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ABSTRACT 

Many adult concepts can be represented in taxonomies – hierarchical systems in which 

concepts are differentiated into varying levels of abstraction (e.g., musical instrument, 

wind instrument, flute) related by class inclusion (a flute is a wind instrument and a wind 

instrument is a musical instrument). Indeed, most natural kinds (e.g., whale, tree) and 

artifacts (e.g., flute, truck) are generally believed to fall within taxonomies. Moreover, in 

real world contexts, concepts are probably rarely learned as explicitly contrasting sets 

existing completely outside of known taxonomies (that is, one might not learn cats vs. 

dogs without also learning that both are types of animals, and that both include more 

specific subcategories). Surprisingly, relatively little research has been done on the 

learning of categories that are hierarchically structured. The present study began an 

investigation into how adults learned new concepts that are hierarchically structured. In 

Experiment 1, participants learned to classify items at one taxonomic level then at a later 

time classified items at either the same or a different level. The results suggested that 

people were unable to clearly detect the relationship among alternate levels of the 

hierarchy prior to exposure of those levels. However, results in Experiment 1 also 

suggested that learning multiple categories might lead to deeper understanding of how 

features transfer or generalize to higher taxonomic levels. The remaining experiments 

addressed more explicitly the influence of hierarchical structures on category learning by 

including prototype and control items, along with artificial and knowledge-based category 

labels. Results from these experiments indicated that, at least within the parameters of this 

study, prior experience cued by knowledge-based category labels interacted adversely with 

abstract materials and interfered with mapping of item information to categories.  



 

Moreover, when the relationship between categories and item information is unclear, 

generalization might be one important means by which people categorize.  
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Taxonomies, Knowledge, and Artifacts; Interactivity in Category Learning 

Overview 

 Partitioning the world into meaningful categories is a formidable task, especially 

considering the vast number of comparisons that must be made during the categorization 

process. For instance, it is likely that when we first learn the category dog our comparison 

extends beyond other types of dogs; indeed potentially any object of natural kind 

experienced (or being experienced) by the agent is a candidate for comparison. 

Furthermore, the specific features of the object, its taxonomic position, the prior 

experience of the agent, and the context in which the decision occurs influence the 

categorization process. Given the sheer number of variables influencing a category 

decision the question of how the experimenter is able to capture the learning experience 

is very real.  

 Traditionally cognitive psychology has approached this task by carving the 

universe into distinct domains. Indeed a number of studies have demonstrated the effect 

of domain specific knowledge in categorization (Murphy & Medin, 1985; Pazzani, 1991; 

Wattenmaker, 1995). As a result, some have suggested (e.g., Hirschfeld & Gelman, 1994) 

that a categorization approach spanning multiple domains (e.g., artifacts, real world 

natural kinds, taxonomy, social categories) is problematic. However, it can be argued (see 

e.g., Bruner, Goodnow, & Austin, 1956) that a failure to merge domains results in only a 

limited understanding of how different domains interact to influence the category 

learning process.  

One concern of this proposal is how various domains interact to influence 

category learning. For example, many studies exploring the effect of taxonomy on 
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learning have focused narrowly on issues of either privileged taxonomic levels (see e.g., 

Rosch, 1975,1976; Murphy & Smith, 1982), psychological reality of taxonomic 

structures (see e.g., Sloman, 1993, 1998), or age of acquisition for taxonomic structures 

(see e.g., Markman & Callanan, 1984). Similarly, investigations of how knowledge 

influences category learning often occur under conditions where category structures 

already support coarse knowledge representations (see e.g., Kaplan & Murphy, 2000; 

Murphy & Allopenna, 1994; Spalding & Murphy, 1996; Ross & Murphy, 1999). Rarely 

(at least in the adult literature) have the influences of knowledge and taxonomy been 

explored within the context of structures having very weak connections to prior 

knowledge. The importance of using such structures is apparent when considering 

conceptual development. The use of fully formed or partially formed structures fails to 

capture initial learning experiences. This proposal introduces a new paradigm that is 

intended to capture such experiences, thereby exploring traditional questions such as 

whether there are natural tendencies toward using taxonomic structures. Additionally, 

new questions are addressed; for example, how does learning abstract item structures 

interact with prior knowledge within taxonomic structures?   
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Introduction 

 Categorization and concept are terms that cognitive psychologists use to describe 

how people conceptualize and understand the world around them. Although there is some 

general agreement that categorization is a fundamental cognitive process, and concepts 

are mental constructs, it is hard to find a consensual view on what the terms category and 

concept really represent. 

 According to Malt (1995), psychologists have failed to reach a consensus on the 

relative contribution of the environment versus the categorizer in determining categories.  

While some hold that the environment is highly structured and that the categorizer forms 

categories by directly recognizing structure in the world (Rosch, 1978), others hold that 

category formation is heavily influenced by cognitive processes that direct how the world 

is perceived (Murphy & Medin, 1985). Hampton and Dubois (1993) have suggested that 

controversies surrounding formalization and application of the terms category and 

concept result from cognitive science being a relatively young discipline where rival 

theories of categorization have led to a high degree of disparity between terms. One thing 

that will become evident as the major theories of categorization are surveyed below is 

that this is a diverse field that has undergone rapid paradigm shifts.   

 Since the establishment of cognitive science in the 1950’s, several major 

psychological theories of classification have been advanced. The present proposal will 

focus on four of these theories: the classical view, the prototype theory, the exemplar 

theory, and the knowledge view.  
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1.1 Theories of Categorization 

1.1.1 Classical View 

The classical theory, which is one of the longest held views of categorization 

(Murphy, 2002), holds that the world displays a universal taxonomic order.  All natural 

kinds belong to classes that are related by type relations and form a hierarchical structure. 

Concepts are considered terms, which consist of defining features that constitute a 

condition for category membership.  Additionally, all classes are characterized by a 

membership condition that all objects must meet in order to be a member of the class. A 

concept represents a set of defining features that are independently necessary and jointly 

sufficient for category membership.  For example, a triangle is a closed geometric figure 

having 3 sides, and interior angles that sum to 180 degrees.  For a figure to meet the 

necessary definition of a triangle it must contain these defining characteristics otherwise 

it cannot be a triangle. So if a figure does not have interior angles that sum to 180 degrees 

it is not a triangle. The sufficient condition for a figure’s classification as a triangle is met 

if it has all the features that define it as a triangle (e.g., not only has interior angles that 

sum to 180 degrees but a closed geometric figure having 3 sides).   

Hull (1920) provides one of the earliest examples of experimental research on 

concept learning (Murphy, 2002) and was in large part influenced by the classical view.  

In his experiment Hull used artificial category stimuli. Because artificial stimuli are 

abstract and meaningless they are often used in order to control for affects of prior 

knowledge, learning, etc. Hull created twelve categories of twelve stimuli each. The 

stimuli were in the form of distorted Chinese characters. A meaningless sound was 

associated with each of the categories (i.e., “oo”,  “yer”) and represented the category 
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name. The categorization task involved participants responding phonetically to each of 

the stimuli. Consistent with the classical view, response accuracy was dependent on 

detecting the necessary and sufficient characteristics imbedded in each of the stimuli. For 

example, any stimuli containing a check-mark radical (a check mark with two smaller 

marks inside it) was accurately categorized if named an “oo”.  All stimuli containing a 

check-mark radical were an “oo” and all stimuli failing to contain the radical were not an  

“oo” (satisfying the necessary condition). Additionally, any stimuli containing all the 

characteristics of an “oo” must be an “oo” (meeting the jointly sufficient criterion).   

Hull’s (1920) application of the classical view was one of the first experimental 

studies of concept learning that relied on behavioral data. Indeed his study laid the 

foundation for further research (see e.g., Murphy, 2002) in concept learning. The interest 

in the classical view of concepts following Hull’s research is not surprising given the 

compelling characteristics that can be attributed to this view. The classical view conforms 

well with the way people typically communicate concepts to one another. For example, 

when describing a car as a vehicle a person might list features such as have wheels, 

doors, and an engine that propels it over roads. This description resembles the necessary 

and sufficient conditions required for the claim of car. The classical view is also 

parsimonious (a characteristic desired among empiricists): a concept and its natural 

counterpart are defined by a set of necessary and sufficient conditions. Empiricists have 

little difficulty understanding how a concept could be represented as a definition or as a 

set of necessary and sufficient conditions.  

1.1.2 Prototype view 
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A shift in paradigm can be attributed to both inherent limitations of the classical 

view and several developments in the emerging field of cognitive psychology.  First, the 

classical view tended to ignore real world concept formation, its emphasis on definitional 

category structures failed to capture the complexity of how human perception interacts 

with natural kinds to influence category/concept formation.  Second, a growing body of 

evidence emerged suggesting that concepts were not defined as necessary and jointly 

sufficient features, but by typicality of characteristic features. In this view, category 

borders are not sharply defined, and an object belongs to a category to the extent that it 

resembles the prototype or exemplar of a category (Rosch & Mervis, 1975; Rosch, 1978; 

Brooks, 1978; Medin & Shaffer, 1978). The views that followed are often referred to as 

the “similarity based views” and are characterized by the notion that concepts contain and 

are on some level defined by shared attributes. The two similarity-based views addressed 

in this paper are the prototype and exemplar theories.  

According to prototype theory concepts are a distribution of properties, some of 

which are more central or typical than others.  In its weakest form, a prototype is a 

collection of properties composed over the typical instances of the concept. For example, 

the prototype for the concept fish might include the features swims, gills, and fins.  In 

contrast a strong view of prototypes, holds that a prototype is a single ideal that 

represents a whole category. The ideal fish would represent all fish, striped, spotted, and 

silver, small and large, trout, bass, and angel. The prototype view shares some qualities 

with the classical view (e.g., see Smith & Medin, 1981). For both theories, a concept is a 

set of features and conditions to be satisfied by the exemplars of the concept. However, 

the difference between the two theories centers on how features are selected. According 
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to the prototype theory, a person will categorize an object under the category dog to the 

extent that the object shares the same features with that category. Knowledge of an entity 

that barks, has fur, and wags its tail almost certainly leads to the conclusion of dog, 

whereas knowledge of an entity that simply barks leads only to the probability of a dog 

(e.g., walrus also bark). Prototypes then, are comprised of features that are 

probabilistically characteristic of the category but are not necessarily true for every 

instance. Many versions of the prototype theory also include some kind of weight that is 

related to each feature (Smith, Osherson, Rips, & Keane, 1988; Hampton, 1995). These 

weights represent how characteristic a property is of a given concept. For instance, the 

property of barking for the concept dog might be given greater weight than the property 

of fur.   

The pioneering research of Posner and Keel (1968, 1970) provides empirical 

support for a strong view of prototype theory. Posner and Keele used a prototype 

distortion task  (see also e.g., Fried & Holyoak, 1984; Smith & Minda, 1998) to create 

exemplars that varied around single category prototypes. Random dot patterns served as 

the category prototypes from which category exemplars were derived. Each category 

exemplar was generated by systematically varying the distance of each exemplar from its 

category prototype (resulting in exemplars that were either close or distant in physical 

similarity to the prototype). Using a category verification task, participants first learned to 

classify the exemplars created from the prototype dots. During this training phase 

corrective feedback was also provided. Immediately following the training phase some 

participants performed a transfer test in which they classified not only the old dot patterns 

(training items) but also new sets of items that were either low or high in distortion plus 
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the never before seen prototypes; other participants performed the same test but after a 

one week delay. Participants received no feedback during the transfer phase of the 

experiment. 

Posner and Keele’s (1970) experiments produced several findings. First, a 

standard typicality effect was found; correct identification of new exemplars decreased as 

distortion from the prototype category increased. However, the finding of most interest 

resulted from the differential effect of delay and immediate testing on classification of old 

dot patterns and prototype patterns. Specifically, accuracy performance for old dot 

patterns decreased over time to a greater extent than for prototype dot patterns. For the 

test immediately following training, participants classified old patterns more accurately 

than prototypes, but for the delayed test, correct classification for prototype was reliably 

better than for old dot patterns. These findings suggest that following immediate 

classification participants have representations for both study examples and abstracted 

prototypes, but that memory for exemplars fades more quickly than memory for 

prototypes.  

A strong view of prototypical representation stresses (see e.g., Posner & Keele, 

1968; 1970) that category level information is stored as a single abstraction; your 

category for bird is represented as the single best bird, which is characterized by all the 

features normally found in birds. Family resemblance theorists (see e.g., Rosch & Mervis, 

1975) suggest a somewhat weaker view of prototypical representation.  A critical 

component of this view is that concepts are summary representations. A concept is 

represented as sets of features typically found in its category members, but some features 

are more relevant than others, and therefore are weighted more heavily than other 
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features. For instance, that birds have wings is weighted heavily for the category bird, as 

having wings is highly typical for this category, whereas singing would carry less weight 

as fewer birds sing than have wings. Unlike a strong view of proto typicality, by 

attributing weights, the family resemblance view allows for inclusion of inconsistent 

features (see e.g., Murphy, 2002). It is questionable that any single prototype could 

represent an entire category as categories are often characterized by consistent and 

inconsistent attributes (e.g., birds come in all sizes; some sing while others do not).  

According to the family resemblance view then, concept representations are really lists of 

attributes, some consistent and some inconsistent. In support of this suggestion, Rosch 

and Mervis (1975) found that people rate some instances of a category as more 

representative than others and that these ratings were related to the number of typical 

features contained in the instance.  

Categorization of new items according to a family resemblance view follows a 

simple additive principle. The similarity of the new item is calculated in relation to the 

attribute list. When the new item has an attribute that is common to the representation the 

item receives recognition for the attribute’s weight. If the new item fails to have an 

attribute contained in the representation or contains an attribute that the representation 

fails to have, then the new item loses the weight of that attribute. Following examination 

of all the items’ attributes, the weights of the items’ positive attributes are summated 

while negative attributes are subtracted; the new item is then categorized accordingly. If 

the value obtained meets the category criterion the item is judged a member of the 

category. If the value obtained fails to meet the category criterion the item falls outside 

the category.  
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Like the prototype view, concepts for the family resemblance view are organized 

according to distribution of properties, some more central or typical than others.  

Furthermore, family resemblance structures like prototypes are comprised of features that 

generally characterize an instance but need not characterize every instance. The 

distinction between these views is that the prototype view equates category membership 

for an instance with an ideal whereas for the family resemblance view category 

membership is determined by an instance’s shared similarity to a summary 

representation. A characteristic of both views is that the classification of category 

members is dependent on similarity. To decide whether some animal is a dog or a cat, a 

person would compare that animal to either their prototype or summary representation 

and assign it to the category with which it shares greatest similarity. The prototype/family 

resemblance views have the advantage over earlier views of classification (e.g., see 

classical view, Smith & Medin, 1981) as they clearly explain typicality effects. Typical 

instances are those that have many traits in common with their prototype or representative 

member and have few traits in common with different categories.  

1.1.3 Exemplar View 

An alternative to the prototype view of concept representation is the exemplar 

view. Exemplar theorists (Brooks, 1978; Medin & Schaffer, 1978; Nosofsky, 1986) claim 

that instead of summary representations concepts are represented as remembered 

instances. Therefore a person’s concept for bird is not an abstraction of attributes varying 

to a greater or lesser degree in typicality. Instead a person’s representation(s) for bird is 

the set of all bird instances they have encountered. Like the family resemblance/prototype 

view categorization for the exemplar view is based on comparative similarity. However, 
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instead of comparing a test instance to a summary representation, the test instance is 

compared to remembered instances of the category and any category that shares 

similarities. In addition to having stored numerous instances of birds a person has also 

stored instances from different categories that share similar attributes (e.g., bats also fly). 

When categorizing a potential bird instance all stored instances for birds plus any 

instance resembling a bird are retrieved. Following retrieval of the comparison categories, 

the category with retrieved instances that are most similar to the test instance is selected.   

 Note that if all the instances retrieved belong to the same category then 

categorization of the test instance is a straightforward automatic process. The attributes of 

the test instance are compared those of other retrieved category members and if the 

required number of attributes are shared then that test instance belongs to the category.  

However, if the retrieved instances belong to different categories, then the categorization 

of the test instance becomes more complex. The similarity of the test instance to each 

retrieved member must be computed. The similarity scores are then combined over 

members of the categories, and finally the category having the highest similarity score is 

chosen.   

Exemplar theorists (Medin & Schaffer, 1978; Nosofsky, 1986) propose that 

memory for old instances alone can account for the transfer patterns found in Posner and 

Keele’s (1970) research. According to Medin and Schaffer (1978), the advantage for old 

items on the immediate testing results from the identical match of these items to instances 

stored in memory. However, with delay, memory for specific instances has degraded, so 

that identification of an old item is more problematic. For prototype items, outcomes are 

reversed.  At immediate testing, prototypes are not an identical match to memory for old 
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items so categorization is more difficult. With delay, memory for prototypes is stronger 

because they have similarity to many items and specific information for old items has 

been lost. As specific information is lost, critical cues to the correct identity of the item 

are also lost therefore the weight of recollection will be for the item that appeals to a 

general memory, which is the prototype item.   

Exemplar models appear to be more sensitive to within category correlations than 

prototype models (e.g., see Malt & Smith, 1984; Medin, Altom, Edelson, & Freko, 1982).  

For instance, exemplar models can easily represent the idea that small birds are more 

likely to fly than extremely large birds. This is because each instance is individually 

represented in memory and can be retrieved as stored. However, a clear problem for 

prototypical views is an inability to account for continuous dimensions. This is because 

new features are simply added to existing features lists. This leads to the rather untenable 

situation in which a bird may be concurrently both small and large. Over a series of 

experiments Medin, et al. (1982), showed that exemplar-based models are sensitive to 

within category feature correlations. In one experiment, they tested sensitivity to within 

category correlations by having participants study items from a category containing 

disease features. Two dimensions in the category were always highly correlated (e.g., 

splotches on the skin were always highly correlated with high red blood cell).  At test 

participants consistently judged correlated items higher than items that failed to preserve 

this relationship (e.g., splotches on skin correlated with white blood cell count). These 

results were further supported using more than one category and artificial items (Medin et 

al. 1982), and even natural categories and items (Malt & Smith, 1984).  Based on this 
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research evidence, it would appear both theoretically and empirically that at least for 

within category correlations exemplar based models hold the advantage. 

1.1.4 Knowledge View  

A recent criticism of prototype and exemplar views involves their one-

dimensional focus on properties and overemphasizing similarity as a means of explaining 

why we have some categories and not others (see e.g., Murphy & Medin, 1985; Storms & 

De Boeck, 1997). Research demonstrates that people have extensive knowledge for 

familiar concepts that property lists fail to capture (see e.g., Murphy, 2002). Asking 

people to list relevant properties for a concept produces functions, beliefs, relations 

among objects, subordinates, superordinates etc. In other words the properties listed for 

concepts extend far beyond the simple property listings afforded by perception alone.  

Regarding similarity, these approaches fail to capture why some similarities matter while 

a large number of others do not (see e.g., Murphy & Medin, 1985). Similarity is too 

flexible to explain conceptual uniformity: Any two objects can be arbitrarily similar or 

dissimilar by changing the criterion for what counts as a relevant property. Thus, 

similarity is only useful to the extent that principles determining what counts as a relevant 

property are specified.  Such principles are believed to arise from background knowledge 

that people have about the world (Murphy & Medin, 1985).    

In response to apparent insufficiencies to property listings and unconstrained 

similarity matching, the theory-theory or knowledge view was proposed (see e.g., 

Murphy & Medin, 1985; Murphy, 2002). According to this view concepts are mental 

representations that serve as building blocks (Medin & Ortony, 1989) for human thought 

and behavior. Concepts may not necessarily have a real world instantiation (e.g., 
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chimeras), and people may construct rather than discover structure on the world (see e.g., 

goal derived categories, Barsalou, 1983,1985).  

The knowledge view marked a shift from a perceptual emphasis in categorization 

toward a more theoretical/inferential account. Within this approach, no single 

characteristic defines concepts or categories; there are in fact many kinds of concepts and 

categories, including fuzzy, natural, abstract and artificial ones (Medin, Lynch & 

Solomon, 2000). Solomon, Lynch, and Medin (1999) for example, describe concepts as 

mental constructs that serve multiple functions such as categorization, learning, 

reasoning, and communication. Barsalou (1987) argues that concepts are unstable, likely 

to change between and within participants over time depending on context and prior 

experience. Some researchers define categorization within the context of purpose and 

declare that categorization is primarily for inferring unseen features (Kruschke, 2005) or 

making accurate predictive inferences (Anderson, 1991). As the brief review of the 

knowledge literature that follows suggests, there are many ways in which prior 

experiences can influence categorization. The remainder of this section will explore these 

influences in greater detail as well as examine recent criticism of the approach.  

In their seminal paper, Murphy and Medin (1985) contrasted the prototype and 

exemplar views with a theory-based approach.  Murphy and Medin argued that while 

intuitively appealing, similarity-based approaches were incomplete. Specifically 

similarity-based approaches do not provide enough constraints.  The categorization of 

even the simplest of objects is influenced by more than simple feature comparisons (see 

e.g., Heit, 1994; Murphy, 2002). Handbags and wheelbarrows, for instance share many 

commonalities: they carry things weigh less than 2000 pounds, and are inanimate. If 
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similarity alone accounts for categorization, why are handbags and wheelbarrows not 

categorized as like objects? Furthermore, the learner is an active agent in the 

categorization process.  Handbags do not come labeled with tags such as opens and 

carries object. It is only through interaction with the object that the learner infers and 

understands the object that is being categorized (e.g., see also Ross, 1997). In other 

words, concepts are not rigid structures but are changing as new information is 

incorporated. Finally, people have knowledge of causal relations between features not 

contained in a list of features. For example, its reasonable to assume that larger birds are 

more likely to live in tree tops and smaller birds on the ground as larger birds are more 

likely to resist the severe elements that living in tree tops entails.  

According to Murphy and Medin (1985) similarity-based approaches are unable 

to address these critical influences of knowledge on concept formation and 

categorization. In contrast, the theory-theory view (Gopnik & Wellman, 1994 used this 

term in order to describe Murphy and Medin’s approach) posits that the organization of 

concepts is knowledge based and theory driven, while categorization is an inference 

process, not a similarity judgment. Early evidence for the theory-based approach can be 

found in Barsalou’s (1983) research into ad hoc categories. Ad hoc categories are created 

on the fly and cannot be interpreted as fixed structures. For instance, things to take out of 

a burning house, is a category that does not conform to any specific, pre-existing 

category and, in a very real sense, is a different category to different people.  Barsalou 

found that while ad hoc categories conform to a graded structure and show typicality 

effects, these categories do not show a family resemblance structure; rather the categories 

are a collection of apparently dissimilar members (e.g., children, paintings, jewelry). 
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Barsalou describes these categories as goal oriented. This research and additional 

research by Barsalou (see also 1982; 1985; 1991) not only demonstrated that categories 

can be generated as needed, but that classification is based on more than the simple 

matching of an object’s properties to those of a stored representation(s). People use their 

prior knowledge of categories to infer and make new causal relations. Indeed, matching 

members to their respective categories appears to require the right explanatory 

relationship and prior knowledge appears to be the mechanism by which those 

connections are made.  

Some researchers (Ahn, Brewer, & Mooney, 1989, 1992; Medin, Wattenmaker, & 

Hampson, 1987; Wattenmaker, Dewey, Murphy, & Medin, 1986; Wisniewski & Medin, 

1994b) have examined how people use their prior knowledge of categories to represent 

and interpret what they observe. For instance, Wisniewski and Medin (1994b) 

demonstrated how categorization is sensitive to prior knowledge and how that knowledge 

influences understanding of the category members. In their studies, participants learned 

the same sets of children’s drawings but with different category labels. Each group 

learned two sets of drawings: For participants in one group the drawings were labeled 

drawn by city children or drawn by rural children while for participants in another group 

the drawings were labeled drawn by gifted children or drawn by normal children.  

Wisniewski and Medin found that how participants interpreted the drawings was highly 

influenced by the category labels they had been exposed to. For example, participants 

exposed to the so-called gifted drawings were far more likely to describe the picture as 

having an unusual and creative quality than participants exposed to the same picture with 
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a category label of normal. Clearly, prior knowledge can have a dramatic affect on 

interpretation of objects.  

Prior knowledge may also play an important role in how critical features are 

selected. Specifically, during category learning prior knowledge may lead one to 

selectively attend to those features that are particularly relevant to the categorization of 

the object (Murphy, 2002; Murphy & Medin, 1985; Murphy & Wisniewski, 1989).   

Pazzani (1991) investigated the role of selective attention by having participants 

learn categories of balloons using pictures of adults or children performing actions on 

deflated balloons. The pictures varied along several dimensions including: who was 

performing the action (child or adult), the type of action (whether the balloon was being 

stretched or dipped in water), size (small or large), and color (purple or yellow).  

Participants were instructed to learn one of two categories of balloons, labeled one that 

inflates or simply Alpha. In any one condition the categories were described according to 

a simple disjunctive rule such as the balloon must be stretched or inflated by an adult.  In 

other condition participants were exposed to a conjunctive rule the color must be yellow 

and the balloon must be small. Past research had demonstrated that in comparison to the 

disjunctive rule people found it easier to learn conjunctive rule. Pazzani reasoned that the 

conjunctive advantage might be reversed if the disjunctive rule cued participants’ past 

experiences with inflating balloons. That is the disjunctive rule would activate prior 

knowledge consistent with inflating balloons (e.g., stretching balloons results in easier 

inflation and adults are better able to inflate the balloons than children) making 

categorization easier. Under these conditions Pazzani found that category learning for the 

inflated disjunctive category group was much faster than for the category labeled Alpha 
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conjunctive group. These findings suggest that participants in the inflated condition used 

prior knowledge associated with the rule to selectively attend to those features most 

relevant to categorization of the object.   

Prior knowledge can also function to assist or facilitate category learning and 

concept formation (Medin & Schwanenflugel, 1981; Murphy & Allopenna, 1994; 

Wattenmaker, Dewey, Murphy, & Medin, 1986). In this view, learning about certain 

kinds of category structures is influenced by the type of information and expectation one 

has in relation to the structure. Medin and Schwanenflugel (1981) differentiate two types 

of category structures, linearly separable and nonlinearly separable. This research was 

important for testing differences between prototype and exemplar theories.  Linearly 

separable categories, which are most clearly associated with prototype theories, allow for 

independent summation of category features. Criterion for category membership is met if 

the majority of features for the category candidate match the target category. For 

example, if a category’s candidate barks, wags it tail, and has four legs it will likely fall 

into the category of dog, as these features are all typical of dogs. In contrast, nonlinear 

category structures, which are mostly associated with exemplar theories, cannot be 

learned by simple summation of category features. With this type of structure relying on 

individual features alone in order to determine category membership is less helpful; 

people must form specific groupings or relations for features and categories. Results from 

previous research (see e.g., Rosch & Mervis, 1975) suggested that linearly separable 

categories were easier to learn than nonlinearly separable categories. However, Medin 

and Schwanenflugel found that when participants were given instructions that promoted 

learning the (nonlinear) type of structure they were exposed to no differences were found 



    19 

in participants’ ability to learn linear and nonlinear category structures. Focusing on 

information relevant to the type of category structure facilitated the category learning.  

Wattenmaker, Dewey, T.Murphy, and Medin (1986) extended Medin and 

Schwanenflugel’s (1981) research by examining how prior knowledge influences the 

learning of linear and non-linear separable categories. In their study, participants were 

placed in one of two groups, the trait or control. In the trait group, labels for stimulus 

dimensions cued participants’ prior knowledge of specific personality traits. For example, 

some labels cued participants’ prior knowledge for behaviors that were either honest 

(e.g., returned lost wallet) or dishonest (e.g., pretending to enjoy shopping). In the control 

group the labels for stimulus dimensions cued four unrelated traits (e.g., talkativeness, 

cooperativeness, cautiousness, honesty). Under these circumstances, there were no 

coherent cues that would promote retrieval of specific personality traits. The main finding 

was that coherent cues for personality traits facilitated learning of categories; participants 

in the trait group learned the categories reliably faster than participants in the control 

group. Thus, making the task more meaningful assisted category learning. Furthermore, 

for participants in the trait group, linear separable categories were easier to learn, 

suggesting participants learning these categories used prior knowledge to distinguish 

honest and dishonest behaviors. In contrast, participants in the control condition found 

nonlinear categories easier to learn. Having no prior knowledge, they likely formed a 

specific configuration of traits (e.g., honesty and cooperativeness might be associated 

with the category, but cooperativeness alone as not). Overall, the results suggest that 

learning was most influential when the structure to be learned matched the structure 

associated with prior knowledge.   
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Finally, some researchers (Heit, Briggs, & Bott, 2004) report limitations and 

boundaries around facilitation effect of prior knowledge. Heit, Briggs, and Bott (2004) 

conducted three experiments addressing how observations and multiple sources of prior 

knowledge interact in category learning. In their Experiments one and two, learning was 

faster for key features, which were predictable on the basis of prior knowledge, than for 

irrelevant features. Moreover, this advantage increased as more observations were made.  

In their Experiment three, however, presenting feature information that went against prior 

knowledge led to little overall effectual use of prior knowledge. Thus, when information 

is inconsistent with prior expectations, the usual facilitation effects associated with prior 

knowledge may not occur. 

1.1.5 Criticism of the knowledge based view  

Criticism of the knowledge-based view often involves attacking basic tenets of the 

approach. Rosenblit and Keil (2002), for instance (see also Komatsu, 1992) argue that, 

like similarity-based approaches, the knowledge view does not offer enough conceptual 

constraints. As discussed earlier the central tenet of the view (Murphy & Medin, 1985) is 

that concept formation and the categorization process are driven by people’s theories of 

how properties are related. Keil (2003) notes that the type of theorizing the average 

person performs are in stark contrast to scientific theorizing and as a consequence are 

extremely difficult to quantify.  Scientific theorizing involves examining causal 

relationships by deconstructing the principles of these relationships into functional units 

and then analyzing how these units interact to produce the event in question. Once a 

causal relationship is understood, further exploration may be unnecessary. However, 

theorizing for the layperson is “potentially unbounded”. A person’s theory about how 
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birds fly, for instance, might include “feathers help birds fly”. However, this explanation 

in turn forces one to ask why feathers are necessary for flight. Why not scales? In other 

words, unlike scientific theorizing, which has known methodological constraints; the 

average person is not bound by these constraints. As key principles among relationships 

are rarely thought out, causal relationships for the average person are never complete; this 

may limit the ability to decompose an event into its functional units for further analysis. 

Additionally, there are likely large individual differences in how people understand 

causal relationships.   

Research by Rozenblit and Keil (1997) rules out the average person using 

reasoning strategies characteristic of scientific theorizing as a method of imposing these 

constraints. Over several studies, they demonstrate that people confidently believe they 

know how things work, but when challenged are forced to concede that their 

understanding is superficial and even illogical. In their experiments, participants were 

presented with an item, and asked to rate their knowledge of the item’s mechanical 

functioning on a seven-point rating. Following the knowledge ratings, participants were 

asked to give a detailed description of how each device works and why the device 

functions the way it does. Next they were asked a deeper question, one that probed their 

understanding of the objects fine mechanics (also followed by a rating judgment).  

Finally, they were given an expert explanation as to how the object works and then re-

rated their understanding of the object. Rozenblit and Keil report that participants in these 

experiments show a large reduction in their knowledge ratings and furthermore are 

overwhelmingly astonished by their initial overestimation of their understanding.   
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 Rosenblit and Keil (1997) suggest that conceptual theorizing is on the whole 

somewhat shallow. Unless some kind of external structure is imposed, as is the case with 

science for instance, people’s use of knowledge for making causal connections may be 

far coarser than some theories might suggest. However, unlike the type of theorizing that 

occurs in science where the mechanics and role of the concept are clearly defined, the 

average person has no such constraints. Lutz and Keil (2002) further suggest that what 

remains of the knowledge view, is that people have knowledge of a higher but more 

shallow level of causal information. For instance, at a relatively early age children learn 

what properties of a domain are important for classification. They understand that color is 

important for distinguishing kinds of plants, but not for distinguishing kinds of cars.  

Children also develop a clear understanding of the importance that domains of expertise 

play in further understanding the world around them. Teachers, parents, and friends all 

vary in domains of expertise, and knowing which of the domains to access demonstrates a 

high level, though shallow, understanding of the domains themselves. 

1.1.6 Summary 

It is clear that categorization theories explain many basic aspects regarding 

influences of knowledge on concept learning. However, some questions still remain.   

Empirically based models, for instance, often use artificial stimuli, which are removed 

from any knowledge, and yet people classify reasonably well under these conditions.  

Clearly, the knowledge approach has not fully replaced similarity-based views, as these 

views give reasonably good explanations as to how statistical information is learned.  

A clear understanding of how knowledge changes the learning process has not yet 

been established (see e.g., Murphy, 2002, for review). For example, some explanations of 
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category learning suggested (Murphy & Allopenna, 1994) that people did not focus 

mental resources on learning statistical properties but instead once they identified the 

category, knowledge of the category became the category representation. For instance, 

once you have determined an object was a cat, you didn’t then devote your attention to 

learning the properties of a cat, but simply represented the category as a cat. This 

assumption was later re-evaluated when some researchers (Spalding & Murphy, 1999), 

demonstrated that knowledge might facilitate learning of statistical properties.  

Knowledge theorists (Murphy, 2002) have largely focused on how prior 

knowledge greatly speeds category learning or does not impair statistical learning. Only 

recently have theorists begun an investigation into how information incongruent with 

prior experiences may interfere with the retrieval of category information. Heit et al. 

(2004) showed that feature information that went against prior knowledge led to little 

overall effectual use of prior knowledge. In that study, knowledge pre-empted learning of 

empirical properties. The present study extends prior research by exploring how abstract 

item information interacts with deeply embedded prior knowledge structures when that 

knowledge varies in specificity.  Specifically, one focus of the present study is on how 

prior knowledge interacts with learning of abstract information over taxonomic 

structures. Before addressing the present study a description of taxonomic structures is 

presented as well as an overview of taxonomic research central to the category literature. 

1.2 Taxonomic structures  

Many adult concepts can be represented in taxonomies – hierarchical systems in 

which concepts are differentiated into varying levels of abstraction  (e.g., musical 

instrument, wind instrument, flute) related by class inclusion (a flute is a wind instrument, 
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and a wind instrument is a musical instrument). Indeed, most natural kinds (e.g., whale, 

tree) and artifacts (e.g., flute, truck) are generally believed to fall within taxonomies.  

Moreover, in real world contexts, concepts are rarely learned as explicitly contrasting sets 

existing completely outside of known taxonomies (i.e., one might not learn cats vs. dogs 

without also learning that both are types of animals, and that both include more specific 

subcategories).  

Typically, conceptual taxonomic structures consist of both vertical and horizontal 

relational links. Vertically, concepts are taxonomically related when they are 

hierarchically organized from the more to less inclusive levels or from less inclusive to 

the more inclusive ones (e.g., mammal to cat, or Persian to cat). Horizontally, taxonomic 

structures relate a concept of one hierarchical level to another concept at the same level 

(e.g., cat to dog).    

It is generally assumed that taxonomic architecture functions both efficiently and 

economically. Properties shared by concepts at the higher and more inclusive level are 

transferred to the concepts at the lower level but not necessarily in the reverse. For 

example, properties true to animal (a superordinate level concept) such as breathing are 

also true of cat while properties true of cat or types of cat such as purring, are shared by 

all cats but not necessarily by all other animals. Thus, hierarchical structures store 

properties of concepts in an economical way. Furthermore, as suggested by the example, 

taxonomic structures promote efficiency of learning. Knowing that all animals have skin 

allows you to infer all cats have skin even though you may never have been exposed to 

one. Similarly knowing that all cats purr naturally leads to the conclusion that all lions 

purr.  
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Though potential advantages of taxonomic hierarchies are apparent their status is 

not entirely clear. Several questions arise with respect to taxonomic hierarchies including: 

do they have psychological reality?  Is there a privileged level, which is optimal for 

storage and communication of information? The remainder of this section will explore 

these questions.  

1.3 Conceptual Hierarchies.  

The use of hierarchical structures is evident across a large number of domains 

including anthropology, biology, and psychology. Within the domain of psychology the 

use of hierarchical structures as a means of explaining various phenomena is particularly 

evident in the field of cognition. Exploring the organization of hierarchical 

representation, for example, began to dominate cognitive psychology during the 1960’s. 

However antecedents can be identified as early as the 1920’s. Lurias’s model of brain 

organization (published in 1970, but crafted in 1920’s and 30’s) had three functional 

units: one for programming and self-regulating activity, one for processing and storage of 

information, and one for regulating consciousness. With the emergence of cognitive 

psychology in the 1960’s and the subsequent trend toward focusing on the nature of 

mental representation, cognitive models at this time (e.g., Collins & Quillian, 1969; 

Rosch & Mervis, 1975, 1976) often included a hierarchical structure. 

 The rise of hierarchical models in cognition prompts an important question: Do 

hierarchies have a real existence in terms of conceptual reality or do they simply reflect 

conventions adopted by researchers? This question is not new and has been debated in 

other domains.  In biology, for example, where taxonomies are often defined within the 

restrictions of set laws, Linnaeus (see e.g., Denton, 1985) took a decisively realist 
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approach to the existence of biological species. With the advent of evolutionary theory 

and the belief in variability of species a view arose which suggested that concepts of 

species exist not as real universals, but as human ability to impose systems of 

classification. As such, classification systems were seen as a convention and by extension 

so were hierarchical structures (Denton, 1985).   

1.3.1 Psychological status of taxonomies  

Early views of taxonomic structures posit (e.g., Collins & Quillian, 1969) that 

they are relatively stable knowledge structures characterized by property inheritance. One 

of the earliest models of taxonomic formation was inspired by the notion that computers 

could develop human characteristics. Quillian (1967) introduced a computer program 

based on a hierarchical network of semantic memory in which concepts were represented 

as interconnected nodes. The network is hierarchical in that higher-level superordinate 

concept nodes have connections to the lower level basic and subordinate conceptual 

nodes. For example, the concept animal is connected to the lower basic level concept 

node of dog, which in turn is connected to the even lower subordinate level concept 

nodes of pit-bull and German shepherd. The network itself follows a principle of 

cognitive economy. Properties true of all animals, like reproduction and breathing are 

stored at the animal node. Similarly, properties generally true of an entity (e.g., barking) 

are stored with the particular concept they represent (e.g., dog). A property does not have 

to be true of all lower level concepts to be stored with a higher-level concept. Fur, for 

instance, is stored with the concept node of dog; those instances of dogs that do not have 

fur would have their properties stored at their individual concept nodes. Category 

membership is determined by the concept’s position in the hierarchical network. The 
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node dog does not store the information that dogs are animals; instead membership is 

determined by first activating the concept dog, followed by the activation of mammal and 

finally animal.   

The suggestion that properties are stored efficiently at their concept node and that 

it takes time to move over the network produces a number of testable predictions. For 

example, when traveling over concept nodes in the hierarchy, the time needed to verify 

concept features should increase as the distance between one concept and another concept 

increases. Therefore, people should be faster to confirm that all dogs bark than to confirm 

all dogs have fur and faster to verify that all dogs have fur than all dogs have skin (stored 

at the animal node).  Collins and Quillian (1969) later found support for these types of 

predictions.   

 Rips, Shoben, and Smith’s (1973) research challenged Collins and Quillian’s 

(1969) notion of taxonomies as pre-stored memorial structures. Rips et al. explored the 

influence of typicality ratings on class inclusion judgments.  In their study, participants 

completed a timed sentence verification task in which they judged whether category 

members were typical or representative of their superordinates. For example, they might 

judge how typical the category robin is of the category bird vs. how typical the category 

peacock is of the category bird. Rips et al. also examined reaction times for typicality 

ratings over multiple superordinate levels (e.g., how typical a robin is of animal, vs. how 

typical a robin is of avian). A memorial-based view of taxonomic hierarchies holds that 

taxonomic relations have a veridical representation in memory.  Because the 

categorization process is a strict sequential route, there should be no difference in 

categorizing two similar categories within their respective domain (e.g., robin or peacock 
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as bird) and leaping over a superordinate (e.g., cat as an animal) should result in slower 

reaction times than categorizing the same object in relation to its closest superordinate 

(e.g., cat as a mammal). Yet Rips et al. found that response times for same category 

members varied, in particular those categories that could be interpreted as more typical or 

representative (e.g., robin) of their superordinate category (e.g., bird) were verified faster 

than categories viewed as less typical (e.g., peacock). Additionally, verifying the less 

typical sentence, a cat is a mammal was slower than verifying the more typical sentence a 

cat is an animal. Rips et al. concluded that a strict memorial representation of taxonomic 

structure was unsupported; participants were more likely to make judgments based on 

how typical or representative the category was of its superordinate (see also Murphy, 

2002 for an overview of this topic).   

Research by Sloman (1998) challenges the notion that people always invoke class 

inclusion relations. Over a series of experiments, participants reasoned and evaluated the 

strength of various inductive arguments involving natural, social, and artifact kinds.  

Below is an example of type of argument structure.  

(A) All bodies of water have a high number of seiches. 

All lakes have a high number of seiches.  

(B) All bodies of water have a high number of seiches. 

All reservoirs have a high number of seiches.  

For each of Sloman’s arguments, the conclusion category (e.g., lakes) is 

incorporated into the premise category (e.g., bodies of water). The arguments stress that a 

property true of all members of the premise category is also true of all members of the 

conclusion category. For each argument, participants gave probability ratings that 
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assessed their perception of how true the conclusion category was of the premise 

category. The findings were conditional on participants’ previously agreeing that the 

conclusion category was included in the premise category.  In this experiment, not one 

participant rated all of the arguments as definitely true, and no one argument was rated as 

definitely true by all participants. However, the similarity between the premise and the 

conclusion category did affect probability judgments. Participants rated argument “A” as 

more probable than argument “B”, which suggests that participants abandoned class 

inclusion relations when reasoning about these categories in favor of similarity relations. 

 Unlike previous research (see e.g., Hampton, 1982) examining class inclusion 

relationships, the argument structure for many of the items in Sloman’s (1998) 

experiments were unambiguous. This lends strength to Sloman’s (1998) argument that 

the experimental findings from his studies support a similarity based reasoning strategy.  

Moreover, in separate but related experiments, Sloman used the same argument structure 

but made the class inclusion relationship more explicit and thus more accessible.  Below 

is an example of a strengthened argument structure.   

(C) All lakes are bodies of water 

All bodies of water have a high number of seiches. 

All lakes have a high number of seiches. 

Under these conditions participants rated conclusions as certain, suggesting that when the 

relation is made explicit it is also made more accessible. Sloman concluded that even 

though people are capable of correctly using inclusion relations they do not always 

explicitly represent them.  
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 While Sloman’s (1993, 1998), model contradicts simple views of taxonomies as 

permanent knowledge structures, the model itself is nevertheless driven by the conjecture 

that class inclusion inferences are based largely on taxonomic connections between 

concepts. Arrays of features representing concepts are compared to each other, and 

inferences are strong to the degree that premise and conclusion concepts are made salient 

by shared attributes. However, recent research (Medin, Lynch, Coley, & Atran, 1997) 

challenges both the importance of similarity when making inductive inferences, and the 

notion of hierarchies as single structures characterized by a sequence of nested categories 

(e.g., a specific type of bird, robin belongs to the categories of bird, and animal).  Medin 

and colleagues (1997) examined categorization among different types of tree experts.  

They found that landscapists used one hierarchical structure for categorization but a 

different hierarchical structure for reasoning. Specifically, landscapists sorted trees into 

categories on the basis of goal-relevant and practical reasons. Medin et al. suggested that 

years of experience resulted in goal derived categories becoming embedded in memory. 

However, when reasoning about whether a natural attribute true of one tree was true of 

another, inferences made by landscapists followed a pattern more in accordance with 

taxonomic relations. In contrast to landscapists, park maintenance workers based their 

sorting almost entirely on ecological factors. That is, their decisions were driven almost 

entirely by practical issues (e.g., what trees best fit a given region). Medin et al. have 

shown not only that people use different types of organizational structures within a given 

domain, but also that background knowledge strongly influences what structures will be 

used within the domain.   
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 In a series of experiments, Ross and Murphy (1999) used the domain of food to 

demonstrate that people classify foods into both taxonomic and non-taxonomic 

categories. They found that some types of foods (e.g., beef) were classified taxonomically 

as a type of meat and non-taxonomically as a main course. Furthermore non-taxonomic 

categories often included categories from different domains and thus failed to follow a 

strict category induction pattern. For instance, dairy products (e.g., milk), fruits (e.g., 

banana) and meats (e.g., fish) were classified under the category of healthy foods, even 

though each of the foods formed independent taxonomic structures. One conclusion 

drawn from Ross and Murphy’s research is that people form non-taxonomic categories 

because their reasoning skills extend beyond simple similarity judgments (see also e.g., 

Murphy, 2002) to include complex reasoning skills that are goal driven (e.g., know that 

people eat healthy foods to avoid illness).  Ross and Murphy also concluded that non-

taxonomic categories are established in memory and are important to the category 

inference process.   

  In sum, research suggests that when taxonomic connections are made, it is the 

salient taxonomic inferences that are more likely to be extracted (Sloman, 1993, 1998).  

Additionally, knowledge heavily influences the use of organizational structures, with 

experience guiding the use of taxonomic and non-taxonomic inference  (Murphy & Ross, 

1999). The next section examines and describes the core research question cognitive 

psychology has predominately explored with respect to taxonomies, namely the question 

of a privileged taxonomic level.  

1.3.2 Basic level superiority 
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The notion that the basic level of the taxonomic hierarchy has advantageous 

characteristics not true of other taxonomic levels is largely driven by the research of 

Rosch and colleagues (1976a).  In their early experiments, Rosch et al. used free 

naming/category-verification tasks to demonstrate that basic (intermediate) levels of the 

taxonomic hierarchy have a privileged status relative to subordinate (lowest level) or 

superordinate (highest level) categories. In the naming task, participants were presented 

with a series of pictures in rapid succession and were asked to write down the name of the 

object depicted in each picture. There were two clear findings; first, participants used 

basic-level names (e.g., chair, hammer) more frequently to identify an object than 

subordinate (e.g., kitchen chair, ball peen hammer) or superordinate (e.g., furniture, tool) 

level names; second, of the three levels superordinate names were used least frequently. 

In the category-verification task, participants heard a category label representing 

superordinate, basic or subordinate level categories and then indicated whether a picture 

shown after a brief delay was an instance of the category. Results showed that objects 

were often verified faster at the basic level than at the subordinate or superordinate levels. 

Based on these findings, Rosch et al. argued that people access the basic level first and 

then access the subordinate and superordinate categories. Rosch et al. also suggested that 

the basic level advantage arose because members at this level have attributes that are both 

distinctive and informative whereas members of other taxonomic levels have only one or 

the other of these attributes. That is, category members at the basic level have distinctive 

features which help differentiate them from members of other categories, but these same 

features also overlap with members of their own category, thus helping to define their 

category membership (e.g., all birds have wings but only a few members of other 
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categories have wings).  In contrast, superordinate categories though distinctive are not 

informative (e.g., furniture is very different from vehicle but what are the features that 

define furniture?) and subordinate categories, though informative are not distinctive (e.g., 

there are many features which define dining room table but few to distinguish it from a 

kitchen table). Collectively these assumptions became known as the differentiation 

hypothesis (see also Murphy & Brownell, 1985). 

As a result of this and related research (e.g., Rosch & Mervis, 1975; Rosch 1978), 

Rosch argued that concepts follow a natural construction. Objects in the world are 

disposed toward forming clusters of correlated attributes; category groups and concepts 

naturally arise out of these clusters. For example, a bear is more likely to have fur than 

scales; alternatively a snake is more likely to have scales than fur.  The implications of 

Rosch’s argument are clear: in order to understand concept formation, the focus should 

be on natural categories, and advancement of categorization only occurs by studying 

natural categories.  

It is also important to note that in addition to emphasizing structure, Rosch (1978) 

also recognized the role of the perceiver. Rosch stressed that it is the relationship between 

the perceiver and the world that specifies the basic level.  As a consequence an 

individual’s expertise in a domain can play an important role in specifying the nature of 

the basic level. Rosch et al. (1976) observed that participants who had greater knowledge 

in a domain answered their questions with greater specificity than participants who had 

limited knowledge. Based on this observation, Rosch et al. noted that the experts in their 

field know more than novices; the contribution of the perceiver to the categorization 

process then could be assessed by systematically varying levels of expertise within a 
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given domain. Under these conditions, Rosch et al. reasoned that the more specific 

subordinate level categories might substitute for basic level categories as the level of first 

access.   

In one of the few papers to examine category learning within taxonomies, Murphy 

and Smith (1982) used artificial materials to examine the nature of the basic level 

advantage. Specifically they examined whether Rosch’s et al. (1976a) finding of a basic 

level advantage had been influenced by the following (1) word length, subordinate words 

were longer than basic, (2) familiarity, basic level names tended to be more common than 

subordinate level names, or (3) saliency of features, features at subordinate level were not 

as distinctive as those at the basic level. Another factor influencing Murphy and Smith’s 

research involved resolving an ongoing debate within the category literature. As 

suggested earlier, Rosch et al. (1976a) claimed that the basic level first advantage arose 

because members at this level have both distinctive and informative attributes. This view 

contrasts with that of Anglin (1977) who holds that order of learning determines basic 

level superiority. Basic level categories are learned earlier than other levels. Therefore 

basic levels have the advantage of prior experience.   

In order to control for factors such as word length, familiarity, saliency, and prior 

experience, Murphy and Smith (1982) used artificial materials.  Stimuli used included 

pictures of highly distinctive novel tools, some of which characterized the basic level 

categories, and others the superordinate and subordinate level categories. Basic level 

categories were both informative and distinctive, superordinate categories were 

distinctive but uninformative, and subordinate categories were informative but not 

distinctive. Category names for each taxonomic level were of equal length and 
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participants were informed of all relevant features. Order of learning was further 

controlled for by varying category presentation; if order of learning determined level 

superiority then the category level learned first would be categorized fastest.  For the 

training phase, participants learned each category independently, that is they learned one 

category (e.g., basic level), were tested then learned the next category.  After learning all 

the category levels they were given a timed categorization task, in which they heard a 

category name, and viewed a picture.    

Using this procedure Murphy and Smith (1982) found that neither order of 

learning nor familiarity played a role in basic level superiority. Furthermore the basic 

level advantage was found regardless of which category level was learned first.  

Generally, basic level categories were learned fastest followed by subordinate then 

superordinate.  In subsequent experiments using similar methods with slight modification 

Murphy and Smith found support for Rosch et al.’s assertion that the basic level category 

advantage arose as a result of their distinctive attributes. However, this claim was 

qualified by the need for attributes to be perceptual in character. In sum, Murphy and 

Smith found tentative support for the basic level advantage and differentiation hypothesis 

and little support for the order of learning view.  

Murphy and Brownell (1985) tested specific qualities of the differentiation 

hypothesis and found additional support for this view.  They used a picture categorization 

task in which the typicality of stimuli was varied.  They suggested that although typical 

subordinate level items are not distinctive (e.g., robins share many similar attributes with 

other birds), atypical basic level category items, for instance penguins, are distinctive 

because they share few characteristics with other members of their category (e.g., 
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penguins have many attributes in common that are also distinct from those of other 

birds). Furthermore, as penguins are members of the subordinate level category, they 

already are informative. As predicted by the differentiation hypothesis, compared with 

pictures of typical subordinate items, pictures of atypical subordinate category items were 

categorized faster as a member of their own category than as a member of their basic 

level category. For example, participants were faster to verify a penguin as a penguin 

than as a bird, but slower to categorize a robin as a robin than as a bird. These findings 

are important for several reasons. First, they suggest that the basic level is fluid.  Under 

the right conditions, all the advantages (e.g., speed etc.) usually attributed to the basic 

level can also be attributed to subordinate level categories. Second, the view (see e.g., 

Anglin, 1977) that Rosch et al.’s (1976) previous differentiation findings can be 

attributed to other determinants (e.g., familiarity, frequency etc.) is further minimized.  

The word robin is clearly encountered and used more often than the word penguin. In 

subsequent experiments, Murphy and Brownell found further evidence for the 

differentiation hypothesis. By presenting category members in contrasting contexts (e.g., 

a robin shown in the presence of a hammer or a car), shared category members can be 

removed from comparison (that is, robin was no longer being compared to other similar 

birds, for instance jays). Murphy and Brownell demonstrated that under these conditions 

participants were in fact faster at identifying a subordinate member as a subordinate than 

identifying a subordinate member as a basic. From these findings it would appear that 

lack of distinctiveness is responsible for previous reaction time deficits found for 

subordinate level members. That is, by increasing distinctiveness, having to distinguish 

from similar category members is no longer a problem. 
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 Tanaka and Taylor (1991) extended previous research into basic level superiority 

(e.g., Murphy and Brownell, 1985; Rosch et al. 1976) by investigating the affect of 

expertise on taxonomic structures in expert bird watchers and dog breeders. Using similar 

procedures to that of Rosch et al. (1976), Tanaka and Taylor tested each expert in both 

the bird and dog domains. Consequently, when tested within their own domain bird 

watchers and dog breeders were experts, but when tested outside their domain they were 

novices. Participants completed three tasks: feature listing, free naming, and speeded 

categorization. Consistent with previous research (e.g., Rosch et al. 1976) experts in their 

novice domain listed many more features at the basic than at the subordinate level.  

However, in their domain of expertise, participants listed many more features at the 

subordinate level than at the basic level. For example, dog experts listed as many features 

for the basic level category of bird as bird experts, but failed to list as many features for 

the subordinate level category of finch. In the free naming task, participants viewed 

pictures of objects and responded with the first name that came to mind. As novices, 

participants generated basic level names the majority of the time. However, in their 

expert domain production of category names was dependent on type of expertise.  

Specifically bird experts generated subordinate names almost equal to their production of 

basic level names as novices, whereas dog experts also used subordinate level names 

though less frequently. Both bird and dog experts outperformed novices in production of 

subordinate level names. Finally, in the speeded categorization task, participants viewed a 

category name followed by a picture. The results showed that experts in the novice 

domain were fastest at the basic level and slowest at the subordinate level (thus 
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replicating Rosch et al. 1976). However, in the expert domain, categorization 

performance was equally fast at the basic and subordinate levels.  

Similar to Murphy and Brownell’s (1985) research, Tanaka and Taylor’s results 

question whether any single taxonomic level is basic. Domain expertise, like 

categorization of atypical subordinate categories, enhanced the speed at which 

subordinate level objects were accessed. Indeed, domain expertise caused subordinate 

level categories to become as accessible as basic level categories. It is important to note 

Tanaka and Taylor’s (1991) results extended the research of Murphy and Brownell 

(1985) in several ways. First, feature listings by experts demonstrated that subordinates 

were distinctive; as experts, participants listed many features for subordinate categories, 

but as novices they listed fewer for basic level categories. Second, in comparison to the 

novices, experts were not bound by basic level constraints. They were as comfortable 

categorizing items at the subordinate level as they were at the basic level.  It is likely then 

that the internal structure of taxonomies is not determined solely by the correlation 

structure of the environment (e.g., Rosch & Mervis, 1975; Rosch 1978) but on some level 

also reside in the mind of the perceiver (see e.g., Lynch, Coley & Medin, 2000; and 

Medin, Lynch, Coley & Atran, 1997).  

Interestingly, Murphy and Wisniewski (1989) demonstrated that under the right 

conditions superordinate-level categorization could also supersede the basic level 

advantage. Previous research using tasks designed to differentiate superordinate and basic 

level performance found that participants were slower to categorize superordinate 

pictures (Murphy & Brownell, 1985; Rosch et al. 1976; Smith, Balzano, & Walker, 

1978); slower to write superordinate names (Smith, Balzano, & Walker, 1978); and 
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slower to categorize artificial superordinate objects (Murphy & Smith, 1982). Common to 

all this research was the presentation of objects in isolation.  Murphy and Wisniewski 

(1989) suggested that superordinate categories might contain “relational information” that 

connects objects in a given category. As a result, presenting objects in isolation may 

mask a superordinate level advantage. In order to test their hypothesis, Murphy and 

Wisniewski presented objects either individually or in groups. They found that presenting 

objects individually resulted in the typical basic level advantage (e.g., a hammer was 

categorized faster as a hammer than as a tool). However, when objects were presented in 

a contextual scene (e.g., hammer presented along with other tools, a workbench, etc.), 

participants categorized the items as fast as other superordinates at the basic level items.  

In sum, evidence does not always support a basic level (Rosch et al. 1976) advantage; 

people do not necessarily access the basic level prior to accessing the subordinate or 

superordinate levels.  

1.3.3 Summary 

 Research on taxonomy has largely focused on two issues, the psychological status 

of taxonomies, and the level at which taxonomic information is most efficiently stored.  

The most straightforward view of taxonomies is that they are relatively permanent 

knowledge structures, consisting of nested hierarchies connected by class inclusion 

relations. However, research (Ross & Murphy, 1999; Proffitt, Coley, & Medin 2000; 

Sloman, 1998) often demonstrates the more fluent nature of taxonomies. People often 

abandon inclusion relations in favor of similarity (Sloman, 1998). Moreover, organization 

strategies other than taxonomic are apparently established in memory and are at times 

preferred over taxonomic organization (Ross & Murphy, 1999). Similarly, although basic 
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levels have long been considered the level at which hierarchical information is most 

efficiently stored, research would suggest that taxonomic levels vary in status depending 

on level of expertise (Tanaka & Taylor, 1991), distinctiveness (Murphy & Brownell, 

1985) and context (Murphy & Wisniewski, 1989). 

A common thread running through some of this research (e.g., Ross & Murphy, 

1999; Tanaka & Taylor, 1991) is that knowledge can affect which taxonomic level has 

“privileged status” (Tanaka & Taylor, 1991) and whether or not taxonomic structure is 

the preferred structure of conceptual organization (Ross & Murphy, 1999). It is also 

possible that prior knowledge interacts with taxonomic relationships in other ways. 

Understanding the relationship between prior knowledge and taxonomy cuts to the core 

of many issues currently under review in the category literature, including the 

psychological status of taxonomies and how levels of taxonomy may differ from one 

another. The next section introduces a learning paradigm intended to examine some of 

the key issues presented earlier in this paper. Beginning with an experiment in which 

knowledge is largely removed, and then introducing prior knowledge in the form of 

category labels this paper, this initiates an investigation into learning within taxonomic 

structures. The advantage here is that by using a learning paradigm issues central to the 

category literature can be explored systematically and as much as possible from the 

beginning of learning.  

1.4 Current Proposal 

Surprisingly, classification research has largely neglected issues surrounding 

category learning over hierarchical levels. What research has been performed has focused 

somewhat narrowly on issues of basic level superiority (Rosch, Mervis, Gray, Johnson, & 
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Boyes-Braem, 1976), subordinate level specificity (Murphy & Brownell, 1985), and 

superordinate level distinctiveness (Murphy & Brownell, 1985). Furthermore, the only 

study approximating a taxonomic learning paradigm (see e.g., Murphy & Smith, 1982) 

focused very little on learning within taxonomies, or how learning is transferred from one 

taxonomic level to another. Answering this question is important, as principles of 

learning may be found that add insight to into how taxonomies are formed. One focus of 

the present study is learning within taxonomies.  

Experiment 1 of this paper employs artificial and abstract materials. There are 

several advantages to using abstract materials.  For instance, perceptual and conceptual 

processes are deeply interconnected, making them difficult to isolate and study 

independently (see e.g., Goldstone & Barsalou, 1998). Using unfamiliar materials allows 

for some control over these processes. Furthermore, unlike descriptive studies using real-

world categories (e.g., see Keil, 1989; Medin, Lynch, Coley, & Atran, 1997; Ross & 

Murphy, 1999), research using unfamiliar materials is more successful at revealing the 

mechanisms of category learning that lead to the development of conceptual structures.  

For instance, it is much easier to separate the influence of prior experience from 

experimental manipulation, which can identify the underlying learning process more 

clearly. Fundamentally then, use of unfamiliar materials is important for ruling out 

extraneous causal explanations for category learning in favor of those characterized by 

the category structure (e.g., see Murphy, 2002).  

While the advantages of using artificial materials are apparent, some have 

suggested  (Murphy, 2002; Schyns & Murphy, 1994) that in order to have a fuller 

understanding of concept formation a focus on real world contexts is crucial. They argue 
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that while investigations of category learning using artificial materials may reflect aspects 

of how new categories are learned in the real world, there is some question as to what 

degree the categories learned are ecologically valid (this is particularly so for simple 

artificial materials). With this argument partly in mind, materials used in the following 

experiments are derived from real world objects, specifically, musical instruments.   

Importantly, even though the attributes of these objects are abstract, the 

dimensions and their values approximate the real object. In other words, the dimensions 

and their values have ecological validity. However, because they are abstract, their exact 

relationship to the category may not be immediately apparent. For example, participants 

may have a clear idea of how the dimension weight is related to the instrument flute but 

they may be less clear on how the dimension resonating frequency relates to the 

instrument flute. This is particularly so in Experiment 1, where artificial labels are used in 

place of meaningful labels. However, in Experiment 2, prior knowledge in the form of 

meaningful labels that describe the object are introduced. Prior knowledge introduced in 

this way, means that categorization is not only brought closer to ecological validity but, 

according to prevailing arguments (see e.g., Murphy, 2002), there is an added advantage 

of facilitating category learning. One clear expectation then, is for meaningful labels to 

facilitate learning within taxonomic structures. After all, having prior knowledge of 

“wind instruments” also cues relevant attributes important to different types of “wind 

instruments”. The one caveat to this prediction follows from the use of abstract 

dimensions. As the relationship between abstract information, prior knowledge and 

learning within taxonomies has largely gone unexplored the outcome is difficult to 
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predict. One possibility is that mapping of item information to the category is more 

difficult (see e.g., Heit & Bott, 2002; Heit et al. 2004).  

Experiment 3 extended an examination of prior knowledge influences by 

introducing instructional information intended to boost the manipulation of knowledge 

associated with the meaningful label. This experiment also focused on whether prior 

knowledge interacts differently depending on taxonomic level. In Experiment 4, two 

additional items were introduced that varied in structure from that of earlier items. Prior 

research (see e.g., Kaplan & Murphy, 2000; Murphy & Kaplan, 2000) using thematic 

features has demonstrated that facilitation effects of prior knowledge increase as the 

number of features related to the category increase. A related question is asked in 

Experiment 4, but using feature-based information that is abstract. Another question in 

Experiment 4 centers on potential boundaries and limitations of prior knowledge learned 

within taxonomic structures when abstract item information is in play. This question 

extends a rationale suggested in Experiment 3, which suggested that slower reaction 

times on the part of the meaningful label group resulted from their finding abstract 

information inconsistent with strongly held prior experiences. In Experiment 5, items 

introduced in Experiment 4 were added to earlier stages of learning. Some research (Heit 

& Bott, 2000) has found that facilitation effects due to prior knowledge vary in 

magnitude over the course of learning. In that research, effects of prior knowledge 

manifested only after enough “data” had been collected to make an informed choice. One 

question in Experiment 5 is whether an opposite trend emerges when item information is 

abstract. Further examination of factors that were reported to have been responsible for 

findings in earlier experiments was also addressed.   
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1.5 General Method 

All five experiments in this dissertation use the same materials and very similar 

procedures. In this section, I present information that is common across the five 

experiments and that is critical for understanding the purpose of the experiments. The 

materials were created in order to instantiate the two levels of hierarchy, which I will 

designate a basic level (four contrasting categories) and a superordinate level (two 

contrasting categories).   

The individual item structures used in each of the experiments are depicted in Table 1. 

Importantly, participants see the same items whether they are learning the basic level 

categories or the superordinate level categories. Item dimensions and values used in each 

of the five experiments were derived from musical instruments, specifically flute, 

saxophone, drum, and bell. In turn, flute and saxophone belong to the superordinate 

category wind and drum and bell belong to the superordinate category percussion. Items 

presented at both basic and superordinate levels had features from contrasting categories 

added. For example, focusing on basic level categories depicted in Table 1, the numbers 1 

on each dimension tends to indicate the category flute, the numbers 2 tends to indicate the 

category saxophone, the numbers 3 the category drum, and the number 4 the category 

bell. When considering exemplar A1 for the category flute (see table 1) four dimensional 

values (1111) indicates the category flute, one dimensional value (2) indicates the 

category saxophone, and one dimensional value (3) indicates the category drum. Twelve 

exemplars belong to each basic level category. When considering superordinate 

categories all the numbers 1 and 2 tend to indicate the wind category and all numbers 3 

and 4 indicate the percussion category. Thus when focusing on Exemplar A1, 5 
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dimensional values (11112) indicate the category wind and 1 dimensional value (3) 

indicates the category percussion. Twenty-four exemplars belong to each superordinate 

category.   
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Table 1. 

 

Abstract item structures used for basic and superordinate level categories   

 

 

         Wind  

 

  Flute                        Saxophone 

 

Exemplar   D1  D2  D3  D4  D5  D6    Exemplar D1  D2  D3  D4  D5  D6  

 

    

A1   1     1     1     1     2     3    B1  2     2     2     2     1     3  

A2   1     1     1     1     2     4             B2  2     2     2     2     1     4  

A3   1     1     1     2     3     1    B3  2     2     2     1     3     2  

A4   1     1     1     2     4     1    B4  2     2     2     1     4     2  

A5   1     1     2     3     1     1    B5  2     2     1     3     2     2  

A6   1     1     2     4     1     1    B6  2     2     1     4     2     2  

A7   1     2     3     1     1     1    B7  2     1     3     2     2     2  

A8   1     2     4     1     1     1    B8  2     1     4     2     2     2  

A9   2     3     1     1     1     1    B9  1     3     2     2     2     2  

A10   2     4     1     1     1     1     B10  1     4     2     2     2     2  

A11   3     1     1     1     1     2    B11  3     2     2     2     2     1  

A12   4     1     1     1     1     2    B12  4     2     2     2     2     1  

 

       Percussion 

 

Drum         Bell 

 

C1   3     3     3     3     4     1    D1  4     4     4      4     3    1 

C2   3     3     3     3     4     2    D2  4     4     4      4     3    2 

C3    3     3     3     4     1     3    D3  4     4     4      3     1    4 

C4   3     3     3     4     2     3    D4  4     4     4      3     2    4 

C5    3     3     4     1     3     3    D5  4     4     3      1     4    4 

C6   3     3     4     2     3     3    D6  4     4     3      2     4    4 

C7   3     4     1     3     3     3    D7  4     3     1      4     4    4 

C8   3     4     2     3     3     3    D8  4     3     2      4     4    4 

C9   4     1     3     3     3     3    D9  3     1     4      4     4    4 

C10   4     2     3     3     3     3    D10  3     2     4      4     4    4 

C11   1     3     3     3     3     4    D11  1     4     4      4     4    3 

C12    2     3     3     3     3     4    D12  2     4     4      4     4    3 

  

Note.  Each exemplar for basic level (A1-D12) and superordinate level categories 

(A1-D24) are represented by a row in the table  
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  It is important to note that dimensional values for basic level categories that are in 

the same superordinate categories share a greater degree of similarity to one another than 

to basic level categories that are in a different superordinate. That is, the dimensional 

values for flute and saxophone are far more similar to one another than to drum or bell 

(and vice versa). This characteristic is common of real world categories. For example, 

dogs and cats, which are both animals, are far more similar in size to each other than 

either is to, say, a house or a bank, both of which are buildings. The dimension and values 

used with each dimension are presented in Table 2.  

Table 2 

Dimensions and values for items used in each of the 5 Experiments 

 

Dimension                 FLUTE    SAX    

 

weight                      .4kg    1kg 

complexity                          5p                6p 

internal volume                   24cu                76cu 

energy required                   107e               130e 

resonant frequency              180db                162db 

total number of possible objects    8ob                                               10ob 

 

   

        DRUM    BELL   

 

weight           42kg     55kg 

complexity          3p      2p 

 internal volume         821cu     1009cu 

energy required         248e      195e 

resonant frequency         73db      90db 

total number of possible objects   15ob     18ob 

 

Note.   Items are presented in their prototypical form.  
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Groups used in each of the experiments are depicted in Table 3.   

Table 3 

 

Participants randomly assigned to one of the following Experimental groups      

  

 

Group  Phase 1      Phase 2 

 

Repeated Superordinate       Superordinate 

Repeated Basic level            Basic level 

Transfer Superordinate       Basic level 

Transfer Basic level            Superordinate 

 

Note.  Participants in repeated groups experience same categories at phase 1 and 2.   

Participants in transfer group experience different categories at phase 1 and 2.   

Participants in the basic-superordinate group learned basic level categories in 

phase 1, and then transferred to superordinate categories in phase 2. Participants in the 

superordinate-basic group learned superordinate categories in phase 1, and then 

transferred to basic level categories in phase 2. Participants in the superordinate-

superordinate group learned superordinate categories in phase 1, then repeated learning of 

superordinate categories in phase 2. Participants in the basic-basic group learned basic 

categories in phase 1 and repeated learning of basic categories in phase 2. Four categories 

were learned for basic levels and two categories were learned for superordinate 

categories. Participants who repeated taxonomic levels (the superordinate-superordinate 

group and the basic-basic group) learned the same items and taxonomic levels in phase 1 

and 2.  Participants in the taxonomic transfer groups (the superordinate-basic group and 

the basic superordinate-group) learned the same items in phase 1 and 2 but transferred to 

different taxonomic levels from phase 1 to 2.   
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The learning order manipulated by means of these experimental groups was 

designed with the intent of examining the possibility of positive taxonomic transfer (i.e. 

whether more efficient processing and learning of one taxonomic level follows from 

learning a different taxonomic level).    
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Chapter II 

Experiment 1 

The debate over the nature of taxonomic relations has been extensive (see e.g., 

Collins & Quillian, 1969; Murphy & Ross, 1999; Rips et al. 1973; Sloman, 1998). 

Questions often focused on whether taxonomies were relatively stable knowledge 

structures characterized by property inheritance (Collins & Quillian, 1969), strategies 

adopted when inferring taxonomic relations (Sloman, 1998), and how knowledge 

influences the use of taxonomic structures (Murphy & Ross, 1999). Using a mixture of 

artificial and abstract materials, this experiment initiates an investigation into the learning 

and use of taxonomic relations. Because participants have no prior knowledge that the 

information they are asked to categorize is related taxonomically, findings in favor of 

positive taxonomic transfer (more efficient processing and learning of one taxonomic 

level as a result of learning a different taxonomic level) would support the notion that 

people tend to naturally adopt taxonomic relations.   

Two specific questions are asked in this experiment.  Question 1 asks whether 

processing and learning following transfer to new taxonomic levels is as efficient as when 

levels are repeated. Evidence in support of this finding would suggest perfect taxonomic 

transfer. Question 2 asks whether more efficient processing and learning occurs for 

taxonomic transferred conditions than for the same conditions learned in phase 1. For 

example, is performance better for participants in the superordinate-basic phase 2 

condition than for participants in the basic-superordinate phase 1 condition? This 

question is important for assessing whether taxonomic learning of any kind has occurred.  
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Finally, though outside the scope of the present research, category learning of the 

kind in this experiment goes to the heart of a central issue in the category literature.  

Specifically, one argument suggests that object learning does not require prior 

knowledge, and instead low-level processes like selective attention to perceptual 

properties can lead to the development of conceptual knowledge (Smith, 1989).  

Proponents of this view have argued for the interdependence of perceptual and 

conceptual similarity. An alternative view is illustrated by Goodman’s argument 

(Goodman, 1992/1972) that object learning requires one to identify dimensions.  

Therefore, the knowledge of dimensions and beliefs about their importance should come 

prior to object learning. Though not directly addressed, findings in this and subsequent 

experiments may hint at solutions to this question and directions for future research. 

2.1 Method        

2.1.1 Participants 

One hundred and three university undergraduates volunteered to participate in this 

experiment for partial course credit. Participants failing to perform beyond chance, or 

with average reaction times exceeding 30 seconds were removed from all analyses. A 

total of 15 participants were removed. Twelve participants were removed for exceeding a 

reaction time of 30 seconds and 3 were removed for failing to meet the learning criterion.   

2.1.2 Materials  

In Experiment 1 the meaningful labels described in the previous section were 

replaced with artificial labels. The meaningful label “flute” was replaced with the label 

“AAX”, “saxophone” with “SSX”, drum with “KKX”, and “bell” with “LLX”.  The label 

“wind” was replaced with “DAX” and the label “percussion” was replaced with “JAX”.  
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2.1.3 Procedure  

All instructions and reminders appeared on a computer screen. Learning was 

conducted on Macintosh computers using the program Super Card.  

In each group items were presented in the center of the screen with category 

labels situated directly above. Participants had as much time as needed to study each 

item. For superordinate level categories, participants indicated their category choice by 

pressing the D or J key (the first letter of each category label). In order to make category 

decisions for basic level categories participants’ pressed the keys A, S, K, or L. After 

pressing a key a message appeared below the exemplar informing the participant of the 

correct answer (e.g., “the correct answer is DAX“). The answer appeared on the screen 

for 2 seconds so the participant could study the correct answer. Items advanced 

automatically after 2 seconds. Following each trial block, the participant pressed the letter 

R, which caused the next trial to start and the first item to appear on the screen. Each 

block of trials contained all 48 exemplars in random order. Learning continued until 4 

blocks had been completed, where upon participants either repeated the same taxonomic 

level or transferred to a new taxonomic level for the remaining 4 blocks. 

2.2 Results and Discussion  

Four principle sets of comparisons were made in this experiment. First, repeated 

category conditions were compared with taxonomic primed conditions. Thus, the 

superordinate-superordinate phase 2 condition was compared with basic-superordinate 

phase 2 condition and the basic-basic phase 2 condition was compared with 

superordinate-basic phase 2 condition. Findings showing that participants in transferred 

categories perform as well as participants in repeated category conditions would provide 
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support for learning of taxonomic relations between categories. Second, categories 

learned for the first time at phase 1 are compared with categories learned for the first time 

at phase 2. That is, superordinate-basic phase 1 conditions were compared with basic-

superordinate phase 2 conditions, and basic-superordinate phase 1 conditions were 

compared with superordinate-basic phase 2 conditions. These two sets of comparisons 

assessed the question of taxonomic learning by asking whether there was an advantage to 

learning categories after taxonomic priming as opposed to learning categories without 

taxonomic priming. Greater number of correct responses and faster reaction time 

responses for phase 2 conditions would support an affect of taxonomy.   

The key results are shown in Figures 1 and 2.  Evidence of taxonomic learning is 

somewhat equivocal. Performance in phase 2 of the repeated conditions is substantially 

better than the taxonomic transfer condition. However, the results also seem to suggest 

some taxonomic learning in that performance for the basic-superordinate phase 2 

condition is slightly better than the phase 1 superordinate condition. However, only minor 

observable differences seem apparent between the superordinate-basic phase 2 condition 

and the basic phase 1 condition.    

 2.2.1 Accuracy   

For the following reasons arcsine transformations are employed in each of the five 

Experiments. Firstly, because proportions are bounded at zero at the low end of the scale 

and at one at the high end of the scale, they may not linearly relate to other continuous 

variables. Arcsine transforms dependent variables in the form of proportions by 

stretching out the tails of distributions of proportions. The arcsine transformation also has 

the added benefit of reducing violations of sphericity. For each of the 5 experiments two 
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sets of analyses were performed for accuracy, one for untransformed data and for arcsine 

transformed data. Means for both untransformed and transformed data can be viewed in 

Appendix I-IV. Untransformed analyses can be viewed in Appendix V-IX.  Arcsine 

transformed data are presented in the body of this paper.  

Though arcsine transformations were employed it is also important to note several 

observations for the untransformed data. Proportions for untransformed accuracy data 

were all based on the same number of observations. Furthermore, the accuracies were 

reasonably normal, so restriction of range usually associated with accuracy proportions 

was not that much of a problem. Moreover, the variances were not as different as one 

might expect, however they at times differed enough to violate sphericity assumptions.  

Thus, while arcsine transformations were employed to help bring variances closer to an 

assumption of equality the actual violations of the sphericity were minimal.  
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Figure 1. Repeated number combinations (e.g., 2 to 2) presented in graph margins depict 

repeated taxonomic conditions.  Mixed number combinations (e.g., 2 to 4) depict taxonomic 

transferred conditions.  
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 Item learning for taxonomic groups in Experiment 1 

 

 Figure 2. Repeated number combinations (e.g., 2 to 2) presented in graph margins depict 

repeated taxonomic conditions.  Mixed number combinations (e.g., 2 to 4) depict taxonomic 

transferred conditions.  
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Mixed factorial ANOVA’s were performed on each set of analyses. The first set 

of analyses examines the question of perfect taxonomic transfer learning. The main 

question is whether participants who had no prior experience with categories can perform 

as well as participants who have had prior experience. For example, can participants 

learning basic-superordinate phase 2 categories perform as well as participants learning 

superordinate-superordinate phase 2 categories? A finding favoring this outcome would 

suggest a benefit to taxonomic learning as participants who have repeated categories 

(superordinate-superordinate phase 2 condition) have the clear advantage of seeing the 

same item and category structure over participants who have seen the same items but in 

the presence of a different category structure (basic-superordinate phase 2 condition).   

Training block refers to learning over repeated blocks (e.g., within group or 

condition performance), group condition refers to comparisons made between taxonomic 

conditions (e.g., comparisons between basic-superordinate phase 2 condition and basic-

basic phase 2 condition). Participants learned four training blocks in each condition. 

First, focusing just on superordinate phase 2 conditions, analysis showed a 

significant main effect of training block (F (3, 132) = 12.41, p < .001) an interaction 

between training block and group (F (3, 132) = 6.12 p < .001) and a main effect of group 

condition (F (1, 44) = 7.04, p < .01). Participants in the superordinate-superordinate phase 

2 condition performed better than participants in the basic-superordinate phase 2 

condition on their respective first (t (44) = 24.22, p < .001) second, (t (44) = 7.16, p = 

.01) and third (t (44) = 4.21, p < .05) training blocks. 

Next, focusing on basic phase 2 conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 11.74, p < .001) and a main effect of group 
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condition (F (3, 132) = 6.12 p < .001). Participants in the basic-basic phase 2 condition 

performed better than participants in the superordinate-basic phase 2 condition on their 

respective first (t (44) = 27.87, p < .001) second (t (44) = 10.45 p < .003) third (t (44) = 

4.17, p < .05) and fourth (t (44) = 6.23, p < .02) training blocks.   

Results failed to provide support for the first question asked in this section; 

participants transferring to new taxonomic levels (e.g., basic-superordinate phase 2 

condition) did not perform as well as participants who repeated learning of taxonomic 

levels (e.g., superordinate-superordinate phase 2 condition).   

The next set of analyses examines the question of whether any taxonomic learning 

occurred at all.  Here all comparisons involve first time category exposures. The general 

idea is that if performance for participants learning phase 2 categories is superior to that 

of participants learning phase 1 categories there is evidence of taxonomic learning. That 

is, because participants in both conditions are learning particular categories for the first 

time, findings favoring taxonomic primed groups would suggest a learning advantage, 

due to experience with the taxonomically related category. This advantage may result 

from learning of class inclusion relations or any number of other factors. Given that 

participants are learning all categories for the first time comparisons are on some level 

standardized. However, it is important to note that participants learning the phase 2 

categories have had prior exposure to items (i.e., the same items are presented in phase 1 

and 2) thus may on some level have an advantage over phase 1 participants. Because 

there were no meaningful differences between superordinate-superordinate and 

superordinate-basic or between the basic-superordinate and basic-basic groups in phase 1, 

these pairs were combined for analysis. That is, the superordinate-basic phase 1 condition 
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and the superordinate-superordinate phase 1 condition were combined as were the basic-

superordinate phase 1 condition and the basic-basic phase 1 condition. Analyses therefore 

consisted of comparing the basic-superordinate phase 2 condition with the superordinate 

phase 1 combined condition and the superordinate-basic phase 2 condition with basic 

phase 1 combined condition.   

First, focusing just on superordinate conditions, analysis showed a significant 

main effect of training block (F (3, 132) = 37.05, p < .001). No main effect of group 

condition was found; participants learning items for the first time in the basic-

superordinate phase 2 condition failed (F (1, 44) = 1.92, p > .17) to outperform 

participants learning items for the first time in the superordinate phase 1 condition. The 

interaction between group condition and training block was also statistically non-

significant (F (3, 132) = .43, p > .73). 

Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 132) = 25.09, p < .001). No main effect of group condition was 

found, participants learning items for the first time in the superordinate-basic phase 2 

condition failed (F (3, 132) = .64, p > .43) to outperform participants learning items for 

the first time in the basic phase 1 condition. The interaction between group condition and 

training block was also statistically non-significant (F (1, 44) = .25, p > .86)   

Analyses failed to provide support for the second question asked in this 

experiment; participants learning categories for the first time in phase 2 did not 

outperform participants learning categories for the first time in phase 1. Thus, these 

comparisons did not support effects of taxonomic learning.  In the next section reaction 
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times are examined. Questions and expected outcomes for reaction times are identical to 

those for accuracy.    

2.2.2 Reaction times 

The reaction times were averaged and submitted to mixed factorial ANOVA’s, 

after discarding any times greater than 30 seconds. Only correct responses were analyzed. 

Analyses and comparisons are identical to those for accuracy.  The first set of analyses 

examined the question of perfect taxonomic transfer by comparing first time category 

learning experiences with repeated category learning experiences. Effects of perfect 

taxonomic learning would show that participants learning categories for the first time in 

phase 2 perform as well as participants repeated the same categories in phase 2.   

First, focusing on superordinate conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 7.17, p < .01). The interaction between training 

block and group condition was statistically non significant (F (3, 132) = 1.18, p > .14) as 

was the main effect of group (F (1, 44) = .15, p > .93). No reaction time differences were 

evident between the basic-superordinate phase 2 condition and the superordinate-

superordinate phase 2 condition.  

Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 132) = 15.31, p < .001) and a main effect of group condition (F (1, 

44) = 5.10, p < .002). Participants in the basic-basic phase 2 condition responded faster 

than participants in the superordinate-basic phase 2 condition on their respective first (t 

(44) = 3.51, p < .001) second (t (37) = 2.23, p < .03) third (t (44) = 2.26, p < .03) and 

fourth (t (44) = 2.52, p < .02). 
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Results showed partial support for effects of taxonomy in that participants who 

transferred from basic to superordinate categories processed items as fast as participants 

who transferred from superordinate to superordinate categories. Thus, participants 

repeating items in the presence of different taxonomic category performed as well as 

participants repeating items in presence of the same taxonomic category (indeed, though 

statistically non-significant they responded faster). However, this finding was apparent 

only for superordinate categories. Participants repeating basic level categories were faster 

than participants who transferred from superordinate to basic categories on all four 

blocks.     

The next sets of analyses investigate whether there is any evidence of taxonomic 

learning.  First, focusing just on superordinate conditions, analysis showed a significant 

main effect of training block (F (3, 132) = 7.82, p < .001), an interaction between training 

block and group condition (F (3, 132) = 5.10, p < .002) and a main effect of group 

condition (F (1, 44) = 10.11, p < .003). Participants learning items for the first time in the 

basic-superordinate phase 2 condition were faster processing items than participants 

learning items for the first time in the superordinate-basic phase 1 condition on their 

respective first (t (44) = 3.93, p < .001) second (t (44) = 2.17, p < .04) and third training 

blocks (t (44) = 2.52, p < .02).  

Second, focusing just on basic conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 7.82, p < .001) and an interaction between training 

block and group condition (F (3, 132) = 5.10, p < .002). Participants learning items for 

the first time in the superordinate-basic phase 2 condition were faster processing items 
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than participants learning items for the first time in the basic-superordinate phase 1 

condition on their respective first training block (t (44) = 2.24, p < .03). 

When considering reaction times, the results generally favored the idea that 

learning categories for the first time following taxonomic transfer has advantages over 

learning items for the first time in phase 1, though it is important to note that processing 

advantages were greater for the basic-superordinate group than for the superordinate-

basic group. The basic-superordinate group outperformed the superordinate-basic phase 1 

condition on 3 blocks of training, whereas the superordinate-basic phase 2 condition 

outperformed the basic phase 1 condition on only the first block of training. As discussed 

next these differences in performance may follow in part from advantages to learning 

basic level categories first. 

 Two main questions were asked in this experiment. The first question asked 

whether participants learning a taxonomic level for the first time in phase 2 following 

having learned a different taxonomic level in phase 1 would perform as well as 

participants repeating taxonomic level in phase 2. Evidence in support of perfect 

taxonomic transfer effects of this kind was evident only in the form of reaction times.  

Moreover, this outcome was found only between the basic-superordinate phase 2 

condition and superordinate-superordinate phase 2 condition. This is very weak evidence, 

given that accuracy data was quite strongly in the opposite direction (i.e., indicating much 

worse performance in the taxonomic transfer conditions). The second question asked 

whether participants learning a taxonomic level for the first time in phase 2 (after having 

learned a different taxonomic level) would outperform participants who had learned that 

taxonomic level in phase 1. Evidence in support of a transfer effect of this kind was also 
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only in the form of reaction times. Participants in basic-superordinate phase 2 conditions 

were faster processing items than participants in the superordinate-basic phase 1 

condition over the first three blocks of training, and participants in the superordinate-

basic phase 2 condition were faster processing items than participants in the basic 

superordinate phase 1 condition on the first block of training. However, without evidence 

in the form of accuracy to differentiate these comparisons an affect of taxonomy is 

difficult to conclude. This is because it is difficult to know whether participants are 

responding faster in phase 2 condition as result of being primed by a different taxonomic 

structures or simply because they are more familiar with the items.   

Interestingly, as suggested above reaction time effects were stronger for 

participants transferring from basic to superordinate categories than for participants 

transferring from superordinate to basic levels. This would suggest the simple familiarity 

is not the sole explanation for present findings. Another reason may follow from 

exposure to basic levels categories in phase 1. As noted previously basic level categories 

that are in the same superordinate share a greater degree of similarity to one another than 

basic level categories that are in different superordinates. That is, AAX and SSX have 

dimensional values that are similar to one another but not so similar to KKX and LLX 

(and vice versa). When participants were exposed to basic level categories they were in a 

far better position to learn structural characteristics than participants exposed to 

superordinate levels. Participants learning basic categories have an opportunity to 

compare and contrast superordinate instantiations. That is, they were not only able to 

compare how AAX (flute) and SSX (saxophone) were similar and different to one 

another but the were also able to compare how they are similar and different to KKX 
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(drum) and LLX (bell). Conversely, participants learning superordinate categories were 

only able to compare two categories. As a result they did not have foreknowledge of all 

basic level categories and had to consider how the dimensional values transferred to 

additional categories. In sum, participants exposed to basic level categories had a better 

understanding of how dimensional values belonged to individual categories and as such 

were better able to generalize items to transferred categories.  

In the next experiment meaningful labels are introduced. These labels identify the 

categories and are expected to boost detection of the taxonomic relationships.   
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Chapter III 

Experiment 2 

In Experiment 1, the materials limited access to prior knowledge and experiences.  

In the present experiment, identifying our items with meaningful category labels is 

intended to cue prior knowledge. Prior knowledge associated with category labels may 

play an important role in how features are interpreted and may also lead one to selectively 

attend to those features that are particularly relevant. For example, being informed that an 

item is a flute may cue both semantic information and episodic experiences a person has 

previously had with flutes. This info to experience can then be used to guide feature 

selection and categorization. Labels also imply probabilistic information about the 

features of the referred object (Anderson, 1991). For example, knowing that the object 

being categorized is a flute allows one to make an informed guess as to its weight. Prior 

knowledge in the form of category labels has also been shown to guide learning by 

providing an explanation for the properties and structure of categories (Kaplan & 

Murphy, 2000). Meaningful labels may be an important factor in learning the category 

membership of an object.   

While the usefulness of meaningful labels has been demonstrated in many 

contexts, to the author’s knowledge, how meaningful labels, real world taxonomic 

categories, and abstract structures interact to produce learning has largely been ignored.  

Much prior taxonomic research (see e.g., Markman & Callanan, 1984; Osborne & 

Calhoun, 1998) has focused on novel categories and labels without explicitly addressing 

the influence of prior knowledge cued by meaningful labels. The failure to use familiar 

taxonomic labels may on some level explain why prior research often demonstrates 
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negative taxonomic findings (see e.g., Osborne & Calhoun, 1998). When labels are not 

strongly connected to prior knowledge, activation of feature relations is likely reduced. 

That is, people may not easily see how one feature is related to another. Moreover, 

meaningful labels denote the category and the taxonomic level, thus boosting the transfer 

between taxonomic levels (see below). Finally, a focus on artificial categories without 

reference to natural categories is often at the expense of ecological validity (see e.g., 

Murphy, 2002). Introducing taxonomic labels that link strongly to prior experiences is 

one step toward achieving ecological validity. While both meaningful labels and 

attributes have real world validity, the attributes used in present studies are still somewhat 

abstract and in the present context potentially unfamiliar. Thus, the primary focus in this 

experiment is on how knowledge cued by category label affects learning of taxonomic 

relations. Other potential influences that may affect learning of taxonomic relations can 

be addressed at a later date.  

Based on prior research there is reason to believe that meaningful labels (see e.g., 

Anderson, 1991; Kaplan & Murphy, 2000) will grant a powerful means for inferring 

taxonomic relationships. Knowing the object being categorized is a flute should cue the 

categorizer to the fact that it is also a wind instrument. Furthermore, having knowledge of 

the object’s identity allows the categorizer to infer characteristics (e.g., weight, shape, 

and size) central to category membership. Findings favoring taxonomic transfer would at 

the very least suggest that people readily access pre-stored hierarchical structures. 

In sum, meaningful labels are introduced in this experiment with the expectation 

that they will boost detection of taxonomic relations. The main question then is whether 

meaningful labels result in perfect taxonomic transfer or any taxonomic transfer at all.  
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3.1 Method 

3.1.1 Participants   

One hundred and six university undergraduates volunteered to participate in this 

experiment for partial course credit. Participants failing to achieve performance beyond 

chance, or average reaction times exceeding 30 seconds were removed from analyses. In 

total 17 participants were removed from analyses for failing to meet learning criterion.  

Seven participants were removed for performing below chance, and the remaining ten 

were removed for exceeding reaction times of 30 seconds.  

3.1.2 Materials and Procedure  

With the exception of replacing artificial labels with meaningful labels that 

identified the categories, the materials and procedure were identical to that of Experiment 

1. For the basic level category the artificial labels of AAX, SSX, KKX, and LLX were 

replaced with the meaningful labels of FLUTE, SAXOPHONE, DRUM and BELL 

respectively. For superordinate level categories the labels of WIND and PERCUSSION 

replaced the artificial labels DAX and JAX. 

3.2 Results and Discussion 

The key results are shown in Figures 3 and 4.  As in experiment 1, evidence of 

taxonomic learning is somewhat ambiguous. Performance in the phase 2 repeated 

condition is substantially better than the taxonomic transfer conditions. However, the 

results also seem to suggest some taxonomic learning in that performance for the basic-

superordinate phase 2 condition is slightly better than the phase 1 superordinate 

condition. Some differences are evident between the superordinate-basic phase 2 

condition and the basic phase 1 condition.     
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Figure 3.  Repeated number combinations (e.g., 2 to 2) presented in graph margins depict 

repeated taxonomic conditions.  Mixed number combinations (e.g., 2 to 4) depict 

taxonomic transferred conditions. 
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Figure 4.  Repeated number combinations (e.g., 2 to 2) presented in graph margins depict 

repeated taxonomic conditions.  Mixed number combinations (e.g., 2 to 4) depict taxonomic 

transferred conditions.  
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3.2.1 Accuracy  

Mixed factorial ANOVA’s were performed on each set of analyses. The first set 

of analyses examines the question of perfect taxonomic transfer learning. The main 

question here is whether meaningful labels will facilitate perfect transfer learning. If so 

then one would expect participants in the basic-superordinate phase 2 condition to 

perform as well as participants in the superordinate-superordinate phase 2 condition, and 

for participants in the superordinate-basic phase 2 condition to perform as well as 

participants in the basic-basic phase 2 condition.     

First, focusing just on superordinate phase 2 conditions, analysis showed a 

significant main effect of training block (F (3, 126) = 10.95, p < .001). The interaction 

between group condition and training block was statistically non-significant (F (3, 126) = 

.38, p > .80), as was the main effect of group condition (F (1, 42) = 3.18 p < .08).     

Next, focusing on basic phase 2 conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 11.74, p < .001) and a main effect of group 

condition (F (3, 132) = 6.12 p < .001). Participants in the basic-basic phase 2 condition 

performed better than participants in the superordinate-basic phase 2 condition on their 

respective first (t (43) = 32.74, p < .001) second (t (43) = 14.48, p < .001) third (t (43) = 

8.12, p < .01) and fourth (t (43) = 14.36, p < .001) training blocks.   

Results showed partial support for perfect taxonomic transfer effect in that 

participants in the basic-superordinate phase 2 condition performed nearly as well 

participants in superordinate-superordinate phase 2 condition. As discussed shortly this 

finding may reflect the generalization effect explored in Experiment 1. 
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The next set of analyses examines the question of whether any taxonomic learning 

occurred.  Here all comparisons involve first time category exposures. If performance for 

participants learning phase 2 categories is superior to that of participants learning phase 1 

category there is evidence of taxonomic learning. Because there were no meaningful 

differences between superordinate-superordinate and superordinate-basic or between the 

basic-superordinate and basic-basic groups at phase 1, these pairs were combined for 

analysis.   

First, focusing just on superordinate conditions, analysis showed a significant 

main effect of training block (F (3, 132) = 37.05, p < .001), and a main effect of group 

condition (F (1, 42) = 6.42, p < .02). Participants in the basic-superordinate phase 2 made 

a greater number of correct responses than participants in the superordinate phase 1 

condition on their respective first (t (42) = 13.72, p < .001) and second (t (42) = 4.91, p < 

.03) training blocks.  

 Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 129) = 25.09, p < .001). The interaction between group condition 

and training block was statistically non-significant (F (3, 129) = 2.66, p = .06) as was the 

main effect of group condition (F (1, 43) = .03, p > .86). Participants learning items for 

the first time in the superordinate-basic phase 2 condition failed to outperform 

participants learning items for the first time in the basic phase 1 condition.  

Analyses provided partial support for taxonomic transfer effect in that the basic-

superordinate phase 2 condition outperformed the superordinate phase 1 condition.  An 

effect of meaningful label may also be evident, as this finding was not found in 

Experiment 1.     
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3.2.2 Reaction times  

The reaction times were averaged and submitted to mixed factorial ANOVA’s, 

after discarding any times greater than 30 seconds. Only correct responses were analyzed.  

Analyses and comparisons are identical to those for accuracy. The first set of analyses 

examined the affect of meaningful labels on perfect taxonomic transfer.   

First, focusing on superordinate conditions, analysis showed a significant main 

effect of training block (F (3, 126) = 4.43, p < .01). The interaction between training 

block and group condition was statistically non-significant (F (3, 126) = .51, p > .68) as 

was the main effect of group (F (1, 42) = .16, p > .69). Thus, no reaction time differences 

were evident between the basic-superordinate phase 2 condition and the superordinate-

superordinate phase 2 condition.  

Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 129) = 11.94, p < .003), as well as an interaction between group 

condition and training block (F (3, 129) = 4.98, p < .003) and a main effect of group 

condition (F (1, 42) = 7.67, p < .01). Participants in the basic-basic phase 2 condition 

responded faster than participants in the superordinate-basic phase 2 condition on their 

respective first (t (43) = 3.53, p < .001) and second (t (43) = 2.20, p < .001) training 

blocks. 

Results showed partial support for perfect taxonomic transfer in that participants 

who transferred from basic to superordinate categories processed items as fast as 

participants who transferred from superordinate to superordinate categories. Thus, 

participants repeating items in the presence of different taxonomic category performed as 

well as participants repeating items in the presence of the same taxonomic category. 
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However, this finding was apparent only for superordinate categories; participants 

repeating basic level categories were faster than participants who transferred from 

superordinate to basic categories on all four blocks. These findings replicate those found 

in Experiment 1.   

The next analyses examine the possibility of any taxonomic transfer by comparing 

taxonomic transfer condition phase two performance to the performance in the matched 

conditions at phase 1. First, focusing just on superordinate conditions, analysis showed a 

significant main effect of training block (F (3, 132) = 7.82, p < .001) an interaction 

between training block and group condition (F (3, 132) = 5.10, p < .002) and a main 

effect of group condition (F (1, 44) = 10.11, p < .003). Participants learning items for the 

first time in the basic-superordinate phase 2 condition processed items faster than 

participants learning items for the first time in the superordinate phase 1 condition on 

their respective first (t (42) = 3.93, p < .001) second (t (42) = 2.17, p < .04) and third 

training blocks (t  (42) = 2.04, p < .04).  

Second, focusing just on basic conditions, analysis showed a significant main 

effect of training block (F (3, 129) = 35.74, p < .001). The interaction between training 

block and group condition was statistically non-significant (F (3, 129) = 1.29, p > .31) as 

was the main effect of group condition (F (1, 43) = .02, p > .88).   

Reactions time results in this Experiment were very similar to those found in 

Experiment 1. Results generally favored the idea that learning taxonomically transferred 

categories for the first time in phase 2 had advantages over learning the same categories 

for the first time in phase 1. Moreover processing advantages were greater for the basic-

superordinate group than for the superordinate-basic group. 
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 Results in this Experiment were on the whole similar to those found in 

Experiment 1. Taxonomic transfer effects were generally in the form of reaction times.  

Moreover, the reaction time effects generally supported the idea of generalization. Phase 

2 learning following exposure to basic level categories in phase 1 was overall faster than 

phase 2 learning following exposure to superordinate categories in phase 1.  Indeed, the 

one finding in this experiment differing from that of the previous experiment also seems 

to support generalization. Participants in basic-superordinate phase 2 conditions produced 

more correct responses than participants learning superordinate categories in phase 1.  

However, no advantages related to correct responses were apparent for phase 2 conditions 

following having learned superordinate categories in phase 1. Overall these findings 

correlate well with the idea that learning basic level categories facilitate generalization to 

new (superordinate) categories.    

Importantly, taxonomic transfer effects in the form of correct responses were 

found in this Experiment. This suggests that meaning attached to the label may have 

contributed to the transfer effect.  However, without direct comparisons between the 

meaningful and artificial label groups this observation is difficult to draw with certainty.  

Moreover, only one taxonomic transfer effect in the form of correct responses was found.  

Thus, it is difficult to draw a final conclusion about the overall affect of taxonomic 

transfer. Indeed, the only real conclusions that can be drawn are that meaningful labels 

may have facilitated generalization, and that reaction times in this experiment are slightly 

higher than that of Experiment 1.  

Given prior evidence demonstrating facilitation effects of prior knowledge (see 

e.g., Murphy 2002), the failure to find clear effects of taxonomy in this experiment is 
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surprising. The expectation was for the category label to clarify taxonomic relations. One 

reason for this pattern may result from some dimensions in this experiment being 

relatively abstract (at least within the present context). Participants may have had 

difficulty drawing a clear parallel between the instrument and the dimension (e.g., may 

not have had a clear idea of how resonating frequency, internal volume etc. related to the 

instrument). Another reason for failing to see strong prior knowledge effects is that in 

comparison to prior research (see e.g., Kaplin and Murphy, 2000; Spalding and Murphy, 

1996) the dimensions and feature relations in this experiment are relatively weak.  

 In the next experiment instructions are introduced which clarify qualities of 

features and how one feature relates to another. Moreover, effects for both artificial and 

meaningful label groups are examined in a single experiment.  
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Chapter IV 

Experiment 3 

The previous experiments in this paper explored artificial and meaningful label 

groups independently, making direct comparisons between these groups problematic.  In 

this experiment both artificial and meaningful label groups are included.  Additionally, 

knowledge of feature relations is introduced. This information makes clear connections 

between instrument features. For example, instruments having greater weight will on 

average have lower tones. Cueing knowledge of this kind is intended not only to strongly 

define how one feature is related to another, but also to clarify taxonomic relations. The 

expectation is that in comparison to when the taxonomic label is unknown, knowledge of 

feature relations will boost the manipulation of knowledge associated with the 

meaningful label. On the other hand, such relations should not be particularly meaningful 

when there are no meaningful labels to which the participants can attach the relations.  

That is, the relations are highly abstract, and therefore may have little impact on their 

own.  

The central question in this experiment is whether taxonomic relations are easier 

to learn in the presence of meaningful or artificial labels. One clear expectation is that 

meaningfully named categories are easier to acquire than abstract named categories 

because knowing the name of the object activates prior knowledge and experiences 

associated with that object (see e.g., Murphy, 2002; Waxman & Markow, 1995).  

Furthermore, participants exposed to meaningful labels in this experiment have 

knowledge of both instrument types and feature relations, while those exposed to 

artificial labels have knowledge of feature relations alone. Nevertheless, because no 
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demonstrable benefit was found when using meaningful labels in Experiment 2, it is 

important to consider counter arguments. Firstly, while exposure to meaningful labels 

results in having knowledge of instruments, the features themselves are abstract. Even 

given knowledge of feature relations, it is unclear how abstract feature-based information 

will interact with deeply embedded prior experiences. Some research suggests (e.g., Heit, 

2000) that performance is negatively affected under these kinds of conditions. Moreover, 

people often have only superficial knowledge of an object (see e.g., Keil, 2003). Thus, 

exposure to dimensions involving deeper object knowledge like resonating frequency and 

internal volume may be outside the scope of participants’ prior experiences for musical 

instruments. As a result, participants may have difficulty reconciling unfamiliar 

information with their expectations.  In contrast, participants exposed to artificial labels 

are unlikely to consider the relationship between label and attributes. Thus, mapping 

features with the label may be easier when both are abstract.   

In sum, the main question asked in this experiment is whether introducing 

knowledge of feature relations will boost the manipulation of knowledge associated with 

the meaningful label. Whether a facilitation affect of prior knowledge is found may in 

part depend on how well item information maps onto to prior experiences.  

4.1 Method 

4.1.1 Participants   

One hundred and eighty three university undergraduates volunteered to participate 

in this experiment for partial course credit. In total, 19 participants were removed from 

analyses for failing to meet learning criterion. Six participants were removed for 
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performing below chance, with the remaining 13 removed for exceeding reaction times of 

30 seconds.  

4.1.2 Materials and Design.   

This experiment used the same materials as in the previous experiments, except 

that in the current experiment, additional instructions were introduced. These instructions 

informed participants how some attributes were related. For example participants in both 

groups were informed that instruments light in weight generally played at higher 

frequencies whereas heavier instruments generally played at lower frequencies.   

4.1.3 Procedure  

Experiment 3 procedures replicate those of Experiment 1 and 2 with one change.  

Before beginning category-learning participants in each condition read instructions 

introducing them to relations between features. Participants in the meaningful label group 

were provided with real instrument names, while participants in the artificial label group 

were given the meaningless label. In neither case was any direct connection made 

between the labels and the features. 

4.2 Results and Discussion   

Note that for this and subsequent experiments individual group taxonomic 

performance will not be examined. Clear taxonomic transfer effects were not found in 

Experiments 1 and 2. The main finding found in those experiments was that phase 2 

learning following exposure to basic level categories in phase 1 was overall faster than 

Phase 2 learning following exposure to superordinate categories in phase 1. In general, 

the current experiment shows the same pattern of minimal taxonomic transfer.  

Taxonomic transfer is found only in reaction times and in only in transfer from basic to 
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superordinate. These results have been established in previous experiments and remained 

constant over the next 3 experiments. These analyses are available upon request.  

The key results are shown in Figures 5, 6, 7, and 8 separately for the artificial and 

meaningful groups. First, focusing on accuracy ratings (see Figures 5 and 6) it seems 

clear that groups did not differ on correct responses. Instructions failed to boost 

meaningful content associated with the label. Next focusing on reaction times (see 

Figures 7 and 8) it is also clear that performance for the artificial group is faster, 

particularly for basic level categories. This result is opposite that predicted if prior 

knowledge had facilitated learning and consistent with the idea that item information 

interferes with prior experiences.   
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 Figure 5. 
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 Figure 6. 
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  Figure 7. 
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Figure 8.  
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4.2.1 Accuracy 

 The first set of analyses focuses on taxonomic transfer effects. Examination of 

taxonomic transfer effects in the present experiment focuses solely on comparisons 

between the artificial and meaningful groups in the basic-superordinate phase 2 

conditions and superordinate-basic phase 2 conditions. These comparisons show whether 

one group benefits more than the other from taxonomic priming. A finding favoring the 

meaningful group would also suggest that instructions boosted the manipulation of 

knowledge associated with the meaningful label. 

First when comparing mean transfer differences between the meaningful basic-

superordinate phase 2 condition and the artificial basic superordinate phase 2 condition 

results showed a significant main effect of training block (F (3, 243) = 28.66, p < .001).  

The interaction between group condition and training block was statistically non-

significant (F (3, 243) = .02, p > .80) as was the main effect of group (F (1, 81) = 1.35, p 

> .25).  

Next, when comparing mean transfer between meaningful superordinate-basic 

phase 2 condition and the artificial superordinate-basic phase 2 condition results showed 

a significant main effect of training block (F (3, 243) = 44.60, p < .001). The interaction 

between group condition and training block was statistically non-significant (F (3, 243) = 

.18, p > .91) as was the main effect of group (F (1, 81) = 2.90, p > .09).  

In sum, no differences were found between meaningful and artificial label groups 

following transfer to a new taxonomic level.    

The next set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups. These comparisons include superordinate and basic 
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level phase 1 conditions, as well as superordinate and basic level phase 2 conditions. 

These comparisons are important for further examining whether instructions facilitate 

learning for the meaningful label group. Findings showing better performance for the 

meaningful group would support this idea.   

First, focusing on superordinate phase 1 conditions for artificial and meaningful 

groups, results showed a significant main effect of training block (F (3, 117) = 56.73, p < 

.001). The interaction between group condition and training block was statistically non-

significant (F (3, 117) = 1.95, p > .12) as was the main effect of group (F (1, 39) = 1.40, p 

> .24).   

Second, focusing on basic phase 1 conditions for artificial and meaningful groups, 

results showed a significant main effect of training block (F (3, 117) = 111.24, p < .001).  

The interaction between group condition and training block was statistically non-

significant (F (3, 117) = .90, p > .44) as was the main effect of group (F (1, 39) = 1.32, p 

> .26).  

Third, comparisons between the artificial superordinate-superordinate phase 2 

condition with the meaningful superordinate-superordinate phase 2 conditions showed a 

significant main effect of training block (F (3, 117) = 6.29, p < .02). The interaction 

between group condition and training block was statistically non-significant (F (3, 117) = 

.56, p > .65) as was the main effect of group (F (1, 39) = 2.24, p > .14).  

Finally, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition, results showed a significant main effect of 

training block (F (3, 117) = 4.90, p < 003). The interaction between group condition and 
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training block was statistically non-significant (F (3, 117) = .65, p > .58) as was the main 

effect of group condition (F (1, 39) = .21, p > .65). 

In sum, analyses revealed no differences between artificial and meaningful groups 

for correct responses. Instructions did not have the expected effect of boosting knowledge 

effects associated with the meaningful labels.   

4.2.2 Reaction Times  

The reaction times were averaged and submitted to mixed factorial ANOVA’s, 

after discarding any times greater than 3 seconds. Only correct responses were analyzed.  

It is important to keep in mind that participants learn in total 48 items for each block, 12 

for each category.   

 The first sets of comparisons examine taxonomic transfer differences between the 

artificial and meaningful label groups for basic-superordinate phase 2 conditions and 

superordinate-basic phase 2 conditions. Expectations for these comparisons are identical 

to those for correct responses.   

First, when comparing the meaningful basic-superordinate phase 2 and artificial 

basic superordinate phase 2 condition results showed a significant main effect of training 

block (F (3, 243) = 23.39, p < .001). The interaction between group condition and 

training block was statistically significant (F (3, 243) = 3.85, p < .01). Participants in the 

artificial basic-superordinate condition were faster processing items at block 1 (t (81) = 

3.85, p = 6.11, p < .02). 

Next, comparisons between the meaningful superordinate-basic phase 2 condition 

and the artificial superordinate-basic phase 2 condition showed a significant main effect 

of training block (F (3, 243) = 20.33, p < .001) an interaction between group and training 
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block (F (3, 243) = 10.25, p < .001) as well as a main effect of group (F (1, 81) = 20.20, p 

< .001). Participants in the artificial superordinate-basic phase 2 condition were faster 

processing standard items on their respective first (t (81) = 24.88, p < .001) second, (t 

(81) = 11.16, p < .001) third, (t (81) = 13.29, p < .001), and fourth (t (81) = 9.70, p < 

.003) training blocks.  

In sum, the artificial group was faster than the meaningful when transferring from 

one taxonomic level to another regardless of type of structure first learned. Clearly 

instructions failed to boost knowledge effects associated with the meaningful label.    

The next set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups. These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions.  

First, focusing on the artificial superordinate-superordinate phase 1 condition with 

the meaningful superordinate-superordinate phase 1 condition results showed a 

significant main effect of training block (F (3, 117) = 36.36, p < .001) and an interaction 

between training block and group condition (F (3, 117) = 3.18, p < .03). The main effect 

of group was statistically non-significant (F (1, 39) = 1.98, p > .17). Participants in the 

artificial label group processed items faster on training block 1 (t (39) = 2.26, p < .03).   

Second, when comparing the artificial basic-basic phase 1 condition with the 

meaningful basic-basic label phase 1 condition, results showed a significant main effect 

of training block (F (3, 117) = 26.66, p < .001) an interaction between group and training 

block (F (3, 117) = 9.88, p < .001) as well as a main effect of group (F (1, 39) = 34.16, p 

< .001). Participants in artificial basic-basic group were faster than participants in the 

meaningful basic-basic group when processing items on training blocks 1 (t (39) = 5.28, p 
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< .001), 2 (t (39) = 4.23, p < .001), 3 (t (39) = 4.77, p < .001) and 4 (t (39) = 3.70, p < 

.001).  

Third, when comparing the artificial superordinate-superordinate phase 2 

condition with the meaningful superordinate-superordinate phase 2 condition results 

showed a significant main effect of training block (F (3, 117) = 3.26, p < .03). The 

interaction between training block and group condition was statistically non-significant, 

(F (3, 117) = .43 p > .73) as was the main effect of group condition (F (1, 39) = .01, p > 

.93).  

Finally, focusing on the artificial basic-basic phase 2 condition and the 

meaningful basic-basic label phase 2 condition results showed a significant main effect of 

training block (F (3, 117) = 11.40, p < .001). The interaction between training block and 

group condition was statistically non-significant (F (3, 117) = .96, p > .41) as was the 

main effect of group condition (F (1, 39) = 1.46, p > .24).  

In sum, the artificial label group was reliably faster processing items in 

superordinate phase 1 and basic phase 1 conditions. This finding is surprising given the 

expectation of prior knowledge effects for the meaningful label. 

In Experiment 3, meaningful labels and instructions for feature relations failed to 

facilitate taxonomic transfer. Indeed, reaction times would suggest a negative affect on 

performance. Participants in the meaningful label condition were slower to categorize 

items than in the previous experiment. Secondly, no differences in correct categorizations 

were found between artificial and meaningful label groups. One finding of interest is the 

very clear difference in reaction time performance between groups. Specifically, the 

artificial label group was considerably faster than the meaningful label group, particularly 
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when categorizing items for basic level categories. Additionally, it would seem that being 

given feature relations alone did not improve performance as findings for the artificial 

group here appear similar to those in Experiment 1. So neither labels, nor relations, nor 

their combination seem to help learning much.  

Before exploring these results it is critical to note that accuracy ratings for basic 

level training are quite low. Participants in this experiment took two hours to complete 

categorizations for the basic-basic level group, and only achieved between 60 and 70 

percent correct by task end. Some might argue that this finding renders interpretation of 

reaction times meaningless. However, it is important to consider the following. 

Concurrent four category comparisons are extremely difficult, but performance is still far 

above chance (25%). Furthermore, low accuracy rates do not negate the comparisons of 

interest in this experiment, specifically reaction times differences between artificial and 

meaningful label groups. Indeed, accuracy rates on some level validate current 

comparisons as no accuracy differences were found between the groups, yet very real 

reaction time differences exist (thus no reaction time vs. accuracy trade offs). Finally, 

most errors are within superordinate errors. That is, participants are more likely to 

confuse saxophone with flute than with drum or bell. Together these observations suggest 

that participants are detecting similarities between categories and possibly contrasting 

basic level categories belonging to the same superordinate category. Moreover, this 

would suggest that participants are not often merely responding to items by guessing.  

Otherwise within and outside (e.g., saying an item is drum when it is a flute) errors would 

likely occur equally often. Nevertheless, it is difficult to rule out guessing as a 



    86 

contributing factor to group performance (e.g., participants’ accuracy is low and 

confusing flute with saxophone does not rule out the possibility that they are uncertain).   

When considering reaction time differences, one observation of note is that 

reaction time differences between superordinate and basic levels differ depending on 

group. Differences between taxonomic levels are much smaller for the artificial than for 

the meaningful label group. Moreover, in comparison to the artificial label, meaningful 

label categorizations are substantially slower for the basic level and marginally slower for 

the superordinate level. These findings are of interest because they suggest that groups 

approach categorization differently.   

Factors underlying these differences are likely several including prior 

expectations, label abstractness, dimensional qualities, and item structure. When 

considering prior expectations, one very real difference between groups is that one has 

prior knowledge of the categories whereas the other one does not. Taxonomic labels for 

the artificial group are without meaningful content, thus it is unlikely that participants 

distinguish differences between levels based on prior experiences attached to the category 

label. The basic level label SSX and superordinate level label AAX provide no clues as to 

the identity of the object.  In contrast, people learn about musical instruments and their 

taxonomic relationship (e.g., see Osborne & Calhoun, 1998) at a very early age. 

Consequently, for meaningful label participants, a strong relationship exists between the 

category label and prior experience. They have a clear idea of what flutes and drums are 

and the kinds of features attached to these categories. Mention the category flute, and 

many will consider an instrument light in weight, silver in color, that was either played in 

the school orchestra or seen at the local symphony. Importantly, people may at times 
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have difficulty translating abstract features such as resonating frequency into things they 

know a little about like pitch. Moreover, the occasional values of current items (e.g., 

50kg. Flute) may at times be surprising. This may explain why meaningful label 

participants were slower categorizing basic level items. People have very clear 

expectations as to what attributes constitute known categories. When expectations are 

strongly held, people may find it difficult to readjust their expectations to think of 

categories in new ways (see e.g., Keil, 2003, for a similar but slightly different 

observation). 

Interestingly, the strength of expectations about the attributes of the category may 

vary depending on taxonomic level. Support for this idea follows from greater reaction 

time differences between taxonomic levels for the meaningful group. Markman (1985) 

notes that superordinate categories are often treated as mass nouns rather than as count 

nouns. Count nouns are categories, like chair, flute, piccolo, which can be pluralized, 

counted and treated as individual objects. In contrast, superordinate categories are often 

treated as homogenous masses, which cannot be counted, and are used to refer to 

collections of multiple items. The tendency to treat superordinate categories as 

homogenous masses may be even greater when attributes are abstract as in this 

experiment, because both the label and the attribute fail to clearly identify the category.  

As a result, participants may decide the category is difficult to know with certainty and 

expend less effort (in comparison to when categorizing a the basic level) deciding item 

membership.   That is, they are more likely to make classification decisions based on how 

item information generally fits the category.  
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In contrast, when considering basic level count nouns the relationship between the 

attribute and the category is relatively clear. The category saxophone denotes specific 

attributes (e.g., reeds, brass etc.). However, in this experiment the mapping between the 

attribute and basic level category is not so clear; participants have a clear idea of the 

category identity but the attributes are abstract. Thus, participants know enough about the 

category to attempt categorization, however as attributes are abstract and inconsistent 

with prior experiences, additional time and effort is required to decide item membership.  

Moreover, when categories are familiar people tend to believe they know more about the 

category than actually do (see e.g., Kiel, 2003). Thus in the basic level condition, 

participants may be more challenged to resolve the relationship between the abstract 

attribute and the category.   

One final factor contributing to reaction time differences between taxonomic 

levels is item structure. Dimensional values for items vary depending on taxonomic level 

with a greater number of dimensional values belonging to superordinate categories than 

basic categories. Moreover, a greater number of dimensional values repeat themselves 

over items for superordinate than basic levels. Thus, participants may simply find it easier 

to categorize items for superordinate categories.   

In sum, the main finding in this experiment is that meaningful label participants 

treat some taxonomic levels differently from artificial label participants. When 

categorizing at either taxonomic level artificial label participants appeared to categorize 

without much consideration for how items relate to the category label. In contrast, at least 

when considering the basic level, prior experiences seem to heavily influence 

categorizations by the meaningful label group. Having specific prior expectations for 
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basic level categories, meaningful participants appeared surprised by abstract features and 

took longer to categorize items. Expectations for superordinate categories are likely 

general and abstract attributes used in this experiment do not necessarily have to attach to 

any one category. As a result participants may have given less consideration as to the 

identity of the category.   

In the next experiment, additional items are introduced allowing further 

examination of how prior expectations and item structure affect performance.  

Instructions presented in the current experiment will not be included in the next, as they 

failed to boost knowledge associated with the meaningful labels.   
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Chapter V 

Experiment 4 

Surprisingly, the results of the previous experiments revealed no learning 

advantage for meaningful label groups. Indeed, reaction time performance was poorer for 

the meaningful label group than for the artificial. Moreover, reaction time differences 

between taxonomic levels were greater for the meaningful group. One possibility is that 

these results are an artifact of instructions introduced in Experiment 3 negatively 

affecting performance for the meaningful group. That is, perhaps the instructions forced 

participants to look deeper into relations between attributes, thus resulting in extended 

examination, but not allowing participants to clearly see feature connections. What is 

uncertain is whether all or only some of these factors influences categorization.   

Research (see e.g., Kaplan & Murphy, 2000; Murphy & Kaplan, 2000) generally 

shows that facilitation affects of prior knowledge increase as number of features related 

to the category increase. Kaplan and Murphy (2000) compared category learning with 

mixed theme features to category learning with intact theme features. In the intact theme 

condition participants learned about pairs of categories with features that were consistent 

with prior experience. For example, the features for one category were related to arctic 

vehicles and the features of the other category were related to jungle vehicles. In the 

mixed theme condition the categories were mixed so that a category might have 50% 

arctic features and 50% jungle features. Kaplan and Murphy reported that learning was 

worse in the mixed theme condition, suggesting there was more facilitation due to prior 

knowledge in the intact theme condition.  
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The present research does not use thematic features, however the idea that 

facilitation affects of prior knowledge increase, as the number of category features 

consistent to increase is relevant. In this experiment, two additional items are introduced.  

These items, along with standard items used in previous experiments, differ in number of 

features related to the category. The general idea is that items having more category 

consistent features will benefit more from prior knowledge than those items having fewer 

features. The other advantage is (failing facilitation affects of prior knowledge) these 

items will provide a means of determining what factors are interfering with mapping of 

attributes to their category (see below).   

 In order to address these concerns two additional items are introduced in this 

experiment. Prototype and fifty-fifty items have the same dimensions as standard items. 

What differentiates these items is their structure. Regardless of taxonomic level or 

category, all dimensional values for prototypes belong to their category. For example, 

dimensional values are coded 111111 (see tables 4 and 6) for both the basic level 

category flute, and superordinate level category wind instrument. Thus, all dimensional 

values for this item (and other prototype items) belong to their category, and none belong 

to a contrasting category. Fifty-fifty items (see table 5 and 7) are unusual in that when 

categorizing these items at the basic level they split their attributes half and half within 

each superordinate. For example, when considering “wind instrument” instantiations, 

dimensional values are coded 121212. This item can best be described as half flute and 

half saxophone. Finally, most of dimensional values for standard items fall in their 

category. For example, dimensional values for the basic level category flute tend to have 

the value 1 on most dimensions. One instance of coding for this item is 111124, showing 
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that 4 dimensional values belong to category flute, and 2 belongs to contrasting 

categories. When categorizing this item for the superordinate category wind instrument 5 

dimensions belong to the category wind instrument and 1 belong to the contrasting 

category.  

Based on prior research (e.g., Kaplan & Murphy, 2000), the following is expected 

for item comparisons. First focusing on the superordinate meaningful condition, 

prototypes, having the greatest number of features consistent with their category, are 

expected to outperform standard and fifty-fifty items. Poorest performance is expected 

for fifty-fifty items as their structure fails to belong to any one category. With one 

qualification, similar predictions are expected for the artificial group. As there are clear 

structural differences between prototype and standard items, performance for these items 

should follow a similar pattern to that of the meaningful group. Performance for fifty-

fifty items may follow a different pattern. When categorizing these items into 

superordinate categories all features belong to their category. Unlike participants in the 

meaningful group who have clear expectations for items, participants in the artificial 

group most probably have none, and thus may categorize solely based on number of 

features correctly predicting the category. In which case, performance for fifty-fifty may 

not differ all that much from prototypes. 

The addition of prototype and fifty-fifty items are also important for examining 

groups differences discussed in Experiment 3. For example, as noted above all 

dimensional values for prototype items transfer correctly to their category regardless of 

taxonomic level. Moreover, dimensional values are consistent with what one would 

expect given their category (a flute weighs what one would expect it to weigh). Thus, 
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inconsistencies associated with dimensional values are no longer a factor affecting 

performance for these items. While the influence of dimensional values has been 

removed, the abstract nature of the dimensions still remains. If abstract dimensions were 

a factor affecting group differences in the previous experiment, then mapping of 

prototype information to categories will remain difficult for the meaningful label and the 

usual facilitation affects associated with prior knowledge will fail to emerge. Similarly, 

given a negative influence of dimensions, differences between taxonomic levels should 

be greater for the meaningful group than for the artificial group when categorizing 

prototype items. This is because dimensional values for prototype items are the same 

when classified at either taxonomic level and thus should not impact performance.   

Alternatively, if dimensional values (e.g., an unusually high weight for a flute) were 

solely responsible for failing to find an affect of prior knowledge in Experiment 3, then 

meaningful group performance for prototype items should improve, as the prototype 

structure is now consistent with prior experiences. Finally, when considering fifty-fifty 

items the combination of dimensional values for these items are odd and inconsistent with 

prior expectations. Thus the artificial group is expected to outperform the meaningful 

group when classifying fifty-fifty items.   

In sum, two additional kinds of items are introduced in this experiment. The 

inclusion of these items allows further exploration of issues addressed in earlier 

Experiments. One focus of prior experiments was on factors that boost prior knowledge.  

In Experiment 2, meaningful labels were introduced and failed to boost prior knowledge.  

Similarly, in Experiment 3, instructions describing feature relations also failed to 

facilitate prior knowledge. In this experiment, one expectation given an affect of prior 
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experience is enhanced performance for the meaningful group when categorizing 

prototype items, and poorer performance when categorizing fifty-fifty items. Another 

reason for including these items is that given a failure to find an effect of prior 

knowledge, they allow for a closer examination of whether abstract dimensions, 

incongruent features, or some combination of the two affect how the meaningful group 

makes classification decisions.  

Finally, prior research (e.g., Kaplan & Murphy, 1999) using thematic attributes 

has demonstrated that facilitation affects of prior knowledge increase as number of 

features related to the category increases. Similar to previous experiments, some items in 

the present experiment have greater numbers of features related to their category. This 

experiment differs in that item attributes are abstract. One question following from these 

observations is whether prior knowledge affects learning in a similar way when feature-

based information is abstract.   

Table 4 

Abstract structures of prototype items for the basic level and superordinate level  

categories used in Experiments 4 and 5 

 

Exemplar   D1  D2  D3  D4  D5  D6    Exemplar D1  D2  D3  D4  D5  D6  

 

   Category AAX/DAX    Category SSX/DAX  

   

P1   1     1     1     1     1    1    P2             2     2     2     2     2     2  

  

 

 

   Category KKX/JAX    Category LLX/JAX 

 

P3   3     3     3     3     3     3    P4            4     4     4      4     4    4 

  

Note.  Each prototype for basic level (P1-P4) and superordinate level categories (P1-P4) 
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are represented by a row in the table 

Table 5 

 

Abstract structures of fifty-fifty items for the basic level and superordinate level  

categories used in Experiment 4 and 5 

 

Exemplar   D1  D2  D3  D4  D5  D6    Exemplar D1  D2  D3  D4  D5  D6  

 

   Category AAX/DAX    Category SSX/DAX  

   

F1   1     2     1     2     1    2    F2             2     1     2     1     2     1  

  

 

 

   Category KKX/JAX    Category LLX/JAX 

 

F3   3     4     3     4     3     4    F4            4     3     4      3     4    3 

  

Note.  Each fifty-fifty item for basic level (F1-F4) and superordinate level categories  

(F1-F4) are represented by a row in the table 

Table 6 

 

Prototypes items presented to meaningful and artificial label groups 

 

Dimension Prototypes used for Basic and Superordinate Levels 

 

 

  

  FLUTE/AAX    SAX/SSX    

      

 

1   weight = .4kg    weight = 1kg 

2   complexity = 5p    complexity = 6p 

3   internal volume = 24cu    internal volume = 76cu 

4   energy required = 107e   energy required = 130e 

5   resonant frequency = 180db    resonant frequency = 162db 

6   total number of possible objects = 8ob          total number of possible objects = 10ob 
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  DRUM/KKX     BELL/LLX   

 

 

1   weight = 42kg     weight = 55kg 

2   complexity = 3p     complexity = 2p 

3   internal volume = 821cu    internal volume = 1009cu 

4   energy required = 248e     energy required = 195e 

5   resonant frequency = 73db     resonant frequency = 90db 

6   total number of possible objects = 15ob  total number of possible objects = 18ob 

 

Note.  These 4 prototypes are seen at both the basic and the superordinate category level 

 

Table 7 

 

Fifty-Fifty items presented to artificial and meaningful label groups 

 

Dimension      Fifty-Fifty Items used for Basic and Superordinate Levels 

 

 

      FLUTE/SAX       SAX/FLUTE   

       

 

1       weight = .4kg       weight = 1kg 

2       complexity = 6p       complexity = 5p 

3       internal volume = 76cu       internal volume = 24cu 

4       energy required = 107e      energy required = 130e 

5       resonant frequency = 162db                 resonant frequency = 180db 

6       total number of possible objects = 8ob        total number of possible objects = 10ob 

 

 

   

 

      DRUM/BELL     BELL/DRUM   

 

 

1       weight = 42kg     weight = 55kg 

2       complexity = 2p     complexity = 3p 

3       internal volume = 821cu    internal volume = 1009cu 

4       energy required = 195e     energy required = 248e 

5       resonant frequency = 73db    resonant frequency = 90db 

6       total number of possible objects = 18ob  total number of possible objects = 15ob 

 

Note.  For Experiment 4 only dimensional values 2, 4, and 6 are switched, However, 

these items are counterbalanced for Experiment 5, so that group 1 views fifty-fifty items 
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in which dimensional values 2, 4, and 6 are switched, and group 2 views dimensional 

values in which 1, 3, and 5 are switched.  Also note that when categorizing fifty-fifty 

items, participants view categories as Flute, Saxophone, Drum, and Bell.  These same 

items are presented to the artificial label group (but with artificial labels) 

5.1 Method 

5.1.1 Participants  

Two hundred twenty six university undergraduates volunteered to participate in 

this experiment for partial course credit. In total 18 participants were removed from 

analyses for failing to meet learning criterion. Eleven participants were removed for 

performing below chance, with the remaining 7 were removed for exceeding reaction 

times of 3 seconds.   

5.1.2 Materials and Design 

  In this experiment a ninth training block is introduced, which in addition to the 

48 standard items included in the previous experiments, includes 4 prototype and 4 fifty-

fifty items, one for each basic level category. All other materials are identical to that of 

previous experiments.    

5.1.3 Procedure  

Experiment 4 procedures replicate those of Experiment 1 and 2.       

5.2 Results and Discussion 

Note that as fifty-fifty items have no one-to-one correlation with basic level 

categories, results for these items are explored only for superordinate categories.   

The key results for the first 8 training blocks are presented in Figures 9, 10, 11, 

and 12 separately for artificial and meaningful groups. As can be seen taxonomic affects 
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are the same as the first three experiments, namely no taxonomic affects on accuracy. 

However, Phase 2 learning following exposure to basic level categories in phase 1 are 

overall faster than Phase 2 learning following exposure to superordinate categories in 

phase 1.   

First focusing on accuracy ratings (see Figures 9 and 10) no clear differences are 

apparent between artificial and meaningful groups. Next focusing on reaction times (see 

Figures 11 and 12), performance is considerably slower for the meaningful label.  

Moreover, differences between basic and superordinate levels are much greater for the 

meaningful label. These findings replicate those of Experiment 3, and rule out the 

argument that findings in that study are solely attributable to an artifact of the 

instructions.    

Next turning to performance for block 9 (see Figures 13, 14, 15, and 16), and 

focusing first on accuracy ratings (see Figures 13 and 14), prototypes (having congruent 

dimensional values) were favored over standard items, as expected. Interestingly, no 

differences are observed between prototype and fifty-fifty items. Moreover, this 

observation holds when focusing on reaction times (see Figures 15 and 16). This finding 

is inconsistent with the idea that meaningful label participants treat fifty-fifty items as 

either half flute/half saxophone or half drum/half bell. Finally, whether considering 

accuracy ratings or reaction times differences between groups appear slight. This 

observation is discussed in more detail in the discussion of this experiment.  

 Analyses begin by first examining group differences and is followed up by 

independent group performance for block 9.   
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 Learning of standard items for the artificial group in Experiment 4 

 Figure 10. 
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 Learning of standard items for the meaningful group in Experiment 4 
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Figure 11. 
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 Standard item response times for the artificial group in Experiment 4 

 Figure 12. 
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  Figure 13.  
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 Item learning for the artificial group in Experiment 4  

 

 Figure 14. 
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 Figure 15. 
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 Item response times for the artificial group in Experiment 4   

 

 Figure 16.  
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5.2.1 Artificial and meaningful group comparisons   

The following sets of comparisons are important for verifying results found in the 

Experiment 3.  In that Experiment no differences were found between artificial and 

meaningful groups on measures of accuracy. However, reaction time performance was 

overall much faster for the artificial label group. One factor that may have contributed to 

weak performance on the part of the meaningful group, particularly with respect to 

reaction time performance was the inclusion of instructions in that Experiment.  

Participants in the meaningful group having knowledge of categories may have spent 

more time trying to figure out how one feature was related to the other. Replicating the 

analysis performed in Experiment 3 is important for ruling out this possibility. The first 

sets of comparisons focus on learning of standard items over the first eight blocks of 

training. Block 9 comparisons for standard, prototype, and fifty-fifty items are explored 

later.  

5.2.1.1 Accuracy  

The first set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups. These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions.  

Findings favoring the meaningful group would show that meaning attached to the label 

boost classification for that group.  

First, when comparing the artificial superordinate-superordinate phase 1 condition 

with the meaningful superordinate-superordinate phase 1 condition results showed a 

significant main effect of training block (F (3, 150) = 56.73, p < .001). The interaction 
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between group and training block was statistically non-significant (F (3, 150) = 1.95, p > 

.12) as was the main effect of group (F (1, 50) = 1.40, p > .24).  

Next, when comparing the artificial basic-basic label phase 1 condition with the 

basic-basic meaningful label phase 1 condition results showed a significant main effect of 

training block (F (3, 150) = 111.24, p < .001). The interaction between training block and 

group was statistically non-significant (F (3, 150) = .90, p > .44) as was the main effect of 

group (F (1, 50) = 1.32, p > .26).  

Third, when comparing the artificial superordinate-superordinate phase 2 

condition with the meaningful superordinate-superordinate phase 2 conditions, results, 

showed a significant main effect of training block (F (3, 150) = 6.29, p < .02).  The 

interaction between group and training block was statistically non-significant (F (3, 150) 

= .56, p > .65) as was the main effect of group (F (1, 50) = 2.24, p > .14).  

Finally, focusing on the artificial basic-basic phase 2 condition and the 

meaningful basic-basic phase 2 condition, results showed a significant main effect of 

training block (F (3, 150) = 4.90, p < 003). The interaction between group condition and 

training block was statistically non-significant (F (3, 150) = .65, p > .58), as was the main 

effect of group condition (F (1, 50) = .21, p > .65). 

In sum, analyses showed no differences between groups when learning 

superordinate and basic level categories. Thus, meaning attached to the meaningful label 

did not boost learning for that group. Moreover, these findings replicate those found in 

Experiment 3 and suggest that instructions presented in that experiment were not solely 

responsible for weak performance on part of the meaningful group. 

5.2.1.2 Reaction Times 
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 Possible outcomes for group reaction times are several. Faster performance on 

part of the meaningful group would not only suggest that meaning attached to the label 

boosted performance for that group, but that instructions presented in Experiment 3 

adversely affected performance of the meaningful group. Conversely, a replication of 

findings in Experiment 3, that is slower reaction times for the meaningful label, would 

support the idea that meaning attached to label interacts adversely with abstract 

dimensions and incongruent dimensional values.     

The next set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups. These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions.   

First, when comparing the artificial superordinate-superordinate phase 1 condition 

with the meaningful superordinate-superordinate phase 1 condition, results showed a 

significant main effect of training block (F (3, 150) = 56.41, p < .001). The interaction 

between training block and group condition was statistically non-significant (F (3, 150) = 

3.23, p > .06) as was the main effect of group condition (F (1, 150) = 1.18, p > .28). 

Second, focusing on the artificial basic-basic phase 1 condition and the 

meaningful basic-basic phase 1, results showed significant main effect of training block, 

F (3, 150) = 54.20, p < .001, a significant interaction between training block and group 

condition (F (3, 150) = 9.50, p < .001) as well as a main effect of group condition (F (1, 

50) = 23.54, p < .001). The artificial basic phase 1 condition was significantly faster 

processing items on blocks one (t (50) = 5.90, p < .001), two (t (50) = 3.58, p < .001), 

three (t (50) = 3.23, p < .002, and four (t (50) = 2.56, p < .01). 



    106 

Third, focusing on the artificial superordinate-superordinate phase 1 condition 

with the meaningful superordinate-superordinate phase 1 condition showed a significant 

main effect of training block (F (3, 150) = 9.50, p < .001). The interaction between 

training block and group condition was statistically non-significant (F (3, 150) = 2.58, p > 

.11) as was the main effect of group condition (F (1, 50) = .28, p > .60). 

 Finally, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition results showed a significant main effect of 

training block (F (3, 150) = 9.10, p < .001). The interaction between training block and 

group condition was statistically non-significant (F (3, 350) = 2.44, p > .07), as was the 

main effect of group condition (F (1, 50) = 1.52, p > .22).   

In sum, findings replicate those of Experiment 3.  Participants in the meaningful 

group performed reliably slower than participants in the artificial group, but only when 

learning the basic-basic phase 1 condition. This finding suggests that meaning attached to 

the meaningful label interacts adversely with prior expectations of participants. 

5.2.3 Artificial and meaningful label group comparisons for block 9. 

 The following analyses compare group differences when learning standard, 

prototype, and fifty-fifty items at block 9. As prototype items are congruent with 

participant’s prior expectations one would expect enhanced performance on part of the 

meaningful group for these items. However, if abstract dimensions interact adversely 

with prior experiences, weaker performance (or equal performance) is expected on part of 

the meaningful group for these items.  



    107 

5.2.3.1 Accuracy  

First, when comparing the artificial superordinate-superordinate phase 2 condition 

with the meaningful superordinate-superordinate phase 2 condition, results showed a 

significant main effect of item type, (F (2, 100) = 57.87, p < .001). The interaction 

between group and item type was statistically non-significant (F (2, 100) = 1.34, p > .27), 

as was the main effect of group (F (1, 50) = 1.84, p > .18).  

Second, focusing on the artificial basic-superordinate phase 2 condition and the 

meaningful basic-superordinate phase 2 condition, results, showed a significant main 

effect of item type (F (2, 100) = 49.35, p < .001). The interaction between group and item 

type was statistically non-significant (F (2, 100) = .10, p > .91) as was the main effect of 

group (F (1, 50) = .15, p > .70).  

Third, when comparing the artificial basic-basic label phase 1 condition with the 

basic-basic meaningful label phase 1, results showed a significant main effect of item 

type (F (2, 100) = 50.76, p < .001). The interaction between training block and group was 

statistically non-significant (F (2, 100) = .28, p > .76) as was the main effect of group (F 

(1, 50) = .38, p > .55).  

Finally, focusing on the artificial basic-basic phase 2 condition and the 

meaningful basic-basic phase 2 condition, results showed a significant main effect of 

training block (F (2, 100) = 33.80, p < .001). The interaction between group condition 

and training block was statistically non-significant (F (2, 100) = .56, p > .58) as was the 

main effect of group condition (F (1, 50) = .54, p > .47). 
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In sum, no differences were found between groups when learning prototype, fifty-

fifty, and standard items. This would suggest that even when features are congruent with 

prior experience as with prototype items, the meaningful group fails to benefit.  

5.2.3.2 Reaction times   

First, focusing on the artificial superordinate-superordinate phase 2 condition and 

the meaningful superordinate-superordinate phase 2 condition results showed a 

significant main effect of item type, F (2, 100) = 2.86, p < .001. The interaction between 

group condition and item type was statistically non-significant, F (2, 100) = .08, p > .93, 

as was the main effect of group condition, F (1, 50) = .16, p > .69.  

Second, when comparing the artificial basic-superordinate phase 2 condition and 

the meaningful basic-superordinate phase 2 condition, results showed a significant main 

effect of item type (F (2, 100) = 17.42, p < .001). The interaction between group 

condition and item type was statistically non-significant (F (2, 100) = 3.01, p > .06) as 

was the main effect of group condition (F (1, 50) = 2.38, p > .13).  

Third, when comparing the basic-basic phase 2 condition with the meaningful 

basic-basic phase 2 condition, results showed a significant main effect of item type (F (2, 

100) = 3.64, p < .03). The interaction between group and item type was statistically non-

significant (F (2, 100) = .58, p > .56) as was the main effect of group condition (F (1, 50) 

= 1.83, p > .18). Note, that an independent sample t-test showed that the artificial label 

group was faster processing standard items (t (50) = 2.16, p < .04).  

Finally, when focusing on the artificial superordinate-basic phase 2 condition the 

meaningful superordinate-basic phase 2 condition results determined that the main effect 

of item type was statistically non-significant (F (2, 100) = 2.86, p > .06) as was the 
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interaction between group condition and item type (F (2, 100) = 1.84, p > .16) and the 

main effect of group condition (F (1, 50) = 1.50, p > .23).  

In sum, the only reaction time differences found favored the artificial group when 

learning standard items at the basic-basic phase 2 condition. Results for both accuracy 

and reaction times suggest that even when items are congruent with prior experience, as 

in the case of prototype items, the meaningful group performance fails to exceed the 

performance of the artificial group. It’s possible that either abstract dimensions and/or 

incongruent dimensional values negatively impacted performance of the meaningful 

group. In the case of prototype items, the only item characteristics not controlled for were 

the abstract dimensions. Thus, it’s possible that abstract dimensions interfered with or 

limited access to prior experiences.  However, it is important to note that with respect to 

reaction times the meaningful group also performed poorly on standard items. This may 

indicate that dimensional values also contributed to meaningful group performance. The 

next section set of analyses separate influences of abstract dimensions and dimensional 

values on group performance.  

5.2.4 Block 9 item comparisons for individual groups 

5.2.4.1 Artificial label group 

  The following sets of analyses examine differences between items for block 9.  

These analyses are important for exploring how differences in item structure affect 

learning of items. Participants are expected to prefer the structural qualities of prototype 

items as compared to standard items. Expectations for prototype and fifty-fifty items are 

less clear. If participants categorized based on the number of dimensional values that 

belong to superordinate categories, then small differences are expected for these items.  
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On the other hand, if they classify based on prior knowledge poorer performance is 

expected for fifty-fifty items. Comparisons are made first for the artificial label and then 

for the meaningful label. 

5.2.4.2 Accuracy   

As can be seen in figure 14, prototype items were classified better than standard 

items in both the superordinate-superordinate phase 2 (t (25) = 6.94, p < .001) and basic-

superordinate phase 2 conditions (t (25) = 7.14, p < .001). Moreover, prototype items 

were also classified better than standard items in both the basic-basic phase 2 (t (25) = 

9.64, p < .001) and superordinate-basic phase 2 conditions (t (25) = 9.64, p < .001).  

However, no differences were found between prototype and fifty-fifty items in either the 

superordinate-superordinate phase 2 (t (25) = .57, p = .57) and the basic-superordinate 

phase 2 conditions (t (25) = .87, p > .39).   

Finally, fifty-fifty items were classified better than standard items in both the 

superordinate-superordinate phase 2 (t (25) = 5.97, p < .001) and the basic-superordinate 

phase 2 conditions (t (25) = 6.79, p < .001).  

When considering accuracy findings at block 9 performances, for prototype and 

fifty-fifty items were generally better than for standard items. Moreover, no differences 

were found between prototype and fifty-fifty items, even in the basic-superordinate phase 

2 conditions where participants have just been taught categories that correspond to the 

prototype items but not to the fifty-fifty items. The findings are consistent with the idea 

that participants are making classification decisions based on the number of dimensional 

values that correctly predict the category. 

5.2.4.3 Reaction times 
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  As can be seen in figure 15, prototype items were classified faster than standard 

items when classifying at the superordinate-superordinate phase 2 level (t (25) = 2.47, p < 

.02).  However, no reaction time differences were found between these items when 

classifying in the basic-superordinate phase 2 condition (t (25) = .24, p = .82). Moreover, 

no reaction time differences were found between prototypes and standard items in either 

the basic-basic phase 2 condition (t (25) = 1.99, p > .06) or the superordinate-basic phase 

2 condition (t (25) = .86, p > .39). A null finding was also found when comparing 

reaction time differences between prototype and fifty-fifty items at both the 

superordinate-superordinate phase 2 condition, (t (25) = 1.92, p > .07), and the basic-

superordinate phase 2 condition (t (25) = .68, p > .50).   

Finally, no reaction time differences were found between standard and fifty-fifty 

items in either the superordinate-superordinate phase 2 condition (t (25) = .73, p > .47) or 

the basic-superordinate phase 2 condition (t (25) = 1.47, p > .15).  

In sum, prototype items were classified faster than standard items at the 

superordinate-superordinate phase 2 level, otherwise no other differences were found 

between items.    

5.2.5 Meaningful label group 

Meaningful group participants are expected to classify prototype items better than 

both standard items. Moreover, in comparison to standard items and prototype items 

poorer performance is expected for fifty-fifty items. This is because the combination of 

dimensional values for fifty-fifty is inconsistent with participant’s prior expectations for 

instruments. 

5.2.5.1 Accuracy 
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As can be seen in figure 14, Prototype items were classified better standard items 

in both the superordinate-superordinate phase 2 condition (t (25) = 4.64, p < .001) and 

basic-superordinate phase 2 condition (t (25) = 8.12, p < .001). Furthermore, prototype 

items were classified better than standard items in both the basic-basic phase condition (t 

(25) = 8.00, p < .001) and superordinate-basic phase 2 condition, (t (25) = 7.63, p < .001).  

However, no differences were found between prototype and fifty-fifty items when 

classifying these items in the superordinate-superordinate phase 2 condition (t (25) = 

1.81, p > .08) or the basic-superordinate phase 2 condition (t (25) = .27, p > .79). 

Finally, fifty-fifty items were classified better than standard items in both the 

superordinate-superordinate phase 2 condition (t (25) = 6.89, p < .001) and the basic-

superordinate phase 2 condition (t (25) = 7.81, p < .001).  

When considering accuracy findings at block 9, performances for prototype and 

fifty-fifty items was generally better than for standard items. Moreover, no differences 

were found between prototype and fifty-fifty items. The findings are consistent with the 

idea that participants are making classification decisions based on the number of 

dimensional values that correctly predict the category. Thus participants do not appear to 

be making decisions based on prior experiences with instruments (otherwise a half 

flute/half saxophone would seem odd in comparison to an instrument that is all flute or 

mostly flute). 

5.2.5.2 Reaction times   

As can be seen in figure 14, prototype items were categorized faster than standard 

items in the superordinate-superordinate phase 2 condition (t (25) = 4.00, p < .001).  

However, no differences were found between these items when categorizing in the basic-
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superordinate phase 2 condition (t (23) = 1.33, p > .82). Furthermore, no reaction time 

differences were found between prototype and fifty-fifty items when categorizing in 

either the superordinate-superordinate phase 2 condition (t (25) = 1.88, p > .07) or the 

superordinate-basic phase 2 condition (t (25) = 1.26, p > .22).  

Finally, fifty-fifty items were categorized faster than standard items in the basic-

superordinate phase 2 condition (t (23) = 2.60, p < .02). However no reaction time 

differences were found between these items in the superordinate-superordinate phase 2 

condition (t (25) = 1.18, p > .25).   

In sum, prototype items were categorized faster than standard for the basic level 

conditions and for the repeated superordinate condition. Fifty-fifty items were 

categorized faster than standard for the basic-superordinate phase 2 condition.  

Importantly, no reaction time differences were found between prototype and fifty-fifty 

items. Thus, the meaningful group did not appear to treat fifty-fifty items differently from 

prototype items.  

5.2.6 Differences between taxonomic levels   

Then next sets of analyses examine mean differences between superordinate and 

basic level categories for artificial and meaningful groups. These analyses are important 

for differentiating the influence of prior expectations, dimensions, and item structure, on 

categorization. For example, slower responses on part of the meaningful group for 

prototype items would suggest that abstract dimensions negatively impacted 

performance. This is because the primary factor affecting performance for prototype 

items are abstract dimensions (structure for prototype items was held constant between 

taxonomic levels). However, slower responses to standard items on part of the 
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meaningful group would suggest that both abstract dimensions and incongruent 

dimensional values negatively affected meaningful group performance (these items have 

both abstract dimensions and incongruent dimensional values). Finally, slower between 

taxonomic level responses to standard than to prototype items on would suggest that 

incongruent dimensional values are the primary factor affecting performance. The first 

set of analyses compares mean differences between basic-basic and superordinate-

superordinate groups. The second set of analyses examines group mean differences 

between basic-superordinate and superordinate-basic phase 2 conditions.  

First, when comparing differences between basic-basic and superordinate-

superordinate groups for standard items results showed mean differences were smaller for 

the artificial label on blocks, 1, 2, 3, and 5 (p < .02). Comparisons for block 9 failed to 

find mean reaction time differences between groups for standard (t (50) = 1.65, p > .24) 

prototype (t (50) = 1.23, p > .37). Moreover, no between taxonomic level differences 

were found when comparing prototype and standard items (t (50) = .89, p > .56). 

Next, when comparing differences between basic-superordinate and 

superordinate-basic phase 2 condition for standard items no mean differences were found 

between groups on block, 5, 6, 7, and 8 (p > .77). Moreover comparisons for block 9 also 

failed to reveal mean reaction time differences between groups for standard (t (50) = 

1.83, p > .07) and prototype items (t (50) = 1.70, p > .09). No between taxonomic level 

differences were found when comparing prototype and standard items (t (50) = .72, p > 

.53). 

That mean differences between taxonomic levels were smaller for the artificial 

than for the meaningful group when processing standard items indicates that something 
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about the items’ attributes negatively affected performance for the meaningful group. 

However, as no performance differences were found between groups when comparing 

prototype items with standard items, and when comparing prototype items alone, it is 

difficult to differentiate the extent to which abstract dimensions and incongruent 

dimensional values contributed to performance. 

One main finding in this experiment is that prior knowledge had little influence on 

correct categorization. Participants who learned standard, prototype, and fifty-fifty items 

in the presence of meaningful labels failed to outperform participants who categorized the 

items with artificial labels. Moreover, consistent with Experiment 3, the processing of 

standard items in the presence of the meaningful label was substantially slower for the 

basic level (through the first several blocks of training) and slightly slower for the 

superordinate level. Additionally, mean response time differences between taxonomic 

levels for standard items were substantially smaller for the artificial group. Thus, as found 

in Experiment 3, meaningful label participants treated taxonomic levels differently than 

artificial label participants.  

 It is important to note that previous reviews of prior knowledge effects on 

categorization (e.g., Kaplan & Murphy, 2000; Spalding & Murphy, 1996) used thematic 

relations. Failure to find prior knowledge effects found in this study may in part be an 

artifact of weak connections between the features and an overt theme.  In the context of 

musical instruments, the dimensions for the current items may be largely unfamiliar and 

not easily transferred to prior experiences. That response time comparisons between 

taxonomic levels and groups failed to differ on prototype items would seem to suggest 

this. This is because the main factor affecting between taxonomic level performances for 
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prototype items is abstract dimensions (dimensional values are held constant between 

taxonomic levels for prototype items). Thus, it is possible that participants found 

deciphering of abstract dimensions difficult and they interfered with participant’s ability 

to classify prototype items. However, this explanation is not entirely satisfactory.  A 

stronger argument in favor of an influence of abstract dimensions would be decidedly 

slower responses for the meaningful group when classifying prototype items. Moreover, 

at least during initial stages of training clear differences were found between groups when 

classifying standard items, thus it is also possible that incongruent dimension values 

contributed to performance of the meaningful group. It is important to note that because 

prototype items were introduced in Block 9 comparisons between prototype items and 

standard items learned in Block 1 is not possible. For reasons addressed in Experiment 5, 

introducing prototype items into earlier blocks may provide a clearer picture as to 

whether abstract dimensional values adversely affect meaningful group performance.    

Dimensional values may also influence performance in other ways. Surprisingly, 

no meaningful differences were found between fifty-fifty and prototype items when 

categorizing at the superordinate level. These findings are clearly inconsistent with the 

position that participants treat fifty-fifty items as incongruent with prior experiences, 

even if they have been taught basic level categories consistent with the prototype items 

and consistent with the fifty-fifty items. One reason for these findings may follow from 

the fact that dimensional values for prototype and fifty-fifty items classify in a similar 

way (see Tables 6 and 7) in that all dimensional values for prototype and fifty-fifty items 

transfer to the same superordinate category and none belong to the contrasting category.  

Moreover, dimensional values between prototype and fifty-fifty items are very close  
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(e.g., the dimensional value for flute on the complexity dimension is 5kg. for the flute 

prototype and 6kg. for the flute/sax fifty-fifty item). Thus, at least when classifying these 

items at the superordinate level, participants may treat these items as very similar.  As 

discussed in the next Experiment the tendency to rely on similarity judgments may be 

even greater when item properties are abstract.   
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Chapter VI 

Experiment 5 

 Recent research (Heit & Bott, 2000) has shown that the facilitation affect of prior 

knowledge varies in magnitude over the course of category learning. This research 

demonstrated that benefits of prior experience emerged only after participants have been 

exposed to enough information. Results found thus far in this study suggest a slightly 

different trend. Specifically, when item attributes are unfamiliar (i.e., having both weak 

connections to one another and to an overt theme) mapping of item information is 

difficult for meaningful label participants particularly during initial stages of training. As 

an example, group reaction time differences were always much greater for standard items 

during the first several blocks of training. One reason for this finding may follow from 

meaningful participants finding abstract item information more surprising during initial 

stages of learning.  This explanation may in part also explain why no reaction time 

differences were found between artificial and meaningful groups for prototype items in 

Experiment 4.  In that Experiment prototype items were introduced in block 9.   

In this experiment, prototype and fifty-fifty items are introduced into blocks 1 and 

5, as well as block 9.  Consistent with findings for standard items in earlier experiments 

one prediction in this experiment is that meaningful participants find mapping of item 

information more difficult when prototype and fifty-fifty items are first encountered.  

Reaction time differences between taxonomic levels are also expected to be greater 

during initial stages of learning. A finding of greater differences between taxonomic 

levels for prototype items by the meaningful group would support the idea that abstract 

item dimensions interfere with mapping of item information to prior experiences.  
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Importantly, dimensional values that are incongruent with prior experiences may also 

affect group differences. Greater differences between taxonomic levels for standard items 

than for prototypes by the meaningful group would also suggest that dimensional values 

interfere with mapping of item information. As participants become more familiar with 

item characteristics, group differences are expected to diminish.   

An alternative prediction is an affect of prior knowledge. It is possible that 

participants’ performance had reached asymptote by block 9, and prior knowledge affects 

were unable to manifest. That is, participants had already learned all they possibly could, 

leaving little room for group differences to emerge. This observation has greater 

relevance for superordinate categories where participants learned all but a few items.  

Another possibility is that after two hours of categorizing items participants’ motivation 

was low and categorization was not a priority. Given the correctness of one or both of 

these observations one might predict affects of prior knowledge during earlier stages of 

learning when participants are motivated and still learning. Under these circumstances 

outcomes in this experiment would follow predictions made in the introduction of 

Experiment 4. For example, the meaningful label group performance for prototype items 

would be better than that for fifty-fifty items. This prediction follows from participants in 

the meaningful group finding items that are half flute/half saxophone and half drum/half 

bell inconsistent with their prior experiences.    

Other predictions relate to generalization or the idea that participants notice the 

superordinate category while learning basic level categories. One would expect that if 

generalization contributes to categorization then following transfer from basic to 

superordinate condition only minor differences would be found between prototype and 
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fifty-fifty items. That is, if participants learn that the flute category is similar to the 

saxophone category then the fact that the fifty-fifty item is a blend of the two, and has all 

dimensional values transferring to superordinate category, may lead fifty-fifty items to 

transfer just as well as prototype items (which at the basic level have all dimensional 

values belonging to one of the two categories). Moreover, standard items having fewer 

dimensional values transferring to the basic categories of flute and saxophone, and more 

dimensional values transferring to contrasting categories may transfer more poorly to the 

superordinate category than prototypes and fifty-fifty items. 

In sum, the main question asked in this Experiment centers around outcomes that 

might occur when prototype and fifty-fifty items are introduced into earlier blocks of 

training. For example, will facilitation affects of prior knowledge manifest during initial 

training or alternatively will participants find abstract stimuli surprising resulting in prior 

knowledge negatively affect performance?  

6.1 Method 

6.1.1 Participants   

Two hundred-fifty university undergraduates volunteered to participate in this 

experiment for partial course credit. In total 26 participants were removed from analyses 

for failing to meet learning criterion. Fourteen participants were removed for performing 

below chance, with the remaining 12 removed for exceeding reaction times of 30 

seconds.   

6.1.2 Materials and Design    

The only difference between this experiment and Experiment 4 is that in addition 

to presenting prototype and fifty-fifty items in block 9, prototype and fifty-fifty items 
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were introduced into blocks 1 and 5. One prototype and one standard item were presented 

in each category for blocks 1 and 5. Prototype and fifty-fifty items presented in block 9 

were identical to those of previous blocks, but instead presenting one of these items for 

each category two of each were presented. All other materials were identical to those of 

previous experiments.  

6.1.3 Procedure 

Experiment 5 procedures replicate those of previous Experiment 4.   

6.2 Results and Discussion 

The key results are presented in Figures 17 - 32 separately for artificial and 

meaningful groups. Figures 17-20 depict results for standard items over the first eight 

blocks of learning. Replicating results found in previous experiments no observable 

differences are apparent between artificial and meaningful groups on measures of 

accuracy (see Figures 17 and 18). Moreover, as found in previous experiments, reaction 

times are generally faster for the artificial group when classifying at the basic level.  

Statistical results for these comparisons replicate those found in previous experiments and 

are therefore not presented in this experiment but are available upon request.   

 When focusing on accuracy ratings on blocks 1, 5, and 9 for all items (see 

Figures 21, 22, 25, 26, 29, 30), no clear differences are apparent between artificial and 

meaningful groups. This finding replicates those found in Experiment 4 and substantiates 

meaningful label participants having difficulty mapping unfamiliar item information.  

Next focusing on reaction times for blocks 1, 5, and 9 (see Figures 23, 24, 27, 28, 31, 32), 

performance is considerably slower for the meaningful label. Additionally, differences 

between meaningful basic and superordinate levels are greater for both standard items 
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and prototype items. This observation further supports the idea that meaningful label 

participants have greater difficulty mapping unfamiliar information when first 

encountered.   

Finally, focusing on basic to superordinate level transfers, no observable 

differences are apparent between prototype and fifty-fifty items. This would suggest that 

participants are choosing to categorize these items largely based on how dimensional 

values generalize. That is, they appear to be learning at the basic level that dimensional 

values for prototype and fifty-fifty items belong to the same superordinate instantiations, 

and as a result are already inferring the superordinate categories.   
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 Figure 21. 
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 Figure 22. 
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  Figure 27 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Standard Prototype Fifty-Fifty

Block 5

R
e
a
c
ti
o
n
 T
im
e
 (
m
s
)

2 to 2  

2 to 4  

4 to 2  

4 to 4  

 
 Item response times for the artificial group in Experiment 5  

 

 

 Figure 28 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Standard Prototype Fifty-Fifty

Block 5

R
e
a
c
ti
o
n
 T
im
e
 (
m
s
)

2 to 2 

2 to 4 

4 to 2  

4 to 4  

 
 Item response times for the meaningful group in Experiment 5 



    129 

  Figure 29. 
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  Figure 31. 
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6.2.1 Item comparisons for artificial and meaningful groups 

 The following analyses compare group differences when learning standard, 

prototype, and fifty-fifty items at blocks 1, 5, and 9. As prototype items are congruent 

with participant’s prior expectations one would expect enhanced performance on part of 

the meaningful group for these items. However, if abstract dimensions interact adversely 

with prior experiences, weaker performance (or equal performance) is expected on part of 

the meaningful group for these items.  

6.2.1.1 Accuracy  

The first sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9 for superordinate level 

categories.  

First, when comparing the artificial superordinate-superordinate block 1 condition 

with the meaningful superordinate-superordinate block 1 condition, results showed a 

main effect of item type ( F (2, 108) = 82.77, p < .001). However, the interaction between 

item type and group was statistically non-significant ( F (2, 108) = .26, p > .77), as was 

the main effect of group (F (1, 54) = .66, p > .42).   

Second, when comparing the artificial superordinate-superordinate block 5 

condition with the meaningful superordinate-superordinate block 5 condition, results 

showed a main effect of item type (F (2, 108) = 65.32, p < .001). The interaction between 

item type and group was statistically non-significant (F (2, 108) = .57, p > .57) as was the 

main effect of group (F (1, 54) = 2.34, p > .13).   
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Finally, when comparing the artificial superordinate-superordinate block 9 

condition with the meaningful superordinate-superordinate block 9 condition, results 

showed a main effect of item type (F (2, 108) = 65.32, p < .001). The interaction between 

item type and group was statistically non-significant (F (2, 108) = .57, p > .57), as was 

the main effect of group (F (1, 54) = 2.35, p > .13). 

In sum, the artificial and meaningful labels did not differ in performance on 

prototype, standard, and fifty-fifty items at block 1, 5, and 9, for the superordinate-

superordinate phase 1 and 2 conditions. 

The next sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9 for basic level categories.  

First, when comparing the artificial basic-basic group with the meaningful basic-

basic group for block 1, results showed a main effect of item type (F (2, 108) = 25.78, p < 

.001). The interaction between item type and group was statistically non-significant (F (2, 

108) = 1.59, p > .21) as was the main effect of group (F (1, 54) = .99, p > .33).   

Second, when comparing the artificial basic-basic group with the meaningful 

basic-basic group for block 5, results showed a main effect of item type (F (2, 108) = 

32.20, p < .001). The interaction between item type and group was statistically non-

significant (F (2, 108) = .15, p > .86), as was the main effect of group (F (1, 54) = .17, p > 

.68).   

Finally, when comparing the artificial basic-basic group with the meaningful 

basic-basic group for block 9, results showed a main effect of item type (F (2, 108) = 

75.34, p < .001). The interaction between item type and group was statistically non-
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significant (F (2, 108) = .96, p > .36) as was the main effect of group (F (1, 54) = .02, p > 

.90). 

In sum, the artificial and meaningful labels did not differ in performance on 

prototype, standard, and fifty-fifty items at block 1, 5, and 9, for the basic-basic phase 1 

and 2 conditions 

The next sets of comparisons explore differences between groups for taxonomic 

transfer phase 2 categories.   

First, focusing on basic-superordinate phase 2 condition for block 5 results 

showed a main effect of item type (F (2, 108) = 104.83, p < .001. The interaction between 

item type and group was statistically non-significant, F (2, 108) = .19, p > .83, as was the 

main effect of group (F (1, 54) = .47, p = .49). Second, focusing on block 9, results 

showed a main effect of item type (F (2, 108) = 74.09, p < .001).  The interaction 

between item type and group was statistically non-significant (F (2, 108) = .77, p > .47) 

as was the main effect of group (F (1, 54) = 1.05, p > .31). 

Next, focusing on superordinate-basic phase 2 condition for block 5, results 

showed a main effect of item type (F (2, 108) = 13.60, p < .001). The interaction between 

item type and group was statistically non-significant (F (2, 108) = .45, p > .64) as was the 

main effect of group (F (1, 54) = .34, p > .56). Second, focusing on block 9, results 

showed a main effect of item type (F (2, 108) = 61.80, p < .001). The interaction between 

item type and group was statistically non-significant (F (2, 108) = .11, p > .90) as was the 

main effect of group (F (1, 54) = .08, p > .77). 

In sum, results failed to reveal reliable differences between groups when 

categorizing items at either superordinate or basic levels.   



    134 

6.2.1.2 Reaction Times  

The first sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9, for superordinate level 

categories.  

First, when comparing the artificial superordinate-superordinate group with the 

meaningful superordinate-superordinate group at block 1, results showed a main effect of 

item type (F (2, 108) = 6.43, p < .01). The interaction between item type and group was 

statistically non-significant (F (2, 108) = .83, p > .44) as was the main effect of group (F 

(1, 54) = .45, p > .51).   

Second, when comparing the artificial superordinate-superordinate group with the 

meaningful superordinate-superordinate group at block 5, results showed a main effect of 

item type (F (2, 108) = 7.91, p < .001). The interaction between item type and group was 

statistically non-significant (F (2, 108) = .02, p > .98) as was the main effect of group (F 

(1, 54) = .04, p = .84).   

Finally when comparing the artificial superordinate-superordinate group with the 

meaningful superordinate-superordinate group at block 9, results showed a main effect of 

item type F (2, 108) = 8.23, p < .001. The interaction between group and item type was 

statistically non-significant (F (2, 108) = .05, p > .95) as was the main effect of group (F 

(1, 54) = .41, p > .53). 

The first sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9, for basic level categories. 

First, when comparing the artificial basic-basic phase 1 condition with the 

meaningful basic-basic phase 1 conditions, results showed a main effect of item type (F 
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(2, 108) = 5.27, p < .01) and a significant main effect of group (F (1, 54) = 11.21, p < 

.001).  The interaction between item type and group was statistically non-significant (F 

(2, 108) = .78, p > .45).  The artificial group was faster than meaningful group when 

prototype (t (54) = 10.73, p < .002), and fifty-fifty, items (t (54) = 5.32, p < .03) were 

classified at block 1, and when standard items were classified at block 1 (t (54) = 10.14, p 

< .002), 2 (t (54) = 5.56, p < .01) and 4 (t (54) = 3.95, p < .02).      

Second, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition at block 5 results showed a significant main 

effect of item type (F (2, 108) = 5.28, p < .03).  The interaction between item type and 

group was statistically non-significant (F (2, 108) = 1.88, p > .16) as was the main effect 

of group (F (1, 54) = .05, p > .83).   

Finally, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition at block 9, results showed a significant main 

effect of item type (F (2, 108) = 5.59, p < .005).  The interaction between item type and 

group was statistically non-significant (F (2, 108) = 1.24, p > .29) as was the main effect 

of group (F (1, 54) = .01, p > .98). 

In sum, no statistical differences were found between groups for items when 

categorizing at superordinate levels.  However, faster performance was found for the 

artificial label group when processing standard, prototype and fifty-fifty items for basic 

level categories.  These findings would suggest that mapping between item information 

and the category is poorer for the meaningful group during initial stages of learning.  

6.2.2 Item comparisons for individual groups 
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Analyses for Experiment 4 revealed accuracy differences between the three items, 

but minimal differences in reaction times. This failure to find reaction time differences may 

have resulted from performance asymptote by block 9.  Introducing prototype and fifty-

fifty items into block 1 and 5 has the advantage of examining this possibility.  An 

additional advantage follows from closer examination of transfer patterns for prototype and 

fifty-fifty items. 

6.2.2.1 Artificial label group   

Means and mean square errors for accuracy are depicted in figures 21, 25, and 29 

and for response times in figures 23, 27, and 31. Because there were no logical 

differences between superordinate-superordinate and superordinate-basic groups or 

between the basic-superordinate and the basic-basic groups at block 1, these groups were 

combined for present analyses. Accuracy data are explored first, followed by response 

times.   

6.2.2.2 Accuracy for block 1   

As can been seen in figure 21, prototype items were classified better than standard 

items in the superordinate condition (t (27) = 5.32, p < .001) and the basic condition (t 

(27) = 3.81, p < .001). However, no statistical differences were found between prototype 

and fifty-fifty item in the superordinate condition (t (27) = .43, p > .67). Finally, fifty-

fifty items were classified better than standard items in the superordinate condition (t (27) 

= 8.68, p < .001).   

These findings are consistent with the previous experiment and suggest that 

participants categorize based on the number of statistical values that correctly predict the 

category. 
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6.2.2.3 Accuracy for block 5  

As can be seen in figure 25, prototype items were classified better than standard 

items in both the superordinate-superordinate phase 2 (t (27) = 5.08, p < .001) and the 

basic-superordinate phase 2 condition (t (27) = 11.42, p < .001). Moreover, prototype 

items were classified better than standard items in the basic-basic phase 2 condition (t 

(27) = 8.03, p < .001) and the superordinate-basic levels phase 2 condition (t (27) = 3.70, 

p < .001). However, no differences were found between prototype and fifty-fifty items in 

either the superordinate-superordinate phase 2 condition (t (27) = .01, p > .99) or the 

basic-superordinate levels phase 2 condition, (t (27) = .68, p > .51). 

Finally, fifty-fifty items were classified better than standard items in the 

superordinate-superordinate phase 2 (t (27) = 5.69, p < .001) and the basic-superordinate 

levels phase 2 conditions (t (27) = 8.78, p < .001).  

The failure to find differences between prototype and fifty-fifty items 

immediately following taxonomic transfer from the basic to superordinate level is 

important. As noted earlier, given an effect of taxonomy, these items would most likely 

differ at the point of taxonomic transfer. Particularly in the basic-super, because 

participants have just been taught categories that corresponded to prototype items better 

than to fifty-fifty items. 

6.2.2.4 Accuracy for block 9 

  As can be seen in figure 29, prototype items were classified better than standard 

items in both the superordinate-superordinate phase 2 (t (27) = 4.23, p < .001) and basic-

superordinate levels phase 2 conditions (t (27) = 8.11, p < .001). Prototype items were 

also classified better than standard items at both the basic-basic phase 2 (t (27) = 9.68, p 
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< .001) and the superordinate-basic phase 2 conditions, (t (27) = 9.71, p < .001).  

However, no differences were found between prototype and fifty-fifty items in either the 

superordinate-superordinate phase 2 (t (27) = .05, p > .96) or the basic-superordinate 

phase 2 conditions, t (27) = 1.45, p > .16.  

Finally, fifty-fifty items were classified better than standard items in both the 

superordinate-superordinate (t (27) = 4.20, p < .003) phase 2 conditon, and the basic-  

6.2.2.5 Reaction times for block 1  

As can be seen in figure 23, Prototypes were classified faster than standard items 

in the basic condition (t (27) = 4.02, p < .001). However no differences were found 

between these items in the superordinate condition, (t (27) = 1.48, p > .15).  Moreover, no 

differences were found between prototype and fifty-fifty items in the superordinate 

condition (t (27) = .32, p > .75).  Finally, no statistical differences were found between 

fifty-fifty items and standard items in the superordinate condition (t (27) = 1.75, p > .09). 

In sum, the only reaction time differences found occurred at the basic level with 

prototype items being classified faster than standard items. 

6.2.2.6 Reaction Times for block 5 

 As can be seen in figure 27, no differences were found between prototype and 

standard items in either the superordinate-superordinate phase 2 condition (t (27) = 1.08, 

p > .29) or the basic superordinate levels phase 2 condition (t (27) = .18, p > .86). When 

considering basic level comparisons for prototype and standard items, prototype items 

were classified faster than standard items in the basic-basic phase 2 condition (t (27) = 

3.21, p < .003) but not in the superordinate-basic phase 2 condition (t (27) = 1.38, p > 

.18). Furthermore, no significant differences were found between prototype and fifty-fifty 
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items in the superordinate-superordinate phase 2 (t (27) = .83, p = .42) and the basic-

superordinate phase 2 condition (t (27) = 1.97, p > .06). 

Finally, fifty-fifty items were classified faster than standard items in the 

superordinate-superordinate phase 2 (t (27) = 3.81, p < .001) and the basic-superordinate 

phase 2 conditions (t (27) = 2.38, p < .03).  

In sum, prototype items were classified faster than standard items at the basic-

basic phase 2 condition. Moreover, fifty-fifty items were classified faster than standard 

items in the superordinate-superordinate phase 2, and the basic-superordinate phase 2 

conditions.   

6.2.2.7 Reaction times for block 9  

As can be seen in figure 31, prototype items were classified faster than standard 

items in the both the superordinate-superordinate phase 2 (t (27) = 2.22, p < .04) 

condition and the basic-superordinate phase 2 condition (t (27) = 2.15, p < .04).   

However, no significant differences were found between prototype and standard items in 

both the basic-basic phase 2 (t (27) = 1.69, p > .10) and the superordinate-basic phase 2 

conditions (t (27) = 1.48, p > .15). Furthermore, no differences were found between 

prototype and fifty-fifty items in either the superordinate-superordinate phase 2 (t (27) = 

.03, p > .98) or basic-superordinate phase 2 conditions (t (27) = .66, p > .52). 

Finally, fifty-fifty items were classified faster than standard items in both the 

superordinate-superordinate condition (t (27) = 2.50, p < .03) and the basic-superordinate 

condition, t (27) = 3.66, p < .001. 

In sum, no response time differences were found between prototype and fifty-fifty 

items, however response times for these items were faster than for standard items.   
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6.2.3 Meaningful label group 

  Means and mean square errors for accuracy are depicted in figures 22, 26, and 

30, and for response time in figures 24, 28, and 32. Because there were no logical 

differences between superordinate-superordinate and superordinate-basic groups or 

between the basic-superordinate and the basic-basic groups these groups in block 1, these 

groups were combined for analysis. Accuracy data are explored first, followed by 

response times.  

6.2.3.1 Accuracy for Block 1   

As can be seen in figure 22, prototype items were classified better than standard 

items in both the superordinate (t (27) = 10.97, p < .001) and basic conditions (t (27) = 

5.62, p < .001). However, no statistical differences were found between prototype and 

fifty-fifty items in the superordinate condition (t (27) = .85, p > .40). Finally, fifty-fifty 

items were classified better than standard items in the superordinate condition (t (27) = 

7.34, p < .001).   

In sum, prototype and fifty-fifty items were classified better than standard items, 

however no differences were found between fifty-fifty items and prototype items.  

Thus, findings do not support the idea that participants viewed fifty-fifty items as 

odd otherwise performance for these items would have been poorer than for other items. 

Instead, findings suggest that participants classified based on the number of dimensional 

values that correctly predicted the category.  Other explanations are explored in the 

discussion for this experiment.  

6.2.3.2 Accuracy for Block 5 
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As can be seen in figure 26, prototype items were classified better than standard 

items in the superordinate-superordinate phase 2 condition (t (27) = 6.91, p < .001) and 

the basic-superordinate phase 2 condition (t (27) = 10.37, p < .001). Furthermore, 

prototypes were also classified better than standard items in both the basic-basic phase 2 

condition (t (27) = 6.39, p < .001) and the superordinate-basic phase 2 condition (t (27) = 

4.14, p < .001). However, no differences were found between prototype and fifty-fifty 

items in either the superordinate-superordinate phase 2 condition (t (27) = 1.00, p > .33) 

or the basic-superordinate phase 2 condition (t (27) = .92, p > .37). 

Finally, fifty-fifty items were classified better than standard items in both the 

superordinate-superordinate phase 2 condition (t (27) = 4.44, p < .001) and the basic-

superordinate phase 2 condition (t (27) = 8.66, p < .001). 

In sum, findings for block 5 replicate those of block 1, prototype and fifty-fifty 

items were classified better than standard items, however no differences were found 

between fifty-fifty items and prototype items. An important finding here is the failure to 

find differences between prototype and fifty-fifty items immediately following taxonomic 

transfer from basic to superordinate level. As noted earlier, taxonomic transfer is the 

point at which differences between these items was most likely to occur.   

6.2.3.3 Accuracy for block 9  

As can be seen in figure 30, prototype items were classified better than standard 

items in both the superordinate-superordinate phase 2 condition (t (27) = 10.97, p < .001) 

and the basic-superordinate phase 2 condition (t (27) = 7.63, p < .001). Moreover, 

prototypes were classified better than standard items (t (27) = 9.13, p < .001) in both the 

basic-basic phase 2 condition (t (27) = 6.80, p < .001) and the superordinate-basic phase 2 
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condition. However, no differences were found between prototype and fifty-fifty items 

when classified in either the superordinate-superordinate phase 2 condition (t (27) = .85, 

p > .40) or the basic-superordinate phase 2 condition (t (27) = .59, p > .56). 

Finally, fifty-fifty items were classified better than standard items in both the 

superordinate-superordinate phase 2 condition (t (27) = 7.51, p < .001) and the basic-

superordinate phase 2 condition (t (27) = 6.89, p < .001). 

6.2.3.4 Reaction times for block 1  

As can be seen in figure 24, prototypes items were classified faster than standard 

items in both the superordinate condition (t (27) = 3.52, p < .002) and the basic condition 

(t (27) = 3.05, p < .02). However, no differences were found between prototype and fifty-

fifty items in the superordinate condition (t (27) = .05, p > .96). Finally, fifty-fifty items 

were classified faster than standard items in the superordinate condition (t (27) = 3.99, p 

< .001). 

In sum, the finding of faster reaction time for prototype and fifty-fifty items over 

standard items coupled with the failure to find differences between prototype and fifty-

fifty items suggests that participants classified based on the number of dimensional 

values belonging to categories. 

6.2.3.5 Reaction times for block 5  

As can be seen in figure 28, no reaction time differences were found between 

prototype and standard items in either the superordinate-superordinate phase 2 (t (27) = 

1.95, p > .06) and basic-superordinate phase 2 conditions (t (27) = 1.29, p > .21). When 

comparing differences between prototype and standard items at the basic levels, 

prototypes items were classified faster than standard items in both the superordinate-basic 
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phase 2 condition (t (27) = 2.35, p < .05) and the basic-basic phase 2 condition (t (27) = 

4.21, p < .001). No differences were found between prototype and fifty-fifty items when 

classified in either the superordinate-superordinate phase 2 condition (t (27) = 1.20, p > 

.06) or the basic-superordinate phase 2 condition (t (27) = .35, p > .73). 

Finally, fifty-fifty items were classified faster than standard items (t (27) = 5.29, p 

< .001) in the superordinate-superordinate phase 2 condition, but not in the basic-

superordinate phase 2 condition (t (27) = .50, p > .62).   

6.2.3.6 Reaction times for block 9  

As can be seen in the figure 32, prototype items were classified faster than 

standard items in the superordinate-superordinate phase 2 condition (t (27) = 3.18, p < 

.004) but not in the basic-superordinate phase 2 condition (t (27) = .38, p > .73).  

Prototype items were also classified faster than standard items in both the basic-basic 

phase 2 condition (t (27) = 2.23, p < .03) and the superordinate-basic phase 2 condition (t 

(27) = 2.76, p < .01). However, no differences were found between prototype and fifty-

fifty items when classified in either the superordinate-superordinate phase 2 condition (t 

(27) = .49, p > .63) or the basic-superordinate phase 2 condition (t (27) = .77, p > .45). 

Finally, fifty-fifty items were classified faster than standard items in the 

superordinate-superordinate phase 2 condition (t (27) = 4.72, p < .001) but not in the 

basic-superordinate phase 2 condition (t (27) = 1.35, p > .19).  

In comparisons to standard items, participants were generally faster processing 

prototype and fifty-fifty items. The one exception was the failure to find a difference 

between these items for the basic-superordinate phase 2 condition. It would seem that 

standard items benefited more from basic level priming than other items. Indeed, reaction 
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times for these items were faster when transferring from basic to superordinate levels 

than when transferring from superordinate to superordinate levels. This finding may be 

limited to data set, as similar findings were not found in Experiment 4. 

6.2.4 Differences between taxonomic levels   

The next sets of analyses examine mean response time differences between 

superordinate and basic level categories for artificial and meaningful groups. These 

analyses are important for differentiating the influence of prior expectations, dimensions, 

and item structure, on categorization. For example, slower responses on part of the 

meaningful group for prototype items would suggest that abstract dimensions negatively 

impacted performance. This is because the primary factor affecting performance for 

prototype items is abstract dimensions (structure for prototype items was held constant 

between taxonomic levels). However, slower responses to standard items on part of the 

meaningful group would suggest that both abstract dimensions and incongruent 

dimensional values negatively affected meaningful group performance (these items have 

both abstract dimensions and incongruent dimensional-values). Finally, slower between 

taxonomic level responses on part of the meaningful group when comparing standard and 

prototype items on would suggest that incongruent dimensional values are the primary 

factor affecting performance. The first set of analyses compares mean differences 

between basic-basic and superordinate-superordinate groups. The second set of analyses 

examines group mean differences between basic-superordinate and superordinate-basic 

phase 2 conditions.   

Results were inconclusive when comparing differences between taxonomic levels 

for meaningful and artificial groups in Experiment 4.  Findings showed that the artificial 
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group was faster processing standard items, however no differences were found between 

groups for prototype items. Thus, it was difficult to determine with any certainty to what 

extent abstract or incongruent dimensional values contributed to findings. One reason for 

failing to find an effect of abstract dimensions for prototype items may follow from 

items’ characteristics being less surprising to the meaningful group by block 9. Given this 

possibility one would expect greater differences between groups when processing 

prototype items at block 1. For similar reasons one might also expect that given an effect 

of incongruent dimensional values, differences between taxonomic levels when 

comparing prototype and standard items would also be greater for the meaningful label at 

block 1.  

First, when comparing differences between basic-basic and superordinate-

superordinate groups at block 1, mean differences were smaller for the artificial label 

when categorizing standard (t (54) = 2.56, p < .01) and prototype items (t (54) = 3.05, p < 

.01). No statistical differences were found between groups when categorizing items on 

blocks 5 (p > .43) and 9 (p > .74). These findings support the idea that abstract 

dimensions interfere with the meaningful groups mapping of item information. Second, 

comparing differences between basic-superordinate and superordinate-basic phase 2 

condition, differences were smaller for the artificial group when categorizing standard 

items at block 5 (t (54) = 2.98, p < .03). All other comparisons were statistically non-

significant (p > .82).  

Finally, the next comparison explores the idea that incongruent dimensional 

values interfere with mapping of item information. First, focusing on block 1, although 

observable mean differences between standard and prototype items were greater for the 
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meaningful group (M = 1579) than the artificial group (M = 663) findings were 

statistically non-significant (t (54) = 1.02, p > .74). Comparisons were also statistically 

non-significant, at blocks 5 (t (54) = .98, p > .92) and 9 (t (54) = .88, p > .94).  Thus, at 

least statistically an effect of dimensional values goes unsupported.     

 An important question asked in Experiment 4 centered on the extent to which 

abstract dimensions and incongruent dimensional values affected the performance of the 

meaningful group.  In that experiment the findings on this question were inconclusive.  

However, this experiment suggests that abstract dimensions negatively affected response 

times of meaningful group participants. Between taxonomic level comparisons showed 

that performance for the meaningful group was poorer on prototype items (than the 

artificial group). This finding was found only during initial training, suggesting the 

meaningful participants found this information most problematic when first encountered 

and at the point when they found them most surprising. Indeed, as training progressed the 

effect of the label appeared to diminish. Although meaningful participants were faster 

responding to items as training progressed, their performance still did not exceed artificial 

participants in terms of either response times or accuracy. This would suggest that the 

meaningful participants initially tried to map abstract item information to the known 

category, but failing to do so opted for an alternative strategy. As the artificial and 

meaningful conditions were quite similar by the end of training, rote learning may have 

been one strategy opted for by the meaningful group.    

Other research demonstrating similar findings used information outside the 

domain of the category (e.g., Heit & Bott 2000; Heit et al. 2004). However, the primary 

factor driving present findings was abstract dimensions that were unfamiliar within their 
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domain. Overall, the dimensions in the present experiment map cleanly to the category of 

musical instruments. However, because participants had only partial knowledge of these 

dimensions they found it difficult to make clear connections between the dimensions and 

the known category. It is also important to consider an influence of incongruent 

dimensional values (i.e., note that values are incongruent in that participants may find 

that 50 kg. flutes contradict prior experiences with flutes). In comparison to prototype 

items, participants clearly found standard items more difficult to categorize. This may 

follow from standard items having dimensional values that at times contradict 

participants’ prior experiences (e.g., 50 kg. flutes), or because they included features 

predicting a different category. Even though these features were not encountered for 

every item, even a few encounters may have caused participants to reconsider their 

categorizations.  

   Another finding was consistent with that of the previous experiment. No 

differences were found between prototype and fifty-fifty items. This would suggest that 

participants were not making classification judgments based on prior experience.  

Otherwise, participants would have seen fifty-fifty items as either half-flute/half 

saxophone or half drum/half bell and poorer performance would have been the outcome.  

Given that all dimensional values for both prototype and fifty-fifty items belonged to 

their superordinate category, participants may have made their classification decisions 

based on the number of dimensional-values correctly predicting the category. Another 

contributing factor to participants’ inability to distinguish these items may follow from 

the relationship between dimensional values and categories. Values for prototype and 

fifty-fifty items are similar, thus unless participants critically evaluated the differences 
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between items they may have missed subtle distinctions (however, in the basic-

superordinate condition participants spent four blocks differentiating the dimensional 

values and there was still no affect suggesting that even though they knew the values 

were different they generalized anyway, see below). Moreover, dimensional values for 

prototype and fifty-fifty items are highly predictive of similar categories (e.g., 

dimensional values for prototype and fifty-fifty items are predictive of flute and 

saxophone). This would suggest that increasing the space between dimensional values 

and items would result in greater ability to distinguish prototype and fifty-fifty items.  

The observation that participants made their classification judgments based on the 

similarity and distinction between dimensional values and items may also be suggestive 

of a basic classification principle. When category information is unclear people may 

resort to making classification decisions based on how attributes of items are similar and 

distinctive. Certainly, it seems the meaningful group attempted to make initial 

categorizations based on prior knowledge. However, when it became apparent that 

relying on prior knowledge alone was inadequate they relied on similarity judgments.  

Evidence not presented in the body of this paper but available upon request further 

supports this observation. Most mistakes made for prototype and fifty-fifty items were 

made within the superordinate categories. That is, if an item was a flute or saxophone 

participants were most likely to miss-categorize the item as either saxophone or flute than 

either drum or bell (and vice versa). However, mistakes for standard items were as likely 

to occur outside the superordinate as within. That is, in comparison to prototype and fifty-

fifty items if the item was a flute, participants were more likely to classify the item as 

drum or a saxophone.   
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Finally, generalization also appears to be a factor in learning taxonomies. The 

basic taxonomic affect found in Experiments 1-4 was also found in this experiment, and 

is consistent with participants noticing the superordinate category while learning the basic 

level categories (i.e., they seem to be able to generalize from the basic level to the 

superordinate, but seem not to analyze the superordinate into its basic-level constituents).  

Related evidence occurs in the current experiment in that no differences were found 

between fifty-fifty items and prototype items following transfer from basic to 

superordinate levels. That is, if participants have learned that the flute category and the 

saxophone category are very similar, and indeed are both part of a higher level category, 

then the fact that the fifty-fifty item is a blend of the two lower level categories may not 

adversely affect its membership in the higher level category. Thus, generalization may be 

an important factor influencing classification judgments.  

In sum, this experiment produced several interesting findings. First, it was found 

that one factor affecting meaningful group performance was the abstract quality of our 

dimensions. Furthermore, meaningful participants found abstract dimensions more 

surprising during initial stages of learning. Second, when item information is abstract and 

prior knowledge is uncertain or absent, similarity and generalization may be default 

strategies used for classification. 
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Chapter VII 

General Discussion 

The impetus for this study was to examine a taxonomic learning paradigm which 

to date had largely been ignored in the category literature. When people learn objects they 

often do so in the context of complex learning environments. Object attributes must be 

extracted, compared and learned in the presence of multiple domains and categories.  

Thus far, most category learning paradigms have only included two category structures.  

However, two--category learning fails to capture complex learning environments, 

particularly with respect to taxonomic structures. To this end, this study is one of the few 

studies to focus on learning of four--category hierarchical structures. The first result of 

interest was found in Experiment 1 and supported previous research (e.g., see Murphy, 

2002) by demonstrating that participants were indeed able to learn four-- category 

hierarchical structures. In addition there were several interesting findings of not found in 

previous research (e.g., see Murphy & Smith, 1982) focusing on learning within 

taxonomies. For one, transferring from four categories in phase 1 to new higher level 

categories in phase 2 produced performance advantages not evident when transferring 

from two categories in phase 1 to four categories in phase 2. Participants in the former 

group generally found learning of materials easier than participants in the latter group.  

Moreover, taxonomic transfer affects were greater when transferring from four to two 

categories. This result led to the conclusion that participants transferring from four to two 

categories found generalization easier than participants in other conditions. That is, 

participants learning basic level first seemed to noticed the superordinate category while 

learning the basic level categories and as a result were better able to generalize to the 
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superordinate levels (further discussion of generalization follows below). Generally, 

however, very little affects of taxonomic transfer were found in Experiment 1. This was 

evident in that taxonomic transfer effects in the form of accuracy were not found.   

The failure to find pervasive taxonomic transfer effects led to the introduction of 

prior knowledge in the form of category labels in Experiment 2. Prior knowledge in the 

form of category labels has been shown to guide learning by providing an explanation for 

the properties and structure of categories (Kaplan & Murphy, 2000). Although 

introducing meaningful labels was expected to facilitate learning category membership of 

the items this outcome failed to emerge. Furthermore, the presence of meaningful labels 

should have made the taxonomic structure obvious. However, there was once again little 

evidence of taxonomic transfer, though the generalization effects driven by basic level 

learning found in Experiment 1 were once again confirmed.  

 In Experiment 3, meaningful and artificial labels groups were compared directly.  

Furthermore, instructions were introduced that defined how one feature was related to 

another, and that clarified the taxonomic relations. The expectation was that in 

comparison to when the taxonomic label was unknown, knowledge of feature relations 

would boost the manipulation of knowledge associated with the meaningful label.  

Evidence for this prediction failed to emerge. Indeed, the surprising result was that 

reaction times were much slower for meaningful participants, particularly when learning 

basic level categories. This result was explained by suggesting that prior experiences 

affected learning differently depending on how abstract feature information interacted 

with the specificity of the taxonomic level. That is, slower reaction times for meaningful 

participants occurred because some item dimensions were abstract and difficult to attach 
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to prior experiences. Moreover, some dimensional values were inconsistent with their 

prior experiences of the item (e.g., 55 kg. flute). Meaningful participants therefore needed 

additional time to consider the relationship between the item and the prior knowledge 

associated with a taxonomic level. Response times were much slower for meaningful 

participants when classifying at the basic level because the basic level cues specific 

experiences for the instrument, whereas the superordinate level cues more general 

information (see experiment 3 for further explanation).   

In Experiment 4, the idea that prior experiences may have negatively affected 

performance for the meaningful group was further explored by introducing two additional 

items. The additional items, prototype and fifty-fifty, differed from the standard items 

used in the previous experiments with respect to the number of features related to the 

category. All dimensional values for prototype items belonged to their categories. Thus, 

prototype items were an excellent match at either basic or superordinate levels. Fifty-fifty 

items were an odd item in that when categorized at the basic level their dimensional 

values where split equally between the categories. For example, one fifty-fifty item was 

by its features, half saxophone and half flute. However, when categorized at the 

superordinate level all dimensional values for fifty-fifty items belong to their category 

(i.e., although the features indicated half flute and half saxophone, all indicated wind 

instrument). The inclusion of these items resulted in several predictions. The first 

prediction suggested that performance for the meaningful group would vary depending on 

the item classified. Prototypes having all dimensional values belonging to their category 

and thus consistent with prior expectations should be easiest followed by standard, then 

fifty-fifty (see introduction Experiment 4 for further explanation). The second prediction 
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focused on why slower response times were found for the meaningful group in 

Experiment 3. Specifically, to what extent did incongruent dimensional values and 

abstract dimensions negatively affect response times for the meaningful group? Results 

for prediction 1 surprisingly revealed no differences between prototype and fifty-fifty 

items when categorizing at the superordinate level. Outcomes for prediction 2 were 

somewhat inconclusive in that results only suggested that abstract dimensions negatively 

affected the meaningful participants’ performance.  

In Experiment 5, prototype and fifty-fifty items were introduced into blocks 1 and 

5.   In Experiment 3, greater differences where found between meaningful and artificial 

groups during the first several blocks of training. With this result in mind it was 

hypothesized that affects of abstract dimensions and/or incongruent dimensional values 

would be more apparent during initial training blocks. The results confirmed this 

suggestion and showed that abstract dimensions resulted in slower response times for the 

meaningful group. Moreover, the results suggested that similarity of dimensional values 

and how dimensional values generalize plays an important role in early categorization 

(see discussion Experiment 5 for further explanation). Finally, the prototype and fifty-

fifty items continued to show equivalent performance.  

7.1 Taxonomic structures 

Although only small positive taxonomic transfer effects were found in this study, 

other taxonomic effects were large. For one, in comparison to participants exposed to 

phase 1 conditions, participants exposed to taxonomic transfer conditions were almost 

always faster processing items. Moreover, meaningful label participants clearly detected 

differences between taxonomic levels. In comparison to the artificial label participants, 
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meaningful label participants were much slower responding to the basic level than to the 

superordinate level. Indeed, response time differences between taxonomic levels were 

very relatively small for the artificial label group but very large for the meaningful label 

group. This would suggest that meaningful label participants experienced basic and 

superordinate level differently. Importantly, although effects of taxonomic transfer were 

found overall they were small, and failed to emerge almost entirely in some conditions 

(e.g., the superordinate-basic condition). Prior research (Murphy & Smith, 1982; Rosch et 

al. 1976) may provide some insight into why only small taxonomic transfer effects were 

found.   

Much prior research (see e.g., Murphy & Smith, 1982; Rosch et al. 1976) has 

strongly supported the basic level as the level of special distinction. In general, people 

can classify objects at different levels of abstraction. They can categorize an object at the 

superordinate level (e.g., wind instrument), the subordinate level (e.g., kettle drum), or an 

intermediate level (e.g., flute). Rosch et al. (1976) established the intermediate basic level 

as the preferred level for categorization: It is the level at which objects are spontaneously 

labeled; it is the level for fastest categorization and identification of objects; and it is the 

place where most feature-based information for categories members are stored.  The basic 

level advantage has since been replicated and extended across domains. For example, in 

one of the few papers to employ a taxonomic learning paradigm, Murphy and Smith 

(1982) controlled linguistic factors by using artificial categories and yielded basic level 

superiority effects similar to those of Rosch et al. (1976). Their findings ruled out the 

possibility that basic level effects resulted solely from linguistic factors (e.g., saliency, 

word length, frequency). Most relevant to present results, Murphy and Smith found 
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support for the idea that the basic level category advantage arose as a result of their 

combination of information and distinctive attributes, however this claim was qualified 

by the need for attributes to be perceptual in character.  

That Murphy and Smith found it necessary for attributes to be perceptual in 

quality may also explain on some level why meaningful participants found categorization 

difficult in this study. In this study, abstract item information being largely non-

perceptual may have interfered with participants’ ability to visualize the category.   

People have a clear idea of what features are central to the categories of flute and drum.  

Mention the category flute, and many will consider an instrument light in weight, silver in 

color, high in pitch that is either played in the school orchestra or seen at the local 

symphony. Because participants had very clear prior ideas and perceptions of the 

instruments classified in this study they may have found it difficult to translate abstract 

features into features they knew something about (e.g., translating resonate frequency 

into pitch). Moreover, individual features rarely define an entire object. Classifying an 

object as a bird when the only knowledge one has of the object is that it has wings would 

be difficult (planes also have wings). Objects are more like sets of features that form a 

perceptual whole. Meaningful label participants may have found it very difficult to 

connect the abstract features used in the present study to one another in a way that 

resulted in their forming a holistic impression of the instrument. Their inability to 

correlate features to one another and map these features clearly to the prior expectations 

(the category label) may have resulted in their having decidedly slower response times 

(see Experiment 3 and below for further discussion) when classifying at the basic level.   

Other evidence points to advantages when learning basic level categories first.  
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More often than not when participants learned basic level categories first performance 

advantages in subsequent stages extended further than when they had learned 

superordinate levels first. Perhaps one reason for this finding is that basic level exposure 

leads to complex comparisons and deeper examination of the item’s structure.  

Participants exposed to basic level categories are in a position to compare features over a 

greater number of categories than participants exposed to superordinate categories. These 

comparisons may lead to a better understanding of high level categories not yet learned 

and a clearer idea of how items generalize to those categories. Furthermore, because basic 

level categories are much more similar, comparisons between such categories must be 

more precise than comparisons between far less similar superordinate categories.  

Finally, positive taxonomic transfer effects were by and large found only when 

transferring from basic to superordinate levels. As noted earlier, this finding is suggestive 

of generalization. Item structures in this study favor generalization (e.g., the frequent 

dimensional values are highly similar across the two categories within a superordinate), 

as do the procedures (e.g., the mapping of categories to response keys). Thus, in some 

respects it is not surprising that participants mostly preferred a strategy of generalization 

to critical evaluation. This argument is perhaps stronger for the artificial group (at least 

initially) as response times for the meaningful group were slower, suggesting at least an 

attempt at critical evaluation. Nevertheless in the end it would appear that both groups 

gravitated toward generalization. This tendency occurred in spite of a vast amount of 

research (see e.g., Murphy, 2000) demonstrating facilitation effects of prior knowledge.  

The next section examines reasons why prior knowledge effects failed to materialize.  
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7.2 Prior knowledge 

 Much prior research has demonstrated that category learning is easier when prior 

knowledge is consistent with the learned category than when knowledge is incongruent or 

absent (e.g., Murphy & Allophenna, 1994; Wattenmaker et al. 1996). One common 

method by which prior knowledge is activated in category learning paradigms is through 

connection of thematic features that have strong relations to one another and to a category 

theme. In Murphy and Allopenna’s (1994) (see also Ahn, 1991; Murphy & Wisniewski, 

1989; Pazzani, 1991; Wattenmaker et al. 1986) study, for instance, participants learned 

about two contrasting pairs of categories, neutral and integrated. Although neutral and 

integrated category structures were identical, in that each feature associated with its 

category occurred in one third of its instances and in none of the instances of the 

contrasting category, and also from the same domain (e.g., jungle and arctic vehicles) the 

features comprising the integrated category structures formed a coherent theme.  

Integrated categories contain features intended to cue participants’ prior knowledge. For 

example, jungle vehicles are likely to have wheels and be lightly insulated whereas arctic 

vehicles are more likely to be heavily insulated and drive on glaciers. Participants were 

never informed of the theme but were expected to identify the theme through learning. In 

contrast, for the neutral categories, features were thematically unrelated therefore 

activation of prior knowledge was not expected. For this group, it is improbable that 

vehicles with a manual transmission are more likely than vehicles with an automatic 

transmission to have radial tires and air bags. The results for this study showed that 

compared with the participants learning neutral categories, participants learning 

integrated categories were much faster.  
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 In Murphy and Allopenna’s (1994) experiments all of the features were related to 

the specific category theme. Other research has demonstrated powerful prior knowledge 

effects even when some, but not all, features were inconsistent with the thematic content 

of the category. Kaplan and Murphy (2000) introduced category themes similar to that of 

Murphy and Allopenna. However, instead of prior knowledge relating all relevant 

features of the category items, every item had only one feature related to a theme (e.g., 

jungle or arctic vehicle). Furthermore, these features were spread across items so one 

item might have drives in jungle, another heavily insulated and so on. Thus, in contrast to 

previous research, feature connections to the category theme were weak, and participants 

had to detect the theme by observing how features connected (to that theme) over 

multiple items. Kaplan and Murphy found that even under these conditions participants 

learned items much faster when knowledge related features were present than when they 

where not. 

In natural contexts, feature relations can be a powerful means of cueing 

background knowledge and activating feature correlations. As features do not occur 

independently of one another, there is a statistical structure in which features co-occur 

across categories and concepts. There is variation in the degree to which the presence of 

one feature signals the presence of another. For example, has wings and flies are highly 

correlated because many types of birds that have wings are also likely to fly. In contrast, 

has whiskers and meows are weakly correlated because things in the world that meow 

always have whiskers, but there are many types of animals that have whiskers and do not 

meow. Moreover, for some correlated feature pairs, people have theories for why they are 

correlated, such as the fact that has wings is causally related to flies.   
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Thematic features provide a powerful means of activating feature relations and 

cuing theories about the object being categorized. For example, has wheels, manual 

transmission and drives in jungle clearly signifies some kind of vehicle and prompts any 

number of theories as to what kind. People in these kinds of experiments have enough 

information about the relations between features that generating theories about the 

category identity would be the natural tendency. In contrast, relations between attributes 

in the present experiment were much weaker in that features were very abstract and may 

not have correlated easily with one another and the category. For instance, unless the 

artificial label group clearly understood and/or knew the relationship between resonating 

frequency and volume they may have found it difficult to generate theories about the 

category label (indeed participants reported as much). Without clear theories, participants 

may have been less motivated to determine the category identity and instead may have 

memorized items and/or categorized based on similarity (e.g., dimensional values of 

items are similar to one another and their category). The picture emerging for the 

meaningful label group is somewhat different in that they already had a clear idea as to 

the category identity, based on the label. Moreover, the category label likely cues features 

most typical of the category. However, as the results suggest feature activation or 

connection may have been less likely to occur for the meaningful group. Perhaps 

category labels activated stored feature relations but abstract features interfered with 

these activations. Perhaps participants believing they already knew what features were 

predictive of the category, found it difficult to readjust their expectations to think of the 

category in new ways (see e.g., Keil, 2003, for a similar but slightly different 

observation). Thus, perhaps participants initially relied on prior knowledge when 
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classifying, but found it difficult to map item information to prior expectations, and so, in 

the end, they chose to categorize based on memorization and similarity.  

Other results were consistent with participants not only categorizing based on 

similarity but generalizing item information. Some recent research (Chin-Parker, & Ross, 

2002; Chin-Parker & Ross, 2004; Markman & Ross, 2003; Yamauchi & Markman, 1998) 

may on some level explain participants’ generalization tendencies. This research 

distinguishes between two types of category learning tasks, the standard category-

learning task and the inference-based learning task. For the standard categorization task 

such as one used in this experiment, participants are given a full range of features and are 

asked to classify those features according to one of several categories. In this experiment 

participants were given lists of features and asked to categorize the list according to one 

of several types of instruments. In contrast, in the inference based learning task 

participants are presented with pictures (or lists) each missing a feature, along with the 

category label, and then asked to infer the missing feature. For example, a participant 

may be presented with a picture of a labeled bug (e.g., Deezle) and asked to predict a 

missing feature (e.g., antenna); the participant is then exposed to each of the features in 

this way until all the features are learned.   

 According to Markman and Ross (2003) classification learning leads to a focus on 

diagnostic features. Diagnostic features facilitate distinguishing one category from 

another. For instance, barking is particularly diagnostic of the category dog but not at all 

diagnostic of the category cat. Because classification learning focuses on specific 

features, representations formed are specific and exemplar like (Yamauchi & Markman, 

1998). In contrast to classification learning, inference-learning demands learning entire 
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feature lists within the context of the category label; this results in acquisition of both 

diagnostic and non-diagnostic features. Thus, you are not only going learn that dogs bark, 

but that cats do not bark, and that both have fur. As the emphases is on learning both 

diagnostic and non-diagnostic characteristics, performance on single-feature 

classification should be high and representations formed should be prototypical in kind.  

Research by Chin-Parker and Ross (2004) provides a striking example of how 

inferring features leads to acquisition of general knowledge for a category (prototypical 

information) whereas classification learning promotes acquisition of diagnostic features 

(specific representations) and category differentiation. For their first experiment 

classification and inference learners learned two categories, one in which features 

diagnostic of category membership occurred eighty percent of the time, and one in which 

prototypical features overlapped. Test items included old items and transfer items that 

varied on distance to a category prototype. Performance on a forced choice test showed 

that participants in the classification condition were more likely to choose items with 

features highly diagnostic of category membership regardless of closeness to prototype, 

whereas inference learners showed no such preference. In their second experiment, 

classification and inference learners were exposed to similar categories; however instead 

of performing a forced choice test participants gave typicality ratings. Results revealed 

that the number of diagnostic features influenced judgments for classification learners 

whereas both diagnostic and non-diagnostic (but prototypical) features influenced 

judgments for inference learners. In sum results, showed that participants in the 

classification conditions learn specific category information, whereas inference learners 

tended to learn information that highlighted what the category is about.  
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These observations also extend to the present findings. For example, when 

categorizing at the superordinate level following transfer from basic levels participants 

failed to differentiate between prototype and fifty-fifty items  (see also Appendix L).  

This would suggest that participants focused on diagnostic aspects of items without truly 

realizing the overall concept. Otherwise, they would have realized that fifty-fifty items 

did not belong to any one single category and categorization of these items would have 

been much more difficult. This expectation is even greater considering participants 

should have clearly seen that fifty-fifty items did not belong to anyone category when 

classifying at the basic level. Moreover, when summating false alarms (confusing basic 

level categories within a superordinate category with one another) and correct 

categorization, the prototype and fifty-fifty are almost identical even at the basic level.  

This further suggests that participants were focusing on diagnostic criteria and similarity 

of dimensional values to the category. They were simply focusing on the dimensional 

values most predictive of their category and failed to critically evaluate item information.   

Meaningful labels were also expected to boost detection of taxonomic relations. 

Meaningful labels clearly defined taxonomic levels and were applied with the intent of 

making discovery of taxonomic relations easier. Learning the category wind instrument 

should have activated related subcategories, such as flute and saxophone. Clearly, the 

results failed to support a facilitation affect of meaningful labels. Indeed, in comparison 

to the artificial group reaction times were generally slower for the meaningful group 

especially when classifying at basic levels. One reason for this finding follows from the 

types of experiences cued by taxonomic labels and item features. When considering 

superordinate categories, both the label and attributes are on some level abstract. The 
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category wind instrument does not necessarily specify any one instrument. Moreover, as 

noted previously dimensions are also abstract. When both the dimension and the category 

label are abstract prior experiences are in some respects unrestricted. That is, participants 

are free to consider or not consider specific instruments in which to attach item attributes.  

Indeed, all they really need to consider are general characteristics for wind and 

percussion instruments (note response times were at times marginally slower for the 

meaningful group so they may have considered specific features to some extent).  

Categorization experiences for the meaningful label group then are likely not all that 

different from those of the artificial group who make decisions without giving a great 

deal of consideration to specific categories. When considering experiences for the basic 

level a different picture emerges. Here the meaningful label group considered the specific 

category and the abstract item information was inconsistent with the categories.  Hence, 

response times were much slower for the meaningful group when classifying at the basic 

level.    

Finally, it is important to note that both the category label and generalization of 

item contribute to current findings. For instance, if the only factor-affecting participants’ 

performance were prior knowledge, then performance for fifty-fifty items would be much 

poorer for the meaningful label group (following transfer to superordinate level from 

basic level).  These items would be viewed as half-flute or half-saxophone and therefore 

odd.  At the very least reaction times would be much slower. Conversely, if 

generalization were the only factor affecting results, then reaction time differences 

between artificial and meaningful label groups would be negligible. This is because the 

item structures were identical for both groups; thus prior knowledge cued by the category 
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label is likely the primary factor differentiating performance. In short, several factors 

contribute to the current results none of which are independent.    

7.3 Concluding remarks 

The current research provides a good preliminary introduction into how abstract 

item structures interact with prior experience and taxonomic structures to influence 

category learning. However, additional research is needed to examine the parameters 

affecting this interaction. One implication of the present results is that people have deeply 

entrenched knowledge structures that can limit a label’s extension to feature information, 

especially when that feature information contains little in the way of a thematic or 

correlated structure. Introducing thematic features is certainly one step toward further 

examining the relationship between prior experience and taxonomic category learning.  

For example, introducing the characteristic brass would likely promote an entirely 

different type of classification. If people tend to use taxonomic relationships then 

introducing thematic relations may facilitate this tendency.   

One argument made several times in this paper is that categorization strategies 

used by the meaningful and artificial group may on some level be very similar in that 

participants in both groups relied on similarity judgments. Importantly, similarity 

judgments may be the preferred strategy for many learning situations.  For instance, when 

learning new categories, contextual information is not always available. Under these 

circumstances determining how items are similar to one another and their category may 

be the only alternative.  

These observations also extend to real world situations. In as much as stimuli used 

in this study extend to natural contexts, it is reasonable to assume that similarity 
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judgments are a common and useful categorization strategy. As already noted the item 

structures used in this experiment are an extension of real world categories. Furthermore, 

similar to items used in this experiment it is common for real world objects to share 

attributes.  Sometimes, the feature most common to certain breeds of cats is color. Pitch 

can be an important determinant for some types of flutes. Moreover, it is not unusual for 

domain specific objects of contrasting categories to have interchangeable features.  

Different breeds of cats often share the same color. Flutes and flue pipes are sometimes 

indistinguishable by pitch alone.   

One consistent finding in this experiment is that when an object’s identity was 

uncertain similarity judgments tended to be the rule rather than the exception. This may 

in part explain why conceptual preservation occurs. By conceptual preservation I mean 

that when learning new information it can be difficult to transcend prior experiences.  

There is a strong tendency, particularly when the concept is difficult, to attempt to 

incorporate new information into old conceptual structures. When new information is 

strongly connected to the prior experiences classification may be relatively easy.  

However, when the relationship is weak, the learning process may be interrupted or even 

terminated. These observations may explain why meaningful label participants in this 

study found it difficult to process basic level information. Perhaps they were attempting 

to classify from well-established prior experiences, but their experiences failed to extend 

clearly to new information. As a result, it may have been necessary for meaningful 

participants to rely on similarity judgments when classifying items.    

Other results in this paper suggest that generalization may also be a key factor to 

early classification. Participants in both the meaningful and artificial label groups found 
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classification easier when transferring from basic level conditions. As noted previously 

basic level categories that are in the same superordinate share a greater degree of 

similarity to one another than basic level categories that are in a different superordinate.  

Perhaps when participants learned basic level categories first they were in better position 

to learn structural characteristics of items and categories than were participants exposed 

to superordinate levels first. Participants learning basic categories were able to compare 

and contrast superordinate instantiations. They were able to compare how flute and 

saxophone were similar to one another and in turn how they were different from drum 

and bell. These comparisons may lead to not only a much deeper understanding of how 

dimensional values relate to each of the individual basic level categories but how they 

relate to superordinate categories. This is because having knowledge of how dimensional 

values connect to the basic level also translates into having knowledge how dimensional 

values connect to the superordinate level. Conversely, participants learning superordinate 

categories were only able to compare two categories. As a result they did not have 

foreknowledge of all basic level categories and had to consider how the dimensional 

values transferred to additional categories.     

In sum, results of this study point to several trends. First, learning multiple 

categories increases the amount information compared sometimes making initial 

categorization more difficult, but may also lead to deeper understanding of how features 

transfer to new members. Second, when category information is ambiguous and difficult 

to attach to prior experiences similarity judgments may be the rule rather than the 

exception. Finally, prior experience may interact differently depending on the type of 

properties learned and the specificity of the taxonomic experience. When people have 



    167 

deeply embedded prior knowledge tied to basic level structures statistical properties may 

be more difficult to learn.   
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Appendix I 

 

 

Untransformed means for the artificial group in Experiment 1   

               

 

Taxonomic Group  Block 1    Block 2   Block3     Block4    Block 5   Block 6    Block 7   Block 8 

 

     Super-Super       .78             .81           .87         .89           .91          .90             .91          .92          

   

         Super-Basic           .76            .82           .85            .87          .46           .50             .56          .57 

 

         Basic-Super           .41            .51           .54           .56           .80           .83             .86          .90 

 

         Basic-Basic           .42            .48            .51          .57           .60           .62             .63          .67 

  

_____________________________________________________________________________ 

 

 

 

 

Transformed means for the artificial group in Experiment 1 

              

 

 

Taxonomic Group  Block 1     Block 2     Block3     Block4    Block 5   Block 6   Block 7   Block 8 

 

Super-Super           .91 .99             1.12          1.17         1.20         1.20         1.22        1.24   

            

         Super-Basic            .87            .96             1.08          1.12         .48           .54           .60         .63       

 

         Basic-Super           .43             .54            .58            .61            .94            1.01         1.07       1.18            

 

         Basic-Basic           .44             .51            .54            .61            .65            .68           .69         .75          

_______________________________________________________________________________ 
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Appendix II 

 

 

Untransformed means for the meaningful group in experiment 2   

             

 

 

Taxonomic Group   Block 1   Block 2    Block3    Block4   Block 5   Block 6    Block 7    Block 8 

 

Super-Super           .74           .83            .86         .87          .88           .89          .91             .93          

 

Super-Basic           .76           .82            .83            .87         .45           .53          .57             .56 

 

Basic-Super           .44           .52            .57            .59         .83           .87          .86             .90 

 

Basic-Basic            .41          .49            .55            .57         .62           .65           .66            .67 

___________________________________________________________________ __________ 

  

 

 

Transformed means for the meaningful group in Experiment 2 

              

 

 

Taxonomic Group     Block 1   Block 2   Block3   Block4    Block 5   Block 6    Block 7   Block 8 

 

Super-Super             .84           .99           1.04          1.07       1.11        1.15          1.17         1.23     

 

Super-Basic             .87           .97           1.02          1.08       .46           .56           .61            .59       

  

Basic-Super             .45           .54           .59            .64         .97           1.07          1.09         1.16            

 

         Basic-Basic             .43           .52           .57            .62         .67           .70            .72           .77          

 

_____________________________________________________________________________ 
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Appendix III 

 

 

Untransformed means for the artificial group in Experiment 3 

              

 

Taxonomic Group       Block 1   Block 2   Block3    Block4   Block 5  Block 6   Block 7  Block 8 

 

Super-Super               .74    .82        .85          .87          .90         .88          .90          .90          

 

Super-Basic               .75           .82            .86         .88          .48          .54         .54           .58 

 

Basic-Super               .44           .48            .53         .58          .82          .83         .86           .87 

 

Basic-Basic               .45           .50            .55         .57          .61          .62         .65           .68 

______   ______________________________________________________________________ 

 

 

 

 

 

 

 

Untransformed means for the meaningful group in Experiment 3 

              

 

 

Taxonomic Grouping  Block 1   Block 2  Block3  Block4   Block 5  Block 6  Block 7  Block 8 

 

Super-Super     .75    .82          .84         .85         .86          .88          .91         .90              

 

Super-Basic                 .76          .82         .87         .88          .44         .46           .52         .56       

 

Basic-Super       .41         .50         .49         .55           .84         .85          .87          .88            

 

Basic-Basic                  .40         .51         .58         .58           .60         .63          .65          .69          

   

______   ______________________________________________________________________ 
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Transformed means for the artificial group in Experiment 3 

______   ______________________________________________________________________ 

 

 

Taxonomic Group  Block 1  Block 2   Block3   Block4    Block 5  Block 6  Block 7   Block 8 

 

Super-Super            .86         1.00        1.08     1.13         1.18        1.18       1.19         1.18 

 

Super-Basic             .86        .98          1.05     1.13         .50          .57         .58           .62 

 

Basic-Super         .46        .51          .57     .64         1.02 1.03   1.08        1.10 

  

Basic-Basic         .47        .52 .59           .62           .71           .70          .75         .77     

 

______   ______________________________________________________________________ 

 

 

 

Transformed means for the meaningful group in Experiment 3 

 

______   ______________________________________________________________________ 

 

 

Taxonomic Group  Block 1  Block 2    Block3   Block4  Block 5  Block 6   Block 7    Block 8 

 

Super-Super            .86        .97    1.03       1.08       1.08        1.13        1.20          1.20          

 

Super-Basic            .88         .98            1.08       1 .14       .46          .48         .58            .61 

 

Basic-Super        .42         .52             .51        .59           1.02        1.05       1.10          1.12 

 

Basic-Basic            .41         .53            .59         .65          .69          .73          .75            .78 

 

______   ______________________________________________________________________ 
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Appendix IV 

 

 

Untransformed means for the artificial group in Experiment 4 

              

 

Taxonomic Group  Block 1    Block 2    Block3   Block4    Block 5    Block 6   Block 7   Block 8 

 

Super-Super          .74          .80   .81       .83           .84            .85           .86          .87          

 

Super-Basic          .75           .82            .84           .87           .47            .53            .55         .61 

 

Basic-Super          .43           .50           .55           .59           .79            .86             .88         .87 

 

Basic-Basic          .45           .50           .55           .62           .61            .64             .64         .67 

        __________________________________________________________________________ 

 

 

 

Untransformed means for the meaningful group in Experiment 4 

                            

 

 

Taxonomic Group  Block 1   Block 2    Block3     Block4    Block 5    Block 6     Block 7   Block 8 

 

Super-Super           .76          .80            .82            .87           .88           .89            .90           .90              

 

Super-Basic           .75          .79            .80             .85           .47           .53            .57          .59       

 

Basic-Super           .42           .48           .53             .57           .81           .81            .84          .87            

 

Basic-Basic           .40           .50           .56             .58           .61           .62            .62          .65          

_______________________________________________________________________________ 
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Transformed means for the artificial group in Experiment 4 

              

 

Taxonomic Group   Block 1   Block 2   Block3    Block4    Block 5    Block 6   Block 7    Block 8 

 

Super-Super          .85           .94           .97        1.00        1.05          1.06         1.10         1.10 

 

Super-Basic           .83            .93           .95        1.06        .49            .56           .59           .66 

 

         Basic-Super           .44           .52    .58        .64          .92    1.07        1.13         1.11 

 

         Basic-Basic       .46           .53    .58           .66          .67           .70           .73            .75     

_____________________________________________________________________________ 

 

 

Transformed means for the meaningful group in Experiment 4 

              

                  

Taxonomic Group   Block 1    Block 2   Block3    Block4   Block 5   Block 6    Block 7   Block 8 

 

Super-Super           .86  .94    .97            1.08       1.11         1.14         1.18         1.21          

 

Super-Basic           .85             .91          .95            1.05       .49          .56           .61           .64 

 

Basic-Super           .44             .50          .55           .58          .96          .99            1.03         1.09 

 

Basic-Basic            .41            .51          .57           .60           .67         .69            .69           .71 

         _____________________________________________________________________________ 
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Appendix V 

5.1 Experiment 1 results for untransformed Data      

 5.1.1 Accuracy 

For the following reasons arcsine transformations are employed in each of the five 

Experiments.  Firstly, because proportions are bounded at zero at the low end of the scale 

and at one at the high end of the scale, they may not linearly relate to other continuous 

variables.  Arcsine transforms dependent variables in the form of proportions by 

stretching out the tails of distributions of proportions.  The arcsine transformation also 

has the added benefit of reducing violations of sphericity.  For each of the 5 experiments 

two sets of analyses were performed for accuracy, one for untransformed data and for 

arcsine transformed data.  Means for both untransformed and transformed data can be 

viewed in Appendix I-IV. Untransformed analyses can be viewed in Appendix V-IX.  

Arcsine transformed data are presented in the body of this paper.  

Though arcsine transformations were employed it is also important to note several 

observations for the untransformed data.  Proportions for untransformed accuracy data 

were all based on the same number of observations.  Furthermore, the accuracies were 

reasonably normal, so restriction of range usually associated with accuracy proportions 

was not that much of a problem.  Moreover, the variances were not as different as one 

might expect, however they at times differed enough to violate sphericity assumptions.  

Thus, while arcsine transformations were employed to help bring variances closer to an 

assumption of equality the actual violations of the sphericity were minimal.  

Mixed factorial ANOVA’s were performed on each set of analyses.  The first set 

of analyses examines the question of perfect taxonomic transfer learning.  The main 
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question is whether participants who had no prior experience with categories can perform 

as well as participants who have had prior experience.  For example, can participants 

learning basic-superordinate phase 2 categories perform as well as participants learning 

superordinate-superordinate phase 2 categories?  A finding favoring this outcome would 

suggest a benefit to taxonomic learning as participants who have repeated categories 

(superordinate-superordinate phase 2 condition) have the clear advantage of seeing the 

same item and category structure over participants who have seen the same items but in 

the presence of a different category structure (basic-superordinate phase 2 condition).   

Training block refers to learning over repeated blocks (e.g., within group or 

condition performance), group condition refers to comparisons made between taxonomic 

conditions (e.g., comparisons between basic-superordinate phase 2 condition and basic-

basic phase 2 condition).  Participants learned four training blocks in each condition. 

First, focusing just on superordinate phase 2 conditions, analysis showed a 

significant main effect of training block (F (3, 132) = 10.22, p < .001) an interaction 

between training block and group (F (3, 132) = 8.23 p < .001) and a main effect of group 

condition (F (1, 44) = 9.01, p < .01).  Participants in the superordinate-superordinate 

phase 2 condition performed better than participants in the basic-superordinate phase 2 

condition on their respective first (t (44) = 20.42, p < .001) second, (t (44) = 8.56, p = 

.01) and third (t (44) = 3.34, p < .05) training blocks. 

Next, focusing on basic phase 2 conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 9.54, p < .001) and a main effect of group condition 

(F (3, 132) = 5.12 p < .001).  Participants in the basic-basic phase 2 condition performed 

better than participants in the superordinate-basic phase 2 condition on their respective 
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first (t (44) = 24.24 p < .001) second (t (44) = 7.35 p < .001) third (t (44) = 3.45, p < .05) 

and fourth (t (44) = 3.23, p < .05) training blocks.   

Results failed to provide support for the first question asked in this section; 

participants transferring to new taxonomic levels (e.g., basic-superordinate phase 2 

condition) did not perform as well as participants who repeated learning of taxonomic 

levels (e.g., superordinate-superordinate phase 2 condition).   

The next set of analyses examines the question of whether any taxonomic learning 

occurred at all.  Here all comparisons involve first time category exposures.  The general 

idea is that if performance for participants learning phase 2 categories is superior to that 

of participants learning phase 1 categories there is evidence of taxonomic learning.  That 

is, because participants in both conditions are learning particular categories for the first 

time, findings favoring taxonomic primed groups would suggest a learning advantage, 

due to experience with the taxonomically related category.  This advantage may result 

from learning of class inclusion relations or any number of other factors. Given that 

participants are learning all categories for the first time comparisons are on some level 

standardized. However, it is important to note that participants learning the phase 2 

categories have had prior exposure to items (i.e., the same items are presented in phase 1 

and 2) thus may on some level have an advantage over phase 1 participants.    Because 

there were no meaningful differences between superordinate-superordinate and 

superordinate-basic or between the basic-superordinate and basic-basic groups in phase 1, 

these pairs were combined for analysis.  That is, the superodinate-basic phase 1 condition 

and the superodinate-superordinate phase 1 condition were combined as were the basic-

superordinate phase 1 condition and the basic-basic phase 1 condition.  Analyses 
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therefore consisted of comparing the basic-superordinate phase 2 condition with the 

superordinate phase 1 combined condition and the superordinate-basic phase 2 condition 

with basic phase 1 combined condition.   

First, focusing just on superordinate conditions, analysis showed a significant 

main effect of training block (F (3, 132) = 30.16, p < .001).  No main effect of group 

condition was found; participants learning items for the first time in the basic-

superordinate phase 2 condition failed (F (1, 44) = 1.01, p > .12) to outperform 

participants learning items for the first time in the superordinate phase 1 condition. The 

interaction between group condition and training block was also statistically non-

significant (F (3, 132) = 1.40, p > .53). 

Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 132) = 19.19, p < .001).  No main effect of group condition was 

found, participants learning items for the first time in the superordinate-basic phase 2 

condition failed (F (3, 132) = 1.21, p > .08) to outperform participants learning items for 

the first time in the basic phase 1 condition. The interaction between group condition and 

training block was also statistically non-significant (F (1, 44) = .54, p > .40)   

Analyses failed to provide support for the second question asked in this 

experiment; participants learning categories for the first time in phase 2 did not 

outperform participants learning categories for the first time in phase 1.  Thus, these 

comparisons did not support effects of taxonomic learning.  In the next section reaction 

times are examined.  Questions and expected outcomes for reaction times are identical to 

those for accuracy.    
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5.1.2 Reaction times.  

The reaction times were averaged and submitted to mixed factorial ANOVA’s, 

after discarding any times greater than 30 seconds.  Only correct responses were 

analyzed.  Analyses and comparisons are identical to those for accuracy.  The first set of 

analyses examined the question of perfect taxonomic transfer by comparing first time 

category learning experiences with repeated category learning experiences.  Effects of 

perfect taxonomic learning would show that participants learning categories for the first 

time in phase 2 perform as well as participants repeated the same categories in phase 2.   

First, focusing on superordinate conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 5.08, p < .05).  The interaction between training 

block and group condition was statistically non significant (F (3, 132) = 1.96, p > .09) as 

was the main effect of group (F (1, 44) = .14, p > .93).  No reaction time differences were 

evident between the basic-superordinate phase 2 condition and the superordinate-

superordinate phase 2 condition.  

Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 132) = 15.31, p < .001) and a main effect of group condition (F (1, 

44) = 5.10, p < .002).  Participants in the basic-basic phase 2 condition responded faster 

than participants in the superordinate-basic phase 2 condition on their respective first (t 

(44) = 3.51, p < .001) second (t (37) = 2.23, p < .03) third (t (44) = 2.26, p < .03) and 

fourth (t (44) = 2.52, p < .02). 

Results showed partial support for effects of taxonomy in that participants who 

transferred from basic to superordinate categories processed items as fast as participants 

who transferred from superordinate to superordinate categories.  Thus, participants 
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repeating items in the presence of different taxonomic category performed as well as 

participants repeating items in presence of the same taxonomic category (indeed, though 

statistically non-significant they responded faster).  However, this finding was apparent 

only for superordinate categories.  Participants repeating basic level categories were 

faster than participants who transferred from superordinate to basic categories on all four 

blocks.     

The next sets of analyses investigate whether there is any evidence of taxonomic 

learning.  First, focusing just on superordinate conditions, analysis showed a significant 

main effect of training block (F (3, 132) = 7.82, p < .001), an interaction between training 

block and group condition (F (3, 132) = 5.10, p < .002) and a main effect of group 

condition (F (1, 44) = 10.11, p < .003).  Participants learning items for the first time in the 

basic-superordinate phase 2 condition were faster processing items than participants 

learning items for the first time in the superordinate-basic phase 1 condition on their 

respective first (t (44) = 3.93, p < .001) second (t (44) = 2.17, p < .04) and third training 

blocks (t (44) = 2.52, p < .02).  

Second, focusing just on basic conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 7.82, p < .001) and an interaction between training 

block and group condition (F (3, 132) = 5.10, p < .002).  Participants learning items for 

the first time in the superordinate-basic phase 2 condition were faster processing items 

than participants learning items for the first time in the basic-superodinate phase 1 

condition on their respective first training block (t (44) = 2.24, p < .03). 

When considering reaction times, the results generally favored the idea that 

learning categories for the first time following taxonomic transfer has advantages over 
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learning items for the first time in phase 1, though it is important to note that processing 

advantages were greater for the basic-superordinate group than for the superordinate-

basic group.  The basic-superordinate group outperformed the superordinate-basic phase 

1 condition on 3 blocks of training, whereas the superordinate-basic phase 2 condition 

outperformed the basic phase 1 condition on only the first block of training.  As discussed 

next these differences in performance may follow in part from advantages to learning 

basic level categories first. 

In summarizing differences between untransformed and transformed results for 

Experiment 1, no realized differences were found.  

5.2 Experiment 2 results for untransformed data.  

5.2.1 Accuracy 

Mixed factorial ANOVA’s were performed on each set of analyses.  The first set 

of analyses examines the question of perfect taxonomic transfer learning.  The main 

question here is whether meaningful labels will facilitate perfect transfer learning.  If so 

then one would expect participants in the basic-superordinate phase 2 condition to 

perform as well as participants in the superordinate-superordinate phase 2 condition, and 

for participants in the superordinate-basic phase 2 condition to perform as well as 

participants in the basic-basic phase 2 condition.     

First, focusing just on superordinate phase 2 conditions, analysis showed a 

significant main effect of training block (F (3, 126) = 10.95, p < .001). The interaction 

between group condition and training block was statistically non-significant (F (3, 126) = 

.38, p > .80), as was the main effect of group condition (F (1, 42) = 3.18 p < .08).     
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Next, focusing on basic phase 2 conditions, analysis showed a significant main 

effect of training block (F (3, 132) = 11.74, p < .001) and a main effect of group 

condition (F (3, 132) = 6.12 p < .001).  Participants in the basic-basic phase 2 condition 

performed better than participants in the superordinate-basic phase 2 condition on their 

respective first (t (43) = 32.74, p < .001) second (t (43) = 14.48, p < .001) third (t (43) = 

8.12, p < .01) and fourth (t (43) = 14.36, p < .001) training blocks.   

Results showed partial support for perfect taxonomic transfer effect in that 

participants in the basic-superordinate phase 2 condition performed nearly as well 

participants in superordinate-superordinate phase 2 condition.  As discussed shortly this 

finding may reflect the generalization effect explored in Experiment 1. 

The next set of analyses examines the question of whether any taxonomic learning 

occurred.  Here all comparisons involve first time category exposures.  If performance for 

participants learning phase 2 categories is superior to that of participants learning phase 1 

categories there is evidence of taxonomic learning.  Because there were no meaningful 

differences between superordinate-superordinate and superordinate-basic or between the 

basic-superordinate and basic-basic groups at phase 1, these pairs were combined for 

analysis.   

First, focusing just on superordinate conditions, analysis showed a significant 

main effect of training block (F (3, 132) = 37.05, p < .001), and a main effect of group 

condition (F (1, 42) = 6.42, p < .02).  Participants in the basic-superordinate phase 2 

made a greater number of correct responses than participants in the superordinate phase 1 

condition on their respective first (t (42) = 13.72, p < .001) and second (t (42) = 4.91, p < 

.03) training blocks.  



    194 

 Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 129) = 25.09, p < .001).  The interaction between group condition 

and training block was statistically non-significant (F (3, 129) = 2.66, p = .06) as was the 

main effect of group condition (F (1, 43) = .03, p > .86).  Participants learning items for 

the first time in the superordinate-basic phase 2 condition failed to outperform 

participants learning items for the first time in the basic phase 1 condition.  

Analyses provided partial support for taxonomic transfer effect in that the basic-

superordinate phase 2 condition outperformed the superordinate phase 1 condition.  An 

effect of meaningful label may also be evident, as this finding was not found in 

Experiment 1.     

5.2.2 Reaction times   

The reaction times were averaged and submitted to mixed factorial ANOVA’s, 

after discarding any times greater than 30 seconds.  Only correct responses were 

analyzed.  Analyses and comparisons are identical to those for accuracy.  The first set of 

analyses examined the affect of meaningful labels on perfect taxonomic transfer.   

First, focusing on superordinate conditions, analysis showed a significant main 

effect of training block (F (3, 126) = 4.43, p < .01).  The interaction between training 

block and group condition was statistically non-significant (F (3, 126) = .51, p > .68) as 

was the main effect of group (F (1, 42) = 1.16, p > .07).  Thus, no reaction time 

differences were evident between the basic-superordinate phase 2 condition and the 

superordinate-superordinate phase 2 condition.  

Next, focusing on basic conditions, analysis showed a significant main effect of 

training block (F (3, 129) = 10.34, p < .001), as well as an interaction between group 
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condition and training block (F (3, 129) = 6.77, p < .001) and a main effect of group 

condition (F (1, 42) = 8.55, p < .01).  Participants in the basic-basic phase 2 condition 

responded faster than participants in the superordinate-basic phase 2 condition on their 

respective first (t (43) = 4.23, p < .001) and second (t (43) = 3.12, p < .001) training 

blocks. 

Results showed partial support for perfect taxonomic transfer in that participants 

who transferred from basic to superordinate categories processed items as fast as 

participants who transferred from superordinate to superordinate categories.  Thus, 

participants repeating items in the presence of different taxonomic category performed as 

well as participants repeating items in the presence of the same taxonomic category. 

However, this finding was apparent only for superordinate categories; participants 

repeating basic level categories were faster than participants who transferred from 

superordinate to basic categories on all four blocks.  These findings replicate those found 

in Experiment 1.   

The next analyses examine the possibility of any taxonomic transfer by comparing 

taxonomic transfer condition phase two performance to the performance in the matched 

conditions at phase 1.  First, focusing just on superordinate conditions, analysis showed a 

significant main effect of training block (F (3, 132) = 8.21, p < .001) an interaction 

between training block and group condition (F (3, 132) = 5.43, p < .001) and a main 

effect of group condition (F (1, 44) = 9.23, p < .003).  Participants learning items for the 

first time in the basic-superordinate phase 2 condition processed items faster than 

participants learning items for the first time in the superordinate phase 1 condition on 
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their respective first (t (42) = 4.55, p < .001) second (t (42) = 2.64, p < .03) and third 

training blocks (t  (42) = 2.15 p < .04).  

Second, focusing just on basic conditions, analysis showed a significant main 

effect of training block (F (3, 129) = 37.12, p < .001).  The interaction between training 

block and group condition was statistically non-significant (F (3, 129) = 2.00, p > .21) as 

was the main effect of group condition (F (1, 43) = .53, p > .42).    

5.3 Experiment 3 results for untransformed means 

5.3.1 Accuracy  

The first set of analyses focuses on taxonomic transfer effects.  Examination of 

taxonomic transfer effects in the present experiment focuses solely on comparisons 

between the artificial and meaningful groups in the basic-superodinate phase 2 conditions 

and superordinate-basic phase 2 conditions.   These comparisons show whether one group 

benefits more than the other from taxonomic priming.  A finding favoring the meaningful 

group would also suggest that instructions boosted the manipulation of knowledge 

associated with the meaningful label. 

First when comparing mean transfer differences between the meaningful basic-

superordinate phase 2 condition and the artificial basic superordinate phase 2 condition 

results showed a significant main effect of training block (F (3, 243) = 29.34, p < .001).  

The interaction between group condition and training block was statistically non-

significant (F (3, 243) = .13, p > .43) as was the main effect of group (F (1, 81) = 1.77, p 

> .17).  

Next, when comparing mean transfer between meaningful superordinate-basic 

phase 2 condition and the artificial superordinate-basic phase 2 condition results showed 
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a significant main effect of training block (F (3, 243) = 53.60, p < .001).  The interaction 

between group condition and training block was statistically non-significant (F (3, 243) = 

.20, p > .92) as was the main effect of group (F (1, 81) = 2.96, p > .10).  

In sum, no differences were found between meaningful and artificial label groups 

following transfer to a new taxonomic level.    

The next set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups.  These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions. 

These comparisons are important for further examining whether instructions facilitate 

learning for the meaningful label group.  Findings showing better performance for the 

meaningful group would support this idea.   

First, focusing on superordinate phase 1 conditions for artificial and meaningful 

groups, results showed a significant main effect of training block (F (3, 117) = 55.73, p < 

.001). The interaction between group condition and training block was statistically non-

significant (F (3, 117) = 1.96, p > .14) as was the main effect of group (F (1, 39) = 1.40, p 

> .24).   

Second, focusing on basic phase 1 conditions for artificial and meaningful groups, 

results showed a significant main effect of training block (F (3, 117) = 122.33, p < .001).  

The interaction between group condition and training block was statistically non-

significant (F (3, 117) = 1.75, p > .10) as was the main effect of group (F (1, 39) = 1.55, p 

> .14).  

Third, comparisons between the artificial superordinate-superordinate phase 2 

condition with the meaningful superordinate-superordinate phase 2 conditions showed a 
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significant main effect of training block (F (3, 117) = 6.44, p < .02). The interaction 

between group condition and training block was statistically non-significant (F (3, 117) = 

.88, p > .29) as was the main effect of group (F (1, 39) = 2.76, p > .19).  

Finally, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition, results showed a significant main effect of 

training block (F (3, 117) = 5.90, p < 001).  The interaction between group condition and 

training block was statistically non-significant (F (3, 117) = 1.21, p > .24) as was the 

main effect of group condition (F (1, 39) = .88, p > .35). 

In sum, analyses revealed no differences between artificial and meaningful groups 

for correct responses.  Instructions did not have the expected effect of boosting 

knowledge effects associated with the meaningful labels.   

5.3.2 Reaction times 

The reaction times were averaged and submitted to mixed factorial ANOVA’s, 

after discarding any times greater than 3 seconds.  Only correct responses were analyzed.  

It is important to keep in mind that participants learn in total 48 items for each block, 12 

for each category.   

 The first sets of comparisons examine taxonomic transfer differences between the 

artificial and meaningful label groups for basic-superordinate phase 2 conditions and 

superordinate-basic phase 2 conditions.  Expectations for these comparisons are identical 

to those for correct responses.   

First, when comparing the meaningful basic-superordinate phase 2 and artificial 

basic superordinate phase 2 condition results showed a significant main effect of training 

block (F (3, 243) = 24.43, p < .001). The interaction between group condition and 
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training block was statistically significant (F (3, 243) = 3.65, p < .01).  Participants in the 

artificial basic-superordinate condition were faster processing items at block 1 (t (81) = 

3.96, p = 6.11, p < .02). 

Next, comparisons between the meaningful superordinate-basic phase 2 condition 

and the artificial superordinate-basic phase 2 condition showed a significant main effect 

of training block (F (3, 243) = 21.22, p < .001) an interaction between group and training 

block (F (3, 243) = 10.44, p < .001) as well as a main effect of group (F (1, 81) = 20.74, p 

< .001).  Participants in the artificial superordinate-basic phase 2 condition were faster 

processing standard items on their respective first (t (81) = 26.55, p < .001) second, (t 

(81) = 12.13, p < .001) third, (t (81) = 12.91, p < .001), and fourth (t (81) = 10.65, p < 

.003) training blocks.  

In sum, the artificial group was faster than the meaningful when transferring from 

one taxonomic level to another regardless of type of structure first learned.  Clearly 

instructions failed to boost knowledge effects associated with the meaningful label.    

The next set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups.  These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions.  

First, focusing on the artificial superordinate-superordinate phase 1 condition with 

the meaningful superordinate-superordinate phase 1 condition results showed a 

significant main effect of training block (F (3, 117) = 39.24, p < .001) and an interaction 

between training block and group condition (F (3, 117) = 3.73, p < .02).  The main effect 

of group was statistically non-significant (F (1, 39) = 2.01, p > .10).  Participants in the 

artificial label group processed items faster on training block 1 (t (39) = 2.93, p < .03).   
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Second, when comparing the artificial basic-basic phase 1 condition with the 

meaningful basic-basic label phase 1 condition, results showed a significant main effect 

of training block (F (3, 117) = 27.11, p < .001) an interaction between group and training 

block (F (3, 117) = 10.81, p < .001) as well as a main effect of group (F (1, 39) = 32.11, p 

< .001).  Participants in artificial basic-basic group were faster than participants in the 

meaningful basic-basic group when processing items on training blocks 1 (t (39) = 6.93, p 

< .001), 2 (t (39) = 5.25, p < .001), 3 (t (39) = 4.50, p < .001) and 4 (t (39) = 3.90, p < 

.001).  

Third, when comparing the artificial superordinate-superordinate phase 2 

condition with the meaningful superordinate-superordinate phase 2 condition results 

showed a significant main effect of training block (F (3, 117) = 3.26, p < .03).  The 

interaction between training block and group condition was statistically non-significant, 

(F (3, 117) = .43 p > .73) as was the main effect of group condition (F (1, 39) = .01, p > 

.93).  

Finally, focusing on the artificial basic-basic phase 2 condition and the 

meaningful basic-basic label phase 2 condition results showed a significant main effect of 

training block (F (3, 117) = 15.49, p < .001).  The interaction between training block and 

group condition was statistically non-significant (F (3, 117) = 1.09, p > .35) as was the 

main effect of group condition (F (1, 39) = 1.21, p > .31).  

5.4 Experiment 4 results  

5.4.1 Artificial and meaningful groups comparisons    

The following sets of comparisons are important for verifying results found in the 

Experiment 3.  In that Experiment no differences were found between artificial and 
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meaningful groups on measures of accuracy.  However, reaction time performance was 

overall much faster for the artificial label group.  One factor that may have contributed to 

weak performance on the part of the meaningful group, particularly with respect to 

reaction time performance was the inclusion of instructions in that Experiment.  

Participants in the meaningful group having knowledge of categories may have spent 

more time trying to figure out how one feature was related to the other.  Replicating the 

analysis performed in Experiment 3 is important for ruling out this possibility.  The first 

sets of comparisons focus on learning of standard items over the first eight blocks of 

training. Block 9 comparisons for standard, prototype, and fifty-fifty items are explored 

later.  

5.4.1.1 Accuracy  

The first set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups.  These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions.  

Findings favoring the meaningful group would show that meaning attached to the label 

boost classification for that group.  

First, when comparing the artificial superordinate-superordinate phase 1 condition 

with the meaningful superordinate-superordinate phase 1 condition results showed a 

significant main effect of training block (F (3, 150) = 60.22, p < .001). The interaction 

between group and training block was statistically non-significant (F (3, 150) = 1.88, p > 

.44) as was the main effect of group (F (1, 50) = 1.60, p > .18).  

Next, when comparing the artificial basic-basic label phase 1 condition with the 

basic-basic meaningful label phase 1 condition results showed a significant main effect of 



    202 

training block (F (3, 150) = 134.77, p < .001).  The interaction between training block 

and group was statistically non-significant (F (3, 150) = 1.29, p > .12) as was the main 

effect of group (F (1, 50) = 1.66, p > .15).  

Third, when comparing the artificial superordinate-superordinate phase 2 

condition with the meaningful superordinate-superordinate phase 2 conditions, results, 

showed a significant main effect of training block (F (3, 150) = 6.78, p < .01).  The 

interaction between group and training block was statistically non-significant (F (3, 150) 

= .56, p > .65) as was the main effect of group (F (1, 50) = 2.24, p > .14).  

Finally, focusing on the artificial basic-basic phase 2 condition and the 

meaningful basic-basic phase 2 condition, results showed a significant main effect of 

training block (F (3, 150) = 5.22, p < 003).  The interaction between group condition and 

training block was statistically non-significant (F (3, 150) = 1.02, p > .33), as was the 

main effect of group condition (F (1, 50) = .17, p > .49). 

5.4.1.2 Reaction times   

Possible outcomes for group reaction times are several.  Faster performance on 

part of the meaningful group would not only suggest that meaning attached to the label 

boosted performance for that group, but that instructions presented in Experiment 3 

adversely affected performance of the meaningful group.  Conversely, a replication of 

findings in Experiment 3, that is slower reaction times for the meaningful label, would 

support the idea that meaning attached to label interacts adversely with abstract 

dimensions and incongruent dimensional values.     
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The next set of comparisons examine phase 1 and phase 2 differences between 

artificial and meaningful groups.  These comparisons include superordinate and basic 

level phase 1 conditions, as well as superordinate and basic level phase 2 conditions.   

First, when comparing the artificial superordinate-superordinate phase 1 condition 

with the meaningful superordinate-superordinate phase 1 condition, results showed a 

significant main effect of training block (F (3, 150) = 45.91, p < .001).  The interaction 

between training block and group condition was statistically non-significant (F (3, 150) = 

3.55, p > .05) as was the main effect of group condition (F (1, 150) = 1.78, p > .12). 

Second, focusing on the artificial basic-basic phase 1 condition and the 

meaningful basic-basic phase 1, results showed significant main effect of training block, 

F (3, 150) = 51.28, p < .001, a significant interaction between training block and group 

condition (F (3, 150) = 10.22, p < .001) as well as a main effect of group condition (F (1, 

50) = 23.77, p < .001).  The artificial basic phase 1 condition was significantly faster 

processing items on blocks one (t (50) = 5.85, p < .001), two (t (50) = 3.91, p < .001), 

three (t (50) = 3.55, p < .001, and four (t (50) = 3.01, p < .01). 

Third, focusing on the artificial superordinate-superordinate phase 1 condition 

with the meaningful superordinate-superordinate phase 1 condition showed a significant 

main effect of training block (F (3, 150) = 8.21, p < .001).  The interaction between 

training block and group condition was statistically non-significant (F (3, 150) = 3.01, p > 

.07) as was the main effect of group condition (F (1, 50) = 1.01, p > .44). 

 Finally, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition results showed a significant main effect of 

training block (F (3, 150) = 10.22, p < .001).  The interaction between training block and 
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group condition was statistically non-significant (F (3, 350) = 2.90, p > .06), as was the 

main effect of group condition (F (1, 50) = 1.77, p > .09).   

In sum, findings replicate those of Experiment 3.  Participants in the meaningful 

group performed reliably slower than participants in the artificial group, but only when 

learning the basic-basic phase 1 condition.  This finding suggests that meaning attached 

to the meaningful label interacts adversely with prior expectations of participants. 

5.4.2 Artificial and meaningful label group comparisons for block 9  

The following analyses compare group differences when learning standard, 

prototype, and fifty-fifty items at block 9.  As prototype items are congruent with 

participants prior expectations one would expect enhanced performance on part of the 

meaningful group for these items.  However, if abstract dimensions interact adversely 

with prior experiences, weaker performance (or equal performance) is expected on part of 

the meaningful group for these items.  

5.4.2.1 Accuracy  

First, when comparing the artificial superordinate-superordinate phase 2 condition 

with the meaningful superordinate-superordinate phase 2 condition, results showed a 

significant main effect of item type, (F (2, 100) = 56.59, p < .001). The interaction 

between group and item type was statistically non-significant (F (2, 100) = 1.31, p > .25), 

as was the main effect of group (F (1, 50) = 1.56, p > .20).  

Second, focusing on the artificial basic-superordinate phase 2 condition and the 

meaningful basic-superordinate phase 2 condition, results, showed a significant main 

effect of item type (F (2, 100) = 49.35, p < .001). The interaction between group and item 
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type was statistically non-significant (F (2, 100) = .17, p > .90) as was the main effect of 

group (F (1, 50) = .25, p > .81).  

Third, when comparing the artificial basic-basic label phase 1 condition with the 

basic-basic meaningful label phase 1, results showed a significant main effect of item 

type (F (2, 100) = 59.53, p < .001).  The interaction between training block and group 

was statistically non-significant (F (2, 100) = .70, p > .44) as was the main effect of group 

(F (1, 50) = 1.11, p > .20).  

Finally, focusing on the artificial basic-basic phase 2 condition and the 

meaningful basic-basic phase 2 condition, results showed a significant main effect of 

training block (F (2, 100) = 32.33, p < .001).  The interaction between group condition 

and training block was statistically non-significant (F (2, 100) = .94, p > .39) as was the 

main effect of group condition (F (1, 50) = .50, p > .40). 

In sum, no differences were found between groups when learning prototype, fifty-

fifty, and standard items.  This would suggest that even when features are congruent with 

prior experience as with prototype items, the meaningful group fails to benefit.  

5.4.2.2 Reaction times 

 First, focusing on the artificial superordinate-superordinate phase 2 condition and 

the meaningful superordinate-superordinate phase 2 condition results showed a 

significant main effect of item type, F (2, 100) = 4.52, p < .001.  The interaction between 

group condition and item type was statistically non-significant, F (2, 100) = .25, p > .83, 

as was the main effect of group condition, F (1, 50) = .34, p > .23.  

Second, when comparing the artificial basic-superordinate phase 2 condition and 

the meaningful basic-superordinate phase 2 condition, results showed a significant main 
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effect of item type (F (2, 100) = 19.42, p < .001).  The interaction between group 

condition and item type was statistically non-significant (F (2, 100) = 3.19, p > .05) as 

was the main effect of group condition (F (1, 50) = 2.89, p > .10).  

Third, when comparing the basic-basic phase 2 condition with the meaningful 

basic-basic phase 2 condition, results showed a significant main effect of item type (F (2, 

100) = 4.67, p < .02).  The interaction between group and item type was statistically non-

significant (F (2, 100) = .1.09, p > .25) as was the main effect of group condition (F (1, 

50) = 1.90, p > .14).  Note, that an independent sample t-test showed that the artificial 

label group was faster processing standard items (t (50) = 3.00, p < .03).  

Finally, when focusing on the artificial superordinate-basic phase 2 condition the 

meaningful superordinate-basic phase 2 condition results determined that the main effect 

of item type was statistically non-significant (F (2, 100) = 2.91, p > .05) as was the 

interaction between group condition and item type (F (2, 100) = 1.87, p > .10) and the 

main effect of group condition (F (1, 50) = 1.70, p > .09).  

5.4.3 Block 9 item comparisons for individual groups 

5.4.3.1 Artificial label.   

The following sets of analyses examine differences between items for block 9.  

These analyses are important for exploring how differences in item structure affect 

learning of items.  Participants are expected to prefer the structural qualities of prototype 

items as compared to standard items.  Expectations for prototype and fifty-fifty items are 

less clear. If participants categorized based on the number of dimensional values that 

belong to superordinate categories, then small differences are expected for these items.  

On the other hand, if they classify based on prior knowledge poorer performance is 
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expected for fifty-fifty items.  Comparisons are made first for the artificial label and then 

for the meaningful label. 

5.4.3.2 Accuracy   

Prototype items were classified better than standard items in both the 

superordinate-superordinate phase 2 (t (25) = 2.44, p < .001) and basic-superordinate 

phase 2 conditions (t (25) = 7.77, p < .001).  Prototype items were also classified better 

than standard items in both the basic-basic phase 2 (t (25) = 9.79, p < .001) and 

superordinate-basic phase 2 conditions (t (25) = 9.00, p < .001). 

No differences were found between prototype and fifty-fifty items in either the 

superordinate-superordinate phase 2 (t (25) = 1.01, p = .30) and the basic-superordinate 

phase 2 conditions (t (25) = 1.34, p > 18). 

Fifty-fifty items were classified better than standard items in both the 

superordinate-superordinate phase 2 (t (25) = 5.00, p < .001) and the basic-superordinate 

phase 2 conditons (t (25) = 6.79, p < .001).  

5.4.3.3 Reaction times for item comparisons 

Prototype items were classified faster than standard items when classifying in the 

superordinate-superordinate phase 2 level (t (25) = 2.78, p < .01).  However, no reaction 

time differences were found between these items when classifying in the basic-

superordinate phase 2 condition (t (25) = .88, p = .72). No reaction time differences were 

found between prototypes and standard items in either the basic-basic phase 2 condition (t 

(25) = 2.05, p > .05) or the superordinate-basic phase 2 condition (t (25) = .89, p > .30). 

No reaction time differences were found between prototype and fifty-fifty items in either 

the superordinate-superordinate phase 2 condition, (t (25) = 1.50, p > .06), or basic-
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superordinate phase 2 condition (t (25) = .98, p > .37). No reaction time differences were 

found between standard and fifty-fifty items in either the superordinate-superordinate 

phase 2 condition (t (25) = 1.00, p > .23) or the basic-superordinate phase 2 condition (t 

(25) = 1.70, p > .10).  

5.4.4 Meaningful Label  

Meaningful group participants are expected to classify prototype items better than 

both standard items.  Moreover, in comparison to standard items and prototype items 

poorer performance is expected for fifty-fifty items. This is because the combination of 

dimensional values for fifty-fifty is inconsistent with participant’s prior expectations for 

instruments. 

5.4.4.1 Accuracy  

Prototype items were classified better standard items in both the superordinate-

superordinate phase 2 condition (t (25) = 5.24, p < .001) and basic-superordinate phase 2 

condition (t (25) = 8.77, p < .001). Prototype items were classified better than standard 

items in both the basic-basic phase condition (t (25) = 8.98, p < .001) and superordinate-

basic phase 2 condition, (t (25) = 7.73, p < .001). No differences were found between 

prototype and fifty-fifty items when classifying these items in the superordinate-

superordinate phase 2 condition (t (25) = 1.81, p > .08) or the basic-superordinate phase 2 

condition (t (25) = .27, p > .79). Fifty-fifty items were classified better than standard 

items in both the superordinate-superordinate phase 2 condition (t (25) = 7.99, p < .001) 

and the basic-superordinate phase 2 condition (t (25) = 7.55, p < .001).  

When considering accuracy findings at block 9, performances for prototype and 

fifty-fifty items was generally better than for standard items.  Moreover, no differences 
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were found between prototype and fifty-fifty items. The findings are consistent with the 

idea that participants are making classification decisions based on the number of 

dimensional values that correctly predict the category.  Thus participants do not appear to 

be making decisions based on prior experiences with instruments (otherwise a half 

flute/half saxophone would seem odd in comparison to an instrument that is all flute or 

mostly flute). 

5.4.4.2 Reaction times 

 Prototype items were categorized faster than standard items in the superordinate-

superordinate phase 2 condition (t (25) = 4.22, p < .001). However, no differences were 

found between these items when categorizing in the basic-superordinate phase 2 

condition (t (23) = 1.45, p > .50).  Prototype items were classified faster than the standard 

items at both the basic-basic phase 2 condition (t (25) = 6.45, p > .001) and the basic-

superordinate phase 2 condition (t (25) = 3.33, p < .001). No reaction time differences 

were found between prototype and fifty-fifty items when categorizing in either the 

superordinate-superordinate phase 2 condition (t (25) = 2.00, p > .05) and the 

superordinate-basic phase 2 condition (t (25) = 1.89, p > .10). Fifty-fifty items were 

categorized faster than standard items in the basic-superordinate phase 2 condition (t (23) 

= 2.98, p < .01). However no reaction time differences were found between these items in 

the superordinate-superordinate phase 2 condition (t (25) = 1.55, p > .20).   

5.4.5 Differences between taxonomic levels   

Then next sets of analyses examine mean differences between superordinate and 

basic level categories for artificial and meaningful groups.  These analyses are important 

for differentiating the influence of prior expectations, dimensions, and item structure, on 
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categorization.  For example, slower responses on part of the meaningful group for 

prototype items would suggest that abstract dimensions negatively impacted 

performance.  This is because the primary factor affecting performance for prototype 

items are abstract dimensions (structure for prototype items was held constant between 

taxonomic levels).   However, slower responses to standard items on part of the 

meaningful group would suggest that both abstract dimensions and incongruent 

dimensional values negatively affected meaningful group performance (these items have 

both abstract dimensions and incongruent dimensional values).  Finally, slower between 

taxonomic level responses to standard than to prototype items on would suggest that 

incongruent dimensional values are the primary factor affecting performance.  The first 

set of analyses compares mean differences between basic-basic and superordinate-

superordinate groups. The second set of analyses examines group mean differences 

between basic-superordinate and superordinate-basic phase 2 conditions.  

First, when comparing differences between basic-basic and superordinate-

superordinate groups for standard items results showed mean differences were smaller for 

the artificial label on blocks, 1, 2, 3, and 5 (p < .01).  Comparisons for block 9 failed to 

find mean reaction time differences between groups for standard (t (50) = 1.98, p > .15) 

prototype (t (50) = 1.05, p > .23).  Moreover, no between taxonomic level differences 

were found when comparing prototype and standard items (t (50) = 1.02, p > .14). 

Next, when comparing differences between basic-superordinate and 

superordinate-basic phase 2 condition for standard items no mean differences were found 

between groups on block, 5, 6, 7, and 8 (p > .77).  Moreover comparisons for block 9 also 

failed to reveal mean reaction time differences between groups for standard (t (50) = 
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1.57, p > .05) and prototype items (t (50) = 1.78, p > .06).  No between taxonomic level 

differences were found when comparing prototype and standard items (t (50) = .72, p > 

.53). 

In summarizing differences between untransformed and transformed groups, no 

realized differences were found. 

5.5 Experiment 5 results   

5.5.1 Item comparisons for artificial and meaningful groups 

 The following analyses compare group differences when learning standard, 

prototype, and fifty-fifty items at blocks 1, 5, and 9.  As prototype items are congruent 

with participants prior expectations one would expect enhanced performance on part of 

the meaningful group for these items.  However, if abstract dimensions interact adversely 

with prior experiences, weaker performance (or equal performance) is expected on part of 

the meaningful group for these items.  

5.5.1.1 Accuracy   

The first sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9 for superordinate level 

categories.  

First, when comparing the artificial superordinate-superordinate block 1 condition 

with the meaningful superordinate-superordinate block 1 condition, results showed a 

main effect of item type ( F (2, 108) = 77.77, p < .001).  However, the interaction 

between item type and group was statistically non-significant ( F (2, 108) = 1.05, p > 

.18), as was the main effect of group (F (1, 54) = .97, p > .35).   
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Second, when comparing the artificial superordinate-superordinate block 5 

condition with the meaningful superordinate-superordinate block 5 condition, results 

showed a main effect of item type (F (2, 108) = 55.45, p < .001).  The interaction 

between item type and group was statistically non-significant (F (2, 108) = .30, p > .76) 

as was the main effect of group (F (1, 54) = 2.00, p > .20).   

Finally, when comparing the artificial superordinate-superordinate block 9 

condition with the meaningful superordinate-superordinate block 9 condition, results 

showed a main effect of item type (F (2, 108) = 60.32, p < .001).  The interaction 

between item type and group was statistically non-significant (F (2, 108) = .23, p > .66), 

as was the main effect of group (F (1, 54) = 2.00, p > .22). 

In sum, the artificial and meaningful labels did not differ in performance on 

prototype, standard, and fifty-fifty items at block 1, 5, and 9, for the superordinate-

superordinate phase 1 and 2 conditions. 

The next sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9 for basic level categories.  

First, when comparing the artificial basic-basic group with the meaningful basic-

basic group for block 1, results showed a main effect of item type (F (2, 108) = 20.71, p < 

.001).  The interaction between item type and group was statistically non-significant (F 

(2, 108) = 1.00, p > .44) as was the main effect of group (F (1, 54) = .56, p > .56).   

Second, when comparing the artificial basic-basic group with the meaningful 

basic-basic group for block 5, results showed a main effect of item type (F (2, 108) = 

25.20, p < .001).  The interaction between item type and group was statistically non-
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significant (F (2, 108) = .09, p > .95), as was the main effect of group (F (1, 54) = .05, p > 

.77).   

Finally, when comparing the artificial basic-basic group with the meaningful 

basic-basic group for block 9, results showed a main effect of item type (F (2, 108) = 

77.33, p < .001).  The interaction between item type and group was statistically non-

significant (F (2, 108) = .88, p > .20) as was the main effect of group (F (1, 54) = .02, p > 

.95). 

In sum, the artificial and meaningful labels did not differ in performance on 

prototype, standard, and fifty-fifty items at block 1, 5, and 9, for the basic-basic phase 1 

and 2 conditions 

The next sets of comparisons explore differences between groups for taxonomic 

transfer phase 2 categories.   

First, focusing on basic-superordinate phase 2 condition for block 5 results 

showed a main effect of item type (F (2, 108) = 100.73, p < .001.  The interaction 

between item type and group was statistically non-significant, F (2, 108) = .14, p > .97, as 

was the main effect of group (F (1, 54) = .44, p = .55).  Second, focusing on block 9, 

results showed a main effect of item type (F (2, 108) = 77.09, p < .001).  The interaction 

between item type and group was statistically non-significant (F (2, 108) = .98, p > .67) 

as was the main effect of group (F (1, 54) = 1.01, p > .39). 

Next, focusing on superordinate-basic phase 2 condition for block 5, results 

showed a main effect of item type (F (2, 108) = 13.60, p < .001).  The interaction 

between item type and group was statistically non-significant (F (2, 108) = .55, p > .74) 

as was the main effect of group (F (1, 54) = .56, p > .77).  Second, focusing on block 9, 
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results showed a main effect of item type (F (2, 108) = 62.99, p < .001).  The interaction 

between item type and group was statistically non-significant (F (2, 108) = .07, p > .97) 

as was the main effect of group (F (1, 54) = .05, p > .87). 

In sum, results failed to reveal reliable differences between groups when 

categorizing items at either superordinate or basic levels.   

5.5.1.2 Reaction Times  

The first sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9, for superordinate level 

categories.  

First, when comparing the artificial superordinate-superordinate group with the 

meaningful superordinate-superordinate group at block 1, results showed a main effect of 

item type (F (2, 108) = 6.78, p < .01).  The interaction between item type and group was 

statistically non-significant (F (2, 108) = .44, p > .77) as was the main effect of group (F 

(1, 54) = .14, p > .87).   

Second, when comparing the artificial superordinate-superordinate group with the 

meaningful superordinate-superordinate group at block 5, results showed a main effect of 

item type (F (2, 108) = 7.50, p < .001).  The interaction between item type and group was 

statistically non-significant (F (2, 108) = .01, p > .99) as was the main effect of group (F 

(1, 54) = .02, p = .95).   

Finally when comparing the artificial superordinate-superordinate group with the 

meaningful superordinate-superordinate group at block 9, results showed a main effect of 

item type F (2, 108) = 8.23, p < .001.  The interaction between group and item type was 
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statistically non-significant (F (2, 108) = .05, p > .95) as was the main effect of group (F 

(1, 54) = .67, p > .73). 

The next sets of analyses compare artificial and meaningful label groups for 

prototype, fifty-fifty, and standard items, on blocks 1, 5, and 9, for basic level categories. 

First, when comparing the artificial basic-basic phase 1 condition with the 

meaningful basic-basic phase 1 conditions, results showed a main effect of item type (F 

(2, 108) = 5.55, p < .10) and a significant main effect of group (F (1, 54) = 9.01, p < 

.001).  The interaction between item type and group was statistically non-significant (F 

(2, 108) = .33, p > .68).  The artificial group was faster than meaningful group when 

prototype (t (54) = 9.73, p < .003), and fifty-fifty items (t (54) = 4.87, p < .05) were 

classified at block 1, and when standard items were classified at block 1 (t (54) = 11.14, p 

< .007) and 2 (t (54) = 4.66, p < .03).  

Second, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition at block 5 results showed a significant main 

effect of item type (F (2, 108) = 6.77, p < .04).  The interaction between item type and 

group was statistically non-significant (F (2, 108) = 1.09, p > .25) as was the main effect 

of group (F (1, 54) = .03, p > .90).  

Finally, when comparing the artificial basic-basic phase 2 condition with the 

meaningful basic-basic phase 2 condition at block 9, results showed a significant main 

effect of item type (F (2, 108) = 5.77, p < .01).  The interaction between item type and 

group was statistically non-significant (F (2, 108) = 1.77, p > .12) as was the main effect 

of group (F (1, 54) = .01, p > .99). 
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In sum, no statistical differences were found between groups for items when 

categorizing at superordinate levels.  However, faster performance was found for the 

artificial label group when processing standard, prototype and fifty-fifty items for basic 

level categories.  These findings would suggest that mapping between item information 

and the category is poorer for the meaningful group during initial stages of learning. 

5.5.2 Item comparisons for individual groups 

Analyses for Experiment 4 revealed accuracy differences between the three items, 

but minimal differences in reaction times.  This failure to find reaction time differences 

may have resulted from performance asymptote by block 9.  Introducing prototype and 

fifty-fifty items into block 1 and 5 has the advantage of examining this possibility.  An 

additional advantage follows from closer examination of transfer patterns for prototype and 

fifty-fifty items. 

5.5.2.1 Artificial label group 

 Means and mean square errors for accuracy are depicted in figures 21, 25, and 29 

and for response times in figures 23, 27, and 31.  Because there were no logical 

differences between superordinate-superordinate and superordinate-basic groups or 

between the basic-superordinate and the basic-basic groups at block 1, these groups were 

combined for present analyses.  Accuracy data are explored first, followed by response 

times.   

5.5.2.2 Accuracy for block 1 

Prototype items were classified better than standard items in the superordinate 

condition (t (27) = 5.22, p < .001) and the basic condition (t (27) = 3.54, p < .001). No 

statistical differences were found between prototype and fifty-fifty item in the 
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superordinate condition (t (27) = .56, p > .77).  Finally, fifty-fifty items were classified 

better than standard items in the superordinate condition (t (27) = 7.88, p < .001).These 

findings are consistent with the previous experiment and suggest that participants 

categorize based on the number of statistical values that correctly predict the category. 

5.5.2.3 Accuracy for block 5 

. Prototype items were classified better than standard items in both the 

superordinate-superordinate phase 2 (t (27) = 5.00, p < .001) and the basic-superordinate 

phase 2 condition (t (27) = 10.89, p < .004).  Second, prototype items were classified 

better than fifty-fifty item in the basic-basic phase 2 condition (t (27) = 7.55, p < .001) 

and the superordinate-basic levels phase 2 condition (t (27) = 3.79, p < .001). No 

differences were found between prototype and fifty-fifty items in either the 

superordinate-superordinate phase 2 condition (t (27) = .01, p > .99) or the basic-

superordinate levels phase 2 condition, (t (27) = .44, p > .65). Fifty-fifty items were 

classified better than standard item in the superordinate-superordinate phase 2 (t (27) = 

5.01, p < .001) and the basic-superordinate levels phase 2 conditions (t (27) = 5.91, p < 

.001).  

The failure to find differences between prototype and fifty-fifty items 

immediately following taxonomic transfer from the basic to superordinate level is 

important.  As noted earlier, given an effect of taxonomy, these items would most likely 

differ at the point of taxonomic transfer.  Particularly in the basic-super, because 

participants have just been taught categories that corresponded to prototype items better 

than to fifty-fifty items. 

5.5.2.4 Accuracy for block 9   
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At block 9 prototype items were classified better than standard items in both the 

superordinate-superordinate phase 2 (t (27) = 4.63, p < .001) and basic-superordinate 

levels phase 2 conditions (t (27) = 7.00, p < .001). Prototype items were also classified 

better than standard items at both the basic-basic phase 2 (t (27) = 8.01, p < .001) and the 

superordinate-basic phase 2 conditions, (t (27) = 7.00, p < .001). Prototype and fifty-fifty 

items did not differ in either the superordinate-superordinate phase 2 (t (27) = .04, p > 

.97) or the basic-superordinate phase 2 conditions, t (27) = 1.66, p > .10. Fifty-fifty items 

were classified better than standard at both superordinate-superordinate (t (27) = 4.01, p < 

.005) phase 2 level, and basic-superordinate levels phase 2 level (t (27) = 4.90, p < .001). 

5.5.2.5 Reaction times for block 1  

 Prototypes were classified faster than standard items in the basic condition (t (27) 

= 3.65, p < .001).  However no differences were found between these items in the 

superordinate condition, (t (27) = 1.77, p > .17). No differences were found between 

prototype and fifty-fifty items in the superordinate condition (t (27) = .43, p > .55). 

Finally, no statistical differences were found between fifty-fifty items and standard items 

in the superordinate level (t (27) = 1.70, p > .06). 

In sum, the only reaction time differences found occurred at the basic level with 

prototype items being classified faster than standard items. 

5.5.2.6 Reaction times for blocks  

No differences were found between prototype and standard items in either the 

superordinate-superordinate phase 2 (t (27) = 1.10, p > .34) and the basic superordinate 

levels phase 2 conditions (t (27) = .09, p > .90). Prototype items were classified faster 

than standard items in the basic-basic phase 2 condition (t (27) = 3.90, p < .003) but not 
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in the superordinate-basic phase 2 condition (t (27) = 1.07, p > .67). No significant 

differences were found between prototype and fifty-fifty items in the superordinate-

superordinate phase 2 (t (27) = .88, p > .20) and the basic-superordinate phase 2 condition 

(t (27) = 1.01, p > .05). Finally, fifty-fifty items were classified faster than standard items 

in the superordinate-superordinate phase 2 (t (27) = 3.98, p < .001) and the basic-

superordinate phase 2 conditions (t (27) = 2.10, p < .03).  

In sum, prototype items were classified faster than standard items at the basic-

basic phase 2 condition.  Moreover, fifty-fifty items were classified faster than standard 

items in the superordinate-superordinate phase 2, and the basic-superordinate phase 2 

conditions.   

5.5.2.7 Reaction times for block 9 

 Prototype items were classified faster than standard items in the superordinate-

superordinate phase 2 (t (27) = 2.20, p < .05) and the basic-superordinate phase 2 

conditions (t (27) = 2.56, p < .05). No significant differences were found between 

prototype and standard items in either the basic-basic phase 2 (t (27) = 1.34, p > .11) or 

the superordinate-basic phase 2 conditions (t (27) = 1.78, p > .10). No differences were 

found between prototype and fifty-fifty items in either the superordinate-superordinate 

phase 2 (t (27) = .04, p > .95) and basic-superordinate phase 2 conditions (t (27) = .45, p 

> .67). Fifty-fifty items were classified faster than standard items in both the 

superordinate-superordinate (t (27) = 2.30, p < .07) and basic-superordinate conditions, t 

(27) = 3.66, p < .001. 

In sum, no response time differences were found between prototype and fifty-fifty 

items, however response times for these items were faster than for standard items.  
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5.5.3 Meaningful label group.  

Means and mean square errors for accuracy are depicted in figures 22, 26, and 30, 

and for response time in figures 24, 28, and 32.  Because there were no logical 

differences between superordinate-superordinate and superordinate-basic groups or 

between the basic-superordinate and the basic-basic groups these groups in block 1, these 

groups were combined for analysis.  Accuracy data are explored first, followed by 

response times.  

5.5.3.1 Accuracy for Block 1.   

First, prototype items were classified better than standard items in both the 

superordinate (t (27) = 9.60, p < .001) and basic conditions (t (27) = 4.72, p < .001).  

No statistical differences were found between prototype and fifty-fifty items in the 

superordinate condition (t (27) = .66, p > .30). Fifty-fifty items were classified better than 

standard items in the superordinate condition (t (27) = 6.33, p < .001).   

In sum, prototype and fifty-fifty items were classified better than standard items, 

however no differences were found between fifty-fifty items and prototype items.  Thus, 

findings do not support the idea that participants viewed fifty-fifty items as odd otherwise 

performance for these items would have been poorer than for other items. Instead, 

findings suggest that participants classified based on the number of dimensional values 

that correctly predicted the category.  Other explanations are explored in the discussion 

for this experiment.  

5.5.3.2 Accuracy for Block 5 

Prototype items were classified better than standard items in the superordinate-

superordinate phase 2 (t (27) = 7.22, p < .001) and the basic-superordinate phase 2 
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conditions (t (27) = 9.77, p < .001). Prototypes were also classified better than standard 

items in both the basic-basic phase 2 (t (27) = 6.55, p < .001) and the superordinate-basic 

phase 2 conditions (t (27) = 5.24, p < .001). No differences were found between 

prototype and fifty-fifty items in either the superordinate-superordinate phase 2 (t (27) = 

.90, p > .44) or the basic-superordinate phase 2 conditions (t (27) = .88, p > .45). Fifty-

fifty items were classified better than standard items in both the superordinate-

superordinate phase 2 (t (27) = 4.22, p < .001) and the basic-superordinate phase 2 

conditions (t (27) = 8.99, p < .001). 

In sum, findings for block 5 replicate those of block 1, prototype and fifty-fifty 

items were classified better than standard items, however no differences were found 

between fifty-fifty items and prototype items.  An important finding here is the failure to 

find differences between prototype and fifty-fifty items immediately following taxonomic 

transfer from basic to superordinate level.  As noted earlier, taxonomic transfer is the 

point at which differences between these items was most likely to occur.   

5.5.3.3 Accuracy for block 9  

Prototype items were classified better than standard items in both the 

superordinate-superordinate phase 2 (t (27) = 11.00, p < .001) and the basic-superordinate 

phase 2 conditions (t (27) = 7.77, p < .001). Prototypes were classified better than 

standard items (t (27) = 9.90, p < .001) in both the basic-basic phase 2 (t (27) = 5.88, p < 

.001) and the superordinate-basic phase 2 conditions. No differences were found between 

prototype and fifty-fifty items when classified in either the superordinate-superordinate 

phase 2 (t (27) = .99, p > .32) or the basic-superordinate phase 2 conditions (t (27) = .55, 

p > .56). Fifty-fifty items were classified better than standard items in both the 



    222 

superordinate-superordinate phase 2 (t (27) = 7.23, p < .001) and the basic-superordinate 

phase 2 levels (t (27) = 6.01, p < .001). 

5.5.3.4 Reaction times for block 1   

First, prototypes items were classified faster than standard items at both 

superordinate (t (27) = 3.22, p < .004) and basic conditions (t (27) = 2.55, p < .05). No 

differences were found between prototype items and fifty-fifty items in the superordinate 

condition (t (27) = .03, p > .98). Finally, fifty-fifty items were classified faster than 

standard items in the superordinate condition (t (27) = 2.80, p < .01). 

In sum, the finding of faster reaction time for prototype and fifty-fifty items over 

standard items coupled with the failure to find differences between prototype and fifty-

fifty items suggests that participants classified based on the number of dimensional 

values belonging to categories. 

5.5.3.5 Reaction times for block 5 

No reaction time differences were found between prototype and standard items in 

either the superordinate-superordinate phase 2 (t (27) = 1.85, p > .09) and basic-

superordinate phase 2 conditions (t (27) = 1.11, p > .40). Prototypes items were classified 

faster than standard items in the superordinate-basic phase 2 (t (27) = 2.40, p < .05) and 

the basic-basic phase 2 conditions (t (27) = 3.78, p < .001). No differences were found 

between prototype and fifty-fifty items when classified in either the superordinate-

superordinate phase 2 (t (27) = 1.01, p > .05), and basic-superordinate phase 2 conditions 

(t (27) = .24, p > .80). Fifty-fifty items were classified faster than standard items (t (27) = 

5.01, p < .001) in the superordinate-superordinate phase 2 condition, but not in the basic-

superordinate phase 2 condition (t (27) = .40, p > .71).   
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5.5.3.6 Reaction times for block 9   

Prototype items were classified faster than standard items in the superordinate-

superordinate phase 2 condition (t (27) = 3.00, p < .01) but not in the basic-superordinate 

phase 2 condition (t (27) = .22, p > .65). Prototype items were classifid faster than 

standard items in both the basic-basic phase 2 (t (27) = 2.01, p < .05) and the 

superordinate-basic phase 2 conditions (t (27) = 2.60, p < .01). No differences were found 

between prototype and fifty-fifty items when classified in either the superordinate-

superordinate phase 2 (t (27) = .78, p > .54) or the basic-superordinate phase 2 conditions 

(t (27) = .65, p > .53). Fifty-fifty items were classified faster than standard items in the 

superordinate-superordinate phase 2 condition (t (27) = 4.44, p < .001) but not in the 

basic-superordinate phase 2 condition (t (27) = 1.07, p > .35).  

In comparisons to standard items, participants were generally faster processing 

prototype and fifty-fifty items.  The one exception was the failure to find a difference 

between these items for the basic-superordinate phase 2 condition.  It would seem that 

standard items benefited more from basic level priming than other items.  Indeed, 

reaction times for these items were faster when transferring from basic to superordinate 

levels than when transferring from superordinate to superordinate levels.  This finding 

may be limited to data set, as similar findings were not found in Experiment 4. 

5.5.4 Differences between taxonomic levels   

The next sets of analyses examine mean response time differences between 

superordinate and basic level categories for artificial and meaningful groups.  These 

analyses are important for differentiating the influence of prior expectations, dimensions, 

and item structure, on categorization.  For example, slower responses on part of the 
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meaningful group for prototype items would suggest that abstract dimensions negatively 

impacted performance.  This is because the primary factor affecting performance for 

prototype items is abstract dimensions (structure for prototype items was held constant 

between taxonomic levels).   However, slower responses to standard items on part of the 

meaningful group would suggest that both abstract dimensions and incongruent 

dimensional values negatively affected meaningful group performance (these items have 

both abstract dimensions and incongruent dimensional-values).  Finally, slower between 

taxonomic level responses on part of the meaningful group when comparing standard and 

prototype items on would suggest that incongruent dimensional values are the primary 

factor affecting performance.  The first set of analyses compares mean differences 

between basic-basic and superordinate-superordinate groups. The second set of analyses 

examines group mean differences between basic-superordinate and superordinate-basic 

phase 2 conditions.   

Results were inconclusive when comparing differences between taxonomic levels 

for meaningful and artificial groups in Experiment 4.  Findings showed that the artificial 

group was faster processing standard items, however no differences were found between 

groups for prototype items.  Thus, it was difficult to determine with any certainty to what 

extent abstract or incongruent dimensional values contributed to findings.  One reason for 

failing to find an effect of abstract dimensions for prototype items may follow from 

items’ characteristics being less surprising to the meaningful group by block 9.  Given 

this possibility one would expect greater differences between groups when processing 

prototype items at block 1.  For similar reasons one might also expect that given an effect 

of incongruent dimensional values, differences between taxonomic levels when 
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comparing prototype and standard items would also be greater for the meaningful label at 

block 1.  

First, when comparing differences between basic-basic and superordinate-

superordinate groups at block 1, mean differences were smaller for the artificial label 

when categorizing standard (t (54) = 2.44, p < .01) and prototype items (t (54) = 3.40, p < 

.004). No statistical differences were found between groups when categorizing items on 

blocks 5 (p > .36) and 9 (p > .82).  These findings support the idea that abstract 

dimensions interfere with the meaningful groups mapping of item information.  Second, 

comparing differences between basic-superordinate and superordinate-basic phase 2 

condition, differences were smaller for the artificial group when categorizing standard 

items at block 5 (t (54) = 2.67, p < .05).  All other comparisons were statistically non-

significant (p > .70).  

Finally, the next comparison explores the idea that incongruent dimensional 

values interfere with mapping of item information.  First, focusing on block 1, although 

observable mean differences between standard and prototype items were greater for the 

meaningful group (M = 1579) than the artificial group (M = 663) findings were 

statistically non-significant (t (54) = 1.00, p > .77).   Comparisons were also statistically 

non-significant, at blocks 5 (t (54) = .88, p > .95) and 9 (t (54) = .82, p > .91).  Thus, at 

least statistically an effect of dimensional values goes unsupported.  

    

  


