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Abstract

Spatial interaction pattern mining is the process of discovering patterns that occur due to

the interaction of Boolean features from a spatial domain. A positive interaction of a subset

of features generates a co-location pattern, whereas a negative interaction of a subset of

features generates a segregation pattern. Finding interaction patterns is important for many

application domains such as ecology, environmental science, forestry, and criminology.

Existing methods use a prevalence measure, which is mainly a frequency based measure.

To mine prevalent patterns, the known methods require a user defined prevalence threshold.

Deciding the right threshold value is not easy and an arbitrary threshold value may result

in reporting meaningless patterns and even not reporting meaningful patterns. Due to the

presence of spatial auto-correlation and feature abundance, which are not uncommon in a

spatial domain, random patterns may achieve prevalence measure values higher than the

used threshold just by chance, in which case the existing algorithm will report them. To

overcome these limitations, we introduce a new definition of interaction patterns based on

a statistical test. For the statistical test, we propose to design an appropriate null model

which takes spatial auto-correlation into account. To reduce the computational cost of the

statistical test, we also propose two approaches.

Existing mining algorithms also use a user provided distance threshold at which the algo-

rithm checks for prevalent patterns. Since spatial interactions, in reality, may happen at

different distances, finding the right distance threshold to mine all true patterns is not easy

and a single appropriate threshold may not even exist. In the second major contribution of

this thesis, we propose an algorithm to mine true co-locations at multiple distances. Our

approach does not need thresholds for the prevalence measure and the interaction distance.

An approximation algorithm is also proposed to prune redundant patterns that could occur

in a statistical test. This algorithm finally reports a minimal set of patterns explaining all the

detected co-locations. We evaluate the efficacy of our proposed approaches using synthetic



and real data sets and compare our algorithms with the state-of-the-art co-location mining

approach.
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Chapter 1

Introduction

The increasing use of geographically distributed, rich and massive spatial data poses an

increasing scientific challenge in effective mining of interesting and useful but implicit

spatial patterns. In this thesis, we focus on a challenging problem that exists in many ap-

plication domains such as ecology, forestry, urban planning, criminology where domain

scientists look for interaction patterns occurring due to some form of spatial dependency

among Boolean spatial features. A Boolean spatial feature could be either present or ab-

sent for a given spatial location. Examples of Boolean spatial features could be species

(trees or animals), catastrophic events (earthquakes, tsunamis, forest fires), climatologi-

cal events (droughts, high precipitation, El Nino), urban features (residences, hospitals,

schools, restaurants, bars), and crime events (assaults, drunk driving, robberies).

In spatial domains, interaction between Boolean spatial features gives rise to two types of

interaction patterns. A positive interaction or an aggregation brings a subset of features

close to each other whereas a negative interaction or an inhibition results in subsets of

features segregating from each other. Co-location patterns have been defined as subsets

of Boolean spatial features whose instances are often seen to be located at close spatial

proximity [35]. Whereas segregation patterns are subsets of Boolean spatial features whose

instances are infrequently seen to be located at close spatial proximity (i.e., whose co-

locations are “unusually” rare). Interaction pattern mining can lead to important domain

related insights in areas such as biology, epidemiology, earth science, and transportation.

1



1.1 Illustrative Application Domains

In nature, a symbiotic relationship among different species brings them to live close to each

other and generates co-location patterns. When a Nile crocodile needs teeth cleaning, it

opens up its mouth widely to let the Egyptian plover (a bird) in and then the bird cleans out

the crocodile’s teeth [40, 57]. Thus the bird works as the crocodile’s dental floss and gets

food in return. As a consequence, the Nile crocodile and the Egyptian plover are often seen

to be co-located, which gives rise to a co-location pattern {Nile crocodile, Egyptian plover}

(shown in Fig. 1.1(a)). A similar example of a co-location due to symbiotic relationship is

the co-location of the hermit crab and the sea anemone [28]. In urban areas, we also see

co-location patterns such as {shopping mall, parking} (shown in Fig. 1.1(b)), {shopping

mall, restaurant}. In ecological domains, events observed in different but nearby locations

can generate co-location patterns. For instance, the smoke aerosol index of a location influ-

ences the likelihood of rainfall in nearby locations [60]. In criminology, identifying crime

attractors or generators is important for public safety. An example of co-locations in this

domain consists of bar-closings, assaults, robberies, and drunk driving events which likely

co-occur together at nearby locations [44]. Co-location patterns are also seen in tempo-

ral and spatiotemporal (ST) domains, for instance, homicides followed by a suicide event

within a short period. Our research focuses only on spatial domains but can be extended for

ST domains.

(a) Symbiotic relationship of crocodile and plover [59] (b) A shopping center with a surrounding parking
lot [48]

Figure 1.1: Examples of co-location patterns.

In addition to co-location patterns, segregation patterns are also common in ecology, where

they arise as a manifestation of processes such as the competition between plants or the

2



territorial behavior of animals. For instance, in a forest some tree species are less likely

found together at a particular distance from each other due to their competition for re-

sources (such as minerals and sunlight) and for the space required for the stem and canopy

growth. In evolutionary ecology, niches of species are seen segregated in the way of using

different habitats, and different food resources. Segregation of similar species may hap-

pen due to the result of natural selection. Interspecific segregation prevents interspecific

hybridization. The off-springs from interspecific hybridization (from two species within

the same genus) are found very often sterile due to the differences in their chromosome

structure, which prevent appropriate pairing during meiosis. Segregation patterns are seen

among shorebirds. Shorebirds with long legs and long bills such as dowitchers can feed

in slightly deeper water. Semipalmated sandpiper is also a shorebird with a short bill and

short legs. This small shorebird roams at less deeper water or water edges to collect food.

These two types of shorebirds are often seen separated from each other for their food and

thus present an example of segregation pattern [52]. In astronomy, elliptical galaxies (early

galaxies) are not seen together with spiral galaxies (late galaxies) [5]. These two types of

galaxies is also another example of a segregation pattern.

1.2 Current State-of-the-Art

Existing co-location mining algorithms are inspired by the concept of Association Rule

Mining (ARM) [2]. Given a set of transactions from market basket data, ARM looks for

sets of items that are purchased together frequently; for example, bread and butter. The

algorithm counts the number of times an item set (such as, {bread and butter}) occurred in

some transactions and reports an item set if the frequency (support) of occurrence in trans-

actions is higher than a user defined threshold (a support threshold) value. One important

property of this notion is that an item set can not be frequent if its subsets are not frequent,

which helps to reduce the search space in mining item sets of different sizes. Interaction

pattern mining has been considered as a similar problem where we look for groups of fea-

tures that are spatially interacting based on a neighbor relationship. Such a group of features

if observed frequently is treated as a co-location.

Unlike the market basket data, there is no natural notion of a transaction in a spatial domain

[35]. Yet most of the co-location mining algorithms [15, 35, 73] adopt an approach similar

to the Apriori algorithm proposed for ARM in [2], by introducing some notion of transac-
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tion over the space. To “transactionize” a spatial data set, Shekhar et al. in [60] discuss

three models - feature centric model, window centric model, and event centric model. Fea-

ture centric model is proposed by Koperski et al. in [38]. Window centric model is used

in spatial statistics for exploratory spatial data analysis. For instance, the distribution of

plants over a large area is studied by taking a sample from the whole population. For that,

ecologists place a grid over the study area and prepare a sample from the plants found in a

grid cell (i.e. window). Such method is also known as the Quadrat method [17]. Shekhar

et al. propose an event centric model [60] which is the current state-of-the-art provides a

neighborhood graph based methodology to eliminate the need for generating transactions

from a spatial data. In an event centric model, a transaction is generated from a proximity

neighborhood of feature instances. A proximity neighborhood is defined based on a spatial

relationship such as metric relationship (e.g. Euclidean distance). Feature instances present

in such a neighborhood become neighbors of each other and form a clique. Similar to the

support measure of the ARM algorithm, a prevalence measure called Participation Index

(PI) is proposed that is anti-monotonic and helps to prune the search space of prevalent

co-location patterns.

A positive association among the spatial features results in co-location pattern, whereas a

negative association or a repulsion causes segregation pattern. However unlike co-location

patterns, segregation patterns have not received much attention in the spatial data mining

communities. Munro et al. in [46] first introduce a mixed type of interaction (a combina-

tion of positive and negative), called “complex pattern” and later Arunasalam et al. in [5]

propose a complex pattern mining algorithm using a prevalence measure called maximum

participation Index (maxPI). Huang et al. in [34] first proposed maxPI which is used to

find co-locations with rare events. maxPI has a weak anti-monotonic property and can be

used to reduce the search space of prevalent pattern mining.

1.2.1 Limitations of the Existing Approaches

In existing co-location mining algorithms [35, 60, 69, 71, 72], a subset of features is de-

clared as a prevalent co-location pattern and finally reported, if its PI-value is greater than

a user specified threshold. The complex pattern mining algorithm proposed in [5] defines a

subset as prevalent if its maxPI-value is greater than a user defined threshold. Finding a

prevalent pattern based on either a given PI-threshold or a given maxPI-threshold, is rea-

sonably efficient since the PI is anti-monotonic and the maxPI is weakly anti-monotonic.

4



However, proper threshold selection for these methods is very critical. With a small thresh-

old value, meaningless patterns could be reported and with a large threshold value, mean-

ingful patterns could be missed. Unfortunately, the threshold is a user specified parameter

that is domain specific and typically difficult to set. Hence using the existing threshold

based approaches may not be meaningful from an application point of view. Another draw-

back of the existing approaches is that they use a single threshold to mine patterns of dif-

ferent sizes. This increases the chance of missing meaningful patterns as the pattern size

becomes larger. We argue that the prevalence measure threshold should not be global and

pre-defined, but should be decided based on the distribution and the total number of in-

stances of each individual feature involved in an interaction. Spatial auto-correlation and

feature abundance which are not uncommon in a spatial domain, may mislead an existing

approach in mining prevalent patterns. Due to the presence of spatial auto-correlation and

feature abundance, random patterns may achieve prevalence measure values higher than the

used threshold just by chance, in which case the existing algorithm will report them.

Besides the prevalence measure threshold, interaction neighborhood information is another

pre-requisite of the existing algorithms in mining prevalent patterns. Neighborhood in-

formation is given in the form a distance threshold which is the maximum inter-distance of

instances of any two participating features of a pattern. For a given distance threshold, these

algorithms aim to find all prevalent patterns. Determining a suitable distance threshold to

mine prevalent patterns is not easy for many spatial domains. In reality, spatial interactions

between features occur at multiple distances. Hence the use of one single distance threshold

to mine all true patterns is a severe limitation. Even if the interaction distances are known

ahead, existing algorithms might report random subsets of features as prevalent. To mine a

true pattern which occurs in a large neighborhood, existing algorithms require to use a large

distance threshold value. While using such a large distance threshold value, a random sub-

set which has features with large number of instances can attain a high prevalence measure

value; hence may be reported as prevalent.

1.3 Challenges

In spatial data sets, the value of a prevalence measure like the PI is not necessarily, whether

high or low, indicative of a positive or negative interaction between features. It is not un-

common to see subsets of features with a very high prevalence measure value due to ran-
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domness, presence of spatial autocorrelation, and abundance of feature instances alone, i.e.,

without true interaction between the involved features. It is also possible that the preva-

lence measure value of a group of positively interacting features is relatively low if one of

the participating features has a low participation ratio. There are similar issues with neg-

ative interactions. Not every negative interaction has a low participation index in absolute

terms, and not every pattern with a low prevalence measure value represents necessarily a

segregation pattern e.g., non-interacting features with few instances may also have a very

low PI-value. Clearly, in such cases, the existing co-location mining algorithms will re-

port meaningless “prevalent” patterns or miss meaningful patterns, they may even report a

subset of features as a prevalent co-location (i.e., an aggregation pattern), when it is truly a

segregation pattern.

To overcome the limitations of the existing approaches, when using global prevalence

thresholds, we propose to define the notion of a spatial interaction (co-location or segrega-

tion) based on a statistical test, develop appropriate null models for such tests, and propose

computational methods to find statistically significant co-location and segregation patterns.

Instead of a threshold based approach, our approach relies on a statistical test to decide

whether an observed interaction is significant or is likely to have occurred by chance. To

capture the spatial dependency among features in an interaction, we use a prevalence mea-

sure. Given a particular observed value of the prevalence measure for a possible spatial

interaction (in the given data set), we then test the null hypothesis H0 of no spatial de-

pendency against an alternative hypothesis H1 of spatial dependency (positive or negative)

between the spatial features in the interaction. Using randomization tests, we estimate an

empirical distribution of the prevalence measures under the null hypothesis. We reject the

null hypothesis H0 if the observed prevalence measure value is sufficiently large or suf-

ficiently small. If the observed prevalence measure value is sufficiently large, a positive

interaction likely exists among the participating features, giving rise to a co-location. If the

observed prevalence measure value is sufficiently small, then a negative interaction likely

exists among the participating features giving rise to a segregation pattern.

One of the main objectives of this thesis is to design a statistical framework to test the

significance of an interaction behavior observed from a spatial domain. In this regard, the

main challenge is designing an appropriate null hypothesis based on which the significance

test can draw the right statistical inference for an observed interaction. Modeling the null

hypothesis is an important part of any statistical significance test. Failing to appropriately
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model the null hypothesis of a significance test results in erroneous inference. Our objective

is to test the significance of an observed spatial interaction against a null hypothesis assum-

ing no spatial interaction between different features. Modeling such a null hypothesis for

a spatial domain is not straightforward. Here the null model should take into account the

spatial properties (distributions) of the features found in the observation but exclude spatial

interactions among features. In many scenarios, finding an analytical mathematical expres-

sion to describe an observed spatial distribution of a feature may not even be possible due

to the presence of spatial auto-correlation, feature abundance, and spatial heterogeneity. In

such cases statisticians use a set of parameters to describe an observed spatial distribution

and conduct simulations to estimate the values of these parameters for a given set of con-

straints [6]. Spatial features could show spatial auto-correlation behavior and/or uneven

distribution of various intensities within the study area. All these issues make the design of

a null model challenging when the spatial distribution of a feature is complex or unknown.

In this thesis, we propose to design an appropriate null model which takes the spatial distri-

bution of each feature into account and in doing so uses spatial models proposed in spatial

statistics to characterize different spatial distributions.

Even after considering the spatial distributions of features in modeling our null hypothe-

sis, the significance test may mistakenly report a random pattern R when subsets and/or

supersets of the R happen to be true patterns. This happens as the null hypothesis does not

take those true interactions into consideration. In this regard, we improve our null hypoth-

esis which also takes true interactions into account. However, the challenge in designing

such a null hypothesis lies in modeling a spatial interaction for which participating fea-

tures are many and may have different spatial distributions. In spatial statistics, we find

approaches that model interactions between two different features. However, to the best of

our knowledge, no methods are constructed to simulate an interaction between more than

two different features. We have proposed a heuristic in this regard which was found ef-

fective in our conducted experiments. Another challenge for the significance test of spatial

interaction is designing a test statistic that can provide a numerical summary of an observed

spatial interaction between features and can also be computed efficiently. We use one pop-

ular prevalence measure from the literature and propose two new test statistics that work

well in our mining approach.

In spatial statistics, we can find models for the distribution of a test statistic (prevalence

measure) as closed form analytical expressions for pairs of features. However a theoret-
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ical model to compute such a distribution for patterns of size larger than two have not

been devised. With the increase of the pattern size, finding a theoretical model to com-

pute the distribution is complex, especially since the individual features may have unknown

distributions or may be auto-correlated. Hence in spatial analysis, an estimation of a cu-

mulative distribution of the statistics is commonly obtained through a randomization test.

During randomization tests, we generate data according to a null hypothesis. Finding a

data generation model to simulate the null hypothesis is challenging as (1) each individual

feature of the observed data can have more than one type of spatial distribution, such as:

auto-correlation, regularity, randomness, and (2) simulating these distributions requires a

mathematically sound and computationally efficient model. We propose a null model that

can generate data sets where the spatial distribution properties of each individual feature of

the observation are maintained. In addition, randomization tests pose some computational

challenges. The first one is the computational cost that is incurred in simulating the large

amount of data. The second one is the cost of computing the prevalence measure in the

observed data and in all simulations. This computation requires first identifying instances

of different patterns and then computing the prevalence measure for each pattern. Since

“being statistically significant” is not an anti-monotone property, in a naı̈ve approach, this

has to be done for every possible pattern. We propose strategies which reduce the cost of

the data generation step as well as the prevalence measure computation step. As a result, the

statistical significance test becomes more efficient and computationally feasible compared

to a naı̈ve approach. We also show that our adopted strategies will correctly identify true

patterns that existing method will miss.

Spatial interaction among features can occur not only at one single distance, but at different

distances. Existing co-location mining algorithms look for prevalent co-locations only for

a defined co-location neighborhood. Finding the right prevalence measure and the right

distance threshold to find all true patterns without reporting any random pattern by the

existing algorithms is not easy even sometimes not possible. As the distance threshold

increases, more instances of a feature will get involved in co-locations. Hence the PI-

value of any pattern increases with the increase of the distance threshold. This fact leads

the chance of a random being reported as prevalent by a standard co-location algorithm

using a substantially large distance threshold. A random pattern may also attain a high

PI-value even at a smaller distance if the participating features are abundant or spatially

auto-correlated, in which case a standard co-location algorithm will report a random pattern.

Thus existing threshold based co-location approaches fails in detecting only true patterns

8



at different distances. To test if a pattern is a true pattern at a distance d, we should test

the statistical significance of its co-location property (measured by a prevalence measure)

observed at d. At which distances a statistical test will be performed to determine the co-

location distance of a true pattern C? We propose to perform statistical tests only at those

distances where unique instances of C are identified.

A pattern C may be reported significant at more than one distances. Then, the next ques-

tion will be determining the co-location distance from one of those distances at which C is

found significant. We propose to select the distance which will involve the highest number

of features instances of C into co-location. Redundant patterns may also be generated from

a statistical test that uses a null hypothesis based on an assumption of the independence of

all features. Redundant patterns are not true patterns but could appear as significant due the

presence of true patterns. With the increase of the multiple hypothesis tests performed at

different distances, the chance of generating redundant pattern increases. We also propose

an approach to prune redundant patterns and finally report a minimal set of patterns that

can explain all the detected patterns. Our approach performs a statistical test using a con-

strained null hypothesis which assumes the independence of features for a given set of rules

(co-locations). To the best of our knowledge, no model is proposed which can simulate

such a constrained null hypothesis. We propose a heuristic to simulate a constrained null

hypothesis and our approach can successfully identify and prune redundant patterns if exist

in the results.

1.4 Thesis Contributions

The contributions of this thesis are the followings:

• Current algorithms for spatial co-location mining depend on user specified thresholds

for prevalence measures; they do not take spatial auto-correlation into account, and

may report co-locations even if the features are randomly distributed. We propose

a method for finding co-located patterns that is based on a statistical test in order to

avoid reporting co-locations generated by chance. We also have introduced a new

type of spatial pattern called “segregation pattern” which occurs due to the presence

of an inhibition relationship or negative association among a subset of features. To the

best of our knowledge, only one related approach based onmaxPI value pruning has

been proposed, and this method has similar limitations as other existing co-location
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mining algorithms, because it is also a threshold-based approach. We present a uni-

fied definition of spatial interaction patterns between features, for both co-location as

well as segregation patterns.

• In a statistical significance test, a probability of seeing the observed value of a test

statistic under the null hypothesis is computed. Modeling a null hypothesis under the

assumption of independence of features is not straight forward, especially when fea-

tures can have different spatial distributions. To this end, we develop an appropriate

null model that takes the individual spatial distribution of a feature into account. The

estimation of the null distribution of the test statistic is obtained through randomiza-

tion tests, which is widely used in spatial statistics, since no closed form expression

exists in the literature that models the joint distribution of more than two features.

Analytical models that exist for pairs of features, will be used in some cases to vali-

date our approach on pairs of features.

• We propose two approaches to mine interaction patterns. Our first approach is an

all instance based approach where the test statistic (the prevalence measure) value

is computed from all the instances of a pattern. In computing this test statistic, we

introduce two strategies which reduce the total cost of computation. Due to the large

number of simulations conducted in randomization tests, the statistical significance

tests can become computationally expensive. We improve the runtime by introducing

a pruning strategy to identify candidate patterns for which the prevalence measure

computation is unnecessary. Taking spatial auto-correlation of features into account,

we also show that in a simulation, we do not need to generate all instances of an auto-

correlated feature and can reduce the runtime of the data generation phase in these

cases.

Our second approach is a sampling approach which improves runtime further. Here

we propose a different test statistics, which can be viewed as an approximation of the

PI-value, using only a subset of the total instances of a pattern. Complete neighbor-

hood materialization to find all different sized interaction pattern instances is related

to the problem of finding all maximal cliques, which is an NP-hard problem. Iden-

tifying the instances of different patterns incurs the major computational cost in a

spatial interaction pattern mining algorithm. To design a more efficient method, we

propose an approximation of the prevalence measure, computed from a subset of the

total instances of a pattern, that can act effectively as the test statistic. We propose

10



to compute the test statistic from instances located in a set of sub-regions sampled

from the study area, so that a sampled sub-region forms a subset of the complete,

circular neighborhood of a feature instance participating in an interaction. For an un-

biased sampling approach, we place a grid over the study area. In a grid, a sampled

sub-region is defined as a set of grid cells which partially cover and are completely

inside the complete neighborhood of a feature instance. We study grids of different

resolutions and show even very coarse grids allow us to draw mostly the same statisti-

cal inferences regarding statistically significant patterns as the full circular neighbor-

hoods, while doing so at a substantially lower computational cost. Thus using such

an approximation provides a good trade-off in accuracy versus runtime compared to

the approach where all instances are identified.

• Furthermore, we show in this thesis that our statistical model can further be extended

to mine all true co-location patterns at multiple spatial distances. The proposed min-

ing algorithm does not require the interaction distance parameter from the users. To

test the distance at which a true co-location pattern becomes significant, we introduce

a different prevalence measure (the pattern instance count) as the test statistic. We

also propose an approximation algorithm to find a minimal number of subsets that

can “explain” all statistically significant co-location patterns and that represents all

true positive interactions present in the data.

1.5 Thesis Outline

The organization of the thesis is as follows:

Chapter 2 starts with a brief discussion on the theory and popular measures of spatial statis-

tics that are related to our research. Then, a comprehensive discussion on the current liter-

ature of co-location mining is provided.

Chapter 3 states the motivation of our research. It also formulates the objective of our

research by introducing concepts and definitions.

In Chapter 4, we first formulate a baseline algorithm for mining interaction patterns. Then

a new algorithm SSCSP (Statistically Significant Co-location and Segregation Pattern) is

proposed which can improve the runtime of the baseline algorithm. To improve the runtime

further, we propose a new prevalence measure. A grid based sampling approach is then
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introduced which allows us to compute this new prevalence measure more efficiently. A

mathematical analysis is also provided to explain the behavior of this sampling approach.

Finally, a complexity analysis of all of our approaches is provided. We conducts experi-

ments to validate our model with a wide variety of synthetic and real data sets and compare

our approaches with the state-of-the-art co-location mining algorithm.

In Chapter 5 we introduce a new prevalence measure which successfully works as a test

statistic to test the significance of a true pattern. To find co-location patterns at different

distances we propose a mining algorithm named CPMNDC (Co-location Pattern Mining

with No Distance Constraint). This algorithm also determines the co-location distance of

a co-location. To prune redundant patterns that could occur in a statistical test when the

independence of all features is assumed for the null hypothesis, in this chapter we also pro-

pose an approximation algorithm. For redundancy checking, we propose a constrained null

model for the statistical test and use a heuristic to simulate this null model. This algorithm

finally reports a minimal set of patterns which can explain all the detected co-locations from

a given data set. The conducted experiments show that our proposed co-location mining al-

gorithm without a distance threshold can successfully mine all true patterns occurring at

different distances from synthetic and real data sets.

Chapter 6 provides a discussion of the achievements and limitations of this thesis. We also

provide some ideas that could improve some of the limitations of this thesis and further

could lead to interesting problems in the area of spatial data mining.

The concepts and results of the proposed interaction pattern mining approach presented in

Chapters 3 and 4 have been published in [9, 10].
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Chapter 2

Background and Related Work

Work done in co-location or segregation pattern mining belongs to one of the following

two areas - spatial statistics and spatial data mining. In this chapter, we highlight some

work from these two domains. Researchers of spatial statistics have contributed by devel-

oping theories and methods for modeling spatial distributions and explorative analysis of

spatial data. These methods work well for analyzing inter-point interaction of point fea-

tures and modeling these interactions in specific cases. A detailed discussion is out of the

scope of this thesis. However some basic concepts, terminology, and notations from spatial

statistics are listed briefly in the next section. Our work adapts and uses these concepts for

experimental validation; hence this discussion could lead to a better understanding for the

reader. Subsequently a co-location mining algorithm using measures from spatial statistics

is discussed.

The second section of this chapter discusses various co-location mining approaches pro-

posed by the data mining community. There is a significant body of literature on co-location

pattern mining that vary based on the types of transactionizing technique proposed to im-

prove the runtime and computational efficiency. Inspired by the ARM algorithm, most of

these techniques use one prevalence measure: PI and utilize its anti-monotonic property

that reduces the search space for prevalent patterns. This discussion helps readers compare

these methods and understand their limitations.

Segregation patterns have not received much attention in spatial data mining. However, in

market basket analysis and the corresponding ARM literature, work is available that looks

for occurrence of patterns due to a negative correlation. We discuss some of this work. Two

spatial data mining methods are also discussed that mine patterns occurring due to a nega-
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tive association. We also discuss two methods that try to mine patterns without requiring a

distance threshold. Finally, we point out a major weakness in the existing approaches that

is the major motivating factor of this research and state our goals achieved in this thesis.

2.1 Spatial Statistics

2.1.1 Basic Concepts

A spatial point process is a “stochastic mechanism which generates a countable set of events

xi in the plane” [20]. A point pattern is a realization of such a process that comprises a col-

lection of events or objects occurring in a study region. An event set is made up of locations

defined by some set of coordinates. Beside location information, additional information,

mark, can also be attached with an event. Marks are often categorical such as class, sex,

species, disease but can also be continuous, as in the case of temporal information.

The simplest way of treating a spatial point pattern is assuming that the pattern is random

and is a realization of complete spatial randomness (CSR) which is a homogenous Poisson

process with a constant intensity. CSR has two properties:

1. Equal probability: Any event has equal probability of being in a position of the study

area.

2. Independence: The position of an event is independent of the positioning of any other

event.

The second property implies that no interaction exists between events in the given point pat-

tern [20]. In many real scenarios, the spatial data sets do not follow CSR due to interaction

among events. This is due to certain events causing the occurrence of other events at nearby

locations. The departure from CSR results in either (i) clustering (aggregation) or (ii) reg-

ularity (segregation) for an event set [20]. A positive interaction or positive dependency

among events with different marks causes their instances to be found at nearby location. In

the spatial data mining community, such type of patterns are termed as co-location patterns.

A negative interaction or negative association on the other hand results in events of differ-

ent types more regularly spaced from each other. Such patterns are called as segregation

patterns. To identify positive or negative interactions, we test whether the observed point

pattern (or a given event data set) is deviating from a CSR.

Estimation of the theoretical distribution of a spatial stochastic point process is difficult.
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In most cases the Monte Carlo simulation is the only way to estimate the mean and the

distribution of a test statistic. Selection of the test statistic depends on the type of mark.

Classical techniques to determine properties of the distribution of single features and pairs

of features (e.g., clustering tendency), use distance based methods such as pair-wise dis-

tance, nearest neighbor distance, and empty space distance to measure inter-point depen-

dency [37]. The cumulative distribution function of the nearest neighbor distance
(
G(d) =

no.[dmin(xi)<d]
n , where xi is an event in the point pattern X of n events and dmin(xi) =

minj∈(1,n) & j 6=idist(xi, xj) where dist is the Euclidian distance
)

[37] or the empty space

distance
(
F (d) = no.[dmin(ui,X)<d]

m where ui is a member of a randomly set of locations

{u1, . . . , um} and dmin(ui, X) = minj∈(1,n) & xj∈Xdist(ui, xj)
)

[37]. J-function [37]

which is the combination of F and G functions
(
J(d) = 1−G(d)

1−F (d)

)
is also a good choice.

Second order analysis such as Ripley’s K-function [51] or the pair correlation function

(PCF) [37] are other alternatives and also popular techniques to detect clustering of events.

K-function is defined by Brian D. Ripley for stationary point process. For event density

λ (number per unit area), λK(d) is the expected number of other events within a distance

d of a randomly chosen event of the process [51]. Formally, K(d) = 1
λE[number(X ∩

b(u, d)\{u})|u ∈ X], u is a point of X and b(u, d) is a disc of radius d centered on u. In

a homogenous Poisson process, the expected number of points falling in b(u, d) is λπd2,

thus Kpois(d) equals to πd2. A K-function value of a point pattern greater than πd2 sug-

gests clustering, while a value less than πd2 suggests regularity. PCF is another way of

interpreting K-function and is formally defined as g(d) = K′(d)
2πd [37] where K ′(d) is the

derivative of K. These measures are designed for at most two types of events, i.e., bivariate

point processes. In our work, we propose a method that can find co-location as well as

segregation patterns for more than two types of events.

2.1.2 Related Work

Spatial statistics treats the co-location or segregation pattern mining problem in a little dif-

ferent manner than the data mining community. Here mining co-location or segregation

patterns are similar to the problem of finding associations or interactions in multi-type spa-

tial point processes. Association or interaction in a spatial point process is known as the

second order effect. The second order effect is a result of the spatial dependence and repre-

sents the tendency of neighboring values to follow each other. There are several measures

used to compute spatial interaction such as Ripley’s K-function [51], distance based mea-

15



sures (e.g., F function, G function) [37], and co-variogram function [16]. These measures

can summarize a point pattern and are able to detect clustering tendency (if it exists in the

data) at different scales. With a large collection of Boolean spatial features, computation

of the above measures becomes expensive as the number of candidate subsets increases

exponentially in the number of different features.

K-function has the power to analyze the clustering tendency of points at different scales.

The K-function for a bivariate spatial point pattern is defined as Kij(r) = λ−1
j (Expected

number of type j events within distance r of a randomly chosen event of type i), where λj

is the density (number per unit area) of event of type j. For two marked point processes

i = {i1, i2, . . . , in} and j = {j1, j2, . . . jm} observed over an area A, an estimate of the

K-function without any edge correction is defined as [37]:

K̂ij(r) = An−1m−1
n∑
x=1

m∑
y=1

Ir(dixjy) (2.1)

In equation (2.1), Ir(dixjy) is an indicator function which equals zero if the inter-distance

between points ix and jy is greater than r, otherwise 1. With edge correction the above

equation becomes K̂ij(r) = An−1m−1
∑n

x=1

∑m
y=1wixjyIr(dixjy) where wixjy is the

fraction of the circumference of a circle centered at ix and radius r that falls inside the

area A [37]. Under the assumption of complete spatial randomness (CSR), the expected

value of K̂ij(r) is πr2. If K̂ij(r) computed from the observation is less than πr2, there

is no clustering between i and j while if K̂ij(r) > πr2, these two point processes show

clustering at distance r. As K-function is not linear in r, Besag’s L-function [16] is used

which is linear and has a constant variance. The L-function is defined as Lij(r) =

√
Kij(r)
π .

Under negative association or repulsion, (L̂ij(r) − r) will give a negative value, whereas

under positive association or clustering it will be a positive value.

Mane et al. in [41] use the above bivariate K-function as a statistical measure with a

data mining tool to find the clusters of female chimpanzees’ locations and investigate the

dynamics of spatial interaction of a female chimpanzee with other male chimpanzees in

the community. There, each chimpanzee is assigned with a unique mark based on its

gender. Two clustering methods (SPACE-1 and SPACE-2) are proposed which use L-

function to find clusters among different marked point processes. For a given a set of

marks M = {m}, SPACE-1 first computes L̂mi,mj (r) for each pair of marks mi and mj .

Subsequently, a hierarchical clustering for marks is obtained by using a dissimilarity ma-

trix M
L̂(r)

= [lij ], lij = L̂mimj (r) and applying the complete-link clustering algorithm.
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Finally, a dendrogram of the hierarchical clustering results gives the visualization on the

number of clusters found. However, to analyse such a dendrogram researchers still need to

have domain knowledge to tell the correct number of clusters. Besides a minor variation in

the dissimilarity values affects the dendrogram structure. As a result the dendrogram is not

stable. To mitigate all these concerns, Mane et al. come up with an alternative where the

Reverse Cuthill-McKee (RCM) ordering algorithm is used instead of complete-link algo-

rithm to block diagonalize the matrix M
L̂(r)

. This approach becomes now more stable and

does not depend on an assumption of any hierarchical nature of the data set.

K-function is a popular measure to detect aggregation among events at different scale.

However, a high value ofK-function sometimes mislead by reporting a positive association

in some scenarios of a bivariate point process. Consider a realization of a bivariate point

pattern with event type i and j where only a few instances of type i are surrounded by all the

instances of type j, leaving most of the instances of type i alone and without any instance

of type j nearby. This could happen if event j is auto-correlated and instances of j appears

in few clusters. Event i is randomly distributed and if a few instances i incidently fall in

the clusters of j, we would possibly see a high value of Kij-function. A value higher than

πr2 indicates a clustering tendency among i and j even though most instances of i’s are not

associated with any instance of j. Hence a high value of K-function can not always be an

indication of a positive association of features. Another limitation of the K-function is that

the function is defined only for univariate and bivariate point processes. The function is not

defined for a point process where a higher order interaction (among more than two types

events) is exhibiting.

2.2 Spatial Data Mining

While spatial statistics can find spatial association patterns of only size two, spatial data

mining look for association patterns of any size. This section reviews some of the recent

work done in this respect.

2.2.1 Spatial Association Rule Mining

In the data mining community, co-location pattern mining approaches are mainly based on

spatial relationship such as “close to” proposed by Han and Koperski in [29, 38]. Kop-

erski et al. present a method in [38] to mine frequently occurring patterns in geographic
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information systems. Such a pattern is presented in the form of a spatial association rule

indicating a strong relationship among a set of spatial and some non-spatial predicates. A

spatial association rule of the formX → Y states that in a spatial database if a set of feature

X is present, another set of features Y is more likely to be present. In such rule at least one

feature needs to be a spatial predicate in either X or Y . A support value (s) i.e. joint prob-

ability of this rule is computed which is the probability of seeing X and Y together in the

database. A confidence value (c%) i.e. conditional probability is also computed which in-

dicates that Y is found with X in c% of the total cases (transactions) of the database where

X is found. Rules are built in an apriori-like fashion and a rule is defined as strong if it has

enough support and confidence [2]. The anti-monotonic property of the support measure

helps to reduce the total search space in finding prevalent rules comprising of spatial and

non-spatial predicates.

2.2.2 Frequent Neighboring Class Set Mining

Morimoto in [45] proposes a method to find groups of various service types originating from

nearby locations and reports a group if its frequency of occurrences is above a given thresh-

old. Finding such groups can give important insight for location based service providers

(cellular phones or PDAs) for attractive location-sensitive advertisements, portals, promo-

tions etc. Groups of different sizes are searched by using an Apriori-like strategy. Here a

group of k-different services occurring together more often, is defined as a k-neighboring

class set. A k-neighboring class set is built by checking its subsets of k − 1-size, each of

which is also a neighboring class set. To build a k-neighboring class set from a k − 1-

neighboring class set, we look for a service type S which is different from the service types

that are already in the k−1-neighboring class set. Besides S should have instances (points)

that are frequently found close to the instances (group of points) of the k − 1-neighboring

class set. To find a nearest neighbor of a set of points in a plane, Morimoto uses Voronoi

diagram [18]. To index these Vornoi points, a quaternary tree indexing is used which also

keeps the run-time cost constant in finding a nearest service instance for an instance of a

k-neighboring class set.

Limitation: Morimoto in his work [45] identifies instances of a co-location pattern by

grouping neighboring feature instances with a constraint that one feature instance can not

be included in more than one instance of a candidate co-location pattern. Hence another

way of grouping feature instances for a candidate co-location gives different co-location
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(a) (b)

Figure 2.1: a) Grouping of points, co-located feature instances are shown in red. b) Grid
based transactionization.

instances and poses the chance of missing instances of candidate co-locations. In Fig.

2.1(a), although A1 is a neighbor of both B1 and B2, it will be grouped only with one to

generate an instance of {A,B}. By grouping with B1, A1 generates instance {A1, B1} of

{A,B}. In this case, instance {A1, B2} will not be generated and eventually instances of

larger patterns such as {A1, B2, C1}, {A1, B2, D1}, {A1, C1, D1}, and {A1, B2, C1, D1}

will not be generated.

2.2.3 Co-location Pattern Mining - a General Approach

To materialize transactions in a continuous spatial domain in order to use with an ARM

approach, Shekhar et al. discuss three models (reference feature centric model, window

centric model, and event centric model) [60] and define the co-location patterns for each

model.

Feature centric model: Here each instance of a spatial feature generates a transaction

[60]. Such a transaction includes other feature instances (relevant to the reference feature)

appearing in the neighborhood of the instance that defines the transaction. In a feature

centric model, once all transactions defined over the space are enumerated, one can tell how

many instances of a spatial feature are in co-location with the instances of other features.

Window centric model: Here a given study area is discretized by placing a uniform grid

and all cells (windows) of different sizes of k × k generate transactions. Instances of dif-

ferent feature types appearing in the same window give an instance of a co-location type.

Event centric model: Event centric model is the state-of-the-art that is followed in recent

co-location mining algorithms. The event centric notion of co-location is defined based on
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a neighborhood relationship R. The relationship could be either spatial relationship (e.g.

connected, adjacent), metric relationship (Euclidean distance), or a combination [35]. For

instance, two spatial instances are in a neighborhood relationship Rd if they are located

within a distance d of each other. In the event centric model, a group of feature instances

forms a clique if each of them are neighbors and such a clique provides an instance of a par-

ticular co-location type. In Fig. 2.1(a)A1,B2, andC1 are instances of spatial featuresA,B,

andC respectively. AsA1,B2, andC1 are neighbors (their inter-distances are not more than

the given distance threshold) of each other; {A1, B2, C1} gives an instance of a co-location

type {A,B,C}. An instance of a candidate co-location is defined as a row instance. A

table instance of a candidate co-location includes all of its row instances that are found in

the given spatial data set. For the above mentioned example, {A1, B2, D1}, {A1, C1, D1},

{A1, B2, C1, D1}, are the row instances of {A,B,D}, {A,C,D}, and {A,B,C,D} re-

spectively. Let C be a candidate co-location of n different spatial features. We enumerate

all the row instances of C to generate a table instance of C. From this table instance, we

know how many instances of a feature of C are found in various row instances of C and we

then compute the frequency of a feature instance participating in C which is defined as the

participation ratio. Each feature of C gives a participation ratio and the minimum one is

selected as the participation index (PI) of C. PI is used as the prevalence measure in [60].

A co-location mining algorithm is also proposed in [60] to find all prevalent co-locations

for a user defined PI-threshold. PI has anti-monotonic property which helps to prune

the search space while searching for all prevalent co-location patterns. In finding prevalent

co-locations, the proposed algorithm uses a bottom-up approach which generates candidate

co-locations of size k + 1 from the prevalent co-locations of size k. It adapts Apriori gen

algorithm of ARM. A candidate prevalent co-location of size k + 1 is generated by joining

two prevalent co-locations of size k for which the first k − 1 features are the same but the

k-th features are different. To check its prevalence, a table instance is generated by joining

the row instances of its two prevalent subsets (co-locations) of size k. In such a join proce-

dure, two row instances, one from each of the two prevalent subsets of size k, are joined if

the first k− 1 feature instances are the same and the k-th feature instances are neighbors of

each other. The resultant row instance of size k + 1 is included in the table instance of the

candidate co-location of size k+1. After enumerating all the row instances of size k+1, the

PI-value of the candidate co-location is computed and compared with the PI-threshold.

Limitation: In the proposed co-location mining algorithm of [60], C is declared as prevalent

and finally reported, if its PI-value is not less than PI-threshold. The co-locations reported
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as prevalent depends on the selection of the threshold value. With a small threshold value,

more patterns would be reported as prevalent where some of them would be meaningless

and random patterns. The reported patterns should be evaluated from a statistical point

of view. On the other hand, with a higher threshold value, less number of patterns would

be reported; resulting in the possibility of missing meaningful patterns. Furthermore, the

join approach of finding the row instances of a candidate co-location is computationally

expensive.

2.2.4 Co-location Pattern Mining - a Multi-Resolution Based Approach

To improve the runtime of [60], Huang et al. propose a multi-resolution pruning technique

in [35] which can detect non-prevalent co-locations and prune them at a reduced computa-

tional cost. Instead of computing the actual PI-value of a candidate co-location from the

instance level as done in [60], this technique computes an upper bound of the PI-value

at a coarser level. Such a PI-value computed at a coarser level, never underestimates the

actual PI-value and is computationally less expensive. In this method, a grid is placed on

the study area and feature instances appearing in a cell of the grid are all considered to be

co-located. Each cell has at most 8 neighboring cells. To generate a k + 1-size co-location

from a k-size co-location, the neighboring cells which have the feature instances are joined.

The number of feature instances found in each neighboring cell that are participating in the

join computation are counted and added up to give an upper bound of the actual participa-

tion ratio of a feature in a co-location. By taking the minimum participation ratio, an upper

bound of the participation index of a co-location type is computed. A candidate co-location

can be pruned if the upper bound of the PI is less than a given threshold. However, in this

approach the actual PI-value of a candidate co-location is still computed and compared

with the threshold when the upper bound of the PI is not less than the threshold value.

This approach requires fewer number of join computations to find all prevalent patterns

compared to the number join computations required in the earlier method [60]. [35] also

shows that the PI is an upper bound of the cross K-function.

Limitation: Developing a transactionization technique which identifies each instance of a

co-location pattern in one transaction without splitting it is a challenging problem. In [35],

an explicit transactionization is done by placing a grid over the study area and each cell

is considered to be a transaction. The cell size is decided based on the distance thresh-

old. However this approach may still place a co-location instance across different cells
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(transaction). Fig. 2.1(b) shows an instance of the proposed transaction technique of [35]

where instance {A1, B2, C1} is split into three different cells (i.e. transactions). To identify

{A1, B2, C1}, an instance level join proposed in [60] is still essential. On the other hand,

instance {A1, B1} placed in one cell can easily be identified by checking their presence

in the cell. The computational advantage of [35] over [60] depends (1) on the cell size,

i.e. distance threshold, and (2) the number of co-location instances found in one cell, i.e.

the spatial distribution of the co-located feature instances. The worst situation is when the

participating feature instances of all co-location instances get split across various cells. In

such a situation, the approach of [35] computes both the upper bound and the actual value

of PI for each candidate pattern. There the approach becomes computationally more ex-

pensive than the earlier approach in [60]. Morimoto’s work runs the danger of missing an

instance of a co-location. However, the work of Huang et al. never misses any instance of

a candidate co-location. This approach still requires a proper PI-threshold value to report

meaningful patterns.

To improve the runtime further, additional instance lookup schemes are also introduced.

These schemes reduce the computational cost of pattern instance identification. Yoo et al.

in [71, 72] propose two instance look-up schemes where a neighbor relationship is mate-

rialized in two different ways. In [71], a neighborhood is materialized from a clique type

neighborhood and in [72], a neighborhood is materialized from a star type neighborhood.

2.2.5 Co-location Pattern Mining - a Partial-join Approach

In the partial-join approach proposed in [71], space is partitioned for generating neighbor-

hood transactions based on the clique relationship of feature instances. To get a list of

neighborhood transactions, in an ideal situation a set of maximal cliques are generated by

minimizing the number of neighboring feature instances split on different partitions. In Fig.

2.2, there are four transactions (partitions). In such a partitioning approach, neighbor pairs

{A1, D2} and {C1, D2} are split across two different transactions (partitions). Feature in-

stances appearing in the same transaction are neighbors of each other. Hence instances of

a co-location residing in the same transaction are easily identified without extra computa-

tion. However co-location instances that are spilt across different transactions are required

to join. Fig. 2.2 shows that instance {A1, C1} of the co-location type {A,C} is identi-

fied in transaction 1, whereas instance {A1, D2} of co-location type {A,D} and instance

{C1, D2} of co-location type {C,D} split across the transactions 1 and 4. To identify the
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instance {A1, C1, D2} of co-location type {A,C,D}, the computation of joining instance

{A1, D2} and instance {A1, C1} is required. Additionally C1 and D2 are verified as being

a neighboring pair. On the other hand, a co-location instance {A1, B2, C1, D1} and any of

its subsets can easily be identified without any join computation as the participating feature

instances are located in one single transaction (1). This way the partial-join based frame-

work can reduce the total number of join computation required in the earlier approach in

[60]. After identifying all instances of a co-location pattern, the PI-value is computed and

compared with a given threshold. Finally, a candidate co-location pattern is reported as

prevalent if its participation index is equal or higher than a given threshold.

Figure 2.2: A clique neighborhood based partitioning approach.

2.2.6 Co-location Pattern Mining - a Join-less Approach

The major computational bottleneck of [35, 60] is the join computation required to identify

instances of a candidate co-location. In a join-less approach [72], the cost for identifying

candidate co-location instances is minimized. Like the earlier approaches, this method also

introduces a strategy to identify and prune non-prevalent co-locations from a coarser level

without even identifying their instances. The objective here is to find an efficient neighbor-

hood materialization that helps to identify all maximal cliques at a smaller computational

cost than the approach of Yoo et al. in [71]. In the join-less approach, a disjoint star type

neighbor relationship is materialized. In a star neighborhood, a feature instance acts as a

center object and other feature instances which are in a neighbor relationship with the center

object are also included in the star neighborhood. Fig. 2.3 gives a star neighborhood ex-
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Figure 2.3: A star neighborhood based partitioning approach.

ample where feature instance A1 forms a star neighborhood by including feature instances

B1, B2, C1, D1, and D2. Here features are ordered either arbitrarily or using domain re-

lated information. A feature instance in a neighbor relationship with the center object can

not be included in the star neighborhood of the center object if it is equal or lower than

the center object. Using geometric method such as plane sweep or a spatial query method,

the first neighboring object pairs are identified and star neighborhoods are constructed by

grouping object pairs. For a candidate co-location, its co-location instances are first filtered

out from the star neighborhoods. For example, the instances of a candidate co-location

{A,B,C,D}, are filtered from the star neighborhoods with A as the center object. As a

star neighborhood is not a clique, the PI of a candidate co-location computed from the star

neighborhoods is a coarser value of the actual PI and can not be less than the actual PI . If

the coarse PI-value of a candidate co-location is lower than a given threshold, the candi-

date co-location can not longer be a prevalent pattern; and hence can be pruned. This way

a non-prevalent co-location can be identified even without identifying its actual instances.

When the coarse PI-value of a candidate C is equal or higher than a threshold, the actual

PI-value needs to be computed. For this we need to identify all instances of C which can

be done efficiently by checking the cliqueness among instances of features found in the star

neighborhoods. Instances of a C can be identified only if the subsets of C are already identi-

fied as prevalent. The experimental evaluation shows that the total number of instances that

are checked in finding all prevalent patterns from a star type neighborhood is far less than

the number of instances checked in [60].
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2.2.7 Co-location Pattern Mining - a Density Based Approach

Xiao et al. in [69] improve the runtime of Apriori gen based methods [35, 45, 71] compu-

tationally. Instead of identifying all instances of a candidate co-location as done in other

Apriori gen based approaches, Xiao’s approach does not need all the instances of a candi-

date to compute its prevalence measure and check the prevalence. The proposed approach

is named “density based co-location mining” method as the search for co-location patterns

first starts from the most dense region of features and progressively proceeds to less dense

regions. While checking a dense region, the method identifies the number of instances

of a feature that participates in a candidate co-location. Assuming that the remaining in-

stances are in co-location, the method estimates an upper bound of the PI for the candidate

co-location and compares it against a given threshold. If the upper bound for a candidate

co-location is less than a given threshold, it can be pruned even without identifying its

instances for the remaining areas (less dense regions). This way the join computation re-

quired for identifying instances of a non-prevalent co-location in the less dense regions can

be avoided.

2.2.8 Negative Association Rule Mining

Besides finding patterns occurring due to a positive association among spatial features, re-

searchers often look for patterns that can also occur due to the effect of an inhibition or

a negative association. In association rule mining, methods have been proposed to mine

patterns occurring due to correlation among items of the market basket data. In this regard,

the work of [13] is worth mentioning. The approach proposed in [13] finds rules describing

the correlations among market basket items. In generating such rules, the presence as well

as the absence of an item in a transaction are taken into consideration. The significance of

the generated rules is measured by using a classical test, the χ2-test used as a measure of

correlation. The authors also show that this measure is upward closed which leads to effi-

ciently finding a border between the correlated and uncorrelated item sets. The computed

χ2-value of item sets X and Y is used to determine if X and Y are correlated or not. If two

item sets are found correlated, one obvious question is knowing the type of correlation. The

approach of Brin et al. does not answer this and thus can not distinguish between positive

and negative rules that occur due to the positive and negative correlations respectively.

To generate both positive and negative association rules Wu et al. in [68] propose a new
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algorithm which uses mininterest on top of the support-confidence framework. Here a rule

X → Y is defined as interesting only if support(A ∪ B) − support(A)support(B) >

mininterest. An itemset whether positive or negative (such as {A,B}, or {A,−B} re-

spectively) will be reported only if the support value and the interest value respectively

exceed the minimum values of support and interest measures. However this approach does

not discuss how to set up these minimum values and how the results could vary with differ-

ent minimum values. Antonie et al. propose an algorithm in [4] to identify market basket

items that complement each other or are in conflict with each other. Their approach extends

the support-confidence framework of ARM with a sliding correlation coefficient threshold

to find both positive and association rules in a reduced search space. Other work such as

[56, 62] also address mining negative rules.

2.2.9 Negative Pattern Mining from Spatial Databases

To the best of our knowledge there is little work in the spatial domain that looks for patterns

occurring owing to negative interactions. Munro et al. in [46] first discuss more complex

spatial relationships and spatial patterns that occur due to such a relationship. A combi-

nation of positive and negative correlation behavior among a group of features gives rise

to a complex type of co-location pattern. Arunasalam et al. in [5] develop a method to

mine positive, negative, and complex (mixed) co-location patterns. For mining such pat-

terns, their method uses a user specified threshold on prevalence measure called maximum

participation index (maxPI) which was first introduced in [34] to detect a co-location pat-

tern where at least one feature has a high participation ratio. maxPI of a co-location C is

the maximal participation ratio of all the features of C. In using PI , sometimes there is a

chance of missing a rule that has a low support value but has a high value of confidence. Let

{A,B} be a co-location type where most of the instances ofA are co-located with instances

of B (pr({A,B}, A) > threshold). On the other hand, for feature B, most of its instances

are not co-located with the instances of A (pr{A,B}, B) < threshold). Hence a method

using PI will not report {A,B} as the minimum PI which is the pr(A) is less than the

given PI-threshold. However such type of patterns can also be interesting in a scenario

where a feature has a high participation in a co-location. This is termed as a rare event by

Huang et al. in [34]. To mine such type of patterns, maxPI can be used which prevents

{A,B} from being pruned.

A complex type of pattern is the one where features are seen co-located in the absence
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of other features (e.g. {A,−B,C} or {A,B,−C}). In complex pattern mining problem

the total number of candidate patterns of size 1 is doubled for a given number of features.

For instance, for a given set of features, {A,B,C,D}, the candidate 1-item set will be

{A,B,C,D,−A,−B,−C,−D} as we are now considering both the presence and the ab-

sence of a feature in constructing all candidate patterns. The exponential growth of candi-

date space with an increased number of features makes the pattern mining computationally

expensive. Arunasalam et al. show that by using maxPI , a large number of negative pat-

terns constructed from a group of features can be pruned if themaxPI-value of the positive

pattern constructed from the same group is greater than the threshold [5]. Let C be a positive

pattern of size k whose maxPI-value is greater than a user specified threshold value 0.5

and the maxPI-value is equal to the participation ratio of a feature fi in C. Any negative

pattern where one feature from C − fi is negatively associated with the other participat-

ing features of C can not have a maxPI-value greater than 0.5 and thus can be pruned.

Let C = {A,B,C,D} have a maxPI-value greater than the threshold (t = 0.5) and

maxPI({A,B,C,D}) = pr({A,B,C,D}, A) ≥ t = 0.5, then pattern {A,−B,C,D},

pattern {A,B,−C,D}, and pattern {A,B,C,−D}) can not have a maxPI-value greater

than t. Using the above rule, the total number of candidate checking is reduced which

eventually reduces the total computational cost of mining complex patterns.

Limitation: The proposed pruning technique works only when a threshold value of 0.5 or

greater is selected. In their method, selection of the right threshold is important for captur-

ing a pattern occurring due to a true correlation behavior. This method lacks validation of

the significance of a pattern statistically when the pattern size is greater than two. Spatial

auto-correlation behavior is also not considered in this approach.

2.2.10 Co-location Region and Uncertain Co-location Pattern Mining

Mining co-location regions: Co-location tendency among a set of features could be dif-

ferent in regions. Finding regions where a co-location becomes weaker or stronger than

expected in CSR is a fresh problem in co-location mining research. Wang et al. in [65]

propose a Bayesian method to find such type of co-location regions. This method defines

a region using cells of a rectangular shaped grid. However, this method can be expensive

when a better approximation of a found region which could be of irregular shape is intended.

Mining uncertain co-locations: Location information of spatial features in some applica-

tion domains such as transportation system is imprecise. In certain cases over-counting is
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the major computational bottleneck owing to the continuity of space. The over-counting

problem progressively worse with the uncertainty in the location of a feature. To find co-

locations in an uncertain model, Liu et al. [39] propose a probabilistic PI as a prevalence

measure. Using this measure, an Uncertain Apriori co-location mining algorithm is pro-

posed. An event level pruning is adapted and an Uncertain Feature Tree based algorithm

is also proposed for efficient mining. The proposed approach is validated using a Shanghai

taxi trajectory data set.

Adilmagambetov et al. propose a method in [1] which finds co-location patterns in data

sets with extended spatial objects.

2.2.11 Co-location Pattern Mining in Dynamic neighborhoods

All the above mentioned approaches assume a static neighborhood (fixed distance thresh-

old) and a user defined prevalence measure threshold for finding prevalent patterns. The

constraint on a fixed prevalence measure threshold apparently introduces many drawbacks

which will be discussed in this thesis. The size of the co-location neighborhood for all

co-locations can not be the same due to the fact that interactions among different groups of

spatial feature happen at different spatial resolutions. Finding prevalent co-locations pat-

terns without knowing their interaction distance threshold is a relatively new problem. Yo

et al. in [70] propose a framework to mine meaningful co-locations without user defined

distance parameter. Using bi-variate K-function this approach looks for a distance as a

co-location distance where the function value is high. As the K-function works only for

patterns of size 2, their proposed technique may fail to choose the right distance when a

pattern size is greater than 3.

In another approach, Wang et al. in [50] investigate limitations of the existing approaches

for the preassumption of a static neighborhood in the mining process. They define the min-

ing problem as an optimization task and propose a greedy algorithm to mine co-locations

with dynamic neighborhood constraints. However, their proposed method lacks statistical

validation.
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2.3 Summary

After reviewing the current literature, we find that most of the proposed methods dedicate

their efforts towards reducing the computational cost rather than achieving accuracy in min-

ing meaningful patterns. The statistical validation of the mined patterns of size higher than

two is not done in any of the proposed methods. The accuracy of these methods highly de-

pends on the proper selection of the prevalence measure threshold and the distance threshold

defining the interaction neighborhood. However in certain cases a pair of values for these

two thresholds which leads to mining only meaningful patterns is not even possible to find.

In this thesis, we try to resolve these issues and propose methods to mine only true patterns

without requiring any of these two thresholds. Existing work uses different prevalence mea-

sure in mining patterns occurring due to the positive and negative association. However our

model uses one prevalence measure to mine both types of patterns. In our mining process,

spatial auto-correlation behavior which is common in spatial domains is also considered.
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Chapter 3

Statistically Significant Interaction
Patterns: Motivation and Basic
Concepts

In spatial data sets, it is not uncommon to see subsets of features with a high prevalence

measure value due to randomness, presence of spatial autocorrelation, and abundance of

feature instances alone, i.e., without true interaction between the involved features. Ex-

isting co-location mining algorithms will report such subsets as prevalent patterns if their

prevalence measure values are higher than the chosen threshold. In another scenario, the

prevalence measure value of a group of features can be low, if one participating feature

has a high participation ratio, but other participating features have low participating ratios

due to their large number of feature instances. Overall the minimum participation value

of such pattern will be low, hence will be ignored by the existing co-location mining ap-

proaches. However in epidemiology this type of pattern are more common and is interest-

ing to mine. To capture such patterns using the general co-location mining algorithms, the

prevalence threshold should be set very low. Setting such a low value as a global threshold,

however, results in reporting potentially a large number of meaningless patterns that also

have a prevalence measure value higher than the low threshold. On the other hand, a low

prevalence measure value does not necessarily mean a true segregation as features with few

instances when randomly distributed could also generate a low prevalence measure value.
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3.1 Motivating Examples

Consider the following (sketches of) example scenarios (including a real data set), in order

to see the need for a different type of approach that takes the distribution and the total

number of feature instances into account. Each of these examples is illustrated with a data

set and figure.

Example 1: This case is illustrated in Fig. 3.1 with 4 instances of ◦ and 20 instances of4.

Every instance of ◦ is co-located with an instance of4, whereas most of the instances of4

are not co-located with an ◦. The participation index of {◦,4} is 0.2. Existing algorithms

using a PI threshold larger than 0.2 will miss the pattern {◦,4}.

Figure 3.1: Filled ◦ and4 are co-located. PI = min(4
4 ,

4
20).

Example 2: This case is illustrated in Fig. 3.2. Here each of ◦ and 4 has 12 instances

which are randomly distributed. Due to randomness, here half of the total instances of ◦ are

found in co-locations with 5 instances of4, resulting in a PI-value of 0.42 which is higher

than a typical PI-threshold used in practice. Hence, {◦,4} might be reported although no

true spatial dependency exists between ◦ and4.

Figure 3.2: Filled ◦ and4 are co-located. PI = min( 6
12 ,

5
12).

Example 3: This case is illustrated in Fig. 3.3 where 9 instances of ◦ appear in 3 clusters

and 7 instances of4 appear in 3 clusters. One cluster of ◦ and one cluster of4 happen to

overlap by chance and this results 4 instances of ◦ to be in co-location with 3 instances of

4. The PI-value is 0.43 which is higher than a typical PI-threshold and {◦,4} may be

reported by the existing algorithms.
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Figure 3.3: Filled ◦ and4 are co-located. PI = min(4
9 ,

3
7).

Example 4: This is illustrated in Fig. 3.4 where 9 instances of feature ◦ appear in 4 clusters

and 6 instances of feature 4 are randomly distributed. 3 instances of feature 4 fall in

3 clusters of feature ◦ and thus are co-located with ◦s. 7 ◦s in those 3 clusters are also

co-located with 4s. The PI-value is 0.5 which is higher than a typical PI-threshold and

{◦,4} may be reported by the existing algorithms.

Figure 3.4: Filled ◦ and4 are co-located. PI = min(7
9 ,

3
6).

Example 5: The scenario in Fig. 3.5 represents a realization of an inhibition process gener-

ated using a multi-type Strauss process [37]. Here feature ◦ and feature4 exhibits a spatial

inhibition at a distance Rd = 0.1, and the study ares is a unit square. Each feature has 40

instances. 25 instances of ◦ and 22 instances of 4 are found in co-location. Hence, the

participation ratio of ◦ and 4 are 0.625 and 0.55. Finally, the PI-value is 0.55. Exist-

ing co-location mining algorithm will report {◦,4} as a prevalent co-location pattern if a

threshold value of 0.55 or less is used. If ◦ and 4 were distributed independently of each

other, the expected PI-value is found as 0.71 and most of the time the PI-value under in-

dependence assumption is higher than the observed PI-value 0.55. Hence {◦,4} can not

be reported as a co-location pattern rather should be reported as a segregation pattern.

Example 6: In Fig. 3.6, feature ◦ and feature4 are distributed independently of each other.

We find only one instance of {◦,4}, thus giving a low PI-value (0.2). As the number of

instances of each feature is low, seeing a low PI-value is not uncommon even when features

are independent of each other. Hence a pattern with a low PI-value does not always mean

a segregation pattern.
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Figure 3.5: Filled ◦ and4 are co-located. PI = min(25
40 ,

22
40).

Figure 3.6: Filled ◦ and4 are co-located. PI = min(1
5 ,

1
5).

Example 7 - a real data set: The spatial dependency between the positions of two types

of retinal neurons, known as the cholinergic amacrine cells are investigated to understand if

these two types of cells emerge independently or from a single undifferentiated population

during development. These two types of cells help in detecting motion in a particular direc-

tion. Cells found within the inner nuclear layer are termed as “off” cells and cells found in

the ganglion cell layer are termed as “on” cells. Wieniawa-Narkiewicz [66] recorded a data

set (Fig. 3.7(a)) of 152 “on” (with mark ◦) and 142 “off” (with mark 4) cells from a rect-

angular section of retina with a dimension of 1060 by 660 µm. We find that at interaction

distance 32µm, the PI-value is 0.5, and increases up to 1 when increasing this interaction

distance. For instance at distance 46µm, the PI-value is 0.89. This is a high PI-value

and existing algorithms will report {on, off} as a prevalent co-location pattern. Diggle [19]

showed an independence among these two types of cells. Fig. 3.7(b) shows that the cross

K-function [37] curve (estimated from the amacrine data) closely follows the theoretical

curve indicating no aggregation tendency between these two types of cells.
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(a) PI = 0.89 at 46µm (b)

Figure 3.7: (a) Amacrine data [7] (b) Cross K-function.

3.2 Basic Idea for Finding Statistically Justified Co-location and
Segregation Patterns

We suggest that, instead of using a global threshold, we should estimate, for the given num-

ber ofAs andBs, how much larger the observed PI-value is compared to a PI-value when

A and B have no spatial relationship. If the observed PI-value is significantly larger than a

PI-value under no spatial relationship, we conclude that A and B are spatially co-located,

and {A,B} should be reported as a prevalent co-location pattern. On the other hand, if the

observed PI-value is significantly lower than a PI-value under no spatial relationship, we

conclude that A and B are spatially inhibitive, and {A,B} should be reported as a preva-

lent segregation pattern. In this manner, the decision of co-location or segregation pattern

detection does not depend on a user-defined prevalence measure threshold.

Note that such an approach works with any type of prevalence measures to capture spatial

interaction among features and is not dependent on the PI measure. A measure of spatial

dependency among features tries to capture the strength of an interaction; the PI is one

such measure that we will adopt in our method.

The main idea of our approach is to estimate the probability of the prevalence measure such

as the PI-value of a pattern observed in the given data set, under some null hypothesis of

spatial independence. In other words, we have to answer the question: what is the chance

of obtaining a PI-value at least as extreme as the observed PI-value if the features were

spatially independent of each other? The answer to this question gives us a p-value. If

the p-value is low, the observed PI-value is a rare phenomenon under the null model, thus
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indicating a co-location or segregation among the features. The observed PI-value is said

to be statistically significant at level α, if p ≤ α.

If the observed PI-value of a pattern is significantly higher than its PI-value under no

spatial relationship, we call the pattern a co-location pattern; if the observed PI-value of

a pattern is significantly lower than its PI-value under no spatial relationship, we call the

pattern a segregation pattern.

For such an approach to work properly, the distribution of the PI values under the null hy-

pothesis has to be adequately modeled. The current literature does not consider the spatial

auto-correlation in mining interaction patterns, and we have seen in the motivating exam-

ples that spatial auto-correlation can lead to falsely reported patterns. In our null model

design, we will take spatial auto-correlation into account, and we show in later sections

how the existing PI measure behaves in the presence of spatial auto-correlation.

3.3 Null Model Design

Our null hypothesis must model the assumption that different features are distributed in

the space independently of each other. A spatial feature could be either spatially auto-

correlated or not spatially auto-correlated. A feature which is spatially auto-correlated in

the given data is modeled as a cluster process [37]. To determine if a feature is spatially

auto-correlated or not, we compute the value of pairwise correlation function (PCF) which

is denoted by g(d) (see Section 2.1.1). Values of g(d) > 1 suggest clustering or attraction

at distance d. A feature has a regular distribution (inhibition) if g(d) < 1, and a feature

shows CSR if g(d) = 1. Hence for g(d) ≤ 1, the feature is considered to be not spatially

auto-correlated. Although d could be of any value but we assume that the value of d equals

of at least the co-location neighborhood radius.

To model an aggregated point pattern, Neyman and Scott [47] introduce the Poisson cluster

process using the following three postulates:

1. First, parent events are generated from a Poisson process. The intensity of the Pois-

son process could be either a constant (homogenous Poisson process) or a function

(inhomogenous Poisson process).

2. Each parent gives rise to a finite set of offspring events according to some probability

distribution.
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Figure 3.8: A cluster process: offsprings of a parent event are shown by connecting edges.

3. The offspring events are independently and identically distributed in a predefined

neighborhood of their parent event.

The offspring sets represent the final cluster process. An example of such a cluster process

is shown in Fig. 3.8. In such a model, auto-correlation can be measured in terms of intensity

of the parent process and the intensity of the offspring process. In a Matérn’s cluster process

[37], another model, cluster centers are also generated from a Poisson process with intensity

κ. Then each cluster center c is replaced by a random number of offspring points, where the

number of points is generated from a Poisson process with intensity µ; the point themselves

are uniformly and independently distributed inside a disc of radius r centered at c. Another

model for aggregated point patterns is Thomas process [37]. Similar to a Neyman-Scott

process, here cluster centers are generated from a Poisson process with intensity κ. But the

spatial distribution of the offsprings of each cluster follows an isotropic GaussianN(0, σ2I)

displacement from the cluster center c. The number of offsprings in each cluster is drawn

from a Poisson distribution with mean µ. Another alternative model is the log Gaussian

Cox process [37] which can also be used to model a spatially auto-correlated data.

A spatial distribution of a feature can be described in terms of summary statistics, i.e. a set

of parameters. If a feature is detected to be spatially auto-correlated, the parameters can

be estimated using a model fitting technique. The method of Minimum Contrast [21] fits

a point process model to a given point data set. This technique first computes a summary

statistics from the point data. A theoretically expected value of the model to fit is either

derived or estimated from simulation. Then the model is fitted to the given data set by find-

ing optimal parameter values of the model to give the closest match between the theoretical

curve and the empirical curve. For the Matérn Cluster process [37], the summary statistics
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are κ, µ, and r. For the Thomas cluster process, the summary statistics are κ, µ, and σ.

The data sets we will simulate according to our null hypothesis maintain the following

properties:

1. same number of instances for each feature as in the observed data, and

2. similar spatial distribution of each feature by maintaining same distributional proper-

ties (summary statistics) estimated from the observed data.

For instance, if a feature is spatially auto-correlated in the given data set, the feature will

also be clustered in the same degree and the clusters will be randomly distributed over

the study area in the generated data sets under the null hypothesis. For an auto-correlated

feature, we estimate the parameters of a Matérn Cluster process which is used to model the

auto-correlation in our experiments. If a feature is randomly distributed, we estimate its

Poisson intensity by fitting a Poisson point process to the given data. This intensity could

be either homogenous (a constant value) or non-homogenous (a function of x and y).

To generate a data set based on our null hypothesis, our approach first generates instances

of each feature using a spatial distribution (either Poisson or auto-correlation) and then

superimposes the generated instances of features in the study area. The cost here is first

estimating the summary statistics (distributional properties) of each individual feature and

then generating instances of a feature from a distribution function defined by those esti-

mated summary statistics. Data permutation technique [22] is another alternative that is

widely used for random data generation. To generate a spatial random data this approach

does an rearrangement or shuffling of the labels (feature type or marks) of the observed

data points (feature instances) but preserves the location information (spatial identity) of

the data points of the observation. This method is based on an assumption that the labels

are exchangeable so that rearrangements of the labels are equally likely [27]. This im-

plies that an observed location is equally probable for being the location of any feature.

Such assumption of exchangeability can be violated in the case where features (marks)

show spatial auto-correlation instead of showing homogenous Poisson distribution. If an

observed location l is labeled for an auto-correlated feature f , the neighboring locations

of l are more likely to be labeled as f . If we do a random labeling for the neighboring

locations of l, the generated data may fail to preserve the same degree of auto-correlation

property of f as seen in the observation. To avoid such a situation, a restricted data permu-

tation can be performed where the spatial dependence (that may exist among instances of a
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feature) is taken into consideration while labeling the observed locations of the data points.

Several procedures in this regard are proposed. Among them the techniques of regional

partitions, toroidal shift, and randomization by maintaining spatial auto-correlation are

used in ecological domains [22]. Compared to our data generation approach, a general data

permutation method is computationally less expensive since it does not need to estimate

the summary statistics and simulate the spatial distributions of features. However, it may

not be a good choice when auto-correlated features are present in the given data. In such

cases, a restricted data permutation approach can be adopted which also requires knowing

the distributional properties of each feature before labeling data points. This requires more

computations than a simple data permutation approach and may not be much cheaper than

our used data generation approach.

3.4 Definitions

We first define an interaction pattern and then state two definitions from the literature [35,

60] since we use the PI as a spatial interaction measure:

Definition 1. An interaction pattern is a subset of k different features f1, f2, . . . , fk having

a spatial interaction within a given distance Rd. Rd is called as the interaction distance.

A group of features are said to have a spatial interaction if features of each possible pairs

are neighbors of each other. Two feature instances are neighbors of each other if their

Euclidian distance is not more than the interaction distance Rd. Let C = {f1, f2, . . . , fk}

be an interaction pattern. In an instance of C, one instance from each of the k features will

be present and all these feature instances are neighbors of each other.

Definition 2. The Participation Ratio of feature fi in C, pr(C, fi), is the fraction of in-

stances of fi participating in any instance of C [35, 60]. Formally,

pr(C, fi) =
|(πfi(all instances of C))|
|instances of fi|

.

Here π is the relational projection with duplication elimination.

For instance, let an interaction pattern C = {P,Q,R} and P , Q, and R have nP , nQ, and

nR instances respectively. If nCP , nCQ, and nCR distinct instances of P ,Q, andR, respectively,

participate in pattern C, the participation ratio of P , Q, R are nCP
nP

,
nCQ
nQ

, n
C
R
nR

respectively.

Definition 3. The Participation Index (PI) of an interaction pattern C is defined as PI(C)

= mink{pr(C, fk)} [35].
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For example, let an interaction pattern C = {P,Q,R} where the participation ratios of P ,

Q, and R are 2
4 , 2

7 , and 1
8 respectively. The PI-value of C is 1

8 .

Lemma 1. The participation ratio and the participation index are monotonically non-incre-

asing with the increase of pattern size, that is if C′ ⊂ C and f ∈ C′ then pr(C′, f) ≥

pr(C, f) and PI(C′) ≥ PI(C) [35, 60].

3.5 Statistical Significance Test

Let PIobs(C) denote the participation index of C in the observed data, and let PI0(C)

denote the participation index of C in a data set generated under our null hypothesis. Then

we estimate, using the distribution of PI-values under the null model, two probabilities:

ppos = Pr(PI0(C) ≥ PIobs(C)), the probability that PI0(C) is at least PIobs(C), and

pneg = Pr(PI0(C) ≤ PIobs(C)), the probability that PI0(C) is at most PIobs(C). If

ppos ≤ α, or pneg ≤ α, the null hypothesis is rejected and the PIobs(C)-value is significant

at level α.

α is the probability of committing a type I error, which is rejecting a null hypothesis when

the null hypothesis is true, i.e. the probability of accepting a spurious co-location or a

segregation pattern. If a typical value of α = 0.05 is used, there is 5% chance that a

spurious co-location or a segregation is reported.

To compute ppos and pneg, we do randomization tests, generating a large number of sim-

ulated data sets that conform to the null hypothesis. Then we compute the PI-value of

a pattern C, PI0(C), in each simulation run and compute ppos and pneg respectively as:

ppos =
R≥PIobs + 1

R+ 1
(3.1) pneg =

R≤PIobs + 1

R+ 1
(3.2)

Here R≥PIobs of equation (3.1) represents the number of simulations where the computed

PI0(C) is not smaller than the PIobs-value. R≤PIobs of equation (3.2) is the number of

simulations where the computed PI0(C) is not greater than the PIobs-value. R represents

the total number of simulations. In both the numerator and the denominator one is added to

account for the observed data.

Using PI as a measure of spatial interaction, we can define a statistically significant inter-

action pattern C as:

Definition 4. An interaction pattern C = {f1, f2, . . . , fk} is statistically significant co-

location pattern at level α, if the probability (p-value) of seeing, in a data set conforming to

our null hypothesis, a PI-value of C larger than or equal to the observed PI-value is not
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greater than α.

Definition 5. An interaction pattern C = {f1, f2, . . . , fk} is statistically significant segre-

gation pattern at level α, if the probability (p-value) of seeing, in a data set conforming to

our null hypothesis, a PI-value of C smaller than or equal to the observed PI-value is not

greater than α.

3.6 Number of Required Simulations

How many simulations do we need to get a good critical region for the test statistic? We

do two-tailed tests since we are looking for both positive and negative spatial dependency

among interacting features. Marriot’s investigation shows that the critical region for the test

statistic becomes ‘blurred’ with smaller number of simulations resulting in a loss of power

of the test [42]. This blurring can be reduced for a large value of R which again results an

increase in the computational cost. At α, the one-sided critical value is the α(R + 1)-th

largest (in case of positive dependency) or the α(R + 1)-th smallest (in case of negative

dependency) value out of R simulations. To get a good critical region for the test statistic,

Besag and Diggle in [12] suggest the number of simulations to be computed as α(R+ 1) =

5. Accordingly, 499 simulations are required for α = 0.01, 99 simulations are required for

α = 0.05.

3.7 Summary

Using examples and a real data set, this chapter first discusses the limitations of the current

approaches. The motivation of finding statistically sound patterns is then stated. This chap-

ter then formulates our objective of mining statistically sound patterns. Some key concepts

and definitions are also provided at this point for a better understanding of our algorithms

presented in the next chapter.
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Chapter 4

Statistically Significant Interaction
Pattern Mining

Given a set of spatial features, our objective is to mine all statistically significant co-location

and segregation patterns of different sizes. In this chapter, we propose two methods to mine

statistically significant co-location and segregation patterns of different sizes for a given

distance threshold. Then we conduct experimental evaluation to validate our approaches.

4.1 Algorithms

The computational cost of mining statistically significant patterns incurs at two steps - 1)

data generation step during the simulation runs, and 2) the PI-value computation step of

each candidate interaction pattern. To determine if a pattern will be reported as significant

or not, our first approach requires all the pattern instances. In our second approach, we

show that the significance of a pattern can be determined using only a subset of the total

pattern instances. By using less pattern instances, our second approach thus achieves a

computational gain over our first approach. We first describe a naı̈ve approach to mine

statistically significant patterns and then propose some strategies for reducing the overall

computational cost.

4.1.1 A Naı̈ve Approach

For each interaction pattern C we have to compute the probability of the observed PI-value

under the null hypothesis. For that, we have to determine the PI-value of each interaction

pattern C in each simulation run by identifying all of C’s instances, which naı̈vely amounts
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to checking the neighborhoods of each participating feature in C. In the following, we

describe both the data generation step and the PI-value computation step.

Data Generation for the Simulation Runs

In a simulation, we generate instances of each feature. A feature will be uniformly and in-

dependently distributed over the study area if it is uniformly and independently distributed

in the observation. If a feature fi is found to be auto-correlated in the observation, we first

estimate the summary statistics using the Matérn’s cluster model. The estimated statistics

are 1) the intensity (κ) of the generated cluster centers (or parent events), 2) the cluster

radius (r), and 3) the mean number of offsprings per cluster (µ) that are independently and

uniformly distributed inside the cluster. Using these summary statistics we generate off-

springs which gives the instances of fi in a simulation run. If the total number of generated

instances of fi becomes less than the number of instances of fi found in the observation,

we distribute the remaining instances evenly on the clusters. On the other hand, if the to-

tal number of generated instances of fi becomes higher than the number of instances of

fi found in the observation, we remove the extra instances by deleting them evenly from

the clusters. Fig. 4.1 shows how instances of two auto-correlated features ◦ and 4 are

generated in a single simulation run.

The p-value Computation for a Candidate Pattern

For each candidate interaction pattern C in the observed data, we first compute its PI-

value, i.e. PIobs(C) and store them. To calculate the p-values ppos and pneg, we maintain

two counters for the PIobs-value of C: R≥PIobs and R≤PIobs . In a single simulation run

Ri, for each candidate pattern C we compute its PI-value, i.e. PIRi0 (C) and compare with

the PIobs(C). R≥PIobs is incremented by one if PIRi0 (C) ≥ PIobs(C). The other counter,

R≤PIobs , is incremented if PIRi0 (C) ≤ PIobs(C). A candidate interaction pattern C will

be reported as a statistically significant (at level α) co-location or segregation pattern, if

ppos ≤ α or pneg ≤ α, respectively, after all simulations.

4.1.2 All-instance-based SSCSP Approach

To improve the runtime of our naı̈ve implementation, we propose another approach. We

name it as all-instance-based SSCSP approach. In this approach we apply the following
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Figure 4.1: All instances of two auto-correlated features ◦ and4.

strategies to reduce the cost of the data generation step and the p-value computation step.

Data Generation for the Simulation Runs

In a simulation, we generate instances of each feature. For an auto-correlated feature, we

only generate instances of those clusters which are close enough to different features (auto-

correlated or not) to be potentially involved in interactions. We avoid generating instances

in a cluster cf∗ (radiusRf∗) of a feature f∗ if the center of cf∗ is farther away thanRf∗+Rd

from every instance of different features. For auto-correlated features fi (fi 6= f∗), we can

determine this without looking at the instances of fi by checking only that the center of cf∗

is farther away than Rf∗ +Rfi +Rd from the centers of all clusters of fi.

Fig. 4.2 shows the partial amount of instances generated using the above described strategy.

The computed PI-value from the data shown in Fig. 4.2 will be the same as the PI-value

that would be computed from all instances as in Fig. 4.1. However by generating less

feature instances we save computational time.
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Figure 4.2: Generated instances of two auto-correlated features ◦ and4.

The p-value Computation for a Candidate Pattern

We can reduce the total number of PI-value computations in a simulation run using the

following property. The PI-value of a pattern C in a simulation run Ri, PI
Ri
0 (C), must

be smaller than PIobs(C) (PIRi0 (C) < PIobs(C)), if a subset C′ $ C exists for which

PIRi0 (C′) < PIobs(C).

Lemma 2. For an interaction pattern C and a simulation Ri, if there is a subset C′ $ C

such that PIRi0 (C′) < PIobs(C), then PIRi0 (C) < PIobs(C).

Proof. Assume PIRi0 (C′) < PIobs(C). According to lemma 1, PIRi0 (C′) ≥ PIRi0 (C),

thus it follows that PIRi0 (C) < PIobs(C).

We can apply lemma 2 to prune the actual computation of PIRi0 (C) and just increment the

counter R≤PIobs whenever we know of a subset C′ $ C for which PIRi0 (C′) < PIobs(C).

Again R≥PIobs of C will not be incremented when PIRi0 (C′) < PIobs(C) holds. To apply

lemma 2 efficiently, the PI-values of C’s subsets that we want to check have to be readily

available. If we check the PI-values of patterns in order of increasing pattern size, we

could, in principle, store the PI-values of shorter patterns so that they are available when

checking patterns of larger sizes. However, this approach could require a large space over-
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head, and actually checking too many subsets may overall not reduce the computational

cost. Another issue with such an approach would be that the PI-values of some subsets

would not computed because of the same pruning strategy. Therefore, we propose to use

only the subsets of size 2 for checking, since their PI-values are all computed initially.

Although storing
(
n
2

)
PI-values requires some space, we can reuse the same space for each

simulation run during the randomization tests. While checking the subsets of size 2, if one

is found for which the lemma applies, we will stop checking the remaining subsets of size 2.

If after checking all subsets of size 2, the lemma could not be applied, we compute PIRi0 (C)

and compare with PIobs(C). R≥PIobs of C is then incremented if PIRi0 (C′) is not less than

PIobs(C), otherwise not.

Here we clarify the pruning strategy using four features A,B,C, and D. First we com-

pute PIobs for each candidate interaction pattern. In a single simulation run Ri, we

start with computing the PIRi0 of each 2-size pattern and increment R≥PIobs or R≤PIobs

of a pattern by 1. Lets consider a 3-size pattern {A,B,C}. Assume PIRi0 {A,B} <

PIobs{A,B,C}, then PIRi0 {A,B,C} < PIobs{A,B,C}. Hence we can just incre-

ment the counter R≤PIobs of {A,B,C} without even checking the PIRi0 {A,B,C}-value

and thus the computation of PIRi0 {A,B,C} is no longer required. Similarly the deci-

sion for the 4-size pattern {A,B,C,D} is also done by checking its 2-size subsets. Note

that we can not prune its PI-value computation based on the fact that we could prune

the PI-value computation for {A,B,C} because PIobs{A,B,C,D} will, in general, be

different from PIobs{A,B,C} and it could still be possible that PIRi0 {A,B,C,D} ≥

PIobs{A,B,C,D}. The PI-value decreases with the increase of the pattern size. Hence,

if the number of features increases, we will see more pruning effect in smaller size interac-

tion patterns than in larger size interaction patterns.

Pseudo-code

Algorithm 1 and 2 shows the pseudo-code for the complete procedure.

Complexity Analysis

In the worst case, there is no pruning in each simulation Ri and we compute the PIRi0 -

value of each candidate interaction pattern C. Before computing the PIRi0 -value of C,

we lookup the stored PIRi0 -values of its subsets of size 2. Hence the cost for C is the
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Algorithm 1: SSCSP: Mining Statistically Significant Co-location and Segregation
Patterns

Input: A Spatial data set SD with N spatial features S = {f1, . . . , fN} (each fi has
nfi instances).
Level of significance α, and total simulation runs R.

Output: Set of statistically significant co-locations C and segregation patterns C′.
Variables:

k: pattern size. Rd: interaction radius.
Ckobs: Set of all k-size interaction patterns. Each patterns is stored along with its
PIobs-value, R≥PIobs-value, and R≤PIobs-value.
C2

null: Set of all 2-size interaction patterns in a simulation. Each pattern is stored
along with its PIRjnull -value from a simulation run Rj .

Method:
1: C← {} and C′ ← {}

// Compute PIobs-value of all interaction patterns from SD
2: for k = 2 to N and i = 1 to

(
N
k

)
do

3: Generate k-size i-th interaction pattern and store it in Ckobs[i].pattern
4: Compute its PIobs-value
5: Ckobs[i].P I ← PIobs; Ckobs[i].R

≥PIobs ← 0; Ckobs[i].R
≤PIobs ← 0

// Computing ppos-value and pneg-value for all interaction patterns
6: for j = 1 to R do
7: Generate a simulated data set Rj under the null model
8: for i = 1 to

(
N
2

)
do

9: Compute its PIRjnull -value and C2
null[i].P I ← PI

Rj
null

10: if C2
null[i].P I ≥ C2

obs[i].P Iobs then
11: Increment C2

obs[i].R
≥PIobs

12: if C2
null[i].P I ≤ C2

obs[i].P Iobs then
13: Increment C2

obs[i].R
≤PIobs

14: for k = 3 to N and i = 1 to
(
N
k

)
do

15: if (isPrunedCand(Ckobs[i].pattern, Ckobs[i].P I , C2
null, k)) then

16: Increment Ckobs[i].R
≤PIobs

17: continue // Skip computation of PIRjnull -value
18: Compute the PIRjnull -value of an interaction pattern Ckobs[i].pattern
19: if PIRjnull ≥ Ckobs[i].P I then
20: Increment Ckobs[i].R

≥PIobs

21: if PIRjnull ≤ Ckobs[i].P I then
22: Increment Ckobs[i].R

≤PIobs

23: for k = 2 to N and i = 1 to
(
N
k

)
do

24: Compute ppos-value and pneg-value of Ckobs[i].pattern
25: if ppos ≤ α then
26: C← C

⋃
Ckobs[i].pattern

27: else
28: if pneg ≤ α then
29: C′ ← C′

⋃
Ckobs[i].pattern

30: return C
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Algorithm 2: isPrunedCand(CandPattern, PIobs, C2
null, k)

1: for each 2-size subset l of CandPattern do
2: Look for position x of l in C2

obs.pattern.
3: if C2

null[x].P I < PIobs then
4: return TRUE
5: return FALSE

sum of the lookup cost and the cost for computing its PIRi0 -value. Assume that a lookup

costs β units of computation. For a pattern C of size k, the lookup cost for its
(
k
2

)
pairs

is P k1 =
(
k
2

)
β. For computing PIRi0 (C), we lookup the neighborhoods of all instances

of each feature in C and determine if at least one instance of each feature in C is present

in a neighborhood. Hence the cost of PI-value computation for C of size k is P k2 =

k×maxk{# of instances of feature fk}×β = kδβ [assume δ = maxni=1{# of instances of

feature fi}]. With n total features, there are
(
n
k

)
different k-size interaction patterns. Hence

the total cost for all different k-size interaction patterns is
(
n
2

)
P 2

2 +
∑n

k=3

(
n
k

)(
P k1 + P k2

)
.

Using the equalities of
∑n

k=q

(
n
k

)(
k
q

)
= 2n−q

(
n
q

)
and

∑n
k=2 k

(
n
k

)
= n(2n−1− 1), the above

cost is equal to
(
n
2

)
(2n−2 − 1)β + n(2n−1 − 1)δβ which is of O(2n) in the worst case.

While the worst case is expensive, in many important, real applications (e.g. in ecology),

the largest pattern size that typically exists in the data is much smaller than total number of

features n, since a finite interaction neighborhood can typically not accommodate instances

of n different features when n is large. In such applications, the actual cost in practice is

much lower than the worst case. While checking neighborhoods of feature instances, we

can determine the size of the largest interaction pattern, and then restrict our search to only

patterns up to this size (instead of all sizes).

4.1.3 A Sampling Based Approach

In SSCSP the PI-value of a pattern C is computed, as a test statistics, using all the instances

of C. Here we propose a prevalence measure PI∗ as a test statistics that is computed effi-

ciently from a subset of the instances of C. The new prevalence measure PI∗ can be seen as

an approximation of the original PI-value, which leads, in most cases, to the same statisti-

cal inferences. We propose a grid based partitioning approach to identify the instances of C

that are considered to compute the approximate prevalence measure, efficiently. This gives

a computational advantage over the all-instance-based SSCSP as the cost of identifying

pattern instances and computing the PI-value is now less.
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If a true co-location or segregation relationship exists among a group of features C, this

should be reflected even in a subset of the total instances of C, and a statistical test should

be able to capture this dependency from such a subset. Instead of looking at the full neigh-

borhood So of a feature instance I , we consider only a sub-region S of So. By considering

a larger sub-region which covers more area of So, the computed PI∗-value will be more

similar to the original PI-value. Lets consider two features A and B that could potentially

be involved in an interaction. Instead of looking in the neighborhood So of an instance IA

of feature A for instances of feature B, we consider a sub-region S around IA. An instance

IB found in S then counts towards a spatial interaction with IA. Only an IA found in S

together with IB is considered for the PI-value computation. By checking the sub-regions

around all the instances of A and B, we compute participation ratios PR∗ of A and B

based on these reduced neighborhoods, and obtain the PI∗-value of {A,B} by taking the

minimum.

In our randomization tests, we obtain the distribution of the PI∗-values under the null

model. Thus for two features A and B, we compute PI∗-values in a simulation using

similar sub-regions for the instances A and B. From all the PI∗-values of {A,B} computed

from the simulations, we get a distribution under the null model. Such distribution can be

viewed as an approximation of the distribution of the actual PI-values. We argue that if

two features A and B are truly associated or segregated, the observed PI∗-value in a given

data set should also be statistically significant when compared to the distribution of the

PI∗-values under the null model. If A and B are independent of each other, this should

also be reflected by the observed PI∗-value being closer to the expected PI∗-value under

the null model.

Our experimental results show that this approach works extremely well, in general. How-

ever, this approach might miss reporting a true co-location only in cases where co-located

features have very few instances. For instance, let A and B have very few instances and

have a true spatial dependency. Hence the number of instances of {A,B} will also be few.

If these instances do not appear in the sub-regions, the sampling approach will fail to re-

port the spatial dependency between A and B. To improve the chances of finding pattern

instances in such a case, we can either (1) increase the area of a sub-region so that the sub-

region can match better with the full neighborhood of a feature or (2) use all-instance-based

SSCSP approach as here the cost of identifying even all the pattern instances will not be

high. A more detailed reasoning regarding the accuracy of this approach is given at the end
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(a) l = Rd (b) l = Rd
2

(c) l = Rd
3

Figure 4.3: Dashed bordered region is a sampled neighborhood for a feature instance
present anywhere of cell X .

of this chapter.

A Neighborhood Sampling Approach Using a Grid Based Space Partitioning

To select sub-regions of actual neighborhoods, a grid is placed over the whole study area.

Each grid cell is a square with a diagonal length l being equal to Rd
w , where Rd is the

interaction neighborhood radius and w ≥ 1 is an integer.

If l = Rd, the selected sub-region represents a sampled neighborhood for a feature instance

I that consists of a single cell X that contains I . If l = Rd
2 , the sampled neighborhood

consists of the cell X that contains I , plus the 8 cells surrounding X . In general, if l = Rd
w ,

the sampled neighborhood of I consists of (2w − 1)2 cells including X . We denote the

corresponding neighborhood by S(2w−1)2 . Fig. 4.3 illustrates the sampled neighborhoods

for w equal to 1, 2, and 3, i.e., S1, S9, and S25. Note that any other feature instance

located in a sampled neighborhood of I is necessarily involved in an interaction with I by

construction.

For instance, if l = Rd, feature instances present in the same cell are all involved in an

interaction. We look for the instances of an interaction pattern C in cells where instances

of a participating feature fi of C are present. However we can check all cells instead when

the total number of instances of fi is greater than the total number of cells of the grid. An

instance of C will be counted for the computation of PI∗ only if all the participating fea-

ture instances are present in a single sub-region, i.e. a single cell when l = Rd. Only the

instances found from the sub-regions are considered to compute the PI∗(C). Hence a valid
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Figure 4.4: Interaction instances identified using a grid where l = Rd.

instance of C will not be considered in computing the PI∗-value, if the participating feature

instances are split across different cells. For instance in Fig 4.4 all feature instances of A

and B are are involved in spatial interaction. However, the sampling approach with l = Rd

will not count the patten instances {A2, B1} and {A5, B2} since their participating feature

instances are located across different cells. Considering only the instances of {A,B} that

are found in single cells, the PI∗-value is computed as min{4
5 ,

4
5} = 4

5 , whereas the actual

PI-value is 1. However, when doing randomization tests, we will also miss similarly pat-

tern instances in the simulations that are not contained in a single cell, and hence compare

the observed PI-value to a distribution of the PI-values that are computed in the same

way.

Now we show that by using a finer grid, we can increase the count of interaction pattern

instances used to compute PI∗. Fig. 4.4 depicts the sampling approach where l = Rd. A

sampled sub-region with a feature instance A2 is shown as a dashed bordered region. Fig.

4.5 depicts the sampling approach where l = Rd
2 . Here the sub-region forA2 is shown using

a dotted bordered region. We find that this sub-region (dotted bordered region) includes

the dashed bordered sub-region shown in Fig 4.4 and some additional space. Due to the

increased area, instance {A2, B1} is not missed now.
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Figure 4.5: Interaction instances identified using a grid where l = Rd
2 .

The actual neighborhood of a feature instance fi is a circular region So centered at fi and

the area is πR2
d. The area of a sampled neighborhood S1 (Fig. 4.3(a)) is R2

d
2 . Hence S1

covers 1
2π of So for any feature instance I appearing in S1. When w = 2, the area of the

sampled neighborhood S9 (Fig. 4.3(b)) is 9R2
d

8 , and it covers 9
8π of So for any I in X . The

sampled neighborhood S9 is 2.25 times larger than S1. When w = 3, the area of S25 (Fig.

4.3(c)) becomes 2.78 times larger than S1. In general the area of S(2w−1)2 is R2
d(2− 1

w
)2

2 and

it covers (2− 1
w

)2

2π of the actual neighborhood So.

The area of S(2w−1)2 slowly increases with increasing w, but is limited while the number

of cells that have to be checked increases fast with increasing w. When w →∞, a sampled

neighborhood will cover 0.64 of So (limw→∞
(2− 1

w
)2

2π ∗So = 0.64 ∗So), while the sampled

neighborhood with increasing w is comprised of (2w − 1)2 → ∞ number of cells, all of

which have to be checked for patterns of size 2. For instance, when the value of w equals

1, 2, 3 or 4 the sampled neighborhood respectively covers 0.16, 0.36, 0.44, and 0.48 of the

circular region So and is respectively comprised of 1, 9, 25 or 49 cells, all of which have to

be checked for patterns of size 2. When w = 3, the sampled neighborhood gives 23% more

coverage on So compared to the sampled neighborhood with w = 2. However the number

of cells in the sampled neighborhood with w = 3 is increased by 177%. Similarly, when

w = 4 the sampled neighborhood gives 34% more coverage on So compared to the sampled
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neighborhood withw = 2 and the number of cells of the sampled neighborhood is increased

by 444%. However the number of cells checked in a sampled neighborhood decreases

with increasing pattern size. To find a k-size interaction pattern instance, we check the

overlapping region of the neighborhoods of the k− 1 participating feature instances for the

presence of an instance of the k-th feature. For instance, to find {A1, B2, C2} in a grid

where l = Rd
2 (Fig. 4.6(a)), we check the overlapping region of the sampled neighborhoods

of A1 and B2. In Fig. 4.6(a), the actual neighborhood of a feature instance is shown by a

circle; whereas the sampled neighborhoods for A1 and B2 are shown by dashed and dotted

squares, respectively. Here the overlapping region of the two sub-regions includes 6 cells

(2, 3, 6, 7, 10, and 11) and we can restrict the search for an instance of C to these 6 cells.

Similarly, to find {A1, B2, C2, D1} the overlapping region of the sampled neighborhoods

of A1, B2, and C2 must be checked when looking for an instance of D. In the example

shown in Fig. 4.6(b), the overlapping region includes only 4 cells (2, 3, 6, and 7) indicated

by a dotted line.

Clearly, there is a trade-off between the quality of the PI∗-value as a test statistic to deter-

mine spatial associations and the resolution of the grid that induces the sampled neighbor-

hoods based on which the PI∗-values are determined. Note, however, that achieving the

best accuracy of the neighborhood approximation is not necessary. Since we are making

the same kind of error when computing PI∗-values both for the observed data set, as well

as in all the simulations, what matters is whether the distribution of the PI∗-values will

lead to the same statistical inference about which patterns are statistically significant. Fig.

4.7 shows 4 empirical distributions of approximate (for w = 1, w = 2, w = 3 and w = 4)

PI-values and Fig. 4.7 shows the empirical distribution of the actual PI-values (computed

from all the instances) of a pattern {A,B} estimated under the null model (i.e., for two

independent features A and B). We can see that using a finer cell resolution for the grid,

the distribution of PI∗-values of {A,B} becomes more similar to the the distribution of

actual PI-values. In our experiments, we will demonstrate that values for w equal to 4, 3,

or even as low as 2 work well in all cases, except for patterns that involve features with an

extremely low number of instances.

Accuracy of the Sampling Approach

The accuracy of our sampling approach in making a statistical inference on a pattern’s

significance depends on the area of the sampling sub-region, and the number of interacting
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(a)

(b)

Figure 4.6: Finding an interaction pattern instance a) of size 3. b) of size 4.
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(a) l = Rd (b) l = Rd
2

(c) l = Rd
3

(d) l = Rd
4

Figure 4.7: Distribution of the PI∗-values computed under the null model.
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Figure 4.8: Distribution of the PI-values computed under the null model.

instances of the participating features of a pattern. We show these relationships, more

formally, for the special case of an interaction pattern C = {f1, f2} with two features.

For larger pattern sizes, it is intuitively clear that the same relationships hold, but a formal

analysis will be much more complex.

Let us assume that there are nC instances of C, and that f1 and f2 have nCf1 and nCf2 number

of instances, respectively, that are participating in interaction type C. Instances of f1 and f2

that are involved in interaction type C are denoted by ICf1 and ICf2 , respectively. The average

number of instances of f2 that are found in the non-approximated interaction neighborhood

So of an instance ICf1 is denoted by n̄Sof2 . Let us assume that these instances are uniformly

distributed in So. Then, n̄Sof2 =
nCf2
nCf1

. The average number of instances of f1 that are

found in the non-approximated interaction neighborhood of an instance ICf2 can be defined

analogously. Without loss of generality, we analyse neighborhoods with feature instances

of f1 at their centers (the analysis for feature instances of f2 is completely analogous).

According to the construction, a sampled sub-region S is always inside of So. Hence the

probability P that an instance present in So will also be present in S is given as P =

λ2(S)/λ2(So), where λ2(S), and λ2(So) denote the area of S and So, respectively.

Consider an instance ICf1 which is interacting with n̄Sof2 instances of f2, on average, in So.

ICf1 will also be interacting with instances of f2 in S if at least one of these instances is also

present in S. The probability (PSf1) that ICf1 is interacting with at least one instance of f2 in
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S is given as PSf1 =
(

1− (1−P)
n̄Sof2

)
. This probability converges to 1 with the increase of

λ2(S) and with the average number of interacting feature instances of f2. In other words,

the chance of missing the feature instance ICf1 as interacting with feature f2, when using a

sampled sub-region S, is equal to (1 − P)
n̄Sof2 , and this chance decreases with increasing

size of the sampled sub-region.

So far we have analysed the dependency on the size of the sampled sub-region; now we turn

to the dependency on the number of interacting instances of the participating features of a

pattern.

Let Xi be a random variable so that Xi = 1 if the ith (i ≤ nCf1) instance ICf1 is identified

as interacting with f2 in the sampled sub-region S, 0 otherwise. Xi ∼ Bernoulli(PSf1),

where X1, · · · , XnCf1
are independent and E[Xi] = PSf1 . Let X =

∑
Xi be the number of

instances of f1 that are identified as interacting with f2 in S. X ∼ Binomial(nCf1 , P
S
f1

) and

the expected number of instances of f1 that will be identified as interacting with f2 in S is

equal to µSf1 = E
[∑

Xi

]
=
∑
E[Xi] = PSf1 ∗ n

C
f1

. Dividing µSf1 by the total number of

instances of f1, yields the expected participation ratio of f1 using the sampling approach.

The empirical fraction X̄ = X/nCf1 gives us an estimate of PSf1 .

The next question is how large nCf1 has to be in order to obtain a good estimate of PSf1 for a

given accuracy and a given confidence.

Chernoff in [32] gives an exponentially decreasing bound on tail distributions of sums of

independent random variables. For any ε ≥ 0, a multiplicative form of the two-sided

Chernoff bound with respect to X above is given as:

Pr
[
|X̄ − µSf1 | ≥ ε ∗ µ

S
f1

]
≤ 2 ∗

[ eε

(1 + ε)1+ε

]µSf1
= 2 ∗ [eε−(1+ε)∗ln(1+ε)]

µSf1

Using Taylor’s series expansion of ln(1 + ε) and simplification, we obtain that ln(1 + ε) >

2∗ε
2+ε . This implies that ε− (1 + ε) ln(1 + ε) ≤ −ε22+ε . Hence the inequality becomes

Pr
[
|X̄ − µSf1 | ≥ ε ∗ µ

S
f1

]
≤ 2 ∗ e

−ε2
2+ε
∗µSf1

⇔ Pr
[
|X̄ − PSf1 ∗ n

C
f1 | ≥ ε ∗ P

S
f1 ∗ n

C
f1

]
≤ 2 ∗ e

−ε2
2+ε
∗PSf1∗n

C
f1

⇔ Pr
[
|X̄ − PSf1 | ≥ ε ∗ P

S
f1

]
≤ 2 ∗ e

−ε2
2+ε
∗PSf1∗n

C
f1 .

Here for a fixed ε, the larger the term PSf1 ∗ n
C
f1

is, the smaller the bound on the right of the

inequality is. The smaller the value of PSf1 , the larger the number of interacting instances

nCf1 of f1 has to be in order to obtain a good estimate of PSf1 . For instance, if the participation
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ratio of f1 is 0.4, a data set where 8 out of 20 total instances of f1 interacting with f2 gives

a better estimate of P sf1 than a data set where 4 out of 10 total instances of f1 interacting

with f2 gives.

Pseudo-code

Algorithm 3 is the pseudo-code of our sampling approach.

Algorithm 3: Sampling Algorithm: Mining Statistically Significant Co-location and
Segregation Patterns Using PI∗-value

Input: A Spatial data set SD with N spatial features S = {f1, . . . , fN} (each fi has
nfi instances).
Level of significance α, and total simulation runs R.

Output: Set of statistically significant co-locations C and segregation patterns C′.
Variables:

k: pattern size; 2 ≤ k ≤ N .
C: an interaction pattern of size k. Rd: interaction radius.
w: a factor (integer) which determines the cell size of the grid placed over the
study area; w ≥ 1.

Method:
1: C← {} and C′ ← {}
2: Place a grid where the diagonal length of each cell is Rd

w .
3: for each pattern C of size k do
4: Find the instances of C from the sampled sub-regions.
5: Compute the PI∗obs of C
6: for j = 1 to R do
7: Generate a simulated data set Rj under the null model
8: Place a grid where the diagonal length of each cell is Rd

w .
9: for each pattern C of size k do

10: Find the instances of C from the sampled sub-regions.
11: if C is not pruned using lemma 2 then
12: Compute the PI∗0 of C
13: Increment R≥PI

∗
obs or R≤PI

∗
obs

14: else
15: Increment R≤PI

∗
obs

16: Compute ppos and pneg
17: if ppos ≤ α then
18: C← C

⋃
C

19: else
20: if pneg ≤ α then
21: C′ ← C′

⋃
C
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Complexity

The complexity in the worst case is O(2n), where n is the total number of features. How-

ever, the lookup cost β of P k2 (see Section 4.1.2) in a grid based sampling approach is

smaller than the lookup cost of the approach that computes the actual PI-value. Here the

lookup cost involves only checking the cells of all sampled sub-regions. The computation

of inter-distance among features which is done in the all-instance-based approach is not

required.

4.2 Experimental Evaluation

To validate our approaches, experiments are conducted using synthetic and real data sets.

In this section we discuss our experimental procedures and discuss our results. For the

experiments, we compare the all-instance-based approach with our sampling approach for

four grid cell resolutions, given by w = 1, 2, 3, 4, as well as with a standard co-location

mining approach.

4.2.1 Synthetic Data Sets

In this section, we conduct experiments with a set of synthetic data sets to demonstrate that

our approaches do not miss any true patterns in the presence of different spatial relationships

such as auto-correlation, inhibition, or mixed spatial interaction.

Inhibition

Here we show that a set of negatively associated features can be wrongly reported as a

prevalent co-location pattern by the existing co-location mining algorithms, using typical

threshold values. We also show that our algorithm does not report such a pattern as a co-

location pattern, but rather reports it as a segregation pattern.

Model to generate an inhibition type interaction: Points exhibiting pairwise interaction

among themselves are modeled in the spatial point process. For a pairwise interaction

model [6], the probability density of a point process in a bounded area W is a function

f(x) defined for each finite configuration x = {x1, . . . , xn} of points xi ∈ W for any

n ≥ 0. f(x) is defined in the following form f(x) = α
[∏n

i=1 b(xi)
]
×
[∏

i<j c(xi, xj)
]
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where α is a normalizing constant, b(xi), xi ∈ W is the intensity (first order term), and

c(xi, xj), xi, xj ∈ W is the pair-wise interaction term (second order term) [7]. For inhibi-

tion, the second order term 0 ≤ c ≤ 1.

Experimental setup 1: We generate a data set with 40 instances of each of two features

◦, and 4 that inhibit each other. A pair-wise inhibition type can be modeled by a Strauss

process [37], which has three parameters (β, γ, and r). The probability density f(x) of a

Strauss process x is αβn(x)γs(x) [6], where α is a normalizing constant, n(x) is the total

number of points, and β is the contributing factor of each point to the density. s(x) is the

number of pairs in x which are closer than r units from each other, r is the interaction

distance, and γ controls the strength of the interaction between points. A Strauss process

is defined for parameters 0 ≤ γ ≤ 1, β > 0, and r > 0. When γ = 1, the overall

density becomes the density of a Poisson process (f(x) = αβn(x)). With γ > 1, the point

process exhibits clustering, with γ = 0, points exhibit no interaction within a distance r,

termed as a hardcore process [37], and with 0 < γ < 1, two points that are closer than

r units from each other exhibit a soft inhibition or negative association. In the Strauss

process, any pair of points that are lying more than r units apart does not exhibit any inter-

dependency and the interaction term γ for such a pair equals 1. In a multi-type Strauss

process [37], interaction has to be defined for a pair of points of similar types and for a pair

of points of different types. Our data is generated from a multi-type Strauss process where

the interaction parameter (γ) among similar type of feature instances (γ◦,◦ and γ4,4) is

0.43, the interaction term among different types of feature instances (γ◦,4) is 0.4, and the

interaction radius (r) is set to 0.1. β is 2. The study area is a unit square and the interaction

distance (Rd) is 0.1. Even when imposing a soft inhibition between ◦ and 4, we still see

some instances of pattern {◦,4} within the interaction distance of 0.1. Fig. 4.9 shows the

data set.

Result: The actual PIobs({◦,4})-value is 0.55. The ppos-value of PIobs = 0.55 accord-

ing to equation 3.1 is 99+1
99+1 = 1, which means that seeing a PI-value of at least 0.55 under

the null model is quite certain. Hence our method will not report {◦,4} as a significant

co-location pattern. Our grid based sampling approach also does not report {◦,4} as a

co-location pattern as the ppos-value is always greater than α = 0.05. The pneg-value of

PIobs = 0.55 according to equation (3.2) is 1
99+1 = 0.01 < α which means that under

the null model the probability of seeing a PI-value of 0.55 or less is quite unlikely. In

our sampling approach, we find that the pneg-value is always less than α = 0.05. Hence
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Figure 4.9: A data set where ◦ and4 are negatively associated.

{◦,4} is reported as a segregation pattern. The complete results are shown in Table A.1

of Appendix A. The reported segregation relationship can be validated by the estimation

of Ripley’s cross-K function. In Fig. 4.10, we see that the estimation of K◦,4(r) using

Ripley’s isotropic edge correction (solid line) is always below the theoretical curve (dashed

line), which means that the average number of4 found in a neighborhood of radius r of a

◦ is always less than the expected value (πr2) indicating a negative association. The pre-

cision and recall our methods are both equal to 1, while the standard method should not

report segregation patterns. However, it reports {◦,4} as a prevalent co-location if a rather

typical value of 0.55 or less is set as the PI threshold, which is highly misleading.

Experimental setup 2: Geyer extended the Strauss process to model an inhibition among

a group of 3 close points (called a triplet), each pair of which is located closer than r

units from each other. This inhibition model is known as Geyers triplet process [25]. Its

probability density function f(x) is similar to that of the Strauss process except in the

interaction term γs(x), s(x) is defined as the number of unordered triples of points that are

located closer than r units from each other. For inhibition, the model requires 0 < γ <

1. Using Geyers triplet process [25], an extension of the Strauss process, we generate an

inhibition data set (Fig. in 4.11) of 3 features ◦,4, and +. Each feature has 50 instances and

an inhibition relationship is imposed among all 3 features. The study area is a unit square

and the interaction distance (Rd) is set to 0.1. Using the Metropolis-Hastings algorithm

[37], first we generate a realization of the triplet process with β = 2, γ = 0.45, and

r = 0.1. The realization is a data set of 150 un-marked points. Then we randomly pick
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Figure 4.10: Inhibition: estimation of Ripley’s K- function K◦,4(r).

50 un-marked points and set their marks to ◦. Similarly another 50 un-marked points are

set to mark 4 and the rest are set to mark +. Note that even when imposing an inhibition

relationship, we can still see some instances of pattern {◦,4,+} (as γ 6= 0). The data set

is shown in Fig. 4.11.

Result: The PIobs({◦,4,+})-value is 0.42. The ppos-value is 0.99, which is greater than

α = 0.05, and hence our method does not report {◦,4,+} as a significant co-location

pattern. Our grid based sampling approach also does not report {◦,4,+} as a co-location

pattern as the ppos-value is always greater than α = 0.05. The pneg-value is 0.03. The

pneg-values using our sampling approach are also smaller than α = 0.05. Hence in all our

approaches, {◦,4,+} is reported as a segregation pattern. The complete results are shown

in Table A.2 of Appendix A. The reported segregation relationship can also be validated

by estimating the third order summary statistics T (r) [58]. In Fig. 4.12, we see that the

estimation of T◦,4,+(r) with border correction (solid line) is always below the theoretical

curve (dashed line), which means that in an r-neighborhood of a typical point o, the average

number of r-close triples including o is always smaller than the expected value, indicating a

segregation among features ◦,4, and +. Again, the precision and recall of all our methods

are 1, while the standard method should not report the segregation pattern. However, they

will wrongly report the pattern {◦,4,+} as a prevalent co-location if a value of 0.42 or

less as the PI threshold is used, which again, is not uncommon.

61



Figure 4.11: A data set with an inhibition relationship between ◦,4, and +.

Figure 4.12: Inhibition: estimation of the 3rd order summary statistics T (r).
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Figure 4.13: A data set where ◦ is auto-correlated and4 is randomly distributed.

Auto-correlation

In this experiment, we show that even though participating features of a pattern are indepen-

dent of each other, their spatial auto-correlation properties can generate a PI-value higher

than a typical threshold. Our algorithms do not report such patterns as a true co-locations.

Experimental setup: We generate a synthetic data set (shown in Fig. 4.13) with 2 different

features ◦, and 4. Feature 4 has 120 instances which are independently and uniformly

distributed. Feature ◦ has 100 instances which are spatially auto-correlated. The spatial

distribution of ◦ follows the model of Matérn’s cluster process [37]. The study area is a unit

square and the spatial interaction neighborhood radius (Rd) is 0.1.The summary statistics

of ◦ are κ = 40, µ = 5, and r = 0.05.

Result: The PIobs({◦,4})-value is 0.46. The ppos-value is 0.75 and the pneg-value is

0.31 which are greater than α, and hence pattern {◦,4} is not reported as a co-location

or segregation pattern. Our grid based sampling approach also does not report {◦,4} as a

co-location or a segregation pattern. Table A.3 of Appendix A shows the complete results

from our different approaches. The standard co-location approaches, on the other hand, will

mistakenly report the pattern {◦,4} as prevalent since its PI-value of 0.46 is higher than

typical thresholds.
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Figure 4.14: A data set with 5 features.

Mixed Spatial Interaction

Here, we generated a synthetic data set with 5 different feature types ◦, 4, +, ×, and ♦

(Fig. 4.14). Among these features, we impose different spatial relationships such as positive

association, auto-correlation, inhibition, and randomness. We show that our algorithms are

able to detect co-location and segregation patterns occurring due to positive and negative

associations, and that we do not report “false” patterns even if they may have high PI-

values.

Experimental setup: Features ◦, 4 and × have 40 instances each. Feature + has 118

instances, and feature ♦ has 30 instances. Our study area is a unit square and the interac-

tion neighborhood radius (Rd) is set to 0.1. Features ◦ and 4 have a negative association

and instances of these two types are generated from an inhibition process (a Multi-Strauss

hardcore process [37], with parameter β = 300 for both features), where no two feature

instances (either the same feature types or different feature types) are seen within a pre-

defined distance threshold (called hardcore distance h, here h = 0.05); and an inhibition

(negative association) is present at a distance 0.05 < r < 0.1 where the inhibition parame-
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ter γ is 0.3 between ◦ and4, and 0.43 between feature instances of the same type. Feature

◦ and feature × are positively associated, so that an instance of feature × will be found

within the Rd distance of an instance of feature ◦. Feature + is spatially auto-correlated,

modelled as a Matérn’s cluster process (with parameter κ = 40, µ = 3, and r = 0.05) and

positively associated with feature ◦ and feature ×. Hence, we observe a group of + around

each instance of ◦ and ×. Feature ♦ is randomly distributed. Table 4.1 shows the spatial

relationship that are implanted in the synthetic data.

Table 4.1: Relationships implanted in the synthetic data

Type Relationships among the features
1 Positive associations: {◦,+}, {◦,×}, {+,×}, {◦,+,×}
2 Negative associations: {◦,4}, {4,+}, {4,×}
3 ♦ is independent of rest of the features.

Result: Our algorithms detects patterns generated due the spatial associations that are im-

planted in the synthetic data. Table A.4, A.5, and A.6 of Appendix A show the complete

results for the computed PI-values, the PI∗-values for different grid sizes, the ppos-values,

and the pneg-values of all possible subsets. The results for each possible subset of features

are discussed in detail, by increasing pattern size.

Size-2 subsets (Table A.4): {◦,4} is not reported as a significant co-location pattern

(ppos > 0.05) due to their inhibitive interaction. Rather it is reported as a significant segre-

gation pattern (pneg < 0.05). Feature ◦, feature +, and feature × are strongly associated in

the synthetic data and that is captured in the result: {◦,+}, {◦,×}, and {+,×} all have a

ppos-value of 0.01 and are thus reported as significant co-location patterns. {◦,♦} is not re-

ported which is correct since both features are independent of each other. The same applies

to {4,♦}, {+,♦}, and {×,♦}. Since an inhibition relationship exists between feature ◦

and feature 4 and a positive association exists among ◦, +, and ×; 4 also shows an in-

hibition relationship with + and ×. In our result {4,+}, and {4,×} are, accordingly,

not reported as significant co-location patterns, but they are reported as significant segre-

gation patterns. Note that some patterns (such as {◦,♦}, {4,+}, {×,♦}) which are not

significant co-location patterns will be reported by existing algorithms when using typical

thresholds (such as 0.55), since their actual PI-values are all higher than 0.55.

Size-3 subsets (Table A.5): {◦,4,+}, {◦,4,×}, and {◦,4,♦} are not reported due the

inhibition of ◦ and 4. {◦,4,+}, {◦,4,×} are not even reported as a statistically sig-

nificant segregation pattern due to the positive association of {◦,+}, {◦,×} respectively.
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{◦,4,♦} is also not reported as segregation due to the independence of ♦ from ◦ and 4.

{◦,+,×} is reported as significant co-location which is correct due to the first type of re-

lationship of Table 4.1. {4,+,×} can not be a true co-location due the second type of

relationship of Table 4.1. This subset is also not reported as significant in our result. This

also can not be a true inhibition due the strong association relationship between feature +

and feature×. Feature ♦ together with a strongly associated pair of features (such as feature

◦, and feature +) could also appear as a positive association which is the case in our result

where we find {◦,+,♦}, {◦,×,♦}, and {+,×,♦} as significant.

Size-4 subsets (Table A.6): among all subsets of size 4, only {◦,+,×,♦} is reported as

significant co-location pattern due to the positive association among ◦, +, and ×. To report

this pattern (actual PI = 0.55) using the existing algorithms, the global threshold value

would have to be set to at least 0.55, which, however, would also result in reporting non-

significant patterns (e.g., {4,♦}, with actual PI = 0.575). {◦,4,+,×}, {◦,4,+,♦},

and {◦,4,×,♦} are not reported. This is due to the fact that two negatively associated

features ◦ and 4 are present in those 4-size subsets. They are not even reported as true

segregation patterns. This is due to the fact that relationship types 1 (inhibition) and 2

(association) of Table 4.1) are both present in these 4-size subsets. similarly, {4,+,×,♦}

is also not reported.

Size-5 subsets (Table A.6): the only subset of size 5, {◦,4,+,×,♦} is not reported. The

combined effect of relationship type 1, 2 and 3 of Table 4.1 does not result in either a true

positive association or a true negative association among these 5 features.

As can be seen in Table A.4, A.5, and A.6, the sampling based approach does not miss any

co-location or segregation pattern of size 2, 3, and 4.

The SSCSP algorithm reports all 4 implanted co-location and all 3 segregation patterns.

It also reports the 4 additional co-location patterns {◦,+,♦}, {◦,×,♦}, {+,×,♦}, and

{◦,+,×,♦}, which correspond to the 4 implanted patterns but include the additional, in-

dependently distributed feature ♦. Due to the positive association among ◦, +, and ×, the

amount of pattern instances found in the observation is significantly higher than the amount

found under the independence assumption. These additional four patterns are in a sense

redundant patterns since they reflect the implanted, strong association between three of the

involved features. Such patterns can, in principle, be pruned by using an independence as-

sumption, conditioned on already found sub-patterns. However this is beyond the current

66



scope of this chapter. But in the following chapter, we propose a solution to remove such

type of redundant pattern by using a null hypothesis conditioned on a constraint set. As

can be seen in Table A.4, A.5, and A.6: the sampling based approach find exactly the same

patterns as the all-instances-based approach. The result of a standard co-location algorithm

depends on the chosen threshold. For this experiment we report the performance for three

different thresholds: 0.2, 0.4, and 0.5. Table 4.2 shows precision, recall, and F-measure

(harmonic mean of precision and recall), for the standard co-location algorithm using these

thresholds, as well as for our method.

Table 4.2: Existing methods vs. our method

PI A standard co-location approach Our

threshold→ 0.2 0.4 0.5 method

Precision 0.15 0.21 0.27 0.64

Recall 1 1 1 1

F -measure 0.26 0.35 0.43 0.78

For instance, if the PI threshold for the standard co-location mining algorithm is set to 0.4,

19 patterns will be reported as prevalent; among those, 4 patterns are true co-locations, 4

patterns are the same redundant patterns that our algorithm reports as well, 3 patterns are

the wrongly reported segregation patterns and the rest are meaningless patterns. In this

case, precision, recall, and F-measure, not counting the segregation patterns (since the co-

location mining algorithm should, according to its semantics, not find those) are 4
19 = 0.21,

4
4 = 1, and 0.35, respectively.1

Runtime Comparison

For an auto-correlated feature, we do not generate all of its instances and we can also prune

candidate patterns which can not contribute to the p-value computation under certain cir-

cumstances (see Sect. 4.1.2). In a naı̈ve approach, we do not apply any of these techniques.

All experiments are conducted on an Intel Core i3 processor machine with a cpu speed of

2.10 Ghz. The main memory size is 2 GB and the OS is Windows 7. For runtime compari-

son, we generate a data set with 4 different features ◦, 4, +, and ×. Features ◦,4, and +

are auto-correlated features. They also show an inhibition relationship with feature ×. The
1If we are “generous” and count the wrongly reported segregation patterns as correct, the precision, recall,

and F-measure would be 7
19

= 0.37, 7
7
= 1, and 0.54, respectively, which is still substantially worse than our

method.
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study area is a square with an area of 100 sq. units and the interaction distance Rd is set to

0.1. We impose a positive association among ◦,4, and + where each instance of a feature

is in co-location with an instance of the other two types of features. Feature ◦, feature 4,

and feature + have 400 instances each and feature × has 20 instances. The naı̈ve approach,

the All-instances-based SSCSP, as well as all the sampling approaches find the same signifi-

cant co-location patterns ({◦,4}, {◦,+}, {4,+}, and {◦,4,+}) and the same significant

segregation patterns ({◦,×}, {4,×}, and {+,×}). We conduct four more, similar exper-

iments, and in each experiment we keep the total cluster number of each auto-correlated

feature the same but increased the total number of instances per cluster by a factor k for

all clusters. For all these experiments the same co-location and segregation patterns are

reported as significant by all different approaches. Figure 4.15 shows the runtime of a naı̈ve

approach, the all-instances-based SSCSP algorithm, and the grid based sampling approach

with 4 different cell resolutions. Figure 4.16 shows that with the increase of the number of

instances, we obtain an increasing speedup growing from 1.9 to 5.31 for the All-instances-

based SSCSP algorithm. We obtain further increasing speedup using grid based sampling.

With increasing number of feature instances, the speedup increases from 4.7 to 12.8 when

l = Rd, from 4 to 11.9 when l = Rd
2 , from 3.12 to 10.9 when l = Rd

3 , and from 2.3 to

9.3 when l = Rd
4 . A cell resolution of l = Rd gives the best speedup but may not be a

safe choice for mining a true co-location or segregation which has very few instances. Our

experiments overall suggest that a cell resolution of either l = Rd
2 or l = Rd

3 is a good

choice since in all conducted experiments with synthetic and real data sets (to be discussed

next), it only missed one true co-location pattern in a case very one of the involved features

has a very low number of instances.

For an auto-correlated feature, if the number of clusters increases, the chance of a cluster

being close to other features will be higher. Hence the data generation step might have to

generate more instances of each auto-correlated feature in such cases. In another 5 experi-

ments, we increased the number of instances of feature× and the number of clusters of each

auto-correlated feature (◦, 4, and +) by the same factor but keep the number of instances

per cluster the same. Fig. 4.17 shows the runtime and Fig. 4.18 shows the speedup obtained

by the different approaches in the 5 experiments. We see that with increasing number of

clusters, after increasing first, the speedup eventually goes down. This happens when more

and more instances actually have to be generated, eventually leaving only the speedup due

to candidate pruning.
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Figure 4.15: Runtime comparison.

Figure 4.16: Speedup.

These experiments also demonstrate that the runtimes of our approaches are acceptable for

many real world application where the quality of the results matters more than speed.

Comparison with the existing algorithms: The computational time of the existing algo-

rithms depends on the selection of the PIthre-value. A low PIthre-value is computationally

more expensive than a high PIthre-value. A low PIthre-value allows fewer pruning and thus

results in more candidate patterns as being prevalent. Hence there is no fair way to compare

our algorithm with the existing algorithms. To show a range of possible results, we use 0.2

and 0.5 as PIthre-value to measure the computational time of the algorithm in [72] and com-

pare it with our algorithm (shown in Table A.7 of Appendix A) using the data (Fig. 4.14) of
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Figure 4.17: Runtime comparison.

Figure 4.18: Speedup.

the mixed spatial interaction experiment of section 4.2.1. Due to the randomization tests re-

quired for the significance tests, our algorithm is clearly slower than the existing algorithm.

However with PIthre = 0.2, the join-less algorithm reports all subsets as prevalent, which

is meaningless, and when when PIthre = 0.5 the algorithm reports the four true co-location

patterns, but also eleven additional patterns, five of which are meaningless, four of which

are redundant patterns, two of which are in fact segregation patterns and not co-location

patters, which is a particularly severe mistake.
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4.2.2 Real Data Sets

We conduct experiments with five real data sets to validate our proposed approaches. Some

of these data sets are also used by ecologists. We compare our findings with their results.

Ants Data

The nesting behavior of two species of ants (Cataglyphis bicolor and Messor wasman)

is investigated to check if they have any dependency on biological grounds. The Messor

ants live on seeds while the Cataglyphis ants collect dead insects for foods which are for

the most part dead Messor ants. Zodarium frenatum, a hunting spider, kills Messor ants.

The question is if there is any possible connection we can determine between these two

ant species based on their nest locations. The full data set gives the spatial locations of

nests recorded by Professor R.D. Harkness [31]. It comprises 97 nests (68 Messor and 29

Cataglyphis) inside an irregular convex polygon (Fig. 4.19).

We run our algorithm on the ants data and compute the PI-value based on all instances

and based on the grid based sampling approach. Each of the 24 Cataglyphis ant nests is

close to at least one Messor ant’s nest, not more than 50 unit away, and the participation

ratio of Cataglyphis ant is 24
29 = 0.83. For Messor ants, the participation ratio is 30

68 = 0.44.

Thus the actual PIobs-value of interaction pattern {Cataglyphis ,Messor} is 0.44. In the

randomization test, we generate 99 simulation runs and find that in 18 simulation runs,

the PIRi0 -value is greater than or equal to the PIobs-value. The ppos-value is equal to
18+1
99+1 = 0.19, which is greater than 0.05 and thus not statistically significant. Hence we

can not conclude that there is a positive dependency between these two types of ants. The

pneg-value is calculated as 81+1
99+1 = 0.82, which is greater than 0.05 and thus the interaction

pattern can not be a statistically significant segregation pattern. Table B.1 in the Appendix B

shows the computed PI-values, ppos-values, and pneg-values using the grid based sampling

method with different cell resolutions. Again, for all grid sizes, the result is the same,

i.e. the spatial interaction of Cataglyphis and Messor is neither a statistically significant

co-location nor a statistically significant segregation. In fact, clear evidence of a spatial

association between these two species is also not found in [31]. Existing co-location mining

algorithms would report {Cataglyphis ,Messor} as a prevalent co-location if a value of 0.44

or less is set as PI threshold.
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Figure 4.19: Ants data: ◦ = Cataglyphis ants and4 = Messor ants. [31]

Bramble Canes Data

Hutchings recorded and analyzed the cane distribution of Rubus fruticosus (blackberry).

The blackberry bush is known as Bramble. Bramble canes data (published in [20]) records

the locations (x, y) and ages of bramble canes in a field of a 9m square plot. The canes were

classified according to age as either winter buds breaking the soil surface, un-branched and

non-flowering first year stems, or branched and flower bearing second year stems [36].

These three classes are encoded as marks 1, 2, and 3 respectively in the data set. There are

359 canes with mark 1, 385 with mark 2, and 79 with mark 3. Hutchings’ investigation

finds an aggregated pattern in all cohorts of canes [36]. This indicates the presence of auto-

correlation for each mark. Diggle also analyses the bivariate pattern formed by canes with

mark 1 and 2 and finds a positive dependency between these two types [20] (Section 6.3.2).

(a) (b) (c)

Figure 4.20: Bramble canes data: distribution of a) newly emergent (mark 1), b) 1 year old
(mark 2), and c) 2 years old (mark 3) canes [20].
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(a) (b)

(c)

Figure 4.21: Bramble canes data: Ripley’s a) K1,2, b) K1,3, and c) K2,3 curves.

For our experiments, we re-scaled the 9 m square plot area to the unit square and set the

co-location radius to 0.1. Using the location information of the Bramble canes from [20]

the spatial distribution of each type of cane can be plotted, which is shown in Fig. 4.20. The

PI-values, ppos-values, and pneg-values are shown in Table B.2 of the Appendix B. In the

result, all possible subsets are reported as significant co-location patterns. This also con-

forms with Diggle’s investigation where a pair-wise positive dependency among different

types of canes is also reported. The aggregation tendency of the three types of canes that

is reported (as {1, 2, 3}) in our approach can also be predicted from the estimated Ripleys

cross-K function curves (Fig. 4.21) of all possible pairs. In all 3 cross-K function curves

of Fig. 4.21, we see that the estimated K-value from the data at the co-location distance

(Rd = 0.1) is always greater than the theoretical K-value (estimated from a Poisson distri-

bution) indicating an pairwise aggregation tendency. A positive association among all pairs

and similar spatial distribution of each type of cane results in a positive association among

all three types of canes.
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Lansing Woods Data

D.J. Gerrard prepared this famous multi-type point data set from a plot of 19.6 acre in

Lansing Woods, Clinton County, Michigan, USA. This data set records the location of 2251

trees of 6 different species (135 black oaks, 703 hickories, 514 maples, 105 red oaks, 346

white oaks, and 448 miscellaneous trees) [24]. For our experiments, we set the interaction

distance to 92.4 feet and re-scaled the original plot size (924× 924 feet) to the unit square

in order to mine significant positive and negative interactions. The individual distribution

of each tree species is shown in Fig. 4.22. We estimate the pair-wise correlation function

(g(d)) value for each tree species. At distance d = 92.4 feet, we find each tree species as

spatially auto-correlated as g(d) > 1.

In the Appendix B, Table B.3 shows the PI-values and ppos-values of the significant co-

location patterns found by our algorithms. In the Appendix B, Table B.4 shows the PI-

values and pneg-values of the segregation patterns found by our algorithms. Diggle [20] and

Perry et al. [49] analyze the Lansing Woods data to find bivariate patterns only. Some of the

2-size patterns that are reported in our method are also found in their work. In their result,

hickory and maple are reported to deviate from randomness and exhibit segregation. Our

findings can also be validated by estimating Ripley’s cross-K function at the interaction

distance 92.4 feet for all pairs. From the estimated Ripleys cross-K function values, we

find the following pair-wise spatial relationships (Table 4.3):

Table 4.3: Pari-wise spatial association: Auto: auto-correlation, Ind: independency, +:
positive, -: negative.

Black oak Hickory Maple Misc. Red oak White oak
Black oak Auto + - - Ind Ind
Hickory Auto - - Ind Ind
Maple Auto + Ind Ind
Misc. Auto Ind Ind

Red oak Auto Ind
White oak Auto

To report co-locations of Table B.3 using the existing co-location algorithms, the PI thresh-

old can not be greater than 0.702. Such a threshold would, however, also select interaction

patterns {Black oak,Maple} and {Hickory,Maple} of Table B.4 as co-location patterns,

which are actually segregation patterns.

In the Appendix B, Table B.5 shows some of the interaction patterns that have high PI-
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Figure 4.22: Spatial distribution of each tree species of Lansing woods data [7].

values (actual and approximated) but not reported as significant by our method. Existing co-

location mining algorithms will report them as prevalent co-location patterns as their actual

PI-values are 1. Ripley’sK-function values for {Hickory,Red oak}, {Hickory,White oak},

and {Red oak,White oak} at distance 92.4 feet also indicate pair-wise independence among

the participating features involved in these patterns. The investigation of Diggle and Perry

et al. and the result of cross-K function is used as the ground truth. These approaches ana-

lyze only bivariate spatial relationship. Using their findings as the ground truth we compute

the precision, recall, and F -measure of our method for patterns of size 2 only. In terms of

mining strategy, existing co-location algorithms follow the same standard approach of using

a PI threshold. These methods only vary in terms of performance efficiency by adopting

different techniques for identifying instances of candidate patterns. We also compute the

precision, recall, and F -measure of a standard co-location mining approach using patterns

of size 2 and compare our method with a standard co-location mining approach in terms

of detection accuracy. Table 4.4 shows the precision, recall, and F -measure of our method

and a standard co-location approach for 3 different PI threshold values, 0.2, 0.4, and 0.5,

for patterns of size 2. There are 2 true co-location patterns of size 2 and 4 true segregation

patterns of size 2. For instance, with a PI threshold value of 0.4, a standard co-location

approach reports 15 pairs as prevalent co-locations. All the true co-location patterns are

included among those reported patterns. Counting segregation patterns as mistake, the pre-
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Table 4.4: Existing methods vs. our method

PI A standard co-location approach Our

threshold→ 0.2 0.4 0.5 method

Precision 0.13 0.13 0.14 1

Recall 1 1 1 1

F -measure 0.23 0.23 0.25 1

cision, recall, and F-measure are 2
15 = 0.13, 2

2 = 1, and 0.23, respectively.2

Toronto Address Repository Data

The Toronto Open Data provides a data set with over 500000 addresses within the City of

Toronto enclosed in a polygonal area. Each address point has a series of attributes including

a feature class with 65 features and coordinates. After removing entries with missing data

and removing features with very high frequency (e.g. high density residential), we consider

10 features for our experiment: low density residential (66 instances), nursing home (31

instances), public primary school (510 instances), separate primary school (166 instances),

college (32 instances), university (91 instances), fire station (63 instances), police station

(19 instances), other emergency service (21 instances), and fire/ambulance station (16 in-

stances). Due to space limitations, only some of the feature distributions are shown in Fig.

4.23. To determine if a feature shows clustering (spatial auto-correlation), regularity (in-

hibition), or randomness (Poisson), we compute the pair correlation function g(d) [37].

Police stations, fire stations, fire/ambulance stations, and separate primary schools show

regular distributions, since g(d) < 1 at smaller d values. The remaining features are auto-

correlated since their g(d) > 1 for smaller values of d. The interaction neighborhood radius

is set to 500.

In Table B.6 of Appendix B, we show statistically significant 2-size, 3-size, and 4-size co-

locations and their PIobs-values computed by the All-instances-based SSCSP algorithm.

Note that the PIobs-values are so low that existing co-location mining algorithms would

return almost every feature combination as a co-location if their global threshold would be

set so that the reported statistically significant co-locations can be returned. Our grid based

sampling approach also finds all the statistically significant co-locations for all grid sizes,
2If we are “generous” again, and count the wrongly reported segregation pattern as pattern as correct, the

precision, recall, and F -measure would be 6
15

= 0.4, 6
6
= 1, and 0.57, respectively, which is still substantially

worse than our method.
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Figure 4.23: Spatial distribution of 4 features from the Toronto address data.

with the exception of co-location {Low density resid.,Univ.,Fire station,Police station},

which is missed when a grid with only l = Rd (i.e. w = 1) is used for sampling. In

the Appendix B, Table B.7 shows the actual and approximate PIobs-values and ppos-values

of all the reported co-locations.

4.3 Summary

In this chapter, we propose a new definition of co-location and segregation patterns and a

method to detect them. Existing approaches in the literature find prevalent patterns based

on a predefined threshold value which can lead to missing meaningful patterns or reporting

meaningless patterns. Our method uses a statistical test. Such statistical test is computa-

tionally expensive and we introduce two approaches to improve the runtime. In our first

approach, we reduce the runtime by generating a reduced number of instances for an auto-

correlated feature in a simulated data generation step and by pruning unnecessary candidate

patterns in the PI-value computation step. In the second approach, we show that a PI-

value of a pattern computed from a subset of the total instances is, in general, sufficient to

test the significance of a pattern. We introduce a grid based sampling approach to identify

the instances of a pattern for the significance test at a reduced computational cost. As a re-

sult, the speedup is further improved compared to our all-instance-based SSCSP approach.
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We evaluate our algorithm using synthetic and real data sets. Our experimental results

show that our sampling approach never misses any true patterns when the number of fea-

ture instances is not extremely low. However for a pattern with a very few instances of

a participating feature, we recommend to use a finer grid instead of a coarser grid. Both

the all-instance-based SSCSP and grid based sampling algorithms find all the true patterns

from the synthetic data sets. Using real data sets, we show that our algorithms do not miss

any pattern of size 2 found in others work found in ecology. The pattern finding approach

proposed in ecology can not detect patterns of size greater than 2. We show that our meth-

ods also finds meaningful patterns of larger sizes. We find that our approaches may also

report redundant patterns. A redundant pattern could occur in a statistical test due to pres-

ence of true patterns. In the next chapter, we propose a solution to prune redundant patterns

from the result.
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Chapter 5

Co-location Pattern Mining at
Multiple Interaction Distances

In spatial domains, spatial interaction among Binary spatial features results in co-location

or segregation patterns. A co-location pattern occurs due to the positive interaction of a

subset of spatial features. Besides the PI-threshold parameter, existing algorithms [35,

60, 69, 71, 72] also require another parameter, the distance threshold Rd, to define the

co-location neighborhood. The interaction distance of any two features participating in a

co-location pattern C can not be greater thanRd. Existing algorithms claim to find all preva-

lent co-location patterns for a given Rd-value. In Chapter 3, we discuss the limitations of

the existing approaches in mining true patterns for a given interaction neighborhood. Our

statistical model SSCSP proposes a solution for limitations of the existing approaches. Like

the existing approaches, SSCSP requires a distance threshold Rd. Then true patterns that

occur at Rd are searched. However knowing the right Rd-value of each true co-location

is not easy in many areas such as forestry, and ecology. In these areas spatial interactions

among Binary spatial features occur at different distances resulting in co-locations of dif-

ferent types at different distances. The following scenario gives an example of multiple

interactions occurring at different distances.

5.1 Motivation

5.1.1 A Motivating Example

In the ecosystem, living organisms at different levels of the food chain exhibit interaction

among themselves. Wild boars prefer to live in open damp woodlands that offer a variety
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of foods. They like to live near water or muddy areas as they do not perspire. If there is

no food shortage, wild boars stay in their home area all their lives and do not travel beyond

a few square miles. Tigers and wild boars have a predator-prey relationship and wild boar

is a favorite food source of tigers [67]. Tigers also like to live near damp areas and near

vegetation to hide themselves. The tiger has a larger territory (7.7 sq. miles for females

and 23 − 39 sq. miles for males) than wild boars [67]. Tigers, wild boars, and damp land

generate a co-location pattern. Pair-wise they also form co-locations at different spatial dis-

tances. There the co-location distance of the pattern {wild boar, damp land} is smaller than

the co-location distance of the pattern {wild boar, tiger}. To identify all these co-locations,

existing algorithms require each co-location distance which is sometimes difficult to pre-

determine. In such cases, by using a large value as the interaction distance threshold, an

existing algorithm may find all of the above mentioned patterns but may also, as a conse-

quence, report other subsets of features (from the same domain) which are not true patterns.

5.1.2 Limitations of the Current Approaches

Using one single distance threshold to capture all true patterns interacting at multiple dis-

tances is typically not feasible and could result in missing some of them. Such a case

requires using more than one distance threshold. In order to determine these distance

thresholds, we need to know all the interaction distances. In many application domains

determining all distances is difficult due to the presence of a large variety of spatial features

and their intra (between instances of a feature) and inter (between instances of features of

different types) types of spatial interactions.

Even by doing repetitive trials with different distance thresholds, the existing algorithms

can not fix just one single distance threshold to find all true co-locations without reporting

random patterns. Let us assume that C is a co-location that occurs at a large distance. To

capture C and other co-locations occurring at a distance smaller than that of C, the existing

algorithms can try a large value for the distance threshold so that the distance is sufficient

to find C. By using such a large value, we will not miss C and other prevalent co-locations

occurring at smaller distances. Another observation is that the larger the distance threshold

is, the higher the number of instances of a feature participating in some co-location types

will be. A random pattern can attain a high prevalence measure value, when a large distance

threshold is used by the existing algorithms and get reported as prevalent.
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5.1.3 Our Contributions

To the best of our knowledge, mining meaningful co-location patterns without any prior

information of their interaction distance is a relatively new problem in spatial data mining

research. Finding a statistically sound solution for such a problem can be challenging in the

presence of spatial auto-correlation and feature abundance, which are not uncommon in the

spatial domain. The contributions of this chapter are as follows:

• We propose a model to mine all true co-location patterns occurring at different dis-

tances in a given data set. Our approach neither requires a prevalence measure thresh-

old nor a distance threshold, which are the essential parameters of the existing co-

location mining algorithms. Our algorithm determines the co-location distance of a

true co-location.

• To ensure that our mined patterns are not occurring just by chance, we propose a

model for a statistical significance test. This model considers the effects of spatial

auto-correlation and feature abundance, which often mislead even a standard statisti-

cal test on spatial data, as well as the existing algorithms, in reporting true patterns.

• We further propose a post-processing step which prunes redundant patterns and fi-

nally keeps a minimal set of patterns that is sufficient to explain all positive interac-

tions in the data.

• We validate our approach with synthetic and real data sets.

5.2 Statistically Significant Co-locations at Multiple Interaction
Distances - Definitions and Concepts

For a given data set, our objective is to determine if a subset of features is exhibiting a true

co-location. If a true co-location exists among a group of features, we determine the co-

location distance. For a group of features S exhibiting a true co-location at d, the observed

co-location property will rarely be seen under a null hypothesis based on an independence

assumption. To test if S exhibits a true co-location, we compute the probability (p-value)

of obtaining a co-location property of S at d (under a null hypothesis) at least as extreme

as the one that was actually observed in the given data. If S is a true co-location, this

computed probability will not be greater than a given level of significance (α). For the test

described above, we need a measure which can compute the co-location (i.e. aggregation)
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property of S at a distance d. Let T be such a measure. From the given data, we identify

all unique instances of S and also the distances at which these instances are identified. For

each identified distance d, we compute the T -value and then test the significance of the

T -value of S observed at d. If the observed T -value at d is significant, we report subset S

as a significant co-location pattern at d.

5.2.1 Definitions

To formulate our problem in a better way, we provide some definitions.

Definition 6. A co-location pattern is a subset of k different features f1, f2, . . . , fk which

are more likely to been seen together due to a spatial relationship R interacting at distance

Rd. The interaction distanceRd is called the “co-location distance.” Feature instances that

are involved in a co-location instance are considered neighbors of each other. Two feature

instances are neighbors of each other if their Euclidian distance is not larger than Rd. Let

C = {f1, f2, . . . , fk} be a co-location pattern. In an instance of C, one instance from each

of the k features will be present and all these feature instances are neighbors of each other.

Definition 7. The Pattern Instance Distance (PID) of a pattern instance I is the maximum

pair-wise distance from all the participating members of I . More formally, let us assume

a pattern C is a group of k features {f1, f2, . . . , fk} and IC = {If1 , If2 , . . . , Ifk} be an

instance of C where Ifi , a member of IC , is an instance of the participating feature fi of C.

The PID of IC , PIDIC , is computed as PIDIC = max{dist(Ifi , Ifj )|Ifi , Ifj ∈ IC∧i 6= j}

where ‘dist’ is the Euclidian distance function.

Let C = {A,B,C}. Assume feature A has 4 instances (A1, A2, A3 and A4), feature B

has 4 instances (B1, B2, B3 and B4) and feature C has 4 instances (C1, C2, C3 and C4).

At most 64 instances of C are possible. Among those, 4 instances such as {A1, B1, C1},

{A2, B2, C2}, {A3, B3, C3}, and {A4, B4, C4} and their co-location neighborhoods are

shown in Fig. 5.1(a). Both {A1, B1, C1} and {A2, B2, C2} are identified at the same PID

distance PID1. {A3, B3, C3}, and {A4, B4, C4} are identified at their PID distance of

PID2 and PID3 respectively. Let us assume PID1 < PID2 < PID3. For instance, the

PID distance of {A1, B1, C1}, PID1 = max{dist(A1, B1), dist(A1, C1), dist(B1, C1)}.

Definition 8. The Pattern Instance Count (PIC) of a pattern C at a distance d is the total

number of instances of C whose PID is at most d. More formally, let C be a pattern

and IC be an instance of C. Then, the PIC-value of C at a distance d is computed as

PICCd = |{IC |PIDIC ≤ d ∧ IC is an instance of C}|.
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(a) A data set with 3 features A, B, and C.
3 smallest PID distances are also shown

(b) PIC-values of different PID dis-
tances; a circle represents a co-location
neighborhood

Figure 5.1: a) 4 instances of {A,B,C} and their co-location neighborhoods. b) Relation-
ship between PIC and PID.

For the above mentioned pattern C = {A,B,C}, the PIC-value of C at d = PID3 will be

4 and at a d where PID2 < d < PID3 will be 3. This is shown in Fig. 5.1(b).

Lemma 3. The PIC-value of a pattern is monotonically non-decreasing with the increas-

ing value of the PID distance.

The PIC-value of the above mentioned pattern C = {A,B,C} at PID1 and PID2 (where

PID1 < PID2) are respectively 2 and 3.

5.2.2 PIC as a Test Statistic for the Statistical Significance Test

The PI is mostly used as the prevalence measure in the current literature. SSCSP also uses

the PI as the test statistic for the statistical test. However, any measure capturing the spatial

dependency of a subset S can be used as a statistic for testing the significance of S . If the

member features of S are truly associated at a distance d, the number of instances of S

observed at d will be much higher than the expected number of instances found at d under

a null model. The total instances of S identified at d gives the PIC-value of S at d.

We use PIC as a test statistic for the statistical significance test and show its ability to

find all true co-locations at their “correct” co-location distances. Furthermore, PIC, as a

test statistic, can give computational advantages over the PI . PI-value computation of a

pattern C at a given distance d requires first identifying all the instances of C considering

a PID-value no greater than d and then enumerating the identified instances in a table
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instance of C. Using the table instance, we then compute the participation ratio of each

participating feature of C. By using PIC as a test statistic, we can avoid the computation

of the participation ratios.

Existing algorithms use the PI as a prevalence measure and report C if its PI-value is

greater than a given PI-threshold. SSCSP also uses the PI to find statistically significant

co-locations. However it finds co-locations only for a given distance threshold. Here we

generalize the problem and propose a solution by which we will be able to find all statisti-

cally significant co-locations occurring at different distances. In other words, the proposed

approach does not require the distance threshold parameter. Instead of PI , our approach

uses PIC as the test statistic. We call this new approach “Co-location Pattern Mining with

No Distance Constraint (CPMNDC).”

We define a statistically significant co-location pattern C occurring at distance Rd (due to

a spatial interaction R) using the PIC-value of C computed at Rd, PICCRd , as the test

statistic.

Definition 9. A pattern C = {f1, f2, . . . , fk} at a distance Rd is called a statistically

significant co-location pattern at level α, if the probability (p-value) of seeing, in a data

set conforming to our null hypothesis, a PICCRd -value larger than or equal to the observed

PICCRd -value is not greater than α.

A pattern C is reported as a statistically significant co-location pattern at distance Rd, if the

number of instances of C identified at Rd (PICCRd ) in the given data set is so high that

seeing an equal or higher value at distance Rd will be very unlikely (the probability will

not be greater than α) under the null model. Let us denote the observed PICCRd -value

(computed from the given data set) as PIC
CRd
obs and the PICCRd -value computed under

the null model as PIC
CRd
0 . We compute the probability (known as p-value) of obtaining a

PIC
CRd
0 -value under the null model being equal or higher than the PIC

CRd
obs , i.e. p-value

= Pr(PIC
CRd
0 ≥ PIC

CRd
obs |null model). The null model assumes that features of different

types do not exhibit any spatial interaction with each other but maintain their individual

distributional properties as in the observed data.

To compute a p-value, we do randomization tests where we simulate the null model. A

detailed discussion on how to simulate the null model is given in Section 3.3 of Chapter 3.

By running a sufficient number of simulations in the randomization tests, we compute the
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p-value for C at distance Rd, pCRd , as:

pCRd =
S≥PIC

CRd
obs + 1

S + 1
(5.1)

Here S≥PIC
CRd
obs of equation (5.1) represents the number of simulations where the computed

PIC
CRd
0 -value is greater than or equal to the PIC

CRd
obs -value. S represents the total number

of simulations. In both the numerator and the denominator, one is added to account for

the observed data. If pCRd ≤ α, we report pattern C as a statistically significant co-location

occurring at distanceRd. α is the probability of committing a type I error which is rejecting

the null hypothesis when it is in fact true.

For each pattern, we are conducting the hypothesis test at each unique PID-value. When

m hypothesis tests are performed, the probability of committing at least one error inm tests

will be 1− (1−α)m and this probability increases as m increases. Hence, the significance

level for a single test is adjusted with the number of tests and is required to be much smaller

to ensure the same overall rate of type I errors. Several methods such as [11, 30, 33]

are proposed to adjust the significance level α for a single test. The classic Bonferroni

correction adjusts the α-value of a single test by dividing it by the number of performed

tests [30]. For a pattern, the required number of tests will be equal to the total number of

unique PID-values. In our case, the Bonferroni correction will give a very low α-value

for a single test. To many researchers, the Bonferroni correction is too conservative. It

also leads to a high probability of a type II error, i.e. not rejecting the null hypothesis

at each unique PID distance when significant patterns at a PID distance, in fact, exist.

Additionally, allowing a certain number of false positives is accepted in many applications

such as genomics.

Our approach mines true patterns in two steps. The first step performs a statistical test based

on a simple null hypothesis assuming the independence of all spatial features. This results

in a set of statistically significant patterns which are again refined by performing another

statistical test in the second step. The statistical test of the second step uses a constrained

null hypothesis that assumes the independence of spatial features together with a given

set of constraints (i.e. rules). Due to the multiple hypothesis tests done at multiple PID

distances, a random subset could be reported as a true pattern in the first step. If such a

pattern exists, it is pruned in the second step. Thus, the second step works as a filtering step

and also removes the necessity of using a very low α-value that may lead to missing a true

pattern. We use α = 0.01 for a single test. For that we conduct 499 simulations according

85



to the recommendation of Besag and Diggle in [12]. If a pattern is found significant at more

than one distance, we report the minimum distance at which the pattern attains the highest

PI-value.

Definition 10. For a pattern C being significant at more than one PID-value, the smallest

PID-value that gives the highest PI-value is considered as the co-location distance Rd of

C. Hence RdC = min{d|pCd ≤ α ∧ ∀d′ : PICd′ ≤ PICd}.

Let C be found significant at 3 PID-values, d1, d2, and d3, where d1 < d2 < d3. Let us

assume that the PI-values at those 3 distances are PICd1 , PICd2 , and PICd2 respectively.

PICd1 < PICd2 and PICd2 = PICd3 . In this example, d2 is reported as the co-location

distance Rd of C.

5.3 Algorithms

For a given spatial data set, our objective is to mine all statistically significant and non-

redundant co-location patterns and their co-location distances. For a candidate pattern C,

a statistical test is performed to check the significance of its observed co-location behavior

at a distance. Here the pattern instance count is used as a measure for the co-location

behavior of a pattern. The next question is which distances are going to be tested for C.

We identify all possible instances of C. To identify them, we first compute all possible

pair-wise distances from the instances of different features found from the given data set

and sort them in an increasing order. Then we try each pair-wise distance from the sorted

list one by one and check if a considered distance gives at least one instance of C which

has not been identified before at any of the pair-wise distances smaller than the currently

considered one. By doing so, we obtain a sorted list of distances; each distance d of that

list gives at least one instances of C which can not be identified by considering a distance

smaller than d. Finally, all unique distances are considered for the significance test of C.

At each unique distance d′, we now compute the pattern instance count of C as the sum

of all instances identified at distances smaller than and equal to d′. Then we perform the

significance test of C at each d′ using the computed pattern instance count at d′ as the test

statistic.

Algorithm 4 and 5 present the pseudo codes of our approach. Features are ordered either

arbitrarily or using domain related information. For each candidate pattern, Algorithm 4

first finds its instances. Each pattern instance occurs at a PID distance. The algorithm then
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records all unique PID distances and tests if the observed PIC-value at each of these PID

distances is statistically significant or not. If the observed PIC-value at a PID distance is

found significant, the pattern is recorded in the result. Finally, we determine the co-location

distance of each pattern recorded in the result. Algorithm 4 may report redundant patterns

that are not true patterns but occur due to the presence of true patterns. Such redundant

patterns are pruned by Algorithm 5, which works as a filtering step. Algorithm 5 reports a

set of minimal co-location patterns that explains all the reported patterns of Algorithm 4.

The reported patterns become statistically significant and non-redundant.

5.3.1 Statistically Significant Co-location Pattern Mining with No Distance
Constraint

In the following, we will describe Algorithm 4 in more technical detail.

For each candidate pattern C (a subset of features), all unique PID-values are identified

from the given data set and stored along with two additional values, the PICCPID -values

and the S≥PIC
CPID -counters. The PICCPID -value gives the total number of instances of C

identified at the PID distance. The counter S≥PIC
CPID is used to compute the p-value of C

at the PID distance. It is initially set to zero and incremented by one in a simulation during

the randomization tests. We store this information for all patterns of size k in a record Ckobs.

Line 1 − 2: From the given data set, we first find all the pair-wise distances, sort them in

increasing order, and finally store them inD. Pair-wise distances are only computed for two

features of different types. All distance based measures introduced in spatial statistics use

distance values less than either one-half of the shortest dimension of an approximately rect-

angular shaped study region or (A/2)
1
2 where A is the area of the study region. The same

strategy is used in our case to set an upper limit for the considered distance values to find

the meaningful co-location distances of “true” co-locations. Having an upper bound on the

meaningful pair-wise distances also allows to speed up the pair-wise distance calculations

using simple spatial index structures.

Line 3−5: Each pair-wise distance d ∈ D is the PID-value of at least one pattern instance

of size 2. It could also be the PID-value of pattern instances of sizes larger than 2. We

identify all these pattern instances. By definition, a pattern instance is a clique. All the

feature instances can be seen as the vertices of an undirected graph G. Initially G is without

edges. By considering a distance d in D, we are in fact adding an edge e between a pair of
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Algorithm 4: CPMNDC: Co-location Pattern Mining with No Distance Constraint
Input: A spatial data set SD with N spatial features F = f1, f2, · · · fN (each fi has

nfi instances). Level of significance α, and number of simulation runs S.
Output: A set of co-location patterns SC, each with their co-location distances Rd.
Variables:
Ckobs: Stores the set of all k-size candidate patterns from the given data set. Each
pattern is stored along with a list of PIDobs-distances, PICobs-values, and
S≥PICobs-values.
Ck0 : Stores the set of all k-size candidate patterns from a simulation. Each pattern
is stored along with a list of PID0-distances and PIC0-values found from a
simulation Si.

Method:
1: Compute pair-wise distances between instances of different feature types in SD
2: Sort the distances in increasing order and store them in D
3: for each d ∈ D in increasing order do
4: Find pattern instances for which the PID-value is exactly d
5: For each identified instance of a pattern, we store the PIDobs and PICobs in Ckobs

6: for i = 1 to S do
7: Generate a simulated data set SD0 under the null model
8: Compute pair-wise distances among instances of different feature types in SD0

9: Sort the distances in increasing order and store them in D0

10: for all d ∈ D0 do
11: Find pattern instances which have the PID-value of exactly d
12: For each identified instance of a pattern, we store the PID0 and PIC0 in Ck0
13: for each candidate pattern C of k-size; 2 ≤ k ≤ N do
14: for each PIDobs-value of C do
15: Set the PICobs of PIDobs to T1

16: From Ck0 , find the PID0-value that is equal to the PIDobs-value. If no
such value exists, find a maximal value that 6> PIDobs-value and set the
PIC0 of PID0 to T2

17: if T2 ≥ T1 then
18: Increment the S≥PICobs-value of C by 1

// p-value computation of each C at all its PIDobs-values
19: for each candidate pattern C of k-size; 2 ≤ k ≤ N do
20: for each PIDobs-value of C do
21: if S

≥PICobs +1
S+1 ≤ α then

22: Include C and the PIDobs-value in SC
23: for each candidate pattern C in SC do
24: SC ← ReportColocationDistance(SC)
25: return SC
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vertices of G. Then we find the cliques that occur due to the inclusion of e in graph G. e

will be the largest edge of these found cliques. Let us assume edge e of length d connects

two instances Ifi of feature type fi and Ifj of feature type fj . To efficiently identify all

cliques that occur due to the inclusion of edge e, we only check a subset of vertices in G,

instead of checking all vertices of G. Only the vertices that are already connected to both

Ifi and Ifj by edges in G are included in such a subset. This subset can be found efficiently

by identifying the members (feature instances) of the star neighborhoods [72] of Ifi and Ifj
and then finding a subset of feature instances, Υ, that are present in both star neighborhoods.

We maintain an adjacency matrixM which helps to construct the star neighborhood of a

feature instance. MatrixM is of size FN×FN (FN is the total number of feature instances)

and all the entries are initially set to 0. For each pair-wise distance d in D,M is updated

by setting both (Ifi , Ifj ) and (Ifj , Ifi) entries ofM to 1.

If Υ is empty, only one clique that is the pattern instance {Ifi , Ifj} is generated due to the

inclusion of edge e of length d. If |Υ| = 1, two cliques are generated. Let the member of Υ

be {Ifk}, then the generated cliques are the pattern instances {Ifi , Ifj} and {Ifi , Ifj , Ifk}.

If |Υ| > 1, we have to find cliques from the members (feature instances) of Υ. We use

the adjacency information of the members of |Υ| stored in M to find cliques from Υ.

The run-time of most clique finding algorithms is exponential. For instance, the popu-

lar BronKerbosch algorithm [14] has a run-time of O(3n/3) in the worst case. In finding

cliques from Υ, we use the algorithm of Tsukiyama et al. [64]. Tsukiyama showed that all

maximal cliques can be enumerated in a polynomial time per output. The algorithm finds

the independent vertex sets. An independent set is a set of vertices in a graph, no two of

which are connected by an edge. A clique of a graph G is an independent vertex set of the

complement (or inverse) graph of G. Hence, the clique finding problem and independent

vertex set problem are complementary. Let CL be a set of cliques that are identified from

the members of Υ. Each clique c ∈ CL generates a pattern instance which is comprised of

Ifi , Ifj , and all the members (feature instances) of c. When |Υ| > 1, the identified pattern

instances are the instances generated from CL and {Ifi , Ifj}. Hence, the total number of

pattern instances that are identified by adding an edge e of length d will be |CL| + 1. The

PID-value of all these identified pattern instances due to the inclusion of edge e is exactly

d since d is the largest edge in each pattern by construction (we consider distances in in-

creasing order of length). Finally, for each identified pattern instance we update the record

of its corresponding pattern type C by adding d as the PID-value and a PICCPID -value.

The PICCPID -value is the sum of the new instances of C identified at d and the preceding
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PIC-value (at the previous PID-value) that is already stored in the record of C.

Line 6−12: We do randomization tests in which we generate a simulated data set according

to the null hypothesis (line 7). From the generated data set, first we compute all the pair-

wise distances, sort them, and store them (Line 8). Then we identify all pattern instances

from this generated data set by applying the same strategy that is used for identifying pattern

instances from the observed data. We use a record Ck0 to store the PID distance and the

PIC-value of all pattern instances identified at each pair-wise distance (line 10− 12). We

use the same record Ck0 in all simulations.

Line 13− 18: At the end of a simulation, we update the S≥PICobs counter for each unique

observed PID distance (PIDobs) of a pattern C. For each PIDobs-value, we compare

its PIC-value (PICobs) with the PIC-value computed at a distance of PIDobs from the

generated data of a simulation. From the PID0 distances stored in Ck0 , we look for a

distance equal to PIDobs. If such a value is found, we compare the corresponding PIC0

with PICobs. If no such value exists, from the stored PID0-values we select the one

that is maximal and is not greater than PIDobs. After finding the PID0-value, we get

the corresponding PIC0-value stored in Ck0 and compare it with the PIC-value (PICobs-

value) of the PIDobs-value. As in the generated data, no instance of C with a PID-value

of exactly PIDobs exists; the PIC0-value at a PID distance of exactly PIDobs will be the

same as the PIC0 value of a stored PID0 distance which is maximal and is not greater

than PIDobs. This can also be explained using the example shown in Fig. 5.1(b). In this

figure, let us assume d is our observed PID distance and PID1, P ID2, and PID3 are

the only PID distances found in the generated data of a simulation and stored in Ck0 . In

this case, the PIC-value at a PID distance of d will be same as the PIC-value at PID2,

which is equal to 3. Finally, if PIC0 ≥ PICobs, we increment S≥PICobs of C by 1.

Line 19− 23: Here we compute the p-values for all the candidate patterns at their PIDobs-

values using equation (5.1). A pattern along with the PIDobs-value is stored in the reported

pattern list if the computed p-value at PIDobs is less than the α-value.

Line 23 − 24: Function ReportColocationDistance decides the co-location distance of C,

when C is found significant at more than one PIDobs-value. In such a case, we first compute

the PI-values of C at those distances (PIDobs-values) where C is found as statistically

significant. The smallest PIDobs-value that first yields the highest PI-value among all

computed PI-values is reported as the co-location distance Rd of C. For instance, let C be
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found significant at 4 distances, PID1
obs, P ID

2
obs, P ID

3
obs, and PID4

obs, and the computed

PI-values at those distances are PI1, P I2, P I3, and PI4, respectively. Let us assume

PI1 < PI2 < PI3, and PI3 = PI4. We report PID3
obs as the co-location distance of C.

Complexity

The run-time cost of finding all pair-wise distances is
∑
nfi ×

∑
nfi where

∑
nfi is total

feature instances present in the data set. The cost of finding all cliques from a vertex set Υ

(with n vertices, m edges, and r maximal cliques) using the algorithm of Tsukiyama et al.

is O(n ∗m ∗ r) [64]. Please note that initially n �
∑
nfi and increases with increasing

values of the distance d. However, by limiting the maximum value of d (as mentioned in the

description of step 1 − 2 of section 5.3.1), we can keep this cost at a feasible level. Let us

assume the expected number of vertices, edges, and maximal cliques found in Υ are n̂, m̂,

and r̂, respectively. The total run-time cost will be of O(
∑
nfi ∗

∑
nfi ∗ n̂ ∗ m̂ ∗ r̂). As the

cost of computing pair-wise distances is the major computational cost, the total run-time

cost can be approximated to O((
∑
nfi)

2) .

5.3.2 Redundant Pattern Pruning

The pattern set SC reported by Algorithm 4 could have “redundant” patterns. A redundant

pattern is a random pattern that is mistakenly reported as significant due to the presence

of true patterns. Our null model assumes that features are independent of each other. A

statistical test using such an assumption may result in reporting redundant patterns whose

subsets or supersets happen to be true co-locations. Instances of randomly distributed fea-

tures when appearing close to the instances of a true co-location CT get co-located with the

participating features of CT and generate some new co-locations. A new co-location CR
generated in such a scenario should not be considered as a true co-location as the partici-

pating random features do not have a true interaction with the participating features of CT .

The amount of instances of CR we see in such a scenario can be higher than the amount of

instances we expect to see in a data set if generated based on our null hypothesis assumption

(i.e. all participating features are distributed independently of each other). Hence, a statis-

tical test based on our null hypothesis may result in a p-value lower than α for CR which

results in reporting CR as statistically significant. However, in a generated data set where

the presence of the true co-location CT is taken into account, seeing the same number of

instances of CR found from the given data will not be unusual but rather quite common. To
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avoid reporting redundant patterns from our statistical test, we now refine our null hypoth-

esis and propose a new null hypothesis where true co-locations (if present) are also taken

into account in addition to the spatial distribution of each individual feature, and then we

perform a statistical test based on this new null hypothesis.

Let us consider a data set with three features A, B, and C and {A,B} as the only true pat-

tern. The presence of {A,B} could induce reporting {A,B,C} as significant even though

instances of feature C are randomly distributed. The number of instances of {A,B,C}

that are generated due to the presence of instances of C in the neighborhoods {A,B} could

appear as a high number compared to the expected number of instances of {A,B,C} ob-

served in a null model. The null model simply assumes the independence of A, B, and C.

Hence a low p-value of {A,B,C}, even lower than the α-value, could be possible. To avoid

{A,B,C} being reported, the p-value of {A,B,C} should rather be computed from a null

model that takes into account the association of feature A and feature B, instead of simply

considering them independent of each other. We call this a null model with a constraint set

{{A,B}}. The p-value of {A,B,C} in a null model with a constraint set {{A,B}} will

be Pr(PIC
{A,B,C}Rd
0 ≥ PIC

{A,B,C}Rd
obs |{{A,B}}) and if p > α, we say {A,B,C} is ex-

plained by {A,B}. The observed co-location tendency of feature A, feature B, and feature

C (although not involved in a true association) appeared as significant in our statistical test

due to the existence of the true co-location of feature A and feature B. In another example,

a subset can also be reported as significant if a superset is a true co-location. For instance,

{A,B}, although not a true co-location by itself, could still be reported as significant if a

superset of {A,B} such as {A,B,C} is a true co-location. Here the observed number of

instances of {A,B} can be unusually higher than the expected number of instances seen in

our null model, but most of the appearances of {A,B} are from the instances of {A,B,C}.

A p-value of {A,B} is computed from a null model with a constraint set {{A,B,C}} as

Pr(PIC
{A,B}Rd
0 ≥ PIC

{A,B}Rd
obs |{{A,B,C}}) and compared with the α-value. If p > α,

{A,B} is considered as a redundant pattern and we say {A,B} is explained by {A,B,C}.

However, both {A,B,C} and {A,B} will be true patterns if neither of them is explained

by the other, i.e. their p-values are both at most α.

Definition 11. Let PICCdobs be the observed PIC-value of a co-location C at distance d and

PICCd0E
be the PIC-value at d computed under a null model with a constraint set E . The

p-value of PICCdobs at distance d under a null model with a constraint set E is the probability

p = Pr(PICCd0E
≥ PICCdobs|E). A pattern set E explains a pattern C with PICCdobs, formally

E explains C, if the p-value of C with PICCdobs computed under the null model with the
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constraint set E is larger than the given level of significance α. If E explains every pattern

of a set SC, we say E explains SC.

Using the explain relationship, we can now define a set of non-redundant and statistically

significant co-location patterns E that explains all the significant patterns returned by Algo-

rithm 4. E explains itself, and several sets of patterns that explain SC may exist. We prefer

one that has the minimum cardinality among all such sets.

Definition 12. A minimal “explaining” co-location pattern set is a set E that explains all

statistically significant patterns of SC and that has the minimum cardinality among all such

sets.

To find a smallest subset of SC that explains all the significant patterns of SC, we need to

test all possible subsets of SC. Finding such a smallest subset of SC has the complexity

of 2|SC| that becomes expensive with the increasing size of SC. To solve this problem

efficiently, we propose a greedy strategy which can give an approximate solution.

Design of a Null Model with a Constraint Set

In a randomization test based on a null model with no constraint set, we generate data

sets where each feature maintains the same spatial distribution seen in the observed data.

If a null model has a constraint set, we implant the co-locations of the constraint set into

the generated data of simulations. These implanted co-locations should have co-location

properties similar to the one seen in the observed data. To the best of our knowledge,

no model exists that can generate instances for given co-location properties. In spatial

statistics some models have been introduced that can simulate spatial interactions among a

pair of spatial features [6, 7]. However, these interactions are of the inhibition type. Models

to simulate a positive interaction (aggregation or clustering) among instances of the same

feature type are also proposed. However, there is no model that can simulate a positive

interaction between instances of different feature types. A strategy to simulate an observed

co-location C can be developed using the concept of a reconstruction algorithm [37, 63].

We first estimate some interaction measures (such as the J-function) of the participating

features of C from the observed data. Then we start with a data set where points (feature

instances) are uniformly distributed and conduct an iterative process. In an iteration, we

translate points in space and compute the same interaction measures from the translated

data set. We keep a translated data set to use it for the next interaction if the interaction

measure values from the translated data set converge to the one seen in the observed data.
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We continue iterations until the difference between the computed values from the translated

data and that from the observed data is greater than a given level of error. This method

works well for a small data set but becomes computationally expensive as the number and

size of the patterns to simulate increases.

In order to solve this problem, we propose the following heuristic to simulate a co-location

C from a given data set. If C is in a constraint set, in a simulated data set the instances

of C as observed in the given data are maintained. This is achieved by maintaining the

locations of the participating feature instances of C found in the given data set. Instances of

the participating features of C which are not involved in co-location type C are distributed

according to their own spatial distribution. Instances of non-participating features of C are

also distributed according to their own spatial distribution. To justify if the significance

of pattern {A,B} is explained by the significance of pattern {A,B,C}, we compute the

p-value of {A,B} from a null model with {A,B,C} in the constraint set. To generate a

data set during simulation using such a null model, we maintain the same location from the

given data only for those instances of A, B, and C that are involved in co-location type

{A,B,C}. The remaining instances of A, B, and C and instances of features other than A,

B, and C (that exist in the given data set) are distributed independently of each other but

maintain the same individual spatial distribution observed in the given data. Thus we can

generate a data set that maintains the co-location properties of the constraint set as well as

the spatial distribution property of individual feature seen in the given data set.

An Approximation Algorithm to Find a Minimal Explaining Pattern Set

To find an approximate solution for a minimal explaining pattern set Psol, our approxima-

tion algorithm follows a greedy forward selection strategy. Algorithm 5 shows the pseudo

code of our approach. To find a minimal explaining set of SC reported from Algorithm 4,

we use a greedy approach in selecting a pattern from SC. Our greedy approach chooses a

pattern that explains the highest number of patterns from SC. Let P rest denote the current

set of patterns. The patterns of P rest are not explained by the patterns in the current solution

Psol. Psol and P rest are initialized with an empty set and SC, respectively (line 1− 2). The

algorithm checks each pattern P from P rest and finds the pattern set explained by Psol ∪ P

(line 6 − 21). To find the explained pattern set of Psol ∪ P from P rest, we compute the p-

value of each pattern of P rest\{P} under a null model with a constraint set {Psol, {P}} and

identify patterns P ′ ∈ P rest\{P} for which the p-values are greater than α (line 10 − 11).
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To compute such a p-value, function SimulateConditionalNullModel first simulates a null

model with a constraint set {Psol, {P}} (according to the strategy described earlier). Func-

tion ComputeConditionalpValues (line 11) computes p-values using the same approach

as described in Algorithm 4. A pattern P will be selected if Psol ∪ {P} explains the largest

number of patterns of P rest and P has the smallest number of participating features (line

13 − 15). Once such a P is found, it is added to the current Psol. P rest is also updated

by removing P and its explained pattern set from P rest (line 20 − 21). Finding no such P

means that each of the existing patterns of P rest only explains itself, and hence the whole

set P rest is added to Psol in this case (line 17− 18).

Algorithm 5: Greedy Approximation of Minimal Explaining Pattern Set
Input: SD: A spatial data set with N spatial features f1, f2, · · · fN (each fi has nfi

instances). SC: A set of statistically significant co-locations and their co-location
distances.

Output: P sol: Approximated minimal pattern set that explains all significant patterns
in SC.

Method:
1: P sol ← ∅
2: P rest ← SC
3: while P rest 6= ∅ do
4: CandP ← ∅
5: nExplnP ← 0

// Select the best P from P rest that explains the highest number of patterns of
P rest and has the minimum number of participating features

6: for all P ∈ P rest do
7: if |P rest| = 1 then
8: CandP ← {P}
9: break

// Randomization tests using a conditional null model
10: SimulateConditionalNullModel({Psol, {P}})
11: ComputeConditionalpValues(P rest\{P})
12: ExplnP ← {P ′ ∈ P rest|(P sol ∪ {P}) explains P ′}
13: if (|ExplnP | > nExplnP ) or

((|ExplnP | = nExplnP ) and (|P| < |CandP |)) then
14: CandP ← {P}
15: nExplnP ← |ExplnP |
16: if CandP = ∅ then
17: P sol ← P sol ∪ P rest

18: P rest ← ∅
19: else
20: P sol ← P sol ∪ CandP
21: P rest ← P rest\(CandP ∪ ExplnP )
22: return P sol

95



Complexity

Algorithm 5 has a run-time cost similar to that of Algorithm 4. The run-time complexity of

Algorithm 5 will be of O((
∑
nfi)

2) where nfi is the number of instances of a feature fi

participating in a pattern of SC. Due to the large number of conducted simulations, the total

run-time is high and increases with increasing pattern size. However, in many application

domains, patterns of large size are not of interest and may not even occur. For instance,

to analyse spatial interactions in forestry applications it is sufficient to consider the 3 or 4

nearest neighbors [3, 37]. Our algorithm will also be a good choice for a domain where

accuracy is an important concern. Parallelization of our algorithm is also possible due to

independence of the conducted simulations. Hence implementation of our algorithm on

a parallel and distributed architecture will allow us to handle large sized data and ensure

accuracy at the same time.

5.4 Experimental Evaluation

5.4.1 Synthetic Data Sets

For the evaluation with synthetic data, we generate data sets with different properties to

investigate the effects of auto-correlation, feature abundance, and multi-type interactions.

We implant co-locations at different distances in these synthetic data sets and show that in

all cases our method can successfully find all the implanted co-locations without requiring

any distance threshold information. In addition, our method can determine the correct co-

location distance for a true pattern.

Proposed Model for the Simulation of a Co-location

Let C = {f1 · · · fn} be a subset of n features exhibiting a positive interaction in a circular

neighborhood of radius Rd
2 . The true interaction distance for co-location type C will be Rd.

Instances of C interacting at Rd can be generated using a Multi-type cluster process [8]. Let

each feature fi ∈ C be non-autocorrelated. To generate N instances of C, N parent points

(cluster centers) are first generated using either a Poisson process or an inhibition process.

For each parent point c (cluster center), we generate a set of n offspring points, uniformly

distributed in a circular neighborhood Dc of radius Rd
2 centered at c. We call Dc a ‘co-

location neighborhood’. One offspring point in a co-location neighborhood corresponds to
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(a) A multi-type cluster process used to generate co-
location instances

(b) A multi-type parent-child cluster process used to
generate co-location instances when participating fea-
tures are auto-correlated

Figure 5.2: a) Generated 7 instances of {A,B,C} and co-location neighborhood radius:
Rd
2 . b) Generated 21 instances of {A,B,C}; feature C is auto-correlated and co-location

neighborhood radius: Rd
2 + r.

an instance of one participating feature of C, and each off-spring point is assigned a feature

type using a random mechanism. Here the PID-value of an instance IC of C will be less

than or equal to Rd when all participating feature instances belong to one single cluster.

Fig. 5.2(a) shows 7 generated instances of co-location type {A,B,C} using a multi-type

cluster process. Feature instances of such an instance of {A,B,C} are shown connected

using solid lines. An instance of C can also be generated using feature instances that belong

to different clusters and their PID-values can be greater than Rd. Such an instance of

{A,B,C} is also shown in Fig. 5.2(a) where the participating feature instances (belonging

to different clusters) are shown connected using dashed lines.

When a participating feature exhibits auto-correlation, we generate the instances of the co-

location using a multi-type parent-child cluster process. First N co-location neighborhoods

and their offsprings are generated using the cluster process described above. We call this a

parent cluster process. For a non auto-correlated feature fi ∈ C, one offspring point of a

co-location neighborhood Dc corresponds to an instance of fi, whereas, if a feature fj ∈ C

is auto-correlated, we spawn another cluster process, named as a child cluster process. In

that case one offspring point of a co-location neighborhood Dc works as a cluster center of

a cluster cfj of fj . Cluster cfj is defined using two parameters: a radius r and the number

of offsprings n′ generated in cfj . These n′ offsprings points are uniformly distributed in
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Figure 5.3: A data set with two features ◦ and 4 where a co-location neighborhood is
shown using a circle.

cfj and they will all be assigned the same feature type fj . All the instances of n features

generated from the parent and child cluster processes finally give N × n′ true instances of

C. The PID-value of a true instance IC of C will be at most Rd + r when the participating

feature instances of IC are generated from one single parent cluster. Fig. 5.2(b) depicts how

21 true instances of {A,B,C} are generated from 7 co-location neighborhoods. Feature

C shows spatial auto-correlation. The instances of C form clusters and each cluster has

3 instances of C. The figure also shows 3 instances of {A,B,C} generated from a co-

location neighborhood where co-located instances of A,B, and C are connected by solid

lines (in green color).

Pair-wise Interaction

Using the multi-type cluster process described above, we generate a synthetic data set (Fig.

5.3) with an implanted co-location of feature ◦ and feature4 in a co-location neighborhood

of radius 0.05. In a co-location neighborhood, instances of ◦ and 4 are co-located at an

average distance of 0.05. However, the maximum possible co-location distance value will

be 0.1. Each feature has 10 instances. The study area is a unit square.

Our algorithm finds {◦,4} as significant and reports 0.08 as the co-location distanceRd. At

Rd = 0.08, the PIC and p-values are 10 and 1, respectively (shown in Table 5.1). {◦,4}

is found significant at 6 more distances (shown in the Table A.8 of Appendix A) that are

less than the co-location neighborhood diameter 0.1. At those distances, only true instances
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Table 5.1: Pairwise interaction experiment: a reported pattern {◦,4}

Pattern Reported, Rd, p-value PIC, PI

{◦,4} Yes, 0.08, 0.002 10, 1

of {◦,4} are identified and all participating feature instances of each identified instance of

{◦,4} belong to the same co-location neighborhood. The number of identified instances of

{◦,4} (PIC-value) at each of those 6 distances is also found statistically significant under

a null model. However, only 0.08 is reported as this is the distance among 6 other distances

where {◦,4} attains the highest PI value equal to 1. An existing algorithm with a PI-

threshold of 0.5 will miss {◦,4} if a distance threshold less than 0.0533 is used (Table A.8

of the Appendix A). Existing algorithms will always report {◦,4} if a value larger than 0.1

is used as a distance threshold. At a very large distance which is higher than 0.1, ◦ and 4

exhibit CSR rather than an aggregation.

We compare our finding on co-location distance with two popular summary statistics that

are used in exploratory spatial data analysis. These statistics are quite independent from our

method and used as a measure of the clustering tendency among two features. We estimate

these statistics at different distances and find a distance interval where the estimated values

are deviating positively from the theoretical value, which indicates a clustering behavior.

We find that the co-location distance reported from our method falls into that interval and

close to the point where the difference of the estimated and the theoretical value is maxi-

mum.

First, we estimate the multi-type (type ◦ to type4) K-function with isotropic edge correc-

tion K̂ iso. Fig. 5.4(a) shows the plot of the function. We compare the estimated K̂ iso-value

with the theoretical value at distance r. The theoretical value is computed under the in-

dependence assumption and is equal to πr2. We find that the iso-curve (black solid line)

is always above the theoretical (Poisson) curve (red broken line) for a distance interval of

[0.017 − 0.182]. This interval is shown by two vertical dashed lines (in blue color) in Fig.

5.4(a). Our reported co-location distance 0.08 also lies in this interval. The reported value

can also be found on the X co-ordinate by a dotted vertical line (in blue color) of Fig.

5.4(a). (K̂ iso − ˆKpois) becomes maximum at r = 0.085 and our reported distance is also

close to that r-value. The lowest and highest values of the K-function in the shown dis-

tance interval are 0.01 and 0.104, respectively. Note that the measures used in our method

are the count of pattern instances and the PI-value that are respectively 10 and 1 at dis-
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(a) Ripley’s multi-type K{◦,4} function (b) Besag’s multi-type L{◦,4} function

Figure 5.4: Pairwise interaction experiment: range of r-values shown by vertical dashed
lines where K̂ iso−Kpois > 0 and r value at the vertical dotted line is our reported distance.

Figure 5.5: Feature ◦ and feature4 are randomly distributed.

tance 0.08. As a second summary statistic we also estimate the Besag’s L-function [20]

(Fig. 5.4(b)). A multi-type (type ◦ to type 4) Besag’s L-function at a distance r with the

isotropic edge correction L̂iso is computed as
√

ˆK iso(r)
π and compared with its theoretical

value at r. The theoretical value at r is equal to r. We find the same distance interval as

found by the K-function, where the iso-curve is always above the theoretical curve. How-

ever, the computed minimum and the maximum L-function value at that distance interval

are respectively 0.056 and 0.182. r = 0.072 gives the maximum value of (L̂iso− ˆLpois) and

is also not far away from our reported distance.

In another experiment, we generate a data set (Fig. 5.5) where feature ◦ and feature 4 are

randomly distributed. The computed PIC-value at any of the unique PID-values is not
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(a) Ripley’s multi-type K{◦,4} function (b) Besag’s multi-type L{◦,4} function

Figure 5.6: Pair-wise interaction experiment: K̂ iso-curve and L̂iso-curve are either below or
closely following the theoretical curve.

found as statistically significant; hence {◦,4} is not reported by our algorithm for any of

those observed PID-values. We also estimate the multi-type Ripley’s K-function and the

Besag’sL-function. The plot of these two functions are shown in Fig. 5.6(a) and Fig. 5.6(b),

respectively. In both cases, the iso-curve is either below or closely following the theoretical

(Poisson) curve, indicating no association between feature ◦ and feature 4. In total 73

unique PID values are identified; the first 12 of those together with their PIC and p-

values are shown in Table A.9 of the Appendix A. The PI-value at distance 0.201 is 0.5 and

does not decrease with further increase of the distance. An existing algorithm with a PI-

threshold of 0.5 or smaller will find {◦,4} as prevalent and report it if a distance threshold

of 0.201 or higher is set. Note that in practice a PI-threshold of 0.5 is not uncommon.

Auto-correlation

We generate a synthetic data set (Fig. 5.7) in a unit square. A positive association between

a non-autocorrelated feature ◦ and an auto-correlated feature4 is implanted using a multi-

type parent-child cluster process. The parent cluster radius is 0.05. Feature ◦ and feature4

have 20 and 60 instances, respectively. Instances of4 appear in 20 clusters. For feature4,

the child cluster radius is 0.025 and each cluster has 3 instances of4. Instances of ◦ and4

that are generated from the same parent cluster, can not be more than 0.05 ∗ 2 + 0.025 =

0.125 units away from each other. Hence at a PID-value of 0.125 or less, we see all

feature instances involved in co-locations. At this distance, the PI-value becomes 1 in

the generated data set. Table 5.2 gives the distance value at which {◦,4} is reported as
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Figure 5.7: A data set with 40 ◦s and 504s where ◦ and4 are associated.

statistically significant. Table 5.3 shows a few more PID-values at which the observed

PIC-values are also found as significant. From these results we can infer that an existing

algorithm for a given PI-threshold can miss reporting {◦,4} when the distance threshold

is not properly chosen. For instance, for a PI-threshold of 0.55 and a distance threshold

smaller than 0.053, {◦,4} will not be found by a traditional co-location mining algorithm.

Table 5.2: Auto-correlation experiment: a reported pattern {◦,4}

Pattern Reported, Rd, p-value PIC, PI

{◦,4} Yes, 0.093, 0.008 60, 1

Table 5.3: Auto-correlation experiment: {◦,4} found significant at multiple distances

PID 0.036 0.044 0.05 0.053 0.062

PIC 15 21 27 33 39

p-value 0.01 0.008 0.004 0.002 0.002

PI-value 0.25 0.35 0.45 0.55 0.65

Fig. 5.8 shows the plot of the estimated multi-type Ripley’s K-function and Besag’e

L-function with the isotropic edge correction. For both functions, the iso-curve is al-

ways above the theoretical curve and monotonically increasing for a distance interval of

[0.014, 0.142]. The interval is again shown by two vertical dashed lines (in blue color) in
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(a) Ripley’s multi-type K{◦,4} function (b) Besag’s multi-type L{◦,4} function

Figure 5.8: Auto-correlation experiment: range of increasing r-values shown by vertical
dashed lines where K̂ iso −Kpois > 0 and r value at the vertical dotted line is our reported
distance.

both Fig. 5.8(a) and Fig. 5.8(b). Our reported co-location distance 0.093 also falls in that

interval. We also find that r = 0.08 gives the maximum values for both (K̂ iso − ˆKpois) and

(L̂iso − ˆLpois). Our reported distance (0.093) is close to this r-value. In both figures, the

reported distance can also be found on the X co-ordinate by a vertical dotted line (in blue

color). The minimum and the maximum values of the K-function within that interval are

respectively 0.0008 and 0.064. The minimum and the maximum values of the L-function

within that interval are respectively 0.016 and 0.143. Our employed measures PIC and PI

are 60 and 1, respectively, at the reported distance 0.093.

We generate another synthetic data set (Fig. 5.9) where 40 instances of feature ◦ are ran-

domly distributed and feature4 with 50 instances is auto-correlated. The auto-correlation

of 4 is modeled using a Neyman-Scott cluster process [37]. Instances of 4 appear in 10

clusters (with a cluster radius of 0.05) and are randomly distributed in each cluster. Each

cluster contains 5 4s. Although there is no spatial association between ◦ and 4, due to

auto-correlation, we observe instances of the pattern {◦,4} even at smaller distances. We

compute the p-value of the PIC-value computed at each unique observed PID distance.

All the computed p-values are higher than α (= 0.01). Hence {◦,4} is not reported as

statistically significant for any of these observed PID distances. The multi-type Ripley’s

K-function and Besag’s L-function also show that these two features do not have any clus-

tering tendency. The plot of these two functions are shown in Fig 5.10(a) and Fig. 5.10(b),

respectively. In both cases, the iso-curve is always below the theoretical (Poisson) curve,

103



Figure 5.9: A data set with 40 ◦s and 504s with no association between ◦ &4.

Table 5.4: Auto-correlation experiment: a non-significant pattern {◦,4}

PID 0.108 0.113 0.143 0.153 0.161

PIC 31 38 72 89 104

p-value 0.99 0.988 0.982 0.956 0.948

PI-value 0.25 0.35 0.45 0.55 0.65

indicating no association between feature ◦, and feature4.

In total 1673 unique PID-values are found and Table 5.4 lists a subset of those. In the table,

we see the PI-value increases with the increase of the PID-value. From these values we

can infer that {◦,4} can erroneously be reported as prevalent by an existing co-location

mining algorithm. Even though there is no true association between ◦ and 4, {◦,4} will

still be reported as a prevalent co-location for a PI-threshold of 0.55, when a distance

threshold of 0.153 or higher is set.

Multi-type Interaction

A synthetic data set (Fig. 5.11) is generated with 8 different features (◦,4,+,×,♦,∇,�,

and ∗) exhibiting a variety of spatial interactions in a window of 3 sq. units. 3 different co-

location patterns are implanted in the data; details of each co-location type, such as number

of instances, spatial distribution of each participating feature, are shown in Table 5.5. All
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(a) Ripley’s multi-type K{◦,4} function (b) Besag’s multi-type L{◦,4} function

Figure 5.10: Auto-correlation experiment: K̂ iso-curve and L̂iso-curve are always below the
theoretical curve.

Table 5.5: Implanted co-location patterns and distributions of participating features

No Co-
location

Co-location
neighbor-
hood radius

Feature: no of instances - individual
feature distribution

1 {◦,4,+} 0.04 ◦ : 8,4 : 8, and + : 8 - each non auto-correlated

2 {×,♦} 0.06 × : 24 - auto-correlated, ♦ : 6 - non auto-correlated

3 {∇,�} 0.08 ∇ : 6 and � : 6 - each non auto-correlated

features, except feature ∗, are involved in some co-location types. Feature × and feature

∗ are auto-correlated. Feature × has 24 instances that appear in 6 clusters. The cluster

radius is 0.03 and each cluster has 4 instances. Feature ∗ has 12 instances which appear in 4

clusters. The cluster radius is 0.05 and each cluster has 3 instances. The rest of the features

are non auto-correlated.

Algorithm 4 (CPMNDC) returns 7 patterns as statistically significant. Table 5.6 shows their

co-location distances Rd, their number of instances identified at Rd, their PI-values, and

their p-values. The first 6 patterns listed in Table 5.6 are the 3 implanted patterns and their

subsets. Their Rd-values are not greater than the diameters of the co-location neighbor-

hood, as expected. Subset {◦,4,+,∇,�} is also reported as statistically significant due

to the presence of the two true co-locations {◦,4,+} and {∇,�}. On the other hand,

{◦,4}, {◦,+}, and {4,+} are reported due to the presence of the true pattern {◦,4,+}.

{◦,4,+,∇,�}, {◦,4}, {◦,+}, and {4,+} are all “redundant” patterns which Algorithm

5 is intended to find.

105



Figure 5.11: A data set of 8 features. Implanted co-locations {◦,4,+}, {×,♦}, {∇,�}.

We apply Algorithm 5 to determine a minimal set of patterns that “explains” all patterns

returned by Algorithm 4. In the first pass of the for loop of Algorithm 5, {◦,4}, {◦,+},

{4,+}, and {∇,�} explain themselves and one additional pattern {◦,4,+,∇,�}. No

additional pattern is explained by {×,♦}. However, {◦,4,+} explains the largest num-

ber of patterns of P sol, which are {◦,4}, {◦,+}, {4,+}, and {◦,4,+,∇,�}; hence

{◦,4,+} is selected for inclusion in P sol. After the first pass, P rest = {{×,♦}, {∇,�}}.

In the second pass, both patterns of the P rest are included in the P sol as none of them together

with the current pattern in P sol, {◦,4,+}, explains any additional pattern. After the second

pass, P sol = {{◦,4,+}, {×,♦}, {∇,�}} and P rest = ∅, and the algorithm stops. The last

column of Table 5.6 is the set of patterns that is finally reported by Algorithm 5.

We compute the F -measure of a standard co-location mining algorithm and compare it

with the the F -measure of our approach. As our method can detect all true pattern without

generating any random pattern, the precision, recall and F -measure are equal to 1. In an

attempt to compute the precision, recall, and F -measure, we set 5 different PI-thresholds.

For each of these 5 PI-threshold values, we compute the precision, recall, and F measures

for each unique pair-wise distance found in the given data. In Table A.10 of the Appendix

A, we list the 5 distances that give the top 5 F -measure values for a selected PI-threshold

value. From the table, we see that a standard co-location mining algorithm does not achieve

an F -measure value as high as our method at any of these distances.
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Table 5.6: Multi-type interaction experiment: 3 out of 7 statistically significant patterns are
included in the reported minimal explaining co-location pattern set

Statistically significant pattern p-value Rd PIC PI-value True pattern

{◦,4} 0.002 0.068 8 1

{◦,+} 0.002 0.066 8 1

{4,+} 0.002 0.061 8 1

{×,♦} 0.002 0.12 24 1 X

{∇,�} 0.002 0.121 6 1 X

{◦,4,+} 0.002 0.068 8 1 X

{◦,4,+,∇,�} 0.002 0.667 11 0.5

Table 5.7: Ants data: the PIC, p, and PI values at 3 distances (1 unit = 0.5′)

Distance value→ Smallest Average Highest

PID 12.207 304.026 567.62

PIC 1 899 1804

p-value 0.876 0.262 0.436

PI-value 0.0147 0.426 0.426

5.4.2 Real Data Sets

Ants Data

From the nesting behavior, ecologists tried to find an association between the Cataglyphis

wasmanni ant and the Messor bicolor ant, but did not find any association. Fig. 4.19 of

Section 4.2.2 shows the Harkness-Isham ants’ nests data [31]. Our experiment shows that

the SSCSP and sampling algorithms do not find any significant association between these

two species for a given distance threshold. Our CPMNDC algorithm allows us to con-

duct a significance test for multiple distances. We try 1764 unique pair-wise distances that

are computed from the ants data and check if the association observed at each of the pair-

wise distances becomes significant. None of the PIC-values computed at these distances

becomes significant. The multi-type K-function and L-function values with the isomet-

ric edge correction are also estimated at different distances. The iso-curves of the K and

L functions are shown in Fig 5.12(a) and Fig. 5.12(b), respectively. In both cases, the

iso-curve closely follows the theoretical curve, indicating no meaningful association of the

Cataglyphis ant and the Messor ant. The PIC-value, p-value, and PI-value computed at

the smallest, average, and the highest pair-wise distance values are shown in Table 5.7.
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(a) Ripley’s multi-type K{Cataglyphis,Messor} function (b) Besag’s multi-type L{Cataglyphis,Messor} function

Figure 5.12: Ants data: both K̂ iso-curve and L̂iso-curve are closely following their theoret-
ical curves, r (1 unit = 0.5′).

For instance, the largest pair-wise distance is 567.62 units (1 unit = 0.5 feet). Considering

567.62 as a distance threshold (i.e. PID-value), we find 1804 instances (= PIC-value)

of {Cataglyphis, Messor}. Under the independence assumption, the probability of the ob-

serving 1804 instances at distance 567.62 is computed as 0.436, which is higher than the

α-value. Hence, the observed association at distance 567.62 is not significant. The PI-

value at this distance is found as 0.426. We also find that the PI-value remains the same

(= 0.426) for any distance within the interval of [90.26 − 567.62]. A standard co-location

algorithm using a distance threshold in the above distance range and a PI-threshold of

0.426 or smaller will report {Cataglyphis, Messor} as a prevalent co-location pattern.

Bramble Canes Data

In the Bramble canes data, there are 3 types of canes. A cane is marked as either 1, or 2, or 3

according to its age in number of years. Mark 1 has 359 instance, mark 2 has 385 instances

and mark 3 has 79 instances. The locations of the canes are recorded from a 9m square plot,

which is scaled down to a unit square. From the Bramble canes data, our algorithm finds 3

significant patterns. Table 5.8 shows the reported patterns and their co-location distances.

The PIC-value, p-value, and the PI-value of each reported co-location distance are also

shown. For instance, for a statistically significant pattern {1, 2}, the reported co-location

distance is 0.133. At that distance, 8514 instances of {1, 2} are identified. To find the co-

location distance of {1, 2}, our algorithm performs the statistical significance test at 83638
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(a) Ripley’s multi-type K{1,2} function (b) Besag’s multi-type L{1,2} function

Figure 5.13: Bramble canes data: K and L functions of pattern {1, 2}, r (1 unit = 9 m).

(a) Ripley’s multi-type K{1,3} function (b) Besag’s multi-type L{1,3} function

Figure 5.14: Bramble canes data: K and L functions of pattern {1, 3}, r (1 unit = 9 m).

unique PID distances and finds 108878 instances of {1, 2} in total. The K-function and

L-function with the isotropic edge correction are shown in Fig. 5.13(a) and Fig. 5.13(b),

respectively. The vertical dotted line (in green color) in these two figures shows the reported

co-location distance of pattern {1, 2} on theX co-ordinate. Similar results of pattern {1, 3}

and pattern {2, 3} are also shown in Fig. 5.14 and Fig. 5.15. In these figures, at our reported

distances, the estimated K-function value and the estimated L-function value are higher

than the theoretical values, indicating a clustering behavior of the participating features of

each reported pattern.

For K-function, we find r-value at which a maximum deviation of the estimated value and

theoretical value occurs. The computed r-values are shown in Table 5.9. From this table
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we find that the reported co-location distance for each of the detected patterns {1, 2},{1, 3},

and {2, 3}, is not close to the r-value giving the maximum value of (K̂ iso − ˆKpois). In the

Bramble canes data, the expected number instances of mark 2 around a randomly chosen in-

stance of mark 1 increase with the increase of r. Hence the K{1,2}-value increases with the

increase of r. Our approach reports the distance at which the maximum number of instances

of mark 1 and mark 2 become co-located and the number of observed instances of {1, 2}

at that distance becomes statistically significant. Our reported distance for {1, 2} is 0.133.

At that distance each instance of mark 1 finds at least one instance of mark 2 in its circular

neighborhood resulting an instance of {1, 2} and the PI-value of {1, 2} becomes 1. If the

distance (radius of the circular neighborhood of mark 1) increases further, more instances

of mark 2 around an instance of mark 1 are observed. In such a case, the PI-value will not

increase, but the K{1,2}-value increases. For this reason the r-value giving maximum value

of (K̂ iso − ˆKpois) does not match with our reported distances. K-function is designed to

measure the clustering behavior of the points of a point pattern. However, this function, by

construction, is not the exact measure of a co-location property. It successfully identifies a

co-location tendency of spatial features in cases which are observed in our experiments with

synthetic data sets. However, in some cases, it mistakenly reports a co-location behavior

among features even though the features do not exhibit a true co-location. The weakness of

K-function as a co-location measure is also discussed in Section 2.1.2 of Chapter 2.

(a) Ripley’s multi-type K{2,3} function (b) Besag’s multi-type L{2,3} function

Figure 5.15: Bramble canes data: K and L functions of pattern {2, 3}, r (1 unit = 9 m).
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Table 5.8: Bramble canes data: reported patterns (1 unit = 9 m)

Reported Reported co-location distances & measures No. of No. of

pattern Rd PIC p-value PI PID instances

{1, 2} 0.133 8514 0.002 1 83638 108878

{1, 3} 0.161 2533 0.002 1 21103 22387

{2, 3} 0.158 2462 0.002 1 8187 8737

{1, 2, 3} 0.161 59903 0.002 1 98626 2355447

Table 5.9: Bramble canes data: r-values giving max(K̂ iso − ˆKpois) (1 unit = 9 m)

Reported Reported co-location r-value of

pattern distances max(K̂ iso − ˆKpois)

{1, 2} 0.133 0.182

{1, 3} 0.161 0.249

{2, 3} 0.158 0.133

Lansing Woods Data

The Lansing Woods multi-type point data records the locations of 6 different tree species

from an area of 924 ft× 924 ft (19.6 acres). The locations of 135 black oaks, 703 hickories,

514 maples, 105 red oaks, 346 white oaks, and 448 miscellaneous trees are stored in this

data. The data set is shown in Fig. 4.22. In the previous chapter, our SSCSP algorithm

has analysed this data. For an interaction distance threshold of 92.4 ft, SSCSP algorithm

finds 4 statistically significant co-location patterns (Table B.3 of the Appendix B). These

are {Black oak, Hickory}, {Maple, Misc.}, {Black oak, Hickory, Red oak}, and {Maple,

Misc., Red oak}. Using algorithm CPMNDC, we search significant patterns occurring at

different distances. Algorithm CPMNDC finds the same subsets as statistically significant

co-locations. We also apply approximation algorithm 5 to find redundant patterns from the

result of CPMNDC algorithm. Approximation algorithm 5 finds {Black oak, Hickory, Red

oak}, and {Maple, Misc., Red oak} as redundant patterns. This findings can also be vali-

dated from the pair-wise interactions of Red oak with Black oak, hickory, and misc. trees as

shown in Table 4.3. These two patterns are respectively explained by {Black oak, Hickory}

and {Maple, Misc.}. Finally, {Black oak, Hickory} and {Maple, Misc.} are reported as

the true co-locations from the Lansing Woods data set. Their co-location distances are also

determined and a detailed result of each reported co-location is shown in Table 5.10. For

instance, {Black oak, Hickory} is reported as significant at distance 0.1803802 (1 unit =
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Table 5.10: Lansing Woods data: reported patterns (1 unit = 924′)

Reported Reported values No. of No. of

pattern Rd PIC p-value PI PID instances

{Black oak, Hickory} 0.1803802 9447 0.002 1 12309 14419

{Maple, Misc.} 0.2983035 13282 0.002 1 15609 17486

924 feet). The PIC and PI-values at that distance are 9447 and 1, respectively. In total,

12309 unique PID distances are considered and 14419 instances of {Black oak, Hickory}

are identified.

TheK-function and L-function with the isotropic edge correction are shown in Fig. 5.16(a)

and Fig. 5.16(b), respectively. The vertical dotted line (in green color) in these two fig-

ures shows the reported co-location distance of pattern {Black oak, Hickory} on the X

co-ordinate. Similar results of pattern {Maple, Misc.} are also shown in Fig. 5.17. For

K-function, we find r-value at which a maximum deviation of the estimated value and the-

oretical value occurs. The computed r-values are shown in Table 5.11. From this table we

find that the reported co-location distance for each of the patterns {Black oak, Hickory} and

{Maple, Misc.} is not far from the r-value giving the maximum value of (K̂ iso − ˆKpois).

(a) Ripley’s K{Black oak,Hickory} function (b) Besag’s L{Black oak,Hickory} function

Figure 5.16: Lansing woods data: K and L functions of {Black oak, Hickory}, r (1 unit =
924′).
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(a) Ripley’s K{Maple,Misc.} function (b) Besag’s L{Maple,Misc.} function

Figure 5.17: Lansing woods data: K and L functions of {Maple, Misc.}, r (1 unit = 924′).

Table 5.11: Lansing woods data: r-values giving max(K̂ iso − ˆKpois) (1 unit = 924′)

Reported Reported co-location r-value of

pattern distances max(K̂ iso − ˆKpois)

{Black oak, Hickory} 0.1803802 0.2363503

{Maple, Misc.} 0.2983035 0.234375

5.5 Summary

The current co-location mining algorithms require a distance threshold. In this chapter,

we have discussed how a co-location mining algorithm using a distance threshold may fail

mining true patterns when patterns occur at multiple distances. To solve this limitation, here

we have proposed a solution which can mine true co-locations without using any threshold

parameters from the user end. Our mining approach is based on a statistical test. We

also have proposed an approximation algorithm to prune redundant patterns that may occur

in a statistical test. We have validated our approach using synthetic and real data sets.

The experimental results show that our method has found all the true patterns that were

implanted in the synthetic data sets. Our findings from the tested ecological data sets can

be an important feedback for the domain scientists in their analysis.
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Chapter 6

Conclusions and Future Directions

With the rapid growth of spatial data, efforts are being given in developing theories and tech-

niques which can analyse massive and complex spatial data sets and acquire new insights

and implicit knowledge embedded in the data. Spatial data mining aims to find interesting

patterns from spatial data. In this thesis, we studied spatial interaction patterns, that oc-

cur due to the spatial dependencies of features. Spatial interaction patterns are important in

many spatial domains such as ecology, forestry, urban planning, and environmental science.

In mining prevalent patterns the current approaches require two predefined threshold param-

eters - one is for the used prevalence measure and the other is for the interaction distance.

Finding appropriate values for these thresholds is not easy in many spatial domains and

one single threshold value may not work to mine true patterns of different sizes. Interac-

tion among features occur at different spatial levels; hence the existing approach of using

one single distance threshold may fail to find all true patterns at different spatial distances.

An arbitrary selection of prevalence or interaction distance thresholds may report random

subsets of features as prevalent. In this thesis we aimed to resolve the above limitations

of the current approaches and our objective was: “finding a threshold free approach which

can mine statistically sound interaction patterns from spatial data”. To this end, we had to

consider the following key issues:

• designing an appropriate null model for a statistical test,

• selecting an appropriate test statistic which will be a numerical summary of the spatial

dependencies measured from the data,

• reducing the total computational cost of the statistical simulations conducted for es-

timating the distribution of a test statistic,
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• solving a redundancy problem that may occur when using statistical tests,

• generating appropriate synthetic data sets to validate our proposed approaches. This

requires developing data generation models which can simulate interactions among

multi-type features and which can also simulate spatial distributions of individual

features.

6.1 Key Results

For a statistical significance test, we designed an appropriate null model which preserves

the observed spatial distribution of each individual feature of the data. To this end, spatial

auto-correlation of a feature is taken into account and a cluster process is used to model a

spatial auto-correlation. We used three different test statistics. The PI measure is used as

a prevalence measure in the current literature. In our work, we use the PI as a test statistic

and this worked successfully for our approach. We also proposed another test statistic which

is an approximation value of the PI . This new statistic is computationally more efficient to

compute and leads in general to correct statistical inferences for interaction patterns. The

third test statistic is the pattern instance count, which is used to find true co-locations at

different distances.

We proposed two approaches that can mine statistically significant interaction patterns for

a given interaction distance. In our first approach named SSCSP, the PI is used as a test

statistic. Two strategies are proposed to reduce the cost during the data generation and

PI computation steps of a simulation. In the second approach, we proposed a grid based

sampling approach to compute an approximated PI-value used as a test statistic. Lastly,

we conducted a broad set of experiments and analysed evaluating the effectiveness of our

approach in finding both co-location patterns as well as segregation patterns using a variety

of synthetic data sets, generated using popular spatial point process models. We also used

ecological, forestry, and urban data sets to validate our approaches. We demonstrated the

efficacy of our strategies adopted for the data generation and prevalence measure computa-

tion steps. The experimental results show that the runtime of a naı̈ve implementation can

be improved significantly by adopting those strategies. Particularly, the sampling approach

appears to be quite robust, as it is found in our experiments with a large variety of real and

synthetic data sets. In all of our experiments, we did not miss any significant pattern even

using the coarsest grid, except for a single pattern involving a feature with an extremely low
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number of instances. Finally, the sampling approach provides the highest runtime improve-

ment compared to our all-instances-based and naı̈ve approaches.

As the second contribution of this thesis, we proposed an approach to mine true co-locations

without prevalence and interaction distance thresholds. This approach can find the co-

location distance of a true pattern. In this context we also solved the redundancy problem

that could occur when the null hypothesis simply assumes the independence of features. For

redundancy checking, we proposed a constrained null model for the statistical test and also

proposed a heuristic to simulate such a null model. Finally, we proposed models to generate

synthetic data sets to evaluate our approach. To the best of our knowledge, there is no model

in the literature that can simulate a co-location of more than two features. We proposed a

model to simulate a co-location where a participating feature can either be auto-correlated

or non auto-correlated.

6.2 Future Research Directions

There are several directions for future research:

• Design of a better sampling approach: We would like to investigate how the num-

ber of instances and spatial distribution of the participating features should affect

the selection of the grid resolution for our sampling approach. It is possible to de-

sign a “mixed” approach in which grid cells of different sizes and even the full cir-

cular neighborhood are used for different features, depending on the number of its

instances. We also plan to investigate other sampling approaches such as sampling

based on randomly selected regions, Latin hypercube sampling [43], and the space

filling curve technique [54] and find if these approaches can offer a better computa-

tional efficiency compared to our sampling approach.

• Design of a null model for improved detection accuracy: In the thesis, our first

null model used in a statistical test assumes the independence of all features. This

model suffered from a redundancy problem. Later we modified this null model and

imposed a set of constraints on the null model. To improve the detection accuracy, we

would like to investigate null models that are proposed in the literature and compare

their computational efficiency in our mining framework. Roxburgh et al. in [53] dis-

cuss two null models, which are patch model and random shifts model and validate

these null models statistically for spatial association pattern detection for pairs of fea-
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tures. In a random shifts model, a set of data points are first generated in a simulation.

These data points are then rotated and shifted to produce data points for subsequent

simulations. We would like to investigate if such a data generation approach can be

computationally more efficient than our current data generation followed in the ran-

domization tests. Gionis et al. also proposed a swap randomization technique [26]

for assessing data mining results on Binary data sets. Their approach is found more

efficient than existing randomization methods and detects expected patterns from re-

tail data sets. We would like to investigate the performance of a swap randomization

technique in estimating the distribution of the test statistic used in our data mining

approach. Future work may also include developing data permutation techniques for

a null model which addresses auto-correlation and true interactions (to mitigate re-

dundancy issues). Such techniques will be compared with our current approaches in

terms of computational gain and pattern detection accuracy.

Our proposed statistical framework has not considered the edge effects [20] while

computing the test statistic. A preliminary solution along this line is that we can

consider only points whose circular neighborhoods are completely inside the given

study area. These points will then be used to compute the test statistic for both the

observed data and the data sets generated under our null hypothesis. If the number of

data points considered to compute the test statistic is too low, our statistical model will

still be able to make the correct statistical inference about an observed interaction.

However our approach may suffer by the edge effects in the case where features have

fewer instances. We would like to investigate the sensitivity of our approach for such

a case and also improve our method by taking edge effects into account for the test

statistic computation.

• Design of new test statistics: The current literature in association rule mining pro-

poses several interest measures for identifying and ranking detected patterns accord-

ing to their potential interest. [23] gives a list of these measures. In the current

literature of co-location mining, only two prevalence measures, PI and maxPI , are

proposed. Our future work includes investigating new prevalence measures that are

suitable as test statistics and could also allow additional pruning techniques in our

framework.

We also would like to investigate the applicability of other statistical tests on the de-

tection of spatial interaction patterns. Some would prefer estimating a confidence
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interval of the test statistic (such as PI) value instead of computing a p-value. A

significance test based on the p-value is a Boolean test. On the other hand, a confi-

dence interval of PI gives information on the accuracy of an estimated PI value with

a certain probability. Then constructing a test hypothesis, efficiency of the interval

estimation, and pattern detection accuracy may appear as the main issues.

• Improving the computational efficiency of the CPMNDC algorithm: Due to the

statistical simulations conducted at multiple distances, the CPMNDC approach is

computationally expensive. For many application domains such as cell biology and

forestry, where the co-location size is not very large and accuracy is important, our

approach can be a good choice. However, to extend its applicability we aim to im-

prove the computational efficiency of CPMNDC along the following lines: (1) a

simple spatial index structure can help to reduce the cost of the pair-wise distance

computation of the algorithm; (2) the conducted simulations of the randomization

tests are independent of each other. Hence, a simple parallelization of the random-

ization tests is possible. Parallelization of clique finding computation for different

pair-wise distances can also be done.

• Experimental evaluation: Currently, we could not verify our co-location distance

results found from the used real data sets because of ground truth. Ecologists identi-

fied spatial associations from these data sets but did not report any result on the actual

interaction distance. In the future, we would like to evaluate CPMNDC with real data

sets that have ground truth about interaction distances. Evaluation of our proposed

approach using good synthetic data sets is also important.

Our experiments with synthetic data sets overlook the effects of spatial heterogene-

ity. To generate a random point pattern for a feature, we use a homogenous Poisson

process with a constant intensity. For an auto-correlated feature, cluster centers are

similarly generated from a homogenous Poisson process with a constant intensity. In-

stances of a feature may show spatial heterogeneity, in which case a Poisson process

with a variable intensity can be followed to generate them. Here the intensity will be

described as a function of x and y. The effect of spatial heterogeneity will further be

investigated in the future.

• Interaction pattern mining from Spatiotemporal databases: In the future, we

would like to extend our statistical model to find interaction patterns in ST domains.
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Methods such as [15] are proposed where the temporal dimension is discretized; then

for each discretized value of time, a snapshot from the observation data is prepared

for analysis. Each snapshot now becomes a spatial data set. Prevalent patterns found

from each of these snapshots are tested if they are prevalent across different snap-

shots taken over time. Many of the proposed methods are threshold based and do

not test the significance of their found patterns statistically. One major challenge is

constructing the null model for a statistical test. The null model for each different

snapshot of time may not be the same when features do not maintain the same spatial

distribution across times and also show variation in their distribution over time. The

distribution of a feature will now be more complex as it will be described in terms of

three parameters (x, y, and t). Auto-correlation behavior along space as well as along

time will further complicate the model in characterizing the distribution of a feature

in a ST domain. Minimizing the computational cost of finding spatial interaction

patterns from a ST domain will also be a challenge.

• Mining statistically sound complex patterns: We would like to extend our frame-

work to mining statistically significant complex patterns as discussed in [5]. This is

a trivial extension of our current framework and the same test statistics and the null

hypothesis that are proposed in this thesis can be used. Achieving computational ef-

ficiency will be the main challenge for this problem. The number of statistical tests

increases since the number of candidate patterns in the case of complex pattern min-

ing is larger than that in co-location or segregation pattern mining. We see an increase

in the amount of computation needed to identify the instances of different complex

patterns. However, computational efficiency can be achieved by finding a pruning

property to identify candidate patterns for which the computation of the test statistic

in a simulation is unnecessary.

• Mining co-location patterns from Boolean and quantitative spatial features: Our

current mining approach does not take into account quantitative spatial features which

may generate different types of interactions. For instance, in a forest, an interaction

of a group of tree species may be affected by the quantitative spatial features such

as the intensity of sunlight, amount of minerals, and rainfall. Co-locations of these

trees could be different from place to place depending on the presence of the quan-

titative spatial features. Our next goal is to develop a general mining approach to

find meaningful co-locations of Boolean and quantitative spatial features. Such co-
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location patterns give more meaningful insights for a domain scientist and a better

understanding on mechanisms of the underlying processes.

In finding co-locations in the presence of quantitative spatial features, we can dis-

cretize the values of a quantitative spatial feature into intervals and find co-locations

of these intervals of a quantitative spatial feature with other spatial features. In creat-

ing the number of intervals, several issues such as “required execution time” or “gen-

eration of many co-locations” may arise. Similar issues are discussed and solved in

quantitative association rule mining [61]. A genetic algorithm proposed in [55] dy-

namically discovers good intervals by optimizing the support and confidence. We

would like to investigate if the discretization techniques proposed to create intervals

for a quantitative attribute of a relational table can be adapted to discretize the values

of a quantitative spatial feature and design a quantitative co-location pattern mining

approach.
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Appendix A

Experimental Results-Synthetic Data
Sets

Table A.1, A.2, A.3, A.4 A.5, A.6, A.7, A.8, A.9, and A.10 show complete results for the
experiments with synthetic data sets.
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Appendix B

Experimental Results-Real Data Sets

Table B.1, B.2, B.3, B.4 B.5, B.6, and B.7 show complete results for the experiments with
real data sets.
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