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ABSTRACT T

.»0

The effects of- the (100), (Ov 0- 2) and '( -1 1)
systematlc' sets, oi: reflections are ‘studied in HCP cobalt
The three.systematicﬂsets areISszlar in that the reC1p:ocal'
‘ : - - - .
_:latticel‘vectors Jir00 g(ooz, and PR are very. hearlv
.the same in magnltude. Exper1megtal results, 1nd1Cfte that
the effects of systematlc reflect;ons 1n the (00 2l and (R
F1_1)~sets are similar, however, the effects in the (1 0 0)
-se*r are very dlfferent‘from the prevloUs cases.,’lI‘%alvszs
of the results in terms of Bloch wave pa*ameters is carr:ed"
,’out,v also, 'transm1sszon beam characterxstlcs 1n the three
systema 1c sets are. explored A dxscuss1on of the dark fseld
f;eSults in terms of Bloch wave symmetr1es 1ndlcate ‘that an
assessment of the 1mportan¢e Of,SYSRem?tlc eflectlons.'can
.lbe»obtainedithf0ugh_a eOmpafiSOmnofvthe operating veltage to
'the'eritiEaI vol;age;“‘ |
| -hh idehtificatioh,:methodh"of' the ngtbxe of staeking‘
| faults in HCP materxals is ‘proposed. The method is based on
_ R e .
:comparlsons _ between 1mage //contrasu obtained fof"the”

-

d1fferent types of stackxng faults 1n HCP materlals wdf n the

(ﬁj;#ﬁfll) reflectxon:‘satzsfxes 1ts Bragg condltlon._Under‘;

A';lth1s c1rcumstance an_ extrlnsic stack1ng fault gzve rxses to.

e phase angle: equal tW. However, the two types of' .

nyﬁilntrzn51e/faults gzve rlse to phase angles equal \iiZ"/3f
o s RS S o _;me,~! ‘ '
fand iﬂ/3 S e e '“'»L-fj"-

A form of the many beam dynamlcal theory applxcable

’“fﬁ:fty1nned crystals jand_ tak1ng effects of common reflectlonsjf

R




'

. , .
into’ account is developed The treatment is based on -a

desc 1ptxon of electrons in the tw1nned crvscals in terms of

i

Blochn waves. It has' been shown in this chapter thac the

methods of Sutton and Pond and Gratxas and Po;txer and the

Bloch wave appnoach in the present treatment are completely
4 .

4

equivaleny. ‘ < - .. )

“ LY . ~

.

the widespread use of symmetrical Laue diffraction
conditions in -theoretical calculations of diffraction
PR ‘ o ) : N ‘
contrast can lead to significant errors. The -experiments
consisted of a comparison of thickness fringes in g and -g
| . : T ' L
dark field images obtained 'with the crystal set at the
. ' AN
- S . . ‘ ) _ .
symmetry position. Calculations based on the assumption of
symmetrical Laue difffacﬁion conditions. give thickness
. . i : - ' ’

fr1nges in g and -g da*k’field’images which are identical.

Bxperlment showed howeve:, that these thickness “Srin@%sb

are, 1in fact, qu1%e dlfféf&ﬂt. Excellent ag eement between

' experlment and theoretxca- 1nten51ty proflles based on a

form', of the dynamlcal theory of, eleft on ‘diffraction-

>

appl1cable to the non symmetr1cal Laue case was found

Experlmental evxdence is presented whzch 1nd1cates that

calculatlons of d1ffract10n contrast ‘in electron m1croscope-7f

..

/ .
:1mages obta1ne& under weak beam dlffractxon condltlons can

b -

be in con51derable error ifulthe, column 'approx1m Ezon is
'*b-employed 3 Thzs evxdence' is based Aon -a - comparison of
’¢_>expet1mental densrtometer' traces obtazned ffom”lstacking

7p£aults 1n FCC cobalt w1th theoretlcal non column and column'

- : . . [

Experimental evidence is presented which indicates that



.

| - .
approx1m§tion’calculations. A ﬁheofetical:explanation of the
sxgnif;cant #differences betwéén non-column and  column

T , R ' - » :
approximatiion-profiles is also given andkéome,interpretative'
. ~—

errors ghich can arise if the column approximation is

- . ]
employed are discussed.
.
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o potentlal

Bloch waves of the form.5 » L 5

" where the v9 s are the Fourler coeff1c1ents of the latt1ce

. CHAPTER I

VINTROQUCTION

. ° \' ) »
The electron microscope is oné of the most important

tools used in the study of the structure of materials. In
= ) N ,

order to interpret the ggperimental. micrographs obtainedh
from this 1instrument, §T“theor6tic31 ‘model which relates

image contrast to specimen structure must be constructed. In

order to obtaln useful ;nformatlon, experlmental mlcrographs

‘must normally-be compared to the results of theoretlcal:

¢alculations based on this model.

T fhe theory involved in these.calculations is normally
She~ dynamlcal theory of electron dlffractlon. Although this
theory w1ll be descrlbed in detall in Chapter 2, for 'theh
present-lt 12 1mportant to note that.the interaction between
the incident fast electrons and the czystal can be descnlbed
by the Schroalnger -wavej equation. The wave fhnct1ons are

y/“

. ‘ ) «P-: - ‘ 1L
: b(l) Z C ' éprZni(k#g)mr] ‘ : ( )

- 7. : o . -‘

‘\where g is a rec1procal lattlce vector, k is a " Bloch wave

vector and C“’ are the Bloch wave Fourler coeff1c1ents. Iﬁa

the’ Schrod1nger equatlon the lattlce potentlal 1s 'expressed‘

as a Fourler serxes uh;ch can be wrltteh as.,

| e 1(1.2)
v(r) = Z v exo [2n1 g'r] ¢
: ,.g. 9

A Y
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In emploping: this theory many approximations must be
made. The st&dy of the validity of these approximations has
‘become increasingly important in recent ‘years because of the
" growing 1nterest 1n(obta1n1ng hlgher resolution 1nformatlon
from experlmental micrographs. One of the major objectives
of the  electron microscopy coup at  the University of
Alberta‘ has been a theoret?iai and experimental study of
these approximationsr These étgdies involve, in. the first
instance, the development of more general forms of the
'theory in wh1ch the approx1mat1on being studied is not made.
Assessments of dlffractlon conditions - under which
‘conventional forms of the theory might be expected to break
down can then be made and enperimental verification'of these

. . 3 ) . e L3
‘results carried out,

The work presented in this thesis is a continuetion of
this research. The .theoretical 'apbroximations. in . the
,dinamicai theory to be studied wdll be: considered im detail
'.1n chapter 3 and at the beginning of each of the follow1ng
"chapters va detailed description of the objectives of the.
work to‘be described in this thesis w111 be presented K

In the remalnder of th1s chapter a brief summary of the
approxzmatzons to be studied w1ll be given. * s j |

a) Many beam approx1mat10n in sxngle crystals.. -

The expre551on for the Bloch wéve ampl1tude in equation”
1.1, 1nvolves the sum over an 1nf1n1tewnumber of rec1proca1'
‘ - : '

lattlce vectors g. Therefore, when thls Bloch wave functxon

"is substltuted into the Schrodlnger equat1on,'an 1nf1n1te‘,



number of eduations results (see chapter 2), In prder to
obtain numerical solutions, this infinite set of equations

8]

must be reduced to a finite set. This‘requires that .a finite
number of difiracted beams must be taken into‘account. Tnus}
for example, if only 2 beams. are taken‘intogaccount the well
known tuo?beam approximation of the dynamical theory is
obtained. However} practical experimental results indicate
that when a high energy electron beam is incident ‘on a
crystal: a relatively large number of'reflections are always
i excited. Therefore, in practical situations the e%gctron
microscopistl is ~always confronted with - diff;;ction
conditions'which'sre'quite different from thatv assumed in
the two-beam dynamical approximation.ﬂ It is consequently
very 1mportant to carry out studles on the effects of hzgher
order reflect1ons on image contrast. In order to take these
effects into account the many beam approxzmatxon“ of the
dynamlcal theory must be used.
One of the ob]ectzves ofv this thesis was the
examination : of these two approx1matlons ;i perfect HCP
crystals and HCP crystals conta1n1ng stackxnd*faultS.«In the
perfect‘ crystal case, a study of the effect; oﬁ%gY"tematlc.
ireflectxons (see chapter 3) on. the}_lmage contrast ,was
carr1ed out. In ‘the stacking fault case, a study of the '
‘image contrast Characteristics' obtalned under .systemat1c
'reflectxons cond1t1ons was- carrled out. A p0551ble method of

°1dent1f1cat1on of the. nature of the dlfferent types of «

stacklng faults in HCP structures is suggested

0

>



b) Many beam approximation in crystals containing grain
boundaries
\ ifnterest in the image contrast exhibited by twin
boundaries has been stimulated in recent years b}Athe desire
to determine body tfanSlation‘vectors in twinned crystals
(see chapter 6 for a discussion of the meaning of this
§§ctor).gThe,method used in the past has. been of limited

value since it was based on a theory whlch required the

assumptlon that only common reflectlons are excited. This

approximation neglects the effects of forbidden and

non-common reflections in the twin (see chapter 3 and
chapter 6 for a detailed discussion), with the result that

significant errors in the measurements of body tganslation

>

vectors might be obtained. Another objective of this thesis

waskjtherefOre, the development of ' a general mang beam
dynamlcal theory of twin boundary contrast 1nclud1ng common,
non-common and forbidden reflectlons (see chapter 3 and
chapter §). ’
c)‘Symmetrical.Laue diffractiOﬁ;conditions.
Another 1mportant approx1matlon which is commonly used.
in dynamlcal calculatlons of d1ffract10n _contrast is the

assumptron that the symmetrlcal Laue dlffractlon cond1tlons

prévall (see chapter 3 for more deta1led d15c0351on) In the

»symmetrlcal Laue case the reflect1ng plaQes are assumed to

3

be perpendlcular to the surface upon which the electron. beam.‘

~‘,is,.1nc1dent However, past theoret1cal 1nvest1gat1ons, (see

-

.Sheinin, et al, 1979),, have_ pred1cted 3slgn1f1cant errors
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when thlS approximation is made. | Direct e&perimental
evidence that these conditions do not neceSSarlly provide an
adequate descr1ptlonw§f image contrast has, houever, not
been reported. One of the objectives of th1s the51s was to .-
_obtazn such .evidence (see‘chapter 3)
| d) Cblumn approxlmatlon ¢

Another 1mportant assumptlon in the dYnamical-'theory

,..

which 15 used when theoretlcal calculatlons of the contrast‘
exh1b1ted in electron m1croscope images of latt;ce defects f
,arel'carrled out, is the so-called column approx1mat1on (see ,
._chaptet 3 for. detaxled dascus51on) Theoretlcal calculatlons
‘have predacted a’ breakdown of ’this,'a55umption under
part1cular dlffractlon cond1t10ns (see Jap, _et‘ al. -198#?.
- ‘However, dlrect experlmental ev1dence of such a breakdown,
has not been prev1ously presented in the lxterature. One ofl
the objectrves vof, this thes1s ‘was _toz present, such an

. evidence.
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CHAPTER\II

THE DYNAMICAL THEORY OF ELECTRON DIFFRACTION

The dynamlcal theory of electron dlffract1on was firét.

developed by Bethe (1928), who applied the Schrodlnger

equation to the problem of the_scattering oﬁ fast electrons

e}

by the 'periodic ‘potential of a crystal There have been

var1ous approaches whlch have been used in _formulatin&g the
~equations  of the dynamical theory. Thus,; for example,‘Howie
ahd/Whelan.(1961), 'developed' a‘ waQe, opticalv theoretical

apprOach 1mllar to the X-ray dlffractlon thfory of Darwin

(1914), A dlfferent wave ‘optlcal model was )developed by‘

Cowley and. Moodie (1957) | They used the' concept of

ltranmlssxon through a large number of crystal slices of very

small thickness. The form of the theory whlch will be

reviewed in this chapter is based on the- approach given by

»
’\
r

Bethe (1928).

J

2.1 REVIEW OF THE DYNAMICAL THEORY FOR PERFECT CRYSTALS

This theory starts w;th the Schrodlnger equarlon w1th
the perlodlc potent1a1 glven by a ' |
| | (2.1)

W Ty e 2m ET

5
Thepbelecfron wavefunctdonwirhinthechstal <can.'pe
| répreseﬁted'oy‘aiﬁioch wave | L | R
bfi;;)-;‘C(;)Expfzwivz‘;ﬂyl

o

wherey,C(r) iélta _periodio_.fUQCtioh- in' Ireal spaee' ahd '

(2.2)



thecefore can be expanded as a Fourier series to give:

b(k,r) = 7 Cg exp{27i(k+g) *t] - - (2.3)
| s Ve

~

The Cg4 's are known as ;he Bloch wave coefficiénts. The .

constants in  the Schrodinger egquation  can be collected

-

together by defining a modified potential U(r) with Fourier

coefficients =

(2.4)

(2.5)

where 'E is the‘incident_electron accelerating voltdge and K.
is the magnltude of the 'mean electnon 'wavevector in‘ the
crystal after allowlng for refractlon by the mean crystal

-potenﬁial. ‘Substituting equations 2.1 "and 2.3 in the.
Schrodinger equation and using 2.4 and 2.5 yields ' S

N

o

Z{[x h+q 1c+ZU

C_ } exp 2"1(k+g) 7] =0 (2.6)
g | - 9 nh#g o .

g-h~
‘ Equatlon e2.6, hoidé"EOr ’all p01nts in vthe 'CfYS;al and
therefore, the coeff1c1ents of each exponentlal tefm;mgSt be

'equal zero. Thus, ‘we have the set of equatlons




& > 2. = '
I [Kz - (k*'g? ] Cg +h;gug—h Ch 0 (2.7)

This expression gives one equation for each reciprocal

-

{7 lattice vector g ( i. e. each diffracted beam ) considered.

An exact solution of the set of equations represented by 2.7

. -
can be opgéined only if apyinfinite number of g values 1s
considered. In practice an approximate solution considering
a finite numbeg of diffracted beams, N, must, of course, be
used. |

The homogeneous segﬁpf equations 2.7, known as Bethe's
dispersion“ equations, ;gives the relationship between the

-

Bloch wave coefficients C4 , the Blogch wave vectors k and
the Fourier coefficients of the lattice potential Ug - This
system of equations has a solution only if the determinant

formed by the coefficients is egual to zero, 1. e.

(2.8)




The method which will be adopted in this thesis to
solve 2.8, is based on the -eigenvalue method.’ It 1is
important to note that if we consider N diffracted beams,
equation 2.8 will give rise to a polyngmial in k of order
2N. This expression‘would have 2N roots, N of which are
positive and N of which are negative corresponding to
forward and backward propagation respectively. However, the
high energy approximation (see, .for example, Humphreys,
1979) can be used to reduce the degree of the polynomial
obtained in 2.8 to N, rather than 2N. As a result only those
Bloch waves which propagate in the forward direction are
taken 1into account, while those propagating in the backward
direction are negiected. Thus in the two—beamA case, for

example, the high energy approximation gives:

) R ‘ (2.9)
K® - k“\i 2K (K-k)
and : .//
K —w§#¥§)2'5 2K -k +al) (2.10)
Inserting equations 2.9 and 2.10 in 2.8 yields
L : 2 (2.]1)
K-k K-1lk+ = U_ U 4K
(Kk) (K- ] gl) § Uy U_/
Equation 2.11 has two roots k'’ and k'?’, which are the

Bloch wave vectors in the crystal for a given incident
) \

electron energy eE. The locus of the endpoints of the wave

- .
vectors k'’ satisfying equation 2.11 trace out branches -of

-

a surface of constant energy eE in k space which*1s known as
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”
the dispersion surface. The manner in which the eigenvalue
equation is derived can now be understood by considering

Fig. 2.1. For éimplicity only the two reciprocal lattice
-
points 0 and g have been included. In order to determine the
Bloch wave vectors allowed within the crystal it is
necessary to“apply the boundary conditions at the entrance
surface of the crystal. The boundary conditions require that
the wave functiog and its derivétive normal to the c;ystal
surface should be continuous at the surface.»Reflected waves
from the surface can be ignored because of the large
differences between the energy of the incident electrons and
the lattice potential. To apply the boundary coAditions it
is necessary to take into account the inclination of the
crystal surface with respect to the incident beam. However,
in order to simplify the discussion it is normally assumed
. that the.symmettical Laue case holds. In the symmetrical
Laue case, the entrance surface of the crystal is considered
to be perpendicular to the reflecting lattice planes. Since
Bragg angles are small in hiéh energy electron diffraction,
this also implies normal or near norm;i incidence.~ The
boundary conditions can now be applied in Fig. Q.R by
drawing through the point T, a line- perpendicular to the

crystal surface. The intersections between this line and the

branches of the dispersion surfaces are called wave points

and . determine the allowed Blogs wave'vectors within the

crystal. Now let 7y, as shown in Fig. 2.1 be the distance of

a possible wave point from T, and let sq be the distance of

\\\
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1 Sphere of radius
7( ) ‘K centered at g

Sphere of radius
K centered at O

: Ewald sphereof radius
K centered at T

Brillouin zone
boundary

o

Figure 2.1 The dispersion surface and the "Ewald sphere
- o "

construction for high energy electrons.
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-

the reciprocal lattice point g from the Ewald sphere,

measured in the direction normal to the reciprocal lattice

->

vector g. If - it 1is also assumed that K>>y and K>>(74sg)

then:
k% -x? = K? - [K+Y coseo]2 = -2Kycos?d (2.12)
and
> 2 2 2 o 2 - . o
K2<-(k+g)A = K" - [K -!(—Sg)coseg] zx(sg /) ccs g (2.13)

Inserting equations 2.12 and 2.3 1in equatiog 2.7 gives the

eigenvalue equation:
| 3 (2.14)
(1) _ (1))

act =y

e

Wwhere C''’ is a column vector whos; components C''g are the
Bloch wave Fourier coefficiénts of equation 2.3 and A is a
matrix with elements Aoo=0, Agg =Sgq and Ag, = Ug_j /2K
where g#h. Diagonalising the matrix A using conventional
nethods yields the eigenvalues 4y and corresponding
: -
eigenvectors C''’ . Since U(r) is. real, Ué =U’g and the
matrix A is therefore Hermitian. If fhe crYséal has a center
of symmetry, as will be the case for all the crystﬁls
considered in,;his thesis, and we choose this as the origin,

then Ug =U.g « A is therefore real and symmetric 'and the

eigenvalues and eigenvectors are all real.
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% 2.2 CALCULATIONS OF THE DIFFRACTED BEAM " INTENSITIES IN A

PERFECT CRYSTAL

-

The total wave function *(f) of the fast electron in

the crystal can be written as a linear combination of all
' ‘
the Bloch waves excited:
Y (] ) o A1) i (hea)cr) . (2.15)
ST = E X(l)b(l) - Z X jc exp[zw;(kfg)“r]
i 1 ¢

where the coefflc1ent £ is the exc1tatlon coeff1c1ent of
Bloch wave i, In order to calculate the directly transmltted
(Io) or the diffracted beam intensity (Ig'), equation 2.15
can be decomposed into components.in‘the directions of these

1

beams. These components can be written as:

o .. C (2.16)
bg(2) = ] ¢ et enpramiirg) r)
i .

L]

If these components are multlplled by the phase term °

> -+

exp( 2rikK.r), the 1nten51ty of the beam g at a thickness 2

in the crystal can be written as:

- » N P (2.17)
I (z) =|¢ 2112 = | T e ) explrani y a2
g g Co l ’ . ’

Similar expressions can be written for the other 'diffracted
beams. The excztatlon coeff1c1ents X'’ can be calculated bj
1mp051ng the boundary condltzons at the entrance surface of
the crystal 1. e; @o(O)—l é (0) 0 if g#O Equatlon 2.16
fogether with these boundary cond1t19ns can be neguced to a

matrix equag}on;of the form “ | | |

..
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(0) A L (2.18)

\

CX =

| o

where C is a matrix having the elements C'J’ in the g-row

4

and i—column,_g is a column vector containing the‘excitétion
cdeﬁficients X" and $(0) is,a column vector éontaininéifhe
(/diffracﬁed~béam amplitudes 1;'0, 0, ... at the. entrance
| surface. Thereforé,'the exciéation coefficients Xt“ can be
thaihed by solving the nbn-homogeneéus: se of linear
equafions 2.18. If the A matrix in the eiéen?alue equation

2.14 is real and symmetric) _the matrix C of 'normalized

. . !
eigenvectors is orthogonal and g“=gt the transpose of C. If

‘equation 2.18 is multiplied from the left by C°' then

- (2.19)
X =c ¢(0) | S

and it immediately follows that the excitation coefficients
X% are given by the elements in the first row of C, 1. e.
x“’#c“&_The expression'for the diffracted beam intensity

therefore bccomesﬁ
N Co . i : o T i

S o2 e ALY () Loy ()2 (2.20)
g = logta [ = | [ Gg™ cg™ explzmiy el |7 1550

The diffracted beam>:amplitudes can be written in a

F

matrix equation ¢f the form:

g l2) = ¢ fox:i2-iv D 2Tlx

. it —--~"—~—\_/" .

where the Eurly bracket indicates a diagonal matrix with

elements‘,equal'to;e#p(Zwiv“"z);_subStituting eq,:2;19 into

~
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2.21 gives:

(2.22)

s(z) = ¢ {expl2miy*) 21} g'?g‘g(O)

Eq. 2.22 gives the diffracted beam amplitudes at a depth z
in a perfecs crystal in terms_of $(0), the corresponding
values at the entrance surface. This equation can be written
in terms of the scattering mptrix,_g(z), as

ot
(2.23)

Qé(z? = B(z) ¢_(0)

\
_ l _ 4 . .
where _g(z)=gjexp(2ﬂiy"’z)}gj‘..g(z), the scattering matrix
of the crystal  relates vthe‘ amplitudes of the different

diffracted ﬁkams at a depth z in the crystal  to the

amplitudes at the entrance surface.

2.3 INELASTIC SCATTERING AND ABSORPTION

~The theéry _developéd in . the = previous sections
conbidered only elastié scattering in a perfect crystal.
However., the high energy electrons travelling through the
trystgl' can also Dbe ‘ineiastically scattered. fdshioka
(19575 ’formally showed that the effecf; of inelagtic
écattefing'could be taken into account by the addition of an

imaginary part of the potential, iv(r). Therefore, we can

write:



¥

V(;)" V(;) + iV' (1)

v -V +.1iv!
g g

e

- U + 1iU!
v g - 9
(2.24)

-

If the potential in the Schrodinger eguation is complex it
-

follows that the Bloch wave vectdrs k‘'’> will also be

complex 1i. e.

(i) ’ (2.25)

- (1) v iq o -

k

-

E(i)

The total wavefunction of the inc¢ident electron within the
crystal is therefore given b&:

- : (2.26)

b () =JZ‘X(¥) [l exprogik® .7
i g El '

+§) "T] exp [—275

using first order perturbation theory. The effect of the

-

perturbation iV'(r) is to change the energy of the Bloch
‘wave by an amount, eAE, given by

. AN (2.27)
etk = -i/b!M) Tyr (3)p Y gy
This change in energy can be related to a change Ak‘''; in

-

‘the z-component of the Bloch wavevector k''’ by
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hzk;i) o (2.28)

]

The absorption coefficients q‘'' of Bloch wave b' '  can then

be obtained by evaluating the integral 2.27 to give

) ; i (2.29)
a7 T, Lt n Ten -

0 ~
o 28 p S

Including the effects of absorption in the elastic theory
involves the replacement of each eigenvalue y'' with 1y '’'+

igf'*, where gq''’ is calculated by using the expression

2.28. .

2.4 THEORETICAL APPROACH TO CALCULATE THE.STACKING FAULT

IMAGE CONTRAST USING THE DYNAMICAL THEORY

Whelan and Hirsch (1957), have developed the form of
the 'dynamical theory applicable to «crystals containing
stacking faults (for a description of a stacking fault in
HCP . matérialsz see chapter S). The faulted crystal
arrangement is illustrated in Fig. 2.2, which shows a -
crfstél made upgpf two slabs of thicknesses t, and t,; of the
same  orientation.but with a relative displacément ; between
them due to the pfesence cf a staéking fgult. fhe Bléch
waves transmitted through such cfystal are founé'by allowing
the Bloch waves leaving slab 1 to be séattered again by slab
2.sting the écatteqing‘matrix approach, the total effect of
bot: slabs cén.be'obéainede by multiplying the scattéring )
hatriceé’ of the individual slabs éf thicknesses‘t; and t;

-
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‘(Figure 2.2 A crystal containing a stacking fault at a depth
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t, parallel to both surfaces -of the. crystal. R is the

L

displacement vector of the fault.
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.giving:

(2.30)

The amplltudes of the different diffracted waves incident on
the fault are the same as for a perfect crystal of thlckness
ty, where the scatter1ng matrix P(t.) is given by equation
2.23. In order to calculate the séattering matrix -P(t,) of
the lower slab, the eff%ct of the] displacement of the;iower
crystal needs to be taken intof account. This has been
included by noticing that for any point ; in the lower
crystal, the potential is the same as that of the upper
crystal for an qfom at a position ff-;). Thus to take the
translation of the lowgf c%ygpal into account, the lattice

- - ‘ -

potential gp the lower slab can be written as V(r+R) where R

'@lacement vectofg As: a result, the Fourier

céi ;:Ug , in the siries expression for the lat;ice
pgfi ;ecomes Ugexp(~2ﬂig.R) and therefore the terms
@ont; g’ C‘é’, , are also multiplied by a phase factor
.giveé -Yexp(Zni;§;). Thus, the displacement :R will cause
thanéi 5Ein’ the off-diagonal elements of the matrix A in
'equa; }i'2.14 ahd-corfespohding~changes in the scattering

: matr; T} The effects of ; can be taken into}aééount by
defin ¥ 3y matrlx Q g1ven as: |

| . (2.31)
{exp[Zwi geRI} ,

where the. curly bracket 1nd1cates a diagonal ‘matrix whose'

I

elements. are exp(-27ig.R). The scatterlng matrix P in the

o
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lower part of the crystal becomes\&“PQ, i, e.
. T ——

: 1 (2.32)
) = g'l g{exp[ZﬂiY(l)té]}g Q

The amplitudes of the diffracted beams at the bottom surface

-

of the faulted crystal can then be written as:

(2.33)
-1

oc- fexpl2miv e 1) ¢ o (0)

Effects of absorption can be included by replacing fhe

5 (z) = Q—IQ{expTZ%iY(i)tz]} g—l
eigenvalues v'"'’ by_(f“’+iq“’).

Equation 2.33 shows that if the fault lies at constant
depth‘tf, the intensity of the diffracted beams at the
bottom surface will remain constant and conseqguently no
contrast result. It is clear therefore that image contrast
can’only'dccur when t, varies, i. e: for the case of a fault
inclined to the surfaces of the cfystal.‘Thé calculétioﬁ of

- 1lmage contrast féoml an imclined stacking fault reéuires
kmatching’dfbthe électron wave functions at the fault plane;
which will involve the inclination of the fault to the
' crystal Sutfacés. This apﬁroach will Ee diécqgséd in éhaptef
3 anél chapter 8 of this thesis. However, another appqoach
has been widely usgd in stacking fault ‘image ¢ohtrast
éalculatidns. This,apprbximation assumes that each pbinﬁ on
the inclined fault‘éan Be'vconsideigd to‘ Eorrespond- to a
stacking fault at the éam;:dépth*but iy}ﬁg péfallél to-boﬁh
;gburfaces of the crYStai"in Fig. 2;2.:fhis approximatiop~'was_
'introdﬁcéd by Whéléﬁ‘“a&d Hirsch (1957);.and is cdmmonly

‘referred to as columh"apprbximation (see,‘chaptéf 3 for a
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more detailed discussion).

2.5 INTERBRKNCH AND INTRABRANCH DYNAMICAL SCATTERING FOR A

STACKING FAULT . ‘ R

Some physical insight into the mechanisms producing
stacking fault image contrast can be obtained by sthdying
the dispersiop surface representation for a crystal
containing a stécking fault.‘Fig. 2.3 shows two branches of
the._disperéion 5urfaée for a crystal containing a stacking
fault inclined to the surfaces .of the grystal. 1In this

-+ -
figure“nF fepresents the normal to the faul% plane and n

the normél to the crystal surfacé upon which the electron
beam 1is incident. In the Upber part of the crystal, the
incident electron beam%exciéés twq Bloch waves corresponding
to ' the wave 'points D' and D*. Theée wave points are

>

detéymined by the;iqugsgcpion ofdghe normal'a “to the top
surface of the"cgyStal. with - the two branches. of the
disperéion surfaée; When a Bloch wave encounters the
stacking fadlt, correct wave matching (see Whelan and
Hirsch, 1957),3requires the excitation of additional» wave
points, D'' and D'*. The additional waveulpoiﬁts are
determined-frbm'the'interSection'of the normal of the lfault

-

?F} with thé two bran;heS‘of the diéper;ion-surface.

,‘In 6rder to,exahine stacking fault imaéé, contrast in
terms 'a£~”8loch  wave iﬁteradfions, Hirsch et. al. (1977)
conside;éa' the telationship between the ekcitatioh'

coefficients X(j"“'abo'vej and below the fault. They found |

& e
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L3 o (2.34)

X' = (C" + 0 e X +C C (1-e ") K (2.35)

where X'''' represents the excitation coefficients below the

fault, ay=y''’'-7'?’, ag=q

(SR

-q'?’ and t, 1s the depth of the
fault in the crystal. The above equatlions show that the
excitation coefficient xX"‘5 is made up of two parts. The
first part depends on X‘'’, the previous excitation on the
same branch of the dispersion surface. This is referred as
intrabranch SCatﬁering since the wavévector stays on the
same 'bganch, of the dispersion surface. The second part
depends on X'?’, the previous excitatién on the other branch

of the  dispersion surface and 1is therefore called

interbranch scattering, It corresponds to part of X'?’ being

scattered to bratch | with a waveévector change .of
- - - . .
Ak=k'2’-k‘'’. A similar interpretation can be placed on

equation 2.35, except that in thié case scatte;inq’occurs
from branch T'to branch 2. étacking &aul; contrast, in this
pleture arises from the interaction of" Bloph waves .
associated with the different wave points D', D*, D'’ and
D'*. ‘It is important to note, howEQér, ;hat if the staéking‘
fault is parallel to the crystal sﬁrfaces the wave points

D'’ coincide with:-D'*"'",
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The many-beam expressioas which allow the extension of
this analysis to the case‘whefe more than two Bloch waves
are important have been derived by \Sheinin and Botros
(1972). In their map§-beam theory, the diffracted beam
amplitude for a crystal containing a stacking fault at a

depth t,, can be written as:

Tor i3 (27%6)
_ T 1
fg T Ll ey '
19 :
where
1 (1) (3 iy - -
@gj Cg COJ B E‘:)L—Zﬁl g,R] exp(zﬂly(l)z (2.37)
and
. , \ ) ) ) ..
B ) = exp 27i(7(])-Y(1 Iy L ) ) expr2-i 3-R) 12.38)
1 g g g

The summations 1 and Jj are from 1 to N,‘wheré N is the
number of beams taken into account 1n  a particular
calculation and the summation g is over all the reciprocal

lattice vectors correspording to the reflections included 1n

the calculation. The elements ¢'’ r'represent interbranch
scattering from Bloch wave b’’’ to Bloch wave b''’. On the
other hand, ¢'' represents scattering of Bloch wave b’ '’

into itself and is referred to as intrabranch scattering. It
is . important to note from equation 2.38 that stacking fault
contrast arises from interbranch scattering only. ‘fhis can
be seen from the fact that the intrabranch contribufions %'
afe independent of t,, the depth of  the fault in the

crystal. . It is also 1mportant toO point out that the
A
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contributions ®'! to the diffracted beam amplitude are
complex in nature and therefore phase amplitude diagrams are
useful in understanding the effects of these duantities on

image contrast.



CHAPTER 111

APPROXIMATIONS INVOLVED IN THE DYNAMICAL THEORY OF ELECTRON

DIFFRACTION AND OBJECTIVES OF THE PRESENT WORK

3.1 INTRODUCT]ON

In the last chapter the dynamical theory for perfect
crystals and crystals containing stacking faults was -given.
It was indicated that when this theory is -applied-in
practice a number of approximations . arev made. In this

3

chapter the approximations to be studied in this thesis will

be reviewed.

3.2 THE MANY-BEAM APPROXIMATION

In the many-beam approximation of the dynamical theory
the number of beam§ included in a calculation must be
reduced‘ to a finite number N. 1In most cases, Awhen
diffraction contrast is discussed in the literature, it.is
assumed that either two beams or only systematic reflections
are excited. Systematic reflectio;s correspond to diffracted
beams with recip;ocal'vector§ eéual to n; where 'n=0, 1,
t2,.... (see Fig. 3.1) while other reflections are called

[

non-systematic reflections (see Fig. 3.2). The use of

}

goniometer stages have permitted electron microscopists to
> .

—

orient theiﬁ specimens so that the effects of non-systematic
reflections can be minimized and under these circumstances
it can, therefore, be assumed that the only‘strongly’excited

low-order reflections lie along the systematic row. When the

26
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Figure 3.1 An experimental diffraction pattern obtained

under systematic reflection conditions in HCP cobalt
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lowest order reflection, g, in a systematic set is strongly
excited, - the numbe# of beams included in the many-beam
approximation can be reduced to two and therefore the

%
two-beam approximation of the dynamical theory is obtained.

3.2, 1 THe manyfbeam approximation in perfect HCP cry;tals

The effects of systematic reflect1ons on ' the
diffraction contrast exhibited by perfect and defected FCC
cnystgls have received considerable attentfbn in the
literature. It is interesting to note, howevér, that in the
previous studies of many-beam effects, relatively little
attention has been paid to hexagonal materials even though
some of thé more common metals have this crystalline
structure. Serneels and Gevers (1969) in their paper on
systematic reflections in electron diffraction havé'éompared
theoretical extinction distances for different reflections
in  Zn . and Serneels et al. {(1971) have carfied out
theoretical studies under particular dlffractlon conditions.
Some HCP materials have been 1nc1uded in their studles. In
particular, they carried out d1ffract¢d beam 1nten51ty
calculations for different systematic .feflections and
different electron accelefatingvpotentials iﬁ‘ HCP cobalt.
- Jones (1978),. carried’ out the first experimental
- investigation on the effects of systematic reflections in

Be

HCP materials. He studied the behavior of bend contours as a
] S

function of the electron energy for dlfferent types of HCP

materlals. He 1ntroduced a classxflcatlon of systemat1c sets
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Figure 3.2 A portion of a typical diffraction pattern in the
non-systematic case. Many diffracted beams are important and
must be ‘taken into account in calculating the A matrik of

the dynamical theory. o
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of reflections in HCP structures based on the magnitude of
the structure factor for the lowest oraer reflection 1n each
set (see chapter 4). His results indicated that some types
of systematic reflections have transmission properties
simi&ar to the transmission properties of systematic sets in
FCC and BCC materials. However, there arg' some Systematic
sets whose transmission properties are very unusual.

Studies of the variation of extinction distance with
deviation  from the Bragg condition have provided
cons»derable insight into effects of systematic reflections
in FCC materials (see for example, Sheinin 1967, Sheinin
3970;). However similar studies in hexagonal materials have
not previously been carried out. One of the objectives of
this thesis has, therefore, been to study the éffects of
systematic reflections on the electron microscope images of
perfect HCP cfystals by aéopting‘this app;oach (see chapter

*

4 for detailed discussion).

\
3.2.2 The many-beam approximatﬁon<jn HCP crystals containing
/

stacking faults.

The effects of systematic reflections have also beén
extensively studied in FCC materials which contain stacking
faults (see for example, Humphreys eﬁ. al. 1967, Sheinin et;
al 1972, Botros et. al 1975.), As a result of these
investigations methods which permit a determination of the
nature of the two possible types of stééking}faults found in

FCC structures, (Hirsch et. al. 1977, Gevers et. al. 1963.),

L]
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have been, developed. Unlike FCC materials, stacking faults
in HCP structures are of three different types. fherefore,
the question as to‘wﬁether or not the‘qpmmonly used methods
to identify stacking faults in FCC materials can be used in
HCP structures remains. One of the objectives of this thesis
has been to investigate this question by studying the image
characteristics of stacking faults in HCP, cobalt (see

éhapter S for detailed discussion).

3.2.3 The many-beam approximation in crystals containing

twin boundaries.

The geometry of the electron diffraction patterns.from
crystals containing twin boundaries , is 1in general more
complex than the perfect crystal case or crystals containing
defects such as stacking faults or diélpcations, (see fort
example, Hirsch et. al 1977). In the case of an overlapping
‘matrix and twin such as the one shown in Fig. 3.3a, three
types of reflections can arise. These are 'non;common
reflectibns_which'arise,from sets of lattice planes which
are either in.the matrix or the twin, forbidden reflections
which arise when a diffracted beam from the matrix 1is
diffracted again by .the twin and common reflections which
arise from families of crystal planes which are continuous
accross the twin boundary (or displaced by a fracéion of a
- lattice vector as a result of the presence of a rigid body

-

translation, see Fig. 3.3b and Fig. 6.1 in chapter 6). In
L

order to calculate the intensities of the diffracted beams
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obtained from twinned crystals, the dynamical theory of

electron | tion must be employed. The description ‘of
.'gtering pfocesges by the dynamical theory
'well known dynamical coupling phenomena
 fed beams (see, for example,- Hirsch et
”fhe dynamfcai'thebry is applied to a perfect
f crystals containing dislocations or stacking
fﬁe is dynamical cou;iing between ail cof the
“ﬁ.beams excited. However in a twinned crystal this
is not 1 1_case (see for example Sheinin et ai. 1976). Thus,
Qhen éi ’}n reflections are not taken into account, Sheinin
et al. (i {E), have shown that dynamical coupling can only
occur between those diffracted beams which originate from

the same magrix reflection. Therefore, if for example, there

k_\diffracted beam intensity of.interest, the
reflecti: Rhich need to be taken into account in a
many-bea;T dynamicai  calculation,’ are those which are
dynamically coupled to this particular diffracted beam. It
is clear, therefore, that the many-beam dynamical theory
applied in the past to crystals containing defects such as
stackiné- faults and éislocations can not be used in this -
case. As a result a different approach is required to
develop a many-beam form of the dynamical théory for twinned
crystals. |

The first ‘analyseé of the twin boundary problem have

been based on the two-beam approximation - of the dynamical

theory (see for example Van Landuyt et al. 1965, Marukawa



1977, and Pond et. al. 1976). However, this approximation
has limited applicability since it requires that the same
reflection be considered in both matrix and twin (i. e. only

common reflections can be taken into account). In practice, °

R
SCETUN

however, thejspecimen will be so oriented that different
reflections in the twin and matrix ére excitéd.»lt is,
therefore, clearly desirable to develop a manf-beam form of////ffﬁ\
the dynémical theofy for the twin boundaryAcase.'The first
many-béam theory for twin boundary contrast hés been
developed by Sheinin and Corbett (1976). In this theofy,-
both noh-common'and forbidaen reflections were éonsidered.
Recently, Sutt6n and Pond (1978), and Gratias and Portier
(1980), . have. developed general many-beam forms of the
dynamical theory .fon"§win boundaries which 1include the
effects of common, non-commonAaAd forbidden refiections; The
method of Sutton and Pond ({978), has been criticized in the
literature from a number of points o§ view (see for eiample(
Gomez Zt. al 1980, G:atias et.l a;. 1980.). Thus, the
guestion as to whether or'not these two‘formé of the theory

are equfvalent or in fact, whethef@pne form is correct while
. . ‘.\‘, .

the other is incorrect rgﬁains. A 'many-beam form of the
"dynamical theory of twin boundary contrast including effects
of common reflections and based on a Bloch wave approach has
not been prgsented'in'the.literaturé. Therefore, another of
. i |
the ob]ectives/pf’%his’thesfs was to derive a form of the
dynamical theory applicable to this case and based on this
approach. These results were compared with. the methods of

LY
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Sutton and Pond (1978), and Gratias and Portier (1980). (see

chapter 6)

3.3 SYMMETRICAL LAUE DIFFRACTION CONDITIONS

Another approxlmatlon normally -made in 'mani-beam.
dynamical theory alculatlons is that the symmetrlcal Laue °
diffraction conditions prevail. The symmetrical_Laue case in
eleetron diffraction assumes that"the reflecting lattice
<glanes are perpendicular to the surfase of the spec1men upon
which the electron beam is 1nc1dent (see Fig. 3.4). Past
investtgetions, (see for example, Whelan et al. 1957,
Saidin et al; 1978, Sheinin et .al. 1979 ) concerning the
assessment of the'walidity of the assumption that these
diffraction conditions prevail have predictedverfors‘when o
certain conaitioﬁs are met. Thus, for example, Saldin et.
al. (1978) fepndlthat f@r<a range of angles of inclinations
"of the crystal surface up to about 70°, the errors involved
in assuming symmetfﬁcel Laue conditions are less than 5%.
Sheinin and Qaé}(1979), cagriedl out an ‘analysis of the
cvalidity ofhassuming Symmetrical,Laue diffraction COhditione
baeed on. the Bloch wave ﬁermulatlon of @he dynamlcal theory
Their method wes' 51m11ar to that ‘developed by Spencer and
ﬁumphreys (1971), who solved thev equatlon ‘of' .he .crystal
»shrface normal 'in the k- space and the .many- beam dynamical
equatlons sxmultaneously ’The results obtalned from the

f She1n1n and Jap (1979) 1nvest1gat10n showed clearly that for

‘certaln dlffractlon condltlons the assumptlon of symmetrlcal

o

A
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Laue diffraction conditions can result in significant errors
\
in diffracted beam intensities and theoretical lattice
defect images even for relatively small angles of tilt of
the surface. Thus, 'for example, they found that for weak
beam diffraction conditions and an angle of inclination of
the crystal surface of 30°, significant differences in
symmetrical and non—symmetrical‘ Laue dislocation profiles
were obtained. Therefore, on the basis of theoretical
considerations there seems to be strong evidence that the
|
widespread wuse of symmetrical Laue conditions can give rise
to serious errd&s. However, there has been no experimental
evidence presented in the literature which supports this

view. Another objective of this thesis has been to provide

such an evidence. (see chapter 7)

3.4 THE COLUMN APPROXIMATION

’

The column approximation has been widely used 1in
dynamical theory calculations of the contrast exhibited 1In
electron microscope images of lattice defects. 1In this
approximation the imperfect crystal 1s divided 1nto narrow
columns with the length of each column being parallel to the
incident electron beam. The displacement in a given column
produced by a lattice defect 1s assumed to vary alohg the
length of the column, defined usually as the z-direction.
The basic assumption of the column approximation 1s that
each column may be ﬁhosen sufficiently narrow so that the

displacement within it 1is only a function of =z and

e
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sufficiently wide so that an electron entering at the top of
the column is not scattered out of the column during 1ts
passage through the crystal. Therefore, the electron wave
function at the bottom surface of such a column 1s the same
as that at the lower surface of a <crystal with the same
specimen thickness but with infinite lateral extension.
PreQious assessments of the validity of assuming the
column approximation have predicted. errors when certain
conditions are met, (see for example, Howie et. al. 1968,

Jouffrey et. al 1967, Howie et. al. 1970). 1In these

"investigations the formal treatment of the non-column case

.gives rise to a set of simultaneous partial differential

eguations, which can be analytically solved when only two
beams are taken 1into account. It is important to mention
that all of these previous investigations of the column
approximation were concerned with dislocation images. The
first theoretical 1investigation of the wvalidity ofi the
column approximation in the case of stacking faults was
carried out by Jap and Sheinin‘(1981). The results ' obtained
showed that the validity domain of the column approximation
for a part{cular stacking fault inclination decreased with
increasing deviation from the Bragg condition and increases
with increasing electron energy. Comparisons between
many-beam stacking fault profiles in the non-column and
column case showed that significant differences can be
obtained for weak beam diffractipn'conditions even when the

stacking fault inclination is less than 45°. Thus based in
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these theoretical considerations there seems tO be. strong
evidence that the use of the column approximation 1in the
stacking fault or dislocation image contrast calculations
can give rise to serious errors. However, there has been no
experimental evidence which supports this view. Another
objective of this thesis has been to provide such evidence

(see chapter 8).



CHAPTER IV

EFFECTS OF SYSTEMATIC REFLECTIONS ON QIFFRACTION CONTRAST IN

HCP COBALT

4.1 INTRODUCTION

The HCP structure differs from FCC and BCC structures
in two important respects. Firstly, the primitive cell of
the HCP lattice ‘contains two atoms, whereas the primitive
cells of FCC and BCC latticesJéontain one atom only. The
second 1important difference betw§%n HCP and these cubic
lattices 1s that the hexagoﬁzl structure does not have a
centre of symmetry at an atomic site. There is, however, a
centre of symmetry at a position half-way between the two
atoms in the unit cell. One of the consequences of there
being two atoms in the HCP primitive cell is that the

non-zero vaiues of the structure factor Fg vary from.

o

reflection to reflec-ion, rather <than always remains
|

constant, as for FCC and BCC crystals. In the case of HCQ

\

STLIUCTUIRS, the ¢two atoms in the primitive cell are :in the|

positions: (0 0 0) and (1/3 2/3 1/2), rherefore the ratio
between Fg and f, ~he. atomic scattering amplitude can be

written as:

F
2 -
9 _ 5 cos 7 (2nr2KI3L; ‘

Using this expression the teflecticns in HCP structures can

40



- | 41

be classified as shown in Fig. 4.1 (see Bonnet, 1976 and
Jones 1978). It is important to mention t?ét the values of
|Fg /f] wvary with the order of the reflection as 1s
illustrated in Fig. 4.2. Jones (1978), has indicated that
although there are 4 different types of reflections, only 3
different types of systematic rows of reflections are
obtained. This can be understood by comparing Fig. 4.2a, d,

-

which indicates that reflections of the type 2ng (n integer)

Cin Class 3 are similar to reflections of the type ng 1in

Class 0. This 1s because when ng /f]=0, the teflection is

forbidden and for those s?ts in Class 3, these reflections
' s

can not appear in the systematic row. Therefore a systematic

-

row of class 3 reflections will have the elements 0, 22g,
+4g,... as a result will be equivalent go those rows 1n
Class 0.

The work presented in this chapter explores the effects
that HCP systematic reflections have on the thickness
'exﬁinction contours. Three different systematic sets have
been chosen ((1 0 0), (0 0 2) and (1 -1 1)). Each of these
systematic sets of reflections is in éne of the three
different groups obtained by Jones (1978) in HCP structures.
The (0 0 2) systematic set is in Class 0, the (1 -1 1)
systematic set in Class 1 and finally the (1 0 0) systematic
set 1in . Class 2. They are also the most commonly appearing
low order sYstematic sets in electron diffraction patterns

of HCP specimens in the electron microscope. This chapter

has been divided into five major sections 4.2, 4.3, 4.4, 4.5

o
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cLass||fg/f EXAMPLES

0 2 (002),(1-22), (2-10), ..

1 v 3 (1-11), (0.1-1),(1-13),..,

2 1 1(100),012),(210),..
3 0 (2-11), (11-1), (111),..
¢

Figqure 4.1 TABLE 1.-Ratio of the structure factor to the

atomic scattering amplitude for the first order reflections.
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and 4.6. Section 4.2 is devoted to a description of the
experimental methods used in the present ;iudy of "thickness
fringes. In section 4.3, experimental results and the
results of theoretica® calculations are compared. Aﬁ
analysis of this work in terms of Bloch wave parameters - is
also carried out. Section 4.4 deals with the effects of HCP
systematic reflections on anomalous abs:gption.' Beam
penetration characteristics as a function of tHe orientation
is also discussed. In section 4.5 an analysis is carried out
on the relationship of the effects of systematic reflections
and the acceleration véltage. Section 4.6 is concerned with

a discussion of the results obtained in sections 4.3 and

4.4, ¢

4.2 EXPERIMENTAL METHOD

In order to study the effect§ of systematic reflections
on the image contrast obtained in HCP materials,
measu;ements have been carried out of the wvariation of
extinction distance with crystal orientation. The systematic
sets of reflections used for this experimental investiggtion
were the (1 0 0), }1 -1 1) and (0 0 2) in HCP cobalt. The
electron microscope aécelerating voltage used in this work
was 150KV. The experimental method can be divided in three

parts: specimen preparation, electron microscope examination

-and -analysis of experimental results.
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4.2.1 SPECIMEN PREPARATION S

Cobalt was chosen as the material to be investigated.
Cobalt 1is stable as a HCP strucﬁurevbelow 4717 °C (Bibby et.
al. 1963.), whereas above this temperature the FCC structure
1s stable. previous work (see for example, Troiano et. al.
1948, Edwards et. al. 1943.), has shown that the phase
transformation at the above mentioned temperature .is
martensitic in type. The heat treatment used for obtaining a
high proporﬁion of the low temperature HCP phaée at room
temperature was to ahneal the specimens for about 24 hrs. at
800° and then to cool it wery slowly (=5°C/min). The
electrqn microscope observations weré carried out using
annealéé specimen discs of cobalt (3mm in diameter). These
specimens were polished following almethod developed by K.
7. Botros (1973). They were first jet polished and finally
using an electrolytic polishing system they were made . ready

for observation.

4.2.2 ELECTRON MICROSCOPE EXAMINATION

The specimens were examined in a JEM 150 electron
microscope equipped with a tilting-rotating stége which
permitted the ofientation of the specimen with respect toO
the electron beam to be varied. This stage can be used to
ﬁilt the specimen about two mutually perpendigular axes
through an éngular range of +10° and #5° respectively. The
specimen can also be rotated through 360°. In order to tilt

through a known angle a high precision click-type control

AN

g0
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which éermitted the angle of tilt to be changed in
increments of 0.005° was used. In order to test the accgracy
of this stage two different methods developed by Sheinin
(1966)'“and Cann (1967), were used. It was found that ‘the
angles of tilt as given by the tilt control were within 10%
of those determined by the above mentioned methods.

In order to measure the extinction distances ¢ 4rom
electron microscope images of wedge-shaped ;rystals (see
Fig. 4.3), 1t 1is first necessary to chose énd :oriént a
suitable specimen. Then a series of electron picrographs
must be taken as the specimen is systematically tilted “over
a given range of 46g. In order to determine whgther the
crystal is FCC or HCP and also in order to obtain the
precise orientation of the crystalline area the following
method has been used. A symmetrical diffraction pattern from
the area concerned was first recorded. From these patterns,
values of the distances R from the different low-order
diffractionv spots to .the directly transmitted beam were
measured.¥Using these values of R and the camera constant L
which was independently obtained using a standard of gold,
the corresponding lattice planes spacing, dhkl were
obtained. The ratios of these spacings were then compared to
the theoretically caiculated ratios. Using this procedure it
was possible to index the diffréction pattern and to

identify the crystalline phase in the area of " the specimen

concerned.



gBrlght field 1mage of a wedge-shaped crystal of

fwlng the presence of extinction contours.
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In order to carry out the experimental measurementsA of
extinction distance 1in wedge-shéped HCP crygtals, 1t was
first necessary to orient the specimen so that the set of
planes corresponding to the systematié row0of 1nterest was
parallel to one of the axis of tilt 1n the stage. Next the
specimen was tilted about the axes perpendicular to this one
until the non-systematic reflections were as far as possible
from satisfying their Bragg conditions. After the specimen
was oriented in this manner it was tilted until one of the
higher order refieétions in the systematic set was in the
Bragg conditiQn, as determined from the Kikuchi pattern (see
Fig. 4.4). Subsequent orientations were obtained by tilting
the specimen fromvtﬁis reference orientation about an a*es
parallél to the lattice planes using the click control of
the stage. Bright and dark field micrographs were taken at
each previously chosen step (=0.26p ). In the dark field
case, the range of orientations over which these micrographs
were taken was approximately three times the Bragg angle of
tﬁe reflection of interest. However, in the bright field
case, this range was- approximately two Bragg angles. A
diffraction pattern was also recorded for leach thickness
fringes micrograph. Theregbre, the presence ,of uﬁdesirable

]

non-systematic reflections was always detected.

4.2.3 MEASUREMENTS OF NORMALIZED EXTINCTION DISTANCES

In order to find the variation of extinction distance
4 with 465 it was necessary to measure the spacing between

L

e
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Figure 4.4 Diffraction pattern showing:a systematic set of
. - -

reflections. The reflection 4g satisfies its Bragg condition
therefore the Kikuchi line pass through the middle of the

spot.
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extinction contours 1n the bright and dark field

micrographs. These measurements were carried out using a
Y

microdensitometer. It 1s 1mportant to note that absd%ute

)

values of the extinction distance can not be measured. To
obtain "a value for this parameter a knowledge of eilther the
wedge angle or the thickness of the specimen at a given
point is required. Since these parameters can not be easily
obtained for chemically polished specimens, no measurements
were made of the absolute value of the extinction distance.
However, a normalized value of this parameter defined as the
ratio between vthe extinction distance at certailn deviation
from the Bragg condition of the first order reflection to
the extinction distance when the first order reflection
satisfies 1ts Bragg condition can bé determined
experimentally. This can be done by taking experimental
densitometer traces from micrographs obtéined at the exact
Bragg condition of the first order reflection 1in the
systematlc set and at the values of 084 covered (see Fig.
4.5). Extinction distances were measured by taking the
gyerage-spacing between the fringes in the densitometer
traces, provided that the peak to peak spacings'do not vary

by more than 10%.

4.3 RESULTS

Extinction distance measurements have been carried out
for three different sets of systematic reflections. The

experimental results to be presented correspond to averages
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of three sets of measurements taken from three different

specimens. The predictions of the t%bfbeam and many-beam
- K

approximations of the dynamical theory are cdmpared with

these measurements.

4.3.1 RESULTS OF E/gg. VERSUS Aeg

MEASUREMENTS ”

The experimental results of the dark field measurements
for the (1.0 0), (1 -1 1) and (0 0 2) systematic sets are
presented 1n Figs. 4.6, 4,7 and 4.8, along with the
predictions of the two-beam and many-beam approximations.
The predictions of the two-beam and many-beam theories were
obtained using the expressions developed in chapter 2. In
making the many-beam calculations only., systematic
reflections were included. The number of these beams used in
a calculation was determined by a trial process, with more
béams being added until the chénge 1n extinction distaﬁce.
was less than 1%. The extinction distance in the‘theoretical
calculations were found from intensity profiles such as the
one shown in Fig. 4.9, These profiles are plots of the
variation in intensity of the beam under consideration with
depth in the crystal. Therextinctioﬁ distance was found by
measuring the average distance between the peaks. As can be
seen from Fng. 4.6, 4.7 and 4.8, the predictions of the .
two-beam and many-beam approximations are very similar in
the range of“orientations close to the Brag§ condition of

the first ordeﬁ reflection in the systematic set (88g=0.0).

J
|

/
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Figure 4.6 The variation of the dark field extinction
distance at 150KV normalized to the value at the Bragg
condition, with deviation from the Bragg conditlion of the ()

0 0) reflection.
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Figure .4.8 The variation of the dark field extinction
distance at 150KV normalized to the value at ,.the Bragg
condition, with deviation from the Bragg condition of the (0

0 2) reflection.
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from a 13-beam approximation.
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At orientations in the range of the Bragg condition of the

second order reflection, the predictions of the two-beam ang

many-beam approximations are in good agreement with
experiment for the (1 -1 1) and (0 0 2) sytematic sets.
However, in the (1 0 0) case, a sharp drop in the

experimental extinction distance is obtained at B86g=1.0.
This drop can not be accounted by the two-beam approximation
but excellent agreement between theory and experiment was
obtained when systematic reflections were taken into
account. When the third order ref}ection satisfies 1ts Bragg
condition (A89=2.O), both the (1 -1 1) and (0 0 2)systematic
sets show a éharp increase in extinction distance with the
lncrease being considérable greater 1in the (0 0 2) case.
Good agreement between theory and experiment was only

obtained when systematic reflection were taken into account.

In the (1 0 0) case, however, both the two-beam and
many-beam 'approximations agree with the experimental
results. B

The results of-the bright field measufements for the (1
0 0), (1 -1 1) and (0 0 2) systematic sets are presented in
Figs. 4.10, 4.11 and 4.12 along with the pgzéittions of the
two-beam and many-beam apérpximations. For the (0 2) and
(1 -1 1) systematic sets the predictions of the tw -béém and
many-beam approximations are simil# in most of thd range of
orientations considered and the experimental ‘extinction

distances are also in good agreement with these predictions,

On the other hand, for the (1 0 0) set, the two-beﬁm and
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many-beam theoretical results are simillar only at
orientations in the range of the Bragg condition of the
first order reflection (463=0.0). Thus for example at values
of Aegz1.0 an unusual increase in the eXperimental
extinction distance 1s oﬁtaihed. This 1ncrease can not be
accounted by the two-beam approximatioﬁfébut excellept

agreement between theory and experiment was obtained when

systematic reflections were taken 1nto account.

4.3.2 ANALYSIS OF THE .RESULTS IN TERMS OF BLOCH WAVE

PARAMETERS

In this section an analysis of the results presented‘in
section 4.3.1 1in terms of Bloch wave parameters will be
presented. Since tﬁe>basic mechanisms which emerge from this
kind of analysis are similar in kind for each of the three
systematic sets of reflections, a detailed analysis for the
(1 0 0) set only will be presented. In order to‘carry out
such an analysis, the importance of each of the Bloch waves
contributing to the diffréfted beam intensity have to be
assessed. The manner in which this can be done can be seen

by consiaering equation 2.20 which shows that the 1mportance

of the contribution of a particular Bloch wave to diffracted

)

beam intensity is determined by [C''’oC''g

-

4.3.2.1 ANALYSIS OF THE DARK AND BRIGHT FIELD RESULTS

" FOR THE (1 0 0) SYSTEMATIC SET.

The variation of [C‘'’oC''g | for the (1 0 0)

systematic set as a function of A48(,,,, has therefore
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-1 1) reflection.
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been obtained and is shown in Fig. 4.13. It was pointed
out in section 4.3.1 that excellent agreement between
the two-beam approximation and experiment was obtained
at orientations near 4O, ,,0,=0.0. The reason for this
can be clearly seen from Figs. 4.13a,'b which show that
at these orientations Bloch waves 1 and 2 make the most
significant contributions to diffracted beam intensity.
The sharp drop in the value of the extinction distance
which is shown in Fig. 4.6 can now be understood from
Fi;. 4.13a which indicates that at orientations clpse to
86, ,00,=1.0, an interchange 1n 1mportance betweén Bloch
waves 2 and 3 ogcurs. As a resplt, the extinction
distance prior to the occurrence of the 1lnterchange 1s
given by 1/(7("-7‘2’) while after the interchange it 1is
given by 1/(y‘''-4‘?’). Fig. 4.14 shqws'the four most
important.branches of the many-beam dispersion surface.
This figure clearly indicates that for A9951.0,
(y“ 1 =4 37)>(y ' "7-4'27) therefore explaining the results
obtailned.

In the brigﬁt field case the | unusually high
extinction distance sﬁown in Fig. 4.10 at 0O (100) Close
to 1.0 can be understood by referring to Fig. 4.135.
This figqure shows that at Aeg=0.0, Bloch waves 1 and 2
ére_;he most important whereas at Aeg£1.0, Bloch waves 2
and 3 chome the most important. Again, referring to
Fig. 4.14, '}t can  be seen therefore that

(y 17412 )>(yt20-42)  as a result, the  high
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extinction distance obtained after the interchange of

the Bloch waves 1s explained.

4.4 EFFECTS OF HCP SYSTEMATIC REFLECTIONS ON ANOMALOUS

ABSORPTION

Thickness fringes obta;ned from” electron microscope
images of wedge crystals are often charécterized. by a
decrease 1n frfnge contrast as the thickness of the crystal
is increased althéugh the transmitted‘or diffracted beé&
ihtenéity usually remains relatively high (see Fig. 4.15).
The decrease in fringe contrast can bé%%ndergtood in terms
of the differences = in  the traﬁghiséionn properties
(absorption coefficients) of the Bloch waves giving rise to
the contours. For exampie, at?§he Bragg condition of the
first order reflection (AGg=0.0) Bloch waves 1 and 2 are thé
most impa;&a&t. Under these conditions Bloch wave | T has a
maximuim 1in intensity peaké@ at the atomic planés,yw&erea§~
Bloch wave 2 has a minimum iﬂ@intensity at these positions
(see Amelinckx et. al. 1978).4@}och wave 1 1s, therefore,
highly absorbed by the crystal (i;’e; has a higq absorption

coefficient) whereas Bloch wave 2 is well transmitted (i. e.

has a low absorption coefficient). Thus, if the contribution

of Bloch wave 1 to the intensity becomes small enough to
3 » L

render thickness fringes inobservable, appréciable intensipy
associated  with Bloch wave 2 will still be tran%Fitted. The

effects on the image contrast ‘due to the differént

atenuations of these two Bloch waves is referred to as

o

~
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anomalous absorption. The effects of anomalous absorption on
electron microscope images contalning laftice defects have
been studied by various authors. Hashimoto et. al. (1962),
for example, havé shown that in the case of a stacking
fault, the visibility of the fringes near the center of the
fault decreases in thick crystals. Howie and Whelan (1963),
indicated that the oscillatory contrast characteristic of
dislocations inclined to the foil surface disappears in
thick crystals except when the dislocation is close to the
foil surface. ,/

Previous work in chic materials (see Sheinin, 1970),
has shown that in the caSe where only systematic reflections
are assumed to be present,‘ the effects of anomalous
absorption are strongly dependent on the deviation from the
‘Bragg condition of the lowest order reflection. Thus, for
example, when the reflection g, of a systematic set is in
the exact Bragg condition, pronounced effects of anomalous
absorption can normally be observed. However, if the crystal
1s tilted to values of the deviation parameter greather than
that regquired for the reflection 3g to be af its Bragg
condition, the effects of anomalous absorption are found to
be small. Clearly, 1in order to understand the effects of
absorption on the visibility of thickness fringes and on the
image contrést 4]of lattice defects, the absorption
coéffigients q‘"’, of the various Bloch waves must be known .

The effects of anomalous absorption‘in HCP maferials

r 4

have not received much attention in the literature. Bonnet
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(1976) carried out theoretical investigations on thg effects
of systématic*reflections on 1mage ‘contrast in different
materials. As part of this work, he studied the dependence
of the absorption coefficients for different crystalline
structures as a function of the deviation parameter. One éf
the materials used in his theoretical calculations was HCP
cobalt. However, ne only obtained values for g'*', q'*’ and
q'*’ and therefore no analysis was made of the relationship
between these values and the anomalodé absorption

characteristics.

4.4.1 BLOCH WAVE ABSORPTION COEFFICIENTS FOR THE (1 0 0), (o

0 2) AND (1 -1 1) SYSTEMATIC REFLECTIONS
The variation of gq'"’ with ABg is periodic with a

period equal to twice the Bragg angle of the lowest order

'systematic reflection (see for example, Sheinin,. 1970). The

magnitudes of q''’ for Bloch waves 1, 2, 3 and 4 for the
three different systematic sets in HCP cobalt have been
calculéted and are plotted in Eigs.’4.16, 4.17 and 4.18 for
Qalues of 464 in the range of -1.0 tb 1.0 (symmetry

orientation to 2g in its Bragg condition). It 1is clear in

comparing these  figures that the dependence of the

" absorption coefficients gq''’ on ABg is very similar for the

(0 0 2) and (1 -1 1) systematic sets. However, appreciable
differences between the (1 0 0) set and these two sets can
cleafly be seen. Thus, for example, Figs. 4.17 and 4.18 show

that when the (1 -1 1) and (0 0 2)systematic sets are

M



69

2.370
——
+
1
+
.
1

.800

1

X10-4
s X

\

L
@
’
>
__+_ I

ABSORPTION COEFF [A']

-1.0 0.0 : 1.0

Figure 4.16 BlocH_ wave absorption. coefficients q<a5 as a
function of the crys;él orientation for the (1 0 0) set.
- - : ‘ : N .

h \



0

70

X104
2.2
B C—

ABS. COEFF. 1

0.8

0.6

0.4

T T T T T L T T T

-1,0 _ 0.0 1.0

CRYST. ORIENT. A6, )

Figure 4.17 Bloch wave absorption coefficients g''’ as a

function of the crystal orientation for the (1 -1 1) set.
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excited at the orientation where the lowest order reflection

satisfies its Bragg condition Aeg=0.0 ), the absorption

1)

coefficient g , corresponding to Bloch wave

larger than the absorption coefficient g'*’ for Bl

1 1s

och

much

wave

2. Therefore, strong anomalous absorption similar to that

obtained in FCC materials would be expected 1n HCP co

for these systematic sets. However, for the

systematic set of reflections, Fi1g. 4.16 shows

(1 0

that

balt
0)

the

absorption coefficient q''’ is approximately equal to q'”’

and thus, .anomalous absorption 1s not expecte

d to
4

be

important at A99=O.0, provided that Bloch waves 1 and 2 are

tbe'%nly important Bloch waveg excited.

o

k

4.4.1.1 RELATIONSHIP BETWEEN ABSORPTION COEFFICIENTS AND

'BLOCH WAVE CHANNELING.

In order to understand differences in absorption

coefficients a plot of the intensity of each of the.
Bloch waves exci#ed, |b''’|*, as a function of the
interplanar position between the lattice planes 1is

sometimes very useful (see for example , Amelinckx et.

"al.  1978). Figs. 4.19 ‘and  4.20  show

N

many-beam-

-

calculations of th® intensity distribution of the two

most important Bloch waves for the (0 0 2) and

(1 0

0)

systematic sets when the lowest order reflection in the

set satisfies its Bragg condition. Notice,
origin of coordinates > chosen for the

" calculations-is the midpoint between %e' two

that
dynam

atoms

the
ical

in

the HCP unit cell. 1§e vertical dotted lines denote the

{

-~

~e
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positions of the (0 0 2) atomic planes in Fig. 4.19 and
the (1 0 0) atomic planes ia Fig. 4.20. Fig. 4.19 shows
guite clearly that when the (0 0 2) systematic 'set 1s
exciped Bloch wave 1 has a maximum in intensity peaked
at the atomic planes whereas Bloch wave 2 has a minimum
in intensity at these positions. Bloch wave 1 s
therefore highly absorbed and its absorption coefficient

g''’ is large, whereas Bloch wave 2 is well transmitted

"and its absorption coefficient g‘*’ is small compared
with ‘q‘'’. However, when the (1 0 0) systematic set is
excited, Fig. 4.20 shows that the Bloch waves 1t and 2

_both have the equal ‘intensity close to _the atomic
planes. Aﬁherefore, their respecti§e absorption
coeffdciedis q''’ and qkz’ are aéproximafely equal in
magnitude and both Bloch waves are expected to qe“
simiiarly absorbeé. \

S |

-~

4.4,2 TRANSMISSION PROPERTIES FOR HCP SYSTEMATIC REFLECTIONS

In the past, investigations have been carried out to
obtain tbe, crystal orientatilons for the  best  beam |
fraﬁsmission: Thus,‘.for example, Humphreys et. al. (1971),
have shown that for{RCC’materiéls and for 100KV electrons
the peSé tran;missién, orientation’ in' the b;ight fieid is
slightly pdsitiye of the fifst-dtder Bragg position. ‘For

. .

higher electron energies 'l 1000KV ) the best transmission

. o a
pend on the atomic number of
yo-

orientations were found to d

the elements. Thus, for example, for medium atomic number
- - ' ‘ k

* |
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elements, the best transmission was obtained at the symmetry
position or slightly positive of the second-order Bragg
position. ,

In order to gain some insight 1nto the transmission

pfoperties for the three systematic sets in HCP cobalt,

theoretical calculations of rocking curves have been carried

out. These profiles give information of the diffracted beam
intensity as a function ofbthe deviation parameter (88g) at
constant cr§stal thickng;s. Figs. 4.2%a, b show the bright
field rocking curves obtainéd when the ,(0 0 2) and (1 0 0)
systematic sets are excited. The crystql'thickness assumed
was 4000A and the accelerating voltage was taken ti be
100KV. It 1is <clear from this ﬁiqpre thag.for the 10 0 2)
set, the best transmission is oStéined at a value of 404
slightlj positive of the first order‘reflection-at its Bragg
con@ition~(A99=O.0). This result is similar to that obtained
for FCC materials (see Humphrexs et; gl.f97]i. Howe%er, 1n
the (1 0 Q) case, the best trahsmission is obtained at a

~

value of AQg

t

.reflectiOn in its Bragg cdndi@ion (4©g=1.0). ©On 'fhe other
hand, for higher-vaccelerating' voltagés (1000KV), Figs.
4.22a, b show that the orientation for best transmission 1in
the (0 0 .2) case is slightly positive of the second order
reflection at its Brangcoﬁdition. HoweJer, for the (1 0 0)
the transmission characteristics are similar at both low and
high ééceierating voltages. : | : R '

\ ‘ .

A\

slightly positive of the second order

Y

PRY
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\\ In the dark field case, Humphreys et. al. (1971), have

i *

Shown that for FCC materials and for‘100KV electrons, the

\

best transmlsS1on orientation corresponds to the exact Bragg

4

condition of the first order reflection. As the electron’

efdergy is increased (1000KV) and for medium atomic number

/
i

LA

positive of the second order Bragg 'position or ®lightly

negative of the ‘symmetry position (A8§=—1.0). Similar

plements, the -~ best trgnsmission. is obtained slightly

results to these are obtained when the (0 0 2)° systematic

set in HCP materials is excited. However, “for the (1 0 0)

N

case, the best transmission at 100KV was found to, be’

slightly positive of the second order.BFEgg position. This

result remains hnchanged for accelerating voltages up to~

1000KV. It 1is important to mention that the‘tranghission

characteristics .for the (1 -1 1) systematlc set are very
) . o F ONKY
similar to  thofe for the (0 0 2) set ahd are therefore not
' : o

i

presented in thig section. f

|

4.5 ON THE RELATIONSHIP BETWEEN THE EFFECTS OF SYSTEMATIC

REFLECTIONS AND ACCELERATION VOLTAGE.

It is ‘commonly assumed iﬁ calculations of diffraction

contrast that many~-beam 1nteractxons become more/ important

as the electron energy increases. Thl‘ mClUS'On is based

" on the increase in the radius of the Ewald @phere whlch

\

occurs as the acceleratlng voltage 15 ralseﬁ Experlmental

evidence that under certain - conditions many- beém

!

interactions become more important as the accelerating
. . !

Lo s

.

1

]
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voltage increases was first obtained by Dupouy et. al.
] 4 " : . .
(1965). These  authors studied ~ the variation of the

-~ Y

extinction distance as a function of the accelerating

NN \

voltage in single crystals of MgO. As the accelerating

volfage was increased, appreciable differéﬁceé;_between_ the
experimental, extinction distances’ and éhé twe-beam
theoretical pfedictions were ogzgined..However, Goringe et.

al { (1966) found good- agreement with experiment when

systematlc reflections were taken. lnto account. K

These con51derat10ns however do not offer any insight

into the qualitative differenées in the -behavior of some
systematié sets of reflections such as thos? which have been

found in HCP cobalt-(see sections-5.3 and 5.4). In order to

gain some understanding of  these éifferences, the

,relétiqnship between the effects of. systematic reflections

and the -critical voltage has been cbnsidered. The critical

voltage effect was discovered by Nagata and ‘Fukuhara (1967)

and Uyeda (1968); These authors found that at an orlentatlon

corresponding to the secend o:der reflection in a systematlc:
set in its Bragg condition (AegéA.O),lkaﬁa‘éE“EEéftainkgwé
acceleréting voltage the intensity of a - second order
reflectioﬁ became very weak. In order to explain‘;his
phenomenon an approach based on Bloch wave éymmetries Qaé
presented bz Metherell and Fisher (1969) and Lally et. a1.>
(1972). This approach can be understood by writing the

expression for the diffracted beam intensity as:
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(1)

V2] expl-27g'Hzy + 77

I (z) 2] ¥ Py

exp(27Tiy
29 .i=2,3 © 49

\

where V. represents the contribution of all Bloch waves
except 2‘énd 3. The magnitude of V {s very small unléss the
crystal is very thin.

The reduction in intensity which occurs at the critical
voltage can be wunderstood Sy examining the égcitétion
“amplitudes and the eigenvalues of Bloch waves 2 ahd\B in the -
above méntioned-equation. The valu?s of these parameters at
the exact Bragg condition of the (0 0 4) reflection in HCP
cobalt and ,clo;e to the critical voltage are shown in -
Fig.4.23. It can be "seen from this figure that»‘gé the
acceleraéing_ voltage 1is increased from 150KV to 450KV, the
éxcitatipn,amplitudes’of Bloch waves 2 and 3 remain neaﬁly
equal 'iﬁ - 'magnitude and of "opposité sign while the
.éigenvalueS'of these Bloch waves approach each other in

’“‘"%““~‘~“1alugi_§£*ggproximately 300KV the eigenvalues are degenerate'

* and the excitation amplitudes o ve 2 and 3

Al

o interchange re5ultihg‘in a change in symmetry of these Bloch
Qaves. Lally‘gt. al. (1972), have ~aefined the vbltaq§ at
yhich this change in symmetry occurs to‘be.the.critical
voltage. The reason for the reduction 'in the diffracted béaﬁ

",iﬁtensiﬁy- can ~now be understood by no&ing thatl$£'£h¢

critical voltagé y (2 =y(3) yhile the'excitationz amplitudes
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of these Bloch waves are neatly equal 1n magnxtude and ,are
of opp051te s1gn. It can‘ be _seen from equatlon 4. 18 f
thg;efore, that the contrlbut1ons made by3 these twb Bloch7
waves wxll rnterfére destruct1Vely and an app:eclable -
reductlon in ;ntens1ty wlll result.-_ “ \' B\
The S1gn1f1cancé of the c61t1cal voltage effect on the'
effects of systematlc reflectlons 1n fzrst der dark £1eld
1mages such as -those dlscussed 1n sectrz:\:\i ‘can now be
" seen from the followlng arguments (see, for example Botros
et al. 1979). ow1e (see Amellnckx et. al. 1978,)’ has~$hown
»that based on the three beam approx1mat1on of the dynamlcal'
.theory has shown that when the reﬂﬂectlon gg of a system”t1c:
set is in the Bragg condztlon two of the Bloch wayes wlll‘
be !!mmetrlc (co-czg)’ w1th Cg ¢0 whlle gne Bloch w111 be.
ant1symmetr1c (Co= ng) thh cg‘so Below he? crlt1cal_
voltage Bloch wave 3 is antlsymmetr1c~ whlle _above ‘the
critical voltage Bloch avefléftis antlsymmetrzc. 'It;iéan
therefore be concluded' that below the critxcal voltage

¢y w0 and the two 1mportant Bloch kaves ‘contrxbutxng tog_u

A

d1ffracted beam 1nten51ty of the flrst o:der reflectzono&°

. - \
j when the reflect1on Zg 1s in’ the Bragg cond1tlon must betf\

o <Blpch waves 1 and 2. On the other hand above the cr1t1cal*”~

voltage where cy .=0 the 1mportant Bloch waves,must be lji

hand 3. S1nce the 1mportant Bloch waves at AG-O 0 are 1 and;dﬁf

2, 1t 1s not unreasonable to expect that Bloch waves 1 and 2:h.

v

ovould be the only 1mportant Bloch waves in the entxre range o

0 osae s1 0 below the cr1t1cal voltage._*hsa result theh,f

&
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- variation of'eitinction distance with'iAeg “for this -range

-

should be two beam in character. - o

Above the cr1t1cal voltage the 1mportant Bloch waves at
ﬁ 4
48, ==0 0 would agaln expected to be. 1 and 2. However, as.

noted above, at Ae =1.0 the 1mportant Bloch waves must be

- and \3. A dIOp 1n‘ext1nct1on dlstance trom 1/(y V) =y120) to

) ‘1/(7""7"’) must therefore occur somewhere"fn 'the‘"range
a8 from 0.0 to 1. 0 Th1s drop can only occur-asea result of
‘an 1nterchange 1n the 1mportance of BIoch saves %ralagil3,
h1mp1y1ng that’ at some. value of Aé//1n this range, Bloch
waves 7 and 3 must contr1bute equally to the diffracted beam
‘1ntenS1tyr/ Together w1th Bloch wave 1, this gives three
f‘important: Bloth‘“waves ~and therefore ébnolex | intensit}

-

‘;proflles will in general result‘ . . .
' S Rad -

The ‘reciprocal 1att1ce-~vectors G(100)sr Y(ooz) and

S ’ . ) . s’ . R
,‘9(1-11> aref'very ~nearly“the same in magnitude (0.46, 0.49

'and 0 52 A"'respectxvéﬁy) However, the results presented

dn the dark field case in F1gs. 4.6, 4.7 and 4 8 have shown
‘that the effects of systemat1c nEflectxons in the (v 0 0)-
'case vare different from these effects 1n the other two

| "55ystemat1c sets. One of the most -1mportant dxfferences “in
'f‘fcsthe1r» behav1or belng in the range of A8 clos (d to'ﬂ 0 (i.
_the 'second order reflectnon closed to' its Bragg'
l.:cond1tlon) Thxs result can now be understood by est1mat1ng»
'the crltlcal voltages for the (2 o 0), (00 4) and (2 -2 _2,)- |

ﬂreflectlons. The crxt:cal voltage for the (2 0 0) was found

/to be large in magnltude but nggatlve Thus for the (10 0)
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sxsyematic set the aCCelerating voltage ‘(150Kvl ie highere
than  the 'cfitical voltage and the many beam effects |
associated w1th the strong excitation of Bloch wave 3 at
46, =1.0 would be expected, as was in fact, found to be tg\
case. For the (0 0 4) reflection, the‘cr1t1cel voleege was
found to be app}oximatelyr 300KV (Bee Fig. 4.23) which is
above tﬁe actelerating veltage used in obtaihing the resqf@s
presented in section 4¢.3. From the previous discues%on
two-beam\like behaQior should, therefbre, be obtained .for}
the (0 0 2) sys;emafic set in the range of A8 (¢, from 0.0
to 1.0 as was in fact found to .be the case, Tee critical
‘voitage fo; the (2 -2 2) rgf;ectien was founa to be small in
magnitude (3pproximate1y 8KV).. Thus, following the aréuments
of the (1 0 0) case, it would be expected that as the

. crystal is tilted from A46(,.,,,=0.0 ~to 1.0 ”e lc&ange in

_extinction distance from 1/(y 1 =9(2)) to 1/(7"’-7‘5’) must

occur. However, the reSUIts'shown in Fig.4.6 do ﬁot indicate,
that such a chenge takes blaCe.»This gan be unde:stood from
‘the many-beam dispersion'surface for this sfstematic' set

whi;ha‘indicates .that close to Ae =1 O, theiwave vectors of

Bloch waves 2’aﬁd 3 are nearly the same in maghieude "and

v thus 1/7(‘)_7(2),1/7(t)_ o | » ’

‘ The ma%n\ conclusxon wh1ch cgp be drawn fre? th1s

| discussion is that ‘in assessing the significance of\the

acceleratlng voltage in determ1n1ng whether or ‘ﬁbt“effects

of - systematxc reflect1ons will be 1mportant at orlentatxonS‘
clése to strong beam cond1txons, 1t is not the accelerating

o

- RO »
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] 4
‘voltage itself but rather its value relatigg to the critiﬁal_

voltage that should be considered.
>
v 14

) . ﬁ : L
4.6 DISCUSSION . ‘ T s

Of the results presented in the previous sections of
this chapter the most 1mportant practical implicafions - are
‘concerned with defect 1mag1ng u51ng the commonly occurring
(10 0) set‘of systematic reflections. As has been mentioned
in section 5.4 under. strongA beam conditions the- image
.intensity and the beam transmlssron are unusﬂéily low and
the extinction dlstance is very large compared to typical
. values obtained in FCC materials for low order reflections

~

(see Hitsch et al. 1977). ‘As a result for the (1 0 0) case, .
the maximum specimen th1ckness :n wh1ch defects can easily
" be observed 1s small and defects Such as dlslocat1ons will
have unusually\wlde 1mages (see for example, Jones 1978 ).
.Furthermore, because anomalous abéorptlon efftcts are weak;
" the conventional methods for .1dentlfy1ng the nature 'of

. » .
stacking faults can not be _used since they are based on-

strong anomalous absorpt1on’/effects being p:eeent (see
Hirsch et al, 1977). Although the beam-transmiseion can be
'impfoved'by tilting yhe‘cryételjto'the-aragg‘poeifion'of the
second erder reflection:(z 0 0), the extinction distance{iin
the bright field case at 1east;’is eQenfla:ger than{ﬁhen the
'reflection (1 0 0)'sati§fies:its'ﬁragg_condition. Anothef
commonly occurring systematlc set of reflections in ‘§CP

materxals to which an electron mlcroscoplst mlght resort is
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-

b
Q:i

the (0 0 2) systematicﬂset; However , choosing the (0 0 2)
refleqéionS‘ﬁngt'rendet defects such ‘as staekimg ‘feu ts
virtually invisible‘owing‘to the values OE'the phese angle a
.- (0 or t 27x), (see chapter 5 for 'at'detailea discussion).
Therefore, a number of@ imaging problems can be seénfto
remain if the (10 Q) or the (0 0 2) systematic sets ‘erec’
excited. The. work . presented in this chapter ‘has'shedn
howeve; that by ch0051ng the (1 -1 1) systematic set’ some of
'thef dtff1cult1es cqn‘be overcome. Thus, for example, under
- strong beam mCOnditions (Ae(,-;,,=0t0), -strong ahomalogég
ebsorptien "and good beam transmission are obtained (séf
-sedtien'4t4.1)'aqd'the imaging problems mentioned fcr.the-(1
0 0)‘ set are _nct present insthls case. Also, the phase
. angles-dvobtsined for the different types of stacking‘fa@lts
in HCP maverisls are different and therefore the nature of
these defects might be obtaxned from a single electron

m1croscope 1mage (see chapter 5 for a deta“fga dlSCUSSl%’)

*
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4 CHABTER V

-

. » . : .
EFFECTS OF SYSTEMATIC REFLECKTLONS ON THE STACKING FAULT

> IMAGE CONTRAST IN HCP COBALT |
, 5
A INTRODUCT ION Py 8 -

)

In the hexagonal c105e- packed structures thg -closed

P

packed planes afe the (0 0 2 ‘Planes. These basal planes are

also the most frequently 'occurrlng ' pr bianes in :HCP
crystals. In these types 'of materials there are three klnds
of stacking faults. Tonof them are }ntr1n51c, I, and I, and
;hé other 1is extrinsic, E (see for example Hirth‘ahd Lothe
1968). The intfinsi; f§ult 1, can be formed by the removal

of a basal bplane and a shear, as is illustrated below:

'An.'esﬁimate' of the stacking fault energy -can be

-,obtained using a séhéme*givihg by Hirth and Lothe (!968). In

this SCheme the numbem of paxrs of second Qﬁarest 'néighbbt'

‘planes ‘wh1ch re not in the proper,stacklng sequenée'are

countedA;Thus, asVis» indicated above, for thé ¢intrinsic
L. \ |

fault I{; 'heré 'is one péir of second nearest nelghbor

 planes in the wrong stackxng sequen;e. ‘The fault Iz can be

formed, d1rectly by shear, as. s 1llustrated

‘88
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| | ABABA???A -
o '_¢ACAC\* - !

f v
AB%E&}CAC

As can be'seen from this ¢iagram, _there are two

,v1olatlons Cof the, second nearest neighbor sequence and

.

therefore the relatlve s:acklng fault energy 1s about twice

that . for the I, case. The extrinsic fauylt E is formed by

-

inserting a C piane in~the perfect crystal AB sequence
. / .
. "

‘ ' -
ABABABAB
‘ !

. . r | ,
U ABABﬂ%iﬁB~ ,

) : : . There
. . I

are 1in this case, three violations of the second @earest

neighbor sequence and therefore the stacking fault energy of

this fault is’ about three times the energy of an I, and one

%

and a half that of an I, fault. (see Hirth and Lothe 1968)

] -

: : o r o o - . -
5.2 DISPLACEMENT VECTORS~K£D PHASE ANGLES OF'STACKING.FAULTS

IN HCP STRUCTURES -~ . ) «
L C

?hev dxsplacement vectors R correspondlng to the three

_dlfferent types of stacklng faults in HCP matergals ~can bef

1

»obtalned by u51ng- a representatlon given by Berghezan et. .

J

(1961) whlch is’ shown in Fig 5.1. The d1splacement

\ vectors u51ng thzs representat1on are glven by

B .

Lk b ‘ . *
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On the other‘&and, some of the most commonly occurring
/ . ¢

sets of systematic reflections in HCP structures dre the (1

0 0), (00 2) and (1 -1 1),set® One of the most important

parémeters influencing the role that systematic reflections

play on stacking fault imége contrast is’fhe phase angle of.
’ > - .

the fault, a=27g.R. The stacking fault phase angle a,

obtained for éach of the above_mentifned types of stacking

P

faults (I1,, I, and E) using the HCP 1low order systematic
sets of reflections ( (1.0 0), (0 0 2) and (17 -1 1) ) are
given 1in F}g. 5.2. Fig. 5.2 shows, féf example, that by
using the commonly occurring (1 0 Of set of systematic
reflections, the intrinsic stacking faults, 1, and I, ‘have
the same ph;se angle a, and therefore the image céntrast
exﬁibited by these two types of faults would be identical
under these diffraction conditions. On the other hand, the
extrinsic stacging‘fault'pfoduces a phase angle g=0, -and
therefore Lhis type,of‘iéult woulddbe invisible.

When the (0 9 2) set of systematic reflectiéns is
excited Fig. ' 5.2 shows that ?E&% three types of stacking
faults produce the sami phasq angle @ (27 or 0) and
therefore under theséj aiffraction.conditibns all stacking
faults i6i HCP materials will be invisible.

The most inter;sting systghatic ses'from the point of

vie& of imaging stacking faults is the (1 -1 1) set of



Il 12 E
(1 0 0) t2m/, tam/, 0
(0 0 2) tam 0" ‘am
(1 -1 1) T/, tam/,y | I

Figure 5.2 TABLE 2.-Stacking fault phase angles a obtained

using the HCP low order reflections (170 0)y (0 0 2) and (1
-1 1),
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reflections. Fig. 5.2 shows that for'this set each one of
the stacking faults (I,, I, and E) gives rise to a different
phase angle a. Thus, for example, the extrinsicn‘égﬂat E
produces a value of a=%7 qnd the intfinsic stacking‘faults
T, and 1, give ri é‘tb different phase anglés a; *m/3 and
+27n/3 respectivelz This result suégest the possibility that
stacking faults images obtained using the (1 -1 1) set can
be used to distinguish between the three different types of
stacking faults in HCP materials. The work presented'in this
chapter explores this possibility.

L

5.3 IMAGE CONTRAST CHARACTERISTICS OF STACKING FAULTS WHEN

THE (1 -1 1) SYSTEMATIC SET IS EXCITED

>
In order to investigate the image contrast

characteristics of the three types of stacking faults in HCP
materials when the (1 -1 1) systematic set 1is excited,’
{heoretical calculations have been éarried out for strong
beam diffraction conditions(i. e. the {1 -1 {) reflection at
its Bragg conditiin) and for both br&ght and dark field
images. The bright field results obtained from - these
two-beam calcula€;ons fo:‘a=n/3, 2n/3 and 7 stacking faults
afe shown ih'Figsl 5.3, 5.4 and 5.5. The profiles were all
obtained for a crystal thickness equél to 1710 A (25.5%, ),
and an accelerating voltage of 150Ky. These figures clearly
show that there are signi@§22h§ dafferences between the

profiles‘corresponding te theléhre% types of>stacking faults

suggesting a - possible method of fault identification.
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.of the one in Fig. 5.3 but a=27/3.

s
* \ S\
¢
N -
= ' p—t——t : + + ; +
=
v . ‘
<4
- [y ) ,
s
> 3. +
- P
%)
5 4
E -
Z \ <~
= -
. B O‘ -L
o‘ A}
~ @ -+
o
2
o — T T T T T 7 —
0 400 800 1200 1600 2000
P °
DEPTH IN CRYSTRL [A]
A
Figure 5.4 Stacking fault prs{}le under the same conditions
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that ‘?he fault - lies" in a wedge crystal and the

97

However, this approach has the disadfantage that the

fhickness of the specimen in which the ?amlt lies must be

-

known. Also, subsidiary peaks are strongly dependent on the
values . of the absorpticg | coefficients 'used -in the
calculaglons (see for example éheinin et\ .1970) and
1naccurac1es in these ‘coefficients could result in 1ncorrect
conclu51ops belng;drawn. An alternative methcd for fault
identificeﬁion in HCP 'materiels might be (to carry\cut~
Observatfons in a Qedgéycrystel speciﬁen rather than one of
constenc th&ckness...ln ordef to explore this posibility a.
two-dimensionalidisplay of theoretical stackin; fault images
basea on the two- beam approx1matxon of the. dynamlcal theory
has been used. Figs. 5.6, 5.7 and 5.8 show the results
obtained for bright tield imaéee of a=x/3 27/3 and 7 faults
respectively. These calculatlons have been obta1ned assumlng

xcited

reflection (1 -1 1) Sacisfies its Bragg condxtlon. 1

clearly be seen from these’figures that the overal% image

: contrast of the three types of stackxng faults (11, 1, and

‘E)' are quite d1fferent. Thus, for example, the (extr1n51c,

»;n) fault in Fig. 5,8 d1splays parallel fr1nges whlch do not

ra

"change' apprec1ably ‘as the crystal th1ckness is 1ncreased

'The image of a 21/3 (1ntr1n51c, 1.) fault shown in- Flg 5.7

1nd1cate that, the fr1nges in thlS case are S1m11ar to the

~ image of avw.fault except that each of -the frlnges is
,modulafedt‘strongly ‘as the th1ckness is 1ncreased The w/3

‘(intfinsic}'li) fault shown 1n'Fxga S,Sr on the other hand o



] 2 €

i

 Figure 5.6 Two-ﬂimensibnal displays‘offtheoretical stacking

faults obtained when (1 =1 1) reflection satisfies its Bragg‘

,  condition in a wedge crystal and a=n/3.

- ) »
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¢

Figure 5.7 Two-dimensiohal display of a theoretical stacking
fault obtained when the (1 -1 1) reflection satisfies its

Bragg condition in a wedge crystal and'a;21/3,

.
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Figure 5.8 Two-dimensional display of a theoretical stacking
fault obtained when the reflection (1 -1 1) satisfies its

Bragg condition in a wedge crystal and a=T.
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can Dbe seen to be quite different from either of the images
shown in Figs. 5.7, 5.8. These differences ean be seen td be
due to a modulation of the fringes with increasing thickness
"which giyes rise to regions of high contrast at thickness of
about nt, and regions of low contrast at thicknesses of
about (n+1/2)¢&, | |

N ’

5.4 EXPERIMENTAL RESULTS

In order to test this @ethod of - identificatioh
expefimental stackiné faults have been obtained in wedge
cfystals of HCP cobalt. The experimental procedures are the
same as these explained in chapter 4.'Fié 5.9 shows a bright
field image ef a stacking fault obtained when the (1 -1 1)
refléctipn satisfies. ité Bragg conditionf A comparison
between. this micrograbh and the theoretical images; '(see
Figs. 5, 6, 5.7 and 5. 8) suggests a reasonable agreement WIth
the 2n/3 stacking fault cade shown, in F1g ;42.7. }?herefe}e,“

this experimental stacking fault should be an !intrinsjc

fault of typé I,. On the other hand a comparison between

the experlmental stacking fault in Flg 5.10 (obtained under .

thevsame diffraction condltlons ‘as that in Fxg 5.9),
*suggests a reasonable agreeme\t with the u/3 fault shown in
s

Fig. 5.6. Therefore, th1s tacking. fault must be  an

1ntr1n51c of type I, It is 1mportant to note that extr1n51c -

faults were not observed in our spec1mens This is probab1y~
«
'_related to the h;gh stacking fault energy whlch this fault

possesses.(segi for example, Hirth and ‘Lothe 1968 and

P
S
A /(

A

-
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Berghezan et. al. 1961). . ‘

L

S5.5° ANALYSIS OF THE'\RESULTS IN TERMS OF THE TWO—~BEAM

APPROXIMATION

The theoretlcal images of the three tyﬁes of stacking
faults in HCP: mater1als presented in Figs. 5.6, 547‘and v5.8
can be understood by considering ;; expression for the
bright,fielda stacking fault 'intensity 1,(z), which was
obtained bf Whelan -and Hirsch (1957a).:Thisveﬁpression is .
based:'on the two-beam approxiyation when the _lowest order
dreflectidn g satisfies.ita Bragd-conditien, Also absorption
is not taken into account. It isAimportant to note, as‘ ¢an
be seen‘ f:om sections 5.3 and 5.4, that‘the'difﬁe:ences in

ihage contrast for the three types of stacking faults are

moxe pronounced in thin reg1ons of the spec1men. Under these

ances,,absorptlon can be neglected and therefore an

Al

analy51s in terms »of a two- beam approxzmatlon w1thout
absorption nght g1ve a qualitat1ve description of image

'contrast.._v

. G
<4

The transmitted beam 1nten51ty can be written as:

e ameliza 22z {5:0)
(t,z) % COS? (%}:052(:—) + sin éf) CO; (T R

; "o e Te

. where o is the extinction dzstance, ‘z the crystal th1ckness
and  t is xde_ distance measured. trom the centre of the-
crystal to the fault in a ditection.dpefpendicu;a; te' the

surface. R B ‘ e

5}

- I .
L A sy
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F1gure 5. 9 M1crggraph show1ng a brlght f1eld image of a

stacklng fault’ in: 'wedge crystal of HCP cobalt Thg

operatlng voltagg was 150KV and Ae(,-1,,—0



. }U"*

‘ ?i§ure- 5 10 Mlcrograph show1ng ‘a- brlght fleld 1mage of a)
astack1ng fault id'5j;'wedge crystal of HCP‘ cobalt.l'_h 

7operat1ng voltage was 150KV and Aa(,_,,,so O.xv

L
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Taking t=0 dr nt,/2 where n is an integer, equation 5.1
be written for the three types of stacking faults as:

w/B.

ne > -2 1 (5.2)
I (0 or ——, 2) = 5y <OS (—) *+ =
o 2 Eo 4
_ 2n/3.
o ne 1 p) -z 3 (5 3)
b e I (0 or ——.2) —.Aaos ( =) + 7y
O Z g
O
.
ne
5.4
I (0 or -2—9,2) =1 ( )

"Thus according to equation 5.4, the centre of a w-fault (

and other points for which t=nf{o/2) should have the same

o)
s

intenéity, independent of thé crystal thickness. However,
the 2%/3-fault should show intensity modulations (with
thickness) bethgn 3/4 to | (assumingql to be the 1ncident
intensity). In the /3 case the same intensity modulationg
in the Sfacking fault fringes are present but 1in this cése
the modulation is much stronger, between 1/4 to I. Therefore
the behavior of the stacking fault fringes the thickness
of the crystal is increased for the three different types of

stacking faults (I,, 1: and E} can 'be qualitatively

understood.
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5.6 CONCLUSIONS

In a FCC material the basis for determining the nature
of stacking faults depends on strdng anomalous abéorption
being present (see, for example, Hirsch et. al. 1977).

In HCP cobalt, when the commonly occurring (1 0 0) set
of systematic feflections is excited and 080, ,50,=0.0 (1. e.
the reflection (1 0 0) satisfies its Bragg condition),
anomalous absorption is almost absent. The stacking faults
obtained under these diffraction conditions are therefore
symmetric with respe;t to the middle of the foil both in the
bright and dark field cases. Furthermore, the phase angle a
obtained for both types of intrinsics (I, and 1I;) is the
same and therefore‘ the same 1mage contrast is obtained.
Clearly, the identification of the nature of these defects
under these particular circumstancgs presents Sserious
difficulties. On the other hand, when the (0 0 2) systematic
set of reflections are excited the phase angle a obtailned
for the different types of stacking faults are 2= or 0O, and
therefore they are 1invisible and nothing can be learned
about theilr nature.

The work presented in this chapter leads to the obvious
conclusion that when the identification of the nature of the
stackinhg fault in HCP cobalt 1s required, the best
systematic sef of reflections which can be used is the (1 -1
). It {s important to point out that these results are more
éeneral and can be applied to different HCP metals. Also the

same properties presented &n this chapter for the (1 -1 1)

4
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set are found in other systemfitic sets of reflections which
are in the same class ( as defined by Jones (1978). ), (like
for éxample (01 -1), (=10 1)). Therefore there is a number
of other systematic sets of reflections commonly found in
HCP materials which can be wused 1in the identification

procedure.



CHAPTER VI

DYNAMICAL THEORY OF TWIN BOUNDARY CONTRAST INCLUDING EFFECTS
¥

OF COMMON REFLECTIONS

6.1 INTRODUCTION

Past investigations, (see for example, vitek 1970,
Bristowe et. al. 1975, Yamaguchl et. al. 1976.), based on
computer‘simulation_ of twin boundary structure assuming
empirical interatomic potentials, have shown thét a relative
translation of one crystal with respect to the other may
exist (see Fig. 6.1). A problem of considerable Interest to
the ﬁaterials scientist 1s the development  of an
experimental method for the determination of the rigid body
translation vector ; for twins 1in various materials. The
method first proposed 1in ‘the‘li;erature was based on the
assumption that only common reflections are excited (see
Ppond et. al. 1976, Pond 1978.). In this method theoretical
images of twin boundaries can be obtained by wusing the
conventional form of the dynamical theory applicable to
stacking faults whefe the phase factor a s taken to be

+ o -
2rg.T (where ; is the diffracted beam vector and T is the
rigid body translation vector). However, as was indicated in
chépte: 3;' non-common and forbidden reflections are, in
general, also excited when a twin boundary 1is preseﬁy. These

oy
reflections can have a significant effect on the contrast in
<eiectron microscope images of twin boundaries and it is,
therefore, clearly desirable that their effect be‘taken int6

- o
. <

108
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Eftboundary...a)

Figure 6.1 Two possible structures for a twi

~

symmetrical boundary and b) the displaced boundary. The

the

rise

_broken lines denotes the reflecting plangs which give

3

to common reflections.
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. »
step in‘developing a theory which would take all three types

of refleétions into account was taken by Sheinin and Corbett
(1976) ) ;ho presented a theory of twin boundary contrast in
which non-common and forbidden reflections only couid, be
taken into account. Their theory was based on the concept of
dynamically coupled sets of diffrﬁcted beams, each set being
associaééd with a reflection incident on the lower'gwih from
the upper matrix (see Fig. 6.2). An extension of ‘the theory
of Sheinin and Corbett which also permits common reflections
to be taken into account was first given by Sutton and Pond
(1979), who noted that contributions to the diffracted beam
amplitude in the twin may arise from a number of diffracted
beams in the matrix.'Sutton and Poﬁd took this into accounti
through a linear superposition  of eich of these
contributions.

The method of Sutton and Pond'has been <criticized in

the literature from a number of points of view. Gomez et.

al. (1980), for example, have pointed out that the method of

Sutton and Pond involves the diagonalization of one

dynamical matrix for each beam incident dn the twin from the

-matrix crystél. As a ‘result’they feel that the method of

Sutton and Pond is notféuiﬁable if a large number of beams
are'.Eaken into account or if more than two cfystals are
conside;éd. In addition Gomez'et..al. ‘have suggested  that
thereé aré errors in the dynamical matrices of Suttén and
Pond (1978) whigh becomelmore serious as the nUmbermof beams

taken into account becomes smaller. Gratias and Portier
: = .

-

1
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(1980) héve madewhat appears toc;be‘ a more fundamental
criticism of the method of Sutton and Pond.. They indicate
that when the diffracted sets in the théory ofl Sheinin and.
Corbett' are used to describe the case where. common
reflections are taken into account, as was done by Sutton
and Pond, some dynamical couplings are ignored. They argue
thag the method of Suttoﬁ.and Pond could be extended to thév
coéion reflection case but wduld require that the diffracted
sets bé différently defined. In preférence‘to this‘ approach
Gratiass and Portier have chosen to ~derive ;heir own
fofmula;ion af the’ theéty. based on a Darwin equatibn‘
apprdaéh; .

~ The §itua£ion »whicﬁ? at the present confronts the
electron microscopist who is attempting to understand the
image contrast obtained from twin boundaries can  be
summarized as folldhs: Ji. If no commdn reflections are
strongly excited then no difficulty appears tb be present.
The theéry, of Sheinin and Cofbet;;‘which is applicable in.
this case , has not been disputed in the literatufe aﬁd has
‘been\ verified experimentally (see for examﬁie Sheinin et.
al. 1976, Cd:bett‘et. al. 1976.). 2) If common reflections
are to be taken into account, the electron miéroscopist is
-éonffon;ed with twé quitéﬁdifferent forms of the theory (see
: Sutton ét, al. 1978, Gratias et. ai.v1980.5.'Ehe question as
‘to whether or ﬁot tﬂése two forms of the theory are
equivalent or; in féét, whether‘one‘form is corréct while
tﬁe pther is incorrect rémainé. It 1is -evidently impdrtant

S
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that this situation be clarified. In order to acomplish this
we first noted that a form bf the theory of twin boundary
contrast inEluding effecté of -common reflections and based
on a Bloch wave approach has not been presented in the
literature. Therefore, we-undertook to derive a form of the
theory applic;%le to this case which 1is based on this
approach. The results obtained are presented in the next
seﬁéion, In following sections, these results are compared
to the methodgj-of Sutton and Pond 1978), and Gratias and

‘Portier (1980) and some conclusions are drawn.

4
|

6.2 DYNAMICAL THEORY FOR TWIN BOUNDARY CONTRAST

]

' 6.2.1 BLOCH WAVES IN THE TWIN

The object of fhis section is to present a theory which
permits the calculation of diffracted beam intensity at the
bottom surface of_thé twinned crystal shown in Fig. 6.2. In
order td carry out such calculations the wave functions
describing electrons in the twin must first be known. These
can be obtained by.fizst noting that in the case of a single
érystal ' specimen there is~aldiffracted beam associated with
each reciprocal lattﬁCe‘vectot. In the twinned Frystal ‘the
situation 1is more complex since any reflection in:the-twin,

.-

r,, can 'bé"obtained by the diffraction of a matrix .

‘,reflectigh-by ﬁhe twin crystal. This can be exprfegsed in the

following.way:

N
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Upper Surface

Matrix tm . (
________________ Yo oooo........_IwinBoundary
Y
Twin I ~ Lower Surface

Figure 6.2 Séhematic diagram showing a twin boundary in a

_specimen of total thickness t. The-twin boundary is shown in

a configuration . appropriate to the column Approximation’

being made.
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K j m n (6.1)

- ,

where gm is a reciprodal lattice vector in the coincidence

-

lattice, h, 1is a reciprocal lattice vector in the twin and

-

g, is a reciprocal lat?ice vector in the matrix. Since any

reflection 1in the twin can be represenﬁed by eqg. 6.1, 1t

follows‘that a Bloch wave describing electrons in the twin
. s+ o+ o

should have componenté in the directions g;*Qm*h.. The most

general function: which satisfies.,these requirements and

still retains thé‘essential characteristics of a Bloch wave

-

is given by:

(6.2)
(1) L(1) r Lt (1) -
bt o= expl2mi(k +g.)r] Z Z C§ +5 +h exp[ZWL(qm+hn)'r]
J m n j m n

" where the sum over m is the sum over all reciprocal lattice
veétofs in the coincidence lattice and thé sum over n 1is thg
sum over all reciprocal lattice vector in the twin. It 1is
important to, note that the doubie sum 1in 6.2 has the
periodicity ' of the ,tQin lattice since gm 1is also a
reciprocal lattice vector in the twin. 6.2 is therefore an
acceptable Bloch wave for the twin since it consists of a
plane wave:

(%)+* (6.3)

exp(27i (k gj)~?1

.
¢

.

modulated by a double sum which is a function having the

periodidﬁty of the twin lattice,



6.2.2 bYNAMICALﬁY COﬁPLED SETS OF DIFFRACTED BEAMS

It is next of interest to ask what diffracted beams are
generated gy the various Bloch wave components in 6.2. fhg
answer to this question' can best be seen by referring to
Fig. 6.3 and by considering a particular matrix reciprocal

- ’ - -

‘lattice vector, g,;, in 6.1. For example, if g,=g, it caé
readily’ be seen that the reflections corresponding to
;,+;m+;h (where m, n can‘aséume any value) must lie in tﬁe
set defined by the net of dotted lines. Further, it can be
‘seen that dynamical coupling gxists between all reflections
iq this set and that theée 1s no dyﬁamical coupling between
neflec;ions in this set. with any reflections outside the
set. Clearly, therefore, a particular' matrix reciprocal
lattice vector, ;j, in 6.2 definés a Bloch wave which is
associated with only one dyhamicarff coupled set. Further it
shoulé‘ be noted that the same dynamically coupled set 1s
defined regardless of which reciprocal lattice vector in the.

-+ - -

matrix, g;, in that set is chosen. Thus for example, g;=g,
-+ -

or g,=g, in Fig. 6.3 define the same dynamically coupled set

of reflections.

6.2.3 DYNAMICALAEQPATIONS FOR THE TWIN

- The " usual method'for‘deriviné the dynamical equations
is to substifsfé the expressidn for the Bloch wave into the
Schrodinger wave equation. The dynamical equatiéhs are then
| obtained b% equating- the  coéfficients ,ofr‘éach ajfferent

. 4 . . N .
exponential term to zero. When this procedure is adopted by

L]
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o a g, eg, % Daq ® g5
oh, +f, +f5 ohy +13
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ohy * + ohy +
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B b o B q, Q

Directly Transmitted Beam
Non-common Matrix Reflection
Non-common Twin Reflection
Common Reflection

Forbidden Reflection

4+ a0 006

.. B « ;:
Figu’re.6.3"""5':cfhematic.diag.ram showing the diferction pattern
obtained from ~a2 twinned crysAtal duch as the one shown in
Fig. 6.2. The dotted lines indicates those reflections which

.~ are in the couplec set.
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~

substituting 6.2 into the Schrodinger\:ave equation a number

- -

of exponential terms involving differ¥nt gm and h,, but
whose argument are in fact equal, are obtained. This arises
because there are, 1n general, a number of Bloch waves

components in the direction of a particular diffracted beam,

-

r,, corresponding to different combinations of coincidence
. J .

- -

lattice and twin retiprocal lattice vectors, Gm*th,. ASs a
result when 6.2 is substituted into the Schrodinger eguation
the dynamical equations take on the form: -
. (s : (1) (6.4)
2 —(i) =2 (1) + Z U C -
x° - (k +r) 1 C L “h. Tr,hy =0
( K 'rK ]#0 3 K ]

1

where r, is a particular reflection in a dynamically coupled -

(1)

set and Crk. is defined by:
. (1) - (6.5)
C£13.= Z Z C§.+a +h ' P
K m'n' j "m' "n'

The primes in 6.5 indicate that m and n take on only- those

- - E

values for which g;+Qm*ha.=r\.

The usual approach can now be used to cast 6.4 in the.

form of an eigenvalue equation:

Y
. (6.6)

A S_:(1) = v g(l) ’

: . . 7 L
where C''’ is a column vector whose .elements are Lrl) ,
y O =kt )-K,, 2 iS\ﬁhe direction perpendicular to the upper

RN . .

surface in ?ig. 6.2, A is a square matrix whose diagonal

A,. =S_ - R iati
i3 s . 3 rj’ 1s the deviation

parameter ' for the reflection r; and 'is the j-th

el¥ments

tgflection in the dynamically coupled 'set 'deﬁiﬁed by a
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-

matrix reciprocal lattice vector, g;. The off-diagonal

" elements of A are given by A, = Ux _7. /2K , where it
— - ” 5 ]k r]"’r R

K
should be noted that r,-r. is a reciprocal lattice vector in

the twin. ' L

6.2.4 DIFFRACTED BEAM AMPLITUDE

Anb\exéression for the diffracted beam amplitude can be
obtained by writing down the total wave function for all
electrons inf the dynamically coupled set defined by a matrix

&

&

reciprocal lattice vector, g;, as follows:

(1) .

- i) f M (1) - > > ] (1) .2 ++ +g‘ ';
¥ =Z X(l)b(l) = Z Z Z X Cg,+q +h expl27i(k ‘+gj i n). )
i imn j 'm n
(6.7)

where X‘'' is the excitation coefficient of Bloch wave b,

-

The diffracted beam ampl{;ude for a reflection r; can be

. obtained by adding all~tHe terms in 6.7 which involve wave
-~ . '
_ ,

vectors - in the 5irecti99_ of this diffracted beam. This

gives: ; ‘;“/i/‘~ | .
67 = ] x (1) céi{ exp[2ﬂiY(i)Z] | (6.8)
j 1 3 ;

4 o -

where the phase factor exp[Zﬂi(K+r,).r]I which  appears
outside the summation has been neglected since it dogs'not.
affect diffracted. beam intensity. ‘In bfder to obtéin» an

expression for the excitation coefficients, X''’ a procedure
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similar to the one adopted in chapter 2 can be used. This

gives
' (6.9)
¢ =C {exp(lﬁlq(l)z)}g ,
|
where ® is a column vector whose elements are ¢, X 1s a
- )
column vector whose elements are X''', {exp(27iy''’z)} 1s a

diagonal matrix whose elements are exp(2riy'''z) and C 1s

square matrix whose columns are cr . Premultiplying 6.9 by
J
C-', then by {exp(2wiy‘''’z} ' and evaluating at z=tg (see

'

Fig. 6.2) gives:

(1) VAL | + (6.10)
X = texp{-271 SRR B(Lm)
X m
vr
) (l) \(l) o+ (6 ]])
P sexplm2rin Tt o bg g
and )
- _ . )
c (t) = . L g (t ‘) Cq(l C : exp(_)'my( t. ) (6 12}
- 1 P t ' ~

where the prime in 6.11 and 6.12 indicates that. the

—» » F ‘)

summation is over all g, in a particular dynamitaiﬁjﬁcoupled
[

set and t is the total thickness of the twinned crystal in

Fig. 6.2. In order to take a»lpossible translation of the

twin with respect to the matrix into account the lattice

- - - -
potential in the twin, V(r) can be writen as V(r-T) where T

% the body translation vector. As a result Uy in 6.4

: 2 j
becomes "
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~ - 6.13)
Yy exp(-2+1 T-r) (
]
//
and - - becomes
r. - h,
K J
e - (6-]4)
Cx _~ exp(2-1 h -T)
rK hj j
When this is taken into account in 6.10, 6.12 becomes:
(6.15)
N (1) . (1) - co (1) L >
o= (t) = d (tn) C C exp(2niy t ) exp(271 a.,°T
rj i 2 gQ. m q)z'. fj t X

where the phase factor exp(—2n§3.iﬁ, which appears outside
the double sum, has been neglected since it does not affect

diffracted beam intensity.

6.3 COMPARISON OF BLOCH WAVE APPROACH WITH METHOD OF GRATIAS

AND PORTIER

The approach of Gratias and Portler (1980), as noted in
the introduction, is based on the wuse of the Darwin
equations. The basis ggr“this‘foqyulation of the,dynamicgl
theory is the incorporation of a,dynamical matrix in a set
of differen}ial equations (see Howie et. al. 1961, Gevers

W
1963.). Except for a factor -of two, ;he elementé of this
dynamical matrix are. of precisely the same fofm as the
elements of the A-matrix in the eigenvalue formulation of
the- dynamiéal theory (see sgctiqn 6.2.3 in this chapter ).
The approach adopted by Gratias and Portier in deriving the
form of this matfix‘ for tge twin crystal 1n Fig. 6.2 was

.= N

based on the fact that any reflection in the twin, I/ can
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be written as:

\ -

where, as in section .6.2 of this <chapter, g, 1s any

reciprocal lattice vector in the matrix and h, 1s any
reciprocal lattice vector in the twin. Since the
of f-diagonal elements of the dynamical matrix in the Darwig

approach are the same, except for a factor of two, as those

in the A matrix of the -eigenvalue approach they can be

written as N
U=+ + /K = (gﬂ_e_) v /K | (6.17)
r. -r. 2 r. - r.
1 ] h i j
where the requirement that V; _ ; must be a Fourier
i j ‘
coefficient of the lattice potential 1n the twin must be
met. However, if r,, r, are defined as in 6.16 above, then
r.-r, is neot necessarily a reciprocal lattice vecter in the

twin. Gratias and Portier overcame this difficulty Dby
defining the off-diagonal elements of their dynamical matrix

as

] (6.18)

where

and
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S{(f.-t), R 1 =1 1f (£ -r) =n (6.20)

Using this approach, Gratias and Portier were able to write
a single dynamical ﬁatrix for the twin as opposed to one
dynamical matrix for each coupled set 1in the .Bloch wave
approach (see section 6.2 in this chapter). However, their
dynamical matrix has zeroes embedded in it for those
off-diagonal elements for which 6H;i j;j],gnl equals zero.
An important point noted by Gratias and Portier is that 1f
the correct order is chosen for the reflections taken into
account in the twin, then their dynamical matrix can‘be cast
in block or sub-matrix °~ form. In order to illustrate this
point and to see the relationship between the method of
Gratigs and‘Portier and the Bloch wave apprpach described 1in
section 6.2 , a specific example will be considered. Suppose
for example, that' the diffraction pattern obtained from the
twinned crystal 1s as shown in Fig. 6.3 and that the
following eight reflectiops are to be taken intoraccount
- - - - - -~ = - - - - -~ - - -

to=0, ry=h,, r:=q,, ry=h; , r.=g,, rs=f,, re=g, and r,=f,;.
1f the reflectibns are taken in the order given above, then
the dynamical matrix in the method of Gratias and Portier
becomes the matrix shown in Fig. 6.4. It can be seen that
this dynam;cal‘mat:ix is indeed in block form énd as noted
by Gratias and Portier each sub-matrix is associated with a-

particular dynamically coupled set. An 1important polint to

note 1s that the‘choice of the order of the reflections used
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Figure 6.4 Gratias and Portier dynamical ;,natrix showing the

sub-matrices associated with the dynamically coupled set of

reflections.
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in defining the elements of the dynamical matrix is
important if the final result is to appear in this form.
Thus, in the example above, the first four feflections must
ge chose from one dynamically coupled set and the second
four from another in order that the matrix in Fig. 6.4
appears in block form.

A comparison of the method of Gratias and Portier with
the Bloch - wave approach described in section 6.2 of this
chapter can now be ﬁade. As noted in section 6.2.2, a given
choiﬁe of ;jkin a Bloch,wave in the’twin (see 6.2) defines a
partiéu}ar dynam{;ally coupled set. The set of dynamical'
equatiéns 6.6 obtained by inserting this Bloch wave into tge
Schrodinger eQuation must, -therefore, also be associated

' wiﬁh that particuiar set. Thus, for examble, the dynamfcally
izzéled set dgfined by the choice g;=g:-is indicated by the
n of dotted lines in Fig. 6.3 and the four reflectiohs g,

f ;3 and ;, reside in_this set. From 6. these reflections

\c;n be written as:

ca - s 7 4 (&, +h) L
r,= g, + (g *0 f,o=9p V4T (6.21)

6
Using these reflections to define the elements of the A’
matrix in 6.6 gives a matrix which is identical except for a
factor .of two, to the lowef sub-matrix in Fig. 6.4. It can
be shown, as a result of this equivalence, that - the method

of Gratias and Portier and the Bloch wave approach presenfed
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in ' this chapter give identical values for diffracted beam
agplitude. This can most éasily.be seen by néting that, 1in
order to calculate the fntensi;y of a'pafticular diffracted
beam Gratias and Portier need only® to diagonalize the
sub-matrix in which this beam 1is taken 1into account,
Precisely, tha §ame matrix, except for a factor of two are,
thetefore, obtained from the two methods. When this factor
of two is taken 1into account in the arguments of the complex
exponent1als which appear in expressions for dlffracted beam
amplitude, it can be shown that the two methods do, in fact,

give identical results.

6.4 COMPARISON OF. BLOCH WAVE APPROACH WITH METHOD OF SUTTON

AND POND : . L

The method of Sutton and Pond (1978), is based on the
use of the expression foridiffracted beam amplitude given by
Sheinin and-Corbett'(1é76), which was deQeloped for the case
in which coﬁmon reflections are not taken into account.. This

expression can be written as:

a8

- . : (1) (1) (1) (6.22)
Tew (k) = 0= (£ ) ] C.TC exp(27iy £, -(6.22)
Ty gi' ™o Ju Tk , -
‘where ‘¢;l ' oa are the diffracted beamv‘amplithdes
| K ¢ - - ¢ .
of the reflections r, and gq and "', Cél) are
' K

'eigenvalues and elements of ‘eigenvectors obtained by

diagonalizing an A matrix whose elements are -0

)
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In 6.23, the reflections used to define the elements of the
A matrix are given by

- L7 LN ) : (6.24).

where N, is the number of reflections taken into account 1n
- AN

the twin and the reflection r, in 6.22 is given by:

(6.25)

where n' is a particular valué of n; In order to take common
reflectiohs into account Sutton gnd Pond noted that _ there
will be other possible ,éombinatidns of matrix and twin
reciproéal lattice vgctorS (i..e. other possiﬁle values of
+
1' and n' in 6.25), which give the same r,. They argued that
each of Ehesé possible combihations' will result in Q.
contribution to the diffracted beam amplitﬁde similar to-the
one, given in .6.22 and that the total diff;acted beam
~amplitude - can, therefore, be obtained by superimposing eéch

of these contributions to give
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o () =] [ ¢ (t ) o) ¢ e, )
K i £ 9 9ir Ty FLes tt] (6.26)
It can be seen that this expression is, in fact, identical

in form to 6.12 in this chapter and it ig clear, therefore,
that the method of Sutton and Pond will give the same values
for diffracted beam amplitude as the method presented in

this chapter if the eigenvalues 7''’' and eigenvectors C''’,

used in evaluating 6.12 and 6.26 are the same. The an;:er to
this qguestion is not immediately obviousll The reason for
this lieg in the fact that the eigenvalues and eilgenvectors
used to evaluate 6.12 were obtained by diagonalizing a
single A matrix whose elements were defined by the
reflect;ons in a particular dynamically coupled set. On the
other hand, the method of Sutton and Pond requires a number
of A matrices to be diagonalized, one corresponding to each
value of 1' in 6.26. It was assumed pg Sutton and Pgnd that
each of these A matrices would be different giving different
eigenhvalueg and eigenvectors. If\this aésumptiom 1s éorrect,
then the method of Sutton and Poné and the method presented
in this chapter would indeed, gi@e different results. It can
be shown, however, that this assumption is,. in fact, not
correct, as can be seen from the following argumeént.

Consider two sets of values of 1', n' which satisfy 6.25,

namely p, g and p', q@'. From 6.25



128

5 PY 1——; = E:: , 4+ }'—'l. , (6.27)
p q. P g
and
s s g - (6.28)
- , = h , -
° " % a' " g
6.28 can only be satisfied 1if Er - ; , is a reciprocal
. - 2 \
lattice vector of &be coincidence lattice so that
> = . 5 (6.29)
95 = Ip n

The two sets of reflections which define the A matrices
corresponding to 1'=p, l'=p'- can now be obtained from 6.25

and 6.29 and are given by:

= g " = (6.30)
(r ) _, gp, + hn (g =1, N)

and
- g (6.31)

=3 o+ (q_+*h) n=1, N)
(x ), = 9, (q, * ", ( t

In comparing these two sets of reflections, it 1s important

to emphasize that Gm 1S a reciprocal lattice vector cof the

coincidence lattice and so must also be a member of the set
. : -

of reciprocal lattice vectors of the twin h,. The sets of
reciprocal lattice vectors h, and (;m+gn)_in 6.30 and 6.3
are thérefcre, identical if n is allqyed to range over all
possible values. As a reéult the two sets of reflections

giQEn by 6.30 and 6.31 are identical and, therefore, the A

: . % : : A
matrices which these sets of reflections define must also be
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the same. These arguments can easily be extended to all
values of 1' in 6.26 léading to the conclusion that, 1n
order to evaluate this expression, only a single A matrix
has to be diagonalized. In addition, the discussion in
paragraph 6.2 indicates that the sets of reflections
defining this A matrix,\eyd given by relationships such as
6.30 or 6.31, are all members of the same dynamically
‘coupled set. It can finalfy be concluded, therefore, that
6.12 and 6.26 will in fact give identical results and that
the method of Sutton and Pond is _completely equivalent to

the method presented in this chaﬁger.

6.5 DISCUSSION AND CONCLUSIONS

The work ’presented iﬁ this chapter has shoﬁh that the
methods for f&aking commqn reflections info account 1in
calculations of diffracted beam . intensity at the bottom
sur face of a twinned <crystal, developed independently by
Sutton and Pond (1978), Gratias and Portier (1980) and in
this cﬁapter are completely equivalent} It should be
emphasized that the analysis in paragraph 6.2, 6.3 and 6.4
which has led to this conclusion is based on an' examination
of general forms of the theory‘involving aqiinfinite number
of beams in the twin. It is, of course, evident that one of
the central problegs which mﬁst be addressed before any
practical calculation of image contrast can be undertaken is

a determination of which reflections in the twin should be

taken into account. The procedure involved in making this
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determination is more complex that ,the ° usual N-beam

approximation j in +he case of a single crystal and

problems can |} pan incorrect approach is adopted. In

order to 1 fhis point, one approach which might be

-+

adopted{ ‘hoose matrix reflections 9o and
©otwin réi ;Ah‘ which are considered important and
should bé( Fnto account. Additional reflections which
should be ;h into account in the twin would then be of
the form . If this procedure is adopted tﬁen the A
matrices fesponding to each value of l’lin'6.26 will

indeed be d% krent as suggested by Sutton and Pond, and the

critical conjints about their method which were referred o

in the introdu®ion of this chapter, can be _ustified. This

-

procedure is, however, incorrect for the following reason.

It has been ash d that if 5 and h, are strongly

‘ 4 P
excited refls NS in the matrix and twin respectively,
then g +h is also strongly excited reflection.

This. of course, needn't necessar:ily be so since beth

-

- ,
gp and h, can be close to the Braég condition while
at the same time’ 5 +'§i' may be far from the Bragg
P o ' ‘

condition. The corollary of this also follows, namely that

- -+
gp.+ N: may be a strongly excited reflection in the twin

i
S ‘
even if h, is not. It is clear from these remarks that great

caution should be taken in»choosing the beams to be taken
into account in the twin if problems of the kind referred to

>

in the literature are to be avcided.
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CHAPTER VII

\

EXPERIMENTAL EVIDENCE SHOWING THAT THE USE OF SYMMETRICAL

LAUE DIFFRACTION CONDITIONS IN THE DYNAMICAL THEORY OF

ELECTRON DIFFRACTION CAN GIVE SIGNIFICANT ERRORS IN

U@EFRACTION CONTRAST CALCULATIONS

7.1 INTRODUCTION

‘:Calculations of contrast in electron microscope 1mages
of crystals have, in the past, been based almost exclusjvel}
on the assumption that symmetrical Laue (SL) diffractioﬁ

|

conditions(see chapter 3 for a detailed discussion), obtain.

" The basis for this approach has been the widely accepted

/
view that the Bloch waves excited under non-symmetrical Laue

(NSL) diffraction conditiqns’are not significantly different
from those in the SL 'casev*for the range of diffraction
conditions normally encountered in electron micrbscope
examination of“érystals. This view 1s supported by the work
of whelaq‘and Hirsch (1957) who showed,. on the basis of the
two-beam theory, that for angles up to about ‘80°{ the
inclination of a stacking fauiﬁ does not have a significant

.
Y

effect on diffracted beam inténsity, ‘More recently. Saldin

et. al. .(see ’Saldiﬁg et. al._1978.)1émpioying an approach

based on the Darwin equation formulation of the dynamical

theory, have concluded that over a. range of angles of

inclination of the incident surface up to about .70°, only

W

small errors are involved ‘in the use of SL diffraction

conditions. Sheinin and Jap (1979), however, have shown that

131
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the errérs involved in calculations of image contrast based
on the assumption of SL diffraction ~qonditions increase
éignificantly with %ncreasing_ devigtion from the Braég
condition of the lowest order reflection in the systematic
set excited. .Thus, for example, they found that for weak
beam diffraction conditions and an angle of inclination of
tﬁe crystal surface of only 30° significant differences in
SL and NSL dislocation profiles were obtained.

On the basis of'theorétical considérations, therefore,
there- seems to.be a strong indication that the widespread
use of SL diffraction -conditions in calculations of the
contrast obtained in electron microscope images of crystals
can give rise to serious errdrs. As yet, howevéf, there has
been no experimental eﬁidencé presented 1in the literature
thch supports this view. The m@in purpose of this chapter

is to present such an.evidence. *

o

7.2 THEORETICAL BACKGROUND .o

% .2.1 DYNAMICAL THEORY FOR THE NSL CASE : .

- Q form of the dyhamical theory of electron diffraction

t

applicable to the‘ NSL C?Se, has been ?epo;ted in the

literature by Spencer and Humphreys (1971) aadlgheinin and

"

g

'Jap.(1979).,This form of the dynamical theory can gt?e rise

to significant e:rors;under‘qertain diffraction conditions
. H ’ \ ’ '.’. ® N

since the high energy approximation 1is employed 1in its

. ’ hid .

derivation (see Sheinin et. al. 1979.):. In a recent paper

[
o

. v
. ©
.
—-f—“‘ \ . . . . ) /
. . . o
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Kim and Sheinin (1982) have presented an exact form of the
theory which overcomes this difficulty. Their form of the

theory can be expressed as an ejgenvalue equation:

A k‘(i) _ (1) L‘(1)
- ;e ! e
where
. (7.2)
Y(1> - \\l)n _ k(x) o
and
[y [ cC(l'>
) N S \
€ D 0 me T (1) (7.3)
—_ = \_
and also_
x(l) BT Y(I)I) C

I is the unit matrix, O 1s the null matrix and the elements

of the D and H matrices are given Dby:

D = = -g~ -2K-g > D =U (7.5)
ag Qg 9 AL an 3-h

1 Byt b

aﬂd

1t should be noted that H, I, D and O are NxN matrices and Ag
is a 2Nx2N matrix where N is the number of beams taken into

account. In the above expressions Ugr{\& and k '  have the
- <

same meaning as those defined in chapter 2. C'' ' 1s a column
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vector containing the Bloch wave Fourier coefficients C' g4
A
and T a unit vector normal to the entrance surface. (see

Fig. 7.1 and 7.2). 1t should be noted that at the symmet:y

orientation:

-~
O

and

P = 2(K cos - sint)

7 3 DIFFRACTED BEAM INTENSITY AT THE BOTTOM SURFACE OF A

WEDGE CRYSTAL.

The diffracted beam amplitude ¢g at .the bottom suriace
of a wedge crystal can be Obtained from the total electron
wave function in the crystal by summ:ng all terms involving

£ £ & -

wave vectors in the direction ol t+he di1ffracted Dbeam

-~
)

give:

€
i
!
@]
@

where C-', is the i-th element 1in tne first co.umn ©0f the

inverse of the matrix C and the coiumns of C are the columns

-

vectors g<“‘.‘Rb is defined in Fig. ~.7 and the phase factor
5> A - F
[27i(kK+g).r] has been neglected in 7.°1 since it does not

affect diffracted beam intensity. From Fig. 7.1 and ~.2 it

"

can _be seen that
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Figure 7.7 Schematic drawing cf a wedge crystal. X 1s

-

rhe incident wave vector, n 1is the surface normal and © 1is

-

the angle petween n and the Brillouin zone boundary.
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7.4 ANALYSIS OF IMPORTANT BLOCH WAVES CONTRIBUTANG TO

DIFFRACTED BEAM INTENSITY AT THE SYMMETRY POSITION.

In order to carry out an experlment which would provide
s test of the theoretical differences :in image <contrast
obtained in the SL and NSL céses,‘su::able dilfraction
conditions must first be chosen. To this end an analysis of
the {mportant 3loch waves contributing o diffracted beam
intensity has been carried out for: both cases and <for a
variety of diffraction condit:ions (the importance of.a‘Bloch
wave has been determined from <the value of Cl‘.C‘g in

7.13). Systematic creflections only were taken 1nto account

in the calculations and the crystal was taken to be oriented

at the symmetry position. In the SL case, assuming that
there are only 3 important Bloch waves, the following
relations hold: C-',= C''¢ (i=1, 2 and 3) Cg'J=C_;g (i=1, 2)

and C‘;’=—C‘j§. In addition C? 4=0 and therefore in this

case 7.13 gives I, =I_g . On_the other hand, in the N3L
case at the symmetry position |C“é|¢]c"éi (i=1, 2 and 3)
and therefore I g4 rl_gq - These considerations suggested
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Figure 7.2 Schematic drawing of the dispersion surface 1In
the three beam approximation. The wave poirts obtained in

the SL and NSL cases are indicated by the open and - solid

circles respectively.
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that a comparison of thickness fringes in the g and -g dark
field images obtained at the symmetry position might provide
a goéd illustration of the differences in image contrast
obtained in the SL and NSL cases.

In order to choose an inclination of the incident
surface for which significant differences between 14 and
I_g might'bé obtained, values of C".C"g and C“.C‘;é have
been plotted as a function of ©, the angle between the
~surface normal and the Brillouin zone boundary (see Figs.

7.1 and 7.2 for a definition of ©). Calculations have been
carried out for the (0 2 -2) systematic set in silicon where
the reciprccal lattice veckor g was taken to be to the right
in Fig. 7.4. fhe accelerating voltage in the calculations
was‘ taken to be 150KV. Both three beam (including
reflections o, g and -g) and many-beam calculations
(including up to 13 systematic reflections) have been
pe;formed and similar resuits were obtained. The results

shown in Fig. 7.3, indicate that the contributions of Bloch

wave 1 to the intensities I g4 and I_g are very nearly the

)

s

same and virtually independent of ©. At 6=0 (the SL case),
the contributions of Bloch wave 2 to Ig4 and I_g are aléo
‘the same w?ereas the contributions of Bloch wave 3 to both
diffracted beams is zero. Clearly therefore the SL case can
be described in terms of only two important Bloch waves and
thickness fringes should, as a result, be sinusoidal in.
character. As © increases there is no appreciable change 1in

the contributions of Bloch waves 2 and 3 to I_g and,
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Figure 7.3 Excitation amplitudes 'C“C‘h')plotted as a function
of © for'silicon at the symmetry position of the systematic

? . ) .
Jet. The circles correspond to h=-g and the crosses to h=g.
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therefore, thickness fringes in the -g dark field 1mage
should be similar in both the SL and NSL casgs. On the other
hand thickness fringes in the g dark field 1image can be
expeéted to be quite different in the two cases. This can be
seen from the faqt that the contribution of Bloch wave 2 to
Ig decreases with increasing © while the opposite 1s true
for Bloch wave 3. At ©=60°, these contributions become
equal. There are, therefore, three important Bloch waves
cont;ibuting to Ig under these circumstances and thickness
fringes should be complex in character.

7.5 EXPERIMENTAL RESULTS

7.5.1 SPECIMEN REQUIREMENTS

The theoretical analysis in the previous section
indicated that, when systematic reflections only are
excited, thickness fringes in the SL case are identical 1in g
and -g dark field images, provided the crystal 1is érientea
at the exact symmetry position. This analysis also indicated
that these fringes should be s&gnificantly different 1n the
NSL case if g is chosen to be tﬁe (0' 2 -2) reflection 1in
silicon, 1if &, the angle between the surface normal and the
Brillouin zone boundary is about 60° and if the accelerating
voltage is TSOKV.‘In order to carry out an experiment which
would determine if these differences between g a;d -g vdark

field images at the symmetry position are in fact obtained

in the NSL case, suitable specimens must first be found.
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Fortunafely, certéin types of silicon whiskers meet the
requirements outlined above. Detailed studies sarried out by
Wagner et. al. (1964) have shown that these whiskers are of
three main forms. The fir5t1§5 either a film or nodule like
deposit attached to the walls. éf the reaction tube. The
second form is a hexagonal needle growing in a (1 1 1)
direction with well developed {2 1 1} lateral faces and the
third form is a -twinned ribbon érowing in®a [2 1 1]
direction with {1 1 1} twinning planes parallel to the main
faces. A cross section of a needle like whisker, such a% was
in fact used in this investigation , is shown in Fig. 7.4,
from which it can be seen that © is 60° as required (the
widths of these whiskers are typically - of the order of
several microns). In addition the (0 2 -2) ﬁlanes are
) parailel to.-the (-1 1 1) axis of the whisker, thus providing
'the systematic set of reflections required for the
experiment. Also it should be noted that natural brittleness
of silicon makes it an admirable test specimen since strains
which might alter the form of the thickness fringes «can

easily be avoided.

7.5.2 EXPERIMENTAL PROCEDURE

The experimental procedure involved initially orienting
the whisker -so that the (0 2 -2) systematic set of
_reflections .in a (2 1 1) diffraction pattern is strongly
excited while the non-systematic reflections are only weakly

excited. In order to record images at the exact symmetry
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Figure 7.4 Schematic drawing showing a cross section of a

silicon whisker. The Bragg reflecting planes are (0 2 -2).

In this particular case the angle © Dbetween the surface

-

normal n and the Brillouin zone boundary is 60°.

A

IR



A
143

N

A\ -

position, .the whigker was first oriented so that a higher
order refleétion, such as (0 6 -6) was in the exact Bra%g
condition (as determined from the (0 6 -6) Kikuchi liﬁe
passing through the centre of the (0 6 -6) spot). Thg
specimen was then tilted through the required angle t;
orieﬁt the specimen at the exact symmetry position by usiﬁg
the high precision tilting stage mentioned 1n chapter 3. (0
2 -2) and (0 -2 2) da;k field images were then recorded and

densitometer traces showing the thickness fringes in each

image were taken.

7.6 COMPARISON OF THEORY WITH EXPERIMENT

Figs. 7.5b and 7.6b show densitometer traces taken from
g=(0 2“—2) and ;g=(0 -2 2) dark field images using the
proceduré describéed in section 7.5. It 1is clear, 1n
comparing these traces, that there are striking differences
in the extinction contours obtained in these two 1mages. In
the -g 1image. shown in Fig. 7.5b, it can be seen that the
fringes are of‘high contrast and that 9 fringes can easily
be seen. In the g image shown in Fig 7.6b, on the other
hand, only 6 fringes can be seen with fringes in thicker
crystal exhibiting contrast which is too Qeak to permit
‘detection.

In order to compare these results with theory,
calculations of intensity profiles for both the SL and NSL
cases were carried out. The theoretical calculations were

based on the theory outlined in section 7.2. In the
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Figure 7.5 a) Show the theoretical profile obtained by using
the -g=(0 -2 2) reflection. Calculations were carried out

for the NSL <case . b) Show thR experimental densitometer

tracget . fng to a).
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calculatiéns for the SL case (for which © is set equal to
zero) the intensity proffles for both the g and -g
reflections were found to be identical and differed in only
very minor respects from the profile shown in Fig. 7.5b. In
the NSL case © was taken to be 60° and again intensity
profiles for the g and -g diffracted beams were obtained.
.The results shown in Figs. 7.5a and 7.6a for the -g and g
diffracted beams respectively 1indicate that high contrast
fringes which are sinusoidal in character are obtained 1in
the -g dark field image. It is clear from this figure that
the first 9 fringes should be easily seen in the -g image, a
result whiéh is in excellent agreement with experiment. In
khe-g dark field'image, on the other hand, there 1s a strong
modulation in the.intensity maxima in the profile with the
result that the first 6 fringes exhibit high contrast.
Because of the strong modulation of the intensity maxima,
fringes in thicker crystal will exhibit poor contrast and as
a result only the first 6 fringes in the profile should be
detected. Again this result is in excellent agreement with

the experiment. ’

7.7 DISCUSSION

. The differences between thickness”frinées 1n the g and
-g dark field images which have been discdésed in the
previous section céh be wunderstood by considering the
characteristics of the Bloch waves which make important

contributions to these diffracted beams. As indicated in
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Figure 7.6 a) Shows the theoretical profile obtained by
using the g=(0 2 -2) reflection. Calculations were carried
out for the NSL case. b) Shows the experimental densitometer

trace corresponding to a). O
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section 7.3 and Fig. 7.3, the -g dark field 1mage can tZ a
good approximation be described 1n terms of two o 1mportant
Bloch waves, namely Bloch wave 1 and .. "hae thickness

fringes in this 1image will therefore arise from the presence

of a cosine term in 7.13 which has a perinad of
(k*' .-k *',) '. This extinction distance hnas a value of
236A, in agreement with the theoretical profiie in Fig

fiel

A PR

7 5a. In order to adequately describe the g dark

1mage, on the other hand, three 1mportant Bloch waves are

&

required, namely Bloch waves 1, 2 and 3. The nature of the

«

thickness fringes in this image will therelfore be determined

by the presence of three cosine terms in ~.1!3 with periods:
-1 SUE ) B
SO ES B PRt R BTN VRS
(kZ kZ 2 z z z
(7.14)

From Fig. 7.2, which shows a schematic representaz:on of tiae

dispersion surface 1n the reg:on of ~he symmetry pos:tion,
it can be seen that
’ ‘l A -1
-1 (1) (3) (L) (2) (7.15)
< -X )
(k(Z)_k(3>) (kz K ) (%, .

As a result the intensity profile for this diffracted beam

will be characterized by an extinction distance
approximately egual to (k‘'',~k'? ,)°' or 236A and the

intensity will be modulated in & manner Very simliar to

beats with the distance between a beat maximum and a Dbeat

N
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minlmum egua. to:

Both these va.ues are .n cood agreement with .the theoret.: N

profile 1n Fig. 7.oa.

7.8 CONCLUSIONS

)

I

in order to gain some 1nsight into q’g DOSsiDe

significance of the results obtained in this chaptgr for
rher materials, Similar thedrecical calculations to TnoOse

resented in section ~.6 have been carrcied out

e

0) and (1 1 1) systematic sets .n copper. Marked differences

between the g ~and -g dark fieid images at tne sSymmetr

position, s:imi.ar to those presented in section .6, were

found at a value of ©=30° for the (2 2 0) systematic set ancd

©=60° for the (1 1 1) systemat:c set. On the other hand, %or

T he (1 1 1) systematiZ set in si..con, sianifilcant
di‘ferences petween -he < anc¢ -g carck f.leld @mages at the

symmetry Desitlon were not obrained for va.ues of ©<60° and
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ing. voltages norma.ily used 1n electron

microscopy. It is clear from these results, that the errors
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which resulits when SL ciffraction con
describe contrast at the symmetry orlentation can occul over
a wide variety of conditions depending on the material anc
systematic set involved.

Finmally in assessipg the resu.ts presented in this

chapter ¢ s 1mportant to note that previous theoretica:

BN
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work (see, for example, Sheinin and Jap, 1979), has shown
that significant differences can be expecged 1f symmetrical
Laue diffraction condit:ons are used ta‘déscribe weak beam
images. The symmetry position cOrrespénds to a value of tge
deviation parameter which is closer to strong beam than to
weak beam diffraction conditions, thus indicating that
caution should also Dbe takén in the use of the SL
diffraction condition to describe images other than those

obtained for the relatively large values of the deviation

parameter required for weak beam 1maging.



CHAPTER VIII

EXPERIMENTAL EVIDENCE OF A BREAKDOWN OF THE COLUMN

APPROXIMATION IN CALCULATIONS OF CONTRAST IN ELECTRON

MICROSCOPE IMAGES OF STACKING FAULTS

%.1 INTRODUCTION

The column approximation (see chapter 3 for a detailed
di8cussion), has been widely wused in dynamical thgory
calculations of the contrast exhibited 1n electron
microscope images of lattice defects. The validity of this
approximation for weak beam diffraction conditions has been
brought into guestion in theoretical calculations of
dislocation profiles by the work of Howie and Sworn {(1970),
Humphreys and Drummond (1976) and Lewis and Villigrana
(1979). In a recent paper Jap and Sheinin (1981) have also
shown that the column approximation mayK?ot be valid when
calculating weak beam images of stacking faults. On the

basis t©f theoretical considerations, therefore, there seems

/ // ~

to be é.s;16hg indication that, under certain cilrcumstances,
the column approximation ié not valid. Direct experimental
evidence for a breakdown of the column approximation has,
howeveri not been presented in the literature. The purpose
of this chapter 1s to present‘such an evidence. The approach
is based on a comparison of éxperimental densitometer traces
obtained from images of staching faults in crystals of known

thickness . with theoretical non-column and column

approximation profiles.

150 «
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8.2 EXPERIMENTAL PROCEDURE

The experimental results to be presented in this paper

were obtained from images of stacking faults 1n FCC cobal:l
In order to carry out a comparison of non-column and column
approximation calculations with exﬁeriment, the following
information about thé .exper?mental stacking fault 1mages
must first be obtained: the crystal thickness in which the

- -

fault lies, the phase angle, a, of the fault ( a=27g.R where

-

g 1is the lowest order reflection in the systematic set
excited and R is the displacement vector of the fault ), the
edges of the image which correspond to the intersections of
the fault with the top and bottom surfaces of the c¢rystal
and the angle of inclination of the faul£ plane with the
crystal surfaces. In order to determine the crystal
thickness in which the fault lies, wedge crystal specimens

have been prepared. Since the wedge angles of the crzétals
‘ o

werewunknown, absolute values of crystal thickness could not

be determined. However, for purposes of comparing

experimental profiles with theoretical calculations, only
the crystal ‘thickness expressed in terms of extinction

distance need be known. This can be easily determined from

“the thickness contours in the wedge crystal immediately

adjacent to the image of the fault /( see, for example, Fig.
8.1 ). Thé phase angle a and the edges of the image ‘which
eorrespond to the 1intersections of the fault with the top
and bottom surfaces of the crystal haves4been determihed from

bright and dark field images recorded under strong beam

L I

IS



diffraction conditions (with the deviation parameter sq set
close to zero, see for example Hirsch et. al. 1977). Finally
the angle of inclination of the fault plane waskéetermined
.frém the projected width of the fault along the bottom
surface of the crystal as obtained from the stacking fault
image and the crystal thickness at this width determined
in extinction distances by the method described above and
then multiplied by the theoretical extinction distance ).
The value so obtained was then checked Ey determining the
angle of inclination of the fault from the orientation of
the specimen obtained from the diffraction pattern, and by

assuming that the fault lies on a {1 1 1} plane.

8.3 COMPARISON OF THEORY WITH EXPERIMENTAL RESULTS
7

Experimental stacking fault images have been obtained
by first orienting the «crystal so thét the (1 1 1)
s}stematic set was excited orientations were chosen SO
that the effects of non-systematic reflections were
minimized ). The specimen was then tilted to' weak beam
diffractidﬁ@géonditions, and a dark -field image was recorded
( see for example Fig. 8.1 ). Microdensitometer traces Qerg
then obtained from these kinds of images, an example of
which is shown in Fig. 8.2. Using the methods referred to in
Section 8.2, it was found that the fault shown in Fig. 8.
had a value of a=-27/3. The most significant feature to note

in the experimental profile in Fig. 8.2 1is that there is a

dark fringe ét the side of the image corresponding to the
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Figure 8.1 Experimental dark field of a stacking fault under

weak beam diffraction conditions.
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Figure 8.2 Experimental densitometer trace obtained from a

weak beam stacking fault image.



intersection of the fault with the top surface while at the
side of the image corresponding to the intersection of thé
fault with the bottom surface a bright fringe is obtained.
In order to compare the experimental results described
above with theory, calculations of stacking fault profiles
for both the non-column and column approximatlion cases were
carried out. The <calculations based on [ the column
approximation were carried out by using the standard
approach described extensively ¥n the liferature (see Hirsch
et. al. j977) while the non-column calculations employed the
theory prééénted by Jap and Sheinin (1981). The results of
the column approximation calculations are shown in Fig. 8.3a
and indicate that a bright fringe should be obtained on both
sides of the image. This 1is clearly 1in gualitative
disagreement with thénexperimental profilé)in Fig. 8.2. The
results of the non-column approximation calculation are
shown in Fig. 8.3b and indicate that a dark fringe should be
obtained at the side of the 1image Correspondinglto the
intersec;ion of the fault with the top sgrface while = the
other side should show a bright fringe. Clearly therefore,
this profile is in excellent agreement with experiment. )
It is important to note the following point Qith regard
>
to the non-column profile in Fig. 8.3b. The dark fringe at
the  side of this profile corresponding to the intersection
of the fault with the top surface arises from a

digcontinuity in the diffracted beam intensity as given by

the non-column Stacking fault calculation and the background
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Figure 8.3 Thec®etical stacking fault profiles based on a)
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intensity. It should be stressed that this dark fringe was
in fact obServed\Fxperimentally. This result 1s, of course,
in complete contradiction to calculations based on the
assumption that the <column approximation 1s valid which
always predicts the diffracted beam intensity at the edges
of the profile will be continuous with background. An
explanation of this significant difference between a theory
based on the cclumn approximation and one that 1s not s

given 1n the next section.

8.4 EXPLANATION OF DIFFERENCES BETWEEN COLUMN AND NON-COLUMN

PROFILES

Stacking fault profiles based on the column
approximation always give diffracted beam intensitles egqual
to the background intensity at positions 1in the profile
cofresponding to the intersections. of the fault with top and
bottom surfaces. Non-column and column approximation
profiles would appear to agree on the side of the profile
corresponding to the, intersection of the fgult with the
bottom surface ( see Fig. 8.3 and Jap et. -al. 1981.). As
mentioned 1in section 8.3, however, thes; intensitles can be
quite different on the side of the profile corre;ponding to
the intersection of the fault with the top surface. In order
to uynderstand this behavior, it 1s useful to obtain the
expressions for the diffracted beam amplitudes in the
non-column-and column approximation casés in comﬁérable

form.



This can be done 1ia the CO.LUMN approximaticn case Dy
using an expressi:cn Given Dy Shein:in and Botros 1872)
expressec i1n che Iollowing form:

}
. - -~ \ Y - -~
- \l; - i = ((.,!—T‘/ /ﬂ(‘_,/ oD - - P x
R S - o T TUEeT T Tl
-2 2 - C i o \ ’
' 4
sxD i1 e 8.7)
and .
{1,m m - LA - T 2)
(3m e e exp 2n 2TRID oo 8.2
._C -0 — i ]
L

. . ) /

*, is =he depth of the faul:t, t is crystal thickness, C g

.s arTourier coefficient appearing 1n the eﬁpression for the

3loch wave (see chapter 2). C7, is a column vector whose

elements are C ‘é , C is a sguare matrix whose coiumns are
Cg ( i= 1, ... N where N is the number of beams taken into

account ), the subscript T indicates the <:ranspose 0°I a
- -

matrix and (exp(27ig.R)} is a diagonal matri:x whose elements
- - '
are exp(27g.R). The superscript (;,m) refers to a 3loch wave
.

arising from interbranch scattering {rom dispersion surface
£

branch m to j ( see Fig. 8.4, noting that 1n the column case

©=0 and the wave points (j,m) and (J,3) coincide ). From

§.1 <-he diffracted beam amplitudes at positions 1n the

\
profile coﬁggsponding o the intersections of the fault with
the top (t,=0) and bottom (t,=t) surfaces are:

_ . - (8.3)
(J,ﬂ)CéJ) exp.[z’fl{(])t]

3t~

and
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respectively. The corresponding non-column expressions can

e obtained from the general expressions for diffracted beam

amplitudes for this case (see Sheinin et. ai. 1972.).
- -~ = . L m S05.m T (8.5)
(» (r )) = 7 X, 2ot exp il T I 1.9
N ~ =« N j - 2
g e C ;7 m C J
(3,m) _ _{m) (m) -1 e = (@)
e = G5 (C J {exp2-1i g-R} gg _ (8.6)
C ’gm> (s a Fourier coefficient in the expression for a

3loch wave excited below the fault by interbranch scattering

from dispersion surface branch m to 3

p (3em) ) c3em exp[Zﬁi(i(j'm)+;)‘;] . (8.7)

m
C™ is a square matrix wEOSe columns are C ' ;’ (§=1,..N)
and C'’' "4 {s a column vector whose elements are C'’ PR
The parameters 7y ' ™ and re are defined in Figs. 8.4 and

8.5. Using 8.5 and the fact tha<:

(j,m) m) (3,m)

X . ytans

s »{see Fig. 8.4), the diffracted beam amplitudes at positions
£/
.l' "f{- - . - . .
{{§5;»-the'proflle corresponding to the 1ntersectlons of the
'A:‘*.‘/;h?'_- i 13
fault with the ¢top (x=0, 2z=0) and bottom (x=t/cos®, z=t)

surfaces are:

2 | \

et e ——————
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= Ty (7 T D ;
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T (7 oo,
(6 (L))o = 0 § x. ' ' ‘ { 8.10
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It is first of interest to compare the non-ceolumn and

column approximations for the diffracted beam amplitude at

the intersections of the fault with the bottom surface by

comparing 8.4 and 8.10. It is clear from these eqguations

that the phase angles in each case are the. same and any

difference in diffracted beam amplitude must therefore arise

from differences in the amplitude terms:

(3 ,m) (3,m) (3, m)% ()
XNC ‘Cg ! XC chj

It turns out in fact that these amplitude terms are Vvery

nearly the same over a wide .range of conditions. Thus, for

-

example, under weak beam diffractﬂ@n conditions C'/ mg and

C"b typically differ by less than abcut 5% for angles of
Y ‘

inclination of the fault, ©, up to abé%t 75°. Under these

circumstanéeséﬁgm in eg. 8.6 is apprpximately’ﬁgual’to C in

“eq. 8.2. Since C is an orthogonal matrix:. .

m,-1 QT-

Ip]
W

and therefore } . <{
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Figure 8.4 Schematic diagram 1in reciprocal space showing the

wave points associated with Bloch waves excited below the

stacking faylt in Fig. 8.5
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X ¢8.13)

The resuit that diffracted beam intensit:es a:t the
intersection of the fault with the bottom surface are very
nearly equal 1in the non-column and column approximation
cases 1s therefore explained. The reason that these
intensities are different at the position 1in tae pr5
corresponding to the intersection of the fault with the top
surface can now also be understood by comparing equation 8.3
and 8.9. The amplitude terms as discussed above, will Dbe
approximately the same for a wide range of conditions. The
phase angle (27y'’ ™'t) and (277'’ t) can, however, be
significantly different, even though the differences 1n the
values of '/ ™ and y' ' may be relatively small. This can
be seen by taking typical values of t and vy ' of 1000A and
Sx10 *A°' respectlvely. These values glve a différence 1n
the above phase angles of = for only a 5% difference between
v ' ™ and vy ' with the result that the diffracted Dbeam

amplitudes in the non-column and column approximation cases

can be significantly different.

8.5 DISCUSSION

THe differences between non-column and column
approximation calculations of stacking fault profiles
discussed in section 8.4 can lead to serious interpretative

errors if analysis 1is based on the column approximation



Figure 8.5 Schematic dilagram 1n real space showing a
stacking fault in a crystal of thickness t. 0 is the origin
-

of the coordinate system and r 1s a position vector

terminating on the exit surface.
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profile. Thus, for example, column approximation stacking
fault profiles ogtained for weak beam diffraction conditions
are symmetrical for both a=%2n/3 faults in the sense that
both edge fringes exhibit the same contrast. In section 8.3
it was shown that the experimentally observed profile for
a=-27/3 1s 1in fact asymmetrical. Thus interpretation based
6n the column approximation could lead the electron
microscopist to suspect that the defect image does not have
the wusual values of displacement vector of the type 1,/6(1 1
2) and 1s therefore nnot one of the commonly occurring
intrinsic or extrinsic faults in FCC materials. The fact 1s,
of course, that the fault does have a value of a=-27/3 and
the asymmetry arises from the fact that the column

approximation fails. It 1s clear from these results that

great care should be exerclised 1n interpreting weak beam

profiles based on the column approximation.



CHAPTER 11X

SUGGESTIONS FOR FURTHER WORK

There are a number of areas 1in which the work presented,

~in this thesis can be extended. The first of these follows

from the assessment of the effects of systematic reflections

¢
in HCP crystals carried out in chapter 4. Past
investigations (see, for exampie, Cann, 1873) has shown that

non-systematic reflections can have an important effect on
extinction distance, anomalous absorption and 1image
intensity. It would therefore be of interest to carry out an
experimental 1nvestigation of;;hé effects of non-systematic
reflections on the 1mage contrast obtained in HCP perfect
crystals.

A second possible extensiori of the work presented 1in
this thesis 1is concerned with the image contrast obtained
froh~twin boundaries when common reflections are excilted.
Experimental measurements of the body translation vector
have been carried out 1in the past wusing ghe two-beam
apéroximation of the dynamical theory, which assumes that
only one common reflection is excited. However, the presence
%f non—éommon and forbiddén reflections can have an
importanE effect on the image contrast. The many-beam
appréxi@aiion ‘of the dynamical theory which has been
developed in chapter 6 includes cdmmon,' non-common and
forbidden reflectiaons. It would therefore be of interestvto
carried out an experimental determinatioh of the body

o

translation vector based on theoretical calculations carried

165
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out with a more exact form of the twin boundary image

contrast theory. | .

The next point which is of considerable interest 1s .the
study of tﬁe nature of stacking\ fault contrast in  the
presence of non-systematic fefléctions in FCC and ’HGP
materials. Some of the objectives of this study would be to
answer guestions such as what mechanisms éive rise to

stacking fault contrast in the presence of this particular

kind of reflections.
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