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Abstract

In the Journal of Algebra 323(2010) R.Barrington Leigh et al. derive the
number and degrees of the irreducible characters of G;, the group of invertible
2x2 matrices over the ring Z/p'Z for p an odd prime. Here we generalize that
work by finding the number and degrees of the irreducible characters of the
groups of families of 2 x 2 unitary matrices over quadratic extensions of certain
local rings. We will form the quadratic extension first by adjoining the square
root of an invertible element of the ring, and then by adjoining the root of a

nilpotent element.

The overarching argument is inductive: our unitary group will be denoted
U;, where [ is a modulus of sorts. This argument requires that we know the
results for [ = 1, and in the case of the quadratic extension by the square
root of a unit, the results are known from the author’s own Masters’s Thesis,
but also from the work by V. Ennola. The results for [ = 1 when the root
of a nilpotent element is adjoined are developed as chapter 5 of the present
work. The earlier work of Barrington Leigh et al. was based on Clifford theory,
and we shall also follow this method, though many new technical difficulties
arise in the unitary case, particularly when [ is odd. We will depart from
Clifford theory only when working out the nilpotent case for [ = 1, since we
will there be able to use a result from Serre concerning the characters of semi-
direct product. We will also give a fuller explanation of certain aspects of the
Barrington-Leigh work, in order that they might be adapted to the unitary

groups.
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Chapter 1

Introduction

The irreducible characters of GLy(F,) are given in Fulton and Harris[FH] and
those of the subgroup of unitary matrices are stated in the 1963 paper “On
the Characters of the Finite Unitary Groups” by Veikko Ennola[E], in Annales
Academiae Scientiarum Fennicaee Mathematica. In their Journal of Algebra
paper of 2010, Barrington Leigh et. al replace the finite field with Z/p'Z (for
an odd prime p), and find the degrees, numbers, and values of the irreducible
characters of the general linear group over that ring. The present work relaxes
conditions on the ring, then takes a quadratic extensions by both invertible
and non-invertible elements, so that one can consider the group of unitary 2 x 2
matrices over a conjugate bilinear form. We find the degrees and numbers of
the irreducible characters of these unitary groups.

We will see that such unitary groups contain certain convenient abelian
subgroups, and the plan will be to begin with irreducible characters of such a
subgroup, and use Clifford theory to arrive at an irreducible characters of the
unitary group.

The overall argument is inductive; we find the character degrees and num-



bers for U; the unitary group, assuming that this information is known for
U,_1. When we adjoin the square root of an invertible element of the ring, the
base case comes from Ennola [E], and a previous work of the present author
[C]. For the case of adjoining a non-invertible element on the other hand, we

work out the base case in the present work.



Chapter 2

Preliminaries

2.A Representations

Let G be a finite group and V' be a finite dimensional C vector space; a
representation of G is a homomorphism p : G — GL(V). If we choose a basis
for V', we can identify G with a group of invertible matrices. The dimension
of V is called the degree of p. We can use representations, together with some
of the machinery of linear algebra, to investigate the structure of G. When
the context is clear, one often refers to V' itself as the representation.

Given a representation p as above, a subspace W of V' is a subrepresentation
if, for all ¢ € G,w € W py(w) € W; that is, W is a G invariant subspace.
A representation that has no non-trivial subspaces is called irreducible. It
is known that finite groups have finitely many irreducible representations,
and that every representation of a finite group can be expressed as a direct
sum of irreducible representations. Hence it suffices to know the irreducible
representations of GG. In fact the squares of the degrees of all irreducible

representations of GG sum to the order of G, and this is how we will demonstrate



that we have found degrees and numbers of all irreducible characters of our
group.

We can also view representations from the perspective of the group algebra
which is denoted C[G]: given G, take formal sums of elements in G as a C
vector space, and define multiplication of basis vectors g, h to be consistent
with the group multiplication; then extend by linearity to the multiplication
of any two vectors. This is an associative algebra, and we can move freely
from group to algebra representations (by linear extension), as well as from
algebra to group representations (by restriction). When seen in the group
algebra context, a representation makes V' into a C[G] module.

Any representation p of G restricts to a representation of a subgroup H of
G. It is possible to go in the other direction as well; given a representation of
H,r: H — GL(V) we can induce this to a representation on G. To see how
this might be done, suppose first that we already have a representation on G,
and that W C V be a subspace of V' invariant under the action of H. Given
any g € G, the subspapce gl will depend only on the coset gH that g lies
in, since if ¢’ € gH, ¢W = (gh)W = g(hW) = gW where h € H. If for some
o € G/H we write oW for this subspace, then if every v € V can be written
uniquely as a sum of elements of such subspaces, we say that V' has been
mduced by W, and we write V = Indi, or Ind W. It can be shown (Fulton
and Harris) that given a representation W of H, the induced representation
V of G always exists and is unique. Unfortunately, a representation that is

induced from an irreducible representation is not, in general, itself irreducible.



2.B Characters

With any representation V' of GG, we can associate a function y : G — C
defined by x(g) = trace(p(g)), which is called the character of the represen-
tation. Note that in general, only characters of degree 1 representations are
homomorphisms. Characters have been used since the late 19th century to
investigate representations of groups - the character will determine a represen-
tation up to isomorphism. A character is called irreducible if it comes from
an irreducible representation.

We show first, that characters can be induced; in fact if f : H — C is any

class function (function constant on conjugacy classes of H), define:

) flz) zeH
flx) = (2.1)

0 r¢ H
then we can define a linear map Ind% from the space of class functions on H
to the space of class functions on G, given by Ind$ f(g) = ﬁ Y owec fla gx).
One can show that this map is adjoint to the restriction map sending class
functions of G to class functions of H. This fact insures that induced characters

are characters of G.

On the other hand, inducing an irreducible character of H does not usually
produce an irreducible character of G. Clifford theory however, gives us a
way of beginning with an irreducible character of a normal subgroup, and

producing an irreducible character of G by using a combination of extension

and induction.



2.C Clifford Theory

We briefly review some of the concepts of Clifford theory that provide the
framework of the argument in this work. Let G be any finite group , H < G,
and ¢ an irreducible character of H. The elements of G act on the irreducible
characters of H by conjugation: if g € G, define ¢? by ¢9(h) = ¢(ghg™"). The
subgroup T of GG that acts trivially on ¢ is called the inertia group of ¢ in G,
and is denoted Iy¢. A fundamental theorem in Clifford theory states that if
1 is an irreducible character of T such that [1z, @] # 0 then ¢ is irreducible.

From [I], chapter six:

Theorem 2.C.1 (Clifford) Let N be normal in G, ¢ € Irr(N), and let T be

the inertia group of ¢ in G. Let:

A= {4 € Ire(T) [[¢w, ¢] # 0}, B = {x € Irr(G) [[xw, ¢] # 0}
Then:
1. v € A= % € Irr(G)
2. 1) — 1% is a bijection of A onto B.

3. if v € A, Y& = y, then 7 is the unique irreducible component of yz in
A.

4. if ¢ € A, 9 = x, then [Yn, ¢] = [xn, ¢]

There can be many irreducible characters of the inertia group that lie over

¢ € Irr(N). The next theorem from Clifford helps us count these.

Theorem 2.C.2 (Gallagher) Let N be normal in G, ¢ € Irr(NV), and let T

be the inertia group of ¢ in G. If y € Irr(T), with x5 = ¢, then for all
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B € Irr(T/N), the characters Sx are irreducible and distinct for distinct 3,

and are all of the irreducible constituents of ¢¢.

This means that the number of irreducible characters of G derived from
a character of the normal subgroup will be the index of that subgroup in the

inertia group of the character, i.e. [T': N]| as in our work 7'/ N will be abelian.

Some Extension Theorems

The method of the present work involves taking an irreducible character
on a normal subgroup of the unitary group U;, and finding an extension of this
character to the inertia group. The method of this extension will depend on
the parity of I: when we adjoin the root of an invertible element, it is easier
for [ even, and when we adjoin the root of a non-invertible element, it is easier
for [ odd. In any case, we will require a variety of techniques of extension of
characters, and we will state and prove some of these techniques here.

We begin with a lemma from [S2]:

Lemma 2.C.1 If GG is a finite abelian group, and N is a subgroup of GG with
irreducible character ¢, then ¢ extends to G. That is, there is a character

x of G such that the restriction of x to N is ¢.

Proof. Let ¢ be a character (necessarily linear) on N. We will use induction
on [G : NJ]: assume N is properly contained in G (else there is nothing to
prove). Let # ¢ N; there is a smallest positive integer k such that 2* € N.
Then ¢(2*) = ¢ € C, and since ¢ is a homomorphism, ¢(z)* = ¢, thus setting
é(z) equal to a kth root of ¢! will extend ¢ to the subgroup generated by N

and x. Calculation shows that this extended character is well defined, and

IThis can be done since C* is a divisible group.
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since [G :< N,z >] < [G : N] the Lemma is proved. (It can also be shown

that the number of distinct such extensions is [G : N]). O

We are now in a position to demonstrate a proposition that will be used

many times in the arguments that follow:

Proposition 2.C.1 Let N be a normal subgroup of a finite group G, and
¢ a character on N of degree 1. If S is an abelian subgroup of G that is
contained in the inertia subgroup of ¢, then ¢ extends to N.S. That is, there

exists a linear character 6 of N.S such that € restricted to N equals ¢.

Proof. We restrict ¢ to the intersection N N S. This intersection is a normal
subgroup of S (which is abelian), and we have seen that the character on
N N S extends to a character 7 on S. Now define a character § on NS by
O(ns) = ¢(n)vy(s). Note that € is well defined, since if n;s; = nass, then

ny'ng = sys7t € N NS, and since ¢, v agree on N N S:

d(ny ) p(n1) = y(s2)v(s1)
P(n1)v(s1) = d(n2)y(s2)
9(71181) = 9(71282)

The following calculation shows that 6 is a character that restricts to ¢ on

N:



B(n1sinass) = O(n1simasy s182)
= ¢(nisinesy ' )y(s152)
= ¢(n1)d(s1mzsy)v(s1)7(s2)
= ¢(n1)¢™ (n2)7(s1)7(s2)

= ¢(n1)d(n2)y(s1)7(s2)
= 0(71181)9(71282)

It follows from Lemma 2.C.1 and the above argument, that the number of

S| _ INs] B

extensions from N to NS is wns] = 9] -

The next result will be used only once, but it is indispensable:

Proposition 2.C.2 Let N be a normal subgroup of G and ¢ a G invariant
irreducible character of N. If the degree of ¢ is relatively prime to [G : N],

then ¢ extends to G.

Proof. The proof of this fact is somewhat involved; it involves the concepts of
projective representations as well as some group cohomology.
A projective representation of a group G is a map X : G — GL(n,C) such

that for some scalar v(gh) € C:

X(g)X(h) = X(gh)y(g, h)

The function v : G x G — C* is called the factor set of X. Calculation
shows that a necessary condition on factor sets is that for all z,y,z € G is

that vy(zy, 2)v(x,y) = v(x,y2)v(y, z). It can be shown that for any factor set



v there is a projective representation of G having that factor set.

We can replace C above by any abelian group A, and consider the group
Cy of arbitrary maps from G to A (with point wise multiplication), as well
as Cy, the group of maps from G x G to A. Following the terminology of
cohomology, we have a boundary map 0 : Cy — Cs, so that for any u € Cf,
§(u)(g, h) = pu(g)p(h)u(gh)~t. Tt easy to see that §(u) is a factor sets.

The factor sets are a subgroup of Cy; ? this subgroup is called Z2(G, A),
the 2 co-cycles. The image of C; under the boundary map is called B*(G, A),
the 2 co-boundaries. Finally, the quotient Z*(G, A)/B*(G, A) = H*(G, A),
the second co-homology group. With this framework in place, we can state

the following:

Proposition 2.C.3 Let N < G, with 6 € Irr(N) invariant in G, and afforded
by the representation Y. Let X be a projective representation of G extending
Y, and satisfying the conditions above. If v is the factor set of X, we can
define ¢ € Z*(G/N,C) by ¥(gN,hN) = (g, h). Then 1 is well defined and
the image ¢ € H*(G/N,C) depends only on 6, and @ extends to G if and
only if 1 = 1.

Proposition 2.C.4 [I] Let F be an algebraically closed field, and G a finite
group. Then H?(G,T) is finite and each of its elements has order dividing
|Gl

Proof. Beginning with the statement of a projective representation:

X(g)X(h) = X(gh)v(g,h)

2actually the kernel of the boundary map from Cy to Cs

10



Taking the determinant of both sides, and noting that the degree of X
equals the degree of 6, we see that:
(g, h)* = det(X(g))det(X(h))det(X(gh) ") € B*(G,C")

Thus (g, k)& is congruent to 1 in H?(G, C*), so the order of the image of v

in H*(G,C*) divides the degree of 6. O

]
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Chapter 3

The Ring

Let R be a finite commutative ring with m € R such that for every ideal
contained in R, I = 7R for some non-negative integer i, and such that for
some minimal positive integer I, 7' = 0. Thus R is a local ring and 7R is
the unique maximal ideal. As R is finite, R/m R is isomorphic to some finite
field Fy; we will always assume that ¢ is a power of an odd prime. We will
write R; for R if we need to emphasize that [ is the minimal power of 7 that
equals zero; if there is no chance of confusion, we shall sometimes just write
R for this ring. Let o be a non-square invertible element in R;; we denote the
quadratic extension ring Rj[\/a] by R;.. Our concern is to find the degrees
of the irreducible characters of U;, the group of unitary 2 x 2 matrices, with
elements in R;,, as well as the number of such characters. After this, we
will turn to the case of a quadratic extension of R by the square root of a
non-invertible element. We require a conjugate linear form on the module
R, o x R, and similarly in the case of extension by a non-invertible element.
It would be convenient to have all such forms be equivalent in some sense, as

this would give us freedom to choose any convenient matrix of the form. This

12



equivalence will occur if the norm map N : RS, — R; is surjective, where

N(a+by/a) =a* — ab?

3.A Unique Expression of Ring Elements and
Conditions of Invertible Elements

We fix a transversal 7 of the quotient R;/mR; and include 0 € R; in T'; this

fixed transversal allows the following:

Lemma 3.A.1 If a € R;, a can be written as a unique sum:

am Va4t agmHag for a; €T 0<i<l

Proof. We will write R for R;; let a € R. We have a = wa’ + ag where ag € T,
and is thus unique. Similarly ' = wa” 4+ a; with a; € T, hence unique, so that
a = m2ad” + may + ag. This can be continued until the form in the lemma is

reached.

Definition 3.A.1 We shall refer to sums such as
0,1_17Tl_1 + al_gﬂ'l_z + -+ a1+ ag

from Lemma 3.A.1 as quasi-polynomials. They are not true polynomials

because we can have, for example: br’ 4 cr® = dritt.

13



Proposition 3.A.1 An element a = q;_17" ' + o2+ -+ aym+ayg € R,
is invertible if and only if ay # 0, where 0 here is the additive identity in
Rl/ﬂ'Rl.

Proof. If ag = 0 then @ € 7R and is nilpotent, hence not invertible; if ag #
0 then @ ¢ 7R and if (a) # R then we would have (a) contained in the
(unique) maximal ideal generated by m, but this implies that a € 7R which is
a contradiction. Thus (a) = R and a is invertible.

]

From the unique expression for each element a € R;, we have |Rj|= ¢! since
there are ¢ choices for each a;. Since a is a unit if and only if ag = 0, then the
number of units in R is ¢'~(¢ — 1).

At this point we consider only the quadratic extension R;,; after dealing
with its characters we will turn to R, the quadratic extension of R; by /7.

For convenience in some of the arguments below, we define pure roots in

Rlﬂi

Definition 3.A.2 An element a + b\/a € R, is a pure root if a = 0.

14



Chapter 4

Quadratic Extension by the

Square Root of a Unit

The unitary groups that are the subject of this work are those matrices that
preserve a conjugate linear form from, for example, R, X R;, to R;,. When
we adjoin the square root of a unit of R, then all such forms are equivalent
in some sense, and to show this we will need to show the surjectivity of the
norm map N : R}, — R; given by N(a + by/a) = a* — b’a. For this reason,

we want to know the number of units in R ,.

Proposition 4..1 a+by/a € Ry, is invertible if and only if d = a* — b?a € R,

is invertible. By Proposition 3.A.1, d is invertible if and only if dy # 0.

Proof. If a*> — b*« is a unit in R; then (a — by/a)(a® — b*a)~! is the inverse of
a + by/a. On the other hand, let a® — b = 7w for some x € R, and suppose

that a 4+ by/a is invertible. Then there exists ¢ + dv/a € R, such that

(c+ dva)(a+ bya) = (ac + bda) + (ad + be)y/a =1

15



It follows that ac 4+ bda = 1 and bc + ad = 0. From this system we get:

1. a=c(a® — b*a) = mxc

2. b= —d(a* - bVa) = —mzd

Then a+by/a = mx(c—dy/a) € TR, is not invertible; a contradiction. [

Corollary 4..1 If a,b € R;, then a + by/« is a unit if and only if at least one

of a or b is a unit in R;.

Proof. Let a = Zi;(l) a;mt, b= Zi;(l) b, and a® — b?a =d = Zi;(l] d;mt. Tt is
clear that if both a, b are not invertible, they are both in 7R, and a + by/« is
not invertible. Next, suppose that one of a,b is a unit in Ry, but that a + b/«
is not invertible, so that a?> — b € mR;. We consider the natural projection
map P from R; to R;/mR; ~TF,. Then 0 = P(a* —b*a) = (a*)o — (b*)oap. But
this is a contradiction, because one of (a?), (b?)o is non-zero, and from the case

of quadratic extensions over finite fields, we know that (a?)y — (b*)oag # 0.

Therefore d = a® + b*c is a unit and a + b/ is a unit.

4.A The Kernel of the Norm Map

We denote by L the kernel of the norm map N : R, — R} where N(a +
by/a) = a* — b*a. We will show the surjectivity of this map by counting the

units in R; and R;,, as well as the size of the kernel.
Proposition 4.A.1 The size of the kernel of the norm map N is ¢/~ !(qg + 1).

Proof. We will give an algorithm for constructing norm 1 elements. Let 7 be

our fixed set of coset representatives of R;/mR; (which is isomorphic to F,).
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The kernel of the norm map n : F, — [, has size ¢ + 1 ([Ca] p 9), so we can

find that number of pairs (ag, bp) in 7 x T such that:

ag—abgzl—i-m“l, r € R,

We now construct elements a,b € R; such that a> — ab? = 1: choose any of
the ¢+1 pairs ag, by such that a?—b2a = 1+7r;. Choose the other ” coefficients”
(b;) of b = b7t + -+ 4 by + by arbitrarily; there are ¢'~! ways to select
these elements. Now solve successively for ai,as,...,a;_1. For example, to
find ay, we require that (ajag + apay) — a(b1bg + bob1) + r1 = 0 where the zero
is the additive identity of R/mR. Since only a; is unknown here, and aq is a
unit, we can find a; that solves the above equations and replace it if necessary,
with an element in the transversal. We can continue in this way to find all of
the " coefficients” of a. As there were g + 1 pairs (ag, by) and ¢/~ choices for b
for each, the proposition holds.

]

Since the number of elements of R;, is ¢* — ¢* % = ¢'"'(¢ — 1)¢" (¢ + 1)

then the size of the image of the norm map is:

¢ Hg—1)d" " (g+1)
¢ (g +1)

=q¢(q—1)
which is the number of elements in R} so that we have proved:

Theorem 4.A.1 The norm map N : R}, — R is surjective.

For reference, we list the numbers of various types of elements of both R,

and Rl@.
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Table 4.1: Enumerating Elements of R and R;

Rl Rl,a
number of elements q %
number of non-units g1 R
number of units | ¢ (¢ —1) | ¢ (g —1)¢ g+ 1)
number of norm 1 elements ¢ tq+1)

4.B The Form and the Group

Consider the additive group M given by R;, X R;,; this is an R;, module.
By a hermitian form on M, we mean a map from M to R;, so that for

u,v €M, a € Ry
o H(u+uv,w) = Huw,w) + H(v, )
o H(u, v+ w) = Hu,0) + Hlu, w)

o H(au,v) = aH(u,v) = H(u,av)

o H(v,u) =H(u,v)

The bar above refers to conjugation in R; . Note that v € M implies H(v,v) €
R;. A form is called non-degenerate if for all v # 0 € M, there exists w € M
such that H(v,w) # 0, and a space having a non-degenerate Hermitian form
is called a unitary space. As in the case of bilinear forms, if a form H on a
module V' is non-degenerate on a submodule W then V' is the direct sum of W
and its orthogonal complement. It is known that all such forms are equivalent
for a wide class of underlying rings (see [Cr] for example). We will give a
demonstration of this for our case.

If a module V with a form # has a basis (eq, es, ..., e,), then we can associate

the matrix B = (H(e;, e;)) to the form, and for any v,w € V:

18



H(v,w) = v" By

If we change to a new basis (fi, fo, ..., f,) with change of basis matrix P,
then the matrix of the form will change to PTBP. Suppose that we have two
modules M, My (with bases) with corresponding forms Hy, Ho. We say that
the forms are equivalent if there is an isomorphism 7 : M; — M, such that

for all v, w € My: Hi(v,w) = Ha(Tv, TW).

Proposition 4.B.1 For the module M = R;, X R;,, all non-degenerate

Hermitian forms are equivalent.

Proof. We note that M does have a basis, for example {(1,0),(0,1)}. We
claim there exist v,w € M such that H(v,w) = 1. To show this, it suffices
to show that we can find v, w with H(v, w) € R}, since then an appropriate
scaling of v or w will give the result. Suppose to the contrary, that for all
v,w € M, H(v,w) is not a unit. Choose z € M such that 7'~tz # 0.
Then for all y € M, H(z,y) = 7z for some z in Ry, so H(zx'"lz,y) = 0
contradicting the fact that the form is non-degenerate.

Next, we claim that for some v € M, H(v,v) is a unit (necessarily in R;).
Again, suppose not: let u,v be arbitrary in M and let a be any unit in 1 ,.
Thus 7|H(au + v, au + v) = H(au, au) + H(au,v) + H(v,au) + H(v,v), and
this implies that 7 is a factor of H(au,v) + H(v,au), but we can rearrange
this expression to get aH(u,v) + m. If we now choose u,v such that
H(u,v) = 1, and let a = 1, we get 7|2 which is a contradiction since the
characteristic of R;, is odd.

Now choose v € M such that H(v,v) = ¢ € R;. Then the form H is non-

degenerate on W =< v >, so that M = W @ W+. Note that the form must
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be non-degenerate on W+: for if there were z € W+ such that for all y € W+,
H(x,y) = 0, then we could take the following element in M : z = 0+ =
with 0 € W, and x € W+, and we would have H(z,y) = 0 for all y € M; a
contradiction. Thus, inductively, we see that there is a basis of M such that
the matrix of the form is diagonal with units of R; on the diagonal. Moreover,

since the norm map is onto, ¢!

= dd for some d € Ry . Thus replacing v by
dv, and proceeding inductively, we see that there is a basis of M such that
the matrix of the form is the identity matrix.

Finally, suppose that M; and M, are finite dimensional modules over R;,
with corresponding non-degenerate forms H;, Ho. Choose bases for each mod-
ule so that the matrix for each form is the identity matrix. If P is a appro-
priately sized matrix with PTP = I, then identifying each module with its
coordinate vectors, we see that P is an isomorphism from M; to My such

that for u,v € My, we have H;(v,w) = Ha(Pu, Pv), so that the forms are

equivalent. n

All of this justifies our use of any convenient hermitian matrix for the form.
The matrix (9 §) is the most convenient choice, as it allows us to use triangular

matrices.

4.C The Unitary Group

Let H : Rio X Rio — Ry be the form given by H(u,v) = u’Bv, where
B = (%}). Let (u,v) € R o X R, and by U; denote the 2 x 2 unitary

matrices over [?; ,:

U = {9 € Moxa(Ria) | H(gu, gv) = H(u,v)}
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Remark 4.C.1 Using (9}) as the matrix of the form #, the matrix (2Y) is

unitary if and only if it satisfies the conditions:

l.ad+cb=1
2. ab+ab=0
3. ac+ac=0
4. db+db=0
5. dc+dc=0

We find the order of U; by using the Borel subgroup: {(3 g)} N U;. This
-1

subgroup has order ¢*~2(q¢—1)(¢+1): there are ¢'~*(¢—1)¢'~*(¢+1) choices for

a since it is a unit, and d is determined by a. From remark 4.C.1, ab+ab =0
and since a is a unit, we can divide both sides by aa to find that g is a pure root,
so that b = a(ry/a) for r € R; with ¢! choices for r. The coset representatives

are of two forms: (these are adapted from [Cal)
1. <7rti/aé>, with ¢'~! choices for t.
2. <t\}a ?), with ¢' choices for .

There are ¢! + ¢' coset representatives so that |Uj|= ¢*3(q¢ — 1)(q + 1)2.

4.D Surjectivity

Below we will define abelian subgroups of U, (denoted by K,, or K, depend-
ing on the parity of [). Using Clifford theory to find irreducible characters of U,

requires starting from the irreducible characters of a subgroup, and finding the
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stabilizer subgroups (under the conjugation action by U;) of these subgroup
characters. We will see that for every character of K,, (or K,,.1), the inertia
group can always be written K,,S (or K,,;15) for some abelian subgroup S
that depends on the particular character. The proof of this fact will use the
surjectivity of various projection maps. These include maps from R;, — R, ,,
and maps from a subgroup of U; to the corresponding subgroup of U;. For
example, if k is a positive integer strictly less than [, we can consider the quo-
tient of R; by the ideal generated by 7% and identify this quotient with Ry.

Elements in the quotient can be though of as:

b o 2ty for0<i<k t; €T

where the same set of fixed coset representatives 7 can be used. We will often

k

refer to the modulus 7! or 7% in such cases, by analogy with the case of Z/p!Z.

In turn we will refer to Uy and its subgroups as "modulo” k if the elements in

it are in Ry, 4.

Lemma 4.D.1 The projection map P : R — Rj, given by

-1 k—1
P(Z tjﬂ'j) = Zt]‘ﬂ'j
j=0 §=0
is a ring homomorphism and is surjective.

Proof. Let x = Y.V t;n' € Rf. Let y = Zé.j) t;m € Ry such that t; = ¢t; for

0<4,j<k—1. Then P(y) = z. ]

The map P extends to a map from R;, — Ry, by setting P(a + by/a) =
P(a) + P(b)y/P(«) for a,b € R;. By the previous argument, this map is also
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surjective when restricted to units. Furthermore, we can extend P to matrix
groups over R, by applying it to each element of the matrix. If necessary we
will write Py to indicate a modulo £ map. We now demonstrate the surjectivity
of maps between various subgroups of U; that are nevertheless all denoted by
S. They are centralizers of certain elements of Mays(R; ). We could give each
S subgroup an identifying index, but this is unnecessary because the context

will always provide clarity.

Proposition 4.D.1 The natural projection map P from the group S = (8 2)

in U; to the analogous group in Uy is surjective.

*

Proof. The two S groups above are isomorphic, respectively, to i}, and R ,,

so the claims holds. O

We will denote by £, the norm 1 elements in R; ,; that is z € £ if and only if
2z = 1. We might write this as £; if the modulus needs to be made explicit.

Then the set of norm 1 elements in Ry, will be written L.
Lemma 4.D.2 For k <[, the projection map P : £L; — L}, is surjective.

Proof. Let a+ by/a be a norm 1 element in Ry ,, so that a® — b*a = 1 modulo
7%, We assume that we have a and b chosen such that for d = a? — b>a we
have dy =1, and d; =0 for i = 1,2,...,k — 1. We can solve for pairs (a;,b;)

for j=k,k+1,...,1 —1 as in Proposition 4.A.1. . O

Proposition 4.D.2 Let o be a square unit in R;. The natural projection map

P from S = <§ “ ) in U; to the analogous subgroup in U} is surjective.

Proof. The two S groups above are isomorphic, respectively, to £; x £; and
Ly x Ly: from the conditions in remark 4.C.1 ac+ac = 0 so +(ack +ack) = 0,

and aa + cck? = 1. Combining these last two equations, we get

23



aa + +(ack + ack) + cck* = 1

(atck)(atck)=1
so that a + ck € L, and in fact (‘3 @ ) could be written as ordered pairs
(a + ck,a — ck) with pointwise multiplication. O

Proposition 4.D.3 For any § € R;, the natural projection map P from

S = (a ”5°> in U; to the analogous subgroup in Uy is surjective.

Proof. We cannot describe this subgroup in terms of units or norm 1 elements
as in the previous two cases, therefore we merely count S modulo 7! and 7%
as well as the size of the kernel of the projection map; note that the argument
does not depend on the parity of . Taking S modulo 7! first, we see the

following:

1. Since the matrix is invertible, a is a unit.

2. Since ac¢ + ac = 0, we can divide both sides by aa to get ¢ = ar/a for

TERZ.

3. Since aa + wfcé = 1, and ¢ = ary/a, we can re-arrange to get

aa = (1 — nBria)™*

Therefore we can choose r freely from R;, then choose a from the pre-image
of (1 — wfr?a)~! in the norm map. This pre-image has the same size as the

subgroup of norm 1 elements. Thus |S| modulo 7 is ¢'¢~'(¢ + 1), and ||
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modulo 7™ is ¢™q™ (g + 1).

The kernel of the projection map from S modulo 7 to S modulo 7™ has
the form:

™me  14+7™a

1 m m—+1
( +7™a w Bc>,a’c€Rl7a

Since the product of the elements on the second diagonal is zero, then 1 +
7 must be a norm 1 element, therefore the number of choices for this element
equals the size of the kernel of the projection map from norm 1 elements
modulo 7! to the norm 1 elements modulo 7. We have seen that this map is
surjective, therefore the size of the kernel is:

¢ q+1) .

¢ g +1)
Since ™¢ can be written (14 7™a)r/a, then 7™ divides r therefore there

are ¢"~™ choices for 7™c. We conclude that the kernel has size:

I—m l—m

Thus the index of the kernel in S modulo 7! equals the order of S modulo
7™, so the projection map is surjective.

[]

Consider the map P; : Uy — U; given by sending each element of a matrix
over U to its value modulo 7; we would like to show that this map too is sur-
jective, but we must first introduce the kernel of this map - the K; subgroups.

This is the subject of the next section.
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4.E The K Subgroups: Characters and Inertia
Groups

For a positive integer ¢ <[ — 1, we define the K subgroups of U;:

Definition 4.E.1

mie  14md

KZ-:{HHB}nUl:{(HW b )}ﬂUl, a,b,c,d € Ry,

It is clear that if ¢ > %, K; is abelian. We begin the Clifford method
by defining irreducible (necessarily linear) characters of the largest abelian K

group for Uj; this will be K,,, when [ = 2m, and K,,,.1 when | = 2m + 1.
Proposition 4.E.1 For either parity of I, the order of K; is ¢*¢~9.

Proof. For any unitary matrix <f§ 5,) where z is a unit, remark 4.C.1 implies
1y + 7y = 0, and dividing both sides by rZ gives £ + @ = 0 so that y =

x(ry/a),r € Ry and similarly z = z(s\/a), s € R;. For the K; subgroups, this

means that 7'b = (1 + 7'a)(ry/a), and since (1 + 7a) is a unit, 7 divides r,

l—1 l—1

so that there are ¢'~* choices for r, thus ¢/~ choices for 7%b; likewise for 7’c.
The element 14 7'a is in the kernel of the natural projection map from Ry, to
R} . This is a surjective map, so the size of the kernel (and hence the number
of choices for 1+ 7a) is ¢*'~Y. Finally, 1 + 7°d is determined by the unitary
constraint 2w + 27 = 1, so the order of K; is ¢?¢=9¢! =g}~ = ¢*(=9.

]

If i > 1/2 so that K is abelian, we can more precisely describe elements of

the group.
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wie  14wid

Proposition 4.E.2 If K; = {(Hﬂa m'b )} N U, with ¢ > [/2 then

o 14-7mta1+7mlas/a wthy/a
Kz — {( ﬂ_ic\/a 1—7ria1+7ria2\/a ay, Az, b7 cE Rl

Proof. Since I + 7B is unitary, by remark 4.C.1:

1. since 1 + 7la; + mlazy/a is a umit, then 7'b in the statement of the

proposition must be a pure root with a factor of 7¢, hence can be written

7 \/a, for vV € R.

2. By remark 4.C.1, (1 + 7'a)(1 + 7id) + (7'c)(xib) = 1 + 7'(a + d) = 1.
Thus 7'~ divides a + d, d = —a + 7' ~'T, so 7'd = n'(—a), and d can be

assumed to be —a.

We end this section with the following proposition:
Proposition 4.E.3 The modulo 7 map from U; to U; is surjective.

Proof. Since the kernel of the map is K, thus it suffices to show that [U; : K;| =
|U;|]. The respective group orders are ¢*=3(q—1)(g+1)% and ¢*3(¢—1)(¢+1)%

The ratio of these is % = ¢*=) which is |K;|.

4.E.1 Characters on K,, and K,,.1

Following the method in [BL] for characters of the invertible matrices over
7./p'Z, we will define a character on an abelian K group, starting with A, a
primitive character on the additive group of R;. By primitive is meant that
the kernel of A contains no non-trivial ideal of R;. There are two immediate

consequences of this:
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1. if, for some x € Ry, and for all » € R, A(xr) =1, then x = 0;

2. All of the characters of R;” can be generated by A over R; by defining,

for r € Ry, rA(z) = A(rx) - in this way the set {r\, r € R} is IrrR;".

It is not immediate that a primitive character exists on R;, hence:

Proposition 4.E.4 There exists a character A : R — C* such that the

kernel of A contains no ideal of R; other than (0).

Proof. Any non-trivial ideal contained in the kernel of A contains the minimal
ideal. Thus A may be considered to be the lift of a character of the quotient
ring R;/m'"1R;. But the number of characters of the quotient is strictly less
than the number of characters of R;", which must therefore have a character
containing only the ideal (0).

O

The additive group of Ry ,, is a direct sum of two copies of R;", and any
character v on R, can be expressed as y(a+by/a) = v1(a)y2(b) where each ;
is a character on R*. There are many ways to extend A to R, but we want

this extended character to be primitive, and the simplest choice is to use

AMa 4+ bv/a) = Aa)A(D) = Ma + b)
Now we define ¢4 € Irr(K,,) by:

Definition 4.E.2 Let A € Msyo(R;,); define ¢4 € Irr(K,,) or Irr(K 1)
respectively, by:
dall + 7" B] = A[tr(7™ AB)]
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all + 7" B] = )\[tr(ﬁm“AB)]

This sort of character is given in [BL] (for the general linear group) without
much comment. It will be worthwhile here to demonstrate its reasonableness,
that is, to show that it is a natural way to define characters on K,, and K,, 1.
In what follows, we shall use K,, as our example but the argument does not

depend on this. From Proposition 4.E.2, an element of K,, has the form

1+7™a1+7maz/a ™Mby
< TMey/a 1—-m™Mai+1"az\/a ar, az, b’ c€ Ry

and since (I +7™B)(I +7™C) =1+ 7"(B + C), K,, is isomorphic to the
additive group whose elements are My.o(R;) (though it is only the modulo 7™
value of each matrix entry that matters). The number of irreducible characters
of K,, equals the order of the additive group of Myo(R;) modulo 7™. More-
over, it is clear that distinct A matrices over R; modulo 7™ give distinct ¢4
characters on K,,, so while the A matrices of definition 4.E.2, can be over R, ,,
we can account for all ¢4 characters of K, using only matrices over R;. Any
character on the additive group {(f:;acl ffaz )} ay,az,b,c € Ry can be written

as the product of characters on the elements 7™aq, 7™as, b, 7"c € R;. By

using the following matrices:

Av=(38), 4= (89).40 = (83). 40 = (28)

For g = (C:nacl W”J?j;), Atr(A;g)] is a character that applies A to one of

the entries of g. Thus in [BL], precisely these A matrices were used to form

the ¢4 characters of K,,. In the unitary case, an element of K,, has the
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form I + 7B =1+ 7Tm<a1tf/2a‘/a ﬂlb;/i\/a), thus tr(AB) will pick out one of

{m™ay, 7™ ag, 7™b, 7" c} if A is one of the following:

ae ()= (1) = (30) 40 (1)

Hence the reasonableness of definition 4.E.2, since A[tr(7™A;B)] is merely
applying A to an entry of B (multiplied by 7).

The characters ¢4 are permuted by U; by conjugation; for g € U,

(I +7"B) = ¢alg(I + 7™ B)g™']

Conjugate characters on the K group lead to the same irreducible character
x € IrrU;, thus we are only concerned with non-conjugate characters on the
K groups. The following important fact concerning conjugate ¢4 characters

comes from [BL] p 1292.

Proposition 4.E.5 The irreducible character ¢4 on an abelian K group is

conjugate to ¢ if and only if A, A" are conjugate matrices:

(0a)?(I +7"B) = ¢pa(I +7"gBg™") (4.1)
= Atr(n" AgBg™")) (4.2)
= Atr(r™g ™" AgB)) (4.3)
= ¢ (I +7"B) (4.4)

The same proof works for [ = 2m + 1 with ¢4 on K, 1.
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4.F Selecting and Generalizing the A Matrices

We wish to use as few A matrices as possible to form the ¢4 characters on
K,,. One might think that the best candidates are the matrices that form the

¢4 generators of the irreducible characters of the K group:

)=

but this is not the case because, for example, A3 and A4 are conjugate.

co
o
——
s
S
I
/N

W= O

The following will be of some help. It assumes that [ = 2m, but a similar

argument would work for [ = 2m + 1.

Proposition 4.F.1 For [ = 2m, any character ¢4 on K,, is conjugate (by U)

to a character ¢, where B is over R;, and has one of the following forms:

1. ol +7C
2. al + (8 2), such that (8 2) is not a multiple of 7.

3. xl+ (2 ‘5) where <2 3) is not a multiple of 7, and is not diagonalizable.

Proof. We will count the characters for B = xI + m¢, and then set them aside
because they lead to characters of U; that come from U;_;. These ¢ characters
are all distinct and number ¢*"=3: to see this, we write

c x+d

xl +7C = (”“ b )

m

Because of the 7™ in the definition of ¢z, there are ¢™! choices for b, c

and ¢™ choices for  + a and finally, ¢™ ! choices for z + d, since = + a has

4m—3

been selected. This gives ¢ choices in all.
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For B matrices of the second type, we will see below in section 4.H.1, that

the stabilizer T', of ¢ under the conjugation action of U; has order ¢*~2(q —

1)(g + 1), so the orbit size of such a character is [U; : T] = ¢"~'(q¢ + 1). There
are ¢ "1(q — 1) of these B matrices, which are conjugate in pairs: zI + (8 2)

is conjugate to xI + (8 2) Therefore the number of non-conjugate characters

¢ (g—1)

of this type is 5

w distinct characters on K,,.

. Multiplying by the orbit size of each character gives

Before counting the contribution from the third type, we examine more
closely the matrix (2 8) when one of a,b is a unit, and the matrix is not
diagonalizable. Conjugating by (? (1)) if necessary, we assume b is a unit and

and write (2 ‘5) = b(? ig) where T' = a(b)~!. For any <§ 2{]) € U,, we have:

(se)o(1t) (ze) " =o(z3)(%2)

1
det
22T — a2 1
:b< 2“”2T v >_
det
Suppose that the result of conjugation is a diagonal matrix, so that

2*T — 1y =w? — 2T =0

Definition 4.F.1 In our 2 x 2 matrices we will denote by neighbours, any two
elements horizontally or vertically adjacent. So that for example, in (§ %{,)

the pairs z,y and z, z are neighbours, but  and w are not.

We consider an exhaustive list of possibilites for T' € R;: a square unit ,
a non-square unit, or a non-unit. In a unitary matrix over R;,, the ratio of

squares of neighbours (where defined) must always be a non-square in Rj,.
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For example if z is a unit, by Proposition 4.E.1 y = z(r/a), and (y/z)* = ra
which is a non-square since o was chosen to be a non-square. Therefore if T’
above is a square the matrix cannot be diagonalized. If T"is a non-square unit
in R,,, it can be written r2a for r a unit in R,,; then if s is a unit in R,, and

2T = (—2rsa),” we choose the unitary matrix:

< P (z)rva )
(z)sv/a x(—rsa)
which, by an unpleasant calculation, diagonalizes <(1) %’)

If T is a non unit, and the matrix is diagonalized, then 2°T — y? =
w? — 22T = 0 so both y and w would be non-units which is impossible in
an invertible matrix. Therefore the matrix is not diagonalizable if and only if

0a

T is a non-unit or a square unit. Hence we use <b 0> where a(b)~! is a square

unit in R; or a non-unit in R;.

For the case x1 —i—b(? ‘5) where ¢ is a square unit in Ry, the b is superfluous:
since the norm map is onto the units of 17;, we can find y € R;, with yy = b.
As a result, conjugating z1 + b(? g) by <g @;),1> gives ol + (‘1) ‘{{) where o’
is a square unit; thus merely varying o over all squares, we get all characters

w of them.

of this type. They are all non-conjugate, and there are ¢™
The stabilizer of these elements are elements of U, having the form <§ % )
This subgroup is isomorphic to two copies of the norm 1 elements of R,, , and

thus has order ¢™ '(¢+1)¢™ *(¢+1), hence the orbit size is —qi;i(f;(;ﬁ;;l)g =

¢ (g —1). As a result in this type we account for w characters.

The final type is =l + b((l) ”06 > where, as before, the b is superfluous. We
have ¢q¢™ ! non- conjugate matrices and the stabilizer is the subgroup of ma-

trices of the form (g ’Tfy) having order ¢*™~!(q + 1) resulting in an orbit size

33



of ¢*"72(q — 1)(q + 1), which gives us ¢*™3(q — 1)(¢ + 1) characters. Let us

list the number of characters from all cases:

1. ol +7C: ¢*™3

2. 2l + <32> q4m_2(q2—1)((1+1)

3. x]—l—b(?%): w

aal+5(9%): ¢ g - Dla+ )

Taking the sum of the second and third cases gives

g (g —21)(q 1) " —21)(61 -1 _ q4m‘2;q —1) = 1g+1] = ¢ (g—1)

adding this to the fourth case gives

" Mg—=D)+¢" g -D)(q+1) =¢" (- D[ +q+1]=¢""( 1)

and adding this to the first case gives us ¢*™ which is the number of char-

acters of K,,.

]

The matrices of the first type leads to characters of U; that come from
U,_1; that is they are lifts of characters on U;/K;_; which is isomorphic to
U,_1 and are thus supposed to be known by the inductive hypothesis. Their
contribution to the sum of squares of degrees is found separately. Of the

remaining three types, the scalar part does not affect the degrees or inertia
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groups of the characters that we will find, thus to simplify computations we

will use the following A forms: (we well return later to the more general forms)

L (5)

2. (‘f ‘5) where o is a square unit in R;.

(=R
Nl

3. <? “05> where € R;_;.

4.G The Inertia Groups

Applying the method of Clifford theory to U; requires that we find, for each

character ¢4, the inertia group 7’; that is, all g € U; such that

GalgI +7"B)g~" = pa(l + 7" B)

The inertia group contains the abelian group K, or K,,;1 (depending on

the parity of 1), and the centralizer in U; of the A matrix:

Galg(I +7"B)g™'| = ¢pall + 7"gBg "]
= A[tr(z™A(gBg™1)]

= A[tr(7™ (97" Ag) B

If we denote the centralizer of A by S, then K,,S < T ( for [ even) or
K118 < T (for [ odd). Presently we will find an upper bound for T’; to do
so, it will be necessary to consider the parities of [ separately, but first we need

the following.
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Lemma 4.G.1 If T is the inertia group of ¢4, and g € U, then g € T'. This

does not depend on the parity of /.

Proof. For any of our three A matrices, let g € T so that (for ease of reading,

m+1

we assume that 7™ or 7 has been multiplied into the B matrix)

Mtr(AgBg™h)] = A[tr(AB)] (4.5)

Note that for A = <§ 0 ) and B = (‘”nga‘/a wle‘r/i\/a) tr(AB) = tr(AB)
| )
1

1
and when A = (93) or 2(

Atr(A(gBg )] = A[tr(AgBg )]
= Mtr(AB)]

= \[tr(AB)]
Next, suppose g € T and A = <(1J g) or ((1)7r05>
A[tr(A(gBg )] = A[—tr(AgBg™)]

= A—tr(AB)]

— Atr(AB)]

therefore g € T for all ¢4 characters.

Finding the Inertia Groups
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1. Let [ = 2m, so that ¢4 is defined on K,,. The centralizer of each the
three A matrix types are precisely the S groups (one for each A matrix)

mentioned in section 4.C. We demonstrate this below.

(a)

0

1
implies that y = 2z = 0, so for A = (S ), the S group consists of

1
2

the diagonal matrices, and so is isomorphic to R; .

(b)

implies that y = zo0 and w = xz, so for A = ((1’ g), the S group
consists of all matrices of the form <f§ e >, and so is isomorphic to

LxL

()

implies that w = x and y = z7wf3, so for A = (0 ”06>, the S group

is all matrices of the form <§ ”fz>
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We will show next, that when [ is even, the upper bound for T is K,,,S.
Since K,,,S < T by construction, this will imply that T'= K,,,S.. In the

following proof, we assume that A is a matrix over R; so that A = A.

Proposition 4.G.1 If [ = 2m and T is the inertia group of ¢4, then

T < K,,S, where S is the centralizer in U, of A.

Proof. Let g €T and I +7™B € K,,. Then
Altr(7™(AgBg™))] = Altr(7"™ (AB))]

and \[tr(7™ (g ' Ag—A)B)] = 1; let X denote 7™ (g ' Ag—A) so A[tr(XB)] =1

where B is any matrix of the form

a1+azy/a b/
( e/ —a1+a2\/5> ar, az,b,c € I

We can show that X = 0, and this will give us an upper bound for 7'

Lemma 4.G.2 X =1™(g7'Ag— A) =0

Proof. Since X has trace zero, we can write

X = (ler?\/a —:cl—u:)vz\/a) where T1,Tg € Rla and w,z € Rl,a-

If, for any r € R;, we let B = (Téz _B/2> then

1 = A[tr(XB)] = AM(z1 + z2)r)

Since since A extended to R;, is primitive, z; + x2 = 0. We can replace
X with X because § € T, and A = A. Now the preceding argument

gives us r1 — x9 = 0, so that z; = x5 = 0.
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Next write w = w;+wq/c, and let B = (T\(}a 8), sothat 1 = A(trX B)) =
M (w1 + war/a)rv/a)] = A(wea+wi)r] = 1 for all r € Ry, implying that
woar + wy = 0. If we replace X by X we get —wsar + wy = 0 so that

w; = we = 0. A similar argument shows that z = 0.

Since X = 7™(g 'Ag — A) = 0 then for any g € T

" Ag =71"gA (4.6)

We assume that (i %{,) € T, and consider the three A matrices separately

in order to establish the upper bound for T

0

(a) When A = (% ), from equation 4.6 we get:

1
2

SO

hence 7™y = 7™z = 0 which means y, z have a factor of 7™

; S0 g
can be written <7T35LZ “Zy). Under the map P,|r: U, — U, that
takes each entry of the matrix in U; to its value modulo 7™ the
image of the map is the subgroup (g 3) of U,,, and the kernel is

K,,. We know this map is surjective because its domain contains the

diagonal matrices in U, and we have seen that the diagonal matrices
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are isomorphic to the units (with the appropriate modulus), and the
projection map from Rj , to R}, , is surjective. Thus every element
in the domain can be written ks with £ € K,, and s € S, so that

T < K,,S.

(b) When A = ((1) g), by equation 4.6 we get

SO

and w =x+7"E, y = zo+7™D where E, D are elements in 2 ,,
so we can write g as (‘ﬁ Z;@’{Z? ) Using the same map as before,
and restricting to the matrices of the inertia group, we see that the
image is the S group of matrices <§ = ) modulo 7. The kernel is
again K,,, and the map is surjective because of the surjectivity of

the projection map between the S groups of appropriate modulus.

Thus again any g in the inertia group is in K,,,S.

(c) Let A = ([1) ’Bﬂ ), so by the argument for the previous matrix w =

x zrfB+nm"™D
z x+7m"E :

r+7"E and y = znfB + 7™ D, and we can write g = <
The same argument applies here because of the surjectivity of the

projection map between appropriate S groups. Thus T' < K,,S.
m

2. If I =2m + 1, K,, is not abelian so we define ¢4 on the largest abelian
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K group which is K,,.;. By construction 7' > K,,41.5, but in fact

T > K,,S since K,, centralizes K, 1:

(I+7a"B)I +a™"C) =1+ a"B+a""C = (I + 7™M C)(I + 7™B)

To get an upper bound for 7', we start with ¢4 and g € T so for any

(I +7™B) € K1

Mtr(7™ T AgBg™)] — A[tr(z™ 1 AB)] = 1

Atr(7™ (g7 Ag — A)B)] = 1
If we let X denote 7™ (g7 Ag — A) then
Lemma 4.G.3 Given any A matrix (over R;), and g € T,
X =71"(g7'Ag—A) =0
Proof. Again the trace of X is zero, and

X = <$1+22\/a —:El—ujvz\/a> where T1,To € Rla and w,z € Rl,a-

The entire argument from Proposition 4.G.2 carries through here to give

us following.

7" Ag = 7" gA (4.7)
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Applying this condition to each A matrix shows that K, S again contains
the inertia group, thus for [ odd and even, the inertia group is K,,S for

the appropriate choice of S for each matrix.

4.H Finding the Character Degrees

For each ¢4 character we will need to find the orders of subgroups having the
form BC where B and C' are themselves subgroups. We can always calculate

this by

|BIIC]

BC|=
BCI= TBiner

but for K,,S (for either parity of [), we will sometimes use

|Km5|: |Km||8|m0dulo am

which stems from the natural surjective projection map from U, to U,,, as

this is sometimes more convenient.

4.H.1 The Even Case

For each of the three A matrices

)
L(3h)
0 -3
2. <(1J z ) where ¢ is a square unit in R;.

3. (97) where 8 € Ry,
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we extend ¢4 on K,, to ¥ on K,,S by from Proposition 2.C.1. Then by
Clifford theory, x = Indglw is an irreducible character of U, of degree [U; : T1.
The schematic for each ¢4 character is:
ind

K, Xk sy,
ba P X

1. A= (

[« NSIE
l o

[N
~—

T={(s.m") =K. s={(s8)} 0y

The group S is isomorphic to the units in R;,. The order of the
units modulo @™ is ¢" (¢ — 1)¢"™ (g + 1), s0 |T|= [Ku||S]modulo »m=
" g — D™ g+ 1) = ¢®2(g— 1)(g + 1). Thus, y = Ind%y is

irreducible with degree [U; : T] = ¢ (¢ + 1)

2. A=(92), where 0 = k* k € R;.

T = {(gfjﬂﬂﬁ;)} AU, = K,,S, S = {(gbg)} nu;
From Proposition 4.D.2, S is isomorphic to two copies of £, and |S]|

modulo 7™ is

" Mg+ 1)g" g+ 1) = ¢ 2(g+ 1)

Since |T|= |KmS|= |Kum|(¢ (¢ +1)?) = ¢* (¢ +1)?, x = Ind7'¢ has

degree [U;: T] = ¢ (g — 1).
3. A= (37%) BeRin
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r={(me) o, = Kas, s={(3 ) o

We can find |S| by using the proof for Proposition 4.D.3, so the order of
S modulo 7™ is g™ (g + 1)¢™ = ¢ g+ 1), and |T|= ¢¥¢" (¢ + 1) =

¢~ Y(q+1), and y = Indy'¢ has degree [U; : T] = ¢ (¢ — 1)(¢ + 1).

4.H.2 The Odd Case

When [ = 2m + 1, we define ¢4 on K,, .1, the largest abelian K subgroup. In
section 4.G we found the inertia group to be K,,S for S groups of the same
form as in the even case. By Proposition 2.C.1, we can extend ¢4 to K, 115
but not directly to the inertia group T = K,,S. Consequently, we interpose
some intermediary subgroups of U; and work our way in steps from K,,,; to
K,,S. In anticipation of the calculation of the number of characters of U; of
each degree, we will mention the number of extensions as we move from K,
to K,,S. Calculations of the sizes of S groups follow the same methods used

in the even case above.

O =

°)

1 s ={ (o) o s={(33) Lo

|T|: |Km| X|S|m0du107rm: qslil(q - 1)(q + 1)'

1 A=(

[SIE

w™me  147™d

We interpose the subgroup N = {( l+m™a wm* b )} NU; and extend ¢4 to

¢’y € Irr(N). N is generated by K, and the abelian subgroups of U,
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glz{(Hgma(ngm_l)}aeRl,a, %z{(Wi\/&?)}ceRl

We show that NN is normal in K,,S so we can apply Clifford theory to
N. This requires finding the inertia group 7y of ¢4 in T' = K,,,S. The
extension to N will be done in several steps. The schematic is (omitting

the steps from K1 to N for simplicity)

Koy XSy X gy ind pind

A &y o L4 X

Proposition 4.H.1 N is normal in K,,S

Proof. Write (Z 3) for (1”7”“ ”mﬂb) € N and let ()0( 8) € S then

e 147™d

m

Next write (i %{,) for (ﬁﬁzx Jﬁn%’w) € K,,. N isgenerated by K,,.1,G1,
and Gy, but K, centralizes K, 1, so we only need to check that when
any elements of G; and G, are conjugated by K,,, the result is in N.

Note that the subgroup generated by G; and G, is lower triangular, so
for any (‘;2) €N,
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zZw cd —z x Tw — 2y . Tw — 2y
= ( wy(da)cyy>—1

Both y and (d — a) have a factor of 7™, and cyy = 0, therefore the result

isin N.

Since conjugation by elements of both K, and S produces elements of
N, then N is normal in T' = K,,S. Thus we can apply Clifford theory
to ¢’y on N as a normal subgroup of K,,S; we find the stabilizer T; of
this character, then induce to T. Next we show the details of extending

¢4 to ¢y on N.

]

The extension to N is accomplished by two applications of Proposition
2.C.1. Since G, is diagonal, it stabilizes ¢4, which therefore extends to
a character on the product K,,,1G, by Proposition 2.C.1. For each non-

K
‘Lff' = ¢° characters on
m

conjugate ¢4 character on K, 1 there will be
K,,11G1. The subgroup G- is abelian, and we will show that it stabilizes
the character on K,,,1G;; this means that ¢4 extends from K, to ¢/,
on N. In this second extension we assign the trivial character to Go;
this choice was made to imitate part of the Barrington-Leigh paper. It
is required in anticipation of the stablizer of ¢’y in K,,S. Hence the

number of non-conjugate characters on N is greater by a factor of ¢?

than the number on K,,,;. To show that G, stabilizes the character on
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K,,11G1, it suffices to show that it stabilizes the character restricted to

Gy; this is because G, is in K,,, and so centralizes K, 1.

. . x 1+7™a 0
Write <}: ?) for (Wmi\/a?) € Gy, and write (0 (y)) for ( 0 m—l) €

G:1. Conjugating

Since z — y has a factor of 7™, we can write c(x — y) = 72™c'\/a so the

result of conjugation can be written

14+7ma 0 o 1 0 1+7ma 0
wme /e (dama) ) T\ mmdval 0 (+rma) '

Since the first factor above is in K,,;; with a character value of 1, the
elements in G, stabilizes the character on K,,,1G;. Thus we can extend
to K;ni1G1G2 = N.

The inertia group of ¢4 in K,,S is Ty = NS: since S is the diagonal

subgroup, it centralizes G;. It also normalizes G,:
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but G, was assigned the trivial character, thus S is in the inertia group of

¢y KpS is generated by NS and the abelian group Gs = { < 1 wm\/a> }’

0 1

but Gz does not stabilize ¢/,:

1 7™m/a 1 0 1 —mmya ) _ [ 1+7?ma oMy 1 —7™y/a
(57 ) (et (5 1) = (e ™) (6 )
<1+7r2moc 0 )

mMey/a 1-m2Ma

1 0 1472 0
mey/a 1 0 1—7m2ma

Since the character value of the second factor is not identically 1, then

To = NS is the inertia group of ¢y in T'. We can extend ¢’ from N to 1y

on Ty, = NS by Proposition 2.C.1, there being % =q¢3(q—-1)(¢+1)

such extensions for each non-conjugate character on N. Now we induce
from NS to T = K,,S; ¢ = Indj, ¢y is irreducible of degree [T : Ty = g,

and y = Indg’d} is an irreducible character having degree ¢[U; : K,,,S] or

"=+

gDy Y

q

. A= (9¢) with o a square unit in R;.

T={(stms ) =K., s={(3%)}nu

The order of T is ¢*~'(q + 1)2. The schematic in this case is more

complicated:
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Koir SN, Sy, S g, sndpy,

A &y i %o p X

where N; = K;(K; N S){(’gg)} N U, and H, as well as the various

characters, will be defined below.

(a)

We can extend ¢4 to ¢’ on N,,.1 by Proposition 2.C.1 because both
the scalars and K; NS are abelian and stabilize ¢4, and because
the scalar matrices will stabilize any character that we assign to

KinSs.

We want to apply Clifford theory to H in N,,. To do this we will

require

Proposition 4.H.2 N,,,; is normal in N,,, and every element of

K, stabilizes ¢/,.

Proof. Since Ny, 1 = K1 (K ﬂS){ (g g) }, it suffices to consider
the K, conjugation action on K; NS (K, centralizes K,,,1). In
brief, the argument is that conjugation of s € K1NS by any element

in K, produces an element xs where x € K,, 1 with ¢ (z) = 1.

Lemma 4.H.1 For k € K,, and s € K1 NS, ksk™' = zs for some

T € Km+1-

Proof. Consider the natural projection map P : Uy — U,,41, that

m—+1

sends each entry of a matrix in U, to its value modulo 7 and has

kernel K,,.1. We claim that f(ksk™') = f(s) which implies that
ksk™' = xs for some x € K,,,1: when the modulus is 7" f(k) =

I + 7™A commutes with f(s) = I + 7B, so that f(ksk™') = f(s)
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and for some v € K,,,1, ksk™! = xs. An immediate consequence

of this is that N, is normal in N,,.

[]

Corollary 4.H.1 For any k € K,,, and s € K; N S, there exists

x € K41 such that k7o = sk~ 1s7 1.
To show that K, stabilizes ¢y, it suffices to show that for x as in
the corollary, ¢/,(x) = ¢p(x) = 1. For this we need:
Lemma 4.H.2 For any k£ € K,,,, s € K1NS, v € K41, and
A= (15)

1. tr(A(kz)) = tr(Ak) + tr(Ax).

ii. tr(A(sks™1)) = tr(Ak).

Proof. i. Let k=1+7"B and x = [ + 7", so that

kr=1+7"B+x""C

and one sees that the elements on the second diagonal are ad-
ditive.

ii. tr(A(sks™)) = tr(s7'As)k)) = tr(Ak) because S centralizes
A.

]

Now we can show that for z as in 4.H.1, we have ¢/4(z) = ¢pa(z) = 1.

From Lemma 4.H.2 we have:

20



tr(Ak™Y) + tr(Az) = tr(A(k ')

so that tr(Az) = 0, and ¢'(z) = ¢a(x) = Aftr(7™Ax)] = A(0) = 1.
Hence K, stabilizes ¢/;.

]

(¢) K, is generated by K, and these abelian subgroups of U; (where
t e Rl)i

{ ( 1+7rmtf liﬂzt\/& ) }
=1 1)}
:={(6 7))

iv. :{ (M5 i)}

We will now show how which of these subgroups (together with

—
—

1il.

Kny1) generate H, and then N,,.

(d) Of the subgroups above, only Gy is in N, .

Proof. i. By calculation Gy € N, 1:

1—m2mp2 2 0 14m2mb2 S+ mby/a 0 [ b
0 1+7r2mb2% 0 1+7r2mb2%+7rmb\/& - 0

o1

0

1
1—7mMby/a

)



ii. The subgroups G; and G, are either both in N,,,; or both not

in N, 1: suppose, for example, that G, is in N,, ;. Then, since
—1
1+ﬂ2m% —™my/T
—1
Camg=l /7 1a2m el
the following product:

the element ( ) isin K1 NS, we can take

—1 —1
<1+7r2mc“(”2) —rm/a )(1 7rm\/a> _ <1+7r2m"("2> 0

-1 —1
_m—1 2m (o) _-—m_—1 _2m a(o)
Mmoo 147 5 Mo a l1-m 5

and rewrite it as

-1
(1+7T277L Q(UQ) 0 ) ( 1 ) 0 )
1 _m o — 1
0 1—p2m a<a2> o~ /a

Thus we get elements of G;.

iii. We claim that none of Gy, Gs,Gs are in N,, ;. The argument
here requires the orders of N,,,; and N,,; we derive these, and

then show that for i = 1,2,3, no G; is in N, 11.

The Orders of N,,, and N, 11
The Order of N,,:
A. N, = K,,(K; N S)(scalar matrices)
B. K,, has order ¢?*2

C. KyNS: Since S can be considered £ x L, then K; NS can
be considered the kernel of the map from (£ X L) 0dulo =

to (£ X L)modulo 1~ This kernel has order

¢ Mg+ Ha+1) _ 5
(¢+1(g+1)
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D. K,,Nn(K;NS)= K, NS and the order of this last group
(seen as a kernel of the projection map from (£ X L) 0dulo !

to (L: X E)modulo m is

¢ g+ 1) q+1) 4

g g+ 1)g™ g+ 1)

2042212 31—1

E. As aresult: |K,,(K;NS)|= i =q

F. The scalar matrices can be identified with £, and so have
order ¢~ (g + 1)

G. the intersection of the scalars and K,,(K; N .S) are of the

l1+ma O
0 14ma

where 1 + ma € L. The set {1 + ma} is the kernel of the

form:

(projection) map from £ modulo [ to £ modulo 1. Hence

the intersection has order ¢'~'.

H. We conclude that the order of N,,, = K,,,(K;NS)(scalar matrices)

is

31—1 1—-1
g (g +1 _

The order of N,,,; is calculated in the same way:

A K= ¢ = ¢*7% [ K |= ¢

B. |K; N S|= ¢*72 since it can be considered the kernel of the
natural projection map L£; x L£; — L1 X L;.

C. |[Kmi1 (K1 N S)]|= ¢! consider as kernel of £; x £; —

L1 X Loy
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D. Scalars ¢'~(¢+1). Intersection of Scalars and [K,, 1 (KN
S)]: scalar matrices with elements 1 + 7wa, norm 1 so con-

sider as kernel £; — £, = ¢~ L.

20—-2 20-2 _ -1 1 _
E. |Nppl|=t05— = ¢* 3 x % =" (g +1)

Note that |N,,|= ¢*|Npmy1|. Having established the orders of
these groups, we now suppose that G; and G, were in N,, 1.
Then N,, would be generated by N,,.; and G3, and:

qm+1
| m+1\q—m = q| N1l

1G5
N |=I|N. o |— I3
| m’ ‘ m+1"Nm+1mg3‘

which is a contradiction. If we had assumed that Gz were in

Npv1 we would have arrived at a similar contradiction.

We now define H as the group generated by V,,,; and G;.

The order of G; is ¢!, and G; N N,,,;1 has order ¢™, hence |H|=

Np 31-3 1 m+1 _
||Nm++11|r>‘<w|gg11|| =1 (q:m)xq =¢* 2(¢+1). Moreover, [N, : H] = q.

Since every element of K, stabilizes ¢/, then by Proposition 2.C.1

we can extend ¢/y to ¢} on H.

We claim that H is normal in N,,: borrowing an idea from [BL],
since N,,/Np,11 is abelian, any subgroup of N,, containing N,
is normal. Thus H is normal in N,, with index ¢q. We can now
apply Clifford theory to the group N,, with normal subgroup H
and character ¢j. We claim too, that the inertia group of ¢4~ in
N,, is H itself: N,, is generated by H and G3, and we will show that

Gs does not stabilize ¢'}. Write = (i ?) for = (Wml\/a ?) € G <H,
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and = <a61 2) for = <(1+7r(:”)_1 (1+2rm)> € G3. Conjugating:

and

a’c = (14 21™ + )" a = "a + "/ a

so that the product of conjugation can be written

1 0 1 0
(i) (hat)

where the second factor, being in K, does not have a character
value equal to 1. Consequently, the inertia group of ¢’} in N,, is H

itself, and ¢y = Imdgm ¢’} will be an irreducible character of degree

[Ny, - H] =q.

We will extend the character ¢y from N, to T' = K,,,S by Propo-
sition 2.C.2, which requires that 1y be invariant in K,,S. The
argument for this invariance is, in brief, that ¢y # 0 only on N, 1
and that K,,S stabilizes the character on N,,,;. We include the
schematic for this section for reference, followed by the proof of the

invariance of ¢y in K,,S. Of particular importance is the fact that

[Nm . Nm+1:| = q2.

Kor SN, Sy, S g, 5104y,

¢a &y P4 o ¥ X

Proposition 4.H.3 The character ¢ is invariant in K,,S.
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Proof. We know that ﬁ dethpo(g)P: 1, but in fact we claim

that ﬁ deNm+1|¢0(g)|2: 1. Forany g € Ny,41, and B = {b1,bo, ...

a fixed transversal of H in N,,, we have

=) b " gbs)

b,eB
But ¢y on N,,41 is just ¢/,, and since each transversal element b;
is in K,, (which fixes ¢/,), then ¢/(b; 'gb;) = ¢/,(g). Hence 1y(g) =

quA (g) ’ and

n X W@l = 3 ladhlo)

N
gENm+1 geNm+1
1
- Y I
9ENm+1
1
N

| |q |Nm+1|

=1

Consequently, 19 = 0 outside of N,,.;. We know already that K,
stabilizes ¢’y on N,,,11, but S also stabilizes ¢4, since any g € N, 11
can be written as the product ¢ = hsa with h € K,,,11,s € K1 NS,
and a a scalar matrix, and S stabilizes the character on K., and
commutes with both the scalar matrices as well as the elements of
Ky N S. Hence K,,,S stabilizes ¢/y on Ny,41, and so 1) is invariant

in K,,,S.
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Since [K,,S : N;,] = ¢ + 1 is prime to ¢, the degree of ¢y on N,,,
and since vy is invariant in K,,S, then from Proposition 2.C.2,
Yy extends to an irreducible character ¥ on K,,S of degree ¢q. In
turn y = IndIUngw is an irreducible character of U; with degree
qlU; - KinS] = (Q)% = ()¢ *(¢—1)=¢(¢g—1) asin

the even case.

3. A=(07%), Be R

c a+n™md

T = {(Mﬁb+“m0>} AU, = K,,8

where S = {(Z”fjb)} and |T|= ¢*(q +1). We follow the same

schematic used with the first matrix, though in this case we do the

extension to N in one step:

Koy S &gy md pind

A ¥y Yo ¥ X

where again

N = {<1+7Tma ”m“b)} NU, a,b,c,d € Ry,

7™Me  14+7™d

and, as we will show, To = NS.

We can show that N is a normal subgroup in 7' = K,,S. We have seen
in Proposition 4.H.1 that K,, normalizes N; to show that S does as

well, write (g g) for (””m“ “m+1b) € N and conjugate by <§ yr ) es

e 14+7™Md

which we will write (?j %C/)
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zy ab z —y L _ [ az+cy’ bz+dy’ Tz —y;
Yy x cd ¥ w J et — \ ay+tcx by+dx -y

x
< o bzztdry’ —cy'y' —azxy’

1
det
1
det
1

( oo bzztzy’ (d—a)—cy'y’ ) —
det

m—+1

Since each of bxx, xy'(d — a), and cy'y’ has = as a factor then NV is

normal in K,,S.

We define a character ¢/, on N that is an extension of ¢4 on K,,1; for

n — <1+7rma 7rm+1b> € N, define ¢/,(n) = A[x™*b 4+ 71 5¢]. To show

e 14+7™d

that this is a character on NV, let n be as given, and take a second element

of N: r = (1“;,7727;6 ff;;é), so that ¢/s(nr) =

¢/ 1+7™a 7rm+1b 1+7™e 7rm+1f o (b/ ..... 7rm+1b+7rm+1f
A ¢ 147m™md Mg 1+7™h — YA et g+ ™ (betgd) 0 ...

and the final line can be written

A1+ 7] + AL 5 Bg] = 6y () (r)

It is clear that ¢/, restricts to ¢4 on K, and in fact we could write this
character, applied to n € N as A[tr(An)]. We claim the inertia group of

¢’y in K,,,S is NS, this requires the following

(a) S stabilizes ¢y
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(b) Elements of the abelian group generated by matrices of the form

((1) nm?\/&» b € R do not stabilize ¢/,.

To prove the first point, for any s € S we have

¢y (sns™t) = A[tr(A(sns™ )]

where we have used the fact that S centralizes A. For the second
point, write <é f ) for some element (é Ve ) and consider the ele-

ment (1+g’"“ Hgmd) in N with a ¢/, value of 1. Conjugating gives

(00T ) (67) - (0 (7)
01 0 1+7™d 01 - 0 1+7™d 01

1+7™a f(x™d—n"a)
0 14+7™d

1+7™a 2™ f(d—a)va
0 14+7™d

I
/N

Since the character value of the result is not 1, then elements of the form
<(1) ”m{\/a> are not in the inertia group (in K,,S) of ¢/;, and the inertia
group is N.S. By Proposition 2.C.1, ¢/, extends to to ¥y on NS = Tj.
Then by Clifford theory g induces to an irreducible character of ¢ of
K,,S = T, having degree [K,,S : NS| = ¢q. Finally, y = Indgl@/) will be

an irreducible character of U; whose degree is q[U; : T| = ¢'"2(¢—1)(q+1)
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as in the even case.

Below we summarize our results:

Table 4.2: Degrees From ¢4 Characters
A Matrix | Character Degree

(%) | ¢+
(?‘6 ' UERY
(%) |-+

4.1 Extensions: Counting the Characters not
Coming From U;_;

In this section, we generalize each A to A’, such that ¢, and ¢’y have the
same inertia group, and lead to characters in Irr(U;) of the same degree. One
sees that if A" = al + DA where a € R;, b € Ry, then ¢4 and ¢4 will have
the same inertia groups, and the characters of U, arising from them will have
the same degree, and will be equally numerous. From Proposition 4.E.5, we
consider only non-conjugate A’ matrices. Our assumption is that we know the
character degrees and the number of them for the group U;_, the base case

being given in [E]. Now we can state the following:

Theorem 4.I.1 The number of irreducible characters (and their degrees) of

U, not coming from U,_; are as follows:

Proof. If w is a unit in R;,, then from equations 4.6 and 4.7, it is clear that

the inertia groups of ¢4 and ¢, are the same. It is also clear that ¢, and
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Table 4.3: Character Numbers
’ degree of character \ number of characters of this degree ‘

¢ '(g+1) 57 (g —1)*(q+1)
¢ '(q-1) @ g =1 (g+ 1)
¢ *(q-1D(q+1) ¢ *(q+1)

o1+ 4 will have the same inertia group. Therefore we generalize the A matrices

follows:

1. 1 =2m

The schematic for each A matrix is

In order to count the number of non-conjugate characters on the K,

subgroups, we will need definition of ¢ 4:

dall + 7" B] = Atr(r™ AB)]

_0;)7 A" =zl + bA, where x € R;, b € Rf. Because

2

(a) For A = (

[N NI

of the ™ in the definition of ¢4, there are ¢ choices for x, and
™ 1(q—1) choices for b. The only matrix of this type conjugate to

xl +bA is zI — bA. Therefore the number of non-conjugate A’ is:

1 -1 L
" g —1) = = 1
54" (¢q—1) X (¢g—1)

In order to count the number of characters of U; that arise from

these matrices, we multiply the number of non-conjugate matrices
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by the number of extensions from K,, to T', which is the index of
Kpyin T 2 |Sp|= R o= [Lml-|R)]= ¢"2(¢* — 1). As a result, the

total number of characters of U; arising from this case is

1.,
§QQZ (g—1)%(g+1)

For A = (99), where o is a square unit of R, let A’ = I + bA,
where z € R;, and b € R;. We claim that b is superfluous and that
we get all non-conjugate A’ matrices by varying x and o. To see
this, note that for any unit b € R;, there is some = € R;, such that

xZ = b. Now

where ¢’ is a square. Therefore we count non-conjugate characters
by varying only x and o; there are ¢ choices for the former, and
5¢™ (g — 1) choices for o. Since no distinct A’ matrices of this

form are conjugate, the number of non-conjugate characters is

1 -1 1 -1
—gmg™ g —1) = = —1
5d"d (¢g—1) 54 (¢—1)

The number of extensions of ¢y, to T', is |T|/|Km|= |Lm|*|Lm]| or:

62



(@™ g+ D)™ g+1) =¢ (g + 1)

Therefore the total number of characters of degree ¢!~!(q — 1) is:

1 45
§q25 *(g—1)(g+1)?

(c) For A = (97%) to I + bA with z € R, § € R;,. We do not
use b in front of A by the same argument used for the previous
matrix; instead we vary 3. There are ¢™ choices for z and ¢™ !
choices for 8. No distinct matrices of this form are conjugate, thus

m -1

we have ¢ 1¢™ = ¢! non conjugate characters. The number

of extensions to T for each is |T'|/|Kn|= ¢(¢ + 1), so the total

number of characters of degree ¢'2(¢*> — 1) is ¢*%(q + 1).

The sum of the squares of the degrees of the characters we have found

so far is:

" g— 1)+ (¢ —1)

The definition of ¢4 on K, is

pall + 7™ B] = Atr(z™ T AB)]

The schematic is
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Ky S5 X nd pind
A ¢y %o X

A" = xI + bA, with z € R;,b € R;. There are ¢™ choices for
x and ¢™ (¢ — 1) choices for b. Since the matrices xI + bA are
conjugate, there are %qmqul(q —1)or %ql”(q — 1) non -conjugate
characters on K,,;;. We extended each of these to N, getting ¢?
characters for each of the non-conjugate characters on K, ;. Thus
there are 1¢'(¢ — 1) non-conjugate characters on N. Each of these
extends, in turn, to Ty = N.S and the number of such extensions is

|Tol/|IN|= ¢'3(q — 1)(¢ + 1). Thus we get

oo

30 P a=1)%(g+1)
irreducible characters of U; having degree ¢'~*(q + 1).
A=(1¢%)

The schematic

Kor SN, 0 Sy, S g, 5104y,

ba A oA o ¥ X
A" =xl + A with x € R;, and o a square unit in R;. There are ¢™
choices for z, and 3¢™ !(¢ — 1) choices for o, giving 1¢'2(¢ — 1)
non-conjugate characters on K,,,;. The number of extensions to

Nm+1 is

3l—-3
¢ (g +1 _
[Nm+1 : Km+1] = qu,Q ) = ql 1<q + 1)
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for a total of $¢*3(¢—1)(¢+1) non-conjugate characters on Ny, 1.
There are g extensions from N,,.; to H, but these can be ignored
in the character count, because 1 is induced from ¢’y on H, and
we have shown that ¢y = 0 on H — N,,,;. Finally, the number of
extensions from N,, to K,,,S is [K,;,S : Ny,] = (¢ + 1), resulting in
a total of 3¢*3(q — 1)(¢ + 1)? distinct irreducible characters of U,

having degree ¢'~1(q — 1).
For A= (979).

The schematic

Koy S5 N X nd pind
A ¢y %o %

We extend to ¢y in one step, and merely count the number of

1+7™ma 7™ty

e 1+7rmd) we can define for n €

conjugate characters on N = (

N as ¢/y(n) = A[trA(n)]. This means for A’ = I + A that we have

m

g™t choices for x and ¢ choices for 3. Hence there are ¢"*'q
¢’ non-conjugate characters in N. The number of extensions for

each is [NS|/|N|= ¢ 2(q+ 1). In all then, we get

' ?(g+1)

irreducible characters of U; of degree ¢'~2(q — 1)(q + 1).

The numbers of characters in U; of each degree are the same as in the

even case, so the sum of squares without the contribution from U;_; will

be

¢"q—D(g+1)(¢" — 1)
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4.J Lifting Characters From U;_;

From theorem 17.3 [JL], in any finite group G with normal subgroup H, there
is a 1 to 1 correspondence between the irreducible characters of G/H and the
irreducible characters of G having H in the kernel. The natural projection
map ¢ : Uy — U;_1) modulo 7'~ shows that U;_; & U;/K;_;.

We now find the sum of the squares of those characters lifted from U;_; =
U,/ K;_1; these are precisely the characters of U; that have K;_; in their kernel.
If ¢ is such a character, and 1 is any irreducible character of U; having degree
1, then ¢¢ € Irr(U;). Therefore we must find the number of distinct irreducible
characters of the form ¢ ¢. Note: in what follows we will identify the irreducible
characters of U; having K;_; in the kernel with the irreducible characters of

U_.

Proposition 4.J.1 Let L; and L;_; be the linear characters of U; and U;_;
respectively, and let C = Irr(U;—1). The number of distinct irreducible
characters of U, of the form [+, where | € L;, ¥ € Cis [L; : L;_q].

Proof. Let 1,15 be two elements of L; that are in different cosets of the factor
group L;/L;_1, and suppose that for some 1 € C we have [;9 = ly1). But then
Y = Iy, which implies that I;'l; € L;_; which is a contradiction. Thus
the number of distinct ¢l characters is not less than the index of L;_; in L;.
On the other hand, if ll_llg € L;_q then lf1l2¢ =’ € C and Iyt = [17)'. Thus
each ¢ € C produces [L; : L;_1] irreducible characters of U; of the form lc.
Consequently, the contribution of the characters of U;_; to the sum of squares

of the degrees of the characters of U; is |U;_1|[L; : L;_1]. O

66



From this we can find the sum of squares of the characters inflated from U;_;.

Proposition 4.J.2 The sum of the squares of the irreducible characters of U

that are inflated from U;_; is ¢q|U;_1].

Proof. We claim that the A matrices that lead to linear characters of U; are
scalar matrices:

If A= ({9) and I = 2m, the inertia group of ¢4 is U;. We can show that

1+7™a1+7maz/a TMh/ > cK
ms

¢4 extends to U;, since applying ¢4 to ( AMey/a Mg+ an /&

gives A(m"(2az)). We can show that this is the restriction to K, of a linear
character on U;: let \* be a character on the multiplicative subgroup of R,
chosen so that A*(1 + 7n™(r)) = A(n™r). Now define the linear character x
on U, thus: for all g € Uy, x(g) = A*(det(g)). Then x restricted to K, gives
A (1 4+ 71™(2a2)) = A(7™(2az2)). Hence ¢4 extends to its stabilizer U; and so
leads to a linear character. The same argument applies when [ = 2m + 1. To
show that only scalar A matrices lead to linear characters of U, suppose that
A is given, where ¢4 leads, via Clifford theory, to a linear character of Uj.
Then the inertia group of ¢4 must be U; itself. But we know from equation
4.6 that, modulo 7™ the A matrix must be in the center of U;, hence scalar.
The scalar A matrices that lead to linear characters of U; having K;_; in
the kernel will be those scalars having 7 as a factor. Thus A = (£0), x € R,
produces a linear character on U; and there are ¢ such A matrices, whereas

A= ("¢2), v € R, produces a linear character on U; with K;_; in the

m—1

kernel, and there are ¢ such A matrices. From this we conclude that

[L; : Li—1] = ¢q. Thus the sum of the squares of the inflated characters is

q|Ui1]= ¢*%(qg — 1) (g + 1)?
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Adding this to the sum of squares previously determined gives:

"=+ 1) =) +¢" (¢ —D(g+1)*=¢"(¢—1)(q+ 1) = |U)]

It follows that we have found the degrees and numbers of all irreducible char-

acters of Uj.
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4.K Some Calculations of Conjugacy Classes

Lg=(§2)
The number of such class representatives is the number of norm one
elements, or ¢'~*(¢+ 1). Since these elements are in the center of Uj, the
centralizer for each representative will be U;, so the number of elements

accounted for is ¢'~1(q + 1).

2.9=(5y) y#a
Note that such an element is conjugate to (§ g) To find the centralizer

let:

so that b(x —y) = 0 = ¢(z —vy), and since y = (), we have b(zT—1) =
0 = ¢(2T — 1). By construction zZ — 1 # 0; thus we consider the cases

where 7 — 1 is and is not a unit in R;.

(a) Let 27 — 1 be a unit: There are ¢/~!(q¢ — 1) units in R;, and by
considering the kernel of the modulo 7 map f : Ry — Ri, we see
that ¢!~! of them are congruent to 1 modulo . Therefore there are
¢ Hqg—1)— ¢! = ¢"(g — 2) units that are not congruent to 1
modulo 7; thus if 27 equals one of these units, then 7 — 1 is not
in 7R, and is thus a unit. This gives us $¢*2(¢ — 2)(¢ + 1) class
representatives with 2 — 1 a unit. Elements in the centralizer have
the form: (29) of which there are ¢*=%(¢ — 1)(g¢ + 1), so that each

class has size ¢* (g + 1).
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(b) Let 7 divide 27 — 1, so that 27 = 1 + 7'M, where M is a unit.
There are ¢ ~17%(q¢ — 1) choices for M, and ¢'~*(¢ + 1) choices for =
such that 27 = 1+ m*M. This gives us 3¢ 27"(¢ — 1)(¢g + 1) class
representatives. For a fixed ¢, the centralizer will be all matrices of

the form:

The size of the centralizer for fixed i is ¢ =**%(q¢—1)(¢+1) so that

each class has size ¢ "% (¢ + 1).

3.9=(y%), y#0

Again the centralizer depends on the highest power of 7 dividing y:

L)y =0GN0ED

implies y(b — ¢) = 0 = y(a — d).

Since 27 + Ty = 0, we can write y = z7n'r\/a where 7 is a unit in R,

(note that » = 0 has been counted above.) We now consider two cases:

(a) i = 0: thus y is a unit. We will show that there are ¢*~*(q + 1)

such matrices:

We consider the map f : Uy — U; where U is the unitary matrices
over Ry ,, U is the unitary matrices over R; /7R ., and under
this map each element in a matrix in U; is sent to its value modulo
7. The kernel of this surjective map is K3 = ( 1;;”” 14+o ), which has

size ¢*~2. The matrices that we are counting (in which y is a unit)
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are the pre-images of the matrices in U of the form (3 ¥) where
y # 0. These number (¢+1)(¢+1) — (¢+ 1) = q(q + 1), hence we
are considering ¢*~2q(q + 1) = ¢* (¢ + 1) matrices. We multiply
by 1/2, because (3 #) and ( %, 7Y) are similar, getting 3¢* (¢ +1)
class representatives. The centralizer of each representative is the
set of all matrices of the form (§ %), of which there are ¢ =2(q+1)?

making the size of each class ¢*~1(q — 1).

(b) i # 0: we can write y = z(7'r)y/a. There are ¢~""1(q¢ — 1) choices

for wir, and since 27 + yy = 1 and y = ar'r\/a, we can com-

bine these equations to get 27 = (1 — 7#%r?a)~!. Thus z must lie

1

in the pre-image of (1 — 7*r?a)~! in the norm map, which gives

¢""'(g + 1) choices for z. Furthermore, since 3¢*~*7(¢ — 1)(¢ + 1)

class representatives because (3 ) and (%, ”) are similar, there
are 1¢%7*7(q¢ — 1)(¢ + 1) class representatives. The centralizer,

for fixed i, of a representative is the set of matrices with form
(¢ f:;::}g ). This set numbers ¢*~27%(q + 1)? (Found by consider-
ing the map modulo 7!=% from U, to U;_;) so that the size of each

class is ¢2~17%(q — 1).

4. g = (W‘fy ”H;By) where y is a unit in Ry, , and 8 € R;_;_; . Asin previous

cases, the centralizer depends on 7. It is:

(a 7r60+7rl_iN)
¢ atwlTiM

where M, N are elements of R;,. To see this, we can think of the above

element in the form: I 4+ #"B so that in calculating the size of the
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centralizer we need only be concerned with 7" B. From

(eh)m' (3" ='(5 75" )(eh)
we get:

i (b ] d
gy msey) = T (Tay” "y

Thus 7'(ay — dy) = 0, and 7*(by — wBcy) = 0; since y is a unit, we
conclude that d = a + 7'M, and b = 7f8c + ' N.

Under the projection map f : Uy — U;_;, (which takes the value modulo
7l=% of the matrix entries) restricted to the centralizer subgroup, the
image of f is (¢7¢). The size of this image is ¢?~17%(¢ + 1), and
the kernel is K;_; with size ¢*. (These counts use the arguments from

the section on surjectivity). Thus the size of the centralizer for fixed i is

q* 1% (g+1) and the size of each conjugacy class is g% =272 (g —1)q+1).

For a class representative with ¢ fixed we will show that all choices for
y produce conjugate matrices. Recall that y = w'ary/a where r € R;_;.

Let 7 be fixed, and let ¥, yo be units in R;_; with yo = ky; for k a unit in

R;. Choose z € R;, such that 2z = k. Then conjugation of (nyl ﬂH;Byl )
0 . x wtlgk x mitlp! _
by (§ (1) gives (ﬂiky1 f ) = (ﬂin f Y2) where 8’ = B(k?)7L.

Therefore for a fixed i, we can only get non-conjugate matrices from our
choices of 3 and x; there are ¢'~*~! choices for 3, and ¢'~!(q+ 1) choices
for z which must satisfy 27 + 7ymi+t1fy = 1. This forces z to be in a
particular coset of the norm 1 elements, hence the number of choices. In

all, for a fixed i, there are ¢*~27%(q + 1) conjugacy class representatives.
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Below we summarize the conjugacy classes:

Table 4.4: Conjugacy Classes of U,

Type

=W N

Number(i = 0)
g +1)
3¢ g+ 1)

207 @ —=2)(g+1)

Number of classes (i # 0)
¢ g +1)
¢ g+ 1)
2 (g = 1)(g+1)

27 a =g+ 1)

class size
1

qQZ—‘Q—Zi
¢ (g - 1)
q2l—l—2l<q_|_ 1)
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Chapter 5
Adjoining /7 to R/7wR

Let R; be the ring defined in chapter 3; if the modulus is clearly [, we will write
this simply as R. In chapter 4, we adjoined the square root of a unit of R,
while in this chapter we adjoin the square root of 7. Since the larger argument
about the degrees of irreducible characters of U; is inductive, we start with the
base case; that is, we adjoin /7 to a finite field. By construction, R/7R is
isomorphic to some finite field F,, where ¢ is a power of an odd prime p; we
will write IF for the quotient ring R/7rR. We adjoin /7 to F to get a quadratic
extension F, = F[\/7] = {a + b\/7}, a,b € F.

[, has |F|?= ¢* elements and ¢(¢— 1) units (i.e a # 0). Define conjugation
in F. by (a + by/T) = a — by/7, and let the norm map N : F* — F* be given
by:

N(a+by/7) = (a+ by/7)(a+ by/7) = a®

Clearly a + by/m has norm 1 if and only if @ = 41, therefore R, contains

2q elements of norm 1. The image of N is the set of squares in F, so the norm
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map is not surjective, and there might be distinct conjugate linear forms on
the module F,; x F,. In what follows we will use the form whose associated
matrix is ((1) é) Denote by U, the 2 x 2 unitary matrices over F,. The use of

<(1) 5) as the matrix of the form means that (‘; Z) over F, will be unitary if

and only if:

1. ab+ab=ac+ac=0

3. ad+chb=1

These conditions make the unitary 2 x 2 matrices quite constrained and
easy to count, for if (;” 3,) is unitary, then 2y + Ty = 0 and since at least

one of x,y is a unit, dividing both sides by, say, T gives (%_) + 2 =0, so

¥ _
X

ry/m, r € F, and in all cases precisely one of z, y is a unit, while the other

is a multiple of this unit and a pure root. We need consider only two cases:

L If x = 21 4 29¢/7 is a unit, then £ = r\/T =, r € F so

y = (2)rym = (21 + 2ov/T)rV/m = (21)1V/7

so y is a pure root. Similarly z is a pure root. But then w =

8=

SO we

have:

(901-1-1‘2\/77 Yy >
2T (z1—w2y/m) !

x1,%2,Yy,2 € Fand z; # 0.
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2. If x is not a unit, then y = y; + y2/7 must be a unit, and by the

argument above, x and w must be pure roots, and z = =, so the unitary

1
Y

matrix has the form:

< x\/T y1+y2ﬁ>
(yi—yavm) ™t wym

T, Y1, Y2, w € F and y; # 0.

In each case we have ¢3(¢ — 1) possible matrices, so the size of the unitary

group U is 2¢%(q — 1).

5.A Conjugacy Classes

Let H denote the subgroup of U with units on the main diagonal, and non units
on the second diagonal; i.e. H = {(“;’%ﬁ (zri\z/jﬂ* )}
NU. Since [U : H] = 2, H is normal and U = H U (H(?é)) To find
the conjugacy classes of U, we begin with those classes that lie in H. In order
to avoid the use of subscripts where possible, in what follows, x, y, a, b etc. will
represent elements of R, but, for example, y/7 will represent a non- unit,

with y € F.

5.A.1 Conjugacy Classes in H

1. (gg)
Since x is norm 1, there are 2¢ such class representatives, all in the center

of U, so size of each conjugacy class is 1, accounting for 2q elements of

H.

76



2. <g yf), y € F*. There are (¢ — 1) choices for y # 0 and 2q choices for
the norm 1 element x. Conjugating of (g y\f ) by any diagonal element
<8 2) gives <§ ‘@;ﬁ ) where aa is a non zero square in F. Thus the

number of class representatives is:

2q(q — 1)/(%) = 4q

The centralizer of these representatives is the set of matrices having the

form (C\% b‘f) which has order 2¢3:

(2)(6°6) - () ()

ar yai\/T+bx — aztyciy/m brtydi/mT
cx yc1/m+dzx cx dx

Thus yc; = 0 and since y # 0 then ¢; = 0 which means ¢ is a pure
roots. This implies that a,d are units and b is a pure root. In addition,
ya; = yd; so that a; = di, and since b, ¢ are pure roots, a,d are norm 1
so ad = 1, we can write a = *las,/p,d = £1dy,/p and ad = 1 implies

that ay = dy. We have 2q choices for a, and ¢ choices for each of b and

¢, hence the class size is 2q32(§3_ D _ q — 1, and we have accounted for
4q(q — 1) elements of H.

3. <“’(‘j g), T # w
Since w = % then if, say  were norm 1, xZ = 1 implies w = % =

x. Thus z,w cannot be norm 1. There are ¢(¢ — 3) ways of choosing

T = Ty + To/T, since z; # 0,41, and since (z 0) is similar to <1ou 2>,

0w
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there are @

such representatives. The centralizer is the subgroup of
diagonal matrices, which has order q(q — 1), thus the class size is 2¢>.

This accounts for @ - 2¢° = ¢3(q — 3) elements of H.

: <Z§;y\;ﬁ),y,z7§0,z:e2y,eelﬁ‘

Note that distinguishing conjugacy classes according to whether the ratio
of y,z is a square or non-square is due to the fact that the image of
the norm map is the set of squares in F. There are 2¢(q — 1)q;21 class
representatives when the ratio is a square. Conjugating by elements of

H and its complement separately, we get (ignoring the scalar part of

(L))

(aﬁ b )( 0 yﬁ><dﬁ —b><_bc)—1_( 0 bivﬁ)
c dym yvm 0 —c aym - bl_Qyﬁ 0

Thus upper right entry of the conjugated matrix will be e?y+/7 for every

e € I, so these class representatives will be similar in sets of %. There-

fore we have 2g(¢—1) class representatives. The centralizer consists first,

of all matrices having the (C\% bf), since ai =1 < a € L. Also in the
aym b

centralizer are matrices of the form
b dym
q

As a result, the centralizer has order 4¢3, the class size is %1, and we

), since we require b? = 1.

have accounted for 2¢(q — 1)%* = (g — 1)? elements of H in this case.

T yJm *2
: (eyﬁ v ), y#0,e¢F

Again we can write 2¢(q — 1) such elements, and we conjugate as before:
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<a bﬁ)( 0 yﬁ)( d —bﬁ)(ad)—1:< 0 a%?!ﬁ)
VL eyy/m 0 —c/T  a ayeyy/m 0

(aﬁ b >< 0 yﬁ><dﬁ —b><_bc)_1_< 0 bfey\/%>
c dym eyy/m 0 —c a/m - b;2y\/E 0

It is clear that the upper right elements b2ey and ay will take on all
q — 1 values in I, so that the conjugacy size is ¢ — 1. It is clear from
the above that the centralizer consists only of the matrices of the form
<Ca7r b\f), and has size 2¢®. This makes the class size ¢ — 1, and we

account for q(q — 1)? elements of H.

We have accounted for

20+49(g— 1)+ ql¢— 1) +ql¢—1°+¢*(¢—3) =¢*(¢— 1)

elements, which is the order of H.

5.A.2 Conjugacy Classes Not in H

1.(25)
Note that yT = 1 implies that y2T = x. There are ¢(¢—1) such matrices,

similar to % matrices of the form ( B y aar ), and to another % of the

form < £ - a?). The second set is superfluous however, Tozy = x. It

follows that there are (¢ — 1)/((¢ — 1)/2) = 2q class representatives.
The centralizer has order 4¢?; to show this, we consider separately, con-
jugation of (2 ‘6) by elements that are in H and by those that are not.

(a) Elements in H:
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(=) (58) = (58) (="7)
c/m d y0 ) — \y0 c/m d

by1v/m  ax _ [ emiy/T dx
dy cxi/m ) ay byi/w

Thus a = d, and b = ¢(z1/y1), and there are 2¢* such elements.

(b) Elements not in H:

("Fa) () = (08) ()
c dym y0 ) = \y0 c dym

by azxi/m\ cx driT
dy1v/T  cx T \apvm by

8lle

Hence a = d, and by = cx = 2 = £, 80 that bb = 2Z. Hence

there are 2¢ choices for b (it is in the same pre image of the norm
map as x). Therefore there are 2¢* elements of this form, and the
centralizer has size 4¢>.

The class size is 2¢°(¢ — 1)/(4¢*) = q(q_2—1)7 and we have accounted

for 2q@ = ¢*(q — 1) elements not in H.

2. <Zy7r z\%), z # 0. Note that since this matrix is not trace zero, it’s

conjugacy class is distinct from that of the element above.

It is clear that the centralizer will be the same as that of <2 %), so that
the class size is @. There are g(¢—1) choices for x and g—1 choices for

. AL C e z/T  aax A .
z. Since ( Y zﬁ) is similar to ((aﬁ)’ly zﬁ) This includes the matrix

<Z‘f Z\%), so there are 2¢(¢ — 1) non-similar class representatives. This

accounts for ¢?(¢—1)? elements, thus we have found all ¢*(¢—1) +¢*(q—
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1)> = ¢*(q — 1) elements in the complement of H.

We summarize the conjugacy classes of U below: (Those in H are above the

double line)

Table 5.1: Conjugacy Classes of Uy

Representative Number of Representatives | Class Size | Elements
("5 2) 2q 1 2

(%2) 2 2¢° ¢*(q—3)
(3%”) 4q g—1 4g(q — 1)
<Z%yf>,y7z7é0,z:62yyee]l? 2q(q — 1) % qlg —1)?
(eywﬁy;)egm*? q(q—1) q—1 q(q—1)?
(8 6) 2q q(qgl) q2(q —1)
(Z\f zm7r> 2¢(¢ — 1) (I(‘I;U (g — 1)

5.B Generators

It is possible to list all generators of U
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5. g5 = (%)

Note: we can get by without g, = g5 'g1gs, but it is useful for establishing

a standard way of writing the elements of U.

5.C Characters Degrees of U

We find the degrees and numbers of the irreducible characters of U by exploit-

ing the fact that U is a semi-direct product.

Theorem 5.C.1 The degrees of the irreducible characters of U, and the num-

ber of characters of each degree are:

1. 4q characters of degree 1.

2. @ characters of degree 2.

3. 4q(q — 1) characters of degree q;21.

4. q(q + 3) characters of degree q — 1.

Proof. From [S2] (p62): Let A, H be two subgroups of a group G, with A
normal and abelian, and G = A x H. We can express (and count) all of the
irreducible characters of G in terms of those of A and certain subgroups of H.
There is an H action on {x}, the set of (linear) characters of A; for all h €
H,a € A, let h(x)(a) = x(h tah). Let {x;} be a set of orbit representatives
of this action, and let H; be the subgroup of H that stabilizes y;. Denote by
G, the group A x H;. If p is an irreducible character of H;, we may consider

both x; and p to be characters of G;:
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1. For y an irreducible character of A, and any ah € Ax H;, define x;(ah) =

xi(a).

2. For p and irreducible character of H;, and 7 the canonical projection
from G; to H;, we see that p o 7 is an irreducible character of G;. For

simplicity, we will also write p for this character of Gj.

We induce x; ® p to G, to get the character v; , and:

Proposition 5.C.1 v, , is an irreducible character of G;; if +; , is isomorphic
to vy then i = ¢, and p is isomorphic to o/, and finally, every irreducible

character of GG is isomorphic to some 7; ,.

Proof. [S2] page 62
[

]

To apply this method of finding characters to U, we note that U = K; xD,
where K is the set of matrices in U with the form (1:/\;/7? 11‘;\2), x,y,z €F,
and D = D x J, where D is the group of diagonal matrices over F in U, that is,
those of the form: (8 b91 ), b € F*, while J is the group of order two generated
by (? é)-

We first examine the irreducible characters K; and D. Since D is itself a

semi-direct product, it will require the method of Serre.

1. It is easy to see that K is isomorphic to three copies of Ft, so every
character y on Kj can be written x = A (2)A2(y)A3(2z), where each ),
is a character of F™. In what follows, we will always keep to the same

order for these characters, i.e. from left to right the lambdas operate on
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x,1y,z. We will denote by A° the trivial character, and we will drop the

subscript if A is arbitrary in Irr(F7).

2. We have D = D x J; as D is isomorphic to F*, it has order ¢ — 1. For
each character of D, we find its stabilizer under the J conjugation action,
as well as the size of its orbit. Let o be a primitive generator of F*. For

any character x of D, the stabilizer will be J itself if and only if:

This implies that X(S b91> must be 1,or — 1. Therefore the characters
with stabilizer J are the trivial character and the character that sends
<8 b91) to (—1)", where b = a™. We note that both of these characters
have an orbit size of 1 under the J action, so that when each of these

is tensored with the two characters of J, and the resulting character

induced to D = D x J, we get 4 characters of degree 1.

The remaining ¢ — 3 characters of D have only the trivial subgroup of J

as a stabilizer, since each has the form:

where A is neither the trivial nor the alternating character on F*. These

1

characters have an orbit size of two: y is conjugate to x~. Therefore

these characters will result in % characters of D having degree 2.

Now we find the number of degrees of the irreducible characters of U as

well as the number of characters of each degree:
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1. Let x be the irreducible characters of K; given by AA°A\° where the first
A is arbitrary; note that there are ¢ such characters, and that under the
D action, each is congruent only to itself. This results in 4¢ irreducible
characters of degree 1, and @ of degree 2. The degree 1 characters
can easily be made explicit: write an arbitrary element of U as X .J°,
where X € H, J = ((1] (1]), and b = 0 or 1. We have the alternating
character; XJ* — (—1)°, and the determinant character. There are 2q
determinant characters, since the determinant is a norm 1 element, and
there are 2¢ such elements. Additionally, we have the tensor product of
the determinant character and the alternating character, giving another

2q characters.

1

2. To get characters of degree =, let a € F* and x = A(a®X3)A3. Note

that X is arbitrary, but A3 is fixed, so that:

(M7 ) = Meks(et)ha(2)

Each such character is stabilized by 4+ and the two element subgroup
generated by (2 aal ), resulting in characters of U with degree @ =
q;zl. Each such character lies in an orbit of size q;zl, since by conjugation,

we can change A3 to b?\3 for any non-zero square b*> € F. This results

n:

4qq%1(q - 1)/% =4q(q—1)

characters of degree q;—l.
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3. For degree ¢ — 1, consider first x = A\ \°; for B = ( y yﬁ), we have:

Z\/TT X

(T ) = @)

The stabilizer of the D action is 1, having two linear characters, and

resulting in characters of U with degree @ = g — 1. Under the D
action, A\g\° is congruent to A(a?X2)\°, where for a € F, a*A(y) =
A(a%y). Thus the orbits of these characters have size “*; the number of

distinct non-zero squares in . This gives us:
qg—1
aa—-1)/——(2) =44

characters of degree ¢ — 1.

Next consider characters x of Kj of the form A(z)(kA3(y))As(z), where
k is a non-square in F. The stabilizer of the D action is £/, giving
characters on U of degree ¢ — 1, and these characters partition into

equivalence classes of size ¢ — 1. Thus we get:

S a- D/ 1)@ = ¢ 4

Thus in all we have 4q + ¢*> — ¢ = q(q + 3) characters on U of degree

g — 1, and we have justified the numbers in table 5.A.2.

Finally, we note that:

1. The sum of squares of the degrees is 2¢*(q — 1), the group order.
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11¢%+3q
2

2. The number of characters is , which equals the number of conju-

gacy classes.
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Chapter 6
Adjoining /7 to R

In chapter 3, we defined a quadratic extension on R; by adjoining the square
root of a non-square unit of R;. In the previous chapter we adjoined the root
of a non-invertible element to the quotient R/mR. Here we form a quadratic
extension of Ry itself by adjoining /7. We will consider the group of uni-
tary matrices over the ring R, = {a + b\/7 ,a,b € R;}, and exploiting the
arguments from chapter 3 regarding the expression of elements a,b as quasi
polyomials over a fixed transversal 7 of mR;, we find that the order of R; . is
q*, with ¢*~!(q — 1) units, and 2¢' norm 1 elements (we are using the same
Hermitian form). From these counts it is clear that the norm map, which takes
a + by/m to a® — wb?, surjects onto the square units of R;; as a consequence
we cannot claim that all conjugate linear forms are equivalent. In this work,
we will use the same matrix for the form as was used in the \/a case. Where
there is no possibility of confusion, we will write R and R, respectively, for R,
and R r; where the modulus is not [ we will be more precise. Denote by U
the group of unitary 2 x 2 matrices over R, using the same matrix <? (1)> for

the form.
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6.A The Order of the Group

From remark 4.C.1, the matrix (‘Cl g), a,b,c,d € R, is unitary if and only if:
e ac+ac=>bd+bd=0
eabt+ab=cd+ed=0
ead+ch=1

It is clear that at least one of @ and ¢ must be a unit (and similarly with b

and d). If a is a unit, then from a¢+ ac = 0, we divide both sides by aa to get

LiZ oo (6.1)
aa aa
C c
i I 6.2
(G) + a ( )

Thus ¢ is a pure root, and ¢ = a(ry/7), r € R. Similarly, since bd +bd = 0
b = d(s\/m), s € R. Since we have non-invertible elements on the second
diagonal, d must be a unit, so ad + ¢cb = 1 and this can be written can be

written:

ad + (a(rﬁ)m =ad(l —mrs) =1
Thus ad = (1 — 7rs)~"; we choose any 7,5 € R and a to be any unit, then
d is determined. Hence there are ¢'~'(q — 1)¢* = ¢*"!(q — 1) such matrices.
If we had assumed that ¢ was a unit rather than a, we would have found
the same number of elements, therefore the order of Uj is 2¢*~1(¢ — 1). Tt is
a convenient feature of these unitary matrices that of any two vertically or

horizontally adjacent elements, precisely one is a unit.
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6.B The Abelian K Groups

In section 4.E we defined some abelian subgroups of the unitary group. In this
section, to avoid fractional powers of 7, we alter this definition somewhat and
find the order of several important such subgroups.

We define for a positive integer 1 <14 < 21

K, ={I+yTB}NU,

We index by the power of /7 instead 7 in order to avoid fractional powers of
7 later on. These subgroups are abelian for ¢ > [, and we give the orders of

the most important:

1. When [ = 2m we define characters on K; = {I + 7B} N U;. If we
consider a typical element:(ltrﬂng liwnj\f S), M,N,Q,S € R, and note
that the entries on the main diagonal are both units, then by section
6.A, 7N = (1 + 7#™M)ry/m. This implies that r has a factor of 7™,
therefore 7™ N can be written 7™by/7 with b € R . Similarly 7@ can
be written 7™cy/7 for ¢ € R. In addition, (1 + 7™ M)(1 + 7™S) = 1,
and this implies that S = —M. Therefore we can write elements of K;

explicitly as
I+ <7rma71r:7cr:;;2ﬁ ,ﬂm;r:fﬁ@ﬁ)’ ai,as,b,c € Ry
and the order of K is ¢*™ = ¢*.

We will also need to consider the group K; = {I + 7™ '/7B} N U,.

We count this subgroup, by writing a typical element explicitly:
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m™ay+r™m Lag/T = lby/7
I + ( 71.'m—lc\/E ﬂ'md1+ﬂ'm_ld2ﬁ 9 a‘17a’27b7c 6 Rl

thus the order of |K; ;| is ¢*™ = ¢?*3. It is useful to note that K; ;

is generated by K; and the following subgroups:

@ 6= {(" " )}
®) 6= { (e )}

© G ={(s =)}

where f € R.

. When | = 2m + 1 we define ¢4 on K; = {I + n™\/7B}. By the same

analysis used in the even case, a typical element is

m—+41 m m
I+ (TF a1t az T by ), al,ag,b,c € Rl

TMe/T —nm a4 ag/T

so | K| is ¢*™*3 = ¢**1. We also use the group K; = {I + "B}, a

typical element of which is

TMa;+7mag\/T T/
[ _I_ < ﬂ_mcﬁ 7de1+7de2ﬁ ) a‘17a27b7 C, dl’dQ 6 Rl

4m+4-4 2042

and |K;_4| is ¢ =q The generators of K;_; are K; and the

subgroup

o 1+7™ f 0
gl—{< 0 (1+7rmf)_1)}

Since we always consider the different parities of [ separately, there is no

possibility of confusion by using the notation G; again here.
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Table 6.1: Some K Subgroup Orders

’ degree \ order ‘
K, (I =2m) q*
K1 (I=2m) | ¢
K (I=2m+1) | ¢%*!
K (Il=2m+1) | ¢***

When [ = 2m, for K; = {I + 7™ B} B must have the form

("0 i) ananns € R
Whereas for [ = 2m + 1, and K; = {I + n"/nB} B has a different form:

a1+a2ﬁ b
( c a1fa2ﬁ> ai,a2,7,8 € Rl

The nature of the B matrices will be important for getting an upper bound

for the inertia groups.

Proposition 6.B.1 Let P; be the map from unitary matrices over ;. to the
unitary matrices over R; -, < [ that sends each entry of the domain matrix

to its value modulo 7¢. Then B is surjective.

Proof. The kernel of P; is the subgroup K5;, and this subgroup has order equal
to the quotient of U; and U;. (Note the function P and the group U are indexed

by 7, but the K groups are indexed by /7.)
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6.C Characters and Inertia Groups

Let A be a primitive character on R;"; we extend A to to a character to the
additive group of R; ; by defining A(a+b\/7) = A(a+b) = A(a)\(b). Forl = 2m
and 2m + 1, we define ¢4 characters on K; as follows: for any A € Maya(Ry )
define ¢4 on K; = {I + ﬁlB} NU; by:

da(I + /7 B) = A[tr(v/7 AB)]

For such a character, whether [ is odd or even, we have the following

proposition which establishes an upper bound for 7.

Proposition 6.C.1 Let ¢4 be defined as above, and let g € T the inertia

group of ¢4 in U;. Then

VT tag = valgA (6.3)

Proof. As was the case in the discussion following 4.E.2 we can assume that
A = A since any matrix C € Mayo(Ry ) will give a character ¢o that is
equivalent to a character ¢4 where A € Myyo(R;) so that A = A. In addition,
the proof of Lemma 4.G.1 holds in the case of R ., thus we know that g €

T <= geT.

1. Let I =2m If g € T, by Proposition 4.G.1 g is also in T" and we have

Altr(7™ AB)] = Altr(7™ (9" Ag) B)]

or
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A7 (g™ Ag — A)B]] = 1

Let X = 7™ (g tAg — A) so X has trace zero, and for some 1, 22, Y1, Yo

: _ [ zitzav/T yr1tye/m )
etc. in R, X = (z1+z2ﬁ Cer a7 ) and we have:

Atr(XB)] =1 (6.4)
for all B = (“i\‘}}ﬁ _a1b£ﬁ> ai,az,r,s € Ry .
Furthermore, since g € T implies g € T and A = A, then we can use X

in place of X in equation 6.4:

NtrX B] = A[tr[(x™ (77 Ag — A)B]] = 1,

and in the argument following, we can use X or X as required.

We find an upper bound for the inertia group by exploiting judicious

choices for B, and by using both X and then X in equation 6.4.

Let B = (% _0 > for arbitrary » € R; in equation 6.4 to get

ISR

T1t+xo/T Y1ty % 0 _ %($1+$2ﬁ) y1+y2/T
21+22ﬁ 71171’2\/; 0 —% - Z1+22ﬁ 7%(71’17&1}2\/%)

so that

AtrX B] = A[r(zy + 22v/7)] = A[r(2 + 22)] = 1

which implies that z; + x2 = 0, since the extension of A to R;, is also

primitive. Keeping B the same and replacing X with X, we get
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ANr(zy — 2ov/7)] = A[r(a) — 29)] = 1

so that 1 — x9 = 0; combining both results implies that z; = x5 = 0.

Now letting B = (8 “f ) with X and then again with X in equation

6.4, we find that

Alr(mye + yiv/m)] = Alr(mye + y1)] = 1

and

Ar(=mys + y1v/7)] = Ar(=mya + 1)) = 1

Combining these, we have y; = mys = 0. We get an analgous result for

z1, Z so that we can write:

X = (,THOS\/E ”l_lorﬁ) r,s € R

thus when [ is even, we have /17X =0, or
ﬁl+1Ag _ ﬁlﬂgA

as claimed.

2. Let [ be odd so that for g in the stabilizer of ¢4

Aler(z™ /7 (g~ Ag) B)] = Altr(n™ /T AB))]
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or

Atr(r™v/m(g~ Ag — A)B)] = 1

and X = 7™/7(g~* Ag— A) which is again trace zero. As in the even case

we have A[tr(XB)] =1 for all B = <‘“+Cffﬁ a1—22ﬁ> ay,as,r,s € Ry.

The form of B does not permit B = (6 o ) and using B = <5 2)

T

gives no information about X. Thus we use B ( r‘f —r(i/?> with first X,

then X in equation 6.4 to get 2; = mas = 0. The same process using
B = (8 6) with X then X shows that y; = v, = 0, and similarly for

Z,, z3. Therefore

X= ("L Vesen

so that in the odd case we also have /7X = 0 and for either parity of I:

V't Ag = tlgA (6.5)

6.C.1 The Character Degrees

The A matrices that we use will have one of two forms:

La=(")

2. A= <(1J {;), where A cannot be diagonalized.
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We claim that for all f € R;, the matrix (? g ) over IR, cannot be diago-
nalized. Any defined ratio of neighbours (as mentioned in definition 4.F.1) will
be a non-invertible element of R; .. This follows from section 6.A. Suppose

that (? g) were diagonalizable, so that for some unitary (‘C‘ 3):

07
10

(o) () o

- e a2f—b2 1
(e ™ ) w

Since a®f — b? = d?> — fc® = 0, then f can be written as the square of a

() (14)(28)

ratio of neighbours, and is therefore a non-unit. As a result b and d must be

non-units, which is impossible since (‘é Z) is invertible. Thus ((1) é) cannot

be diagonalized, and we have 3 possibilities for f € R;: a square unit, a

non-square unit, and a non-unit.

We define ¢4 characters on the abelian K subgroups, with the following A

matrices:

1. The Even Case

Let [ = 2m with ¢4 defined on K; = {I + 7™ B} NU,.
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Thus 7™/7 b = 7™/m ¢ = 0, and both b,¢ have a factor of

nm~1/7. Relabelling somewhat, g can be written

(ptos™ 2V, ade Rebice R

so that T' < K;_1.S where S is the subgroup of diagonal matrices.
To show the reverse inclusion, recall that K;_; is generated by K;

and the subgroups

g ={ (Y e ) ]
i Gy = {(ﬂmf%fﬁ ‘1)}
ifi. Gs = {((1) W’”Tﬁﬁr)}

Conjugation by the diagonal elements of G; stabilizes the main diag-
onal of elements in K, and therefore stabilizes ¢4. The subgroups
G- and G5 also stabilize ¢ 4: we give the argument for G,. A similar
argument works for Gs. Write <}: ?) for (Wm—%fﬁ 01> € G, and
(”Z” f{,) for (Trf::mﬁ :’;y(\_/;>’ T € Ry, y,z € R, - this last matrix

is, of course, the 7™ B in the element [ + B € K;.

Conjugating:
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() (ze) (%) = (v wie)

But cy = 7™ L f\/mr™y/7 = 0, so the main diagonal (and thus
¢4) is preserved.

Thus every g € K;_; fixes the elements on the main diagonal of
each element of K; and so stabilizes ¢4. Hence T' = K;_1S. The

order of T is

Kl— S q21+3q2171 q— 1
KiallS]_ e g =) _ g,
|Kl_1 N Sl q

We cannot extend ¢, directly to 7' using 2.C.1, so we interpose

subgroups between K, and K;_1S5; the schematic is:

KN v g, sndyy
A n Yo P b%

where

N = {(HW"HA B ) A B.C,D e RW} N U

am=1C 14xam—1D

and (as we will show) NS is the inertia group of ¢4 in K;1S. N

is generated by K; and the abelian subgroups

am=1lf /x
gl:{<1+ 0 ff[l—ﬂ’mi?f\/ﬂil)}; g2:{<’n‘m7%fﬁ [1)>}

with f € R. Both subgroups are contained in K;_;, hence stabilize

¢4 which therefore extends to a character on K;G; by Proposition
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2.C.1. If we assign the trivial character to Gs, then it will stabilize
not only ¢4 but also the character on G:

Write ()0( V?,) for (Hnglfﬁ [1_7rm7?f\/ﬂ71> and <lc ?) for <ﬂ.m7}fﬁ 0).

Then:

but (X —W) = (X — (%_1) = XX1 = and if we write

= 21 + x4/, then we have

L
X

(X =W) =7"" ey/m(—m*" f2 (1 +20y/T) = 722w, €ER

We have two cases here: if m > 2 then 3m — 2 > 2m and the
result of conjugation can be written ()0( I%) so that Gy stabilizes
the character on G;. If [ = 2 so that m = 1, then we can write the

conjugation product as

1 0 14nm= /7 0
nc/y/mo 1 0 [1,ﬂ.m—1f\/ﬂ—1

since the first factor is in Gy which has been assigned the trivial
character, we see that G, stabilizes the character on K;G; therefore

we get the extension to ¢/, on (K;_1G1)Gy = N.

The number of extensions from K; to K;G; is ¢, and there is only
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one extension from K;G; to N since we have assigned the trivial

character to Gs.

Next we can extend ¢/, to ¥y on NS. S will stabilize ¢/, since it
stabilizes the character on G; (both are diagonal), and because it
normalizes Gy, which has been assigned the trivial character: write

(”5 2) for an element of S and (10 ?) for an element of G;, then

Where the last equality follows because ¢ = 7™ ! f\/7r, and since
= (y)~! then 7'y = yy € Ry, so x 7 lyc = 7™ L f'\/7, f' € Ry.

Thus, by Proposition 2.C.1, we extend to ¢y on N.S. We show now
that the inertia group of 1y in K;_1S is NS itself. The group K;_ 1S
is generated by NS and the subgroup Gz = {((1) ”m_ifﬁ> }, fe

R, but G does not stabilize the (trivial) character on Gy, since

Ll . ) = <(1)Cll> is an element of G3, and (71-’"*}]”\/7?[1)) =

1
if 0
) is an element Gy, then

¢

J(07) = () (6 7)
_ <1+cd —fe? )

< 1+7T2’"L71€f _7r3m72f62ﬁ>

71.mflf\/E 177T2m716f
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If m > 2 so that 3m — 2 > 2m, then the result can be written

1 0 14m2m—lef 0
L AV 0 1—n2m—lef

Since the character value of the second factor is not necessarily 1,
then G does not stabilize ¢'y. If | = 2 so that m = 1, we can write

the conjugation product as

14+mef —mef?y/w
fVE d—mef

Under the natural projection map modulo 7, this matrix maps to
(f\l/; (1)>, hence the conjugations product is equal to (f\l/; (1)> (Z2)
for some Z € K; = {I + 7B}, and the main diagonal of Z must be
the same as the main diagonal of <1?\7;§rf TZ{;}/E>, hence ¢4(7) is

not identically 1, and G3 does not stabilize ¢/;.

Consequently, we can induce ¥y to an irreducible character ¢ on

T = K;_1S which will have degree

[NS|IGs|
INS NGl

Finally, x = Indglz/J is an irreducible character of U; having degree

qU, : T) = 2471

The next three A matrices are all of the form A = <(1] 3), and from

equation 6.5, the inertia group for each ¢4 is contained in the group
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K;_1S for S the centralizer of A. Since K;S < T, we need to check
the generating subgroups of K;_; that are not in K;. These are: (f
is in R)

For any B = (?3), we have

ppll+nm (P WE )] = Aa (te/Ty /) = Al ()]

We conjugate I + 7rm<1"1;rfc/2;‘/7r _m1y£ﬁ> € K, by elements of the

above 3 subgroups, and we are only concerned with the second

diagonal entries of the conjugation products:

i. The subgroup G, is in the centralizer of K;, and thus in T to

. m—1
see this, take (gf%) = (H7r 0 v (l—wm_?fﬁ)_l) € Ginote

that FF =1 —7?""1f2 and (FF)™! =1+ 72"~ f2. Thus:

F 0 m ([ T1dzo/mT  yyw F 0 -1 _ m( (e1itzaym)  FFyym
1 )T -1 T _
0F 2T —zitme/T 0F (FF) 27 (—z14+x2/T)

The upper right element is:
FR(rmyy/m) = (1 — 77 f2) (™ /7) = 7/

By similar reasoning, the lower left element is 7 z+/7.
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ii. Checking to see whether or not Go < T', we write ( k [1)> for

(Fmifﬁ 01> € Go, and (i},ﬁ) for 7rm<“;%ﬁ —z1y-&\-/a:i\/7r)’ SO

(F)(z0)(22) = (riee i) (26 9)

_ z—Fy Yy
— \ Fa+42—F?y—Fw Fy+w

The upper right is preserved, but the lower left is

Fr+z—Fy—Fw=r""fVr(x —w)+z (F% is zero)
= 7" (™ (2m)) + T2/ T
= 1" 2w f)VT + T T

so the lower left element is not fixed. Thus, for the A matrices

(? ‘5) and (‘f 5), Gs is not in 7. On the other hand, for A =
(? ”63 >, the stabilizer of ¢4 does, in fact, include G, because
when we calculate the character, the 7/ entry will vanish the

term w21 (2a, f)\/7.

iii. For Gs, we write (})If) for (éﬂmfllf‘/’?) € Gy, and (fﬁ%) for

am T1t+x2/T yv'm SO
2T —zitze/T )

(GG (2)57)

_ (m—Fy y—i—F(w—z))

z w—Fz
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In writing the upper right entry, we have used F'Fz = 0. Therefore
the lower left entry is invariant under conjugation by Gs, but the

upper right entry is

7"y /T + T T (221)) = 7 yT — 72 fa T

Though the lower left entry is preserved, the upper right is not.
Consequently, Gs is not in T for any of the three remaining A ma-

trices. Note that the 7 in ((1) ”05 ) cannot save this subgroup.

Thus we must deal with A = (‘1) ”05 ) separately, but for A = ((1’ ‘6)
or <(1) 5), the inertia group will be K, S, where K, is the subgroup
generated by K; and the subgroup G;. The extension schematic for

these A matrices will be:

K& i, g, sy,

®a N A X
The first extension above is by Proposition 2.C.1, since G, is abelian,
and stabilizes ¢ 4. The second extension will be justified in the same

way if we can show that S fixes the character on the G; elements.

Proposition 6.C.2 For A = <(1]3> = (93) or (?5) and any
am—1 s

S € S and h - <g (F())—l) == <1+ 0 I (l_ﬂ_m—?fﬁ)—1> € g17 we

have shs™' = hz where x € Kj such that ¢/,(z) = da(z) = 1.

Hence S stabilizes the character on G;.

a

Proof. Let s = (‘;bt> € S be an element of the centralizer of

A. To show that shs™! = hx, we consider the natural projection
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map P : U, — U, a surjective map with kernel K;. We claim
P(hsh™') = P(s). Note that FF = 1 — 7?™f? is congruent to 1

modulo ™.

Thus hsh™' = xs, z € K;. To see that ¢4(x) = 1, note that we
can write h~lz = sh™!'s7!. Now we claim the following

o tr(A(hx)) = tr(Ah) + tr(Ax)

o tr(Ashs™) = tr(h)

The second item above follows immediately because S centralizes A.

For the first we note that for h = (1(«; (f())—l > = (HWm;Ifﬁ (1_7rm7(1)fﬁ)71 >7

and z = (*’é 3;) e K, he = (%Z( gVYV). But FY = (147 f/7) (7™y/7) =
7™y/7, and similarly FZ = 7™z/7. Since tr(Ah) = 0, the result

follows. Now we can show ¢4(x) = 1.

tr(Ah™Y) + tr(Ax) = tr(A(h ')
= tr(Ash™'s1)
= tr(s 'Ash™!)

= tr(Ah7Y)
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hence tr(Az) =0 and ¢a(x) = 1.

]

Hence we get an extension to T = K; S, followed by an induction
to U;. Now we can find character degrees for the cases A = ( 9 g),
and A = (? ’6).

Let A = (? g) with ¢ € R a square unit. The inertia group is
K .S for S = (ﬁ cg). From Proposition 4.D.2, S is isomorphic to
two copies of £, and thus has order 4¢°™ = 4¢', then |T'|= 4¢*. We

can extend ¢4 to 1 on T, so xy = Indglw is irreducible with degree

Let A = (‘1)5) with ¥ € R a non-square. 7' = K;; S with S =
(‘; Cg’). The order of S modulo ¢™ is 2¢*™ = 2¢'; ¢4 extends to 1)

on K;S which induces to x on U; of degree [U; : T] = ¢~ *(q¢ — 1).

For A = (? “f) S = (g Cfﬂ) the inertia group is generated by
K;, Gi, Go, and S = <‘C’ ‘325). Once again we will let K;; denote
the group generated by K; and G;. The extensions in this case will

follow this schematic:

K K S K 6, Y k6,8 2
¥

®a &y A X
We have seen that both abelian subgroups G; and G, stabilize ¢4,
so we can extend to ¢y by Proposition 2.C.1. We can also do the
second extension by Proposition 2.C.1, providing that we assign the
trivial character to Gy, because: G, stabilizes ¢4, and we have seen

in the work for the first A matrix that it will stabilize the character
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on G; as well. To justify the last extension, we need to show that .S
will stabilize the characters on both G; and G5. In the work for the
first A matrix, we showed that the S group in that case stabilized
the character on Gy; the same proof for S = <‘CL en ) works in the
same way. We will use the same ideas to show that S stabilizes the

(trivial) character on Gs.

Proposition 6.C.3 Let s € Sand let h =

/N

29) = (antps 0) €
1.

Go. Then shs™' = hx,x € K; with ¢a(z) =

Proof. Let s = (‘Cl ”5C> € S be an element of the centralizer of
A. To show that shs™! = hx, we consider the natural projection
map P : U, — U, a surjective map with kernel K;. We claim
P(hsh™') = P(s). Note that Fr = 7#™~!f\/7(r) is congruent to 0

modulo ™.

PIR) (a2 ) (29)] = Pl(artee i) (209)]
_ [ a—Frpc 7Bc
=P _<c—7chF 7r,80F+a>]

(G

Thus hsh™ = xs, z € K;. To see that ¢4(x) = 1, note that we

can write h~ 'z = sh™'s~!, and:
o tr(A(hz)) = tr(Ah) + tr(Ax)
o tr(Ashs™!) = tr(h)

The second item above follows immediately because S centralizes
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A. For the first we note that for h = <I£ ?) = (Wm—%f\/gg» and

x = <)Z{ %) c K, hx = (FX'J;Z Y) But

FX+Z = (r" ' fr) (147" X))+ Z = 7™ L f/m+m®™ X7+ Z

Note that the second diagonal would be additive here except for
the term 7™~ fX /7, but this zero is vanished by the A matrix,

therefore the first point is proved. Now we have:

tr(Ah™) + tr(Ax) = tr(A(h ')
= tr(Ash™ts!)
= tr(s 'Ash™!)

= tr(Ah™Y)

hence tr(Az) =0 and ¢a(z) = 1.

O
Consequently, we get the extension to ¢, and then an induction to
U;. To find the order of T'= K;;G5S, we note:

i ‘Kl+g2|: q2l+2
i, [S|=2¢%

iii. |K;1GoNS|= ¢'t?
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Hence |T'|= 2¢* and we can induce to an irreducible character x of

U of degree [U; : T) = ¢t (q—1) .

2. The Odd Case

Let [ =2m + 1 and ¢4 be defined on K; = {I + 7#"/7B} N U,.

(a) Let A = ((2] i). By construction, the inertia group T of ¢4
2

contains K;S. From equation 6.5, if (‘C‘ g) € T then

so 7™y = 7+ 1e = 0 and by relabelling somewhat, T is contained
in the subgroup of the form (W%C ”Zb) = K;_1S where S is the

subgroup of diagonal matrices. Thus

KS<T<K;_;S

Here we find that the upper bound is achieved. K; ; is generated
K; and the subgroup G; = {(Hgmf (Hﬂfif),l )} f € Ry, which is

diagonal so it stabilizes ¢4 and T'= K;_1S.

We can extend ¢4 to K; 1S in two steps:

Kk, S 524y,

A &y P X
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By Proposition 2.C.1 ¢4 extends to ¢y on K;_1, and we note that
the number of such extensions is [K;—; : K;] = ¢q. S centralizes

G (both subgroups are diagonal), thus ¢/, extends to ¢ on K; 1S,

L/

and y = Ind?w is an irreducible character of U; of degree 7

2¢11(g=1) _ o 11
(g-1) =2¢""

The remaining A matrices are all of the form (? 6) for some t € Ry,
and we claim that for all of them, the inertia group is K;S. In each

case, the inertia group T of ¢4 is bounded thus:

KS<T<K_15

Recall that K;_; is generated by K; and Gy, but we will show that G,
does not stabilize ¢4, so that T'= K;S. To show this we conjugate,

(ignoring the term 1)

]_’_ﬂ-mﬁ(mﬁ-zzﬁ xlfgzﬁ>7 € Kl by (IS F(ll) = (1+7(;mj (1+7r7(3bf)71> c

G, getting:

X x s -1 m x x s 2
(52 )amvm(em o (5 ) =emvr(esr )
Note that F? = 1 4 7™2f + 72™ f2, so the upper right element in
the conjugations becomes
m"y/T(1 4+ 7" E) = n™y /7 + 72"y BT

thus ¢4 is not stabilized. Consequently, for the next three A ma-
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trices, the inertia group of ¢4 is K;S where S is the centralizer of

A.

Let A = (? g) where o is a square unit in R and T' = K;S, with S

the set of unitary matrices of the form <‘CL “ ) From Proposition

4D.2, S = L x L. We calculate |T'|= ||Ilgl@‘ From section 6.B

|Ki|= ¢®*1, and from the form of S, we have |S|= 2¢' x 2¢' = 4¢?..

An element in the intersection is

_ | 1+7™a/T mco/T
A—( ﬂ.mcﬁ 1+Wmaﬁ),a,C€R
Since there are ¢™! choices for both a and ¢, then |K; N S|= ¢'**.

As aresult |T|= qzl;iflqm = 4¢*. Since S is abelian, ¢4 extends to 1,

an irreducible degree 1 character of T', and x = Indgl is irreducible

of degree [U; : T] = 2q4’2§g—1> — e,

Let A= ((1) ’6) with v € R; a non-square unit, and 7' = K;S, where
S is the set of unitary matrices of the form <Z e ) To get the order
of S note that, from section 6.A one of a,c must be a unit, but ¢
cannot be a unit, for if it were, then we could write a = ry/7(c) so

that:

aa + cev = (ry/7(c))(rv/a(c)) + cev = ce(v — nr?) =1

2

and this implies that v — 7r® is a square in R;; a contradiction.

Therefore a must be a unit, and we write ¢ = ry/7(a) to get:

aa(l —mr?v) =1
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Since we have ¢! choices for r (r € R;), and 2¢' choices for a (it
must come from the pre-image of (1 — wr?v)~! in the norm map,
then |S|= 2¢*. An element in the intersection of K; and S looks
like

1+7™a/m T ev/T
( e/ 1+n a7 )0 a,ce R

Since there are ¢™*! choices for each of a, ¢ then | K;NS|= ¢+, thus

2l+19,21 . . . o1
|T|= 1 qlflq = 2¢*. Again S is abelian and stabilizes ¢4, so we

extend the ¢4 to 1, an irreducible character of T'. Then y = Ind?@/}
is an irreducible character of U; with degree [U; : T] = ¢""1(q — 1).
Let A = (? ”05> where 8 € Rj_1. T = K,;S, where S is the set of
unitary matrices of the form (g ”5C>

The orders of S and |K; N S| are the same as for the previous
matrix, hence |T'|= 2¢%, leading to an irreducible character of U,

having degree ¢~!(q — 1).

For reference, we give below the degrees of the characters found for the

various A matrices.

6.C.2 Counting the Characters of the Unitary Group

Our inductive assumptions in this work is that both the character degrees of
U;_1 and the number of these characters is known, the base case of [ = 1 being

given in the previous chapter. Since U;_; is isomorphic to the factor group
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Table 6.2: Character Degrees From ¢4 Characters

’ A matrix \ degree ‘
(]
A=(0¢ ql‘l(qul)
A= (%) |d -1
a= (05 | ea

U/ K1, we can lift (so to speak), every character of U;_; to U;. Moreover,
the product of each irreducible character from U;_; with a linear character of
U; produces an irreducible character of U; whose degree is known from the
inductive hypothesis. Denote the linear characters of U; as L;, and the linear

characters of U;_; as L;_;.

Proposition For any ¢ € Irr(U;_;), the number of distinct irreducible char-

acters of U; of the form ¢ with ¢ € L; is [L; : L;_4].
Proof. The proof used in Proposition 4.J.1 is valid for this case as well. O
Proposition |L;|/|L;—1|= ¢
Proof. We can use the proof from Proposition 4.J.2. n

Thus U;_; will contribute (¢)2¢*¢~9Y71(q —1) = 2¢*~*(¢ — 1) to the sum of

squares of character degrees which we will now calculate.

In order to show that we have found all character degrees of U; with their
respective numbers, we sum the squares of the degrees of all distinct irreducible
characters of U; to get the group order. The number of characters of a given

degree will equal the number of non-conjugate ¢, characters on the abelian
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K subgroup multiplied by the number of extensions to the inertia group. As

a result we will demonstrate the following:

Theorem 6.C.1 The degrees of the irreducible characters of U; found from

the ¢4 characters on Kj, and their respective numbers are:

Table 6.3: Degrees and Numbers

’ A matrix \ degree \ number ‘
A= (3 _0;) 271 | 20" (g - 1)?

0 ¢ (¢—1) q4l73(q — 1)
A=(%%) |d ' a-1 | ¢"Pg-1)
A= (? ”05) ¢ Hg—1) | 4" (¢ - 1)

Proof. 1. The Even Case

Let | = 2m.

We will need to count the number of non-conjugate ¢4 characters; for

all A matrices in the even case, we have

oAl + 7" B] = Atr(r" AB)]

thus when enumerating the parameters x, b below, we consider their value

modulo ™.

1
(a) Let A = <8 _Ol) with inertia group K; 15, the degree of the irre-
2

ducible characters of U; is 2¢'~', A’ = I +bA, with x € R;,b € R}.

The schematic:
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KNS g g sy

!
ba ¥y Yo ) X
There are g™ choices for z, ¢™ (¢ — 1) choices for b and xI & bA

are conjugate. Hence the number of non-conjugate forms of A’ is

ql’l(q—l)‘

5 The number of extensions from K; to N is ¢, and the

number of extensions from N to NS is = ¢'~2(q — 1). Therefore
there are ¢'~1(q — 1) extensions in all. The number of characters of

U, of degree 2¢'! is

¢ g—-1)
9

202 2
_ ¢~ (g -1

x g 1((1—1)2—(2 )
Multiplying by the degree squared gives 2p*~*4(p — 1)2 .

The schematic for the next two A matrices is

K&k, Sk, sy,

oA #s A X

Let A = (? g) with inertia group K; S, and A" = xl + bA, x €
R,b € R;. The number of non-conjugate matrices is ¢ (¢ — 1): to

see this we consider two cases

i. Let b=k? € R}, so that for some x € R, 7 = b. Then

z 0 o P 0 2xbo \ o
(o) (25)(07e) = (4757) = (1)
Thus for all squares bR;, we have bA ~ (? a ), for some square

O'/ S Rl.

ii. Let b be any non-square, and let n be some fixed non-square
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(both in Rf). We claim that b(?g) ~ n(?%’). For some
r € Ry,, we have 27b = n, and x%a = no’ for some o', a

square in F;, so that

571 o T _ xiila’ _ no'’
(7 2) (ba) (5.2 ) = (™) = (2%)

. m—1 —1
There are ¢™ choices for z, and qT(q)

choices for . We multiply
by 2 to account for the b, so that the number of non-conjugate A’

matrices is

"2)————=4¢""q-1)

The degree of the irreducible characters of U; is W' The num-
ber of extensions of each ¢4 is [K;. S : K;] = 4¢'. Multiplying
the numbers of non-conjugates, extensions and the degree squared

gives:

¢*2(q — 1) 41—3(

¢ '(g—1) x 4q¢' x 0 =q¢"?(q-1)

Let A = <‘f 5) with inertia group K;, S, the degree of the irre-
ducible characters of U; is ¢/"}(¢ — 1). Again A’ = I + bA. In this
case we can get all non-conjugate matrices by varying x and v. If
b is a square, then (2 bé’) is conjugate to some ((1) ‘6’) by the same

argument used for the previous A matrix. If b is a non-square then

bv is a square, so for some z € R, xTbv = 1 thus (let y =7 !)



We have ¢™ choices for x and qu() choices for v, giving M

. S .
non-conjugate ¢4 characters. There are % = 2¢' extensions

from K to K;S. Taking the product of these three values gives

¢ '(g—1)

5 2l—2<q - 1)2 — q4l—3(q o 1)3

x 2¢' X ¢

(d) Let A= (? “06> The schematic is:

ext ext ext ind

K— K — K1 G — Kl+g2S — Ul
¢A d)/ ¢//

and A" = xl + bA. If by, by are squares, then by A and byA are
conjugate by the arguments given for previous A matrix. Similarly

if by, by are non squares, then by A and by A are conjugate. Hence

there are ¢™(2)¢™ ! = 2¢'~! non-conjugate characters. The inertia

group is K;;G»S, so the degree of the irreducible characters of U,

is [U; : K11G2S] = ¢""*(¢ — 1). The number of extensions from K
to K4 is q, and from K, Gy to K;,G,S, it is is Wzi% = 2¢'L.

Hence in all we have 2¢' extensions, so the product of characters,

extensions, and degree squared is

2 -1 % 2q % q2l 2(q_ 1)2 :4q4l—3(q_ 1)2

We sum the four values above, together with the contribution from U;_;:

2q4l—4(q_1)2+q4l—3(q_1)3+q4l—3(q_1)3+4q4l—3(q_1)2+2q4l—4(Q_1> — 2q4l—1(Q_1)
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which is the order of U;, hence for [ = 2m we have found the degrees and

numbers of all irreducible characters of the unitary group.

2. The Odd Case
Let A =2m+ 1.

The K, characters are

$all + 7™\/7B] = A[tr(x™\/7AB)]

and a typical element of K; has the form

Mt le) +nMeg/T T /T
I+ ( N —amtle ftnmeg/w )7 €l>€2afag € Rl

and the precise form of the elements in the bracket will be relevant in

counting the non-conjugate characters for each matrix.

(a) Let A= (% ’ ) with inertia group K;_1.S. The degree of the irre-

1
0 -3

ducible characters of U; is 2¢'~!, A’ = I + bA, and the schematic:

K, S, s24,

A &'y P X
To count the choices for = and b, we note

i. If A= (g 2) then the applying ¢4 to the element of K; above

gives A(m™(2zay)), hence = there are ¢™** choices for .
1
i, If A= b( : _Ol ), applying ¢4 gives \(7™(ba,). Since b must
b

be a unit, there are ¢™'(q — 1) choices for b.
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m+1¢""(g=1) _

Since the matrices x1 +bA are conjugate, there are g 5

g1
2

non-conjugate characters on K;. There are ¢ extensions
from K; to K;_1, and ¢'~2(q¢—1) from K;_; to K; 1S, giving ¢'~(q—
1) extensions in all. Hence the number of characters of U; of degree

2¢"1 is
¢ '(g—1)

Multiplying by the degree squared accounts for 2¢*~*(q — 1)? ele-
ments of Uj.

Let A = (? g) with inertia group K;S. Applying ¢4 as in the

m+1

previous A matrix, we see that there are ¢ choices for z, and

mfl( _1) . .
L= choices for 0. The argument for grouping squared values
of b together, and non-square values of b together carries through

here, so that the number of non-conjugate A" = xI + bA is

m—1
m q q— 1 _
@Y g )
and the number of extensions of each ¢4 is 4¢'~! = [K;S : K.

The degree of the irreducible characters of U; is L;. Multiplying

the numbers of non-conjugates, extensions and the degree squared

gives:

(g — 1)

¢ '(g—1) x4¢7" x .

=¢" (g - 1)

Let A = (‘1) ’6) with inertia group K9, the degree of the irreducible

m—+1

characters of U; is ¢"1(q¢ — 1). There are ¢ choices for z, and
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A ()
2

choices for v, and the argument from the even case that

eliminates the effect of b carries through here, so that there are

¢~ (g—1)

5 non-conjugate ¢4 characters and [K;S : Kj] = 2¢'! ex-

tensions from K; to K;S. Taking the product of these three values

gives

¢ '(qg—1)

> % 2ql—l % q21—2(q o 1)2 — q4l—3(q o 1)3

(d) Let A = ((1) W()B) with inertia group K,;S, the degree of the irre-

ducible characters of U; is ¢'~*(¢— 1). The argument from the even

case about grouping squared and non-square valued of b applies

m+1

here. There are ¢ choices for z, ¢™ ! choices for 3, and a factor

of 2 for the effect of b. Hence there are

¢ (2)g" T =24

non-conjugate characters. The number of extensions is [K;S : K]

or 2¢'~'. The product is

2ql % 2ql—1 % q2l—2(q . 1)2 — 4q4l—3(q . 1)2

Summing the four values, and the contribution from U;_;:

2q4l74(q_1)2+q4l73(q_1)3+q4173(q_1)3+4q4173(q_1)2+2q4174(q_1> — 2q4171<q_1)
which is |Uj|, hence for | = 2m+ 1 we have found the degrees and numbers
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of all irreducible characters of the unitary group.
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