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Abstract

Control and manipulation of the angular momentum of optical, electronic, or light-matter

interacting systems has given rise to a myriad of applications. Majority of these applica-

tions, however, deploy only global angular momentum properties of these fields by solely

incorporating far-field interactions or the conservation of total angular momentum. Local

properties of optical and electronic fields and their interactions in the near-field region have

been gaining attention only recently and a thorough understanding of these dynamics is still

essential.

Here we study the angular momentum dynamics of light-matter interacting systems

from a fundamental relativistic point of view. By applying Noether’s theorem to the quan-

tum electrodynamics Lagrangian, we discover a local conservation of angular momentum

equation applicable to far-field and near-field interactions. In contrast to the widely used

duality symmetry approach towards the local conservation of helicity, our approach is quan-

tum, relativistic, applies to light-matter interactions, does not introduce a new gauge field,

and thus is experimentally testable. Our theory not only applies to the recent near-field and

local light-matter experiments, but it also pushes the frontiers in light-matter interactions

for the realization of next generations of experiments on the role of angular momentum.

We further investigate the light-matter interacting system of an atom or a quantum dot

coupled to the evanescent fields of a spherical resonator. We show that, due to the local

alignment of the optical spin of the resonant modes and the radiated field of the source, the

modes of the resonator are excited asymmetrically depending on the Zeeman transitions

of the source. These results show the importance of local and near-field photonic spin in

realizing on-chip quantum routing of single photons in quantum optical networks. Our work

presents a generalization of universal spin-momentum locking of light to 3D structures.

Moreover, we take the Dirac-Maxwell correspondence approach – the study of simi-

larities between the Dirac and Maxwell’s equations – by presenting the solutions of Dirac

equation for a cylindrical geometry. Labeled as Dirac wire, this geometry is the electronic

analogue of an optical fiber. We have presented a set of new solutions for three types of
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Jackiw-Rebbi problems. We have studied the spatial distribution and global quantization

of spin and orbital angular momentum in Dirac wire. We show that, as a result of the field

confinement, a longitudinal angular momentum component emerges which is absent in pre-

viously know solutions of Dirac equation. Dirac wire can have important implications for

spintronic applications.

In addition, we demonstrate angular momentum properties of acoustic waves by solv-

ing for the Rayleigh surface acoustic waves (SAWs) propagating on a slab of Lithium Nio-

bate. While these solutions are known, we show the spin-momentum locking property in

the displacement field as well as the gyrating electric field of SAW and connect it to the

spin-momentum locking observed in Dirac and Maxwell solutions of surface waves – high-

lighting the universality of this phenomenon.

Finally, we study the implications of spin optomechanics for quantum vacuum radiation

and quantum vacuum torque. By solving for a magnetic nanosphere spinning in the vicinity

of a slab of a metallic or magnetic material, we find quantum vacuum radiation emerging

from the magnetic sphere that is orders of magnitude larger than any other known material.

We further show that the consequences of this large vacuum radiation or vacuum friction

is experimentally observable for feasible and realistic setup parameters. These results are

breakthrough for the field of quantum vacuum fluctuations proposing the first experimental

observation of quantum vacuum radiation and quantum vacuum friction.

Our results have important implications for the future of the fields of spin photonics

and light-matter interactions. They provide insight for the understanding of the role of

angular momentum in the local light-matter interactions and propose unique platforms for

test and understanding of such interactions. Our work lays the foundation for future table-

top experiments for spin quantum electrodynamics.
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1.1 Experimental platforms for the investigation of near-field and evanescent
local interactions. (a) Cold caesium atoms interacting with the local field
of an optical fiber (image taken from [16]). (b) Local interaction between
a single Rb atom and a spherical resonator allows an all-optical routing
with single photons used as switches (image taken from [17]) (c) Local
interaction between a circularly-polarized dipole and the spin of the surface
plasmon polaritons in a metal lead to unidirectional coupling to the SPPs
(image taken from [18]) (d) Interaction between the transitions in a quantum
dot (QD) and the local spin of the photonic modes lead to unidirectional
propagation of modes along the photonic waveguide(image taken from [19]). 4

1.2 Overall structure of the thesis. Chapter 2 discusses our fundamental ap-
proach towards the spin electrodynamics by deriving a new conservation
law of angular momentum. This general topic encompasses the next four
chapters of the thesis where we have discussed the implications of spin elec-
trodynamics in four particular problems. Chapter 3 discusses a nanopho-
tonic structure where we have shown the role of angular momentum in on-
chip quantum emitter routing. Chapter 4 discusses Dirac-Maxwell corre-
spondence where we have studied the similarities between the solutions of
Dirac equation in cylindrical geometry and optical fiber. Chapter 5 inves-
tigates the spin properties in the acoustic waves propagating on the surface
of lithium niobate. In chapter 6 the implications of spin optomechanics for
quantum vacuum radiation and quantum vacuum torque has been studied. . 13

2.1 Conservation laws of angular momentum in light-matter interacting sys-
tems (a) conventional conservation of global total photonic and electronic
angular momentum. This conservation law applies to closed systems and
does not include angular momentum exchange due to near-field interac-
tions. (b) Local conservation of angular momentum applicable to all regions
of interaction. The conventional conservation of sum of angular momenta
is replaced by the conservation Eq. (2.6). (c) Table of quantities defined in
this chapter, representing the spatial and temporal densities of the scalar,
vector, or tensor observables pertinent to angular momentum. Highlighted
quantities are the new terms defined in this chapter. The local conservation
of angular momentum equation (Eq. (2.6)) connects the well-known terms
such as spin density, OAM density, helicity and chirality to these newly
defined quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.2 Local conservation law for the spin [Eq. (2.12)] in a dual-mode optical fiber.
The individual terms in Eq. (2.12) are plotted on the first three columns from
left: The first column is the time-derivative of spin ( ∂∂t(E

⊥×A⊥)), the sec-
ond column is the divergence of helicity current tensor (−∇i(A⊥i B)/µ0) ,
and the third column is the gradient of the helicity density (∇(A⊥ ·B)/µ0)
. The fourth column is the EM spin-orbit torque given by Eq. (2.11) (in this
case τem = (B · ∇)A⊥/µ0). The three rows show the local value of each
vector along the three axes of optical fiber problem: ρ̂ radial direction, φ̂
azimuthal direction, and ẑ axis of the fiber. Note that adding the first three
column on each row together gives the last column τem; thus confirming
Eq. (2.12). The results are for an optical fiber of radius 50 µm with the two
modes at the wavelengths 4.3 µm and 4.29 µm. . . . . . . . . . . . . . . . 25

2.3 Dynamics of the terms in Eq. (2.12) versus (a) z and (b) time. The plots
only show the ẑ component of each term. These plots show that the spin-
orbit torque (τem) is equal to the sum of the other terms. The inset in panel
(a) shows the location where the terms are evaluated for both of the figures. 27

3.1 Schematic of the proposed experiment to study spin photonics in WGMs.
The unique proposed effect due to the locked electromagnetic triplet con-
sisting of spin, momentum, and decay. (a) A quantum source with circularly
polarized emission (σ± transitions) is placed in the vicinity of a spherical
resonator. The near-field interaction between the source and TM WGMs of
the sphere results in excitation of WGM with only spin polarized, positive
OAM along z direction. This unidirectional behaviour is a manifestation
of spin-momentum locking in a 3D structure. Spin, linear momentum, and
decay are along θ̂, φ̂, and r̂, respectively, and form a triplet for the TE and
TM modes. (b) General form of Zeeman transitions in a cold atom [100] or
quantum dot [101]. For σ± and π transitions, ∆mF = ±1 and ∆mF = 0,
respectively, where mF is the quantum number pertinent to the total angu-
lar momentum of the source (nucleous and electrons). These transitions can
be modeled by dipole sources with the electric dipole moment given by Eq.
(3.7) [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Proposed experimental setup for the spin photonics in WGMs. By exciting
the resonator using a σ− transition of a quantum source, WGMs with pos-
itive orbital angular momentum are excited stronger. This can be observed
by proximity coupling of a tapered optical fiber to the spherical resonator.
As a result of coupling between the WGMs with positive OAM and the
fiber, modes propagate only in one particular direction in the fiber [17, 92].
Switching to a σ+ transition instead, would also reverse the propagation
direction inside the fiber. The source can be Zeeman transitions in cold
Caesium atom prepared in the excited state using a excitation signal [100]. . 34

3.3 Electromagnetic spin in TE and TM whispering galley modes. The color
plot shows the field intensity of Hr (Er) component of the TE (TM) mode
for l = 16 and m = 16 on the surface of the resonator. The blue arrows
show the direction of spin on the surface of the sphere. Modes with posi-
tive m, orbit the z axis counter-clockwise (+φ̂) while those with negative
m orbit the z axis clock-wise (−φ̂). With linear momentum along +φ̂,
Momentum, decay, and spin form a triplet. Spin direction follows the spin-
momentum locking property for both TE and TM modes. This means that
by changing the direction of OAM (changing the sign of m), the direction
of the spin (blue arrows) reverses for both TE and TM modes. This be-
haviour inspires unidirectional coupling of a circularly polarized dipole to
the WGMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.4 Plots of normalized scattered electromagnetic fields due to the right-handed
circularly polarized dipole (σ+ transition). (a) Er, (b) Eφ, and (c) Hθ in
the x − y plane. All components of the fields orbit along −φ direction
as a result of the circularly polarized dipole located at xd = a + 10nm
and yd = zd = 0 with the dipole moment ddd+ = d0√

2
(x̂ + iŷ) = d0êee+.

The circularly polarized dipole couples unidirectionally to the orbit of the
fields in the spherical resonator as a result of spin-momentum locking. One
important consequence of this is that the photonic spin of the source is
opposite to the OAM of the WGMs. Additional videos are available online
[22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Normalized Poynting vector along φ direction , Pφ, for the three cases of
(a) σ+ transitions (RH circularly polarized dipole), (b) σ− transitions (LH
circularly polarized dipole), and (c) π transitions (linearly polarized dipole
along x), in the x − y plane for the source located at xd = a + 10nm and
yd = zd = 0, and with the dipole moments given by Eq. (3.7). The negative
value of Pφ in (a) and postive value of Pφ in (b) indicate that, for the RH and
LH circularly polarized dipoles as the source, the WGMs of the spherical
resonator orbit clockwise (along −φ̂) and counter-clockwise (along +φ̂),
respectively. For the linearly polarized dipole in (c), however, the WGMs
inside the sphere are a mixture of clockwise and counter-clockwise fields
which eventually cancel out each other to give a net-zero OAM. Therefore,
coupling the WGMs to an optical fiber, for instance, on the other side from
the source, would result in an equal wave propagation in both directions in-
side the fiber. However, for a circularly polarized source, the modes would
only propagate along one direction inside the fiber, depending on the hand-
edness of source. This figure clearly shows the unidirectional behaviour of
spin interaction of the source and WGMs, as a result of the spin-momentum
locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 (a) Schematic of the Dirac wire. (b) The three Jackiw-Rebbi (JR) type do-
mains considered here are JR+ with electron mass inside (m1) and outside
(m2) the wire both positive, JR− with positive mass inside and negative
mass outside, and JR-D with a dispersive electronic mass inside [Eq. (4.5)]
and an arbitrary mass outside. JR-D corresponds to the minimal topological
insulator. Distribution of the probability density, ψ†ψ, for the three prob-
lems are shown in the three panels of (b). The fields are normalized such
that

∫
ψ†ψ = 1 when integrated over the entire cross section. Notice that

the probability amplitude of the JR− state is localized around the perimeter
of the wire ρ = a. Also, in the case of the JR-D problem, the wave function
is identically zero at the boundary and outside the wire ψ(ρ ≥ a) = 0. . . . 44

4.2 Spin and orbital angular momentum densities for the three Jackiw-Rebbi
(JR) domains (Fig. 4.1). As an example, a = 20 Å, µ = 1

2 , and kz = 0.
|m1|v2

F and m2v
2
F are 1 eV and 2 eV, respectively. For the JR-D problem,

m0v
2
F = 1 eV and B~2 = 50 eVÅ2 [138]. In all three scenarios we have
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Chapter 1

Introduction to Spin
Electrodynamics

1.1 Applications and Challenges

Angular momentum is a fundamental property of fields an d particles that is associated with

rotational degree of freedom. This property and the conservation of angular momentum

has been exploited in numerous applications and technologies. One of the first uses of

the conservation of angular momentum principle is the invention of gyroscopes where a

rotating object maintains its rotation axis due to the conservation of angular momentum [1].

Gyroscopes have found many applications in navigational systems and sensors and are more

recently being replaced by ring lasers and fiber optics gyroscopes for higher accuracy [2].

Conservation of angular momentum, however, is not limited to the classical systems

and moving objects. Manifestations of rotational symmetries and angular momenta is

numerous in interacting optical and electronic quantum systems. Ferromagnetism, anti-

ferromagnetism, paramagnetism, and diamagnetism are all manifestations of spin and or-

bital angular momentum of the electrons inside materials which can only be explained by

a quantum-mechanical treatment [3]. Conservation of angular momentum, together with

exchange interaction [4] and quantum-mechanical nature of the spin and orbital angular

momentum of electrons, is sufficient to explain many of these phenomena.

In the case of electromagnetic fields, on the other hand, angular momentum can be

explained both in classical or quantum-mechanical senses. In interactions with quantum

systems, however, the quantum nature of the electromagnetic wave becomes apparent lead-

ing to selection rules in atomic transitions and effects such as the photo-electric effect [5].

These observations show that the angular momentum of light comes in quanta of ~ , showing

both its quantum and bosonic (integer spin) natures. Spin and orbital angular momentum
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of light has been extensively measured [6, 7] and has found many applications in spinning

nanoparticles at high velocities [8] and quantum information [9].

The role of angular momentum in light-matter interacting systems becomes especially

important, giving rise to effects and applications such as optically detected magnetic res-

onance (ODMR) [10], electron spin resonance (ESR) [11], nuclear magnetic resonance

(NMR) [12] and magnetic resonance imaging (MRI) [13]. In these phenomena, the de-

generacy between the quantum states with opposite spins is broken by the application of a

magnetic field, while the electron (or the nuclei in the case of NMR and MRI) transitions

between these quantum states by absorbing or emitting a photon. In these phenomena, con-

servation of angular momentum is maintained due to the interaction of spin of electron or

nuclei with the angular momentum of photon. With a wide range of frequencies from a few

MHz in NMR, GHz range in ESR, to optical frequencies in ODMR, these techniques have

found many applications in spectroscopy, medical imaging, and defect detection in crystals.

Angular momentum transfer between the optical fields and the spin of a collection of

electrons in magnetic materials also occur in the magneto-optic Kerr effect (MOKE) [14].

In this effect, the magnetic properties of a given material is inferred by probing the po-

larization of the light reflected from the surface of the material. MOKE can also locally

probe the surface of a material, giving a map of magnetization domains. Similar to the

MOKE, Faraday effect is also the study of magnetic properties of a material or a medium

through the investigation of the polarization of the light transmitted through the medium.

This effect has also found a myriad of applications such as the detection and measurement

of magnetic fields in interstellar mediums [15]. In both of these effects, the exchange of

angular momentum between the electrons and the optical field is the key factor that makes

these observations possible.

1.2 Experimental Platforms

To show the importance of the spin of electromagnetic fields in the near-field, we look at

some of the recent works that have led to unique observations. These observations show that

new phenomena emerge as a result of near-field local interaction which is not captured in the

conventional treatment of angular momentum as global and time-independent quantities.

In chapters 3 and 6 we theoretically study the importance of near-field interactions for

experimentally feasible photonic systems and show the emergence of new phenomena that

are otherwise absent in far-field interactions.
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Figure 1.1 shows a number of important experimental setups that lead to the obser-

vation new phenomena due to the role played by the angular momentum in the near-field

interactions. These setups exploit atomic σ± transitions to achieve asymmetrical interac-

tions between quantum sources and optical modes.

The σ± transitions are identified by atomic transitions during which the electron changes

its orbital angular momentum by one unit of ~. This is denoted by the change in the quan-

tum number m, pertinent to the projection of electron OAM along the z-axis, where the

z axis is usually determined by an externally applied magnetic field. The magnetic field

breaks the degeneracy of the states with opposite OAM and thus, by appropriate tuning of

the excitation laser, the states that lead to ∆m = +1 or ∆m = −1 can be selectively ex-

cited. Due to the conservation of angular momentum, the change in the angular momentum

of the electron is compensated by the angular momentum of the excitation photon. There-

fore, the transitions with ∆m = ±1, labeled as σ± transitions, give rise to photons with

opposite polarization handedness. Hence, due to the dominance of the electric dipolar tran-

sitions compared to the higher multipolar transitions, the σ± transitions can be modeled by

circularly-polarized dipoles.

In cold atom experiments, it has been shown that the local interaction between quantum

transitions in a cold caesium atom and the angular momentum of evanescent fields of an

optical fiber leads to an asymmetrical propagation of radiation inside the optical fiber [16,

20]. As shown in Fig. 1.1(a), cold caesium atoms are trapped near a tapered optical fiber.

The optical modes of the fiber decay evanescently into the surrounding environment. By

trapping the atoms at sub-wavelength distance from the optical fiber, pronounced coupling

between the fiber and atomic transitions occurs. This coupling, however, is governed by the

local spin of the optical modes. A σ+ transition (a transition modeled by a right-handed

circularly-polarized dipole) excites the optical modes that have parallel optical spin to the

handedness of the dipole, leading to the unidirectional propagation of guided waves inside

the optical fiber. By exciting the σ+ or σ− transition in the atom, the optical modes can be

unidirectionally excited such that only detector 1 or detector 2 detects photons.

This phenomenon is also observed in resonant structures such as the one shown in

Fig. 1.1(b) for a single Rubidium (Rb) atom trapped near a spherical resonator. Similar

to the cylindrical geometry of Fig. 1.1(a), the local interaction between the σ± transitions

in the Rb atom and the modes of the resonator leads to the unidirectional propagation of

optical modes in the tapered fiber coupled to the resonator [17, 21]. Our theoretical work

shows that the local alignment of the spin of the radiation from the quantum source with the
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((a)) ((b))

((c)) ((d))

Figure 1.1: Experimental platforms for the investigation of near-field and evanescent local
interactions. (a) Cold caesium atoms interacting with the local field of an optical fiber
(image taken from [16]). (b) Local interaction between a single Rb atom and a spherical
resonator allows an all-optical routing with single photons used as switches (image taken
from [17]) (c) Local interaction between a circularly-polarized dipole and the spin of the
surface plasmon polaritons in a metal lead to unidirectional coupling to the SPPs (image
taken from [18]) (d) Interaction between the transitions in a quantum dot (QD) and the
local spin of the photonic modes lead to unidirectional propagation of modes along the
photonic waveguide(image taken from [19]).

modes of the resonator is responsible for this unidirectional behaviour [22]. In Ref. [17],

authors have shown that this setup can be used as an optical routing mechanism where by

triggering the Rb atom with single photons the photons propagating in the fiber can be

directed controllably in the optical network.

Figures 1.1(c) and 1.1(d) demonstrate observation of these phenomena in 2D geome-

tries. In Fig. 1.1(c) a circularly polarized dipole couples unidirectionally to the SPPs. Sim-

ilar to the cylindrical and spherical structures discusses above, here also the local spin of

the SPPs is the key factor in coupling to the spin of radiation from the source [18]. This

is also clearly observed in the 2D photonic structure of Fig. 1.1(d) where a QD with σ+
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and σ− transitions is placed in vicinity of a photonic structure. By breaking the symmetry

between the σ+ and σ− transitions with the use of an external magnetic field, these two

oppositely-polarized transitions can be selectively coupled to the photonic structure. Again

the local spin of the surface waveguide modes of the photonic structure determines whether

the left-propagating or right-propagating modes are excited depending on the transition in

the QD [19].

These studies show the importance of the local angular momentum properties in elec-

trodynamics. These phenomena are only observed in near-field interactions where the res-

onator or the waveguide is placed in the near-field region of the source. These structures

propose a variety of platforms for the study of local dynamics of angular momentum in

light-matter interactions. This field of study is at its infancy where only the first evidences

of local angular momentum interactions are manifested. Future developments can shed

light on the details of the local interactions in terms of the dynamics of angular momentum.

The observations in the field of magnetometry with ODMR, ESR, and MOKE experi-

ments, as well as the light-matter interaction experiments through evanescent and near-field

couplings mentioned above, herald the progress of the field of spin photonics and its impor-

tance in building the next generation of experiments, instrumentation, and computational

devices. These experiments show that near-field light-matter interactions can give rise to

effects that are not observed in the cavity-based light-matter interactions where the quantum

source interacts with the optical field only through the far-field free photons. As opposed

to spintronics, which is the study and control of spin of electronic currents using mag-

netic fields, spin photonics provides more flexibility and speed through the manipulation

of electronic spin using lasers and other optical fields. At the same time, the photonic and

electronic components can be easily integrated into chips using current technologies.

Given these observations, we believe that the study of angular momentum in light-

matter interacting systems, specialized to the near-field couplings, can shed light on the

nature of these interactions and propose new possibilities for the field of spin photonics.

From manipulation of decoherence time through interaction with evanescent electromag-

netic fields [23] to manipulation of selection rules through evanescent interactions [24] (see

section 7.2.4), study of near-field light-matter interaction provides new insight and proposes

alternative solutions for spin photonic applications.
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1.3 Fundamental Aspects

From a fundamental point of view, Emmy Noether showed that corresponding to any given

symmetry of a system, there exists a conservation law and a conserved (time-independent)

quantity [25]. Conservation of angular momentum corresponds to the rotational symmetry

of a given system and is mathematically described as no change in the Lagrangian of the

system as a result of an arbitrary rotation transformation. Lagrangian is a fundamental

property of any theory, classically defined as kinetic energy minus the potential energy.

The equations of motion for a given system are found by minimizing the integral of the

Lagrangian density over the entire space (named action), over all possible distributions of

solutions.

In the present work, we start our study by a fundamental treatment of angular mo-

mentum using the Noether’s theorem and the quantum electrodynamics Lagrangian. Our

major goal is to investigate the role of angular momentum in various optical, electronic,

and light-matter interaction systems, with special attention to the evanescent and near-field

properties of the fields. As we will see, other important features emerge as a result of this

pursuit which show the universality of some of the effects related to near-field interactions.

Before presenting our contributions in this field, we find it necessary to address some

fundamental aspect discussed so far. These clarifications are necessary for a true under-

standing of our results.

1.3.1 Relativistic vs. Non-relativistic

Quantum mechanical equations are traditionally derived from the classical equations of

motion by the standard method of canonical quantization. In this method, observables are

replaced by operators through which the Hamiltonian of the system is found. Hamiltonian

is essentially the time-evolution operator of the system whose eigenvalues, when acted on

the eigenvectors, give the energy of the system.

If the standard quantization is performed on the classical energy of the system,

E =
p2

2m
+ V (r, t), (1.1)

where the first term is the kinetic energy with p being the momentum and m mass of the

particle and the second term potential energy, we find the Schrodinger’s equation, written

as

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + V (r, t)

]
ψ(r, t). (1.2)
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In this equation, the wave function ψ(r, t) is a scalar function and thus does not include the

spin. Moreover, it does not correctly capture the motion of particles at relativistic energies.

Due to these shortcomings, corrections are usually added to this equation to include rel-

ativistic and angular-momentum-related effects. These corrections are usually derived by

approximating the relativistic quantum mechanical equation of motion.

Paul Dirac showed that, by quantizing the relativistic energy equation,

E =
√
p2c2 +m2c4, (1.3)

with c being the speed of light, relativistic quantum mechanical Hamiltonian can be found.

Due to the presence of the square root in Eq. 1.3, Dirac showed that the linear Hamiltonian

equation can be found by introducing the matrix equation,

i~
∂

∂t
ψ(r, t) =

[
−i~cα · ∇+ βmc2

]
ψ(r, t). (1.4)

Here, α and β are 4× 4 matrices (see Appendix C) and, unlike Schrodinger’s equation, the

wave functions ψ(r, t) is a 4-component vector called bi-spinor. Famously called ’Dirac

equation’, Eq. (1.4) naturally includes the spin property of the fields due to the bi-spinor

nature of the wave function and correctly describes many of the higher energy phenomena

in AMO and high energy physics. Moreover, it is important to note that the Dirac equation

is Lorentz invariant; a property that is essential when discussing the rotational symmetries

of the equations, as discussed in chapter 2.

Due to the fact that spin naturally emerges in the Dirac equation, and since it is Lorentz

invariant, we incorporate the Dirac equation in our study since it is aligned with our goal of

study of angular momentum dynamics in light-matter interactions.

1.3.2 Gauge Invariance

Gauge invariance expresses a mathematical freedom in choosing the fields that represent the

same physical observables. This feature arises in many field theories and states that phys-

ical observables associated with the system should not change as a result of this freedom.

For instance, in the electromagnetic theory, due to the fact that the magnetic field is diver-

genceless∇ ·B = 0, it can be written is terms another vector field, named electromagnetic

vector potentialA, as,

B = ∇×A. (1.5)
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Also, using the Maxwell’s equation∇×E = −∂B/∂t, the electric field can be written in

terms of the vector and scalar potentials,A and φ, as

E = −∂A
∂t
−∇φ. (1.6)

While E and B are unique, observable, and physical quantities, the scalar and vector po-

tentials φ andA clearly are not since under the transformation

A→ A+∇Λ, φ→ φ− ∂Λ

∂t
, (1.7)

for an arbitrary differentiable function Λ, the electric and magnetic fields in Eqs. (1.5) and

(1.6) remain unchanged. The transformation in Eq. (1.7) is called a gauge transformation

and corresponds to the mathematical freedom in choosing a gauge for the electromagnetic

potentials by setting some restrictions on the potentialsA and φ. These restrictions are usu-

ally chosen based on convenience in the underlying problem and do not have any physical

significance. Examples of these fixing conditions (called gauges) in electromagnetic theory

are Coulomb gauge which defines∇·A = 0, and Lorenz gauge which sets∇·A+ 1
c2
∂φ
∂t = 0.

It should be pointed out that the mathematical description of physical observables of

the system such as electric field, magnetic field, and charged currents cannot change as a

result of this freedom. Since this is a mathematical freedom, quantities that change with

the change of the chosen gauge are considered nonphysical. A quantity is said to be gauge-

invariant or gauge-independent if the mathematical form of the quantity does not change as

a result of a change in the chosen gauge. Since the quantum electrodynamic Lagrangian

employed in chapter 2 is a theory with gauge freedom, in our discussion of conservation of

angular momentum of light-matter interactions it is essential to define gauge-independent

quantities in order to obtain physically meaningful observables.

1.3.3 Quantum vs. Classical

With regards to the electromagnetic radiation, classical fields are defined solely by the time-

and space-dependent electric and magnetic fields defined through the Maxwell’s equations,

∇×E = −∂B
∂t

(1.8a)

∇×B =
1

c2

∂E

∂t
+ µ0J (1.8b)

∇ ·B = 0 (1.8c)

∇ ·E =
ρ

ε0
(1.8d)
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where ε0 and µ0 are the vacuum permittivity and permeability, respectively, and ρ and J

are the free charges and free currents. The total electromagnetic energy density is defined

through the sum of the squares of the electric and magnetic fields. The electromagnetic

oscillations are considered quantized when each oscillation is modeled by a harmonic os-

cillator. Also considered as second quantization, in this case the energy comes in quanta of

energy called photons where the energy of each photon is written famously as ~ω, with ω

being the frequency of oscillation of the photon.

In the quantum electromagnetism, electric and magnetic fields become field operators

and can be described as a quantum superposition of quantum states with n number of pho-

tons |n〉, also known as Fock states [26]. This quantization method, however, is well-

developed to apply to the free electromagnetic radiations, implemented commonly by laser

cavities. This method faces challenges when applied to the evanescent (decaying) electro-

magnetic field and near-fields. This is because these fields are represented by longitudinal

and scalar photons, which are not physical since they are gauge-dependent, and a physical

quantized number state for these photons cannot be written [27, 28]. Due to these chal-

lenges, in this study, we only focus on the ’classical’ representation of electromagnetic

fields in the sense that no second quantization is performed on the fields. However, in the

study of light-matter interactions, the Dirac equation is used which is a quantum relativistic

equation as explained below.

In studying the matter fields, the classical Newtonian or relativistic equations are quan-

tized using the canonical quantization method where the momentum and energy quantities

are replaced by operators that act on the wave function, as explained in section 1.3.1. These

equations and wave functions specify the distribution of quantum state of the system. Even

without performing the second quantization, quantum effects are still present due to the fact

that canonical observables such as momentum and energy are non-commutative and thus

follow the Heisenberg uncertainty principle which is a quantum mechanical phenomenon.

Performing second quantization on these matter fields would give rise to the quanta of the

fields called particles. In our study in chapters 2 and 4, no second quantization is per-

formed on the quantum fields and only the relativistic quantum equation of the Dirac field

is employed.

The study of angular momentum in second-quantized quantum electrodynamics re-

quires a thorough and careful investigation of quantized electromagnetic fields, Dirac fields,

and their interaction and is of great interest to high-energy physics. This research, however,

is out of the scope of the current study and will be the focus of a future work.
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1.3.4 Spin Statistics

Spin statistics studies the collective behaviour of fundamental particles. Depending on

the type of behaviour, particles can be divided into two groups of fermions and bosons.

Fermions follow the Pauli exclusion principle which states that no two identical fermions

can occupy the same quantum state. On the other hand, bosons follow a different statistics

which states that unlimited number of indistinguishable bosons can occupy the same quan-

tum state. This is mathematically equivalent to stating that, under the exchange of particles,

the fermionic wave function is antisymmetric while the bosonic one is symmetric, or,

ψ(k1, k2)→ ±ψ(k2, k1) (1.9)

where the first and second place in the argument of the wave function refer to the first and

second particles, respectively, and k1 and k2 refer to two different quantum numbers. In

Eq. (1.9), the plus sign refers to bosons since it is symmetric with respect to exchange, while

the minus sign refers to fermions. It is evident that, by setting k1 = k2, the fermionic wave

function (the one with negative sign) becomes zero, indicating that two identical fermions

cannot occupy the same quantum state.

This collective behaviour of fermions and bosons is directly linked to the spin properties

of these particles. Fermions are known to have half-integer spins while bosons are identified

by integer spins. Since the symmetry of the wave function of fermions or bosons is directly

linked to the spin of these particles, the collective behaviour of them is termed spin statistics.

The connection between the half-integer spin and the antisymmetric properties of the

fermionic field can be naively explained by the fact that, for the second quantized Dirac

solutions to be causal (Lorentz invariant) with positive-definite energies, the fields should

be antisymmetric. Since Dirac fields manifestly describe half-integer particles only, the

half-integer spin and antisymmetry of the fields are only satisfied simultaneously [29]. For

bosonic fields of Maxwell’s equations, on the other hand, a symmetric wave function is nec-

essary for the second quantized fields in order to obtain positive energies. Since Maxwell’s

equations represent massless spin-1 particles [30], the symmetry of the wave function and

spin-1 properties are satisfied simultaneously.

Obviously, these reasonings only apply to the fields of the Dirac equation and Maxwell’s

equations and do not fully prove the direct connection between the spin and symmetry prop-

erties of the wave function of fundamental particles. A general and robust proof has proven

to be more challenging [31]. Note that the collective behaviour of bosons and fermions is

not the focus of this thesis. However, an overall understanding of the fundamental differ-
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ences between these two particle types is important in discerning between the fundamental

spin properties and geometrical or structural field properties. In this work, we will study

both the fermionic fields of the Dirac equation and the bosonic fields of Maxwell’s equa-

tions separately and together. We show that, despite their fundamental differences, these

fields can exhibit analogous angular momentum properties.

1.3.5 Near-Field, Far-field, and Evanescent

Throughout this work, we will refer to these terms frequently in discussing different forms

of electromagnetic interactions. While the terms near-field and far-field are specifically

defined with respect to the distance from the current sources in electromagnetic theory,

evanescent fields are the property of individual fields (apart from interactions) that can be

manifested in all types of fields, including Maxwell and Dirac fields.

Near-field and far-field are defined according to the distance, with respect to the wave-

lengths, from the current sources. Although they have clear definitions [32], it is enough for

the purpose of our study to know that far-field starts about a few wavelengths away from

the source, while near-field is used for sub-wavelength distances.

Evanescent field, on the other hand, is the decaying property in the fields which can

be created for purely optical or electronic fields. These fields are known by having an

imaginary momentum number and are usually formed at the boundary between two media

with different properties. For instance, in optical fibers, evanescent fields from outside of

the fiber due to total internal reflection of light inside the fiber. To satisfy the boundary

condition at the interface between the materials with different dielectric permittivities, the

field outside of the core of the fiber (the region called cladding) is non-zero and can be

shown to decay exponentially into the surroundings. SPPs have a similar signature which

are created at the boundary of metals and vacuum. As discussed in section 1.2, these fields

have found a myriad of applications in nanophotonics as well as condensed matter physics.

In the present work, these terms are frequently used since the focus is the local and

near-field light-matter interactions.

1.3.6 Duality Symmetry and its Limitations

Duality symmetry is a series of works by K. Bliokh [33], S. Barnett [34], M. Berry [35],

and G. Molina-Terriza [36], where by writing the Maxwell’s equations Lagrangian in a dual

symmetric form and application of Noether’s theorem, conservation equation for helicity of

light is found. The duality symmetry refers to the symmetry property of the source-free
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Maxwell’s equation where upon the transformation,

E →E cos θ −H sin θ

H →E sin θ +H cos θ,
(1.10)

Maxwell’s equations remain unchanged for an arbitrary value of θ [36]. Dual symmetric

form of the electromagnetic Lagrangian is thus written such that this symmetry is evidently

satisfied by adding to the free electromagnetic Lagrangian 1
4FµνF

µν , with Fµν = ∂µAν −

∂νAµ, a secondary term, GµνGµν [33], where Gµν = ∂µCν − ∂νCµ introduces a new

vector potential Cµ proportional to the curl of the electric field.

Application of Noether’s theorem gives rise to the conservation of dual symmetric helic-

ity of the free electromagnetic fields. Being defined as the projection of spin of a particular

field along its momentum, helicity is a scalar quantity indicating the handedness of a parti-

cle as it propagates. It is written, in its dual symmetric form, for free electromagnetic fields

as [33],

h = A ·B −C ·E. (1.11)

While this quantity is conserved according to the Maxwell’s equations, it introduces a new

vector potential C which does not have any physical significance. Since a new gauge field

introduces fundamental problems into the masslessness of Maxwell’s equations [37, 38],

this new quantity cannot be an independent gauge field and is solely a mathematical choice.

Although conservation of the dual symmetric helicity defined in Eq. (1.11) is not math-

ematically incorrect, it is not a testable and physically significant conservation equation

since it only applies to the source-free Maxwell’s equations. In fact, as was shown by D.

Lipkin [39], there are many of such conserved quantities for the source-free Maxwell’s

equations. Testing this conservation equation requires introduction of a localized matter-

based probe which would convert the angular momentum of light into physical or electronic

angular momentum for observation. Such a probe, however, would introduce an external

or induced charged current into the system and would immediately break the source-free

condition of Maxwell’s equation and thus the dual symmetry condition of the Lagrangian

would no longer hold.

In our approach towards the fundamental study of spin electrodynamics in light-matter

interactions in chapter 2, however, we have employed the QED Lagrangian which gives the

relativistic Dirac and Maxwell equations of motion. Unlike the duality symmetry discussed

above, our study is quantum mechanical, relativistic, applies to light-matter interactions,

and it does not introduce a new gauge field. In fact, as shown in section 2.3, the helicity
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Figure 1.2: Overall structure of the thesis. Chapter 2 discusses our fundamental approach
towards the spin electrodynamics by deriving a new conservation law of angular momen-
tum. This general topic encompasses the next four chapters of the thesis where we have
discussed the implications of spin electrodynamics in four particular problems. Chapter 3
discusses a nanophotonic structure where we have shown the role of angular momentum
in on-chip quantum emitter routing. Chapter 4 discusses Dirac-Maxwell correspondence
where we have studied the similarities between the solutions of Dirac equation in cylindri-
cal geometry and optical fiber. Chapter 5 investigates the spin properties in the acoustic
waves propagating on the surface of lithium niobate. In chapter 6 the implications of spin
optomechanics for quantum vacuum radiation and quantum vacuum torque has been stud-
ied.

density appears in our conservation of angular momentum equations in its original form

A ·B. As a result, our conservation equation has important physical significance since it is

fundamentally testable. Moreover, our theory introduces new terms that become important

in near-field light-matter interactions.

1.4 Summary of Contributions

Given these prominent observations regarding the angular momentum in optical and elec-

tronic fields, the importance of a deeper approach towards light-matter interacting systems,

especially for fields interacting in near-fields, becomes essential. This approach is important

in advancing the fields of quantum metrology, quantum computing, light-matter interacting

systems, and spin photonics.

Figure 1.2 shows an overall picture of our contributions in this work. We present our
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first contribution in chapter 2 related to the field of spin electrodynamics. This chap-

ter takes a fundamental approach towards angular momentum through the application of

Noether’s theorem to the relativistic Dirac equation interacting with the electromagnetic

field. In this approach, starting from the quantum electrodynamics Lagrangian, we derive

a gauge-independent conservation equation which constitutes the contribution of Dirac and

Maxwell’s fields to the total angular momentum. More importantly, we derive a local (for

a every point in space) conservation equation and introduce new terms responsible for the

transfer of angular momentum between different fields and different locations in space.

This method defines rigorous, gauge-independent, and observable quantities for the angular

momentum of the Dirac and Maxwell fields and connects them to other concepts encoun-

tered in spin electrodynamics such as chirality, helicity, spin current, and orbital angular

momentum (OAM) current.

It is important to note that our work is beyond the duality symmetry discussed above.

Being applicable to light-matter interaction, our conservation equation is fundamentally

testable and does not introduce new non-physical gauge fields into the theory. It is also

more fundamental since it puts well-known angular momentum related terms of optical and

electronic fields such as spin, orbital angular momentum, helicity, and chirality, together

with new terms such as angular momentum current tensor, into one master conservation

equation for the angular momentum. Our results can be extended to gain insight into the role

of angular momentum in high-energy physics, quantum photonics, as well as condensed

matter physics.

Following a thorough understanding of the mathematical structure of angular momen-

tum, we investigate the role of angular momentum in four different systems all falling under

the larger scope of spin electrodynamics. In chapter 3, we study the role of angular mo-

mentum in nanophotonics systems by studying a quantum source interacting with the local

spin of evanescent electromagnetic fields. In this system, a quantum source, modeled by

a circularly-polarized dipole, is placed in vicinity of a spherical resonator. We show that,

through the interaction between the spin of the radiation and the local optical spin of the

resonator, resonant modes of the sphere are excited non-symmetrically giving rise to modes

with only positive (or negative) OAM.

In chapter 4, we investigate the Dirac-Maxwell correspondence – the study of similari-

ties between the Dirac and Maxwell’s equations – by studying the local angular momentum

in the Dirac equation. We particularly focus on the confined geometry of a cylindrical wire

to study the evanescent nature of Dirac fields. This geometry, called Dirac Wire, is the
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electronic analogue of an optical fiber where different properties of material inside and out-

side of the cylinder gives rise to confined solutions inside of the wire. We show that, as

a result of confinement down to the Compton wavelength, a deterministic (not bound to

the uncertainty principle) longitudinal spin component emerges which is exclusive to the

confined geometry. We have taken this study a step further by looking at the case when

the Dirac equation is topologically non-trivial by substituting for the mass term a quadratic

momentum dependent mass, creating a simple topological insulator model. It is shown that,

in addition to the presence of the longitudinal angular momentum component, topological

insulators can manifest other interesting features that are not present in bulk structures.

Chapter 5 is a brief discussion of the local properties of angular momentum in surface

acoustic waves (SAWs) . Fundamentally mechanical oscillations, SAWs are generated on

the surface of a crystal by the application of an RF signal to a transducer which converts the

electrical energy into mechanical waves. By solving the equations of motion for a piezo-

electric material, we show that SAWs also show angular momentum related phenomena

observed in photonic and electronic systems such as spin-momentum locking.

In chapter 6 we investigate the implications of spin optomechanics for quantum vac-

uum radiation and quantum vacuum torque by studying a spinning magnetic nanoparticle

in the vicinity of a metallic or magnetic material. We show that, due to the near-field cou-

pling between the magnetic dipoles in the spinning nanoparticle and the evanescent surface

modes of the metallic or magnetic interface, a large quantum vacuum radiation is observed.

This system converts the mechanical rotational energy into the electromagnetic radiation,

more efficiently compared to other non-magnetic nanoparticles, and magnifies the number

of photons emitted due to quantum vacuum fluctuations. Our results show that this system

leads to experimentally observable outcomes due to quantum vacuum radiation which is a

breakthrough in the experimental detection of such radiations. Although the angular mo-

mentum properties of the radiated quantum vacuum radiation has not been investigated, this

chapter signifies the importance of evanescent coupling in nanophotonic structures as well

as the role of mechanical angular momentum in creating such effects.

Finally, we present our concluding remarks in chapter 7. Furthermore, we propose a few

research topics with regards to the directions that this work can take in the future endeavors.
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Chapter 2

Universal Angular Momentum
Conservation Laws for
Dirac-Maxwell Fields

Global conservation laws of angular momentum for light-matter interactions are well-known.

However, local conservation laws, describing the conservation law of angular momentum

at every point in space, remain unexplored. With recent advances in the cold atom and

quantum dot communities, local interactions between atomic sources and optical fields are

gaining more attention due to the emergent new phenomena. These experiments empha-

size the need for a local conservation law describing the dynamics of angular momentum

in light-matter interactions. Here, we use the quantum electrodynamics (QED) Lagrangian

and Noether’s theorem to derive a new local conservation law of angular momentum for

Dirac-Maxwell fields. The explicit inclusion of Dirac field, unambiguously clarifies the

interpretation of corresponding Maxwell field properties such as helicity, spin, and orbital

angular momentum (OAM). In addition, with the definition of new terms such as helicity

current tensor and OAM current tensor, we shed light on the local dynamics of angular

momentum. We also present the vector spin-orbit torque as being the torque excerted on

spin and OAM of the fields as a result of spin-orbit coupling. We evaluate the local conser-

vation law for the EM spin for the interference of two plane waves as well as a dual-mode

optical fiber and show that they hold locally. Our results can have important implications

for phenomena related to the spin of gauge bosons.

2.1 Introduction

The interaction between the electronic spin and optical angular momentum has been widely

used in devices such as optical circulators, insulators, electro-optic modulators, and Fara-
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day rotators. In these devices, conservation of angular momentum combined with the field

properties of the electromagnetic (EM) radiation gives rise to non-reciprocal effects that can

be manipulated for a wide variety of applications. These devices incorporate the interaction

between EM radiation and the magnetic materials in the far-field regions where a conserva-

tion law based on the total electronic and photonic angular momenta suffices to explain the

underlying physical phenomena [40].

Due to the possibility of optical control of the quantum spin states, the dynamics of an-

gular momentum between the electronic and optical fields has recently gained attention for

the systems interacting in the near-field region. Coupling to the local spin of EM field has

been observed for cold atoms in the vicinity of an optical fiber [16], magnons interacting

with spherical whispering gallery modes (WGMs) [41], quantum dots in photonic crys-

tals [42], as well as quantum sources coupling to other waveguide systems [19, 43, 44]. In

such systems, since the interaction between the source and the EM field occurs in the near-

field rather than the far-field regions, a local approach to the governing dynamical equations

of angular momentum becomes important. These studies reveal the new insight that the lo-

cal interaction with classical electromagnetic field has to offer. Moreover, we can see that

the conservation of total angular momentum (Fig. 2.1(a)) may not fully capture the physics

of the interacting systems. Therefore, a more comprehensive, gauge-independent, locally

applicable conservation equation becomes essential in understanding the microscopic dy-

namics of the angular momentum (Fig. 2.1(b)).

The local approach towards field quantities such as helicity, chirality, and angular mo-

mentum has proven useful in the study of conservation laws as well as geometrical proper-

ties of EM fields [33–35, 44–47]. However, the procedure employed in these derivations is

based on the dual symmetry of the source-free EM Lagrangian. Since the dual symmetry is

only maintained in source-free regions, this form of Lagrangian neglects any form of inter-

action with fermionic fields and cannot be employed to present a local conservation law for

the angular momentum of electrodynamics. These properties are captured in the manifestly

covariant construction of the Dirac equation [48].

Connections between the fermionic field of the Dirac equation and the bosonic fields of

Maxwell’s equations is the focus of Dirac-Maxwell correspondence where the relativistic

parallels between photons and electrons are studied [49, 50]. These studies show that, al-

though different in nature, electronic and electromagnetic fields can exhibit many analogous

properties. This correspondence is evident in phenomena such as spin-momentum locking

which emerges in the Dirac equation [51] as well as the Maxwell’s equations [52, 53].
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Figure 2.1: Conservation laws of angular momentum in light-matter interacting systems
(a) conventional conservation of global total photonic and electronic angular momentum.
This conservation law applies to closed systems and does not include angular momentum
exchange due to near-field interactions. (b) Local conservation of angular momentum ap-
plicable to all regions of interaction. The conventional conservation of sum of angular
momenta is replaced by the conservation Eq. (2.6). (c) Table of quantities defined in this
chapter, representing the spatial and temporal densities of the scalar, vector, or tensor ob-
servables pertinent to angular momentum. Highlighted quantities are the new terms defined
in this chapter. The local conservation of angular momentum equation (Eq. (2.6)) connects
the well-known terms such as spin density, OAM density, helicity and chirality to these
newly defined quantities.

In this chapter, we study the Lorentz symmetry of the Dirac Lagrangian with the U(1)

gauge symmetry [54]. With the application of Noether’s theorem [25], we find the local

conservation laws pertinent to the angular momentum of the interacting fields. We show

that, in the near-field, the electronic angular momentum can be transferred not only to the

optical angular momentum, but also to other field quantities that represent angular momen-

tum current [55]. These extra terms include electromagnetic helicity density [56], fermionic

chirality density [48], electromagnetic helicity current tensor, as well as the electromagnetic

and electronic orbital angular momentum (OAM) current tensors. We further study these

conservation laws and angular-momentum-carrying terms for the fully electromagnetic so-

lutions of a dual-mode optical fiber.

The application of Noether’s theorem to the Dirac Lagrangian has been used in the

Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED) communities to
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derive the expressions for the angular momentum of the nuclei and the gauge fields [57,

58]. In QCD and QED interactions, conservation of the total integrated angular momentum

suffices to describe the angular momentum transfer in scattering processes. In nanophotonic

and condensed matter systems, however, atoms can interact locally with an external EM

field. Therefore, for such systems, a local conservation equation for the angular momentum

density is necessary in the realization of naonscale applications.

This work, furthermore, can be extended to the quantized electromagnetic and Dirac

fields. Long-standing challenges with regard to the spin of the quantized massless gauge

fields has prevented the community from reaching a consensus over a physical definition

of the spin operator of photons and gluons in QED and QCD [57–59]. These challenges

arise in the search for a quantum spin operator of the gauge fields such that they are simul-

taneously physically observable (gauge-invariant) and satisfy the canonical commutation

relations of rotation operators [60]. In Ref. [28], we have shown that the application of

Noether’s theorem, together with a careful gauge-treatment of the QED Lagrangian, sheds

light on the nature of these controversies and alleviates the challenges regarding the quan-

tum spin opeartor of photons.

2.2 Noether’s theorem, QED Lagrangian, and Lorentz transfor-
mation

We start with the real (also called symmetrized) Lagrangian density of a Dirac field coupled

to EM field [61],

L = ψ̄

[
cγµ

(
1

2
i~
←→
∂ µ − eAµ

)
−mc2

]
ψ − 1

4µ0
FµνF

µν , (2.1)

where ψ̄ = ψ†γ0 and γµ are the gamma matrices, Fµν the electromagnetic tensor, Aµ =

(φ/c,−A) the electromagnetic four-potential, ψ Dirac fields, ~ Planck’s constant, and µ0

the vacuum permeability. Note that summation over repeated indices is assumed throughout

this chapter. By applying Noether’s theorem [25], we obtain the conserved current for the

given Lagrangian of Eq. (2.1) by finding,

Mλ =
∂L

∂(∂λψ)
δψ + δψ̄

∂L

∂(∂λψ̄)
+

∂L

∂ (∂λAµ)
δAµ + Lδxλ. (2.2)

Lorentz transformations are defined as the coordinate transformations such that the coordi-

nates transform as xµ → Λµνx
µ, with

Λµν = e−
i
2
ωκσ(Ŝκσ)µν , (2.3)
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where (Ŝκσ)µν = i (ηκµησν − ησµηκν) are the generators of rotation and boost in the four-

dimensional real space [62] and ωκσ are the rotation and boost parameters. It can be shown

that, under the Lorentz transformation of Eq. (2.3), the Maxwell and Dirac fields change as,

δAµ(x) = − i
2
ωκσ(M̂κσ

em )µν , δψ(x) = − i
2
ωµνM̂

µν
D ψ(x) (2.4)

where M̂em and M̂D are the angular momentum operators of the Dirac and Maxwell’s fields,

respectively. These operators are defined in Appendix A.1. Specializing to the rotations

(µ, ν = i, j = 1, 2, 3), we obtain the general continuity equation associated with rotational

symmetry of the QED Lagrangian [62],

∂λMij,λ =∂λ

(
Sij,λD + Lij,λD + Sij,λem + Lij,λem

)
= 0, (2.5)

where Mij,λ is the total angular current tensor. This tensor can be split into spin Sij,λD(em)

(related to the rotation of the internal degrees of freedom) and OAM Lij,λD(em) (related to

the coordinate dependence of the fields) parts of the Dirac and EM fields, respectively

(Fig. 2.1). For non-interacting fields, we obtain separate continuity equations for the Dirac

and EM fields. Note that the roman indices take the values i, j = 1, 2, 3 while the Greek

indices are λ = 0, 1, 2, 3.

The time-components (λ = 0) of these four angular momentum tensors give the com-

mon spin and OAM densites for the Dirac and EM fields, which are generally gauge depen-

dent. The electronic part of the spin and OAM respectively are Sij,0D = εijk~ψ†Σkψ/2

(εijk is the Levi-Civita symbol) and Lij,0D = −iεijk~R
{
ψ† (r ×∇)k ψ

}
, where Σ is

the spin operator in Dirac equation and R{· · · } takes the real part of its argument. The

EM part of the spin and OAM, on the other hand, are Sij,0em = εijk(ε0E × A)k and

Lij,0em = εijk [ε0El(r ×∇)kAl], respectively (see Appendix A), where ε0 is vacuum per-

mittivity. An important observation is that OAM densities of the Dirac fields as well as the

spin and OAM of the EM field are gauge dependent and thus do not represent observable

physical quantities in a local frame. In fact, one can see that most of the terms in the an-

gular momentum tensors Sij,λD(E) and Lij,λD(E) are gauge dependent. Due to this problem, we

rearrange the expressions in these four tensors to write the conservation law in Eq. (2.5) in

terms of gauge-independent and physically observable quantities.

2.3 Local conservation law of angular momentum

By splitting the electromagnetic vector potential into transverse and longitudinal parts,

A = A⊥ + A‖, defined as ∇ · A⊥ = 0 and ∇ × A‖ = 0 [27], X.-S. Chen et al de-
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fined the gauge-independent angular momentum densities for both the Dirac field and EM

field [58]. However, a gauge-independent form for the continuity equation has not been

addressed. Here, following the same approach used in Ref. [58], we obtain a standard (vec-

tor) continuity equation for the angular momentum density of the combined system (see

Appendix A for more details),
∂Mj

∂t
+∇iTij = 0 (2.6)

where Mj are the components of the angular momentum density vector, written as

M =
~
2

(ψ†Σψ) +R
{
ψ†
(
r × p‖

)
ψ
}

(2.7)

+ ε0(E⊥ ×A⊥) + ε0

[
E⊥i (r ×∇)A⊥i

]
,

with gauge-independent transverse vector potential A⊥ and gauge-independent electron

momentum operator p‖ =
(
−i~∇− eA‖

)
. The first two terms in Eq. (2.7) are the spin

and OAM densities of the electron, while the last two terms are the gauge-independent spin

and OAM densities of the EM field [58, 59]. This shows that only the transverse part of the

vector potential contributes to the physically observable spin and OAM of EM field.

The angular momentum current tensor, Tij , is a second rank tensor, similar to the

Maxwell stress tensor (EM momentum current) [51, 63]. The tensor Tij is composed of

three parts :∇iTij = ∇i(χij + Jij +Nij) with

χij =
[ chirality︷ ︸︸ ︷
~
2

(ψ†γ5ψ) +

helicity︷ ︸︸ ︷
1

µ0
(A⊥ ·B)

]
δij ≡ χ δij , (2.8a)

Jij =

OAM current tensor (Dirac)︷ ︸︸ ︷
R
{
ψ̄γi

(
r × p‖

)
j
ψ
}
−

helicity current tensor (Maxwell)︷ ︸︸ ︷
1

µ0
(A⊥i Bj)

− 1

µ0

[
εiklBk(r ×∇)jA

⊥
l

]
− ε0A⊥i

(
r × ∂E‖

∂t

)
j︸ ︷︷ ︸

OAM current tensor (Maxwell)

,
(2.8b)

∇iNij = (r ×∇)Nem, Nem =
ε0
2
E⊥ ·E⊥ − 1

2µ0
B ·B︸ ︷︷ ︸

free photon Lagrangian

+ε0
∂E‖

∂t
·A⊥. (2.8c)

where γ5 is the chirality operator in Dirac equation.

The term χ in Eq. (2.8a) describes the chirality/helicity of the fields. The first term,

~(ψ†γ5ψ)/2, is the density of expectation value (in the classical sense of quantum me-

chanics) of the chirality operator of the Dirac field. The operator γ5 is widely used to
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find the projections of fermionic fields into left-handed and right-handed chiral states [54].

Therefore, the expecation value ψ†γ5ψ represents the chirality of the Dirac field; a nega-

tive (postivie) value means a left-handed (right-handed) chiral state. The second term in

Eq. (2.8a), on the other hand, is widely known as the helicity of EM field [64–66]. In-

terestingly, Eq. (2.8a) shows that the chirality of the fermionic field is identified with the

helicity of the electromagnetic field and the gradient of these quantities enter the continuity

equation.

Note that the chirality of EM field defined in Ref. [39] does not appear in the continuity

equation of angular momentum. This shows that the helicity is more fundamental for inter-

acting systems. It is also important to note that helicity can be defined for the Dirac field.

Being defined as the projection of spin onto the momentum, it fundamentally depends on

the momentum of the field or particle. Since it is a momentum-dependent term for massive

fields, helicity depends on the frame of reference and thus it signifies two different values in

the proper frame (co-moving frame of reference) and the lab frame. For the massless fields

of electromagnetic radiation, however, helicity becomes independent of the frame of ref-

erence since there cannot be any proper frame of reference defined for light. Interestingly,

for the massless Dirac field, the definition of chirality and helicity become identical [67].

This points to a similar property in the massless electromagnetic fields of the Maxwell’s

equations.

Therefore the helicity of electromagnetic field and chirality of Dirac field defined here

are both Lorentz invariant and are universal in every frame of reference. Although both

chirality and helicity refer to the handedness of fields, chirality is independent of momentum

and it is therefore an inherent and Lorentz invariant property of the particle. The term

handedness might be confusing for chirality since for helicity it is defined as rotation around

an axis which is chosen to be momentum. Due to Lorentz invariance, however, this cannot

be the case for chirality. Thus it is more appropriate to define the "right-chiral" and "left-

chiral" Dirac solutions simply as the eigenvalues of the chirality operator γ5. They only

obtain the meaning of handedness when an axis is imposed on the system in a given frame

of reference such as momentum along a particular direction. Otherwise, these right- and

left-chiral states are only eigenstates of the chirality operator.

In the next three sections we define the other new terms encountered in the conservation

equation.
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2.3.1 Helicity current density tensor

The second terms in Eq. (2.8b) is reminiscent of the EM helicity in Eq. (2.8a) with the

difference that this quantity is a tensor, while helicity is a scalar. In fact, helicity density

in Eq. (2.8a) is equal to the trace of 1
µ0
A⊥i Bj . We thus name this tensor quantity helicity

current density tensor since it transforms as a helicity. Furthermore, the divergence of the

helicity current tensor enters the conservation of angular momentum equation meaning that

it serves as a current between different forms of Dirac or Maxwell angular momentum.

One important fact regarding this term is that it has no analog in the Dirac field rep-

resentation, as one might expect. The equivalent expression for helicity current tensor, in

the Dirac field, is normally considered to be spin current represented by a tensor involv-

ing γ matrices and spin operators. However, our derivation shows that this term vanishes

due to the spinor nature of the Dirac fields (see Appendix A for more details). This, of

course, does not put the numerous works on spin currents in condensed matter physics into

question [68–71], since spin currents are generated by the collective motion of electrons

through spatially separating electrons with opposite spins in a quantum cavity [72] or us-

ing ferromagnets with strong electron-electron interactions [73]. The relativistic treatment

of the Dirac equation in this chapter, however, only incorporates the wave function of a

single electron in vacuum and thus cannot account for the observed electronic spin cur-

rents. This shows that a single electron in vacuum does not exhibit spin current and that

many-body Dirac equation should be considered for a relativistic account of electronic spin

currents [74, 75].

2.3.2 Orbital angular momentum current density tensor

Equation (2.8b) specifies the angular momentum current tensors for the fields. This current

tensor is specified by two directions: direction of angular momentum and direction of the

current. For instance, in the first term of Eq. (2.8b), the direction of propagation of the

current is specified by the gamma matrices γi, while the direction of the angular momentum

is specified by the operator (r × p‖). Thus we call this term OAM current density tensor

of Dirac field. Similarly, the third term in Eq. (2.8b) is the OAM current tensor density of

the EM field. The last term is the angular momentum current tensor due to longitudinal

component of electric field and we incorporate that into the OAM current tensor of the EM

field. Equation (2.8c) shows that the electromagnetic Lagrangian also contributes to the

continuity Eq. (2.6).

S. Barnett introduced the angular momentum carrying terms in the source-free elec-
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tromagnetism [55] as quantities that behave as the currents in the conservation equations

written for angular momentum of light. The terms helicity and OAM current tensors in-

troduced here for the electromagnetic field have a similar tensorial nature and extend to

the QED interactions. These quantities are gauge-invariant and connect to similar terms

coming from the Dirac fields.

Note that the expression for the angular momentum due to the electromagnetic field in

Eq. (2.7) originally has contribution from the longitudinal electric field, E‖ . This is the

contribution due to the free charges (∇ · E‖ = ρ/ε0) which decays as a function of 1/r2

outside of the region of charges [63]. We have shown in Appendix A that the contribution

from this component, namely the term E‖ ×A⊥ + E
‖
i (r × ∇)A⊥i , can be written as the

divergence of some quantities involving E‖. Therefore, when integrated over the entire

space, these terms vanish and thus the total global angular momentum of the interacting

field does not involve longitudinal electric field components. Therefore, we have shown that

the angular momentum density of the EM field only depends on the transverse component

of the electric field E⊥ since it is only these terms that give nonzero contribution to the

total angular momentum.

It should be emphasized that, when working with global quantities (integrated over

entire space), the contribution from the longitudinal electric field as well as the contribution

from Tij in Eq. (2.8) become surface terms and vanish assuming that the field quantities are

zero on the surface of the integration volume. In such cases, the global angular momentum

can be written in equivalent forms which are different only by the divergence of a function

of the fields. In the local case, however, all of the terms in Eq. (2.8) are observable quantities

and each have a different interpretation.

2.3.3 Spin-orbit torque

We now study the spin-orbital angular momentum exchange and the angular momentum

transfer between the Dirac and EM fields. The continuity equation in Eqs. (2.5) and (2.6)

only give the dynamics of the total angular momentum density. To obtain insight into the

detailed interaction between spin and OAM of the Dirac and EM fields, we separately write

the four-divergence of the gauge-independent spin and OAM tensors of the Dirac (Sij,λD and

Lij,λD ) as well as the EM fields (Sij,λem and Lij,λem ). By incorporating the Dirac and Maxwell’s

equations into the gauge-invariant angular momentum densities in Eqs. (2.7) and (2.8), we

obtain their detailed conservation equations (see Appendix A),

∂λSij,λD = εijk

[
τD + jc ×A⊥

]
k
, (2.9a)
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time-derivative + divergence of + gradient of = spin-orbit
of spin helicity current tensor helicity torque
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Figure 2.2: Local conservation law for the spin [Eq. (2.12)] in a dual-mode optical fiber.
The individual terms in Eq. (2.12) are plotted on the first three columns from left: The first
column is the time-derivative of spin ( ∂∂t(E

⊥ ×A⊥)), the second column is the divergence
of helicity current tensor (−∇i(A⊥i B)/µ0) , and the third column is the gradient of the
helicity density (∇(A⊥ · B)/µ0) . The fourth column is the EM spin-orbit torque given
by Eq. (2.11) (in this case τem = (B · ∇)A⊥/µ0). The three rows show the local value of
each vector along the three axes of optical fiber problem: ρ̂ radial direction, φ̂ azimuthal
direction, and ẑ axis of the fiber. Note that adding the first three column on each row
together gives the last column τem; thus confirming Eq. (2.12). The results are for an optical
fiber of radius 50 µm with the two modes at the wavelengths 4.3 µm and 4.29 µm.

∂λLij,λD =εijk

[
−τD+ρ(r ×E‖)+jc,l(r ×∇)A⊥l

]
k
, (2.9b)

∂λSij,λem = εijk

[
τem − jc ×A⊥

]
k
, (2.9c)

∂λLij,λem =εijk

[
−τem−ρ(r ×E‖)−jc,l(r ×∇)A⊥l

]
k
, (2.9d)

where we have defined

τD = −cR
{
ψ̄
(
γ × p‖

)
ψ
}

(2.10)

and

τem =
1

µ0
(B · ∇)A⊥ − ε0

(
∂E‖

∂t
×A⊥

)
(2.11)

as the Dirac and Maxwell spin-orbit torque, respectively, since it gives the amount of torque

exerted on the spin from the OAM of the fields and vice versa. This nomenclature is further

motivated by the resemblance of the Dirac spin-orbit torque (Eq. (2.10)) of the Rashba spin-

orbit coupling Hamiltonian [76]. The direct connection between these terms, however, is

out of scope of this article and is the focus of a future work. Note that γ = γ1x̂+γ2ŷ+γ3ẑ

and jc = ecψ̄γψ is the electric charge current density in Eqs. (2.9) and (2.10).
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Equation (2.9) clearly shows that the spin-orbit torques contribute to the spin-OAM ex-

change in both Dirac and EM fields. Moreover, it is evident from Eqs. (2.9a), (2.9b), (2.9c),

and (2.9d) that the charge-field coupling terms, jc ×A⊥, jc,l(r ×∇)A⊥l , and ρ(r ×E‖),

are responsible for the angular momentum transfer between the Dirac and EM fields [77].

In fact, the first terms gives rise to an optical torque exerted on dipoles due to a circularly

polarized optical field [78]. Our results are significantly different from scalar continuity

equations of EM helicity in Refs. [34] and [33], which derive a scalar conservation law for

the dual-symmetric expressions of spin and helicity of EM field. The helicity continuity

equation obtained from the free-space Maxwell equations can not characterize the spin-

OAM exchange and specifically the angular momentum transfer between Dirac and EM

fields.

2.4 Source-free problems

We now show the importance of these continuity equations by demonstrating the spin-

OAM exchange via the spin-orbit torque for propagating EM fields. We evaluate the terms

in ∂λSij,λem and the EM spin-orbit torque τem (Eq. (2.11)) for two simple EM problems

in source-free regions. Similar spin-orbit signature can also be observed in a cylindrical

geometry for the Dirac fields [51]. However, a thorough study of each individual term in

Eq. (2.8) for Dirac and EM fields is not the purpose of this chapter.

The general form of ∂λSij,λem , in a source-free regions, is

ε
∂

∂t
(E⊥ ×A⊥)− 1

µ0
∇i(A⊥iB)+

1

µ0
∇(A⊥ ·B)= τem. (2.12)

Here, the extra term on the right hand side results from the coupling to OAM. The spin-

orbit torque in the source-free case reduces to τem = (B · ∇)A⊥/µ0. We emphasize that

different from free-space case [33, 34], the near-field spin-OAM exchange can still exist in

the presence of sources.

2.4.1 dual-mode optical fiber

We first consider a dual-mode optical fiber, which is placed along the z axis with radius a.

The two modes have the same propagation constant, β, and different frequencies of ω1 and

ω2. Figure 2.2 shows the four terms in Eq. (2.12). The three rows show the components

of these quantities along the radius ρ̂, azimuthal φ̂, and z axis of the fiber. Note that for

all three rows, the sum of the first three terms is equal to τem; thus satisfying Eq. (2.12).

These figures show that, for a dual-mode optical fiber, the helicity current current tensor,
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helicity density, spin density, as well as the spin-orbit torque are all non-zero and can play

a role in a local interaction between optical modes and atomic sources. Note that all three

components become zero as the fiber radius a → ∞, which confirms that the spin-orbit

torque τem becomes zero for plane wave solutions.
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Figure 2.3: Dynamics of the terms in Eq. (2.12) versus (a) z and (b) time. The plots only
show the ẑ component of each term. These plots show that the spin-orbit torque (τem) is
equal to the sum of the other terms. The inset in panel (a) shows the location where the
terms are evaluated for both of the figures.

Figure 2.3 shows the dynamics of the time-derivative of spin, divergence of helicity cur-

rent density, and gradient of helicity (the terms in Eq. (2.12)) as a function of z (Fig. 2.3(a))

and time (Fig. 2.3(b)). The curves show the value of these terms at a point 0.05 a from the

fiber as shown in the insets. The black curve with the circle markers show the EM spin-orbit

torque, τem, which is essentially the torque that is transferred to the OAM of the fields. Note

that the sum of other curves equals the black curve τem; satisfying the continuity Eq. (2.12).

2.4.2 double plane wave interference

The second example is the interference of two circularly polarized plane waves at two dif-

ferent frequencies. For the plane wave solutions, the current term ∇i(A⊥i B) and the spin-

orbit torque τem vanish. Therefore, we arrive at a simpler conservation law for the second
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problem,
∂

∂t

(
ε0E

⊥ ×A⊥
)

+ c∇
(

1

µ0c
A⊥ ·B

)
= 0, (2.13)

which shows the spin density propagating in space with light speed c. For circularly po-

larized plane waves propagating along z direction, the electric field is written as E =

R{E1e
−i(ω1t−k1z) +E2e

−i(ω2t−k2z)}, where E i = Ei(x̂+ iŷ)/
√

2 are the complex electric

field amplitudes of the two modes with frequencies ωi/c = ki. For these fields, we find,

1

µ0
∇(A⊥ ·B) = −ε0

∂

∂t
(E ×A⊥)

=ε0
ω2

1 − ω2
2

2ω1ω2
I
{
E1E∗2e−i[(ω1−ω2)t−(k1−k2)z]

}
,

(2.14)

hence satisfying the conservation Eq. (2.13). This clearly shows that the change in time of

the spin is compensated by the gradient of the helicity of the EM field.

2.5 Conclusion

We applied the Noether’s theorem to the Dirac Lagrangian interacting with the EM field to

find the local conservation laws of angular momentum for the most general electrodynam-

ics problem. The results developed here can be applied to near-field as well as far-field to

study the transformation of angular momentum between different fields in these regions.

Our results show that, in consideration of local conservation laws, other quantities includ-

ing helicity and OAM current tensors, EM helicity, and electronic chirality should also be

considered in addition to the spin and OAM of the EM and Dirac fields.

Equation (2.6) holds everywhere in space and time. This shows that the total angular

momentum density M is not locally conserved. In other words, ∂M
∂t 6= 0 and the con-

servation law can only be written after including all the other terms in Eqs. (2.6) and (2.8).

Integrating Eq. (2.6) over some volume V , on the surface of which both Dirac and EM fields

become zero, ψ → 0, E → 0, gives the usual global conservation law, ∂
∂t

∫
V Md3x = 0.

This states that the integrated values of the spin and OAM densities of electron and EM

field over the entire space is a conserved quantity (Fig. 2.1(a)).

We can also get a simpler continuity equation than Eq. (2.6) if we limit ourselves to

regions outside the Dirac fields. To do so, we take the integral of Eq. (2.6) in the volume

V ′ on which only the Dirac fields become zero ψ = 0. Doing so we get the semi-local

conservation law,

∂M̃D

∂t
= −

[
∂M̃em

∂t
+ J̃ + h̃+

∫
S′
n̂× (rNem)da

]
(2.15)
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which expresses the time-evolution of the angular momentum of electron M̃D in terms of

EM dependent quantities. M̃em is the EM angular momentum in the region of the source,

while J̃ and h̃ are the EM angular momentum current tensor (projected onto the normal of

the surface) and helicity (multiplied by the normal of the surface), integrated on the surface

of the volume surrounding the current charges. Also, Nem is given by Eq. (2.8c). Equation

(2.15) can be used to find the conservation of angular momentum in the near-field of current

sources and how is it transferred to the electromagnetic fields.

It is also important to note that the conservation of angular momentum derived here is

based on the spatial components of Lorentz transformations (i.e. rotations). Time-space

components of the Lorentz transformation can also give conservation equations related to

the boost operators in the relativistic equations of motion. These equations provide a new

conservation equation for the Dirac-Maxwell fields which can be of interest to applications

investigating relativistic behaviour of the particles and their pertinent conserved quantities

when interacting. A brief discussion about these conservation equations is given in Ap-

pendix A.

The method presented in this chapter can be further extended to find the dynamics of

magnetization in different materials. The simplest system can be regarded as the interaction

between an externally applied EM field and the electrons in a non-magnetic metal. A weak

probe signal can then be used to study spin dynamics of the metal. Such a system can be

closely modeled as a non-interacting electron gas whose dynamics can be described by the

Dirac equation. Although the solutions of the Dirac equation interacting with an externally

applied plane wave can be rigorously found [79, 80], these solutions are extremely compli-

cated and only apply to the particular case of free electrons in a plane wave. Our method,

circumvents the problem of solving the Dirac Hamiltonian to find the spin dynamics of the

electrons, by using Noether’s theorem and finding the conservation equation governing an-

gular momentum dynamics of the electrons. By knowing the properties of the externally

applied EM field, a simpler equation such as Eq. (2.15) can be used to find the dynamics of

angular momentum without the need of electronic wavefunctions. Since in our derivations

we make no simplifying assumption on the EM field, these equations can be easily used for

interactions that take place in the near-field region and where EM fields cannot be regarded

as plane waves.

The Dirac equation can be further extended to model ferromagnetic materials. Dirac-

Kohn-Sham (DKS) equation is an extension to the Dirac equation which accounts for the

Kohn-Sham potential as well as the spin-polarized part of the exchange correlation poten-
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tial inside a magnetic material [81, 82]. Corrections from DKS equation can be added to

the usual Pauli Hamiltonian to account for the terms in the Landau-Lifshitz-Gilbert (LLG)

equation and to add corrections accounting for higher order terms dependent on external

and internal parameters [83]. The method presented in this chapter can also be applied to

the DKS Hamiltonian to derive the conservation equation for the angular momentum of

electrons in magnetic materials.
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Chapter 3

Spin Photonics in 3D Whispering
Gallery Mode Resonators

Whispering gallery modes are known for possessing orbital angular momentum, however

the interplay of local spin density, orbital angular momentum (OAM), and the near-field

interaction with quantum emitters is far less explored. Here, we study the spin-orbit in-

teraction of a circularly polarized dipole with the whispering gallery modes (WGMs) of

a spherical resonator. Using an exact dyadic Green’s function approach, we show that the

near-field interaction between the photonic spin of a circularly polarized dipole and the lo-

cal electromagnetic spin density of whispering gallery modes gives rise to unidirectional

behaviour where modes with either positive or negative orbital angular momentum can be

excited. We show that this is a manifestation of spin-momentum locking with the whis-

pering gallery modes of the spherical resonator. We also discuss requirements for possible

experimental demonstrations using Zeeman transitions in cold atoms or quantum dots, and

outline potential applications of these previously overlooked properties. Our work firmly

establishes local spin density, momentum and decay as a universal right-handed electro-

magnetic triplet for near-field light-matter interaction. This chapter presents the results pre-

sented in the paper "Spin Photonic in 3D Whispering Gallery Mode Resonators" published

in Optics express 27.11 (2019): 15846-15855 [22].

3.1 Introduction

Spin-momentum locking explains the origin of unidirectional chiral phenomena in both

electronic and photonic systems [18, 20, 84–89]. In topological insulators, spin-polarized

edge modes have a spin direction that is dependent on the propagation direction of the

modes [87,90]. In photonics, the near-field interaction between a circularly polarized emit-
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ter and a metal interface gives rise to the unidirectional propagation of surface plasmon

polaritons (SPP) [18,19,42, 88,91]. This unidirectional behavior has also been observed in

the propagation of HE11 modes in optical fibers coupled to a trapped atom [20]. Alter-

native approaches for obtaining unidirectional chiral phenomena include the use of optical

resonators with a broken symmetry; for example, using spatially deformed resonators [92],

broken time-reversal symmetric resonators [21], or rotating resonators [93].

In this work, we present a manifestation of spin-momentum locking with the whispering

gallery modes of a 3D spherical microresonator coupled to a circularly polarized emitter.

Spin-momentum locking arises naturally in the description of evanescent electromagnetic

fields through Maxwell’s equations [94], resulting in a well-defined vector triplet for the

electromagnetic spin, momentum, and decay vectors (shown in Fig. 3.1(a)). Although whis-

pering gallery modes are not naturally described by propagating or evanescent plane waves,

we show that whispering gallery modes also obey spin-momentum locking manifested by

the strong field confinement of these modes. We should note that while the electromag-

netic spin of guided modes can be probed by optical force measurements [95–98], probing

the electromagnetic spin of an emitter faces complexities due to the interaction between

the source and the probing system in the near-field limit. In fact, a universally accepted

definition of photonic spin in the presence of sources remains an open question for this

reason [99].

Here, we show that the whispering gallery modes of a spherical resonator form an ex-

cellent platform for studying the interaction of spin-polarized quantum radiation sources

and the electromagnetic spin of confined modes. In particular, we show that the spin of

an emitter effectively couples to the local spin density of whispering gallery modes and

ultimately gives rise to the unidirectional propagation of orbital angular momentum modes

inside the spherical resonator. The origin of the electromagnetic spin of a quantum emitter

is the atomic σ± transitions (shown in Fig. 3.1(b)) which can be modeled by a circularly

polarized dipole.

Using a numerically exact 3D Dyadic Green function approach, we show it is possible

to selectively excite particular TE and TM modes with specific radial (nr) and total orbital

angular momentum (l) numbers. Moreover, by coupling to the spin of TM modes, we

show it is possible to induce unidirectional coupling between the Zeeman transitions of an

atom [100] or a quantum dot [101] and the whispering gallery modes with either positive or

negative orbital angular momentum. Similar observations have been made for 2D WGMs

in microdisk resonators [21, 92] as well as 3D WGMs of spherical resonators [17]. There
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is, however, to the best of our knowledge, a theoretical gap in the studies of spin properties

of whispering gallery modes in a 3D spherical resonator due to the added complexity [102].

Our results should be experimentally observable by methods using spherical silica res-

onators and tapered fiber coupling (Fig. 3.2) [17,103]. Our proposed experiments will detect

directional out-coupling of whispering gallery modes with positive (negative) orbital angu-

lar momentum which propagate only along the positive (negative) direction inside the fiber.

In the setup proposed in Fig. 3.2, the Zeeman transitions of the quantum source are accessed

in the excited state using an optical pump with the application of a magnetic field to split

the degeneracy of σ+ and σ− transitions . By tuning the resonator to the σ− transition, for

instance, WGMs with positive orbital angular momentum are preferentially excited. When

coupled to a tapered fiber placed in the near-field of the resonator, the energy propagates in

a unidirectional manner inside the fiber. Changing to a σ+ transition instead would reverse

the propagation direction inside the fiber and serve as a clear signature of the spin photonic

effect.

((a))

F
m

F
m′

1
F
m∆ =+ 1

F
m∆ =−0

F
m∆ =

σ +

σ −

π

((b))

Figure 3.1: Schematic of the proposed experiment to study spin photonics in WGMs. The
unique proposed effect due to the locked electromagnetic triplet consisting of spin, momen-
tum, and decay. (a) A quantum source with circularly polarized emission (σ± transitions)
is placed in the vicinity of a spherical resonator. The near-field interaction between the
source and TM WGMs of the sphere results in excitation of WGM with only spin polar-
ized, positive OAM along z direction. This unidirectional behaviour is a manifestation of
spin-momentum locking in a 3D structure. Spin, linear momentum, and decay are along θ̂,
φ̂, and r̂, respectively, and form a triplet for the TE and TM modes. (b) General form of
Zeeman transitions in a cold atom [100] or quantum dot [101]. For σ± and π transitions,
∆mF = ±1 and ∆mF = 0, respectively, where mF is the quantum number pertinent to
the total angular momentum of the source (nucleous and electrons). These transitions can
be modeled by dipole sources with the electric dipole moment given by Eq. (3.7) [16].
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Figure 3.2: Proposed experimental setup for the spin photonics in WGMs. By exciting the
resonator using a σ− transition of a quantum source, WGMs with positive orbital angular
momentum are excited stronger. This can be observed by proximity coupling of a tapered
optical fiber to the spherical resonator. As a result of coupling between the WGMs with
positive OAM and the fiber, modes propagate only in one particular direction in the fiber
[17, 92]. Switching to a σ+ transition instead, would also reverse the propagation direction
inside the fiber. The source can be Zeeman transitions in cold Caesium atom prepared in
the excited state using a excitation signal [100].

3.2 Photonic spin in spherical whispering gallery modes

The modes of a spherical resonator are found by solving Maxwell’s equations using appro-

priate boundary conditions in the spherical coordinate representation [104,105]. Each mode

is labeled by three eigennumbers: nr, l, and m where nr = 1, 2, 3, · · · is the radial eigen-

number while l and m = −l,−l+ 1, · · · ,+l− 1,+l denote the orbital angular momentum

eigennumbers through the eigenvalue relationsLLL2ψ = l(l+ 1)ψ and Lzψ = mψ, where ψ

is either the electric or magnetic field, LLL = rrr × ∇, and Lz = −i ∂∂φ . These relations in-

dicate that m is the projection of OAM along the z axis and modes with positive (negative)

m are those that orbit the z axis counter-clockwise (clockwise). Note that +ẑ is defined

in Fig. 3.1(a) where the +ẑ is parallel to the handedness of the source for σ+ transitions

and −ẑ parallel to the handedness of the source for σ− transitions. For a perfect spherical

resonator, the eigenfrequency depends only on nr and l, therefore an emitter with a fixed

transition frequency can only selectively couple to l modes but not m modes. Whispering

gallery modes are further distinguished by their polarization, denoted as transverse-electric

(TE) modes (E(r, ω) · r = 0) or transverse-magnetic (TM) modes (H(r, ω) · r = 0) .

For the rest of the chapter, we will distinguish these two types of modes using the labels
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Figure 3.3: Electromagnetic spin in TE and TM whispering galley modes. The color plot
shows the field intensity of Hr (Er) component of the TE (TM) mode for l = 16 and
m = 16 on the surface of the resonator. The blue arrows show the direction of spin on
the surface of the sphere. Modes with positive m, orbit the z axis counter-clockwise (+φ̂)
while those with negativem orbit the z axis clock-wise (−φ̂). With linear momentum along
+φ̂, Momentum, decay, and spin form a triplet. Spin direction follows the spin-momentum
locking property for both TE and TM modes. This means that by changing the direction of
OAM (changing the sign of m), the direction of the spin (blue arrows) reverses for both TE
and TM modes. This behaviour inspires unidirectional coupling of a circularly polarized
dipole to the WGMs.

TEnr,l,m and TMnr,l,m.

Orbital angular momentum (OAM) and spin are distinctly different properties of the

fields. While orbital angular momentum is a global property, photonic spin is a local prop-

erty related to the rotational symmetry of the spin-1 electromagnetic vector field [99]. This

difference is revealed by observing how spin-polarized sources interact with the whispering

gallery modes locally. As one might expect, placing the spin-polarized source in the vicin-

ity of spherical resonator should generate modes with positive OAM. However, as shown in

the next section, the exact opposite happens. Spin-polarized source excites WGMs with an

OAM that is anti-parallel to the spin of source. This can only be explained by the interplay

between the spin of the source and the local spin of the WGMs resulting in the generation of

scattered fields that have their OAM anti-parallel to the spin of the source. This observation

shows that the spin-polarized source couples to the local spin of the WGMs and not their

OAM.

In a source-free region, the local spin density of the electromagnetic field is given by

SSS(rrr, ω) = 1
4ω Im{ε0EEE∗(rrr, ω) ×EEE(rrr, ω) + µ0HHH

∗(rrr, ω) ×HHH(rrr, ω)} [106–109]. From this
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expression, we see that a circularly polarized plane wave propagating along the z-direction

in free-space,EEE(r, ω) = E0(x̂+ iŷ)eikze−iωt, has an electromagnetic spin pointing along

the z-direction. For the rest of the chapter, we will drop the arguments (rrr, ω) for notational

simplicity. Using this expression, we can calculate the spatial distribution of the photonic

spin density for whispering gallery modes. Figure 3.3 shows the field distribution for the TE

and TM modes (color plot) as well as their respective electromagnetic spin (blue arrows) on

the surface of the sphere with radius a. The plots correspond to the TE1,16,16 and TM1,16,16

modes for which λTE = 0.54a and λTM = 0.52a . In particular, the spin can be written

as:

sss = ppp× γγγ (3.1)

where sss , ppp, and γγγ denote the unit vectors pointing along the spin, the linear momentum,

and the decay directions respectively [94,95,110], thereby forming a right-hand rule triplet.

Note that ppp and γγγ are defined as the real and imaginary part of the Poyting vector, respec-

tively [108, 111].

As shown in Fig. 3.3, the spin of both TE and TM modes (blue arrows) are dominated

by the θ̂ component. Explicitly, the dominant electromagnetic spin components STMlm, θ and

STElm, θ can be written as:

STMlm, θ = STElm, θ = −mµ0

2ω

l(l + 1)

|k1|2a2
g(θ)

[
R{k1aj

∗
l (k1a)jl+1(k1a)} − (l + 1)|jl(k1a)|2

]
,

(3.2)

with k1 =
ω
√
εr
c being the propagation constant inside the sphere, εr = 3 is the dielectric

permittivity of the sphere, ω the angular eigenfrequnecy of the TE or TM mode, µ0 the

vacuum permeability, jl(ka) the spherical Bessel function of the first kind and order l, and

g(θ) a real function of θ. R{} takes the real part of its argument. These expressions are

derived for fields on the surface of the sphere. We emphasize that the electromagnetic spin,

S, is linearly dependent on the azimuthal orbital angular momentum, m. This result indi-

cates that the direction of the electromagnetic spin is locked to the direction of z-projected

orbital angular momentum. In other words, changing the sign of m flips the sign of the spin

for both TE and TM modes.

These solutions are found under the assumption that the solutions outside the sphere

are decaying. Changing the outside solutions to growing solutions, instead, changes the

sign of the expression inside the brackets in Eq. (3.2). This means that under the change of

direction in the decay vector, the spin for both TE and TM modes flips sign. Together with

the linear dependence on m, these observations show the spin-momentum locking property
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as shown in [94], and also the fact that spin, momentum, and decay form a triplet. These

properties are manifestations of spin-orbit coupling where the change in the OAM results

in a change in the spin of WGMs. These previously overlooked properties of WGMs have

important implications which we will discuss in the next section. Note that these properties

are valid for arbitrary-sized spherical resonators.

3.3 Near-field spin interaction

We aim to investigate the near-field interaction of Zeeman transitions of a quantum source

with the WGMs of a spherical resonator. For such interactions we focus on the σ± transi-

tions observed in a cold atom [100] or quantum dots [101]. Solutions of the Green function

for a source outside of a sphere can be written in terms of WGMs with different l and m

as [112, 113],

Ge(r, r
′) = G0e(r, r

′) + Ges(r, r
′), (3.3)

G0e(r, r
′) =

r̂r̂

k2
0

δ(r−r′)+ ik0

4π

∞∑
l=0

l∑
m=0

Clm

{
M

(1)
lm(k0)M′

lm(k0) + N
(1)
lm(k0)N′lm(k0) r ≥ r′

Mlm(k0)M
′(1)
lm (k0) + Nlm(k0)N

′(1)
lm (k0) r ≤ r′

,

(3.4)

G
(11)
es (r, r′) =

ik0

4π

∞∑
l=0

l∑
m=0

Clm

[
BMM

(1)
lm(k0)M

′(1)
lm (k0) + BNN

(1)
lm(k0)N

′(1)
lm (k0)

]
,

(3.5)

G
(21)
es (r, r′) =

ik0

4π

∞∑
l=0

l∑
m=0

Clm

[
DMMlm(k1)M

′(1)
lm (k0) +DNNlm(k1)N

′(1)
lm (k0)

]
.

(3.6)

where the subscript e indicates that these are the Green’s functions for the electric field,

while the subscripts 0 and s refer to the homogeneous and scattered solutions, respectively.

The functions Mlm and Nlm are the two transverse solutions of Maxwell’s equations [112,

113]. The superscript (1) in M
(1)
lm and N

(1)
lm refers to the solutions with the spherical Hankel

functions of the first kind, while no superscript implies solutions with spherical Bessel

functions of the first kind. Also, the unprimed and primed solutions show the dependence on

the location of the observation point (r) and the location of the source (r′), respectively. The

superscripts (11) and (21) in G(11)
es and G(21)

es indicate the scattered solutions outside and

inside the sphere, respectively. Clm’s are some constants, k0 and k1 propagation constants

outside and inside the sphere, respectively, and BM ,BN ,DM, and DN are the coefficients

found by applying the boundary conditions [112, 113]. Note that these solutions are the

summation of the modes with different OAM quantum numbers l and m. Also, since M

and N are the solutions without and with the radial field components [112], we can consider
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Figure 3.4: Plots of normalized scattered electromagnetic fields due to the right-handed
circularly polarized dipole (σ+ transition). (a) Er, (b) Eφ, and (c) Hθ in the x − y plane.
All components of the fields orbit along −φ direction as a result of the circularly polarized
dipole located at xd = a+ 10nm and yd = zd = 0 with the dipole moment ddd+ = d0√

2
(x̂+

iŷ) = d0êee+. The circularly polarized dipole couples unidirectionally to the orbit of the
fields in the spherical resonator as a result of spin-momentum locking. One important
consequence of this is that the photonic spin of the source is opposite to the OAM of the
WGMs. Additional videos are available online [22].

them as the TE and TM contributions to the WGMs, respectively. We have used these

solutions to find the interaction of σ± and π transitions with the dipole moments [16],

ddd± = d0êee± =
d0√

2
(r̂ ± iφ̂), dπdπdπ = d0x̂ (3.7)

located outside of a lossless spherical resonator with a relative permittivity of 3 at rd =

a + 10nm, θd = π/2, and φd = 0. Here, we look at the WGMs with nr = 1 and l = 16

by setting the wavelength of the source to that of the WGMs for the corresponding nr and

l. The radius of the sphere is therefore chosen to be a = 1177nm to have the resonance of

the desired mode at λ0 = 610nm. The sphere is thus located in the near-field region of the

source.

Figure 3.4 shows the simulation results for the source with the dipole moment ddd+ of a

σ+ transition. Photonic spin of the source in Fig. 3.4 is parallel to the spin of the TE1,16,m>0

and TM1,16,m>0 modes (Fig. 3.3). As a result, the dipole excites a mixture of degenerate

modes of positive orbital angular momentum along the z direction (m > 0) and thus gives

rise to the unidirectional orbit of the fields inside the sphere. Although spin of the source

is parallel to that of both TE and TM modes, only TM modes are excited here. This is

due to the fact that the spin of TE mode is primarily from magnetic field while the spin of

the TM mode is primarily electric. Having a purely electric spin, the source therefore only

couples to the TM mode. This can be equivalently explained by the fact that the TE modes

do not have a radial electric field component and therefore they do not couple to the radial
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Figure 3.5: Normalized Poynting vector along φ direction , Pφ, for the three cases of (a)
σ+ transitions (RH circularly polarized dipole), (b) σ− transitions (LH circularly polarized
dipole), and (c) π transitions (linearly polarized dipole along x), in the x − y plane for the
source located at xd = a + 10nm and yd = zd = 0, and with the dipole moments given
by Eq. (3.7). The negative value of Pφ in (a) and postive value of Pφ in (b) indicate that,
for the RH and LH circularly polarized dipoles as the source, the WGMs of the spherical
resonator orbit clockwise (along −φ̂) and counter-clockwise (along +φ̂), respectively. For
the linearly polarized dipole in (c), however, the WGMs inside the sphere are a mixture
of clockwise and counter-clockwise fields which eventually cancel out each other to give a
net-zero OAM. Therefore, coupling the WGMs to an optical fiber, for instance, on the other
side from the source, would result in an equal wave propagation in both directions inside
the fiber. However, for a circularly polarized source, the modes would only propagate along
one direction inside the fiber, depending on the handedness of source. This figure clearly
shows the unidirectional behaviour of spin interaction of the source and WGMs, as a result
of the spin-momentum locking.

component of the dipole moment of the source.

One important observation in Fig. 3.4 is that the photonic spin of the source (pointing

out of the plane) is anti-parallel to the orbital angular momentum of the scattered modes

inside the sphere (into the plane). This generation of an anti-parallel angular momentum, in

the scattered fields, by using a spin-polarized source can only be explained by the fact that

the spin of the source is parallel to the local spin of the WGMs (Fig. 3.3) which results in

excitation of modes with anti-parallel OAM. This shows that using a spin-polarized source

we can exclusively couple to the photonic spin of the WGMs [99].

Visualization 1 and Visualization 2 (see online animations) show the clockwise and

counter-clockwise rotation of the scattered fields inside the sphere as a result of the circu-

larly polarized dipole located outside of the sphere with the dipole moments of d+d+d+ and d−d−d−,

respectively. This result is an important generalization of spin-momentum locking observed

in 1D [86] and 2D [20] problems. In the 3D problem, however, the linear momentum is a

result of the orbital angular momentum of the fields.

Figure 3.5 shows the azimuthal Poynting vector, Pφ, inside the sphere, for three cases of
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right-handed (RH) circularly polarized (Fig. 3.5(a)), left-handed (LH) circularly polarized

(Fig. 3.5(b)), and linearly polarized (Fig. 3.5(c)) dipoles, with the dipole moments given

by Eq. (3.7). The dipoles are placed at the same location as that of Fig. 3.4 (xd ' 1.01a

and yd = zd = 0). The unidirectional azimuthal propagation of WGMs inside the sphere

is evident as a result of circularly polarized dipole. For the RH dipole (Fig. 3.5(a)) the

Poynting vector is along negative φ̂ (shown as purely red color inside the sphere) meaning

that the fields orbit the sphere clockwise, while for the LH dipole (Fig. 3.5(b)) the Poynting

vector is along positive φ̂ (shown as purely green color inside the sphere) meaning that

the fields orbit the sphere counter-clockwise. Changing the sense of polarization from RH

to LH, changes the sign of azimuthal Poynting vector from negative to positive as seen

in Figs. 3.5(a) and 3.5(b). For the linearly polarized dipole in Fig. 3.5(c), however, the

fields are a mixture of positively and negatively spinning fields (clockwise and counter-

clockwise) which gives a net zero OAM. This result shows that a linearly polarized dipole

cannot selectively couple to positive or negative OAM modes, while a circularly polarized

dipole can.

To understand this unidirectional behavior further we look at the energy dissipated in

the TM WGMs written as [114],

WTM
lm =

1

2
R
{
EEETMlm · ddd∗±

}
. (3.8)

whereEEETMlm is the electric field of the TM1,lm WGM at the location of the source and d±d±d± is

given by Eq. (3.7). The electric TM WGMs fields can be written as [104],

EEETMlm = Elm,+êee+ + Elm,−êee− + Elm,θθ̂ (3.9)

with

Elm,± = −1

2

√
µ0

ε0

[
l + 1

k0rd
fl(k0rd)(l ±m)∓ fl+1(k0rd)

]
Ylm(θd, φd) (3.10a)

Elm,θ = −
√
µ0

ε0

[
l + 1

k0rd
fl(k0rd)− fl+1(k0rd)

]
∂Ylm(θd, φd)

∂θ
(3.10b)

where fl(k0rd) are the spherical Hankel functions of the first kind evaluated at the location

of the dipole, Ylm(θd, φd) spherical harmonics evaluated at the location of the dipole, k0

free space propagation constant, rd = a + 10nm , θd = π/2, φd = 0, and êee± are given by

Eq. (3.7). Note that Elm,+ and Elm,− give spin components along−θ̂ and +θ̂, respectively.

We get from Eq. (3.10),

Elm,+
Elm,−

=
l(l + 1)fl(k0rd)−m [k0rdfl+1(k0rd)− (l + 1)fl(k0rd)]

l(l + 1)fl(k0rd) +m [k0rdfl+1(k0rd)− (l + 1)fl(k0rd)]
. (3.11)
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Note that the terms [k0rdfl+1(k0rd)− (l + 1)fl(k0rd)] and fl(k0rd) are always positive

for rd/a ∼ 1. Therefore we get,

Elm,+
Elm,−

≤ 1, m ≥ 0

Elm,+
Elm,−

> 1, m < 0.

(3.12)

This means that according to Eq. (3.8), more energy is dissipated into modes with m < 0

(larger Elm,+) for ddd = ddd+, while for ddd = ddd−, more energy dissipates in modes with m > 0

(larger Elm,−). Since modes with larger Elm,+ (Elm,−) have their spin along −θ̂ (+θ̂), we

can say that the spin of m < 0 (m > 0) modes aligns with that of the dipole with ddd = ddd+

(ddd = ddd−). Note that although Elm,θ and Elm,± have out-of-phase components, they do not

contribute any spin component along r̂ at the location of the source. This means that the

photonic spin of the TM WGMs are completely aligning with that of the source.

Using similar expressions and arguments we can show that the dissipated energy into

the TE WGMs, as a result of the dipole moment in Eq. (3.7), does not depend on the sign of

m because the radial component of the eletric field of the TE WGM is zero. In other words,

the TE mode does not show any unidirectional behaviour. Although the photonic spin of the

TE mode is parallel to that of the source, the spin of the TE mode is primarily generated by

the magnetic field. Since the spin of the source is completely from the electric field (being

an electric dipole), a circularly polarized magnetic source should be used to couple to the

spin of the TE modes.

Although we have only looked at a particular location of the source, we cannot couple

the source to any arbitrary point of the WGMs. This is due to the symmetry of the problem

where we essentially choose the z axis (quantization axis) by placing the source in the

vicinity of the sphere. Because the total angular momentum of the problem should be

conserved, the quantization axis of WGMs (direction of OAM) aligns with the photonic

spin of the source. In other words, changing the orientation of the source would also change

the quantization axis of the WGMs. For the case when the circularly polarized dipole has

no radial component (ddd+ = d0√
2
(ŷ + iẑ) for instance), no spin-momentum locking related

phenomenon is observed, as in this case, the spin of the dipole (pointed along x̂ direction)

is perpendicular to the spin of the TE and TM WGMs.

This unidirectional behavior can be observed by methods such as tapered fiber cou-

pling (Fig. 3.2) [103, 115] or evanescent coupling [17, 116] to the spherical resonator. By

coupling the modes of a tapered optical fiber, for instance, to the WGMs of the sphere,

unidirectionally orbiting WGMs of the sphere would couple to the optical fiber modes that
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Table 3.1: Summary of the properties of the WGMs
Whispering Gallery Mode TMlm Mode TElm Mode

Orbital Angular Momentum m > 0 m < 0 m > 0 m < 0

Spin along +θ̂ along −θ̂ along +θ̂ along −θ̂
Spin-Momentum-Decay Triplet Yes Yes

Spin-Momentum Locking Yes Yes
Interaction with σ± Transitions σ− σ+ No Interaction

propagate only in a particular direction. Similar methods to those used in [17, 20, 100] for

a cylindrical problem can be used to trap the source at a particular distance from the sphere

and to excite it at the same time. This structure can be an excellent platform to study dif-

ferent forms of spin-spin interaction between electromagnetic fields, atoms, or electrons.

Interaction between sources with non-zero electronic spin and the photonic WGMs can be

used to understand the near-field spin-spin interaction between the photons and fermions.

3.4 Conclusion

We have presented the theory of spin-momentum locking in 3D whispering gallery modes

(WGMs). Our results show that the spin-orbit coupling in WGMs results in modes which

form a spin-momentum-decay triplet. This spin-momentum locking property can be ob-

served by coupling the WGMs to the near-fields of σ transitions in a cold atom or quantum

dot. The results of this chapter show that σ+ transitions, for instance, only excite TM

WGMs with positive OAM. Table 3.1 shows the summary of the results of the chapter.

These results are observable through methods such as tapered fiber coupling or evanescent

coupling to the WGMs of the sphere. This structure can be used to study more complex

forms of interaction between photonic spin and electronic spin or the interaction of multiple

sources with the WGMs.

Table 3.2 summarizes the physical parameters of the problem discussed here.

Parameter
radius of source distance dielectric constant resonance wavelength resonance wavelength

the sphere (a) from the sphere of the sphere of the TE mode of the TM mode
Value 1177nm 10nm 3 0.54a 0.52a

Table 3.2: Physical parameters of the spin photonics in 3D WGM resonators
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Chapter 4

Dirac Wire: Fermionic Waveguides
with Longitudinal Spin

The interplay of photon spin and orbital angular momentum (OAM) in the optical fiber

(one-dimensional waveguide) has recently risen to the forefront of quantum nanophotonics.

Here, we introduce the fermionic dual of the optical fiber, the Dirac wire, which exhibits

unique electronic spin and OAM properties arising from confined solutions of the Dirac

equation. The Dirac wires analyzed here represent cylindrical generalizations of the Jackiw-

Rebbi domain wall and the minimal topological insulator, which are of significant interest

in spintronics. We show the unique longitudinal spin arising from electrons confined to

propagation in a wire, an effect which is fundamentally prohibited in planar geometries. Our

work sheds light on the universal spatial dynamics of electron spin in confined geometries

and the duality between electronic and photonic spin.

4.1 Introduction

Confined solutions of Maxwell’s equations exhibit unique phenomena such as transverse

photon spin and universal spin-momentum locking [18–20, 94, 95, 100]. These effects do

not occur in conventional circularly polarized propagating plane waves where the spin is

always directed longitudinally along the momentum vector [107]. One striking example is

an optical fiber where Zeeman transitions in a cold atom shows spin-dependent directional

photon transport [20, 100]. The goal of this chapter is to introduce the concept of Dirac

waveguides and understand the intriguing spin characteristics of confined electronic waves.

Our work is motivated by the Dirac-Maxwell correspondence [49, 50, 107] which studies

the relativistic parallels between photons and electrons.

Here, we introduce the Dirac wire [see Fig. 4.1(a)], the fermionic dual of the optical
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Figure 4.1: (a) Schematic of the Dirac wire. (b) The three Jackiw-Rebbi (JR) type domains
considered here are JR+ with electron mass inside (m1) and outside (m2) the wire both
positive, JR− with positive mass inside and negative mass outside, and JR-D with a dis-
persive electronic mass inside [Eq. (4.5)] and an arbitrary mass outside. JR-D corresponds
to the minimal topological insulator. Distribution of the probability density, ψ†ψ, for the
three problems are shown in the three panels of (b). The fields are normalized such that∫
ψ†ψ = 1 when integrated over the entire cross section. Notice that the probability ampli-

tude of the JR− state is localized around the perimeter of the wire ρ = a. Also, in the case
of the JR-D problem, the wave function is identically zero at the boundary and outside the
wire ψ(ρ ≥ a) = 0.

fiber. This system is the cylindrical generalization of the m > 0, m < 0 domain wall

introduced by Jackiw and Rebbi [117]; the canonical planar system which spurred the field

of topological materials. Important recent work has shown a null expectation value for

the relativistic electron spin in the planar Jackiw-Rebbi problem [118]. In stark contrast,

the confined geometry of a cylinder supports longitudinal fermionic spin along its axis

[119, 120]. For completeness, we also mention that the two-dimensional (2D) photonic

dual of the Jackiw-Rebbi domain wall was discovered only recently [121], and is described

by the interface of positive/negative gyrotropic media. Comparing Maxwell’s equations to

the 2D Dirac equation, the gyrotropic non-reciprocity coefficient was shown to play the role

of photonic mass [122–124].

The radius of the proposed Dirac wire is on the order of the Compton wavelength of

the electron; fundamentally different from the well-known quantum wire limit [125, 126].

We directly capture the relativistic effects of spin-orbit coupling and spin quantization in

the spatial dynamics of the electron wavefunction. This allows us to explicitly show the

half-integer quantization of the total angular momentum in an inhomogeneous waveguide

system. This presents a unique approach to analyzing spin-orbit coupling in confined ge-

ometries, compared to traditional bulk energy band structure [127, 128]. Solutions of the
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Dirac equation in a cylindrical geometry have been studied in the context of quantum chro-

modynamics [129], Weyl fermions [119], and electrons in a step potential [120]. Existence

of the longitudinal spin component as well as the spin-orbit coupling due to the confinement

have been predicted in Refs. [119] and [120]. However the spatial dynamics of spin, as

well as the connection to the Jackiw-Rebbi problem in a purely relativistic electronic prob-

lem have remained unexplored. Here, we analyze cylindrical generalizations of both the

Jackiw-Rebbi domain wall and the minimal topological insulator [130, 131], which will be

of interest in spintronics, majorana physics [132–134], and electron quantum optics [135].

Our work also motivates the concept of waveguide spin electrodynamics where the rela-

tivistic interaction of confined electrons and photons are manifested through the spin and

OAM properties [22, 110].

4.2 Dirac Wire

We describe the Dirac wire as a cylinder with an effective electronic mass m1, surrounded

by a medium with an effective electronic mass m2 [Fig. 4.1(a)]. The wire radius a ≈ λc

is on the order of the Compton wavelength of the electron λc = h/(m1vF), where h, m1,

and vF are the Planck constant, electron mass, and Fermi velocity within the wire, respec-

tively. We introduce three distinct classes of Jackiw-Rebbi (JR) domains labeled as JR+,

JR−, and JR-D [Fig. 4.1(b)]. We also show important fundamental differences between

cylindrical JR solutions (Dirac wires) and the conventional planar interface problem [117]

widely studied in the field of topological insulators and majorana physics [134]. The main

differences between the cylindrical and planar JR problems are the emergence of a longitu-

dinal component of spin and the existence of confined solutions for all-positive electronic

mass.

For a cylindrical Dirac waveguide, the difference in electronic mass inside and outside

the wire gives rise to bound fermionic waves. These solutions can be derived from the

time-independent Dirac equation,

Hψµ =
(
vF ααα · ppp+mv2

Fβ
)
ψµ = Eψµ. (4.1)

Eigenstates of the Dirac equation can be identified by five good quantum numbers which

correspond to five commuting operators. In cylindrical coordinates, these operators are

the Hamiltonian H , longitudinal total angular momentum Jz , longitudinal momentum pz ,

transverse momentum p2
⊥, and the transverse helicity h⊥ [129,136]. The quantum numbers

corresponding to these operators respectively are E, ~µ, ~kz , ~k⊥, and s = ±1, where
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µ ∈ Z + 1
2 is half-integer due to the fermionic nature of electrons. The two solutions

corresponding to the two eigenvalues of transverse helicity s = ±1 are (see Appendix C

and, also, references [29, 136] therein),

u
(±)
µ,M (k)=

Cµe
ikzzeiµφ√

2


Zn+(k⊥ρ)e−iφ/2

±Zn−(k⊥ρ)e+iφ/2

∓i~vF
k⊥+ikz
M Zn+(k⊥ρ)e−iφ/2

i~vF
k⊥+ikz
M Zn−(k⊥ρ)e+iφ/2

 (4.2)

where Cµ is the normalization factor, M = E + mv2
F, k⊥ =

√
k2 − k2

z , and n+ − 1
2 =

n−+ 1
2 = µ. Here, ~2k2 are the eigenvalues of total momentum operator ppp2, and n± ∈ Z are

integers. The s = ±1 signs appearing in Eq. (4.2) refer to the eigenvalues of the transverse

helicity operator, h⊥. Zn(k⊥ρ) is a Bessel function of order n and argument k⊥ρ, where ρ

is the radial coordinate.

The vector spin operator of the Dirac equation is defined as

Σ̂ΣΣ =
~
2

(
σσσ 0
0 σσσ

)
, (4.3)

where σσσ = (σx, σy, σz) are the Pauli matrices expressed in vector operator form. The

longitudinal component of the orbital angular momentum (OAM) operator is

L̂z = −i~ ∂

∂φ
. (4.4)

Together with the spin operator, we obtain the longitudinal total angular momentum Ĵz =

Σ̂z + L̂z . In the subsequent sections we will use these operators to find the expectation

values of the spin and orbital angular momentum of the modes.

4.2.1 Cylindrical Jackiw-Rebbi domain wall

We now solve the cylindrical wire geometry with an effective electronic mass m1 sur-

rounded by a medium with an effective electronic massm2. This is the cylindrical analogue

of the 1D Jackiw-Rebbi (JR) domain wall [117,130,131]. Unlike the 1D problem, however,

solutions of the cylindrical geometry are not limited to the conditionm1m2 < 0. Therefore,

we analyze two separate cases; the case when m1,m2 > 0 and label it as JR+, and the case

when m1 < 0, m2 > 0 and label it as JR−.

For the case of m1,m2 > 0 (JR+), solutions of Eq. (4.1) only exist when m2 > m1

which requires a larger mass (bandgap) outside the wire to confine the waves. This condi-

tion is analogous to total internal reflection in an optical fiber, which necessitates a lower

refractive index outside the fiber [137]. For the JR+ problem, the solutions are charac-

terized by k⊥1 real and k⊥2 imaginary where k⊥i =
√
k2
i − k2

z are the transverse (to the

46



Sz Lz

JR+

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5 0

1

2

3

4

5

10
-5

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5 0

0.2

0.4

0.6

0.8

1

1.2
10

-7

JR−

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5 0

2

4

6

8

10
-8

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5 0

1

2

10
-4

JR-D

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5 0

0.2

0.4

0.6

0.8

1

1.2

10
-4

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5 0

1

2

3

4

10
-6

Figure 4.2: Spin and orbital angular momentum densities for the three Jackiw-Rebbi (JR)
domains (Fig. 4.1). As an example, a = 20 Å, µ = 1

2 , and kz = 0. |m1|v2
F and m2v

2
F are

1 eV and 2 eV, respectively. For the JR-D problem, m0v
2
F = 1 eV and B~2 = 50 eVÅ2

[138]. In all three scenarios we have assumed a Fermi velocity of vF ' 1.52 × 105 m/s,
such that the Compton wavelength is λc ' 8 Å. The values at the bottom of each figure are
the integrated quantities of the respective distribution over the entire cross-section of the
problem. Note that the spin and OAM are not individually conserved but their summation
(Jz = Sz+Lz) is. Although not individually conserved, the difference in the distribution of
spin and OAM makes them locally distinguishable. This means that one can, in principle,
couple exclusively to spin or OAM locally.

z-axis) propagation constants. k1 and k2 being the characteristic wavelengths inside and

outside of the wire, respectively. Being comprised of evanescent waves outside the wire

and standing waves inside, we denote these solutions as hybrid modes Hµ,ν . The subscripts

µ and ν correspond to the total angular momentum eigenvalue and the order of the radial

zero of the Bessel function.

Figure 4.1(b) (left panel) shows the amplitude of the wavefunction, ψ†ψ, for the dom-

inant H 1
2
,1 mode. Note that for the JR+ problem, the solutions vanish at ρ → ∞ as the

wavefunction is evanescent outside the wire. Figure 4.2 (first row) displays the spatial dis-

tribution of longitudinal spin and orbital angular momentum densities for this mode. Note

that the azimuthal φ̂ and radial ρ̂ components of the spin and OAM are identically zero –
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the angular momentum is purely longitudinal (directed along ẑ). The integrated values of

spin and OAM over the entire x− y plane is recorded at the bottom of each figure. For the

H 1
2
,1 mode these values are not quantized, Sz ' 0.49~ and Lz ' 0.01~, respectively. Their

sum, however, gives the half-integral value of Jz = Sz +Lz = ~
2 = µ~ of the total angular

momentum. These results show that while the spin and OAM are not separately conserved

quantities, their sum, the total angular momentum, is conserved with an eigenvalue ~µ. In

other words, the wavefunctions ψµ are also eigenfunctions of the Ĵz operator [139].

Solutions for the Jackiw-Rebbi Dirac wire with m1 < 0 and m2 > 0 (JR−) are similar

to that of the JR+ problem with the difference that, in addition to the hybrid Hµ,ν modes,

another set of solutions exists. These are characterized by decaying solutions outside and

inside the wire (k⊥1 and k⊥2 both imaginary). We label these waves as decayingDµ modes.

In contrast to the hybrid modes, the decaying modes have only one possible solution for a

given µ and are therefore labeled by only one quantum number. As shown in Fig. 4.1(b)

(middle panel), the wavefunction of this mode is predominantly concentrated around the

perimeter of the wire and is therefore the cylindrical analogue of the surface states in the

planar Jackiw-Rebbi domain [117]. In fact, as shown later, the gapless edge states of the

planar geometry emerge when a → ∞. The second row in Fig. 4.2 shows the spatial

distribution of longitudinal spin and orbital angular momentum densities of the dominant

mode, D 1
2
, for the JR− problem. Here also, the spin and OAM are purely longitudinal due

to the confinement. This is in stark contrast with the plane wave solutions of Dirac equation

where the propagation direction of the electron does not put any constraint on the direction

of spin. In the Dirac wire, however, the direction of spin of the electron is fixed by the

axis of the wire. The integrated values of spin and OAM give Sz ' 0 and Lz ' 0.5~,

respectively, which again produces Jz = Sz + Lz = ~
2 .

4.2.2 Dispersive Jackiw-Rebbi (topological insulator)

We now solve the Dirac Hamiltonian in Eq. (4.1) when the electronic mass inside the wire

is dispersive [130, 140],

m1v
2
F = m0v

2
F −B~2k2, (4.5)

where m0 is the electron rest mass in the wire and B is the dispersion factor. Denoted

by JR-D, the dispersive mass gives rise to solutions satisfying open boundary conditions

(ψµ = 0) on the surface of the wire, irrespective of the mass outside. This is confirmed

by the plot of the probability density [right panel in Fig. 4.1(b)], where the wavefunction

is identically zero for ρ ≥ a. The dispersive mass considered here is the simplest model
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that produces the gapless edge states on the surface of a topological insulator [140, 141].

The dispersive mass in Eq. (4.5) gives rise to non-trivial topological properties in the bulk

[130] which, according to the bulk-edge correspondence [142], results in the appearance of

gapless edge states. Existence of these edge states, irrespective of the surrounding material,

implies the open boundary condition where the edge states vanish at the boundary of the

topological insulator [143]. It can be shown that the bulk Z2 invariant is nontrivial (−1)ζ =

sgn(−m0B) whenever m0B > 0. Hence, the medium ρ < a is a topological insulator

ζ = 1. Note, we do not consider the inverse problem in this chapter, where the medium

ρ > a is topological and the wire is treated as a cylindrical defect.

In the JR-D case, the eigenfunctions are of similar form as Eq. (4.2) with the difference

that instead of two, there are four eigenfunctions:

u
(+)

µ,M(1)(k
(1)), u

(−)

µ,M(1)(k
(1)),

u
(+)

µ,M(2)(k
(2)), u

(−)

µ,M(2)(k
(2)),

(4.6)

where M (i) = E + m0v
2
F − B~2(k(i))2 and u(±)

µ,M(i)(k
(i))’s are given by Eq. (4.2). Here

k
(i)
⊥ =

√
(k(i))2 − k2

z with k(i) being two possible propagation constants within the wire,

resulting from the dispersive mass,

k(1,2)=
vF√
2B~

[
(2m0B−1)±

√
(1−4m0B)+

4B2E2

v4
F

]1
2

. (4.7)

Unlike 1D solutions of the topological insulator [130, 131], solutions of the cylindrical JR-

D problem exist irrespective of the sign of m0B. In this chapter, however, we only consider

the scenario when m0B > 0 since the solutions of the trivial case ζ = 0 are similar to the

JR+ domain and are not particularly interesting.

Like the JR± states, we can label the modes depending on whether the two transverse

propagation constants, k(1)
⊥ and k(2)

⊥ are real or imaginary. Note that k(1)
⊥ and k(2)

⊥ both

belong to the interior of the wire ρ < a as there are now two characteristic wavelengths

[Eq. (4.7)]. In addition to Hµ,ν and Dµ, two other types of modes labeled as Rµ,ν and

Cµ,ν exist in the JR-D problem. These modes refer to real (Rµ,ν) and complex (Cµ,ν)

solutions for k(1,2)
⊥ , respectively. The third row of Fig. 4.2 shows the spin and orbital an-

gular momenta densities for the dominant mode, R 1
2
,1, of the JR-D problem. Here also,

the azimuthal and radial components of the spin and OAM are identically zero – only the

longitudinal part is non-vanishing. Due to spin-orbit coupling, the spin and orbital angular

momentum are not individually conserved. This means it is difficult to distinguish between

the separate contributions of the total angular momentum in an experiment. The spatial
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distributions of spin and OAM in Fig. 4.2, however, suggest a way to observe the spin or

orbital parts locally. Analyzing the spin and orbital parts of R 1
2
,1 for the JR-D problem, for

instance, we observe that while the spin is dominantly at the center of the wire, the orbital

angular momentum is zero here and is distributed closer to the perimeter. This shows that

using a point contact at the center of the wire, one can exclusively couple to the local spin

of theR 1
2
,1 mode where the orbital angular momentum vanishes. This method is in analogy

to the approach used in Refs. [20] and [100] where a trapped atom is used to probe the local

spin of the photonic field in an optical fiber.

4.3 Dispersion of Dirac waveguides

The dispersion relation E = E(kz) of the dominant modes is presented in Fig. 4.3(a)

and shows significantly larger group velocities for JR− and JR-D compared to JR+, which

implies higher conductivity. Anomalous dispersion for JR-D can be explained by the fact

that, due to the dispersive electronic mass, charge transport is dominated by holes rather

than electrons. This means that, in the regions where the group velocity becomes negative

[inset of Fig. 4.3((a))], charge currents propagate along the negative ẑ direction for kz > 0.

As shown in Fig. 4.3((b)), the bandgap in the JR+ problem plateaus to m1 (1 eV) for

large radii. Since the Hµ,ν modes of the JR+ domain wall are mostly distributed within

the bulk of the wire [Fig. 4.1(b)], these modes transform into bulk modes when a → ∞.

Note, however, that the spin dynamics in a fully bulk problem would be different from the

spin in the JR+ problem due to the different rotational symmetries of the systems. The

rotational symmetry around the z−axis in the Dirac wire problem would be replaced by

the full rotational symmetry in the bulk problem in the limit a → ∞. This means that a

deterministic electronic spin along any particular direction would disappear.

For JR−, on the other hand, the bandgap closes when a → ∞. This can be explained

by the fact that the mode is predominantly distributed around the perimeter of the wire

[middle panel of Fig. 4.1(b)]. Therefore, the D 1
2

mode transforms into the edge states

of the conventional 1D Jackiw-Rebbi problem [117] when a → ∞. The opening of the

bandgap in the JR− problem, for small wire radius, can be explained by the hybridization

of the edge state modes [144].

More interesting is the bandgap of the topological insulator (JR-D) where for some finite

values of radii, the bandgap closes and re-opens in an oscillatory fashion with a [inset of

Fig. 4.3(b)] . For JR-D, spin also exhibits oscillatory behavior and passes through regions of
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((c)) ((d))

Figure 4.3: (a) Dispersion and group velocities (inset) for the dominant modes of JR+

(dashed blue), JR− (dotted red), and JR-D (solid black). Group velocities are normalized
to the Fermi velocity vF ' 1.52 × 105 m/s. Wire radius dependence of (b) bandgaps, (c)
spin, and (d) OAM for the three problems at kz = 0. Here µ = 1

2 , kz = 0, |m1|v2
F = 1 eV,

m2v
2
F = 2 eV, and λc ' 8 Å. The insets show the zoomed in region of the corresponding

figure for wire radius between 1nm and 5nm. For the topological insulator (JR-D), m0v
2
F =

1 eV and B~2 = 50 eVÅ2. Due to confinement in the cylindrical geometry, the bandgap
is opened for all three problems. For JR-D, however, the bandgap closes and reopens for
certain values of a as seen in the inset of panel (b). Note that the summation Jz = Sz +Lz
produces the conserved value of 1

2 in all three cases. In the limit a → ∞, OAM vanishes
Lz → 0 for JR+, while spin vanishes Sz → 0 for JR− and JR-D.

positive and negative Sz upon increasing the wire radius [Fig. 4.3(c)]. However, as a→∞,

angular momentum is dominated by spin for the JR+ problem and conversely dominated

by OAM for JR− and JR-D. This means the dominant JR− and JR-D modes behave like

edge states in the limit a→∞ and circulate around the perimeter of the material. Another

important observation in Fig. 4.3((c)) is that, although the spin is not conserved in any

problem, its absolute value never exceeds 1
2 . This holds for all higher orders of µ and ν as

well (see Appendix C. Note also, for all three cases, the total angular momentum is still

conserved irrespective of the value of the wire radius.
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4.4 Conclusion

Our results show important differences between the 1D JR [117, 130] and the cylindrical

JR domain walls. In contrast to the 1D problem, the confined geometry of JR± and JR-

D display non-zero longitudinal spin and orbital angular momentum. Moreover, we have

shown that a sign change in mass is not necessary for the existence of confined cylindrical

solutions of the Dirac equation. Labeled by JR+, these Dirac waveguide solutions are the

electronic analogue of the guided modes of an optical fiber [137]. This observation makes

wire geometry an excellent candidate as a Dirac waveguide, where electronic wave packets

can propagate inside the wire with high confinement.

While the experimental observation of these effects is challenging for a wire of this

radius, we believe our results will push current techniques further due to their importance

in spintronics and electron transport. Topological insulator nanowires of radius a = 20 nm

have been reported in the literature [145]. Although the JR-D problem has the simplest

model for topological insulators, the parameters used here are within the range of real ma-

terials. For Bi2Se3, for instance, a Fermi velocity of vF ' 5.0 × 105m/s, a bandgap of

about 0.28 eV, and dispersion factor of 56.6 eVÅ2 has been reported [138]. The parameters

for other topological insulators such as Bi2Te3 and Sb2Te3 show that the Dirac wire is real-

izable using available materials [141]. The surrounding environment can be either vacuum

or another material with a bandgap larger than that of the wire. While the difference be-

tween the bandgap in vacuum and these materials can be very large, the solutions still exist

only with a higher confinement inside the wire. Smaller effective mass ratios between the

cladding and core of the wire can be achieved by placing, for instance, the Bi2Se3 wires of

0.28 eV bandgap inside or on top of a bulk Bi2Te3 material of 0.3 eV bandgap. The study

of such possibilities is the subject of more comprehensive future research.

It is important to note that the dispersive mass property in these 3D topological mate-

rials arises due to the spin-orbit coupling (SOC) . Due to the atomic SOC in the Bi or Se

atom, in the Bi2Se3 lattice for instance, hybridization occurs between the p orbital of the

Bi and Se atoms which results in momentum dependent nature of the effective mass in the

model Hamiltonian [141]. This SOC is different from the Dresselhaus SOC [146] – which

is mostly concerned with crystals lacking bulk inversion symmetry and consequently give

rise only to terms dependent on odd exponents of momentum in Hamiltonian. The materials

in the group of Bi2Se3 preserve the inversion symmetry and thus the Dresselhaus SOC does

not apply to them. The Hamiltonian for the surface states of these topological insulators,
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however, resembles that of Rashba SOC Hamiltonian which most commonly applies to 2D

materials or boundary of 3D materials where the inversion symmetry is broken perpendicu-

lar to the plane of the lattice [141,147]. A comprehensive study of SOC in these and similar

3D topological insulator materials requires a point group theoretical approach towards the

symmetry properties of these lattices and is out of scope of this study. A complete study of

the Hamiltonian of materials belonging to the group Bi2Se3 incorporating SOC interactions

can be found in Ref. [141].

Table 4.1 summarizes the physical parameters of the problem discussed here.

Parameter
radius of

Fermi velocity Compton wavelength
dispersion constant

Fermi energy
of the wire (JR-D problem)

Value a = 20 Å vF = 1.52× 105 m/s λc = 8 Å B~2 = 50 eVÅ2 m0v
2
F = 1eV

Table 4.1: Physical parameters of Dirac wire problem.
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Chapter 5

Spin-Momentum Locking in Surface
Acoustic Waves

In this chapter, we briefly discuss the local properties of angular momentum in mechanical

waves of acoustic waves. We specifically study the Rayleigh-type surface acoustic waves

(SAW) propagating on the surface of a slab of lithium niobate (LiNbO3) . By numerically

solving the equations of motion for Lithium Niobate, we show that the SAW gives rise to

acoustic spin inside the material. Being a piezo-electric material, the propagation of SAW

on lithium niobate also gives rise to a gyrating electric field. We show that both the acoustic

waves and the gyrating electric field possess spin and have the spin-momentum locking

property. This gyrating electric field can be detected and probed using advanced ultafast

nanophotonic techniques. The results of this chapter will be published in collaboration with

professor Hubert Krenner. Here we only discuss the theoretical aspect of the spin in SAWs.

Experimental methods and details will be accessed through the corresponding journal’s

portal once the manuscript has been published.

5.1 Introduction

Spin-momentum locking is a universal property observed in electromagnetic [94, 95] [22]

as well as electronic [87] systems where the momentum of the waves, the decay direc-

tion, and the spin form a triplet in which the spin is locked to the momentum [Fig. 5.1(a)].

In condensed matter physics, spin-momentum locking leads to directional spin currents of

electrons on the surface of topological insulators. In photonics, this directional transport of

energy, dependent on local polarization of evanescent waves, has been observed in quantum

dot emission near topological photonic crystals, scattering of surface plasmon polaritons in

metasurfaces, and cold atoms coupled to an optical fiber. Moreover, in 2D materials, re-
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cent experiments demonstrated that the coupling between the valley pseudospin of tungsten

disulfide (WS2) and the optical spin of plasmons in a silver nanowire results in the di-

rectional propagation of circularly polarized excitations [148]. Similar phenomenon has

also been observed in magnon modes of a spherical Yitrrium Iron Garnett (YIG) resonator

where the spin-orbit coupling in the whispering gallery modes leads to a strong nonreciproc-

ity [149]. This opens the intriguing question of observing spin-momentum locking related

phenomena in acoustic waves.

Acoustic waves, described by the motion of mechanical degrees of freedom, are fun-

damentally different excitations compared to photonic modes and fermionic states in elec-

tronic structures. Despite this fundamental difference, however, they show similar proper-

ties to other forms of waves [150–153], indicating the universal nature of properties such as

spin-momentum locking [94]. More specifically, Rayleigh surface acoustic waves (SAWs),

exhibit both transverse and longitudinal displacement, with respect to the propagation di-

rection on the surface of a material, with an intrinsic phase difference between these two

orthogonal components [154]. This is the manifestation of acoustic spin in Rayleigh SAWs

in parallel to photonic edge waves and surface waves; making them an archetypical ex-

ample of spin-momentum locking of elastic waves. These surface acoustic waves have the

potential to be integrated on-chip alongside photonic and electronic technologies. They find

a myriad of applications ranging from quantum technologies for information transduction

between microwave and optical frequencies to the life sciences [155].

In this chapter, we show the spin-momentum locking for the Rayleigh SAWs. Un-

like previous studies were a generic acoustic beam has been studied for spin properties

[150,152], here we have solved for the acoustic waves propagating on the surface of lithium

niobate. Having a piezoelectric property, we have shown that the gyrating electric field pro-

duced as a result of the SAW on lithium niobate possesses the spin-momentum locking

property and thus can be used to probe the spin-momentum locking of the acoustic wave.

Our results can be experimentally tested by probing the gyrating electric field using quan-

tum well nanowires placed on the surface of the lithium niobate [156].

5.2 Rayleigh Surface Acoustic Waves

Equations of motion for the surface electric and acoustic waves on the surface of a piezo-

electric material are solved numerically for one of the technologically most relevant SAW

substrate, LiNbO3 [154] with the parameters taken from reference [157]. We consider, with
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Figure 5.1: (a) Momentum, decay and spin of the gyrating electric field generated by a
Rayleigh-type SAW form a right-handed triplet. The direction of spin for both electric field
and displacement are locked to the propagation direction. (b) Calculated displacement and
(c) electric field (main panels) of the Rayleigh SAW propagating along the Z-direction on
a Y-cut LiNbO3 crystal. The side panels show the normalized magnitude of the transverse
spin normal to the surface (y = 0). The mechanical spin shows a characteristic sign change
at ' λSAWs below the surface, i.e. from being counterclockwise to clockwise, while the
electrical spin changes from counterclockwise to clockwise exactly at the surface.

no loss of generality, that the Rayleigh SAW is propagating along the Z-direction of a Y-

cut LiNbO3 crystal. Equations of motion for acoustic waves in a piezoelectric material are

given by [154],

cijkl
∂2ul

∂xj∂xk
+ ekij

∂2Φ

∂xj∂xk
= −ρω2ui, i = 1, 2, 3 (5.1a)

ejkl
∂2ul

∂xj∂xk
− εjk

∂2Φ

∂xj∂xk
= 0 (5.1b)

where cijk is the stiffness tensor, ul displacement vector indicating the displacement in the

material along the three directions, Φ the scalar electric potential, eijk the piezoelectric

tensor relating the electric field components to the displacement vector, ρ the mass density

of the material, ω the oscillation frequency of the acoustic wave, and εjk the permittivity

tensor. Tensor properties of the material depends on the lattice structure and molecular

build-up of the unit cells. For lithium niobate, these parameters can be found in [154]

and [157]. See Appendix D for more detail.
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Solutions of the Rayleigh SAW can be found by using the ansatz uµ = uµ0e
i(ωt−kx3)eχkx2 ,

where ui, i = 1, 2, 3 are the displacement components and u4 = Φ. Note that k is the mo-

mentum of the wave and χ is the decay factor. The equations of motion in Eq. (5.1) have

to be solved together with the boundary conditions in order to find the SAW solutions. As-

suming that the crystal a Y-cut lithium niobate, as shown in Fig. (5.1(a)), the interface of

the material is normal to the y axis. Therefore the boundary conditions are

Ti2 = 0, Dy0 = Dy1 (5.2)

where Dy0 and Dy1 are the electric displacement fields in vacuum and in the material,

respectively. For Rayleigh SAWs we can assume that u1 = ∂
∂x1

= 0, meaning that the

displacement component is zero along the x axis.

Therefore, by solving the Eq. (5.1) together with the boundary conditions Eq. (5.2), we

can find the solutions for Rayleigh acoustic waves. We thus find the displacement vector

components uµ, electric field components Ei, as well as the propagation velocity of the

wave V = ω/k. The solution of these equations is described in detail in Appendix D.

Figures 5.1(b) and 5.1(c) show the displacement and the electric fields found in the

sagittal plane (the plane of propagation of SAW, the Z − Y plane). The displacement

field vector indicates the amount of displacement in the crystal of lithium niobate at each

point inside the material. The vector ~kz shows the direction of the propagation of SAW

along the z axis. The y axis in both figures indicate the distance from the interface into the

material and the vacuum as a function of the SAW wavelength λSAW. Note that the SAW

wavelength is found to be λSAW = 18µm. Since the same anastz has been used for both the

displacement vector and the electric field, we can conclude that the SAW and the gyrating

electric field have the same oscillation frequency, wavelength, and propagation velocity.

The electromagnetic and acoustic spin are given by [106, 108, 109],

SE =
1

2
ωIm {ε0E ×E∗ + µ0H ×H∗} (5.3)

and [150, 151],

SA =
1

2
ωIm {ρv × v∗} , (5.4)

respectively, where v is the velocity vector and is equal to the time-derivative of the dis-

placement vector. In solving the equations for the Rayleigh waves the electrostatic approx-

imation has been assumed. Therefore, the contribution to the electric field spin SE comes

only from the electric field in our case. The side panels of Fig. 5.1(b) and 5.1(c) show the

normalized acoustic and electromagnetic fields as a function of y coordinate for propagation
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along positive z direction ( kz > 0). The acoustic spin analyzed in side panel of Fig. 5.1(b)

is pointing out of the sagittal plane close to the interface and it flips sign at about 0.2 wave-

length away from the interface as shown by the dashed line. This shows that even though

the direction of acoustic spin is locked to the direction momentum, it does not necessarily

form a right-handed triplet with the momentum and decay, which is a unique property of

Rayleigh-type SAWs. For the electric field spin, however, as shown in the side panel of

Fig. 5.1(c), the spin is pointing out of the plane on top of the surface. Therefore, the mo-

mentum, decay, and spin form a right-handed triplet as indicated in Fig. 5.1(a). Inside the

material, the electric field spin flips together with the decay direction. Thus, the right-hand

momentum, decay, and spin triplet are preserved.

These results clearly show the spin-momentum locking in both the electric field and

the displacement vector. This means that by changing the direction of the propagation

(changing the sign of kz), all of the spin components flip. It is important to note that

the electric fields generated here are different from SPPs or surface waves propagating on

the surface of metallic interface. While the latter involves high-frequency electromagnetic

oscillations, the former contains only electrostatic fields. This means that the gyrating

electric field changes slowly with the frequency of the acoustic wave and does not give

rise to electromagnetic propagation. All spatial and temporal components of the electric

field thus follow the same patterns as the SAW.

5.3 Experimental Observation

In this section, we briefly discuss a possible experimental realization. This experiment

has been performed by Prof. Hubert Krenner using a method similar to the one used in

Ref. [156]. Figure 5.2 shows the experimental setup for the detection of spin of the SAW.

The nanowire (NW) is designed such that it has two dislocated quantum wells. By probing

the photoluminescence (PL) from the two quantum wells, we are able to track the time-

evolution of the electric field, generated by the SAW, locally on the surface of the Lithium

Niobate. The SAW is generated by an interdigital transducer (IDT) which is excited by an

RF signal of 194 MHz with a wavelength of λSAW = 18µm. The NW is placed parallel

to the propagation direction of the SAW. As shown in Fig. 5.2, we observe that the electric

field spins counter-clockwise with time – demonstrating the electromagnetic spin as shown

in Fig. 5.1(c).
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Figure 5.2: Experimental setup for the observation of spin of a Rayleigh-type SAW propa-
gating on the surface of Lithium Niobate (LiNbO3). By probing PL from the two quantum
wells inside the NW, we are able to track the time-evolution of the electric field generated
by the SAW and thus confirm the spin of the acoustic wave.

5.4 Conclusion

In this chapter, we have shown the local angular momentum property of the surface acoustic

waves. We did this by solving the equations of motion for SAWs propagating on the surface

of the piezoelectric lithium niobate and evaluating the spin of the acoustic wave as well as

the gyrating electric field. We have shown that both the displacement field and the electric

field have the spin-momentum locking property meaning that the direction of spin is locked

to the propagation direction of the SAW. Since the wavelength of the SAW is much smaller

compared to the wavelength of radiation at 194 MHz (18µm), the electrostatic approxima-

tion has been assumed. We have shown that the electric field has the same time-evolution,

wavelength and decay constant as the SAW. Therefore by probing the spin of the electric

field we can gain insight into the spin properties of the SAW. These results show the impor-

tance of local interaction between nanophotonics and nanoacoustic structures in detecting

angular momenta phenomena that are typically challenging to observe.
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Chapter 6

Colossal Vacuum Radiation from
Spinning YIG Nanosphere

Observation of quantum vacuum radiation and quantum vacuum torque is a challenging

task due to its negligible effect compared to other dominating effects in various experi-

mental setups. Here we show that a spinning YIG nanosphere in vicinity of a aluminum

or YIG slab exhibits colossal quantum vacuum radiation of about 8 orders of magnitude

larger compared to other metallic or dielectric spinning nanoparticles. Our result show that,

for experimentally feasible rotation speeds and particles sizes, this large quantum vacuum

radiation or quantum vacuum torque is manifested in the clear observable effects such as

balance rotation speeds or stopping times, for realistic experimental setups.

6.1 Introduction

The physics of moving and rotating bodies are gaining more attention as the technological

and experimental aspect of this field is achieving higher speeds every day [8, 158]. Besides

having implications in the fields of quantum gravity [159], dark energy detection [160] and

superradiance [161, 162], trapping and rotation of nanoparticles at GHz speeds is a ma-

jor breakthrough for the detection of quantum vacuum fluctuations [162, 163]. Although

Casimir force, the force acting between plates as a result of quantum vacuum fluctuations,

has been measured extensively [164–166], the sensitivity of the tools are only starting to

reach the limit needed for the measurement of Casimir torque – the torque exerted on spin-

ning objects as a result of quantum vacuum radiation [167]. Observation of direct conse-

quence of quantum vacuum radiation, on the other hand, still remains a challenge due to

intractability of the radiated photons.

Metals are known to exhibit a pronounced magnetic local density of states (LDOS) ,
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compared to the electric LDOS, at wavelengths above a few microns down to GHz fre-

quency, due to the dominance of the evanescent s-polarized over the p-polarized waves

[168]. This leads to a higher coupling between magnetic dipoles and evanescent waves

of metals, compared to the electric dipoles, at low frequencies. Moreover, here we show

that the dominant magnetic LDOS property at GHz frequencies also extends to magnetic

materials. This can have important implications in magnetometry [169] and spin measure-

ments [170].

In this chapter, we investigate a Yttrium Iron Garnet (YIG) nanosphere spinning at 1

GHz frequency in the vicinity of a metallic or YIG interface. With YIG having a mag-

netic resonance at GHz frequencies [171], and due to the higher magnetic LDOS at these

frequencies, the fluctuating magnetic dipoles of the YIG nanosphere couple strongly to

the electromagnetic modes of the metallic or magnetic interface and give rise to a colos-

sal quantum vacuum radiation. Emitting radiations of about 8 orders of magnitude larger

than any other metallic or dielectric material, in the vicinity of a metallic slab [172], this

setup proposes a unique tool for the detection and analysis of quantum vacuum radiation as

well as quantum vacuum torque. In fact we show that, for experimentally accessible rota-

tion speeds, particle size, temperatures, and vacuum pressures [8, 173], this large vacuum

radiation and vacuum friction has direct experimental consequences. Here it is shown that

these effects are readily observed in the balance speed, stopping time, as well as the balance

temperature of the spinning YIG.

The source of the energy for this larger vacuum radiation is evidently the non-inertial

motion of the sphere, which is transferred as a boost of energy of value ~Ω to the fluctuating

photons of the sphere, as seen from the lab frame. For a stationary sphere and equilibrium

temperatures, the number of photons emitted by the fluctuating dipoles of the sphere is equal

to the number of photons emitted by the fluctuating fields of the vacuum which are absorbed

by the sphere; resulting in a net zero radiation. However, when the sphere is rotating, due

to the extra boost of energy from mechanical rotation, the balance between the emitted

and absorbed photons is broken and there is a net radiated power coming from the sphere

[174]. This energy goes mostly into the lossy surface waves in both metallic and magnetic

materials [175]. However, if the magnetic material is properly biased, as it is the case

studied here with a bias magnetic field of 812 Oe for the YIG slab, the magnetic resonance

in the magnetic slab can become resonant with the magnetic resonance in the magnetic

sphere – meaning that most of the energy is transferred to surface magnon polaritons.
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6.2 Quantum Vacuum Radiation

While in absence of any interface the spinning YIG particles do not present any substantial

enhancement in the vacuum radiation, the presence of a metallic or magnetic interface dras-

tically changes this observation (Fig. 6.1). While metallic particles are known to possess

higher radiation rate compared to dielectric particles [174], here we observe that magnetic

particles exhibit an even larger radiation rate, of about 8 orders of magnitude, compared

metallic particles.

Using a similar approach to the methods used by Abajo and Manjavacas [162], we find

the radiated power due to the magnetic fluctuations to be,

Pmag =

∫ +∞

−∞
~ωdωΓH(ω) (6.1)

where ΓH(ω) is the spectral density function due to magnetic dipole fluctuations given by

(see Appendix E),

ΓH(ω) = (ωρ0/8)

{[
gH
⊥,2(ω) + 2gH

‖ (ω) + 2gH
g,2(ω)

] [
Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}]
×[

n1(ω−)− n0(ω)
]

+gH
⊥,1(ω)Im

{
αm,‖(ω)

}
[n1(ω)− n0(ω)]

}
(6.2)

where ρ0 = ω2/c2π3 is the vacuum density of states, gH
⊥,1 , gH

⊥,2 are the two perpendicular

components of the magnetic Green’s function in the plane of the interface (in this case the

xx and zz respectively), gH
‖ the component normal to the interface (yy component here),

and gH
g,2 the off-diagonal xy component (here between one in-plane and the normal compo-

nent), all normalized to πωρ0/8. αm,⊥(ω), αm,g(ω), and αm,‖(ω) are the xx (or yy), xy,

and zz components of the magnetic polarizability tensor in the frame of the rotating sphere,

respectively, where ω− = ω − Ω [162, 171, 176]. n1(ω) and n0(ω) are the Planck’s distri-

butions pertinent to temperatures T1 and T0 of the sphere and the environment, respectively.

Due to the conservation of energy, the radiated power is equal to minus the change

in the stored electromagnetic energy in the magnetic dipole moments. Therefore the total

radiated power is found by finding the time-derivative of the inner product of the induced

magnetic field due to the magnetic dipole fluctuations and the dipole fluctuations as well

as the inner product of the induced magnetic dipoles due to the magnetic field fluctuations

and the magnetic field fluctuations. Writing the induced dipole moments and fields in terms
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Figure 6.1: (a) A YIG sphere trapped in the laser beam and spinning at 1 GHz rotation fre-
quency in vacuum. The stopping time for the sphere is on the order of age of the universe.
(b) YIG sphere spinning the vicinity of an Aluminum or YIG interface exhibits colossal
quantum vacuum radiation. The stopping time, due to the presence of the interface, is re-
duced to about 8 hours. (c) Number of photons emitted per second per radiation frequency,
defined as 1

~ωdP/dω = Γ(ω)−Γ(−ω), for a YIG (blue solid curve) and Aluminum (dashed
orange curve) nanosphere of radius 200 nm in the vicinity of an Aluminum slab, and (d) in
the vicinity of a YIG slab. For the Al slab, non-local model has been used. The YIG slab in
panel (d) is biased along y direction (panel (a)) with a magnetic field of H0 = 812 Oe. The
distance between the sphere and both interfaces is chosen to be d = 0.5µm.

of the magnetic dipole and field fluctuations, and using the fluctuation-dissipation theorem

(FDT) for finding the radiated energy due to the fluctuating dipoles and fields, we arrive at

the total radiated power expression in terms of the Green’s function, Planck’s distribution,

and polarizability tensor, as given by Eqs. (6.1) and (6.2). Note that all of the expressions are

written in the lab frame. Therefore coordinate transformation between the rotating frame of
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the sphere and the lab frame has been performed when necessary. A detailed derivation for

all of these quantities, along with various orientations and bias magnetic field directions for

the YIG interface, are provided in Appendix E.

d

y
z
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s

k- 

((a)) ((b))

Figure 6.2: (a) Schematic for the s and p polarization. The k− vector shows the propagation
direction for waves propagating along −z direction. s and p− polarization are defined with
respect to this propagation direction. Similarly, k+ and p+ vectors can also be defined for
waves propagating along +z direction. (b) Plots of the electric (ρE), magnetic (ρH ), and
total (ρT ) LDOS for a distance of d = 0.5µm from an Al interface. Note that non-local
model has been used for the Al. As shown, the total LDOS is dominated by the magnetic
LDOS since it is about 12 orders of magnitude larger than the electric LDOS.

As shown in Fig. 6.1(c) for Aluminium interface, and Fig. 6.1(d) for YIG interface,

the radiation from spinning YIG sphere (blue curves) is much larger than that of the Al

sphere (orange curves). This is explained by the difference in the electric and magnetic

local density of states (LDOS) in the vicinity of a metal interface. As shown by Joulain et

al. [168], LDOS is dominated by the magnetic LDOS at wavelengths above a few microns.

We have extended this observation to GHz frequencies and taken into account the effect of

non-locality in Al [175] (see Appendix E).

The reason behind higher magnetic LDOS at low frequencies is the difference in the

reflection coefficients of the s and p polarizations (Fig. 6.2(a)). For the electric field, the

LDOS is generally dominated by the p polarization for the evanescent fields since evanes-

cent p polarized fields have stronger dependence on the momentum of the modes than s

polarization. For the magnetic field the opposite is true since the magnetic field is perpen-

dicular to the electric field and thus the contribution from the s polarization is dominant.

Now, at GHz frequencies, the imaginary part of the s polarization reflection coefficient is

close to unity meaning that the s polarized fields get reflected while for the p polariza-
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tion the reflection is close to zero. Thus the s polarization contributes more to the LDOS

than p polarization and since only the magnetic LDOS is dominated by s polarized evanes-

cent fields, as discussed above, the magnetic LDOS is dominant at these frequencies for

evanescent fields. Figure 6.2(b) shows the electric, magnetic, total, and vacuum LDOS for

a distance of d = 0.5µm from an Al interface. As shown, the total LDOS is dominated by

the magnetic LDOS since it is about 12 orders of magnitude larger than the electric LDOS

at about GHz frequencies. Also, as shown, LDOS in presence of Al interface is about 16

orders of magnitude larger than the vacuum LDOS ρ0. For a more in depth study of the

LDOS in presence of metallic interfaces refer to the Ref. [168].

An important fact regarding spinning YIG is magnetization of the nanosphere due to the

rotation in absence of any external magnetic field. Known as the Barnett effect, this occurs

due to the conservation of angular momentum where the mechanical angular momentum of

the sphere is transferred to the spin of the unpaired electrons in the magnetic material [177].

It is concluded that the Larmor precession frequency of the electrons inside the sphere,

assuming that the magnetic field is parallel to the rotation axis, is given by [171],

ω0 = Ω + µ0γH0 (6.3)

for the rotation frequency Ω, gyromagnetic ratio of the electron γ, vacuum permeability

µ0, and applied external magnetic field H0. This expression shows that, in absence of any

external magnetic field, the nanosphere is magnetized with the Larmor frequency Ω.

Radiated photons per second per frequency are calculated in Appendix E using the

expressions given in Eqs. (6.1) and (6.2) for the radiated power as a function of frequency

written in terms of positive frequencies only. This is expressed through Γ(ω)−Γ(−ω), with

Γ(ω) being defined as the spectral distribution of the rate of emission or absorption [162],

where the FDT is used as discussed above. Figures 6.1(c) and 6.1(d) show the total radiated

photons per frequency per second for the case when the Al or YIG interface are in the x−z

plane. We find that in the case of Al interface Fig. (6.1(c)), spinning YIG sphere radiates

about 6 femto-Watts of power, compared to the Al sphere which radiates about 6 × 10−7

femto-Watts. In the case of a YIG interface, on the other hand, we find about 61.3 femto-

Watts and 4.63×10−7 femto-Watts of radiated power for YIG and Al spheres, respectively.

These results clearly show the advantage of YIG over Al nanoparticles for probing quantum

vacuum radiation.
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6.3 Quantum Vacuum Torque

We used a similar approach to find the vacuum torque exerted on the sphere [174] due to

magnetic dipole and magnetic field fluctuations. The torque along the axis of rotation is

given by Mz =
∫∞

0 dω~
[
ΓH

M(ω) + ΓH
M(−ω)

]
, where the expression for ΓH

M(ω) is similar

to the expression for ΓH(ω) in Eq. (6.2) with the difference that the last term on the second

line is not present in ΓH
M(ω) [162]. One interesting fact about the case when the particle is

spinning in vicinity of the YIG slab is that the other components of the torque (Mx and My

components) are not necessarily zero as it is for the Al slab. Due to the anisotropy of the

YIG slab, Mx and My do not vanish for some directions of the bias magnetic field. These

cases are studied in Appendix E.

Figure 6.3 compares vacuum torques for the spinning YIG sphere (Figs. 6.3(a) and

6.3(c)) to vacuum torque for spinning Al sphere (Fig. 6.3(b) and 6.3(d)), sphere spinning in

vicinity of YIG slab (Figs. 6.3(a) and 6.3(b)) and Al slab (Figs. 6.3(c) and 6.3(d)), as well

as spinning in vicinity of slabs (solid colored curves) versus spinning in vacuum (dashed

black curves). These figures show more than 10 orders of magnitude enhancement in the

vacuum torque in the presence of YIG and Al slabs compared to the vacuum, and about 4

orders of magnitude enhancement due to use of YIG sphere compared to Al sphere. These

results show the advantage of coupling to magnetic LDOS than the electric LDOS for the

investigation of quantum vacuum torque at GHz frequencies. Note that in these figures

the model used for the Al interface is a non-local model [175]. Moreover, these results

include the torque due to magnetic and electric dipole and field fluctuations. However, note

that in all cases the vacuum torque is dominated by the magnetic rather than the electric

fluctuations (see Appendix E for more detail). Also, we have taken into account the effect

of recoil torque [78] — the torque exerted on the sphere due to the scattering of vacuum field

fluctuations off the particle. Being a second order torque, however, its effect is negligible

compared to the effect of magnetic fluctuations for the studied cases (see Appendix E).

6.4 Experimental Considerations

The observation of consequences of quantum vacuum radiation and quantum vacuum torque

comes down to the changes observed in the parameters of the experiments as a result of

bringing the Al/YIG interface in the vicinity of the spinning particle. Figure 6.4(a) shows

the proposed experimental setup for this observation where a YIG nanoparticle is trapped

inside a Al or YIG ring. Note that the size of the ring is much greater than that of the particle
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Figure 6.3: The negative quantum vacuum torque experienced by a YIG and Aluminum
nanosphere of radius 200 nm at room temperature. (a) Torque experienced by a YIG sphere
in vicinity of YIG slab (solid blue curve) and in vacuum (dashed black curve). (b) Torque
exerted on an Al sphere in vicinity of YIG slab (solid orange curve) and in vacuum (dashed
black curve). (c), (d) the same as (a) and (b) with YIG slab replaced by an Al slab. The
YIG slab is biased along y direction with H0 = 812 Oe (see Fig. 1(a)). A non-local model
is used for the Al slabs. The distance between the spinning spheres and slabs is d = 0.5µm
for all cases. Placing the YIG or Al interface in vicinity of spinning sphere results in about
12 orders of magnitude increase in the exerted quantum vacuum torque.

and it does not lead to any resonant behaviour. However, for smaller ring size, LDOS can

be further enhanced compared to the slab interface due to the presence of the interface on

all sides.

We evaluated some of the observable experimental outcomes due to the higher quantum

radiation and friction. This analysis is based on the values obtained from the experiments

in Refs. [8, 173, 178]. Figure 6.4(b) shows the balanced rotation speed Ωb of the sphere,

normalized to the rotation speed in the absence of any interface Ω0 as a function of distance
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Figure 6.4: Experimental considerations of the setup. (a) Proposed experimental setup with
nanosphere trapped inside a ring. (b) Balance speed Ωb for Al sphere (red curve) and YIG
sphere in presence of Al (blue curve) and YIG (pink curve) interfaces, as a function of
distance d from the interface for a 200 nm radius sphere at 10−4 Torr vacuum pressure. The
values are normalized to the vacuum balance speed Ω0. (c) Characteristic stopping time
as a function of distance from the interface at vacuum pressure of 10−6 Torr. (d) Balance
temperature of the YIG sphere Ts at d = 500 nm distance from Al (blue curve) and YIG
(pink curve) interface as a function of lab temperature T0, at vacuum pressure 10−4 Torr.
For Al interface there is no final temperature as the temperature keeps raising with time.

d from the interface. In absence of any interface, due to the negligible value of quantum

vacuum radiation, the balance rotation speed is obtained when the torque due to the trapping

laser balances the negative drag torque due the imperfect vacuum [8]. This indicates that the

lower the vacuum pressure, the higher the rotation speed is going to be. Taking the driving

torque to be constant and the drag force to have a simple linear velocity dependence [8],

Fig. 6.4(b) shows that the balance rotation speed of the YIG sphere is reduced when the Al

(blue curve) or the YIG (pink curve) interface is brought closer to the sphere, due to the

negative torque resulting from vacuum fluctuations. Note however that, for the spinning Al
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sphere in the vicinity of Al or YIG sphere (red curve), no observable change in the balance

speed is manifested.

This signature is apparent in other experimental observables such as the stopping time

as a function of distance (Fig. 6.4(c)) and the balance temperature of the sphere as a function

of the vacuum temperature T0 (Fig. 6.4(d)). These results show that the quantum vacuum

radiation and quantum vacuum torque can be experimentally measured through the mea-

surement of the balance speed, balance temperature, and stopping time of the YIG nanopar-

ticle. The Al particle (or any other metallic particle) however may not experience enough

vacuum fluctuations to exhibit observable outcomes, unless for a very sensitive setup with

very low vacuum pressure [8, 167].

6.5 Conclusion

Our results show that due to the dominance of magnetic LDOS over electric LDOS in the

vicinity of metallic or magnetic materials in the GHz range, spinning magnetic materials

can exhibit orders of magnitude larger quantum vacuum radiation and quantum vacuum

torque compared to any metallic or dielectric material. By investigating the case of a YIG

nanosphere spinning at 1 GHz speed, we have shown that the effect of quantum vacuum

fluctuations are easily observed in a reasonably prepared experimental setup. These results

set a new perspective for the observation and understanding of quantum vacuum fluctua-

tions.

Table 6.1 summarizes the physical parameters of the problem discussed here.

Parameter sphere radius
distance from

rotation speed
bias magnetic field

temperature
the interface of the YIG interface

Value a = 200 nm d = 0.5µm Ω = 1GHz H0 = 812 Oe T0 = 300 K

Table 6.1: Physical parameters of the YIG nanosphere spinning in vicinity of the aluminum
or YIG interface
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude our work by recapitulating the mains points of the thesis. We

further discuss possible future directions regarding the research in this area.

7.1 Conclusion and Summary

In this work we discussed the important implications of the emerging field of spin photonics.

With a focus on local light-matter interactions, we discussed the importance of evanescent

fields in providing various experimental possibilities and the role of angular momentum

in the near-field interactions. We have presented for the first time a local conservation of

angular momentum equation applicable to the light-matter interactions. We have moreover

shown the importance of local interactions by studying a variety of systems incorporating

the role of angular momentum in near-field interactions.

In chapter 2 we started from the QED Lagrangian and investigated its symmetry prop-

erties using Noether’s theorem. With a focus on rotational symmetries of the full Lorentz

transformation, in combination with the well-known angular momentum related terms such

as spin, OAM, chirality, and helicity, we presented a set of new quantities that are respon-

sible for the transfer and propagation of angular momentum. We further showed that these

terms are connected through a local conservation equation. The new terms, such as spin-

orbit torque and angular momentum current tensors, shed light on the local dynamics of

near-field interactions. A complete understanding of the dynamics of the angular momen-

tum of light-matter interactions in geometries with tight light confinement, such as optical

fibers and SPPs, require this local treatment of angular momentum.

We explored the local interactions by studying the coupling of σ± Zeeman transitions of

a quantum source to a spherical resonator. By placing the quantum source in the evanescent

fields of the WGMs of the resonator, we were able to demonstrate non-symmetric behaviour
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that are manifested exclusively in the local, evanescently coupled, interactions.

The local properties of the angular momentum was further investigated for the confined

electronic modes in chapter 4. We analyzed the solutions of the Dirac equation in the

cylindrical geometry of a wire, made of a material with an effective electronic mass different

than that of the surrounding. Calling this geometry a Dirac wire we showed that due to this

confinement, electronic spin emerges along the axis of the wire. We have shown that this

longitudinal spin emerges only in the confined geometry and vanishes as the size of the wire

is increased.

Chapter 5 discussed the local angular momentum properties of mechanical waves. By

finding the solutions of Rayleigh surface acoustic waves propagating on the surface of a

slab of Lithium Niobate, we showed that the mechanical oscillations of the SAW also man-

ifest spin-momentum locking property usually observed in the nanophotonic or electronic

structures. This acoustic spin can be experimentally tracked by probing the gyrating elec-

tric field from the piezo-electric Lithium Niobate using a nanowire with a quantum well

structure.

In chapter 6 we demonstrated an important consequence of local interactions between

magnetic dipoles in a YIG sphere and optical modes of a metallic or magnetic material.

When the sphere is spinning, due to the imbalance between the emitted and absorbed pho-

tons, the sphere emits radiations – transferring the mechanical energy of the particle to the

energy of quantum vacuum radiation. While this has been a known effect for a long time,

quantum vacuum radiation is usually very small compared to the noise levels which makes

it hard to detect. We showed that by bringing a metallic or magnetic interface into the near-

field of the YIG sphere, this radiation can be greatly enhanced. Our results show that, due

to this colossal enhancement, the effect of quantum vacuum radiation and quantum vacuum

torque can be experimentally observed; making this result a breakthrough in the field of

quantum vacuum radiation.

7.2 Future work

In this section, we briefly discuss the research directions that can be taken following the

results presented in this work.

7.2.1 Study of Local Angular Momentum Electrodynamics

In chapter 2, we discussed the importance of local conservation laws of angular momen-

tum in describing near-field light-matter interactions. However, except for the two simple
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electromagnetic problems discussed, we did not study a light-matter interacting system

that can put these local laws into test. The platforms discussed in section 1.2 are a good

starting point for this study. These platforms include atomic or quantum dot sources, with

quantized transitions, trapped in the near-field of a photonic structure. Examples of these

photonic structures include 2D or 3D optical resonators, optical fibers, SPPs, or photonic

crystals where due to the confined light property near-field local light-matter interactions

between the quantum source and optical modes can be probed.

Such systems will be studied in a future work and the local angular momentum dynam-

ics of the optical and electronic fields will be analyzed. Due to the small size of atomic

structures compared to currently available probes, local measurement of electronic spin is

still a challenging task. However, measurement of local properties of optical fields are more

feasible with the current technologies and, as discussed in section 2.5, a semi-local approach

can reveal the importance of a local approach towards the angular momentum dynamics.

In addition to the methods discussed in section 1.2, a variety of methods are used to

measure local properties of optical fields. Among these, nitrogen-vacancy center (NV cen-

ter) in diamond lattices are promising nanoscale probes with nano-Tesla magnetic field

sensitivity [179, 180]. NV centers are point defects in the crystal of diamond which give

rise to a local multielectron system with stable energy transitions. Due to Zeeman splitting,

a minuscule magnetic field can shift these energy transitions which then can be observed

through the narrow-band photoluminescence of these transition. Experiments are currently

being performed at our group, at Purdue university, where NV centers are used for the

detection of optical spin and optically induced fictitious magnetic fields [181, 182].

7.2.2 Angular Momentum of Quantum Vacuum Radiation

Chapter 6 discussed the importance of local interactions between a metallic or magnetic slab

and the magnetic dipoles in a spinning YIG nanosphere. Our results showed a substantial

increase in the quantum vacuum radiation due to this local coupling. However, properties

of this radiation, such the radiation direction and polarization, were not discussed in that

chapter.

This study requires calculation of Poynting vector and finding the angular momentum in

the radiation. Although mathematically demanding, such a calculation would shed light on

the transfer of angular momentum between the mechanical motion and the optical radiation.

Instead of finding the field and dipole fluctuations only at the location of the sphere, this

treatment requires an evaluation of these fluctuations at every point in space and then a
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calculation of the Poynting vector [183]. This analysis will contribute to the emerging field

of thermal spin photonics [184].

7.2.3 Two-body Dirac Equations

The conservation equations of chapter 2 are based on the Dirac equation which is a single-

electron equation in the sense that it does not incorporate electron-electron interactions.

While the conservation laws derived from this equation accurately describe the dynamics of

angular momentum for optical fields interacting with a source modeled by a single electron,

more complex interactions such as electron-electron interactions mediated by emission of

photons or near-fields are not captured by this treatment.

In order to apply the method of chapter 2 to the problem of two-body fermionic system,

the Lagrangian of the system is essential in deriving the angular momentum dynamics equa-

tion. Such an equation was initially proposed by Breit [185], where he extended the Dirac

equation to include two sets of fields for two electrons plus an interaction Darwin term.

Although successful in explaining magnetic effects, this equation is first order perturbative

in QED and is not Lorentz invariant.

Beth and Salpeter proposed the famous Beth-Salpeter Hamiltonian which takes a full

quantum field theory approach [186]. It is Lorentz invariant and has found applications in a

wide range of areas from condensed matter to AMO and high energy physics. However, It

was shown by Nakanishi [187] that the Beth-Salpeter equation gives rise to negative-norm

solutions due to the relative time degree of freedom.

This problem was alleviated by Sazdjian [188] as well as Crater and Alstine [74], by

writing two simultaneous Lorentz invariant Dirac equations for each of the two interacting

fermions named two-body Dirac equations (TBDEs) . All of these methods for many-

body interactions are being currently incorporated depending on the application and range

of validity of the theory. Due to their manifest Lorentz covariance nature, TBDE are a

good starting point for the investigation of symmetry properties and angular momentum

dynamics in an interacting many-body electronic system. This study would shed light on

the mechanism through which two electrons transfer angular momentum.

7.2.4 Atomic Selection Rules in Near-Field Interactions

Atomic transitions in vacuum are dominated by the electric dipolar transitions where there

is a strong coupling between the dipolar field distribution of the atom and the free photon

field. Because of a weaker coupling between the atom and radiation, higher order multi-
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polar transitions (e.g. magnetic dipole, electric quadruple, magnetic quadruple, and so on)

are orders of magnitude slower compared to the electric dipole transition. For instance,

magnetic dipole transitions are about 1/137 slower than electric dipole transitions in a Hy-

drogen atom [189]. Due to the fact that atomic transitions are dominated by the electric

dipole, higher order transitions are considered forbidden.

In a study by Rivera et al [24], it was shown that forbidden atomic transitions can be

greatly enhanced by bringing the atom close to a surface with high LDOS through evanes-

cent coupling with surface modes. This happens due to the matching between the field

profile of the evanescent fields and higher atomic transitions. This leads to a stronger cou-

pling between multi-polar electronic wavefunction profiles and the electromagnetic field.

These higher order transitions can become as large as the electric dipole transitions and

thus are experimentally more accessible.

Selection rules are quantum mechanical rules governing allowable atomic transitions

based on the conservation of angular momentum as well as wave properties of the electronic

wavefunction. Since these selection rules are governed by the electric dipole transition, it

is expected that these rules would also change by coupling to electromagnetic evanescent

waves. Atomic multipolar transitions are governed by different set of selection rules com-

pared to the electric dipole transitions. Therefore, by enhancing the multipolar transitions

in near-field couplings, atomic selection rules normally dominated by the electric dipole

transitions can be altered by the multipolar selection rules [189].
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Appendix A

Proofs for Chapter 2

A.1 Conserved Angular Momentum Tensor

In this section, by starting from the Lagrangian of QED, we derive the conservation of an-

gular momentum equation using Noether’s theorem [25]. Symmetrized Dirac Lagrangian,

with the minimal coupling term [61], is written as

L = ψ̄

[
cγµ(

i~
2

←→
∂ µ − eAµ)−mc2

]
ψ − 1

4µ0
FµνF

µν (A.1)

where
←→
∂ =

←−
∂ +

−→
∂ with

←−
∂ and

−→
∂ acting only on ψ̄ and ψ, respectively,

Fµν = ∂µAν − ∂νAµ =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

 (A.2)

is the electromagnetic tensor, and γµ are the Dirac gamma matrices with the property

{γµ, γν} = ηµν , where

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.3)

is the Minkowski metric tensor with the signature (+ − −−). We can get the conserved

currents related to the rotational symmetry of the Lagrangian, using the Noether’s theorem,

as [25, 61]:

Mµν,λ =

(
− i

2

∂L

∂(∂λψ)
M̂µν

D ψ

)
+

(
− i

2
ψ̄M̂µν

D
∂L

∂(∂λψ̄)

)
+

(
− i

2

∂L

∂(∂λAκ)

)
(M̂µν

em )κσA
σ

+
1

2

(
ηλµLxν − ηλνLxµ

)
(A.4)

where

M̂µν
D = L̂µν + Σ̂µν (A.5)
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is the angular momentum operator for the Dirac fields with

Σ̂µν =
1

2
σµν , σµν =

i

2
[γµ, γν ] (A.6)

L̂µν = xµ∂ν − xν∂µ, (A.7)

and

(M̂µν
em )κσ = L̂µνδκσ + (Ŝµν)κσ (A.8)

is the angular momentum operator for the electromagnetic fields with L̂µν given by Eq. (A.7),

δκσ being the Kronecker delta function, and

(Ŝµν)κσ = i (ηµκηνσ − ηµσηνκ) . (A.9)

Plugging these equations into Eq. (A.4), we get for the angular momentum currents

Mµν,λ =Mµν,λ
D +Mµν,λ

em (A.10)

where

Mµν,λ
D = Sµν,λD + Lµν,λD (A.11a)

Sµν,λD =
~c
4
ψ̄
(
γλσµν + σµνγλ

)
ψ (A.11b)

Lµν,λD = ~cR
{
ψ̄γλ(xµ∂ν − xν∂µ)ψ

}
+ (ηλµxν − ηλνxν)LD (A.11c)

LD = ψ̄

[
i~c

1

2
γµ
←→
∂ µ −mc2

]
ψ − ceψ̄γµψAµ (A.11d)

is the contribution due to the Dirac field and

Mµν,λ
em = Sµν,λem + Lµν,λem (A.12a)

Sµν,λem = − 1

µ0

(
F λµAν − F λνAµ

)
(A.12b)

Lµν,λem = − 1

µ0

[
F λκ(xµ∂ν − xν∂µ)Aκ

]
+ (ηλµxν − ηλνxµ)Lem (A.12c)

Lem = − 1

4µ0
FµνF

µν =
1

2µ0

(
E ·E
c2
−B ·B

)
(A.12d)

is the contribution due to the electromagnetic field. As a consequence of Noether theorem,

the angular momentum tensorMµν,λ is conserved. In other words,

∂λMµν,λ = 0. (A.13)

For the tensors given in Eqs. (A.11) and (A.12), and using Maxwell and Dirac equations,

one can show that Eq. (A.13) holds for the total angular momentum tensor.
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For the case that µν = ij, where i, j = 1, 2, 3, we find the angular momentum currents

due to rotations. We find for the spin and OAM currents of the Dirac field

∂λSij,λD = εijk

[
~
∂

∂t
(ψ†Σψ) +

~c
2
∇(ψ†γ5ψ)

]
k

, (A.14a)

∂λLij,λD = εijk

[
−~ ∂

∂t
R
{
iψ†(r ×∇)ψ

}
− ~c∇ · R

{
iψ̄γ(r ×∇)ψ

}]
k

(A.14b)

where

Σi =
1

2
εijkσ

jk =
i

4
εijk[γ

j , γk] =
1

2

(
σi 0
0 σi

)
, (A.15)

with σi being the Pauli matrices,R{· · · } takes the real part of its argument, γ5 = iγ0γ1γ2γ3

is the chirality operator in the Dirac equation [61], and

γ = γ1x̂+ γ2ŷ + γ3ẑ. (A.16)

Note that we have used the fact that, using the Dirac equation,

(i~γµ∂µ − eγµAµ −mc)ψ = 0, (A.17)

we get LD = 0 for the fields that follow Dirac equation of motion. This is straightforward

to show by multiplying Eq. (A.17) from left by cψ̄. For the spin and OAM currents of the

electromagnetic field we find

∂λSij,λem = εijk

[
ε
∂

∂t
(E ×A)− 1

µ0
∇ · (AB) +

1

µ0
∇(A ·B)

]
k

(A.18a)

∂λLij,λem = εijk

{
ε
∂

∂t
[E · (r ×∇)A]−∇ ·

[
1

µ0
B × (r ×∇)A− εE(r ×∇φ)

]
+ (r ×∇)Lem

}
k

(A.18b)

The problem with Eqs. (A.14b) and (A.18) is that they are gauge-dependent, which means

that under the transformations ψ → ψe
i
e
ζ and Aµ → Aµ + ∂µζ these expressions change.

Therefore, the individual terms do not represent any physically meaningful quantity. The

fundamental equation to hold is Eq. (A.13). Therefore, as long as this relation is satisfied,

we can cast Eqs. (A.14b) and (A.18) into gauge-independent forms. To do so, we break

A into two longitudinal and transverse parts as A = A‖ + A⊥, where ∇ · A⊥ = 0 and

∇×A‖ = 0 by definition. After some algebra, we find for the new spin and OAM tensors

of Dirac and electromagnetic field

∂λSij,λD = εijk

[
~
∂

∂t
(ψ†Σψ) +

~c
2
∇(ψ†γ5ψ)

]
k

, (A.19a)

∂λLij,λD = εijk

[
∂

∂t
R
{
ψ†(r × p‖)ψ

}
+ c∇ · R

{
ψ̄γ(r × p‖)ψ

}]
k

, (A.19b)
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∂λSij,λem = εijk

[
ε
∂

∂t
(E ×A⊥)− 1

µ0
∇ · (A⊥B) +

1

µ0
∇(A⊥ ·B)

]
k

, (A.19c)

∂λLij,λem =εijk

{
ε
∂

∂t

[
E · (r ×∇)A⊥

]
−∇ ·

[
1

µ0
B × (r ×∇)A⊥ + εE(r ×E‖)

]
+(r ×∇)Lem

}
k
.

(A.19d)

where p‖ = −i~∇− eA‖ is the gauge-independent covariant momentum operator of elec-

tron. We can further separate the contribution of longitudinal electric fieldE‖ to the angular

momentum. This contribution can be written as

E‖ ×A⊥ + E
‖
i (r ×∇)A⊥i = −∇×

[
r(E‖ ·A⊥)

]
−∇ ·

[
A⊥(r ×E‖)

]
(A.20)

When integrated over the entire space, both of these terms on r.h.s of this expression become

zero due to the Stokes theorem and thus the longitudinal electric field does not contribute

to the global angular momentum of the electromagnetic field. For this reason, we move

this term into the angular momentum current terms so that the global angular momentum

represents the integrated angular momentum density. Making this change, we get for the

new components of the electromagnetic angular momentum currents

∂λSij,λem = εijk

[
ε
∂

∂t
(E⊥ ×A⊥)− 1

µ0
∇ · (A⊥B) +

1

µ0
∇(A⊥ ·B)

]
k

, (A.21a)

∂λLij,λem = εijk

{
ε
∂

∂t

[
E⊥ · (r ×∇)A⊥

]
−∇ ·

[
1

µ0
B × (r ×∇)A⊥ + ε0A

⊥

(
r × ∂E‖

∂t

)]

+(r ×∇)

[
− 1

2µ0
B ·B +

ε0
2
E⊥ ·E⊥ + ε0

∂E‖

∂t
·A⊥

]}
k

.

(A.21b)
Adding these four equations together we get Eq. (2.6),

∂M

∂t
+∇iJij +∇χ+∇iNij = 0 (A.22)

where the terms are given in Eq. (2.7) and (2.8). Eq. (A.22) can be written as

∂M

∂t
+∇ ·

←→
T = 0 (A.23)

where
←→
T = χ

←→
I +

←→
J +

←→
N (A.24)

with
←→
I = x̂x̂+ ŷŷ + ẑẑ = δij x̂ix̂j , and

←→
N =εijkx̂ix̂jxkNem =

 0 z −y
−z 0 x
y −x 0

Nem,

Nem =
ε0
2
E⊥ ·E⊥ − 1

2µ0
B ·B + ε0

∂E‖

∂t
·A⊥.

(A.25)
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Note that the first two terms of Nem describe the Lagrangian due to the transverse electric

field, which can be interpreted as the Lagrangian of the free photon [28], while the last

term shows the interaction between the transverse vector potential and the currents due

to the longitudinal electric fields. Note that the term ε0
2 E
‖ · E‖ in the Lagrangian of the

electromagnetic field cancels out with the same term coming from ∇iJij . The expressions

for
←→
J and χ are given in Eq. (2.8).

Also note that the EM Lagrangian does not include the interaction term jµc Aµ because

it appears in the Dirac part of the Lagrangian LD. Dirac Lagrangian, as mentioned earlier,

vanishes from the expression for the OAM of the Dirac field since it satisfies the Dirac

equation. For this reason, the contribution from the Dirac Lagrangian LD disappears from

the conservation equations.

Equation (A.23) describes the local conservation law for the angular momentum cur-

rents
←→
T and the angular momentum density (charge) M . When integrated over the entire

space, and assuming that the fields vanish on the boundary of the this surface, the second

term becomes an integral over this surface and thus vanishes. In this case, we arrive at the

usual global conservation of angular momentum equation which states that the total angular

momentum of the Dirac and Maxwell fields is a constant. However, in situations where the

problem under consideration is an open dissipative system, this simplification cannot be

made and surface terms of the angular momentum current can carry angular momentum out

of the system.

A.2 Spin-Orbit Torque

In this section we show that Eq. (A.19) leads to Eq. (2.9). Starting with the equation for the

spin of the Dirac fields, we get for the z component for instance,

∂λS12,λ
D =

~
2
∂t(ψ

†Σzψ) +
~c
2
∂z(ψ

†γ5ψ) (A.26)

where ∂t ≡ ∂
∂t and ∂i ≡ ∂

∂xi
. Using Dirac equation we get

~∂tψ = −~cγ0(γ ·∇ψ)− iceAµγ0γµψ − imc2γ0ψ (A.27a)

~∂tψ† = ~c(∇ψ† · γ)γ0 + iceAµψ
†γ0γµ + imc2ψ†γ0 (A.27b)
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Using these equations we find

∂λS12,λ
D =

~
2

{
(∂tψ

†)Σzψ + ψ†Σz(∂tψ) + c∂z(ψ
†γ5ψ)

}
+

1

2

{
~c(∇ψ† · γ)iγ0γ1γ2ψ − ceAµψ†γ0γµγ1γ2ψ −mc2ψ†γ0γ1γ2ψ

−i~cψ†γ1γ2γ0(γ ·∇ψ) + ceAµψ
†γ1γ2γ0γµψ +mc2ψ†γ1γ2γ0ψ + ~c∂z(ψ†γ5ψ)

}
=

1

2

{
−~c∂z(ψ†γ5ψ)+i~c(∂xψ†)γ0γ2ψ − i~cψ†γ0γ2(∂xψ)− i~c(∂yψ†)γ0γ1ψ

+i~cψ†γ0γ1(∂yψ) + 2ceA1ψ
†γ0γ2ψ − 2ceA2ψ

†γ0γ1ψ + ~c∂z(ψ†γ5ψ)
}

=~cR
{
iψ̄(γ1∂y − γ2∂x)ψ

}
− ce(A‖xψ̄γ2ψ −A‖yψ̄γ1ψ)− (A⊥x jc,y −A⊥y jc,x)

=− cR
{
ψ̄
[
γ1(−i~∂y − eA‖y)− γ2(−i~∂x − eA‖x)

]
ψ
}
− (A⊥x jc,y −A⊥y jc,x)

=− cR
{
ψ̄(γ × p‖)zψ

}
+ (jc ×A⊥)z.

(A.28)

In this derivation we have used the facts that {γµ, γν} = 2ηµν , (γi)2 = −1, A1 = −Ax,

A2 = −Ay, and jc = ceψ̄γψ. We can do a similar derivation for other components of

∂λSij,λD . Doing so we find Eq. (2.9a). Note that the first term on the r.h.s. of Eq. (A.28) is

nothing but the spin-orbit torque of the Dirac field τD given in Eq. (2.10).

We now turn into the equation for the OAM of the Dirac field Eq. (A.19b). We get for

the z component, for instance
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∂λL12,λ
D =∂tR

{
ψ†(xp‖,y − yp‖,x)ψ

}
+ c∇ · R

{
ψ̄γ(xp‖,y − yp‖,x)ψ

}
=R

{
(∂tψ

†)(xp‖,y − yp‖,x)ψ + ψ†(xp‖,y − yp‖,x)(∂tψ) + c∇ · ψ̄γ(xp‖,y − yp‖,x)ψ

−eψ†ψ(x∂tA
‖
y − y∂tA‖x)

}
=R

{
c(∇ψ† · γ)γ0(xp‖,y−yp‖,x)ψ +

ice

~
Aµψ

†γ0γµ(xp‖,y−yp‖,x)ψ +
imc2

~
ψ†γ0(xp‖,y−yp‖,x)ψ

−cψ†(xp‖,y−yp‖,x)γ0(γ ·∇ψ)− ice

~
ψ†(xp‖,y−yp‖,x)γ0γµ(Aµψ)− imc2

~
ψ†(xp‖,y−yp‖,x)γ0ψ

+c∇ · ψ̄γ(xp‖,y − yp‖,x)ψ − eψ†ψ(x∂tA
‖
y − y∂tA‖x)

}
=R

{
−c∇ · ψ̄γ(xp‖,y − yp‖,x)ψ + cψ̄

[
γ ·∇(xp‖,y−yp‖,x)

]
ψ − ceψ̄γµψ(x∂y − y∂x)Aµ

+c∇ · ψ̄γ(xp‖,y − yp‖,x)ψ − eψ†ψ(x∂tA
‖
y − y∂tA‖x)

}
=R

{
cψ̄(γ1p‖,y − γ2p‖,x)ψ

}
− ceψ̄γψ(x∇A‖y − y∇A‖x)− ceψ̄γµψ(x∂y − y∂x)Aµ

−eψ†ψ(x∂tA
‖
y − y∂tA‖x)

=R
{
cψ̄(γ1p‖,y − γ2p‖,x)ψ

}
− ceψ̄

[
γ1(x∂xA

‖
y − y∂xA‖x) + γ2(x∂yA

‖
y − y∂yA‖x)

+γ3(x∂zA
‖
y − y∂zA‖x)− γ1(x∂yAx − y∂xAx)− γ2(x∂yAy − y∂xAy)− γ3(x∂yAz − y∂xAz)

+
1

c
γ0(x∂yφ− y∂xφ) +

1

c
ψ†(x∂tA

‖
y − y∂tA‖x)

]
ψ

=R
{
cψ̄(γ1p‖,y − γ2p‖,x)ψ

}
− ceψ̄γ1ψx(∂xA

‖
y − ∂yA‖x) + ceψ̄γ1ψ(x∂y − y∂x)A⊥x

−ceψ̄γ2ψy(∂xA
‖
y − ∂yA‖x) + ceψ̄γ2ψ(x∂y − y∂x)A⊥y − ceψ̄γ3ψx(∂zA

‖
y − ∂yA‖z)

+ceψ̄γ3ψy(∂zA
‖
x−∂xA‖z) +ceψ̄γ3ψ(x∂y−y∂x)A⊥z + eψ†ψ

[
x(−∂yφ−∂tA‖y)−y(−∂xφ− ∂tA‖x)

]
= cR

{
ψ̄(γ × p‖)zψ

}
+ jc,i(r ×∇)zA

⊥
i + ρ(r ×E‖)z

(A.29)

where we have used the facts that ∇×A‖ = 0 and E‖ = −∇φ− ∂tA‖. Writing similar

equations for the other components we get Eq. (2.9b).

We can repeat this derivation for the electromagnetic spin and OAM currents as well.
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Using Eq. (A.21a) we find, again for the z component for instance,

∂λS12,λ
em =ε0∂t(E

⊥ ×A⊥)z −
1

µ0
∇ · (A⊥Bz) +

1

µ0
∂z(A

⊥ ·B)

=ε0∂t(E
⊥ ×A⊥)z −

1

µ0
Bz(∇ ·A⊥)− 1

µ0
(A⊥ ·∇)Bz

+
1

µ0

{
(A⊥ ·∇)Bz + (B ·∇)A⊥z + [A⊥ × (∇×B)]z + [B × (∇×A⊥)]z

}
=ε0∂t(E

⊥ ×A⊥) +
1

µ0
(B ·∇)A⊥z − ε0[(∂tE)×A⊥]z − (jc ×A⊥)z

=ε0[E⊥ × (∂tA
⊥)]z +

1

µ0
(B ·∇)A⊥z − ε0

[
∂E‖

∂t
×A⊥

]
− (jc ×A⊥)z

=
1

µ0
(B ·∇)A⊥z − ε0

(
∂E‖

∂t
×A⊥

)
z

− (jc ×A⊥)z,

(A.30)

where we have used the facts that ∇ · A⊥ = 0, B = ∇ × A⊥, E⊥ = −∂tA⊥, and

∇ × B = 1
c2
∂tE + µ0jc . By repeating this derivation for the other components we get

Eq. (2.9c). Note that the first two terms are the spin-orbit torque of the electromagnetic

field, τem, given in Eq. (2.11).

We can repeat this derivation to find the equation for ∂λLij,λem . However, using the con-

tinuity condition,

∂λ(Sij,λD + Lij,λD + Sij,λem + Lij,λem ) = 0, (A.31)

it is straightforward to show that Eq. (2.9d) holds.

A.3 Semi-Local Conservation Law

We can get the semi-local conservation laws by integrating the terms in Eqs. (A.19a),

(A.19b), and (A.21) over the volume V ′, on which surface the Dirac eigenfunctions ψ be-

come zero. Using Gauss’s theorem, the integral of the terms∇(ψ†γ5ψ) and∇·R{ψ̄γ(r×

p)ψ} vanish because they become surface integrals of functions of ψ. We therefore arrive

at the semi-local conservation law

∂M̃D

∂t
+
∂M̃em

∂t
+ J̃A + h̃+

∫
V ′
∇× (rNem)dV ′ = 0 (A.32)

where M̃D is the total angular momentum of the electron given by

M̃D = ~
∫
V ′

[
1

2
(ψ†Σψ) +R{ψ†(r × p)ψ}

]
dV ′, (A.33)

M̃em is the EM total angular momentum in the volume V ′,

M̃em =

∫
V ′
ε(E⊥ ×A⊥)d3x+

∫
V ′
ε
[
E⊥ · (r ×∇)A⊥

]
d3x, (A.34)
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and

J̃A = −
∫
V ′
∇ ·

[
1

µ0
A⊥B +

1

µ0
B × (r ×∇)A⊥ + εA⊥

(
r × ∂E

‖

∂t

)]
dV ′, (A.35a)

h̃ =

∫
V ′
∇(A⊥ ·B)dV ′. (A.35b)

Using Gauss’s theorem the volume integrals in Eqs. (A.32), (A.35a) and (A.35b) can be

converted into surface integrals. We find

J̃A = −
∫
S′
n̂i

[
A⊥i B + εijkBj(r ×∇)A⊥k + εA⊥i

(
r × ∂E

‖

∂t

)]
da (A.36a)

h̃ =

∫
S′
n̂(A⊥ ·B)da (A.36b)

where n̂ is the unit vector normal to the surface of the volume V ′, and da its surface

element. Equation (A.32) presents an equation for the time evolution of angular momentum

of the electron in terms of the EM fields.

A.4 Symmetrized Angular Momentum Tensor

In our derivation, we have used the canonical form of the angular momentum tensor which

is derived directly from the application of Noether theorem to the QED Lagrangian in

Eq. (A.1). The angular momentum tensor can be written in terms of the canonical energy-

momentum tensor, Tµν , as

Mµν,λ = xµT λν − xνT λµ + Sµν,λ. (A.37)

Conservation of angular momentum implies that, when ∂λSµν,λ 6= 0,

Tµν 6= T νµ (A.38)

This in unpleasant because in general relativity, the energy-momentum tensor is directly

proportional to the metric tensor which is symmetric in µ and ν. To overcome this problem,

the energy momentum tensor can be modified to the so-called Bellifante-Resenfeld energy-

momentum tensor as [190, 191]

T
′µν = Tµν +

1

2
∂λ(Sνλ,µ + Sµλ,ν − Sνµ,λ) (A.39)

It can be shown that this new energy-momentum tensor is symmetric and does not change

the conservation law of the energy-momentum tensor, ∂µT
′µν = 0. We can therefore write

a new symmetrized angular momentum tensor, M
′µν,λ as

M′µν,λ = xµT
′λν − xνT ′λµ (A.40)
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where we do not need to include the additional spin tensor because it is already present in

the symmetric energy-momentum tensor. This symmetrized angular momentum tensor is

of course different from the canonical one we derived in Eqs. (A.11) and (A.12). However,

it is still not gauge invariant and the conservation law of angular momentum still holds. In

other words

∂λM
′µν,λ = ∂λMµν,λ = 0 (A.41)

We can follow a similar procedure as we did in the previous section to derive the expression

for the gauge-independent forms of the symmetrized angular momentum tensor for the

electromagnetic and Dirac fields. We find, setting µ, ν = i, j,

∂M
′

∂t
+∇ ·

←→
J
′

+∇χ′ −∇× (rUem) = 0 (A.42)

where

M
′

=
~
2

(
ψ†Σψ

)
+R

{
ψ†(r × p‖)ψ

}
+ ε0 r × (E ×B)− ρ(r ×A⊥) (A.43a)

∇·
←→
J
′

= c∇iR{ψ̄γi(r×p‖)ψ}+ε0∇iEi(r×E)+
1

µ0
∇i [Bi(r ×B)]−∇i

[
Ji(r ×A⊥)

]
(A.43b)

χ̃ =
~c
2

(ψ†γ5ψ) (A.43c)

Uem =
1

2

(
ε0E ·E +

1

µ0
B ·B

)
(A.43d)

We emphasize that Eq. (A.42) is identical to the conservation Eq. (2.6). In fact, the terms

related to the Dirac field are exactly the same as the one with the four-divergence of the

canonical angular momentum tensor. The main difference is that we lose separate physi-

cally observable expressions for the spin and OAM densities and currents of the electro-

magnetic field and instead we get expressions for the total angular momentum,

ε0r × (E ×B)− ρ(r ×A⊥), (A.44)

and total angular momentum currents,

ε0 E(r ×E) +
1

µ0
B(r ×B)− J(r ×A⊥), (A.45)

of the electromagnetic field. Assuming that the symmetric energy-momentum tensor is

more fundamental than the canonical one, however, does not prevent us from writing con-

servation laws that involve canonical angular momentum tensor and taking its gauge-independent

terms as physically meaningful quantities.
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A.5 Boost Conservation Relations

We started our derivation by applying the Noether’s theorem to the Dirac-Maxwell fields

under the Lorentz transformation. To derive the angular momentum conservation equations,

however, we only focused on the spatial rotations of the coordinates i.e. the space-space

components of the angular momentum tensor current Mµν,λ. In this section, we look at

the conservation equations for the time-space components of the Lorentz transformations,

namely the boosts, of the Dirac-Maxwell fields.

Using a similar approach to the one used in the first section, the conservation equation

resulting from the boost components of the Lorentz transformation is given by,

∂λMi0,λ =∂λ(MD)i0,λ + ∂λ(ME)i0,λ

=
∂

∂t
R
{
iψ†

[r
c
p0 − ctp‖

]
ψ
}
− c∇× (

~
2
ψ†Σψ) + c∇.R

{
iψ̄γ

[r
c
p0 − ctp‖

]
ψ
}

−ε ∂
∂t

[
E.(

r

c
∂t + ct∇)A⊥

]
+

1

µ0
∇.
[
B × (

r

c
∂t + ct∇)A⊥

]
+

1

µ0c
B ×E⊥ +

1

µ0c
E · (∇)A⊥

+cρA⊥ −
(r
c

)
J .E‖ + ctρE‖ + εE.

(r
c
∂t + ct∇

)
E‖ + c

( r
c2
∂t + t∇

)
LE = 0

(A.46)

where p0 = i~∂t−eφ and p‖ = −i~∇−eA‖ are the gauge-independent time-derivative

and momentum operators of the Dirac field, respectively. It is a matter of straightforward

algebra to show that r× ∂λM0,λ = εijkxj∂λMk0,λ gives the conservation equation of the

angular momentum in Eq. (A.23).

A.6 Two Plane Wave Interference

We now evaluate the terms in Eq. (2.9c) for the interference of two plane waves at different

frequencies. For a plane wave propagating along k/|k|, with the wavevector k we have

k ·E = k ·A⊥ = k ·B = 0. Therefore we get

∇ · (A⊥B) = (k ·A⊥)B = 0. (A.47)

Note also that the EM spin-orbit torque τem also vanishes for planes waves because

(B · ∇)A⊥ = (B · k)A⊥ = 0. (A.48)

Thus the only relevant terms in finding the conservation law for the spin current of the two

plane wave interference are the time-derivative of spin and gradient of helicity.
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The electric field for two plane waves propagating along z direction can be written as

E = R{E1e
−i(ω1t−k1z) + E2e

−i(ω2t−k2z)} (A.49)

where Ei = Ei√
2
(x̂ + iŷ) are the complex electric field amplitudes of the two modes with

frequencies ωi/c = ki. Using Maxwell equation∇×E = −∂B
∂t and E = −∂A

∂t , we get

B = R
{
− k1

iω1
E1e
−i(ω1t−k1z) − k2

iω2
E2e
−i(ω2t−k2z)

}
(A.50a)

A⊥ = R
{

1

iω1
E1e
−i(ω1t−k1z) +

1

iω2
E2e
−i(ω2t−k2z)

}
(A.50b)

Using these equations we get for the spin of the two plane waves

ε(E⊥×A⊥) =
ε

2

[
1

ω1
I{E∗1 × E1}+

1

ω2
I{E∗2 × E2}+

(
1

ω1
+

1

ω2

)
I
{
E∗1 × E2e

+i[(ω1−ω2)t−(k1−k2)z]
}]

(A.51)

and thus we get

ε
∂

∂t
(E⊥ ×A⊥) =− εω

2
1 − ω2

2

2ω1ω2
R
{
E∗1 × E2e

+i[(ω1−ω2)t−(k1−k2)z]
}

=− εω
2
1 − ω2

2

2ω1ω2
I
{
E1E∗2e−i[(ω1−ω2)t−(k1−k2)z]

}
ẑ

(A.52)

For the helicity density we find

A⊥ ·B = − k1

ω2
1

|E1|2 −
k2

ω2
2

|E2|2 −
k1 + k2

2ω1ω2
R
{
E1E∗2e−i[(ω1−ω2)t−(k1−k2)z]

}
(A.53)

and thus

1

µ0
∇(A⊥ ·B) =

1

µ0

k2
1 − k2

2

2ω1ω2
I
{
E1E∗2e−i[(ω1−ω2)t−(k1−k2)z]

}
ẑ

=ε
ω2

1 − ω2
2

2ω1ω2
I
{
E1E∗2e−i[(ω1−ω2)t−(k1−k2)z]

} (A.54)

which confirms the conservation Eq. (2.14).

A.7 Meaning of the Notations

Throughout chapter 2, the usual expressions for dot and cross product are assumed. Terms

likeA⊥B are tensorial expressions which can be expanded as

A⊥B =A⊥xBxx̂x̂+A⊥xByx̂ŷ +A⊥xBzx̂ẑ

+A⊥y Bxŷx̂+A⊥y Byŷŷ +A⊥y Bz ŷẑ

+A⊥z Bxẑx̂+A⊥z By ẑŷ +A⊥z Bz ẑẑ

(A.55)
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Similar expressions can be written the terms like E(r ×E), E(r ×E), J(r ×A⊥), and

so on. Therefore, the expression∇ · (A⊥B) means

∇ · (A⊥B) =
[
∂x(A⊥xBx) + ∂y(A

⊥
y Bx) + ∂z(A

⊥
z Bx)

]
x̂

+
[
∂x(A⊥xBy) + ∂y(A

⊥
y By) + ∂z(A

⊥
z By)

]
ŷ

+
[
∂x(A⊥xBz) + ∂y(A

⊥
y Bz) + ∂z(A

⊥
z Bz)

]
x̂

(A.56)

which is a vector. We can similar expand

B × (r ×∇)A⊥ =
[
By(y∂z − z∂y)A⊥z −Bz(y∂z − z∂y)A⊥y

]
x̂x̂

+
[
Bz(y∂z − z∂y)A⊥x −Bx(y∂z − z∂y)A⊥z

]
ŷx̂

+
[
Bx(y∂z − z∂y)A⊥y −By(y∂z − z∂y)A⊥x

]
ẑx̂

+
[
By(z∂x − x∂z)A⊥z −Bz(z∂x − x∂z)A⊥y

]
x̂ŷ

+
[
Bz(z∂x − x∂z)A⊥x −Bx(z∂x − x∂z)A⊥z

]
ŷŷ

+
[
Bx(z∂x − x∂z)A⊥y −By(z∂x − x∂z)A⊥x

]
ẑŷ

+
[
By(x∂y − y∂x)A⊥z −Bz(x∂y − y∂x)A⊥y

]
x̂ẑ

+
[
Bz(x∂y − y∂x)A⊥x −Bx(x∂y − y∂x)A⊥z

]
ŷẑ

+
[
Bx(x∂y − y∂x)A⊥y −By(x∂y − y∂x)A⊥x

]
ẑẑ

(A.57)

and we can take its divergence similar to Eq. (A.56).

100



Appendix B

Proofs for Chapter 3

B.1 Spherical Solutions of Scalar Helmholtz Equation

In this section, we derive the solutions to the source-free Maxwell’s equations in the spher-

ical coordinates. The Helmholtz equation

(∇2 + k2)ψ = 0 (B.1)

in the spherical coordinates can be written as

∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0 (B.2)

Separating the variable into angular and radial terms by

ψ =
∑
l,m

flm(r)Y (θ, φ) (B.3)

and plugging these solutions back into wave equations we get

r2

flm

d2flm
dr2

+
2r

flm

dflm
dr

+ k2r2 = − 1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

sin2 θ

1

Y

∂2Y

∂φ2
(B.4)

LHS and RHS are only functions of r and (θ, φ), respectively, and therefore they both

should be constant, say λ. Defining the angular momentum operators as

L± = Lx ± iLy = ±e±iφ
(
∂

∂θ
± i cot θ

∂

∂φ

)
(B.5a)

Lz = −i ∂
∂φ

(B.5b)

L2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(B.5c)

We can write for the RHS of equation B.4

L2Y (θ, φ) = λY (θ, φ) (B.6)
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Taking Y (θ, φ) be simultaneous eigenfunctions of L2 and Lz , with eigenvalues λ and m,

respectively, we require

LzYλm = mYλm (B.7)

Using commutation relations of Jz and L± we find that L+ increases the eigenvalue m of

Yλm by one. But we cannot increase the projection of L on z forever since the total angular

momentum is constant. Taking the maximum value of m as l we have for the state with

l = m. Therefore

L2Yλl = (L−L+ + L2
z + Lz)Yλ,l = (0 + l2 + l)Yλ,l = l(l + 1)Yλ,l (B.8)

and thus λ = l(l + 1). Therefore writing Ylm(θ, φ) = Θ(θ)Φ(φ) we get two separate

equations for θ and φ
d2Φ(φ)

dφ2
= −m2Φ(φ) (B.9a)[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

(
l(l + 1)− m2

sin2 θ

)]
Θ(θ) = 0 (B.9b)

which gives for Φ(φ) = e±imφ with m integer, and solutions in terms of Legendre polyno-

mials Pml (cos θ) for θ dependence. Therefore Ylm(θ, φ) (spherical harmonics) are

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ) ,−l < m < l. (B.10)

Note that P−ml = (−1)m (l−m)!
(l+m)!P

m
l . For the radial part we get[

d2

dr2
+

2

r

d

dr
+ k2 − l(l + 1)

r2

]
fl(r) = 0 (B.11)

whose solutions are spherical bessel functions jl(kr), yl(kr), h
(1)
l (kr), and h(2)

l (kr).

B.2 Spherical Solutions of Vector Helmholz Equation

The solutions for the Helmholtz Eq. (B.1), when the fields are vector fields, can be deter-

mined from the solutions of the scalar equation by defining the following operators

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(B.12a)

L = −ir×∇ (B.12b)

∇× L. (B.12c)
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Using these operators, we can build a complete set of three vector fields from the solutions

of scalar Helmholtz equation as

Ar =
1

ik
∇ψ (B.13a)

Ae =
1

k
√
l(l + 1)

∇× Lψ (B.13b)

Am =
1√

l(l + 1)
Lψ (B.13c)

where ψ is given by equation B.3. The components Ae and Am are related to each other

by

Ae =
1

k
∇×Am Am =

1

k
∇×Ae (B.14)

B.3 Whispering-Gallery Modes in a Spherical Resonator

In order to find the eigen modes of a spherical resonator, we need to find the fields for a

dielectric sphere in vacuum and match the boundary conditions. For a general well-behaved

field T we can write

∇2(r.T) = r.(∇2T) + 2∇.T (B.15)

Therefore, using source-free Maxwell’s equations it can be shown for the electric, E, and

magnetic, H, fields that

(∇2 + k2)(r.E) = 0, (∇2 + k2)(r.H) = 0 (B.16)

and therefore, r.E and r.H have the solutions of scalar Helmholtz equation given in equa-

tion B.3. Therefore, we can write two sets of solutions as

r.HTE
lm =

l(l + 1)

k
gl(kr)Ylm(θ, φ)

r.ETE
lm = 0

(B.17)

where

gl(kr) = A
(1)
l h

(1)
l (kr) +A

(2)
l h

(2)
l (kr) (B.18)

We can find the electric field form the longitudinal magnetic field from the Maxwell’s equa-

tion as

ωµr.HTE
lm = −ir.(∇×ETE

lm ) = −i(r×∇).ETE
lm = L.ETE

lm = l(l+1)

√
µ

ε
gl(kr)Ylm(θ, φ)

(B.19)

Since L only operates on θ and φ, and using the fact that L2Ylm(θ, φ) = l(l+ 1)Ylm(θ, φ),

we can prove that

ETE
lm (r, θ, φ) =

√
µ

ε
gl(kr)LYlm(θ, φ) (B.20)
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Together with

HTE
lm = − i

ωµ
∇×ETE

lm (B.21)

we can determine electric and magnetic TE fields solely from the longitudinal magnetic

field. Similarly, we get for the TM mode

r.ETM
lm = −

√
µ

ε

l(l + 1)

k
fl(kr)Ylm(θ, φ) (B.22a)

r.HTM
lm = 0 (B.22b)

HTM
lm = fl(kr)LYlm(θ, φ) (B.22c)

ETM
lm =

i

ωε
∇×HTM

lm (B.22d)

Putting YYY lm = LLLYlm we can show that

YYY lm = i

[
1

sin θ

∂Ylm(θ, φ)

∂φ
θ̂ − ∂Ylm(θ, φ)

∂θ
φ̂

]
= Ylm,θθ̂ + Ylm,φφ̂ (B.23)

Therefore, we can write

EEETMlm =
i

ωε
∇× [fl(kr)YYY lm] =

i

ωε
{∇fl(kr)× YYY lm + fl(kr)∇× YYY lm} (B.24)

which gives

EEETMlm = −r̂
√
µ

ε

l(l + 1)

kr
fl(kr)Ylm(θ, φ) +

i

ωε

{
dfl(kr)

dr
+

1

r
fl(kr)

}
(φ̂Ylm,θ − θ̂Ylm,φ)

(B.25)

Next, we solve the eigen modes for a sphere of radius awith the dielectric constant ε = ε1ε0.

The boundary conditions are matched by matching the radial parts of the fields. For the TE

mode, the radial part of the electric field is in term of jl(k1r) inside the sphere due to the

finiteness of the solutions, and it is in terms of A(1)
l h

(1)
l (k0r) + A

(2)
l h

(2)
l (k0r) outside the

sphere, according to Eq. (B.20). Applying continuity condition for the fields at the interface

we get for TE mode

1
√
ε1
jl(k1a) = A

(1)
l h

(1)
l (k0a) +A

(2)
l h

(2)
l (k0a) (B.26a)

j
′
l (k1a) = A

(1)
l h

′(1)
l (k0a) +A

(2)
l h

′(2)
l (k0a) (B.26b)

and

jl(k1a) = A
(1)
l h

(1)
l (k0a) +A

(2)
l h

(2)
l (k0a) (B.27a)

1
√
ε1
j
′
l (k1a) = A

(1)
l h

′(1)
l (k0a) +A

(2)
l h

′(2)
l (k0a) (B.27b)
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These equations are not enough to find the eigen modes (i.e. Whispering Gallery Modes).

In other words, the general case of a sphere dielectric cannot produce WGM modes. The

extra condition comes from the fact that fields cannot come from infinity. The solutions

outside the sphere in this case can then only be written in terms of Hankel function of the

first kind which are outgoing waves. Therefore, the coefficient A(2)
l are zero in Eq. (B.26)

and (B.27) and thus we get transcendental equations for TE and TM modes

jl(k1a)
√
ε1j′l(k1a)

=
h

(1)
l (k0a)

h
′(1)
l (k0a)

(B.28)

√
ε1jl(k1a)

j′l(k1a)
=
h

(1)
l (k0a)

h
′(1)
l (k0a)

(B.29)

B.4 Spin of WGMs

In this section we demonstrate the coupling between the spin of WGMs and the spin of the

source by studying the coupling coefficient between the dipole moment of the source and

the local fields of the WGM. The coupling coefficient between the dipole and WGMs can

be written as

Clm = ElmElmElm.ddd (B.30)

whereEEElm is the electric field of the TE or TM mode and ddd is the dipole moment. Assuming

the dipole with the dipole moment

ddd =
d0√

2
(r̂ + iφ̂) (B.31)

we find for the TM modes

CTMlm =EEETMlm .ddd

=
d0√

2

√
µ

ε
Ylm(θ, φ)

{
− l(l + 1)

kr
fl(kr) +

m

sin θ

[
dfl(kr)

kdr
+

1

kr
fl(kr)

]}
=
d0√

2

√
µ

ε
Ylm(θ, φ)

{
fl(kr)

kr
(l + 1)

[ m

sin θ
− l
]
− m

sin θ
fl+1(kr)

} (B.32)

We can see that first of all it is larger for higher l. Secondly, the magnitude of CTMm is larger

for m < 0 than for m > 0. It can become very small for m = l and very large for m = −l.

Looking at the TM electric fields,

EEETMlm = −r̂
√
µ

ε

l(l + 1)

kr
fl(kr)Ylm+

i

ωε

√
µ

ε

{
l + 1

kr
fl(kr)− fl+1(kr)

}(
− m

sin θ
Ylmφ̂+ i

∂Ylm
∂θ

θ̂

)
(B.33)
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we can see that Er and Eφ are out of phase while Er and Eθ are in phase. This would

generate a nonzero spin along θ̂ and a zero spin component along φ̂. Essentially CTMlm are

nonzero for ddd = d0√
2
(r̂ + iφ̂) which means that the spin of the dipole is aligning with the

spin of the TM WGMs.

Using the same argument, having ddd = d0√
2
(r̂ + iθ̂), would give zero CTMlm because the

spin of the dipole (along φ̂) aligns with the φ̂ component of the spin of TM WGM. However

the φ̂ component of the spin for the TM WGMs is zero as explained above. Thus we get

zero CTMlm for when ddd = d0√
2
(r̂ + iθ̂).

B.5 Electric Field Green’s Function

In this section we derive the Green’s function for a source placed at an arbitrary location r′

outside of a sphere. The Green function can be written in terms of the homogeneous and

scattered Green’s functions as

Ge(r, r
′) = G0e(r, r

′) + Ges(r, r
′) (B.34)

The homogeneous solution in Eq. B.34 can be written as:

G0e(r, r
′) =

r̂r̂

k2
0

δ(r − r′) +
ik0

4π

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

n+m
!

×

{
M

(1)
mn(k0)M′

mn(k0) + N
(1)
mn(k0)N′mn(k0) r ≥ r′,

Mmn(k0)M
′(1)
mn (k0) + Nmn(k0)N

′(1)
mn (k0) r ≤ r′

(B.35)

Where k0 is the wavevector outside the sphere (where the dipole exists) and

Mmn(k) = ∓ m

sin θ
zn(kr)Pmn (cos θ)

sin
cos

mφθ̂−zn(kr)
dPmn (cos θ)

dθ

cos
sin

mφφ̂ (B.36a)

Nmn(k) =
n(n+ 1)

kr
zn(kr)Pmn (cos θ)

cos
sin

mφr̂

+
1

kr

d [rzn(kr)]

dr

[
dPmn (cos θ)

dθ

cos
sin

mφθ̂ ∓ m

sin θ
Pmn (cos θ)

sin θ
cos θ

mφφ̂

]
(B.36b)

The (1) superscripts in Eq. B.35 indicates that the zn’s should be spherical Hankel functions

of first kind. Otherwise, they are the spherical bessel functions of the first kind. The prime

sign also indicates that the coordinates belong to the location of the source r′.

Similarly, the scattered part of the Green function can be written as :

G
(11)
es (r, r′) =

ik0

4π

∞∑
n=0

n∑
m=0

(2−δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

(n+m)!

[
BMM(1)

mn(k0)M
′(1)
mn (k0) + BNN(1)

mn(k0)N
′(1)
mn (k0)

]
(B.37a)
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G
(21)
es (r, r′) =

ik0

4π

∞∑
n=0

n∑
m=0

(2−δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

(n+m)!

[
DMMmn(k1)M

′(1)
mn (k0) +DNNmn(k1)N

′(1)
mn (k0)

]
(B.37b)

where k1 is the wavevector inside the sphere. The first equation is the scattered fields

outside the sphere and the second equation is the scattered fields inside the sphere. Where

BM,N = −RH,VF , DM,N =
1

TH,VP

[
1−RH,VF RH,VP

]
(B.38)

with

RHF =
∂J1J0 − ∂J0J1

∂J1H0 − ∂H0J1
(B.39a)

RVF =
ε1∂J0J1 − ε0∂J1J0

ε1∂H0J1 − ε0∂J1H0
(B.39b)

RHP =
∂H1H0 − ∂H0H1

∂H1J0 − ∂J0H1
(B.39c)

RVP =
ε1∂H0H1 − ε0∂H1H0

ε1∂J0H1 − ε0∂H1J0
(B.39d)

THP =
∂H1J1 − ∂J1H1

∂H1J0 − ∂J0H1
(B.39e)

T VP =
√
ε0ε1

∂J1H1 − ∂H1J1

ε1∂J0H1 − ε0∂H1J0
(B.39f)

where

Ji = jn(kia), Hi = h(1)
n (kia), ∂Ji =

d[ρjn(ρ)]

dρ

∣∣∣∣
ρ=kia

, ∂Hi =
d[ρh

(1)
n (ρ)]

dρ

∣∣∣∣∣
ρ=kia

.

(B.39g)

I have assumed that the magnetic permeability equals µ0 inside and outside the sphere and

also the dielectric permitivitty equals ε1 and ε0 inside and outside the sphere, respectively.

We can rewrite Eq. B.35 as:

G0e(r, r
′) =

r̂r̂

k2
0

δ(r − r′) +
{
G0e,rrr̂r̂ +G0e,rθr̂θ̂ +G0e,θrθ̂r̂ +G0e,rφr̂φ̂+G0e,φrφ̂r̂

+G0e,θθθ̂θ̂ +G0e,θφθ̂φ̂+G0e,φθφ̂θ̂ +G0e,φφφ̂φ̂
}

(B.39h)

where

G0e,rr =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

× n2(n+ 1)2

x0x′0
Pmn (cos θ)Pmn (cos θ′)

cos
sin

mφ
cos
sin

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.40a)
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G0e,rθ =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

× n(n+ 1)

x0x′0
Pmn (cos θ)

dPmn (cos θ′)

dθ′
cos
sin

mφ
cos
sin

mφ′

{
h

(1)
n (x0)

d[r′jn(x′0)]
dr′ r ≥ r′

jn(x0)
d[r′h

(1)
n (x′0)]
dr′ r ≤ r′

(B.40b)

G0e,θr =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

× n(n+ 1)

x0x′0
Pmn (cos θ′)

dPmn (cos θ)

dθ

cos
sin

mφ
cos
sin

mφ′

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

(B.40c)

G0e,rφ =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

×∓mn(n+ 1)

x0x′0 sin θ′
Pmn (cos θ)Pmn (cos θ′)

cos
sin

mφ
sin
cos

mφ′

{
h

(1)
n (x0)

d[r′jn(x′0)]
dr′ r ≥ r′

jn(x0)
d[r′h

(1)
n (x′0)]
dr′ r ≤ r′
(B.40d)

G0e,φr =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

×∓mn(n+ 1)

x0x′0 sin θ
Pmn (cos θ)Pmn (cos θ′)

sin
cos

mφ′
cos
sin

mφ

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

(B.40e)

G0e,θθ =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

×

 1

x0x′0

dPmn (cos θ)

dθ

dPmn (cos θ′)

dθ′
cos
sin

mφ
cos
sin

mφ′

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

+
m2

sin θ sin θ′
Pmn (cos θ)Pmn (cos θ′)

sin
cos

mφ
sin
cos

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

}
(B.40f)

G0e,θφ =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

×

∓ m

x0x′0 sin θ′
dPmn (cos θ)

dθ
Pmn (cos θ′)

cos
sin

mφ
sin
cos

mφ′

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

± m

sin θ
Pmn (cos θ)

dPmn (cos θ′)

dθ′
sin
cos

mφ
cos
sin

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

}
(B.40g)
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G0e,φθ =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

×

∓ m

x0x′0 sin θ
Pmn (cos θ)

dPmn (cos θ′)

dθ′
sin
cos

mφ
cos
sin

mφ′

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

± m

sin θ′
dPmn (cos θ)

dθ
Pmn (cos θ′)

cos
sin

mφ
sin
cos

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

}
(B.40h)

G0e,φφ =
ik0

4π

∞∑
n=0

n∑
m=0

Cmn

×

 m2

x0x′0 sin θ sin θ′
Pmn (cos θ)Pmn (cos θ′)

sin
cos

mφ
sin
cos

mφ′

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

+
dPmn (cos θ)

dθ

dPmn (cos θ′)

dθ′
cos
sin

mφ
cos
sin

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

}
(B.40i)

where

Cmn = (2− δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

(n+m)!
(B.41)

and x0 = k0r, x′0 = k0r
′. Using some Legendre theorems we can simplify these equations

as:

G0e,rr =
ik0

4π

∞∑
n=0

n(n+ 1)(2n+ 1)

x0x′0
Pn(cosγ)

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.42a)

G0e,rθ =
ik0

4π

∞∑
n=0

(2n+ 1)

x0x′0

dPn(cos γ)

dγ
cosχ2

{
h

(1)
n (x0)

d[r′jn(x′0)]
dr′ r ≥ r′

jn(x0)
d[r′h

(1)
n (x′0)]
dr′ r ≤ r′

(B.42b)

G0e,θr =
ik0

4π

∞∑
n=0

(2n+ 1)

x0x′0

dPn(cos γ)

dγ
cosχ1

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

(B.42c)

G0e,rφ = − ik0

4π

∞∑
n=0

(2n+ 1)

x0x′0

dPn(cos γ)

dγ
sinχ2

{
h

(1)
n (x0)

d[r′jn(x′0)]
dr′ r ≥ r′

jn(x0)
d[r′h

(1)
n (x′0)]
dr′ r ≤ r′

(B.42d)

G0e,φr = − ik0

4π

∞∑
n=0

(2n+ 1)

x0x′0

dPn(cos γ)

dγ
sinχ1

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

(B.42e)

G0e,θθ =
ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

 1

x0x′0
P (1)
n

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

+P (2)
n

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

} (B.42f)
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G0e,θφ =
ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

P (3)
n

1

x0x′0

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

−P (4)
n

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

} (B.42g)

G0e,φθ =
ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

P (4)
n

1

x0x′0

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

−P (3)
n

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

} (B.42h)

G0e,φφ =
ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

 1

x0x′0
P (2)
n

 d[rh
(1)
n (x0)]
dr

d[r′jn(x′0)]
dr′ r ≥ r′

d[rjn(x0)]
dr

d[r′h
(1)
n (x′0)]
dr′ r ≤ r′

+P (1)
n

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

} (B.42i)

where

P (1)
n =

d2Pn(cos γ)

dγ2
cosχ1 cosχ2 −

dPn(cos γ)

dγ

sinχ1 sinχ2

sin γ
(B.43a)

P (2)
n = −d

2Pn(cos γ)

dγ2
sinχ1 sinχ2 +

dPn(cos γ)

dγ

cosχ1 cosχ2

sin γ
(B.43b)

P (3)
n = −d

2Pn(cos γ)

dγ2
cosχ1 sinχ2 −

dPn(cos γ)

dγ

sinχ1 cosχ2

sin γ
(B.43c)

P (4)
n =

d2Pn(cos γ)

dγ2
cosχ2 sinχ1 +

dPn(cos γ)

dγ

sinχ2 cosχ1

sin γ
(B.43d)

Similarly, we can write components of Eq. (B.37a) as

G(11)
es,rr =

ik0

4π

∞∑
n=0

BN
n(n+ 1)(2n+ 1)

x0x′0
Pn(cos γ)h(1)

n (x0)h(1)
n (x′0) (B.44a)

G
(11)
es,rθ =

ik0

4π

∞∑
n=0

BN
(2n+ 1)

x0x′0

dPn(cos γ)

dγ
cosχ2h

(1)
n (x0)

d[r′h
(1)
n (x′0)]

dr′
(B.44b)

G
(11)
es,θr =

ik0

4π

∞∑
n=0

BN
(2n+ 1)

x0x′0

dPn(cos γ)

dγ
cosχ1

d[rh
(1)
n (x0)]

dr
h(1)
n (x′0) (B.44c)

G
(11)
es,rφ = − ik0

4π

∞∑
n=0

BN
(2n+ 1)

x0x′0

dPn(cos γ)

dγ
sinχ2h

(1)
n (x0)

d[r′h
(1)
n (x′0)]

dr′
(B.44d)

G
(11)
es,φr = − ik0

4π

∞∑
n=0

BN
(2n+ 1)

x0x′0

dPn(cos γ)

dγ
sinχ1

d[rh
(1)
n (x0)]

dr
h(1)
n (x′0) (B.44e)
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G
(11)
es,θθ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
BN

1

x0x′0
P (1)
n

d[rh
(1)
n (x0)]

dr

d[r′h
(1)
n (x′0)]

dr′

+ BMP (2)
n h(1)

n (x0)h(1)
n (x′0)

} (B.44f)

G
(11)
es,θφ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
P (3)
n BN

1

x0x′0

d[rh
(1)
n (x0)]

dr

d[r′h
(1)
n (x′0)]

dr′

− P (4)
n BMh(1)

n (x0)h(1)
n (x′0)

} (B.44g)

G
(11)
es,φθ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
P (4)
n BN

1

x0x′0

d[rh
(1)
n (x0)]

dr

d[r′h
(1)
n (x′0)]

dr′

− P (3)
n BMh(1)

n (x0)h(1)
n (x′0)

} (B.44h)

G
(11)
es,φφ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
BN

1

x0x′0
P (2)
n

d[rh
(1)
n (x0)]

dr

d[r′h
(1)
n (x′0)]

dr′

+ BMP (1)
n h(1)

n (x0)h(1)
n (x′0)

} (B.44i)

and for Eq. (B.37b)

G(21)
es,rr =

ik0

4π

∞∑
n=0

DN
n(n+ 1)(2n+ 1)

x1x′0
Pn(cos γ)j(x1)h(1)

n (x′0) (B.45a)

G
(21)
es,rθ =

ik0

4π

∞∑
n=0

DN
(2n+ 1)

x1x′0

dPn(cos γ)

dγ
cosχ2jn(x1)

d[r′h
(1)
n (x′0)]

dr′
(B.45b)

G
(21)
es,θr =

ik0

4π

∞∑
n=0

DN
(2n+ 1)

x1x′0

dPn(cos γ)

dγ
cosχ1

d[rjn(x1)]

dr
h(1)
n (x′0) (B.45c)

G
(21)
es,rφ = − ik0

4π

∞∑
n=0

DN
(2n+ 1)

x1x′0

dPn(cos γ)

dγ
sinχ2jn(x1)

d[r′h
(1)
n (x′0)]

dr′
(B.45d)

G
(21)
es,φr = − ik0

4π

∞∑
n=0

DN
(2n+ 1)

x1x′0

dPn(cos γ)

dγ
sinχ1

d[rjn(x1)]

dr
h(1)
n (x′0) (B.45e)

G
(21)
es,θθ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
DN

1

x1x′0
P (1)
n

d[rjn(x1)]

dr

d[r′h
(1)
n (x′0)]

dr′

+ DMP (2)
n jn(x1)h(1)

n (x′0)
} (B.45f)

G
(21)
es,θφ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
P (3)
n DN

1

x1x′0

d[rjn(x1)]

dr

d[r′h
(1)
n (x′0)]

dr′

− P (4)
n DMjn(x1)h(1)

n (x′0)
} (B.45g)

G
(21)
es,φθ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
P (4)
n DN

1

x1x′0

d[rjn(x1)]

dr

d[r′h
(1)
n (x′0)]

dr′

− P (3)
n DMjn(x1)h(1)

n (x′0)
} (B.45h)
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G
(21)
es,φφ =

ik0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
BN

1

x1x′0
P (2)
n

d[rjn(x1)]

dr

d[r′h
(1)
n (x′0)]

dr′

+ BMP (1)
n jn(x1)h(1)

n (x′0)
} (B.45i)

B.6 Magnetic Field Green Function

In order to find the total magnetic field for the source placed in the vicinity of the sphere, we

need to find the magnetic Green’s function due to the electric dipole. The Green function

for the magnetic field is expressed as

H =

∫
(∇×Ge(r, r

′))J(r′)d3r′ (B.46)

Therefore Gm = ∇×Ge where

Gm = G0m + Gms (B.47)

where G0m = ∇×G0e and can be expressed as:

G0m(r, r′) =
ik0

4π

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

n+m
!

×

{
∇×M

(1)
mn(k0)M′

mn(k0) +∇×N
(1)
mn(k0)N′mn(k0) r ≥ r′,

∇×Mmn(k0)M
′(1)
mn (k0) +∇×Nmn(k0)N

′(1)
mn (k0) r ≤ r′

.

(B.48)

Knowing that the operation∇× acts only on the r coordinates and using the identities

∇×Mmn(k) = kNmn(k) (B.49a)

∇×Nmn(k) = kMmn(k), (B.49b)

we can rewrite Eq. B.48 as:

G0m(r, r′) =
ik2

0

4π

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

n+m
!

×

{
N

(1)
mn(k0)M′

mn(k0) + M
(1)
mn(k0)N′mn(k0) r ≥ r′,

Nmn(k0)M
′(1)
mn (k0) + Mmn(k0)N

′(1)
mn (k0) r ≤ r′

.

(B.50)

Similarly we can write the scattered Green functions for the magnetic field as

G
(11)
ms (r, r′) =

ik0

4π

∞∑
n=0

n∑
m=0

(2−δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

(n+m)!

[
BMN(1)

mn(k0)M
′(1)
mn (k0) + BNM(1)

mn(k0)N
′(1)
mn (k0)

]
(B.51a)

G
(21)
ms (r, r′) =

ik2
0

4π

∞∑
n=0

n∑
m=0

(2−δ0
m)

2n+ 1

n(n+ 1)

(n−m)!

(n+m)!

[
DMNmn(k1)M

′(1)
mn (k0) +DNMmn(k1)N

′(1)
mn (k0)

]
(B.51b)
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We can write the elements of Eq. (B.50) as:

G0m,rr = 0 (B.52a)

G0m,rθ =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×∓n(n+ 1)

x0
Pmn (cos θ)

m

sin θ′
Pmn (cos θ′)

cos
sin

mφ
sin
cos

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.52b)

G0m,θr =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×∓n(n+ 1)

x′0

m

sin θ
Pmn (cos θ)Pmn (cos θ′)

sin
cos

mφ
cos
sin

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.52c)

G0m,rφ =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×−n(n+ 1)

x0
Pmn (cos θ)

dPmn (cos θ′)

dθ′
cos
sin

mφ
cos
sin

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.52d)

G0m,φr =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×−n(n+ 1)

x′0

dPmn (cos θ)

dθ
Pmn (cos θ′)

cos
sin

mφ
cos
sin

mφ′

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.52e)

G0m,θθ =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×

{
∓ 1

x0

dPmn (cos θ)

dθ

m

sin θ′
Pmn (cos θ′)

cos
sin

mφ
sin
cos

mφ′

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

∓ 1

x′0

m

sin θ
Pmn (cos θ)

dPmn (cos θ′)

dθ′
sin
cos

mφ
cos
sin

mφ′

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

}
(B.52f)

G0m,θφ =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×

{
− 1

x0

dPmn (cos θ)

dθ

dPmn (cos θ′)

dθ′
cos
sin

mφ
cos
sin

mφ′

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

+
1

x′0

m

sin θ
Pmn (cos θ)

m

sin θ′
Pmn (cos θ′)

sin
cos

mφ
sin
cos

mφ′

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

}
(B.52g)
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G0m,φθ =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×

{
1

x0

m

sin θ
Pmn (cos θ)

m

sin θ′
Pmn (cos θ′)

sin
cos

mφ
sin
cos

mφ′

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

− 1

x′0

dPmn (cos θ)

dθ

dPmn (cos θ′)

dθ′
cos
sin

mφ
cos
sin

mφ′

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

}
(B.52h)

G0m,φφ =
ik2

0

4π

∞∑
n=0

n∑
m=0

Cmn

×

{
± 1

x0

m

sin θ
Pmn (cos θ)

dPmn (cos θ′)

dθ′
sin
cos

mφ
cos
sin

mφ′

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

± 1

x′0

dPmn (cos θ)

dθ

m

sin θ′
Pmn (cos θ′)

cos
sin

mφ
sin
cos

mφ′

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

}
(B.52i)

where can be simplified to

G0m,rr = 0 (B.53a)

G0m,rθ = − ik
2
0

4π

∞∑
n=0

2n+ 1

x0

dPn(cos γ)

dγ
sinχ2

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.53b)

G0m,θr =
ik2

0

4π

∞∑
n=0

2n+ 1

x′0

dPn(cos γ)

dγ
sinχ1

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.53c)

G0m,rφ = − ik
2
0

4π

∞∑
n=0

2n+ 1

x0

dPn(cos γ)

dγ
cosχ2

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.53d)

G0m,φr = − ik
2
0

4π

∞∑
n=0

2n+ 1

x′0

dPn(cos γ)

dγ
cosχ1

{
h

(1)
n (x0)jn(x′0) r ≥ r′

jn(x0)h
(1)
n (x′0) r ≤ r′

(B.53e)

G0m,θθ =
ik2

0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
1

x0
P (3)
n

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

+
1

x′0
P (4)
n

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

} (B.53f)

G0m,θφ =
ik2

0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
− 1

x0
P (1)
n

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

+
1

x′0
P (2)
n

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

} (B.53g)
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G0m,φθ =
ik2

0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
1

x0
P (2)
n

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

− 1

x′0
P (1)
n

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

} (B.53h)

G0m,φφ =− ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
1

x0
P (4)
n

{
d[rh

(1)
n (x0)]
dr jn(x′0) r ≥ r′

d[rjn(x0)]
dr h

(1)
n (x′0) r ≤ r′

+
1

x′0
P (3)
n

{
h

(1)
n (x0)

d[rjn(x′0)]
dr′ r ≥ r′

jn(x0)
d[rh

(1)
n (x′0)]
dr′ r ≤ r′

} (B.53i)

Similarly, we can write the elements of Green functions in Eq. (B.51)

G(11)
ms,rr = 0 (B.54a)

G
(11)
ms,rθ = − ik

2
0

4π

∞∑
n=0

BM
2n+ 1

x0

dPn(cos γ)

dγ
sinχ2h

(1)
n (x0)h(1)

n (x′0) (B.54b)

G
(11)
ms,θr =

ik2
0

4π

∞∑
n=0

BN
2n+ 1

x′0

dPn(cos γ)

dγ
sinχ1h

(1)
n (x0)h(1)

n (x′0) (B.54c)

G
(11)
ms,rφ = − ik

2
0

4π

∞∑
n=0

BM
2n+ 1

x0

dPn(cos γ)

dγ
cosχ2h

(1)
n (x0)h(1)

n (x′0) (B.54d)

G
(11)
ms,φr = − ik

2
0

4π

∞∑
n=0

BN
2n+ 1

x′0

dPn(cos γ)

dγ
cosχ1h

(1)
n (x0)h(1)

n (x′0) (B.54e)

G
(11)
ms,θθ =

ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
BM

1

x0
P (3)
n

d[rh
(1)
n (x0)]

dr
h(1)
n (x′0) + BN

1

x′0
P (4)
n h(1)

n (x0)
d[rh

(1)
n (x′0)]

dr′

}
(B.54f)

G
(11)
ms,θφ =

ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
−BM

1

x0
P (1)
n

d[rh
(1)
n (x0)]

dr
h(1)
n (x′0) + BN

1

x′0
P (2)
n h(1)

n (x0)
d[rh

(1)
n (x′0)]

dr′

}
(B.54g)

G
(11)
ms,φθ =

ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
BM

1

x0
P (2)
n

d[rh
(1)
n (x0)]

dr
h(1)
n (x′0)− BN

1

x′0
P (1)
n h(1)

n (x0)
d[rh

(1)
n (x′0)]

dr′

}
(B.54h)

G
(11)
ms,φφ = − ik

2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
BM

1

x0
P (4)
n

d[rh
(1)
n (x0)]

dr
h(1)
n (x′0) + BN

1

x′0
P (3)
n h(1)

n (x0)
d[rh

(1)
n (x′0)]

dr′

}
(B.54i)

and

G(21)
ms,rr = 0 (B.55a)

G
(21)
ms,rθ = − ik

2
0

4π

∞∑
n=0

DM
2n+ 1

x1

dPn(cos γ)

dγ
sinχ2jn(x1)h(1)

n (x′0) (B.55b)

G
(21)
ms,θr =

ik2
0

4π

∞∑
n=0

DN
2n+ 1

x′0

dPn(cos γ)

dγ
sinχ1jn(x1)h(1)

n (x′0) (B.55c)
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G
(21)
ms,rφ = − ik

2
0

4π

∞∑
n=0

DM
2n+ 1

x1

dPn(cos γ)

dγ
cosχ2jn(x1)h(1)

n (x′0) (B.55d)

G
(11)
ms,φr = − ik

2
0

4π

∞∑
n=0

DN
2n+ 1

x′0

dPn(cos γ)

dγ
cosχ1jn(x1)h(1)

n (x′0) (B.55e)

G
(21)
ms,θθ =

ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
DM

1

x1
P (3)
n

d[rjn(x1)]

dr
h(1)
n (x′0) +DN

1

x′0
P (4)
n jn(x1)

d[rh
(1)
n (x′0)]

dr′

}
(B.55f)

G
(21)
ms,θφ =

ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
−DM

1

x1
P (1)
n

d[rjn(x1)]

dr
h(1)
n (x′0) +DN

1

x′0
P (2)
n jn(x1)

d[rh
(1)
n (x′0)]

dr′

}
(B.55g)

G
(21)
ms,φθ =

ik2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
DM

1

x1
P (2)
n

d[rjn(x1)]

dr
h(1)
n (x′0)−DN

1

x′0
P (1)
n jn(x1)

d[rh
(1)
n (x′0)]

dr′

}
(B.55h)

G
(21)
ms,φφ = − ik

2
0

4π

∞∑
n=0

2n+ 1

n(n+ 1)

{
DM

1

x1
P (4)
n

d[rjn(x0)]

dr
h(1)
n (x′0) +DN

1

x′0
P (3)
n jn(x0)

d[rh
(1)
n (x′0)]

dr′

}
(B.55i)

B.7 Electric and Magnetic Dipoles

Having found the electric and magnetic Green’s function, it is a matter of substitution to

find the electric and magnetic fields of the dipole placed outside of the sphere. The fields

from an electric dipole is simply the dipole moment times the Green’s functions. Therefore,

assuming an electric dipole moment of p, we get:

Ee(r) = ω2µ0Ge(r, r
′)p(r′) (B.56a)

He(r) = −iωGm(r, r′)p(r′) (B.56b)

where the subscript e refers to fields due to an electric dipole.

The fields due to a magnetic dipole can be found from the results of an electric dipole

by performing a dual transformation. Since the Maxwell equations are dual symmetric, the

equations will be the same if we do the transformation:

E→ Z0H, Z0H→ −E, p→m/c (B.57)

where Z0 =
√

µ0
ε0
' 376.73Ω. Therefore, for a magnetic dipole with the dipole moment

m we get

Em(r) = iωµ0Gm(r, r′)m(r′) (B.58a)

Hm(r) =
ω2

c2
Ge(r, r

′)m(r′), (B.58b)
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where the subscriptm refers to fields due to a magnetic dipole. Here, we have assumed that

the medium does not have any magnetic property.

The interaction Hamiltonian between two electric dipoles can be written as:

Vee = −pA.EeD = −ω2µ0pA(r).Ge(r, r
′).pD(r′) (B.59)

where the ee subscript refers to electric dipole-electric dipole interaction, and pA and pD

are the dipole moments of the acceptor and donor, respectively. Similarly, we can write the

interaction Hamiltonian between two magnetic dipoles as:

Vmm = −mA.BmD = −ω
2µ0

c2
mA(r).Ge(r, r

′).mD(r′). (B.60)

For interactions between an electric and magnetic dipole we can write

Vem = −pA.EmD = −iωµ0pA(r).Gm(r, r′).mD(r′) (B.61a)

Vme = −mA.BeD = +iωµ0mA(r).Gm(r, r′).pD(r′) (B.61b)

B.8 Properties of Legendre Polynomials

Here we present two of the important properties of the Legendre polynomials used in this

chapter. These give recursion equations for the first- and second-order derivatives of the

polynomials as,

d2Pn(x)

dx2
=

n

(x2 − 1)2

{[
x2(n− 1)− n− 1

]
Pn(x) + 2xPn−1(x)

}
(B.62)

dPn(x)

dx
=

n

(x2 − 1)
(xPn(x)− Pn−1(x)) (B.63)

Therefore we find

d2Pn(cos γ)

dγ2
= sin2 γ

d2Pn(cos γ)

d(cos γ)2
− cos γ

dPn(cos γ)

d(cos γ)
(B.64)
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Appendix C

Proofs for Chapter 4

C.1 Cylindrical Dirac Equation

In this section we aim to find the solution of the Dirac’s equation in cylindrical coordinates.

The time-independent Dirac equation is written as:

(vFααα.ppp+mv2
Fβ)ψµ = Eψµ, (C.1)

where

ααα =

(
0 σσσ
σσσ 0

)
, β =

(
I2×2 0

0 −I2×2

)
, (C.2)

and σ’s are the Pauli matrices written as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (C.3)

The Dirac equation can be separated into two equations as:

(E −mv2
F )φ = −i~vF~σ.~∇χ (C.4)

(E +mv2
F )χ = −i~vF~σ.~∇φ (C.5)

where u =

(
φ
χ

)
is the four-component eigen bi-spinor solution. These two equations

together give the familiar Helmholtz equation

(∇2 + k2)φ = 0 (C.6)

where

k =

√
E2 −m2v4

F

~2v2
F

. (C.7)

Since χ is a spinor, Eq. (C.6) contains two independent solutions. Therefore, we can write

these two solutions in cylidrical coordinates as φ =

(
φ+

φ−

)
with

φ± = (An±Jn±(k⊥ρ) +Bn±Yn±(k⊥ρ))eikzzein±φ (C.8)
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where n+ and n− are two integers, k⊥ =
√
k2 − k2

z , and J and Y are Bessel functions of

first and second kind, respectively. We require the solutions to be eigenfunctions of total

angular momentum along the z direction, Jz , with eigenvalue µ~. This can be written as

Jzφ = (−i~ ∂

∂φ
I2×2 +

~
2
σz)φ = ~µφ (C.9)

which gives

n+ +
1

2
= n− −

1

2
= µ (C.10)

We also require the solutions to be eigenfunctions of transverse helicity defined as [136],

h⊥ = i~γ3
αx∂x + αy∂y

p⊥

=
1

k⊥


0 ∂x − i∂y 0 0

−∂x − i∂y 0 0 0
0 0 0 −∂x + i∂y
0 0 ∂x + i∂y 0

 ,

(C.11)

where γ3 = βαz . We can see that the spinors

φ+
µ =

eikzz√
2

(
(An+Jn+(k⊥ρ) +Bn+Yn+(k⊥ρ))ein+φ

(An−Jn−(k⊥ρ) +Bn−Yn−(k⊥ρ))ein−φ

)
(C.12)

and

φ−µ =
eikzz√

2

(
(An+Jn+(k⊥ρ) +Bn+Yn+(k⊥ρ))ein+φ

−(An−Jn−(k⊥ρ) +Bn−Yn−(k⊥ρ))ein−φ

)
(C.13)

are eigenfunctions of the 2 × 2 matrix on the diagonal of the h⊥ matrix in Eq. (C.11),

assuming that An+ = An− = Aµ and Bn+ = Bn− = Bµ. We can use Eq. (C.5) to find the

other two components of the eigenfunctions as

χµ =
−i~vF~σ.~∇
(E +mv2

F )
φµ. (C.14)

This would give the two solutions as

χ±µ =
∓i~vF eikzzeiµφ(k⊥ ± ikz)√

2(E +mv2
F )

(
(AµJn+(k⊥ρ) +BµYn+(k⊥ρ))e−iφ/2

∓(AµJn−(k⊥ρ) +BµYn−(k⊥ρ))e+iφ/2

)
. (C.15)

Therefore, we can write the bi-spinor solutions as

u
(s)
µ,M =

eikzzeiµφ√
2

(
φ

(s)
µ

−is~vF k⊥+ikz
M φ

(−s)
µ

)
(C.16)

where s = ±1 is the eigenvalue of the transverse helicity operator,

h⊥ψ
(s)
µ = sψ(s)

µ , (C.17)

and M = E + mv2
F . For solutions that include ρ = 0, Bµ should become zero so that the

solutions do not diverge at ρ = 0. On the other hand, for solutions that include ρ → ∞,

only Kn(k⊥ρ) solutions should remain. Since we only face either of these two scenarios,

these observations give the solutions in Eq. (4.2).
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C.2 Cylindrical Jackiw-Rebbi problem

We now apply the general solutions of the previous section to the cylindrical Jackiw-Rebbi

problem with the electronic mass inside and outside the wire m1 and m2, respectively. We

look at the two cases of JR+ and JR− for which m1 > 0 and m1 < 0, respectively. For

both cases m2 is positive. In order to get physical solutions outside of the wire we require

the solutions to vanish as ρ → ∞. This means that the radial solutions outside of the wire

should be in the form of modified Bessel functions of the second kind Kn(k⊥ρ). Writing

the ρ > a solutions in this form and applying the continuity boundary condition to the four

components of the Dirac bi-spinors, we arrive at the transcendental equation,

[
−kρ1γ2

(
Jn−(k⊥1a)Kn+(γ2a)

Jn+(k⊥1a)Kn−(γ2a)
−
Jn+(k⊥1a)Kn−(γ2a)

Jn−(k⊥1a)Kn+(γ2a)

)]
+ 2k2

z =
M2

1k
2
2 +M2

2k
2
1

M1M2

(C.18)

where k⊥1 =
√
k2

1 − k2
z , γ2 = −ik⊥2 =

√
k2
z − k2

2 , and Mi = E + miv
2
F with ki =√

E2−m2
i v

4
F

~vF being the propagation constants inside and outside of the wire for i = 1 and

i = 2, respectively.

C.2.1 Solutions of JR+ Dirac Wire problem

For the JR+ problem (m1,m2 > 0), the solutions only exist when m2 > m1. This corre-

sponds to the condition that E1 < E < E2, where

Ei =
√
m2
i v

4
F + ~2v2

Fk
2
z , i = 1, 2. (C.19)

In this range, k⊥1 is real while k⊥2 is imaginary; therefore giving the hybrid mode label

Hµ,ν . Figure C.1 shows the calculated amplitude for the wavefunctions (ψ†ψ) of the first

six modes of the JR+ problem. Note that these distributions integrate to one over the entire

x − y plane. Figure C.2 shows the dispersions as well as the integrated values of spin and

OAM of the JR+ problem for the first six modes. As shown in the dispersion diagram in Fig.

C.2(a), the H 1
2
,2 and H 3

2
,1 as well as the H 3

2
,2 and H 5

2
,1 modes are degenerate. Spin and

OAM of these modes are shown in Fig. C.2(b). Note that spin and OAM are not dispersive

(they are independent of kz). Also, the values of spin are not exactly ±1
2 which shows the

non-quantization of spin. The summation of spin and OAM, however, is always quantized.

C.2.2 Solutions of JR− Dirac Wire problem

In the case of JR− problem, in addition to Hµ,ν modes, another type of mode exists due to

the negative mass inside the wire. These solutions exist in the range E < E1 with E1 given
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Figure C.1: Spatial distribution of probability densities, ψ†ψ, for the first six modes of the
JR+ problem. The radius of the wire is a = 20 Å, m1v

2
F = 1 eV, and m2v

2
F = 2 eV.

((a)) ((b))

Figure C.2: Properties of the first six modes of the JR+ problem for a = 20 Å. (a) dispersion
and (b) spin and OAM of the first six modes.

by Eq. (C.19). These modes are characterized by imaginary values of k⊥1 and k⊥2 . Since

the solutions are evanescent inside and outside of the wire, there is only one possibility for

the continuity boundary condition to be satisfied. In other words, unlike the Hµ,ν modes,

the radial function has only one possible solution in this case. Therefore, we label these

modes as Dµ.

Figure C.3 shows the spatial distribution of ψ†ψ for the first six modes of the JR−

problem with |m1|v2
F = 1 eV, m2v

2
F = 2 eV, and a = 20 Å. Note that these six modes

are not ordered in terms of energy because all of the Dµ modes have lower energy than the

Hµ,ν modes, as seen in Fig. C.4(a). As shown in Fig. C.4(b), similar to the JR+ problem,

the spin and OAM add up to the quantized value for the total angular momentum. Note that
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although the spin is not conserved in these problems, its absolute value does not exceed 1
2 .

Figure C.3: Spatial distribution of probability densities, ψ†ψ, for µ = 1
2 and for the first

six modes of the JR− problem. The radius of the wire is a = 20Å, |m1|v2
F = 1eV, and

m2v
2
F = 2eV.

((a)) ((b))

Figure C.4: Properties of the first six modes of the JR− problem for a = 20Å. (a) Dispersion
and (b) spin and OAM of the first six modes.

C.3 Dirac Equation with dispersive mass

The method used in the previous section can be also applied here to find the solutions of

the Dirac Eq. (C.1) for the dispersive Jackiw-Rebbi (JR-D) problem. Usign the dispersive

mass,

mv2
F = m0v

2
F −B~2k2, (C.20)
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Figure C.5: Spatial distribution of probability densities, ψ†ψ, for the first six modes of the
JR-D problem. The radius of the wire is a = 20 Å, m1v

2
F = 1 eV, and m2v

2
F = 2 eV.

we find for the JR-D problem,[
∇2 +

(
E2 − (m0v

2
F −B~2k2)2

~2v2
F

)]
φ = 0. (C.21)

Using the fact that [ppp2, H] = 0, we arrive at the solutions for propagation constant as,

k(1,2) =
vF√
2B~

[
(2m0B − 1)±

√
(1− 4m0B) +

4B2E2

v4
F

] 1
2

. (C.22)

where k(1) and k(2) are both propagation constants inside the wire. The dispersive mass in

the JR-D problem, splits the propagation constant into two non-degenerate solutions. This

breaks the solutions given in Eq. (C.16) into four eigenfunctions instead of two, written as,

u
(+)

µ,M(1) =
eikzzeiµφ√

2

(
φ

(+)
µ

−i~vF k⊥+ikz
M(1) φ

(−)
µ

)
, u

(−)

µ,M(1) =
eikzzeiµφ√

2

(
φ

(−)
µ

+i~vF k⊥+ikz
M(1) φ

(+)
µ

)

u
(+)

µ,M(2) =
eikzzeiµφ√

2

(
φ

(+)
µ

−i~vF k⊥+ikz
M(2) φ

(−)
µ

)
, u

(−)

µ,M(2) =
eikzzeiµφ√

2

(
φ

(−)
µ

+i~vF k⊥+ikz
M(2) φ

(+)
µ

)
(C.23)

whereM (i) = E+m0v
2−B~2(k(i))2. These four eigenfunctions can combine together

to satisfy the open boundary condition, ψµ = 0, on the surface of the wire. By applying

this boundary condition, we arrive at the following transcendental equation:

k
(1)
⊥ k

(2)
⊥

(
Jn−(k

(1)
⊥ a)Jn+(k

(2)
⊥ a)

Jn+(k
(1)
⊥ a)Jn−(k

(2)
⊥ a)

+
Jn+(k

(1)
⊥ a)Jn−(k

(2)
⊥ a)

Jn−(k
(1)
⊥ a)Jn+(k

(2)
⊥ a)

)
+2k2

z =
(M (1)k(2))2 + (M (2)k(1))2

M (1)M (2)
.

(C.24)
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((a)) ((b))

Figure C.6: Properties of the first six modes of the JR-D problem. (a) Dispersion of the first
six modes and (b) spin and OAM of the first six modes.

C.3.1 Modal Behaviour of Solutions

Modal behaviour in the solutions of the transcendental Eq. (C.24) refers to the regions

where the solutions have different field distributions and properties. This modal behaviour

can be analyzed by looking at Eq. (C.22). We define E1 and E2 as,

E1 =

√
v4
F (4m0B − 1)

4B2
(C.25a)

E2 =
√
m2

0v
4
F + k2

z~2(k2
z~2B2 + v2

F − 2m0Bv2
F ), (C.25b)

and X1 and X2 as,

X1,2 =
m0v

2
F ± vF

√
m2

0v
2
F − 2k2

z~2

k2
z~2

. (C.26)

We can categorize the modes depending on the relationship of the eigenvalues, E, with

respect to E1, E2, X1, X2, and also values of kz and B, as follows:

• Cµ Modes: E < E1 ⇒ k
(1)
⊥ and k(2)

⊥ are complex.

• Dµ Modes: E1 < E < E2 &
{

(kz >
m0vF

2~ ) or
[
kz <

m0vF
2~ & (B < X1 or B > X2)

]}
⇒ k

(1)
⊥ and k(2)

⊥ are imaginary.

• Rµ,ν Modes: E1 < E < E2 &
(
kz <

m0vF
2~ & X1 < B < X2

)
⇒ k

(1)
⊥

and k(2)
⊥ are real.

• Hµ,ν Modes: E > E2 ⇒ k
(1)
⊥ is real and k(2)

⊥ is imaginary.

Figure C.5 shows the spatial distribution of ψ†ψ for the first six modes the JR-D prob-

lem. Dispersion diagrams of these modes in Fig. C.6, show that the R 1
2
,2 and R 3

2
,1 modes,
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as well as the H 3
2
,1 and H 5

2
,1 modes, are degenerate. Unlike the two JR+ and JR− prob-

lems, for JR-D the spin and OAM are dispersive. The total angular momentum, however, is

still conserved and independent of kz . Also note that although the spin is dispersive here,

its absolute value does not exceed 1
2 .

C.3.2 Group Velocity

As shown in the inset of Fig. 4.3(a) in section 4.3, group velocity becomes negative at some

values of kz for the dominant mode of the JR-D problem. Group velocity can be found by

either taking the derivative of the dispersion or finding the expectation value of the velocity

operator, defined in the Dirac equation as,

v̂ =
∂H

∂p
= vFα− 2β~k. (C.27)

Therefore, we find for the expectation value of ẑ component, ψ†v̂zψ,

vz = vFψαzψ − 2~kzψ†βψ. (C.28)

Note that in Dirac equation, I = eψ†v̂ψ also represents the conserved charge currents [29].

This means that in the regions where the group velocity becomes negative, charge currents

propagate along negative ẑ direction Iz < 0. In other words, charge transport is dominated

by the holes rather than electrons.
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Appendix D

Proofs for Chapter 5

D.1 Equations of Motion

The equations of motions governing the acoustic waves in source-free regions are given by

∂Tij
∂xj

= ρ
∂2ui
∂t2

(D.1)

where Tij is the stress tensor, ui the displacement vector, and ρ is the mass density of the

medium. For piezoelectric material, the stress tensor can be written in terms of the strain

tensor and electric field as

Tij = cijklSkl − ekijEk (D.2)

while the displacement electric field is given by

Di = εijEj + eijkSjk (D.3)

where cijkl is the stiffness tensor, eijk is the piezoelectric tensor, εij is the permittivity

tensor. eijk is symmetric in the last two indices eijk = eikj . Due to the symmetry properties,

these tensors are symmetric in pairs of indices. Therefore, the tensor cijkl can be written in

the form of a 6× 6 matrix as cαβ by following rules

α =1→ ij = 11, α = 2→ ij = 22, α = 3→ ij = 33,

α =4→ ij = 23, α = 5→ ij = 31, α = 6→ ij = 12.
(D.4)

This way it is common to write the matrices as cαβ = cijkl, eijk = eiα, and Tij = Tα.

On the other hand, the strain tensor Sij is given by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (D.5)

and

E = −∇Φ, Φ = u4. (D.6)
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We thus get, together with the equation ∇ ·D = 0, equations of motion for source-free

regions

cijkl
∂2ul

∂xj∂xk
+ ekij

∂2Φ

∂xj∂xk
= −ρω2ui, i = 1, 2, 3 (D.7a)

ejkl
∂2ul

∂xj∂xk
− εjk

∂2Φ

∂xj∂xk
= 0 (D.7b)

where we have assumed that the solutions are of the form ui = ui0(xi)e
iωt.

D.2 Rayleigh Surface Wave

For a Rayleigh wave propagating along z direction , with an interface along y direction, we

can write the solutions as

uµ = uµ0e
i(ωt−kx3)eχkx2 , µ = 1, 2, 3, 4 and u4 = Φ. (D.8)

Since ∂
∂x1

= 0, ∂
∂x2

= χk, and ∂
∂x3

= −ik, we get by plugging this into the equations of

motion

[
ci22lχ

2k2 − ci33lk
2 − iχk2 (ci23l + ci32l)

]
ul+

[
e2i2χ

2k2u4 − e3i3k
2 − ik2χ (e2i3 + e3i2)

]
u4+ρω2ui = 0

(D.9)

and

[
e22lχ

2k2 − e33lk
2 − iχk2 (e23l + e32l)

]
ul−

[
ε22χ

2k2 − ε33k
2 − iχk2 (ε23 + ε32)

]
u4 = 0

(D.10)

defining

Γil = ci33l − ci22lχ
2 + iχ(ci23l + ci32l) (D.11a)

γl = e33l − e22lχ
2 + iχ(e23l + e32l) (D.11b)

ε = ε33 − ε22χ
2 + iχ(ε23 + ε32) (D.11c)

and v = ω/k as the speed of the wave, we can write the system of four equations in matrix

form as 
Γ11 − ρv2 Γ12 Γ13 γ1

Γ21 Γ22 − ρv2 Γ23 γ2

Γ31 Γ32 Γ33 − ρv2 γ3

γ1 γ2 γ3 −ε



u1

u2

u3

u4

 = 0. (D.12)
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D.3 Lithium Niobate Crystal Properties

The crystal of Lithium Niobate (LiNO3) belongs to the class 3mwhich has a trigonal lattice.

The stiffness tensor for this class is

cαβ =



c11 c12 c13 c14 0 0
c12 c11 c13 −c14 0 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 0
0 0 0 0 c44 c14

0 0 0 0 c14
c11−c22

2

 (D.13)

Where we have assumed that the (triad) principal axis (the axis that has the symmetry for

a rotation of 2π/3 denoted by A3) is along z direction. For classes 32, 3m, and 3̄m the

dyad axis (the axis that has the symmetry for a rotation of π ) imposes extra conditions.

Assuming that this axis, which is perpendicular to the principal axis, is along x direction,

the constants cijkl with an odd number of indices equal to 1 become zero. Therefore in the

above matrix, we have c25 = 0.

The class 3m is distinguished by A33M ′ which is one A3 triad axis and three mirror

planes M ′ perpendicular to the A3 axis. If the sagittal plane is parallel to any of these

three planes, we get a piezo-electric Rayleigh surface mode denoted by R̄2. In our case, the

sagittal plane (the plane of propagation of surface wave) is the Y − Z plane. Therefore, if

the wave propagates along the Z direction for a Y -cut crystal, we get the R̄2 wave. For the

matrix given in Eq. (D.13) the A3 axis is assumed to be along Z direction, while the mirror

plane is assumed to be parallel Y − Z plane, i.e. the sagittal plane. We thus only need

to plug in this matrix into the Eqs. (D.12) and (D.11) for the propagation of surface wave.

Before doing so, we also need the piezo-electricity and permittivity tensors for Lithium

Niobate. They are given by

e =

 0 0 0 0 e15 −e22

−e22 e22 0 e15 0 0
e31 e31 e33 0 0 0

 (D.14)

and

ε =

ε11 0 0
0 ε11 0
0 0 ε33

 (D.15)

Using these matrices, we get for the parameters in Eq. (D.11),

Γ11 = c44 −
1

2
(c11 − c22)χ2 + 2iχc14, Γ12 = 0, Γ13 = 0

Γ21 = 0, Γ22 = c44 − c11χ
2 − 2iχc14, Γ23 = c14χ

2 + iχ(c13 + c44)

Γ31 = 0, Γ32 = c14χ
2 + iχ(c44 + c13), Γ33 = c33 − c44χ

2

(D.16a)
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γ1 = 0, γ2 = −e22χ
2 + iχ(e15 + e31), γ3 = e33 − e15χ

2 (D.16b)

ε = ε33 − ε11χ
2 (D.16c)

These relations simplify Eq. (D.12) toΓ22 − ρv2 Γ23 γ2

Γ23 Γ33 − ρv2 γ3

γ2 γ3 −ε

u2

u3

u4

 = 0, (D.17)

and (
Γ11 − ρv2

)
u1 = 0 (D.18)

The second equation is decoupled from the first one and gives an independent transverse

horizontal wave TH which is non-piezoelectric. We thus focus on the first equation and

take u1 = 0.

D.4 Boundary Conditions

The mechanical boundary conditions on the surface normal to the axis x2 are for the surface

stresses Ti2 which states that Ti2 = 0. We have using u1 = 0 and ∂/∂x1 = 0,

T12 =c12kl
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
+ ek12

∂u4

∂xk
= c1222

∂u2

∂x2
+ c1223

(
∂u2

∂x3
+
∂u3

∂x2

)
+c1233

∂u3

∂x3
+ e212

∂u4

∂x2
+ e312

∂u4

∂x3
= 0

(D.19a)

T22 = c22kl
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
+ ek22

∂u4

∂xk
= c2222

∂u2

∂x2
+ c2223

(
∂u2

∂x3
+
∂u3

∂x2

)
+c2233

∂u3

∂x3
+ e222

∂u4

∂x2
+ e322

∂u4

∂x3

= c11χku2 − c14 (−iku2 + χku3)− ikc13u3 + (e22χk − e31ik)u4

(D.19b)

T32 =c32kl
1

2

(
∂uk
∂xl

+
∂ul
∂xl

)
+ ek32

∂u4

∂xk
= c3222

∂u2

∂x2
+ c3223

(
∂u2

∂x3
+
∂u3

∂x2

)
+c3233

∂u3

∂x3
+ e232

∂u4

∂x2
+ e332

∂u4

∂x3

=− c14χku2 + c44 (−iku2 + χku3) + e15χku4

(D.19c)

Setting these to zero we get the

T22 = c11χku2 − c14 (−iku2 + χku3)− ikc13u3 + (e22χk − e31ik)u4 = 0 (D.20a)

T32 = −c14χku2 + c44 (−iku2 + χku3) + e15χku4 = 0 (D.20b)
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We also have the boundary condition for the normal component of the displacement electric

field to be continuous Dy0 = Dy1. We first write the electric field in the vacuum half space

in terms of Φ′ in this medium as

E = −∇Φ = −∇
(
e−χ

′kx2ei(ωt−kx3)
)

(D.21)

where the propagation constant k should be the same in the two media because of the

boundary condition for the transverse electric field Et = E′t. The electric potential in

vacuum follows the wave equation. It gives[
k2
(

1− χ′2
)
− ω2

c2

]
Φ = 0 (D.22)

which means that the wave propagates at the speed of light. However, ω/k = V is equal to

the speed of acoustic wave. We thus have

V =
ω

k
= c
√

1− χ′2 (D.23)

But the acoustic wave speed is much less than the speed of light (V/c ∼ 10−5). This means

that χ′ ' 1. This is equivalent to the electrostatic condition. Therefore the potential in

vacuum becomes

Φ′ = u40e
−kx2ei(ωt−kx3) (D.24)

This gives for the continuity of normal component of the D

ε0
∂Φ′

∂x2
= ε22

∂u4

∂x2
− e2jk

1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
(D.25)

and thus

−ε0ku40 = ε22χku40 − [e222χku2 + e223 (−iku2 + χku3)] (D.26)

or

ku40(ε0 + ε22χ) = e22χku20 + e24k (−iu2 + χu3) (D.27)

D.5 Solving the Equations

To find the solutions for the Rayleigh waves, we need to solve the system of equationsΓ22 − ρV 2 Γ23 γ2

Γ23 Γ33 − ρV 2 γ3

γ2 γ3 −ε

u2

u3

u4

 = 0, (D.28)

with the parameters gives in Eq. (D.11) together with the boundary conditions

c11χku2 − c14 (−iku2 + χku3)− ikc13u3 + (e22χk − e31ik)u4 = 0 (D.29a)
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−c14χku2 + c44 (−iku2 + χku3) + e15χku4 = 0 (D.29b)

ku40(ε0 + ε22χ) = e22χku20 + e24k (−iu2 + χu3) (D.29c)

Plus a normalization constant (taking u20 = 1) to solve for the four unknowns u30, u40, χ,

and V = ω/k.

For Eq. (D.28), the determinant of coefficients must be zero for a non-trivial solutions.

This gives

γ2

[
Γ23γ3 − (Γ33 − ρV 2)γ2

]
−γ3

[
(Γ22 − ρV 2)γ3 − Γ23γ2

]
−ε
[
(Γ22 − ρV 2)(Γ33 − ρV 2)− Γ2

23

]
= 0

(D.30)

This equation has three physical solutions denoted as χ(i), i = 1, 2, 3. Therefore the solu-

tions should be written as the sum of these three solutions as

uµ =

(
3∑
i=1

u
(i)
µ0e

χ(i)kx2

)
ei(ωt−kx3) (D.31)

From Eq. (D.28) we get

u
(i)
2

u
(i)
3

= a(i) = −

(
γ

(i)
3

)2
+ ε(i)

(
Γ

(i)
33 − ρV 2

)
ε(i)Γ

(i)
23 + γ

(i)
2 γ

(i)
3

= − γ
(i)
3 γ

(i)
2 + ε(i)Γ

(i)
23

ε(i)
(

Γ
(i)
22 − ρV 2

)
+
(
γ

(i)
2

)2 (D.32a)

u
(i)
4

u
(i)
3

= b(i) = −
γ

(i)
2

(
Γ

(i)
33 − ρV 2

)
− Γ

(i)
23γ

(i)
3

ε(i)Γ
(i)
23 + γ

(i)
2 γ

(i)
3

= −
Γ

(i)
23γ

(i)
2 −

(
Γ

(i)
22 − ρV 2

)
γ

(i)
3

ε(i)
(

Γ
(i)
22 − ρV 2

)
+
(
γ

(i)
2

)2

(D.32b)

where the parameters with the superscript (i) are given in Eq. (D.16) for each solution of

χ(i). Therefore, the boundary conditions become

3∑
i=1

t
(i)
1 u

(i)
30 = 0,

3∑
i=1

t
(i)
2 u

(i)
30 = 0,

3∑
i=1

t
(i)
3 u

(i)
30 = 0 (D.33)

with

t
(i)
1 = c11χ

(i)a(i) + ic14a
(i) − c14χ

(i) − ic13 + e22χ
(i)b(i) − ie31b

(i) (D.34a)

t
(i)
2 = −c14χ

(i)a(i) − ic44a
(i) + c44χ

(i) + e15χ
(i)b(i) (D.34b)

t
(i)
3 = e22χ

(i)a(i) − ie15a
(i) + e15χ

(i) − ε0b(i) − ε11χ
(i)b(i) (D.34c)

From the first two boundary conditions, assuming that u(1)
30 = 1, we can find u(2)

30 and u(3)
30 .

Plugging these into the third equation, we can get the velocity of propagation. Solving these

equations, we find the velocity of propagation to be V = 3491.985 m/s.
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Appendix E

Proofs for Chapter 6

E.1 Radiated Power due to Magnetic Fluctuations

In this section we derive the total radiated power from the spinning sphere due to the

fluctuating dipoles and fields. Using an approach similar to the one taken by Abajo et.

al [162, 174], we can write the radiated power due to the magnetic fluctuations of dipoles

and fields as,

Pmag = −〈H ind · ∂mfl/∂t+Hfl · ∂mind/∂t〉 (E.1)

whereH ind is the induced magnetic field due to the magnetic dipole fluctuationsmfl of

the particle and mind is the induced magnetic dipole in the particle due to the fluctuations

of the vacuum magnetic field H ind. Note that all of these quantities are written in the lab

frame. For the sphere spinning at the rotation frequency Ω, we can write,

mfl
x =m

′fl
x cos Ωt−m′fly sin Ωt

mfl
y =m

′fl
x sin Ωt+m

′fl
y cos Ωt

mfl
z =m

′fl
z

(E.2)

where the primed quantities are written in the rotating frame. Performing a Fourier trans-

formation asm
′fl(t) =

∫
dω
2π e
−iωtm

′fl(ω), we can write in the frequency domain

mfl
x(ω) =

1

2

[
m
′fl
x (ω−) +m

′fl
x (ω+) + im

′fl
y (ω+)− im′fly (ω−)

]
mfl
y(ω) =

1

2

[
im
′fl
x (ω−)− im′flx (ω+) +m

′fl
y (ω+) +m

′fl
y (ω−)

] (E.3)

where ω± = ω ± Ω. We can similarly write for the magnetic fields

H
′fl
x (ω) =

1

2

[
Hfl
x(ω+) +Hfl

x(ω−)− iHfl
y (ω+) + iHfl

y (ω−)
]

H
′fl
y (ω) =

1

2

[
iHfl

x(ω+)− iHfl
x(ω−) +Hfl

y (ω+) +Hfl
y (ω−)

]
.

(E.4)
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Thus, using the fact that,

m
′ind(ω) = ᾱm(ω) ·H ′fl(ω), (E.5)

with

ᾱm(ω) =

αm,⊥(ω) −αm,g(ω) 0
αm,g(ω) αm,⊥(ω) 0

0 0 αm,‖(ω)

 (E.6)

being the magnetic polarizability tensor of the YIG sphere biased along the z axis, we find

in the lab frame

mind(ω) = ᾱeff
m (ω) ·Hfl(ω) (E.7)

where

ᾱeff
m =

αeff
m,⊥(ω) −αeff

m,g(ω) 0

αeff
m,g(ω) αeff

m,⊥(ω) 0

0 0 αeff
m,‖(ω)

 (E.8)

and

αeff
m,⊥(ω) =

1

2

[
αm,⊥(ω+) + αm,⊥(ω−) + iαm,g(ω

+)− iαm,g(ω−)
]

(E.9a)

αeff
m,g(ω) = − i

2

[
αm,⊥(ω+)− αm,⊥(ω−) + iαm,g(ω

+) + iαm,g(ω
−)
]

(E.9b)

αeff
m,‖ = αm,‖(ω). (E.9c)

Note that we have used an expression similar to Eq. (E.3) but written for the induced mag-

netic dipole moments. Expression for αm,⊥(ω) and αm,g(ω) are given in section E.4. Using

the fluctuation-dissipation theorem (FDT) [183],

〈Hfl
i (ω)Hfl

j (ω′)〉 = 4π~[n0(ω) + 1]

{
GH
ij(ω)−GH∗

ji (ω)

2i

}
δ(ω + ω′), (E.10)

withGH
ij(ω) = GH

ij(r, r
′ = r, ω) defined as the equal-frequency magnetic Green’s function

of the environment defined through the equation,

Hi(r, r
′, ω) = GH

ij(r, r
′, ω)mj(r

′, ω), (E.11)

we find, using Eqs. (E.5) and (E.4), for the second term in Eq. (E.1),

〈Hfl
i (ω)∂mind

i (ω′)/∂t〉 = −iω′2π~
[
n0(ω) + 1

]
δ(ω + ω′)×{(

Im
{
GH
xx(ω)

}
+ Im

{
GH
yy(ω)

}) [
αm,⊥(ω

′+) + αm,⊥(ω
′−) + iαm,g(ω

′+)− iαm,g(ω
′−)
]

+
(
Re
{
GH
xy(ω)

}
− Re

{
G∗H
yx(ω)

}) [
αm,⊥(ω

′+)− αm,⊥(ω
′−) + iαm,g(ω

′+) + iαm,g(ω
′−)
]

+2Im
{
GH
zz(ω)

}
αm,‖(ω

′)

}
(E.12)
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Note that

n0(ω) =
1

e
~ω
kBT0 − 1

(E.13)

is the Planck’s distribution at the temperature of the lab T0. Writing FDT for the fluctuating

dipoles,

〈m′fli (ω)m
′fl
j (ω′)〉 = 4π~[n1(ω) + 1]

(
αm,ij(ω)− α∗m,ji(ω)

2i

)
δ(ω + ω′) (E.14)

we arrive at, for the first term in Eq. (E.1),

〈H ind
i (ω)∂mfl

i (ω
′)/∂t〉 =− 2π~iω′

[
n1(ω−) + 1

]{
δ(ω + ω′)

[
GH
xx(ω)Im

{
αm,⊥(ω−)

}
−GH

xx(ω)Re
{
αm,g(ω

−)
}

−GH
yy(ω)Re

{
αm,g(ω

−)
}

+GH
yy(ω)Im

{
αm,⊥(ω−)

}
+ iGH

xy(ω)Im
{
αm,⊥(ω−)

}
−iGH

xy(ω)Re
{
αm,g(ω

−)
}

+ iGH
yx(ω)Re

{
αm,g(ω

−)
}
− iGH

yx(ω)Im
{
αm,⊥(ω−)

} ]}

−2π~iω′
[
n1(ω+) + 1

]{
δ(ω + ω′)

[
GH
xx(ω)Im

{
αm,⊥(ω+)

}
+GH

xx(ω)Re
{
αm,g(ω

+)
}

+GH
yy(ω)Re

{
αm,g(ω

+)
}

+GH
yy(ω)Im

{
αm,⊥(ω+)

}
− iGH

xy(ω)Im
{
αm,⊥(ω+)

}
−iGH

xy(ω)Re
{
αm,g(ω

+)
}

+ iGH
yx(ω)Re

{
αm,g(ω

+)
}

+ iGH
yx(ω)Im

{
αm,⊥(ω+)

} ]}

−4π~iω′ [n1(ω) + 1]

{
δ(ω + ω′)GH

zz(ω)Im
{
αm,‖(ω)

}}
(E.15)

where we have used Eqs. (E.3) and,

H ind
i (ω) = GH

ij(ω)mfl
j (ω). (E.16)

Note that n1(ω) is the Planck distribution given in Eq. (E.13). Taking the inverse Fourier
transform, adding Eqs. (E.12) and (E.15), taking the real part of the radiated power, and
performing some change of integral variables, we find after some algebra,

Pmag =
~
π

∫ +∞

−∞
ωdω

{[
n1(ω−)− n0(ω)

] (
Im
{
GH
xx(ω)

}
+ Im

{
GH
yy(ω)

}
+ Re

{
GH
xy(ω)

}
− Re

{
GH
yx(ω)

})
×

[
Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}]

+ [n1(ω)− n0(ω)] Im
{
GH
zz(ω)

}
Im
{
αH
m,‖(ω)

}}
.

(E.17)

In this derivation, we have used the property αm(−ω) = α∗m(ω). The expressions for

Green’s functions in different arrangements of the YIG and aluminium interface are given

in section E.2. Plugging these expressions into Eq. (E.17), we obtain Eq. (6.2).

E.2 Green’s Function Near an Anisotropic Magnetic Material

In the case when the interface is a magnetic material, the density of states would change

due to anisotropy of the material. In this section we derive the Green’s function near a half-

space of magnetic material. We study two cases when the interface is the x − y plane and
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x− z plane, as shown in Fig. E.1. We can write the electric and magnetic fields in vacuum

as

E = Ei +Er, H = H i +Hr (E.18a)

Ei = (E0sŝ− + E0pp̂−)eik−·r (E.18b)

Er = (E0srssŝ+ + E0prppp̂+ + E0srpsp̂+ + E0prspŝ+) eik+·r (E.18c)

H i =
1

η0
(−E0sp̂− + E0pŝ−) eik−·r (E.18d)

Hr =
1

η0
(−E0srssp̂+ + E0prppŝ+ + E0srpsŝ+ − E0prspp̂+) eik+·r (E.18e)

where ŝ±, p̂±, and k̂±/k0 form a triplet with

k̂± = k0 (κ cosφx̂+ κ sinφŷ ± kz ẑ) , ŝ± = sinφx̂−cosφŷ, p̂± = − (±kz cosφx̂± kz sinφ− κẑ)

(E.19)

and η0 =
√
µ0/ε0. Similarly, we can write the electric and magnetic fields inside the

magnetic material as

E′ = Et, H ′ = Ht (E.20a)

Et =
(
E0stssŝ

′
− + E0ptppp̂

′
− + E0stpsp̂

′
− + E0ptspŝ

′
−
)
eik
′
−·r (E.20b)

¯̄µHt =

√
κ2 + k′2z
η0

[
−E0stssp̂

′
− + E0ptppŝ

′
− + E0stpsŝ

′
− − E0ptspp̂

′
−
]
eik
′
−·r (E.20c)

where

k′± = k0k̂
′
± = k0

(
κ cosφx̂+ κ sinφŷ ± k′z ẑ

)
, ŝ′± = sinφx̂−cosφŷ, p̂′± = −±k

′
z cosφx̂± k′z sinφŷ − κẑ√

κ2 + k′2z
(E.21)

Note that κ is the same in the two media due to the boundary conditions. Also k̂′±×p̂′± = ŝ′±

and so on. We can write the Maxwell’s equations in the magnetic material in matrix form

as

(M +Mk)ψ =

[(
¯̄ε 0
0 ¯̄µ

)
+

(
0 ¯̄κ
− ¯̄κ 0

)](
Et

η0H
t

)
= 0 (E.22)

where

¯̄κ =

 0 −k′z κ sinφ
k′z 0 −κ cosφ

−κ sinφ κ cosφ 0

 (E.23)

Setting the det(M + Mk) = 0 we get the solutions for k′z in terms of κ and φ. From

these solutions and applying the boundary conditions, we can find the values of rss, rsp,

rps, rpp for a given κ and φ (see section E.10). Note that different bias directions for the

magnetic field of the YIG slab change the ¯̄µ tensor and thus change the Fresnel coefficients
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Figure E.1: Schematic of the problem for the two cases of when the interface is in (a) x− y
plane and (b) x− z plane.

respectively. This can be done since no assumption on the direction and components of the

permeability tensor has been assumed in our derivations.

We write the Green’s function for a source located at z′ = d. Here, since we take the

spinning sphere to be at the origin and to simplify the derivations, we move z = 0 to z′ = d.

This would not change the Fresnel reflection coefficients. The incident magnetic Green’s

function at the location of the source is thus,

ḠH
i (z = z′, ω) =

ik2
0

8π2εm

∫
dkxdky
kz

(ŝŝ+ p̂−p̂−)eikx(x−x′)+iky(y−y′) (E.24)

We can thus write the reflected magnetic Green’s function at the location of the source,

when the interface is in the x− y plane (Fig. E.1(a)), as

ḠH
r (z = z′, ω) =

ik2
0

8πεm

∫
dkxdky
kz

(ŝrppŝ+ p̂+rspŝ+ ŝrpsp̂− + p̂+rssp̂−) e2ikzd

(E.25)
Here we take kx = κ cosφ and ky = κ sinφ. Note that here, however, the Fresnel reflection
coefficients in general depend on the angle of incidence φ. For the special case of magneti-
zation along z axis they become independent of φ. We can write the total magnetic Green’s
function, using Eq. (E.21), at the location of source as,

ḠH(r, r, ω) =
ik20
8π2

∫
dkxdky
kz

[
ŝŝ
(

1 + rppe
2ikzd

)
+ p̂−p̂− + (rssp̂+p̂− + rpsŝp̂− + rspp̂+ŝ) e

2ikzd
]

=
ik30

8π2εm

∫ 2p

0

dφ

∫ +∞

0

κdκ

p

{[
sin2 φx̂x̂+ cos2 φŷŷ − sinφ cosφ (x̂ŷ + ŷx̂)

] (
1 + rppe

2ikzd
)

+p2 cos2 φx̂x̂+ p2 sin2 φŷŷ + κ2ẑẑ + p2 cosφ sinφ (x̂ŷ + ŷx̂) + pκ cosφ (x̂ẑ + ẑx̂) + pκ sinφ (ŷẑ + ẑŷ)

+e2ik0pdrss
[
− p2 cos2 φx̂x̂− p2 sin2 φŷŷ + κ2ẑẑ − p2 cosφ sinφ (x̂ŷ + ŷx̂)

−pκ cosφ (x̂ẑ − ẑx̂)− pκ sinφ (ŷẑ − ẑŷ)
]

+e2ik0pdrps
[
p sinφ cosφ (x̂x̂− ŷŷ) + p sin2 φx̂ŷ − p cos2 φŷx̂− κ sinφx̂ẑ + κ cosφŷẑ

]
+e2ik0pdrsp

[
−p cosφ sinφ (x̂x̂− ŷŷ) + p cos2 φx̂ŷ − p sin2 φŷx̂+ κ sinφẑx̂− κ cosφẑŷ

]}
(E.26)
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Dropping the terms which vanish after integration over φ, we get

ḠH(r, r, ω) =
ik3

0

8π2

∫ 2π

0
dφ

∫ +∞

0

κdκ

p

{[
sin2 φx̂x̂+ cos2 φŷŷ − sinφ cosφ (x̂ŷ + ŷx̂)

] (
1 + rppe

2ikzd
)

+p2 cos2 φx̂x̂+ p2 sin2 φŷŷ + κ2ẑẑ

+e2ik0pdrss
[
− p2 cos2 φx̂x̂− p2 sin2 φŷŷ + κ2ẑẑ − p2 cosφ sinφ (x̂ŷ + ŷx̂)

−pκ cosφ (x̂ẑ − ẑx̂)− pκ sinφ (ŷẑ − ẑŷ)
]

+e2ik0pdrps
[
p sinφ cosφ (x̂x̂− ŷŷ) + p sin2 φx̂ŷ − p cos2 φŷx̂+ κ sinφx̂ẑ − κ cosφŷẑ

]
+e2ik0pdrsp

[
−p cosφ sinφ (x̂x̂− ŷŷ) + p cos2 φx̂ŷ − p sin2 φŷx̂+ κ sinφẑx̂− κ cosφẑŷ

]}
(E.27)

Note that the electric Green’s function is obtained by diving by ε0 and changing rss to rpp,

and vice versa, as well as changing rsp to rps and vise versa. In general, the non-diagonal

parts of the Green’s function are not zero. Note that this expression only applies to the case

when the interface is the x− y plane. Using this equation, we find,

Im
{
GH
xx(ω)

}
=
πωρ0

8
gH
⊥,1(ω) (E.28a)

Im
{
GH
yy(ω)

}
=
πωρ0

8
gH
⊥,2(ω) (E.28b)

Re
{
GH
xy(ω)

}
− Re

{
GH
yx(ω)

}
=
πωρ0

4
gH
g,1(ω) (E.28c)

Im
{
GH
zz(ω)

}
=
πωρ0

4
gH
‖ (ω) (E.28d)

where ρ0 = ω2/π2c3 is the vacuum density of states and,

gH
⊥,1(ω) =

1

π

∫ 2π

0

dφ

{∫ 1

0

κdκ

p

[
1 + sin2 φRe

{
rppe

2ik0pd
}
− κ2 cos2 φ+ cos2 φ

(
κ2 − 1

)
Re
{
rsse

2ik0pd
}

+p sinφ cosφRe
{
e2ik0pd(rps − rsp)

}]
+

∫ ∞
1

κdκ

|p|
[
sin2 φIm{rpp}+ cos2 φ

(
κ2 − 1

)
Im{rss}+ |p| sinφ cosφRe {rps − rsp}

]
e−2k0|p|d

}
(E.29a)

gH
⊥,2(ω) =

1

π

∫ 2π

0

dφ

{∫ 1

0

κdκ

p

[
1 + cos2 φRe

{
rppe

2ik0pd
}
− κ2 sin2 φ+ sin2 φ

(
κ2 − 1

)
Re
{
rsse

2ik0pd
}

−p sinφ cosφRe
{
e2ik0pd(rps − rsp)

}]
+

∫ ∞
1

κdκ

|p|
[
cos2 φIm{rpp}+ sin2 φ

(
κ2 − 1

)
Im{rss} − |p| sinφ cosφRe {rps − rsp}

]
e−2k0|p|d

}
(E.29b)

gH
g,1(ω) = − 1

π

∫ 2π

0

{
dφ

∫ 1

0

κdκ
[
sin2 φIm

{
rpse

2ik0pd
}

+ cos2 φIm
{
rspe

2ik0pd
}]

+

∫ ∞
1

κdκ
[
sin2 φIm{rps}+ cos2 φIm{rsp}

]
e−2k0|p|d

} (E.29c)
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gH
‖ (ω) =

1

2π

∫ 2π

0

dφ

{∫ 1

0

κ3dκ

p

(
1 + Re

{
rsse

2ik0pd
})

+

∫ ∞
1

κ3dκ

|p| e
−2k0|p|dIm{rss}

}
(E.29d)

Plugging Eqs. (E.28) into Eq. (E.17), we find,

Pmag =

∫ ∞
∞

dω~ωΓH(ω) (E.30)

with,

ΓH(ω) = (ωρ0/8)

{[
gH
⊥,1(ω) + gH

⊥,2(ω) + 2gH
g,1(ω)

] [
Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}] [

n1(ω−)− n0(ω)
]

+2gH
‖ (ω)Im

{
αm,‖(ω)

}
[n1(ω)− n0(ω)]

}
(E.31)

For the case when the YIG interface is the x− z plane instead (Fig. E.1(b)), we find the

radiated power by exchanging the axes x̂ → ẑ, ŷ → x̂, and ẑ → ŷ in Eq. (E.27). In this

case, we have

Im
{
GH
xx(ω)

}
=
πωρ0

8
gH
⊥,2(ω) (E.32a)

Im
{
GH
yy(ω)

}
=
πωρ0

4
gH
‖ (ω) (E.32b)

Im
{
GH
zz(ω)

}
=
πωρ0

8
gH
⊥,1 (E.32c)

where gH
⊥,1, gH

⊥,2, and gH
‖ given by Eq. (E.29). For the xy and yx component of the Green’s

function, however, we get

Re
{
GH
xy(ω)

}
− Re

{
GH
yx(ω)

}
=
πωρ0

4
gH
g,2(ω) (E.33)

with

gH
g,2(ω) =

1

π

∫ 2π

0
dφ

{∫ 1

0

κ2dκ

p

[
p sinφIm

{
rsse

2ik0pd
}

+
cosφ

2
Im
{

(rps − rsp) e2ik0pd
}]

+

∫ ∞
1

κ2κ

|p|

[
|p| sinφIm{rss} −

cosφ

2
Re {rsp − rps}

]
e−2k0|p|d

}
(E.34)

and thus we have for the case when the YIG interface is the x− z plane,

ΓH(ω) = (ωρ0/8)

{[
gH
⊥,2(ω) + 2gH

‖ (ω) + 2gH
g,2(ω)

] [
Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}] [

n1(ω−)− n0(ω)
]

+gH
⊥,1(ω)Im

{
αm,‖(ω)

}
[n1(ω)− n0(ω)]

}
(E.35)

with gH
⊥,1, gH

⊥,2, and gH
‖ given by Eq. (E.29) and gH

g,2 by Eq. (E.34). This is the same equation

as Eq. (6.2).
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E.3 Local Density of States

Although the expressions found in the previous sections for the radiated power are not in

general exactly proportional to the local density of states (LDOS), they are proportional to

terms that are on the same order of magnitude as the LDOS. This is because the expression

for LDOS is given by [168],

ρ(r, ω) =
1

πω
Tr
[
ε0Im

{
GE(r, r, ω)

}
+ Im

{
GH(r, r, ω)

}]
(E.36)

where the trace Tr operator indicates summation over the xx, yy, and zz components of the

electric and magnetic Green’s functions.

Using the expressions of the previous section, it is easy to see that the LDOS at the

location of the nanosphere is given by,

ρ(ω) = (ρ0/8)
[
ε0(gE

⊥,1 + gE
⊥,2 + 2gE

‖ ) + gH
⊥,1 + gH

⊥,2 + 2gH
‖

]
(E.37)

where the expressions for gH
⊥,1, gH

⊥,2, and gH
‖ are given by Eq. (E.29) and the expression

for the electric Green’s functions are found from the magnetic ones by replacing s → p

and p → s and dividing by ε0. As discussed before, the magnetic Green’s functions are

about 8 orders of magnitude larger than the electric ones at GHz frequencies and thus,

similar to the radiated power, the density of states is dominated by the magnetic LDOS.

This shows that the magnetic fields dominate the vacuum radiation, vacuum torque, and

LDOS simultaneously.

E.4 Magnetic Polarizability Tensor of YIG

A simple model can be used to describe YIG with the permeability tensor [171],

¯̄µ =

µ⊥ −µg 0
µg µ⊥ 0
0 0 µ‖

 (E.38)

where

µ⊥(ω) = µ0(1+χ⊥) = µ0

{
1 +

ω0ωm(ω2
0 − ω2) + ω0ωmω

2α2 + i
{
αωωm

[
ω2

0 + ω2(1 + α2)
]}[

ω2
0 − ω2(1 + α2)

]2
+ 4ω2

0ω
2α2

}
(E.39a)

µg(ω) = µ0χg = µ0
−2ω0ωmω

2α+ iωωm
[
ω2

0 − ω2(1 + α2)
][

ω2
0 − ω2(1 + α2)

]2
+ 4ω2

0ω
2α2

(E.39b)

µ‖ = µ0 (E.39c)
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and ω0 = µ0γH0 is the Larmor precession frequency with γ being the gyromagnetic ratio

and H0 the bias magnetic field (assumed to be along ẑ direction), ωm = µ0γMs with Ms

being the saturation magnetization of the material, and α is the damping factor, related to

the width of the magnetic resonance through

∆H =
2αω

µ0γ
(E.40)

When the magnetic field is reversed (along −ẑ direction), we can use the same results by

doing the substitutions

ω0 → −ω0, ωm → −ωm, α→ −α. (E.41)

which gives

µ⊥ → µ⊥, µg → −µg. (E.42)

Using the method used in Ref. [176] for the polarizability tensor of a sphere with arbi-

trary anisotropy, we find for the polarizability tensor of YIG with the permeability tensor of

Eq. (E.38),

¯̄αm = 4πa3


(µ⊥−µ0)(µ⊥+2µ0)+µ2g
(µ⊥+2µ0)(µ⊥+2µ0)+µ2g

−3µ0µg
(µ⊥+2µ0)(µ⊥+2µ0)+µ2g

0

3µ0µg
(µ⊥+2µ0)(µ⊥+2µ0)+µ2g

(µ⊥−µ0)(µ⊥+2µ0)+µ2g
(µ⊥+2µ0)(µ⊥+2µ0)+µ2g

0

0 0
µ‖−µ0
µz+2µ0

 . (E.43)

Therefore the magnetic polarizability terms in Eqs. (E.31) and (E.35) are given by,

αm,⊥(ω) = 4πa3
(µ⊥ − µ0)(µ⊥ + 2µ0) + µ2

g

(µ⊥ + 2µ0)(µ⊥ + 2µ0) + µ2
g

(E.44a)

αm,g(ω) = 4πa3 3µ0µg
(µ⊥ + 2µ0)(µ⊥ + 2µ0) + µ2

g

(E.44b)

where µ⊥ and µg are frequency dependent terms give by Eqs. (E.39).

It is important to note that in the derivation of the magnetic polarizability, magneto-

static approximation has been assumed. This is similar to the electro-static approximation

used for the derivation of the electric polarizability [192] where using the duality of electro-

magnetic theory the electric fields and electric dipoles have been replaced by the magnetic

fields and magnetric dipoles. In this approximation, the fields inside the sphere are assumed

to be constant.

One can apply the Mie theory to find the magnetic polarizability to the first order in

the Mie scattering components. This, however, is mathematically challenging due to the
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anisotropy of the magnetic material. For the purpose of our study, magneto-static assump-

tion is enough to find the polarizability properties of YIG since the the size of the sphere

is much smaller compared to the wavelength and the polarizability is dominated by the

magneto-static term.

For metals, however, higher order terms are important for finding the magnetic polariz-

ability since the magneto-static terms are zero and only higher order terms due to electric

dipole fluctuations give rise to the magnetic polarizability of metals [174]. In the next sec-

tion we briefly introduce the application of Mie theory for finding the polarizability constant

of a metallic particle such as aluminum.

E.5 Non-Electrostatic Limit and Magnetic Polarizability due to
Electric Fluctuations

In this section we present a brief derivation of the magnetic polarizability due to the electric

dipole terms for metallic particles. If a sphere is placed in the direction of a plane wave

polarized along x̂ direction and propagating along z direction

Ei = E0e
ik0r cos θx̂, (E.45)

The scattered fields are give by [192],

Es = −
∞∑
n=1

En

(
ianN

(1)
e1n − bnM

(1)
o1n

)
, (E.46)

Hs = − k0

ωµ

∞∑
n=1

En

(
ibnN

(1)
o1m + anM

(1)
e1n

)
(E.47)

where

Memn =
−m
sin θ

sinmφPmn (cos θ)zn(kr)θ̂ − cosmφ
dPmn (cos θ)

dθ
zn(kr)φ̂ (E.48a)

Momn =
m

sin θ
cosmφPmn (cos θ)zn(kr)θ̂ − sinmφ

dPmn (cos θ)

dθ
zn(kr)φ̂ (E.48b)

Nemn =
zn(kr)

kr
cosmφn(n+ 1)Pmn (cos θ)r̂ + cosmφ

dPmn (cos θ)

dθ

1

kr

d

d(kr)
[krzn(kr)] θ̂

−m sinmφ
Pmn (cos θ)

sin θ

1

kr

d

d(kr)
[krzn(kr)] φ̂

(E.48c)

Nomn =
zn(kr)

kr
sinmφn(n+ 1)Pmn (cos θ)r̂ + sinmφ

dPmn (cos θ)

dθ

1

kr

d

d(kr)
[krzn(kr)] θ̂

+m cosmφ
Pmn (cos θ)

sin θ

1

kr

d

d(kr)
[krzn(kr)] φ̂,

(E.48d)

141



the superscripts (1) forM andN indicate that the Bessel functions are the hankel function

of the first kind h(1)(kr),En = inE0(2n+1)/n(n+1), and an and bn are the Mie scattering

coefficients. On the other hand, the radiated fields due to an electric dipole are given by

Ed =
k3

0

4πεm

{
(r̂ × p)× r̂ e

ikr

kr
+ [3r̂(r̂ · p)− p]

(
1

(kr)3
− i

(kr)2

)
eikr
}

(E.49a)

Hd =
ck2

0

4π
(r̂ × p)

eikr

r

(
1− 1

ikr

)
(E.49b)

Using the facts that

P 1
1 (cos θ) = − sin θ,

dP 1
1 (cos θ)

dθ
= − cos θ (E.50)

,

h
(1)
1 (kr) = −eikr

(
i

(kr)2
+

1

kr

)
,

1

kr

d

d(kr)

[
krh

(1)
1 (kr)

]
= −eikr

(
− i

(kr)3
− 1

(kr)2
+

i

kr

)
(E.51)

The scattered fields to the first order of n become

Es =
3

2
E0

{
ia1

[
eikr

(
1

(kr)3
− i

(kr)2

)
2 cosφ sin θr̂ − (cosφ cos θθ̂ − sinφφ̂)eikr

(
1

(kr)3
− i

(kr)2
− 1

kr

)]

−b1
[
(cosφθ̂ − sinφ cos θφ̂)eikr

(
−1

(kr)2
+

i

kr

)]}
(E.52)

Assuming that the dipole is along x direction p = p0x̂, the dipole fields become

Ed =
p0k

3
0

4πεm

{
(cos θ cosφθ̂ − sinφφ̂)

eikr

kr
+ (2r̂ sin θ cosφ− θ̂ cos θ cosφ+ φ̂ sinφ)

(
1

(kr)3
− i

(kr)2

)
eikr
}

=
p0k

3
0

4πεm

{
2r̂ sin θ cosφ

(
1

(kr)3
− i

(kr)2

)
eikr − (θ̂ cos θ cosφ− φ̂ sinφ)

(
1

(kr)3
− i

(kr)2
− 1

kr

)
eikr
}

(E.53)

In the low-frequency limit when kr = 2πr
λ � 1, the scattered fields are dominated by terms

of the order (kr)−3. Thus, we can neglect the contribution from the M terms, or the b1

terms in Eq. (E.52). In this limit, the fields of the dipole and the scattered fields become

equivalent, if we take

p0 =
6πεmia1

k3
0

E0, (E.54)

or in other words, the sphere takes the polarizability

αe =
6πεmc

3

ω3
ia1 (E.55)

142



where

an =
ε1jn(x1)[x0jn(x0)]′ − ε0jn(x0)[x1jn(x1)]′

ε1jn(x1)[x0h
(1)
n (x0)]′ − ε0h(1)

n (x0)[x1jn(x1)]′
(E.56)

with x0 = k0a, x1 = k1a, and k1 = ω
√
µ1ε1, and µ1 and ε1 being properties of the sphere.

Now we look at the scattered magnetic fields. We have to the first order

Hs =
3

2

k0
ωµ0

E0

{
ib1

[
2r̂ sinφ sin θ

(
1

(kr)3
− i

(kr)2

)
eikr − (θ̂ sinφ cos θ + φ̂ cosφ)

(
1

(kr)3
− i

(kr)2
− i

kr

)
eikr

]

−an
[
(φ̂ cos θ cosφ+ θ̂ sinφ)

(
i

(kr)2
+

1

kr

)
eikr

]}
(E.57)

Again we can ignore the second line or,in other words, an in this expression for low fre-
quencies. Then, comparing this expression with the the magnetic fields of a magnetic dipole
polarized along ŷ directionm = m0ŷ,

Hm =
m0k

3
0

4π

{
2r̂ sin θ sinφ

(
1

(kr)3
− i

(kr)2

)
eikr − (θ̂ cos θ sinφ+ φ̂ cosφ)

(
1

(kr)3
− i

(kr)2
− 1

kr

)
eikr

}
,

(E.58)

Taking H0 = k0
ωµ0

E0, we find that the two are equivalent if we have

m0 =
6πib1
k3

0

H0 (E.59)

or, if the sphere takes the magnetic polarizability

αm =
6πc3

ω3
ib1 (E.60)

where

bn =
µ1jn(x1)[x0jn(x0)]′ − µ0jn(x0)[x1jn(x1)]′

µ1jn(x1)[x0h
(1)
n (x0)]′ − µ0h

(1)
n (x0)[x1jn(x1)]′

(E.61)

In the low-frequency limit, we have

lim
x→0

jn(x) =
2nn!

(2n+ 1)!
xn (E.62)

and

lim
x→0

yn(x) = −(2n)!

2nn!

1

xn+1
(E.63)

Therefore, we have in this limit j1(x) ' x/3, y1(x) ' −1/x2, [xj1(x)]′ ' 2x/3 and

[xy1(x)]′ ' 1/x2 which gives

a1 '
ε1
x1
3

2x0
3 − ε0

x0
3

2x1
3

ε1
x1
3

(
2x0
3 + i

x20

)
− ε0 2x1

3

(
x0
3 −

i
x20

) ' 2k3
0a

3

3i

ε1 − ε0
ε1 + 2ε0

(E.64a)

b1 '
2k3

0a
3

3i

µ1 − µ0

µ1 + 2µ0
. (E.64b)
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We thus get for the polarizabilities

αe ' 4πε0a
3 ε1 − ε0
ε1 + 2ε0

, αm ' 4πa3 µ1 − µ0

µ1 + 2µ0
, (E.65)

which are exactly equal to the results derived using the electro-static and magneto-static

approximations method. For a non-magnetic material, b1 becomes

b1 '
x3

0

45i
x2

0

(
ε1
ε0
− 1

)
(E.66)

which gives for the magnetic polarizability,

αm '
2π

15
k2

0a
5

(
ε1
ε0
− 1

)
=

8π3

15
a3
(a
λ

)2
(
ε1
ε0
− 1

)
. (E.67)

E.6 Barnett Effect

In the simplest models of magnetic materials, electrons are assumed to be magnetic dipoles

with the moments µB spinning about the magnetization axis determined by the applied

magnetic field H0 with the Larmor precession frequency ω0 = µ0γH0, where γ is the gy-

romagnetic ratio of the material [171]. Barnett showed than the spontaneous magnetization

of a material with the magnetic susceptibility of χ is given by [177]

Mrot = χΩ/γ (E.68)

where Ω is the rotation frequency of the magnetic material. This magnetization can be

assumed to be caused by an applied magnetic field Hrot which is Hrot = Mrot/χ = Ω
γµ0

.

We thus get for the Larmor frequency due to rotation,

ω0,rot = Ω (E.69)

Therefore, Larmor frequency of a spinning magnetic material is the same as the rotation

frequency. We thus can write the total Larmor frequency of spinning YIG as

ω0 = Ω + µ0γH0 (E.70)

We use this expression in finding the permeability tensor of a spinning YIG.

E.7 Non-local Model for Aluminum

Due to the fact that the sphere is spinning at a distance much smaller than the free space

wavelength, the non-local effects can become important. To find the non-local Fresnel
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reflection coefficients we use the results of Refs. [193] and [23]. In the semi-classical

infinite barrier (SCIB) approximation, in which it is assumed that free electrons are reflected

at the metal surface and Fermi-Dirac statistics are used, we get for the Fresnel reflection

coefficients,

rs12 =
Zs − 4π

cp

Zs + 4π
cp

, rp12 =
4πp/c− Zp

4πp/c+ Zp
(E.71)

where p =
√

1− κ2, and

Zs =
8i

c

∫ ∞
0

dq
1

εt(k, ω)− (q2 + κ2)
(E.72a)

Zp =
8i

c

∫ ∞
0

dq
1

q2 + κ2

(
q2

εt(k, ω)− (q2 + κ2)
+

κ2

εl(k, ω)

)
(E.72b)

with the longitudinal and transverse dielectric permittivities given by

εl(k, ω) = 1 +
3ω2

p

k2v2
F

(ω + iΓ)fl(u)

ω + iΓfl(u)
(E.73a)

εt(k, ω) = 1−
ω2
p

ω(ω + iΓ)
ft(u) (E.73b)

where k2 = (ω/c)2
(
q2 + κ2

)
, u = (ω + iΓ)/(kvF ), and

fl(u) = 1− 1

2
u ln

u+ 1

u− 1
, ft(u) =

3

2
u2 − 3

2
u(u2 − 1) ln

u+ 1

u− 1
(E.74)

These expressions give the non-local reflection coefficients at a metallic interface for the

SCIB model. Note that rs12 and rp12 are the same as the rss and rpp introduced in the

previous section. The SCIB model is accurate as long as z = k
2kF
∼ 0 where kF = mvF /~

withm being the free-electron mass. For example for Aluminum with vF ' 2.03×106m/s,

we have kF ' 1.754× 1010 while k = ω/c ' 20 which shows that for our case the SCIB

model is quite accurate.

E.8 Quantum Vacuum Torque

In this section we evaluate the torque exerted on the spinning sphere due to vacuum fluctu-

ations. The torque on a magnetic dipole is give by

M = m×H (E.75)

Since we are interested in the torque along z direction, the rotation axis, we can write the

torque as

Mz =ẑ · 〈mfl ×H ind +mind ×Hfl〉

= 〈mfl
xH

ind
y −mfl

yH
ind
x +mind

x Hfl
y −mind

y Hfl
x〉

(E.76)
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we get using the Fourier transformation,

Mz =

∫
dωdω′

(2π)2
e−i(ω+ω′)t

[
〈mfl

x(ω)H ind
y (ω′)〉 − 〈mfl

y(ω)H ind
x (ω′)〉+ 〈mind

x (ω)Hfl
y (ω′)〉 − 〈mind

y (ω)Hfl
x(ω′)〉

]
(E.77)

Using a similar approach to the one used in Section E.1, we find after some algebra,

Mz =
~

2π

∫ ∞
−∞

dω

{(
Im
{
GH
yy(ω)

}
+ Im

{
GH
xx(ω)

}
+ Re

{
GH
yx(ω)

}
− Re

{
GH
xy(ω)

})
×[

Im
{
αm,⊥(ω+)

}
+ Re

{
αm,g(ω

+)
}] [

n1(ω+)− n0(ω)
]

−
(
Im
{
GH
yy(ω)

}
+ Im

{
GH
xx(ω)

}
− Re

{
GH
yx(ω)

}
+ Re

{
GH
xy(ω)

})
×[

Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}] [

n1(ω−)− n0(ω)
]}

,

(E.78)

and can be written as

Mz = −
∫ +∞

−∞
dω~ΓH

M(ω) (E.79)

where for an interface in the x− y plane ΓH
M is given by

ΓH
M (ω) = (ωρ0/8)

[
gH
⊥,1(ω) + gH

⊥,2(ω) + 2gH
g,1(ω)

] [
Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}] [

n1(ω−)− n0(ω)
]

(E.80)

which is the same expression for the radiated power minus the term related to the axis of

rotation z. For an interface in the x− z plane, on the other hand, ΓH
M we have

ΓH
M (ω) = (ωρ0/8)

[
gH
⊥,2(ω) + 2gH

‖ (ω) + 2gH
g,2(ω)

] [
Im
{
αm,⊥(ω−)

}
− Re

{
αm,g(ω

−)
}] [

n1(ω−)− n0(ω)
]
.

(E.81)

This expression is the same as Eq. (6.2) with the difference that it does not have the last term

involving the term n1(ω) − n0(ω). Note that comparing to the expression for the vacuum

radiation, vacuum torque has an extra minus sign in Eq. (E.79) indicating that this torque

acts as friction rather than a driving force, as expected.

E.8.1 Other components of torque

In the previous section we only dervied the z components of the torque exerted on the

nanosphere. The x and y components can be written as

Mx = 〈mfl
yH

ind
z −mfl

zH
ind
y +mind

y Hfl
z −mind

z Hfl
y 〉 (E.82a)

My = 〈mfl
zH

ind
x −mfl

xH
ind
z +mind

z Hfl
x −mind

x Hfl
z 〉 (E.82b)
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Again, using the approaches used in the previous section and section E.1, incorporating the
torque due to the electric field fluctuations of vacuum and the magnetic dipole fluctuations
of the YIG sphere, we find for the x component of torque,

Mx =
~

4π

∫ ∞
−∞

dω

{[
2n1(ω−) + 1

] [
Im
{
αm,⊥(ω−)

}
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}
+ 2Re

{
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}]
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{
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}
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}
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(E.83)

and for the y component,

My =
~

4π

∫ ∞
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(E.84)

In the case when the interface is in the x− y plane, we have

Re
{
GH
xz(ω)

}
= (πωρ0/8)

1

π

∫ 2π

0
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(E.85a)

Re
{
GH
zx(ω)

}
= (πωρ0/8)

1

π

∫ 2π

0
dφ

{∫ 1

0

κ2dκ

p

(
−Im

{
rsse

2ik0pd
}
p cosφ− Im

{
rspe

2ik0pd
}

sinφ
)

+

∫ ∞
1

κ2dκ

|p|
e−2k0|p|d (−Im {rss} |p| cosφ+ Re {rsp} sinφ)

}
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(E.85c)
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(E.85d)

and
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And for the case when it is in the x− z plane
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and the expressions for the real and imaginary parts of GH
zy and GH

yz are the same as the

ones for GH
xz and GH

zx, respectively, for when the interface is in the x− y plane as given in

Eq. (E.85). We can find the x and y components of torque by plugging these expressions

into Eqs. (E.83) and (E.84) for the two cases when the interface is the x− y or x− z plane.

We present the plots of these torques at the end of this section.

E.8.2 Recoil torque

There is also another contribution to the torque from the case when the induced dipole

moments on the YIG sphere, due to the vacuum electric field fluctuations, re-radiate. This

causes a recoil torque on the sphere and can be written as

M rec = 〈mind ×Hsc〉 (E.88)

whereHsc is the scattered fields from the dipole and are give by,

Hsc(r, ω) = ḠH(r, r′, ω) ·mind(r′, ω) (E.89)
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which shows that this term is of higher order contribution and is thus smaller compared to

the torque derived in Eq. (E.79). Repeating a similar procedure used before and plugging

in for all of the induced terms and writing them in terms of the fluctuations, we find after

some algebra,

M rec
z =

~
π

∫ ∞
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gg+Re{α⊥g}Re{Gyy−Gxx}+Im{α⊥g}Im{Gyy+Gxx}

]
+Im{Gyy}

[
Re{Gyx}αeff

gg−Re{Gxy}αeff
⊥⊥+Re{α⊥g}Re{Gxx−Gyy}+Im{α⊥g}Im{Gyy+Gxx}

]
+Re{Gyx −Gxy}

[
Re{Gyx −Gxy}Im{α⊥g}+

1

2
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) (
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eff
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(E.90)

where we have defined
αeff
m,⊥⊥(ω) = αeff

m,⊥(ω)αeff
m,⊥(−ω) αeff

m,gg(ω) = αeff
m,g(ω)αeff

m,g(−ω)

αeff
m,⊥g(ω) = αeff

m,⊥(ω)αeff
m,g(−ω) αeff

m,g⊥(ω) = αeff
m,⊥(−ω)αeff

m,g(ω)
(E.91)

and have used the facts thatαeff
m,⊥⊥(ω) andαeff

m,gg(ω) are real, andαeff
m,⊥g(ω) =

[
αeff
m,g⊥(ω)

]∗
.

Note that we have dropped the frequency dependence as well as the H superscript of
the Green’s function in Eq. (E.90) for simplicity. For the special case when the substrate
material is isotropic, the non-diagonal elements of the Green’s function become zero and
we get

M rec
z =

~
π

∫ ∞
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dω [n0(ω) + 1]

{
Im{Gxx−Gyy}Re{Gyy−Gxx}Re{α⊥g}+[Im{Gxx +Gyy}]2 Im{α⊥g}

}
(E.92)

Note that the expressions for the real and imaginary parts of Gxz and Gyz are given by Eqs.

(E.85),(E.86), and (E.87) for the two possible interface directions while the imaginary parts

of Gxx and Gyy are given by Eqs. (E.28a), (E.28b), (E.32a), and (E.32b). Also note that

Re
{
GH
yx

}
for when the interface is the x − y plane is the same as Re

{
GH
xz

}
for when the

interface is in the x− z plane given by Eq. (E.87). Also Re
{
GH
yx

}
for when the interface is

the x− z plane is the same as Re
{
GH
zy

}
for when the interface is in the x− y plane given

by Eq. (E.86). Thus, the only new term is Re{Gyy −Gxx} which is given by
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when the interface is the x− y plane, and
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(E.94)

when the interface is the x− z plane.

E.8.3 Plots of torque terms

In this section we look at the torque expressions derived in previous sections for various

bias magnetic fields applied to the YIG slab and for the two cases when the slab is the x−y

and x− z planes.

Figure E.3 shows the plots of Mx, My, Mz , and Mrec derived in the previous sections

for the magnetic and electric fluctuations. The expressions for the torques due to the electric

fields and dipoles fluctuations are found by changing s to p and p to s in rss, rpp, rsp, and

rps, in the expressions for the Green’s functions. Moreover, magnetic polarizabilities are

replaced by a simple isotropic electric polarizability, assuming a simple dielectric polariz-

ability scalar for the YIG and Al interfaces. The results are for three directions of the bias

magnetic field for the YIG interface labeled as x−, y−, and z−bias. The meaning of these

bias directions are demonstrated in Fig. E.2 when the YIG slab is the x−y and x−z planes.

It is interesting to note that in Figs. (E.3(a)), (E.3(e)), and (E.3(g)), the sphere can

experience a large value of torque along x or y directions for the x− or y−biases. This

means that in these cases, the sphere can rotate out of the rotation axis and start to precess.

This will of course change the validitiy of the equations found for the quantum vacuum

radiation and quantum vacuum torque along the z axis since it has been assumed that the

sphere is always rotating around the z axis and it is also magnetized along that axis. This

torque is still small enough compared to the driving torque of the trapping laser and it

will still give enough time to make the observations. A more careful investigation of these

components of torque are out of scope of this study and will be explored in future.

Figures E.3(i)-E.3(p) show the axial torque Mz as well as the recoil torque Mrec for all

orientations of the bias magnetic field and YIG slab. As expected, the recoil torque is much

smaller compared to Mz since it is a second order term.

Figure E.4 shows the results for Mz and Mrec for the case when Al interface is placed
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Figure E.2: Schematics of different bias directions for the YIG interface for the two cases
of the interface being the x− y (top row) and x− z planes (bottom row). The green arrow
shows the direction of the bias magnetic field applied to the slab of YIG.

in vicinity of the spinning sphere. Because Al is an isotropic material, Mx and My vanish

for both orientations of the interface and thus are not included in the plots of the torques.

Note that similar to the YIG interface results, Mrec is much smaller compared to the Mz for

all cases of the Al interface. These results show that the recoil torque Mrec can be ignored

in all studied cases.

E.9 Experimental Analysis

In this section we present the analytical steps in finding the experimental predictions plots

provided in section 6.4.

E.9.1 Effect of drag torque due to imperfect vacuum

In the real system of spinning sphere, the environment is not purely vacuum. This causes an

extra account of torque on the spinning sphere. The steady state spin of the sphere happens

when the driving torque of the trap laser is equal to the drag and vacuum friction torques.

In the case when there is no interface present, the only important counteracting torque is

the drag torque given by

Mdrag =
2πµa4

1.497λ
Ω (E.95)
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Figure E.3: Plots of Mx and My (first two rows) and Mz and Mrec (second two rows) in the
vicinity of the YIG slab when the slab is the x−y plane (first and third rows), and when the
slab is x−z plane (second and fourth rows). The plots show the results for various magnetic
field directions. The meanings of x−, y−, and z−bias are demonstrated in Fig. E.2 for the
two orientations of the interface.

where µ is the viscosity of the gas the sphere is spinning in, λ is the mean free path of the

gas molecules, and Ω is the rotation frequency [194]. We further have for gases [195],

λ =
µ

pgas

√
πKBT

2m
(E.96)
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Figure E.4: Plots of Mz and Mrec in the vicinity of the YIG slab when the slab is the x− y
plane (first row), and when the slab is x − z plane (second row). Note that due to isotropy
of Al, the other components of torque including Mx and My vanish.

where pgas and m are the pressure and the molecular mass of the gas, respectively. Thus,

we get for the drag torque,

Mdrag =
2a4pgas

1.479

√
2πm

kBT
Ω (E.97)

For 1 GHz rotation of a sphere, the balance between the drag torque and the optical torque

Mopt happens at about pgas = 10−4 torr. Therefore we get, at room temperature and for a

molecular mass of 28.966gram/mol,√
2πm

KBT
= 8.542× 10−3 (E.98)

and thus [8],

Mopt = 1.568× 10−21N ·m (E.99)

we can use this torque to find the effect of quantum vacuum torque on the rotation speed

of the sphere. We can see that for vacuum pressures of about 10−4 torr there will be about

0.1% change in the speed of the nanoparticle which is detectible in the power spectral

density (PSD) of the nanosphere [8].

E.9.2 Effect of torque due to the trapping laser

When the trapping laser is linearly polarized, it can exert a negative torque on the spinning

particle. The torque on the sphere due to the laser is given by [8], Mopt = 1
2Re{p∗ ×E},
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where p is the dipole moment of the sphere, given by p = ᾱeff · E, with ᾱeff being the

effective polarizability of the sphere as seen in the frame of the lab, and E is the electric

field from the laser. As shown in the first section, the polarizability tensor of the sphere, for

the sphere spinning in the x− y plane is given by

ᾱeff(ω) =

αeff
⊥ (ω) −αeff

g (ω) 0

αeff
g (ω) αeff

⊥ (ω) 0

0 0 αeff
‖ (ω)

 (E.100)

where

αeff
⊥ (ω) =

1

2

[
α(ω+) + α(ω−)

]
, αg(ω) = − i

2

[
α(ω+)− α(ω−)

]
, α‖(ω) = α(ω).

(E.101)

with α(ω) being the electric polarizability of YIG at the laser frequency. Note that here

we have assumed that the polarizability of the YIG is scalar in the range of frequencies

around 1550 nm. plugging these into the equation for the exerted torque, we find for the z

component of the torque

Mopt =
1

2
Re
{
αeff∗
⊥ (ω)E∗xEy − αeff∗

g (ω)E∗yEy − αeff∗
g (ω)E∗xEx − αeff∗

⊥ (ω)E∗yEx
}

=
1

2

[
Im{αeff

⊥ (ω)}Im{E∗ ×E} − Re{αeff
g (ω)}

(
|Ex|2 + |Ey|2

)]
=

1

2

[
Im{α(ω+) + α(ω−)}Im{E∗ ×E} − Im{α(ω+)− α(ω−)}

(
|Ex|2 + |Ey|2

)]
(E.102)

The first term is proportional to the spin of the electromagnetic field and causes a positive

torque on the particle. This is the term for the transferring of angular momentum from the

laser to the particle. The second term is negative and thus causes a negative torque on the

sphere. In the case when the laser is linearly polarized, this negative term is proportional to

Im{α(ω0 + Ω)} − Im{α(ω0 − Ω)} where ω0 = 1.21 × 1016 is the frequency of the laser,

and Ω = 6.28× 109 is the rotation frequency. Since Ω� ω0, we get α(ω+) ' α(ω−) and

thus the second term is negligible. We can thus ignore the negative torque coming from the

laser when the laser is linearly polarized.

E.9.3 Effect of heating due to the shot noise

The particle can heat up due to the shot noise of the trapping laser. In this section we

calculate the rate of change in the temperature of the particle and its change due to quantum

vacuum radiation. The rate of change in the energy of the nanosphere due to the shot noise

can be shown to be [178],

ĖTR =
~k
M

I0

c
σ (E.103)
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where I0 is the power of the laser per unit area, M is the mass of the particle, and σ is the

cross section of scattering where, for Rayleigh particles, is equal to σ =
(

8π
3

) (
αk2

4πε

)2
,

with α being the polarizability of the particle and it is given for Rayleigh particles by

α = 4πε0R
3
(
ε−1
ε+2

)
. The Rayleigh limit, for the range of wavelengths around visible

and infrared, is valid for particle of radii smaller than 50nm. Since the radius of the particle

in our case is 200 nm, this expression may not be valid. Mie scattering parameters should

be used to evaluate the scattering cross section. Assuming the trapping laser wavelength of

λ = 1550 nm, the rate of energy change of YIG with n = 2.21 [173], using the Mie theory,

is closely equal to that of the diamond with n = 2.39 in the Rayleigh limit [178]. Therefore,

we get for the energy change rate in the sphere

ĖTR =
2~ω0

ρc2A
P0R

3k4

(
n2 − 1

n2 + 2

)2

(E.104)

where A = πR2
L is the area of the beam where the laser with the power P0 is focused on,

and ρ is the mass density which for YIG is ρ = 5110kg/m3. For a laser power of 500 mW

focused on an area of radius 0.7566µm, we find

ṪL = 15.45K/s (E.105)

This is a very small change of temperature compared to the time-scale of the rotation which

is 1 ns. Therefore, the thermodynamic equilibrium condition for the FDT is still valid. This

temperature change gets damped by the radiated power of the sphere due to the rotation.

For a YIG sphere spinning at about 0.5µm from the Aluminum interface, the rate of change

due to quantum vacuum radiation at the equilibrium temperature T0 = 300 K is,

ṪR = −362.973K/s (E.106)

which is much larger than the temperature rise due to the shot noise of the laser and this

shows that the sphere will cool down. Note that this energy heats up the aluminum instead.

In this derivation we have not included the heating due to the noise in the aluminum or YIG

interface. The value found in Eq. (E.106) is much smaller at lower temperatures.

E.10 Solving for Fresnel Coefficients for an Arbitrarily Posi-
tioned YIG

In this section we present our method for solving the matrix Eqs. (E.22) and (E.23) for the

wave propagation inside YIG material. For a material with ¯̄ε = ε¯̄I3, and a general perme-

ability tensor with the property µij = −µji, the determinant of coefficients in Eq. (E.22)
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can be written as a quartic equation as

a
(
k′z
)4

+ c
(
k′z
)2

+ dk′z + e = 0 (E.107)

with

a = µzz (E.108a)

c = µzzκ
2 + µxxκ

2 cos2 φ+ µyyκ
2 sin2 φ− µzz (µxx + µyy)− µ2

yz − µ2
zx (E.108b)

d = 2µxyκ (µyz cosφ+ µzx sinφ) (E.108c)

e =κ4
(
µxx cos2 φ+ µyy sin2 φ

)
+ µxxµyyµzz − µxxµyyκ2 − µzzκ2

(
µxx cos2 φ+ µyy sin2 φ

)
+µxxµ

2
yz + µyyµ

2
zx + µzzµ

2
xy − µ2

xyκ
2 − κ2 (µzx cosφ+ µyz sinφ)2

(E.108d)
The solutions of this equation are written as

k
′(1,2)
z =− S ± 1

2

√
−4S2 − 2c

a
+

d

aS

k
′(3,4)
z = + S ± 1

2

√
−4S2 − 2c

a
− d

aS

(E.109)

with

S =
1

2

√
− 2c

3a
+

1

3a

(
Q+

∆0

Q

)
(E.110a)

Q =

(
∆1 +

√
∆2

1 − 4∆3
0

2

) 1
3

(E.110b)

∆0 = c2 + 12ae, ∆1 = 2c3 + 27ad2 − 72ace (E.110c)
Once we get possible k′z , we can use boundary conditions to find the reflection coef-

ficients. There are four possible solutions for this equations. Two of these solutions are
minus the other pair. Therefore, only the two solutions with positive imaginary part are
acceptable. Calling these solutions k

′(i)
z with i = 1, 2, we have two sets of t(i)ss , t(i)sp , t(i)ps , and

t
(i)
pp . Thus we get from Eq. (E.22)

εEtx + k
′(i)
z η0H

t
y + κ sinφη0H

t
z

=ε

E0st
(i)
ss sinφ+

E0pt
(i)
ppk

′(i)
z cosφ√

κ2 + k
′(i)
z

2
+
E0st

(i)
ps k

′(i)
z cosφ√

κ2 + k
′(i)
z

2
+ E0pt

(i)
sp sinφ


−k

′(i)
z

[
− µ−1

xy

(
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(i)
ss k

′(i)
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√
κ2 + k

′(i)
z

2
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(i)
pp sinφ−

√
κ2 + k

′(i)
z

2
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(i)
ps sinφ+ E0pt

(i)
sp k

′(i)
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)
+µ−1

yy

(
E0st

(i)
ss k

′(i)
z sinφ+

√
κ2 + k

′(i)
z

2
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pp cosφ+

√
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′(i)
z

2
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(i)
ps cosφ+ E0pt

(i)
sp k
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)
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(
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ss κ+ E0st
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spκ
) ]

−κ sinφ
[
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(
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√
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2
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pp sinφ−

√
κ2 + k

′(i)
z

2
E0st
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(
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(i)
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√
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E0pt

(i)
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√
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z

2
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)
+µ−1
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(
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(i)
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(i)
spκ
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= 0

(E.111)
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which gives

t
(i)
ss E0s

[
ε sinφ+

(
k
′(i)
z

)2
µ−1
xy cosφ− µ−1
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(
k
′(i)
z

)2
sinφ− µ−1

yz κk
′(i)
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zz κ
2 sinφ
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(i)
ppE0p

√
κ2 + k

′(i)
z

2

 εk
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2
) − µ−1

xy k
′(i)
z sinφ− µ−1

yy k
′(i)
z cosφ+ µ−1

zx κ sin2 φ+ µ−1
yz κ sinφ cosφ


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√
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′(i)
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zz κ
2 sinφ

]
= 0

(E.112)

Setting E0p = 0, we find

A(i) =
t
(i)
ps

t
(i)
ss

= −
ε sinφ+

(
k
′(i)
z

)2
µ−1
xy cosφ− µ−1
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(
k
′(i)
z

)2
sinφ− µ−1

yz κk
′(i)
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zx κk
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2
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
(E.113)

and setting E0s = 0,

B(i) =
t
(i)
sp

tipp
=

1

A(i)
(E.114)

We can also get A(i) and B(i) from a different component of Eq. (E.22) which should give
the same result. For the y component, for instance, we get

εEty − k
′(i)
z η0H

t
x − κ cosφη0H

t
z = 0

=ε

−E0st
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z

2
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z

2
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√
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z
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)
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(
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√
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√
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(i)
spκ
) ]

+κ cosφ
[
µ−1
zx

(
E0st

(i)
ss k

′(i)
z cosφ−

√
κ2 + k

′(i)
z

2
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√
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√
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√
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which gives
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(E.116)

Therefore we find again,

A(i) =
t
(i)
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t
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(E.117)

B(i) =
t
(i)
sp

tipp
=

1

A(i)
(E.118)

which should be equal to the previous values for A and B. By comparing these two, we

find the numerical error of the problem.

The boundary conditions for electric fields are

x̂ :E0s sinφ(1 + rss) + E0pkz cosφ(1− rpp)− E0srpskz cosφ+ E0prsp sinφ =
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and
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2∑
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(E.120a)
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ŷ :E0skz sinφ(1− rss) + E0p cosφ(1 + rpp) + E0srps cosφ− E0prspkz sinφ =
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(E.120b)

for the boundary condition of the magnetic field with µ−1
ij being the elements of the in-

verse of ¯̄µ matrix assuming that it is invertible. We get from the electric field’s boundary

conditions

2∑
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(E.121a)
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(E.121b)

Taking E0p = 0, we get
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(E.122)

and taking E0s = 0, we find
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On the other hand, we get from the boundary conditions of the magnetic field
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Setting E0p = 0, we get
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where
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Also, setting E0s = 0, we get

2∑
i=1

[
a(i)
p t

(i)
pp − 2 sinφ

]
= 0

2∑
i=1

[
b(i)p t

(i)
pp + 2 cosφ

]
= 0

(E.128)

where

a(i)
p =− sinφ

− k
′(i)
z

kz

√
κ2 + k

′(i)
z

2
−
√
κ2 + k

′(i)
z

2
µ−1
xx + µ−1

xyB
(i)k′(i)z


− cosφ

[
B(i)kz +B(i)k′(i)z µ−1

xx +

√
κ2 + k

′(i)
z

2
µ−1
xy

]
−B(i)κµ−1

xz

(E.129)

b(i)p = cosφ

− k
′(i)
z

kz

√
κ2 + k

′(i)
z

2
+ µ−1

xy k
′(i)
z B(i) −

√
κ2 + k

′(i)
z

2
µyy−1


− sinφ

[
B(i)kz +B(i)k′(i)z µ−1

yy +

√
κ2 + k

′(i)
z

2
µ−1
xy

]
−B(i)κµ−1

yz

(E.130)

Solving these equations we find t(i)ss and t(i)pp from which all the reflection coefficients can

be found.
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