 2 1 37	21	14	11	24	35	51	: 1 ,22	2 2	1 24
Hexagenia Isonychia Leptophlebia Metretopus Neocleon Farameletus		1		ar a Marcalabella pagata titilla can			and the second second managements when the second														
Rhithrogena Siphloplecton Tricorythodes	36	51	22	4 10	1	3 12	28	21	12 1	31	25	34	4	8	2	48	42	66 1	43	19	35
PLECOFTERA Acroneuria Classenia Hastaperla		1					an wind a manufacture and a sub-									- - - -					
Isogenus Isoperla Pteronarcella Pteronarcys	42	70 2	54	14	11	24	55	57 1	71 1	12	70 3	58	35	22	31	85 2	64 4	68	112 2	98 1	179
TRICHOPTERA Brachycentrus Cheumatonsuche	80	237	81	112	2 98	230	377	2 415	1 420	1	1 439	487	3	4	6	4	2 266	5 319	29	10	11 40 .
Glossosoma Glossosomatidae Hydropsyche Limnophilidae Neureclepsis Platucoptropus	69	91	82	2	4	1	18	16	21	47	67	63	23	18	9	115	46	29	84	56	85
HEMIPTERA																					1 1 1
Corixidae ODONATA Ophiographus										_	_									_	1 1 1
GASTROPODA		1		6	3	6 8	9	16 11	17 15	1	9	12 7	5	1	1	6		8	4	3 5	5
HIRUDINEA Glossiphonidae							1														
PELECYPODA																					ţ.
OLIGOCHAETA Gordídae Naididae				5	7	7		1			2	6		1	1		1		2		5
TOTAL SUM TOTAL NO. OF TAXA DIVERSITY INDEX	284	547 1 2	275 106 15 . 97	176	147	313 636 13 .60	547	608 1 1	636 791 17 . 80	310	690	728 1728 19 1.99	102	91 2	66 259 13 . 75	1239	9 472	2 554 2265 13 1.74	43	24	398 1073 15 2.72

APPENDIX 21 - Benthic Macro-invertebrates collected from the Athabasca River August 26-27, 1981

- 60 -

D	ate	A	В	С	· D	Mean (x) (B, (Std. Dev. C, D)
June	4	-	-	1	0	0.5	0.7
June	11	-	4	2	0	2.0	2.0
June	17	35	6	3	3	4.0	1.7
June	25	168	23	2	10	11.7	10.6
July	2	276	28	7	9	14.7	11.6
July	9	295	27	22	15	21.3	6.0
July	16	362	44	40	101	61.7	34.1
July	23	-	196	420	641	419.0	222.5
July	30	6898	784	227	585	532.0	282.3
Aug.	6	3840	382	122	286	263.3	131.5
Aug.	13	3733	85	196	562	281.0	249.6
Aug.	20	2323	103	104	237	148.0	77.1
Aug.	28	386	31	14	36	27.0	11.5
Sept.	3	692	12	6	11	9.7	3.2
Sept.	10	640	86	23	42	50.3	32.3
Sept.	17	73	1	2	6	3.0	2.6
Sept.	24	-	5	1	26	10.7	13.4

BARREL TRAP

Appendix 22 - Barrel trap sample data - 1981

Appendix 23. Results and discussion - Sediment residue samples.

The results of sediment samples collected during 1981 are presented in the following table. The samples were analyzed by the Alberta Environmental Centre in Vegreville. A series of replicate samples collected on June 22/23 and June 29/30 were also analyzed by the Food Lab of Alberta Agriculture in Edmonton.

The results do not show any large accumulations of methoxychlor residues in the sediment at any sample location in the Athabasca River over the summer. However, the results do show that low concentrations of methoxychlor were found at the control site(s). This is consistent with Charnetski and Depner's (1980) findings that background levels of about 4.0 ppb of a chemical (not suspected to be methoxychlor) is present in the Athabasca River upstream and downstream of the treatment sites.

DISTANCE FROM ATHABASCA (km downstream) Fort McMurray											
	Control 40	80	120	160	180	200	8 km u/s	Bridge			
Sample Dates	Trea	tment a	t 60 kr	n on Ma	y 20						
May 21	0.2	16.0	ND	ND	ND						
	Treat	cment a	t 160	on on M	ay 21						
May 23					,			ND			
May 24							17.2 at 05:25	13.1 at 05:55			
							14.0 at 11:55	4.4 at 14:00			
May 25/26	ND	ND	12.1	6.9	9.0	16.6					
June 2/3	ND	2.9	5.1	5.4	5.9	7.7					
June 9/10	ND	ND	12.3	2.1	2.1	3.1					
June 18/19	6.1	ND	8.6	4.9	ND						
	Treatme	nt at 0.2 p	145 km pm for	on Jun 15 min	e 19						
June 22/23	6.1 (ND)*	8.1	6.2 ♥ (ND)*	7.7	6.5 (3.0)*	6.8 (7.0)*					
June 29/30	5.0 (ND)*	3.8	ND (ND)*	5.4	(1.0)*	9.9 (2.0)*					
July 7/8	1.1	ND	2.1	ND	ND	4.2					
July 14/15	1.4	0.7	2.6	ND	ND	ND					
Aug. 5/6	1.8	1.5	1.6		1.3	0.3					
Aug. 26/27	ND	ND	ND	3.2	ND	2.8	Į				
ND - not detectable at a level of 0.5 ppb (AEC) (ND)* - not detectable at a level of 0.2 ppb (Food Lab) ()* - Food Lab analysis of replicate samples											

SEDIMENT SAMPLES - 1981

٠

All results expressed in ppb (parts per billion), wet weight basis.

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.