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Abstract

This thesis delves into the advancements in visual anomaly detection (AD), a

challenging task in identifying outliers in images such as defects and lesions,

which is crucial in many applications including medical diagnosis and indus-

trial manufacturing. This thesis addresses two main challenges: increasing the

detection accuracy in unsupervised medical tumor detection and enhancing

the performance of zero-shot anomaly detection (ZSAD) models, both with

the assistance of auxiliary data.

In the first part, the thesis focuses on unsupervised AD in medical imag-

ing. It introduces a novel pseudo-anomaly synthesis module designed to gen-

erate diverse anomalies in shape and intensity for pseudo-supervised learning.

This approach leads to a two-stage training strategy aimed at fostering a

well-generalized model that significantly improves tumor segmentation perfor-

mance.

In the second part, the thesis presents the Dual-Image Enhanced CLIP

ZSAD model. This innovative approach merges visual and semantic data to

refine anomaly classification and localization. By leveraging unlabeled visual

references and implementing test-time adaptation with pseudo anomalies, the

model achieves a notable improvement in detection accuracy, surpassing cur-

rent leading methods.

These contributions significantly enhance both unsupervised medical tumor

segmentation and ZSAD accuracy through auxiliary data. The introduction

of random-shape synthesized anomalies and two-stage training strategy, serves
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as a foundational framework for refining the pseudo anomaly generation and

training methodology. Furthermore, by exploring a vision-language model

framework in anomaly detection, this research lays the groundwork for future

advancements in the field. These findings underscore the demand for robust,

adaptable solutions and set a promising trajectory for ongoing research in AD

systems.
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Chapter 1

Introduction

1.1 Motivation

Anomaly detection (AD) aims to identify instances containing anomalous and

defective patterns that deviate from normal data. This is crucial across various

applications such as detecting defects in manufacturing [7], [94], analyzing

medical images [8], [66], and monitoring video surveillance [47], [48], [87].

Anomalies are often characterized by subtle differences in texture, color, shape,

or motion, blending seamlessly into normal surroundings. Due to their diverse

nature, AD poses significant challenges and has been the focus of extensive

research in real-world applications.

Initially, supervised methods [9] were employed, replying on both normal

and abnormal instances as training data. However, their effectiveness heavily

depends on the quality of annotations, and collecting diverse anomalies is

difficult due to their rarity. Consequently, AD shifted towards unsupervised

learning, aiming to model normal data without requiring abnormal samples.

Unsupervised AD models [16], [41] are often built under one-class setting,

training unique models for each category of normal images. These models

demonstrates superior performance in industrial benchmarks [7], [94] and ex-

hibit promising potential in medical imaging tasks [6], [66]. However, chal-

lenges persist: (1) In medical domain, many proved successful model on in-

dustrial AD face limitations when applied to medical domain. The high het-

erogeneity of lesions restricts the generalizability of previous approaches, par-

ticularly in identifying rare lesion or anomalies. This discrepancy highlights
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the need for specific solution that improves the performance of medical AD. (2)

Existing methods excel when abundant normal images are available, but in sce-

narios with limited or no normal training data, their performance significantly

declines. Additionally, the one-class-one-model form poses scalability issues,

especially in multi-class scenarios where multiple models are needed. While

some strides have been made with the introduction of N-class-one-models [81],

[88], they still necessitate retraining for new classes. To address this limitation,

zero-shot anomaly detection emerges as a potential solution. However, current

zero-shot methods have not fully met the efficacy required for diverse anomaly

scenarios, despite additional training data or high computational overhead.

This thesis targets to tackle the above two challenges by leveraging aux-

iliary information, such as prior domain knowledge, pretrained models, and

hidden normal spectrum in unlabeld test data. Specifically:

1. By leveraging prior knowledge on medical imaging, we proposes an

anomaly synthesis method to generate pseudo-anomalies. The synthetic anoma-

lies function as positive data for training AD models, effectively transforming

unsupervised learning into a pseudo-supervised problem. We discussed the

guidelines for pseudo-anomaly generation and associated training strategies.

We validate our hypothesis on Liver Tumor Segmentation (LiTs) [8] dataset

and achieve state-of-the-art (SOTA) tumor segmentation accuracy.

2. To comprehensively address the scalability and performance issues, we

introduced a zeros-shot AD approach leveraging Contrastive Language-Image

Pretraining (CLIP) [54] model and paired image referencing system. This

framework enhances ZSAD performance through prompt-guided AD and aux-

iliary visual reference from unlabeld test images. Additionally, we introduce

test-time adaptation with synthesized anomalies to refine anomaly localization

capacity of the model.

1.2 Thesis Outline

The thesis is outlined as follows:

Chapter 2 provides an overview of the general background in anomaly
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detection. It delves into the characteristics of anomaly detection datasets,

the rationale for approaching anomaly detection problems in an unsupervised

context, and a review of existing methods and approaches in the field.

In Chapter 3, we delve into the details of my published paper, “Unsu-

pervised Liver Tumor Segmentation with Pseudo Anomaly Synthesis”. This

chapter focuses on the unique challenges of medical imaging in anomaly detec-

tion and discusses the novel approach developed for liver tumor segmentation.

Chapter 4 presents an in-depth discussion of my submitted paper titled

“Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection”. This chapter

elaborates on the methodologies, experiments, and findings that contribute to

enhancing zero-shot learning in anomaly detection, particularly in industrial

applications.

Finally, Chapter 5 concludes the thesis, summarizing key insights and dis-

cussing potential directions for future research.
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Chapter 2

Background

As described in Chapter 1, the goal of this thesis is to develop accurate and effi-

cient anomaly detection models, especially to overcome the challenges in med-

ical tumor segmentation and zero-shot industrial AD. This chapter delves into

the problem formulation specific to anomaly detection, providing examples of

anomalous images. It further explores common unsupervised approaches em-

ployed in image anomaly detection and discusses the distinctive characteristics

of medical AD.

2.1 Foundations and Overview of Anomaly De-

tection

Anomaly detection is the process of identifying out-of-distribution (OOD) ex-

amples, which essentially involves pinpointing data instances that deviate from

the prevalent pattern within a dataset. In the domain of AD, a majority of

data aligns with a “normal” class distribution. Anomalies, or outliers, are

rare, often absent from training data, and their identification can be resource-

intensive due to the complexity involved. An anomaly is flagged during testing

if it significantly diverges from the normal data distribution. This detection is

crucial for the maintenance of system integrity across various applications.

The challenge of visual AD is not only in detecting these outliers but in

defining them. Anomalies can occur under various conditions: a flaw in an in-

dustrial process, an unusual tissue in medical imagery, or unexpected behavior

captured by a surveillance system. These irregularities might stem from new or
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previously unseen changes in the environment, making AD a vital component

in a broad spectrum of image analysis applications.

2.1.1 Problem Formulation

In the context of anomaly detection, we are given a set of unlabeld images,

video frames, or pixels, denoted as XN . It is assumed that the majority of XN

conforms to the distribution of normal data, pN . However, in few-shot and

zero-shot learning scenarios, we may not have a sufficient number of normal

samples to establish pN robustly. To tackle this, we utilize a feature extractor

F that is pre-trained or fine-tuned to represent data in a feature space where

anomalies inherently deviate from normal instances.

AD aims to determine whether a test sample y is an anomaly by measuring

its conformity to the learned features of normal data. The AD function is

defined as:

AD(y) = D(F (y), F (pN )) (2.1)

Here, D is a distance metric that quantifies the deviation of the test in-

stance’s features F (y) from the features of the normal data F (pN ). The feature

extractor F maps the raw data to a set of discriminative features. In the con-

text of few-shot and zero-shot learning, F can leverage transfer learning to

encode meaningful representations without the need for a well-defined normal

distribution pN .

In some cases where a yes or no discrimination result is needed, a threshold

τ would serve as a decision boundary for determining the model’s sensitivity

to anomalies, adjustable based on the desired balance between false positives

and false negatives. This formulation allows for AD even with limited normal

samples, bridging the gap between traditional unsupervised learning and the

emerging paradigms of few-shot and zero-shot learning.

AD can be categorized into two distinct levels:

• Sample Level: Also known as novelty detection or anomaly classification,

this level involves image-level classification. The goal is to distinguish
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whether a query image is anomalous or contain anomalies.

• Pixel Level: Also referred to as anomaly segmentation or localization,

this level deals with the detection and, ideally, segmentation of subtle

anomalies within images. These are deviations that closely resemble the

training data, often localized to small regions.

Whether referred to as anomaly detection, novelty detection, outlier detec-

tion, or one-class classification, the fundamental objective remains the same:

to reliably and accurately identify the out-of-distribution samples.

2.1.2 Anomalous Samples

Figure 2.1: Image samples showcasing normal and anomalous instances. The
top row with green borders depicts normal images, while the bottom row
with red borders illustrates samples with defects or lesions. The left segment
includes industrial images from MVTecAD [7], and the right segment features
medical images from datasets such as LiTs [8], Retina OCT [66], and BraTs
[6].

The visual array in Figure 2.1 provides a curated glimpse into the prevalent

datasets utilized in industrial and medical anomaly detection. In industrial

contexts, as exemplified by MVTecAD, anomalies manifest across a spectrum

from textural deviations to outright object defects. The training sets consist

entirely of normal images to establish a baseline of ’normalcy,’ whereas test

sets are designed to challenge models with a mixture of normal and anomalous

samples. The provision of pixel-level annotations for anomalies is a definitive

advantage, allowing for precise model evaluation and fine-tuning.

6



Medical datasets such as LiTs [8], Retina OCT [66], and BraTs [6] are more

specialized, each focusing on distinct anatomical regions or imaging modali-

ties. The anomalies here range from lesions in liver tissue to abnormalities

in retinal OCT scans, and represent a critical need for accurate detection due

to their implications for patient diagnosis and treatment. The datasets come

with their own set of challenges, including variability in the manifestation of

conditions and the subtlety of pathological changes against the backdrop of

normal variations in human anatomy.

Each of these datasets reflects the intrinsic complexities of their respective

domains. For instance, in industrial images, anomalies might be characterized

by clear-cut contrasts against a structured backdrop, facilitating the task of

anomaly segmentation. Medical images, conversely, require discerning often

subtle differences between healthy and pathological states, a task complicated

by the diverse presentations of diseases and the high stakes of medical diag-

nostics.

The analysis of these datasets underscores the diverse requirements of

anomaly detection systems, industrial AD systems must be robust against

a variety of defect types, while medical AD systems must be sensitive to the

slightest indications of disease. Both domains benefit from the advancements

in AD methods, with the goal of achieving precise anomaly detection and

localization.

2.1.3 Evaluation Metrics

Accurate evaluation is essential in anomaly detection to ensure the effective-

ness of a model in distinguishing between normal and anomalous instances.

Different metrics are used to assess performance at the sample and pixel levels:

Area Under the Receiver Operating Characteristic Curve (AUROC)

The AUROC is one of the most widely used metrics for evaluating the per-

formance of anomaly detection models. It measures the ability of a model to

discriminate between the normal and anomalous classes across different thresh-

old settings. The AUROC represents the likelihood that the model will rank a

7



randomly chosen anomaly higher than a randomly chosen normal instance. It

is calculated by plotting the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings:

AUROC =

∫ 1

0

TPR(FPR−1(u)) du (2.2)

Maximum F1 Score (F1Max)

The F1Max is the maximum F1 score achieved by a model over all possible

thresholds. The F1 score is the harmonic mean of precision and recall, provid-

ing a balance between the model’s sensitivity (recall) and its ability to only

flag true anomalies (precision). F1Max is particularly useful when seeking a

single metric to capture the trade-off between precision and recall.

F1Max = max
t

(

2 ·
Precision(t) · Recall(t)

Precision(t) + Recall(t)

)

(2.3)

Average Precision (AP)

Average Precision summarizes the precision-recall curve as the weighted mean

of precisions achieved at each threshold, with the increase in recall from the

previous threshold used as the weight. It provides a single figure of merit for

evaluation across different recall levels, which is valuable when the cost of false

negatives varies.

AP =
∑

n

(Recalln − Recalln−1)Precisionn (2.4)

where Precisionn and Recalln are the precision and recall at the nth threshold.

Area Under the Precision-Recall Curve (AUPR)

AUPR is another important metric for problems with a significant class im-

balance, which is common in anomaly detection. It provides a comprehensive

view of the trade-off between precision and recall without being dominated by

the large number of true negatives, unlike AUROC.
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AUPR =

∫ 1

0

Precision(Recall−1(u)) du (2.5)

Per-Region-Overlap (PRO)

Proposed in [7], PRO considers the segmented regions in anomaly detection

and measures the overlap of these regions with the ground truth. It is com-

puted by applying a threshold to the anomaly map and identifying connected

components or regions. Each region is then compared to the ground truth to

calculate the overlap. The threshold is adjusted on a validation set such that

the largest connected component is just smaller than a pre-defined minimum

defect area. This threshold is then used to evaluate the anomaly maps of the

test set

Dice Coefficient

The dice coefficient, often used for medical imaging, measures the overlap

between the predicted and actual anomalies at the pixel level. It is partic-

ularly useful for medical diagnosis where binary decisions are common. The

DICE coefficient is 2 times the area of overlap between the predicted and true

anomalies divided by the total number of pixels in both the predicted and true

anomalies, giving a value between 0 (no overlap) and 1 (perfect overlap).

dice =
2× |Y ∩ Ŷ |

|Y |+ |Ŷ |
(2.6)

where Y is the set of pixels in the ground truth anomaly and Ŷ is the set of

pixels in the predicted anomaly.

Each of these metrics offers insights into different aspects of a model’s

performance. While AUROC and AUPR provide aggregate measures of per-

formance across all thresholds, F1Max and AP offer insights into peak perfor-

mance. The PRO metric, along with the dice coefficient, is particularly useful

for anomaly localization tasks, as it assesses the precision of the detected re-

gions against the true anomalies. The dice coefficient is especially valuable in

medical contexts for its clear interpretation related to actual diagnostic deci-
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sions. Selecting the appropriate metric depends on the specific requirements

and constraints of the application domain within anomaly detection.

2.2 Unsupervised Anomaly Detection Approaches

2.2.1 One-Class-One-Model Approaches

In the one-class-one-model paradigm, distinct models are independently trained

to identify anomalies within specific categories. This method is efficient when

a substantial amount of normal data is available for each class. These can be

broadly categorized as reconstruction-based methods, pseudo anomaly synthe-

sis, distillation-based methods, and representation-based methods.

Reconstruction-Based Methods

Reconstruction-based methods are a foundational approach in anomaly detec-

tion. They rely on the principle that normal data will have a certain pattern

or structure that a neural network can learn to replicate. By training the

network to encode and then decode images, it essentially learns to reconstruct

the input image from a compact representation. The assumption is that the

network trained exclusively on normal data, will not reconstruct anomalies as

well since it hasn’t learned their patterns.

During the testing phase, the network is presented with new images, and

the reconstruction error is measured. Anomalies are expected to have a higher

reconstruction error because they deviate from the normal pattern the network

has learned. This error forms the basis of the anomaly score, where a higher

error indicates a greater likelihood of the image being anomalous. Fig 2.2

shows the basic flows of reconstruction-based methods.

Classical reconstruction-based methods [2], [4], [27], [62], such as autoen-

coders (AE), variational autoencoders (VAE [37]), and generative adversarial

networks (GANs [28]) have shown proficiency in this technique. AEs are simple

yet effective at capturing the distribution of normal data. VAEs add a prob-

abilistic twist, allowing for the generation of new samples from the learned

data distribution, while GANs introduce an adversarial component, with one
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Figure 2.2: The workflow of reconstruction-based methods, illustrating the
process of inputting images into a reconstruction network such as AE or GAN
to produce a reconstructed image. The discrepancy between the original and
reconstructed images is used to derive an anomaly map, facilitating anomaly
detection.

network generating candidates and the other evaluating them, leading to a

robust model of normality.

For instance, F-AnoGAN [62] trains the model to reconstruct only normal

information, with the network purely trained on normal images. However,

this assumption can fall short when abnormal features are still reconstructed

accurately, blurring the distinction between normal and anomalous data. To

address this, some methods have been developed to more strictly constrain the

normal reconstruction. One such approach is MemAE [27], which introduces

a memory bank that stores a collection of normal feature prototypes. This

strategy ensures that reconstruciton is biased towards normality, creating a

distinct discrepancy on abnormal test images.

Pseudo Anomaly Synthesis

To address the challenge of limited anomalous data samples, several algorithms

introduce the concept of pseudo anomaly synthesis. Methods like CutPaste

[41], DRAEM [83], and NSA [64] generate artificial anomalies using data aug-

mentation techniques. Specifically, CutPaste [41] augment the normal image

with in-distribution images patches. DRAEM [83] generates pseudo anomalies

by overlaying random noise with texture patterns. These methods synthesize

pseudo anomalies by employing various image manipulations like cropping,

rotating, transforming, and overlaying. The result is a collection of artificially

crafted anomalies that vary in shape and texture, closely resembling actual

defects.

This synthetic augmentation serves a dual purpose. First, it enhances the
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Figure 2.3: The principle of pseudo anomaly synthesis approaches, showing
the integration of synthesized anomalies with normal images for training a
model to predict the localization of pseudo anomalies.

variety of anomaly examples, allowing models to learn from a broader spectrum

of defect appearances. Second, it ensures that models do not overfit to the

limited real-world anomalies available, promoting better generalization when

encountering novel anomalies.

The training process with pseudo anomalies is straightforward yet effec-

tive. Models are exposed to a mixture of normal images and those with su-

perimposed synthetic anomalies. Through training, they learn to distinguish

the subtle difference between anomalies and normal baselines. During test-

ing, these models leverage their training to accurately identify and segment

anomalies, even those that were not present in the training dataset.

Distillation-Based Methods

Knowledge distillation in anomaly detection [16], [61] leverages the asymmetry

of information between two neural networks: a teacher and a student. The

teacher, often a pre-trained and more complex network, imparts its high-level

feature extraction capabilities to the student, a less complex or untrained

network. The student’s goal is to mimic these capabilities as closely as possible.

Normal data serves as the training ground, providing a baseline of standard

patterns against which anomalies can be detected.

During testing, the student’s inability to replicate the teacher’s perfor-

mance on anomalous samples manifests as a discernible difference in outputs.

This discrepancy is quantified to identify anomalies, thus capitalizing on the

student’s limited exposure to only normal data during training.

The teacher-student (T-S) framework generally employs similar architec-
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Figure 2.4: The basic architecture of T-S anomaly detection frameworks, de-
picting the knowledge transfer from the teacher network to the student network
and the subsequent anomaly score calculation based on their output disparity.
The snowflake denotes the model is frozen, flame icon represents the trainable
modules.

tures, allowing for a direct comparison of feature representations. A novel

twist to this paradigm is the reverse distillation [16] process. Here, the stu-

dent network is trained not on raw images but on embeddings produced by

the teacher network. The student’s task is to reconstruct the teacher’s multi-

scale representations, effectively creating a reversed flow of information. This

method enriches the student’s feature space with nuanced details specific to

the teacher’s interpretation of ’normal,’ making the detection of anomalies

Representation-Based Methods

Representation-based approaches utilize neural networks to derive compact

feature vectors from images, which are then used to define normalcy. The

anomaly score is typically a function of the distance between the test image’s

embedded vector and the normal reference vector. This methodology benefits

from the absence of a training stage, requiring no parameters beyond the pre-

trained network used as the backbone. This strategy aligns with the principles

of metric learning and is akin to clustering in its operation.

In testing, the distance between the sample features and the normal fea-

tures is computed to detect anomalies, with methods such as SPADE [13],

PaDIM [14], and PatchCore [57] employing various distance metrics to ascer-

tain anomaly scores and generate score maps. Among these, PatchCore [57]

proposed an innovative “coreset” concept on optimizing the normal proto-

type selections, which greatly enhances the efficiency and effectiveness of the
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Figure 2.5: Illustration of the representation-based anomaly detection process.
A pre-trained neural network acts as a feature extractor of the input image and
embeds it into a feature vector. The anomaly score is derived by measuring
the distance between this embedding and reference embeddings determined
from training set.

detection process.

One-Class Classification Approaches

One-class support vector machine (OC-SVM) [65] and support vector data de-

scription (SVDD) [71] are foundational algorithms in one-class classification.

SVDD transforms all the standard training data into a predefined kernel space,

aiming to enclose the data within the smallest possible hypersphere. The train-

ing process is primarily concerned with determining the hypersphere’s radius

and center. Anomalies are identified when they fall outside the boundaries of

this hypersphere.

However, these classic methods often struggle in scenarios involving high-

dimensional, data-rich scenarios. To address these limitations, advancements

have been made, such as Deep SVDD [60], which replaces the traditional

kernel function with a neural network, enhancing the algorithm’s ability to

handle complex data structures. Furthermore, Patch-SVDD [80] extends this

improvement to patch-wise detection, offering a more granular approach to

identifying anomalies.

Normalizing Flow-Based Methods

A flow model trains a mapping that maximizes likelihoods for extracted fea-

tures which are quantifiable in the latent space. Normal samples are naturally

localized into the trained distribution range, while abnormal samples are pro-

jected onto a separate distribution range. As shown in Figure 2.7.
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Figure 2.6: One-class classification approach trains a network that learns to
transform most of the data representations into a minimum-volume hyper-
sphere with center C and radius R. Normal samples are mapped within the
hypershpere, while anomalous samples fall outside.

Figure 2.7: Flow-based approaches. The NF block learns the density estima-
tion which transforms the anomaly-free samples into a Gaussian distribution,
while the anomalous samples are projected to a distinct distribution.

DifferNet [58] processes vectors through a one-dimensional normalizing flow

(NF) with the features extracted by a pretrained feature extractor. CFlow

[29]incorporates the positional encoding as a conditional vector to improve

the spatial relevance. Fast-Flow [82] implements the two-dimensional NF to

enhance detection accuracy with the multi-scale aggregated results. CS-Flow

[59] integrates information across scales with the addition of scaled volumes.

UFlow [67] further boosts AD capabilities with a multi-scale Transformer-

based feature extractor and a U-shaped NF block architecture, effectively

managing complex data structures.

2.2.2 Multi-Class Anomaly Detection

While traditional one-class-one-model approaches are effective with plenty of

normal data, they struggle in diverse and multi-class scenarios due to high

memory demands and poor handling of intra-class variability. The push to-

wards multi-class AD aims to address these limitations. These models, trained

on normal samples from various categories, are tasked with detecting anoma-
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lies without specific adjustments for each category, and without categorical

information during training and inference. UniAD [81] innovates with a layer-

wise query encoder and a neighbor masked attention module to avoid identical

reconstructions and better model multi-class distributions. OmniAL [88] lever-

ages a network enhanced with Dilated Channel and Spatial Attention blocks to

increase reconstruction discrepancies, along with a DiffNeck feature to exam-

ine multi-level differences. Additionally, SNL [19] introduces spatial-channel

distillation and intra-& inter-affinity distillation techniques for assessing struc-

tural distances in teacher-student network frameworks.

2.2.3 Zero-Shot Anomaly Detection

The scarcity of normal data caused by privacy concerns or lack of domain-

specific training data prompts the exploration of ZS approaches. With no

training data available, ZSAD necessitates a powerful models that can be

well-generalized across varied visual features and backgrounds.

Advancements in data scale have led to significant strides in pretrained

visual language models [5], [11], [22], [54], which demonstrate remarkable pro-

ficiency in a variety of downstream tasks [34], [35], [49], [53], [73], [90], [91].

A prime example is the CLIP model, through contrastive vision-language pre-

training on a diverse array of internet-sourced image-text pairs, it exhibits

exceptional generality and adaptability. This model is particularly adept at

zero-shot inference, displaying a superior capacity for recognizing images be-

yond its training data. Recent explorations have extended the zero-shot capa-

bilities of CLIP models to tasks like open-vocabulary semantic segmentation,

achieved by harnessing intrinsic dense features [24], [45], [89]. Additionally,

efforts to optimize CLIP’s recognition performance have been fruitful, focus-

ing on areas such as prompt engineering [90], [91], adapter modules [26], [85],

and additional training for enhanced vision-language alignment [34], [35]. Im-

portantly, CLIP’s inherent ability to detect out-of-distribution data without

additional training has catalyzed its application in zero-shot anomaly classifi-

cation and localization.

The WinCLIP model [32] marks the first use of CLIP [54] for prompt-
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guided anomaly detection, setting text descriptions for normal and abnormal

states and seeking matched images based on vision-language embedding corre-

lations. Building on this, AnoCLIP [20] enhances localization representation

and implements V-V attention introduced in [45]. However, vision-language

models such as CLIP are primarily trained to align with the class semantics

of foreground objects rather than the abnormality/normality in the images,

and as a result, their generalization in understanding the visual anomalies is

restricted, leading to weak ZSAD performance. Existing zero-shot prompt-

guided AD models often lack robust visual representation as a basis for de-

tecting anomalies. Addressing this, methods such as [10], [92] propose fine-

tuning the pretrained CLIP model with auxiliary images for cross-set train-

ing/validation.

2.3 Anomaly Detection in Medical Domain

2.3.1 Current Challenges in Medical AD

In medical image analysis, unsupervised anomaly detection plays a pivotal role

in identifying atypical features, such as abnormal structures or lesions, indica-

tive of various medical conditions. While normality in biomedical images is

usually well-defined and more straightforward to collect, anomalies present a

significant challenge due to their heterogeneity. It’s often impractical to gather

a comprehensive dataset encompassing all possible abnormal cases, particu-

larly for rare diseases or new anomalies. This open-set nature of medical data

necessitates approaches beyond conventional supervised methods, which may

struggle with unseen abnormalities.

Additionally, the study of medical anomaly detection encompasses a range

of image modalities and body components, such as Retina OCT [66], Brain

MRI [6], and Liver CT [8], etc. Each of these modalities presents its own

unique set of characteristics, leading to distinct challenges:

Diversity in Normal Data: A comprehensive representation of normal

data is crucial. However, acquiring and annotating such medical data is chal-

lenging and costly, which can cause incomplete representations.
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Distinct Image Characteristics: Medical images differ significantly

from natural daily datasets. Pretrained models on large general datasets like

ImageNet [21] might not adequately capture the nuances of medical images,

potentially missing subtle yet crucial signs of anomalies that often require

expert analysis or context for identification.

High Sensitivity Requirement: Given the critical nature of medical

diagnosis, test sensitivity is critical. Anomaly detection models in this domain

must be highly accurate, taking into account individual patient differences and

variations across different ages and geners.

Specific Preprocessing Needs: Medical images often require extensive

preprocessing due to their unique sampling methods and inherent noise.

These factors highlight the unique and complex nature of anomaly detec-

tion in medical imaging, emphasizing the need for specialized research and

study in this area.

2.3.2 AD Approaches on Medical Images

Medical anomaly detection methods often adapt techniques used in industrial

settings. Reconstruction-based approaches are widely implemented in this

domain [3], [63], [74], [76], [78], [93], however encounter significant performance

limitation. Alternatively, pseudo-supervised methods play a significant role

[33], [43], [69], [70], [86] that incorporates pseudo-positive samples to enhance

the detection accuracy by overlaying color, texture, and semantic outliers to

normal samples, a model is trained to segment the synthetic anomalous regions

[43], [69], [70], [86] and reached promising AD capacity. Despite extensive

research in pseudo anomaly synthesis and model training, two fundamental

questions remain under-explored:

• Should pseudo-anomalies approximate the queries in test phase?

• How to train the segmentation model on pseudo-synthesized data?

Chapter 3 delves into these questions, exploring the impact of pseudo-

anomaly synthesis on liver tumor segmentation performance. It also examines
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the limitations of industrial anomaly detection methods when applied to med-

ical datasets.

2.4 Conclusion

While notable progress in anomaly detection in both industrial and medical

imaging, certain challenges remain, especially in enhancing AD performance

in ZSAD setting, and formulating more effective approach on medical lesion

segmentation. In the realm of medical imaging, there’s a need for investi-

gating into the generation and training principle involving pseudo anomalies.

Regarding zero-shot anomaly detection, the potential exists to develop multi-

modality joint inference system that uncover hidden normal patterns in textual

and visual information. Our research is focused on overcoming these obsta-

cles through the improved utilization of auxiliary information, aiming to make

meaning substantial contributions to the evolution and refinement of AD in

diverse domains.
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Chapter 3

Unsupervised Liver Tumor
Segmentation

3.1 Introduction

Liver tumors are one of the leading causes of cancer-related deaths, and ac-

curately segmenting them in medical images such as computed tomography

(CT) is crucial for early detection and diagnosis. While supervised tumor

segmentation methods show promising results, their performance is heavily

dependent on high-quality annotated data, which can be expensive to obtain.

Furthermore, due to the high heterogeneity of tumors, the generalizability

of supervised models may be limited in identifying rare lesions or anomalie.

Recently, there is an increased interest in treating tumors as anomalies in

medical images and exploring unsupervised learning approaches, i.e. anomaly

segmentation, to address the aforementioned challenges. In the context of un-

supervised anomaly segmentation, a model is expected to identify and segment

potential abnormalities by learning from a healthy cohort of patients during

model training.

Anomaly synthesis has emerged as a prominent approach that incorpo-

rates pseudo-positive samples to enhance anomaly segmentation. By overlay-

ing color, texture, and semantic outliers on normal samples, a model is trained

to segment the synthetic anomalous regions [18], [30], [33], [43], [69], [70], [79],

[86]. Despite yielding promising results, there exists significant variation in

methods for generating pseudo anomalies. For instance, [42], [69], [70] gener-
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ate anomalies by utilizing in-distribution image patches, while [30], [43], [79],

[86] focus on producing lesions that closely resemble real anomalies. Addition-

ally, prior arts usually focus on model design [43], [84]. However, there is little

study explicitly tackling the following two fundamental questions behind this

paradigm.

• Should pseudo-anomalies approximate the queries in the test phase?

• How should the segmentation model trained on the synthesis data?

Addressing these questions necessitates an understanding of the medical

mechanisms behind tumor appearances in imaging. Variations in Hounsfield

Unit (HU) values in CT images are a key indicator of lesions, with tumor

tissues typically exhibiting distinct densities compared to surrounding normal

tissues. This difference in density affects X-ray attenuation, leading to varia-

tions in HU values, as exemplified by hepatocellular carcinomas, which are on

average 11 HU lower than adjacent liver parenchyma in the portal venous phase

[40]. By synthesizing pseudo anomalies that reflect these HU variations, we

create a spectrum of anomalies that closely simulate real tumor appearances.

This approach not only mimics the realistic presentation of liver tumors but

also leverages auxiliary information, aiding unsupervised models in accurately

identifying and segmenting actual tumors.

To explore these objectives and questions further, this chapter delves into

unsupervised liver tumor segmentation. We utilize an adapted version of the

Discriminative Joint Reconstruction Anomaly Embedding (DRAEM) [84], in-

troducing a nuanced anomaly synthesis pipeline and a balanced two-stage

training strategy. This method demonstrates impressive performance on the

Liver Tumor Segmentation dataset (LiTs) [8], showcasing the efficacy of our

approach in addressing the challenges of unsupervised anomaly detection in

medical imaging.
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3.2 Preliminaries

This section tackles two fundamental, yet under-explored questions in pseudo-

supervised anomaly segmentation with synthetic abnormalities. The reasoning

offers insights for designing the proposed solution.

Q1: About pseudo anomaly generation: Should pseudo-anomalies

approximate the common queries in the test set?

Pseudo anomaly is introduced to establish the boundary that distinguishes

abnormality, transforming the unsupervised problem into pseudo-supervision,

which helps the model learn normal patterns by providing negative sam-

ples. Since there is no clear definition of what constitutes an anomaly, there

shouldn’t be any bound or limit on pseudo anomaly synthesis. Instead of fo-

cusing on creating pseudo anomalies that match known abnormal patterns in

queries, we advocate generating a diversity of anomalies to facilitate a model

to learn the comprehensive normal spectrum. In particular, when dealing with

unsupervised tumor segmentation, we believe that generating a large diversity

of pseudo anomalies in terms of intensity, shape, and textures facilitates ad-

dressing the high heterogeneity in tumors. This motivates the design of the

proposed pseudo anomaly generation module.

Q2: About model training: Should the model training follow the

exact supervised training principles on synthetic anomalies?

The success of supervised learning relies on the IID assumption that both

the training and test data follow an identical distribution. Under this assump-

tion, a model is usually well-trained on the training set with multiple iterations.

However, we argue that one shouldn’t follow the same philosophy to train a

model on pseudo anomalies in anomaly detection and segmentation. According

to the reasoning in Q1, a covariate shift is likely to exist between the synthe-

sized and query anomalies. We visualize this covariate shift by 2-D TSNE

in Figure 3.1(C), where both tumor samples and normal images are from the

LiTs dataset [8]. Consequently, due to the potential covariate shift between

the synthesized and the common anomalies in pseudo-supervised segmenta-

tion, training a model on the pseudo anomalies may cause a bias and harm
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Figure 3.1: (A) Systematic diagram of the proposed unsupervised liver tumor
segmentation scheme. During training, synthetic abnormalities are fed to a
restoration net followed by a segmentation net. To avoid model overfitting
on synthesis, the two models are trained in two phases represented by blue
and orange, respectively. In inference, a query is directly passed to the two
networks for segmentation. (B) Proposed synthesis pipeline based on Gaussian
noise stretching. (C) Liver image embedding by 2-D t-SNE.

its performance on real queries. In another words, a good-fit model on the

pseudo-anomaly data may fail on real testing data. Our ablation experiment

shown in Figure 3.6 validates this hypothesis. Therefore, unlike conventional

supervised learning that requires a relatively long training time, we argue that

model optimization on anomaly synthesis for pseudo-supervised segmentation

should stop early to preserve the model’s generalizability on queries. Our

answer to Q2 inspires us to design the two-phase training strategy in this

chapter.

3.3 Methodology

Toward unsupervised liver tumor segmentation, we incorporate our reason-

ing to Q1 and Q2 into the DRAEM-similar [84] architecture. As depicted

in Figure 3.1(A), the framework comprises random-shape anomaly genera-

tion, a restoration network, and a segmentation network. Unlike DRAEM

training both networks jointly, we propose a two-phase learning to avoid seg-
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mentation model over-fitting on synthetic abnormalities. In inference, only

the reconstructive network and segmentation network are deployed on queries.

Compared to DRAEM, our experiments show that both the proposed anomaly

generation module and the two-phase learning strategy boost the liver tumor

segmentation performance in terms of segmentation accuracy and model sta-

bility.

3.3.1 Pseudo Anomaly Generation

The anomalous training samples are simulated by the anomaly synthesis mod-

ule, which generates masks of random shapes and sizes through Gaussian noise

and morphological transformations. Initially, Gaussian noise is generated with

the same resolution as a normal image and then blurred with a Gaussian ker-

nel. The noise is then stretched and thresholded to produce a binarized mask.

Subsequently, closing and opening operations with the elliptical kernel are ap-

plied to the binarized mask to obtain an anomaly segmentation mask. The

detailed algorithm is shown in Algorithm 1.

Algorithm 1 Random-shape Pseudo Anomaly Generation

Input: Image, Threshold
Output: AnomalyMask, Label

NoiseImage← gaussianNoise(Image height, Image width)
BlurImage← gaussianBlur(NoiseImage, kernal size)
StretchImage← rescaleIntesity(BlurImage, (0, 255))
AnomalyMask ← binarize(StretchImage, Threshold)
AnomalyMask ←Morph open close(AnomalyMask, kernel ellipse)
if sum(AnomalyMask) > 0 then

Label ← 1
else

Label ← 0
end if

Using the generated anomaly mask Ms, we proceed to synthesize the ab-

normal sample Is. In CT slides, unhealthy patterns in liver regions are demon-

strated by abnormal HU values. Therefore, we propose to randomly shift the

intensity of the slice and overlay the new intensity values on the original im-

age I within the mask regions (as shown in Figure 3.1(B)). We formulate the
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proposed abnormality synthesis as

Is = (1−Ms)⊙ (I + C) +Ms ⊙ I, |C| ∈ (minRange,maxRange), (3.1)

where Is represents synthesized anomalies, ⊙ is element-wise multiplication,

and C is a random value drawn from a Gaussian distribution within a defined

range.

It is noteworthy that unlike [30], [86] that aims to fabricate pseudo anoma-

lies to approximate the common patterns of liver tumors, we follow our prin-

ciple to Q1, leverage the stochastic nature in the proposed synthesis process

to generate a wide spectrum of anomalies deviating from normal patterns (as

shown in Figure 3.1(C)). We provide a demonstration of synthesized pseudo

samples in Figure 3.2, our experiment shows that our method outperforms [86]

by 12% in Dice.

Figure 3.2: Pseudo anomalous samples, and the corresponding anomaly masks.

3.3.2 Model Architecture and Training Functions

The reconstruction network is trained to restore anomalous regions while pre-

serving the normal regions. The segmentation network takes the concatenation

of the restoration and pseudo-anomalous image as input and targets to esti-

mate an accurate segmentation map for the anomaly. For the reconstruction

network, we use U-Net [56] with 3 encoder and decoder blocks as backbones.

The specific encoder block in the restoration network adopts the architecture

proposed in [33], where it consists of 2 weight-standardized convolutions [52]
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Figure 3.3: Reconstruction network architecture. The encoder consists of
4 blocks, each block contains two 3 × 3 weight-standardization convolutions,
followed by the swish activation and group normalization. Symmetrically, each
decoder block has deconvolution with 2× 2 as kernel size, stride = 2, followed
by weight-standardized convolution.

followed by swish activation [55] and group normalization [77]. We illustrate

the model architecture in 3.3.

To address diverse levels of model optimization complexity, we train the

two networks consequently in two phases. The reconstruction model is first

trained to restore the anomalous region in synthetic abnormal images with L1

loss:

Lrec(Is, Ĩs) = |Is − Ĩs|, (3.2)

where Is, Ĩs are the pseudo outlier augmented sample and the reconstruction

image. After freezing the well-trained generative module, we slightly train

the segmentation model to avoid bias introduced by the covariance shift. To

accommodate potential small tumors, Focal Loss [46] is adopted:

Lseg(Ms, M̃s) = −
1

N

N
∑

i=1

C
∑

j=1

αj(1− m̃s,ij)
γ log(m̃s,ij) (3.3)

where m̃s,ij is the predicted probability of class j at pixel i and αj is the weight

for class j, andMs, M̃s are the ground truth and the estimated anomaly masks.
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3.4 Experiments

3.4.1 Experimental setting

Dataset Preparation: We evaluate the proposed method on the Liver Tumor

Segmentation (LiTs) dataset [8] from MICCAI 2017 challenge. LiTs dataset

consists of 131 abdominal CT scans with the paired liver and liver tumour

ground truth labels. Unlike with previous works [23], [43], which perform

the cross-fold validation on the LiTs dataset, we argue that training on the re-

trieved partial samples from an unhealthy CT scan is not ideal for the model to

learn the complete liver feature distribution. Therefore, we train our model on

an anomaly-free dataset BTCV [39], which provides 40 healthy CT abdomen

scans and the corresponding organ masks.

For all CT volumes in training and test, HU values are transformed into

grayscale and the liver Region of Interest (ROI) is extracted according to the

organ annotations. Then 2D slices are obtained along the Axial plane, resized

to 256× 256, and normalized independently by histogram equalization.

Implementation Details: We run the experiments on dual Nvidia RTX-

3090 GPUs. The threshold for pseudo mask generation is set to be 200, and

the intensity range of the random intensity shift is [−100, 100]. The focal

loss parameters are defined as α = 1 and γ = 2. We use PyTorch [50] to

implement the proposed method. The model is trained for 200 epochs for the

first stage and just 1 epoch for the second stage to avoid bias introduced by

pseudo anomalies. The learning rate is set to 0.0001, with a batch size of 8

using Adam [36] optimizer. We follow previous studies and use the Dice score

as our evaluation metric.

3.4.2 Results and Discussion

Comparison to SOTA: We quantitatively compare the proposed method

with state-of-the-art unsupervised liver tumor segmentation methods includ-

ing Zhang et al. [86], Hu et al. [30] ASC-Net [23] both with and without

manually-designed post-processing and report the results in Table 3.1. The

fully supervised method is taken as performance upper bound. As shown in
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Table 3.1: Liver tumor segmentation on LiTs [8]. Our method exhibits the
best Dice with a standard deviation of 1.78. Results with ∗ are directly copied
from original papers.

Methods Supervision Dice

Zhang et al. [86] ✓ 61.91∗

DRAEM [84] X 14.75
Zhang et al. [86] X 40.78∗

ASC-Net [23] X 32.24∗

ASC-Net + postprocessing [23] X 50.23∗

Hu et al. [30] X 59.77∗

Ours X 53.03

Figure 3.4: Tumor segmentation on real liver tumor data, from easy (left) to
difficult (right). Iin: Input , Mseg: segmentation mask, and Mgt: Ground-
Truth.

Table 3.1, our approach significantly outperforms the other methods, with

the exception of [30] and shrinks the gap between unsupervised method and

fully-supervision. Notably, [30] leverages extensive clinical prior knowledge to

synthesize pseudo anomalies resembling real tumors. Furthermore, our ap-

proach achieves a substantial reduction in runtime at 0.018s/slice, compared

to 0.476s/slice in [30] which operates on 3D volume, incurring higher memory

usage and slower inference time. In Figure 3.4, we show our segmentation

results on real tumor data in the LiTs dataset.

Ablation on model components: The proposed method and DRAEM

differ in three aspects: pseudo anomaly generation (corresponding toQ1), two-

phase training (corresponding to Q2), and U-Net backbone in the restoration
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Table 3.2: Ablation study of two-phase training (TP), pseudo anomaly (PA),
and reconstructive network. The baseline is DRAEM model [84]. Asterisks
indicate statistical significance (*: p ≤ 0.05, **: p ≤ 0.001) when using a
paired Student’s t-test compared to baselines.

Method +TP +PA +U-Net Dice

Baseline 14.75± 14.28
Baseline ✓ 21.31± 12.54
Baseline ✓ ✓ 30.17± 5.50∗

Baseline ✓ ✓ 40.06± 6.85∗

Baseline ✓ ✓ ✓ 53.03± 1.78∗∗

Figure 3.5: Visualization of image reconstruction by AE and U-Net.

net. In this ablation study, we take the DRAEM as baseline, decouple these

factors, and evaluate their impact in terms of tumor detection (by AUROC)

and segmentation (by Dice) on LiTs. We run this ablation 3 times, and the

performance is reported in the Table 3.2. The selection of the anomaly size

mask threshold selection is shown in Figure 3.7 and Table 3.3.

The two-phase training strategy improves Dice by 6.5% on the baseline.

When combined with U-Net and PA, there’s a significant 13% performance

boost compared to using only U-Net and PA, validating our hypothesis that

light segmentation training on pseudo anomalies helps address the covariant

shift between synthetic anomalies and real tumors. We further extended the

training of the segmentation net to 200 epochs and captured tumor detection

performance (by AUROC) and segmentation quality (by Dice) every 5 epochs.

It’s worth emphasizing that these experiments incorporate the synergistic ap-
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DICE AUROC

Figure 3.6: An illustrative depiction of the evaluation performance of the
segmentation network reveals a tendency to overfit shortly after a short period
of training. Throughout this process, the reconstruction network maintains a
frozen state.

Table 3.3: Mask threshold ablation numeric results. Changing the threshold
(TH) would generally alter the shape of the pseudo anomalies, and decreasing
the threshold would allow larger outliers to be produced.

TH AUROC Dice

180 72.678± 3.117 40.756± 8.577
190 72.189± 2.767 46.856± 5.490
200 75.854 ± 1.538 52.562 ± 2.288
210 70.933± 7.195 38.844± 15.658
220 74.100± 2.723 46.200± 6.4274

plication of TA, U-Net and PA, as this combination has proven to demonstrate

optimal outcomes with TA. Therefore, Figure 3.6 results diverge from the Dice

score, where TA solely influences the baseline, yielding a comparetively less

pronounced impact on reducing training perturbation As shown in Figure 3.6,

the mean AUROC keeps decreasing, and the standard deviation keeps increas-

ing. The perturbation also occurs in Dice after 50 epochs. We attribute this

to model overfitting on the pseudo data, which hurts model’s generalizability

on queries.

Additionally, the proposed anomaly synthesis module and U-Net designed

in our restoration net significantly boost the segmentation performance. Fig-

ure 3.5 presents a visualization comparison of reconstructions generated by

autoencoder (AE) and U-Net. Compared to the AE-based network, the skip-

30



Figure 3.7: Mask threshold ablation results. Threshold = 200 gives the model
the best and most stable accuracy on AUROC and DICE. Error bars show the
standard deviation across 9 runs.

connection in U-Net helps preserve the texture details in liver reconstruction

images, which facilitates the downstream segmentation task.

3.5 Conclusion

In this chapter, we tackled the challenging problem of unsupervised liver tumor

segmentation and proposed a two-stage pseudo-supervision solution with syn-

thetic anomalies. By generating anomalies spreading over a large spectrum,

the synthesis data facilitated the model in finding normal sample boundary

in embedding space. The two-stage training strategy mitigated the impact

of covariant shift between synthesis data and actual tumor data on model

optimization, and thus avoid segmentation model’s overfitting on synthetic

anomalies. Experimentation suggested that the proposed method performs

comparably to SOTA methods. Looking ahead, we aspire to extend our ex-

ploration of model performance to encompass various other diseases and data

modalities and investigate the integration of both real and synthetic tumor

within the model training pipeline.
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Chapter 4

Dual-Image Enhanced CLIP on
Industrial Zero-Shot Anomaly
Detection

4.1 Introduction

In this chapter, we explore the realm of Zero-shot Anomaly Detection (ZSAD),

a critical and emerging area in anomaly detection. ZSAD presents the unique

challenge of identifying anomalies without relying on training samples from

the specific target dataset, making it a crucial approach in situations where

such data is scarce or unavailable. This context highlights the need for models

capable of detecting anomalies with high adaptability and robustness.

To tackle ZSAD, MuSc [44] was proposed to leverage unlabeld images in

the test set as references for the query images. It operates under the argument

that a rich amount of normal information implicit in unlabeld test images is un-

derutilized. Even if the test image is anomalous, it still contains some normal

patches that can serve as references. MuSc achieves SOTA performance, but

as it requires knowledge of the test set distributions before inference, it aligns

more with transductive rather than inductive learning. Also, its extensive com-

parison with all test set images can be time-consuming and computationally

intensive.

Alternatively, WinCLIP [32] deployed CLIP [54] model and used text

prompts for anomaly measurement, significantly improving over other category-

agnostic methods in a zero-shot AD setup and extending the capabilities of the
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Figure 4.1: Overview of the Dual-Image Enhanced CLIP Zero-Shot Anomaly
Detection Model. Traditional approaches often depend on a single modality
for anomaly detection, where (A) demonstrates the use of image embeddings,
and (B) illustrates reliance on text prompts. Our proposed method, shown
in (C), integrates both visual and textual information, utilizing a dual-image
input to enrich the feature space for a more robust and comprehensive anomaly
detection framework.

CLIP model [54]. Subsequent approaches like [10], [20], [68], [92] further en-

hanced ZSAD capabilities. Recent works [10], [92] have begun fine-tuning the

pretrained CLIP model with auxiliary anomalous image and, testing it on the

target datasets. Alternatively, AnoCLIP [20] introduced a test-time adapta-

tion (TTA) module to alter the visual representation space of the CLIP model.

These studies underscore the importance of adding training parameters to the

pretrained CLIP model to strengthen its anomaly localization ability. How-

ever, solely incorporating semantic information from text prompts may not

fully exploit the potential of large vision-language models. Since the vision-

language space isn’t perfectly aligned, many visual anomalies implicitly defined

in the visual distribution remain uncovered. Additional visual references need

to be incorporated to assist the language-based ZSAD, especially for misplaced

objects, rare-seen objects, and complicated scenes, whose anomaly information

is usually hard to obtain from large pretrain datasets.

To address these issues, we propose a novel framework (see Fig. 4.2) that

utilizes a pair of unlabeld images during testing. Our framework comprises
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a pretrained CLIP model, a test-time adaptation module, and an input path

for image pairs to leverage the additional visual reference information into the

language-vision AD. The anomaly score of a query image depends not only

on its textual zero-shot score but also on the score derived from its randomly

paired reference image. Additionally, we enhanced the model’s AD capability

by adding a TTA module involving pseudo anomaly synthesis to improve the

agnostic ability to locate anomalies.

In summary, our contributions are threefold:

• We propose a novel ZSAD method that processes a pair of images, en-

hancing existing CLIP-based AD methods. This approach incorporates

an additional reference image, operates without the need for further

training and significantly boosts AD performance.

• We developed a TTA module that includes pseudo anomaly synthesis

methods adopted from DRAEM [83], effectively refining the AD capa-

bilities of the pretrained CLIP model.

• Comprehensive experiments on MVTecAD [7] and VisA [94] reveal that

our methods achieve comparable performance with current SOTA ZSAD

methods in both anomaly classification and anomaly localization.

4.2 Methodology

In this section, we first introduce the CLIP-based baseline model for zero-

shot anomaly classification and localization. Following this, we delve into

details of our dual-image enhancement model. Lastly, we specify our test-time

adaptation mechanism to refine the model’s AD capability. Fig. 4.2 provides

a comprehensive overview of our framework.

4.2.1 CLIP for Zero-Shot Anomaly Detection

CLIP’s zero-shot visual recognition, trained on a multi-million image-text pair

dataset, aligns images with textual descriptions through a visual encoder and a

text encoder. These encoders respectively transform images and text prompts

34



Figure 4.2: Overview of our framework for Dual Image Enhanced CLIP. The
left part shows the feature extraction process from the vision and text encoder,
and the right section shows the inference process. The snowflake denotes the
modules are frozen, and the flame icon represents trainable modules.

(e.g., a photo of a [class]) into visual and text tokens in a shared feature space.

The model’s ability to compare these tokens via cosine similarity allows it to

identify class concepts within images.

For anomaly detection, CLIP utilizes semantic concepts of “normal” and

“anomalous” states. Multiple prompts with varied descriptors (like “perfect”,

“broken”, etc.) are used to create averaged text tokens representing these

states, tn and ta for normal and anomalous text tokens, respectively. Anomaly

score for an image is computed based on the similarity between its visual token

and these averaged text tokens. Specifically, given a text prompt and the

corresponding class token v, the sample-level anomaly score AL
cls is computed

as:

AL
cls = F (v, ta, tn) =

exp(⟨v, ta⟩)/τ

exp(⟨v, tn⟩/τ)) + exp(⟨v, ta⟩/τ)
(4.1)

where τ is the temperature hyperparameter. Note that no visual information

is injected into the model, but rather unknown anomalies are detected through

the powerful open-world generalization of CLIP.

The computation is extended from global visual embeddings to patch-

level visual embeddings to derive the corresponding segmentation maps AL
loc ∈

R
H×W , the final layer of the visual encoder has a set of patch tokens p(j,k) ∈ R

35



that potentially contain image local information in the patch level. For a patch

token p(j,k), the local anomaly score is computed as:

AL
loc =

{

F (p(j,k), ta, tn)
}h−1,w−1

j=0,k=0
(4.2)

=

{

exp(⟨p(j,k), ta⟩/τ)

exp(⟨p(j,k), tn⟩/τ) + exp(⟨p(j,k), ta⟩/τ)

}h−1,w−1

j=0,k=0

(4.3)

However, since CLIP was primarily trained to align the class tokens with

the text token for global classification, there’s a lack of alignment between

local patch tokens and text embeddings that leads to limited performance in

segmenting anomalous regions. Hence, after iterative explorations [20], [45],

[92], V-V attention was adopted to produce the local-aware patch tokens.

In original Q-K-V attention, the attention score can be disproportionately

influenced by specific tokens, leading to a representation that is disturbed by

unrelated local features, which can weaken the model’s localization ability to

detect anomalies. The V-V attention mechanism is proposed as an alterna-

tive that enhances the local features without additional training. This novel

attention mechanism replaces the queries and keys with values.

V l = Proj.(Attention(V l−1, V l−1, V l−1)) + V l−1 (4.4)

By focusing on self-attention within the values themselves, V-V attention

avoids bias introduced by the query and key interactions in Q-K-V attention.

It reduces the disturbance caused by other tokens, ensuring that each value

contributes significantly to its own representation. As a result, attention maps

produced by V-V attention exhibit a pronounced diagonal pattern, indicating

that each token predominantly attends to itself, thereby preserving its local

information.

In our model, the architecture remains the same with AnoCLIP [20], which

follows a 2-way forward path. The original Q-K-V attention path was kept

to produce the class token, which was used to calculate sample level anomaly

score AL
cls. The patch tokens used for localization score AL

loc are all computed

by the V-V attention path.
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Figure 4.3: Qualitative illustration of the comparison with AD results on
MVTecAD and VisA. The top row illustrates the result solely using textual
information. The middle row depicts detection results through paired queries’
visual feature comparison. The bottom row showcases more robust results
achieved by integrating both language and visual features, and the ground
truth is marked with green boundaries.

4.2.2 Dual Image Feature Enhancement

As shown in Fig. 4.2, we proposed a novel approach that inputs a pair of

images in test-time. Unlike previous CLIP-based AD works [20], [32], [68],

[92] which predominantly rely on text prompts for inference, we incorporate

additional visual information to facilitate a more comprehensive joint vision-

language prediction. To highlight the effectiveness of our approach, we provide

a comparative analysis in Fig. 4.3.

Fig. 4.3 demonstrates a significant observation: the exclusive dependence

on either textual or visual information alone proves inadequate for the accu-

rate detection of certain anomalies. The limitation in leveraging text stems

from the constraints inherent in utilizing state descriptions within prompts,

with terms like “broken” or “damaged” falling short of encapsulating the full

spectrum of potential anomalies. Making inferences on a single image invites

biases and misinterpretations, emphasizing a more extensive visual intra-class

diversity to form a baseline for normalcy. For instance, consider the “PCB”

example in column 3 of Fig. 4.3, where a misplaced LED is an anomaly; how-

ever, using text description alone is insufficient for its detection. Moreover,

logical anomalies, global distortions, rare objects, or complicated scenes are

more challenging to discern from by text-based method. This emphasizes the
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importance of incorporating additional visual context for a varied example to

enhance the detection accuracy. Conversely, relying solely on pairwise visual

comparisons also presents limitations, as the reference image could itself be

anomalous. Consequently, this paves the way for an integrated approach that

combines textual and visual data to overcome these challenges. As depicted

in Fig. 4.3, employing dual-image inputs within the CLIP-based framework

mitigates these issues, contributing to improved anomaly localization accuracy.

In response to these findings, our framework introduces a novel strategy

that capitalizes on both textual and visual features. This is achieved by a

unique process of randomly selecting pairs of test images to serve as the query

and reference images. For these image pairs, we extract patch tokens, denoted

as q(j,k) for the query and r(m,n) for the reference. These patch tokens form

the basis for the pairwise visual feature comparison.

In this pairwise feature comparison strategy, each patch token q(j,k) from

the query image undergoes a nearest neighbour search with the patch tokens

from the reference image, effectively using the latter as a memory repository.

The anomaly score for each query patch token q(j,k) is determined by calcu-

lating its cosine similarity with all reference patch tokens set Sr = {r(m,n) |

m ∈ {1, . . . , H}, n ∈ {1, . . . ,W}}. The maximum similarity score, indicating

the minimum deviation, is then designated as the anomaly score for the query

patch:

AV
(j,k) = min

r(m,n)∈Sr

(

1− sim
(

q(j,k), r(m,n)

))

(4.5)

In the equation above, AV
(j,k) represents the visual reference anomaly score

of the query patch q(j,k), the overall anomaly score AV ∈ R
H×W for the query

image, is a composition of all the patch scores across the entire image. sim

represents the cosine similarity between the patch tokens of the two samples.

As a result, the vision-language joint anomaly score can be computed as:

AV L
loc = AV + AL

loc (4.6)
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Figure 4.4: Workflow of the test-time adaptation module. The module inputs
patch tokens through a linear layer, aligning predictions on the adapted token
with the zero-shot vision-language joint anomaly score. Pseudo-anomalous
samples are compared with original samples to predict pseudo-anomaly masks.
The flame icon denotes trainable components. ATM denotes the prediction for
the pseudo anomalies.

4.2.3 Test-Time Adaption with Pseudo Anomaly Syn-
thesis

As the visual-language alignment needed to be refined for AD, we proposed a

test-time adaptation module to boost the CLIP-based model’s AD capabilities.

Our TTA module is achieved through a linear adapter, as depicted in Fig. 4.4.

For the original image, we utilize the pseudo anomaly synthesis technique from

DRAEM [83] to introduce image corruptions. DRAEM creates random-shaped

pseudo anomaly masks using Perlin noise [51] and overlays textures from [12]

onto the original image at masked locations. The resultant pseudo-anomalous

patch tokens, denoted as q′(j,k) ∈ R, encapsulate pseudo-anomalous features.

The online adaptation of the original and synthesized patch tokens is math-

ematically represented as:

qT(j,k) =
1

2

(

G(q(j,k)) + q(j,k)
)

(4.7)

q′T(j,k) =
1

2

(

G(q′(j,k)) + q′(j,k)
)

(4.8)

Here G(·) denotes the linear computation. Subsequently, these adapted patch

tokens are aligned with text tokens to compute the anomaly score:

AT =
{

F (qT(j,k), ta, tn)
}h−1,w−1

j=0,k=0
(4.9)
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To optimize the weights of the linear layer, we establish self-supervised

tasks using pseudo anomalies. For the original and adapted patch tokens

qT(j,k), q
′T
(j,k) from queries, we design two discriminative self-supervised tasks for

TTA:

(1) For predicting pseudo anomaly masks Ma, we define the Lpseudo loss as:

Lpseudo =
1

|Sa|

∑

(j,k)∈Sa

(

−Ma · log

(

exp(A′T )

exp(AT ) + exp(A′T )

))

j,k

(4.10)

Here, Sa represents the set of indices (j, k) where Ma ̸= 0, indicating regions

augmented by the pseudo mask Ma. Lpseudo prompts the adapter to retain ab-

normal features and recognize pseudo anomalies, aiding in the subtle detection

of real anomalies.

(2) To encourage the adapter to preserve normal features and uphold gen-

eral anomaly detection capabilities, we utilize the similarity loss Lsim to en-

sure that adapted anomaly scores AT are consistent with the zero-shot vision-

language joint localization:

Lsim = sim
(

AV L
loc , A

T
)

(4.11)

The aggregate learning objective to train our adapter is L = Lpseudo +

βLsim. This TTA process is efficient and does not require any training data or

annotation. Finally, the overall anomaly classification and localization score

for the query image should be computed as:

Aloc = λ1A
V + λ2A

T (4.12)

Acls = λ3A
L
det + λ4 max

j,k
AV + λ5 max

j,k
AT (4.13)

4.3 Experiment

4.3.1 Experimental Setup

Datasets.

In our chapter, we conducted experiments using the MVTecAD [7] and VisA

[94] datasets. Both of these datasets offer a wide array of subsets featuring

various objects and textures. MVTecAD includes high-resolution images with
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dimensions varying from 7002 to 10242, while the VisA comprises rectangular

images with resolutions around 1.5K×1K, each accompanied by corresponding

anomaly ground truth masks. Specifically, MVTecAD encompasses 5 texture

categories and 10 object categories, whereas VisA is composed of 12 subsets,

each dedicated to different objects. In this chapter, we exclusively utilized

the test dataset to evaluate zero-shot anomaly classification and localization,

without the acquisition of additional datasets.

Data Preprocessing

We adopted the OpenCLIP’s [31] outlined preprocessing methods. The pro-

cess commenced with the bilinear resizing of the images to a standard height

dimension of 240 pixels, coupled with a subsequent channel-wise normalization

process. The VisA dataset posed a unique challenge due to its assortment of

non-square images, which did not conform to the desired (240, 240) dimension

post-resizing. To address this discrepancy and ensure compatibility with the

CLIP model’s training dataset dimensions, we deployed the image tiling tech-

nique, which involved segmenting each image into two equal parts of (240, 240).

These segments were later merged back into a single image. Post-inference,

the overlapping areas are averaged to maintain consistency in the final image

representation.

Metrics.

We assess the efficacy of our model by utilizing the Area Under Receiver Oper-

ator Characteristics (AUROC) image-level AUROC is used for anomaly detec-

tion, and pixel-level AUROC is measured for evaluating anomaly localization.

However, the metric is dominated by a large number of normal pixels and is

thus kept high despite false detections. We thus additionally report the F1Max

score and Area Under Precision-Recall (AUPR) as a balanced calculation of

the precision and recall to overcome the class imbalance. In addition to that,

we compute the Per-Region-Overlap (PRO) to measure anomaly localization,

which weights each connected component within the ground truth of varying

sizes equally, making it more robust than simple pixel measurement.
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Implementation.

We adopt ViT-B-16+ [25] as the visual encoder and the transformer [72] as the

text encoder by default from the public pretrained CLIP model [31]. For the

text encoder, following previous work of AnoCLIP [20], employing 22 base tem-

plates collected from CLIP [54], 7 pairs of state prompts, and 4 domain-aware

prompts to generate sufficient prompts. We adhered to the data preprocessing

pipeline outlined in OpenCLIP [31] for both MVTecAD and VisA benchmarks,

standardizing image sizes to (240, 240). Regarding the scoring coefficients, we

configured λ1, λ3, λ4, λ5 to 1, and set λ2 to 1.5. For TTA, we use the AdamW

[38] optimizer and set the learning rate to 0.001, β = 0.5, the adaptor is opti-

mized with 2 training steps. We report the mean and variance of the results

over 6 random seeds.

4.3.2 Performance

Tab. 4.1 presents the performance of zero-shot anomaly detection on MVTecAD

and VisA datasets. Our proposed method is compared with prior ZSAD

based works, including CLIP [54], WinCLIP [32], AnoCLIP [20], and MuSc

[44]. Notely, MuSc utilized the entire test set for visual reference, aligning

with transductive rather than inductive learning. For a fair comparison, we

adapted MuSc to our pairwise image setting and used ViT-B-16+ as the back-

bone, denoted as MuSc-2. From the table, our proposed methods exhibit

exceptional performance, significantly outperforming AnoCLIP by margins of

2.2%, 6.0%, 6.2% in AUROC, F1Max, and PRO for anomaly localization. We

also achieve advancements in anomaly classification, surpassing other methods

by substantial margins. This trend of exceptional performance is consistent

on the VisA dataset. Qualitative results for ZSAD are further detailed in Fig.

4.3, illustrating our model’s capacity to effectively classify and localize the

anomalies across varied samples.

Additionally, Fig. 4.2 presents a comparison of our method against other

AD models by AUROC scores on MVTecAD. Here, we categorize current zero-

shot anomaly detection methodologies into three paradigms: Auxiliary Data
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Table 4.1: Zero-shot Anomaly Localization (AL) and Anomaly Classification
(AC) on MVTecAD and VisA datasets. Bold indicates the best performance
and underline indicates the runner-up unless otherwise noted. MuSc-2 denotes
inference with 2 images.

Methods
MvTecAD VisA

AL AC AL AC

AUROC F1Max PRO AUROC F1Max PRO AUROC F1Max PRO AUROC F1Max PRO

CLIP [54] 19.5 6.2 1.6 74.0 88.5 89.1 22.3 1.4 0.8 59.3 74.4 67.0
WinCLIP [32] 85.1 31.7 64.6 91.8 91.9 96.5 79.6 14.8 59.8 78.1 79.0 81.2
AnoCLIP [20] 90.6 36.5 77.8 92.5 93.2 96.7 91.4 17.4 75.0 79.2 79.7 81.7
MuSc-2 [44] 92.4 41.2 76.5 81.7 89.1 90.3 92.6 26.7 63.2 69.4 75.1 73.3

Ours 92.6 41.8 82.6 93.1 94.0 96.6 94.8 23.5 78.6 82.6 81.0 84.2
Ours+ 92.8 42.5 84.0 93.2 94.1 96.7 94.2 24.1 79.7 82.9 80.9 84.7

Table 4.2: Comparative analysis of AD methods in Full-shot and Zero-shot
settings.

Setting Full Shot
Zero-shot

Aux. Data Transd. Induct.

Methods DRAEM [83] UniAD[81] AprilGAN [10] AnomalyCLIP[92] MuSc [44] WinCLIP [32] AnoCLIP [20] Ours

A.C. 88.1 96.5 87.6 91.5 97.8 91.2 92.5 93.2±0.8
A.L. 87.2 96.8 86.1 91.1 97.3 85.1 90.6 92.8±0.2

approaches that utilize additional anomalous data for training, Transductive

Learning Methods that infer from the extensive portion of the test set, and

Inductive Learning Approaches that assess each query independently, without

prior knowledge of the overall distribution. Our method, an exemplar of the

inductive approach, outperforms Auxiliary Data Approaches without requiring

exposure to anomalies during training.

Contrasting our method with MuSc, the state-of-the-art transductive learn-

ing setting of ZSAD, MuSc requires accessing the entire test set distribution

before inference, making it highly dependent on the data distribution, and po-

tentially limiting in real-world applications like online real-time inference. In

Tab. 4.1, our method surpasses MuSc’s performance on the pair-image setting,

especially in anomaly classification. This derives advantages from the utiliza-

tion of the class token in CLIP embeddings, and emphasizes the efficiency and

robustness of our joint language-vision prediction.
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Figure 4.5: AUROC on MVTecAD with an increasing number of reference
images.

4.4 Ablation Studies

4.4.1 Reference Images Quantity

From Fig. 4.5, a clear trend is observed: with the increasing number of ref-

erence images, the anomaly detection performance improves, reflected from

both pixel-level and sample-level AUROC. This supports the hypothesis that

unlabeld images can still offer valuable comparative references for anomaly

identification.

Significantly, the most pronounced performance leap occurs when the num-

ber of reference images is increased from 0 to 1, indicating that even a single

reference image can substantially improve the model’s AD ability. However,

the subsequent performance gains from 1 to 7 reference images are present

but exhibit diminishing returns. This trend implies that considering the fac-

tors of inference time and memory efficiency, utilizing a large pool of reference

images might not always be feasible or optimal, particularly in real-world ap-

plications where access to a wide array of suitable samples is often limited.

In this context, a pairwise approach emerges as a balanced solution, optimiz-

ing the trade-off between improved detection performance and computational

resource efficiency. Moreover, the observed differences in the degree of im-

provement between pixel AUROC and sample AUROC point that while visual
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Figure 4.6: Impact of Reference Image Selection, illustrating variance in
anomaly score on the choice of normal samples and various anomalous sam-
ples.

details are paramount in pinpointing anomalies, they may be less influential

in the broader context of classifying an entire sample as anomalous.

4.4.2 The Choice of Pairing Samples

Since the reference images are randomly sampled from unlabeld images, they

can either be normal or anomalous. This leads to the question: how does an

anomalous reference image affect the precision of anomaly detection?

Fig. 4.6 illustrates how different reference images can significantly influ-

ence the anomaly score. In the case of the “bottle”, it is evident that using a

normal reference image generally guarantees the accuracy of anomaly detec-

tion, as it provides a clear baseline for identifying outliers. Conversely, when

the reference image contains anomalies, such as breaks or contamination, these

imperfections can misleadingly provide a false reference for the query image,

erroneously highlighting the reference image’s damaged region in the query.

This phenomenon suggests that the abnormal condition of the reference image

can “pollute” the anomaly score of the query image.

Interestingly, integrating textual cues with visual data can mitigate this

negative effect. By leveraging textual features from prompts, the model can

effectively counter the false prediction associated with the anomalous refer-
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Table 4.3: Ablation studies on the TTA module.

A.L. A.C
+AV +TTA

AUROC F1Max PRO AUROC F1Max AP

base.

85.3± 0.0 29.1± 0.1 71.8± 0.4 91.6± 0.0 92.9± 0.1 96.4± 0.0
✓ 88.7± 0.2 35.6± 0.2 80.1± 0.4 92.1± 0.3 93.1± 0.2 96.6± 0.1

✓ 92.6± 0.2 41.8± 0.8 82.6± 0.4 93.1± 0.6 94.0± 0.2 96.6± 0.3
✓ ✓ 92.8±0.2 42.4±0.7 84.0±0.4 93.2±0.8 94.1±0.2 96.7±0.4

ences. As depicted in Fig. 4.6, the joint predictions that combine both visual

and language information exhibit a notable increase in accuracy, underscoring

the potential of language-vision joint anomaly detection.

4.4.3 Test-Time Adaption Module

We also studied the impact of various training steps on model performance,

Fig. 4.8 demonstrates the AUROC and PRO for training steps ranging from

1 to 6. We can see both the pixel and sample AUROC and PRO scores

reach the optimal when the training step is set to 2, and start to decrease.

Therefore, we opted for a training step = 2. In Tab. 4.3, we showcase the

performance enhancements by the TTA module. Here we take the text-only

approach as the baseline. The table shows that implementing the TTA module

on the baseline yields a notable increase in performance. When the TTA

module operates alongside a paired reference image, the results are further

amplified. In this scenario, the AUROC for AL climbs to 92.8%, and AC

reaches 93.2%. Further, the improvement in the F1Max and PRO indicates

a more balanced and effective model, particularly in terms of its localization

capabilities. The influence of the TTA module is further presented in Fig. 4.7,

where a marked distinction in anomaly scores between normal and anomalous

patches is observed post-adaptation. Prior to adaptation, the “missing cable”

region was not adequately identified, and the adaptation process leads to a

refined alignment between visual perception and language context, resulting

in superior AL and AC performance.
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Figure 4.7: Left: Histogram of the TTA anomaly score from the highlighted
red box region. Right: Heatmap of the anomaly score for “missing cable”
before and after adaptation.

4.4.4 Ablation Study on Hyperparameters

We conducted a comprehensive performance comparison across various set-

tings of hyperparameters λ1 through λ5. These experiments were executed

using 6 different random seeds, and we report the results as mean values with

standard deviations to provide a clear understanding of variability and relia-

bility.

Table 4.4: Comparative study of the zero-shot anomaly localization (AL) per-
formance on MVTecAD with various λ1 and λ2 settings. Bold values indicate
the best results.

λ1 λ2 AUROC F1Max PRO

1 0.5 92.5± 0.2 41.7± 0.8 82.2± 0.3
1 1 92.7± 0.2 42.4±0.7 83.4± 0.4
1 1.5 92.8±0.2 42.4±0.7 84.0± 0.4
2 2 92.7± 0.2 42.3± 0.6 84.1±0.3
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(a) AUROC on MVTecAD with different TTA training
steps.

(b) PRO on MVTecAD with different TTA training steps.

Figure 4.8: Ablation studies on test-time adaptation.

4.5 Limitations and Conclusion

4.5.1 Limitations & Future work

Our approach, while robust in many scenarios, is not without its limitations.

One notable constraint is the requirement of inputting two images during

inference, which may not be feasible with certain scenarios where single-image

processing is crucial. Despite this, our method still demonstrates a significant

performance enhancement in most cases.

Moreover, while our framework achieves SOTA performance in the zero-

shot inductive learning setting, it reveals a gap when compared to SOTA

models trained under full-shot regimes and zero-shot transductive learning
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Table 4.5: Comparative study of the zero-shot anomaly classification (AC)
performance on MVTecAD with various λ3, λ4, and λ5 settings. Bold values
indicate the best results.

λ3 λ4 λ5 AUROC F1Max AP

1 1 1 93.2±0.8 94.1±0.2 96.7± 0.4
1 1 2 93.1± 0.8 94.0± 0.3 96.8±0.4
1 2 1 91.9± 0.8 93.2± 0.2 94.8± 0.4
2 1 1 93.1± 0.6 94.0± 0.1 96.7± 0.3

approaches. As Tab. 4.2 shows, our method outperforms many existing models

in unified AC and AL. However, it falls short of the benchmarks set by UniAD

[81] and MuSc [44], particularly in scenarios where MuSc excels using visual

features alone. This discrepancy suggests that there is substantial untapped

potential for further exploration of visual reference features.

Additionally, our study offers novel insights into the application of the

CLIP model for fine-grained anomaly detection: We demonstrate that joint

visual and textual discrimination is a key contributor to enhancing fine-grained

anomaly localization capabilities within the CLIP framework. Our findings

also indicate that even when the visual reference images are anomalous, they

can still serve as references for accurate anomaly scoring. These insights not

only affirm the effectiveness of our proposed method but also open avenues

for future research in refining visual-language models for more precise and

versatile anomaly detection tasks.

4.5.2 Conclusion

In this chapter, we introduced an innovative framework, the Dual-Image En-

hanced CLIP for anomaly classification and localization, in the realm of zero-

shot learning. Our approach leverages pairs of unlabeld images utilizes the

pseudo anomaly in the TTA module, and demonstrates remarkable enhance-

ment in performance, outperforming several SOTA methods. This advance-

ment was achieved without the need for additional training, showcasing the

framework’s practicality and efficiency. Our findings also highlighted the un-

tapped potential in combining textual features and visual references, suggest-
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ing room for further exploration in this domain.
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Chapter 5

Conclusion & Future Work

5.1 Conclusions

Anomaly detection has seen significant advancements in recent years with a

trend of transitioning from unsupervised methods to multi-class and zero-shot

scenarios, and developing specialized solution in distinct domains. This thesis

showcases the strategic use of auxiliary information as a strategy to overcome

the limitations of traditional models in these novel contexts, demonstrating

how auxiliary data can enhance AD capabilities in varied and complex tasks.

The first part focus on Liver Tumor Segmentation for medical anomaly de-

tection, we propose a random-shape anomaly synthesis algorithm and a two-

stage training strategy to address the performance variability during training.

Our findings suggest that a discriminative model should not be overly trained

on synthetic anomalies to preserve generalizability. This work establishes a

framework for generating and training with pseudo anomalies, and demon-

strates substantial improvements over baseline methods.

In the second part, we present Dual-Image Enhanced CLIP, a method that

leverages both visual and textual information to predict anomalies. By using

pairs of images where one serves as the visual reference for the other, our

method significantly leverages the hidden normality in unlabeld images, and

improves accuracy over existing SOTA ZSAD methods.
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5.2 Future Works

The increasing interest in zero-shot anomaly detection opens up new avenues

for incorporating large Vision-Language models like Flamingo [5] into AD.

These models, with their unique semantic-vision alignment capabilities, hold

promise for identifying anomalous patterns. Our research demonstrates the

effectiveness of integrating visual and textual features, utilizing auxiliary infor-

mation to enhance anomaly localization within the CLIP framework. This in-

sight lays the groundwork for future research aimed at refining vision-language

models for more precise AD tasks.

In the medical domain, with the advent of medical vision-language models

[75], there is a vast potential for applying these models to medical AD. Our

future endeavours will extend to various diseases and data modalities, incor-

porating both real and synthetic tumors within the training pipeline, pushing

forward the capabilities of medical AD. This approach harnesses the potential

of auxiliary data to improve model performance in complex medical scenarios.
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Appendix

A.1 Supplementary Materials for Chatper 3

A.1.1 Addtional Results on AUROC

Table A.1: Lesion detection performance as evaluated by the sample-level
AUROC score, and Dice upper bound ⌈Dice⌉. The best results are highlighted
in bold. And results marked with an * indicate the Dice value instead of the
Dice upper bound. Results marked with ** are directly copied from the original
paper.

Method Sample AUROC ⌈Dice⌉

Padim [15] 60.87± 0.60 7.07± 0.25
Cut&Paste [42] 58.22± 1.92 –
Ganomaly [1] 68.93± 0.48 –
Patchcore [57] 70.66± 0.45 18.54± 1.15

Reverse Distillation [17] 70.08± 1.61 17.58± 2.51
Li et al [43] 86.1** -

Ours 75.51± 1.40 53.03± 1.78*

A.2 Supplementary Materials for Chatper 4

A.2.1 Prompt Templates

We follows AnoCLIP [20] to produce prompts descriptions. It’s composed

of base templates, descriptive state words, and domain-aware prompts, de-

noted as following: “[c]” represents each class category; “[s]” denotes the state

prompts; “[d]” is the domain-aware prompts. By systematically substituting

“[s]”, “[d]”, and “[c]” into the base templates, we generate a diverse array of

prompts. These prompts effectively encompass both normal and anomalous

scenarios within their respective domains.
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• Base Templates

– “a [d] cropped photo of the [s]”

– “a [d] cropped photo of a [s]”

– “a [d] close-up photo of a [s]”

– “a [d] close-up photo of the [s]”

– “a bright [d] photo of a [s]”

– “a bright [d] photo of the [s]”

– “a dark [d] photo of the [s]”

– “a dark [d] photo of a [s]”

– “a jpeg corrupted [d] photo of a [s]”

– “a jpeg corrupted [d] photo of the [s]”

– “a blurry [d] photo of the [s]”

– “a blurry [d] photo of a [s]”

– “a [d] photo of a [s]”

– “a [d] photo of the [s]”

– “a [d] photo of a small [s]”

– “a [d] photo of the small [s]”

– “a [d] photo of a large [s]”

– “a [d] photo of the large [s]”

– “a [d] photo of the [s] for visual inspection”

– “a [d] photo of a [s] for visual inspection”

– “a [d] photo of the [s] for anomaly detection”

– “a [d] photo of a [s] for anomaly detection”

• Descriptive State Words

normal states:

– s := “normal [c]”
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– s := “unblemished [c]”

– s := “flawless [c]”

– s := “perfect [c]”

– s := “[c] without flaw”

– s := “[c] without damage”

– s := “[c] without defect”

abnormal states:

– s := “damaged [c]”

– s := “abnormal [c]”

– s := “imperfect [c]”

– s := “blemished [c]”

– s := “[c] with flaw”

– s := “[c] with damage”

– s := “[c] with defect”

• Domain Prompts

– For all categories:

∗ d := “industrial”

– For surface categories (carpet, leather, grid, tile, wood):

∗ d := “textural”

∗ d := “surface”

– For all other categories:

∗ d := “manufacturing”

A.2.2 Visualizations of Anomaly Localization Results

We visualize the zero-shot anomaly detection results on MVTecAD in Fig.

A.1 and Fig. A.2 and VisA in Fig. A.3 and Fig. A.4. Notably, the segmen-

tation threshold is selected based on the max value of the F1 score. Also, our
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Figure A.1: Visualization of prediction examples from “bottle”, “cable”, “cap-
sule”, “carpet”, “grid”, “hazelnut”, “leather”, and “metalnut” categories.
Green line in the images denotes the ground truth of the anomaly. The success
and failure cases are bordered with red and green, respectively.

Figure A.2: Visualization of prediction examples from “pill”, “screw”, “tooth-
brush”, “transistor”, and “zipper” categories. Green line in the images denotes
the ground truth of the anomaly. The success and failure cases are bordered
with red and green, respectively.

TTA enhanced method which is denoted as ours+, yields more accurate and

comprehensive results, even in difficult scenarios and failure cases.

Figure A.3: Visualization of prediction examples from “candle”, “capsules”,
“chewing gum”, “cashew”, “fryum”, and “macaroni1” categories. Green line
in the images denotes the ground truth of the anomaly. The success and failure
cases are bordered with red and green, respectively.
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Figure A.4: Visualization of prediction examples from “macaroni2”, “pcb1”,
“pcb2”, “pcb3”, “pcb4”, and “pipe fryum” categories. Green line in the images
denotes the ground truth of the anomaly. The success and failure cases are
bordered with red and green, respectively.
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