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Abstract

Deep Reinforcement Learning (DRL) algorithms have shown great success in solving

continuous control tasks. However, they often struggle to generalize to changes in

the environment. Although retraining may help policies adapt to changes, it may

be quite costly in some environments. Ensemble methods, which are widely used in

machine learning to boost generalization, have not been commonly adopted in DRL

for continuous control applications. In this work, we introduce a simple ensembling

technique for DRL policies with continuous action spaces. It aggregates actions by

performing weighted averaging based on the uncertainty levels of the policies. We

investigate its zero-shot generalization properties in a complex continuous control

domain — the optimal control of home batteries in the CityLearn environment, the

subject of a 2022 international AI competition. Our results indicate that the proposed

ensemble has better generalization capacity than a single policy. Further, we show

that promoting diversity among policies during training can reliably improve the zero-

shot performance of the ensemble in the test phase. Finally, we examine the merits

of the uncertainty-based weighted averaging in an ensemble by comparing it to two

alternative approaches: unweighted averaging and selecting the action of the least

uncertain policy.
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This thesis is an original work by Abilmansur Zhumabekov. We submitted a pa-
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Chapter 1

Introduction

This chapter presents the motivation for this work, lists our contributions, and pro-

vides the layout of the thesis.

1.1 Motivation

Deep reinforcement learning (DRL) algorithms have attained remarkable performance

in a variety of challenging continuous control tasks such as locomotion and manip-

ulation [14, 19, 20]. However, DRL agents have limited generalization capabilities,

tending to be overly specialized to their environment and failing to perform optimally

when faced with perturbations [38, 44]. This is especially relevant for DRL agents

trained in a simulator or digital twin for deployment in a real-world setting. The dif-

ferences between the training and deployment (test) environment include state space,

transition dynamics, observation function, etc. [44].

Closing this generalization gap is the focus of a broad body of research. For exam-

ple, recent works have shown that generalization techniques from supervised learn-

ing, such as L2 regularization, dropout, data augmentation, and batch normalization,

prove useful in DRL as well [24, 36].

Another generally accepted approach to boosting the generalization properties of

machine learning (ML) models is to build ensembles of diverse models [8, 39]. Despite

the prevalence of ensembling in the context of general ML, there remains a scarcity of
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research exploring the use of (diverse) ensemble methods for continuous control tasks

in DRL. In particular, their use for improving generalization to perturbations in the

environment has been limited to date.

1.2 Our Contributions

This study introduces the ‘Diverse σ-weighted ensemble’ for continuous action spaces

in DRL (see Chapter 3). We examine its zero-shot generalization properties on the

data and task of the 2022 CityLearn Challenge [40] — household battery control

for demand response, which is a challenging, partially observable continuous control

task. Our key contribution is training diverse DRL policies and combining them

according to their uncertainty in the given task. The main insights of this work can

be summarized as follows:

1. Compared to using only a single policy, the proposed ensembling method per-

forms significantly better in the test phase and resists overfitting for much

longer. Here, overfitting denotes the phenomenon when the training cost is

converging but the test cost is diverging as the training progresses. Overfitting

can be quantified as the difference between training and test performances.

2. Promoting policy diversity in ensembles can significantly improve their zero-

shot test performance, albeit the extent of improvement varies across different

ensembling approaches.

3. The effectiveness of the proposed ensembling method comes from its ability to

leverage diversity not only in the actions but also in the uncertainty levels of

its members.
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1.3 Thesis Outline

We start with the background chapter which introduces the battery control problem

and the CityLearn simulator. Chapter 2 continues with a brief overview of the Rein-

forcement Learning framework used to formalize the task. We then review ensembles

in ML broadly and in DRL more thoroughly, highlighting important differences from

our work. Finally, the background concludes with an overview of the policy diversity

method employed in this work to promote diversity in ensembles.

In Chapter 3, we propose the ‘Diverse σ-weighted ensemble,’ which combines the

actions of multiple RL policies based on their uncertainty levels. The ensemble is

called ‘Diverse’ because we promote diversity in policy outputs during training (see

Chapter 2.5). Chapter 3 also details simple and interpretable metrics we employ to

gauge policy diversity.

Chapter 4 follows by explaining the dataset and the cross-validation procedure

used in all of our experiments. It then describes the training procedure and reward

design for the DRL algorithm used in our work.

Next, the Results and Discussion chapter compares the zero-shot generalization

properties of the ‘Diverse σ-weighted’ ensemble with the single policy approach. Cru-

cially, we study the role of policy diversity on the ensemble’s capacity to generalize.

Finally, we study the benefits of using the σ-weighted (i.e., uncertainty-based) averag-

ing method by comparing it to two alternatives: unweighted averaging and choosing

the action of the least uncertain policy.

The thesis concludes with Chapter 6 that gives a summary of our work, lists its

limitations, and proposes directions for future research.
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Chapter 2

Background

In this chapter, we describe the demand response task for electric grids with renew-

able distributed energy sources. We then define the battery control problem in the

CityLearn environment and briefly explain the reinforcement learning framework em-

ployed in this work. After reviewing the use of ensembles in ML and RL, we close

the chapter by discussing policy diversity in RL.

2.1 Demand Response for Electric Grids

The adoption of distributed energy resources (DERs), such as solar panels and electric

energy storage systems, can offset, shift, or reduce electricity and emission costs for

the entire grid and individual customers. However, the intermittent nature of DER

usage and generation patterns poses a significant challenge to the stability of the

traditional grid [25]. One prominent approach to tackling this challenge is to employ

demand response (DR). The US Department of Energy defines DR as “... changes

in electric usage by end-use customers from their normal consumption patterns in

response to changes in the price of electricity over time, or to incentive payments

...” [5]. DR approaches are broadly classified into direct DR (direct, external control

of end-user’s assets) or price-based DR, which uses real-time fluctuation of a monetary

incentive signal to nudge end-user behavior.

Intelligent algorithms are needed to perform DR effectively. Given the success of
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RL in other continuous control tasks, a body of research investigating the application

of RL to DR has started to develop [29]. Here, we focus on price-based DR, in which

homeowners aim to optimize their energy use and battery operation based on a given

price signal which is an exogenous variable.

2.2 The Battery Control Task in CityLearn

To facilitate research on RL for DR, Vazquez et al. published the CityLearn envi-

ronment [28] on the basis of OpenAI Gym [12]. Within CityLearn, we focus on the

price-based DR task defined in the 2022 CityLearn Challenge [40]: controlling charg-

ing and discharging of a household battery, given the time-series input about the

building’s energy demand and solar generation, electricity pricing, carbon emission

rate, as well as various weather signals (details provided in Chapter 2.3).

While CityLearn supports both building-level (single-agent) and district-level (multi-

agent) objectives, we focus on the single-agent metrics in this work. Hence, the ob-

jective of each house is twofold: to minimize the electricity cost, as well as the carbon

emission cost. Notice that minimizing the electricity cost is not equivalent to mini-

mizing emissions, because electricity prices in today’s electricity markets do not solely

reflect the carbon intensity of power plants. The costs are defined as follows:

Cprice =
T∑︂
t=1

Cprice(t) =
T∑︂
t=1

pt ∗ (dt − gt + bt)
+

Cemission =
T∑︂
t=1

Cemission(t) =
T∑︂
t=1

ct ∗ (dt − gt + bt)
+

Where Cprice(t) is the electricity cost and Cemission(t) is the emission cost. t is the

time-step with the duration of one hour and T is the duration of the control task in

hours. pt and ct are respectively the electricity pricing and carbon emission rates per

unit of net energy demand (the expression inside brackets). dt is the non-shiftable

electricity demand of a household, gt is the energy generated by its solar panels, and bt
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is the amount of energy charged into the battery (negative values imply discharging).

The + superscript indicates that negative values are clipped to 0.

We adopt the normalized scoring employed in the 2022 CityLearn challenge [40]:

Ĉprice =
Cprice

Cnoop
price

,

Ĉemission =
Cemission

Cnoop
emission

,

Ĉ =
1

2
(Ĉprice + Ĉemission), (2.1)

where Cnoop
price and Cnoop

emission are respectively Cprice and Cemission with bt set to 0, i.e.,

costs with no-battery or no control. Ĉprice and Ĉemission are respectively the nor-

malized electricity cost and the normalized emission cost. Finally, Ĉ is the ‘building

cost,’ which we aim to minimize.

2.3 Reinforcement Learning

To apply RL techniques to the battery control problem, the task can be formu-

lated as a partially observable Markov decision process (POMDP), which is a tuple

⟨S,Ω, O,A, T,R⟩ [9].

S is the set of states s, where each state contains all the information necessary for

choosing an optimal action a from the continuous set of actions A. The states are not

directly accessible by the agent and have to be inferred from the observations o coming

from the continuous set of observations Ω. The mapping from states to observations,

sometimes conditional on the actions, is done by the observation function O : S ×

A × Ω → [0;∞). The transition function T : S × A × S → [0;∞) represents the

probability density of the next state st+1 ∈ S given the current state st ∈ S and

action at ∈ A. Finally, R : S × A× S → R is the reward function.

An RL agent aims to maximize the expected return, the discounted sum of future

rewards, by learning a policy π [22]. The policy π is a probabilistic mapping of

observations o ∈ Ω to actions a ∈ A. Therefore the RL objective can be formulated
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as follows:

J(π) = Eπ[
H∑︂
t=0

γtrt(ot, at)] (2.2)

Where rt is the reward for taking action at when observing ot, γ ∈ (0; 1] is the discount

factor, and H is the duration of an episode.

If the RL agent uses a neural network to map observations to actions, it is called

a deep reinforcement learning (DRL) agent. There exists a variety of algorithms to

train DRL agents [17]. In this work, we employ Soft Actor-Critic (SAC) [20], an

established DRL algorithm known for its relative robustness and sample efficiency.

In the CityLearn environment, observation o ∈ Ω is a vector with information

about the system in the past hour: month, day of the month, the hour of the day,

household electricity demand, solar generation, battery state of charge (SoC), net

demand (electricity demand - solar generation + charging), and weather. Weather

information consists of outdoor temperature, humidity, diffuse and direct solar irra-

diance, as well as their forecasted values for 6, 12, and 24 hours ahead. Detailed

information on all observation features is given in Appendix A.1. Provided with an

observation o, the DRL agent must choose an action a ∈ [−1; 1] that determines the

battery (dis)charging rate in the upcoming hour and that maximizes the RL objective

in Equation 2.2. Rewards are carefully designed in Chapter 4.2 so that maximizing

the RL objective corresponds to minimizing the costs that we care about (Equation

2.1).

We note that this is a partially observable task as o does not contain all the infor-

mation necessary for picking an optimal action. For example, the agent does not see

the physical properties of the battery and photovoltaic equipment, as well as indoor

temperature and humidity. Moreover, the agent does not know the house occupants’

plans for the future, which is essential for forecasting electricity consumption and

choosing an optimal (dis)charging rate.
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2.4 Ensembles

In this section, we discuss the use of ensembling techniques in machine learning and

then review prior work on their applications in DRL.

2.4.1 Ensembles in Machine Learning

Ensembles are commonly used in machine learning (ML) to improve the generalization

ability of models in tasks such as regression, classification, clustering, and more [21,

39]. Some of the popular ensembling approaches are Bagging and Stacking [10]. In

Bagging, multiple learners are trained on different subsets of the training dataset, and

their outputs are combined by averaging or voting at test time [2]. In Stacking, several

models with different architectures are trained on the same data, and a meta-learner

is used to combine their outputs in the test phase [3]. In addition, the meta-learner

can be trained to identify which model is better suited for different parts of the feature

space [1].

Ensembling methods are highly effective largely because they leverage some form of

diversity [10]. Diversity may come from an auxiliary penalty term imposed on outputs,

or from variations in training data, input representations, learning algorithms, etc.

[27].

To develop intuition, as an example, let us consider a theoretical justification for the

use of ensembles in the regression task and why diversity is important. In regression,

we are given a training dataset D = {(x1, y1), ..., (xn, yn)}, where xi are input vectors

sampled from a distribution P (X) and yi ∈ R are labels. The labels are obtained

from the target function f as follows: y = f(x) + ϵ. Typically, ϵ is white noise, but

for simplicity, we set it to 0 because it does not affect the conclusions that interest us

[6, 10]. Further, h is the learner model trained on the inputs from D with the goal of

minimizing the expected generalization error over the inputs x drawn from the entire

distribution P (X) [23]. The generalization error is often measured with the mean
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squared error [8], and for an arbitrary input x ∼ P (X) can be written as:

GErr(h(x)) = ED[(h(x)− f(x))2]

It can be shown [8, 10] that

GErr(h) = (E[h]− f)2 + E[(h− E[h])2] ≜ bias(h)2 + variance(h) (2.3)

where we drop the subscript D and the argument x for clarity. The bias is the

expected deviation of h(x) from f(x), and the variance measures the variability of

h(x) depending on the training dataset D.

Now, let’s consider an ensemble H of N learners h1, h2, ..., hN , whose outputs are

combined, without loss of generality, with unweighted averaging. Then the bias-

variance decomposition in Equation 2.3 can be extended to this ensembling scenario

as the bias-variance-covariance decomposition [4, 10]:

GErr(H) = bias(H)2 +
1

N
variance(H) + (1− 1

N
)covariance(H) (2.4)

Where bias is the average bias of learners h1, h2, ..., hN :

bias(H) =
1

N

N∑︂
i=1

(E[hi]− f)

For the average bias to be small, the individual learners should have small biases.

Additionally, different learners can reduce the ensemble’s generalization error by hav-

ing biases of different signs (i.e., positive and negative) that (partially) cancel each

other out.

Next, variance is the average variance of the learners:

variance(H) =
1

N

N∑︂
i=1

E(hi − E[hi])
2

It is better if all learners have low variances, but their importance decreases as the

ensemble size N increases.

Finally, covariance is the average covariance of different learners:

covariance(H) =
1

2N(N − 1)

N∑︂
i=1

N∑︂
j=i+1

E[hi − E[hi]]E[hj − E[hj]]
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Like the average bias, this term is indicative of the role of diversity. When the

learners are similar, they make correlated errors which make the covariance posi-

tive. Conversely, when the learners make uncorrelated or negatively correlated errors,

then covariance is 0 or negative. Therefore, encouraging diversity among learners

h1, h2, ..., hN can improve generalization by reducing the covariance term in Equa-

tion 2.4 [10].

While the benefits of using diverse ensembles have been established for many ML

tasks [21, 39], their application to RL is underexplored.

2.4.2 Ensembles in Deep Reinforcement Learning

In this section, we summarize existing works investigating ensembling techniques for

DRL algorithms.

An et al. [32] use an ensemble of Q-networks in an offline RL setting. They es-

timate the Q value of a state-action pair by choosing the minimal value outputted

by the set of Q-networks. It leads to the penalization of out-of-distribution actions

for which there is high uncertainty in Q-value estimates. The authors show that this

ensembling approach outperforms existing offline RL methods. Further, they show

that promoting diversity in gradient updates of Q-networks significantly reduces the

required ensemble size.

Ensembling both critics and actors proves useful in stabilizing learning and im-

proving exploration during training, according to Lee et al. [34], where the mean and

standard deviation of Q-value estimates are used to reweight Bellman backups and

to perform UCB exploration.

Yang et al. [31] use three different DRL algorithms in an ensemble: PPO [18], A2C

[16], and DDPG [15] to trade stock shares. In each quarter, only one of the algorithms

is used to trade, but all three can be evaluated in the background. The algorithm with

the best evaluation score is selected to trade in the next quarter. According to the

authors, different models are sensitive to different trends, so ensembles should work
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better than any of their members alone. Although their experiments demonstrate the

effectiveness of their ensembling strategy, it has a limiting assumption that evaluation

scores can be computed for the algorithms that did not participate in trading.

Finally, Ghosh et al. [33] show that ensembles can improve the generalization per-

formance of RL agents. Their method of combining actions is shown to work for

discrete action spaces, but transferring it to continuous action spaces is a non-trivial

task.

2.5 Policy Diversity

Established ensembling methods in ML are highly effective largely because they lever-

age some form of diversity, which may come from an auxiliary penalty term imposed

on outputs or from variations in training data, input representations, learning algo-

rithms, etc. [10, 21, 27]. For this reason, one of the goals of this paper is to investigate

the effect of policy diversity on the DRL ensemble’s generalization capacity.

In RL, diversity can stem from variations in the environment or the agent behaviors

(policies) [41]. In this paper, we focus on policy diversity, which can be quantified

by measuring the difference between trajectories (state-action or observation-action

sequences) traversed by the policies [26, 35] or by evaluating the disparity in policy

actions when provided with the same states/observations [30, 41, 43].

In our study, we employ the Diversity via Determinants (DvD) method proposed

by Parker-Holder et al. [30]. It adds an auxiliary diversity term to the objective,

which encourages policies to output diverse actions when provided with the same

observations:

J(ϕ1, ϕ2, ..., ϕN) =
N∑︂
i=1

Eτ∼πϕi
[R(τ)] + λDiv(ϕ1, ϕ2, ..., ϕN), (2.5)

where ϕ1, ..., ϕN are parameters of N policies, τ is the trajectory traversed by a

policy in an episode, and R is the return (discounted sum of rewards). Importantly,

the diversity term Div(·) captures the volume spanned by policies in a behavioral
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manifold. In other words, it measures the degree to which outputs of different policies

are different from one another when faced with the same observations. For more

details, we refer the reader to [30].

One of the benefits of DvD is that it is task-agnostic, meaning it does not re-

quire hand-crafting policy representations for a specific domain. Moreover, it allows

tuning the degree of diversity by controlling λ — the importance coefficient of the

diversity objective. Last but not least, it is easy to implement thanks to a reference

implementation [37].
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Chapter 3

Diverse σ-weighted Ensembling
Technique

When training a DRL agent on a given environment, only one policy πϕ is typically

learned. With SAC, as with most actor-critic models, the actor’s policy is defined as

πϕ = ⟨µϕ, σϕ⟩, meaning the actor is modeling a Normal distribution N with charac-

terizing parameters mean µϕ and standard deviation σϕ. During training, the agent

samples this distribution stochastically so that

âtrain(ot) ∼ N (µϕ(ot), σϕ(ot))

while during evaluation (test), actions are deterministically selected:

âeval(ot) = µϕ(ot)

In order to constrain actions, SAC further applies tanh function as well as scaling

[20]:

atrain = catanh(âtrain)

aeval = catanh(âeval)

The action scaling coefficient ca is a hyperparameter (for details on all hyperparame-

ters, see Appendix A.2). Together with the scaling coefficient, tanh function puts the

actions into [−ca; ca] range. We refer to this procedure as the ‘Single Policy’ approach

and depict its training and evaluation pipeline in Figure 3.1.
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Figure 3.1: Single Policy Training and Evaluation Process.

To improve zero-shot generalization on a perturbed environment, we propose an

ensembling method for continuous action spaces. We train multiple actors (with

one shared critic) in separate (but identical) environments and aggregate them in

an ensemble during the test phase. The ensemble’s output is a weighted average of

its individual members’ actions, where each weight is inversely proportional to the

degree of uncertainty of the policy. We use σϕ(o) as a proxy for this uncertainty.

More concretely, we train N policies that could be represented as follows:

πϕi
= ⟨µϕi

, σϕi
⟩, for i = 1, 2, ..., N

During training, each policy’s action is sampled stochastically and executed in a

separate training environment:

âitrain(ot) ∼ N (µϕi
(ot), σϕi

(ot)),

aitrain = catanh(â
i
train)

All N actors are trained in parallel, and their loss is augmented with the diversity

term [30] discussed in Chapter 2.5.

During evaluation (test), we combine the outputs of these policies into one action

that is executed in the test environment:

aσeval(ot) =

∑︁N
i=1wia

i
eval(ot)∑︁N

i=1 wi

, (3.1)

where aieval(ot) = catanh(µϕi
(ot)) and wi = 1

σϕi
(ot)

. This approach is illustrated in

Figure 3.2, and further referred to as ‘(Diverse) σ-weighted ensemble.’ The motiva-
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Figure 3.2: Ensemble Policy Training and Evaluation Process.

tion behind this weighting of actions is that standard deviations σϕi
(ot) measure the

uncertainties of their corresponding policies πϕi
. Distinct policies go through differ-

ent experiences and updates during training, so they might have varying degrees of

certainty in their actions when faced with an observation ot in the test environment.

This disparity can increase further when policy diversity is promoted during training.

Thus, by using standard deviations, we are taking into account the confidence levels

of different policies, which, as experiments reveal, leads to better performance at test

time.

To confirm that policies in the ‘Diverse’ ensemble generate more diverse actions,

compared to the ‘Non-diverse’ ensemble, we calculate their standard deviation:

Da(ot) =

√︄∑︁N
i=1(a

i
eval(ot)− āeval(ot))2

N
, (3.2)

where āeval(ot) is the mean of the actions chosen by the policies in an ensemble:

āeval(ot) =
1

N

N∑︂
i=1

aieval(ot). (3.3)

Furthermore, policy diversity can also manifest in the diversity of uncertainties

among policies. To measure it, we calculate the coefficient of variation of σϕi
values:

Dσ(ot) =
1

σ̄(ot)

√︄∑︁N
i=1(σϕi

(ot)− σ̄(ot))2

N
, (3.4)
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where σ̄(ot) =
1
N

∑︁N
i=1 σϕi

(ot) is the average of uncertainties.

The coefficient of variation is the standard deviation of σϕi
values divided by their

mean. Therefore, this metric is independent of the average uncertainty level (scale of

σϕi
values). We cannot use the coefficient of variation for measuring action diversity

Da because aieval can be negative, but using the standard deviation metric is acceptable

since the action values are tightly bounded: a ∈ {−ca; ca}.

In the Results and Discussion (Chapter 5) we report values Da and Dσ that are

averages of Da(ot) and Dσ(ot) across all target (test) buildings and over the entire test

episode (see Chapter 4.1). We choose these metrics because they are easy to interpret

and implement, and they give insights into the benefits of our proposed ensembling

method (see Chapter 5.3).

To the best of our knowledge, the ‘Diverse σ-weighted ensemble’ is novel. While

Lee et al. [34] use their ensemble to improve training stability and exploration, we use

ours to improve zero-shot generalization to the test environment that will be different

from the training environment. Unlike An et al. [32], our focus is on the case when the

agent is allowed to learn online during training (i.e., influence the environment and

receive feedback). In contrast to Yang et al. [31], our ‘Diverse σ-weighted’ ensembling

approach does not require evaluating all policies and picking one of them. Instead,

it simply combines all of their actions with weighted averaging. Finally, Ghosh et

al. [33] show that DRL ensembles can improve generalization in tasks with discrete

action spaces, whereas our work focuses on continuous action spaces and examines

the effect of policy diversity on the ensemble’s generalizability.
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Chapter 4

Methodology and Experimental
Procedure

In this chapter, we describe our experimental setup by providing details on the dataset

and its train-test split in Chapter 4.1. We then explain the reward design and training

procedure in Chapter 4.2.

4.1 Dataset and Cross-Validation

We use the dataset from CityLearn 2022 challenge [40], which contains 1-hour reso-

lution data for a period of 1 year obtained from a neighborhood of 17 single-family

houses in Fontana, California [45]. After examining the hourly power consumption

profiles of each building [42] and discussing them with the dataset’s publishers, we

decided to omit 2 buildings (numbered 12 and 15) with highly abnormal consumption

profiles. These abnormalities could have resulted from malfunctioning measurement

equipment. Next, to perform cross-validation, the remaining 15 buildings were parti-

tioned into 3 groups of 5 buildings each: the first group (buildings 1 through 5), the

second group (buildings 6 through 10), and the third group (buildings 11, 13, 14, 16,

17).

In all experiments, to attain statistically significant results, we perform 3-fold cross-

validation with 5 independent trials in each. For every fold, we train an algorithm

on one group (5 source buildings) and test on the remaining two groups (10 target
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buildings). We perform statistical comparisons using the Mann-Whitney U test (also

called the Wilcoxon rank-sum test) [7].

We further adopt the most difficult deployment setting from Nweye et al. [42], re-

stricting training to the first 5 months of data and performing testing on the remaining

7 months. This setup mimics a to-scale deployment scenario from an accurately sim-

ulated training environment with ‘few’ data streams to a real environment with many

data streams.

For each experiment, we report the zero-shot performance on the 7 months of the

target building data in terms of metrics established in Chapter 2.2, averaged across

all folds and trials (15 samples).

4.2 Training Procedure and Reward Design

First, it is important to clarify how training episodes are counted. For a single policy,

one training episode is equivalent to one pass through the first 5-month of data for 5

source buildings. For ensembles of size N (e.g., N=4), when each ensemble member

goes through the same data once, we count it as N training episodes completed by

the ensemble. While counting training episodes may seem involved, one test episode

simply corresponds to one pass through the 7-month data for 10 target buildings.

On a related note, our SAC algorithm performs random exploration at the begin-

ning of training, when it samples actions randomly from a uniform distribution and

saves resulting transitions to the replay buffer. The duration of that period must

be standardized for ensembles of different sizes. In our experiments, we consider en-

sembles of sizes N=1, 2, 4, 8 — where N=1 corresponds to the single policy. When

the biggest ensemble of size N=8 goes through the training data once — its members

gather 8 episodes of cumulative random experience. To ensure a fair comparison, each

ensemble must collect the same amount of cumulative random exploration experience.

This is achieved by fixing the number of exploration episodes at 8.

Finally, we describe our reward function that encourages minimization of the cost
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in Equation 2.1. It consists of price and emission components:

rpricet = Cnoop
price(t)− Cprice(t),

remission
t = Cnoop

emission(t)− Cemission(t)

At the end of the random exploration period, we calculate the means and standard

deviations of observations and rewards (separately for each component) and use these

to normalize them. Normalization is finalized by scaling the reward up by a factor of

cr (see Appendix A.2).

Normalized reward terms r̂pricet and r̂emission
t are then combined into the building

reward:

rt =
1

2
(r̂pricet + r̂emission

t )

We put this reward into the RL agent’s objective (Equation 2.2). Thus, the agent’s

goal is to maximize the expected sum of future building rewards, which, by design,

encourages the minimization of the building cost (Equation 2.1).

To sum up, this chapter provided details about the cross-validation method and

the dataset, as well as explained the training procedure and reward design. These

methods are employed throughout our experiments presented in the next chapter.
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Chapter 5

Results and Discussion

We now present and discuss the results of our experiments. We start with Chap-

ter 5.1, which examines the generalization capability of the σ-weighted ensembling

method (See Chapter 3), in both diverse and non-diverse settings, comparing it to

the canonical ‘Single Policy’ approach (Figure 3.1). For the sake of comparison, we

also use two rule-based controllers (RBCs) as baselines:

• RBCToU - The Time-of-Use Peak Reduction strategy that has been deployed in

real life on the majority of houses from the dataset [42]. It charges the battery

from 9 am to 12 pm and discharges from 6 pm to 9 am. Both charging and

discharging rates are 2kW/h (31.25% of battery capacity). Discharging is only

allowed when the battery is at least 25% full.

• RBCHC - The Hand-Crafted controller of our design. We used its slightly

modified version as a part of our solution when participating in the CityLearn

2022 challenge [40]. Its implementation details are given in Appendix A.3.

We then study the benefits of performing σ-weighted averaging of policy actions in

Chapter 5.3 by comparing it with two alternative action selection mechanisms:

• Simple-averaging — combining actions using the unweighted average from Equa-

tion 3.3.

20



• Min-σ — selecting only one action µϕi
(ot) with the smallest σϕi

(ot) and ignoring

the rest.

All experiments are conducted with an ensemble size of N = 4. Refer to Chapter 5.2

for more details on the choice of N.

5.1 Diverse Ensembles of DRL policies

In this experiment, using the Single Policy approach (Figure 3.1) as a baseline, we

examine zero-shot generalization capabilities of the ‘Diverse σ-weighted’ ensemble

proposed in Chapter 3. We also compare it to its non-diverse ablation, labeled ‘Non-

diverse σ-weighted’ ensemble, to study the role of policy diversity.

Figure 5.1 shows zero-shot costs (lower is better) on target buildings plotted against

the number of training episodes completed on source buildings for each approach.

The shaded areas span standard error over 15 trials from the validation procedure

described in Chapter 4.1, while the lines denote the averages. Since we evaluate test

scores after every pass through the 5-month training data, ensembles of size N have

values only for every Nth training episode completed (see Chapter 4.2). For reader’s

reference, the cost achieved by an optimal controller with complete knowledge of

future is 0.70.

Table 5.1 shows the zero-shot costs averaged across target buildings and cross-

validation folds. We evaluate the test costs at different stages of learning — after

the 40th, 80th, and 120th episodes of training on source buildings. From Figure

5.1 we notice that the test costs of all methods are unstable at the initial stage of

training. They are remarkably low after the first N training episodes that follow 8

random-exploration episodes, so we include the test costs obtained after the 8+Nth

training episode as well. We mark in bold the results for which ensembles outperform

the Single Policy approach with p ≤ 0.05 when comparing with Single Policy’s every

column. We also underline the cases when one method outperforms the others in
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Figure 5.1: Zero-shot costs averaged across target buildings, comparing Diverse and
Non-diverse σ-weighted ensembles to the baselines. Shaded regions denote the stan-
dard error. All policies train on the first 5 months of the source buildings data and
are tested on the remaining 7 months of the target buildings data. The ensembles
achieve lower test costs compared to the Single Policy and resist overfitting for longer.
The Diverse Ensemble outperforms its Non-Diverse counterpart.
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Table 5.1: For the σ-weighted ensembles and the Single Policy: zero-shot test costs (in
%) on target buildings obtained after 8+Nth, 40th, 80th, 120th episodes of training
on source buildings. In bold: an ensemble outperforms the Single Policy with p ≤ 0.05
within any column. Underlined: the diverse ensemble outperforms the other methods
with p ≤ 0.05 within any column.

Method
Episodes Trained

8+N 40 80 120

Single Policy (N=1) 83.66 83.49 84.54 92.49

Non-diverse ensemble (N=4) 84.54 83.11 83.02 82.92

Diverse ensemble (N=4) 83.33 82.53 82.11 82.26

every column (e.g., the diverse ensemble evaluated after 40 episodes outperforms

other methods evaluated after 8+N, 40, 80, and 120 episodes).

We note that the Non-diverse σ-weighted ensemble converges to lower costs com-

pared to the Single Policy and resists overfitting to training data for much longer.

Further, the diverse ensemble outperforms its non-diverse counterpart regardless of

the duration of the training with a statistical significance of p ≤ 0.05, demonstrating

that policy diversity further improves the zero-shot generalization ability of the σ-

weighted ensemble.

To support the claims above, in Figure 5.2, we plot the training costs achieved

throughout the training process. During the initial random exploration phase (see

Chapter 4.2 for details), the training costs are very high, so we omit them in the

plot for a better comparison. We note that, as expected, the training costs decrease

monotonically for all methods. This stands in contrast to the Single Policy’s test

cost, which noticeably diverges after 40 episodes, while both σ-weighted ensembles

maintain low test cost values even after 120 episodes of training (Figure 5.1). These

observations confirm that the ensembles exhibit higher resistance against overfitting

to training data compared to the Single Policy approach.

With respect to training costs, the Diverse and Non-diverse ensembles perform
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Figure 5.2: Training costs averaged across source buildings, comparing Single Policy
vs. Diverse and Non-diverse σ-weighted ensembles. Shaded regions denote the stan-
dard error. All agents train on the first 5 months of source building data and, for this
plot, are evaluated on the same data. The ensembles do not outperform the Single
Policy on training data.

24



Table 5.2: Comparison of diverse ensembles of different sizes. Zero-shot test costs
(in %) on target buildings obtained after 8+Nth, 40th, 80th, and 120th episodes of
training on source buildings. In bold: an ensemble outperforms the Single Policy with
p ≤ 0.05 when compared to any column.

Method
Episodes Trained

8+N 40 80 120

single policy (N=1) 83.66 83.49 84.54 92.49

diverse ensemble (N=2) 83.19 82.71 82.46 84.76

diverse ensemble (N=4) 83.33 82.53 82.11 82.26

diverse ensemble (N=8) 82.74 82.86 81.95 81.76

equally, and both do worse than the Single Policy approach (Figure 5.2). Comparing

that to Figure 5.1 further affirms that the differences in test costs do not come from

the differences in training costs.

To confirm that policies in the diverse ensemble indeed output more diverse ac-

tions, we plot the diversity metric for actions Da (Equation 3.2) in Figure 5.3a for

both ‘Diverse’ and ‘Non-diverse’ σ-weighted ensembles of size N=4. From this plot-

ting, it can be seen that policies in the diverse ensemble differ in their decisions much

more than policies in the non-diverse ensemble. Similarly, in Figure 5.3b we illus-

trate the diversity in uncertainty levels Dσ (Equation 3.4) in diverse and non-diverse

ensembles. We notice that policies in the diverse ensemble have greater variation in

their uncertainties as well.

5.2 Effect of Ensemble Size

Figure 5.4 and Table 5.2 show the effect of varying the ensemble size. As we can see,

the diverse ensembles retain their merits regardless of their size, although the small-

est ensemble of size N=2 starts diverging earlier. Further, statistical comparison

between ensembles of different sizes confirms that the ensemble of size N=2 under-

performs bigger ensembles after the 120th training episode (p ≤ 0.05). In contrast,
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Figure 5.3: Comparison for (a) diversity in actions aieval and (b) diversity in uncertain-
ties σϕi

, averaged over 15 trials, for policies in ‘Non-diverse’ and ‘Diverse’ σ-weighted
ensembles. The error bars denote the standard errors. The ‘Diverse’ ensemble ex-
hibits higher diversity in both actions and uncertainties.
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Figure 5.4: Zero-shot costs averaged across target buildings, achieved by single policy
vs. diverse ensembles of various sizes. Shaded regions denote the standard error. The
Diverse σ-weighted ensembles outperform the Single Policy regardless of the ensemble
size, but N=2 starts diverging earlier than N=4 and N=8.
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Figure 5.5: σ-weighted averaging vs. Simple-averaging vs. Min-σ action selection.
The plot suggests that the σ-weighted ensemble achieves the lowest test costs in both
‘Diverse’ and ‘Non-diverse’ settings, and that diversity is helpful to all ensembling
methods.

the difference between ensembles of size N=4 and N=8 is not statistically significant

(p > 0.05) for all episodes considered in Table 5.2. Since N=8 does not provide sig-

nificant benefits over N=4, we perform all other experiments with the ensemble size

N=4.

5.3 Comparison of Ensembling Methods

In this section, we investigate the effect of the ensembling method choice and its

role in leveraging policy diversity. To do so, we compare the σ-weighted ensembling

technique to two baselines introduced at the beginning of Chapter 5, the Simple-

averaging ensemble and the Min-σ ensemble, in the diverse and non-diverse setting.

Figure 5.5 shows the test costs of these approaches averaged over 15 trials. We do
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Table 5.3: Zero-shot test costs of different ensembling methods when trained with and
without diversity, obtained after 8+Nth, 40th, 80th, and 120th episodes of training.
In bold: a diverse ensemble outperforms its non-diverse version with p ≤ 0.05 within
the same column.

Method
Episodes Trained

8+N 40 80 120

Non-diverse Simple-averaging 84.03 83.25 83.26 83.24

Non-diverse Min-σ 84.21 83.50 83.35 83.26

Non-diverse σ-weighted 84.54 83.11 83.02 82.92

Diverse Simple-averaging 83.65 83.18 82.61 82.92

Diverse Min-σ 83.75 83.10 82.57 82.54

Diverse σ-weighted 83.33 82.53 82.11 82.26

not shade the standard errors to avoid clutter. To focus on the differences between

each approach, we skip plotting the test cost evaluated after 8 random exploration

episodes (where all methods get a cost of about 1). The plot suggests that all methods

benefit from enhanced policy diversity and that σ-weighted ensembles achieve lower

zero-shot test costs compared to the alternatives in both diverse and non-diverse

training scenarios.

Table 5.3 compares zero shot costs of the tested ensembling methods. We boldface

the cases where a diverse ensemble outperforms its non-diverse version with p ≤ 0.05.

From both the table and Figure 5.5 it is clear that Min-σ and σ-weighted ensembles

are better at leveraging diversity than the Simple-averaging method.

Further statistical analysis shows that the diverse σ-weighted ensemble significantly

outperforms (p ≤ 0.05) the diverse Simple-averaging method when tested after 40,

80, and 120 training episodes. The only difference between these approaches is that

σ-weighted averaging leverages the diversity in uncertainty levels σϕi
among ensem-

ble members πϕi
, while Simple-averaging does not. Therefore, it is reasonable to

conclude that leveraging the diversity of uncertainties in an ensemble improves the
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generalization performance.

Moreover, Table 5.3 suggests that diverse Simple-averaging successfully outper-

forms its non-diverse counterpart when tested after long training but not so after

shorter periods of training. It seems that exploiting the diversity in actions alone,

without accounting for uncertainties, has a positive but limited effect on generaliza-

tion. In contrast, the diverse σ-weighted method, which leverages diversity in both

actions and uncertainties, outperforms its non-diverse counterpart more consistently.

These results indicate that leveraging the variations in both actions and uncertain-

ties (Figure 5.3) is important and that diverse σ-weighted averaging gains boosts in

zero-shot test performance from both.

Next, statistical comparison of diverse σ-weighted and diverse Min-σ approaches

does not report a significant difference in their performance. However, we note that

these results are given for the best λ (importance coefficient of the DvD diversity

term, as described in Chapter 2.5) for each ensemble type, found from the search

space λ ∈ {0.2, 0.4, 0.6, 0.8}. Details on λ values for each ensemble are given in

Appendix A.2. Figure 5.6 compares test costs of Min-σ and σ-weighted ensembles

under different values of λ. From the plots, it is evident that the σ-weighted ensemble

is more robust to changes in the λ hyperparameter. This outcome suggests the

importance of considering the outputs of all policies, not just the most confident

one.

To sum up, this subsection shows that the σ-weighted ensemble reliably outper-

forms the alternatives by leveraging the diversity in both actions and uncertainties of

all of its members. Crucially, the disparity found in zero-shot generalization properties

of these few ensembling approaches prompts further research into a more extensive

set of ensembling techniques.
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Figure 5.6: Comparison of Min-σ and σ-weighted ensembles under different diversity
importance coefficients λ. Shaded regions denote the standard error. The plots
suggest that the σ-weighted ensembling method is more robust to the choice of the λ
hyperparameter.
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Chapter 6

Conclusions and Future Work

In this work, we proposed the ‘Diverse σ-weighted ensemble’ of DRL policies for

continuous control tasks, which weighs the actions of its members based on their de-

grees of uncertainty. We then performed experiments on a realistic battery control

task in CityLearn. First, we showed that the proposed ensemble can improve zero-

shot generalization to environmental changes in continuous control tasks. Next, we

demonstrated that promoting policy diversity in ensembles significantly and reliably

improves test performance further. Lastly, we found that the effectiveness of the Di-

verse σ-weighted ensemble stems from its ability to leverage diversity in both actions

and uncertainties of all of its members.

Future work will focus on extending our experiments to other continuous control

benchmarks with various types of environmental changes. In addition, it is impor-

tant to compare the σ-weighted ensembling method with a bigger set of ensembling

techniques and deeper explore the role of DRL algorithm choice, critic centralization,

and ensemble member diversity.
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Appendix A: Implementation
Details

The appendix provides details necessary for replicating our work. The codebase can

be found at https://github.com/IRLL/diverse-ensemble-citylearn

A.1 DRL agent’s observation space

Table A.1 lists raw observation features outputted by the CityLearn environment.

The day of the month is not included by default, but it can be easily added. We do

not use the day type feature (day of the week) because it is not correlated with any

important variable in the environment except electricity pricing (which is included in

observations). “Periodic transformation” in the comments means that we convert a

feature into sine and cosine components, for example:

Monthsin = sin(2π
Month

12
), Monthcos = cos(2π

Month

12
)

We do so because there is a natural continuity between the 12th and 1st months, the

last day of a month and the first day of the next month, the 24th hour of one day and

the 1st hour of the next day. In each time-step, the agent takes in the information

about the previous hour and makes a (dis)charging decision that takes effect in the

upcoming hour. For example, when the ‘hour’ feature is 5, it means that the 5th

hour of the day just passed and a (dis)charging action needs to be selected for the

next, 6th, hour. The raw features (Table A.1) describing the previous hour take up

31 entries in the observation vector.
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Table A.1: Raw observation features for DRL agent, and their value ranges

Feature value range comments

month 1, 2, ..., 12 periodic transformation

day of month 1, 2, ..., 31 periodic transformation

hour 1, 2, ..., 24 periodic transformation

outdoor temperature [5.6; 32.2] + 6h, 12h, 24h predictions

outdoor relative humidity [10.0; 100.0] + 6h, 12h, 24h predictions

diffuse solar irradiance [0.0; 1017.0] + 6h, 12h, 24h predictions

direct solar irradiance [0.0; 953.0] + 6h, 12h, 24h predictions

carbon intensity [0.0704; 0.2818]

non-shiftable load [0.0; 8.85]

solar generation [0.0; 4.78] upper limit depends on the nominal
power of solar panels

battery state of charge [0.0; 1.0]

net electricity consumption [-9.78; 13.85] non-shiftable load - solar generation +
battery charging

electricity pricing [0.21; 0.54] + 6h, 12h, 24h predictions
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Further, we add extra features that capture relevant differences between house-

holds. To that end, we keep electricity consumption and solar generation histories for

each house, separately for each hour of the day. Using the histories, we calculate the

average net electricity consumption observed in the past 14 days during the upcoming

hour of the day. We do the same with solar generation. This gives us 2 features that

represent power consumption and generation of a household in the past 2 weeks, but

only for the upcoming hour of the day. We repeat the same calculation for three more

hours: the 2nd upcoming hour, the 6th upcoming hour, and the 12th upcoming hour.

For example, if the previous hour (‘hour’ feature in the observation) is 15, then we

compute past-14-day averages for the following hours: 16, 17, 21, and 3. Together,

we obtain 8 values that describe the household’s power consumption and generation

patterns. Lastly, we include 7 features from the previous time-step: carbon intensity,

electricity consumption, solar generation, and electricity pricing (as well as its +6,

+12, and +24 hour predictions).

These additional variables improve the training performance of our DRL agent,

compared to having only raw features. Overall, the total size of the observation

vector is 46. We are confident that better observation features can be designed, but

it is not the focus of our work.

A.2 Hyperparameters

Table A.2 lists the hyperparameters we used for training SAC policies. For each

parameter, we performed a grid search while keeping others fixed. Comparisons were

based on training costs achieved when training on buildings 1 through 5 [45].

The auxiliary diversity term DvD requires two hyperparameters: diversity impor-

tance coefficient λ (Equation 2.5) and the number of observations used for embedding

each policy [30]. The latter parameter is fixed at 20, as in a reference implementation

[37]. The λ coefficient was grid-searched from the set {0.2, 0.4, 0.6, 0.8}. The best

value was 0.4 for the Simple-averaging ensemble, 0.2 for the Min-σ ensemble, and
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Table A.2: SAC hyperparameters

Parameter Value Search space

optimizer Adam [11] —

learning rate 3× 10−4 {0.3, 1, 3, 10, 30} ×10−4

discount factor (γ) 0.986 {0.98, 0.986, 0.99}

replay buffer size 218 {217, 218, 219, 220}

number of hidden layers 3 {2, 3, 4}

size of each hidden layer 512 {64, 128, 256, 512, 1024}

number of samples per
minibatch

256 {64, 128, 256, 512}

entropy coefficient 0.2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

nonlinearity (actor) ReLU {ReLU, Tanh}

nonlinearity (critic) ReLU, Batchnorm {ReLU, Tanh}, {Batchnorm,
no Batchnorm}

target smoothing coefficient
(τ)

0.005 —

target update interval 1 —

gradient steps 1 —

action scaling coefficient (ca) 0.5 {0.25, 0.5, 0.75, 1.0}

reward scaling coefficient (cr) 10 {1, 5, 10, 20}
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there was no significant difference between the values for the σ-weighted ensemble

(we used 0.6).

A.3 Hand-Crafted Policy Design

The hand-crafted (HC) controller used as one of the baselines in the first experiment

(Section 5.1) consists of 2 modules: a predictor of net demand in the next hour and a

decision tree which relies on the predictions to make a charging/discharging decision.

Net demand, ignoring the battery usage, is equal to non-shiftable load minus solar

generation. We used the XGBoost algorithm [13] to predict the non-shiftable load of

a household, based on the following input features:

• periodically normalized (sin-cos transformed) hour of the day

• past 14 days average of non-shiftable load for the next hour (e.g., if the next

hour is 5, we take the average of 14 values corresponding to the non-shiftable

load at hour 5 that was observed in the previous 14 days)

• 1 day history of non-shiftable load (i.e., 24 most recent values of non-shiftable

load)

As for predicting solar generation, we trained a linear regression model with the

following features:

• solar generation in the past 2 hours

• average solar generation in the district in the past 2 hours

Both models are trained only on the training data available in each cross-validation

fold. For example, when DRL policies are trained on the first 5 months of data of the

first 5 buildings, the predictive models are also trained on that same data.

Figure A.1 shows the two-level decision structure of the HC controller. We let δ

be the difference between non-shiftable load and solar generation values predicted
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Figure A.1: Hand-crafted policy’s decision tree

for the next hour. If δ > 0, demand is predicted to be higher than generation, then

HC attempts to charge by the amount δ. Otherwise, HC tries to discharge by |δ|.

However, in both cases, there is a limit to (dis)charging. Since the electricity pricing

is much higher during hours 16 through 20 (15:00 – 19:00 or 3 pm – 7 pm), we call

them ‘crucial’ hours. Up to 40% of the battery capacity is allowed to be discharged

during crucial hours, but only 10% during other hours. Charging is not limited

during non-crucial hours other than by |δ| and the battery’s remaining capacity. On

the other hand, when the next hour is crucial, even if surplus generation is predicted

— charging is not allowed because predictions are imperfect, and charging by mistake

is very costly during those hours. The limiting parameters were tuned based on the

algorithm’s performance on buildings 1 through 5.
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