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Abstract 

 
Breast cancer is a heterogeneous, polygenic disease and is influenced by genetic, 

environmental and life-style factors. Many single nucleotide polymorphisms 

(SNPs) associated with breast cancer risk have been identified in genome-wide 

association studies (GWASs) by several research groups for different populations. 

However, the variants identified so far contribute to a small proportion of disease 

risk. The objectives of the work described in this thesis were (i) to seek 

relevance/replicability of reported risk alleles from SNP scans to our study 

population; and (ii) to perform an independent GWAS for identification of 

additional/novel polymorphisms in the Albertan population. We approached these 

two end points by using cases and controls recruited in Alberta (total sample size, 

n=3064) in a two-stage association study (discovery study followed by replication 

study). We reproduced 14 of the 28 variants reported by others and also identified 

seven novel variants associated with breast cancer risk in our study population. 
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1 Introduction 

Breast cancer is a complex disease strongly influenced by genetic, 

environmental and life-style factors. There is substantial inter-individual variation 

in terms of age of onset and expression patterns of the disease phenotype. An 

extensive search for genetic and molecular factors underlying breast cancer 

yielded new insights and created new opportunities particularly in the post-

genomic era. A major breakthrough in the genetics of breast cancer happened with 

the identification of high penetrance mutations in the breast cancer 1 and 2 

(BRCA1 and BRCA2) DNA repair genes increasing the risk of breast and ovarian 

cancers (1, 2). Affected individuals are mostly characterized by an early onset of 

the disease with multiple affected cases within the families. Subsequent research 

efforts identified mutations in certain other DNA repair genes such as ataxia 

telangiectasia mutated (ATM), partner and localizer of BRCA2 (PALB2), 

phosphatase and tensin homolog (PTEN) and p53 which contribute to a small 

proportion of hereditary breast cancers (3-6). These familial cancer genes were 

mostly identified from analyses of pedigrees of high-risk families. In aggregate 

the known familial cancer genes contribute to approximately 20% of the disease 

risk (7, 8). Intensive research efforts to identify BRCA-like genes have not been 

successful (9, 10).  
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The next question is to address the remaining missing information on the 

heritability of breast cancer. With the availability of the entire genome sequence 

from the Human Genome Project, it is now possible to study the influence of 

genetic variations across the genome that potentially contribute to the missing 

heritability and overall disease risks. Several genome-wide association studies 

(GWASs) using single nucleotide polymorphisms (SNPs) as markers have 

identified multiple potential novel susceptibility loci associated with breast cancer 

risk (8, 11-19). Candidate-gene studies have also proven successful in identifying 

low-penetrance variants associated with disease susceptibility (20, 21). Other 

potential novel targets are being identified by screening structural variations, 

mainly copy number aberrations (amplifications and/or deletions) in cases and 

controls (22). Gene expression and microRNA expression patterns are also being 

explored to identify potential markers associated with breast cancer predisposition 

(23, 24). Pathway-based approaches (e.g., using genes in DNA repair pathways or 

other signal transduction pathways) are also being explored for a comprehensive 

understanding of the genetic architecture of breast cancer (25). 

Several clinical characteristics of breast cancer, including receptor status, 

tumour grade, stage, and invasion status, have been considered as variables in the 

search for breast cancer predisposition as these clinicopathological markers also 

serve as prognostic or predictive markers (11, 16, 17, 26, 27). The well-

established prognostic and predictive factors, mainly oestrogen and progesterone 

receptor status, are tumour-based markers and as such there is an express need to 

2 



 
identify markers at the level of germ-line DNA (constitutive DNA) to enable 

screening of populations. SNPs are considered for association studies since these 

are germ-line DNA markers suitable for the association studies in disease 

susceptibility as well as potential prognostic markers. Progress in DNA 

sequencing methods will further enhance the understanding of genetic alterations 

through mutational screens. The work summarized in this thesis specifically 

focused on screening the genome for SNPs in a GWAS that showed associations 

with breast cancer phenotype in Alberta women. 

1.1 Genome-wide association study 

Whole genome association studies (also referred to as GWASs) are used to 

compare the frequency of affected cases with that of unaffected controls for single 

base nucleotide alterations, commonly referred to as SNPs (Figure 1.1). These 

markers, which are evolutionarily conserved, high frequency alleles with a mean 

inter-SNP distance of 300 base pairs (bp) across the genome (28), offer clues 

about the gene region or loci associated with a particular condition when 

statistically significant differences are observed between cases and controls. Large 

coverage of the genome is accomplished by the use of commercially available 

high-density oligonucleotide microarrays which typically interrogate up to a 

million SNPs. A comprehensive statistical analysis with appropriate quality 

control metrics is needed to identify the few statistically significant genetic 
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variants/markers that may be associated with the disease susceptibility and such 

tools are now well evolved.  

GWAS can be divided into four major steps: (i) careful selection of cases 

and controls from a population, or populations with similar ethnic background and 

from the same geographical region; (ii) isolation of DNA, genotyping and initial 

quality control measures to enrich the dataset; (iii) application of appropriate 

statistical tests to identify differences in allele frequencies between cases and 

controls; and (iv) finally, replication of the GWAS findings with independent 

cases and controls (29). The term replication defines studies wherein initial 

findings are reproduced in independent cohorts from the same geographical 

region. The term validation in the context of SNP association studies usually 

refers to reproducibility of findings from population-based cohorts distinct and 

not restricted to the same geographical region (nor ethnicity) relative to those of 

the initial findings (30).  
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Figure 1.1: Flow chart depicting a case–control association study. 

GWAS thus is an exploratory data generating method meant to narrow 

down putative candidate loci associated with disease/phenotype. Confirmatory 

evidence linking the association of a subset of loci is accomplished in the 

subsequent replication/and or validation cohorts. Genome-wide approaches are 

also free of bias for selection of markers as these are derived from all genomic 

regions of defined intervals (1 SNP/300 bp). There has been considerable progress 

in GWASs since 2005 and several loci have been identified to be associated with 

increased susceptibility to diseases, including breast cancer (12, 14), prostate 
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cancer (31, 32) and Alzheimer's disease (33). An updated version of all published 

GWASs is available in A Catalog of published genome-wide association studies 

(34) with emphasis on several (>100) complex diseases/phenotypes.  

1.1.1 Assumptions of GWAS  

(i) The key assumption of GWAS is that common, complex diseases are caused 

by common genetic variants. This is known as the ‘common disease common 

variant’ (CDCV) hypothesis. These genetic variants, which are common 

polymorphisms that are evolutionarily conserved, occur at a relatively high 

frequency in a population but exhibit relatively low penetrance conferring 

modest risk, accounting for only a small percentage of the disease risk (35). It 

is believed that highly deleterious variants undergo negative selection pressure 

and are eliminated during the course of evolution (36).  

(ii) The second assumption in GWAS is that a SNP showing strong association 

may not be a causal variant but more often serves as a surrogate marker for the 

causal variant. As such, the surrogate marker, when in strong linkage 

disequilibrium (LD) with nearby SNPs, may help identify the causal variant. 

The genomes of humans and several other species are inherited in large blocks 

(haplotype blocks) during evolution and a subset of SNPs within a block could 

represent nearby SNPs (termed tagSNP). If tagSNPs are genotyped, one could 

potentially reduce the number of markers for genotyping across the genome. 

Genotyping fewer SNPs, which best represent the genome, improve statistical 

efficiency by reducing the number of association tests, in turn reducing the 
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number of false-positive associations at 5% level (28, 37). Several studies in 

GWAS have been reported using tagSNPs (11, 14, 16-18). 

 

1.2 Need for genome-wide association studies 

Mapping genes associated with disease is a commonly used method to 

elucidate the genetic basis of the phenotype of interest. Several approaches have 

been used to decipher the underlying molecular mechanisms for disease 

susceptibility. Traditionally, linkage analysis was used to investigate and identify 

the transmission of disease-causing genes from parents to offspring or even 

extended family members. Linkage analysis is performed with the assumption that 

the genetic loci or alleles are jointly inherited with the disease genes. Linkage 

studies have been successful in mapping monogenic disorders (e.g., cystic 

fibrosis) exhibiting Mendelian patterns of inheritance. In general, these rare 

single-gene mutations are highly penetrant and deleterious, and in most instances 

are eliminated from the population due to negative selection pressures (36). 

Linkage studies have been successful in identifying genes such as BRCA1 and 

BRCA2 predisposing to certain complex diseases such as breast cancer (1, 2, 38). 

These genes are highly penetrant, characterized by early onset of breast cancer, 

and in most instances first and second degree relatives are affected. Since linkage 

studies predominantly address the mutations that segregate in families, the 

coverage of the finding is confined to a small subset of the affected population 
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(21). A severe limitation in linkage analysis is the compromised ability in 

identifying polygenic diseases involving common, multiple low-penetrance 

variants contributing to the disease phenotype (36).  

Candidate gene association studies are an alternative to linkage analysis to 

address complex diseases. Similar to GWAS, a candidate gene association study 

can be used to study the genetic basis of complex diseases by determining the 

statistical correlation between the genetic variant and disease of interest. Selection 

of candidate genes for interrogation are based on a priori knowledge about their 

role in disease pathogenesis (39). For example, the selected genes may play a 

critical role in major cancer-related pathways such as DNA repair, apoptosis and 

signal transduction, thereby increasing the chance to identify the causal gene. This 

procedure increases the chances of introducing bias in selection strategies since 

one may not identify all putative candidate genes in the disease 

pathway/aetiology.  

A GWAS is the best option when prior knowledge about the physical 

location and role of the causal gene/loci is unknown. It enables us to address the 

common variants scattered across the entire genome involved in common, 

complex diseases (36). Linkage studies focus on specific recombination patterns 

for a particular gene within a family and there will be limited recombination 

events (frequency) within the selected region (40). On the contrary, a GWAS 

accounts for meiotic recombination events across the entire genome at a 
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population level (41). Due to these advantages, a GWAS can provide a 

comprehensive understanding of the genetic aetiology of the disease.  

1.3 Single nucleotide polymorphisms 

As discussed earlier, a SNP is a type of genetic variation wherein a single 

nucleotide change on the DNA sequence serves as a bi-allelic marker (e.g., C>T 

change) as opposed to short tandem repeats, insertions or deletions which are 

multi-allelic markers (Figure 1.2). Single nucleotide changes are classified as 

SNPs only when they occur at >1% allele frequency in a population. A SNP allele 

that is common in one population may be rarer in other populations. SNPs are 

stable and heritable. SNPs arise due to ancestral mutations and two unrelated 

individuals having a similar polymorphism pattern and allele frequencies are 

considered to belong to the “common evolutionary heritage” (42). It is believed 

that the frequency of a novel SNP originating in a particular generation is fairly 

low, approximately 10–8 per site per generation, which would give rise to 

approximately 30 new polymorphisms per haploid gamete (28, 43).  
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Individual 1 Individual 2 

 
 

Figure 1.2: Diagrammatic representation of a SNP on a DNA double strand. Two 

individuals differ in a single nucleotide in a DNA segment. 

Types and location of SNPs: SNPs can be grouped as: synonymous (no 

amino acid change) and non-synonymous (amino acid change). The majority of 

SNPs are likely to occur outside of exons, the gene-encoding regions (44, 45). 

Synonymous SNPs that occur within coding regions would not give rise to 

structural modifications of the encoded proteins, resulting in functional changes. 

However, because synonymous SNPs can potentially contribute to codon bias 

(may result in changes in relative protein abundance in the cells) and may also 

serve as surrogate markers for nearby causal alleles, they are useful in association 

studies. On the other hand, non-synonymous SNPs have a higher probability of 

affecting the structure or catalytic/binding activity of the proteins encoded by the 

genes carrying the SNPs. Once again, there are exceptions such as SNPs that 

result in conservative vs. non-conservative amino acid changes (e.g., glycine to 

alanine vs. alanine to threonine). A vast majority of SNPs are found in introns, 

and although they do not alter encoded proteins, can serve as important markers. 

If present at a sufficient density on the chromosome(s), such SNPs will facilitate 
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10 



 
fine mapping of the region of interest (12, 46). Alternatively, SNPs in introns can 

expose cryptic promoters. SNPs in exons can cause alterations (non-synonymous 

SNPs) in protein structure and function, leading to development of disease or can 

alter metabolism of a drug and hence response to therapy (47). SNPs at 

intron/exon boundaries can potentially alter the splicing events leading to 

alternative transcripts, unmask cryptic promoters and regulatory elements. SNPs 

in regulatory regions, such as promoters, enhancers or non-coding regions at 

the 3' or 5' ends of genes can affect binding of transcription factors altering 

translational efficiency and the relative abundance of encoded proteins. SNPs in 3' 

untranslated regions (UTR) can affect the transcription/translation of mRNA to 

protein, affect mRNA stability and poly-adenylation signals (44, 48).  

The entire SNP archive is available at a database known as (db)SNP, 

which is accessible at the National Center for Biotechnology Information (49, 50). 

The information included for each SNP is the following: (i) flanking sequence 

around the SNP; (ii) frequency of the SNP in a population; and (iii) experimental 

methods used to assay the SNP. Each SNP submitted is assigned a reference SNP 

accession ID (rs number) and the ones in the same physical location are given the 

same rs number.  

In the post-genomic era, SNPs have been the markers of choice because of 

their relative abundance in the genome in comparison with other genetic 

variations. There is approximately 1 SNP for every 300 bp. Therefore, the 3.2 
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billion bp human genome harbours approximately 10 million SNPs (28). Several 

SNPs may serve as surrogates for a SNP in LD (co-segregation of certain SNPs 

due to LD), investigators are faced with this redundant information in genotyping 

projects. Assuming a ten-fold redundancy due to surrogate SNPs, screening a 

million tagSNPs could potentially eliminate this redundancy. The stability, 

heritability, random distribution across the entire genome, and lower chance of 

mutational events within a generation justify SNPs as an appropriate choice for a 

study of the genetic basis of disease over other genetic markers (e.g., 

microsatellite, insertion/deletion or amplification polymorphisms). 

Using SNPs as biomarkers, a gene association can be related to a 

phenotype of interest either by direct or indirect methods (Figure 1.3). In the 

direct method, detection of the causative SNP shows association and high 

statistical significance and confers measurable, though modest, risk. Typical 

examples are drug metabolism gene SNPs in the promoter regions affecting 

protein abundance or function (47). In the indirect method, the causative SNP is 

generally in LD with the marker locus. Therefore, the interrogated SNP acts as 

surrogate marker (through tagSNPs) and helps identify the putative genomic 

location of the causal SNP (36). 
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Direct Indirect 

Causative Surrogate/tag 
 

 

Figure 1.3: Direct and indirect methods to identify causative alleles (adapted 

from Hirschhorn and Daly (36)). 

Mapping the location of causal or surrogate SNPs for a disease may enable 

screening of population susceptibility to disease. This information in turn may be 

useful to implement prophylactic measures if causality is determined. The 

polygenic nature of complex diseases addressed through SNP research could open 

new avenues for rationalizing therapies or identifying markers predictive of 

treatment outcomes.  

1.4 Factors contributing to the success of GWAS 

GWAS is a fairly new approach to identify low-penetrance variants 

associated with disease pathogenesis in a polygenic disease predisposition model. 

There are three main factors contributing to the success of GWAS. 
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(i) Completion of the Human Genome Project: The first advancement that 

enabled association studies was the completion of the Human Genome 

Project. The project commenced in 1990, the first working draft was 

submitted in 2000 and the completed version was published in 2003. Canada 

was the seventh country to participate in the sequencing project in 1992 (51). 

The key objectives of the Human Genome Project were to understand the 

genetic make-up of humans by identifying the sequential arrangement of base 

pairs along the length of DNA, identifying the physical location and putative 

functional properties of the genes, depositing the information in publicly 

accessible databases and developing software tools to mine the information 

(52). The sequenced genome is made up of approximately 3.2 billion base 

pairs with approximately 22,000 genes. The long-term vision of this project 

included identification of causal genes contributing to susceptibility to various 

diseases that would allow the design of drugs that would specifically target 

susceptibility genes, which, in turn, would enhance patient care. Deciphering 

the human genome sequence has made it possible to create a reference 

sequence against which all new sequence data will be interrogated/searched or 

aligned. Extensive research efforts are underway to understand the genetic 

basis of common, complex diseases at a molecular level.  

(ii) Human genome variations: The second advancement was the identification 

of genetic variants across the genome. Ready and easy accessibility to the 

human genome sequence has provided the means to scan the genome to 

identify single nucleotide changes, particularly SNPs, in human populations 
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(53). From the human genome sequencing effort, it has become evident that 

there is remarkably high DNA sequence homology between unrelated 

individuals but the small proportion of variation contributes to the uniqueness 

of each individual such as susceptibility to diseases, varying response to drugs 

and treatment outcomes. In 2001, The SNP Consortium and International 

Human Genome Sequencing Consortium jointly published a map of 1.42 

million SNPs spread across the entire genome with an average density of one 

SNP every 1.9 kilobases (kb) (54). Subsequently, The International HapMap 

Project was initiated in October 2002 to identify common haplotypes in 

different populations and also to identify tagSNPs. This project was a joint 

effort of researchers from Canada, United States, Nigeria, China and Japan. 

Initially, this consortium assessed 270 samples from four different 

populations: 30 trios from US Utah population (CEU) with Northern and 

Western ancestry (originally, samples were collected in 1980 by the Centre 

d'Etude du Polymorphisme Humain [CEPH]); 30 trios (mother, father and 

child) from the Yoruba (YRI) in Ibadan, Nigeria; 45 unrelated Japanese (JPT) 

in Tokyo, Japan; and 45 unrelated Han Chinese (CHB) in Beijing, China. 

Since Japanese and Han Chinese allele frequencies are nearly the same, some 

of the analyses considered them as a single population.  

 Phase I of the HapMap project aimed at genotyping approximately 1 million 

SNPs with a genetic distance of 1 SNP every 5 kb and a minor allele 

frequency (MAF) of ≥0.05. A description of Phase I HapMap project was 

published in 2005 (55). Phase II of the project attempted to genotype an 
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additional 4.4 million SNPs in the 270 samples but successfully genotyped 

only ~3.1 million SNPs and published in 2007 (56). The rest of the SNPs 

could not be genotyped, were monomorphic SNPs (SNPs with single form or 

allele, i.e., no heterozygous individuals in the population) or failed to pass the 

quality control metrics (43). The information and dataset are freely accessible 

and readily retrievable from the HapMap website (57). The patterns of DNA 

genetic variation identified through the HapMap project have been 

successfully used to identify putative loci for several common, complex 

diseases using GWAS. 

 Apart from SNPs that are being used as molecular genetic markers in mapping 

the loci/genes associated with complex diseases and for pharmacogenomic 

studies, other genetic variants that contribute to structural changes in the 

genome such as copy number variation (CNV) and microsatellites are also 

explored.  

(iii) Advancement in technology: The third advancement that enabled the use of 

SNPs as genetic markers is the improvement in genotyping technology with a 

corresponding decrease in the cost of genotyping. Currently, there are two 

main competing commercial organisations offering whole genome arrays for 

SNP genotyping: Affymetrix and Illumina. They offer DNA microarrays that 

interrogate approximately 1 million SNPs and 1 million CNVs. Affymetrix′s 

Genome-wide Human SNP Array 6.0 features 906,600 SNPs and 946,000 

CNV probes and Illumina's High Density Human 1M-Duo chip interrogates 

approximately 1.2 million polymorphic loci per sample. Despite the similarity 
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of approximately 1 million SNPs and CNVs each on both chips, there are 

substantial differences between the two platforms. Illumina arrays use 50-mer 

oligonucleotides (up to several replicates) whereas Affymetrix arrays use 25-

mer oligonucleotides and each SNP is represented by four to six 

probes/replicate (totally, 6.8 million probes on the array). SNP selection 

strategies used by the two platforms are different. Illumina's probes 

predominantly include the tagSNPs (somewhat biased but eliminate 

redundancy of markers) identified by the International HapMap Consortium 

whereas half of the SNP probes included on the Affymetrix array 6.0 are 

tagSNPs, and the others are randomly distributed across the genome 

(determined by the presence of restriction enzyme cutting sites, NspI and StyI) 

and include SNPs in recombination hotspots and the newly annotated SNPs 

from the (db)SNP database (58). Both technologies have advantages and 

disadvantages and the main challenge is in data mining and the statistical 

power (sample size and associated costs) needed to detect associations taking 

into account the genome level correction for multiple-hypothesis testing (59). 

1.5 Road map to GWAS 

The scheme shown in Table 1.1 depicts the proposed GWAS workflow. 

One of my research objectives was to reproduce initial findings (Stage I, 348 

cases and 348 controls) from a genome-wide scan conducted in our laboratory for 

breast cancer susceptibility (see Appendix A); I selected statistically significant 
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markers from Stage I and replicated them using an independent technology 

platform (Sequenom). I also utilized case–control cohorts distinct from the Stage I 

study from Alberta. In all, 1153 cases and 1215 controls were used for replication 

(Stage II, will be reviewed in detail in Chapter 4). The scheme in Table 1.1 shows 

the general sequence of gene/loci discovery in the context of GWAS even though 

all of these end points are not relevant to my thesis objectives. However, the full 

scheme depicts the overall study premise in Dr. Damaraju’s laboratory with the 

end points of biomarker discovery for cancer and pharmacogenomics. Fine 

mapping and sequencing are essential to identify the causal allele(s) that will 

ultimately facilitate building predictive models for disease risk and 

prognostication. 
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Table 1.1: Translation from whole genome association to genomic medicine 

Genome-wide Association 

↓ 

Independent Replication 

↓ 

Fine Mapping 

↓ 

Sequencing 

↓ 

Functional Studies 

↓ 

Applications for Genomic Medicine 

↓ 

Predict, Prevent, Personalize 

Addressed in this 
thesis 

1.6 Breast cancer 

The post-genomic era has opened up novel opportunities to approach a 

comprehensive understanding of the genetic basis of cancer and other complex 

human diseases. Cancer development is accompanied by multiple genetic changes 

which include single nucleotide changes, small or large DNA amplifications or 

deletions contributing to structural changes in DNA. Breast cancer is a 

heterogeneous disease and is influenced by genetic, environmental and life-style 

factors. This interplay has complicated the identification of genes contributing to 

increased susceptibility to breast cancer.  
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While the aetiology of breast cancer is variable and heterogeneous, the 

current understanding of this disease can be broadly divided into familial and 

sporadic breast cancers. 

1.6.1 Familial breast cancer 

One of the strongest risk factors is the inherited genetic (familial) 

component of breast cancer. It involves the inheritance of disease susceptibility 

genes within the family more often than is expected by chance. Several linkage 

studies have successfully mapped high-to-moderate penetrance genes associated 

with the disease (1, 2). Mutations or structural aberrations within such genes 

resulting in truncation of the encoded polypeptide or affecting protein structure 

and function result in a higher incidence of familial breast cancers. Individuals 

with a prior family history of breast cancer are more likely to develop the disease 

than individuals with no family history. Based on our current understanding, 

familial breast cancer genes can be grouped as those with high and moderate 

penetrance mutations. 

1.6.1.1 High penetrance mutations 

A major breakthrough in understanding the genetic basis of breast cancer 

occurred with the identification of a locus on chromosome 17q21, a region of a 

gene responsible for causing the disease in families (1). Subsequently, genetic 
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linkage analysis with multiple case breast cancer families led to the characterizing 

and cloning of the now highly celebrated gene, BRCA1 (60). BRCA1 accounted 

for only a small proportion of hereditary breast cancer susceptibility, leading to 

the conclusion that other, as yet unidentified, susceptibility genes must also exist. 

This optimism was soon rewarded by the discovery and characterization of a 

second breast cancer susceptibility locus BRCA2 on chromosome 13q12–q13 (2).  

Germ-line mutations in the BRCA1 and BRCA2 tumour-suppressor genes 

lead to early onset of breast cancer and often first and second degree relatives are 

affected. These genes also increase susceptibility to ovarian, prostate, and 

pancreatic cancers as well as male breast cancer. The BRCA genes are highly 

expressed during DNA replication. BRCA1 and BRCA2 interact with other DNA 

repair genes (e.g., RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae), 

RAD51) to mend the damage caused to DNA due to external (ionizing radiation) 

and/or internal (reactive oxygen species) agents/factors (61). Mutations or 

deletions in these genes can result in impaired DNA repair activity and 

compromised repair capacity of the cell leading to more mutations and genomic 

instability. The accumulation of damaged DNA products may lead to 

tumourigenesis. In aggregate, BRCA1 and BRCA2 account for approximately 15–

20% of the familial breast cancer risk in several populations including European, 

Asian, African and Ashkenazi Jewish populations (62-65). 
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1.6.1.2 Moderate penetrance mutations 

Some potential moderate penetrance genes have been identified. ATM 

gene, localized on chromosome 11q22–23, is known to confer the phenotype, 

ataxia telangiectasia (a neurodegenerative disorder) and plays an important role in 

the regulation of cell division and DNA repair. In 1999, it was shown that mis-

sense variants in the ATM gene that do not cause ataxia telangiectasia increase 

susceptibility to breast cancer (66). Subsequent studies using multiple case breast 

cancer families with non-carriers of BRCA mutations indicated the involvement of 

ATM gene in breast cancer susceptibility with a modest risk effect on the disease 

pathogenesis (6).  

CHEK2 (checkpoint kinase) is a protein kinase the gene for which is 

localized on chromosome 22q. It is known to interact with the BRCA1, p53 and 

ATM genes to bring about cell cycle inhibition and function in DNA repair 

processes in response to DNA damage. CHEK2*100delC, a protein-truncating 

mutation in CHEK2 that abrogates control of cell cycle leading to uncontrolled 

cell division, was found to segregate with breast cancer (67). CHEK2 does not 

confer elevated risk of breast cancer in carriers of BRCA gene mutations. It was 

also shown that both ATM and CHEK2*100delC mutations do not occur together 

(6).  
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PALB2 localized on chromosome 16p12.2, is known to interact with 

BRCA2. The protein encoded by this gene is implicated in nuclear localization and 

stability and also assists in BRCA2 functions such as homologous recombination 

and DNA repair processes. Mutation in these genes can directly or indirectly 

affect DNA repair processes and increases female breast cancer risk by 

approximately two fold (5). 

Predisposing mutations in BRIP1 (BRCA1 interacting protein 1), PTEN, 

p53 and other DNA repair pathway genes have also been implicated in breast 

cancer susceptibility (3, 4, 68). They show high-to-moderate penetrance and may 

influence the age at onset of the disease. A number of familial cancer genes with 

high-to-moderate penetrance mutations have been identified thus far, but they 

account for only a small proportion of disease risk. Residual genetic variance 

could possibly be resolved by addressing the alleles that are of low penetrance and 

confer finite risk.  

1.6.2 Sporadic cancer 

With the emerging consensus that breast cancer is polygenic in that several 

genes contribute to disease susceptibility with each polymorphism/allele 

conferring a finite risk (69), the search for additional variants has intensified. 

Several research studies have been undertaken to identify markers associated with 

breast cancer susceptibility. The pioneers in GWAS on breast cancer published 
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their findings in June 2007 (12). Subsequently, several independent research 

groups also identified additional loci showing highly statistically significant 

associations with disease susceptibility (8, 11, 13-19). The commonality in all 

these studies, except that of Murabito et al. (15), is the multi-stage study design. A 

multi-stage approach involves at least a two-stage study design, and the number of 

stages varies depending on the availability of resources and sample size. There are 

two main reasons to follow a multi-stage study design: (i) screening for 

approximately 1 million SNP for association may result in nearly 50,000 SNPs 

possibly showing false-positive association at 5% significance level (p <0.05), 

thus warranting further replication studies to identify true-positive findings; (ii) 

although there has been a sharp decline in the cost of genotyping over the years, it 

is still considered expensive to genotype a million SNPs across all stages. In the 

first stage, a comprehensive set of SNPs representative of the entire genome are 

genotyped in a fraction of the samples (hypothesis generation step); and 

subsequent stages ideally should involve replication of all markers from Stage I. 

However, due to cost constraints a subset of SNPs are often selected and 

genotyped for replication in Stage II in a similar or larger sample size (for 

additional details refer to Chapter 2, Section 2.2) (7). While there is similarity in 

the study design, there are differences in the number of SNPs genotyped, 

genotyping platforms, quality control metrics and statistical measures applied for 

data analysis. Given below is a brief summary of the findings of the nine major 

research articles in their quest for potential SNPs associated with breast cancer 

pathogenesis. 
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GWAS 1: Easton et al. (12) were the first to report five putative SNPs to 

be associated with breast cancer susceptibility using a three-stage study design. 

The samples included in the study were women affected with breast cancer and 

healthy controls from the United Kingdom, with a European ancestry. For Stage I, 

266,722 SNPs were genotyped in 390 breast cancer cases all with a family history 

of the disease and 364 healthy controls using the custom-made microarrays 

offered by Perlegen Sciences. They selected 12,711 SNPs that were statistically 

significant from Stage I and genotyped them in 3990 cases and 3916 controls for 

Stage II. For the third stage, 30 SNPs were selected and genotyped using 5' 

nuclease assay offered by Taqman in 22,848 cases and 22,578 controls from 22 

different cohorts. A case–control association analysis revealed five SNPs to be 

highly significant across the three stages with p-values <10-7. The five SNPs 

identified were rs2981582 (fibroblast growth factor receptor 2, FGFR2), 

rs3803662 (trinucleotide repeat containing 9, TNRC9/LOC643714), rs889312 

(mitogen activated protein kinase kinase kinase 1, MAP3K1), rs13281615 (8q), 

and rs3817198 (lymphocyte-specific protein 1, LSP1) (Table 1.2). Efforts were 

undertaken to identify the causal genetic variant in the FGFR2 gene and 

TNRC9/LOC643714 locus by fine mapping.  

Fine mapping of FGFR2: Polymorphism rs2981582, localized in the 

intron 2 of the FGFR2 gene on chromosome 10q, showed the strongest statistical 

significance in this study. rs2981582 lies within a 25-kb LD block and the entire 

block could be captured with six other tagging SNPs. None of the six SNPs 
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showed statistical evidence of association with the disease phenotype. Haplotype 

analysis of the seven SNPs (including rs2981582) indicated that multiple 

haplotypes harbouring minor alleles of rs2981582 conferred elevated risk for the 

disease, indicating its possible role as a causal variant or a surrogate marker. 

Resequencing of the SNPs in the region that was strongly correlated with 

rs2981582 uncovered another SNP rs7895676 that showed strong association with 

disease susceptibility. The strong correlation of several SNPs with rs2981582 

confounded whether the effect of this particular SNP is causal or is closely 

correlated with the causal variant(s).  

Fine mapping of TNRC9/LOC643714 locus: rs3803662 is a synonymous 

SNP of gene region LOC643714 present 8 kb upstream of TNRC9. This SNP 

showed the strongest association with breast cancer. Other tagging SNPs spanning 

the coding region of TNRC9 did not show any association with the disease. The 

strong correlation of SNPs rs17271951, rs1362548, rs3095604 and rs478422 with 

rs3803662 makes it difficult to exactly determine the causal variant(s). 

GWAS 2: Hunter et al. (14) performed a two-stage GWAS with post-

menopausal women of European ancestry. For Stage I, 528,173 SNPs were 

genotyped in 1145 breast cancer cases and 1142 controls using the Illumina 

HumanHap500 assay. For Stage II, six highly significant SNPs, two from the 

FGFR2 gene region and four from other loci, selected from the preliminary 

analysis and two other SNPs that best define the FGFR2 risk haplotype were 
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genotyped in an independent set of 1776 cases and 2072 controls from three 

different studies. Polymorphism rs1219648 retained high statistical significance in 

both stages and in joint analysis across all four studies. rs1219648 positioned in 

intron 2 of the FGFR2 gene is known to be in strong LD with the previously 

identified SNP rs2981582 (12) with an r2 (pairwise comparison between markers) 

close to 1.0. This SNP is also known to be in strong LD with other neighbouring 

SNPs in intron 2 of FGFR2 with r2 values of 1.0 with rs2420946, 0.97 with 

rs2981579 and 0.96 with rs11200014 in the HapMap CEU samples. These results 

indicated that SNPs in strong LD identified in independent studies/populations 

were detected in GWAS, confirming the primary findings and lending credibility 

to the approach.  

The two independent studies described above have given an impetus to 

understand the functional aspects of the FGFR2 gene and to identify the causative 

SNP(s). The FGFR2 gene is already known to be over-expressed in breast cancer 

and is localized on chromosome 10q (70). It plays a critical role in mammary 

gland development and tumourigenesis in mice (71). Functional analysis of a 

haplotype of eight strongly linked SNPs revealed that the minor and major alleles 

of rs2981578 and rs7895676, respectively, tightly bind the Oct-1/Runx2 and C-

EBPβ transcription factors leading to over-expression of the FGFR2 gene (72). 

Runx2 forms a complex with the ubiquitous transcription factor Oct-1 that is 

known to play an important role in mammary gland-specific expression (73, 74). 

These functional studies have not completely explained the biological relevance 
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to the disease by pinpointing the causal variant but definitely are a pointer for 

future research.  

GWAS 3: Stacey et al. (16) carried out a six-stage GWAS with cases and 

controls collected from Iceland, Sweden, Spain, Holland and the US multi-ethnic 

cohort. For Stage I, approximately 300,000 SNPs were genotyped in 1600 

Icelandic breast cancer cases and 11,563 controls using the IlluminaHap300 

platform. SNPs were selected for replication based on ranking the signals by p-

values and the SNPs that represented the 10 best loci were chosen. There were 

five replication sets, which included a combined 4554 breast cancer cases and 

17,577 controls. Two SNPs consistently retained statistical significance in all five 

replication sets: rs13387042 (2q35) and rs3803662 (16q12). This study revealed 

that individuals with minor allele for the polymorphisms shown associated with 

breast cancer are at greater risk in oestrogen-receptor positive breast cancers. 

There is no gene annotation available for the sequences flanking rs13387042. A 

previous GWAS also showed that rs3803662 is associated with the disease risk 

and is located in LOC643714 gene region, 8 kb upstream of TNRC9 (12). Loss of 

heterozygosity in 16q is a common event in breast cancer, leading to the 

speculation that the region might harbour tumour suppressor genes (75, 76). Also, 

the over-expression of TNRC9 has been implicated in metastasis of breast cancer 

cells to bones (77). The above-mentioned evidence warrants exploration of 

functional and biochemical aspects of the gene.  
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GWAS 4: Stacey et al. (17) conducted yet another GWAS with samples 

collected from Iceland, Sweden, Spain, Holland, the US multi-ethnic cohort, 

Nigeria and Cancer Genetic Markers of Susceptibility (CGEMS) study, yielding a 

total of 6145 cases and 33,016 controls, of which 5028 cases and 32,090 controls 

were of European ancestry. Two SNPs on chromosome 5p12, rs4415084 and 

rs10941679, showed strong association and conferred increased risk for oestrogen 

receptor positive breast cancers than for oestrogen receptor negative breast 

cancers. They also examined the FGFR2 locus, which showed a high statistical 

significance for rs1219648, which was in agreement with the previous findings 

(12, 14). rs1219648 conferred greater risk for oestrogen receptor positive tumours 

and no risk for oestrogen receptor negative tumours.  

GWAS 5: Gold et al. (13) conducted a GWAS with Ashkenazi Jewish 

women, a genetically distinct population of Eastern European descent, affected 

with breast cancer and normal, healthy controls and replicated select markers in 

two additional stages. For Stage I (GWAS) of the study, 150,080 SNPs were 

genotyped in 249 familial cases and 299 controls using the Affymetrix 500K SNP 

array. For Stage II, 343 highly significant SNPs were selected from Stage I, along 

with 4 SNPs from the FGFR2 region, and genotyped in 950 cases and 979 

controls using the Illumina GoldenGate assay. For Stage III, a subset of SNPs that 

showed greater association was genotyped in 243 cases and 187 controls using the 

Affymetrix 500K SNP array. This study identified seven SNPs that showed 

association with breast cancer in three stages and in joint analysis (combining 
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genotype data of all stages and performing association analysis for the seven 

SNPs): rs6569479 (enoyl CoA hydratase domain containing 1, ECHDC1; RING 

finger protein 146, RNF146), rs7776136 (ECHDC1, RNF146), rs2180341 

(ECHDC1, RNF146), rs6569480 (ECHDC1, RNF146), rs1078806 (FGFR2), 

rs3012642 (phosphorylase kinase, alpha 1, PHKA1; histone deacetylase 8, 

HDAC8; not significant after joint analysis), and rs7203563 (ataxin-2-binding 

protein 1, A2BP1). They observed a strong and consistent association across all 

stages with the RNF146/ECHDC1 region at 6q22. The protein encoded by 

ECHDC1 plays a critical role in mitochondrial fatty acid oxidation and RNF146 

encodes an ubiquitin protein ligase. These genes are involved in pathways in 

breast cancer pathogenesis. Although the FGFR2 locus rs1078806 retained 

marginal significance in Ashkenazi Jews, it was found in strong LD with the 

FGFR2 SNPs reported by Easton et al. (12) and Hunter et al. (14) (rs2981582, 

rs1219648, rs2420946 and rs2981579).  

GWAS 6: Most of the studies presented thus far have reported association 

analyses from samples of women with European ancestry. Genetic architecture 

can vary greatly with different ancestry groups. Zheng et al. (19) conducted a 

three-stage GWAS among Chinese women using samples obtained from the 

Shanghai Breast Cancer Study and Shanghai Breast Cancer Survival Study. This 

is one of the large-scale studies to report association analysis results for women 

with non-European ancestry. For Stage I, 906,602 SNPs were genotyped in 1505 

cases and 1522 controls. This study is the first to interrogate approximately 1 
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million SNPs for Stage I using Affymetrix Genome-wide Human SNP array 6.0. 

For Stage II, 29 SNPs selected from preliminary analysis were genotyped in an 

independent sample set with 1554 cases and 1576 controls using Sequenom Mass-

ARRAY iPlex technology. For fast-track replication, markers were selected which 

had (i) MAF of ≥10%; (ii) distinct genotype clusters; (iii) not been previously 

reported in other studies; (iv) p ≤0.01 for all SNPs; and (v) best SNP with lowest 

p-trend and r2 values of ≥0.8. For Stage III, four SNPs showing promising 

associations were genotyped in yet another independent sample set of 3472 cases 

and 900 controls. They identified a putative SNP associated with breast cancer 

risk, rs2046210 at chromosome 6q25.1. This SNP was also evaluated for its 

association with breast cancer among 1591 cases and 1466 controls of European 

ancestry. Consistent with the findings for the Chinese women, the minor allele 

showed an increased risk of breast cancer and the association was stronger in 

post-menopausal than in pre-menopausal women. rs2046210 lies upstream of the 

ESR1 gene, which encodes oestrogen receptor α, which is known to play a critical 

role in hormone binding, signal transduction, DNA binding, and activation of 

transcription. This study also validated previously identified polymorphisms from 

Easton et al. (12) and Gold et al. (13) in their Stage I samples and showed 

rs1219648, rs2981582 and rs3803662 to be associated with breast cancer risk in 

Chinese population. 

GWAS 7: Thomas et al. (18) carried out a three-stage GWAS using the 

samples obtained from the CGEMS project. For Stage I, 528,173 SNPs were 
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genotyped in 1145 breast cancer cases and 1142 controls using the Illumina 

HumanHap500 assay. For Stage II, 24,909 highly significant SNPs from Stage I 

were selected and genotyped in 4547 cases and 4434 controls using a custom-

made Illumina chip. Additional SNPs were selected and genotyped to monitor 

population stratification and candidate genes/loci identified in previous studies, 

including the FGFR2 region polymorphisms. For Stage III, 21 SNPs were 

genotyped in 4078 cases and 5223 controls using the Taqman assay. They 

confirmed strong association signals for six loci (2q35, 5p12, 5q11.2, 8q24, 

10q26, and 16q12.1) previously reported to be associated with predisposition to 

breast cancer (12, 14, 16, 17). Two novel susceptibility loci that reached high 

statistical significance were identified at chromosomes 1p11.2 (rs11249433) and 

14q24.1 (rs999737). rs11249433 is located in the pericentromeric region of the 

chromosome at which there is minimum possibility of recombination events. 

Hence, the SNP is expected to be representative of a large LD block. Distal to the 

SNP is the NOTCH2 promoter known to play a crucial role in cellular signalling. 

The second SNP rs999737 is located in the RAD51L1 gene (RAD51-like 1 (S. 

cerevisiae)), which has an important role in double-strand DNA break repair and 

homologous recombination. RAD51 is also known to interact directly with 

BRCA2 gene and indirectly with the BRCA1 gene to bring about the above-

mentioned functions (61).   

GWAS 8: The study by Ahmed et al. (11) was an extension of the 

previous work by Easton et al. (12) with the objective of identifying additional 

32 



 
susceptibility loci associated with risk of breast cancer. They selected 925 

statistically significant SNPs from the first two stages of the prior study. For Stage 

III of this study, these SNPs were genotyped in independent set of samples with 

3878 cases and 3928 controls using a custom Illumina iSelect array. Joint analysis 

of the current data and previous GWAS data yielded three SNPs, rs4973768, 

rs4132417 and rs6504950, to be significant at p <10-5. For Stage IV, three SNPs 

were evaluated in 33,134 cases and 36,141 controls obtained from different 

studies. Samples from 27 study cohorts were genotyped using Taqman and five 

study cohorts using Sequenom Mass-ARRAY iPlex technology. Two novel 

susceptibility loci that reached high statistical significance were identified at 

chromosomes 3p (rs4973768) and 17q (rs6504950). The genomic region flanking 

rs4973768 contains two genes, NEK10 and SLC4A7. NEK10 encodes a kinase 

involved in cell cycle control and SLC4A7 encodes a tyrosine kinase substrate 

known to regulate cellular pH and the activity of the gene is down-regulated in 

breast cancer cells (78). rs6504950 lies in intron 1 of STXBP4 (syntaxin binding 

protein 4) known to play a role in glucose transport and GLUT4 vesicle 

translocation (79). 

GWAS 9: Murabito et al. (15) reported results for two cancers, breast 

cancer and prostate cancer, in 1335 participants from 330 families. The samples 

were obtained from the Framingham Heart Study (FHS) which offers the 

advantage of being a family-based association study. FHS cohort is a longitudinal 

study with extensive information collected on the participating subjects for health 
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and life-style risk factors and history of diseases including cancer in the families. 

The samples were genotyped using the Affymetrix 100K SNP array. SNPs 

selected for the association test were from the candidate genes previously 

implicated in breast cancer susceptibility. Five novel breast cancer susceptibility 

loci were identified from different genomic locations – rs2075555, rs6556756, 

rs1154865, rs1978503, and rs1926657.  

34 



 
Table 1.2: Summary of GWAS-identified variants 

Sample size 
(Cases/Controls) 

S. 
No 

Reference Population SNPs 
identified 

Associated 
genes 

Stage 
1 

Stage 
2 

Stage 
3 

rs2981582  FGFR2 
rs3803662 TNRC9/LO

C643714 
rs889312 MAP3K1 
rs13281615 8q 

1) Easton et 
al., 2007 

European 

rs3817198 LSP1 

390/ 
364 

3990/ 
3916 

21,860/ 
22,578 

rs4415084 2) Stacey et 
al., 2008 

European  
rs10941679 

5p12 6145/33,016 (all stages, >3 
stages) 

3) Stacey et 
al., 2007 

European rs13387042 2q35 

  European rs3803662 TNRC9/LO
C643714 

4554/17,577 (all stages, >3 
stages) 

4) Zheng et 
al., 2009 

Chinese, 
European 

rs2046210 6q25.1 1505/1
522 

1554/1
576 

3472/ 
900 

rs11249433 1p11.2 
rs999737 RAD51L1 
rs7716600 

5) Thomas et 
al., 2008 

European 

rs2067980 
MRPS30 

1145/1
142 

4547/4
434 

4078/ 
5223 

rs6569479 
rs7776136 
rs2180341 
rs6569480 

ECHDC1; 
RNF146 

rs1078806 FGFR2 
rs3012642 PHKA1; 

HDAC8 

6) Gold et 
al., 2008 

Ashkenazi 
Jews 

rs7203563 ALG1 

249/ 
299 

950/ 
979 

243/18
7 

rs1219648 
rs2420946 
rs11200014 
rs2981579 

FGFR2 

rs17157903 RELN 

7) Hunter et 
al., 2007 

European 

rs7696175 TLR1 
TLR6 

1145/1
142 

1776/2
072 

 

rs4973768 SLC4A7 8) Ahmed et 
al., 2009 

European, 
Korean, 
Taiwan 

rs6504950 STXBP4 
390/ 
364 

3990/3
916 

3878/ 
3928* 

rs2075555 COL1A1 
rs6556756  
rs1154865 – 
rs1978503 FLJ45743 

9) Murabito 
et al., 
2007 

 

rs1926657 ABCC4 

1335 participants** 

*This study also included Stage IV with 33,134 cases and 36,141 controls. 

**A family-based association study using participants from 330 families. 
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1.7 Organisation of the thesis 

The primary objective of the thesis was to investigate the relevance of 

polymorphisms in breast cancer susceptibility recently described from GWAS by 

validating in a study population in a case–control setting. 

The secondary objective of the thesis was to reproduce initial findings 

(Stage I, Affymetrix data) from the genome-wide scan for breast cancer 

susceptibility using an independent technology platform (Sequenom) for a select 

set of informative, statistically significant markers in additional independent 

cohorts (Stage II). Stage I of the GWAS generated the hypothesis that the 

polymorphisms found associated confer breast cancer susceptibility and that 

breast cancer is a polygenic disease. Biological and functional relevance of the 

putative loci was beyond the scope of this thesis. 

Currently, global efforts at GWAS are limited to select laboratories (total 

of 11 groups including the study from Dr. Damaraju’s laboratory). Taking into 

account the current research status in GWAS, we are the only group within 

Canada to perform a whole genome study addressing the breast cancer phenotype 

using an association study design.  
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1.7.1 Methods 

The second chapter deals with the experimental study design, description 

of case and control samples selected for the association study to generate 

hypothesis, generation of genotype data and data filtering criteria. We also 

describe genotyping platform, number of SNPs genotyped, software used for 

analysis, subjecting data to different quality control measures, statistics used for 

association analysis and the rationale behind selecting markers for replication 

studies.  

1.7.2 Other chapters 

Chapter 3 summarizes the results of our investigation of the relevance of 

SNPs from GWAS reported between 2007 and 2009 to our study population in a 

case–control setting. An allelic association analysis and a subgroup analysis based 

on the receptor status were performed using chi-square test for 28 SNPs to 

determine the allelic frequency differences between breast cancer cases and 

normal, healthy controls. We confirmed that associations with breast cancer risk 

were similar to those reported in the literature (Caucasian population).  

Chapter 4 mainly focuses on the results obtained from the replication 

phase (Stage II). We also performed a joint analysis by pooling all the samples 

from Stages I and II and conducted an association analysis using chi-square test. 
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The hypothesis for Stage II was generated from the association analysis 

performed in Stage I, which is summarized in Appendix A. In the Appendix, we 

also describe the process of selection of quality control metrics for genotype 

filtering by applying varied filters including detection of population stratification 

in our study population by comparing with the HapMap samples (used as a 

reference). An allelic association analysis using chi-square test was performed to 

determine the total number of SNPs that show statistically significant association 

to the disease pathogenesis. Finally, a subset of markers was chosen for 

replication in Stage II in an independent sample set.  

Chapter 5 briefly summarizes the conclusions based on the results reported 

in the thesis. This chapter also addresses the future work that is possible by 

making use of the readily available data generated in this study period. 

 

38 



 

2 Materials, methods and statistics 

2.1 Experimental design 

Many factors were taken into consideration while designing the 

experiments described in the ensuing sections. Particular emphasis was paid to 

different experimental designs discussed in the literature for association studies 

and whole genome scans using polymorphisms, including their strengths and 

limitations. Availability of resources, both DNA samples and their associated 

clinical characteristics from subjects, as well as technology platform strengths and 

analytical methods currently available were also of paramount importance.  

2.2 Multi-stage association study design 

A multi-stage approach is the widely accepted experimental design for a 

GWAS. In general, identification of putative loci is carried out in two or more 

stages. The work described in this thesis was divided into two stages. In Stage I, 

the Discovery phase, a large set of SNPs scattered across the entire genome 

selected without bias were genotyped in a limited number of breast cancer cases 

and controls (Figure 2.1). An association analysis was performed to identify a 

small proportion of SNPs showing statistically significant association with disease 

risk at a nominal p-value threshold of <0.05 (36). Stage I was the hypothesis-
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generating step in which select markers that reached nominal statistical 

significance (p <0.05) were prioritised for replication based on stringent selection 

criteria. 

 

Figure 2.1: Multi-stage study design for GWAS. Flow chart on the far right 

indicates the number of SNPs interrogated in each stage along with the sample 

size for cases and controls. 

Stage I  
(Discovery 

phase) 

Controls Cases 

Stage II 
(Replication 

phase) 

906,600 SNPs 
348 cases, 348 

controls 

35 SNPs 
1153 cases, 1215 

controls 
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In Stage II, the Replication phase, SNPs selected from the preliminary 

analysis using independent set of cases and controls were investigated further 

(Figure 2.1). Replication of the initial findings is an important component of 

GWAS because a significant fraction of the SNPs that reached statistical 

significance could potentially be false-positive signals. Therefore, it is considered 

essential to replicate the findings in multiple stages to eliminate the possibility of 

association of markers by chance (7, 80, 81). In spite of a sharp decline in the cost 

of whole genome genotyping over the past few years, replicating the findings in a 

large cohort for a comprehensive set of SNPs is still not economical. Hence, in the 

work described in this thesis a subset of statistically significant SNPs selected 

from the initial screen were re-evaluated in a larger set of independent cases and 

controls recruited from the same geographical region. Due to the modest effect of 

the polymorphisms on disease susceptibility, a large sample size is crucial in the 

replication phase to find true association signals (36, 80).  

2.3 Study population 

Case and control samples were obtained from women in Alberta, Canada. 

Informed consent was obtained from each participant included in the study and 

this research study was approved by the Institutional Ethics Board. 
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2.3.1 Cases 

Germ-line DNA from women with breast cancer were obtained from the 

PolyomX study cohort and associated clinical characteristics from the database 

housed within Canadian Breast Cancer Foundation (CBCF) tumour bank located 

at the Cross Cancer Institute, Edmonton, Alberta. The PolyomX program, which 

was started in 2001 with funding from Alberta Health and Wellness and the 

Alberta Cancer Foundation, was a multidisciplinary collaborative research 

initiative in cancer genomics with the aim of identifying and characterizing 

biomarkers of value in diagnostication, prognostication and prediction. CBCF 

tumour bank was launched in 2005 as a provincial project to collect, annotate and 

bank tumour specimens along with buffy coat and serum. The CBCF tumour bank 

operates from two sites within the province of Alberta, one in Edmonton and the 

other in Calgary. Detailed clinicopathological characteristics from PolyomX 

cohort were also entered for each patient in an in-house built relational database 

called DORA (Database for Online Retrieval and Analysis) housed within the 

CBCF tumour bank 

Cases had histologically confirmed invasive breast cancer, predominantly 

ductal carcinoma, non-metastatic at presentation, and with a median age at 

diagnosis of 53 years; central laboratory testing of receptor status was performed 

in a single institution (Cross Cancer Institute, Edmonton, Alberta).  
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Buffy coat (white blood cell enriched fraction of blood) or total blood 

samples were obtained from each participating subject, from which the DNA was 

isolated (tumour DNA was not used in the studies reported here). DNA from 

lymphocytes is also referred to as constitutive DNA or germ-line DNA in 

literature (82). Germinal cells however, typically are haploid genomes, and for 

association studies, diploid genomes (lymphocyte DNA as a surrogate for 

germinal cells) are used routinely to represent maternal and paternal 

chromosomes. Genomic DNA isolation from the buffy coat or blood samples was 

done using commercially available Qiagen™ (Mississauga, Ontario, Canada) 

DNA isolation kits for both cases and controls (QiAamp DNA blood mini kit [250 

reactions], catalog no: 51106). Briefly, the protocol recommended by Qiagen is 

described below. Samples typically comprised 200 μL of whole blood or buffy 

coat stored since the time of collection at -80°C. Frozen samples were first 

warmed to room temperature and the cells were treated with proteinase K to 

remove/digest extraneous protein first (a result of fractionation of blood). To 

obtain RNA-free genomic DNA, the cells were treated with RNase A. Then, 

Buffer AL (lysis buffer) was added to the cells, mixed into a homogeneous 

solution, and incubated at 56°C for 10 min to bring about efficient lysis of the 

cells and to allow proteinase K to act on cellular proteins. The lysate was then 

centrifuged to bring down the liquid present inside of the lid. Then the lysed cells 

were treated with 96–100% ethanol to precipitate the DNA from other cell 

components and centrifuged to remove drops from inside of the lid. The mixture 

was then transferred to the QIAamp spin column provided along with the kit. The 
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column was placed in a 2 ml collection tube and the mixture was centrifuged at 

6000× g (8000 rpm) for 1 min. The filtrate in the collection tube was discarded. 

The resulting precipitate was first treated with Buffer AW1 (wash buffer), 

centrifuged at 6000× g (8000 rpm) for 1 min and the filtrate in the collection tube 

was discarded. Then, the precipitate was treated with Buffer AW2 (wash buffer), 

centrifuged at 20,000× g (14,000 rpm) for 3 min and the filtrate in the collection 

tube was discarded. Treatment with wash buffer removes any residual unlysed 

cells or contaminants. Finally, elution of DNA was done using Buffer AE (elution 

buffer) or distilled water, incubated at room temperature for 1 min and then 

centrifuged at 6000× g (8000 rpm) for 1 min. Simultaneous processing of multiple 

samples was possible and yielded pure DNA amenable for downstream 

processing (83). The concentration of the isolated DNA was determined at 

A260/A280 nm using NanoDrop 2000 spectrophotometer (Wilmington, Delaware, 

USA) and stored at -20°C. 

A total of 348 cases in Stage I were genotyped using the Affymetrix 

Human Genome-wide SNP array 6.0. A total of 1153 cases in Stage II were 

genotyped using Sequenom Mass-ARRAY iPlex technology. 

2.3.2 Controls 

Control subjects were matched for age based on frequency and matched 

for gender with that of cases. They were healthy women from the Edmonton and 
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Calgary regions of Alberta who were free of cancer at the time of recruitment for 

this study (during the years 2003–2009). These subjects were obtained through 

collaboration with the Tomorrow Project (84). The Tomorrow Project is a 

longitudinal study with molecular epidemiological end points in which extensive 

health and life-style data is being gathered from study participants to investigate 

genetic and environmental variables on cancer susceptibility. 

The immediate objective of the Alberta Tomorrow Project is to recruit 

50,000 healthy individuals between the ages of 35 to 69. Currently, nearly 30,000 

participants have joined the study since 2001 and new participants continue to be 

recruited (85). Informed consent was obtained from each participant for inclusion 

in the study. 

A total of 348 control samples were included in Stage I with a full record 

of self-declared ethnicity information (predominantly of Caucasian origin) and 

with no documented prior history of breast cancer in first and second degree 

relatives. Stage I samples were genotyped using the Affymetrix SNP 6.0 array. A 

total of 1215 controls were accessed in Stage II from the Tomorrow Project and 

were genotyped using Sequenom Mass-ARRAY iPlex technology. Procedures for 

sample collection and DNA isolation were the same as described above for cases. 

Our Stage I cohort used cases and controls with no family history of breast 

cancer in the first and second degree relatives. This was in contrast with the 
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GWAS from literature wherein the cases selected were stratified for positive 

family history of breast cancer (first and second generations) or menopausal status 

among the Caucasian populations (12, 14). Since earlier studies addressed the 

selection of cases based on prior family history, our interest is to study the 

sporadic cases of breast cancer.  

2.4 Genotyping 

2.4.1 General protocol for SNP genotyping using Affymetrix 

A genome-wide scan of cases and controls (n=348, each) was performed 

using the Affymetrix Genome-wide Human SNP Array 6.0 featuring 906,600 

SNPs with each probe represented four to six times in an array. Each of the 

samples was subjected to a standardised experimental protocol designed by 

Affymetrix. The protocol consisted of the following critical steps. 

(i) Restriction digestion: Total genomic DNA (250 ng/5 μl) was digested with 

NspI and StyI restriction enzymes. These restriction enzymes recognise 

specific nucleotide sequences on the DNA and make double-stranded cuts 

(Table 2.1). Restriction digestion generates DNA fragments with single-

stranded extensions on the strand that facilitate ligation of complementary 

sequences. These are also known as cohesive or sticky ends (Table 2.1).  
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 (ii) Ligation: The process of joining the complementary sequences of DNA 

strands is termed as ligation. NspI and StyI restriction enzymes digests were 

annealed to the NspI and StyI adaptors, respectively, that specifically 

recognise the 4 bp overhangs (cohesive ends), with DNA ligase. Regardless of 

the size of the restriction enzyme digests, all fragments are substrates for 

adaptor ligation.  

(iii) Polymerase chain reaction (PCR): A generic primer (supplied by the 

manufacturer) that recognises the adaptor sequences of the ligated DNA was 

used to amplify the DNA fragments in triplicates or quadruplicates to ensure 

adequate yield of the target DNA for subsequent analysis. PCR conditions 

were adjusted to selectively amplify fragments ranging in size from 200 to 

1100 bp. The PCR conditions adopted were the same as suggested by the 

manufacturer (Affymetrix® Genome-Wide Human SNP Nsp/Sty 6.0 User 

Guide). 

(iv) Purification: Amplified DNA from each restriction enzyme digest was pooled 

from replicates and purified using magnetic beads (Agencourt AMPure, 

Beverly, MA, USA). Magnetic beads help in recovering large amplicons, 

greater than 100 bp and unincorporated dNTPs, primers, primer dimers, salts 

and other contaminants can be efficiently separated in this process. Purified 

PCR products were stored at 4°C until further analysis. 

(v) Fragmentation and labelling: Purified DNA was fragmented with DNAseI 

enzyme to approximately 50 bp. Subsequently, a biotin-labelled reagent was 

used for end-labelling fragmented PCR amplicons, with terminal 
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deoxynucleotidyl transferase. End labelling reactions were carried out at 4°C 

as described by the manufacturer. 

(vi) Hybridisation and Scanning: Hybridisation is a process in which the target 

(end-labelled DNA product) interacts with the probe sequences embedded on 

the array. The recommended condition to carry out hybridisation was at 49°C 

for approximately 16–18 hours in an oven with 60 revolutions per minute. 

Hybridisation mix contains denaturing agents to generate single stranded 

DNA to bind to the single stranded probe sequences on the array. Mixing 

minimises background binding and results in homogeneous hybridisation. The 

hybridised arrays were washed with buffers rigorously to remove non-specific 

hybridisation (target molecules bound to a wrong probe) (86). The array was 

then stained with streptavidin–phycoerythrin conjugate that binds with high 

affinity to the biotin-labelled target molecules. The washing and staining 

procedures were carried out using the Affymetrix fluidics station 450 (Santa 

Clara, California, USA). Finally, the array was scanned using the GeneChip® 

Scanner 3000 7G (Affymetrix, Santa Clara, California, USA). This scanner 

has the ability to scan smaller features ranging in size from 2.5 μm to 0.51 

μm. The raw optical images called the .dat files are generated. The pixel 

values were used to calculate the signal intensities for each feature (every 

SNP) and these were automatically stored as .cel files (58). 
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Table 2.1: Recognition sequences of NspI and StyI restriction enzymes before and 

after digestion 

NspI recognition sequence StyI recognition sequence 

Before cut 

5′ ∗ ∗ ∗RCATGY∗ ∗ ∗ 

   ∗ ∗ ∗YGTACR∗ ∗ ∗ 5′ 

Before cut 

5′ ∗ ∗ ∗CCWWGG∗ ∗ ∗ 

    ∗ ∗ ∗GGWWCC∗ ∗ ∗ 5′ 

After cut (cohesive ends) 

5′ ∗ ∗ ∗RCATG   Y∗ ∗ ∗ 

    ∗ ∗ ∗Y   GTACR∗ ∗ ∗ 5′ 

After cut (cohesive ends) 

5′ ∗ ∗ ∗C   CWWGG∗ ∗ ∗ 

    ∗ ∗ ∗GGWWC   C∗ ∗ ∗ 5′ 

A: Adenine; T: Thymine; C: Cytosine; G: Guanine; R: A/G; Y: C/T; W: A/T. 

 

A detailed protocol and the sources of the reagents used in genotyping are 

available in Affymetrix® Genome-Wide Human SNP Nsp/Sty 6.0 User Guide 

(Affymetrix, Santa Clara, California). 

2.5 Data acquisition – Genotype calling 

Genotype calling is the process of assigning one of three possible 

genotypes at corresponding alleles to a specific SNP. All the SNPs interrogated 

are bi-allelic. For any SNP with A and B alleles, there are three possible 

genotypes: homozygous (AA, BB) or heterozygous (AB). In this procedure, 

genotype information for each SNP is generated from the raw intensity files (.cel 

files) available after scanning each array. The signal intensities for each SNP are 
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measured to categorise a SNP to a particular allele based on the signal strength. If 

the intensity of one is high and the other low, then it is homozygous and if 

intensities of both alleles are equally high, then it is heterozygous (87).  

The Birdseed v2 algorithm was developed by researchers at the BROAD 

Institute of Harvard and MIT specifically for the Affymetrix genome-wide human 

SNP 6.0 array. Birdseed v2 is a multi-chip algorithm used to assign genotype 

calls. In addition to genotype calling, the algorithm also performs data 

normalisation to eliminate any probe-specific effects to increase precision. The 

algorithm performs efficiently with sample sizes of 50 or more (88). The library 

files available at the Affymetrix website are used as a reference to make the 

genotype calls (58). 

A total of 348 breast cancer cases and 348 healthy controls were 

genotyped using the Affymetrix genome-wide human SNP 6.0 array. Genotype 

calling was done in eight batches with 96 randomly-chosen samples in a batch. 

Intensity files were used to generate the genotype information (.chp files), which 

were subjected to downstream analysis. The genotype data in one of the 96 

sample sets contained randomly selected 72 replicates (47 cases and 25 controls) 

and also representative samples across all batches to assess genotype call 

concordance within and across batches. The mean genotype concordance rate for 

the samples achieved in this analysis was very high (99.9%).  
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2.6 Statistical considerations 

2.6.1 Data quality assessment 

Any experiment is subject to random and systematic variations which can 

be attributed to several sources, including heterogeneity of the phenotype under 

investigation and experimental conditions. High-throughput technologies, such as 

DNA microarrays, are no exception. Although a whole genome study design 

includes data normalisation and replication of experiments to minimise 

variability, it is possible to further minimise these errors by applying several 

quality control measures. Therefore, different quality control measures at both the 

SNP and sample levels are used to ensure good quality of genotype data to 

perform the association analysis and these methods have evolved recently, and 

been successfully implemented in all GWASs (89). The data quality control 

measures are presented in the sequence in which they were carried out for our 

analysis. 

2.6.1.1 SNP quality control measures 

Genotype filtering is a step-wise selection procedure that minimises errors 

(false-positive results), which helps increase the overall power of a study. This 

was the first quality control measure applied (i) to check the accuracy of the 

genotype calls for each SNP; and (ii) to detect and remove poor-quality SNPs 
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from further data analysis. Several SNP quality control measures were applied to 

the dataset and it was a prerequisite to meet them all to be included in the 

downstream analysis.  

2.6.1.1.1 Hardy–Weinberg equilibrium 

Hardy–Weinberg equilibrium (HWE) was independently proposed by 

H.G. Hardy and W. Weinberg in 1908. In a perfect world, genotype and allele 

frequencies are expected to remain constant from generation to generation in a 

randomly mating population (90). Testing for departure from HWE may point to 

problems in the genotyping procedure; errors can occur at any stage of the sample 

processing, such as sample handling and problems with hybridisation, leading to 

incorrect or biased (e.g., excessive homozygosity or heterozygosity) genotype 

calls for a particular SNP. But assigning faulty genotypes may not be an exclusive 

reason for deviations from HWE. The other possible factors include: 

(i) Small-sized population is largely influenced by random variation in the 

distribution of alleles to successive generations, a process known as genetic 

drift, which results in reduced genetic variation in small populations (90). For 

example, the population size of northern elephant seals drastically dropped 

after intensive human hunting in the late 19th century. Though the number 

rebounded after awareness about extinction, the population exhibited limited 
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genetic diversity (as opposed to southern elephant seals) due to the reduction 

in the size of the population (91). 

(ii) Non-random mating or inbreeding consists of mating of two genetically 

related members and leads to limited genetic diversity. There are two major 

drawbacks of inbreeding: (i) increased chance of transmission of recessive 

deleterious genes (arising due to repeated mutations within a population) for 

generations resulting in manifestation of the altered phenotype (90); and (ii) 

violation of the principle of independence, i.e. the occurrence of one event 

should not be predictable by the occurrence of the other. It implies that there 

should be no cryptic relatedness, i.e., members of cases or controls should not 

be related, existing between the subjects included in the analysis. 

(iii) Certain alleles or genotypes become more common in population over 

successive generations. For example, African-Americans are known to have 

higher susceptibility to hypertension due to impaired excretion of salts leading 

to expansion of water volume in the blood vessels, resulting in elevated blood 

pressure (92).  

We assessed for deviations from HWE using the chi-square test, with 1 

degree of freedom. It was expected that SNPs tested should be in HWE and those 

that showed deviation at a stringent p-value of <0.001 (user-defined) were 

excluded from the analysis. In other words, there was a 1 in 1000 chance for the 

observed frequencies to deviate from the expected frequencies. 
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2.6.1.1.2 Missing genotype calls 

Inaccurate genotype calling, due to technical problems such as defective 

hybridisation and faulty array, can introduce bias and affect the quality of the 

data. Missing genotype calls can be directly related to incompleteness of the data. 

Failure to assign genotypes for a particular SNP or subsets of SNPs in a sample 

results in suboptimal call rates. Therefore, it is ideal to exclude such SNPs from 

further analysis to improve the overall result. Many reported GWASs to-date have 

adopted different cut-off points ranging from 80% to 99.7% (8, 11-14, 16-19). We 

applied a cut-off of ≥99% genotype call rate and SNPs below the cut-off were 

excluded from further analysis. 

2.6.1.1.3 Minor allele frequency 

Minor allele frequency (MAF) of a SNP is the frequency of the less 

frequent allele in a population. As stated earlier, single nucleotide changes are 

classified as SNPs when the allele frequency is >1%. MAF falls in the range of 

1% to <50%. Alleles occurring at a frequency ≥50% are termed major alleles. Due 

to the low-penetrance nature of the polymorphisms, detection of association of 

rare variants (very low frequency SNPs) with disease risk is difficult. Adhering to 

the assumption that common diseases are the result of common variants (CDCV 

hypothesis), detecting association of rare variants with disease requires large 

effect sizes, which can be accomplished by a very large sample size (93). It is 

54 



 
advisable to eliminate those SNPs occurring at a lesser frequency to enrich the 

dataset and thereby reduce the number of association tests to be performed. 

Therefore, SNPs with MAF <10% were not included in the replication phase of 

our study. Most reported studies apply a filter criterion ranging from 5% to 10% 

(11, 12, 18, 19).  

2.6.1.1.4 Signal intensity plots 

A signal intensity plot, otherwise known as a cluster plot, is a two-

dimensional plot (A versus B) giving a graphical display of precise resolution of 

SNP signals into three distinct genotype clusters (AA, AB and BB) using the 

intensity values. Low intensity values directly affect the genotype calls of a 

marker leading to suboptimal separation of the three genotype clusters. Possible 

reasons for skewed genotype are low SNP intensities, homologous SNP flanking 

sequences in different parts of the genome and SNPs positioned in the regions of 

structural aberrations (87, 89).  

It would have been labour intensive to screen the intensity plots for 

906,600 SNPs and to scrutinize them according to distinct separation of the three 

genotypes. Therefore, the cluster plots were analysed for only those SNPs short 

listed for the replication study and the SNPs that showed three distinct genotype 

clusters were retained in the analysis.  
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2.6.1.2 Sample quality control 

Quality control of samples is as important as SNP quality control. Samples 

can be of poor quality due to several reasons: poor DNA quality, technical 

problems with hybridisation, not enough DNA for hybridisation or faulty array. 

These discrepancies may lead to confounding results. It is essential to remove 

bad-quality samples to increase the overall accuracy of the results (89).  

2.6.1.2.1 Individual chip call rate 

Affymetrix GeneChip Operating Software automatically generates an 

overall quality control call rate for every sample/chip after scanning. The overall 

call rate is defined as the number of SNPs receiving genotype call (AA, AB, or 

BB) divided by the total number of SNPs (94). Affymetrix recommends a chip 

call rate threshold of >86%. In our study, an average chip call rate of 97.6% was 

observed for the 696 samples.  

In addition, quality for each sample was determined by contrast quality 

control as recommended for the SNP Array 6.0 by the manufacturers. Contrast 

quality control is a cluster based algorithm that is a good predictor of sample 

genotyping performance. It measures the distinct clustering of the three genotypes 

(based on genotype calls of AA, AB or BB) by using a subset of probes (58). 

Default average contrast quality control for a sample to be included in further 
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analysis is set at ≥1.7. Most of our samples used in this study had a contrast 

quality control of >2.0. 

2.6.1.2.2 Detection and removal of outliers and correction for population 

stratification 

Detection and removal of outliers and correction for population 

stratification are important to minimise false-positive findings. The ancestry 

differences within the study population can result in spurious associations due to 

differing genotype and disease prevalence patterns. For example, Figure 2.2 

depicts the differences in the genotypes between two populations at a particular 

SNP locus. A mixture of a few individuals from population 2 into the study 

population (population 1) resulting in differences in allele and genotype 

frequencies within the population of interest will impact the association analysis 

results. The figure shows that ‘AA’ genotype occurs at a higher frequency and 

‘BB’ genotype occurs at a lower frequency in population 1 than in population 2 in 

cases; but, the genotype frequency of the controls between the two populations is 

nearly the same. The effect of stratification is largely dependent on the total 

number of admixture samples and the loci at which subpopulations differ (95).  
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Figure 2.2: Changes in genotype distribution of the study population for a 

particular SNP upon deriving the samples from two different populations (adapted 

from Marchini et al. (95)). 
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Technique used for correcting population stratification: In our study, the 

ethnicity of the participating individual was based on the self-completed ethnicity 

questionnaires at the time of recruitment. However, self-declared ethnicity could 

be biased in families with multiethnic roots. Therefore, it is important to 

comprehensively assess the population substructure (eliminate those samples that 

could probably be an admixture) to increase the homogeneity of the dataset at 

least at the level of selection of markers from Stage I.  

EIGENSTRAT is a technique developed by team of researchers at the 

BROAD Institute that uses principal components analysis to detect and correct for 

population stratification (96). HelixTree software uses similar methodology as in 

EIGENSTRAT with further enhancements.  

We applied principal components analysis methodology to detect the 

ancestry differences within our study population (cases and controls). The 

approach was to project the data on to axes, known as principal components, 

which capture the maximum variability in the data and end up reducing the 

dimensionality of the data. We chose to adjust for ancestry along two principal 

components. EIGENSTRAT emphasises mainly on capturing the maximum 

variability (effects of stratification) within the defined axes of variation and is not 

sensitive to the number of principal components considered in the analysis (96). 

The distribution of variation in two dimensions enabled us to visually inspect and 

to assess the similarities and differences between samples by comparing with the 
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reference samples. Outliers were identified and removed from the analyses to 

enrich the dataset. Outliers were defined as individuals whose ancestry was at 

least three standard deviations from the mean on one of the two principal 

components after performing five iterations. We identified 73 outliers which fell 

beyond the limit of three standard deviations (as opposed to the six standard 

deviations, which is less stringent, applied in Price et al. (96)) leaving 302 breast 

cancer cases and 321 controls for further analysis. 

Comparison of our study cohort with HapMap samples: We also assessed 

the genetic homogeneity of our study population by comparing with the HapMap 

Phase I dataset which included three different populations: CEU, Utah residents 

with Northern and Western European ancestry from the CEPH collection; YRI, 

Yoruba in Ibadan; and CHB, Han Chinese in Beijing, China. Each population 

included a representative set of 90 samples (30 trios: mother, father and child) 

(28). For a meaningful comparison, we obtained genotype information of all 270 

HapMap samples genotyped using Affymetrix SNP 6.0 array. Genotype calling of 

these samples was done at our facility using the Birdseed v2 algorithm. We 

inspected the clustering patterns of our study cohort (before and after outlier 

removal) and HapMap samples by superimposing the two datasets.  
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2.6.2 Association analysis 

2.6.2.1 Single-locus association analysis 

After applying quality control measures, we obtained an enriched dataset 

with 302 breast cancer cases and 321 healthy controls with 782,838 SNPs for 

single-locus association analysis. The objective of the analysis was to compare the 

allele frequencies of the affected individuals with those of healthy, unaffected 

individuals. The differences in frequencies of SNPs implied that there may be 

associations existing between the markers and the disease outcome. Genotype 

data were grouped under independent, categorical variable and case–control labels 

were used as dependent variable. Allelic association between the cases and 

controls was done using a 2 × 2 contingency table according to the format shown 

in Table 2.2. We performed a chi-square test with 1 degree of freedom to test the 

null hypothesis of no association between alleles and disease outcome. For every 

SNP, a 2 × 2 contingency table was constructed by counting the number of times a 

particular allele occurred for a SNP individually in case and control samples. 
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Table 2.2: 2 × 2 Contingency table with allele counts for cases and controls 

Alleles Cases Controls 

A nA nA 

B nB nB 

After association analysis, we selected all the SNPs significant at p <0.05. 

Due to possible false-positive associations, select markers were replicated in 

independent cohorts. However, selection of markers for replication was itself not 

straight forward. One could simply rank the significance level and select SNPs; 

this method does not account for redundant markers due to LD. We adopted the 

method described by Zheng et al. (19) which takes into account the LD patterns of 

the genome. LD patterns were taken into consideration mainly for selection of 

markers for the Stage II replication study. 

2.6.2.2 Haplotype association analysis 

Single-locus association analysis provides information on individual 

allele, independent of its association with neighbouring markers. Genome-level 

studies using SNP markers have a lot of redundant information due to LD 

patterns. Therefore, we performed a multiple-marker analysis to potentially 

overcome redundancy of markers. Recent studies have shown that the entire 

genome can be parsed into block-like structure called ‘haplotype blocks’, discrete 

segments with low recombination frequencies containing strongly associated 
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SNPs (37, 97). These are regions of high LD with limited haplotype diversity 

separated by regions of very low LD known as ‘recombination hotspots’. The 

correlation between markers in these very low LD regions can be addressed by 

typing many polymorphisms. Representative SNPs from the region with very high 

LD or a haplotype known as tagSNPs, act as proxy for the neighbouring SNPs in 

the haplotype and knowledge of the alleles of the tagSNPs can predict the allelic 

architecture of the adjacent SNPs. The Affymetrix SNP 6.0 array not only has a 

substantial number of tagSNPs but also SNPs from other regions such as 

mitochondrial SNPs and SNPs in recombination hotspots 

We computed haplotype blocks for the entire genome based on correlation 

between markers across a chromosome. The correlation between the alleles of 

SNPs in a block is measured by the r2 statistic, a measure for statistical correlation 

between two SNPs. r2 values range between 0 (no disequilibrium) and 1 (high 

disequilibrium). Defining a block was done using the Expectation-Maximisation 

algorithm, a feature available in the software. Default parameters were used for 

block detection – i.e., maximum length of 160 kb and maximum of 30 markers 

per block. A haplotype association analysis (pair-wise comparison) was 

performed in a case–control setting to improve statistical power due to the lesser 

number of hypotheses tested. A chi-square test was used to perform association 

analysis. SNPs with chi-square p-value <0.001, r2 ≥0.8 (SNPs in high LD), with 

more than two SNPs per block were chosen. 
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2.6.2.3 Multiple-hypothesis testing 

In single-hypothesis testing, when the significance level (p-value) is set at 

0.05, there is a 5% probability of a SNP showing association to the disease 

susceptibility by chance. This may result in falsely rejecting the null hypothesis of 

no association. In our SNP microarray data 906,600 SNPs were interrogated, 

resulting in a large number of statistical tests. It is commonly referred to as 

multiple-hypothesis testing, defined as when more than one hypothesis is tested at 

a time. There is a high chance that false-positive associations will outnumber the 

true positives and can have serious consequences while evaluating the results 

(98). A correction method for p-values widely accepted by the GWAS research 

community is the Bonferroni correction, a method developed by the 

mathematician Carlo Emilio Bonferroni (99, 100). This method applies a stringent 

p-value to the entire dataset by adjusting the significance level. The adjusted 

significance level can be represented as α∗ = α/n, where α is the unadjusted 

significance level (0.05) and n is the total number of SNPs included in the 

association analysis (101). Applying this measure to our dataset, 

Unadjusted significance level (p-value) = 0.05 

Number of SNPs included in single-locus association analysis = 782,838 

Overall expected adjusted p-value = (0.05/782,838) = 6.4 × 10-8 
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This simple calculation indicated that the SNPs that are potentially 

associated with disease susceptibility are more likely to reach a Bonferroni 

corrected significance value of <10-8. A Bonferroni p-value of 10-8 corresponds to 

a p-value of 0.05 used in single hypothesis testing. The Bonferroni p-value 

becomes stringent with the increase in the number of markers and does not take 

into account the redundant markers due to LD. A Bonferroni correction is 

therefore overly stringent and may lead to discarding true-positive SNPs showing 

association below this threshold.  

2.6.2.4 False-discovery rate 

Although the Bonferroni method for multiple comparisons is commonly 

used for SNP microarray data, it is highly conservative because it increases the 

specificity by significantly reducing the number of false-positives but on the flip 

side it compromises on sensitivity by increasing the number of false-negatives 

(102). A less conservative, alternative to the Bonferroni method is the method of 

false-discovery rate (FDR). The false-discovery rate (FDR) was also estimated to 

quantify the proportion of “discoveries” (i.e., rejections of the null hypotheses of 

‘no association’) that were false (103, 104).  

Based on the above-mentioned analysis strategies, select SNPs were 

considered for replication in an independent study using 1153 breast cancer cases 

and 1215 controls. Selection of markers is discussed in Appendix A.
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Discovery cohort (Stage I) 

348 Cases 348 Controls 

Whole genome genotyping using Affymetrix SNP 6.0 array 

Intensity files (*.cel) 

Genotype calling: Birdseed v2 (*.chp files) 

Data acquisition 

Quality control measures 

Genotype filtering: 
HWE p>0.001; SNP call rate ≥99%; MAF ≥10% 

Sample filtering: 
Contrast quality control ≥1.7; Outliers removed 73 

Association analysis: chi-square test 

35,859 SNPs with p <0.05 

Haplotype association analysis: 
r2 >0.8; >2 SNPs/block; p <0.001 

 
Markers selected for Stage II analysis 

Replication of selected markers in 
independent cases and controls 

Figure 2.3: Flow chart summarizing the entire protocol of Stage I association 

analysis 
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2.7 Replication 

There were two vital components in our study: firstly, validation of 

previously reported markers from the literature to seek relevance to our study 

population in Alberta; and secondly, replication of markers selected from Stage I 

from Albertan population in additional independent cases and controls. Both the 

GWAS-identified variants (literature reports) and the novel markers identified 

from the preliminary analysis (Stage I) were genotyped using Sequenom® Mass-

ARRAY iPlex technology. The Sequenom Mass-ARRAY iPlex technology is 

based on locus-specific PCR reactions. The PCR product is used in the extension 

reaction to produce products of different sizes for each allele of a SNP and the 

size of the product is determined using Sequenom MALDI-ToF mass 

spectrometry, which in turn is converted into genotype data (105). Genotyping 

services were provided by Genome Quebec Innovation Centre (Montreal, Quebec, 

Canada). 

2.7.1 Validation of GWAS-identified variants 

SNP selection and genotyping: We conducted a systematic PubMed 

literature review using the search terms ‘whole genome association study’, ‘breast 

cancer susceptibility loci’, and ‘novel SNPs’, along with manual review of 

bibliographies of published articles about breast cancer, to identify reported 

SNPs/loci associated with breast cancer risk. Thirty-three SNPs that were reported 
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as statistically significant (p <0.05) were selected from nine research articles 

published between May 2007 and May 2009 (11-19). Of the 33 SNPs from this 

search, 28 were genotyped in this study using Sequenom Mass-ARRAY iPlex 

technology (105). One SNP was monomorphic in our study population 

(rs1078806 (13)) and four other SNPs did not meet the criteria for multiplexing on 

the Sequenom platform (rs2046210 (19), rs6556756 and rs1154865 (15), 

rs7776136 (13)) and were excluded. Since the SNPs validated were extensively 

studied by others, we did not adopt a multi-stage study design. However, the total 

number of cases and controls used to interrogate these literature findings were the 

same as our multi-stage association study to identify novel/additional SNPs in the 

Albertan population. This approach also served as an internal control wherein the 

sample size and power if sufficient for the validation of previously published 

associations would also give confidence in the interpretations for the genome-

wide scan in Albertan population. 

2.7.2 Replication of novel markers 

For the replication phase (Stage II), 1153 breast cancer cases and 1215 

controls were genotyped using the Sequenom Mass-ARRAY iPlex technology. 

Thirty-five SNPs selected from Stage I analysis were genotyped. Consistent 

statistically significant results in independent stages and in joint analysis for novel 

SNPs were considered as positive associations. 
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2.7.3 Genotype calling quality control 

Genotyping on an independent technology platform provides a technical 

validation across genotyping platforms. It ensures the quality of the genotype 

data. There are two possible ways to validate the genotype quality: (i) within 

platform concordance by repeating the same set of samples in duplicates; and (ii) 

across-platform concordance to assess the consistency in genotype calling of the 

same set of samples between the two genotyping platforms (Affymetrix versus 

Sequenom). As quality control measures for genotype calling between platforms, 

the Stage I samples were re-genotyped on the Sequenom platform to evaluate the 

genotype concordance between the platforms, prior to replication of select 

markers in an independent cohort (Stage II). It enabled us to compare the 

genotypes of the select SNPs between Affymetrix and Sequenom platforms. 

The Affymetrix genotyping protocol is summarized in this chapter since 

half of the samples were genotyped by me but the results generated from 

Affymetrix data are presented in the Appendix section due to the participation of 

other members in the laboratory. Chapters 3 and 4 will address the results 

obtained from GWAS-identified variants and novel SNPs, respectively, along 

with discussion.  
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3 Association analysis of candidate SNPs selected 

from literature – a validation studya 

Many SNPs associated with breast cancer risk have been identified in 

GWAS by several research groups and for different populations. Subsets of these 

SNPs have been successfully replicated within the initially identified population 

or have been validated in independent studies from geographically diverse 

regions. However, no single study has attempted to validate all previously 

GWAS-identified variants, and none has been reported from an ethnically defined 

Canadian population. 

Since 2007, a series of publications about GWASs on breast cancer have 

shown that several loci are potentially associated with disease risk (11-19). 

Disease heterogeneity was also addressed by determining the associations based 

on the clinical subphenotypes, such as tumour grade, receptor status, family 

history and stage (11, 16, 17, 26, 27). Thus, it is evident from the literature 

findings that many genes/loci play critical roles in disease pathogenesis. However, 

the outcomes from multiple GWASs (original and validation studies from 

independent laboratories) can vary due to application of different quality control 

metrics (SNP call rates, genotypic models, cut-offs imposed for deviations from 

HWE and disease heterogeneity). Therefore, it is important to validate the 

                                                 
a A version of this chapter has been submitted for publication.  
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reported findings in several independent studies and in different populations, 

albeit of similar or diverse genetic background, to determine the association of the 

defined variant with the disease risk.  

Determining correlation of the candidate SNPs in our study population 

provides confirmation of the association of the previously reported markers with 

breast cancer susceptibility. The SNPs selected for validation were from the nine 

research articles reviewed in the Introduction (see Section 1.6.2). A total of 1439 

breast cancer case subjects and 1596 healthy control subjects were genotyped for 

the selected SNPs. We reviewed the medical records of affected individuals for 

their oestrogen (ER), progesterone (PR) and human epidermal growth factor 

(Her2) receptor status and assessed association of the SNPs with breast cancer 

based on the receptor status (Figure 3.1).  

Twenty-eight of the 33 SNPs reported to be significantly associated with 

breast cancer were successfully genotyped in our population on the Sequenom 

platform. Of the 28 SNPs that were successfully genotyped, only one SNP 

deviated from HWE (rs3012642, HDAC8 gene SNP) in our population (13). We 

included this SNP also for analysis since we intend to compare our results with 

those reported in literature. Association analysis was carried out using the 

commercial software, HelixTree. A chi-square analysis was performed to 

determine the association of the SNPs. As a quality control measure for within 

platform genotype calling, 132 replicate samples (67 cases and 65 controls) were 
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randomly distributed in each of the 96-well plate assays. The mean genotype 

concordance rate of the replicates was 98.6%. 

Of the 28 SNPs subjected to allelic association analysis, 14 SNPs from 

nine genes were identified to be statistically significant (p <0.05) in the case–

control breast cancer association study in our population. All the SNPs (except 

rs3012642, with a MAF of 0.03) had an MAF >0.10. The risk (minor) allele 

frequencies of SNPs in our study population were comparable to those reported in 

the GWASs (11-18). 

 

1439 Breast cancer 1536 healthy controls 

28 SNPs from 9 research articles 

Genotyped using Sequenom mass-array technology 

Allelic association 
analysis 

Subgroup analysis:  
ER+, PR+, Her2- 

 

Figure 3.1: Flow chart depicting the overview of analysis performed using 

candidate SNPs. 
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3.1 Chromosome 10 region polymorphisms 

Fibroblast growth factor receptor 2 (FGFR2) gene, located in chromosome 

10q26, has been well-studied and is known to function upstream of the 

Ras/MAPK and PI3K/Akt cellular signalling pathways (106). It has been reported 

to be over-expressed in cultured breast cancer cells, resulting in constitutive 

downstream signalling to maintain the transformed cell in an activated state (70). 

The multiple alleles identified in this region have been studied in diverse ethnic 

cohorts (19, 107). In confirmation with previous reports (12, 14), we observed 

statistically significant associations for all the five SNPs from FGFR2 in our 

study cohort: rs1219648 (p-value 7.07×10-6¸ FDR 1.98×10-4), rs2981579 (p-value 

2.66×10-5¸ FDR 2.48×10-4), rs2420946 (p-value 2.94×10-5¸ FDR 2.06×10-4), 

rs2981582 (p-value 5.32×10-5¸ FDR 2.98×10-4), and rs11200014 (p-value 

8.52×10-5¸ FDR 3.96×10-4). The ORs for all risk alleles in FGFR2 were in the 

range of 1.23–1.27 (Table 3.1). The association of FGFR2 alleles remained 

significant even in the subgroup analysis (Table 3.2). The direction of risk (OR 

>1.0) was retained for all FGFR2 risk alleles in all independent analyses based on 

ER+, PR+ and Her2- receptor status. 
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3.2 Chromosome 5 region polymorphisms 

A number of GWASs have reported SNPs within chromosome 5 as 

significant in conferring breast cancer risk (12, 16-18). Two SNPs, rs4415084 and 

rs10941679, from the Icelandic population and other populations of European 

origin, were initially reported to be associated with breast cancer risk (17). These 

two SNPs, along with four other SNPs from the same gene region, were also 

evaluated in African-American women (108). Thomas et al. (18) evaluated two 

novel SNPs, rs7716600 and rs2067980, from the same region in a GWAS. Easton 

et al. (12) showed a mitogen activated protein kinase 1 (MAP3K1) SNP rs889312, 

located in the q arm of chromosome 5, to be associated with breast cancer risk, an 

observation that was validated in post-menopausal European-American and 

African-American women (109). In all, a total of nine SNPs were reported in 

independent studies from chromosome 5 to be significantly associated with breast 

cancer risk.  

In our study, we found statistical significance (Table 3.1) for two of the 

SNPs from the study by Stacey et al. (17): rs4415084 (p-value 1.22×10-3, FDR 

3.42×10-3) and rs10941679 (p-value 5.25×10-3, FDR 1.23×10-2), and only 

marginal significance for one SNP (rs2067980) reported by Thomas et al. (18) (p-

value 0.05, FDR 0.10). Polymorphism rs889312 from the study of Easton et al. 

(12) showed high statistical significance in our study population (p-value 1.76×10-

4, FDR 6.16×10-4) in the overall association analysis. The OR (95% CI) of this 
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risk allele was 1.24 (1.11–1.38). The SNP, rs7716600, from chromosome 5 was 

not significant in the overall association analysis (Table 3.3). 

Of the four SNPs that were significant in our study, rs4415084 and 

rs889312 showed strong association with breast cancer risk in the subgroup 

analysis. rs4415084 showed association with ER+ (p-value 3.52×10-4, OR 1.23), 

PR+ (p-value 1.23×10-3, OR 1.22) and Her2- (p-value 4.27×10-3, OR 1.18); 

rs889312 showed association with ER+ (p-value 8.28×10-4, OR 1.23), PR+ (p-

value 4.59×10-3, OR 1.20) and Her2- (p-value 2.04×10-3, OR 1.22) in the subgroup 

analysis (Table 3.2), whereas rs10941679 showed marginal significance for ER+ 

(p-value 1.04×10-2, OR 1.18), PR+ (p-value 3.15×10-2, OR 1.16) and Her2- (p-

value 3.94×10-2, OR 1.14). While rs7716600 did not show significance in the 

overall association analysis, it did show marginal significance for ER+ (p-value 

3.97×10-2, OR 1.15), PR+ (p-value 3.90×10-2, OR 1.16) but not for Her2- (Table 

3.2). Also rs2067980 was marginally significant in the overall association analysis 

but was not statistically significant in any of the subgroups.  

3.3 Other significantly associated breast cancer risk 

alleles 

(i) Chromosome 16 region polymorphism: Two GWASs independently 

identified rs3803662 to be associated with breast cancer risk (12, 16). This 
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polymorphism is located at chromosome 16q12, 8 kb upstream of the TNRC9 and 

the hypothetical gene LOC643714. It has been shown that the TNRC9 gene 

contains a high mobility group box motif, suggesting its role as a transcription 

factor (12). The expression of the gene has been implicated in the metastasis of 

breast cancer to bone (77). Based on p-values, rs3803662 was the second most 

statistically significant SNP in our study population (p-value 1.13×10-5, FDR 

1.58×10-4) with an OR (95% CI) of 1.29 (1.15–1.44) conferring disease risk 

(Table 3.1). The SNP showed strong association with ER+ (p-value 1.17×10-3, OR 

1.23), PR+ (p-value 5.93×10-3, OR 1.20) and Her2- (p-value 1.45×10-3, OR 1.23) 

(Table 3.2). 

(ii) Chromosome 8 region polymorphism: Polymorphism rs13281615 lies 

in the 8q24 chromosomal region with no flanking annotated gene regions. This 

8q24 region has been previously implicated in prostate cancer (31, 32). Easton et 

al. (12) were the first to show the association of rs13281615 with breast cancer 

susceptibility. In our study cohort, this variant was statistically significant (p-

value 3.52×10-4, FDR 1.09×10-3). The OR (95% CI) of 1.21 (1.09–1.34) of the 

minor allele indicated disease risk (Table 3.1). Variant from rs13281615 also 

showed strong association with ER+ (p-value 7.20×10-4, OR 1.22), PR+ (p-value 

1.02×10-3, OR 1.22), and Her2- (p-value 1.22×10-3, OR 1.21) (Table 3.2). 

(iii) Chromosome 3 region polymorphism: A polymorphism rs4973768, 

located in chromosome 3p24, was identified in the flanking region of the gene 
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encoding solute carrier family 4, sodium bicarbonate cotransporter, member 7 

(SLC4A7), showing an association with breast cancer risk (11). SLC4A7 is known 

to be a transporter of bicarbonate (HCO3
-), which plays a key role in the 

regulation of pH in the body. Chen et al. (78) suggested that SLC4A7 is a tyrosine 

kinase substrate with decreased expression in cultured breast cancer cells. We 

observed that rs4973768 was significantly associated (p-value 0.005, FDR 0.012) 

in the overall association analysis with an OR (95% CI) of 1.16 (1.05–1.29) and 

the minor allele conferring risk (Table 3.1). This polymorphism also showed 

association with ER+ (p-value 0.008, OR 1.17), PR+ (p-value 0.009, OR 1.18) and 

Her2- (p-value 0.013, OR 1.16) (Table 3.2). 

(iv) Chromosome 17 region polymorphism: rs2075555 located within 60 

kb of the collagen, type 1, alpha 1 (COL1A1) gene on the q arm of chromosome 

17 was shown to be associated with breast cancer risk in a family-based 

association study (15). In our study cohort, we observed a marginal statistical 

significance of rs2075555 (p-value 0.023, FDR 0.05) in the overall association 

analysis. An OR (95% CI) of 1.19 (1.02–1.37) was indicative of risk effect 

conferred by minor allele (Table 3.1). This SNP did not show any association in 

the subgroup analysis. 

(v) Chromosome-X region polymorphism: The histone deacetylases 

(HDAC) genes are known to play a crucial role in cell cycle control, cell 

differentiation and histone assembly. HDAC1 and HDAC3 are also known to be 
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over-expressed in tumour cells (110). A direct association of HDAC8 from 

chromosome-X and breast cancer has not yet been established. Gold et al. (13) 

showed rs3012642 to be marginally associated with breast cancer across 

independent stages but not in their combined analysis. In our study cohort, 

rs3012642 was statistically significant (p-value 1.39×10-4, FDR 5.54×10-4). An 

OR of 1.71 (95% CI of 1.29–2.25) for the risk allele was observed in the overall 

association analysis (Table 3.1) but not in the subgroup analysis. 
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Table 3.1: Polymorphisms associated with breast cancer susceptibility in the 

women from Alberta 

rs1219648 FGFR2 10q26 7.071E-06 1.980E-04 1.27 (1.14-1.40) C 0.42 (14)

rs3803662 TNRC9 16q 1.129E-05 1.580E-04 1.29 (1.15-1.44) T 0.29 (12)

rs2981579 FGFR2 10q26 2.661E-05 2.483E-04 1.25 (1.12-1.38) A 0.43 (14)

rs2420946 FGFR2 10q26 2.937E-05 2.056E-04 1.25 (1.12-1.38) T 0.42 (14)

rs2981582 FGFR2 10q26 5.323E-05 2.981E-04 1.24 (1.12-1.37) T 0.41 (12)

rs11200014 FGFR2 10q26 8.517E-05 3.975E-04 1.23 (1.11-1.36) T 0.42 (14)

rs3012642 PHKA/HDAC8 Xq13.1 1.386E-04 5.544E-04 1.71 (1.29-2.25) C 0.04 (13)

rs889312 MAP3K1 5q 1.760E-04 6.159E-04 1.24 (1.11-1.38) G 0.30 (12)

rs13281615 8q 8q 3.517E-04 1.094E-03 1.21 (1.09-1.34) C 0.43 (12)

rs4415084 5p12 5p12 1.221E-03 3.420E-03 1.19 (1.07-1.31) T 0.43 (17)

rs4973768 SLC4A7 3p24 5.073E-03 1.291E-02 1.16 (1.05-1.29) A 0.49 (11)

rs10941679 5p12 5p12 5.249E-03 1.225E-02 1.18 (1.05-1.32) C 0.27 (17)

rs2075555 COL1A1 17 2.324E-02 5.005E-02 1.19 (1.02-1.37) T 0.14 (15)

rs2067980 MRPS30 5p12 4.976E-02 9.952E-02 1.15 (1.00-1.32) C 0.16 (18)

MA MAF RefdbSNP ID Associated genes Chr χ 2 p  FDR OR (95%  CI)

 

FGFR2, fibroblast growth factor receptor 2; TNRC9, trinucleotide repeat 

containing 9; PHKA1, phosphorylase kinase, alpha 1; HDAC8, histone 

deacetylase 8; MAP3K1, mitogen activated protein kinase kinase kinase 1; 

SLC4A7, solute carrier family 4, sodium bicarbonate cotransporter, member 7; 

COL1A1, collagen, type 1, alpha 1; MRPS30, mitochondrial ribosomal protein 

S30; Chr, chromosome; χ2, chi-square; FDR, false-discovery rate; OR, odds ratio; 

CI, confidence interval; MA: minor allele; MAF, minor allele frequency. 
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Table 3.2: Subgroup analysis of polymorphisms based on the hormone receptor 

status in the women from Alberta 

 

χ 2 p OR (95%  CI) χ 2  p OR (95%  CI) χ 2 p OR (95%  CI)

rs1219648 FGFR2 1.08E-05 1.29 (1.15,1.45) 1.65E-05 1.30 (1.15,1.46) 3.28E-05 1.28 (1.14,1.43) (14)

rs2420946 FGFR2 2.22E-05 1.28 (1.14,1.43) 3.99E-05 1.28 (1.14,1.44) 1.18E-04 1.25 (1.12,1.41) (14)

rs2981579 FGFR2 4.74E-05 1.26 (1.13,1.42) 2.93E-05 1.29 (1.14,1.45) 9.81E-05 1.26 (1.12,1.41) (14)

rs2981582 FGFR2 6.13E-05 1.26 (1.13,1.41) 9.90E-05 1.27 (1.12,1.43) 3.60E-04 1.23 (1.10,1.39) (12)

rs11200014 FGFR2 1.09E-04 1.25 (1.12,1.40) 7.24E-05 1.27 (1.13,1.43) 3.69E-04 1.23 (1.10,1.38) (14)

rs4415084 5p12 3.52E-04 1.23 (1.10,1.38) 1.23E-03 1.22 (1.08,1.37) 4.27E-03 1.18 (1.05,1.33) (17)

rs13281615 8q 7.20E-04 1.22 (1.09,1.37) 1.02E-03 1.22 (1.08,1.38) 1.22E-03 1.21 (1.08,1.36) (12)

rs889312 MAP3K1 8.28E-04 1.23 (1.09,1.39) 4.59E-03 1.20 (1.06,1.37) 2.04E-03 1.22 (1.07,1.38) (12)

rs3803662 TNRC9 1.17E-03 1.23 (1.08,1.39) 5.93E-03 1.20 (1.05,1.37) 1.45E-03 1.23 (1.08,1.39) (12)

rs4973768 SLC4A7 8.08E-03 1.17 (1.04,1.31) 8.62E-03 1.18 (1.04,1.33) 1.26E-02 1.16 (1.03,1.30) (11)

rs10941679 5p12 1.03E-02 1.18 (1.04,1.34) 3.15E-02 1.16 (1.01,1.32) 3.94E-02 1.14 (1.01,1.30) (17)

rs3012642 PHKA1 2.58E-02 1.42 (1.04,1.95) 2.19E-02 1.46 (1.05,2.01) 1.73E-04 1.77 (1.31,2.39) (13)

rs7716600 MRPS30 3.97E-02 1.15 (1.01,1.32) 3.90E-02 1.16 (1.01,1.34) 1.89E-01 1.10 (0.96,1.26) (18)

dbS NP ID Genes
ER+ vs  Controls PR+ vs  Controls Her2- vs  Controls

Ref

 

FGFR2, fibroblast growth factor receptor 2; TNRC9, trinucleotide repeat 

containing 9; PHKA1, phosphorylase kinase, alpha 1; HDAC8, histone 

deacetylase 8; MAP3K1, mitogen activated protein kinase kinase kinase 1; 

SLC4A7, solute carrier family 4, sodium bicarbonate cotransporter, member 7; 

MRPS30, mitochondrial ribosomal protein S30; Chr, chromosome; ER, estrogen 

receptor; PR, progesterone receptor; Her2, human epidermal growth factor 

receptor 2; χ2, chi-square; FDR, false-discovery rate; OR, odds ratio; CI, 

confidence interval. 

80 



 
Table 3.3: SNPs not significant from among the selected polymorphisms (28 

MRPS30, mitochondrial ribosoma

SNPs) in the women from Alberta 

l protein S30; TLR1/TLR6, toll-like receptor 

1/6; RAD51L1, RAD51-like 1 (S. cerevisiae); A2BP1, ataxin-2-binding protein 1; 

 

rs7716600 MRPS30 5p12 8.14E-02 1.52E-01 1.12 (0.99-1.27) T 0.23 (18)

rs7696175 TLR1 /TLR6 4p 1.14E-01 2.00E-01 0.92 (0.83-1.02) T 0.45 (14)

rs11249433 1p11.2 1p11.2 1.50E-01 2.47E-01 1.08 (0.97-1.20) G 0.41 (18)

rs13387042 2q35 2q35 3.23E-01 5.02E-01 0.95 (0.86-1.05) C 0.48 (16)

rs999737 RAD51L1 14q24.1 3.25E-01 4.79E-01 0.94 (0.83-1.06) T 0.22 (18)

rs7203563 A2BP1 16p 4.23E-01 5.92E-01 1.07 (0.91-1.27) C 0.10 (13)

rs17157903 RELN 7q 5.21E-01 6.95E-01 1.05 (0.90-1.22) T 0.13 (14)

rs6504950 STXBP4 17q23 6.10E-01 7.76E-01 0.97 (0.86-1.09) A 0.27 (11)

rs1978503 FLJ45743 18 6.71E-01 8.17E-01 1.03 (0.90-1.17) G 0.18 (15)

rs6569479 ECHDC1 /RNF146 6q22.33 6.75E-01 7.88E-01 1.03 (0.91-1.15) A 0.25 (13)

rs3817198 LSP1 11p 6.85E-01 7.68E-01 1.02 (0.92-1.14) C 0.32 (12)

rs2180341 ECHDC1 /RNF146 6q22.33 6.99E-01 7.53E-01 1.02 (0.91-1.15) C 0.25 (13)

rs6569480 ECHDC1 /RNF146 6q22.33 7.17E-01 7.44E-01 1.02 (0.91-1.15) T 0.25 (13)

rs1926657 ABCC4 13 8.51E-01 8.51E-01 1.01 (0.88-1.16) A 0.17 (15)

dbSNP ID Associated genes Chr χ 2  p  FDR OR (95%  CI) MA MAF Ref

RELN, reelin; STXBP4, syntaxin binding protein 4; FLJ45743 (hypothetical 

protein); ECHDC1/RNF146, enoyl Coenzyme A hydratase domain containing 

1/ring finger protein 146; LSP1, lymphocyte-specific protein 1; ABCC4, ATP-

binding cassette sub-family C member 4; Chr, chromosome; χ2, chi-square; FDR, 

false discovery rate; OR, odds ratio; CI, confidence interval; MA, minor allele; 

MAF, minor allele frequency. 
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3.4 Discussion 

Inter-individual variations in germ-line DNA contributes to several 

nd disease. In general, allele frequency differences are more 

prominent in geographically distinct populations. Therefore, it is important to 

investig

reast cancer, and for each, explored the association with that 

published SNP or one of its neighbouring SNPs known to be in strong correlation 

with the published SNPs (8). In their study, all 13 SNPs genotyped showed 

phenotypes in health a

ate the relevance of reported breast cancer susceptibility variants within 

specific populations. Few studies have considered validation of initial GWAS 

findings from the literature as an integral part of their study (18, 19) and few other 

studies have exclusively validated a subset of GWAS SNPs from a specific gene 

region (107-109, 111). However, in our study we selected the most promising 

SNPs from the published literature for an independent, geographically confined 

confirmation. Our study cohort included 1439 breast cancer cases and 1536 

controls from women in Alberta, Canada, and is the first study to report the 

polymorphisms associated with breast cancer in the Canadian population. 

Although 1028 breast cancer subjects and 329 control subjects from the Ontario 

Familial Breast Cancer Registry were part of a large-scale study (11), the 

population subset was not individually analysed for their association with the 

polymorphisms. 

A recent GWAS has validated 13 SNPs previously reported to be 

associated with b
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signific

orphisms 

with breast cancer risk has been documented and tumours with the receptor 

profiles

ant association with breast cancer risk, with SNPs from the FGFR2 gene 

region showing the strongest associations. Our study included these SNPs (except 

rs10931936, from CASP8 gene (20)) and also included 16 other SNPs from 

GWASs for validation (13-15, 17, 18), totalling 28 SNPs in our study.  

The FGFR2 gene is over-expressed in a small subset of breast cancers (70) 

and is known to play a critical role in mammary gland development and 

tumourigenesis in mice (71). In addition, association of FGFR2 polym

 that were mainly ER+ and PR+ were overrepresented (11, 16, 17, 26, 112), 

while Her2- tumours were underrepresented (109). Two independent studies have 

shown polymorphisms in intron 2 of the FGFR2 gene region to be associated with 

breast cancer (12, 14). Fine mapping showed that eight SNPs are in strong LD 

spanning a 7.5 kb region (12). Functional analysis revealed that the minor allele of 

rs2981578 and major allele of rs7895676 tightly bind the Oct-1/Runx2 and 

C/EBPβ transcription factors, respectively, leading to over-expression of FGFR2 

gene (72). Runx2 forms a complex with the ubiquitous transcription factor Oct-1 

that is known to play an important role in mammary gland-specific expression 

(73, 74). Udler et al. (113) performed a joint analysis of FGFR2 polymorphism 

data from African-American, European and Asian populations to search for the 

most commonly conserved polymorphisms as an approach to identify the 

causative allele(s); up-regulation of expression of FGFR2 in breast cancer was 

correlated with chromatin structure (DNAseI hypersensitive sites), and it was 
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reasoned that the presence of SNP rs2981578 within this accessible region of 

chromatin was a plausible mechanism to explain breast carcinogenesis. While 

unequivocal evidence for FGFR2 as a causative locus in breast cancer is awaited, 

FGFR2 has been validated in several independent studies, over diverse genetic 

backgrounds and differing ethnicities. Most studies show a strong association in 

the overall and/or subgroup analyses and support an association in Caucasians (8, 

18, 109), Sephardi Jews (107), Ashkenazi Jews (13, 107), and the Chinese 

population (19), although in Arab Israeli (107) and African-American (109) 

women FGFR2 SNPs were not significantly associated with breast cancer. SNPs 

in intron 2 of the FGFR2 gene region have consistently showed statistical 

significance in Caucasian populations and our results supported these findings. 

Initial findings showed that rs4415084 (p-value 1.8×10-11) and rs10941679 

(p-value 2.5×10-12) from chromosome 5 were strongly associated with ER+ breast 

cancer cases of European ancestry (17). Validation of SNPs in a subsequent whole 

genome study with women from European ancestry also yielded similar results in 

the overall analysis (rs4415084: p-value 4.53×10-5; rs10941679: p-value 5.50×10-

3) (18). We confirmed this association in our Caucasian population and observed 

associations in the same direction for the overall, ER+, PR+ and Her2- subgroup 

analyses. Others report that both SNPs in African-American women confer little 

risk, in that rs4415084 was marginally associated with breast cancer in the overall 

analysis (p-value 0.06) and ER+ receptor status (p-value 0.03) and rs10941679 

was not significant in the overall and subgroup analyses (108). In aggregate, it 
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appears that this association is more pronounced for women from European 

ancestry than for women from African ancestry. Another SNP from chromosome 

5, rs2067980, was only marginally significant in our study cohort and did not 

show any association with receptor status.  

MAP3K1 polymorphism rs889312, located on chromosome 5q, showed 

high statistical significance in the original association study (p-value 7×10-20) in 

women from European ancestry (12). The MAP3K1 gene product plays a crucial 

role in cellular signalling by responding to fibroblast growth factor 2 (FGF2) and 

activati

714 genes 

consistently showed a strong association of rs3803662 with breast cancer risk 

(12). V

ng the MAPK/Erk pathway (109). Validation of the SNP in women from 

European ancestry confirmed the initial findings with a p-value 4.6×10-9 (8). 

Independent validation of this SNP showed an association based on receptor 

status in African-American women, but failed to show an association in 

European-American (Caucasian ancestry) women (109). In our Alberta cohort 

(predominantly Caucasian), we observed rs889312 to be associated with breast 

cancer susceptibility in both overall and subgroup association analyses. 

The TNRC9 locus SNP rs3803662, located on chromosome 16q12, was 

shown to be highly significant in two independent studies (12, 16). Fine mapping 

of the tagSNPs representing the variants in entire TNRC9 and LOC643

alidation of the SNP in women from European ancestry also showed high 

statistical significance in two GWASs: p-value 1.11×10-9 (18) and p-value 3.2×10-

85 



 
15 (8). On the contrary, validation of this polymorphism in two different studies in 

Chinese population yielded marginal significance (p-value 0.012) in one study 

(19) and did not show any association in another study (114). Consistent with the 

original findings in the Caucasian population, we observed statistical significance 

in the Alberta population for this polymorphic variant in the overall association 

analysis and also when stratified by receptor status (subgroup analysis). 

Ahmed et al. (11) showed that polymorphism rs4973768, in the proximity 

of the SLC4A7 gene, was highly significant (p-value 4.1×10-23). This gene plays a 

critical role in the regulation of cellular pH balance and its down-regulation in 

breast cancer cells was correlated with tumour progression (78). Validation of the 

SNP in

ing the association 

of this SNP in our study population, which was predominantly of Caucasian 

origin. 

 a recent GWAS with women of European ancestry showed a strong 

association (p-value 5.8×10-7) with disease risk (8) and we also confirmed the 

association of this SNP in our population (p-value 5.07×10-3).  

The chromosome-X SNP, rs3012642 was originally shown to be only 

marginally statistically significant in multi-stage study design (and not in the joint 

analysis) in Ashkenazi Jews (13). We were interested in evaluat

Although it was found to be highly significant, this SNP deviated from 

HWE both in cases (HWE p-value 3.67×10-72) and in controls (HWE p-value 

2.86×10-39), suggesting that it is undergoing shifts in population frequency and/or 

may harbour copy number alterations. The observed HWE deviation was more 

86 



 
pronounced in cases than in controls. This polymorphism also exhibited low MAF 

(0.03 both in our study cohort and Ashkenazi Jews). This region warrants further 

investigation using a larger cohort; interrogation of copy number aberrations in 

this region may offer additional insights.  

Easton et al. (12) previously showed that polymorphism rs13281615 from 

chromosome 8 (undefined gene) was highly associated (p-value 5×10-12) with 

breast cancer risk. Consistent with the initial findings, validation of this SNP in 

women of European ancestry in two other studies also showed high statistical 

signific

alidation was its inclusion in the GWAS karyogram offered by 

HapMap website (57). It was shown that high stromal collagen in the mammary 

tissue o

risk for 14 of the 28 SNPs reported in the original studies; the risk estimates were 

ance in breast cancer susceptibility (p-value: 3×10-5 (115) and 2.2×10-5 

(8)). We observed a similar association (p-value of 3.5×10-4, Table 3.1) in our 

study cohort.  

A family-based association study identified rs207555 to be associated (p-

value 8.3×10-8) with breast cancer susceptibility (15). The reason for considering 

the SNP for v

f mice increases the risk of breast cancer (116, 117). This is the first study 

to validate the SNP in the context of breast cancer, as it showed a marginally 

significant association in the overall analysis. 

In summary, we verified the significant associations with breast cancer 
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of similar magnitude and were concordant in direction. The strongest associations 

were exhibited by SNPs from intron 2 of the FGFR2 gene region, which was 

concordant with the original reports and other validation studies. We could not 

validate the remaining SNPs from published association studies in our Alberta 

population, presumably due to limitations in the sample size, disease 

heterogeneity or some, as yet, unidentified fine population-specific differences. 

Due to the importance of understanding the multifactorial contributions to breast 

cancer risk, the remaining SNPs warrant further study by independent groups and 

in other populations. 
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4 Association analysis of select markers from whole 

genome scan – a replication studyb 

We performed a two-stage association study on cohorts from Alberta, 

Canada, to identify potential novel loci associated with breast cancer 

susceptibility. Whole genome association analysis from Stage I enabled us to 

identify a subset of markers with nominal p-values (<0.05) that showed 

association with the disease trait (Appendix A). As this subset of markers may 

also include several false associations, we attempted to replicate these primary 

findings by testing them on an independent cohort with higher sample sizes than 

in Stage I. We selected the markers for replication from Stage I in a systematic 

manner proposed by Zheng et al. (19). We selected 35 SNPs for replication in 

Stage II with a completely independent series of 1153 cases and 1215 controls. 

Association analysis and tests of significance were carried out independently for 

Stage II and in combined samples for Stages I and II. The joint analysis consisted 

of a total of 1455 breast cancer cases and 1536 controls obtained by combining 

the samples from two stages of the study.  

Genotyping was done using the Sequenom Mass-ARRAY iPlex platform 

for Stage II samples. As a quality control measure, the Stage I samples were re-

genotyped on the Sequenom platform to evaluate the genotype concordance 
                                                 
b A version of this chapter has been submitted for publication.  
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between the platforms (Affymetrix versus Sequenom), prior to replication of 

select markers in an independent cohort (Stage II). The SNPs that were 

statistically significant (p <0.001) in Stage I on the Affymetrix platform and those 

that were selected for replication were re-genotyped in 647 samples (326 cases 

and 321 controls) on the Sequenom Mass-ARRAY iPlex platform. We observed 

high mean genotype concordance rates of 95% between these two genotyping 

platforms. To assess the genotype concordance within the Sequenom platform, 

132 replicate samples (67 cases and 65 controls) were randomly distributed in 

each of the 96-well plate assays. The mean genotype concordance rate of the 

replicates was again high at 98.6%. 

4.1 Replication of markers (Stage II)  

In Stage II, we genotyped 35 SNPs using Sequenom Mass-ARRAY iPlex 

technology in independent case and control subjects (1153 cases and 1215 

controls). We identified 10 of the 35 SNPs from Stage I as significant (p <0.05) in 

the Stage II samples (Tables 4.1 and 4.2). We also performed a joint analysis 

which is considered the best way to confer power and confidence in the results, as 

well as to address the possible sampling bias and inherent heterogeneity of breast 

cancer as a phenotype (118). The joint analysis consisted of a total of 1455 breast 

cancer cases and 1536 controls obtained by combining the samples from the two 

stages of the study. Of the 10 SNPs that were significant in the replication (Stage 

II) sample set, seven SNPs retained statistical significance in the joint analysis 
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(Table 4.1). Polymorphisms rs9644134 and rs7119677 in the intronic regions of 

orf80 and orf141 from chromosomes 8 and 11, respectively, showed significance 

in the individual stages but not in the joint analysis. Three SNPs from 

chromosomes 8, 9 and 11 (rs6997395, rs6478296 and rs9630178) showed 

significance in Stage I and not in Stage II; however, these three SNPs retained 

overall significance in the joint analysis (Table 4.2). Table 4.1 also lists the OR, 

95% confidence interval (CI), false discovery rate (FDR), SNP call rate and MAF 

obtained from joint analysis.  

The association of rs3935234 present on chromosome 20p11.21 was the 

strongest (p-value 1.81×10-12, FDR 6.33×10-11) of the markers in this study, and 

also was the only polymorphism with genome-wide significance (Bonferroni p-

value <6.33×10-11). An OR of 0.69 (95% CI of 0.62–0.77) of the minor allele G 

indicated reduced risk. The other polymorphisms with high significance (10-4 to 

10-6) in joint analysis and conferring risk for breast cancer are in chromosomes 4, 

5, 16 and 19. Of these, rs1092913 is located on chromosome 5p15.2 (p-value 

1.89×10-6, FDR 3.30×10-5, OR (95% CI) 1.45 (1.24–1.69)), with the ropporin-1 

like (ROPN1L) gene present 2.5 kb downstream of the polymorphism; the three 

SNPs present on chromosome 19q13.33, ZNF577 (zinc finger protein 577) gene 

are (i) rs10411161 (p-value 7.09×10-6, FDR 8.27×10-5) located in the 3′ 

untranslated region (UTR; 2.8 kb downstream of the stop codon, Goldenpath-hg 

18/db SNP build 130); (ii) rs3848562 (p-value 9.23×10-6, FDR 8.08×10-5); and 

(iii) rs11878583 (p-value 1.35×10-4, FDR 9.45×10-4) located in the introns 6 and 
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2, respectively. We observed ORs (95% CI) of 1.42 (1.22–1.65), 1.42 (1.22–1.66), 

1.35 (1.16–1.57), respectively, for the three ZNF577 SNPs. The sixth SNP, 

rs1429142 is located on chromosome 4q31.23 (p-value 3.60×10-4, FDR 2.10×10-

3), with EDNRA (endothelin receptor type A) gene present approximately 112.5 

kb downstream of the polymorphism. An OR of 1.27 (95% CI of 1.11–1.45) was 

noted for the minor allele C. Lastly, rs1981867 located on chromosome 16q23.2 

showed satisfactory statistical significance in Stage I (p-value 3.7×10-4) and in 

joint analysis (p-value 4.32×10-4, FDR 2.16×10-3) but showed only marginal 

significance in Stage II (p-value 0.03). An OR of 1.22 (95% CI of 1.09–1.36) for 

the minor allele A was noted.  
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Table 4.1: Seven novel loci showing consistent association with breast cancer in 

both stages of the study 

 

rs3935234 20p11.21 C20orf56 93 kb DS 7.80E-11 1.81E-12 6.33E-11 0.69 (0.62,0.77) G 0.43

rs1092913 5p15.2 ROPN1L 2.5 kb DS 2.17E-04 1.89E-06 3.30E-05 1.45 (1.24,1.69) T 0.13

rs10411161 19q13.33 ZNF577 3' UTR 6.16E-04 7.09E-06 8.27E-05 1.42 (1.22,1.65) T 0.13

rs3848562 19q13.33 ZNF577 Intron 9.78E-04 9.23E-06 8.08E-05 1.42 (1.22,1.66) C 0.12

rs11878583 19q13.33 ZNF577 Intron 7.59E-03 1.35E-04 9.45E-04 1.35 (1.16,1.57) C 0.13

rs1429142 4q31.23 EDNRA 112 kb US 1.28E-02 3.59E-04 2.10E-03 1.27 (1.11,1.45) C 0.18

rs1981867 16q23.2 C16orf61 85.9 kb DS 3.17E-02 4.32E-04 2.16E-03 1.22 (1.09,1.36) A 0.31

dbSNP rs# Chr AG RL Stage2 χ2 p

Joint analysis

χ 2  p FDR OR (95%  CI) MA MAF

 

Chr, chromosome; AG, associated genes; C20orf56, chromosome 20 open reading 

frame 56; ROPN1L, ropporin-1 like; ZNF577, zinc finger 577; EDNRA, 

endothelin receptor A; C16orf61, chromosome 16 open reading frame 61; RL, 

relative location; kb, kilobases; UTR, untranslated region; DS, downstream; US, 

upstream; χ2, chi-square; FDR, false-discovery rate; OR, odds ratio; CI, 

confidence interval; MA, minor allele; MAF, minor allele frequency. 
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Table 4.2: Polymorphisms not significant in Stage II or in joint analysis 

 
 

rs6478296 9q33.1 ASTN2 1.91E-01 2.74E-03 1.20E-02 0.85 (0.77,0.95) C 0.41

rs6997395 8q22.1 PTDSS1/SDC2 1.61E-01 5.46E-03 2.12E-02 0.86 (0.77,0.96) C 0.30

rs9630178 11p12 LRRC4C /RAG2 1.68E-01 5.47E-03 1.91E-02 1.25 (1.07,1.47) G 0.12

rs10506269 12q13.11 AMIGO2 /SLC38A4 3.44E-01 1.50E-02 4.76E-02 0.81 (0.69,0.96) G 0.10

rs1059307 6q14.3 SNHG5 2.99E-01 1.76E-02 5.15E-02 0.88 (0.80,0.98) G 0.47

rs7908500 10q26.13 OAT /CHST15 7.00E-01 3.20E-02 8.62E-02 1.12 (1.01,1.25) C 0.38

rs2080976 5q34 ODZ2 5.43E-01 3.70E-02 9.25E-02 1.12 (1.01,1.25) A 0.35

rs7099921 10p13 OPTN /CCDC3 6.12E-01 3.84E-02 8.96E-02 1.15 (1.01,1.31) G 0.22

rs2546513 12q15 NUP107 6.08E-01 4.34E-02 9.50E-02 0.89 (0.80,1.00) G 0.29

rs10794182 10q26.13 OAT /CHST15 9.09E-01 6.02E-02 1.24E-01 1.11 (1.00,1.23) G 0.38

rs11138489 9q21.31 TLE1 /TLE4 9.63E-01 7.08E-02 1.38E-01 0.87 (0.75,1.01) A 0.13

rs8075722 17p13.3 OR3A2 /OR1D5 9.43E-01 8.16E-02 1.50E-01 1.17 (0.98,1.38) A 0.10

rs11195949 10q25.2 ACSL5 9.68E-01 1.22E-01 2.14E-01 0.92 (0.83,1.02) T 0.50

rs11257153 10p14 USP6NL 9.23E-01 1.34E-01 2.23E-01 0.89 (0.77,1.04) A 0.15

dbSNP rs# Chr AG Stage2 χ 2p

Joint Analysis

χ 2  p FDR OR (95%  CI) MA MAF

 

 

 

Table 4.2 continued… 

 

94 



 

rs6493076 15q15.2 UBR1 9.79E-01 1.47E-01 2.34E-01 0.89 (0.75,1.04) A 0.11

rs6561682 13q14.3 LECT1 /SUGT1 6.03E-01 2.04E-01 3.11E-01 1.07 (0.96,1.20) G 0.31

rs1857434 9p21.3 MLLT3 /SLC24A2 8.88E-01 2.05E-01 2.99E-01 1.09 (0.95,1.25) G 0.18

rs1911864 5p14.3 GUSBL2 /CDH18 6.90E-01 2.09E-01 2.93E-01 1.07 (0.96,1.18) T 0.43

rs13299280 9q21.31 TLE1 /TLE4 6.60E-01 2.75E-01 3.70E-01 0.92 (0.80,1.07) G 0.15

rs6852237 4q35.1 DCTD /ODZ3 5.85E-01 3.27E-01 4.24E-01 1.05 (0.95,1.17) G 0.43

rs9644134 8p21.1 C8orf80 6.97E-03 3.64E-01 4.55E-01 1.05 (0.95,1.16) C 0.41

rs7119677 11p13 C11orf41 7.33E-03 4.00E-01 4.83E-01 1.05 (0.94,1.18) T 0.26

rs6991277 8q22.1 SDC2 /PTDSS1 3.99E-02 6.40E-01 7.47E-01 1.04 (0.89,1.20) C 0.13

rs8095374 18q21.1 C18orf25 1.07E-01 7.85E-01 8.86E-01 0.99 (0.89,1.09) A 0.47

rs12433708 14q23.2 PPP2R5E 1.79E-01 8.55E-01 9.35E-01 0.99 (0.85,1.14) A 0.15

rs268840 14q23.1 SLC35F4 /C14orf105 9.17E-02 9.12E-01 9.67E-01 0.99 (0.89,1.11) A 0.36

rs7818355 8q22.1 SDC2 /PTDSS1 8.64E-02 9.49E-01 9.77E-01 1.01 (0.86,1.17) G 0.12

rs1451991 8q21.13 LOC728643 /SNX16 1.25E-01 9.95E-01 9.95E-01 1.00 (0.88,1.14) G 0.19

MAF
dbSNP rs# Chr AG Stage2 χ p

χ 2  p FDR OR (95%  CI) MA
2

Joint Analysis

 

Chr, chromosome; AG, associated genes; ASTN2, astrotactin 2; 

PTDSS1/SDC2, phosphatidylserine synthase 1/Syndecan-2; LRRC4C/RAG2, 

leucine rich repeat containing 4C/recombination activating gene 2; 

AMIGO2/SLC38A4, adhesion molecule with Ig-like domain 2/solute carrier 

family 38, member 4; SNHG5, small nucleolar RNA host gene 5; OAT/CHST15, 

ornithine aminotransferase/carbohydrate (N-acetylgalactosamine 4-sulfate 6-O) 

sulfotransferase 15; ODZ2, odd Oz/ten-m homolog 2 (Drosophila); 

OPTN/CCDC3, optineurin/coiled-coil domain containing 3; NUP107, nucleoporin 

107kDa; TLE1/TLE4, transducin-like enhancer of split 1/4 (E(sp1) homolog, 

Drosophila) OR3A2/OR1D5, olfactory receptor, family 3, subfamily A, member 

2/olfactory receptor, family 1, subfamily D, member 5; ACSL5, acyl-CoA 
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synthetase long-chain family member 5; USP6NL, USP6 N-terminal like; UBR1, 

ubiquitin protein ligase E3 component n-recognin 1; LECT1/SUGT1, leukocyte 

cell derived chemotaxin 1/SGT1, suppressor of G2 allele of SKP1 (S. cerevisiae); 

MLLT3/SLC24A2, myeloid/lymphoid or mixed-lineage leukemia (trithorax 

homolog, Drosophila)/solute carrier family 24 (sodium/potassium/calcium 

exchanger), member 2; GUSBL2/CDH18, glucuronidase, beta-like 2/cadherin 18, 

type 2; DCTD/ODZ3, dCMP deaminase/odd Oz/ten-m homolog 3 (Drosophila); 

C8orf80, chromosome 8 open reading frame 80; C11orf41, chromosome 11 open 

reading frame 41; C18orf25, chromosome 18 open reading frame 25; PPP2R5E, 

protein phosphatase 2, regulatory subunit B', epsilon isoform; 

SLC35F4/C14orf105, solute carrier family 35, member F4/chromosome 14 open 

reading frame 105; LOC728643/SNX16, sorting nexin 16; χ2, chi-square; FDR, 

false-discovery rate; OR, odds ratio; CI, confidence interval; MA, minor allele; 

MAF, minor allele frequency. 
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4.2 Discussion 

Increasingly, assessing genetic risk in complex traits requires 

identification of multiple loci conferring risk and/or mining of the data in an 

integrated manner to identify potential gene–gene interactions that together may 

explain a higher proportion of risk than the single locus analysis (119, 120). This 

approach calls for identification of potential novel risk-associated SNPs, and their 

subsequent validation to improve the accuracy of genetic risk assessment models. 

We performed a whole genome analysis to identify novel markers (single locus 

analysis) associated with breast cancer, and confirmed several new loci in a larger, 

independent replication set of cases and controls.  

The conduct of our study was appropriate in that the sample size used in 

our Stage I GWAS (348 cases and 348 controls) closely matched those used in 

Stage I of earlier studies, e.g., 390 familial breast cancer cases and 364 controls 

used by Easton et al. (12) and 249 Ashkenazi Jew familial cases and 299 controls 

used by Gold et al. (13). Furthermore, this was only the second study, after Zheng 

et al. (19), to use high density Affymetrix SNP arrays (906,600 SNPs/array), 

which provides a vast physical coverage of the genome in an unbiased manner to 

identify markers associated with disease susceptibility. A precedent exists for 

using high-density SNP arrays to identify breast cancer susceptibility loci, and to 

subsequently replicate those identified variants in large cohorts (8, 11-19). The 

SNPs identified, so far, in GWASs including our study were largely surrogate 
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markers; fine mapping and independent validation studies are underway to 

identify causal variants. 

In this study we have identified polymorphisms in open reading frames 

associated with breast cancer: (i) rs3935234 in the vicinity of the open reading 

frame from chromosome 20 (C20orf56). C20orf56 found 93.2 kb downstream of 

rs3935234 was not previously implicated in breast cancer, but, Korkola et al. 

(121) showed that the expression of the gene has a strong predictive power for 

yolk sac non-seminomatous male germ-cell tumours. (ii) SNP rs1981867 in the 

open reading frame on chromosome 16 (C16orf61) showed significant association 

with breast cancer. C16orf61 gene has been shown to be associated with multi-

drug resistance (122). It has also been established that loss of heterozygosity in 

the q arm of chromosome 16 is a common genetic event in breast cancer resulting 

in copy number changes and sometimes the loss of the arm (76, 123, 124). This 

led to the speculation that the region may harbour tumour-suppressor genes (125). 

Easton et al. (12) and Stacey et al. (16) previously reported that rs3803662 

positioned on chromosome 16q showed association with breast cancer, in two 

independent GWAS. The identified SNP, rs1981867 in this study from 

chromosome 16 further emphasise the importance on this region in breast cancer. 

While these results and interpretations require larger scale studies and 

independent confirmation, repeated and independent observations by several 

research groups suggesting breast cancer risk related to these open reading frames 
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underscores the importance of this region. Functional characterisation of these 

variants is warranted. 

Zinc finger proteins are commonly involved in transcriptional regulation 

of genes. Tan et al. (126) have shown that C-terminal transcriptional repression 

domain of zinc finger protein ZBRK1 interacts with BRCA1 tumour suppressor 

gene to repress transcription. Previous linkage studies have shown that mutations 

in BRCA1 gene are a common event in early-onset, multiple-case breast cancer 

families (1). The C-terminal extension of ZNF577 shares sequence homology with 

ZBRK1 (127). It remains to be determined whether ZNF577 identified in our 

study also plays a role in transcriptional repression by binding to the BRCA1 

protein. We found three SNPs from ZNF577 gene region to be associated with 

disease susceptibility: rs10411161 found 2.8 kb downstream of the gene in the 3′ 

UTR and the other two markers rs3848562 and rs11878583 are present in the 

introns 2 and 6, respectively. ZNF577 has also been shown to be differentially 

expressed in tissues and cells (128). Similarly, a recent GWAS has shown a 

polymorphism rs10995190 located within the intron 4 of zinc finger protein 365 

(ZNF365) to be associated with breast cancer susceptibility (8). Further studies 

are required to understand the functional role of ZNF577.  

In a steady-state condition of the cell, endothelin receptor type A 

(EDNRA) coupled with endothelin-1 plays an important role in tissue 

differentiation and development, cell proliferation and hormone production (129). 
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Interestingly, constitutive co-expression of endothelin-1 growth factor and 

EDNRA often results in ovarian carcinoma (130), and also contributes to bone 

metastases in different primary tumours (131). Previous studies have shown that 

polymorphisms in EDNRA gene are associated with pulse pressure in myocardial 

infarction (132), idiopathic dilated cardiomyopathy (133) and hypertension (134). 

The EDNRA gene is located 112.5 kb upstream of the polymorphism rs1981867 

which might act as a surrogate marker to identify the causal variant associated 

with breast cancer susceptibility. 

The ROPN1L gene on chromosome 5p15.2 is present 2.5 kb downstream 

of the polymorphism rs1092913. There is no previous evidence on the association 

of the gene to breast cancer susceptibility. The ROPN1L gene encodes for a sperm 

protein known to interact with A-kinase anchoring protein (135). It is evident 

from previous GWAS that the p arm of chromosome 5 harbours several 

polymorphisms implicated in breast cancer susceptibility (17, 18). Also, Lowe et 

al. (136) showed that ROPN1L gene is highly expressed in pancreatic cancer 

when compared to the normal pancreatic tissues and other tumours in their 

dataset. Again, our results motivate further investigation in this gene. 

A future study will explore association of the reported polymorphisms to 

sub-phenotypes of breast cancer, i.e., receptor status. A preliminary analysis of 

the novel SNPs reported in this communication also showed association to ER+ 

breast cancers, an observation consistent with the previously characterized 
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polymorphisms from GWAS. Replication of our findings in Stage III in Albertan 

population and independent validation of these findings in cohorts elsewhere will 

help explore the biological relevance of these findings. 
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5 Conclusions and future work 

The post-genomic era has awakened the need to understand the genetic 

underpinnings of complex traits. A major role of geneticists is to associate 

phenotypes with genotypes. Familial clustering of breast cancer was evident with 

the identification of risk due to mutations of high penetrance in BRCA1 (1) and 

BRCA2 (2) tumour suppressor genes. Subsequently, certain genes of moderate 

penetrance such as ATM (6), CHEK2 (67), and PALB2 (5) were shown to indicate 

predisposition to breast cancer susceptibility. However, these genes account only 

for a small proportion of the genetic risk. Intensive research efforts to identify 

BRCA-like genes to explain the familial risk have not been successful (9, 10). 

Unlike single-gene disorders which follow a Mendelian pattern of inheritance, 

complex disorders are often caused by multiple interacting disease genes. This led 

Pharoah et al. (69) to propose the polygenic nature of disease susceptibility to 

explain the remaining risk in non-familial or sporadic breast cancer cases. This 

model enables identification of several common genetic variants that each 

individually confers only modest risk for the disease. The unexplained fraction of 

the disease heritability could possibly be explained by the low-penetrance 

variants. In addition, several confounding factors such as disease heterogeneity, 

environment, life-style, and low penetrance nature of the allele make the 

identification of disease causative genes more challenging.  
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Recent years have seen a rapid surge in the number of loci identified to be 

associated with breast cancer susceptibility. Some of these have been successfully 

replicated in the original study populations and/or validated in several other 

studies in different populations providing confirmation of the initial findings. 

Some of the reasons for rising success in the replication of the findings are the 

accuracy of genotype calling by various genotyping platforms and the highly 

evolved quality control measures applied to datasets to filter out polymorphisms 

that showed strong association with the disease in initial studies. 

Over the past three years, there have been ten major whole genome studies 

identifying risk alleles associated with breast cancer risk (8, 11-19). Most of these 

studies were conducted in women of European ancestry with the exception of two, 

which investigated risk alleles in Chinese (19) and Ashkenazi Jewish (13) 

populations. The women of European ancestry included in the earlier studies were 

mostly affected and unaffected individuals from Europe and USA. There is no 

known study with the exclusive emphasis on gaining insight into the genetic 

architecture of a complex disease such as breast cancer in Canadian population. 

Although a majority of the Canadian population have a European ancestry, it is 

reasonable to assume that the exposure to different environmental and life-style 

factors has an impact on disease predisposition. It is of interest to explore the 

allelic architecture of an ethnically defined Canadian population (Province of 

Alberta). The work summarized in this thesis is an initial step to reach the 

ultimate goal of obtaining the allelic architecture of susceptibility to breast cancer. 
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This thesis has presented the results of screening the most abundant 

genetic polymorphism (SNPs) in the genome in the context of breast cancer 

phenotype. The study reported here represents the 11th GWAS in the literature and 

9th one from the Caucasian study population, and the first independent GWAS in 

Canada as well as in Alberta. There were two main objectives of the research 

described in this thesis: 

5.1 Validation of candidate polymorphisms 

Many SNPs have been identified by GWAS to be associated with breast 

cancer risk and subsets of them have been replicated and/or validated in different 

populations. One of the objectives of this thesis was to seek relevance of the 

reported risk alleles from whole genome scans to our study population in a case–

control setting.  

We genotyped 28 SNPs previously identified in the literature from GWAS 

in 1439 breast cancer cases and 1536 from women predominantly of Caucasian 

origin. An overall case–control association analysis showed significant 

associations for 14 of the 28 SNPs with breast cancer risk in our study population. 

The direction of odds ratio (>1) of all significant SNPs indicated that the minor 

allele of the SNP conferred risk to disease susceptibility. The strongest 

associations were found with SNPs from intron 2 of the FGFR2 gene region, 

which helps confirm original findings and other validation studies. Due to the 
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potentially different genetic underpinnings of breast cancer subtypes, we 

conducted an independent subgroup analysis based on the case receptor status – 

ER+, PR+ and Her2-. We confirmed that a majority of SNPs/loci – FGFR2, 5p12, 

8q, TNRC9, SLC4A7, MAP3K1 and HDAC8 – interrogated showed strong 

association with breast cancer phenotypes exhibiting ER+, PR+ and Her2- receptor 

status.  

A recent study evaluated the effect size (“ES=−2β2f(1-f), where the 

coefficient β measures the regression effect of the locus per copy of the variant 

allele, and f denotes the MAF” as defined by Park et al. (119)) and the power of 

five breast cancer susceptibility variants based on OR and MAF of the initial 

study and determined the expected number of loci yet to be identified for a given 

power and effect size. The effect sizes of the five SNPs (rs3817198, rs13281615, 

rs3803662, rs2981582 and rs889312) were in the range of 0.002–0.025 and power 

of the study in the range of 0.010–0.930. Four out of the five SNPs reported in the 

literature showed association with breast cancer in our study population. The 

SNPs reported as having high effect size and statistical power were the ones that 

we could readily replicate. The SNPs that showed replication in only one stage 

have to be evaluated at a higher sample size in future as these may potentially 

represent the low effect size as defined by Park et al. (119) or owing to disease 

heterogeneity or even some yet to be identified fine population-specific 

differences.  
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Having characterized our cohort for reproducibility of findings from the 

reported GWASs, we designed an independent GWAS using the same set of cases 

and controls from Alberta to detect additional (novel) associations that may have 

been missed by others. 

5.2 Replication study and joint analysis 

Considering several large sample size studies have identified susceptibility 

alleles from different gene regions, the effect size of each of the variants is small. 

A few GWASs may not be sufficient to identify most of the risk alleles. 

Therefore, it is of continuing importance to explore the full spectrum of breast 

cancer susceptibility loci by conducting GWASs in women of European ancestry 

and ethnically diverse populations. Our second objective was to replicate subset 

of markers identified from our preliminary analysis, i.e., ones not previously 

reported in the literature (11-19), in independent cohorts. 

We performed a two-stage association study in a cohort of 3064 women 

from Alberta to identify novel loci associated with breast cancer susceptibility. In 

Stage I of our association study, we genotyped 348 breast cancer cases and 348 

control subjects using an Affymetrix SNP 6.0 array featuring 906,600 SNPs. The 

dataset was subjected to stringent SNP and sample quality control measures and 

the SNPs that adhered to the requirements were included in the subsequent 

analysis. Overall allelic and haplotype association analyses were carried out in the 
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enriched dataset. Based on stringent selection criteria, 35 markers were selected 

for replication in the subsequent stage. In Stage II, we attempted to replicate the 

35 significant markers in an independent study of 1153 cases and 1215 controls. 

Genotyping was carried out using the Sequenom iPlex technology. An allelic 

association analysis – individually for Stage II and joint analysis (combining all 

samples) – was performed to determine associations with the disease. We 

identified seven loci from five different gene regions (chromosomes 4, 5, 16, 19 

and 20) that showed statistically significant differences between cases and 

controls in both Stage I and Stage II testing, and also in joint analysis. Although 

these loci have been independently replicated within this study, they warrant 

further evaluation in larger studies both within Alberta and in other populations.  

5.3 Recommendations for future work 

This study identified a number of possible directions for future work. 

Some of these are as follows: 

(i) Replication of the markers (Stage III) in yet another independent set of cases 

and controls would provide confirmatory evidence of the current findings. 

Repeat testing of association in a larger sample size and conducting a joint 

analysis will enhance the power of the study and accuracy of the results. This 

would give a pointer to select the candidate polymorphisms for fine mapping 

studies. Performing a subgroup analysis based on subphenotypes of breast 
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cancer will provide additional insights into the molecular basis of the disease. 

Since receptor status is both a prognostic and predictive factors and holds 

direct relevance to specific treatments, stratifying cases based on different 

combinations of receptor status such as (ER+, PR+, Her2-), (ER+, PR+, Her2+), 

(ER-, PR-, Her2+), and (ER-, PR-, Her2-) will help identify novel markers 

missed in overall association analysis.  

(ii) Apart from genotyping common variants, it is essential to genotype rare 

variants which are not generally interrogated in the available whole genome 

arrays. Identifying and acquiring information on both common and rare 

variants will help fill in the missing gaps in genetic heritability information of 

the disease. It will enable us to choose candidate polymorphisms (strongly 

associated with breast cancer) with high precision for functional studies. 

(iii) It may be valuable to consider gene expression signatures in the candidate 

polymorphisms selection process. This strategy is largely justified when a 

given SNP or haplotype is present in the promoter and/or 3' UTR of the gene. 

These regions play a critical role in the initiation of transcription and stability 

of mRNA, respectively. This approach would give a confirmation of near 

causativeness of the gene or the polymorphisms around the gene. Functional 

validation after this confirmation would be more meaningful. 

(iv) It will also be beneficial to conduct a whole genome haplotype association 

analysis instead of single locus association analysis because it will provide an 

idea about the evolutionary pattern at population level and also reduce the 

number of hypotheses tested, thereby increasing the power of the study. 
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(v) It would also be interesting to study the polymorphisms in tumour DNA, 

which may provide useful clues on the expressed functional markers. A 

comparison of genotypes for a particular set of SNPs between the lymphocyte 

DNA and tumour DNA from the same individual will help display differential 

DNA level signatures indicative of tumour cell derived changes (allelic 

imbalance or loss of heterozygosity). 

As demonstrated in this thesis, there is potential to identify novel variants 

associated with disease susceptibility through GWASs. It is of continuing 

importance to conduct whole genome and validation studies in diverse 

populations to exhaustively identify susceptibility loci associated with breast 

cancer risk. It will then be meaningful to perform an integrated analysis to 

identify potential gene–gene interactions that together may explain a higher 

proportion of disease risk. 
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7 Appendix A: Preliminary GWAS: Stage I 

Genome-wide analysis using high density arrays are very expensive and 

often a preliminary work in the laboratory typically contributes to the generation 

of hypotheses. This work referred to as Stage I should be followed by subsequent 

stages (multi-stage wherever possible) to confirm or extend the initial findings. 

The initial GWAS in Dr. Damaraju’s laboratory was conducted with a sample size 

of 348 cases and 348 controls. Since I joined the laboratory in January 2008, I 

have also contributed to the generation of the dataset using the Affymetrix 

platform. However, this work has not been included in the main part of my thesis 

since it would be distracting to the main body of the thesis and the set study 

objectives; in addition, other members of Dr. Damaraju’s laboratory also 

contributed to this effort. In Stage I of the study, participation of more than one 

person is not uncommon since the data complexity is huge and requires extensive 

bioinformatics support as well as technical support. Following the Stage I analysis 

using the Affymetrix platform, I selected polymorphisms from Affymetrix data 

(those showing statistical significance) and replicated using Sequenom Mass-

ARRAY iPlex technology (using Stage I cohort and additional samples) to assess 

the cross-platform concordance and this has set the stage for the rest of my thesis 

work.  
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I preferred to summarize all this background work as part of an appendix 

to provide a window into association study design, selection of markers for 

subsequent replication and, finally, exhaustive attention that we paid to quality 

control aspects of generating this data. I was involved with all these steps of data 

generation and analysis. I am reporting the results presented in the main body of 

the thesis chapters entirely from my efforts and the data generated is a 

comprehensive summary of work (design, execution, analysis and interpretations) 

from the total case and control cohorts summarized originating from a single 

genotyping platform (Sequenom). 

Data analysis of Stage I samples can be arbitrarily divided into two levels. 

The first-level analysis is the process of data review to enrich the dataset by 

applying SNP and sample quality control filters. The second-level analysis 

includes the allelic and haplotype association analyses using chi-square test to 

determine markers that are statistically significantly associated with breast cancer 

susceptibility. Results generated from the quality control filters and association 

analyses are presented in this section (Figure 7.1).  
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First-level analysis 

Second-level analysis 

Genotype filtering 

Sample filtering 

Allelic association analysis 

Haplotype association analysis 

Figure 7.1: Diagram showing the two levels of analysis in Stage I association 

study. 

7.1 Quality control filters 

7.1.1 Genotype filtering 

Genotype filtering is done at two levels: SNPs deviating from HWE and 

SNP call rate clean-up to address the missing genotype calls as described in the 

methods section.  

Departure from HWE: When we applied a quality control filter of p 

<0.001 (i.e. any SNP that falls below the user-defined threshold), we identified 

significant deviations for 30,636 SNPs (3.38% of 906,600 SNPs) and these were 

excluded from further analysis. 
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SNP call rate clean-up: We restricted the analysis to those SNPs that had 

≥99% genotype calls. A total of 93,126 SNPs (10.3% of 906,600 SNPs) did not 

provide complete genotype results with a stringent SNP call rate cut-off and these 

were excluded from further analysis.  

Several GWASs of breast cancer have applied different quality control 

metrics for HWE (ranging from 10-10 to 0.02) and genotype completeness 

(ranging from 80% to 99.7%). We applied varying filtering parameters to 

determine the metric that best suits our dataset, also taking into account the 

number of markers retained for the final analysis (Table 7.1). Eliminating a large 

set of SNPs would mean losing some informative markers and the expenses 

incurred in genotyping them. After closely assessing the different cut-off, we 

chose to apply a p-value <0.001 for deviations from HWE and ≥99% for genotype 

completeness for our dataset. 
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Table 7.1: Varying cut-off values applied for HWE and missing genotype calls to 

determine the number of SNPs to be retained for downstream analysis  

HWE SNP call rate 
SNPs 

retained 

SNPs 

excluded 

0.001 99.99% 506,836 399,764 

0.01 99.99% 497,912 408,688 

0.05 99.99% 475,096 431,504 

    

0.001 99% 782,838 123,762 

0.01 99% 768,818 137,782 

0.05 99% 733,075 173,525 

    

0.001 98% 831,106 75,494 

0.01 98% 815,991 90,609 

0.05 98% 777,827 128,773 

    

0.001 95% 863,086 43,514 

0.01 95% 846,906 59,694 

0.05 95% 806,745 99,855 

7.1.2 Evaluation of population stratification (Sample filtering) 

Evaluation of population stratification was carried out to assess the genetic 

homogeneity of cases and controls. As discussed earlier, we used the principal 

components analysis-based method – EIGENSTRAT – developed by Price et al. 

(96), embedded in the HelixTree software to conduct the analysis. SNP data for 

cases and controls from our study were compared with the multi-ethnic cohort 
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from HapMap SNP (matched Affymetrix SNP 6.0) dataset. Firstly, principal 

components analysis plot was generated for the three different populations – 

European, African, and Asian – of the HapMap samples to demonstrate the 

distinct clustering of the three isolated populations in a two-dimensional plot 

(Figure 7.2). Due to the tight clustering, using HapMap samples as the reference 

will enable us to visually assess the confounding stratification in our study 

population. 
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Figure 7.2: Distinct genotype clusters of three isolated populations of HapMap 

samples: European (blue), Asian (orange) and African (green). Principal 

components analysis plot is generated using two principal components. On the x-

axis is the principal component 1 and on the y-axis is the principal component 2.  
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Secondly, we superimposed our entire study population (348 cases and 

348 controls) onto HapMap samples without removing outliers to visualise the 

clustering of the samples. We found that most of our samples clustered around the 

European population as shown in Figure 7.3. Considering the demographics of 

Canada, the trail shown in the figure demonstrates admixture of African and 

Asian populations in our study population. The observed substructure can lead to 

false-positive associations in disease pathogenesis. 
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Figure 7.3: Genotype clusters after super-imposing our study population onto the 

HapMap samples without removing outliers. The cluster showing cases (green) 

and controls (blue) mostly overlap with the cluster from Central European 

population (orange) of the HapMap samples and also show some admixture of 

African (black) and Asian (pink) populations in our study population.  
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Thirdly, to address the stratification issue in our study population, we 

identified the samples that are not genetically homogeneous (away from the major 

cluster of Caucasian/Central European origin/descent) using EIGENSTRAT 

method. A total of 73 outliers were detected that were ≥3 standard deviations 

away from the mean on one of the two principal components. The detected 

outliers were removed from our dataset leaving with 302 cases and 321 controls 

for further scrutiny. Our samples were again super-imposed onto the HapMap 

samples to verify the genetic homogeneity of our study population. Case and 

control samples of this study showed significant overlap with Central European 

population cluster of HapMap samples (Figure 7.4). This indicates that our 

predominantly Caucasian population has (i) high genetic similarity with the 

European population as compared with Asian or Yoruba Indians (African); and 

(ii) the cases and controls from the Alberta region showed near genetic 

homogeneity, i.e., both appear to be of European ancestry. 
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Figure 7.4: Genotype clusters after super-imposing our study population onto the 

HapMap samples after removing outliers. The cluster showing cases (green) and 

controls (blue) fully overlap with the cluster from Central European population 

(orange) of the HapMap samples in the figure. 

7.2 GWAS in 348 cases and 348 controls (Stage I) 

Allelic association analysis with 782,838 SNPs showed statistically 

significant (p <0.05) differences between the cases and the controls at multiple 

genomic locations (35,859 SNPs) scattered across all chromosomes. The best way 

to summarize the p-values of thousands of markers is by using a Manhattan plot. 

Figure 7.5 is a visual representation of all statistically significant markers (plotted 

as –log10 chi-square values) grouped according to the chromosomes 1–22 and X 
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in which the SNPs are localized. From the figure it is evident that bulk of markers 

fall under p-value range of 0.05–0.001 with only few hundred markers below 

0.001. The distribution of significant SNPs across all chromosomes confirms the 

polygenic nature of the disease. 
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Figure 7.5: Scatter plot (Manhattan plot) for Stage I association study showing 

35,589 markers (p <0.05) distributed across chromosomes. This graph is plotted 

against allelic chi-square p-values on –log10 scale to indicate polygenic nature of 

breast cancer susceptibility. 

Q–Q plot is a graphical display comparing the observed distribution versus 

the expected distribution. In an ideal condition, observed statistic should conform 

to the expected statistic. Figure 7.6 indicates that most of the SNPs lie along the 
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expected line (line of best fit) conforming to the null hypothesis of no association. 

There is no explicit deviation of the observed values from the expected values 

except a fraction of SNPs show deviation.  
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Figure 7.6: Quantile–Quantile plot displaying the conformity of observed versus 

expected statistic for select SNPs. Most of the SNPs lie along the line of best fit 

(solid central diagonal line in black) with only a subset of SNPs deviating from 

the expected distribution. On the x-axis is the –log10 p-value of chi-square 

observed distribution and on the y-axis is the –log10 p-value of chi-square 

expected distribution. 
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7.3 Selection of markers for replication 

Selection of SNPs for replication is a crucial step after the genotype data is 

rigorously subjected to quality control measures before and after association 

analysis to reduce the inconsistencies and minimise false-positive association 

signals. At 0.05 cut-off, most or all of the observations (35,859 SNPs) could be by 

chance alone (most Stage I studies) necessitates replication of markers in 

independent cohorts. However, selection of markers for replication is itself not 

straightforward. Therefore, the selection of markers for replication from Stage I 

was carried out in a systematic manner proposed by Zheng et al. (19): (i) p <0.001 

for selected markers from allelic association analysis; (ii) MAF ≥10%; (iii) 

distinct genotype clusters or signal intensity plots; (iv) not previously reported in 

literature; and (v) r2 ≥0.8 (measure of LD). In addition, marker selection also was 

based on the presence of more than two SNPs in a single haplotype block and p 

<0.001 for haplotype association analysis. Initially, a total of 109 SNPs that 

adhered to the above-mentioned criteria were selected but that included several 

markers from the same haplotype blocks that may possibly be redundant 

information. Owing to the costs associated with genotyping, we confined the 

replication steps for select SNPs following the Stage I whole genome scan by 

selecting a representative SNP per block with the lowest chi-square p-value which 

resulted in a selection of 35 SNPs.  
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Table 7.2: Selected markers from Stage I association analysis 

dbSNP rs# Associated gene Relative location χ2   P OR (95%  CI) HWE p

rs11138489 TLE1 /TLE4 1485 kb DS/371.7 kb DS 6.20E-05 0.48 (0.34,0.69) 0.573

rs6478296 ASTN2 Intron 6.68E-05 0.63 (0.50,0.79) 0.234

rs7908500 OAT /CHST15 105.8 kb DS/173.7 kb US 8.18E-05 1.59 (1.26,1.99) 0.356

rs10794182 OAT /CHST15 105.5 kb DS/174 kb US 1.04E-04 1.57 (1.25,1.98) 0.402

rs6561682 LECT1 /SUGT1 11 kb DS/3.8 kb DS 1.53E-04 1.59 (1.25,2.03) 0.996

rs8095374 C18orf25 Intron 1.57E-04 0.65 (0.52,0.81) 0.018

rs7099921 OPTN /CCDC3 16.1 kb US/82.3 kb US 3.53E-04 1.66 (1.26,2.20) 0.325

rs1981867 C16orf61 85.9 kb DS 3.70E-04 1.56 (1.22,2.00) 0.300

rs1911864 GUSBL2 /CDH18 1493 kb US/126.9 kb US 3.92E-04 1.51 (1.20,1.89) 0.354

rs268840 SLC35F4 /C14orf105 30.5 kb DS/39.5 kb US 4.59E-04 0.66 (0.52,0.83) 0.223

rs9630178 LRRC4C /RAG2 432.4 kb DS/3083.4 kb US 4.86E-04 1.91 (1.32,2.77) 0.114

rs10506269 AMIGO2 /SLC38A4 173 kb DS/76.6 kb US 5.05E-04 0.51 (0.35,0.75) 0.086

rs8075722 OR3A2 /OR1D5 5.5 kb DS/5.8 kb DS 5.26E-04 1.90 (1.32,2.74) 0.434

rs11195949 ACSL5 Intron 5.41E-04 0.67 (0.54,0.84) 0.374

rs2546513 NUP107 Intron 6.24E-04 0.65 (0.50,0.83) 0.346

rs13299280 TLE1 /TLE4 1508 kb DS/348.8 kb DS 6.39E-04 0.56 (0.40,0.78) 0.920

rs6493076 UBR1 Intron 6.47E-04 0.51 (0.34,0.75) 0.656  

Table 7.2 continued… 
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 dbSNP rs# Associated gene Relative location χ 2   P OR (95%  CI) HWE p

rs2080976 ODZ2 Intron 6.58E-04 1.51 (1.19,1.91) 0.455

rs1092913 ROPN1L 2.5 kb DS 7.00E-04 1.91 (1.31,2.80) 0.061

rs7119677 C11orf41 Intron 7.20E-04 0.64 (0.50,0.83) 0.731

rs3848562 ZNF577 Intron 8.01E-04 1.85 (1.28,2.65) 0.890

rs3935234 C20orf56 93.2 kb DS 8.64E-04 0.62 (0.47,0.82) 0.171

rs11257153 USP6NL Intron 9.57E-04 0.60 (0.44,0.81) 0.668

rs6997395 PTDSS1/SDC2 19.9 kb DS/139.2 kb US 9.98E-04 0.67 (0.53,0.85) 0.832

rs10411161 ZNF577 3' UTR 1.08E-03 1.82 (1.27,2.62) 0.890

rs7818355 SDC2 /PTDSS1 146.9 kb US/12.1 kb DS 1.21E-03 0.56 (0.40,0.80) 0.887

rs9644134 C8orf80 Intron 1.21E-03 0.69 (0.55,0.86) 0.380

rs11878583 ZNF577 Intron 1.25E-03 1.78 (1.25,2.55) 0.312

rs6852237 DCTD /ODZ3 2.8 kb DS/84 kb DS 1.38E-03 1.44 (1.15,1.80) 0.736

rs1857434 MLLT3 /SLC24A2 364 kb DS/193.7 kb US 1.49E-03 1.64 (1.21,2.23) 0.377

rs1059307 SNHG5 Exon 1.54E-03 0.70 (0.56,0.87) 0.928

rs1451991 LOC728643 /SNX16 341 kb DS/108 kb US 2.19E-03 0.63 (0.47,0.85) 0.545

rs12433708 PPP2R5E Intron 2.42E-03 0.61 (0.44,0.84) 0.533

rs6991277 SDC2 /PTDSS1 105.7 kb US/53.3 kb DS 2.63E-03 0.60 (0.43,0.84) 0.472

rs1429142 EDNRA 112.5 kb US 2.80E-03 1.57 (1.17,2.11) 0.853
 

DS, downstream; US, upstream; χ2, chi-square; OR, odds ratio; CI, 

confidence interval; HWE, Hardy–Weinberg equilibrium; C20orf56, chromosome 

20 open reading frame 56; ROPN1L, ropporin-1 like; ZNF577, zinc finger 577; 

EDNRA, endothelin receptor A; C16orf61, chromosome 16 open reading frame 

61; ASTN2, astrotactin 2; PTDSS1/SDC2, phosphatidylserine synthase 

1/Syndecan-2; LRRC4C/RAG2, leucine rich repeat containing 4C/recombination 

activating gene 2; AMIGO2/SLC38A4, adhesion molecule with Ig-like domain 

2/solute carrier family 38, member 4; SNHG5, small nucleolar RNA host gene 5; 
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OAT/CHST15, ornithine aminotransferase/carbohydrate (N-acetylgalactosamine 

4-sulfate 6-O) sulfotransferase 15; ODZ2, odd Oz/ten-m homolog 2 (Drosophila); 

OPTN/CCDC3, optineurin/coiled-coil domain containing 3; NUP107, nucleoporin 

107kDa; TLE1/TLE4, transducin-like enhancer of split 1/4 (E(sp1) homolog, 

Drosophila) OR3A2/OR1D5, olfactory receptor, family 3, subfamily A, member 

2/olfactory receptor, family 1, subfamily D, member 5; ACSL5, acyl-CoA 

synthetase long-chain family member 5; USP6NL, USP6 N-terminal like; UBR1, 

ubiquitin protein ligase E3 component n-recognin 1; LECT1/SUGT1, leukocyte 

cell derived chemotaxin 1/SGT1, suppressor of G2 allele of SKP1 (S. cerevisiae); 

MLLT3/SLC24A2, myeloid/lymphoid or mixed-lineage leukemia (trithorax 

homolog, Drosophila)/solute carrier family 24 (sodium/potassium/calcium 

exchanger), member 2; GUSBL2/CDH18, glucuronidase, beta-like 2/cadherin 18, 

type 2; DCTD/ODZ3, dCMP deaminase/odd Oz/ten-m homolog 3 (Drosophila); 

C8orf80, chromosome 8 open reading frame 80; C11orf41, chromosome 11 open 

reading frame 41; C18orf25, chromosome 18 open reading frame 25; PPP2R5E, 

protein phosphatase 2, regulatory subunit B', epsilon isoform; 

SLC35F4/C14orf105, solute carrier family 35, member F4/chromosome 14 open 

reading frame 105; LOC728643/SNX16, sorting nexin 16  

The selected SNPs were genotyped in an independent study with 1153 

breast cancer cases and 1215 controls from Alberta. Genotyping was carried out 

in Sequenom Mass-ARRAY iPlex technology. Results of Stage II and joint 

analysis are presented in Chapter 4. 
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