CANADIAN THESES ON MICROFICHE I.S.B.N. ### THESES CANADIENNES SUR MICROFICHE National Library of Canada Collections Development Branch Canadian Theses on Microfiche Service Ottawa, Canada K1A 0N4 Bibliothèque nationale du Canada Direction du développement des collections Service des thèses canadiennes sur microfiche ### **NOTICE** The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible. If pages are missing, contact the university which granted the degree. Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy. Previously copyrighted materials (journal articles, published tests, etc.) are not filmed. Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis. THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED #### **AVIS** La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction. S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade. La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité. Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés. La reproduction, même partielle, de ce micrófilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse. LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE Canadä - National Library of Canada Bibliothèque nationale du Canada Canadian Theses Division Division des thèses canadiennes Ottawa, Canada K1A 0N4 63866 # PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER | | The state of s | |---|--| | • Please print or type — Écrire en lettres mouléés ou dactylograp | hier | | Full Name of Author — Nom complet de l'auteur | | | MARTINA GREEN Date of Birth — Date de naissance | | | | Country of Birth — Lieu de naissance | | Acig 21, 1954 | HONG KONG | | Permanent Address — Résidence fixe | | | A4, GARDEN GROVE V. LL AGE | EDMONTON ALTA., 765 2L3 | | Title of Thesis — Titre de la thèse | | | REACTIONS OF SULFUI | R ATOMS WITH | | 1,2 BUTA DIENE, DIA | ETHYLSULFIDE AND | | THIETANE | | | HATTER' | | | University — Université | | | UNIVERSITY OF ALBERTA Degree for which thesis was presented — Grade pour lequel cette to | | | Degree for which thesis was presented — Grade pour lequel cette | thèse fut présentée | | Ph. D | | | Year this degree conferred — Année d'obtention de ce grade | Name of Supervisor — Nom du directeur de thèse | | | DR. O.P. STRAUSZ | | | • | | Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film. | L'autorisation est, par la présente, accordée à la BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette thèse et de
prêter ou de vendre des exemplaires du film. | | The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. | L'auteur se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans l'autorisation écrite de l'auteur. | | December 20, 1982 | · · · · · · · · · · · · · · · · · · · | | Date . | Signature | | $oldsymbol{\vee}$ | Martina Green | #### THE UNIVERSITY OF ALBERTA REACTIONS OF SULFUR ATOMS WITH 1,2-BUTADIENE, DIMETHYLSULFIDE AND THIETANE by (C) MARTINA GREEN A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ΙŅ CHEMISTRY DEPARTMENT OF CHEMISTRY EDMONTON, ALBERTA SPRING, 1983 #### THE UNIVERSITY OF ALBERTA #### RELEASE FORM | NAME OF AUTHOR Martina Green | | | |---------------------------------------|------------|---------------------------| | TITLE OF THESIS Reactions of Sulfur | Atoms wit | h | | 1,2-Butadiene, Dime | thylsulfid | e
- ** | | and Thietane | | • • • • • • • • • • • | | DEGREE FOR WHICH THESIS WAS PRESENTED | Ph.D | • • • • • • • • • • • • • | | YEAR THIS DEGREE GRANTED | 1982 | • • • • • • • • • | | | | 3 | | Permission is hereby granted | l to THE U | NIVERSITY | Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. | | | (Signed) Maying June | | |---|----|--------------------------|--| | | • | PERMANENT ADDRESS: | | | | | A4 Garden Grove Village, | | | | | Edmonton, Alberta, | | | | | Т6Ј 213 | | | 4 | 7) | | | DATED. Lecender 20198 # THE UNIVERSITY OF ALBERTA FAGULTY OF GRADUATE STUDIES AND RESEARCH The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled: > REACTIONS OF SULFUR ATOMS WITH 1,2-BUTADIENE, DIMETHYLSULFIDE AND THIETANE submitted by ### MARTINA GREEN in partial fulfilment of the requirements for the degree of Doctor of Philosphy in CHEMISTRY > on Borstel - Genetics R. Knight -Examiner ... 4 4 4 To Kirk iv #### ABSTRACT $S(^1D_2)$ atoms, generated by the gas phase photolysis of COS (λ >240 nm), react with 1,2-butadiene to yield three unsaturated thiiranes and two doubly unsaturated thiols, which have not been previously characterized. The thiiranes, products of 2,3 and <u>cis</u> and <u>trans</u> 1,2-additions, constitute the bulk of the products. The extrapolated zero time thiirane yields indicate that 2,3-addition is slightly preferred, k_2 , 3^{k_1} , 2^{k_1} , 2^{k_1} , 2^{k_1} , and that for 1,2-addition the trans product is favoured over the <u>cis</u> by a factor of ~ 1.4 The thiols are minor products. One results from direct insertion into the methyl C-H bonds, and the other, 1,3-butadiene-2-thiol, is postulated to arise indirectly from insertion into the C-H bond of the alkyl-substituted vinylic carbon. The S(3 P) + 1,2-C $_4$ H $_6$ reaction affords only the thiiranes, and a higher selectivity is observed, $k_{2,3}/k_{1,2} \sim 2$. The 1,2-addition features a surprisingly high <u>trans/cis</u> product ratio of ~ 6 . Rate parameters for the $S(^3P) + 1.2-C_4H_6$ reaction were determined in competition with the $S(^3P) + 1-C_4H_8$ reaction. The former reaction exhibits a relatively high A factor and activation energy, with the 2.3 and 1.2-additions having similar E_a 's. Accordingly, $$k_{2,3} = (2.96\pm0.80) \times 10^{10} \exp[-(1455\pm225)/RT] \text{ M}^{-1}\text{s}^{-1}$$ $$k_{1,2} = (1.41\pm0.38) \times 10^{10} \exp[-(1455\pm225)/RT] \text{ M}^{-1}\text{s}^{-1}$$ The reactions of $S(^1D_2, ^3P)$ with CH_3SCH_3 and $\overline{CH_2(CH_2)_2}$ yield the corresponding disulfides as the only S addition products. In the $S(^1D_2)$ + CH_3SCH_3 reaction, CH_3SSCH_3 and small amounts of C_2H_6 are produced in low overall yields, less than 30% in terms of the sulfur atoms consumed, and large quantities of elemental sulfur are formed. In contrast, the
$S(^1D_2)$ + $\overline{CH_2(CH_2)_2}S$ reaction affords similar amounts of 1,2-dithiolane $(\overline{CH_2(CH_2)_2}SS)$ and C_2H_4 in high yields, up to $^{85\%}$. With CH_3SCH_3 , the $S(^3P)$ reaction results in a substantial decrease in the CH_3SSCH_3 and C_2H_6 yields, while with $\overline{CH_2(CH_2)_2}S$, only the C_2H_4 yield is reduced. Based on the observed products, and the effects of pressure and added gases, it is proposed that for both thioethers, the sole primary reaction is attack by S atoms on the non-bonding p orbitals of the sulfur site to form an unstable excited throsulfoxide adduct. This adduct then undergoes isomerization yielding the corresponding disulfide, fragmentation leading to hydrocarbon products or deactivation to the ground state. Bimolecular reaction between two ground state thiosulfoxide molecules leads to regeneration of the substrate. Deactivation is the major process for both So and To dimethylthiosulfoxides, but appears to be important only for the To the thiosulfoxide. The rate parameters for the reactions of $S(^3P)$ atoms with CH_3SCH_3 and $CH_2(CH_2)_2S$ have been measured in competition with the $S(^3P)$ + C_3H_6 reaction: $$k_{\text{CH}_3\text{SCH}_3} = (3.19\pm1.21) \times 10^{10} \exp[(900\pm237)/\text{RT}] \text{ M}^{-1}\text{s}^{-1}$$ $k_{\text{CH}_2(\text{CH}_2)_2\text{S}} = (5.23\pm1.94) \times 10^{10} \exp[(810\pm220)/\text{RT}] \text{ M}^{-1}\text{s}^{-1}$ Both reactions feature large A factors and negative activation energies. Consequently, they proceed at extremely high rates, having room temperature rate constants approaching the collision frequencies. It has also been shown that $S(^3P)$ atoms are not produced in the $\lambda > 240$ nm photolysis of thiirane. Additionally, it has been demonstrated that the role of CO_2 in effecting a decrease in the CO yield in the $\lambda > 240$ nm photolysis of COS is to act as a chaperon for the recombination of $S(^3P)$ atoms. #### ACKNOWLEDGMENTS The author wishes to express her sincere appreciation to Professor O. P. Strausz for his supervision, constant support and patience throughout the course of this investigation. I am especially indebted to Dr. F. C. James, whose enthusiam, invaluable advice and unceasing encouragement have made this work possible. The author is grateful to Dr. E. M. Lown for her many suggestions and guidance in this study and her assistance in the preparation of this manuscript. It is a pleasure to thank the members of the Photochemistry group, particularly Dr. I. Safarik for his patient and illuminating instructional assistance, Drs. M. Torres and R. K. Gosavi for their helpful discussions and Mr. A. Jodhan for his technical advice and assistance. My special appreciation is extended to Mr. A. Clement, whose humorous and cheerful demeanor has lightened those tense and frustrating moments in research. The generosity of Dr. B. Verkoczy in sharing his research experience is also greatly appreciated. The author thankfully acknowledges the cooperation and efficient service provided by the technical staff of the Chemistry Department, especially Messrs. J. Olekszyk, E. Feschuk, G. Streefkerk, T. Van Esch and H. Hofmann. I am also grateful to Mrs. L. Eastman and Ms. A. Morris for their kindness and generous assistance during the typing of this thesis. My special thanks go to Professor J.R. Bolton for inspiring my interest in research. Finally, the author wishes to express her profound gratitude to her husband, Kirk, who in spite of the difficult times, remained devoted and provided moral support to the end. ### TABLE OF CONTENTS | | PAGI | |--|------| | ABSTRACT | v | | ACKNOWLEDGMENTS | viii | | LIST OF TABLES | xiv | | LIST OF FIGURES | xvi | | CHAPTER I: INTRODUCTION | 1 | | A. Spectroscopic States of Group VI A Atoms | 2 | | B. Sources of Sulfur Atoms | 2 | | C. Reactions of Group VI A Atoms with Hydrocarbons. | 9 . | | 1) Reactions of S and O Atoms | 9 | | (a) with alkanes | 9 | | (i) $S(^{1}D_{2}, ^{3}P)$ Atoms | | | (ii) $O(^{1}D_{2}, ^{3}P)$ Atoms | 11 | | (b) with alkenes | 13 | | (i) $S(^{1}D_{2})$ and $O(^{1}D_{2})$ Atoms | 13 | | (ii) $S(^{3}P)$ and $O(^{3}P)$ Atoms | 16 | | (c) with alkynes | 24 | | (i) $S(^{1}D_{2})$ and $O(^{1}D_{2})$ Atoms | 24 | | (ii) $S(^3P)$ and $O(^3P)$ Atoms | 27 | | 2) Reactions of Se Atoms | 28 | | 3) Reactions of Te.Atoms | 29 | | D Reactions of S and O Atoms with Polyunsaturated | | | Hydrocarbons | 29 | | 1) with aromatics | 29 | | (a) S(¹ D ₂ , ³ P) Atoms | 29 | | | (b) O(¹ D ₂ , ³ P) Atoms | 30 | |---------|--|-------| | | 2) with dienes | 32 | | u , | (a) $S(^{1}D_{2}, ^{3}P)$ Atoms | | | | (b) $O(^{1}D_{2}, ^{3}P)$ Atoms | | | Ε. | Reactions of S and O Atoms with Carbonyl- | | | | sulfide and Thioethers | .37 / | | | 1) Reactions with COS | 37 | | • | 1) Reactions with COS | .37 | | • | (b) $O(^{1}D_{2}, ^{3}P)$ Atoms | | | • | 2) Reactions with Cyclic Thioethers | 39 | | • | (a) $S(^{1}D_{2}, ^{3}P)$ Atoms | | | • | (b) $O(^{1}D_{2}, ^{3}P)$ Atoms | | | | 3) Reactions with Acyclic Thioethers | • | | • | (a) S(¹ D ₂ , ³ P) Atoms | • | | | (b) $O(^{1}D_{2}, ^{3}P)$ Atoms | | | F. | Aim of the Present Investigation | , | | ্ভ | | | | CHAPTER | | | | Α. | The High Vacuum System | 48 | | В. | Photolytic Assembly | 50 | | С. | Materials and Purification | 51 | | Ď. | Analytical Techniques | -53 | | E - | Operating Procedures | 60 | | F. | Microwave Discharge Experiments for the | • | | c | COS - CH ₃ SCH ₃ System | 62 | | CHAPTER | III: REACTIONS OF SULFUR ATOMS WITH | , | | | 1,2-BUTADIENE | .63 | | A. Results | 63 | |--|-------| | l) Reaction Products | | | (a) Identifications | | | (b) Properties | 3.4 | | 2) Effects of Exposure Time, Total Pressure | | | and Added CO2 on Product Yields | . 91 | | 3) Relative Rate Parameters | . 95 | | B. Discussion | . 109 | | CHAPTER IV: REACTIONS OF SULFUR ATOMS WITH ACYCLIC | | | AND CYCLIC THIOETHERS | . 142 | | A. Results | . 142 | | 1) $S(^{1}D_{2}, ^{3}P)$ + Dimethylsulfide - An Acyclic | ٠ | | Thioether | . 142 | | (a) UV Absorption of Dimethylsulfide | | | (b) Reaction Products | 142 | | (c) Effects of Exposure Time, Total Pressure | ÷ | | and Added CO2 and NO in the COS - | | | CH ₃ SCH ₃ System | 146 | | (d) Relative Rate Parameters | | | 2) $S(^{1}D_{2}, ^{3}P)$ + Thietane - A Cyclic Thioether | 161 | | (a) UV Absorption of Thietane | | | (b) Reaction Products | | | (i) Identifications | 163 | | (ii) Properties of 1,2-Dithiolane | 166 | | (c) Effects of Exposure Time, Total Pressure | | | and Added CO ₂ in the COS - Thietane | | | System | 168 | | ×ii | | | | | | | | • | |---|---|---------------------------------------| | | | | | • | (d) Relative Rate Parameters 1 | 71 | | | | 77 | | • | . I | | | |) $S(^{1}D_{2}, ^{3}P) + CH_{3}SCH_{3}$ Reactions | | | 2 |) $s(^{1}D_{2}, ^{3}P) + CH_{2}(CH_{2})_{2}S$ Reactions | 07 | | 3 |) Rate Parameters for S(3P) + CH3SCH3/ | | | , | CH ₂ (CH ₂) ₂ S Reactions | 17 | | CHAPTER V | : SUMMARY AND CONCLUSIONS | .27 | | BIBLIOGRA | PHY | 236 | | APPENDIX | | | | . · · · · · · · · · · · · · · · · · · · | Mara Chartral Data of the C W C Teamers | 250 . | | | 4 6 | | | 2. | Mass Spectral Data of $C_3H_6S_2$ | 251 | | % B | Calculations of the Nuclear Overhauser Effect | , | | | (nOe) for cis and trans Ethylidenethiirane | 252 | | . c 1. | Estimation of the Ratios, $k_{2,3}/k_{1,2}$ at t=0, | • | | · | P=1200 and 250 torr, and trans (4)/cis (3) | | | | at t=0, P=1200 torr for $S(^{1}D_{2})$ Addition to | | | • | 1,2-C ₄ ^H 6 | 256 | | | • | * * * * * * * * * * * * * * * * * * * | | 2. | Estimations of the % Recovery of Disulfides | | | 1 | and the Deactivation/Isomerization Ratio | | | | for $S(^{1}D_{2})$ and $S(^{3}P)$ Addition to $CH_{3}SCH_{3}$ and | , | | | Сн ₂ (Сн ₂) 2 ⁵ | 262 | | D D | | 268 | | ,
E | The Intermediacy of S(³ P) Atoms in the | | | | Photolysis of Thiirane | 271 | | | | | | | xiii | | | | | | ### LIST OF TABLES | TABLE | | PAGE | |--------|--|------------| | I-1 | Energy levels of the atoms of the group VI A | | | | elements | 3 | | I-2 | Sources of S atoms | 5 | | I-3 | Rate constants and Arrhenius parameters for | | | | $(S(^{3}P))$ and $O(^{3}P)$ atom reactions with alkenes | 1 9 | | 11-1 | Columns used | 54 | | 11-2 | GC operating conditions and retention times | 55 | | III-l | Calculated and observed nOe for the cis and | | | | trans isomers of ethylidenethiirane | 81. | | III-2 | Effect of exposure time on the product yields | | | .• | in the COS-1,2-C ₄ H ₆ system | 92 | | III-3 | Effect of total pressure on product yields in | | | | the COS-1,2-C ₄ H ₆ system/ | 96 | | 111 4 | Effect of added C_2 on the distribution of | | | • | 1,2-C ₄ H ₆ S isomers | 98 | | 717-5 | Product yields as a function of the | | | | $[1,2-C_4^H_6]/[1-C_4^H_8]$ ratio at 300 K | 101 | | TTT -6 | Product yields as a function of the | | | | [],2-C ₄ H ₆]/[]-C ₄ H ₈] ratio at 333 K | 102 | | III 7 | Product yields as a function of the | | | | [1,2-C ₄ H ₆]/[]-C ₄ H ₈] ratio at 363 K | ז ח ז | | 111.8 | Product yields as a function of the | | | • | [],2-C ₆ H ₆]/[] C ₄ H ₈] ratio at 393 K | 104 | | 777-0 | Product yields as a function of the | | | | 11,2 C, H, 1, 11 - C, H, 1 ratio at 427 к | 105 | | | | • | |---------|---|-----| | III-10 | Slopes and intercepts of the plots in figure | | | | III-16. 1 | 107 | | III-11 | Product distributions for the COS-alkene systems. | 118 | | III-12 | Atom and radical reactions with terminal | | | | allenes | 130 | | III-13 | Arrhenius
parameters for $S(^{3}P)$, $O(^{3}P)$ and | | | • | $OH(^2\Pi)$ in reactions with alkenes and dienes | 133 | | 111-14 | Effect of temperature on the yields of 2,3 | | | | and 1,2 - S(³ P) addition products | 139 | | IV-1 | Effect of exposure time on the product yields | | | | in the COS-CH ₃ SCH ₃ system | 144 | | IV-2 | Effect of total pressure on the rate of product | | | | formation in the COS-CH ₃ SCH ₃ system | 149 | | TV-3 | Effect of added CO ₂ and NO on product formation | | | | in the COS-CH ₃ SCH ₃ system | 151 | | T V · 1 | Product yields as a function of the | | | | [CH ₃ SCH ₃]/[C ₃ H ₆] ratio at 300 K | 153 | | IV5 | Product yields as a function of the | | | , | [CH3SCH3]/[C3H6] ratio at 330 K | 154 | | rv e | Product yields as a function of the | | | | [СH3SCH3]/[С3H6] ratio at 360 к | 155 | | T V 7 | Froduct yields as a function of the | | | | [CH3SCH3]/[C3H6] ratio at 392 K | 156 | | R 77. | Product yields as a function of the | | | | [CH ₃ SCH ₃]/[C ₃ H ₆] ratio at 423 K | 157 | | T 17 9 | Slopes and intercepts of the plots in figure | | | | TV 4 | 1 0 | | TV 10 . | Effect of our ore time on resolution | | ٠, 8 | | | · · · · · · · · · · · · · · · · · · · | |------------|--|---------------------------------------| | | in the COS-CH ₂ (CH ₂) ₂ S system | 169 | | IV-11 | Effect of total pressure on product yields in | | | | the COS-CH ₂ (CH ₂) ₂ S system | 173 | | IV-12 | Effect of CO ₂ pressure on product yields in | | | • | the COS-CH ₂ (CH ₂) ₂ S system | 175 | | IV-13 | Product yields as a function of the | ; | | | [CH ₂ (CH ₂) ₂ S]/[C ₃ H ₆] ratio at 303 K | 178 | | I -14 | Product yields as a function of the | • | | | [CH ₂ (CH ₂) ₂ S]/[C ₃ H ₆] ratio at 333 K | 179 | | ÍV-15 | Product yields as a function of the | | | | .[CH ₂ (CH ₂) ₂ S]/[C ₃ H ₆] ratio at 363 K | 180 | | IV-16 | Product yields as a function of the | | | | [CH ₂ (CH ₂) ₂ S]/[C ₃ H ₆] ratio at 393 K | 181 | | TV-17 | Product yields as a function of the | | | • | [CH ₂ (CH ₂) ₂ S]/[C ₃ H ₆] ratio at 423 K | 182 | | IV-18 | Slopes and intercepts of the plots in figure | | | | ·IV 13 | 184 | | ين لي ۸∆ ل | Rate parameters for the reactions of some | | | | atomic and radical energies with CH3SCH3 and | | | | णा स्टाम १ - र | 225 | 1 ₹3. wwj 1 ## LIST OF FIGURES | FIGURE | | PAGE | |--------|--|-----------------| | 1-1 | Ionization potential versus Ea for the addition | | | · | of S(³ P) atoms to alkenes | 20 | | 11-1 | The high vacuum system | 49 | | III-1 | Mass (m/e) = 86 cross scan | 64 | | III-2 | NMR spectrum of 2-methyl-3-methylenethiirane (1) | _. 66 | | III-3 | The gas phase FTIR spectrum of 2-methyl-3- | | | | methylenethiirane(1) | 69 | | III-4 | NMR spectrum of 1,3-butadiene-2-thiol(2) | 71 | | τ11-5 | NMR spectrum of cis ethylidenethiirane (3) | 74 | | 111-6 | NMR spectrum of trans ethylidenethiirane (4) | . 76 | | TII-7 | The gas phase FTIR spectrum of trans | : | | | ethylidenethiirane (4) | 82 | | TTT-8 | NMR spectrum of 2,3-butadiene-1-thiol (5) | 84 | | त्रा व | The gas phase FTIR spectrum of * | | | | 2,3 hutadiene-1-thiol (5) | 86 | | חן זזד | The gas phase UV spectrum of 2-methyl-3- | | | | methylenethiirane (1) at low and high | : | | | concentrations | ध ध | | וו דדי | The gas phase UV spectrum of trans ethylidene- | | | | thiirane (4) at low and high concentrations | 89 | | 12 זדי | The gas phase UV spectrum of 2,3-butadieme-]- | | | | thiol (5) | 90 | | ון דון | S product yields as a function of CO in the | | | | COS - 1,2-04H ₆ system: | 9.3 | | 771-14 | Rates of S product formation versus CO yield | | | | • | in COS - 1,2-C ₄ H ₆ system | |---------------------------------------|-----------|--| | • | III-15 | Rates of S product formation versus total | | | | pressure in the COS - $1.2-C_4H_6$ system 97 | | , , , , , , , , , , , , , , , , , , , | III-16 | Plots of (A _O -A)/A <u>versus</u> [1,2-C ₄ H ₆]/[1-C ₄ H ₈] 106 | | 7 | 111-17 | Arrhenius plot for the $S(^{3}P) + 1,2-C_{4}H_{6}$ and | | | ٠, | 1-C ₄ H ₈ system | | | 111-18 | Plots of E versus ionization potential for the | | | | S(³ P) + alkenes, alkynes and diene systems, and | | | | O(³ P) + alkenes: | | | IV-1 | Product yields as function of CO yield in the | | | | COS-CH ₃ SCH ₃ system | | , | IV-2 | Rates of product formation versus CO yield in | | | | the COS-CH ₃ SCH ₃ system | | | 1V-3 | Rates of product formation versus total | | | | pressure in the COS-CH ₃ SCH ₃ system | | | V-4 | Plots of $(A_0 - A)/A$ versus $[CH_3SCH_3]/[C_3H_6]$ 158 | | | TV-5 | Arrhenius plot for the S(3p) + CH ₃ SCH ₃ and | | | | C ₃ H ₆ system | | 9
10 | 1 V - 6 | Absorption spectra of Cos, $\overline{\operatorname{CH}_2(\operatorname{CH}_2)_2}$ s and | | | • | 1 mm Vycor 791 + 240 nm interference filters 162 | | • | IV-7 | NMR spectrum of $\overline{\text{CH}_2(\text{CH}_2)_2}$ SS | | | 1 A · B | Comparison NMR spectra of $\overline{\text{CH}_2(\text{CH}_2)_2}$ S, | | | | $\overline{\text{CH}_2(\text{CH}_2)_2\text{SS}}$ and $\overline{\text{CH}_2(\text{CH}_2)_3}$ \$ | | | JV-9 | Product yields as a function of CO in the | | | | COS-CH ₂ (CH ₂) ₂ S system | | | ù J − ∆ ı | Rates of product formation versus CO yield | | | | in the $\cos \frac{(CH_2)}{2}$ system | | | | | the state of s | IV-11 | Rates of product formation versus total | | |--------|---|--| | | pressure in the $COS-\overline{CH_2(CH_2)_2}$ \$ system | | | IV-12 | Product yields as a function of CO ₂ pressure 176 | | | .IV-13 | Plots of (A _O -A)/A <u>versus</u> [CH ₂ (CH ₂) ₂ S]/[C ₃ H ₆] 183 | | | IV-14 | Arrhenius plot for the $S(^{3}P) + CH_{2}(CH_{2})_{2}S$ | | | | and $C_3^{\rm H}_6$ system | | | IV-15 | Plots of E versus ionization potential for. | | | | $S(^{3}P)$ + alkenes, $CH_{2}(CH_{2})_{2}S$ and $CH_{3}SCH_{3}$ 221. | | 9 #### CHAPTER 1 #### INTRODUCTION Over the past two decades, the chemistry of divalent atoms, particularly the Group VI A atoms, has been the subject of increasing interest. This trend can be explained by several factors: Air pollution, especially in industrial regions, has become a matter of increasing concern. Oxygen atoms play an important role in atmospheric chemistry, and thus their reactions, especially those with common pollutants such as hydrocarbons and organosulfides, have received considerable attention. The great similarity in the chemistry of atomic sulfur and oxygen has motivated interest in S atom reactions. Prior to the discovery of negative activation energies in the reactions of Group VI A atoms with branched alkenes in the 1970's, all addition reactions were thought to proceed with positive activation energies or with no temperature dependence in the high pressure region. Due to this finding, these reactions have attracted additional interest from the kinetic and mechanistic point of view. Finally, divalent atoms are the simplest divalent species. Thus, the reactions of these atoms can also be used to elucidate the reaction mechanisms of other divalent chemical reagents such as carbones and nitrenes. Referre discussing the reactions of atomic S and O, let ### A. Spectroscopic States of Group VI A Atoms a Atoms of this group have two unpaired valence electrons. This allows the possibility of at least two low lying electronic states with different multiplicities and energies. If the electron spin vectors are antiparallel, the electronic state is designated a singlet; if the spin vectors are parallel, then a triplet state results, with three components lying close in energy. The electronic configuration of these atoms is ns^2p^4 , thus giving rise to five spectroscopic states, which are designated as ${}^{3}P_{2,1,0}$, ${}^{1}D_{2}$ and ${}^{1}S_{0}$. The energy spacing of these states is shown in Table I-1. $^{73}\mathrm{P}_{2}$ is the ground state, and for O and S atoms, this state lies very close in energy to the other triplet components. $^{3}P_{0}$ and $^{3}P_{1}$. These small energy differences are usually not observable by chemical means, and so for convenience the ground state is simply designated as 3 P. 1 D and 1 C $_{0}$ are the first, and second excited states, respectively. Both are metastable, with transitions to the ground state being forbidden by rigid selection rules. Consequently, they both have long lifetimes with respect to radiative decay. ### P Sources of Sulfur Atoms Since the present study is concerned with the reaction of Statoms, it is desirable to give a brief review of the methods of generation of these stockers. It is desirable to give a brief review of the compound must: TABLE I-1 Energy Levels of the Atoms of the Group VI A Elements $^{\mbox{\scriptsize 1}}$. | Term | • • • | Energy () | kcal/mole) | | |-----------------------------|-------|-----------|------------|------| | · · | 0 | S | Se | Te | | ³ P ₂ | . 0 | 0 | 0 | 0 | | ³ P ₁ | 0.45 | 1.14 | 5.69 | 13.5 | | ³ P ₀ | 0.65 | • 1.64 | 7.25 | 13.6 | | ¹ D ₂ | 45.4 | 26.4 | 27.4 | 30.2 | | ¹ s ₀ | 96.6 | 63.4 | 64.2 | 66.3 | | • | | | | | 4. - l) absorb in a convertient region of the spectrum - 2) be readily available in a stable form - 3) produce sulfur atoms in clearly defined spectroscopic states Moreover, the remaining photofragments should be inert under the reaction conditions. The currently available kinetically and synthetically useful sources of S atoms are all based on photochemical processes. A summary of these is given in Table I 2, and only the most often employed source, the photolysis of car bonyl sulfide (COS), vill be discussed here in some detail absorption spectrum has been reported to feature three dis 9,26 tinot
transitions. The first long warelength UV obsorption hand of COS, which shows superimposel vitralional structure, extends from ca. 260 nm to the vacuum region (100 nm), and has a rather 1 m absorption coefficient (e 80 max) and [max]. Absorption increases substantially with in creasing temperature at the long wa elength end of this basel. The radiative lifetime of the first excited state has been calculated to be m3 x 10 m7s. M.O. calculations indicate that the lowest lying electronic state a responds to a financial of the lowest lying electronic state a responds to a financiality. Since D(OC=S) = 72.4 kcal mole the Spin was some metry-allowed primary photolytic step. $\frac{\partial}{\partial x} \frac{\partial}{\partial x} = \frac{\partial}{\partial x} \frac{$ ABLE I-2 Sources of S Atoms | PROCESS | }UANTUM YIELD | , nm | REFERENCES | |---|---------------|-------------------|------------| | 3PF; + hv 2PF; - S(TD_) | • | -230 | 2 | | $\frac{1}{2} \frac{1}{4} \frac{1}{8} + hv \qquad \qquad C_2 H_4 + 3(7p)$ | • | <210 | ·
E | | (d _E , d _D) + SC + S(D _D) 3 b) | • | <210 | 5 | | (a_{\sim}) Se \rightarrow va_{β} (a_{γ}) + (a_{γ}) $+$ $(a_{$ | | 240
(Kr laser) | Va . | | $(a_{c}) + Bd + Sd + Sd$ | 6. | 254 | . 1 | | (S ₊) S + OO • • · · · · · · · · · · · · · · · · | 9.8-0.9 | 140-160 | 6,8 | | (°C , (S) + 00 | • | <200 | 10 | | co + s(¹ b ₂ , ³ p) | 6.6 | 210-260 | 7 | | ₩ + (d _x)S + 00 ∧u + ₩ + S0: | 6.6 | 210-260 | ۲, | | | | | | mole⁻¹, corresponding to $\lambda < 290$ nm. For S(³P), the wavelength threshold is only ~ 400 nm⁹, and it has been suggested that S(³P) atoms may also be produced in the spin forbidden process:^{7,11} $$\cos(^{1}\Sigma^{+}) + hv - \cos(^{1}\Sigma^{+}) + s(^{3}P)$$ [2] The possible occurrence of step [2] is based upon the fact that about 25% of the S atoms produced in the photolysis cannot be scavenged by added paraffins (which are inert towards S(³P) atoms, vide infra)¹⁴ and also on kinetic analysis of COS alkene systems.¹⁵ The results concordantly suggest that 25-30% of the sulfur atoms are initially produced in It has been shown that the quantum yield (*) of the primary steps [1] + [2] at 229 nm and 253 nm is 0.9 for P(COS)*100 * or in solution. If The slight inefficiency is probably The to non radiative transitions to the ground state. 17 Secondary reactions which may occur in the photolysis of rare cos me. 14. $$a(_{1}D^{3}) + Gos(_{1}\Sigma_{+}) + co(_{1}\Sigma_{+}) + s^{3}(_{1}V^{d})$$ [3] $$s(^3r) + cos(^1r) + co(^1r) + s_2(\tilde{x}^3r_q^2) + (s_1)$$ $$s_2('',) + M, \qquad s_2(v',s_3)$$ [6] $$s(^{3}) + s_{2} + s_{3-8}$$ The quantum yield of CO formation for the photolysis is 1.8^7 , however, indicating that step [7] is unimportant. From examination of steps [1] - [5] it is apparent that for each S atom generated in the primary steps, two molecules of CO are produced. Thus, if R_{CO}° is the rate of CO formation in the absence of substrate, then the rate of S atom formation is $R_{CO}^{\circ}/2$. If a substrate is present, it will compete with COS for the S atoms, $$S(^{1}D_{2}, ^{3}P) + Substrate \longrightarrow Products$$ [8] decreasing the CO yield from abstraction steps [3] and [5]. Therefore if R_{CO} is the rate of CO formation in the presence of a substrate, then the total rate of S atom abstraction, steps [3] and [5], is given by, $$R_{abstraction} = R_{CO} - R_{CO}^{\circ}/2$$ [I] and the rate of S atom reaction with a substrate is $R_{\text{reaction}} = R_{\text{CO}}^{\circ} - R_{\text{CO}}$ Hence, the total rate of S atom production is, $$R_{abstraction} + R_{reaction} = R_{CO}^{\circ}/2$$ [III] Therefore, it is apparent that the CO produced can serve as a useful internal actinometer for the amount of sulfur atoms produced and scavenged in the presence of a reactive substrate. Absolute rate constants have been determined for the sabstraction steps [3] and [5]. Donovan et al., 18 by monitoring the growth of the S₂ ($^{1}g^{1}\Delta_{u}^{2}$ + $^{1}a^{1}\Delta_{g}$) spectrum, determined the . . . rate constant for step [3] to be $k_3 \ge 4 \times 10^{10} \, \, \text{M}^{-1} \, \text{s}^{-1}$. The combined (abstraction + deactivation) rate constant $k_3 + k_4 \approx 7 \times 10^{10} \, \, \text{M}^{-1} \, \text{s}^{-1}$ has been obtained by monitoring the decay of $S(^1D_2)$ atoms directly⁵. Using this value and the ratio of $k_3/k_4 \approx 2$ estimated by Sherwood et al. k_3 and k_4 are $k_4 \times 10^{10} \, \text{m}^{-1} \, \text{s}^{-1}$ respectively. A more recent direct measurement of $k_3 + k_4$ is reported to be $k_4 \times 10^{10} \, \, \text{M}^{-1} \, \text{s}^{-1}$. This value was claimed to be more reliable. For the abstraction by $S(^3P)$, step [5], Klemm and Davis $k_5 = 2 \times 10^6 \, \, \text{M}^{-1} \, \text{s}^{-1}$ and $k_5 = 3.6 \, \, \text{kcal mole}^{-1}$. Thus COS is expected to compete with a reactive substrate for $S(^1D_2)$ atoms much more efficiently than for $S(^3P)$ atoms. In the presence of a large excess of inert gas such as CO_2 , the $S(^1D_2)$ atoms will be collisionally deactivated to the ground state $^{18,22-24}$ CO_2 . Xe and Ar have been demonstrated to be efficient guenchers of $S(^1D_2)$ atoms. 22,23 The values of $S(^1D_2) + M$ 23 k_9 are $\sim 1 \times 10^{10}$, $\sim 4 \times 10^9$, and $\sim 6 \times 10^8$ M 1 s $^{-1}$ for $\rm CO_2$, $\rm Xe$, and Ar, respectively 18,24 since the rate of quenching of $\rm S(^{1}D_2)$ by $\rm CO_2$ is comparable to the rate of reaction of $\rm S(^{1}D_2)$ atoms with hydrocarbons or COS, the introduction of a large excess of $\rm CO_2$ will result in virtually complete deactivation of $\rm S(^{1}D_2)$ atoms to the ground $\rm (^{3}P)$ state $\rm ^{23}$ For example, a $\rm CO_2/COS$ ratio ~ 40 affords 95% deactivation. $\rm ^{25}$ Thus the $\rm CO_2-COS$ system is a clean source of $\rm S(^{3}P)$ atoms. Alternatively, S(3P) atoms can also be produced directly by the triplet mercury photosensitivation of COS. 7 $$\cos + \text{Hg}(6^3\text{P}) \longrightarrow \cos + \text{S}(^3\text{P}) + \text{Hg}(6^1\text{S}_0)$$ [10] A recent study of the photolysis of pure COS at low pressures (2.5 - 10.5 torr) reported a primary quantum yield of 0.7 over the wavelength range 215 - 254 nm. This low value may reflect a true drop-off in the quantum yield at low pressures, or alternatively, under these conditions $S(^3F)$ atoms may diffuse to the wall and recombine there. The second and third absorption bands of COS lie in the vacuum UV, with maxima at 167 and 153 nm, respectively. The second band is a continuum with superimposed vibrational structure and the third one consists of several diffuse bands. 26 Photolysis of COS in these bands produces $S(^{1}S_{O})$ atoms and vibrationally excited CO. 9,10,26 Orly $S(^{1}S_{O})$ atoms $$\cos \frac{\lambda < 180 \text{nm}}{} co^{\dagger} + s(^{1}s_{0}, ^{1}n_{2})$$ [11] $$\frac{\lambda \simeq 140 - 160 \,\text{nm}}{12} \, \text{CO}^{\dagger} + \text{S}(^{1}\text{S}_{0})$$ are produced in the third band, and the primary quantum violation of $S(^1S_0)$ at 153 nm has been reported to be 0.8. 0.9. Therefore photolysis of COS in this hand is a clean source
of $S(^1S_0)$ atoms. Since transitions from $S(^1S_0)$ to $S(^1D_2)$ and $S(^3F)$ are forbidden by symmetry and spin rules, respectively, the $S(^1S_0)$ state has a relatively long lifetime (5100 pe) - C. Reactions of Group VI A Atoms with Hydrocarbons - 1) Reactions of S and 7 Atoms. - (a) with alkanes Only $S(^1D_2)$ atoms are reactive. ¹⁴ The major reaction with alkanes is direct insertive type attack on the aliphatic C-H bonds to give isometric thiols. ^{22,28} $$S(^{1}D_{2}) + RH$$ RSH[†] In the gas phase the insertion reaction is indiscriminate with respect to bond order, but in solution some preference for weaker secondary and tertiary C H bonds has been observed. At 254 nm the S(\begin{align*}{l}\textsup{\text In contrast to the higher alkanes, the reaction of $S(\frac{1}{1}\Gamma_2)$ atoms with mothage is characterized by extensive fragmentation at pressures less than 12 atm. This is because the adduct has an insufficient number of degrees of freedom to dissipate the energy released by the reaction (AH -83 kmal mole $\frac{1}{1}$) $\frac{14}{1}$, $\frac{20}{1}$. The final projucts of the reaction are $\frac{1}{1}$ A, $\frac{1}{2}$ B, $$S(^{1}D_{2}) + CH_{4}$$ $CH_{3}SH^{\dagger}$ [15] $CH_{3}SH^{\dagger}$ $CH_{3} + SH$ [16a] $CH_{2} + H_{2}S$ [16b] $CS + 2H_{2}$ [16c] $M - CH_{3}SH$ [16d] The nature of the transition state for the insertion reaction with alkanes has not been fully elucidated. However, it has been suggested that the transition state is similar to a H-bouded radical pair (C....H....S) in which rotation of the HS moiety can lead to insertion. The rate of insertion is similar for all alkanos, and the estimated rate constants lie in the range (10.3 - 1.2) $\times 10^{10} \, \mathrm{M}^{-1} \, \mathrm{c}^{-1}$. The upper limit of the activation energy is believed to be = 3 kgal mole | . No direct kinetic measurements (if the S(\frac{1}{10})) + alkano reactions have been reported. $O(\frac{1}{10})$ at me also insert directly into the contourse of allowors, diving with attendably excited also hole $\frac{10}{10}$, while the $S(\frac{1}{10})$ rections, the hole add of a very bounce of the highest contourse t In addition to insertion, abstraction of H is also significant $(20 - 30\%).^{29}$ $$O(^{1}D_{2}) + C_{2}H_{6} - C_{2}H_{5} + OH \Delta H = -48.9 \text{ kcal mole}^{-1}$$ [19] $$S(^{1}D_{2}) + C_{2}H_{6} + C_{2}H_{5} + SH \Delta H = -11.6 \text{ kcal mole}^{-1}$$ [20] The absence of this process in the $S(^{1}D_{2})$ - alkane systems can be explained by the small exothermicity of reaction [20]. Recently, Luntz³² suggested that insertion results from a perpendicular approach of the $O(^1D_2)$ atom to the C-H bond, and that abstraction results from a collinear approach. In general, the products of the $O(^1D_2)$ + alkane reactions include alcohols, carbonyls, water, CO, CH₄, higher alkanes and H₂. ³⁴ The small amounts of H₂ produced in the reaction have been postulated to arise from a third pathway, but the disclosure mechanism of its formation is still controversial $^{20.377-16}$ A few combined rates of incertion + abstraction (or some alkanes have recently been compiled by Scholield and are in the range $(1-4) \times 10^{11} \, \mathrm{M}^{-1} \, \mathrm{cm}$ on going fr m $\mathrm{CH_4}$ to $\mathrm{C}_{5}^{\mathrm{H}}_{12}$. The $\mathrm{C}(^{1}\mathrm{D})$ + alkane reactions by a bean requesting the comparature independent. In sharp controst to $S(\frac{3}{4}F)$ atomo, which do not yet of all others of $C(\frac{3}{4}F)$ atomorphisms $C(\frac{3}{4}F)$ atomorphisms $C(\frac{3}{4}F)$ atomorphisms $C(\frac{3}{4}F)$ The state of s Recently, Paraskevopoulos and Cvetanovic 37 studied the reaction of $O(^3P)$ with iso- C_4H_{10} using NO_2 as the source of $O(^3P)$ as well as a trap for the radicals formed in the reaction. Based on product analysis the following overall mechanism was proposed: $$O(^{3}P) + (CH_{3})_{3}CH + OH + (CH_{3})_{3}C \cdot (CH_{3})_{2}CHCH_{2}^{2}$$ [22] $OH + (CH_{3})_{3}CH + H_{2}O + (CH_{3})_{3}C \cdot (CH_{3})_{2}CHCH_{2}^{2}$ [23] $(CH_{3})_{3}C \cdot + NO_{2} + (CH_{3})_{3}CNO_{2}$ [24] $+ (CH_{3})_{3}CO \cdot + NO$ [25] $(CH_{3})_{3}CO + NO + (CH_{3})_{3}CONO$ [26] $+ NO_{2} + (CH_{3})_{3}CONO_{2}$ [27] The observation of $(CH_3)_3CNO_2$, $(CH_3)_3CONO$ and $(CH_3)_3CONO_2$ formed in steps [24], [26] and [27], respectively, supports H abstraction as the primary step in $O(^3\Gamma)$ - alkane systems. Kinetic data indicate that this reaction is quite slow $(k_{21} = 1)^{0.4} \cdot 10^8 \text{ M}^{-1} \text{ s}^{-1}$, on going from CH_4 to $(CH_3)_2(CH)_2(CH_3)_3)_3^{29,40}$. This can be attributed to the presence of an appreciable activation energy, which depends on the nature of the CoH bond (5.8,4.5 and 53.3 kcal mole) for 12, 24 and 32 CoH bonds, respectively). The has been suggested that the reaction occurs when the arrivach of the $O(^3\Gamma)$ stem is collinear to the CoH bond. ### (h) with alkenes. (i) $S(^{1}D_{2})$ and $O(^{1}D_{2})$ Atoms. Two processes are operative in the $S(^{1}D_{2})$ - alkene systems. One is stereospecific cycloaddition to the double bond to form a hot thiirane, $$S(^{1}D_{2}) + H_{2}C = CH_{2} \qquad \longrightarrow \qquad \left(\sum_{i=1}^{s} \right)^{+}$$ which for the case of C_2H_4S , has an energy content of $^{\sim}85$ kcal mole⁻¹. The hot adduct can be collisionally stabilized $$\left(\begin{array}{c} S \end{array}\right)^{\dagger} \qquad \stackrel{M}{\longrightarrow} \qquad \stackrel{S}{\bigtriangleup}$$ (step [29a]), or can isomerize to vinylthiol (step [29h]) [19,41 With higher alkenes (>C₄), isomerization does not occur, due to the presence of more internal degrees of freedom to dissipate the excess energy of the hot adduct.¹⁴ The other reaction is direct insertion into the C-H bonds, by analogy with the $S(^1D_2)$ - alkane systems, to form isomeric thicls. The rate of insertion into the aliphatic C H bonds is nearly statistical. Vinylthicls arise only if a terminal methylene group is present in the alkane. To do no alkyl substituted vinylthicls have been observed. Sparse kinetic data are available for the $S(^{1})_{2}$) alkene systems. Earlier work 4 1 estimated the total reaction rate constants for $C_{2}H_{4}$, $C_{3}H_{6}$ and i.C. $_{4}H_{8}$ to be 1 2 x 10^{10} , i.6 x 10^{10} and 1 1.5 x 10^{11} M 1 s 1 , respectively. A more requiremental places the rate constant for the $S(^{1}D_{2})$ + $C_{2}H_{4}$ reaction at 8 x 10^{10} M 1 s $^{-1}$, with insertion and addition proceeding at nearly equal rates $(4.2 \times 10^{10} \text{ and } 3.8 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$, respectively). In general, the rate of reaction increases slightly with alkyl substitution, and insertion has a slightly higher activation energy than addition. (e.g. $E_a(\text{vinylthiol}) = E_a(\text{thiirane}) = 0.5 \text{ kcal mole}^{-1} \text{ for } C_2^{\text{H}_4})^{1.4}$ Little work has been done on the reactions of $O(^1D_2)$ atoms with alkenes. Unlike the case of $S(^1D_2)$ + alkene reactions, these studies are complicated by the high exothermicity of the reaction (e.g. $\Delta H = -130$ kcal mole 1 for $C_2H_4)^{41}$ which leads to extensive fragmentation. Kajamoto et al. 44 studied the reaction of $O(^1D_2)$ with C_3H_6 at high pressures (ca. 20-150 atm. He), and confirmed that two main process were operative. Analogous to the $S(^1D_2)$ - alkene system, one is addition to the double bond forming a bot creation (reaction [20a1)), and the other is insertion into vinylic and aliphatic C-H bonds yielding carbonyls and alcohols, respectively (reactions [30b-d]). A minor pathway (<u>ca.</u> 2%) involves the elimination of H_2 (step [30e]). These results are consistent with an earliest study of the reaction of $O(^1D_2)$ atoms with C_2H_4 in liquid Ar where a similar distribution of the corresponding products was observed. The addition process (step [30a]) has been shown to be stereospecific. Recent <u>ab initio</u> calculations for the $O(^1D_2) - C_2H_4$ system indicate that the lowest energy reaction path corresponds to a symmetric concerted addition, ⁴⁶ which is consistent with the observed
stereospecificity. There are few kinetic data available for these systems. However, a recent competitive rate study 47 involving several alkenes indicated that water constants are extremely high and lie in the range of $(1-6)\times 10^{-1}$ M $_{\rm S}^{-1}$ on going from 6 $_{2}^{14}$ to 6 $_{3}^{12}$ $_{2}^{13}$. These observations is consistent with callier estimates 33 and follow the same treet is because of in the S(1 D₂) alkene systems (vide infra) ## (ii) $S(^3P)$ and $O(^3P)$ Atoms. The only reaction observed in the $S(\frac{3}{r})$ -lkene systems is the cycloaddition to the double bond violating the correspond to this reaches to product $\frac{1}{r}$ $$\frac{1}{2}\left(\frac{1}{2}\right)^{2} + \frac{1}{2}\left(\frac{1}{2}\right)^{2} \frac{1}{2}\left(\frac{1}{2}\right)^$$ s. A unique feature of this reaction is its compulsion to follow a stereospecific path, as illustrated by the reaction of S(3p) with cis and trans 2 butene, 42,48,49 The $S(^3P)$ + alkene reaction provided the first example of a stered specific cycloaddition involving a divalent triplet state reagent. All Subsequent EHMO calculations indicated that the triplet (T_1) thiirane formed in reaction [31] lies 40 kcal mole above the ground (S_0) state and possesses a ring distorted geometry with a rotational energy borrier of 123 kcal mole $\frac{1}{2}$. This high energy barrier con explain the observal high elements of the observal high elements. (T₁) thiirane has a very long lifetime and has been shown to be an efficient reagent for inducing cis - transisomerization in alkenes. This observation may account for some of the isomerized products declared in reactions nate onstants and Archenius parameters have been dotermined for a series of alkenes, 40,41 A few of them are listed in Table I-3 to illustrate the general trend of these reactions. From this Table, it is apparent that the rate constants increase with alkyl substitution on the vinylic carbon of the alkehe but decrease with halogen substitution. The A factors do not seem to show particularly strong trends, and consequently the variations in the rate constants are mainly due to changes in the activation energy Increasing alkyl substitution on the vinylic carbon has a diminishing effect on Ea, while substitution of electron-withdrawing groups such as fluorine has an increasing effect. This behaviour illustrates the electrophilic character of S(3p) which is further substantiated by the linear relationship between E_ and ionization potential of the alkene, as illustrated in Figure 1 1 52.53 Of particular interest are the tradicted negative outlination energies for reaction with alkence having low (<9.3 eV) ionization potentials In order to a count for this phenomenon, it has been proposed that P is dependent upon the location of the crossing point of the reactions surface and the conduct ייי בין גווש ABLE 1-3 ate Constants and Arrhenius Parameters for S("P) and O(")P) Atom eactions with Selected Alkenes | | × | (d^) \$ | | | (d _C) 6 | | |---------------------------------|---|------------------|-------------|--|---------------------|-------------------| | Kenes | xx10 ⁻⁹
4- ¹ 8- ¹ 5 | kcal mole (1) | 7 10 10 X | γ-8;-K | ئے
kcal mole کا | 1x10-10
M-4-1, | | Tig. | ئو.ر | " ; | | ।
च
ः | | 3.7 | | SH | 6.
G. | \$5 | ' ' | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1.7 | œ
; | | ہ ہے۔ | 4.20 | | ! | "" " | 3.7 | 3.7 | | 28-C.H8 | o
21 | er er | 7 | ئ. 0 | 3 | 0.7 | | JO-C.Hg | o 68 | ** ** | 7 | 20.7 | -0.1 | 9.0 | | :H;)2C=CHCH3 | 5 05 | 474
*
* | 89 , | , 0 · : | -i.3 | 0.4 | | '4',) 2C=C (CH ₃) 2 | ć 0è | Ĺ.¹. | r | 8.00 | 9 | 0.3 | | ~C=CHF | n. 3° | • | . 2 | ,
, | , | Y. • | | :8-HPC=CHF | 3.01 ^c | 9. | 1 | 'U
my
, | , | | | | | | | | | | ''98⁰K., ^DReference 53., ³calculated from relative data of Reference 96 using absolute data for לייא from Reference 53., ^מReference 55., מול אפריבים אסיי The interpolation potential versus Γ_n for the addition C_n (in the addition) The crossing point may lie above or below the energy of the separate reactants. The former case corresponds to a positive temperature dependence, while the latter corresponds to a negative temperature dependence. The model proposed by Cvetanovic and co-workers 55 to account for similar observations in the O(3 P) case assumes the formation of a loose π complex: $$O(^{3}P)$$ + Alkene $\xrightarrow{E_{a_{1}}}$ Complex ‡ $\xrightarrow{E_{a_{2}}}$ Product [34] This complex can either decompose back to the reactants or evolve to products. E_a is negative when E_a > $(E_a + E_a)$. The two models are not in conflict, and their application in the interpretation of other systems having a negative temperature dependence will be discussed in detail (vide infra). For the $O(^3P)$ + alternal reactions, the basic kinetic features are very similar to those for $S(^3P)$ atoms. The reactions proceed at comparable rates, as is apparent from examination of the rate parameters listed in Table I-3. The activation energies also decrease with increasing alkyl substitution and eventually become negative which illustrates the electrophilic nature of $O(^3r)$. As for the nature of the reaction, $O(^3p)$ also adds to the double bond: $$O(^{3}P) + \bigcirc$$ [35] However, the triplet biradical primary adduct contains a great deal of excess energy, and in addition to ring closure to form epoxide(step [36a]): 14,56-59 can undergo either intramolecular hydrogen or alkyl migration to yield carbonyls (step [36b]), or fragmentation (step [36c]). In contrast $S(^3F)$, $O(^3P)$ addition to the double bond is non-stereospecific, as illustrated by the product distribution of step [36a]. This observation has been cited as evidence for the existence of a freely rotating triplet biradical intermediate. Indeed, a recent theoretical conformational study has shown that the ring opened triplet isomers of methyloxirane are lower in energy than the ring closed structure. The rotational barriers about the CHR-CO bond of these isomers were found to lie in the range 0.8 1.2 kcal mole 1, indicating freely rotating species 60. M.O. calculations on the possible intermediates of the $O(^3P)$ + $CH_3CH=CH_2$ reaction reveal that four isometic bright states are energetically accorsible 61 : $$CH_3 - \dot{C}H - \dot{C}H_2 \qquad and \qquad CH_3 - \dot{C}H_3 \qquad \dot{\phi}$$ $$CH_3 - \dot{C}H - \dot{C}H_2 \qquad and \qquad CH_3 - \dot{C}H_3 \qquad \dot{\phi}$$ These biradicals may evolve into the observed products, methyloxirans, propionaldehydo and acetone. The product distribution of this reaction is temperature dependent, and this was explained in terms of the differences in the thormodynamic stabilities of the adducts involved. The fragmentation process, which is alread in the C(1) alkone systems is attributed to the higher evolutermicity of the O(1) addition (25.30 kcal mole higher for O(1)). The presence of carbonyl products in these systems can be ephalically the greater difference in bond strengths between the total and C+O bonds at compared to the difference in tween the corresponding of the figure of gard by the greater of the figure of gard by the corresponding of the figure of gard by the for community to the difference of gard by the for community the figure of gard by the community $$n(\frac{1}{5}) + n_{3}\pi_{6} = \frac{1}{2\pi_{5}} + \frac{2\pi_{5}}{2\pi_{5}} + \frac{1}{2\pi_{3}} + \frac{2\pi_{5}}{2\pi_{5}} + \frac{1}{2\pi_{5}} + \frac{2\pi_{5}}{2\pi_{5}} \frac{2\pi_{5}}{2\pi_$$ indicates that $O(\frac{3}{P})$ adds predominantly to the less substituted the large substituted for the large substituted ### (c) with alkynes (i) $S(^{1}D_{2})$ and $O(^{1}D_{2})$ Atoms. Only addimited number of $S({}^{1}D_{2})$ + alkyne reactions have been studied. In general the reactions are characterized by low product recoveries and extensive polymerization at room temperature. The end products are usually thiophere, benzeue polymer and, in some cases, $\sigma s_{2}^{-14.63,64}$ relatibe product yiel's are low for the parent acetylene, but increase with reaction temperature and fluoromethyl substitution It is giverally accepted that the reaction of output with alkymen is addition to the triple bond. Give the striple bond. $$\begin{pmatrix} b & b & b \\ & \ddots & & b \end{pmatrix}$$ There is a receibility that a miner mathway, incordion into the ollyps of H bonds to form the obspaylthich, exists Hew ever this cannot be or silised due to inst bility of the good to see ral other iss. If the product of produc However, the Transient existence of thirtene is supported by The fellowing congrimental chaos stien (100) studies of COS-alkyne systems employing kinetic mass spectrometry revealed the presence of transient species corresponding to the molecular weight of the adduct . The lifetimes of these transients were unusually long (>0.1 · 7 s), which militates against excited or radical species (b) - (e) as the intermediate 14,65. Moreover, thiophenes are among the end products, and are postulated to be formed via addition of the addict to a substrate molecule 63-65, for orangels in the Fithynylthical (f) cannot be formed in the case of disubstituted alkynes, with the thiophen yields are highest for the same formed; reaction for the same performed; reaction for the thiobetime (g) and thirty (a) as rea in ble alternations. For this ketone (g) and thirty (a) as rea in ble alternations. For this ketone (g) to be inclinated in the thiophen of reing retained (g) to be inclinated in the thiophen of reminding the language of these processes should be least likely for the case of the concluded that inconsistent with the observed high thiophene yield. On the primary added of the school in the primary added of the school in the primary added of the school inconsistent with the school in the primary
added of the school in the primary added of the school in the primary added to the school in the primary added the school in the primary added the school in the school in the primary added the school in the school in the primary added the school in the school in the primary added the school in sc Dir of a ider of for the existence of this report has been a control of the contr which affords thiirene, thioketene and ethynylthiol. 67,68 $$\frac{R}{R}$$ + hv $\frac{S}{-N_2}$ + Rearrangement [41] The thermodynamic and kinetic properties of the products are consistent with the theoretically predicted stabilities of the C_2R_2S isomers. ⁶⁹ Only limited kinetic data are mailable for C $_{\rm m}$ alkyne reactions, rate constants for HC=CH and F_3CC=CCF_3 are estimated to be in the range (3-9) $_{\rm X}$ 10 $_{\rm M}^{-1}$ s $_{\rm m}^{-2}$ kg,70 To date, only two experimental investigations on $\pi(^1\bar{D}_2)$ is alkyne reactions have been reported. One and otropes investigated the 2 between reaction and found a number of non condensable products but were unable to characterize the exymmetration products. A recent study 72 of the $\sigma(^1\bar{D}_2)$ + $\pi\bar{C}$ =CH system showed that subtrationally excited to is produced in the specific. the process: $$O(^{1}D_{2}) + HC=CH - C_{2}H_{2}O - CH_{2}(\tilde{a}^{1}A_{1}) + CO^{\dagger}$$ $$\Delta H = -86 \text{ kcal mole}^{-1}$$ Recent <u>ab initio</u> calculations suggest that the most probable primary process is spin and symmetry allowed addition to the triple bond to form an unstable oxirene. 73,74 $$O(1D^{3}) + HC = CH - - - - (80)^{+}$$ Unlike thiirene, oxirene has never been observed. However there is compelling evidence for its transient existence as an intermediate in some photochemical Wolff rearrangements, for example those of α -diazeketones and esters. For $S(^3\tau)$ + alkyne reactions, the nature and yields of the products are similar to those for the case of $S(^1\Gamma_2)$. However, the primary adduct is the vibrationally conitries around state triplet thicketocarbone: Pate constants have been measured for a few alkynes, and lie in the range $10^8 \cdot 10^{10}$ M $_{\rm s}$ 1 . The activation energies are slightly higher than those for the corresponding alkene reactions (-1 to +3 kcal mole⁻¹), but follow the same general trend 76 As in the case of alkenes, fluorination of the substrate drastically reduces the rate of addition: the rate constant for $s(^3p)$ is It has been postulated that analogous to the $S(^3p)$ -alkyne systems, $O(^3p)$ adds to the triple bond giving the triplet ketocarbene intermediate, $$O(^{3}F) + RC = CCH_{3} + RCCCH_{3} (T_{0})^{+}$$ [45] In addition to this process, H abstraction has been suggested as a minor pathway (<5%) in the case of acetylene 78 . A distinct difference between the S(³P) and O(³P) atom reactions with alkynes is the occurrence of significant amounts of fragmentation products in the latter system, resulting from decomposition of the primary adds to In general, the end products are polymer, CO, alkenes and uncaturated letters ### ?) Reactions of Se Atoms Although limited in scope, the data available on the reactions of Se atoms complement the general trends where established for S and O atoms. Thus $So(\frac{1}{D_2})$ inverts into the CoH bends of alkanes indistriminately, yielding selence mercaptans R1 , R2 . With alkanes, the only reaction observed for both $So(\frac{1}{D_2})$ and $So(\frac{3}{F})$ is addition to the double bout which leads to the formation of unstable epicologicas. $$\operatorname{Se}(n_2, T_1) + n_2 \operatorname{Ceb}_2$$ $$\operatorname{Re}_2$$ $$\operatorname{Re}_2$$ ### 3) Reactions of Te Atoms. Only Te(P) + alkene reactions have been examined. The adducts are unstable epitellurides 84: Arrhenius parameters have been determined for C_2H_4 , C_3H_6 and $(CH_3)_2C^2C(CH_3)_2$ and the rate constants are in the order of $10^7 \times 10^9$ M s⁻¹. The trend in E_a is consistent with other Group VI A atoms. In fact, the E_a observed for the reaction of $Te(^3F)$ with $(CH_3)_2C^2C(CH_3)_2$ was the first negation in the constant of $Te(^3F)$ with $Te(^3F)_2C^2C(CH_3)_2$ was the first negation in The Reactions of Stand Order of its folynomia minated Hydroga I. The with amomatics With recently, the only S + asometic reaction insection is not ignt of was the Larence system, and uncertainty ble products were observed. Bowever, direct evidence for the occurrence of a reaction between S atoms and an aximation first was obtained from a study of the $S(D_2, T) = T_3 CC = CCT_3$ system. One of the products observed at high conversion, (i), who products observed at high conversion, (i), who products to arise from the oldition of two S at ma is The hypothetical $C_8F_{12}S_2$ species (h) was not detected, but it was also assumed to be the precursor of the observed evapor. (i) and (b): $$C_{0}F_{0}C_{1}$$ an ectop. In Atomo To date no $O(\frac{1}{10})$ + aromatic reactions have be a report of However, $O(\frac{1}{10})$ aromatic eletems have received consider able attention, particularly in the last decade. In an only study of the reactions of $O(\frac{3}{10})$ atoms with bearens and toluene, (vetanovic and co-workers found that these react were characterized by extensive polymerization (1752). Ph. Volatile products consisted mainly of phenols, with small amounts of CO and $O(\frac{1}{10})$. Based in the absence of prometic is: The short aftern products, a mortanism of $O(\frac{1}{10})$. The O atom adds to the aromatic ring to form a triplet biradical which either rearranges to a phenol or undergoes ring rupture yielding unstable products which decompose or poly merize. Subsequent studies 87,88 of these systems were in agreement. A more recent study 9 on deuterated aromatics showed no evidence of a primary kinetic isotope offert at temperatures below 600 to which below companion. Absolute rate parameters have been measured by erveral techniques and are in reasonable agreement. The trender observed for both the rate constants and the activation ensures parallel three already getablished for origin and solutions albene cyclems. Pate constants only from 10 Min for bonzone to 10 Min for 1.3 The trimethylls solution in activities energies due to the same series. Pate paramotore for the o(1) roughier with a help a termic comatic, thiophene hand been dot rained only recould using a discharge (low resonance fluore come to things). The rate constant of er the temperature range to the temperature range of the temperature range. 1 2 4 10 10 44 1 1100 171 11 5 However, let a 260 m, a large no allier mane of 2 ft al mal man than observed. The discussion insists in the Armi's ignarial contribution of the armi's and the armi's arm 32. in the second of to the S atom, step [53], and addition to the double Fords of the aromatic ring (step [54]). Percent and thicrhene have comparable resonance entries and because the room temperature rate constant for the 0 to thiophene reaction with was two refers of manifolds greater than for reaction with benzene, but similar is magnitude to these of other organ cultides (vide infra), it was suggested that shows $200 \text{ to the prodominant reaction in these the states. Specifying the known resulting <math display="inline">\Gamma_{\rm a} = 0.00 \text{ km}$ where the states of the continuous states in the prodominant reaction in these the states. Specifying the continuous states and the continuous states are suggested that the continuous states are states of the continuous states and the continuous states are states and the continuous states are states and the continuous states and the continuous states are are states and the continuous are states and the continuous states are states are states are states are states and the continuous states are states are states are states are states and the continuous states are states are states are states a 1 with dimes The reaction of Ω atom with β is a have not been to as symmetric as the sew with allower. In date, only the resolutions with 1/2 $4^{11}6$ and allens $((2^{11}4))$ are been invertible. The right form that simple $((2^{11}4))$ are been invertible. The right of $((2^{11}4))$ are the present of $((2^{11}4))$ and $((2^{11}4))$ are the present of $((2^{11}4))$ and $((2^{11}4))$ are the first term $((2^{11}4))$ and $((2^{11}4))$ are the probability of $((2^{11}4))$ and $((2^{11}4))$ are the semi-section and $((2^{11}4))$ are the semi-section of and $((2^{11}4))$ are the semi-section of $((2^{11}4))$ and $((2^{11}4))$ are the section of $((2^{11}4))$ and $((2^{11}4))$ and $((2^{11}4))$ are the section of $((2^{11}4))$ and $((2^{11}4))$ and $((2^{11}4))$ are the section of $((2^{11}4))$ and $((2^{11}4))$ are the section of $((2^{11}4))$ and $((2^{11}4))$ are the section of $((2^{11}4))$ and $((2^{11}4))$ unidentified product of molecular weight 88. 25,95 The vinylthiirane yield was found to increase with decreasing substrate pressure, and in the presence of CO_n. These observations were explained in terms of a bot sinylthis was $$(n - nca - nca) = (n - nca) + nca)$$ which can be collisionally stabilized, or undergo ring rurtur to form a biradical. This biradical can either react with the substrate, yielding colymer or read anget form this phenoia H₂ climination, some of the thiophene can also rise for scorndary photolysis of ninylthiirane, Untiles the most of the colomb, the colomb, the colomb, and the colomb, the colomb, and a Polarino rate parametero f $r = (\frac{1}{2}r)$ addition to 1,3 ($\frac{1}{4}r$) by the data for $r = \frac{37}{2}$ (308) $\frac{1}{4}r = \frac{37}{2} \times 10^{10}$ M $\frac{1}{6}r = \frac{1}{2}$ and $\frac{1}{6}r = \frac{3}{2} \times 10^{10}$ M $\frac{1}{6}r = \frac{1}{2} 10^{10$ The $n(\frac{1}{1}n_{\perp}, \frac{3}{1}n_{\perp})$ is all one reaction has been briefly exact. As in the case of 1.3 $\frac{1}{4}n_{6}$, only dycloaddition to one of the double bunds use observed. The
product, methylen theirans, where obtained in charly quantitative yields $\frac{1}{1}n_{6}$. $$s(^{1}D_{2},^{3}P) + H_{2}C = C + CH_{2}$$ [57] No kinetic measurements were reported, However, based on the known at parameters for the $O(\frac{3}{P})$ + CH_2 =C=CH $_2$ reaction, it was suggested that the room temperature mate constant shows that the room temperature mate constant shows that the room temperature mate constant shows the room temperature mate constant shows the room temperature materials and Cyethriving and Dowle studied the reaction of O(3F) atoms with 1,3 of H and observed the major products to be 3,4 epicymol butene. 3 of utenal and co. Small amounts of fragmentation products and polymer were also observed. Based on these observed that similar to the case of the only only of the primary process is 1,2 addition of O(3F). This intermediate can then undergo either ring closure to form the orthographing encylde, or 1.2 H shift to form the ald-hyde. CO as thought to be a fragmentation product analysis study recorted. the ald-hyde A later product analysis study recorted. small amountm of 3 butens 2 one and vinylether in addition to the closure of the possible of the proposal that an additional isomeric biradical intermediate, $H_2^{-C-CHCH=CH_2}$, was also formed in the primary step. It is apparent that both $S(^3P)$ and $O(^3P)$ atoms react with $1.3-C_4H_6$ by electrophilic addition to one of the double bonds. As in the alkene systems, thiocarbonyls are absent in the $S(^3P) + 1.3-C_4H_6$ reaction (vide supra). Furthermore, H_2 elimination to form furan, the oxygen analogue of thiophene, does not occur in the $O(^3P)$ case. Absolute rate parameters for the $O(^3P) + 1.3 - C_4H_6$ reaction have been determined in two separate laboratories. 100. The results are in excellent agreement, with $k_{(298)} = 1.2 \times 10^{10} M^{-1} s^{-1}$ and $E_a \sim 0$. These results are also comparable to those measured for the $S(^3P)$ reaction. The only other conjugated diene which has been studied with is $C = C_5H_6$. The reaction is characterized by extensive fragmentation and the absence of 0 - containing products. To date only two product analyses on the $O(^3P)$ + allene reactions have been reported. 103,104 At high pressures (600 torr) in a static system, 103 the products observed for a series of allenes were, in general, CO, alkenes and $^{\alpha}$, $^{\beta}$ -unsaturated carbonyl compounds. The mechanism proposed to explain the formation of these products for the specific case of allene is as shown: $$H_{2}C = C = CH_{2} + O(^{3}P) \xrightarrow{d} H_{2}C = CCH_{2}$$ $$\downarrow b \qquad f \qquad h \qquad h^{-}$$ $$\downarrow c \qquad \downarrow d \qquad h^{-}$$ $$\downarrow c \qquad \downarrow d \qquad h^{-}$$ $$\downarrow d \qquad H_{2}C = CH_{2}$$ The carbonyl product distributions indicated that the O(\$^{1}P) atom could attack at any of the vinylic carbons at rates determined by the substituents. It was proposed that CO and alkene are formed by decarboxylation of an excited cyclopropanone (step [60d₂]), while carbonyls are produced by rearrangement, either of the excited cyclopropanone ([60d] + [60e]), or of the initially formed biradicals; [60h]. For elemental carbonylation is the major step. Evidence for the transient existence of cyclopropanone was obtained by chemical trapping with methanol to form a hemiketal. In a later study 104 of the parent allene in a low pressure flow system, Lin and co-workers failed to observe any carbonyls. Instead, significant quantities of acetylene and methyl acetylene were found. The inconsistency in the products observed in the two studies may be attributed to the different reaction conditions employed. However Lin et al.'s results also support the intermediacy of an excited cyclopropanone; thus the observed CO vibrational distribution was consistent with that predicted for the decomposition of the excited cyclopropanone. Absolute rate parameters are available only for the parent allene 100,101,105 . Values from different co-workers are in reasonable agreement, with average values $k_{(298)} \sim 6 \times 10^{10} \ \text{M}^{-1} \text{s}^{-1}$ and $E_a \sim 1.8 \ \text{kcal mole}^{-1}$. Relative rate constant measurements for a series of allenes indicate that the rate of $O(^3P)$ addition increases with alkyl substitution 103 . This behaviour parallels that of $O(^3P)$ and $S(^3P)$ alkeno and $S(^3P)$ alkeno and $S(^3P)$ and $S(^3P)$ alkeno and $S(^3P)$ - F. Reactions of S and O About with a reaction length and the Thioethers. - 1) Peaction with COS. The reactions of $S(^{1}D_{2}, ^{3}F)$ with COS have already been discussed in considerable detail (vide surra). To commattee the fly, both $S(^{1}D_{2})$ and $S(^{3}P)$ abetract of the continuous The $$a_{i_1}b_{i_2}$$, the cos a_{i_1} room temperature cote country to and the stion country to the $k_3 = 4 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1.5,19}$, $E_a = 2 \text{ kcal mole}^{-1.14}$ and $k_5 = 2 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$, $E_a = 3.6 \text{ kcal mole}^{-1.21}$ (b) $O(^1D_2, ^3P)$ Atoms. Very little data are available for the $O(\frac{1}{D_2})^{\frac{1}{2}}$ costeaction. However, two processes have been shown to occur under low temperature (15 - 60 k) matrix qualitions $\frac{106}{100}$ $$O(^{1}D_{2}) + COS \longrightarrow CO + SO$$ [61] $$O(^{1}n_{2}) + COS + CO_{2} + S$$ [62] In these experiments, reaction [62] was the dominant step. The estimated has phase room temperature total rate constant is very large, $F_{298} = 10^{-10} \, \mathrm{M}_{\odot} = 10^{-13} \, \mathrm{g}^{-3}$, and is comparable to that for the $\mathrm{S}(^{1}\mathrm{D})$ + COS reaction. Ceveral studies by a hen reported of the reaction of $\alpha(1)$ with $\cos^{10.7-11}$. The only reported operation at temperature a to the operation a to the operature $$\frac{(1)^{2}}{2} + \frac{(2)^{2}}{2} \frac{(2)^{2}}{2$$ and at higher temperatures, alimination of commit energy to the important of the committee $$(0.03p) + (0.09) + (0.02p) + (0.02p)$$ Rate parameters have been determined by several to be niques. The average room temperature rate constant is 8 × 10 M s , similar to that observed for S(F) 10 110 However the fig. 1 compatt tilarges 10 keep mole. # (a) S(1p₂, 3p) Atoms. Thirranes are the only cyclic sulfides which have been studied. Investigations have been limited to $S(^3P)$ atoms and the role reaction is thought to be desulfurization via a single step, concerted process: for $\frac{6}{2}H_4\dot{S}$, the reaction products are C_2H_4 and S_2 . $$S(^{3}I) + {}^{5} - {}^{6}2^{14} + {}^{6}2$$. 3 The absolute rate constant for the $S(^3F)$ + thirrane reaction has been determined by flash thotolysis technique and is temperature independent with a value of k_{55} and is temperature independent with a value of k_{55} and k_{55} are rate constants for a series of thir area have been measured, and were found to increase with allyl substitution. This helamious is are to serie that of the $S(^3F)$ alkent systems (vide surve) No studios on $O(\frac{1}{1}D)$ + cyclic sulfide reactions have been reported. To date, only a few reactions of $O(\frac{1}{1}D)$ atoms with cyclic sulfides have been studied. The hard of the reaction with thirars in a fast flow mass spectrometric system indicated that ethylene and so were the major of the system indicated that there is only the same and so were the major of the system indicated that there is only the same and so were the major of the system indicated that there is only the same that there is the same of the same system is the same of the same system is the same system. $$\frac{a}{\sqrt{1}} = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}\right)^{\frac{1}{2}} = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}\right)^{\frac{1}{2}} = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}\right)^{\frac{1}{2}} = \left(\begin{array}{c} \left(\begin{array}{$$ $S(^3P)$ + thiirane reactions, were postulated to arise from $O(^3P)$ attack on the S site of thiirane to form an excited sulfoxide intermediate ([66a]), which then decomposes to C_2H_4 and SO. The SO was observed as SC_2 , produced by the reaction: $$0 + 80^{\frac{4}{3}} - 80_2$$ [67] It is apparent that reaction [66] is analogous to S abstraction from thiirane by $S(^3F)$. The rate constant of $O(^3r)$ addition to thiirane was determined to be $k_{66} \approx 10^9 \ \text{M}^{-1} \, \text{s}^{-1}$ and, as in the case of $O(^3r)$, showed no temperature dependence. In a very recent study, the O(3P) + CH₂(CH₂)₂s (thiotang) reaction, singleton reported that the products are C₂H₄ and c=C₃H₆ in a total yield of 0.00k¹¹⁴. It was suggested that the primary step was addition of the O(31) atom to the S site, followed by C-S bond scinsion to form a ring opened to the binary by C-S bond scinsion to form a ring opened to the binary by C-S bond scinsion to form a ring opened to the binary by C-S bond scinsion to form a ring opened to the binary step was addition of the form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring opened to the binary step was additional to form a ring open to the binary step was additional to form a ring open to
the binary step was additional to form a ring open to the binary step was additional to form a ring open to the binary step was additional to form a ring open to the binary step was additional to form a ring open to the binary step was additional to form a ring open to the binary step was additional to the binary step was additional to form a ring open to the binary step was additional The sulfoxide which may have been formed in step [69c] was not observed, even at pressures up to 800 torr. A trace amount of $\rm C_3H_6$ was also found, but it was thought to arise mostly from secondary reactions. Relative rate measurements with 1-butene gave a room temperature rate constant of 1 \times 10 11 M $^{-1}$ s 1 , much faster than the corresponding reaction with thiirane. The reaction of $O(^3P)$ atoms with tetrafluoro 1,3. dithietane $(\overline{CF_2SCF_2S})$ has also been studied. The products observed were consistent with a primary reaction mechanism followed by decomposition to a school the six of the sate Practions with Acyclic Thioethers (Sulfides) To date, the reactions of S atoms with anyclic this others have not been reported (b) $$O(\frac{1}{D}^2, \frac{3}{3}p)$$ Atoms. Of the acyclic monosulfides, only ${ m CH_3SCH_3}$ has been studied extensively. A fast flow mass spectrometric study of the $O(^3P)$ + CH_3SCH_3 reaction detected the formation of large amounts of CH_3SO along with trace quantities of CH_3S and CH_3O^{116} . It was proposed that $O(^3P)$ attacks the S site of CH_3SCH_3 , forming an excited dimethylsulfoxide intermediate. This excited adduct is formed with 85 88 kcal male. $$O(_{3}^{2}E) + CH_{3}^{2}CCH_{3} + (CH_{3} - \dot{g} - CH_{3})^{4}$$ of excess energy, exceeding the energy required for Casbond cleavage by 23 kcal mole 1. Therefore at low pressured the excited adduct decomposes rapidly, releasing CH₂SO. $$\left(\operatorname{CH}^{3} - \operatorname{S-CH}^{3}\right)^{+} \qquad \operatorname{CH}^{3} + \operatorname{CH}^{3} \in \mathbb{N}$$ The CH₃S and CH₃' products are probably the result of rearrang ment in the excited adduct followed to defen with the content of the probably the result of $$\left(\operatorname{CH}_{3},\operatorname{H-CH}_{3}\right)^{\mathsf{T}} = \operatorname{CH}_{3} \times \operatorname{CH}$$ It was suggested that the excited adduct could also be collisionally stabilized. A second study 113 using the tamp technique arrived at similar conclusions regarding the reaction mechanism. ¥ Pecently, Cretanovic and co-workers re-examined the $O(^3\Gamma)$ + CH_3SCH_3 reaction in a static system $^{11.7}$. For product analysis revealed two products, C_2H_6 and $(CH_1)_2C$. The following additional store were considered: 2 $$CH_3SO$$ $CH_3 - CH_3 - CH_3$ $CH_3 - CH_3 $CH_$ Although products formed in steps [73] and [76] were not chearmed, (CH3) 2S=0 was shown to result entirely from step [77]. and not from pressure stabilization of the model In a recent study 118, n_3 was photolyzed with cH_3 schion an Ar matrix. $(H_3)_2$ san was observed, substantiating the intermediacy of $(CH_3)_2$ san troposed by other workers. All of these, bearvations unequisocally point to the strack of $\alpha(\frac{3}{4})$ on CH_3 six taking place evolutionly as the state of the form an excited sulfavial intermedity These correlations already a tablished for alkenos. For the case of disulfides, the o(r) requescript reaction has been studied recently 117. No volotile products research served, which we explained in terms of a me harism is not increased, which we explained in terms of a me harism is not increased, which we explained in terms of a me harism is not increased, which we explained in terms of heart and marked one of the commounds. It was proposed that the storms it was one of the Gatoms of the district $$O(3r) + CH_3SSCH_3 - CH_3 - (CH_3 - CH_3)^{\dagger}$$ [77] thich then decomposes via " " bond sciesion $$\left(\operatorname{Ch}^{3}, \frac{1}{0} \operatorname{er} \operatorname{Ch}^{3}\right)_{1} \qquad \qquad \operatorname{Ch}^{2} \operatorname{ev} \operatorname{Ch}^{3} \operatorname{ev} \qquad \text{[48]}$$ Rate parameters measured by flash photolypis section fluore conce $\frac{122}{200}$ were $\frac{122}{(290)} = 1.2 \times 10^{11}$ M $_{\odot}$ and E_{\odot} On the other hand, values of $\frac{1298}{(298)} = 4.0^{10}$ M $_{\odot}$ and $F_{\odot} = 0.5$ kcal mole $\frac{1}{2}$ were obtained using the those shift technique. Nonetheless, the rate of this country is a figure of the fastent of the lin who $O(\frac{1}{2}\Gamma)$ reaction No data on the of of or years who we get the a ### ' Pim of the Present Investigation The important from the foregoing discussion, of the constituted minimum into a constitute at a constitute of the result of standard by an earlier and the constitute and alkyros have been quite cell defined, and a great deal of rate data a constitute. The reactions with dienes, however, and I seem to brown; for allers and 1,3 lutadient, addition was the only observable result in and in rate data are a situable for the former motor 1. It was therefore the constitute of cons there are the letinet addition sites in this motivate. as a result of differ of electric densities. The relation electrophilic nature of $s(\frac{3}{r})$ atoms. insertion, in ompetition with addition. insertion into vincti. C.H bonds of alkanes has been shown to take class, yet it is peculiar that insertion product were not a tectod in the $s({}^{1}p_{2}) + 1,3 \times 4$ H, and allege reactions: becomely, a metical of a more than the products is warranted none of the possible uncatorated thirranes and this products has been reported in the literature and they now expected to possess unusual and high reactivity. the a milability of rate parameters for the $S(\frac{3}{9})$ reaction only further extend the remarkable correction between the parameter and ionim tion retend to the $\frac{3}{3}$ and The great one of entities above with Ope and the iname processed by way of deepthification, but with a attention of the evaluation of the entitle entitle entitle the reaction of the control of the first investigate the reaction of the control of the dimethod of the from the linetic and machanistic or into a view. By malary with the Office of the control of the entitle of the authorists of the formation of time that attack the author effect tooding to the formation of time that the factor of the properties of the formation of the entitle of the case some of the properties of the entitle of the case some of the properties of the properties of the properties of the case some of the properties of the properties of the case some of the properties of the properties. atom and radical reactions with dimethylaulfide. The S thietane reaction was studied in order to examine the effect of edding one C atom to the thiirane ring on the nature of the primary problems and the products. Iso, there are more sites available for insertion attack in $(\Pi_{j})^{j}$ as compared to $(\Pi_{j}^{j}\Pi_{j}^{j})^{j}$, allowing a me insight into the reactivity of the sulfar moiety in this malocular. It was also antic instead that this study would provide a me insight into any differences between cyclic and a yelic thiosther reactions. Finally, two small projects were undertakenes here is proposed in the presence of CO_{yl}, the CO violds have been reported to miora a mall but on matterday of the continuity of the colline within the case and produce will not to continuity of the colline The phot locia () and of this are generated of and mechanistic mechanisti The results of those in obtantions are described in Argustines of the second 1 7 #### CHATTED IT the High Vacuum System A con entional ligh acumm system constructed of types tubing was employed. The system, consisting of the photolytic a sombly, two distillation units (one for purification of substrates, the ther for separation of froducts), a et rado system and a rooplor pump das 'Hretto orro gement, i ill etrated in Figure it 1. Totafio Feet plya a openate were seed for the architection exetem and notion were adverse, Springha and note helium hestod only a were used three thout to mi imize the less of products in a ord of ar ase. Practically to 10 febry wa achie of by a two store more by diffusion pump backets Welch Process oil me harical rums. Pirani tulca (Consolidate' Vacuum to poration Catalogie No. or 001), conveniently torreted in the eyetem, very used to monitor dietillati n and has 'ransferances. The Estead songe as need to as itrate the Firani gauses (Tope 3 140). The anal if at distillation unit consisted of two H traps, a most to y, or 'n solt wit age trap intercornacte! by $(x,t_1,\ldots,x_{n-1}) =
(x_1,\ldots,x_{n-1}$ ₹. FIGURE II-1: The high vacuum system. was connected directly to both the gas purette and the distillation train, thus enabling the condensable products to by-pass the Toepler pump and gas burette into the GC sampler. ### B. Photolytic Assembly A cylindrical quartz cell equipped with a cold finger (10 cm in length and 5 cm in diameter) and suprasil windows was used as the reaction vessel. A graded quartz-to-Pyrex seal attached to a high temperature Hoke valve (model 421306y) connected the cell to the high vacuum system. The reaction cell and lamp (~ 5 cm apart) were held in position by 3-pronged clamps. The radiation source was a Hanovia medium-pressure mercury arc (model 30620). For the cases of CH_3SCH_3 and $1.2-C_4H_6$, it was operated in conjunction with three 2 mm thick Vycor 7910 cut-off filters, which limited the effective radiation to > 220 nm. Because of the presence of a long wavelength absorption band ($\lambda_{max} \sim 265$ nm) in the spectrum of $\overline{CH_2(CH_2)_2S}$ (trimethylene sulfide), a 2 mm thick Vycor 7910 filter coupled with a 240 nm interference filter was required. This limited the effective radiation to \sim 240-260 nm, with the most intense radiation centered at \sim 250 nm. The lamp was allowed to warm up for an hour before irradiation. For temperature studies, the cell was placed in a hollowed-out cylindrical aluminum block furnace measuring 16 cm in length, 12.5 cm in external diameter and 6 cm in internal diameter. The open ends of the furnace were covered with 2 mm thick quartz plates to prevent cooling of cell faces by air currents. Surrounding the aluminum block was a one inch thick layer of fibreglass insulation. The furnace was heated by means of four 10 cm long 150 watt pencil heaters, inserted axially in the two halves of the block. Desired temperatures were maintained by an API 2-mode temperature controller. Cell temperatures (± 1°C) were measured by standard iron-constantan thermocouples and a thermometer placed in an axial hole located at the face of the block furnace. ### Materials and Purification Carbony' sulfide (Matheson) was purified to remove CO₂ and H₂S impurities by passage through two washing bottles of saturated sodium hydroxide solutions in series with two bottles of saturated lead acetate solution. The gas was then distilled in vacuo at -139° (ethyl chloride slush) and degassed at -160° (isopentane slush). - 2. Dimethyl sulfide (Terochem) was distilled in vacuo at -98°C (methanol slush). Prior to each experiment, further purification was achieved by GC on a 6 ft x'4 mm (I.D.) glass column packed/with 12% tricresylphosphate on chromosorb WAW DMCS (80/100 mesh), then degassed at -115° (ethanol slush) three times to remove any CO₂ which may have condensed during transference and storage in the GC train. - 3. NO (Matheson CP grade) was distilled in vacuo at $\sqrt{183}^{\circ}$ (liquid argon) and degassed at -196°. - Propylene (Matheson, 99.7%) was distilled in vacuo at -139° and degassed at -160°. - 5 . $^{ m O}_{ m 2}$, $^{ m CO}_{ m 2}$ (Airco assayed reagents) were used as such. - 6. 1,2-Butadiene (Chemical Sample Co., 99%) was distilled at 105° (methanol slush with traces of water) and degassed at 139° (ethyl chloride slush). - 7. 3-Butene (Linde, research grade) was distilled at all (115) (ethanol slush) and decassed at 196°. - Thietane (trimethylene sulfide, API-USBM standard sample, 99.95%) was purified prior to each measurement by GC on a 3 ft × 4 mm (I.D.) column packed with 10% squalane on chromosorb W, HP (80/100 mesh) then degassed at 105 (methanol cluck with traces of water) to remove CO₂. #### D. Analytical Techniques 1. Gas chromatography was used for the quantitative analysis of products and for purification of substrates. The unit consisted of a Gow-Mac power supply model 24-500 and a home made micro volume cell detector fitted with a pair of Gow-Mac 13-502 thermistors, operated at 30° with a bridge current of 9 mA. The temperature of the detector was bept constant by a Colora circulation bath connected to a water jacket, which housed the detector block. Signals were fed into a Hewlett-Packard model 7101 P strip chart recorder. The carrier gas was helium (Linde), purified by passage through a trap of molecular sieve 5λ (1/16" pellets) at ~196°. Flow control was attained by an NRS needle control valve (model λ ~12) and the flow rate was measured on a bubble flow meter. of columns were constructed of Pyrex or quartz quartz quass or teflon tubing and were connected to the apparatus by means of Beckman teflon tube fittings No. 404. Column temperature was maintained by a water bath. Tables II-1 and 2 summarize the columns used, the retention times and operating conditions for all the analyses and purifications reported in this work. ## ABLE II-1 # Columns Used | Column No. | Sescription | |----------------|---| | b ∦ | <pre>3 ft < 2 mm I.D. glass column packed with 80/100 mesh molecular sieve. 5A.</pre> | | II | $6 \ { m ft} \times 2 \ { m mm} \ { m I.D.}$ glass column packed with $80/100 \ { m mesh}$ porapak N. | | III . | 5 ft \times 2 mm I.D. glass column packed with 45/60 mesh molecular sieve i3x. | | Δ | 4 ft × 4 mm I.D. glass column packed with 10% tricresylphosphate on 30/100 mesh chromosorb W,AW-DMCS. | | 7 | 2 ft \times 2.5 mm I.D. teflon column packed with 3% OV-101 on 80/100 mesh chromosorb W,HP (Chromatographic Specialties Ltd.). | | 7.1 | 6 ft \times 4 mm I.D. glass column packed with 12% tricresylphosphate on 80/100 mesh chromosorb W,AW-DMCS. | | VII | 5 ft x 2.5 mm I.D. teflon column packed with 80/100 mesh porapak QS. | | VIII | ft x 2 mm I.D. quartz column packed with S% Ucon polar 50 HB 2000 on 30/100 mesh chromosorb P,AW-DMCS (Chromatographic Specialties Ltd.). | | XI | 3 ft × 4 mm I.D. glass column pagked with 10% squalane on 80/100 mesh chromosorb W,HP. | | 5 d | <pre>6 ft x 2 mm I.D. glass column packed with 5% SP-300 on 100/120 mesh }upelcoport (Supelco Inc.).</pre> | (continued) 3.C. Operating Conditions and Retention Times^a | Compound | Structure | Column | Column
Temperature (°C) | Retention
Time (min.) | |-------------------------------------|--|-----------------|----------------------------|--------------------------| | Methane . | ZH.4 | j ⊷-j | 27 | 2.9 | | Sthane | , 2 H ₆ | q_{III}^{III} | 27 27 . | . 9.5
15.0 | | Dimethyldisulfide | TH 3 S S C H 3 | ŽV
VC | 32
35 · | 35.0
2.5 | | Methylthiirane | 3H. S | Ι'n | 32 | 21.0 | | Carbon dioxide | ĵo; | VII | 40 | 1.8 | | Water | ¹ 20 | 111. | 40 | 14.0 | | Sulfur dioxide | 302 | VII | 40 | 25.4 | | Ethylthiirane | 45°C2 & | VIII | 7.4 | 34.6 | | 2-Methyl-3-methylenethiirane
(1) | ************************************** | IIIV | 14 |
24.5 | TABLE II-2 (Continued) | Compound | structure | Column | Column
Temperature (°C) | Retention
Time (min.) | |------------------------------------|--|-----------|----------------------------|--------------------------| | l,3-Butadiene-2-Thiol
(2) | ************************************** | VIII | ₹ | 42.4 | | cis-Ethylidenethiirane | # 0 | VIII | 4 | 50.7 | | trans-Ethylidenethiirane (4) | \$ | VIII | चां ' | 2.89 | | 2,3-Butadiene-1-thiol | 2=3=1.\.\. | VIII | 74 | 9.8. | | 1,2-Dithiolane | <i>\$</i> | ΧI | 05 | 45 | | Jimethylsulfide | .H3-8-CH3 | VI
17. | 32
32 | 4.0
5.0 | | Thietane (Trimothylene
Sulfide) | 5 | × | 03 | 0.9 | 4 He flow rate, 25 ml min $^{-1}$. $^{\mathrm{b}}$ used only when a large amount of $^{\mathrm{co}}$, was present as an additive. ^cysed only in the search for $CH_3(S)_4CH_3$. $^{ m d}$ ysed for the attempted separation of the optical isomers of 1. Coated column packings were prepared by the "funnel coating method" as described by McNair and Bonelli¹²³, and the % coating was checked after the preparation. Occasionally, commercially coated supports were used. GC effluents could be directed through a series of coiled traps at -196° (Figure II-1) in which the desired compounds could be trapped for further analysis and identification. Product identification was achieved initially by comparing the GC retention times with those of authentic samples, whenever possible, followed by spectral analysis. made for nearly all the products. Standard samples of methane, ethane, ethylene, dimethylsulfide, dimethyldisulfide, methylthiarane and thietane (trimethylene sulfide) were available and others were obtained in vacuo by collecting the reaction products individually. Samples purified by GC were measured in the gas burette and the resulting peak areas were measured with an Ott planimeter. The response was always linear over the range of yields obtained from typical experiments and the calibrations were reproducible to better than 5%. In the case of 1,7% dishiplans (Mag(CH2)25c), the molar response was 50 estimated indirectly by assuming that the addition of a sulfur atom to thietane causes the same molar response change as in the case of dimethylsulfide. Therefore the molar response, P of 1,2-dithiolans was calculated from the relationship. R(dimethyldisulfide) (thistana) P(dimethylgulfide) 2. UV, NMR, IR and mass spectral analyses were used for $\alpha m \pi^{-1}$ itative identification of products. For mass spectral analysis, samples from the GC effluent were distilled into GC MS tubes, sealed invaduo and stored at 190° until use. Mand spectromers obtained on an AET MS 12 instrument with the ion source operating at 70 eV and the temperature of the ionization chamber was kept at an 50° C. Samples were analyzed on an appropriate GC of the adapted to the MS-12 chromatograph (Varian Aerograph series 1400). In the case of colid samples, analyses were done individually by the direct probe method. (b) NMR spectra were generally obtained on a Bruker un 400 spectrometer and occasionally on a WH-200 creetionneter. For volutile compounds, spectual grade CDCl₃, used as a solvent, was degassed in pyrex medium wall NMR tubes. The trace quantity of CHCl₃ precent in CDCl₃ also served as an internal standard. GC purified samples were then condensed into the tubes, which were then sealed under vacuum. For colid compounds, thin wall NMP tubes were used and the solutions were prepared by simply dissolving the solid samples in CCCl₃. Analyses were generally done at ~30 or at room temperature, depending on the stability of the corround being analyzed. in Ar matrix on a bicoler 7109 "TIP spectrometer Samples were purified by GC and distilled into a limit of the matrix of movernments of the fitted with Kodak 7nd onlycry tall windows, a into an ordinary Tyrex tube filted with a grease charack for the descrition of the sample into an Ar matrix. It spectra were obtained in the graphase of a Unicam SP-100 spectrometer using a 10 cm of the graphase of a quartz cell fitted with suppassil windows. A consideration of the sample into an Armatrix of the graphase of a spectrum of the different matrix and the graphase of a quartz cell fitted with suppassil windows. A consideration of the sample in matrix and the spectrum of the sample in matrix and the sample in matrix and the sample in matrix. #### Operating Procedures Peachant pressures above 50 torr were measured on the manometer with the aid of a bathetometer (Guffin and George Ith.). Calibrated volumes of various sizes (see Figure II 1) were used to prepare substrate pressures below 50 torr. The reactant mixtures were distilled into the cell through the U trap at the lowest temperature allowed by the vapour pressure of the substrates and allowed to mix overnight prior to irradiation. In those case where there we only one substrate, at least one bour was allowed for In d termining R_{CO}, whe rate of carbon monowide formation from pure COS short conversion rule irreducing less than 3 pmoles of C were generally used to minimize the set of deposition of elemental sulfur on the cell window After irradiation, the coll contents were frozencinto the cell cold (inger at 196" and non contensable producte such as carbon moderide and methans, where transferred through a societ of trape at 196" dia the Ineplement of conjunction with the single stage mercury diffusion pump to the gas burntte. To ensure complete removal of all condensable products, the condensable materials were alternately thawel and refrozen at least twice with the condensable products. where NO or C2H4 was present, a solid nitrogen trap (-210°) was used. After being measured in the gas burette, the non-condensable products were transferred to the GC inlet where the amount of CH4 could be determined chromatographically. This was then subtracted from the gas burette measurement thus enabling quantitative determination of CO. NO in the solid nitrogen trap was removed at 1830 (liquid Ar). Other light hydrocarbon products and the excess reactants were separated from the sulfur products by distillation through three traps at appropriate low to eratures, as indicated below: - hureths and analyzed by GC. - ohromatographically. - 1) COS, CO2, and promylene at 100 (ethyl chloride sluch) - ii 1,2 lutadiene ond lobutene at 1]50 (ethanol slush) The remaining condensable fraction, which contained the sulfur product(s), was distilled into the GC sample inlet for analysis. In the cases where dimethylsulfide, or $\frac{\operatorname{CH}_2(\operatorname{CH}_2)_2^{\mathsf{C}}}{\operatorname{CH}_2(\operatorname{CH}_2)_2^{\mathsf{C}}} \text{ was the substrate, the substrate was transferred together with the sulfur products directly into the GC$ ther and separated chromatographically. where each experiment, the cell was elected by admitting air and heating with an oxygen flame to remove elemental sulfur and/or polymer which deposited on the cell windows during irradiation, thereby reducing the effective light intensity. Microwave Discharge Experiments for the COS-CH₃SCH₃ System The oridized cell contents wern then solid the solid cell residue remaining after high conversion experiments. Complete oxidation was achieved by microwave discharge for 2 hours. After the discharge, the O₂ was separated from the oxidation products by careful distillation through three traps at ~1831 (limit Nr). The oridized cell contents wern then a bigget discharge unit was supported to the #### CHAPTER III REACTIONS OF SULFUR ATOMS WITH 1,2-BUTADIENE #### A. Results The U.V. absorption spectrum of 1,2-butadiene indicates that it has significant absorption in the region used for COS photolysis. The extinction coefficients at 298 K for 1,2-C₄H₆ at 240 and 254 nm are 9.71 and 0.724 1 mole⁻¹cm⁻¹, respectively. The corresponding coefficients for COS are 31.8 and 13.6 1 mole⁻¹cm⁻¹. A COS/1,2-C₄H₆ ratio of 4:1 was chosen in most cases, which ensured that >93% of the incident radiation was absorbed by COS at 240 nm and >99% at 254 nm. Even at the lowest COS/1,2-C₄H₆ ratio (2:1) used, >90% and >97% of the radiation was absorbed by COS at 240 and 254 nm, respectively. #### 1. Reaction Products The photolysis of COS in the presence of $1,2-C_4H_6$ led to the formation of five chromatographically separable sulfur addition products (1, 2, 3, 4 and 5). The mass spectra indicated that all five products were of molecular weight 86, corresponding to the molecular formula C_4H_6S . A GC/MS study with a mass 86 cross-scan showed the presence of two additional mass 86 peaks, & and 7 (Figure III-1). Unfortunately, these two products were formed in very minute quantities, so that further spectral analyses were not possible. The possibility that either of these compounds is vinylthiirane FIGURE III-1: G.C./M.S. (m/e = 86) cross scan. (a product of the reaction of S atoms with 1,3-butadiene, which may be present as an impurity) 25 was ruled out by comparison of the mass spectra. The five major products could be collected in sufficient quantities for NMR analysis at 400 MHz. Gas phase IR and UV analyses were also performed for products 1, 4 and 5. Ar matrix IR and gas phase IR analyses performed on 2 and 3, respectively, were unsuccessful due to their small yields and low stability. UV analysis of 2 and 3 was not attempted. The mass spectra of the seven S products are tabulated in Appendix A-1. #### a) Indentifications: #### Product 1 The NMR spectrum of product 1 (Figure III-2) shows four resonances of relative intensities 1:1:1:3 (H_A ; H_B : H_C : H_D). Two of these (H_A and H_B) are in the vinylic region, at δ = 5.62 and δ =5.21 respectively. Proton H_A is a triplet with a splitting of 1.6 Hz and proton H_B is also a triplet, with a splitting of 1.8 Hz. Proton H_C , at δ =3.26, shows a triplet splitting of 1.7 Hz and a quartet splitting of 5.8 Hz. This latter
splitting is the same as that of protons H_D , which is a doublet at δ =1.55 (methyl region). The relative area and chemical shifts of protons ${\rm H}_{\rm D}$ correspond to a methyl group. The relatively large coupling of 5.8 Hz between ${\rm H}_{\rm D}$ and ${\rm H}_{\rm C}$ implies that they are close to FIGURE III-2: NMR spectrum of 2-methyl-3-methylenethiirane (1). Note that the purpose of the expanded resonance lines $_{f w}$ is to show the splittings qualitatively. each other (not more than three bonds apart) as shown: The fact that H_A and H_B are vinylic means that the other two carbon atoms (C_3 and C_4) of the molecule form a vinyl group. Consequently the fourth bond of the second carbon atom, C_2 , must be to the S atom as shown: According to the molecular formula, a ring must be present. Hence only two structures are possible: The <u>cis</u> vinylic protons (H_A and H_B) in structure (II) would have a coupling constant of at least 5 Hz (generally 7-10 Hz). However, from the spectrum, $J_{AB} \simeq 1.6-1.8$ Hz, which is a typical geminal vinylic coupling constant. This is consistent with structure (I). Finally, an -SR group on a substituted ethylene will shift a proton <u>cis</u> to it to higher field (lower δ) than one <u>trans</u> to it. Since H_A is at δ =5.62 and H_B is at δ =5.21, H_B is assigned to be <u>cis</u> to the S atom. Thus 1 is 2-methyl-3-methylenethiirane, with the structure: $$\begin{array}{c|c} S \\ C \\ C \\ H \\ H_3C \end{array}$$ The IR spectrum of 1 (Figure III-3) is consistent with this assignment. Thus the strong absorption at ~840 cm⁻¹ corresponds to the out of plane C-H deformation of a dissubstituted ethylene of the type R₁R₂C=CH₂ shifted from its normal value of ~900 cm⁻¹ to lower frequency due to the presence, of an adjacent oxygen or sulfur atom. The medium absorption at 1715 cm⁻¹ corresponds to the C=C bond stretching. The C-H stretching frequencies at ~3008 and ~2970 cm⁻¹ probably correspond to those of ring C-H stretch reported for vinylthirane. Also, the vinyl C-H stretch region of this spectrum bears a strong resemblance to that reported for methylenethiirane. As is apparent from the structure derived, $\frac{1}{x}$ possesses a chiral center at C_2 : FIGURE III-3: The gas phase FTIR spectrum of 2-methyl-3-methylenethiirane (1) Attempts to separate the optical isomers of 1 by G.C. using a chiral stationary phase 126 proved unsuccessful. #### Product 2 The NMR spectrum of product 2 (Figure III-4) shows five resonances of roughly equal areas in the vinylic region: proton H_A at $\delta=6.48$, which shows doublet splittings of 16.8 Hz and 10.4 Hz; proton H_B , with a doublet splitting of 16.8 Hz, at $\delta=5.41$; proton H_C , with a doublet splitting of 10.4 Hz at $\delta=5.26$; proton H_D , a broad singlet at $\delta=5.36$; and proton H_E , at $\delta=5.31$, with a doublet splitting of 0.5 Hz. Resonances H_A , H_C and H_B show additional unresolved splittings. A sixth resonance, due to proton H_F , occurring in the vinylic -SH region, is a singlet at $\delta=2.96$. Proton H_A has common splittings with H_B (J_{AB} =16.8 Hz) and with proton H_C (J_{AC} =10.4 Hz), indicating that H_A is coupled to these two protons. Furthermore, J_{AB} =16.8 Hz is a typical coupling constant for protons trans across a double bond, and J_{AC} =10.4 Hz is typical of a cis coupling. Therefore protons H_A , H_B and H_C all belong to the same FIGURE III-4: NMR spectrum of 1.3-butadiene-2-thiol (2). vinyl group. Protons H_D and H_E are also vinylic, indicating the presence of a second vinyl group in the molecule. The molecular formula (C_4H_6S) requires that these two vinyl groups must be conjugated to each other as shown: $$c = c$$ Some of the unresolved splittings were determined by decoupling experiments. The results show additional coupling constants: $0 < J_{AD} < 0.5$ Hz, $0 < J_{DE} < 0.5$ Hz, $J_{AE} = 0.5$ Hz and $J_{CD} = 1.2$ Hz. The small coupling constant between H_D and H_E is consistent only with a geminal configuration for these two protons. Thus they are on the terminal end of the second double hond. This leaves the -SH group on the substituted end of the double bond. Finally, the relation of protons H_D and H_E to the -SH group (cis or trans) still needs to be determined. However, additional information can still be obtained by comparing the coupling constants of product 2 with those of 2-chloro-1,3-butadiene. For 2-chloro-1,3 butadiene, the coupling constants are: $$J_{ae} = 0.60 \text{ Hz}$$ $J_{cd} = 1.4 \text{ Hz}$ $J_{ad} = 0.20 \text{ Hz}$ $J_{ce} = 0.5 \text{ Hz}$ For product 2 the corresponding coupling constants are: $$J_{AE}^{=0.5 \text{ Hz}}$$ $J_{CD}^{=1.2 \text{ Hz}}$ $J_{CE}^{<0.5 \text{ Hz}}$ These similarities in the coupling constants (J_{ae} & J_{AE}) J_{ad} & J_{AD} , J_{cd} & J_{CD} , and J_{ce} & J_{CE}) strongly support the assignment of H_D as the proton <u>cis</u> to the -SH group. Therefore 2 is 1,3-butadiene-2-thiol, with the following structure: #### Product 3 The NMR spectrum of product 3 (Figure III-5) shows only three resonances, with relative intensities 1:2:3 $(H_A:H_B:H_C)$. There is only one vinylic proton, H_A , occurring at $\delta=6.05$, with a quartet splitting of 6.5 Hz and a triplet splitting of 1.6 Hz. Protons H_B , located at $\delta=2.77$, show an apparent quintet splitting of 1.5 Hz. The third resonance, located at $\delta=1.89$ (methyl region) is due to protons H_C . This shows a doublet splitting of 6.6 Hz and a triplet splitting of 1.5 Hz. FIGURE III-5: NMR spectrum of cis ethylidenethiirane (3). The area and location of H_C indicate that this signal is due to a -CH₃ group. The relatively large coupling constant between protons H_C and the vinylic proton H_A (J_{AC} = 6.5 Hz) implies that they are separated by three bonds at the most: $$c + c$$ As protons H_B are not vinylic, the molecular formula requires. that product 3 contain a ring. The only ring containing structure that is consistent with the partial structure shown above is either cis or trans ethylidenethiirane. $$^{\prime}$$ H $^{\prime}$ C=C $^{\prime}$ H $^{\prime}$ cis OR trans The question of the isomeric identity of product 3 will be discussed together with that of product 4. #### Product 4 (Figure III-6) shows three resonances of relative intensities 1:2:3 (HA:HB:HC). The single vinylic proton, HA, located FIGURE III-6: NMR spectrum of trans ethylidenethiirane (4). at δ =5.62, has a quartet splitting of 6.8 Hz and a triplet splitting of 1.8 Hz. Protons H_B appear as a multiplet at δ =2.66. Protons H_C, at δ =1.82 (-CH₃ region), show a doub-1 let splitting of 6.9 Hz and a triplet splitting of 1.0 Hz. The relative area and chemical shift of protons H_C indicate that they form a methyl group, as in the case of product 3. The relatively large coupling constant between protons H_C and H_A (J_{AC} =6.8 Hz) implies that these two protons are at the most three bonds apart as shown: Since protons H are not vinylic, the molecular forB mula requires that product 4 must contain a ring, as in the case of product 3. Therefore, product 4 must be the geometric isomer of product 3, cis or trans ethylidenethiirane: cis OR trans The question of the assignment of <u>cis</u> and <u>trans</u> geometry to products 3 and 4 was resolved by examination of chemical shifts. Additional evidence, though not compelling, was obtained from an noe (nuclear Overhauser effect) experiment on product 4. Assignment of cis and trans geometry to products 3 and 4: #### a) Chemical shift assignment Chemical shift tables 123 indicate that in substituted ethylenes ($^{R}_{R}$ C=C $^{H}_{R}$), an -SR group shifts a proton cis to it by about 0.24 ppm to higher field (lower δ) relative to the unsubstituted ethylene, and a trans proton will be shifted by only 0.04 ppm to higher field as shown: Therefore it should be possible to assign the geometry of isomers 3 and 4 by examining the relative chemical shifts of protons H_{λ} for these two compounds. In the <u>trans</u> isomer, proton H_A is <u>cis</u> to the S atom. Therefore in this case, the H_A resonance is roughly 0.2 ppm to higher field than the H_A resonance in the <u>cis</u> isomer (H_A is <u>trans</u> to the S atom). Since the H_A resonance in product 4 is 0.43 ppm to higher field than the H_A resonance of product 3 (6.05 ppm-5.62 ppm; H_A of 3 at δ =6.05, H_A of 4 at δ =5.62), it is reasonable to conclude that 4 is the <u>trans</u> isomer, and 3 is the <u>cis</u> isomer. The chemical shift difference obtained experimentally is larger than that predicted (0.43 <u>versus</u> 0.2 ppm). However, this is not surprising since the chemical shift quoted from the literature represents an average value only. Moreover, the shift caused by an S atom in a small ring is not necessarily identical to that caused by an -SR group. In fact, this chemical shift difference for the <u>cis</u> and <u>trans</u> (to the S atom) H_A protons of 0.43 ppm is in excellent agreement with that of product 1 (H_A , <u>trans</u> at δ =5.62, H_B , <u>cis</u> at δ =5.21). $$C = C$$ H_B $\delta = 5.21$ $C = C$ H_A $\delta = 5.62$ #### b. Nuclear Overhauser effect (nOe) evidence: In an attempt to further confirm the isoméric assignment of 3 and 4, a nuclear Overhauser effect (nOe) experiment was performed on product 4. (It was not possible to collect sufficient quantities of 3 to perform a similar study.) Basically, the nOe is a change in intensity of one NMR signal when another one is saturated. In simple cases, the nOe between two protons in a molecule can be calculated from the geometry of the molecule. Therefore it should be possible to predict nOe's for the cis and trans isomers 3 and 4. Using literature values of bond
lengths and angles for methylenethiirane, nOe's were calculated for the cis and trans isomers (Appendix B). These values were compared with the experimental ones obtained for 4 (Table III-1). As shown in Table III-1, the signal for the H_B protons increased by a factor of 0.013 when the resonance of the methyl protons H_C was saturated. The predicted enhancements are 0.001 for the <u>cis</u> isomer and 0.069 for the <u>trans</u> isomer. Therefore, the observation of a non-zero nOe (0.013 <u>versus</u> 0.069 predicted) at the H_B resonance when the H_C resonance was saturated can be taken as supporting evidence for the <u>trans</u> assignment of 4. However, the observation of such a small nOe is not very convincing, and the strongest arguments in favour of the geometric assignments are based on chemical shift data. The IR spectrum of 4 (Figure III-7) is, as expected, similar to that of 1. Evidence for the presence of a vinyl group comes from the characteristic absorption at ~ 3060 cm⁻¹ (=CH), and the out of plane deformation at ~ 895 cm⁻¹. #### TABLE III-1 Calculated and Observed Nuclear Overhauser Effect (nOe) for the cis and trans Isomers of Ethylidenethiirane. | Proton(s) | Proton(s) | Calculated nOe | | *Observed.nOe (trans isomer, | |----------------------------------|---------------------|----------------|--------|------------------------------| | saturated | observed | cis | trans | (trans isomer, | | [*] СН ₂ (В) | Н (Д) | 0.019 | 0.006 | 0 | | СН ₃ (С) | H (A) | 0.481 | 0.488 | 0.42 | | СН ₃ (С) | СН ₂ (В) | 0.001 | 0.069 | 0.013 | | H (A) | CH ₂ (B) | 0.004 | 0.0001 | not done | | H (A) | СН ₃ (С) | 0.023 | 0.024 | not done | | CH ₂ (B) | СН ₃ (С) | 0.0003 | 0.047 | 0 ^a | ^aSpin-rotation relaxation of the CH₃ group may have decreased the noe that would have been observed in this case. FIGURE III-7: The gas phase FTIR spectrum of trans ethylidenethiirane (4). The C=C absorption evidently occurs at 1700 cm^{-1} . As in the case of 1, the absorption at 2990 cm^{-1} corresponds to the C-H stretching frequency of the thiirane ring. #### Product 5 The NMR spectrum of product 5 (Figure III-8) shows four resonances of relative areas 1:2:2:1 corresponding to protons H_A , H_B , H_C and H_D , respectively. Proton H_A , located at δ =5.28 (vinylic region), shows two triplet splittings of 7.4 and 6.6 Hz. Protons H_B , at δ =4.80, are also in the vinylic region. They show a triplet splitting of 2.7 Hz and a doublet splitting of 6.6 Hz. Protons H_C , at δ =3.10, show two doublet splittings of 7.4 and 7.9 Hz and a triplet splitting of 2.7 Hz. Finally, proton H_D is a triplet with a splitting of 7.9 Hz, occurring at δ =1.58 (aliphatic -SH region). From the chemical shift (δ =1.58), proton H_D is apparently an -SH proton. It has a large splitting in common with the aliphatic protons H_C (J_{CD} =7.9 Hz). This implies that protons H_D and H_C are at most three bonds apart as shown: Protons H_C and H_A also have a large common splitting (J_{AC} = 7.4 Hz). This again implies that they are separated by not more than three bonds: FIGURE III-8: NMR spectrum of 2,3-butadiene-1-thiol ($\frac{5}{2}$). As mentioned earlier, protons H_A and H_B are vinylic. However, they cannot be on the same C=C bond, because protons H_B are equivalent. Consequently, there must be two double bonds in the molecule, in keeping with the requirement of the molecular formula. Furthermore, the equivalence of two H_B protons requires that the rest of the molecule be symmetric with respect to the =C(H_B) plane. This is only possible if the second vinyl group is joined orthogonally to that of the H_B protons, thus putting the other half of the molecule perpendicular to the =C(H_B) plane as shown: Hence 5 is 2,3-butadiene-1-thiol. Further confirmation of this proposed structure is seen in the IR spectrum shown in Figure III-9. Conclusive evidence for a monosubstituted allene structure comes from the FIGURE III-9: The gas phase FTIR spectrum of 2,3-butadiene-1-thiol (5). characteristic absorptions at 1960 cm $^{-1}$ (C=C=C). The weak absorption at ~ 2500 cm $^{-1}$ is characteristic of an -SH group. ### b) Properties of $\frac{1}{2}$, $\frac{2}{2}$, $\frac{3}{2}$, $\frac{4}{2}$ and $\frac{5}{2}$ The gas phase UV spectra of 1 and 4, shown in Figures III-10 and III-11, are quite similar in that both show three absorption maxima. For product 1, the three maxima are located at $\lambda_1 = 200 \, \text{m} \, \lambda_2 = 235 \, \text{and} \, \lambda_3 = 275 \, \text{nm}$ with corresponding extinction coefficients $\varepsilon_1 = 2 \times 10^3$, $\varepsilon_2 = 7 \times 10^3$ and $\varepsilon_3 = 2 \times 10^2$ 1 mole $^{-1}$ cm $^{-1}$. The three maxima of 4 are located at $\lambda_{4}=195$, $\chi_5^2 = 230$, and $\lambda_6^2 = 285$ nm with $\epsilon_4^2 = 8 \times 10^2$, $\epsilon_5^2 = 3 \times 10^3$ and $\epsilon_6^2 = 2 \times 10^2$ 1 $mole^{-1}cm^{-1}$. The UV spectrum of 5 (Figure III-12) is quite different from that of 1 and 4; the long wavelength transition is absent. The first absorption maximum with $\epsilon_{7}{\text{\tiny 2}}{\text{\tiny 2}}\,3x10^{3}$ 1 mole $^{-1}$ cm $^{-1}$ is centered at $\lambda_7 \approx 205$ nm. A weak shoulder with $\varepsilon_{8}^{\prime} \simeq 1 \times 10^{3}$ 1 mole⁻¹ cm⁻¹ lies at $\lambda_{8} \simeq 230$ nm. It is apparent that both the thiiranes (1 and 4) and the thiol (5) are photochemically quite unstable, due to their large extinction coefficients in the near UV. By analogy, products 2/ and 3 are also expected to be photochemically unstable. In the present investigation, it was noted that these compounds are very sensitive to Pyrex surfaces: leaving a gaseous mixture of the products at room temperature in a Pyrex trap overnight resulted in > 95% product loss. However, when the products were left in a quartz cell under the same conditions, more than 50% was recovered. At -196°, the products are relatively more stable. The products thiirane (1) at low and high concentrations. a=base line of 30 ml, 10 cm path length quartz cell, b=low concentration, P-0.2 torr, c=high concentration, P-4 torr. FIGURE III-11: The gas phase UV spectrum of <u>trans</u> ethylidenethiirane (4) at low and high concentrations. a=base line of 30 ml, 10 cm path length quartz cell, b=low concentration, P~0.6 torr, c=high concentration, P~1 torr. FIGURE III-12: The gas phase UV spectrum of 2,3 -butadiene-1-thiol. a=base line of 30.ml, 10 cm path length quartz cell, b=P-0.2 torr. exhibit greatest stability in dilute CDC13 solution at -4° in sealed NMR tubes covered with aluminum foil. It was also noted that the S products are extremely sensitive to mercury surfaces: more than 50% of 1 was lost after being transferred to the GC sampler via the Töepler pump-gas burette system, where a large surface area of. mercury is available. ## Effects of Exposure Time, Total Pressure and Added CO₂ on Product Yields Due to fluctuations in the intensity output of the lamp and to sulfur deposition on the cell window, along with changes in the COS absorbtivity with temperature, the amount of conversion was determined relative to the yield of CO rather than to exposure time. The variations in product yields with exposure time are listed in Table III-2 and illustrated in Figure III-13. The product recoveries are low, even at low conversions. In addition to the S'addition products, a very small amount of CS₂, which could not be determined quantitatively by GC or by distillation, was formed along with trace quantities of CH₄. As is apparent from Table III-2, the rate of CH₄ formation increases with time, indicating that at least part of it is formed in a secondary process. The variations in the product rates of S products are illustrated in Figure III-14, where it is seen that the rates of the formation of 1 and TABLE III-2 Effect of Exposure Time on the Product Yields in the COS-1,2-C $_4$ H $_6$ System^a | Time | | Produc | ts, umole | ucts, μmoles; (Rates, μmoles/μmole CO) | , umoles/ | umole CO) | | | | |--------|-------|--------|-----------|--|-----------|---------------|-------|-------------------------|---| | (min.) | 30 | ĵ. | 2 × | ~ 3 | 4 C | 2 | CH4 | % Recoyery ^b | | | 3.5 | 7.23 | 0.255 | 0.020 | 0.016
(0.013) | 0.119 | 0.020 (0.016) | 0.006 | 57 | • | | 5.0 | ٠. 79 | 0.334 | 0.036 | 0.036 | 0.152 | 0.015 | 0.010 | 55 | | | 10 | 3.42 | 0.600 | 0.052 | 0.065 | 0.255 | 0.061 | 0.024 | 46 | | | 15 | 5.13 | 0.788 | 0.083 | 0.081 | 0.350 | 0.075 | 0.037 | 42 | | | 20 | 6.54 | 0.911 | 0.096 | 0.115 | (0.061) | 0.108 | 0.077 | 35 | | $^{a}P(1,2-C_{4}H_{8}) = 51 \text{ torr, } P(COS) = 200 \text{ torr.}$ ^b* Recovery = R(1 + 2 + 3 + 4 + 5 + CH₄)/R(CO°-CO) where R_{CO}° = 0.569 µmole min⁻¹ $^{\text{C}}$ Extrapolated zero time rates for 1 and 4 (Figure III-2) are 0.235 and 0.115 µmole \min^{-1} , respectively. FIGURE III-13: S product yields as a function of CO yield in the COS $-1.2-C_4H_6$ system. P(COS) = 200 torr, P(1.2- C_4H_6) = 50 torr. FIGURE III-14: Rates of S product formation versus CO yield in the COS - 1,2-C₄H₆ system, P(COS) = 200 torr, $P(1,2-C_4H_6) = 50 \text{ torr; Rate}(1)_{t=0} \approx 0.235 \text{ µmole/umole CO.}$, 4 decrease with time, whereas those of 2, 3, and 5 are apparently constant. The rates of product formation as a function of total pressure are listed in Table III-3 and illustrated in Figure III-15 (To minimize the effect of the strong time dependence of the rates of 1 and 4 on the pressure study, the same conversion was employed for all runs, and the rates in Figure III-15 were corrected to zero time using Figure III-14.). There was a dramatic increase in product recoveries at high pressures (45%), and this was entirely due to the increase in the rates of formation of the thiranes: that of 1 showed a sharp initial increase, levelling off at high
pressures, while those of 3 and 4 showed a moderate steady rise. On the other hand, the rates of formation of thiols. 2 and 5 were not affected. The addition of ~1200 torr CO₂ to a COS/1,2-C₄H₆ = 100/50 mixture suppressed the thiol formation and caused a concomitant rise in the thiirane yields. The production of CH₄ was also suppressed. The total product recovery increased slightly (~11%). Table III-# shows the product distributions in the absence and in the presence of 1200 torr CO₂. Values corrected to zero time are also listed. ## 3. Relative Rate Parameters For a COS pressure of 100 torr, and a CO_2/COS ratio of ~ 12-13, it was found that >90% of the S atoms produced are ABLE III-3 Effect of Total Pressure on Product Yield in the COS-1,2-C4H6 System | * Recovery | • | - | 42.6 | 42.6 | 42.6 | |---|----------------|------------------|---------|--------------------------------------|--------------------------------------| | | CH4 | | 0.051 | 0.051
(0.010)
0.037
(0.007) | 0.051
(0.010)
0.037
(0.007) | | \$ | 2 | 0.082 | 0.016) | 0.016)
0.075
0.015) | 0.016)
0.075
0.015)
0.078 | | 4 (| | 0.277 | | 0.350 | 0.350
0.068)
0.421
0.080) | | | m ? | 0.0076 | | 0.081 | | | Products, umoles; (Rates, umoles/umole CO | <u>2</u> | | | | , | | Product | 1 ^b | 5.13 0.615 0.075 | (0.120) | (0,120):
0,788
(0,154) | 0.788
(0.154)
1.050
(0.199) | | | CO | 5.13 | | 5.13 | 5.13 | | Time | (min.) | 6.02 | | 15.0 | 15.0 | | (torr) | soo | 1.20 | : | 500 | 500
400 | | Pressure (torr | 1,2-C4H6 COS | 30 | | 80 | 50 | as Recovery = R(1 + 2 + 3 + 4 + 5 + CH₄)/R(CO°-CO), where R_{CO}^{c} = 0.378, 0.569, 0.873 and 1.024 μ moles min⁻¹ for P(COS) = 120, 200, 400 and 600 torr, respectively. ^bCorrected zero time rates are 0.197, 0.235, 0.275 and 0.283 umole/umole CO for P_{total} * 150, 250, ^CCorrected zero time rates are 0.103, 0.115, 0.123 and 0.122 µmole/µmole CO for P_{total} = 150, 250, 500 and 750 torr, respectively. 500 and 750 torr respectively. FIGURE III-15: Rates, of product formation versus total pressure in the COS - 1,2-C₄H₆ system; $P(COS)/P(1,2-C_4H_6) = 4$. Rates of 1 and 4 are corrected zero time values. The extrapolated zero time rates at P = 1200 torr for 1, 3, and 4 are 0.290, 0.042 and 0.123 µmole/µmole CO, respectively. TABLE III-4 Effect of Added CO $_2$ on the Distribution of 1,2-C $_4$ H $_6$ S Isomers $^{ m a}$ | | | | Prod | Products (umoles) | moles) | · · | | | | |----------------------------|------|-------------------------------------|-------|-------------------|-------------|-------|-------|-------------------------|--| | P(CO ₂) (torr) | 00 . | ٦~ | ~ S | m ≥ | 4 √ | ഹ ≀ | CH4 | % Recovery ^b | | | 0 | 2.36 | 2.36 0.358 0.061 | 0.061 | 0.057 | 0.160 0.058 | 0.058 | 0.038 | . 55.7 | | | 1216 | 1.92 | 1.92 0.731 ^c 0.005 0.070 | 0.005 | 0.070 | 0.275° 0 |
0 | 900.0 | 62 | | | | | | | | - | | | | | $\frac{4}{2}$ + $\frac{5}{5}$ + CH₄)/R(CO°-CO), where R_{CO} = 0.334 µmoles ^aExposure time = 11 min, P(COS) = 100 torr, P(1,2- C_4H_6) = 50 torr. by Recovery = R(1 respectively, assuming a similar time dependence for S($^{ m l}{ m D}_{ m 2}$) and S($^{ m 3}{ m P}$ ^CCorrected zero time yields are 1.041 and 0.436 umoles for 1 and $\frac{4}{2}$, products. in the triplet ground state. Thus this CO_2/COS ratio is sufficient for the study of $S(^3P)$ reactions. The relative rates of reaction of $S(^3P)$ atoms with two alkenes, I and II, may be determined from the relative yields of the thiiranes (E) produced. The two competing reactions are: $$S(^{3}P) + I$$ $\xrightarrow{k_{1}}$ E_{I} [1] $S(^{3}P) + II$ $\xrightarrow{k_{2}}$ E_{TI} [2] If $A = E_{\vec{I}}/CO$ in the presence of II, and $B = E_{\vec{I}\vec{I}}/CO$, then the relative rate expression is: $$\frac{B}{A} = \frac{k_2}{k_1} \cdot \frac{[II]}{[I]}$$ Therefore, a plot of B/A versus [II]/[I] will give a straight line with a slope k_2/k_1 . Thus the absolute rate constant, k_2 , of reaction [2] can be obtained if k_1 is known. In cases where the thirrane(s) formed in [2] is/are unstable, then the relative rate can be obtained by monitoring the rate of decrease of thirrane (E_I) formed in [1]. Hence if $A_0 = E_I/CO$ in the absence of (II), then [3] becomes: $$\frac{A_0 - A}{A} = \frac{k_2}{k_1} = \frac{[11]}{[1]}$$ and a plot of $(A_0-A)/A$ versus [II]/[I] will yield k_2/k_1 . $1-C_4H_8$ was chosen as the reference substrate (I) since its vapour pressure is similar to that of $1,2-C_4H_6$ (II), allowing low temperature distillation of the reactants. Also, the $S(^3P)$ + $1-C_4H_8$ reaction produces $1-C_4H_8S$ (ethylthiirane) quantitatively, and the absolute Arrhenius parameters have been measured. Product yields for mixtures consisting of 100 torr COS, > 1200 torr CO $_2$ and fixed pressures of 1-C $_4^{ m H}_8$ in the presence of increasing amounts of $1.2-C_4H_6$ at five different temperatures are summarized in Tables III-5 to III-9. It is seen that the $1-C_4H_8S/CO$ ratio decreases with increasing pressure of 1,2- C_4H_6 , owing to the competitive scavenging of $S(^{3}P)$ atoms by $1,2-C_{4}H_{6}$. It is apparent that the rate constant ratios, $k_{1,2-C_4H_6}/k_{1-C_4H_8}$, obtained by monitoring the decrease in the 1-C $_4$ H $_8$ S/CO ratio (A) are consistently higher than those obtained from the $C_4^H_6^S/1-C_4^H_8^S$ ratio, (B/A); this is not unexpected since the product recoveries from the S + 1,2-C4H6 reaction are not quantitative. Consequently, the relative rate constants obtained from plots of $(\lambda_0 - \lambda)/\lambda$ versus $[1,2-C_4H_6]/[1-C_4H_8]$ were used to calculate $k_{1,2-C_4H_6}$ These plots are illustrated in Figure III-16, and the slopes and intercepts obtained by least mean squares analysis of these plots are tabulated in Table III-10. The slopes are plotted in the Arrhenius form in Figure III-17. The weighted least squares fit of the Arrhenius plot gives: $$A_{1,2-C_4H_6}^{A_{1,2-C_4H_8}}$$ = 5.31 ± 0.26, and $E_{1-C_4H_8}^{E_{1,2-C_4H_6}}$ = - (1.17 ± 0.03) kcal mole 1. "ABLE III-5 Product Yields as a Function of the $(1,2-C_4H_6)/[1-C_4H_8]$ Ratio at 300 $\rm K^a$ | S E1,2-C ₄ H ₆ S | P(1,2-C4H6) | (1,2-C4H6) (1,2-C4H6)b | 0. | Products (umoles) | umoles) | -C4HBS | Ao-Ac | Ao-A [1-C4Hg]e | Pa | B, [1-C4H8]e | |---|-------------|------------------------|------|-------------------|------------|--------|-------|----------------|--------|--------------| | 3. 1.61 1.122 0 0.697 - 0.165 1.60 0.993 0.0759 0.621 0.122 0.328 1.60 0.895 0.164 0.261 0.242 0.489 1.55 0.790 0.229 0.510 0.366 0.647 0.708 0.259 0.470 0.484 | | 1-C4H8] | 8 | 1-C4HgS | 11,2-C4H6S | 00 | 7 | A (1,2-C4H6 | k | A [1,2-C4H6] | | 0.165 1.60 0.993 0.0759 0.621 0.122 0.328 1.60 0.895 0.164 0.242 0.489 1.55 0.790 0.229 0.510 0.366 0.647 0.708 0.259 0.470 0.484 | ç | ÷ | 1,61 | 1.122 | C | 0.697 | , | • | • | • | | 0.328 1.60 0.895 1.164 1.561 0.242
0.489 1.55 0.790 3.229 7.510 0.366
0.647 7.51 0.708 0.259 1.470 3.484 | 10.81 | | 1.60 | | 0,40759 | 0.621 | 0.122 | 0.742 | 0.0765 | 0.464 | | 0.489 1.55 0.790 3.229 3.510 0.366 0.647 3.51 0.708 0.259 3.470 3.484 | 21.53 | 0.328 | 1.60 | | 1,164 | 1.561 | 0.242 | 0.737 | 0.183 | 0.558 | | 0,647 1,51 0,708 0,259 1,470 0,484 | 32.01 | 0.489 | 1.55 | 0.790 | 3,229 | 3.510 | 0.366 | 0.748 | 0.289 | 0.591 | | | 42.29 | | 1,51 | 0.708 | 0.259 | 1.470 | 0.484 | 0.748 | 0.366 | 0.565 | 3 P(COS) = 100 torr, P(1- \mathcal{Q}_{4} Hg) = 65.7 torr, P(CO₂) = 1271 torr. R_{CO}^{2} = 0.349 µmoles min⁻¹. Exposure :ime = 500 sec. Dp(1-C4Hg) values pro been corrected for depletion. $^{2}N_{2}$ = 1-C₄HgS/CO in the absence of 1,2-C₄H₆ = 0.697. $^{\prime}$ A = 1-C₄HgS/CO in the presence of 1,2-C₄H₆. ds = E1,2-C4H6S/CO * K1,2-C,H,/K1-C,H TABLE III-6 Product Yields as a Function of the [1,2-C4H6]/[1-C4H8] ratio at 333 Kª | (1,2-C4H6) | P(1,2-C4H6) [1,2-C4H6]D | ρ. | Products (µmoles) | umoles) | 1-C4HBS | Ao-AC | 1-C4H8S Ao-AC Ao-A [1-C4H8] e | р
е
Э | B (1-C4Hg) e | |------------|-------------------------|------|-------------------|-----------------------------------|-------------|-------|-------------------------------|-------------|--------------| | | {1-C4Hg} | 8 | 1-C4H8S | 0 1-C₄HgS 51,2-C₄H6S
(1, 3, 4) | 00 | 4 | A. [1,2-C4H | 6 J M | A (1,2-C4H6 | | 0 | Ame | 1.63 | 1.63 1.163 | • | 1.713 | | 1 | • | 1 | | .4.70 | 3.212 | 1.62 | 7.6.0 | 0.127 | 0.602 | 0.184 | 0.868 | 0.130 | 0 0.611 | | 12.41 | 3.324 | 1.64 | 0.907 | 0.177 | 1,553 | 0.288 | 0.890 | 0.195 | 5 0.603 | | 29.74 | 0.430 | 19. | 0.831 | 0.228 | 0.517 | 0.379 | 0.880 | 0.275 | 5 0.639 | | 38.55 | 0.558 | 1.59 | 1.59 0.755 | 0.264 | 1.476 0.497 | 0.497 | 0.889 | 0.350 | 0 0.628 | 4 P(COS) = 100 torr, P(1-C₄H_B) = 69.4 torr, P(CO₂) = 1248 torr. R_{CO} = 0.384 µmoles min⁻¹. Exposure time = 470 sec. $^{\circ}$ (1-C₄Hg) values were corrected for depletion) $^2 A_O = 1 - C_4 H_B \, S/\dot{C}O$ in the absence of 1,2-C_4 $H_{\tilde{G}} = 0.713$. A = 1-C₄HgS/CO in the presence of 1,2-C₄Hg. dB = 11,2-C4H6S/CO - 112-C4869/CO TABLE, III-7 Product Yield as a function of the [1,2-C4H6]/[1-C4H8] Ratio at 363 Ka | P(1,2-C4H6) | (1,2-C4H6) (1,2-C4H6) | Q | Products (µmoles) | umoles) | 1-C4HBS | Ao-AC | -C4HBS AO-AC AO-A [1-C4HB] | | ł | |-------------|-----------------------|------|-------------------|---------------------------------|---------|-------|----------------------------|-------|--------------| | | [1-C4H8] | 8 | 1-C4H8S | CO 1-C4HBS 51,2-C4H6S (1, 2, 3) | 00 | a V | A [1,2+C4H6] | l« | A [1,2-C4H6] | | °O | ţ, | 1.69 | 1.69 1.208 | • | 1.714 | . 1 | 1 | 1 | | | 14.62 | 0.214 |
1.68 | 0.979 | 0.138 | 3.584 | 0.223 | 1.04 | 0.141 | . 0.661 | | 21.98 | 0.322 | 1.72 | 0.919 | 0.194 | 0.533 | 0.340 | 1.06 | 0.211 | 0.655 | | 29.28 | 0.429 | 1.68 | 0.831 | 0,239 | 0.495 | 0.444 | 1.03 | 0.287 | 0.669 | | 37.37 | 0.549 | 1.68 | 1.68 0.764 | 0.273 | 3.454 | 0.573 | 1.04 | 0.357 | 0.655 | | | | | | | | | | • | | $^{4}P(COS) = 100 \text{ torr, } P(1-C_4H_8) = 68.5 \text{ toyr, } P(CO_2) = 1285 \text{ torr. } R_{CO}^{\circ} = 0.414 \text{ umoles min}^{-1}.$ time = 435 sec. Exposure Dp(1-C4Hg) values were corrected for depletion. $^{C}A_{O}$ = 1- $C_{4}H_{8}S/C0$ in the absence of 1,2- $C_{4}H_{6}$ = 0.714. A = 1-C4HgS/CO in the presence of 1,2-C4H6. dB = 11,2-C4H6S/CO Product Yield as a Function of the $[1,2-C_4H_6]/[1-C_4H_8]$ Ratio at 393 K^4 | (1,2-c4H6) [1,2-c4H6] ^D | (1 /2-C4H6) | Д. | Froducts (Imores) | / coton! | 81.4 | W-OW | A0-A (1-C4H8) | ,
,
, | HI-CAHB | |------------------------------------|-------------|------|-------------------|---|-------------|-------|-------------------|-------------|--------------| | -4c | (1/C4H8) | 8 | 1-C4H8S | CO 1-C ₄ H ₈ S £1,2-C ₄ H ₆ S (1, 3, 4) | 00 | A . | CO A A (1,2-C4H6) | ıla İ | A 11,2-C4H61 | | , O | 0 | 1.69 | 1.69 1.301 | ī | 0.717 | | • | 1. | 1 | | 14,46 | 0.209 | 1.80 | 1.80 0.037 | 0.158 | 0.577 | 0.245 | 1.18 | 0.152 | 0.730 | | 22,11 | 0.320 | 1.76 | 1.76 0.914 | 0.196 | 0.519 | 0.387 | 1.21 | 0,215 | 0.671 | | 29.85 | 0.433 | 1.76 | 1.76 0.834 | 0.264 | 0.474 0.517 | 0.517 | 1.19 | 0.317 | 0.732 | | 37,83 | 0.549 | 1.72 | 1.72 0.750 | 0.307 | 0.436 | 0.648 | 1,18 | 0.409 | 0.745 | ^bP(1-C₄H₈) values were corrected for depletion. time = 410 sec. $A_0 = 1-C_4H_8S/CO$ in the absence of 1,2-C₄H₆ = 0.717 = 1-C4HgS/CO in the presence of 1,2-C4H6. Product Yield as a Function of the $(1,2-C_4H_6)/(1-C_4H_8)$ Ratio at 423 Kª | P(1,2-C4H6) [1,2-C4H6]b | [1,2-C4H6] | | Products (pinotes) | umoles) | 1 - C4 118 2 | A _O -A | Ao-A (1-448) | · m | B. [1-C4H8] e | |-------------------------|------------|----------|--------------------|--|--------------|-------------------|-------------------|-------|---------------| | | [1-c4Hg] | 1 | 1-C4HBS | co $1-C_4H_8S$ E1,2- C_4H_6S (1, 3, 4) | 03 | V V | CO A A [1,2-C4H6] | 1 | К [1,2-c4H6] | | C | 0 | 1.78 | 1.78 1.244 | . 1 | 0.700 | | • | 1 | l
8 | | 14.46 | 0.209 | 1.73 | 0.945 | 0,148 | 0.547 0.281 | 0.281 | 1.34 | 0.156 | 0:746 | | 21.87 | 0.318 | 1.76 | 0.860 | 0.208 | 0.489 | 0.433 | 1.36 | 0.242 | 0.761 | | 29.60 | 0.432 | 1.74 | 0.777 | 0.268 | 0.445 0.572 | 0.572 | 1.33 | 0.345 | 0.799 | | 37,32. | 0.545 | ; † j.67 | 0.680 | 0.295 | 0.407 0.722 | 0.722 | 1.33 | 0.433 | 0.795 | time = 350 sec. † $^{\rm bp}(1-C_4H_8)$ values were corrected for depletion. $c_{A_O} = 1 - c_4 H_B S/CO$ in the pasence of 1,2- $c_4 H_6 = 0.700$. A = 1-C4HgS/CO in the presence of 1,2-C4H6. $\frac{d_{B} = I1,2-c_{A}H_{6}s/CO}{e^{-k_{1},2-c_{A}H_{6}}}$ FIGURE III 16: Plots of $(\Lambda_0 - A)/A$ versus $[1,2-C_4H_6]/[1-C_4H_8]$ | • | | 3lopes and Intercepts | TABLE III-10 Slopes and intercepts of the Plots in Pigure II | 11-16 | | |--------------------|------------------------------|------------------------------|--|------------------|----------------------------| | Temperature
(K) | $1/T \times 10^3$ (K^{-1}) | Slope
(k1,2-C4H6/k1-C4Hg) | Ln{k1,2-C4H6/k1-C4HB) | Intercept | Correlation
Coefficient | | 300 | 3,33 | 9.747 ± 0.019 | -0.292 ± 0.003 | -0.0037 ± 0.0060 | 1.000 | | 333 | 3.00 | J.886 ± 0.033 | -0.121 # 0.004 | -0.0048 ± 0.0095 | 1.000 | | 363 | 3.76 | 1.042 ± 0.042 | 3.041 ± 0.004 | 0.0025 # 0.0117 | 1.000 | | 393 | 2.54 | 1.188 ± 0.059 | 0.172 ± 0.005 | 0.0031 ± 0.0166 | 0.9999 | | 423 | 2.36 | 1.330 ± 0.069 | 0.285 ± 0.005 | 0.0098 # 0.0194 | 0.9999 | FIGURE III-17. Arrhenius plot for the $S(^3P) + 1.2-C_4H_6$ and $1-C_4H_8$ system. • ## B. Discussion The cumulated π bonds of 1,2-butadiene are mutually perpendicular, and consequently, there is little interaction between these two bonds. Thus in 1,2-C₄H₆ the π bonds represent two non-equivalent reaction sites. However, there is σ - π overlap between each π bond and the coplanar C-H bonds (hyperconjugation), resulting in stronger C=C bonds. 130 The products observed in the COS-1,2- C_4H_6 system indicate that the reaction of S atoms with this diene conforms with the general mechanism already established for the reaction with alkenes, i.e. S atoms either add to one of the C=C bonds or insert into the C-H bonds. Thus the following steps may be considered for the S + 1,2- C_4H_6 system: $$\cos + hv = \cos + s(^{1}n_{2}, ^{3}P)$$ [5] $$s(^{1}p_{2}) + cos - co + s_{2}$$ [6] $$s(^{1}D_{2}) + M \longrightarrow s(^{3}P) + M$$ [7] $$s(^{3}P) + cos - - - co + s_{2}$$ [8] $$S(^{1}D_{2}) + CH_{3}CH = C - CH_{2} = \frac{2 \cdot 3 - addn}{CH_{3}} \cdot \left(\begin{pmatrix} S & C + C & H \\ C & C & H \end{pmatrix} \right)^{1} \cdot \begin{pmatrix} M & S \\ M & C + C & H \end{pmatrix}^{1} \cdot \begin{pmatrix} M & S \\ C + C & H \end{pmatrix}^{1} \cdot \begin{pmatrix}$$ A 1,2-addn. $$\begin{pmatrix} H_3C \\ H \end{pmatrix}^1 = \begin{pmatrix} S \\ C \end{pmatrix} + +$$ C-H insertion $$\left(HSH_2C\right)_{H}C=C=CH$$ $\left(HSH_2C\right)_{H}C=C=CH$ $\left(HSH_2C\right)_{H}C=C=CH$ $\left(HSH_2C\right)_{H}C=C=CH$ $\left(HSH_2C\right)_{H}C=CH$ $\left(HSH_2C\right)_{H}C=CH$ $\left(HSH_2C\right)_{H}C=CH$ $\left(HSH_2C\right)_{H}C=CH$ $\left(HSH_2C\right)_{H}C=CH$ $\left(HSH_2C\right)_{H}C=CH$ C-H insertion $$\begin{pmatrix} H_3^C \\ HS \end{pmatrix}^C = C = C \\ H \end{pmatrix}^1 (a) M$$ HS C=CH H [13] $$\frac{C-H \text{ insertion}}{C-H \text{ insertion}} \left(\frac{H_3^C}{H}, C=C=C \right) \frac{SH}{H} \frac{M}{H} \frac{H_3^C}{H} C=C=C \left(\frac{SH}{H} \right) \frac{1}{H}$$ [14] $$S(^{3}P) + CH_{3}CH = C = CH_{2} = \frac{2,3}{addn} \cdot \begin{pmatrix} H &
C & C = C & H \\ CH_{3} & H & CH_{3} & CH_{3} \end{pmatrix} \cdot \begin{pmatrix} S & C = C & H \\ CH_{3} & CH_{3} & CH_{3} \end{pmatrix} \cdot \begin{pmatrix} S & C = C & H \\ CH_{3} & CH_{3} & CH_{3} & CH_{3} \end{pmatrix} \cdot \begin{pmatrix} S & C = C & H \\ CH_{3} & CH_{3} & CH_{3} & CH_{3} & CH_{3} \end{pmatrix} \cdot \begin{pmatrix} S & C = C & H \\ CH_{3} & CH_{3}$$ 1,2-addn. $$\begin{pmatrix} H_3^C \\ C = C \end{pmatrix} = C + \begin{pmatrix} H_3^C \\ H \end{pmatrix} = \begin{pmatrix} H_3^C \\ H \end{pmatrix} = \begin{pmatrix} S \\ H \end{pmatrix} + \begin{pmatrix} G \\ H \end{pmatrix} = \begin{pmatrix} S \end{pmatrix}$$ 1,2-addn. $$\begin{pmatrix} H & S & H \\ H_3C & H \end{pmatrix}^3 M, ISC. \qquad H_3C & C = C & H \\ H_3C & H \end{pmatrix}$$ S addition product recoveries in the present system are relatively low ($\sim 70\%$ at zero time), in contrast to the alkene systems where the yields are quantitative at low conversions. The loss can be ascribed in part to the moderately strong U.V. absorption of the products at longer wavelengths ($\lambda > 250$ nm). The formation of product 2 presumably could occur via an enethiol-thicketone-enethiol taytomerization. The initial tautomer, $CH_3C(SH)=C=CH_2$ (2,3-butadiene-2-thiol), could be formed from direct insertion of $S(^1D_2)$ into the alkyl substituted vinyl C-H bond (step [13]) or from unimplecular isomerization of the hot thiirane, produced by 2,3-addition of $S(^1D_2)$ (step [9]) via a bicyclic activated complex as shown in scheme (I). $$[9] \begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ CH_3 \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ $$\begin{pmatrix} H & C = CH_2 \\ H & H \end{pmatrix}$$ ## Scheme [I] The occurrence of a hot thiirane-thiol rearrangement in this system is, however, highly unlikely, since in chemically activated methylthiirane, which has a smaller number of degrees of freedom than the C_4H_6S adducts, this process is of very minor importance. Thus the initial tautomer of 2 $(CH_3C=C=CH_2)$, at pressures >2 torr, must result from direct insertion into the C-H bond of C₃. This insertion is a distinct feature of the COS-1,2-C₄H₆ system: the first reported S insertion into the methyl-substituted vinylic C-H bond of an acyclic hydrocarbon system. In fact, 2, the ultimate product of this insertion, is only the second alkyl-substituted enethiol (l-ene-2-thiol) after propene-2-thiol to be reported. Syntheses of enethiols having a terminal vinyl group generally yield only the l-ene-1-thiol. 42,132. The existence of enethiol-thicketone rearrangements, which are analogous to enol-keto tautomerisms, is well documented. 133,134 It should be noted that the possibility that product 2 can arise from the addition of $S(^1D_2)$ to any 1,3-butadiene impurity s($$_{D^3}$$) + $_{A^3}$ C=CHCH=CH $_{A^3}$ $_{A^4}$ $_{A^5}$ $_{A^5}$ $_{A^5}$ (5) can be ruled out for two reasons: (i) The purity of the substrate was checked chromatographically shortly before use, and no 1,3-butadiene was detected. (ii) The reaction of S atoms with 1,3-butadiene has been studied and the only major primary product found was vinylthiirane: 25 In the present work, no vinylthiirane was observed, even in the presence of high ${\rm CO_2}$ pressure (ca. 1200 torr). Thus 1,3-butadiene cannot be responsible for the formation of product 2. The thicketone (CH₂=CHCCH₃) formed in step [13b] of Scheme [I], has been synthesized by two research groups using flash thermolysis techniques. 135,136 It was reported to be extremely unstable, dimerizing at -60° 136 and undergoing spontaneous polymerization at room temperature. 135 Neither of these groups reported any observation of the tautomeric enethiols. The formation of the enethiol (2) in the $COS-1, 2-C_AH_6$ system can probably be explained in terms of the experimental conditions employed. In the previous investigations, 135,136 the thicketone produced was immediately condensed at -77 K and allowed to warm up in the condensed state to a temperature at which it either dimerized or polymerized. 135 present work, the products were formed in the gas phase at extremely low concentrations (<10-6M) diluted by high pressures of COS. Under these conditions, thicketone dimerization or polymerization would occur much less readily than in the condensed phase, thus providing a greater opportunity for tautomerization to take place. Indeed, it has been shown that in the gas phase CH_2 = $CHCCH_4$ dimerizes at high pressures. Furthermore, the higher temperatures (>300 K) employed in this work might be expected to enhance the rate of tautomerization. Additionally, the enethiol-thicketone-enethicl tautomerization could have been photochemically induced, since it has been demonstrated that enolization of an aliphatic α,β -unsaturated ketone may occur photochemically. 137 The ultimate fate of any remaining thicketone in this system is uncertain. It could have eventually polymerized in the reaction cell, decomposed during transferral or been lost on the G.C. column. On the other hand, it may have been one of the two unidentified peaks, 6 and 7, seen in the mass 86 cross-scan (Figure III-1). Bailey and Isogawa 135 could not detect the thicketone by gas chromatography, even when the products of the pyrolysis were fed directly into the GC, but this may have been because their column was made of copper tubing. A related sulfur compound, vinylthicl, has been demonstrated to be quite reactive with copper surfaces, 19 and the thicketone may behave in a similar manner. Paquer 134 has pointed out that in cases where the tautomerization of a thicketone requires migration of an o-hydro gen belonging to a methyl group, as in step [13c] of scheme (I), the enethicl has not been observed. Gince the enethicl can apparently be trapped in chemical reactions, such as the methylation of thiopinacolone, 133 $$(CH_3)_{3} CCCH_{3} = (CH_3)_{3} CC-CH_{2} = \frac{\text{sethyla-}}{\text{agent}} + (CH_3)_{3} CC-CH_{2} = \frac{1203}{\text{sethyla-}}$$ there is a possibility that the equilibrium lies far to the thicketone side. However it has been pointed out that this observation does not unambiguously prove the real existence of the enethiol. In the case of product 2, conjugation of the two C=C bonds in the 1-ene-2-thiol form may enhance its stability relative to that of the corresponding thicketone, CH2=C-CH3, in which the C=C bond is conjugated to the C=S SH bond. (The initially formed cumulenethiol, CH2=C=C-CH3, which has no conjugation, should be even less stable.) The overall scheme for the production of 2 therefore would appear to be: $$S(_{D^{3}}) \cdot CH^{3}CH - C - CH^{3} - \longrightarrow CH^{3}C - C \cdot CH^{3} \longrightarrow CH^{3}CCH - CH^{3} \longrightarrow CH^{3}-C - CH - CH^{3}$$ $$(5)$$ $$[13]$$ The fact that no terminal cumulenethiol product (CH3CH=C=C(SH)) was observed in this work can also be explained by a thicketone-enethical tautomerization process. In the case of the terminal vinyl C-H insertion, the initially formed thick could tautomerize to a conjugated thicaldehyde: 1,2 butadiene-1-thiol 2-butene-1-thial However, the only simple conjugated thicaldehyde synthesized S S to date, thicacrolein (CH₂-CHCH), is so unstable that it decomposes slowly even at ⁷⁷ K. If the tautomerization (step [2]]) equilibrium is reasonably fast, any terminal cumulenethiol formed may have been lost by rapid reaction, most likely polymerization, of the thioaldehyde tautomer. (There is also a possibility that the terminal cumulenethiol may have been one of the unidentified products, 6 and 7, shown in Figure III-1.) In the COS-H₂C=C=CH₂ system, the corresponding cumulenethiol was also not observed. However, the high methylenethiirane yield,>90%,obtained under low conversion conditions indicates that vinyl C-H insertion can only be of minor improvement in this system. The high yields of thiiranes observed in the present system indicate that for $S(^1D_2)$ atoms, the thiirane formation pathways (steps [9]~[11]) are more important than the insertice reactions (steps [12]-[14]). The S product distributions listed in Table III-2 are quite different from those for alkenes; thiiranes comprise 90% of the total C4H6S products. As is apparent in Table III-11, the thiirane yield in the S + alkene systems under similar conditions is 70%. These enhanced thiirane yields can be explained in part by the presence of two C-C addition sites and fewer C-H insertion sites. However, since product recoveries were not quantitative, the lower thiol yields may reflect a lower stability of the insertion products in this TABLE III-11 Product Distributions for the COS-Alkene Systems 42 | | 8 | Distribution | | |---------------------|------------------------|--------------------------|----------| | Alkene | Vinyl Type
Thiol(s) | Alkenyl Type
Thiol(s) | Thiirane | | Ethylene | 49 | • • | 51 | | Propylene | 19 | 19 | 62 | | Isobutene | 12 | 32 | 56 | | 2-Butenes | 0 | 32 | 68 | | 1-Butene | 12 | 29 | 59 | | Trimethylethylene | Ó | 42 | 58 | |
Tetramethylethylene | • • | 50 | 50 | | Vinyl Fluoride | 32 ′ | • • | 68 | | 1,1-Difluoroethylen | e 31 | • • | 69 | The increase in thiirane yields with total pressure, as shown in Figure III-15 and Table III-3, provides strong evidence that collisional stabilization of excited precursors, probably hot thiiranes, is important at high pressures (ca. > 150 torr). This pressure enhancing effect cannot be explained on the basis of suppression of isomerization to enethiols since, as mentioned above, such effects are of very minor importance for C_4H_6S . The decrease in CH_4 yield at high pressures suggests the suppression of fragmentation processes. However, the low CH_4 yield indicates that fragmentation leading to formation of this product is of minor importance. An alternative process which would be suppressed at high pressures is fragmentation of the hot thiiranes via a cyclopropanethione intermediate, e.g. 128,139 $$\left(= \left(\begin{array}{c} S \\ \end{array}\right)^{\dagger} \qquad \Longrightarrow \qquad \left(\begin{array}{c} S \\ \end{array}\right)^{\dagger} \qquad \Longrightarrow \qquad \left(\begin{array}{c} S \\ \end{array}\right)^{\dagger} \qquad$$ The parent cyclopropanethione and methylenethiirane are thought to exist in equilibrium at high temperatures, and it has been suggested that cyclopropanethione can fragment via CS elimination. 128,139 CS may then abstract S from thiiranes yielding the corresponding alkene and CS2. Indeed, small amounts of CS2 were observed in the present system and in the COS-allene system. 63 At high CO₂ pressures (Table III-4), formation of the insertion products 2 and 5 is suppressed and the yields of thiiranes 1, 3 and 4 are enhanced, as expected. The large increase in the total product yield is a result of pressure stabilization and the increase in concentration of S(³F) atoms: The greater reactivity of S(³P) atoms with the substrate relative to COS (vide supra) increases the thiirane yields at the expense of CO formation. Of the thiiranes, 1 (2,3-addition) is invariably formed in higher yield than 3 + 4 (1,2-addition) for both $S(^3P)$ and $S(^1D_2)$ additions. This preference may be in part due to the electrophilic nature of S atoms: the CH_3 substituted C=C bond is preferred. The intuitive expectation of the greater nucleophilicity of the 2,3 C=C bond is supported by CNDO/S calculations performed on 1,2- C_4H_6 , 140 H $$1.02 0.959 0.970$$ $C = C = C$ $3 2 1$ $C = C 1$ which found that the highest π electron density is at C_3 . Assuming that the yields of 1 and 3 + 4 are proportional to the rates of 2,3 and 1,2-addition respectively, the selectivity of S(3P) for 2,3 and 1,2-additions may be expressed in terms of the rate constant ratio: $$(k_{2,3}/k_{1,2})^{3p} \approx (1/(3+4))^{3p}$$ Using the experimental values from Table III-4: $$\binom{k_{2,3}/k_{1,2}}{p=1200 \text{ torr, t=11 min}}$$ Alternatively, the values corrected to zero time give: $$\left(k_{2}, 3/k_{1}, 2\right)^{3} P \approx 2.06$$ Thus the calculated ratio, $(k_{2,3}/k_{1,2})^{3P}$ is approximately 2.1 and shows essentially no time dependence. Using the zero time values from Table III-4 and the zero time extrapolated thirane rates at 1200 torm from Figure III-15 revenls that the corresponding selectivity for $S(^{1}D_{2})$ additions in the high pressure limit (Appendix C-1) is: $$\left(\nu_{2,3}/\nu_{1,2}\right)^{1D}$$ ~ 1.3 Not unexpectedly, $S(^{3}P)$ is somewhat more selective as a consequence of its lower energy content. Similarly, assuming that the observed selectivity (2,3 and 1,2-addition) for $S(^3P)$ is pressure independent, the corresponding $S(^1D_2)$ selectivity at zero time and a total pressure of 250 torr is estimated (Appendix C-1) to be: $$\binom{k_{2,3}/k_{1,2}}{P=250 \text{ torr, } t=0}$$ = 1.4 The apparent similarity in the $k_{2,3}/k_{1,2}$ ratios at 250 and 1200 torr for $S(^1D_2)$ implies that the observed selectivity of $S(^1D_2)$ addition is also pressure independent. Inspection of the zero time data in Table III-4 reveals that the trans/cis C_4H_6S ratio for $S(^3P)$ addition is $$\left(\frac{\text{trans (4)/cis}}{\text{trans (5)}}\right)_{\text{P=1200 torr, t=0}}^{3\text{P}} \approx 6.2$$ The high trans/cis product ratio for S(3F) 1,2-addition is surprising since cis addition does not appear to feature much steric hindrance. However, there is a possibility that the apparent preference for trans addition is a consequence of the relative stabilities of the hot trans and cis adducts. The trans/cis/product ratio for S(\binom{1}{D}_2) addition may be calculated (Appendix C-1) using the zero time values from Table III-4 and the zero time extrapolated thirrane rates at 1200 terr from Figure III-15: The much higher trans/cis product ratio for $S(^3P)$ addition (~ 6.2) suggests that $S(^3P)$ may be significantly more selective and less reactive than $S(^1D_2)$ in 1,2-addition. Alternatively, this may reflect a larger difference in stability of the triplet trans and cis adducts. By analogy with the $S(^1D_2)$ + alkene systems, the addition of $S(^1D_2)$ to $1,2-C_4H_6$ most likely follows a single step concerted pathway, 41,46,50,142 e.g., $$S(^{1}D_{2}) + CH_{3}CH = C = CH_{2}$$ $$2,3 - addn.$$ $$\begin{pmatrix} S \\ C = C \\ H \end{pmatrix}^{1}$$ $$CH_{3}$$ $$(P)$$ $$CH_{3}$$ For $S(^3P)$ addition, two possible transition states may be considered. One is the ring distorted triplet state thiirane, having a high rotational barrier (2 23 kcal mole⁻¹), analogous to that formed in the $S(^3P)$ -alkene systems (vide supra), e.g., $$S(^{3}P) + CH_{3}CH-C-CH_{2} \xrightarrow{\text{cis 1,2-addn.}} \left(\begin{array}{c} H_{3}C \\ H \end{array} \right)^{3}$$ On the other hand, the presence of an unsaturated substituent might lower the rotational barrier predicted for the parent thiirane (%23 kcal mole⁻¹)⁵¹ and a freely rotating triplet biradical might be generated, e.g. 1 $$S(^{3}P) + CH_{3}CH = C \stackrel{\rightarrow}{=} CH_{2} \xrightarrow{\frac{\text{trans}}{1,2-\text{addn.}}} \begin{bmatrix} H & \dot{S} \\ H_{3}C & \dot{C} + \dot{C} + \dot{C} + \dot{C} \end{bmatrix}^{3} + \begin{bmatrix} H & \dot{S} \\ H_{3}C & \dot{C} + \dot{C} + \dot{C} + \dot{C} \end{bmatrix}^{3}$$ $$\stackrel{\circ}{=} \qquad \qquad \stackrel{\circ}{=} \stackrel{\circ}$$ $$\begin{array}{c|c} \hline \text{Cis} & H \\ C = C - CH_2 \\ H_3C & S \end{array}$$ + $$\begin{array}{c|c} H \\ C = C \not \downarrow CH_2 \\ S & S \end{array}$$ If orientation of S attack is the major influence on the high trans/cis 1,2-adduct ratio, then biradicals b and d can be ruled out as intermediates since ring closure would lead to a 1:1 mixture of cis and trans isomers. However, similar to the ring distorted thiirane (scheme [II]), biradicals a and c would evolve to the trans and cis adducts, respectively, and cis S attack may be somewhat hindered by the CH₃ group, resulting in a high trans/cis adduct ratio. Thus an explanation of the observed high trans/cis ratio based on orientation of attack does not serve to distinguish between the ring distorted thiiranes and biradicals a and c as intermediates. Nonetheless, the entropies of activation for the $S(^3P)$ 1,2 and 2,3-additions are similar to those of the $S(^3P)$ +. alkene reactions (vide infra), suggesting that similar transition states are involved. Thus, by analogy with the latter systems, the intermediates involved in the $S(^3P)$ + 1,2-C₄H₆ reaction most likely resemble a ring distorted thiirane as ** shown in scheme II. Unlike $S(^3P)$, $O(^3P)$ reacts with $1,2-C_4H_6$ to yield mainly CO and propylene, with only small amounts of O-containing products being observed. The high CO and propylene yields are thought to result from decomposition of an excited cyclopropanone intermediate: 103 $$CH_{3}CH=C=CH_{2}$$ $$CH_{3}CH=C-CH_{2}$$ $$H_{3}CCH-CH_{2}$$ $$CO+C_{3}H_{6}$$ $$CO+C_{3}H_{6}$$ $$CO+C_{3}H_{6}$$ $$CO+C_{3}H_{6}$$ $$CO+C_{3}H_{6}$$ $$CO+C_{3}H_{6}$$ $$CO+C_{3}H_{6}$$ Although an allene oxide may exist as a transient species, any which is formed would be expected to isomerize to the more stable cyclopropanone. 103,128 The parent cyclopropanone is \sim 23 kcal mole⁻¹ lower in energy than allene oxide, ^{128,143} but polymerizes rapidly at room temperature. 103 On the other hand, calculations based on bond energies predict the corresponding cyclopropanethione to be ${\scriptstyle \sim}7$ kcal mole less stable than methylenethiirane. 128,143 This difference in the order of stability is probably due to the higher bond energy of a C=0 bond, 172 kcal mole, as compared to that of a C=S bond (129 kcal mole 1). Therefore, a cyclopropanethione intermediate is not likely to be as important in the $S(^{3}P)+1.2$ C4H6 reaction. Assuming that the distribution of carbonyl products in the $O(^{3}P) + 1,2$ -butadiene reaction corresponds to . the relative orientations of $O(^{3}P)$ addition, $O(^{3}P)$ adds to the allenig carbons in the order: $C_2 = C_1 = C_3 = (-1.7, \text{V1.1, \text{V0.3}})^{-103}$ This order of affinity for C atom attack implies some preference of O(3P) for the 1,2 C=C bond and is in contrast to the marked preference of the $S(^{3}P)$ atom for 2,3-addition. The preference of attack for O(3F) then depends strongly on the stability of the resulting biradical. Creary 144,145 recently studied the additions of a series of aryl carbenes to $(CH_3)_2C=C=CH_2$ and observed that singlet carbenes, $[R_1P_2C:]^1$, add preferentially to the 2,3 C=C bond, whereas the triplet carbenes, $[R_1R_2C:]^3$, reacted to give products corresponding to 1,2-addition. It was postulated that the initial attack of $[R_1R_2C:]^3$ takes place at the C_2 carbon: $$[R_{1}R_{2}C:]^{3} + (CH_{3})_{2}C - C - CH_{2}$$ $$(CH_{3})_{2}C + C - CH_{2}$$ $$(CH_{3})_{2}C + C - CH_{2}$$ $$(CH_{3})_{2}C + C - CH_{2}$$ $$(CH_{3})_{2}C - The initially formed triplet adducts then undergo a 90° internal rotation to form a more stable triplet allyl bi-radical. The allyl biradical
then undergoes intersystem crossing to the singlet state, which leads to the 1,2-addition product via ring closure. Recent kinetic measurements on the reactions of C_3 (:C=C=C=C:) with a series of allenes indicate that although the rate of reaction is slow ($k \sim 10^7 - 10^9 \ M^{-1} s^{-1}$), it increases with increasing alkyl substitution on the allenic carbons. 146 Based on the observed trend in rate constants, it was postulated that C_3 adds electrophilically to one of the allenic bonds to form cyclic intermediates: However, no other evidence supporting the proposed intermodiate was obtained. The reactions of monoradicals with allene have also been studied. The reaction of OH with allene has been investigated by a number of groups. 147,148 The trend in rate parameters for OH + dienes follows similar trends as in the cases of O(3r) and S(3r) (vide infra). This implies that OH also adds electrophilically to dienes. Molecular beam mass spectral studies indicate that the primary step involves the formation of an OH adduct. More recent work has shown that abstraction also takes place, but to a very small extent (12%). Unfortunately, for the addition reaction, no information is available regarding the preferred site of attack. Rehylthiyl radical $(C_2\Pi_pS)$ addition to a series of allones has been studied. And the observed product distributions for the 1,2-butadiene reaction follow a trend similar to that for $O(^3P)$ addition $(C_2 > C_1 > C_3)$. This product distribution trend is most easily rationalized in terms of the steric hindrance of the CH_3 group and polar effects in stabilizing the radicals involved. 153 Some reactions of atoms and radicals with allenes are summarized in Table III-12. It is apparent that those singlet species such as $S(^1D_2)$ and $[R_1R_2C+1]^1$, which are expected to form cyclic intermediates, prefer addition to the substituted C+C bond. With the exception of $S(^3p)$, the other atomic and radical species listed preferentially add to the unsubstituted C+C bond via acyclic intermediates. These observations also support the postulate that the intermediate for $S(^3p)$ addition to the unsubstituted because of the support the postulate that the intermediate for $S(^3p)$ and $S(^3$ TABLE III-12 Stom and Radical Reactions with Terminal Allenes. | Reagent | llene | Timary Adduct | referred Site | Reference | |----------------------------------|--------------|---|---|-----------| | | | | of Addition | | | (ح ^خ) s | ÇH⊃=C=ÇHÇ | 1 C-C=CH, | 4 | 53 | | s(³ p) | `HD=D=`h. | H, CO-CH, J | ; | 63 | | s(¹ D ₂ , | 'HD=D=HD'E' | J ₃ CH-C=CH ₂ J , etc. ★ | 2,3-addition | this work | | 3(₃ b) | °HD=D=HD~K. | 13,CCH—C=CH_] , etc. | 3,3-addition | this work | | (قرُ) ٥ | JH CH=C=CHJ | H ₃ ccH=c-cH, j, etc. ← H ₃ ccH cH ₂ | $\frac{2}{2}$ C_1 C_3 C_1 C_3 C_1 C_2 C_3 | 103 | | $R_1R_2C_3$ | CH) C=C=CH | CH ₂) ₂ CH-C=CH ₃ | .3-addition | 145 | | [R, R, C:1] | CH-) C=C=CH- | (CH ₃) ₂ C-C=CH ₂ (CH ₂) ₂ CH ₂ (CH ₂) ₂ CH ₂ | .,2-addition | 145 | | :C=C=C: | ´HD=D=´EC | .H2
.C=C=C-V=CH. (| ! | 146 | | °2,H₅S• | CHZĘŹĘHJĆRC | | $C_1 > C_1 > C_3$
1,2-addition) | 153 | | | | | | | $$\Lambda_{1,2-C_A} \Pi_6 = (2.37 + 0.38) \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$, and if the absolute rate parameters for the $S(^3P) + 1 - C_4H_8$ reaction d termined by Klemm and Davis are used. However, the absolute measured by Van Boodselaar lead to: $$\Lambda_{1,2} C_4 H_6 = (6.38 + 1.11) \times 10^{10} M^{-1} e^{-1}$$, and $$E_{1,2} = \frac{1.38 + 0.20 \text{ kcal mole}^{-1}}{4.6}$$ Klemm and Davis 2 measured rate parameters for a number of S(3F) + alkene reactions using the flash photolysis— resonance fluorescance method, whereas Van Roodselaar 53 employed the flash photolysis kinetic absorption technique. In general, the Ea's measured by these two methods are in excellent agreement, but the A factors determined by Van Prodselaar 3 are consistently about a factor of 2 to 4 higher than those reported by Klemm and Davis. 52 Since the reason for these discrepancies is not clear, average vilues will be taken to obtain the absolute rate parameters for S(3P) + This corresponds to a room temperature rate constant, $k_{298} = 3.8 \times 10^9 \; \text{M}^{-1} \text{s}^{-1}. \quad \text{Since the two C=C bonds represent}$ two distinct non-equivalent reaction sites (1,2 and 2,3-addition sites), these observed rate parameters are apparent values only. However the rate parameters for the two individual sites can be determined, as will be shown later. The apparent Arrhenius parameters for the $S(^3P) + 1,2 C_4H_6$ reactions are compared to those for $O(^3P)$ and $OH(^2H)$ reactions in Table III-13. The A factor for this reaction is somewhat larger than those in the $S(^3P) + alkene$ systems. This is partly a consequence of the presence of the second (orthogonal) C=C bond. A parallel trend is observed in the exygen systems, where the A factor for the parent allene reaction is approximately twice that for alkenes. The increase in A factor on going from a conjugated to a cumulated diene may be a consequence of the change from a linear reactant molecule to a bent activated complex on addition of an S atom in the latter system. It is apparent from the structure of the transition state that the addition of S results in a large increase in moment of inertia about the C_3 - C_2 axis. Consequently, there is a substantial rotational contribution to the entropy of activ- TABLE III-13 3 P) and OH(2 H) Reactions with Alkenes and Dienes. Parameters for S(³P), O(Rate | | | S(³ P) | | | 0(³ P) | | он (² п) | 7 (п) | | |--------------------------------------|--|--------------------|--------|---|---|--------------------|--|---------------------|--------| | Substrate | $^{\circ}$ $k_{298} \times 10^{-9}$ $(M^{-1}s^{-1})$ | A ; — | Eakcal | x10-10 Ea k298x10-9 Ax10-10 Ea k298x10-9 Ax10-10 Ea M-1s-1) | Ax10-IO
(M ⁻¹ s ⁻¹) | Ea
kcal
mole | k ₂₉₈ ×10 ⁻⁹
(M ⁻¹ s ⁻¹) | Ax10-10
(M-1s-1) | Eakcal | | CH ₂ =C=CH ₂ | 2-4a | •
• | 0-1 | 0-1 0.76 ^e | 1.8 | 1.9 | 1.9 2.0 ^h | 0.34 | -0.31 | | CH ₃ CH=C=CH ₂ | 3.8 ^b | 4.4 | 1.5 | 1.5 1.7 [£] | • | . | • | • | • | | $CH_2 = CC = CH_2$ | 28 _C | 2.6 | -0.04 | -0.04 12.5 ^e | 1.2 | o . | 42h | 0.87 | -0.93 | | CH ₃ CH=CH ₂ | 3.9 ^d | 0.83 | 0.44 | 6.44 2.2 ⁹ | 0.76 | 0.70 | 0.70 15.1 ^h | 0.25 | 1.1- | | $c_2 H_5 cH = cH_2$ | 5.1 ^d | 0,82 | 0.28 | 0.28 2.49. | 0.72 | 0.66 | 0.66 21.1h | 0.46 | -0,93 | | | | | | | | | | | • | aestimated values from ref. 63. bthis work. calculated from relative rate data in ref. 96, and absolute rate data averaged from ref. 52 and 53. daverage values of ref. 52 and 53. eref. 101. $^{\mathrm{f}}$ calculated from relative rate data in ref. 103 and absolute rate data in ref gref. 55. 1 , 1 , ation ($\Delta S^{\frac{1}{2}}$) and a correspondingly high A factor is observed. On the other hand, in conjugated systems such as 1,3-butadiene, the reactant molecule possesses a bent structure having parallel π bonds, and addition of S has an insignificant effect on the moment of inertia about the C_3 - C_2 axis: Thus the entropy of activation and A factor are relatively small. A similar explanation has been invoked to account for the relatively high A factor for the alkyne addition reactions as compared to those of alkenes. 154 For example, the rotational contribution to Δs^{\ddagger} in the $S(^3p) + C_2H_2$ system is 3.3 times higher than in the corresponding C_2H_4 case. 76 The possibility that the larger A-factor for 1,2- as compared to 1,3-butadiene is a consequence of a difference in the transition states (a freely rotating biradical rather than a ring distorted activated complex as suggested for 1,3- C_4H_6) is unlikely. The difference in Δs^{\ddagger} for the $S(^3P)$ + 1,2 and 1,3- C_4H_6 is only 1 e.u. $(\Delta s^{\ddagger}_{1,2}-C_4H_6)$ = -22.1 e.u., $\Delta s^{\ddagger}_{1,3}-C_4H_6$ = -23.1 e.u.), indicating that the transition states are similar. The room temperature rate constant measured in this work for the $S(^3P) + 1,2-C_{4^1}H_6$ reaction is approximately twice that for the corresponding reaction of $O(^3P)$. This observation is consistent with the relative rate constants of $S(^3P)$ to $O(^3P)$ in reaction with other substrates (Table III-13), and the higher reactivity of $S(^3P)$ atoms is a consequence of the lower activation energies associated with the addition reactions. For the OH reactions, the room temperature rate constants also follow a trend similar to that observed for $S(^3P)$. The rate constants are generally greater, due to the negative activation energies for the OH reactions. If abstraction actually occurs, as suggested by Hoyermann and co-workers, ¹⁴⁸ the activation energies for addition will be even more negative than those listed in Table III-13. As in the case of $S(^3P)$, the E_a for the OH reactions is highest for the parent allene. The A factors are much smaller than those for the corresponding $S(^3P)$ reactions and show no definite trend. Despite the larger A factor as compared to the $S(^3P)$ + 1.3- C_4H_6 reaction, the $S(^3P)$ + 1.2- C_4H_6 reaction proceeds at a slower rate. This can be attributed to the higher actrivation energy (~ 1.5 kcal mole $\frac{1}{2}$ versus -0.4 kcal mole $\frac{1}{2}$) for the latter reaction. Similarly, in the oxygen systems, the $O(^3P)$ + CH_2 =C= CH_2 reaction is much slower than the corresponding 1.3 C_4H_6 reaction (Table III-13) due to its higher
E_a . The lower activation energies observed for the conjugated diene reactions may be ascribed to delocalization of the $\boldsymbol{\pi}$ electrons. This renders the π orbitals more polarizable than those in non-conjugated systems, resulting in a lower energy requirement for the π complex formation in electrophilic reactions. In cumulated dienes, on the other hand, delocalization of the π electrons is absent due to the orthogonality of the two bonds. Additionally, hyperconjugation (σ - π overlap) between the coplanar C-H and π bonds in 1,2-butadiene imparts partial triple bond character to the C=C bonds, e.g., 130 This phenomenon raises the energy barrier for π complex formation relative to that for the conjugated and isolated systems. A plot of E_a versus ionization potential for $S(^3P)$ + alkenes, alkynes, and dienes is given in Figure III-18. It is apparent that the E_a for the $S(^3P)$ + 1,2- C_4H_6 reaction FIGURE III-18: Plots of E_a versus ionization potential for the $S(^3P)$ + alkenes, alkynes and dienes systems, and $O(^3P)$ + alkenes (----). lies above the correlation line for the $S(^3P)$ + alkene systems. A smaller deviation in E_a is also seen for the onjugated diene, $1,3-C_4H_6$. Similarly, the E_a for the $O(^3P)$ + CH_2 = $C=CH_2$ reaction 100-1,105 is at least 0.5 kcal mole 1 above the correlation line for the $O(^3P)$ + alkene reactions given by Slagle et al. 119 Furthermore, although only two substrates have been examined, the E_a -ionization potential correlation for the $S(^3P)$ + alkyne reaction 100-10 appears to be significantly different from that of the corresponding alkene reactions. Hence, it is likely that the activation energies for the $S(^3P)$ 0 + allene reactions in general lie on a line different from that of the alkenes. The relative rates of 1,2 and 2,3 $S(^3P)$ addition have been estimated from the isomeric thiirane yields (Table III-4) as: $$k_{2,3}/k_{1,2} = \frac{1}{2}/(\frac{3}{2} + \frac{4}{2}) \sim 2.1 \text{ at } 300^{\circ} \text{K}$$ and since the overall rate of addition is $3.8 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$, $$k_{2,3} \simeq 2.6 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$$ and $k_{1,2} \simeq 1.2 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$ In principle, $k_{2,3}$ and $k_{1,2}$ can have a different temperature dependence. However, the ratios, 1/(3+4), calculated from the data in Table IIÎ-5 - III-9 and listed in Table III-14, are constant over the temperature range studied. Thus, both the 1,2 and 2,3-additions feature equal activation Effect of Temperature on the Yields of 2,3 and 1,2 $S(^3P)$ -Addition Products. | Temperature | Product Yi | elds (µmole) | $\frac{1}{(3+4)} = k_{2,3}/k_{1,2}$ | |-------------|------------|--------------|-------------------------------------| | (°K) | 1 | 3+4 | 2,3 1,2 | | 300 | 0.488 | 0.239 | b
2.05 | | 333 | 0.548 | 0.244 | 2.24 | | 363 | 0.562 | 0.281 | 2.00 | | 393 | 0.620 | 0.305 | 2.03 | | 423 | 0.649 | 0.267 | 2.43 | Values at each temperature are sum of four competitive runs where P(COS) = 100 torr, $P(CO_2) \sim 1250$ torr, $P(1-C_4H_8) \sim 70$ torr and $P(1,2-C_4H_6) = 15-40$ torr for each temperature; $R_{CO}^{\circ} = 0.349$, 0.384, 0.414, 0.432 and 0.502 µmole min for temperatures = 300, 333, 363, 393 and 423 °K, respectively, and the corresponding exposure times are 500, 470, 435, 410 and 350 sec. b Average value of 1/(3+4) = 2.15. energies ($^{\circ}1.5$ kcal mole⁻¹) and the difference between the two rate constants is due to the difference in the A factors. Since $(k_{2,3}/k_{1,2})$ $^{\circ}$ 2.1, the Arrhenius expressions for the two additions are: $$k_{1,2} = (1.41\pm0.38) \times 10^{10} \exp[-(1455\pm225)/\text{PT}] \text{ M}^{-1}\text{s}^{-1}$$ [27] $$k_{2,3} = (2.96\pm0.80) \times 10^{10} \exp[-(1455\pm225)/RT] = [28]$$ The A factors calculated for the two addition reactions correspond to entropies of activation, $$^{+}$$ $^{-24.4}$ e.u. The values are similar to those for the $S(^3P)$ + alkene reactions, e.g. Δs^{\dagger} for $1-C_4H_8 \simeq -25.4$ e.u., reflecting a similarity in the transition states for both systems. The 2,3 and 1,2 C=C bonds of 1,2-C $_4$ H $_6$ share structural similarities with CH $_3$ CH=CH $_2$ and CH $_2$ =CH $_2$, respectively. The average of the room temperature rate constants obtained by Klemm and Davis 52 and Van Roodselaar 53 for the S(3 F) + CH $_3$ CH=CH $_2$ and CH $_2$ =CH $_2$ reactions are: $$k_{C_3} = 3.7 \times 10^9 \text{ M}^{-1} \text{ and}$$ $$k_{0}^{H_4} = 60 \times 10^{8} \text{ M}^{-1} \text{ respectively.}$$ 141. Surprisingly, the room temperature rate constants for addition to the allenic bonds $(k_{2,3} \sim 2.6 \times 10^9, k_{1,2} \sim 1.2 \times 10^9 \, \text{M}^{-1} \, \text{s}^{-1})$ are within a factor of 2 of those for the corresponding alkenes. ## CHAPTER IV REACTIONS OF SULFUR ATOMS WITH ACYCLIC AND CYCLIC THIOPTHERS - Λ. Results - 1) $S(^{1}D_{2}, ^{1}B_{P})$ + Dimethylsulfide An Acyclic Thioether - (a) UV absorption of dimethysulfide Dimethylsulfide absorbs significantly in the spectral region used for COS photolysis (3 ~ 240 ~ 260 nm). Indeed, blank experiments with CH₃SCH₃ indicated that a small amount of decomposition into CH₃SCH₃, C₂H₆ and CH₄ takes place. For CH₃SCH₃ and COS, the moon temperature extinction coefficients at 240 nm are 9,1 and 31 R 1 male of 1, respectively, and at 254 nm, they are 3 6 and 13.6 1 male of 1 m. Thus for a COC CH₃SCH₃ ratio of 110 1, approximately 97% of the invitori ## " Reaction Products That lysis of COS in the presence of $\mathrm{CH_3SCH_3}$ led to the formition of $\mathrm{CH_3SSCH_3}$ as the major conjugable product along with small quantities of $\mathrm{C_2H_6}$ and $\mathrm{CH_4}$. It long exposure times trace amounts of $\mathrm{CH_3SH}$ were detected but could not be measured quantities of $\mathrm{CH_3SH}$ were detected but could not be measured quartities from con by GC or distillation. All products were identified by mass spectral analysis and by comparison of their GC retention fimes with those of authentic samples. C-H insertion products and heavier molecular weight S compounds such as CH₃S₃CH₃ and CH₃S₄CH₃ were demonstrably absent. Product recoveries were low, averaging between 20 and 30% (Table IV-1) in terms of the total amount of sulfur atoms reacting with CH3SCH3. In order to ascertain whether this product loss could be accounted for in terms of involatile polymer, two sets of high conversion experiments were performed to rightness a neighbor of 100 to 100 and 100 to 100 conversion. ### in viantion repairments in the f After a 30 minute photolysis which extremoded to a Sort duct loss of 9.8 kmcles, the cell was evacuate', filled with 100 km shows and subjected to microware discharge for two hours. The condensable products, analyzed by GC, consisted solely of SO₂ (~3 kmoles). Blank experiments with CH₃SCH₃ and O₂ however, showed that CO₂ could be recovered quantitativel but GO₂ recoveries were poor, probably due to reaction with H₃ , he of the other oridation products. There for these BLE IV-1 Iffect of Exposure Time on the Product Yields in the COS-CH3SCH3 System | יווע | Pressure | (torr) | | roducts (| (nmoles) | | * Recovery | |-----------------|----------|------------------|-----------|-----------|----------|------------|--------------------| | min. | 3H2 SCH3 | 308 | η | H2SSCH3 | °2H6 | CH4 | | | | 1, | 0.0 | 96 | 7.5.87 | 0.027 | 0.011 | 1.1 | | ٠ , | | | 7 | 4 | 3.047 | 0.034 | 7 2 | | ۱. | - • • | 00. | | . 693 | 0.00 | 990.0 | ,33 | | <u> </u> | | 00. | 12.3 | 4 | 1.123 | 0.193 | 33 | | . ! | , | ć | Ċ | ,
, | 0.35 | 0.0 | <u>د</u> . | | יעי | C. | 00. | φ | 007. | 000.0 | 0.00.0 | ָהָרָה (ה
היילי | | 10 | O. | 00. | , עב | 4 (| 000. | | ب ا | | 5, | G. | 00 | đ١ | စ | 1.093 | → • | ·네 1 | | 00 | 0- | 007 | <u>نې</u> | T T T T | 1.161 | .31 | , | | | , | | | | | | | | ₽ | | 000 | . 582 | 3.064 | 900.0 | 0 | ထု | | •
•
• • • | | 00 | . 45 | |).024 | ٥. | .22 | | C | 30 8 | 00. | 1.57 | 389 | 0.040 | ο. | 8 | |) | 100 | 000 | 7.08 | .570 | 0.071 | ٠. | . 07 | |); | 0. |)
000
1000 | 0 | .328 | 080.0 | ٦. | 6- | | 7.0 | 0. | 300 | ₩. | 60 | 0.101 | 0.210 | 8. | | 37 | <u>.</u> | 300 | 9 | 75.1 | 0.118 | ٣. | नां ^ग ़ | | . 4
. 7 |
0. | 300 | 20.8 | 1.65 | 0.151 | ₹. | 5. | as Recovery = R(CH₃SSCH₃ + CH₄ + C₂H₆)/R(CO°-CO) where R_{CO}° = 0.58 umoles min⁻¹ for $2(COS) = 100 \text{ torr and } 0.711 \text{ umole min}^2 \text{ for } 9(COS)^2 = 300 \text{ torr.}$ # ii) Spectroscopic Analysis High conversion runs corresponding to an s product loss of approximately 10-31 pmoles were carried out. Following each experiment, the cell was evacuated, cut off, and subjected to three 1 ml rinsings with CHCl3. The solvent was evaporated from the combined washings, and the yellowish dry solid was redissolved in CDCl3. No proton NMR (200 MHz). Signal from this solution could be detected, even though the minimum detection limit for a single resonance under the conditions used was 10.1 pmole. Finally, the photolysis was repeated using a mixture consisting of COS/CH3SCH3 CO2 = 200 and 1200, in which mainly S(3r) atoms were produced (2002). NMP samples prepared as above gain no signal. A sample obtained by subsequent rinsings of the cell with CCl4 was also the containing compounds. for each NMP sample, the solvent War evaporated and the solid residue was subjected to direct rtobe MS analysis. The mans spectra obtained were very simple and consisted of peaks at multiples of 32 up to 250, indicating the prosence of clorental sulfur only. Results from the above oxidation and spectroscopic experiments thus a monstrate the absence of hydrocarbons in the cell residue, and indicate that the mass imbalance in the S ${\rm CH_3}^{\rm GCH_3}$ system is due to the formation of elemental sulfur. # (c) Effects of Exposure Time, Total Pressure, and Added CO2 and NO on Product Yields The
variations in the product yields with time are listed in Table IV-1. The yield of the major product, CH_3SSCH_3 , shows little variation when the COS/CH_3SCH_3 ratio decreases from 20:1 to 10:1. CH_4 comprises an increasingly larger fraction of the total yield at longer exposure times. The temporal behaviour of the product yields from the photolysis of 300 torr COS in the presence of 30 torr CH_3SCH_3 is illustrated in Figure IV-1 and the variations in the rates (per µmole CO) are shown in Figure IV-2. The increasing rate of CH_4 formation with increasing conversion clearly indicates that it is a secondary product. The rates of CH_3SSCH_3 and C_2H_6 decrease slightly to apparently constant values at longer exposure times. The effects of total pressure on the product yields are listed in Table IV-2 and the rates are illustrated in Figure IV-3. At low pressures, the $\mathrm{CH_3SSCH_3}$ rate is relatively high but appears to decrease to a constant limiting value. At high pressures, $\mathrm{C_2H_6}$ and $\mathrm{CH_4}$ exhibit similar behaviour. The effects of added CO₂ and NO are listed in Table IV-3. Increasing pressures of CO₂ resulted in a marked decrease in the yields of CH_3SSCH_3 and CH_4 and a smaller but still quite significant decrease in that of $C_2^H_6$. FIGURE IV-1: Product yields as a function of CO yield in the COS - CH₃SCH₃ system. FIGURE IV-2: Rates of product formation <u>versus</u> CO yield in the COS - CH₃SCH₃'system. TABLE IV-2 Effect of Total Pressure on the Rates of Product Formation in the COS-CH3SCH3 System a | Pressure (torr) | (torr) | Time (min.) | | Produc | Products (µmoles) | oles) | Rates | (µmoles | Rates (µmoles/µmole CO) | |-----------------|--------|-------------|------|----------------|-------------------|-------------------|-------|-------------|-------------------------| | CH3SCH3 | SOO | | 00 | CH4 | C_2H_6 | CH4 C2H6 CH3SSCH3 | CHA | CH4 C2H6 | снзѕѕснз | | 10 | 100 | 15 | 5.94 | 5.94 .112 .093 | .093 | . 658 | 0.019 | 0.019 0.016 | .0.111 | | 10 | 100 | 15 | 5.89 | .095 | 960. | .613 | 0.016 | 0.016 0.016 | 0.104 | | 10 | 100 | 15 | 5.80 | 920 | • 085 | .622 | 0.013 | 0.015 | 0.107 | | 20 | 200 | 9,16 | 5.74 | .038 | .064 | .489 | 0.010 | 0.011 | 0.085 | | 30 | 300 | 7.15 | 5.82 | .063 | .055 | . 500 | 0.011 | 0.009 | 0.086 | | 30 | 300 | 7.15 | 5,76 | .062 | .057 | .501 | 0.011 | 0.011 0.010 | 0.087 | = 0.58, 0.94 and 1.21 µmole min⁻¹ for P(COS) = 100, 200 and 300 torr, respect- ively. Rates of product formation versus total pressure in the FIGURE IV-3: COS - CH_3SCH_3 system. Rate(CH_3SSCH_3)_{p=0} = 0.151 µmole/ μ mole CO; Rate(C₂H₆)_{p=0} \approx Rate(CH₄)_{p=0} \approx 0.024 μ mole/ umole CO. TABLE IV-3 Effects of Added ${\rm CO}_2$ and NO on Product Formation in the ${\rm COS-CH}_3{\rm SCH}_3$ System ^a | Δ. | Pressure (torr | (torr) | | Time (min.) | | Products | Products (µmoles) | S) | |---------|----------------|--------|------|-------------|------|----------|-------------------|----------| | снзвснз | SOO | CO2 | ON | | 00 | CH4 | C_2H_6 | снзѕѕснз | | 1 | 100 | 1 | 1 | 30 | 17.3 | ì | 1 | ı | | | 10.0 | 770 | ı | 30 | 16.1 | ı | . 1 | • | | . 10 | 100 | •
I | . 1 | 30 | 11.5 | .314 | .161 | 1.111 | | 10 | 100 | 770 | 0 | 30 | 9.22 | .062 | .118 | .667 | | 10 | 100 | 1300 | ı | 30 08 | 8.94 | .073 | .110 | . 596 | | 10 | 100 | | <0.1 | 15 | 5.77 | .013 | .032 | .370 | | 10 | 100 | | 1.86 | 15 | 5,63 | ţ | ?⊹ I | .139 | | 30 | 300 | Ļ | ٠,١ | 7.15 | 5.76 | .062 | .057 | .501 | | 30 | 300 | l . | 3.98 | 7.15 | 2.60 | ı | ∌
I | .104 | $^{a}R_{CO}^{\circ}=0.58$ and 1.21 µmole min⁻¹ for P(COS) = 100 and 300 torr, respectively. Addition of 2-4 torr NO (Table IV-3) as a radical scavenger completely suppressed the yields of ${\rm CH_4}$ and ${\rm C_2^H}_6$, while a small portion of ${\rm CH_3SSCH_3}$ appears to be unscavengeable. #### (d) Relative Rate Parameters In order to determine the rate parameters of the $S(^3P)$ + CH₃SCH₃ reaction, competitive experiments were performed as outlined in Chapter III. Propylene was chosen as the reference substrate since it can be co-distilled with COS from the substrate-product mixture. Competitive studies were carried out on mixtures of $COS/C_3H_6/CO_2 = 100/66/1300$ in the presence of 0-10 torr of CH3SCH3. Due to the low recovery of CH₃SSCH₃, the relative rates were measured by monitoring the decrease in methylthiirane (C_3H_6S) yields ($(A_0-A)/A$, cf. eqn: III-[4]). The suppression of the C_3H_6S yields as a function of various concentrations of CH₃SCH₃ at five different temperatures is shown in Tables IV-4 through IV-8, and the plots of $(A_0^7-A)/A$ versus $[CH_3SCH_3]/[C_3H_6]$ are shown in Figure IV-4. It is apparent that the plots are linear for [CH3SCH3]/[C3H6] < 0.11 but begin to curve down at higher ratios. Slopes and intercepts obtained by least squares analysis of the initial linear portions of these plots with double weighting of the origin are listed in Table IV-9. The slopes are plotted in the Arrhenius form in Figure IV-5. The weighted least squares TABLE IV-4 Product Yields as a Function of the $[{\rm CH_3SCH_3}]/[{\rm C_3H_6}]$ Ratio at 300 ${\rm K}^{\rm A}$ | P(CH,SCH,) | [CH ₃ SCH ₃] ^b | Pro | Products (µmoles) | umoles) | c_3H_6S | C3H6S Ao-AC | $A_0-A_1 [C_3H_6]$ | |------------|--|------|-------------------|----------|-----------|-------------|---------------------------------------| | | [C ₃ H ₆] | CO | C3H6S | CH3SSCH3 | 00 | A | A [CH ₃ SCH ₃] | | 0 | 0 | 2.93 | 2.93 1.98 | 0 | .675 | ı | l | | 2.17 | .0418 | 2.88 | 2.88 0.776 | .0247 | .270 | 1.51 | 36.1 | | 3.49 | .0527 | 2.90 | 2.90 0.670 | .0360. | .231 | 1.92 | 36.5 | | 4.14 | .0624 | 2.88 | 2.88 0.590 | .0442 | . 205 | 2,30 | 36.8 | | 4.67 | 0.706 | 2.81 | 0,535 | .0496 | .191 | 2.54 | 36.0 | | 9.61 | .145 | 2,86 | 2,86 0,355 | 0.125 | .124 | 4.44 | 30.6 | $^{a}P(COS) = 100 \text{ torr, } P(C_3H_6) = 66.5 \text{ torr, } P(CO_2) = 1281 \text{ torr, } R_{CO}^{\circ} = 0.387 \text{ µmoles}$ \min_{-1} ; exposure time = 14 min. $^{\mathrm{b}_{\mathrm{P}}(\mathrm{C}_{3}\mathrm{H}_{6})}$ values have been corrected for depletion. $^{\text{C}}A_{\text{O}} = \text{C}_{3}\text{H}_{6}\text{S/CO}$ in the absence of CH₃SCH₃ = 0.675. C_3H_6S/CO in the presence of CH_3SCH_3 . TABLE IV-5 Product Yields as a Function of the $[\mathrm{CH_3SCH_3}]/[\mathrm{C_3H_6}]$ Ratio at 330 Ka | P(CH ₃ SCH ₃) | [СН ³ 8СН ³] | Products (µmoles) | (µmoles) | C3H6S | C3H6S AO-AC | Ao-A [C3H6] | |--------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|-------|-------------|---------------------------------------| | | [C3H6] | co c ₃ H ₆ S | CH ₃ SSCH ₃ | 00 | Ą | A [CH ₃ SCH ₃] | | 0 | 0 | 3.18 2.11 ^b | t | 0.662 | 1 | ı | | 3.01 | .0463 | 3.16 .816 | .0240 | . 258 | 1.56 | 33.7 | | 5,05 | .0778 | 3.15 .607 | .0475 | .193 | 2.43 | 31.2 | | 6.49 | .100 | 3.11 .528 | 6690. | .170 | 2.90 | 29.0 | | 7.99 | .123 | 3.12 .473 | .0751 | .152 | 3.37 | 27.4- | $^{\rm a}{\rm P(COS)} = 100$ torr, $^{\rm P(C_3H_6)} = 65.2$ torr, $^{\rm P(CO_2)} = 1299$ torr, $^{\rm R}_{\rm CO} = 0.433$ µmoles min^{-1} ; exposure time = 13 min. ^bP(C₃H₆) values have been corrected for depletion. $^{\text{C}}_{\text{A}_{\text{O}}} = c_3 H_6 \text{S/CO}$ in the absence of CH₃SCH₃ = 0.662. $A = C_3 H_6 S/CO$ in the presence of $CH_3 SCH_3$. TABLE IV-6 Product Yields as a Function of the $\{\text{CH}_3\text{SCH}_3\}/\{\text{C}_3\text{H}_6\}$ Ratio aț 300 Kª | | - | | | | | | | |------------|-------------------------------------|------|--------------------|----------|-------|-------|-------------| | P(CH3SCH3) | {сн ₃ sсн ₃ } | Æro | *Products (µmoles) | moles) | C3HeS | Ao-AC | Ao-A [C3H6] | | | [C3H6] | 9 | c₃Hes | снзѕѕснз | 00 | A | A [CH3SCH3] | | ı | . * | 3,31 | 2.16 ^b | ı | .654 | 1 | | | 3.08 | .0466 | 3.18 | .895 | . 326 | .281 | 1.32 | 28.3 | | 3.97 | .063 | _ | 797 | . 057 | . 248 | 1.63 | 27.0 | | 68° ¥ | .0741 | 3,13 | ,676 | . 054 | .216 | • | • | | 00.6 | 127 | 3.24 | .438 | 060. | .135 | | 23.4 | | ı | 1 | 3.17 | 2.08 | 1 | , 655 | 1 | 1 | | 2.69 | .0403 | 3.14 | .980 | .019 | .131 | | 27.0 | | 6.18 | .0932 | 3.06 | . 569 | .058 | . 184 | 2.52 | 27.0 | | 7.72 | .117 | | .515 | .072 . | .170 | • | | | 9.61 | 145 | | ,472 | .129 | | 3,23 | 22.3 | | | | | | | | | | (subsequent experiments), P(CO₂) = 1300 torr, R_{CO}^{\bullet} = 0.473 umoles min $^{-1}$; exposure $^{a}P(COS) = 100 \text{ torr, } P(C_3H_6) = 66.3 \text{ torr, } (first five experiments) and 65.9 torr$ time = 11.5 min. $^{\mathrm{b}}_{\mathrm{P}}(\mathrm{C}_{\mathrm{3}\mathrm{H}_{6}})$ values have been corrected for depletion. $^{\rm C}{\rm A}_{\rm O}$ = ${\rm G}_{\rm 3}{\rm H}_{\rm 6}{\rm S}/{\rm CO}$ in the absence of ${\rm CH}_{\rm 3}{\rm SCH}_{\rm 3}$ = 0.654 and 0.655 respectively for the two subsequent experiments. $A = C_3H_6S/CO$ in the presence of CH_3SCH_3 . TABLE IV-7 product Yields as a function of the [CH3SCH3]/[C3H6] Ratio at 392 K^a | ?(CH3SCH3) | CH ₃ SCH ₃] ^c | Pro | Products (umoles) | lmoles) | C3H6S | Ao-Ad | A ₂ -A [C ₃ H ₆] | |------------|---|-------------------|-------------------------------------|-----------------------------------|-------|-------|--| | | C3H6] | 60 | с₃н€г | сн ₃ sscн ₃ | 00 | ત | A [CH3SCH3] | | ١, | , | 3.14 ^b | 3.14 ^b 2.08 ^b | , | . 562 | ı | , | | 3.02 | , 3465 | 2.43 | . 790 | .035 | ,325 | 1.04 | 12.4 | | 3.45 | .0533 | 2.44 | .728 | .336 | 862, | 1.22 | 22.9 | | 4.00 | .3619 | 2.46 | . 671 | . 040 | .273 | 1.43 | 23.1 | | 4.83 | .3745 | 1.49 | .536 | . 943 | 355 | 1.59 | 21.4 | | 5.46 | 3845 | 7.44 | 975. | . 355 | .237 | 1.79 | 21.2 | | 9.37 | . 145 | 1.42 | . +11 | . 392 | .170 | 2.90 | 20.0 | ap(COS) = 100 torr, $P(C_3H_6)$ = 65.0 torr, $P(CO_2)$ = 1301
torr, R_{CO}^{\bullet} = 0.515 umoles \min^{-1} ; exposure time = 8 min. Dexposure time = 10 min. $^{\circ}P(C_{3}H_{6})$ values have been corrected for depletion. $d_{A_0} = c_3 H_6 S/CO$ in the absence of $CH_3 SCH_3 = 0.675$. $A = C_3 H_6 S/CO$ in the presence of $CH_3 SCH_3$. TABLE IV-8 product Yields as a Function of the $[{\rm CH_3SCH_3}]/[{\rm C_3H_6}]$ Ratio at 423 Kª | P(CH ₃ SCH ₃) | (CH ₃ SCH ₃) ^C | Sro | Products (umoles) | moles) | $c_{3}H_{6}s$ | Ao-Ad | A ₀ -A [C ₃ H ₆] | |--------------------------------------|--|-------|-------------------|----------|---------------|-------|--| | | C3H6] | Ω, | 33H€S | CH3SSCH3 | CO | Æ | A [CH ₃ SCH ₃] | | 3 T | 7 | 7.0. | 2.00 | | , 653 | 1 | l | | 2.89 | 9
.0436 | 2.93 | 1.07 | .031 | .367 | . 780 | 17.8 | | 3.49 | . 0529 | 2.83 | .978 | .044 | .344 | .888 | 16.8 | | 4.02 | 3608 | 2.88 | . 899 | .049 | .312 | 1.09 | 18.0 | | 4.48 | .3680 | 3.80 | ,323 | . 353 | 767 | 1.22 | 17.9 | | 4.94 | .3750 | : .77 | .775 | .367 | .281 | · 33 | 17.8 | | 9.79 | . 149 | 1.75 | , 534 | .102 | 194 | 2.36 | 6.6
5: | $^{\rm ap}({\rm COS})$ = 100 torr, $^{\rm P}({\rm C}_3{\rm H}_6)$ = 66.5 torr, $^{\rm P}({\rm CO}_2)$ = 1303 torr, $^{\rm R}_{\rm CO}$ = 0.575 µmoles $\min_{i=1}^{-1}$; exposure time = 8 min. b exposure time = 8.5 min. $^{\text{C}}\text{P}(\text{C}_3\text{H}_6)$ values have been corrected for depletion. $^{d}A_{o}=C_{3}H_{6}S/CO$ in the absence of $CH_{3}SCH_{3}=0.653$. $A=C_{3}H_{6}S/CO$ in the presence of $CH_{3}SCH_{3}$. FIGURE IV-4 : Plots of $(A_0-A)/A$ versus $[CH_3SCH_3]/[C_3H_6]$. ABLE IV-9 Slopes and Intercepts of the Plots in Pigure III-4a | Temperature | 7 | Slope | Log (kCH1SCH1/kC1HK) | Intercept | Correlation | |-------------|--------------------|------------------|----------------------|------------------|-------------| | (K) | (K ⁻¹) | (kcH3SCH3/kc3H6) | | , | Coefficient | | 300 | 3,33 | 36.33 ± 0.44 | 1,560 ± 0,005 | 0.0009 # 0.0230 | 9666.0 | | 330 % | 3.03 | 29.30 ± 1.85 | 1.467 ± 0.028 | 0.0811 £ 0.1249 | 0966.0 | | 362 | 2.76 | 26.89 ± 0.067 | 1.430 ± 0.011 | 0,0085 ± 0.0420 | 0.9988 | | 392 | 2,55 | 21.38 ± 0.085 | 1.330 ± 0.017 | 0.0356 # 0.0508 | 0.9969 | | 423 | 2,36 | 17.79 ± 0.044 | 1.250 ± 0.011 | -0.0055 ± 0.0247 | 0.9988 | e errors are standard deviations. FIGURE IV-5: Arrhenius plot for the $S(^3P)$ + CH_3SCH_3 and C_3H_6 system. fit of the Arrhenius plot gives $$A_{CH_3SCH_3}/A_{C_3H_6} = 3.83 \pm 0.17$$ and $$E_{C_3H_6} - E_{CH_3SCH_3} = 1.34 \pm 0.06 \text{ kcal mole}^{-1}$$ ## 2) $\underline{s(^{1}D_{2}, ^{3}P)}$ + Thietane - A Cyclic Thioether ### (a) UV spectrum of thietane Thietane (trimethylene sulfide) possesses two absorptions in the wavelength region of interest: one at $\lambda < 230$ nm with $\epsilon_{\rm max} \simeq 2200~{\rm l~mole}^{-1}{\rm cm}^{-1}$, and the other centered at $^{\sim}260$ nm with $\epsilon_{\rm max} \simeq 14~{\rm l~mole}^{-1}{\rm cm}^{-1}$. The UV spectra of COS and thietane are shown in Figure IV-6, where it can be seen that thietane has a larger extinction coefficient than COS at all wavelengths except in a window around 240 nm. Photolysis of COS with minimal interference from thietane was achieved by using a combination of a 240 nm interference filter and a l mm Vycor .791 cut off filter (Figure IV-6), and a high COS/thietane ratio ($\geq 20:1$). Under these conditions the amount of incident light absorbed by COS at 240, 245, 250 and 260 nm is $^{\sim}99\%,^{\sim}99\%$ $^{\sim}97\%$ and $^{\sim}95\%$, respectively. In a blank experiment, a 35 minute photolysis of 5 torr of thietane yielded a small amount of $^{\sim}C_2H_4$ and a trace quantity of cyclopropane. FIGURE IV-6: Absorption spectra of a: 240 nm intereference + Vycor 791 (1 mm) filters, b: 20 torr thietane, c: 23 torr COS, d: base line of 30 ml, 10 cm long quartz UV cell. #### (b) Reaction Products #### i) Identifications Photolysis of COS in the presence of thietane resulted in the formation of two major retrievable products, $C_{Q}^{\prime}H_{A}^{\prime}$ and a S-containing product, along with trace quantities of a C3H6 Identification of the C_3H_6 isomer was hindered by its similarity in vapour pressure and GC retention time with those of COS (C_3H_6 was observed only as a m/e = 42 peak co-eluting with COS in a GC/MS cross scan). The mass spectrum of the S-containing product (Appendix A-2) indicates that it is of molecular weight 106, corresponding to the molecular formula C3H6S2. The NMR spectrum of this (Figure IV-7) shows two resonances of relative intensities 2: in the methylene region, shifted to lower field by sulfur. The first resonance, due to proton HA, and centered at $\delta = 3.19$ is a triplet; and the second resonance, due to proton $H_{\rm p}$, at δ = 2.35 is a quintet. The coupling constant between protons H_A and H_B , J_{AB} , is 7.5 Hz. This relatively large coupling constant implies that the four $\mathbf{H}_{\mathbf{A}}$ protons are on the carbon atoms adjacent to the ${\rm H}_{\rm B}$ carbon atom as shown. FIGURE IV-7: NMR spectrum of 1,2-dithiolane. The only structures of molecular formula ${^C_3}^H{_6}^S{_2}$ in which the H_A protons are equivalent are the cyclic compounds: The question of which structure corresponds to the NMR spectrum observed may be determined on the basis of comparison of this spectrum with that of thietane, a 4-membered ring, (Figure IV-8) recorded under the same conditions. spectrum is quite similar to that of the product, consisting of a triplet at δ = 3.29 and an apparent quintet at δ = 2.97 with a coupling constant of 6.5 Hz. The upfield shift of the resonances of the product spectrum relative to those of thietane is suggestive of ring expansion, analogous to the chemical shift generally observed on going from four to five membered The proton resonances of structure II would not be expected to show an upfield shift, and in fact might occur to low field of the thietane peaks due to the effect of the additional S atom on the ring. Therefore, the observed NMR spectrum strongly suggests that the product is the five-membered ring', 1,2-dithiolane (structure I). FIGURE IV-8: Comparison NMR spectra of thietane, 1,2-thiolane, and tetramethylenesulfide. In further support of this assignment, the NMR spectrum of tetramethylene sulfide, a five membered ring, obtained under identical conditions, shows a substantial ring expansion shift, with resonances centered at $\delta = 2.80$ and $\delta = 1.90$. The much smaller ring expansion effect observed for the product, $C_3H_6S_2$, is probably a result of a shift to lower field caused by the second S atom and of the different geometry of the two five membered rings. A comparison of the NMR chemical shifts due to ring expansion for thietane, tetramethylenesulfide and 1,2-dithiolane is shown in Figure IV-8. Although 1,2-dithiolane has, been isolated, 156,157 its NMR spectrum has not been reported. #### ii) Properties of 1,2-dith#olane Attempts to obtain gas and solution (CH₃OH) phase UV spectra of 1,2-dithiolane were unsuccessful. In the gas phase experiment, the product was observed to polymerize as a brown film on the cell walls upon warming from -196° to room temperature. Insufficient sample size and air oxidation of the product prevented the acquisition of a solution phase spectrum. In this connection, it may be noted that 1,2-dithiolane has been synthesized previously by several workers, and has been shown to be extremely unstable with respect to polymerization, especially in the pure state. 156,157 The UV spectrum of 1,2-dithiolane in CH₃OH has been shown to feature very strong absorption at wavelengths below 250 nm and to possess a weaker long wavelength absorption ($\lambda_{\rm max} \sim 334$ nm) having an extinction coefficient of ~150 l mole $^{-1}$ cm $^{-1}$. 154 The strong short wavelength absorption explains the photochemical instability of 1,2-dithiolane: less than 50% of a sample ($^{\sim}$ 0.7 µmole) was recovered after a 15 minute photolysis ($\lambda \sim 250$ nm). It was also observed that 1,2-dithiolane is extremely sensitive to mercury: the product recovery declined significantly when mercury was allowed to accummulate in the distillation train. Interestingly, mercury has been shown to add to the S-S bond of the cyclic disulfide, CF_3 $CC(CF_3)SS$, CF_3 thus initiating polymerization. in the COS÷CH₂(CH₂)₂S System. The variations in product yields with time for a mixture consisting of 100 torr COS and 5 torr $\overline{\rm CH_3\,(CH_2)_2S}$ are listed in Table IV-10 and illustrated in Figure IV-9. It is seen that similar amounts of ${\rm C_2H_4}$ and 1,2-dithiolane are produced at TABLE IV-10 Effect of Exposure Time on Product Formation in the COS-CH2(CH2)28 System9 | Time | | Products (umoles) | 8) | Rates (µmoles/µmole CO) | imole CO) | & Recovery ^b | |--------|------|--|---------|-------------------------|--------------|-------------------------| | (min.) | 8 | СH ₂ (СH ₂) ₂ SS | C2H4 | CH2(CH2)2SS | C2H4 | •., • | | 15 | 1.50 | 0.344 | 0.320 | 0:229 | 0.213 | 80.5 | | . 25 | 2.47 | U _I | 0.576 | ٦ | 0.233 | | | . 35 | 3.35 | 0.624 | 0.800 | 0.186 | 0.239 | 9.89 | | 09 | 6.14 | 0.775 | יס
ו | 0.126 | ָּק ּ | - | | e 09 | 5.48 | Ů, | 1.08 | o
I | 0.198 | | | | | , | | | | | $^{a}P(CH_{2}(CH_{2})_{2}S) = 5 \text{ torr, } P(COS) = 100 \text{ torr.}$ 0.155 µmoles min $R(CH_2(CH_2)_2S_3 + C_2H_4)/R(CO°-CO)$ where $R^{\circ}_{CO} =$ bs Recovery = CProduct accidentally lost. dnot measured. $^{\text{e}_{\text{R}_{\text{CO}}}} = 0.144 \text{ µmoles min}^{-1}$ FIGURE IV-9: Product yields as function of CO yield in the COS Thietane system. short exposure times, with an estimated total recovery of \sim 85% at zero time. However, at longer exposure times, the 1,2-dithiolane yield decreases relative
to that of C_2H_4 , suggesting photodecomposition and/or polymerization. The dependence of the product rates (per μ mole CO) on μ time is shown in Figure IV-10. It is apparent that the rate of C_2H_4 production is constant, but that of 1,2-dithiolane formation decreases linearly with time, indicating that both are primary products. The variations in product rates with respect to total pressure are listed in Table IV-11. A plot of the rates as a function of total pressure (Figure IV-11) reveals the absence of pressure effects for either C2H4 or 1,2-dithiolane. The yields of the products as a function of added ${\rm CO}_2$ are listed in Table IV-12 and shown in Figure IV-12. It is seen that increasing ${\rm CO}_2$ pressure results in a slow and steady rise in the dithiolane yield, but a drastic decrease in the ${\rm C}_2{\rm H}_4$ yield, which apparently levels off at high pressures (> 600 torr). The overall product recovery decreases with increasing ${\rm CO}_2$ pressure. #### (d) Relative Rate Parameters As in the case of CH₃SCH₃, relative rate parameters were determined using C₃H₆ as a reference substrate. Due to the low stability and poor recovery of 1,2-dithiolane, the relative FIGURE IV-10: Rates of product formation versus CO in the COS - $CH_2(CH_2)_2$ S system. TABLE IV-1 ressure on Product Yields in the ${\sf COS-CH}_2({\sf CH}_2)_2$ s System^a Effect of Total | Pressure (torr | orr) | PAROSTA | Pr | Products (umoles) | es) | Rates (µmoles/µmole CO) | mole CO) | |---|------|---------|------------|--|----------|-------------------------|----------| | сн ₂ (сн ₂) ₂ 3 | COS | | S , | ĊH ₂ (СН ₂) ₂ SS | C2H4 | $c_{H_2(cH_2)_2ss}$ | C2H4 | | 2.90 | 100 | | 2.52 | 0.587 | 0,365 | 0.232 | 0.144 | | 2.90 | 100 | 2.0 | 2.52 | 0.433 | 0.371 | 0.172 | 0.147 | | 2.90 | 100 | 25. | 2 34 | 0.298 | 0.381 | 0.128 | 0.164 | | 2.90 | 100 | 25.0 | 33 | 098.0 | _ | 7 0.155 | ۱ | | 2.90 | 100 | 25.00 | 2 | 0.301 | 69E • Ó | 0.130 | 0.159 | | 4,35 | 150 | 20.80 | 2.4 | 0.355 | 0.395 | 0.146 | 0.162 | | 2, 80 | 200 | 17.,15 | 2.53 | 0,385 | 0.403 | 0.152 | 0.159 | | 8.70 | 300 | 13.84 | 2.54 | 0.396 | 0.428 | 0.156 | 0.168 | | 11,60 | 400 | 12.34 | 2.54 | 0.459 | 0.433 | 0.181 | 0.171 | | 14.4 | 494 | 11.60 | 2,34 | 9.399 | ,0.338 | 0.170 | 0.144 | | | | | | | | | | ^aR^b_{CO} = 0.155 and 0.145, 0.185, 0.226, 0.280, 0.314 and 0.333 μmole min⁻¹ P(COS) = 100, 150, 200, 300, 400 and 494 torr respectively. bnot measured. FIGURE IV-11: Rates of product formation versus total pressure in the COS system. #### TABLE IV-12 Effect of CO₂ Pressure on Product Yield in the COS-CH₂(CH₂)₂S System^a | | <u></u> | | <u> </u> | <u> </u> | 47 J 38 | | |------|-----------------|------|---|----------------------------------|-----------|-----| | Pres | sure (torr) | P | roducts (µmo | les) | % Recaver | уb | | · | co ₂ | СО | ĊH ₂ (CH ₂) ₂ S | ਤੇ с ₂ н ₄ | | | | | 0 | 2.77 | 0.620 | 0.383 | 62.5 | 7., | | | 600 | 2.33 | 0.717 | 0.064 | 38.2 | | | | 1,200 | 2.22 | 0.801 | 0.107 | 42.1 | ٠٠ | $^{^{}a}P(COS) = 100 \text{ torr}, P(\overline{CH_{2}(CH_{2})_{2}S}) = 2.8 \pm 0.03 \text{ torr}, \text{ exposure}$ time = 35 min. by Recovery = $R(\overline{CH_2(CH_2)_2SS} + C_2H_4)/R(CO^{\circ}-CO)$, where $R^{\circ}_{CO} = 0.125 \,\mu\text{mole min}^{-1}$. FIGURE IV-12: \product yields as a function of $\protect\operatorname{CO}_2$ pressure. rates were measured by monitoring the decrease in methylthiirane (C_3H_6S) yields (A_0-A). The suppressions of the C_3H_6S yields as a function of the [$CH_2(CH_2)_2S$]/[C_3H_6] ratio at five different temperatures are listed in Tables IV-13 to IV-17. The corresponding plots are shown in Figure IV-13. The plots are linear over the range of the [$CH_2(CH_2)_2S$]/[C_3H_6] ratio studied. The slopes and intercepts of these plots obtained from least mean squares analysis are presented in Table IV-18. The slopes are plotted in the Arrhenius. form in Figure IV-14: The weighted least squares fit gives $$A_{CH_2(CH_2)_2}S/A_{C_3H_6} = 1.84\pm0.04$$ and $$E_{C_3H_6} - E_{CH_2(CH_2)_2S} = 1.25 \pm 0.03 \text{ kcal mole}^{-1}$$ #### B. Discussion S atoms react with dimethylsulfide and thietane, yielding in both cases a single S addition product, the correspending disulfide. Although the basic mechanism of formation of the disulfide is probably the same in both cases, there appear to be some subtle differences in the reactions involving the primary adduct, and therefore mechanistic and kinetic details concerning the two systems will be considered separately. TABLE IV-13 [63H6] Ratio at 303 1 Product Yields as a Function of the $(CH_2/(CH_2)_2 \$)$ | C3H6S Ao-Ac Ao-Ac [C3H6] | A [CH ₂ (CH ₂) ₂ S] | | 7.64 | 49.9 | 49.7 | 7 77 | |--|---|--------|-------------|-------------|--------|----------------| | Ao-Ac | A | 1 | 1.30 | 1.95 | 2,39 | . 17 | | C_3H_6S | , i | 0.725 | 0.767 0.316 | 0.584 0.245 | 0.214 | 17 6 961 0 297 | | (µmoles) | C3H6S | . 1.78 | 0.767 | 0.584 | 0.522 | 0 467 | | Products (umoles) | 8 | 2.46 | 2.43 | 2.38 | 2.44 | . 2. 39 | | (CH ₂ (CH ₂) ₂ S) ^b | (C ₃ H ₆) | 0 | 0.0261 | 0.0392 | 0.0481 | 0.0580 | | P(CH ₂)CH ₂) ₂ S) | (torr? | 0 | 1.70 | 2.56 | 3.14 | 3,78 | \min_{-1} , exposure time = 35 min. $^{\text{a}}\text{P(COS)} = 100 \text{ torm} \text{ P(C}_{3}\text{H}_{6})$ $^{\mathrm{b}_{\mathrm{P}}(\mathrm{C}_{\mathrm{3}\mathrm{H}_{\mathrm{6}}})}$ values have been corrected for depletion. $^{\text{C}}A_{\text{O}} = \text{C}_3\text{H}_6\text{S/CO}$ in the absence of $\text{CH}_2(\text{CH}_2)_2\text{S} = 0.725$. $A = C_3H_6S/CO$ in the presence of $CH_2(CH_2)_2S$. ABLE IV-14 Product Yields as a Function of the $[CH_2(CH_2)_2 \pm 3]/[C_3H_6]$ Ratio at 333 | C_3H_6S A_0-A^C A_0-A $[C_3H_6]$ | A [CH2(CH2)28] | | 41.9 | 41.8 | 41.9 | 41.5 | |--|----------------------------------|---------------------------------------|--------|------------|--------|------------| | Ao-Ac | A | • 1 | 0.739 | 1.19 | 1.47 | 1.97 | | C3H6S | 8 | 0.720 | 0.414 | 0.329 1.19 | 0.289 | 0,243 1.97 | | (wimoles) | C3HeS | 1.95 | 1.09 | 0.863 | 0.752 | 0.633 | | Products | 00 | 2.71 | 2.64 | 2.62 | 2.60 | 2.61 | | [CH2(CH2)28], Products (umoles) | [Ç ³ H ⁶] | · · · · · · · · · · · · · · · · · · · | 0.0176 | 0.0284 | 0.0356 | 0.0475 | | $P(CH_2)CH_2)_2$ S) | (tořr) | 0 | 1.16 | 1.87 | 2.33 | 3.11 | A P(COS)' = 100 torr, P(C₃H₆) = 65.9 \min^{-1} , exposure time = 35 min, $^{\mathrm{b}}\mathrm{P}(\mathrm{C}_{3}\mathrm{H}_{6})$ values have been corrected for depletion. $^{\text{C}}A_{\text{O}}=\text{C}_{3}\text{H}_{6}\text{S/CO}$ in the absence of $\text{CH}_{2}^{(\text{CH}_{2})_{2}}\text{S}=0.720$. $A = C_3H_6S/CO$ in the presence of $(H_2(CH_2)_2S$. TABLE IV-15 Product Yields as a Function of the $\frac{CH_2(CH_2)_2S}{2}$ $\frac{1}{2}$ Ratio at 363 | 3 ^H 6] | (CH2 (CH2)28] | | | 6 | 6 | 9 | |--|--------------------|-------|-------------|--------|-------------|-----------------| | [C | [CH ₂] | | 35.8 | 34.9 | 34.9 | 35.6 | | A ₀ - | A | | | | | . 9 | | C3H6S Ao-Ac Ao-A [C3H6] | A | 1 . | 0.445 0.590 | 0.882 | 1.20 | 1.7 | | c_3H_6 | 83 | 0.708 | 0.445 | 0.376 | 0.890 0.321 | 0.716 0.262 1.7 | | (umoles) | C3H6S | 2.11 | 1,26 | 1.04 | 0.890 | 0.716 | | Products (umoles) | coʻ | 2.98 | 2.835 | 2.76 | 2.78 | 2.73 | | $[\zeta_{H_2}(C_{H_2})_2]^b$ | [C3H6] | 0 | 0.0165 | 0.0253 | 0.0345 | 0.0478 | | P(CH ₂)CH ₂) ₂ S) | (torr) | | 1.10 | 1.69 | 2.30 | 3.18 | = 1300 torr, R°co $^{a}P(COS) = 100 \text{ torr, } P(C_{3}H_{6}) = 67.1 \text{ torr, } P(CO_{2})$ min^{-1} , exposure time = 35 min. $^{ m b}_{ m P}({ m C}_{ m 3}{ m H}_{ m 6})$ values have been corrected for depletion. $^{\text{C}}A_{\text{O}} = ^{\text{C}}\zeta_{3}H_{6}S/\text{CO}$ in the absence of $^{\text{C}}\zeta_{12}(\text{CH}_{2})_{2}S = 0.708$. $A = C_3 H_6 S/CO$ in the presence of $CH_2 (CH_2)_2 S$. TABLE IV-16 Product Yields as a Function of the $[\text{CH}_2 (\text{CH}_2)_2 \text{S}] / [\text{C}_3 \text{H}_6]$ Ratio at | 100 | | 1 | | , . | | | |--|-----------------|-------|---------|-------------|---------------|------------------| | C3H6S Ao-AC Ao-A [C3H6] | (A [CH2(CH2)28] | - | 31.4 | 31.9 | 31.6 | 31.1 | | A _o - | A. | | | , | . ` · · · · · | | | Ao-Ac | F | | 0.566 | 0.394 0.782 | 1.05 | 1,38 | | C3H6S | 00 | 0.703 | 0.448 (| 0.394 | 0.937 0.343 | 0.816 0.296 1.38 | | (µmoles) | C3HeS | 2.05 | 1.22 | 1.09 | 0.937 | 0.816 | | Products (µmoles) | 00 | 2.93 | 2.73 | 2.76 | 2.73 | 2.76 | | $[CH_2(CH_2)_2]^b$ | [C3H6] | 0 | 0.0180 | 0.0245 | 0.0331 | 0.0442 | | P(CH ₂)CH ₂) ₂ S) | (torr) | 0 | 1.21 | 1.61 | 2.22 | . 2.96 | $^{a}P(COS) = 100 \text{ torr, } P(C_{3}H_{6}) = 67.4 \text{ torr, } P(CO_{2})_{s} = 1296 \text{ torr, } R^{\circ}_{CO}$ min^{-1} , exposure time = 32.5 min. $^{\rm b}$ P(C₃H₆) values have been corrected for depletion. $^{\rm c}$ A₀ = C₃H₆S/CO in the absence of $^{\rm c}$ CH₂(CH₂)₂S = 0.703 $A = C_3 H_6 S/CO$ in the presence of $CH_2 (CH_2)_2 S$ TABLE IV-17 Product Yields as a Function of the $[CH_2(CH_2)_2]/[C_3H_6]$ Ratio at 423 | A _o -A [C ₃ H ₆] | A $[CH_2(CH_2)_2$ \$1 | • | 27.7 | 27.8 | 27.9 | 27.7 | |---|-----------------------|-------|--------|-------------|--------|------------------| | Ao-Ac | A | 1 | 0.629 | 0.878 | 1.02 | 1.28 | | C3HeS | 8 | 0.685 | 0.414 | 0.365 0.878 | 0.338 | 0.816 0.300 1.28 | | (µmolės) | C3H6S | 2.04 | 1.15 | 1.02 | 0.913 | 0.816 | | Products | 00 | 2.98 | 2.78 | 2.80 | 2.70 | 2.72 | | $[CH_2(CH_2)_2]^b$ Products (µmoles) C_3H_6S A_0-A^C A_0-A
$[C_3H_6]$ | [C3H6] | 0 | 0.0227 | 0.0316 | 0.0367 | 0.0462 | | P(CH ₂)CH ₂) ₂ S) | (torr) | 0 | 1.50 | 2.07 | 2.42 | 3.03 | = 1248 torr, R°_{CO} = 10.169 µmoles = 100 torr, $P(C_3H_6 = 66.2 \text{ torr, } P(CO_2)$ min^{-1} , exposure time = 30 min. ap(cos) $^{\mathsf{b}_{\mathsf{P}}(\mathsf{C}_{\mathsf{3}\mathsf{H}_{\mathsf{G}}})}$ values have been corrected for depletion. $^{\text{C}}A_{\text{O}}=\text{C}_{3}\text{H}_{6}\text{S/CO}$ in the absence of $^{\text{CH}_{2}}(\text{CH}_{2})_{2}\text{S}=0.685$. $A = C_3 H_6 S/CO$ in the presence of $CH_2 (CH_2)_2 S$ FIGURE IV-13: Plots of $(A_0-A)/A$ versus $[CH_2(CH_2)_2]$]/ $[C_3H_6]$. TABLE IV-18 Slopes and Intercepts of the Plots in Figure IV-13 a | Temperature
(K) | $1/T \times 10^3$ (K^{-1}) | Slope
(*ČH2(CH2)2\$/*C3H6) | Ln(k6H2(CH2)2)3/kc3H6) | Intercept | Correlation
Coefficient | |--------------------|------------------------------|-------------------------------|------------------------|------------------|----------------------------| | 303 | 3.30 | 48.01 # 1.17 | 3.871 ± 0.024 | 0.0203 ± 0.0425 | 0.9998 | | 333. | 3.00 | 41.60 ± 0.16 | 3.728 ± 0.008 | -0.0161 ± 0.0805 | 1.000 | | 363 | 2.76 | 353.31 # 0.30 | 3.564 ± 0.008 | -0.0161 ± 0.0805 | 1,000 | | 393 | 2.54 | 31.40 ± /0.22 | 3.447 ± 0.007 | 0.0265 ± 0.0554 | 0.9991 | | 423 | 2.36 | 27.77 ± 0.07 | 3.324 ± 0.002 | 0.0014 * 0.0196 | 1.000 | The errors are standard deviations. FIGURE IV-14: Arrhenius plot for the $S(^{3}P) + \overline{CH_{2}(CH_{2})_{2}S}$ and $C_{3}H_{6}$ system. # 1) $\underline{S(^{1}D_{2}, ^{3}P) + CH_{3}SCH_{3}}$ Reactions The $S(^1D_2, ^3P)$ atoms produced by the photolysis of \cos , $$\cos + h\nu \longrightarrow \cos + s(^{1}D_{2}, ^{3}P)$$ [1] $$s(^{1}D_{2}) + cos \rightarrow co + s_{2}(^{1}\Delta_{q})$$ [2] $$S(^{1}D_{2}) + M \longrightarrow S(^{3}P) + M$$ [3] $$s(^{3}P) + cos \rightarrow co + s_{2}(\tilde{x}^{3}\Sigma_{q}^{-})$$ may react in a number of ways. For $S(^{1}D)$ atoms, the following steps may be considered: H abstraction, $$(S(^{1}D_{2}) + CH_{3}SCH_{3} \longrightarrow CH_{2}SCH_{3} + SH$$ [5] C-H insertion $$s(^{1}D_{2}) + CH_{3}SCH_{3} \longrightarrow cH_{3}SCH_{2}SH(S_{0})^{\dagger}$$ [6] C-S insertion $$s(^{1}D_{2}) + CH_{3}SCH_{3} \longrightarrow CH_{3}SSCH_{3}(S_{0})^{\dagger}$$ [7] or addition to the sulfur site $$s(^{1}D_{2}) + CH_{3}SCH_{3} \longrightarrow CH_{3}SCH_{3}(s_{0})^{\dagger}$$ [8] S(³P) atoms, on the other hand, being incapable of insertion, can only react with the sulfur moiety: $$s(^{3}P) + CH_{3}SCH_{3} \longrightarrow CH_{3}SCH_{3}(T_{1})$$ [9] Step [5] can be discounted since this process is unknown in S + hydrocarbon reactions (vide infra). Although C-H insertion is known to occur in $S(^1D_2)$ + alkene and alkane systems, the absence of any insertion products in this system indicates that reaction [6] does not occur. The exclusive occurrence of C-S insertion (reaction [7]) can be ruled out for the following reasons: C-H insertion reactions are extremely rapid and, with the exception of CH₄, are essentially quantitative. C-S insertion should be equally efficient, and yet the CH₃SSCH₃ yields at zero pressure never exceeded 50% (Figure III-3). Furthermore, the S(⁸P) + CH₃SCH₃ reaction also leads to the formation of CH₃SSCH₃, indicating the existence of an alternative route for disulfide formation. Additionally, the electron rich S non-bonding 3p orbitals of the substrate should provide a more attractive site for electrophilic attack than the C-S bonds, thus rendering reaction [8] more favourable. It is therefore proposed that $S(^{1}D)$ and $S(^{3}P)$ atoms react with $CH_{3}SCH_{3}$ to yield excited singlet and triplet state dimethylthiosulfoxide (DMTSO), respectively. Although these species were not observed in the present investigation, there is convincing evidence in the literature to the effect that thiosulfoxides can exist as transient intermediates. 159-165 Before considering the subsequent mechanistic details, it would be instructive at this point to briefly review what has been reported with regard to thiosulfoxides. DMTSO has long been thought to be the unstable by-product in the oxidation of S-containing compounds by (CH₃)₂S=0:¹⁵⁹ The intervention of thiosulfoxide intermediates in the thermal racemization and isomerization of allylic disulfides was postulated by Barnard et al. in 1969, 160 and by Höfle and Baldwin in 1971: 161 The latter workers measured the pseudo first order rate constants for interception of the thiosulfoxide intermediate by $P(Ph)_3$ and found, as expected, that increasing the size of R_3 , R_4 and R_5 decreases the rate as a result of steric hindrance, but that increasing the size of $R_1 + R_2$ favours the formation of the thiosylfoxide intermediate. When R_1 through R_4 = H and R_5 = CH₃, the thiosulfoxide loses sulfur spontaneously at 25° to yield the sulfide. In 1973 Mislow and co-workers 162 reported that allylic sulfides react readily with elemental sulfur to yield the corresponding disulfide, with complete allylic rearrangement. These workers demonstrated the reversible nature of the various elementary processes involving thiosulfoxide intermediates: $$R-S$$ $+S_8 \longrightarrow R-S-S$ $R-S-S$ $R-S-S$ [12] Still et al. 163 reported that P_4S_{10} is a mild, selective reagent for the reduction of sulfoxides to sulfides and suggested the intervention of a four-centered Wittig-type intermediate, which decomposes to thiosulfoxide: Baechler and co-workers 164,165 pursued these investigations and discovered that milder reducing agents such as B_2S_3 and SiS_2 effect the conversion of sulfoxides into disulfides, as well as monosulfides. R-S-CHXCH=CH₂ $$B_2S_3, CS_2/0^{\circ}$$ $$R-S-CHXCH=CH_2 + S \qquad R-SS-CH_2CH=CHX [14]$$ $$X = H \text{ or } D, \qquad R = CH_3 \text{ or } C_6H_5$$ The fraction of the disulfide formed varied with the choice of reagents, and its presence constitutes compelling evidence for the intermediacy of thiosulfoxides in these systems. Attempts to detect thiosulfoxide intermediates by NMR during low temperature deoxygenation experiments were unsuccessful. Stepanov et al. 166 studied the thermal and chemical reactivity of a number of substituted diaryldisulfides, and showed that the presence of strongly electron-withdrawing substituents apparently stabilizes the thiosulfoxide form. Accordingly, the only thiosulfoxides which have been isolated to date are those possessing strongly electronegative groups such as F and O bonded to the S=S moiety: 167 The possible transient existence of thiosulfoxides in some systems, then, is no longer in doubt. In the absence of electron-withdrawing substituents however, they appear to be kinetically unstable species. In a study of the allyldisulfide-allylthiosulfoxide isomerization, Höfle and Baldwin reported $\Delta H^{\dagger} \approx 20$ kcal mole⁻¹ and $\Delta S^{\dagger} \approx -9$ e.u.¹⁶¹ Using these values and assuming that the trapping reaction of the thiosulfoxide intermediate by $P(C_6H_5)_3$ has an E_a of 3-4 kcal mole⁻¹, Benson¹⁶⁸ has estimated that ground state thiosulfoxides are at the most 10 kcal mole⁻¹ higher in energy than the corresponding disulfides. This suggests that thiosulfoxides are energetically accessible species. However, they are thermodynamically unstable with respect to formation of the corresponding sulfides and elemental sulfur. The electronic state of the DMMSO formed in step [8] is not known, but is likely to be the ground, vibrationally excited singlet state, $(S_0)^{\dagger}$. Its energy content, $$E^* = \Lambda H_f^0(CH_3SCH_3) + \Delta H_f^0(S(^1D_2)) - \Lambda H_f^0(DMTSO) -$$ can only be estimated, since AH (DMTSO) is not known. Using $$\Delta H_f^{\circ}(CH_3SCH_3) = -8.9 \text{ kcal mole}^{-1},^{168}$$ $$\Delta H_f^0(s(^1D_2)) = 92.0 \text{ kcal mole}^{-1},^{19}$$ and Benson's estimated value of 4 kcal mole for 4 f(DMTSO) 168 gives a very approximate value of 79 kcal/ mole for E*. DMTSO $(s_0)^{\dagger}$ can decay via the following pathways: fragmentation. $$CH_3 SCH_3 (S_0)^{\dagger} \longrightarrow 2CH_3 \cdot + S_2 (^{1}\Delta_{g})$$ $$C_2H_6 + S_2 (^{1}\Delta_{g})$$ $$CH_3SS \cdot + CH_3$$ $$CH_3SS \cdot + CH_3$$ [15c] [15d] collisional deactivation to the thermalized ground state, $$CH_3 SCH_3 (S_0)^{\dagger} \xrightarrow{M} CH_3 SCH_3 (S_0)$$ [16] and isomerization to a vibrationally excited dimethyl-disulfide (DMDS) molecule, $$CH_3 SCH_3 (s_0)^{\dagger} \longrightarrow CH_3 SSCH_3 (s_0)^{\dagger}$$ [17] The heats of formation of the fragment radicals and molecules formed in reactions [15a-d] are, with the exception of CH_3S_2 , known with certainty, 169 and since the calculated value for $^{\text{AH}}_{\text{f}}(\text{CH}_3\text{S}_2) = +17.3^{168}$ kcal mole is based on reliable kinetic data, the total product enthalpies can be computed accurately. The value of $^{\text{A}}_{\text{val}}$ kcal mole $^{-1}$ 0 for $\Delta H_{\rm f}$ (DMTSO), however, is only a very rough approximation. Nonetheless, accurate values of the enthalpies of reactions [15a-d] can be calculated beginning with the two initial reactants, i.e. $$\begin{array}{c} (\text{kcal mole}^{-1}) \\ \text{S(}^{1}\text{D}_{2}) + \text{CH}_{3}\text{SCH}_{3} & \underbrace{[15a]} \\ \text{C}_{2}\text{H}_{6} + \text{S}_{2}(^{1}\Delta_{g}) & 28.3 \\ \\ & \underbrace{[15b]} \\ \text{C}_{2}\text{H}_{6} + \text{S}_{2}(^{1}\Delta_{g}) & -59.3 \\ \\ & \underbrace{[15c]} \\ \text{CH}_{3}\text{S}_{2} + \text{CH}_{3} \cdot & -32.1 \\ \\ & \underbrace{[15d]} \\ \text{2CH}_{3}\text{S} \cdot & -15.0 \\ \end{array}$$ Step [15a] can be discounted on energetic grounds. Molecular production of C_2H_6 , step [15b], is a distinct possibility in view of the high exothermicity of this reaction. It should be noted that the suppression of the C_2H_6 yields in the presence of NO does not necessarily indicate that C_2H_6 comes from radical precursors: it will the shown later that NO reacts with
DMTSO, resulting in a fivefold decrease in the rate of isomerization to CH_3SSCH_3 , and thus fragmentation to C_2H_6 should be suppressed as well. Fragmentation to $CH_3S_2 + CH_3$ is analgous to the de- composition pathway proposed for triplet state dimethylsulfoxide. 121 In solution, CH₃S₂ radicals are extremely inert and their sole fate appears to be recombination, 170 yet CH3S4CH3 was not detected in this system. On the other hand, CH3 radicals are definitely present (viz. the formation of CH_4), and these can only be formed from step [15c]. One possible explanation for this apparent discrepancy is that CH3S2 can disproportionate in the gas; but not in the liquid phase, to yield a variety of products. Although virtually nothing is known concerning the chemistry of CH_3S_2 radicals, it has been demonstrated that the rate of disproportionation of HS2 radicals in the gas phase is extremely rapid. 171 Finally, dissociation into two CH3S radicals, step [15d], while energetically possible, is not conceptually inviting. It is therefore concluded that $\mathrm{DMTSO(S_0)}^\dagger$ fragments in two ways; a molecular route leading to $C_2H_6 + S_2$ (step [15b]), and a radical one leading to $CH_3S_2 + CH_3$ (step [15c]). As mentioned above, the ground state thiosulfoxide formed in steps [8] and [9] is unstable with respect to desulfurization; the occurrence of the deactivation step [16] is manifested by the decrease in the CH₃SSCH₃ yields with increasing pressure (Figure IV-3). The proposed thiosulfoxide-disulfide isomerization, step [17], is analogous to that involved in the 2,3-sigmatropic rearrangements of allyldisulfides as shown in reaction [11], and to the reaction sequence in the B₂S₃ reduction of sulfoxides, step [14]. Senning 172 has proposed the involvement of an equilibrium between the hypothetical dithirane and thiosulfine molecules in some interconversions: $$\begin{array}{c} R_1 \\ R_2 \end{array}$$ $$\begin{array}{c} R_1 \\ R_2 \end{array}$$ $$\begin{array}{c} S \\ S \end{array}$$ [18] Although neither species could be chemically trapped, a dithiirane intermediate may be envisioned for the DMTSO(\mathbf{S}_0)[†] rearrangement, $$H_3^{C} \xrightarrow{S}_{CH_3}^{S} \xrightarrow{CH_3}^{\dagger} \xrightarrow{I 19a}$$ followed by cleavage of the original C-S bond, to yield $CH_3SSCH_3(S_0)^{\dagger}$. The vibrationally excited CH_3SSCH_3 molecule formed in [19b] can fragment to a small extent or be stabilized: Since CH_3S , CH_3S_2 and CH_3 radicals are present in the system, the following reactions should be considered: $2CH_3S_2$ $\xrightarrow{(CH_3S_4CH_3)^{\dagger}}$ [29a] $$(CH_3SSCH_3)^{\dagger} + S_2 \qquad [29b]$$ $$CH_3SH + CH_2S + S_2$$ [29c] Thus there are two sources of C2H6, steps [15b] (molecular) and [21] (radical). *Radical-radical reactions are probably of minor importance owing to their low concentrations. For the self-reactions of CH_3S radicals, steps [23a, 23b], k_d/k_c has been estimated to be ~ 0.05 , and the value for the cross-reaction, CH3 + CH3S, steps [22a, 22b], should also be very low. Hence it is not surprising that polymeric thioformaldehyde, the end product of CH₂S formed in the disproportionation reactions [22b] and [23b], was not detected in the cell residues after high conversion experiments. The hypothetical gas phase disproportionation reactions of CH3S2 (steps [29b, 29c]) are proposed by analogy with the known chemistry of ${\rm HS}_2^{171}$ and ${\rm CH}_3{\rm O}_2^{174}$ radicals. The disulfide formed in step [29b] is probably "hot" and may constitute an additional source of CH3S radicals at low pressures. For steps [24] and [26], rate parameters have been reported. reported and the corresponding room temperature rate constants are: $$k_{24} = 7.8 \times 10^4 \text{ m}^{-1} \text{s}^{-1}$$ $k_{26} = 1.8 \times 10^3 \text{ m}^{-1} \text{s}^{-1}$ These are very low indeed, and thus reactions [24] and [26] are not likely to be important. Kinetic data for step [25] have not been reported. However, for the $\text{CH}_3\text{S} + \text{CH}_3\text{SSCH}_3 \rightarrow \text{CH}_3\text{SH} + \text{CH}_2\text{SSCH}_3$ reaction, E_a is 8.5 kcal mole 178 and E_a for reaction [25] should be very similar. Although this value is lower than the E_a 's associated with steps [24] and [26], 9.4 and 11.4 kcal mole 1, respectively, its magnitude is such that step [25] is probably not important. Steps [27] and [28] have been included for completeness. Nothing is known with regard to the hypothetical disproportionation reactions. Abstraction reactions involving CH_3S_2 have not been considered since the product, CH_3S_2H , is a very unstable species. Since CH₄ is a secondary product, it must be formed as a result of reaction between CH₃ and one of the reaction products. The most likely candidate is CH₃SH, which has a readily abstractable, H atom: $D(CH_3S-H) = 92$ kcal mole as compared to $D(CH_3SCH_2-H) = 95$ kcal mole $^{-1}$. 178 In any event, the total radical reactions taking place in this system are of minor importance, constituting only a few percent of the overall reactions. As has been demonstrated, the mass imbalance in terms of the S product yield is due to the formation of elemental sulfur. This indicates that reactions involving desulfurization must play a significant role in this system: Desulfurization via reaction between two ground state DMTSO molecules may be slightly endothermic ($\Delta H \sim 5 \pm 8$ kcal mole $^{-1}$), but it should be noted that $\Delta H_{\rm DMTSO} \approx 4 \pm 3$ kcal mole is an estimated value only and thus step [31c] may be feasible. Its importance would depend on the transient concentration of the thiosulfoxide species. Desulfurization could also be envisioned as proceeding via unimolecular S atom extrusion: $$CH_3$$ SCH_3 (S_0) \longrightarrow CH_3 SCH_3 $(^1D_2)$ Due to spin conservation, the S atom produced must be in the singlet state, and thus the energy required for the occurrence of reaction [32] is at least equal to the exothermicity of the $S(^1D_2) + CH_3SCH_3$ reaction. Consequently, step [32] may be important only at infinitesimally low pressures. Moreover, its occurrence would not affect the S product recovery. Therefore, it is concluded that desulfurization of DMTSO(S_0) takes place via the bimolecular reaction [31c]. From the mechanism delineated above, it is apparent that three reaction pathways are open to the excited DMTSO adduct. There are two product formation pathways: fragmentation via C-S bond scission, and isomerization. The former leads to $C_2H_6+S_2$ and to $CH_3S_2+CH_3$, while the latter leads to CH_3SSCH_3 . The other mode of decay, deactivation followed by desulfurization, leads to regeneration of the substrate. The major reactions occurring in the system can thus be summarized as follows: $$s(^{1}D_{2}) + CH_{3}SCH_{3} \longrightarrow CH_{3}SCH_{3}(s_{0})^{\dagger}$$ [8] $$CH_3 \stackrel{S}{=} CH_3 (S_0)^{\dagger} \longrightarrow C_2 H_6 + S_2 (^1 \Delta_g)$$ [15b] $$\longrightarrow CH_3S_2 \cdot + CH_3 \cdot$$ [15c] $$\stackrel{\text{M}}{\longrightarrow} \text{CH}_{3} \stackrel{\text{SCH}}{\text{SCH}_{3}} (s_{0})$$ [16] $$CH_{3} \stackrel{S}{\text{SCH}}_{3} (s_{0})^{+} \longrightarrow CH_{3} SSCH_{3} (s_{0})^{+} \stackrel{2CH_{3}S.}{\longrightarrow} (20a)$$ $$M \stackrel{CH_{3}SSCH_{3}}{\longrightarrow} (s_{0}) [20b]$$ $$2CH_3SCH_3(S_0) \longrightarrow 2CH_3SCH_3 + S_2(^1\Delta_g)$$ [31c] $$-2CH_3 \cdot \longrightarrow C_2H_6$$ [21] $S(^3P)$ atoms also react with CH_3SCH_3 to yield CH_3SSCH_3 , CH_4 and C_2H_6 in similar relative proportions and in drastically reduced yields, less than 60% of those obtained from the $S(^1D_2)$ reaction (Table IV-3). The exothermicity of the proposed primary step, $$s(^3P) + CH_3SCH_3 \longrightarrow CH_3\dot{S}CH_3(T_1)$$ [9] is approximately 53 kcal mole $^{-1}$, and accordingly, the DMTSO (T_1) is 26 kcal mole $^{-1}$ less energetic than the DMTSO $(S_0)^{\dagger}$ formed in step [8]. If fragmentation reactions analogous to those postulated for DMTSO(S_0) are considered, i.e. steps [15a-d], only the following are energetically possible for DMTSO(T_1): $$S(^{3}P) + CH_{3}SCH_{3} \rightarrow CH_{3}SCH_{3}(T_{1}) \rightarrow C_{2}H_{6} + S_{2}(^{3}\Sigma_{g}^{-})$$ -46 [33a] $CH_{3}S_{2} \cdot + CH_{3} \cdot -6.1$ [33b] Since the $\mathrm{C_2^H_6}$ yields are fivefold less than those of $\mathrm{CH_3SSCH_3}$, it is likely that the bulk of the $\mathrm{CH_3SSCH_3}$ arises from $\mathrm{DMTSO}(\mathrm{T_1})$ and not from recombination of the radicals formed in [33b]. One possibility is, $$CH_3 \stackrel{\text{SCH}}{:} (T_1) \longrightarrow CH_3 SSCH_3 (T_1) \stackrel{M}{\longrightarrow} CH_3 SSCH_3 (S_0)$$ [34] However, $CH_3SSCH_3(T_1)$ has never been observed and is likely to be antibonding in character, dissociating immediately to two CH_3S fragments. A more plausible pathway for the formation of CH_3SSCH_3 from $DMTSO(T_1)$ is: $$CH_3$$ SCH_3 (T_1) M CH_3 SCH_3 $(S_0)^{\dagger}$ [35a] $$CH_3 \stackrel{\text{S}}{=} CH_3 (s_0)^{\dagger} \longrightarrow CH_3 SSCH_3 (s_0)^{\dagger}$$ [35b] Because of the lower energy content of the DMTSO(S_0)[†] formed in step [35a], as compared to the $S(^1D_2) + CH_3SCH_3$ adduct, the rates of isomerization to disulfide and of deactivation to the S_0 state are lesser and greater, respectively, resulting in a sharp suppression of the CH_3SSCH_3 yields (Table IV-3). The increased importance of deactivation in this system may be expressed in a more quantitative manner (Appendix C-2). Comparison of the CH_3SSCH_3 yield in the pressure independent region (>200 torr), Table IV-2, with those obtained in the presence of CO_2 (Table IV-3) reveals that the CH_3SSCH_3 recovery for $S(^1D_2)$ addition is $\sim 25\%$, while that for $S(^3P)$ addition is only
$\sim 7\%$. It follows that the deactivation/isomerization ratios for the $S(^1D_2)$ and $S(^3P)$ atom reactions are ~ 3 and ~ 14 , respectively, for $COS/CH_3SCH_3 = 300/30$ and at 30 min. exposure time. The greater importance of deactivation for the triplet DMTSO suggests that the sharp drop in CH₃SSCH₃ yields when the pressure is increased from 100 to 200 torr (Figure IV-3) is mainly due to deactivation of this species. In the presence of 2-4 torr of NO (Table IV-3), the CH₄ and C₂H₆ yields are completely suppressed, suggesting radical precursors. Interestingly, the CH₃SSCH₃ yield is decreased by only 80%. One possible explanation for the suppression of product yields by NO is the scavenging of S atoms. However, in the presence of NO, the CO yield dropped by only 3 %, indicating that NO did not react significantly with $S(^{1}D_{2})$. For $S(^{3}P)$ atoms, $k_{S}(^{3}P)+NO+M=1.9 \times 10^{11} \ M^{-2}s^{-1}$ and $k_{S}(^{3}P)+CH_{3}SCH_{3}=1.3 \times 10^{41} \ M^{-1}s^{-1}$ (vide infra). Thus for the COS/CH₃SCH₃/NO - 300/30/4 mixture 05 (Table IV-3), M = [COS] + [CH $_3$ SCH $_3$] + [NO] \sim 0.018, and it follows that: $$\frac{\text{Rate}_{S(^{3}P) + \text{NO+M}}}{\text{Rate}_{S(^{3}P) + \text{CH}_{3}\text{SCH}_{3}}} = 3.5 \times 10^{-3}$$ Thus NO does not react with $S(^3P)$ atoms fast enough to affect the $S(^3P)$ concentration. It may be concluded that scavenging of $S(^1D_2)$ and $S(^3P)$ atoms by NO is not responsible for the decrease, in product yields. NO presumably reacts with $DMTSO(S_0)^{\dagger}$, (T_1) in competition with the $DMTSO(S_0)^{\dagger}$, (T_1) + CH_3SSCH_3 rearrangements (steps [17] and [35]), most likely via abstraction: $$NO + CH3SCH3 (S0)† \longrightarrow NOS + CH3SCH3$$ [36] This reaction is evidently not as efficient as the NO + radical (CH $_3$ etc.) scavenging reactions. However, this is not unexpected since DMTSO(S_0) † is a vibrationally excited molecule and not a monoradical. Moreover, the reaction of NO with triplet state thiirane is very slow and a large excess of NO is required to effect even a 30% suppression. In this connection, it is interesting to note that Rao, et al. 173 have reported that 50 torr NO were required to scavenge all the CH $_3$ S radicals in their system, produced at a much higher rate than in the present study. At this point it would be interesting to compare the present results with the well documented $O(^3P)$ + CH_3SCH_3 reaction. The major products are C_2H_6 and $(CH_3)_2S=0$ (DMSO) in a ratio $\sim 3:1$, respectively, and their combined yields are $\sim 35\%$, in terms of the $O(^3P)$ atoms produced. The overall mechanism is postulated to be: $$O(^{3}P) + CH_{3}SCH_{3} \xrightarrow{O} CH_{3}SCH_{3}(T_{1})^{+}$$ [37] $$CH_3SCH_3(T_1)^{+} > 90\%$$ $CH_3SO + CH_3$ [38a] $$^{2CH}_3$$ $^{C_2H}_6$ [39] $$CH_3$$ CH_3 In the presence of C_2H_5SH , which has a readily abstractable hydrogen atom, $(CH_3)_2S=0$ was completely suppressed, indicating that it arises solely from radical recombination and not from pressure stabilization of the initial adduct. The structural difference between the final addition products in the $O(^3P)$ and $S(^1D_2, ^3P)$ systems (branched versus linear) is a consequence of the thermodynamic stabilities of the possible products: $(CH_3)_2S=S$ is known to be unstable and CH_3SOCH_3 is an unknown entity, hence its possible formation in this system is purely speculative. 2) $$\cdot s(^{1}D_{2}, ^{3}P) + cH_{2}(CH_{2})_{2}s$$ Reactions The methylenic α C-H bonds and possibly the β C-H bonds are expected to be somewhat weaker than the primary C-H bonds in CH₃SCH₃, and insertion into these bonds might take place, leading to the formation of the corresponding thiols. $$S(^{1}D_{2}) + S \xrightarrow{\alpha C-H \text{ insertion}} S$$ $$SH$$ $$S = \{41a\}$$ $$\beta C-H \text{ insertion} \qquad HS = \{41b\}$$ Neither thiol was detected however, and the sole retrievable products identified were C_2H_4 and 1,2-dithiolane $\begin{pmatrix} S \\ S \end{pmatrix}$. Thus, by analogy to the $S(^1D_2)$ + CH_3SCH_3 reaction, the primary adduct is believed to be vibrationally excited ground singlet state thietanethiosulfoxide (TTSO): $$S(^{1}D_{2}) + \bigcirc S \longrightarrow \bigcirc S=S(S_{0})^{\dagger}$$ [42] This adduct may then undergo C-S bond cleavage to form a biradical, which may then undergo ring closure, fragment via C-C bond cleavage, $$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{bmatrix} 43c \end{bmatrix} \end{array}$$ or fragment via C-S bond cleavage: Alternatively, the thetanethiosulfoxide may isomerize: $$S = S(S_0)^{\dagger} \longrightarrow S(S_0)^{\dagger} \longrightarrow S$$ or be deactivated, followed by desulfurization: $$S = S(S_0)^{\dagger} \xrightarrow{M} S = S(S_0)$$ $$+ S_2, \text{etc.}$$ In sharp contrast to the S+ CH₃SCH₃ reaction, the combined product becovery for this system extrapolated to zero time is 85 k (Figure IV-10), with a 1,2-dithiolane/ C_2H_4 ratio of $^{\sim}$ l. This and the fact that the product yields are independent of pressure (Figure IV-11) is probably indicative of the relative inefficiency of deactivation step [45] or of a much shorter lifetime for the excited TTSO as compared to DMTSO. The recoveries of 1,2-dithiolane for $^{(1)}$ D₂) and $^{(3)}$ P) are similar, 44 and 36% respectively, as opposed to the case of CH₃SSCH₃, where the recoveries for $^{(1)}$ D₂) and $^{(3)}$ P) are 25 and 7%, respectively (Appendix C-2). 1,2-Dithiolane may form from C-S bond cleavage, steps ([43a] + [43b]), and/or isomerization of TTSO, step [44]. However, the high yield of C_2H_4 suggests that fragmentation is a major decay path for TTSO, and therefore it is suggested that a large portion of 1,2-dithiolane arises from steps ([43a] + [43b]) rather than step [44]. Unfortunately the importance of fragmentation to $C_3H_6 + S_2$ ($^1\Delta_g$), step [43d], cannot be assessed quantitatively. However, the results of the GC/MS cross scan experiment suggest that this path is of minor importance, although it is one of the major processes in the photolysis of trimethylene sulfoxide. 180 The predominance of fragmentation as the fate of $TTSO(S_0)^{\dagger}$ as compared to $DMTSO(S_0)^{\dagger}$ may be attributed to the relief of ring strain which, for the parent thietane, has been calculated to be 19.4 kcal mole $^{-1}$, 169 since the energy contents for the two adducts are expected to be comparable. The ${\rm CH_2S_2}$ species formed in fragmentation step [23c] may exist in three isomeric forms: $$H_2C=S=S$$, H_2C-S , and $H-C-SH$ The first two isomers have never been observed, although there is some evidence in support of their transient existence. 172 Dithioformic acid, on the other hand, has been produced by the pyrolysis of HC(SH)₃ for microwave spectroscopic structural analysis. 181 Although its stability was not examined in detail, it could be observed at 25° in a flow system when the pyrolysis was performed between 200° and 900°. Thus, while H₂C=S=S is logically the most probable structure for the initially formed CH₂S₂ species, it is possible that it might isomerize to form HCSH, of which the ultimate fate is probably polymerization. $S(^3P)$ atoms also react with thietane to yield 1,2-dithiolane and C_2H_4 . The % recovery of 1,2-dithiolane is similar to the $S(^1D_2)$ case but that of C_2H_4 is drastically reduced (Table IV-12), resulting in a much higher $\overline{CH_2(CH_2)_2SS/C_2H_4}$ ratio (7.5, versus 1.1 for $S(^1D_2)$). The following triplet state analogs of steps [42] to [45] may be considered: $$S(^{3}P) + S \longrightarrow S(T_{1})$$ $$S = S(T_{1}) \longrightarrow S = S(T_{1})$$ $$S = S(T_{1}) \longrightarrow S = S(S_{0}) S($$ The energy content of $TTSO(T_j)$ is lower than that of $TTSO(S_0)^{\frac{1}{2}}$ by 26 kcal mole $^{-1}$, which explains the much lower observed yield of the fragmentation product. Moreover, spin donservation requires that the species produced by fragmentation and isomerization must be in triplet states, which may not be energetically accessible. The biradical produced by C-S bond scission (step [47a]) however, should have a low lying triplet state and thus should be formed quite readily. This biradical is postulated to undergo efficient intersystem crossing to the S_0 state where ring closure may then take place. The low overall product recovery ($\sim 40\%$) in the $S(^3P)$ + thietane system (steps [47a] and [47b]) indicates that intersystem crossing followed by deactivation (step [47d]) is one of the major reactions occurring. $O(^3P)$ atoms also react with thietane to yield C_2H_4 ; in addition, small quantities of $c-C_3H_6$ were detected $(C_2H_4/c\cdot C_3H_6+1/0.3)$. The following mechanism has been proposed: $$O(^{3}P) + S \longrightarrow S = O(T_{1})$$ [48] $$\int_{S=0}^{S=0} \frac{C-C}{\text{cleavage}} + \text{So}(^3\Sigma_g^-) = [49a]$$ $$S=0$$ $\frac{C-S}{\text{cleavage}}$ $C_2H_4 + CH_2SO$ [49b] $$\stackrel{M}{\longrightarrow} S=O(S_0)$$ Together, C_2H_4 and $c-C_3H_6$ account for 90% of the overall reaction. It is noteworthy that the exothermicities of the $O(^3P) + CH_2CH_2)_2S$ and $S(^1D_2) + CH_2(CH_2)_2S$ reactions exceed the C-S bond dissociation energies of the adducts by nearly identical amounts, yet fragmentation in the latter system is only half as important as in the former. One possible explanation is that rearrangement of $S=S(S_0)^{\dagger}$ (steps ([43a] + [43b]) and [44]) leads to the formation of a relatively stable product, 1,2-dithiolane, whereas the analogous process for $S=O(T_1)$ would lead to the formation of $S=O(T_1)$ which has never been isolated. Interestingly, although the $S(^3P) + CH_2(CH_2)_2S$ reaction affords mainly the addition product and
smaller yields of the fragmentation product, the corresponding three membered ring, thirane, reacts with $S(^3P)$ atoms to give C_2H_4 as the only retrievable product. Based on the growth of the $S_2(\widetilde{X}^3\Sigma_g^-)$ spectrum and the concomitant decay of the $S(^3P)$ absorption observed by flash photolysis-kinetic absorption spectroscopy, it was proposed that the overall reaction is direct abstraction of the S atom from thiirane: 4,53 $$S(^{3}F) + C_{2}H_{4} + S_{2}(X^{3}\Sigma_{q}^{-})$$ [50] By analogy with the present system, the primary adduct is probably the thiiranethiosulfoxide, $$(s(^{3}P) + s) \rightarrow (s-\dot{s}(T_{1}))$$ which may then decay in three ways: $$\rightarrow$$: CH₂(T₁) + CH₂S₂ [52b] $$C_2H_4 + S_2(^3\Sigma_q^-)$$ [52c] Formation of :CH₂, step [52b], has not been reported for 3-membered heterocycles. ¹⁸² The observation of $S_2(^3\Sigma_g^-)$ is accounted for by step [52c]. The thiosulfoxide-disulfide rearrangement would lead to the formation of the hypothetical 1,2-dithietane, step [52a]. This compound has never been isolated and is expected to be unstable due to strong repulsion of the pm electrons of the adjoining S atoms. The transient existence of perfluoro-1,2-dithietane has been reported in the pyrolysis of perfluoroethylenedisulfide polymer: 183 $$(-CF_{2}CF_{2}SS-)_{n} \xrightarrow{300^{\circ}} F_{2} \xrightarrow{F_{2}} \cdot SCF_{2}CF_{2}S \cdot F_{2} F_$$ However, the dithietane reconverted back to the initial polymer at lower temperatures (< 300°). To date, only one stable 1,2-dithietane, 3,4-diethyl-1,2-dithietane 1,1-dioxide, has been isolated. 184 This compound possesses an enhanced stability due to the replacement of the lone pair electrons on one S atom, thus removing the destabilizing effect of the pm electron repulsion. 183 It is therefore unlikely that dithietane would be formed in the $S(^3P) + \sum$ reaction. Moreover, the reaction leading to the formation of $S_2(^3\Sigma_g^-)$ is extremely rapid, $k = 2.7 \times 10^{10} \, \text{M}^{-1} \, \text{s}^{-1}$, and proceeds with no observable activation energy. $S_2(^3P)$ atoms also desulfurize thiirane, and the reaction has been described in terms of fragmentation of the sulfoxide adduct: 113 $$O(^{3}F) + S \rightarrow S O(T_{1}) \rightarrow C_{2}H_{4} + SO(T_{1})$$ [54] It is apparent from the foregoing discussions that the reactions of $S(^{1}D_{2}, ^{3}P)$ atoms with simple thioether's generally feature attack at the sulfur non-bonding ^{3}P orbitals leading to the formation of thiosulfoxides. $O(^{3}P)$ atoms react similarly yield the corresponding sulfoxide, and by analogy the remaining Group VI A atoms, Se and Te, probably form the corresponding unstable adducts. From the few studies reported in the literature, it appears that the high reactivity of the S non-bonding 3p orbitals toward atom and radical attack is not limited only to divalent species: most atoms and radicals also preferentially attack at the sulfur site. The reactions of H atoms with CH₃SCH₃, ¹⁸⁵ thiirane, ¹⁸⁶ thiolane, ¹⁸⁷ and 3-thiolene ¹⁸⁸ have been studied. In all cases, the initial attack is at the S site and the subsequent fate of the adduct is mainly determined by the relative stabilities of the possible products. $$H + CH_3SCH_3 \longrightarrow H_3C - S - CH_3 \longrightarrow CH_3SH + CH_3.$$ [55a] $$H + \bigcirc S \rightarrow \rightarrow$$ $$H + \left[\begin{array}{c} \\ \\ \\ \end{array} \right] \xrightarrow{\dagger} C_4 H_6 + SH.$$ [55d] A brief study of the C atom reaction with thiirane and thietane 189 revealed that the initial reaction is also addition to the S site, followed by elimination of CS to yield the corresponding hydrocarbons, e.g. $$c + \bigcirc s \rightarrow \left[\bigcirc \stackrel{+}{\overset{-}{\overset{-}{\text{S}}}} \stackrel{-}{\overset{-}{\overset{-}{\text{CS}}}} \right]^{\ddagger} - \bigcirc cs \qquad \triangle + \bigcirc b \qquad [56]$$ For the CH3 + thiirane reaction, S abstraction is the major process although a small amount of H abstraction was observed. $$CH_3 + \searrow S \longrightarrow \left[\searrow S - - - CH_3 \right]^{\ddagger} \longrightarrow C_2H_4 + CH_3S \cdot$$ [57] In this system H abstraction features a significantly higher E_a , resulting in a RS abstraction RH abstraction ratio of A40 . The reactions of CH_3 radicals with CH_3SCH_3 have been investigated by Arthur and Lee, 171 and H abstraction was considered to be the only process occurring: $$CH_3 \cdot + CH_3SCH_3 \longrightarrow CH_4 + \cdot CH_2SCH_3$$ [24] Attack at the sulfur site is possible but does not generate any new products: $$CH_3 \cdot + CH_3SCH_3 \rightarrow CH_3SCH_3 + CH_3 \cdot [58]$$ In view of the high reactivity of the sulfur non-bonding p, orbitals toward atom and radical attack, it is almost certain that CH₃ radicals also attack at this site; an investigation of the reactions of CD₃ radicals with CH₃SCH₃ would reveal the mechanistic route. The t-butoxy radical reacts with thietane and thiolane via different mechanisms: addition to the S site of thietane followed by C-S bond scission, and $\alpha-H$ abstraction from thiolane: 190 $$RO \cdot +$$ \bigcirc $S \longrightarrow \bigcirc S - OR \longrightarrow ROS (CH2)2 $\stackrel{\circ}{CH}_2$ [59a]$ This difference has been attributed to the relief of ring strain in the thietane adduct (19.4 kcal mole $^{-1}$ 176) upon formation of a linear radical. In contrast, C_6F_5 radicals attack the sulfur sites of both thiolane and thietane. Carbenes and nitrenes have also been shown to add exclusively to the S atom of cyclic and acyclic thioethers in solution to yield the corresponding ylides and sulfimides, 191 with the former reagents exhibiting high selectivity: + $$CH_3SCH_3$$ \longrightarrow $(CH_3)_2S-CR_2(NR_2)$ [60b] ## 3. Rate Parameters for the $S(^{3}P) + CH_{3}SCH_{3}/\overline{CH_{2}(CH_{2})_{2}}$ Reactions As shown in Figure IV-4, plots of $(A_0-A)/A$ versus the ratio $[CH_3SCH_3]/[C_3H_6]$ show slight downward curvature at high ratios (>0.11). The reason for this is not readily apparent. However, since for $[CH_3SCH_3]/[C_3H_6] < 0.11$, the plots appear to be linear, it is reasonable to assume that the data in this region may be used for kinetic evaluation. As shown in Table IV-4, at room temperature, $S(^3P)$ atoms react with $CH_3SCH_3 \sim 36$ times faster than with propylene. The weighted least squares fit of the Arrhenius plot (Figure IV-5) yields, $$^{A}_{CH_{3}SCH_{3}}/^{A}_{C_{3}H_{6}} = 3.83\pm0.17$$, and $^{E}_{C_{3}H_{6}} - ^{E}_{CH_{3}SCH_{3}} = 1.34\pm0.06$ kcal mole⁻¹ From the absolute rate parameters for $C_3^{\rm H}{}_6$ measured by Klemm and Davis: 52 $$A_{CH_3SCH_3} = (1.39+0.18) \times 10^{10} M^{-1} s^{-1}$$ $^{E}CH_{3}SCH_{3} = -0.96\pm0.11 \text{ kcal mole}^{-1}$. Alternatively, the data of Van Roodselaar 53 lead to: $$^{\Lambda}_{\text{CH}_{3}\text{SCH}_{3}} = (4.98 + 1.20) \times 10^{10} \, \text{m}^{-1} \, \text{s}^{-1}$$ $$E_{CH_3SCH_3} = -0.84 \pm 0.24 \text{ kcal mole}^{-1}$$ The average values of these two sets of parameters yield the following Arrhenius expression for the $S(^3P)$ + CH_3SCH_3 reaction: $$k = (3.19\pm1.21) \times 10^{10} \exp[(900\pm237/RT] \text{ M}^{-1}\text{s}^{-1}]$$ [61] This corresponds to a room temperature rate constant, $$k_{(298)} = 1.35 \times 10^{11} \text{ M}^{-1} \text{s}^{-1}$$ Thietane is even more reactive with respect to $S(^3P)$ addition than CH_3SCH_3 , having a room temperature rate constant ~ 50 times that of C_3H_6 (Table IV-13). The weighted least squares fit of the Arrhenius plot (Figure IV-14) gives, $$^{A}C_{H_{2}(CH_{2})_{2}S}/^{A}C_{3}^{H_{6}} = 1.84\pm0.04$$ $$E_{C_3H_6} - E_{CH_2(CH_2)_2S} = 1.25\pm0.03 \text{ kcal mole}^{-1}$$ Using the absolute rate parameters for $C_3^{\rm H}{}_6$ measured by Klemm and Davis, Klemm and Davis, $$A_{CH_{2}(CH_{2})_{2}S} = 2.28 \pm 0.28 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$ $$E_{CH_{2}(CH_{2})_{2}S} = -0.87 \pm 0.09 \text{ kcal mole}^{-1}$$ and those of Van Roodselaar, $$A_{CH_2(CH_2)_2S} = 8.18\pm1.90 \times 10^{10} M^{-1}s^{-1}$$ $E_{CH_2(CH_2)_2S} = -0.75\pm0.20 \text{ kcal mole}^{-1}$ The average values from these two sets of parameters give the following Arrhenius expression for the $S(^3P) + \overline{CH_2(CH_2)_2}S$ reaction: $$k = (5.23\pm1.94) \times 10^{10} \exp[(810\pm220)/RT] \text{ M}^{-1}\text{s}^{-1}$$ [62] This corresponds to a room temperature rate constant, $$k_{(298)} = 2.0 \times 10^{11} \, \text{M}^{-1} \text{s}^{-1}$$ Thus, the reactions of $S(^3P)$ atoms with CH_3SCH_3 and $CH_2(CH_2)_2S$ are both extremely fast, occurring at rates approaching the corresponding collision frequencies, 2×10^{11} and 2.5×10^{11} M s⁻¹, respectively at room temperature, in- dicating that at least one of every two collisions results in reaction. It is apparent that at room temperature, thietane is almost twice as reactive as CH₃SCH₃. This is a consequence of the larger A factor for the thietane reaction since the activation energies are fairly similar (-0.90 and -0.81 kcal mole -1). The A factors for the two reactions correspond to, entropies of activation, $$\Delta \dot{s}_{CH_{3}SCH_{3}}^{\dagger} \simeq -22.7 \text{ e.u.}$$ $$\Delta \dot{s}_{CH_{2}(CH_{2})_{2}\dot{s}}^{\dagger} \simeq -21.8 \text{ e.u.}$$ The small difference in ΔS^{\dagger} for the two reactions suggests the involvement of similar transition states, consistent with proposed mechanisms. Both reactions exhibit negative activation energies, an unusual feature also observed for the $S(^3P)$ + branched alkene reactions. A plot of activation energy versus ionization potential for the reactions of $S(^3P)$ atoms with CH_3SCH_3 , $CH_2(CH_2)_2S$ and some selected alkenes is illustrated in Figure IV-15. It is apparent that, as in the $O(^3P)$ remactions, the linear correlation of E_a with ionization potential for the $S(^3P)$ + alkene reactions also extends to the above thioethers and this implies that the
$S(^3P)$ + organosulfide reactions are basically electrophilic in nature. The $S(^3P)$ + thioether reactions exhibit slightly higher E_a 's than FIGURE IV-15: Plot of E_a versus ionization potential for the $S(^3P)$ + alkenes, CH_3SCH_3 and $CH_2(CH_2)_2S$ systems. that of the $S(^3P)$ + $(CH_3)_2C=C(CH_3)_2$ reaction (-1,3 kcal mole⁻¹). However, the overall room temperature rate constants are at least twice as fast, a consequence of the much higher A factors. The larger A factors for the case of thioethers may be ascribed to the greater accessibility of the reaction site: a C=C bond has a van der Waals radius of 1.54 A, whereas that for a sulfur atom is 1.85 A. Negative activation energies, such as those observed for the $S(^3P) + CH_3SCH_3$ and $\overline{CH_2(CH_2)_2}S$ reactions, have been reported for other systems (vide supra). A number of explanations for the observation of negative temperature dependences in bimolecular reactions have been proposed. In some cases, the observed negative E_a has been ascribed to a near zero actual E_a combined with a temperature dependent A-factor in the Arrhenius equation. However such an explanation appears to be inadequate. Transition state theory does not predict a temperature dependence of the A factor much greater than $T^{-0.5}$ unless some unrealistic assumptions concerning the structure of the transition state are made. Collision theory predicts a temperature dependence of the A factor as high as $T^{-1.5}$ if the reaction cross section is assumed to be energy dependent. Later models have been more successful in providing a rationale for negative activation energies. The model of Strausz et al. has been proposed to explain the trend to negative E_a 's in the $S(^3P)$ + alkene reactions. In the context of this model, the $S(^3P)$ atom and $CH_3SCH_3/\overline{CH_2(CH_2)_2}S$ initially approach each other on a potential energy surface with a shallow minimum corresponding to a loose π complex which intersects the product disulfide surface (on the repulsive part of this curve) at a point below the level of the separate reactants, as illustrated below: A similar model has been proposed by Cvetanovic <u>et al</u>. to explain the negative E_a 's observed for the reactions of $O(^3p)$ with some alkenes. 51,121 Applying these models to the present system, the addition of $S(^3P)$ to $CH_3SCH_3/CH_2(CH_2)_2S$ results in reversible formation of a complex which may either dissociate back to $S(^3P)$ and $CH_3SCH_3/CH_2(CH_2)_2S$ or evolve to the corresponding disulfide products as shown: $$S(^{3}\Gamma) + CH_{3}SCH_{3}/CH_{2}(CH_{2})_{2}S \xrightarrow{k_{1}} S...S \xrightarrow{R}^{\dagger}$$ $$S...S \xrightarrow{R}^{\dagger} \xrightarrow{k_{11}} Disulfide$$ [63] Assuming a steady state concentration of the complex, the rate expression for product formation is: Rate = $$\frac{k_I k_{III}}{k_{II} + k_{III}} \cdot [S(^3P)][RSR]$$ [65] Hence, $$k_{obs.} = \frac{k_I k_{III}}{k_{II}}$$ when $k_{II} >> k_{III}$ [66] Expressing k obs. in the Arrhenius form: $$k_{obs.} = \frac{A_I A_{III}}{A_{II}} \exp[(E_{II} - E_I - E_{III})/RT]$$, and [67] assuming no temperature dependence for the initial complex formation ($E_{\rm I}=0$), $E_{\rm a}$, the activation energy observed, corresponds to, $$E_{a} = E_{III} - E_{II}$$ [69] and will be negative provided $E_{TT}^{\Sigma}E_{TTT}^{\Sigma}$. The room temperature rate constants and Arrhenius parameters of the $S(^3P)$ + CH_3SCH_3 and $CH_2(CH_2)_2S$ reactions are compared to those of other related systems in Table IV-19. For the CH_3SCH_3 system, the A factor for $S(^3P)$ addition is substantially larger than that for the $O(^3P)$ addition, $^{113},119^{-121}$ although both reactions exhibit negative E_a 's and similar temperature dependences. The larger A-factor could be partly a consequence of the availability of the low-lying 3d orbitals on sulfur, which increases the effective collision diameter PABLE IV-19 Rate Parameters for the Reactions of Some Atomic and Radical Species with | <pre></pre> | |-------------| | 20 | | 10 | | 7,3 | | 7.7 | | £.3 | | 2.9 | | 0.: | | 0.021 | | 0.015 | | 09.0 | | 3.26 | | 0.57 | with respect to attack. In contrast to the $S(^3P)$ and $O(^3P)$ reactions, the H + CH_3SCH_3 reaction proceeds at a much slower rate. 185,193 This is a result of the relatively high E_a , reflecting the less electrophilic nature of H atoms. The OH radical is somewhat less reactive than $S(^3P)$ and $O(^3P)$, which is surprising in view of its higher reactivity with alkenes. On the basis of the observed trend in rate constants (k_{CH_3SH}) $k_{C_2H_5SH} > k_{CH_3SCH_3}$, it has been suggested that OH reacts with CH_3SCH_3 via H abstraction. 194 However, a negative E_a is inconsistent with an abstraction mechanism and OH probably reacts with the sulfur site. The lower reactivity as compared to $O(^3P)$ and $S(^3P)$ is probably associated with the nature of the bording in the transition state. ## CHAPTER V ## SUMMARY AND CONCLUSIONS In the gas phase, $S(^1D_2)$ atoms react with 1,2-butadiene to yield unsaturated addition products, thiiranes, C = C + (1), C = C + (2), and C = C + (2), and C = C + (3), and C = C + (2) and C = C + (3). Even at low conversion, the overall yields, relative to those of the S + (2) alkene reactions, are low (70% versus 90%). $S(^3P)$ atoms, as expected, afford only the addition products, in yields comparable to those of the S + (2) reaction. The rates of formation of 1 and 4 decrease drastically with time, but increase with increasing pressure. Thirrane 3, which is formed at a much slower rate, also requires pressure stabilization, although no time dependence was observed. These observations suggest that photodecomposition is important for thirranes 1 and 4, as is apparent from their high UV absorption coefficients (of the order of 10 1 mole cm in the region of photolysis). However, the pressure dependence of the thirrane rates indicates collisional stabilization of the hot adducts. One possible decomposition mechanism which is pressure dependent is isomerization of the hot thirrane adducts to unstable thiones followed by CS elimination, 128,139 e.g. $$\begin{bmatrix} s \\ 1 \end{bmatrix} + cs$$ [1] Due to the low yields of thiols 2 and 5, no definite trend in their rate behaviour with respect to time and pressure could be discerned; however, because of the presence of unsaturation, these compounds are expected to be quite unstable. Although no product indicating insertion into the C-H bond of the alkyl substituted vinylic carbon was observed, the formation of thiol 2 indicates that this process may have taken place, i.e. 2 is postulated to be formed via an enethiol-thicketone-enethical tautomerization of the initially formed enethical: $$S(^{1}D_{2}) + CH_{3}CH-C-CH_{2} \rightarrow CH_{3}C-C-CH_{2} \rightleftharpoons CH_{3}CCH-CH_{2}$$ $$SH$$ $$CH_{3}CH-C-CH_{2} \rightarrow CH_{3}C-C-CH_{2} \rightleftharpoons CH_{3}CCH-CH_{2}$$ $$SH$$ $$SH$$ $$SH$$ $$SH$$ $$SH$$ $$SH$$ $$SH$$ $$CH_{2}-CCH-CH_{2}$$ $$CH_{2}-CCH-CH_{2}$$ $$CH_{2}-CCH-CH_{2}$$ $$CH_{2}-CCH-CH_{2}$$ $$CH_{2}-CCH-CH_{2}$$ $$CH_{2}-CCH-CH_{2}$$ $$CH_{2}-CCH-CH_{2}$$ In contrast to the COS-alkene systems, the combined thirane yields in this system are very high, comprising 90% of the total S products observed. This is probably due to the presence of two addition sites in 1,2-C₄H₆, and may also be a consequence of lower stabilities of the insertion products in this system. The relative Arrhenius parameters obtained from competitive rate studies in the presence of $1-C_4H_8$ yield in following rate expression for the S(3 F) | 1,2 C_4H_6 reactions $$k = (4.38\pm1.14) \times 10^{10} exp[(-1455\pm255)/RT] M^{-1}s^{-1}$$ The A factor is somewhat larger (by a factor of 6 5) than those of similar $S(^{3}P)$ + alkene systems. This can be abscribed in part to the presence of two distinct reaction sites in $1.2-C_4H_6$, the two orthogonal π bonds. However, the A factor is also higher than that associated with the isomeric conjugated diene, $1.3-C_4H_6$, by a factor of almost 2. This is probably due to a larger rotational contribution to the entropy of activation (ΔS^{\dagger}) as a result of going from a linear $1.2-C_4H_6$ molecule ($C_1-C_2-C_3$ axis) to a bent transition state as shown, e.g.: $$CH_3CH=C=CH_2 + S \longrightarrow \begin{bmatrix} H \\ H_3C \\ 2 \\ CH_2 \end{bmatrix}^{\ddagger}$$ Despite its high A factor, the $S(^3P) + 1.2-C_4H_6$ reaction proceeds at a slower rate than the $S(^3P) + 1.3-C_4H_6$ reaction. This is due to the higher E_a associated with the former reaction, as a consequence of the absence of delocalization of the π electrons, rendering the molecule less polarizable, and the partial triple bond character conferred by hyperconjugation between the co-planar C-H and π bonds of $1.2-C_4H_6$ as shown: $$C = C + CH_2$$ H_3C $C = C + CH_2$ H_3C $C = C + CH_2$ C$ Interestingly, although the two π bonds of 1,2-butadiene are non-interacting, their reactions with $S(^3P)$ atoms proceed with similar $E_a(\sim 1.5 \text{ kcal mole}^{-1})$. Consequently, the A factors for the 2,3 and 1,2-additions are simply proportional to the rate constants. From the corresponding product yields ($\frac{1}{2}$ and $\frac{4}{2}$) the rate constant ratio for S(3 P) addition is, $$(k_{2,3}/k_{1,2})_{t=0,P=1200 \text{ torr}}^{3p} \sim 2.1$$ and accordingly, the Arrhenius expressions for the two additions are: $$k_{1,2} = (1.41\pm0.38) \times 10^{10} \text{exp}[-(1455\pm255)/\text{RT}] \text{ M}^{-1}\text{s}^{-1}$$ $$k_{2,3} = (2.96\pm0.80) \times 10^{10} \text{exp}[-(1455\pm255)/\text{RT}] \text{ M}^{-1}\text{s}^{-1}$$ At room temperature, these correspond to: $$k_{1,2} = 1.2 \times 10^{9} M^{-1} s^{-1}$$ $k_{2,3} = 2.6 \times 10^{9} M^{-1} s^{-1}$ Surprisingly, these rate constants are within a factor of 2 of those for the $S(^3P) + C_2H_4$ and C_3H_6 reactions (6.0 x
10^8 and 3.7 x 10^9 M⁻¹s⁻¹, respectively.). For $S(^1D_2)$ addition, the rate constant ratio for the two additions has been estimated to be: $$(k_{2,3}/k_{1,2})_{t=0,P=1200 \text{ torr}}^{1D} \sim 1.3$$ The higher ratio observed for $S(^3P)$ addition indicates that the $S(^3P)$ atom is more selective, as a consequence of its lower energy content. 1,2-Addition leads to the formation of thiiranes 4 and 3, the <u>trans</u> and <u>cis</u> isomers, respectively. The <u>trans/cis</u> ratio observed for $S(^3P)$ is: $$\left(\frac{\text{trans}}{\text{cis}}\right)_{t=0,P=1200 \text{ torr}}^{3P}$$ ~ 6 which is surprisingly high. The lower $\underline{\text{trans}}/\underline{\text{cis}}$ product ratio estimated for $S(^1D_2)$ addition, $$\left(\frac{\text{trans}/\text{cis}}{\text{t=0,P=1200 torr}}\right)^{1}D$$ reflects the higher reactivity and lower selectivity of $S(^{1}D_{2})$ atoms. The gas phase reactions of $S(^{1}D_{2}, ^{3}P)$ atoms with dimethyl-sulfide and thietane have been examined at room and moderately elevated temperatures. $S(^1D_2)$ atoms react with dimethylsulfide yielding dimethyldisulfide as the only S addition product along with a small amount of C_2H_6 . At high conversions, CH_4 is observed as a secondary product. The overall product recovery is low (<30% in terms of S atoms consumed). The yields of CH_3SSCH_3 and C_2H_6 decrease with pressure up to $\sim\!200$ torr, above which they appear to be constant. Analysis of the cell residues after high conversion runs indicates that the S product imbalance observed is due to the formation of polymeric sulfur. In the presence of NO, C_2H_6 and CH_4 are not observed and the yields of CH_3SSCH_3 are suppressed approximately fivefold. Based on the observed products, the effects of total pressure and added NO, and the well documented high reactivity of the S non-bonding 3p orbitals, it is proposed that the primary step is attack the S site of the substrate leading to the formation of an unstable dimethylthiosulfoxide (DMTSO) adduct. $$s(^{1}D_{2}) + CH_{3}SCH_{3} \longrightarrow CH_{3}\overset{\S}{S}CH_{3}(s_{0})^{\dagger}$$ Three pathways are open to the DMTSO(S_0) †: 1) fragmentation via C-S bond scission to yield C_2H_6 , $$CH_3 CH_3 (S_0)^{\dagger} \rightarrow C_2 H_6 + S_2 (^{1}\Delta_{g})$$ [6a] $$\rightarrow$$ CH₃S₂· + CH₃· [6b] 2) isomerization to form the disulfide, $$CH_3 \stackrel{S}{S}CH_3 (s_0)^{\dagger} \longrightarrow CH_3 SSCH_3 (s_0)^{\dagger} \stackrel{M}{\longrightarrow} CH_3 SSCH_3$$ [7] 3) deactivation followed by desulfurization, $$CH_3 SCH_3 (S_0)^{\dagger} \longrightarrow CH_3 SCH_3 (S_0) \xrightarrow{CH_3 SCH_3 (S_0)} CH_3 SCH_3 + S_2(^{1}\Delta_{g})$$ [8] Isomerization is the major product-forming step (${}^{R}_{CH_3}SSCH_3$ / ${}^{R}_{C_2H_6}$). Desulfurization regenerates the substrate with the concomitant formation of elemental sulfur. Deactivation, the major process (deactivation/isomerization \sim 3), is manifested by a decrease in product yields with an increase in pressure. $S(^3P)$ atoms also react with CH_3SCH_3 to yield CH_3SSCH_3 , C_2H_6 and CH_4 but in drastically reduced yields. The primary step is attack at the S site, yielding triplet state DMTSO, $SCH_3SCH_3(T_1)$. $DMTSO(T_1)$ undergoes fragmentation reactions similar to those of $DMTSO(S_0)^{\dagger}$. It is proposed that the CH_3SSCH_3 product arises from isomerization of $DMTSO(S_0)^{\dagger}$ formed by intersystem crossing from the T_1 state. The smaller yields of CH_3SSCH_3 and the greater importance of deactivation (deactivation/isomerization \sim 14), as compared to the $\text{S(}^1\text{D}_2\text{)}$ + CH_3SCH_3 system, are attributed to the lower energy content of the DMTSO(S_0) † formed from the T_1 state. $S(^1D_2)$ atoms react with thietane, $CH_2(CH_2)_2S$, affording a cyclic disulfide, 1,2-dithiolane, as the only retrievable S product. Comparable yields of C_2H_4 were also observed. In contrast to the $S(^1D_2)$ + CH_3SCH_3 reaction, the total product recovery is high ($\sim 85\%$) and pressure independent, indicating that deactivation is relatively unimportant. By analogy with the $S(^1D_2)$ + CH_3SCH_3 system, the primary adduct is postulated to be thietanethiosulfoxide (TTSO), $S=S(S_0)^{\dagger}$. This adduct undergoes a similar series of reactions: 1) fragmentation via C-S and C-C bond scissions to yield ${\rm C_2H_4}$, $$(s_0)^{\dagger} \longrightarrow (s_0)^{\dagger} (s_0$$ 2) fragmentation via two C-S bond scissions to yield C3H6, $$(s=s,(s_0)^{\dagger} \longrightarrow (s-s) \longrightarrow (c_3H_6 + s_2(^1\Delta_g))$$ [10] 3) isomerization via C-S bond cleavage to form the disulfide, 4) deactivation followed by desulfurization, $$S=S(S_0)^{\dagger} \xrightarrow{M} S=S(S_0)$$ $$+ S_2, \text{ etc. [12]}$$ Although step [10] could not be measured quantitatively, it appears that it is of minor importance. $S(^3P)$ atoms also react with \bigcirc S to yield 1,2-dithiolane and C_2H_4 , but the yields of the latter are drastically reduced. The primary adduct is postulated to be triplet state thietane-thiosulfoxide (TTSO), \bigcirc S-S(T₁). The recoveries of 1,2-dithiolane for the $S(^1D_2)$ and $S(^3P)$ reactions are comparable, 44 and 36%, respectively, in sharp contrast to those of the $S(^1S_3)$ System, where the corresponding recoveries are 25 and 7%: The relative Arrhenius parameters obtained from competitive rate studies in the presence of $C_3^H_6$ yield the following rate expressions for the $S(^3P)$ + $CH_3^SCH_3$ and $CH_2^C(CH_2)_2^S$ reactions. $$k_{\text{CH}_3\text{SCH}_3} = (3.19\pm1.21) \times 10^{10} \exp[(900\pm237)/\text{RT}] \text{ M}^{-1}\text{s}^{-1}$$ $k_{\overline{\text{CH}_2(\text{CH}_2)_2}\text{S}} = (5.23\pm1.94) \times 10^{10} \exp[(810\pm220)/\text{RT}] \text{ M}^{-1}\text{s}^{-1}$ These correspond to room temperature rate constants, $$k_{CH_3SCH_3} = 1.4 \times 10^{11} \, \bar{M}^1 \, \bar{s}^1$$, and $$k_{\frac{1}{2}(CH_2)_2S} = 2.0 \times 10^{11} \text{ M}^{-1}\text{s}^{-1}$$ which approach the collision frequencies. Both reactions proceed with negative activation energies, in agreement with those predicted from the E_a - ionization potential correlation established for the $S(^3P)$ + alkene reactions. 235. The A factors for the two reactions are larger than those of the $S(^3P)$ + alkene systems by a factor of ~ 4 . This is a consequence of a larger collision cross section resulting from the larger van der Waal radius of the S site. #### **BIBLIOGRAPHY** - Candler, C., Atomic Spectra, Hilger and Watts Ltd., London (1964). - Strausz. O.P., R.J. Donovan, and M. de Sorgo, Ber. Bun. Physik. Chem., 72, 253 (1968). - 3. Lown, E.M., K.S. Sidhu, A.W. Jackson, A. Jodhan, M.Green, and O.P. Strausz, J. Phys. Chem., 85, 1089 (1981), and references therein. - 4. Donovan, R.J., D. Hussain, R.W. Fair, O.P. Strausz and H.E. Gunning, Trans. Farad. Soc., 66, 1635 (1970). - 5. Addison, M.C., C.D. Byrne and R.J. Donovan, Chem. Phys. Lett., <u>64</u>,57 (1979). - 6. Betteridge, D.R., and J.T. Yardly, Chem. Phys. Lett., 62, 570 (1979). - 7. Sidhu, K.S., I.G. Csizmadia, O.P. Strausz, and H.E. Gunning, J.Am. Chem. Soc., 88, 2412 (1966). - 8. Black, G., R.L. Sharpless, T.G. Slanger, and D.C. Lorents, J. Chem. Phys., 62, 4274 (1975). - 9. Dunn, O.J., S.V. Filseth and R.A. Young, J. Chem. Phys., 59, 2892 (1973). - 10. Donovan, R.J., Trans. Farad. Soc., 65, 1419 (1969). - 11. Breckenridge, W.H., and H. Taube, J. Chem. Phys., 52, 1750 (1970). - 12. Molina, L.T., J.J. Lamb, and M.J. Molina, Geophys. Res. Lett., 8, 1008 (1981). - 13. Rudolf, R.N. and E.C.Y. Inn, J. Geophys. Res., <u>86</u>, 9891 (1981). - 14. Strausz, O.P., IUPAC. Suppl. 4, 165 (1971), and references therein. - 15. Rao, P.M., and O.P. Strausz, to be published. - Gollnick, K., and E. Leppin, J. Am. Chem. Soc., 92, 2217 (1970). - 17. Leppin, E., and K. Gollnick, Mol. Photochem., 2, 17, (1970). - 18. Donovan, R.J., L.J. Kirsch and D. Hussain, Nature, 222, 1165 (1969). - 19. Sherwood, A.G., I. Safarik, B. Verkoczy, G. Almadi, H.A. Wiebe, and O.P. Strausz, J. Am. Chem. Soc., 101,3000 (1979). - 20; Addison, M.C., R.J. Donovan and C. Fotokis, Chem. Phys. Lett., 74, 58 (1980). - 21. Klemm, P.B. and D.D. Davis, J. Phys. Chem., 78, 1137 (1974). - 22. Gunning, H.E. and O.P. Strausz, Adv. Photochem., 4, 143 (1966). - 23. Little, D.J., A. Dalgleish and R.J. Donovan, Farad Disc. Chem. Soc., 53, 211 (1972). - 24. Donovan, R.J., L.J. Kirsch, and D. Hussain, Trans. Farad. Soc., 66, 774 (1970). - 25. Lown, E.M., PhD Thesis, University of Alberta, 1966. - 26. Rabalais J.W. J.M. McDonald, V. Sherr, and S.F. McGlynn, Chem. Rev., 71, 73 (1971). - 27. Filseth, F.F., Adv. Photochem., <u>10</u>, 1 (1977). - 28. Knight, A.R., O.P. Strausz, and H.E. Gunning, J. Am. Chem. Soc., 85, 2349 (1963). - 29. Colussi, A.J., and R.J. Cvetanovic, J. Phys. Chem., 79, 1891 (1975). - 30. Paraskevopoulous, G., and R. . Cvetanovic, J. Am. Chem. Soc., <u>91</u>, 7572 (1969). - 31. Kajimoto, O., H. Yamasaki, and T. Fueno, Chem. Phys. Lett., 349, (1977). - 32. Luntz, A.C., J.Chem. Phys., 73, 1143 (1980). - 33. Schofield, K., J. Photochem., 9, 55 (1978). - 34. Yamasaki, H., and R.J. Cvetanovic, J. Chem. Phys., 41, 3703 (1964). - J. Chem. Phys., 73, 6351 (1980) - 36. Lin, C.L., and W.B. De More, J. Phys. Chem. 77, 863 (1972) - 37. Paraskevopoulous, G., and R.J. Cuetanouic, J. Phys. Chom. 81, 2598 (1977). - 38. Andreson, P., and A.C. Luntz, J. Chem, Phys., 72 5942 (1980). - 39. Herron, J.T., R.E. Huie, J. Phys. Chem., 73,2327 (1960). - 467 (1973), and references therein. - 41. Strausz, O.P., Sulfur Research Trends, Adv. Chem. Ser., R.F. Gould, Ed., Am. Chem. Soc., Washington, D.C. (1971) - 42 Wiehe, H A., Php Thesis, University of Alberta, 1967 - 43. De More, J. Phys. Chem., 73, 391 (1969). - 44. Kajimoto, O., H. Yamasaki, ahd T. Fueno, Chem. Phys. Lett., 68, 127 (1979). - 45. Cvetanovic, R.J., Adv.
Photochem., <u>1</u>, 115 (1963). - 46. Bader, R.F., M.F. Stephens, and R.A. Gangi, Can. J. Clam. 55, 2755 (1977) - 47. Kajimoto, O., and H. Vamasaki, Chem. Phys. Lett., <u>64</u>, 445 (1979) - 48. Wiebe, H.A., A.R. Knight, O.P. Strausz, and H.E. Gunning, J. Am. Chem. Soc., 87, 1443 (1965). - 49. Sidu, K.S., E.M. Lown, O.P. Strausz, and H.E. Gunning. J. Am. Chem. Soc. 82, 259 (1966). - 50. Hoffman, R., C.C. Wan, and V. Neagu, Mol. Phys., 19, 113 (1970). - Csizmadia, T. Am. Chor. Soc. 94, 8317 (1912). - 53 Van Roodeelaar, A., Php. Theeis, University of Alberto - 54. Connor, T., A. Van Poodselaar, R.W. Fair and C. F. Strausz, J. Am. Chem. Soc., 93, 560 (1971). - 98, 6812 (1906), and references therein. - TO Character, R.J. J. Phys. Chem 74 2730 (1070) - 57. Strausz, O.P., R.K. Gosavi, G.R. DeMare, I.G. Csizmadia, Chem. Phys. Lett., <u>62</u>, 339 (1979). - 58. Yamasaki, K., S. Yabushita, T. Fueno, S.Kato, and K. Morokama, Chem. Phys. Lett. 70, 27 (1980). - 59. Dupuis, M., J.J. Wendoloski, T. Takada, and W.A. Lester, Jr., J. Chem. Phys., 76, 481 (1982). - 60. DeMaré, G.R., M.P. Peterson and I.G. Csizmadia and O.P. Strausz, J. Comp. Chem., 1, 141 (1980). - 61. Strausz, O.P., R.K. Gosavi, G.R. DeMare, M.R. Peterson and I.G. Csizmada, Chem. Phys. Lett., 70, 31 (1980). - 62. Hirokami, S., and R.J. Cvetanovic, J. Am. Chem. Soc., 96, 3738 (1974). - 63. Verkoczy, B., PhD Thesia, University of Alberta, 1981. - 64. Dedio, F.J., PhD Thesis, University of Alberta, 1967. - 65. Torres, H., F.M. Lown, O.F. Strausz, Heterocyles, 11, - H.E. Gunnium, J. Am. Chem. Soc. 89,4805 (1967). - O.P. Strausz, Nouv. J. Chim., 3, 365 (1979). - 68. Krantz, A., J. Laureni, J. Am. Chem. Soc., 99, 4842 (1077) - Goddard, and I G Csizmadin, Them Thys Lett. 53, 211 - (1977/3) - The Oat, To and O.P. Strangs, to be published - 72. Shaub, W.M., T.L. Burks and M.C. Lin, J. Phys. Chem., 86, 757 (1982). - 73. Strausz, O.P., R.K. Gosavi, A.S. Denes, and I.G. Csizmadia, J. Am. Chem., Soc., 98, 4784 (1976). - 74. Strausz, O.P., R.K. Gosavi, and H.F. Gunning, Chem. Phys. Lett., 54, 510 (1978). - 75. Torres, M., E.M. Lown, H.E. Gunning, and O.P. Strausz, Pure & Appl. Chem., 52, 1623 (1980), and references therein. - 76. Van Roodselaar, A., T. Safarik, O.P. Strausz, and H.E. Gunning, J. Am. Chem. Soc., 100,4048 (1978). - 77. Avery, H.E., and S.J. Heath, Trans Farad. Soc., 68,512, (1972). - Blumenberg, B., F. Hoyermann, and R. Sievert, 16th. Symp. on Combustion, E 211, The Combustion Institute, Pittsburg (1977) - TO Brown, I II and B A Thruch, Trans Fored. Soc., 63,630 - Shaph, W.M. T.J Purke, and M.C.Lin, Chem Phys:, 45, - Stiles, N.A., W.I.R. Tyerman, O.F. Strausz, and H.E. Gunning, Can. J. Chem., 44, 2149 (1966) - Tyerman, W.J.R., W.R. O'Callaghan, P. Kebarle, O.P. Strausz, and H.E. Gunning, J. Am. Chem. Soc., 88, 4277(1966). - R? Callear, A.B., and W.i.D. Tyerman, Trang Farad Soc., 62, 371 and 2760 (1966). - 84. Connor, J., G. Greig, and O.P. Strausz, J. Am. Chem. Soc., 91, 5695 (1969). - 85. Strausz, O.P., private communication. - R6. (a) Boocock, G., and R.J. Cvetanovic., Can. J. Chem., 39, 2436 (1961). - (b) Jones, G.R.H., and R.J. Cvetanovic, ibid, 2444 (1961). - 87 Grobenstein, E., Jr., and A.J. Mosher, J. Am. Chem. Soc., 92, 3810 (1970). - 88. Gaffney, J.S., R. Atkinson, and J.N. Pitts, Jr., J. Am. Chem. Soc., 98, 1828 (1976). - 89. Nicovich, J.M., C.A. Gump, and A.P. Ravishankara, J. Phys. Chem., 86, 1684 and 1690 (1982). - on Atkinson, R., and J.N. Pitts, Jr., J. Phys. Chem., 79. 295 (1975). - 91 Colussi, A.T., D.L. Singleton, R.S. Trwin, and P.T. Custanovic, J. Phys. Chem., 79, 1900 (1975) - 92 Athinson, R., and T.N. Ditte, Jr., Chem. The Tett., 63, 185 (1979) - and references therein. - One Chem. Soc., 97, 6481 (1975). - Sidhu, K.S., F.M. Lown, O.P. Strausz, and H.E. Gunning, J. Am. Chem. Soc., 88, 254 (1966). - Strausz, O.F., W.B. O'Callaghan, E.M. Lown, and H.E. Gunning, J. Am. Chem. Soc., 93, 559 (1971). - 97. Davis, D.D., R.B. Klemm, W. Braun, and M. Pilling, Int. J. Chem. Kinet., 4, 383 (1972). - 98. Cvetanovic, R.J., and L.C. Doyle, Can. J. Chem., 38, 2187 (1960). - 99. Havel, J.T., and K.H. Chan, J. Org. Chem., 39, 2439 (1974). - 100. Atkison, R., and J.N. Pitts, Jr., Chem. Phys., <u>67</u>, 2492 (1977). - 101. Nip, W.S., D.L. Singleton, and R.J. Cvetanovic, Can. J. Chem., 57, 949 (1979). - 102. Nakamura, K., and S. Koda, Int. J. Chem. Kinet., 9, 67 (1977). - 103. Havel, J.J., J. Am. Chem. Soc., 96, 530 (1974). - 104. Lin, M.C., R.G. Shortridge, and M.E. Umstead, Chem. Phys. Lett., <u>37</u>, 279 (1976). - 105. Herbrechtsmeier, P., and H.G. Wagner, Ber. Buns. Phys. Chem., 76, 517 (1972). - 106. Jones, P.R., and H. Taube, J. Phys. Chem., 77, 1007 (1973). - 107. Kriiger, B., and H.G. Wagner, Z. Phys. Chem., 126,1 (1981). - 108. Wei, C-N., R.B. Timmons, J. Chem. Phys., 62, 3240 (1975). - 109. Krezenski, D.C., R. Simonaites, and J. Heiklein, Int. 'J. Chem. Kinet., 3, 467 (1971). - 110. Westenberg, A.A., and N. de Haas, J. Chem. Phys., <u>50</u>, 707 (1969). - 111. O'Callaghan, W.B., PhD. Thesis, University of Alberta, 1970. - 112. Klemm, R.B., and D.D. Davis, Int. J. Chem. Kinet., 5, 149 (1973). - 113. Lee, J.H., R.B. Timmons, and L.J. Stief, J. Chem. Phys., 64, 303 (1976). - 114. Singleton, D.L. "Comparison of the O(3p) + trimethylene-sulfide reaction with the photolysis of trimethylene-sulfoxide", presented at the 15th Informal Conference on Photochem., Standford, Ca., U.S.A. June 27-July 1, 1982. - 115 Slagle, I.R., and D. Gutman, Int. J. Chem. Kinet., 11, 453 (1979). - 116. Slagle, I.R., R.E. Graham, and D. Gutman, Int. J. Chem. Kinet., 8, 451 (1976). - 117. Cvetanovic, R.J., D.L. Singleton, and R.S. Irwin, J. Am. Chem. Soc., 103, 3530 (1981). - 118. Tevault, D.E., R.L. Mowey, and R.R. Smardzewski, J. Chem. Phys., 74, 4480 (1981). - 119. Slagle, I.R., F. Baiocchi, and D. Gutman, J. Phys. Chem., 82, 1333 (1978). - 120. Lee, J.H., I.N. Tang, and R.B. Klemm, J. Chem. Phys., 72, 1793 (1980). - 121. Nip, W.S., D.L. Singleton, and R.J. Cyetanovic, J. Am. Chem. Soc., <u>103</u>, 3526 (1981). - 122. Lee, J.H., I.N. Tang, and R.B. Klemm, J. Chem. Phys., 72, 1793 (1980). - 123. McNair, H.M., and E.J. Bonelli, "Basic Gas Chromatography" 5th Ed., Varian, Pallo Alto, 1969. - 124. Pascual, C., J. Meier, and W. Simon, Helv. Chim. Acta., Suppl., 49, 164 (1966). - 125. Bellamy, L.J., "The Infra-red Spectra of Complex Molecules", pp. 50-54, Vol. 1, 3rd Ed., Chapman and Hall, London, 1975. - 126. Charles, R., V. Beltler, B. Feibush and E. Gil-Av , J. Chromatog., 112, 121 (1975). - 127. Bothner-By, A.A., and R.K. Harris, J. Am. Chem. Soc., 87, 3445 (1965). - 128. Block, E., R.E. Penn, M.D. Emris, T.A. Owens, S-L. Yu, J. Am. Chem. Soc., 100, 7436 (1978). - 129. Noggle, J.H., R.E. Shrimer, "The Nuclear Overhauser Effect", Ch. 1, 2 & 3, Acad. Press, N.Y. 1971. - 130. Taylor, D.R., Chem. Rev., 67, 317 (1967). - 131. Lipcomb, R.D., and W.H. Sharkey, J. Polymer. Sci., A-1, 8 2187 (1970). - 132. Steacy, F.W., and J.F. Harris, J. Am. Chem. Soc., <u>85</u>, 963 (1963). - 133. Paquer, D. Int. J. Sulfur Chem., B, 7, 269 (1972). - 134. Mayer, R. in "Sulfur in Organic and Inorganic Chemistry". Vol. 3, Ed. A. Senning, Dekker, N.Y. (1972). - 135. Baily, W.J. and M. Isogawa, A.C.S. Polymer Chem., Poly. Prep., <u>14</u>, 300 (1973). - 136. Beslin, P., D. Lagain, and J. Vialle, Tet. Lett., 2677 (19790. - 137. Wan, C.S.K., and A.C. Wedon, J. Chem. Soc., Chem. Comm., 1235 (1981). - 138. Giles, H.G., R.A. Marty and P. de Mayo, Can. J. Chem., 54, 547 (1976). - 139. Jongejan, E., Th.S.V. Buys, H. Steinberg, and Th.J. de Boer, J. Royal Nerther. Chem. Soc., 97, 214 (1978). - 140. Runge, W., W. Kosbahn, and J. Kroner, Ber. Bun. Phys. Chem., <u>79</u>, 371 (1979). - 141. Zandler, M.E., C.E. Choc, and C.K. Johnson, J. Am. Chem. Soc., 96, 3317 (1974). - 142. Laufer, A.H., Rev. Chem. Interm., 4, 225 (1981). - 143. Stang, P.J., "The Chemistry of Functional Groups". Suppl. E, Part II, Ed. S. Patai, Wiley, N.Y., 1980. - 144. Creary, X., J. Org. Chem., 43, 1777 (1978). - 145. Creary, X., J. Am. Chem. Soc., 102, 1611 (1980). - 146. Nelson, H.H., L. Pasternack, J.R. Eyler, and J.R. McDonald, Chem. Phys., 60, 231 (1981). - 147. Atkinson, R., K.R. Darnall, A.C. Lloyd, A.M. Winer, and J.N. Pitts, Jr., Adv. Photochem., 11, 375 (1979), and references therein. - 148. Hoyermann, K., R. Sievert, and H.G. Wagner, Oxid. Comm., 1, 145 (1980). - 149. Atkinson, R., R.A. Perry, and J.N. Pitts, Jr., J. Chem. Phys., 67, 3170 (1977). - 152. Jacobs, T.L., and G.E. Illingworth, J. Org. Chem., <u>28</u>, <u>2692</u> (1963). - 153. Caserio, M.J., in "Selective Organic Transformations", Ed. B.S. Thyagarajam, Wiley, N.Y., 1970. - 154. Owen. G.E., J.M. Pearson and M. Szwarc, Trans. Farad. Soc., 61, 1722 (1965). - 155. Chamberlain, N.F., "The Practice of NMR Spectroscopy", pp. 90, Plenum. N.Y., 1974. - 156. Vasil'eva, T.P., M.G. Lin'kova and O.V. Kil'disheva, Russian Chem. Rev., 45, 639(1976), and references therein. - 157. Barltrop, J.A., P.M. Hayes and M. Calvin, J. Am. Chem. Soc., 76, 4348 (1954). - 158. Krespan, C., and B. McKurick, J. Am. Chem. Soc., <u>50</u>, 844 (1966). - 159. Wallace, T.J., and H.A. Weiss, Chem. and Ind., 1558 (1966). - 160. Barnard, D., T.H. Houseman, M. Porter, and B.K. Tidd, Chem. Comm. 371 (1969). - 161. Hofle, G., and J.E. Baldwin (J. Am. Soc., 92, 6307 (1971). - 162. Baechler, R.D., J.P. Hummel, K. Mislow, J. Am: Chem. Soc., 95, 4442 (1973). - 163. Still, I.W.J., S.K. Hasan and K. Turnbull, Can. J. Chem., 56, 1423 (1978). - 164. Baechler, R.D., S.K. Daley, B. Daly and K. McGlynn, Tet. Lett., 105 (1978). - 165. Baechler, R.D., L.J. San Fillippo and A. Schroll, Tet. Lett., 22, 5247 (1981). - Stepanov, B.I., V.Ya. Rodionov, and T.A. Chibisova, Org. Khim. 10, 78 (1973). - 167. Harpp, D.N., and K. Steliou, J.C.S. Chem. Comm., 825, (1980). - 168. Benson, S.W., Chem. Rev., 78, 23 (1978). - 169. Benson, S.W., "Thermochemical Kinetics", 2nd Ed., Wiley, N.Y., 1976. - 170. Kende, I., T.L.
Pickering, and A.V. Tobolsky, J. Am. Soc., 87, 5582 (1965). - 171. Strausz, O.P., R.J. Donovan and M. de Sorgo, Ber. Bun. Phys. Chem. 72, 253 (1968). - 172. Senning, A., Agnew. Chem. Int. Ed., 18, 941 (1979). - 173. Rao, P.M., J.A. Copeck, and A.R. Knight, 45, 1369 (1967). - 174. Niki, H., P.D. Maker, C.M. Savage, and L.P. Breitenbach, J. Am. Chem. Soc., <u>85</u>, 877 (1981). - 175. Arthur, N.L., and M-S. Lee, Aust. J. Chem., 29, 1483 (1976). - 176. Jakubowski, E., M.G. Ahmed, E.M. Lown, H.S. Sandhu, R.K. Gosavi and O.P. Strausz, J. Am. Chem. Soc., <u>94</u>, 4094 (1972). - 177. Rao, P.M., and A.R. Knight, Can. J. Chem., 50, 844 (1972). - 178. Ekwenchi, M.M., PhD. Thesis, University of Alberta, 1980. - 179. Vitins, P., PhD. Thesis, University of Alberta, 1973. - 180. Dorer, F.H., K.E. Salomon, J. Phys. Chem., 84, 3024 (1980). - 181. Bak, B., O.J. Nielsen, and H. Svanholt, J. Molec. Spec., 69, 401 (1978). - 182. Brasklavsky, S., and J. Heiklein, Chem. Rev., 77,473 (1977). - 183. Krespan, C.G., and W.R. Brasen, J. Org. Chem., <u>27</u>, 3995 (1962). - 184. Block, E., A.A. Bazzi, L.K. Reville, J. Am. Chem. Soc., 102, 2490 (1980). - 185. Yokota, T., and O.P. Strausz, J. Phys. Chem., <u>83</u>, 3196 (1979). - 186. Yokota, T., M.G. Ahmed, I. Safarik, O.P. Strausz and H.E. Gunning, J. Phys. Chem., <u>79</u>, 1758 (1975). - 187. Horie, O., K. Onuki and A. Amano, J. Phys. Chem., <u>81</u>, 1706 (1977). - 188. Horie, O., J. Nishino, and A. Amano, J. Org. Chem., <u>43</u>, 2800 (1978). - 189. Skell, P.S., K.J. Klabunde, J.H. Plonka, J.S. Roberts and D.L. William-Smith, J. Am. Chem. Soc., 95, 1547 (1973). - 190. Chapman, J.S., J.W. Cooper, and B.P. Roberts, J.C.S. Chem. Comm., 407 (1976), and references therein. - 191. Apptelon, D.C., D.C. Bull, J. McKenna, J.M. CKenna and A.R. Wally, J.C.S. Perkin II, 358 (1980). - 192. Davis, D.D, R.E. Huie and J.T. Herron, J. Chem Phys., 59, 628 (1973). - 193. Lee, J.H., R.C. Machen, D.F. Nava and L.J. Stief, J. Chem. Phys., 74, 2839 (1981). - 194. Atkinson, R., R.A. Perry, and J.N. Pitts Jr., Chem. Phys. Lett., <u>54</u>, 14 (1978). - 195. Wine, P.H., N.M. Kreutter, C.A. Gump and A.R. Ravishankara, J. Am. Chem. Soc., 85, 2660 (1981). - 196. Kurylo, M.J., Chem. Phys. Lett., <u>58</u>, 233 (1978). APPENDIX A-1 # Mass Spectral Data of the C₄H₆S Isomers | | Relative Intensity | | | | | | | |------|--------------------|------|------|------|------|------|------| | m/e | 1 ~ | 2 ~ | 3 | 4 ~ | 5 ~ | 6 | 7~~~ | | 86 | 66.3 | 100 | 70.3 | 71.6 | 83.7 | 100 | 61.8 | | 85 | 19.6 | 12.5 | 23.4 | 22.9 | 45.3 | 18.4 | 100 | | 71 | 100 | 83.1 | 100 | 100 | 100 | 78.4 | 19.8 | | 69 | 5.9 | 7.6 | 6.5 | 6.3 | 2.7 | 11.7 | 7.4 | | 59 | 14.7 | 44.6 | 19.8 | 15.4 | 16.1 | 49.8 | 10.5 | | 58 | 26.3 | 16.8 | 26.4 | 24.9 | 12.4 | 17.7 | 6.5 | | 53 | 14.3 | 22.3 | 17.2 | 15.4 | 67.2 | 48.8 | 65.9 | | 52 | 4.1 | 6.0 | 6.6 | 3.6 | 20.3 | 13.6 | 14.1 | | 51 | 9.3 | 12.5 | 14.3 | 90 | 33.6 | 23.9 | 23.1 | | 50 | 90 | 12.2 | 12.6 | 8.8 | 28.4 | 19.3 | 19.5 | | 49 | 2.6 | 3.7 | 3.9 | 2.6 | 8.0 | 5.0 | 6.3 | | .47 | 3.9 | 3.6 | 5.8 | -4.8 | 33.0 | 6.6 | 2.8 | | 46 | 10.0 | 4.8 | 15.8 | 17.4 | 10.8 | 9.2 | 3.8 | | _ 45 | 33.3 | 31.5 | 41.4 | 37.3 | 47.6 | 41.2 | 33.5 | | 39 | 12.9 | 13.0 | 21.6 | 15.5 | 20.3 | 66.0 | 15.2 | | | | | • | | • | | | APPENDIX A-2 ## Mass Spectral Data for C3H6S2 | m/e ' | Relative
Intensity | m/e | Relative
Intensity | |-------|-----------------------|-----|-----------------------| | 106 | 100 | 47 | 5.7 | | 78 | 26.2 | 46 | 7.0 | | 73 | 6.9 | 45 | 28.6 | | 64 | 39.9 | 42 | 10.8 | | 60 | 8.2 | 41 | 89.1 | | 5*9 | 10.5 | 39 | 17.3 | | | | | | #### APPENDIX B # Calculations of the Nuclear Overhauser Effect (nOe) for cis and trans Ethylidenethiirane. The nuclear Overhauser effect (nOe) is a change in the nuclear magnetic resonance (NMR) signal intensity of a nuclear spin when the NMR absorption signal of another spin is saturated by irradiation of the sample at the resonant frequency of the second spin. There will be no effect unless the two spins contribute to each other's magnetic relaxation. The nOe of proton d in a molecule when proton(s) s in the same molecule are saturated is given by $[1]^{1.29}$: $$f_{d}(s) = \frac{\left[\sum \rho_{ds}\right]}{2R_{d}} - \frac{\left[\sum \rho_{dn} f_{n}(s)\right]}{2R_{d}}$$ [1] where n = All spins other than s and d in the same molecule, including those which are magnetically equivalent to d. ods = the direct dipole - dipole relaxation between spins s and d. ρ_{dn} = the direct dipole - dipole relaxation between spins n and d. R_{d} = the direct relaxation rate for d. For cis and trans Ethylidenethiirane: equation [1] may be used to derive six equations relating the six possible nOe's, which can be rearranged to give: $$f_a(b) = \frac{(1/2)\rho_{ab}R_{cc} - (3/4)\rho_{ac}\rho_{cb}}{R_{aa}R_{cc} - (3/2)\rho_{ca}\rho_{ac}}$$ [2] $$f_a(c) = \frac{(3/2) \rho_{ac} R_b - (3/4) \rho_{ab} \rho_{bc}}{R_{aa} R_b - (1/2) \rho_{ab} \rho_{ba}}$$ [3] $$f_c(a) = \frac{\rho_{ca}R_b - (1/2)\rho_{ba}\rho_{cb}}{R_{cc}R_b - (3/4)\rho_{bc}\rho_{cb}}$$ [4] $$f_{c}(b) = \frac{(1/2) \rho_{cb} R_{aa} - (1/2) \rho_{ab} \rho_{ca}}{R_{cc} R_{aa} - (3/2) \rho_{ac} \rho_{ca}}$$ [5] 14 $$f_b(a) = \frac{\rho_{ba}^R_{cc} - (3/4)\rho_{ac}\rho_{bc}}{R_b^R_{cc} - (3/4)\rho_{bc}\rho_{cb}}$$ [6] $$f_{b}(c) = \frac{(3/2) \rho_{bc}^{R}_{aa} - (3/2) \rho_{ac}^{\rho}_{ba}}{R_{aa}^{R}_{b} - (1/2) \rho_{ab}^{\rho}_{ba}}$$ [7] Raa, Rand Rcc are the rates of relaxation of the a, b, and c protons. Assuming intramolecular dipolar relaxation is the only relaxation mechanism, $$R_{aa} = R_a + \rho_{aa}/2 = 3\rho_{ac} + (3/2)\rho_{aa} + \rho_{ab}$$ [8] $$R_{b} = 2\rho_{ba} + 3\rho_{bc}$$ [9] $$R_{b} = \frac{2\rho_{ba} + 3\rho_{bc}}{\rho_{ba}}$$ $$R_{cc} = R_{c} + \rho_{cc} = \frac{2\rho_{ca} + \rho_{cb} + 3\rho_{cc}}{\rho_{ca}}$$ [10] For dipolar relaxation between two protons, i and j, $\rho_{ij} = \rho_{ji}$, and $$\rho_{ij} = (\gamma^4 \hbar^2 T_c) / (r_{ij})^6$$ [11] where $r_{ij} = proton-proton distance.$ $$T_{\rm c}=correlation$ time for the i - j interaction. If $T_{\rm c}$ is indentical for all protons in the molecule, then Thus, if the geometry of the molecule is known, the relative ρ 's may be calculated. The ρ 's can then be used to predict the nOe's. Proton - proton distances in <u>cis</u> and <u>trans</u> ethylidenethiirane were calculated using the structural parameters for methylenethiirane ¹²⁸ and literature values for the parameters of the CH₃ group. For the methyl group, which is free to rotate, distances of closest approach were calculated. The interproton distances for the two isomers are tabulated below, along with the calculated relative ρ 's, normalized to ρ be | Protons | Interprotor | Distance(Å) | ρ/ρ | bc | |---------|-------------|-------------|---------------|-------| | | Cis | trans | cis | trans | | c,c | 1.79 | 1.79 | 6.24 | 6.24 | | a,a | 1.84 | 1.84 | 5.25 | 5.25 | | a,b | 3.88 | 4.27 | 0.060 | 0.034 | | a,c | 4.83 | 2.80 | % -016 | 0.43 | | b,c | 2.43 | 2.43 | 1.00 | 1.00 | Using the calculated relative o's and equations [2] - [10], the expected nOe's may be calculated for both isomers. | | Proton(s) | Proton(s) | Calculated nOe values | | | |--------------------|-----------------|-----------------|-----------------------|--------|--| | nOe | saturated | observed | cis | trans | | | f _a (b) | СН | CH ₂ | 0.004 | 0.0001 | | | f _a (c) | CH ₃ | CH ₂ | 0.001 | 0.069 | | | f _b (a) | CH ₂ | СН | 0.019 | 0.006 | | | f _b (c) | CH ₃ | CH | 0.481 | 0.488 | | | f _c (a) | CH ₂ | CH ₃ | 0.0003 | 0.047 | | | f _c (b) | СН | CH ₃ | 0.023 | 0.024 | | It should be emphasized that several assumptions have been made in the above calculations, and so the observed nOe's may differ from the calculated ones. Several factors may affect the observed nOe^{129} . - a) Any relaxation caused by species outside the molecule will will increase the total relaxation rate of each proton and so decrease the nOe's observed. - b) The -CH $_3$ group of ethylidenethiirane may spin relativly fast, resulting in shorter T $_{\rm c}$'s (correlation time) for interactions involving the methyl protons. - c) The rapid spinning of the methyl group may also cause spin rotation relaxation of the -CH₃ protons, decreasing the nOe's observed for these protons. #### APPENDIX C-1 Estimation of the Ratios, k_2 , $3/k_1$, 2, at t=0,P=1200 torr and 250 torr, and trans (4)/cis (3) at t=0,P=1200 torr for S(1D_2) ### Addition to $1,2-C_4H_6$ In the photolysis of the COS-1,2-C $_4$ H $_{\circ}$ 6 system, the principal reactions are as follows: COS + hv $$\longrightarrow$$ CO + S($^{1}D_{2}$, ^{3}P) S($^{1}D_{2}$) + COS \longrightarrow CO + S₂ S($^{1}D_{2}$) + M \longrightarrow S(^{3}P) + M [2] S(^{3}P) + COS \longrightarrow CO + S₂ S($^{1}D_{2}$, ^{3}P) + 1,2-C₄H₆ Products [5] (A) $$(k_{2,3}/k_{1,2})^{1}D$$ and $(\frac{\text{trans/cis}}{\text{t=0}})^{1}D$ at $P = 1200 \text{ storr}$. (i) Amount of $S(^3\Gamma)$ reacted with $1,2-C_4H_6$: At 750 torr (Table III-3), the total S atoms (1D_2 and 3P) produced is: $(R_{CO}^{\circ} \times 8.3)/2 = 4.25 \text{ } \mu\text{moles}$ Assume equal conversions at P = 1200 and 750 torr, i.e. $4.25 \text{ } \mu\text{moles S}(^{1}D_{2}, ^{3}P) \text{ atoms and 5.4 } \mu\text{moles CO are produced.}$ Since the $S(^{1}D_{2})$ to $S(^{3}P)$ ratio is $\sim 67:33$ in the primary step 19 , at P = 1200 torr, the primary yields of $S(^{1}D_{2})$ and $S(^{3}P)$ atoms are: $$S(^3p) = 0.67 \times 4.25 = 2.85 \mu moles$$ $S(^3p) = 0.33 \times 4.25 = 1.40 \mu moles$ In the present system, $(k_{S(^3P)+1,2-C_4H_6}^{(^3P)+1,2-C_4H_6}^{(^3P)+COS}) > 10^3$. Thus at the COS/1,2-C₄H₆ ratio of 4/1 used in the pressure study (Table III-3), the reaction of $S(^3P)$ with COS is insignificant. Therefore, the amount of $S(^1D_2)$ atoms which reacted with COS is: $CO - CO^{\circ}/2 = 1.15 \mu moles$ For the $S(^{1}D_{2})$ + COS
reaction, $k_{2}/k_{3} \sim 2^{-19}$. It follows that the amount of $S(^{1}D_{2})^{0}$ collisionally deactivated to $S(^{3}P)$ is: 1.15 μ moles/2 = 0.575 μ moles. Therefore, the total amount of $S(^{3}P)$ atoms which reacted with $1.2-C_{4}H_{6}$ is: $0.575 + 1.40 = 1.975 \mu moles.$ (iii) $S(^{3}P)$ products (1.3. and 4) recovered at t=0: Let $(P)^{3P}$ = amounts of $S(^{3}P)$ products recovered, and $(F)^{3P}$, $(F)^{1D}$, $(F)^{3P}$ = fraction of $S(^{3}P)$ and $S(^{1}D_{2}$, $(F)^{3}P)$ products recovered, respectively. Then, $(P)^{3}P = 1.975 \times (F)^{3}P$ t=0 t=0 [6 Assuming (F) $= (F)^{1}D, ^{3}P$ t=0, P=1200 torr t=0, p=1200 torr $$= \frac{R^{1}D,^{3}P(1+2+3+4+5)}{R^{1}D,^{3}P(S+1,2-C_{4}H_{6})}$$ = 0 P=1200 torr where R = rate Extrapolation of the zero time thiirane rates in Figure III-15 to P = 1200 torr yields: $$R^{1}D, {}_{x}^{3}P(1)_{t=0} = 0.290 \mu mole/\mu mole CO$$ $$R^{1}D,^{3}P(3)_{t=0} = 0.042$$ " $$R^{1D}, {}^{3}P(4)_{t=0} = 0.123$$ From Table III-3: $R^{1D}(2)$ = 0.014, and $R^{1D}(5)$ = 0.015 µmole/µmole CO are time and pressure independent (Figs.III-14 and III-15). Thus, $$^{1}_{R}^{D}$$, $^{3}_{P}^{O}$ (1+2+3+4+5) t=0, = 0.290+0.014+0.043+0.123+0.015 p=1200 torr = 0.485 µmole/µmole CO [8] Expressing eqn. [8] in units of umole/min: $$\frac{{}_{0}^{1}P}{R}^{1} (1+2+3+4+5) = 0.485 \mu \text{mole Cox} (\frac{1}{2} + \frac{1}{2} \frac{1}{2$$ Since all S atoms produced react with either COS or $1,2-C_4H_6$, the rate of S atom reaction with $1,2-C_4H_6$ is: $$R^{D,3P}(S + 1,2-C_4H_6) = R_{CO}^{\circ} - R_{CO}$$ [10] In order to express eqn. [10] in terms of R_{CO} , R_{CO}°/R_{CO} is obtained by averaging R_{CO}°/R_{CO} values from Table III-3, which gives, $$R_{CO}^{\circ}/R_{CO} = 1.60 \text{ or } R_{CO}^{\circ} = 1.60 R_{CO}$$ [11] Substitute [11] into [10] to obtain: $$R^{1D, 3P}(S + 1, 2-C_4H_6) = 0.60 R_{CO}$$ [12] Substitute [9] and [12] into [7] to obtain: (F)^{3 P} = $$\frac{0.485 \text{ R}_{CO}}{0.60 \text{ R}_{CO}} = 0.81$$ or 81% Substitute this value into [6] to obtain: (P) $${}^{3}P$$ = 1.975 x 0.81 = 1.60 µmoles [13] t=0,P=1200 torr (iii) Amounts of 1 and (3+4) formed at P = 1200 torr, t = 0: Using extrapolated $R^{1D, 3P}(1)$, $R^{D, 3P}(3)$ and $R^{1D, 3P}(4)$ values at 1200 torr (Figure III-15), $$(1)^{1}D,^{3}P$$ = $R^{1}D,^{3}P$ (1) t=0 x CO = 0.290 x 5.4 = 1.566 µmoles [14] $$(3+4)^{1}D,^{3}P$$ = $R^{1}D,^{3}P$ (1) t=0 x CO = (0,042 + 0.123) x 5.4 = 0.891 µmoles [15] (iv) Amounts of 1, 3 and 4 formed from $S(^{1}D_{2})$ at P = 1200 torr and t = 0: $$(\frac{1}{2})^{1}D,^{3}P = (\frac{1}{2})^{1}D + (\frac{1}{2})^{3}P$$ [16] $$(3+4)^{1}D^{3}P = (3+4)^{1}D + (3+4)^{3}P$$ [17 Using [13] and corrected time zero values from Table III-4, $$(1)^{3}P = (P)^{3}P \times (1/(3+4))^{3}P$$ $$= 1.60 \times 1.041/(1.041+0.07+0.436) = 1.077$$ [18] Substitute [14] and [18] into [16] to obtain: $$(1)_{t=0}^{1D} = 1.566 - 1.077 = 0.489 \mu mole.$$ [19] # Similarly, $$(3+4)^{3}P = (P)^{3}P \times ((3+4)/(1+3+4))^{3}P$$ = 1.60 x. (0.07+0.436)/(1.041+0.07+0.436) = 0.523 µmole [20] Substitute [15] and [20] into [17] to obtain: $$(3+4)^{1}D = 0.891 - 0.523 = 0.368 \mu mole.$$ [21] Therefore, $$(k_{2,3}/k_{1,2})^{\frac{1}{1}}_{t=0,P=1200 \text{ torr}} = (1/(3+4))^{\frac{1}{1}}_{t=0,P=1200 \text{ torr}}$$ = 0.489/0.368 = $\frac{1.33}{1.33}$ Using similar procedures; the amounts of 3 and 4 may be determined and the trans/cis product ratio at t = 0, and P = 1200 is calculated to be, $$(\underline{\text{trans}}/\underline{\text{cis}})^1 D = \underline{1.4}$$ B. Evaluation of $$(k_{2,3}/k_{1,2})^{1}D_{t=0,P=250 \text{ torr.}}^{1}$$ Using zero time data from Tables III-2 and III-4, Figure III-14 and the following assumptions; this value may be calculated. (i) $$(F)^{3}P = (F)^{1}D = (F)^{1}D,^{3}P = 0.62 (62 \%)$$ is obtained from extrapolation of a recovery versus time plot. - (ii) the time dependence of (F) is pressure independent. - (iii) the ratio, $(\frac{1}{2}/(\frac{3+4}{2}))^{3p}$ is pressure independent. Calculations similar to those laid out in Section A give, $$(k_{2,3}/k_{1,2})_{t=0,P=250 \text{ torr}}^{1D} = 1.39 \sim \frac{1.4}{---}$$ In order to calculate the $(\frac{\text{trans/cis}}{\text{t=0}})^{1}D$ ratious tiles neccessary to assume $R(1)^{3}P$: $R(3)^{3}P$: $R(4)^{3}P$ is pressure independent. However, examination of Figure III-15 reveals that $R(3)^{1}D$, ^{3}P and $R(4)^{1}D$, ^{3}P exhibit different pressure dependences. Therefore, the required assumption appears to be invalid, and no attempt was made to calculate the $(\frac{\text{trans/cis}}{\text{t=0}})^{1}D$ ratio. #### APPENDIX C-2 Estimation of the % Recovery of Disulfides and the Deactivation/Isomerization Ratio for $S(^{1}D_{2})$ and $S(^{3}P)$ Addition to $\frac{CH_{3}SCH_{3}}{A} = \frac{CH_{2}(CH_{2})}{A} = \frac{CH_{3}SCH_{3}}{A} = \frac{CH_{3}CH_{3}}{A} =$ - (I) The $S(^{1}D_{2}, ^{3}P) + CH_{3}SCH_{3}$ System. - A) Determination of $F = R_{add}^{l} / R_{abst.}^{l}$, the ratio of addition and abstraction for $S(^{l}D_{2})$ atoms. When COS is photolyzed in the presence of CH_3SCH_3 , the only species reacting with COS is $S(^1D_2)$, hence the measured CO yield: CO = total S atoms produced (CO°/2) + R_{abst}^1 . [1] where R_{abst}^1 is the CO produced by abstraction (CO - CO°/2). Since the ratio of abstraction to deactivation for the $S(^1D_2)$ + COS reaction is ~ 2 , 19 the amount of $S(^1D_2)$ atoms deactivated by COS is (CO -CO°/2)/2. Assuming that 67% of the S atoms produced in the primary step are in the $^{\hat{1}}D_2$ state, 19 the amount of $S(^{1}D_2)$ atoms reacting with CH_3SCH_3 is given by: $R_{\text{add}}^{1} = 0.67 \text{ x total S atoms produced } - R_{\text{abst.}}^{1} - R_{\text{deact.}}^{1}$ $= 0.67 \text{ x CO}^{\circ}/2 - (CO - CO^{\circ}/2) - (CO - CO^{\circ}/2)/2$ [2 In order to effect the calculations, data from three mixtures having a constant COS/CH₃SCH₃ ratio (10/1) are used. Thus F in the pressure independent region (P>3 0 torr) should be the same for these mixtures. Using the data from the 30 minute photolysis of the mixture $COS/CH_3SCH_3 = 300/30$ (Table IV-2), F may be determined as follows: $$\cdot$$ CO = 13.4 µmole $$CO^{\circ} = 30 \times R_{CO}^{\circ} = 30 \times 0.771 = 21.33 \mu moles$$ = 2 x total S atoms produced. Substitution of this value into equations [1] and [2] gives: $$R_{abst.}^{1} = CO - CO^{\circ}/2 = 13.4 - 21.33/2 = 2.74 \mu moles.$$ $$R_{add.}^1 = 0.67 \times 21.33/2 - 2.74 - 2.74/2 = 3.04 \mu moles.$$ There, $$(F)^{1} = R_{add}^{1}/R_{abst.}^{1} = 3.03/2.74 = 1.108$$ [3] B) Recoveries of CH_3SSCH_3 from $S(^1D_2)'$ and $S(^3P)$ atom reactions. Assuming that the % recoveries of CH₃SCH₃ from the S(¹D₂) and S(³P) reactions are pressure independent above 300 torr (Figure IV-3 and Table IV-3), these values can be calculated as follows for the three mixtures chosen: (i) for the 30 minute photolysis of the $COS/CH_3SCH_3/CO_2 = 100/10/1300$ torr mixture, $$CO = 8.94 \mu \text{mole}$$ and $CO^{\circ} = 30 \times R_{CO}^{\circ} = 30 \times 0.58 = 17.4 \mu \text{moles}$. Since for $CO_2/COS \le 13$, $S(^1D_2)$ atoms are not completely quenched, the extent of participation of $S(^1D_2)$ atoms in abstraction and addition must be determined. Using eqn.[1], $$R_{abst.}^{1} = CO - CO^{\circ}/2 = 8.94 - 17.4/2 = 0.24 \mu mole.$$. Usting eqn.[3] $$R_{\text{add}}^{1} = R_{\text{abst}}^{1} \times 1.108 = 0.24 \times 1.108 = 0.266 \, \mu \text{mole.}$$ [4] Thus $$R_{\text{add}}^3$$ = total S atoms produced - $R_{\text{abst.}}^1$ - $R_{\text{add.}}^1$ = $(CO^{\circ}/2 - 0.24 - 0.266) = 8.20 \ \mu\text{moles}$ [5] If P^1 = recovery of CH_3SSCH_3 from $S(^1D_2)$ atom addition, and $$p^3 = " " " " " " S(^3p)$$ and assuming that P^1 and P^3 are pressure independent above 300 torr: $$CH_3SSCH_3$$ observed = $R_{add}^1 \times P^1 + R_{add}^3 \times P^3$ [6] Using Table IV-3 and eqns. [4] and [5], [6] becomes: $$0.596 = 0.263P^{1} + 8.20P^{3}$$ [7] (ii) for the 30 minute photolysis of the mixtures $COS/CH_3SCH_3 = 300/30$ and $COS/CH_3SCH_3/CO_2 = 100/10/770$. Using similar procedures as above and data from Table IV-1 and IV-3, two equations analogous to [7] can be written for each mixture, respectively: $$1.09 = 3.05p^{1} + 4.89p^{3}$$ [8] $$0.667 = 0.576P^{1} + 7.60P^{3}$$ [9] Solving equations [7] and [8] yields, $$p^1 = 0.255$$ and $p^3 = 0.064$ and from equations [8] and [9], it follows that, $$P^1 = 0.248$$ and $P^3 = 0.069$ Averaging these values gives, $$P^1 = 0.252$$ and $P^3 = 0.067$ Hence the recoveries of CH_3SSCH_3 from $S(^1D_2)$ and $S(^3P)$ atom additions at pressures above 300 torr are: $\frac{\sqrt{25}}{25}$ and $\frac{\sqrt{7}}{25}$, respectively. C) Recoveries of $C_2^{H_6}$ from $S(^{1}D_2)$ and $S(^{3}P)$ atom reactions. Similarly, assuming that each DMTSO produces 1 molecule of C_2H_6 , the recoveries of C_2H_6 from $S(^1D_2)$ and $S(^3P)$ additions are calculated to be 1.08 and 1.48, respectively, for the mixture $COS/CH_3SCH_3 = 300/30$. D) Deactivation/isomerization ratio for $(S_0)^{\dagger}$ and T_1 DMTSO. The data from the $COS/CH_3SCH_3 = 300/30$ mixture (Table IV-1) are used for this calculation and it is assumed that all the CH_3SSCH_3 observed comes from the isomerization of DMTSO. It was shown (see section A above) that: $$R_{add.}^{1} = 3.04 \mu moles.$$ Since $P_{CH_3SSCH_3}^1 \sim 0.25$ and $P_{C_2H_6}^1 \sim 0.010$, the isomerization yield is $3.04 \times 0.25 = 0.759 \, \mu mole$, and the fragmentation yield is $$3.04 \times 0.010 = 0.030 \mu mole.$$ Hence the yield of deactivated DMTSO is $= 3.04 - 0.759 - 0.030 = \underline{2.25 \, \mu \, moles}.$ Therefore, (deactivation/isomerization) $^1 = 2.24/0.759 \, \underline{\sim} \, 3$, and for S(3 P) addition, similar procedures yield: (deactivation/isomerization) 3 ~ 14. ## (II) The $S(^{1}D_{2}, ^{3}P) + \overline{CH_{2}(CH_{2})_{2}S}$ System. Using the data from Table IV-12 and the procedures described above, three
equations can be written for the three mixtures: $COS/CH_2(CH_2)_2S = 100/2.8$, $COS/CH_2(CH_2)_2S/CO_2 = 100/2.8/600$; 1200. Since the $S + \overline{CH_2(CH_2)_2S}$ reaction is pressure independent, the product recoveries from $S(^1D_2)$ and $S(^3P)$ precursors should also be pressure independent. Thus, let P^3 = recovery of 1,2-dithiolane from $S(^1D_2)$ addition, P^1 = " " $S(^3P)$ " the three equations are: $$0.620 = 0.600P^{1} + 1.01P^{3}$$ $$0.717 = 0.145p^{1} + 1.91p^{3}$$ [12] $$0.801 = 0.031p^{1} + 2.13p^{3}$$ [13] Solving [11] and [12] gives $P^1 = 0.459$, $P^3 = 0.342$ [11] and [13] gives $$P^1 = 0.411$$, $P^3 = 0.369$ Averaging these two sets of values yields $P^1 = 0.435$ and $P^3 = 0.356$. Thus the recoveries of 1,2-dithiolane from $S(^1D_2)$ and $S(^3P)$ additions are: \sim 44% and \sim 36%, respectively. Similarly, let E^3 = recovery of C_2H_4 from $S(^1D_2)$ addition, E^1 = " $S(^3p)$ ", the three equations for $C_2^H_4$ recoveries are: $$0.383 = 0.600E^{1} + 1.01E^{3}$$ [14] $$0.064 = 0.145E^{1} + 1.91E^{3}$$ [15] $$0.107 = 0.031E^{1} + 2.13E^{3}$$ [16] Solving [14] and [15] gives $E^1 = 0.667$, $E^3 = -0.019$ As $E^3 < 0$ is clearly unrealistic, these values of E^1 and E^3 are discarded. However, solving [14] and [16] gives: $$E^1 = 0.566, E^3 = 0.043$$ Thus the recoveries of C_2H_4 from $S(^1D_2)$ and $S(^3P)$ additions are: $\frac{\sqrt{578}}{2}$ and $\frac{\sqrt{48}}{2}$, respectively. Assuming that all the 1,2-dithiolane observed comes from isomerization, and that C_2H_4 comes from fragmentation of the TTSO, the deactivation/isomerization ratios are calculated to be (see Section D above): (deactivation/isomerization) $\frac{1}{\sqrt[4]{0}}$ (deactivation/isomerization) $\frac{3}{\sqrt{1.7}}$ It should be emphasized that the above calculations may be subject to considerable uncertainty due to errors in measurement and S product instabilities, and hence the values obtained are approximations only. #### APPENDIX D ## The Role of CO₂ in the COS-CO₂ System. It has been observed that when COS is photolyzed in the presence of ${\rm CO}_2$, the rate of CO formation (${\rm R}_{\rm CO}$) decreases with increasing ${\rm CO}_2$ pressure. The following steps can be postulated: From this scheme, it is clear that there are two possible ways that CO_2 can decrease the CO yield. It can quench the excited COS formed in the primary step ([lb]), thus decreasing the amount of S atoms formed in step [la]. Alternatively, CO_2 can act as a third body chaperon for the recombination of $\mathrm{S}(^3\mathrm{P})$ atoms as shown in step [4]. The relative importance of these two reactions (steps [1b] and [4]) can be determined by measuring the CO yield in the presence of CO₂ and a reactive alkene. The possible occurrence of step [4] does not affect the S atoms produced in the primary step, [1a]. Thus, if it takes place, then in the presence of sufficient quantities of (CH₃)₂C=CH₂ to scavenge the $S(^3P)$ atoms, R_{CO} should drop to exactly half the rate obtained when pure COS is photolyzed. On the other hand, if step [lb] is important, the CO yield should drop to half the value when COS is photolyzed in the presence of CO_2 . The CO yields (in µmoles) obtained from 4 minute photolyses of COS (100 torr), $COS/CO_2 = 100/1300$ and $COS/CO_2/(CH_3)_2C=CH_2 = 100/1300/20$ and 50 torr mixtures are shown below. The values in brackets represent the half yields of CO. | CC |)S | cos | /co ₂ ` | cos/ | $CO_2/(CH_3)_2C=CH_2$ | | |--------|---------|------|--------------------|------|-----------------------|---| | 2.55 (| 1.28) 2 | .38 | (1.19) | | 1.36 a | - | | 2.55 (| 1.28) 2 | .49 | (1.25) | | 1.37 a | | | 2.56 (| 1.28) 2 | .46 | (1.23) | | 1.37 a | | | 2.59 (| 1.30) 2 | .49 | (1.25) | | 1.30 b | | | 2.58 (| 1.29) 2 | .48 | (1.24) | | 1.46 b | | | 2.49 (| 1.25) 2 | .50 | (1.25) | |) 1.29 b | | | 2.58 (| 1.29) 2 | . 42 | (1.21) | | 1.25 b | | | 2.57 (| 1.29) 2 | .41 | (1.21) | • | 1.32 b | | | 2.49 (| 1.25) 2 | #38 | (1.19) | • | 1.24 b | | ^a $P(iso-C_4H_8) = 20$ torr. It is apparent that 50 torr $(CH_3)_2C=CH_2$ are required in order to completely scavenge the $S(^3P)$ atoms. Although there is some scatter in the data, the CO yields from the $COS/CO_2/C_4H_8$ mixtures in general, are closer to the half CO values of the pure COS photolyses than to those from the b $P(iso-C_4H_8) = 50 torr.$ 270. COS/CO_2 experiments. Thus, it is concluded that the role of CO_2 in decreasing the CO yields from the photolysis of pure COS is to act as a third body energy sink for the recombination of $S(^3P)$ atoms. #### APPENDIX E ## The Intermediacy of S(3P) Atoms in the Photolysis of Thiirane. In preliminary studies, it was observed that photolysis of thiirane in its first long wavelength absorption band ($\lambda \approx 240 \text{ nm}$) led to the formation of C_2H_4 (~90%) along with small amounts of H_2 , CH_4 and C_2H_2 . $S_2(^3\Sigma_g)$ was detected in flash photolysis experiments. Scavenging experiments with added alkenes showed that $S(^1D_2)$ atoms were not formed. The following steps for the photolysis were considered: $$\sum_{S} (S_0) + hv \xrightarrow{\lambda > 240 \text{nm}} \sum_{S} (S_1)$$ [1] $$C_2^{\text{H}_2} + H_2^{\text{S}} + H_2^{\text{CH}_4}$$ [2a] $$\begin{array}{c} \text{1.s.c.} \\ \text{S} \end{array}$$ $$\begin{array}{c} \text{(2b)} \end{array}$$ $$(T_1) \longrightarrow C_2H_4 + S(^3P)$$ [3a] $$S (S_0) = 2C_2H_4 + S_2(^3\Sigma_g^-)$$ [3b] $$(S_0) = 2 \times (S_0)$$ [3c] $$\sum_{S} (3_0) + S(^{3}P) \longrightarrow S_2(^{3}\Sigma_{g}^{-}) + C_2H_4$$ [4] In the presence of alkenes however, the C_2H_4 yields were suppressed and very small quantities of the thiirane analogue of the alkene, along with a terminal alkene corresponding to a C_2H_4 + alkane adduct were detected. These observations can be rationalized in terms of the following reactions, with the example of 1-butene: less than the amount of C_2H_4 suppressed and slowly increased with increasing alkene pressure, up to -1000 torr. Although kinetic and mechanistic arguments could be presented to the effect that the bulk of the secondary thirrane was formed in a sulfur atom transfer reaction, step [8], and not from $S(^3P)$ precursors via step [3a], more direct evidence was required to prove conclusively that $S(^3P)$ atoms are not produced in the photolysis. The secondary thiirane yields were several orders of magnitude The technique of flash photolysis - vacuum UV absorption spectroscopy has been used to study the kinetics of $S(^3P)$ atom reactions, by monitoring the decay of the $S(^3P_2 \rightarrow {}^3S_1)$ resonance line at 180.7 nm. Thus this technique allows the unambiguous detection of any $S(^3P)$ atoms present in the photolysis of thiirane. The flash apparatus has been described previously. 53 It consisted of quartz reaction cell (20 cm long and 2.0 cm I.D.) with LiF and suprasil windows, positioned parallel to the limbs of a U shaped flash lamp inside a thermostated aluminum lined oven housing. An aperture at each end of the housing allowed passage of light from the flash spectroscopic lamp at one end, to the vacuum UV spectrograph at the other. The flash and spectroscopic lamps were operated at 13.5 and 9.5 kV, respectively. 0.7 Torr thiirane was flash photolyzed in the presence of 200 torr ${\rm CO}_2$ diluent. Spectra were taken using a spectroscopic slit width of 10 μ . With a 2mm Vycor 791 filter around the cell body (λ >230 nm), the spectra showed no trace of the S(3 P) absorption line. However, in the absence of the filter (λ >180 nm), the S(3 P) resonance line was observed, indicating that S(3 P) atoms are produced in the short wavelength photolysis of thiirane. Based on this observation and the results from conventional studies, it can be concluded that the main process in photolysis of thiirane at long wavelength (λ >.230 nm) is intersystem crossing of the initially formed (S_1) state thiirane to the lowest excited triplet (T_1) state followed by bimolecular reactions with ground state molecules leading either to deactivation or to the formation of $C_2H_4 + S_2(^3\Sigma_g^-)$, that is,steps [1] - [2] and [3b] - [3c]. The absence of $S(^3P)$ atoms in the long wavelength photolysis may be ascribed to the endothermicity of step [3a] ($\Delta H \sim 20 \text{ kcal mole}^{-1}$). Shorter wavelength ($\lambda > 180 \text{ nm}$) photolysis confers an extra 40 kcal mole internal energy to the molecule, thus overcoming the energy requirement of reaction 274 [3a]. Mechanistic details of the long wavelength photolysis of thiirane are given in the accompanying reprint which follows. Pages 275-6 (a reprint titled Detection and Properties of Triplet State Thiiranes) have been removed due to lack of copyright permission. However the material can be found in J. Am. Chem. Soc., 85, 1089 (1981).