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Abstract 

Airport leakage is a phenomenon that occurs when air passengers choose to travel longer surface 

distances to take advantage of better air services at an airport further away (i.e., the substitute 

airport), instead of, as expected, using their local airport. The overall objective of this research is 

to investigate what factors affect airport leakage and how they affect airport leakage, in the 

context of models that consider the two-way interactions between air transportation demand and 

supply. More specifically, three categories of factors are investigated, including demographic, 

ground access, and air service factors. Two models have been explored in this regard. The first is 

a two-stage least squares model which is used to test the hypothesis that airport leakage occurs at 

10 medium-size airports in the United States. It was found that the substitute airport, with lower 

airfare and higher enplanements, may attract passengers that would otherwise use their local, 

medium-size airport. In addition, passengers travelling in a group of three or more were shown to 

prefer their local airport even when the substitute airport provides lower airfare. It was also 

found that airports with higher traffic would attract more passengers. The second model explores 

the supply-demand equilibrium using a binary logit model to estimate the market shares of two 

competing (local and substitute) airports. A numerical analysis was performed to explore the 

sensitivity of equilibrium market share to coefficients, airfare, flight frequency and ground 

access distance. Results show that passengers will be attracted to the substitute airport to take 

advantage of lower airfare and higher flight frequency. If the substitute airport reduces its airfare, 

the airfare at the local airport will also be reduced. As a combination effect of the two airfares, 

the equilibrium market share changes. Furthermore, it was found that locations will have 

different market shares even if their ground access distances to the local airport are identical. 
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CHAPTER 1. INTRODUCTION 

This chapter introduces and defines airport leakage. In the context of the findings and gaps in 

previous airport leakage studies, the research motivation, objective, and scope of this thesis are 

discussed. The last section contains an outline of the thesis.  

1.1. Background 

Airport passenger traffic has a huge impact on local economic development. It was predicted that 

185,000 jobs would be created if Chicago’s O’Hare Airport (ORD) expands and attracts 50% 

more passengers (Brueckner, 2003). Thus, a thorough understanding of airport passenger 

demand is important for urban planners and airport managers. Airport passenger demand has 

been studied extensively. It is mainly determined by factors in three major categories: 

demography, airport accessibility, and air services (Zou & Hansen, 2012a). Demographic factors 

include population and economy, and may cover trip purpose. Airport accessibility is related to 

location of the airport, ground access origin, the ground access mode, and the ground 

transportation network. Air services include airline services as well as airport services. Airlines 

determine the origin and destination airports they will serve, airfares, flight frequencies, and 

aircraft sizes, which greatly influence passenger demand (Pels, Nijkamp, & Rietveld, 2001; W. 

Wei & Hansen, 2005). In return, passenger demand for an airport also influences airline services 

at the airport (Wiltshire, 2013). The characteristics of airport services that impact airport demand 

include the number of airlines at the airport, customer parking, check-in and retailing services 

(Gupta, Vovsha, & Donnelly, 2008; Loo, 2008). When more than one airport is available to 

passengers, demand at one airport is not only impacted by its own air services but also by air 

services at alternative airports (Zou & Hansen, 2012a). There are some other factors of airport 

demand that do not belong to any of the three categories, such as deregulation (Ishutkina, 2009).  

Airport leakage is a phenomenon that occurs when air passengers choose to travel longer 

surface distances to take advantage of better air services at an airport further away, instead of, as 
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expected, using their local airport (Suzuki & Audino, 2003). Because airport leakage reduces the 

local airport’s passenger demand, understanding airport leakage is also important for urban 

planners and airport managers, who attempt to attract more air passengers to the local airport and 

stimulate economic development. In this thesis, we will call the local airport as such, and call the 

“leakage” airport the substitute airport. In addition, we assume that the local airport is the only 

airport in its metropolitan region. This definition distinguishes airport leakage from airport 

competition in a multi-airport system, where more than one airport is located within a 

metropolitan region.  

1.2. Research Background and Motivation 

Our first research question asks whether air passengers that would otherwise use the local 

medium-size airport serving their metropolitan region leak to major hub (or substitute) airports 

outside their metropolitan region. 

The second research question arises from the fact that most airport leakage studies focus 

on an airport’s catchment area, the geographic service area of an airport. These studies 

emphasize on the market share distribution around airports, instead of each attribute that affects 

airport leakage (Fuellhart, 2007; Lieshout, 2012). In consequence, our second research question 

asks what factors affect airport leakage and how they affect this phenomenon.   

In addition, a very limited number of airport leakage studies have accounted for the 

inherent interactions between supply and demand. A majority of airport leakage studies build 

discrete choice models based on survey data, and treat supply-side attributes as exogenous 

explanatory variables for demand (de Luca, 2012; Lian & Rønnevik, 2011; Suzuki, Crum, & 

Audino, 2003). A As a result, this research will consider supply-and-demand interaction in the 

study of airport leakage.    
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1.3. Research Objectives and Scope 

The overall objective of this research is to investigate what factors affect airport leakage and how 

they affect airport leakage, in the context of models that consider the two-way interactions 

between air transportation demand and supply. More specifically, three categories of factors are 

investigated, including demographic, ground access, and air service factors.  

To accomplish this objective, this research investigates the hypothesis that airport leakage 

exists when major hub (or substitute) airports provide better air services than medium-size 

airports. The hypothesis will be tested by assessing how attractive the substitute airport is to 

passengers who are assumed to use a local airport. If the air services at the substitute airport are 

shown to have a significant impact on the demand at the local airport, then we may conclude that 

airport leakage exists. 

The research scope has been narrowed down by three considerations. Firstly, we only 

consider airport leakage from medium-size airports to major hub airports in the U.S.; and each 

airport is in a distinct metropolitan region. Secondly, passengers’ airline choice is excluded from 

our research scope. All air services, such as airfare and flight frequency, are treated as airport 

services. Thirdly, all passengers are assumed to use private vehicles to go to the departure airport. 

1.4. Structure of Thesis 

There are five chapters in this thesis. Chapter 1 introduces the background of the research and 

gaps in previous studies, followed by the motivation, objective, and scope.  

Chapter 2 provides a comprehensive literature review of the air transportation market 

with an emphasis on airport leakage. Three types of studies are reviewed: studies exploring the 

one-way impact of air services on air transportation demand, studies exploring the one-way 

impact of passengers on airfare or airline costs, and studies exploring the two-way interaction 

between passengers and air services. Models and methodologies that are most common in each 

of the three categories are discussed. 
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Chapter 3 explores the impacts of supply-side factors as well as substitute airport 

attributes on local airport demand. Two-stage least squares models have been specified to 

capture the endogeneity between airfare and airport passengers. This chapter can be divided into 

two parts. The first discusses data collection and processing. The second describes the estimation 

process and results.  

Chapter 4 explores airport equilibrium market share using a binary logit model to 

estimate market share. The variables that are considered in the market share model include 

airfare, flight frequency, and ground access distance. The airfare variable is based on the airfare 

function from Chapter 3. A numerical analysis explores the sensitivities of variables and 

coefficients to airport market share at equilibrium. Chapter 5 provides an overview of the 

research and major conclusions. Research contributions, limitations, and recommendations for 

future work are also discussed. 
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CHAPTER 2. LITERATURE REVIEW 

This section provides a review of airport competition studies with respect to study approaches. 

Previous studies are divided into three categories depending on whether the impact of air 

services (supply) on air transportation demand is considered, and whether the impact of airport 

or airline passengers (demand) on air transportation supply is considered. Models and 

methodologies that are most common in each of the three categories are discussed. Approaches 

that have been used to study airport leakage are emphasized.  

2.1. Air Transportation Demand  

There are extensive studies of air transportation demand (airport demand and airline demand) 

which only consider the one-way impact of supply on demand, and treat supply-side attributes as 

exogenous. Because we can hardly discuss airport competition without mentioning airline 

competition, studies that only focus on airline competition are also included. Two methodologies 

that have been used widely are discrete choice models and linear (or log-linear) regression 

models (Harvey, 1987; S. Hess, 2004; Hutchinson, 1993).  

2.1.1. Discrete Choice Models 

Discrete choice models can estimate the probability of choosing an airport among a set of 

alternative airports for an individual passenger, or they can estimate the market share of an 

airport among a set of competing airports. The first is considered a disaggregate choice model, 

and the second an aggregate market share model. 

In disaggregate demand studies, passengers’ airport choice behaviors are analyzed based 

on characteristics and attributes, which are specific for each individual and can be obtained 

through surveys. Two types of survey exist: revealed preference (RP) survey and stated 

preference (SP) survey. RP survey asks survey respondents about their past experiences 

regarding travel. SP surveys ask respondents about their choice behaviors in hypothetical 

situations. RP data reflect real situations but may not capture all factors while SP data is able to 
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control variation but has a risk of underestimating attributes that are not available in the survey 

(Cherchi & de Dios Ortúzar, 2002; de Luca, 2012). 

Discrete choice models have been used extensively in estimating airport choice in multi-

airport systems, where more than one airport serves a metropolitan area. Most studies do not 

explore airport choice alone, but joint airport, airline, and ground access mode choices (S. Hess, 

2004; S. Hess, 2005; Pels et al., 2001). The results of these studies vary significantly. Some 

studies find that airport choice is most heavily influenced by ground access or accessibility (Pels, 

Nijkamp, & Rietveld, 2003) while other studies find that air services attributes like airfare are 

important (Harvey, 1987). For passengers living in reasonable proximity to two or more airports, 

impact of access time is not high as flight frequency (Windle & Dresner, 1995). Using survey 

data from the San Francisco Bay Area, Harvey (1987) built a multinomial logit model, and found 

that ground access time, airline frequencies, and connections are significant for airport choice for 

both business and leisure travelers, with the first two variables in a non-linear relationship in 

airport utility function (Harvey, 1987). As a unique case for the New York Area, whether or not 

passengers have to make a river crossing to access an airport plays a role on airport choice 

(Gupta et al., 2008). In summary, significant variables of airport choice in multi-airport system 

include access time and distance, airfare, frequency, past experience, purpose, car ownership, air 

trip time, direct or indirect flight, delay, aircraft type, the number of airlines at one airport, and 

the number of members in travel group. Segmentation of travelers by trip purpose (business or 

leisure) is commonly done in these models. Different types of discrete choice model have also 

been applied and compared in previous studies. Hess and Polak applied mixed multinomial logit 

model for airport choice in the San Francisco Bay Area (S. Hess & Polak, 2005b). A 

comprehensive literature review of airport choice studies with respect to determinants, survey 

methods, and discrete choice models can be found in de Luca (2012). 

Airport leakage happens more often for leisure travelers than business travelers, and that 

past experiences at an airport have a significant impact on passengers’ airport choice (Suzuki et 

al., 2003). In a more recent study, joint airport-airline choice has been analyzed in a “two-step” 

decision process with the first step to screen out choice alternatives that can satisfy passenger’s 
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minimum acceptable standards and the second step to build a nested logit model (Suzuki, 2007). 

In the case of Des Moines International Airport (DSM) competing with Kansas City 

International Airport (MCI), Minneapolis-St. Paul International Airport (MSP), and Omaha 

Eppley International Airport (OMA), this modified model shows an improved fit for airline 

choice but not for airport choice (Suzuki, 2007). In southern Italy, airport choice behaviors 

among Naples-Capodichino (NAP), Rome Fiumicino (FCO), and Rome Ciampino (CIA) have 

been studied (de Luca, 2012). FCO and CIA are 20 miles away from each other, and both of 

them serve Rome. However, NAP serves Naples, and is located 150 miles and 130 miles away 

from FCO and CIA respectively. In 2013, FCO served about 36 million passengers as a hub 

airport while NAP and CIA served nearly 6 million and 5 million passengers respectively. In de 

Luca (2012), however, all of the three airports are treated in a multi-airport system (de Luca, 

2012). Based on stated preference survey data, airport choices are analyzed in multinomial logit 

model, hierarchical logit model, cross nested logit model, and mixed multinomial logit model. It 

is found that significant factors for airport choice are access time, airfare, age, experience, and 

income (de Luca, 2012).  

In Lieshout (2012), the market share is calculated based on multinomial logit model of 

airfare, flight frequency, ground access cost, and airside time (Lieshout, 2012). The study 

assumes that airport demand spreads out around the airport without ground access distance 

constraint, and areas with market share over 1% are called airport catchment area. It is found that 

the spatial distribution of airport market share varies with respect to destinations, air service 

offerings, and the number of competing airports. Understanding airport catchment area is 

instrumental to understand passengers’ airport choice and the competitiveness of alternative 

airports (Lieshout, 2012).  

2.1.2. Linear and Log-linear Regression Model 

In studies of airport demand using linear or log-linear regression model, the dependent variable 

is usually passenger traffic or airport market share (Cohas, Belobaba, & Simpson, 1995; 

Hutchinson, 1993). The impact of airport or airline competition is reflected by variables of 
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competitors. Canadian domestic air demand has been estimated in log-linear models (Hutchinson, 

1993). Aggregate demand model of cross-sectional data is calculated by income at origin, 

income at destination, airfare, cost of substitute ground access mode, and travel time for the 

fastest surface mode. By introducing interaction variables or transforming variables, more effects 

of airport demand can be explored. In this study, interaction effects are counted by using the 

product of income at origin and income at destination, the ratio of airfare over ground access cost, 

and the ratio of air travel time over ground access time (Hutchinson, 1993).  Improvement of 

using ratio variables is that air trip is considered comparatively with ground access trip 

(Hutchinson, 1993). Airport market share in multi-airport system is estimated in a log-linear 

model of airport dummy variables, the portion of frequency, the average airfare, and the airfare 

at competing airports (Cohas et al., 1995). Based on ticket-booking data, airport passenger traffic 

“leaking” from local airports to substitute hub airports is estimated in a two-step regression 

model. In the first step, the portion of “leakage” passengers is regressed on explanatory variables 

and time dummy variables. Both the portion of “leakage” passengers and explanatory variables 

vary with respect to time and routes. In the second step, the residual from the first-step model is 

regressed on explanatory variables that only vary with respect to routes. These variables include 

the average airfare from a local airport, the average airfare from a substitute hub airport, the 

airfare difference, the average flight time from the local airport to a destination, the driving 

distance between the local airport and the substitute airport, and the portion of available seats per 

day. Among them, the distance and seats variables are fixed in different time periods, and only 

vary with respect to routes (Phillips, Weatherford, Mason, & Kunce, 2005). 

2.2. Air Transportation Supply  

Studies of air transportation supply only consider the one-way impact of demand on supply, and 

treat demand-side attributes as exogenous. Supply represents airport and airline services, and 

demand represents airport and airline passengers. Airline service decisions indicate yield, pricing, 

and seat supply (Ippolito, 1981; Windle & Dresner, 1999; S. Zhang, Derudder, & Witlox, 2013). 

Because the decision-making of airline services involves assessment of airline costs, the studies 

of airline cost will also be mentioned. Airline costs consist of capacity cost, traffic-related cost, 
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and overhead cost. In detail, they represent cost for fuel, employees’ salary, maintenance, aircraft 

leasing and landing, advertisement, and administration (O'Connor, 2001). Methodologies in the 

studies of air transportation supply include linear regression model (Evans & Kessides, 1993; 

Windle & Dresner, 1999; S. Zhang et al., 2013), log-linear regression model (D. W. Gillen, Oum, 

& Tretheway, 1990; W. Wei & Hansen, 2003; Zou & Hansen, 2012b) , and other non-linear 

regression models (Hansen & Kanafani, 1989; Ippolito, 1981; Swan & Adler, 2006).  

The passenger traffic variable in airline pricing models shows the one-way impact of 

airline passengers on supply (Evans & Kessides, 1993; Ippolito, 1981; Windle & Dresner, 1999; 

S. Zhang et al., 2013). Flight distance, vacation route, and flight connection are also important 

for pricing (Evans & Kessides, 1993; Windle & Dresner, 1999; S. Zhang et al., 2013). Other 

pricing variables are slot control, time trend, presence of low-cost carriers, indexes, and market 

share (Evans & Kessides, 1993; Windle & Dresner, 1999; S. Zhang et al., 2013). Seat supply is 

in a function of passengers, average airfare, carrier concentration at airport, commuter 

competition, airport departures, local carrier indicators, and eligibility of subsidy (Ippolito, 1981). 

Yield, which is the weighted average airfare, is regressed on distance, squared-distance, the 

product of population on two ends of the route, vacation dummy variable, slot control dummy 

variable, and quarter dummy variables (Windle & Dresner, 1999).  

The variables in airline cost model include airline output, unit fuel price, labor price per 

employee, material price indicator, capital stock, load factor, stage length, delay, and the number 

of points served (Zou & Hansen, 2012b). In another study, several log-linear models of airline 

cost have been compared when using different variables (Hansen & Kanafani, 1989). These 

variables include quantity of labor, quantity of non-labor inputs, indicator of airline operating 

characteristics, network concentration, the number of points served, labor cost, trip length, load 

factor, aircraft seat capacity, and year dummy variables (Hansen & Kanafani, 1989).  

It is found that for a specific flight distance, there is an optimal aircraft size that 

minimizes aircraft operating cost. The optimal aircraft size increases when flight distance 

increases. In addition, because larger aircraft size usually leads to higher pilot cost, the pilot cost 
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variable is endogenous. By excluding the pilot cost variable in the model, the optimal aircraft 

size minimizing the aircraft cost becomes smaller (W. Wei & Hansen, 2003). 

2.3. Air Transportation Demand and Supply 

Studies of air transportation demand and supply refer to studies that have considered the two-

way interaction between air services (supply) and air passengers (demand). The most common 

methodologies in these studies include two-stage least squares model, three-stage least squares 

model, mathematical optimization, game theory, and spatial competition model.  

2.3.1. Two-stage and Three-stage Least Squares Models 

The two-way interaction between airfare (supply) and air passengers (demand) can be 

represented by two simultaneous equations. Two-stage least squares (2SLS) and three-stage least 

squares (3SLS) are two estimation methods of simultaneous equations model. The 2SLS 

introduces an instrumental variable to replace the endogenous variable, which is correlated with 

the error term (Dougherty, 2011; Pindyck & Rubinfeld, 1998). More specifically for a demand 

model, the endogenous airfare variable is correlated with the error term. In solution, the 2SLS 

model replaces the endogenous variable with an instrumental variable. The endogenous airfare 

variable is estimated by the passenger variable and other exogenous variables in the first stage, 

and the predicted airfare variable (i.e., instrumental variable) is used in the second-stage demand 

model (Dougherty, 2011; Pindyck & Rubinfeld, 1998). The 3SLS model is based on 2SLS model 

but assumes that the error terms of simultaneous equations are correlated (Zellner & Theil, 1962). 

Two-stage least squares model is built for 14 airports in the United States to capture the 

endogeneity of the supply-side and demand-side attributes to study airport leakage (Suzuki & 

Audino, 2003). It estimates the airfare in the first stage, and then uses the predicted airfare 

variable (instrumental variable) into the second-stage demand model. The variables in the first-

stage airfare model include the route dummy variables, quarter dummy variables, flight legs, 

freight, passengers, the airfare at the substitute airport, and the interaction variable of driving 

distance and the airfare at the substitute airport. Besides the predicted airfare values, the second-
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stage airport passengers model is estimated by seasonality, the flight legs at the substitute airport, 

interaction effect of the flight legs at the substitute airport and the driving distance besides most 

of the variables in the first-stage model. Four models are compared in the study. Results show 

that the model is improved by using log-linear model form and by considering the substitute 

airport attributes. The interaction variable of airfare and driving distance also shows that air 

passengers may be attracted to a substitute airport that is 250 miles away (Suzuki & Audino, 

2003).  

Another two-stage least squares model has been used with the first-stage airline demand 

model and the second-stage seat supply model (Ippolito, 1981). In its log-linear airline demand 

model, variables include the number of flights, load factor, elasticity of flight frequency, squares 

of airfare, fare elasticity at mean fare level, distance, income, population, short-haul trip dummy 

variable, and three attractive-city dummy variables. The short-haul trip dummy variable is an 

implement of the distance variable to indicate possibility of car driving rather than air travel. On 

the log-linear seat supply model, variables are the fitted demand value from the first-stage model 

divided by enplanement, fare, ramp-to-ramp time, enplanement, carrier airport concentration, 

commuter competition, a dummy variable indicating whether airport departures is larger than 

100,000, local carrier dummy variable, and subsidy dummy variable (Ippolito, 1981).  

A three-stage least squares model has been built to explore the impact of competition 

from the United States-Canada transborder cities (Elwakil, Windle, & Dresner, 2013). On the 

supply side, the average airfare is regressed on log-form of passengers, log-form of great circle 

distance, an index, and year dummy variable. On the demand side, the number of passengers is in 

the log-linear model of variables including the average airfare, population in metropolitan area, 

the product of per capita incomes at origin and destination, year dummy variables, origin dummy 

variables, destination dummy variables, and border city dummy variables. Border city dummy 

variables are indicators of competitors (Elwakil et al., 2013). It concludes that the airfare 

difference is the major cause of airport leakage for the United States-Canada transborder market. 
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2.3.2. Mathematical Optimization Studies of Airport and Airline Competition 

In airport or airline competition, mathematical optimization usually combines with game theory 

to explore the supply-demand equilibrium. Airport and airline competitors optimize their 

objectives under certain constraints. Only objectives and outputs (i.e., optimal solutions) of 

mathematical optimization will be reviewed.   

Three optimization objectives exist in previous studies including profit maximization, 

welfare maximization, and cost minimization. Profit maximization is the most common for 

airline while both profit and welfare maximization are commonly used for airport (Barbot, 2009; 

Brueckner & Flores-Fillol, 2006; D. Gillen & Morrison, 2003; A. Zhang, Fu, & Yang, 2010). 

Profit equals to revenue minus cost. Airline revenue is the product of the number of passengers 

and airfare while airport revenue is divided into two parts: revenue from aviation operation, such 

as runways, aircraft landing and parking, terminals, and the revenue from commercial activities 

such as advertisement, car parking, and retailing. The commercial activities become increasingly 

important recently, thus, it is essential to have the two revenues in airport profit function (Barbot, 

2009; D. Gillen & Morrison, 2003; A. Zhang et al., 2010; A. Zhang & Czerny, 2012). Welfare 

maximization represents social benefits maximization and is usually assumed to be the objective 

of publically funded airports. Welfare equals to airport tax revenue minus passenger costs, 

capital cost, and external cost (Pels, Nijkamp, & Rietveld, 1997; Pels, Nijkamp, & Rietveld, 

1998). It is the sum of total utility and airline profit (Brueckner & Flores-Fillol, 2006). In a study 

(Adler, Pels, & Nash, 2010), social welfare contains environmental cost and out-of-pocket cost 

which is paid by government. Thirdly, airline cost includes passenger cost, flight cost and fixed 

cost while airport cost consists of capacity cost, passenger cost, airport operation cost, and 

external cost. When airline performance is taken into account, delay cost is also in its cost 

function (Hsu & Wu, 1997). In addition, airline’s costs in fully connected and hub-and-spoke 

network are treated differently (Pels et al., 1997). The demand part in the profit can be linear 

demand function or market share in discrete choice models, as discussed in the first section of 

this chapter.  
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When airline and airport objectives are considered simultaneously, two-stage or three-

stage models are adopted, with one stage to satisfy airline objective and another stage to satisfy 

airport objective. Usually, airport profit maximization is on the first stage, and airline profit 

maximization is on the second stage (Barbot, 2009; A. Zhang et al., 2010). Multi-stage model is 

also applicable to obtain airline network based on airline’s optimal services and airport charges 

(Pels et al., 1997). For instance, the first stage is targeting at distance minimization to obtain an 

optimized network and the second stage is airline’s profit maximization problem (Adler, 2001). 

In this model, airlines are able to determine their routes and whether to serve routes concurrently 

(Adler, 2001). 

Outputs of optimization are the decisions that airlines and airports are making. For 

airlines, the outputs include airfare, frequency, and aircraft size. The radius of market size is also 

the output in a catchment area study (Hsu & Wu, 1997). For airports, the outputs are airports’ 

charges (or taxes) to airlines. Other derivative outputs may include passengers’ generalized cost, 

demand for each airline, aircraft size, flight operating cost, and the traffic/capacity ratio (Zou & 

Hansen, 2012a).  

2.3.3. Other Airport and Airline Competition Studies  

Compared to two-stage least squares (2SLS) models, three-stage least squares (3SLS) models, 

and mathematical optimization, the other methods used in airport competition studies are game 

theory and spatial competition model. As stated earlier, game theory studies usually combine 

with mathematical optimization method (Adler, 2001; W. Wei & Hansen, 2007; W. Wei, 2006). 

In this section, the various types of “game” in previous studies are reviewed.  

Airline and airport competition mainly deals with how each “player” in the “game” 

makes decisions. Most of previous studies assume that players make decisions simultaneously 

and independently (Adler, 2001; Brueckner & Flores-Fillol, 2006; W. Wei, 2006; A. Zhang et al., 

2010; Zou & Hansen, 2012a). For example, each airline makes airfare or frequency decisions to 

maximize its own profit across all available routes under conditions of knowing, partly knowing 

or not knowing competitors’ information. There are also sequential game and accommodating 
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game (Basso & Zhang, 2007; Hsu & Wen, 2003). Sequential game represents that decision 

marker makes decisions one by one; and accommodating game represents a phenomenon that 

one airline decreases flight frequency, and its competitor increases its flight frequency as a 

response to accommodate market from the other airline.  

Wei and Hansen (2007) explored how duopoly airlines determine aircraft size and flight 

frequency in three game scenarios: one-shot simultaneous game, leader-and-follower Stackelberg 

game, and two-level hierarchical game. In the one-shot simultaneous game, airlines maximize 

their own profits by determining aircraft size and flight frequency at the same time. Airlines are 

assumed to have perfect information of their competitors’ decisions. In the second game which is 

a leader-and-follower Stackelberg game, one airline makes a decision and then based on this, the 

other airline makes a decision. One airline in the game acts as a leader. In the two-level 

hierarchical game, two airlines determine their flight frequencies at the same time, and after 

knowing competitors’ flight frequency decisions, airlines simultaneously determine their aircraft 

size decisions (W. Wei & Hansen, 2007). 

Airport-airline collusion is a cooperative relationship between an airport and an airline in 

pursuit of larger objectives respectively or larger combined airport-airline objective. The 

objective may be profit or market share. There are studies that assume airlines at one airport 

provide the same air services; thus, airport-airline collusion in this condition reflects the decision 

power of airport for airline service attributes (Basso & Zhang, 2007; D. Gillen & Morrison, 

2003). However, airport and airline may also decide to collude or not before making price 

decisions, as shown in a three-stage game (Barbot, 2009). However, Zhang et al (2010) derived a 

different conclusion from a two-stage competition model for airport-airline vertical cooperation 

focusing on the impact of revenue sharing. It was found that airport competition stimulates 

airport to cooperate with airlines, leading to a reduced joint profit but an increased social welfare 

(A. Zhang et al., 2010). Besides, Pels et al (1997) found there is no exact airport and airline 

equilibrium (Pels et al., 1997). 
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Spatial competition models have been well-studied, but their applications to airport 

competition are limited (Dmitry, 2012). The theorem of spatial competition model is that 

“transportation costs have the effect of creating different demand elasticities in spatially 

separated markets” (Fröhlich & Niemeier, 2011). As a pioneering study, the Hotelling model has 

been used to show how two airports in two locations compete with each other when they offer 

homogeneous services (Fröhlich & Niemeier, 2011). Airport catchment area, including the 

overlapping catchment area, depends on airport pricing, transportation cost and passengers’ 

utility of taking advantage of air service. The underlying assumption of the model is that market 

is distributed evenly within the whole area. The baseline of airport’s pricing decision is to 

prevent passengers to withdraw from the market.  It was shown in the Hotelling model that if two 

airports are within a multi-airport system and passengers’ costs to airports are low, the 

overlapping catchment area of the two airports will be large. If there are airport price 

differentiation and unit transportation cost differentiation for two competing airports, one airport 

will attract passengers from the hinterland of the other airport. For multi-airport systems like 

Greater London and the New York Area, even though primary airports mainly serve full service 

carriers and smaller airports serve low-cost carriers, the airfare in one airport would still be 

constrained to the airfare in the competing airport (Fröhlich & Niemeier, 2011). In addition, 

spatial competition model can also account for access time, delay, and cooperation or non-

cooperation between airports (Basso & Zhang, 2007; Fröhlich & Niemeier, 2011).  

2.4. Summary 

In airport competition and demand studies that do not consider supply-and-demand interaction 

and treat supply-side attributes as exogenous, three types of models have been discussed 

including discrete choice models, linear and log-linear regression models. Discrete choice model 

has been used to estimate disaggregate airport choice or aggregate market share for multi-airport 

system and for airport leakage (Hansen, 1995; Harvey, 1987; Lieshout, 2012). The basis of 

discrete choice model is passengers’ utility maximization. Discrete choice model has also been 

applied in combination with the geographic information system (GIS) to study airport catchment 

area (Fuellhart, 2007; Lieshout, 2012). Linear and log-linear regression models are able to 
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estimate demand or supply for airports in competition by including attributes of competitors. 

Although attributes of competing airlines or competing airports can be included, the competition 

or cooperation pattern cannot be reflected.  

There are mainly four types of airport competition study methods considering supply-

and-demand interaction, including two-stage and three-stage least squares models, mathematical 

optimization, game theory, and spatial competition model. Linear or log-linear models of 

demand and supply can be estimated simultaneously by two-stage or three-stage least squares 

estimation method to account for supply-and-demand interaction. Mathematical optimization 

studies assume the decision-making of airline or airport is based on profit maximization, social 

benefit maximization, or airline cost minimization. They usually combine with discrete choice 

models (Barbot, 2009; Hansen, 1990; Pels et al., 1998; Suzuki, Crum, & Audino, 2004). 

Classical game theory models account for the decision-making process of competing airports and 

competing airlines (Barbot, 2009; Hansen, 1990). It includes the sequence, information known, 

and decision variables in decision-making. Meanwhile, the objective of decision is usually profit 

maximization or welfare maximization, which implicates that normally classical game theory 

associates with mathematical optimization. If both airport choice and airline choice are 

considered, it is important to show the relationship between airport and airline in analysis of 

airport competition (Barbot, 2009). Output of spatial competition model on the demand side is 

airport catchment area, and that on the supply side is airport-airline relationship or airport pricing 

(Fröhlich & Niemeier, 2011). However, the basic spatial competition model, Hotelling model, 

cannot reflect the impact of this factor. Among all the methodologies, only two-stage least 

squares model and three-stage least squares model are based on real data and meanwhile can 

account for supply-and-demand interaction.  

Based on the findings in previous studies (Harvey, 1987; S. Hess, 2004; S. Hess & Polak, 

2005b; Pels et al., 2003; Windle & Dresner, 1995), variables that are deemed important to airport 

demand include ground access time and distance, airfare, flight frequency, air trip time, direct or 

indirect flight, delay, aircraft type, the number of airlines at one airport, group size, and 

characteristics of passengers. The characteristics of passengers contain past experience, trip 
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purpose, car ownership, income in disaggregate study, and contain trip purposes, population, 

employment, and income in aggregate study.  

In supply-side studies, the dependent variables are normally airline cost, yield (Windle & 

Dresner, 1999), pricing (S. Zhang et al., 2013) , and seat supply (Ippolito, 1981). No matter what 

the dependent variable is, the number of passengers is a variable in the function (Evans & 

Kessides, 1993; Ippolito, 1981; Windle & Dresner, 1999; S. Zhang et al., 2013). Other variables 

that have been used in supply-side models include revenue, unit fuel price, labor price per 

employee, material price indicator, capital stock, load factor, stage length, the number of points 

served, delay (Zou & Hansen, 2012b), flight distance, vacation route dummy variables, flight 

connection, slot control, time trend, presence of low-cost carriers, indexes of market share 

(Evans & Kessides, 1993; Windle & Dresner, 1999; S. Zhang et al., 2013), carrier concentration 

at airport, commuter competition, airport departures, local carrier indicators, and eligibility of 

subsidy (Ippolito, 1981). 

 In Table 2.1, studies categorized by their focus on demand, supply, or demand and 

supply interaction are summarized, along with methodology and focus. 

In conclusion, two gaps were found in previous airport leakage studies. One is that the 

studies specifically exploring how major hub airports affect airport leakage at local airports are 

limited. The other gap is that so few leakage studies have accounted for the inherent interactions 

between supply and demand. Based on the two gaps, this research explores whether major hub 

airports affect airport leakage at local airports, and if so, how they affect airport leakage, in the 

context of models that consider the two-way interactions between demand and supply. 
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Table 2.1 List of Studies and Other Information in Categorization of Demand, Supply and 

Interaction 

Categorization Study Methodology Focus 

Demand-side Studies 

Harvey (1987) 
Discrete Choice 

Model 

Airport Competition 

in Multi-Airport 

System 
Pels et al. (2013) 

Discrete Choice 

Model 

Airport Competition 

in Multi-Airport 

System 
Suzuki et al. (2003) 

Discrete Choice 

Model 
Airport Leakage 

Lieshout (2012) 
Discrete Choice 

Model 
Airport Leakage 

Hutchinson (1993) Log-linear Model Airport Demand 

Supply-side Studies 

Windle and Dresner 

(1999) 

Linear Regression 

Model 
Airline Competition 

Zou and Hansen 

(2012b) 

Log-linear Regression 

Model 
Airline Cost 

Supply and Demand 

Interaction Studies 

Suzuki and Audino 

(2003) 

Two-stage Least 

Squares Model 
Airport Leakage 

Elwakil et al. (2013) 
Three-stage Least 

Squares Model 
Airport Leakage 

Suzuki et al. (2004) 
Mathematical 

Optimization 
Airport Leakage 

Pels et al. (1998) 
Mathematical 

Optimization 

Airport Competition 

in Multi-Airport 

System 
Hansen (1990) Game Theory Airline Competition 

Zhang et al. (2010) Game Theory Airport Competition 

Fröhlich and Niemeier 

(2011) 

Spatial Competition 

Model 
Airport Competition 
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CHAPTER 3. AIRFARE AND AIRPORT DEMAND INTERACTION 

MODEL 

The objective of this chapter is to explore variables that influence airport demand under the 

hypothesis of airport leakage. There are two sections in this chapter. The first section includes 

data collection, origin-destination (OD) selection, data processing, and descriptive statistics of 

dataset. In the second section, a two-stage least squares model has been developed to capture 

the interaction of airfare and airport demand. To eliminate the bias of first-order 

autocorrelation and heteroskedasticity in the two-stage least squares model, the feasible 

generalized least squares models are established and compared.  

3.1. Data Preparation 

3.1.1. Data Sources 

Data on airport passenger traffic, airline services, census, aviation fuel cost and distance were 

gathered from five online sources. Airport passenger traffic and airline services data in the 

United States are from the Airline Origin and Destination Survey (DB1B) (Bureau of 

Transportation Statistics, U.S. Department of Transportation, 2014d) and the Air Carrier 

Statistics (T-100) (Bureau of Transportation Statistics, U.S. Department of Transportation, 

2014a), both of which are available from the U.S. Department of Transportation (DOT). Census 

data is from the U.S. Census, Department of Commerce (Census Bureau, U.S. Department of 

Commerce, 2014a). Aviation fuel cost data is also available from the U.S. DOT (Bureau of 

Transportation Statistics, U.S. Department of Transportation, 2014c). Driving distances between 

airports are from the Travel Math website (Travelmath, 2014). The first four data sources will be 

described in the following sections. 

3.1.1.1. Airline Origin and Destination Survey (DB1B) 

The Airline Origin and Destination Survey (DB1B) takes information from 10% of domestic air 

tickets sold in the U.S., including airfare, coupons (i.e., flight legs), origin, destination, quarter, 
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ticket carrier, market distance, market miles flown, non-stop market miles, and others. DB1B 

provided airfare, flight legs, and distance information for this research.  

There are three types of tables in the DB1B dataset. The DB1B ticket table contains 

information of every domestic itinerary which may be a round-trip itinerary. The DB1B market 

table contains information of every trip for which a stop is made for purposes other than 

changing planes. The DB1B coupon table contains information for every trip segment for which 

the flight number does not change (Bureau of Transportation Statistics, U.S. Department of 

Transportation, 2014d). For a trip with a layover in between, two trip segments are recorded. We 

do not consider round trip or trip segments, so we used the DB1B market table for our modeling 

purposes.  

One record in the DB1B market table provides the information for a single ticket, but this 

single ticket may have bookings for more than one passenger as an air ticket can be booked for a 

group. As a result, we are able to obtain group size information. Meanwhile, the airfare and flight 

leg variables represent the average airfare and the average flight leg per passenger. The non-stop 

market miles variable, which is the distance of direct flight between origin and destination 

airports, has been chosen as a distance variable in this thesis. The DB1B data is available 

aggregated into quarter-years. Data from 2004 quarter 1 to 2014 quarter 1 were used, leading to 

over 21 million observations for all U.S. airports from the DB1B market dataset.  

3.1.1.2. Air Carrier Statistics, U.S. Carriers (T-100) 

The Air Carrier Statistics (U.S. Carriers), which is also called T-100 dataset, provides aggregated 

data about air carriers, enplaned passengers, and freight per month. Two kinds of tables are 

available for domestic air traffic. The T-100 domestic market table is based on travelers’ origin 

and destination (i.e., trip) including direct and indirect flights. The T-100 domestic segment table 

is based on trip segment including passengers on direct flight and passengers transferring at 

origin or destination airport of the trip segment (Bureau of Transportation Statistics, U.S. 

Department of Transportation, 2014a; Bureau of Transportation Statistics, U.S. Department of 

Transportation, 2014b). As mentioned above, we do not consider trip segment for transfer 
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passengers, so the market table is used. However, flight departure is only available in the 

segment table, which is an indicator of flight frequency. 

From 2004 quarter 1 to 2014 quarter 1, there are more than 2.5 million observations in T-

100 domestic market table, and more than 3.6 million observations in T-100 domestic segment 

table for all the U.S. airports and all the U.S. carriers.  

3.1.1.3. U.S. Census  

Demographic information, such as age, race, and income, are available from the Annual 

Community Survey by U.S. Census, Department of Commerce (Census Bureau, U.S. 

Department of Commerce, 2014a). The Annual Community Survey is a nationwide survey of 

around 3.5 million households (Census Bureau, U.S. Department of Commerce, 2014b). Census 

data are available at different geographic levels, such as county, metropolitan area, division, and 

state. Population and per capita income for metropolitan areas are used in this research. 

Metropolitan areas are defined by the Office of Management and Budget (Nussle, 2008). 

Although specific criteria have been used, a brief definition of metropolitan area is that 

“Metropolitan Statistical Areas have at least one urbanized area of 50,000 or more population, 

plus adjacent territory that has a high degree of social and economic integration with the core as 

measured by commuting ties” (Nussle, 2008). 

3.1.1.4. Aviation Fuel Cost and Consumption 

Aviation fuel cost and consumption were also found on the U.S. DOT website (Bureau of 

Transportation Statistics, U.S. Department of Transportation, 2014c). Both total fuel cost and 

unit fuel cost per gallon are available per month. This information is categorized by U.S. carriers 

or international carriers, scheduled services or unscheduled services, and domestic services or 

international services. For this research, aviation fuel cost and consumption of U.S. carriers with 

respect to scheduled domestic services were used.  
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3.1.2. Origin-Destination (OD) Selection 

The purpose of origin-destination (OD) selection is to find metropolitan regions from which 

airport leakage is hypothesized to occur. Each route - from an origin airport to a destination 

airport - is called an origin-destination (OD) pair. In this research, we will use “local OD pair” 

and “substitute OD pair” to differentiate routes originating from a (candidate) local airport and 

from a (candidate) substitute airport to a given destination, respectively. The process of OD 

selection involves identifying the local airport in the area from which passengers are leaking, the 

(substitute) major hub airport to which passengers “leak”, and the destination airport (thereby 

identifying the OD trip). The identification procedure is shown in Figure 3.1.  

The first step in Figure 3.1 involves the selection of 25 candidate local airports. The 

selection is based on literature review or geographic features. When choosing each candidate 

local airport, their corresponding substitute airports are also chosen. For instance, based on 

passenger survey data, airport leakage was observed from Des Moines International Airport 

(DSM) to Kansas City International Airport (MCI), Minneapolis–Saint Paul International Airport 

(MSP), and Eppley Airfield (OMA) (Iowa Department of Transportation & Iowa Department of 

Economic Development, 2001; Suzuki et al., 2003). Ten of the 25 candidate local airports are 

from a previous study of airport leakage (Suzuki & Audino, 2003). In that study, 14 airports 

were identified as local airports because they were “airports classified as ‘medium’ by the U.S. 

General Accounting Office (U.S. GAO) report” without other airports in radius of 70 miles 

(Suzuki & Audino, 2003). Four out of the 14 airports were excluded in our selection due to the 

fact that the passenger traffic is too small or the airport is close to a multi-airport region. The 

airport leakage in the hypothesis of this research is occurring where one airport is expected to 

serve one metropolitan region. Thus, multi-airport region was excluded.   
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Figure 3.1 Procedure of origin-destination (OD) selection 
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CRITERION: 
Overlapping OD pairs 
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One destination for each local airport 

One substitute airport for each local airport 
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The remaining 15 of the 25 local airport candidates were selected from “medium” or 

“small” airports categorized by the U.S. Federal Aviation Administration (FAA) in a single-

airport metropolitan area but with hub airports nearby (Federal Aviation Administration, 2014a). 

Each hub airport holds a functional importance for airlines and serves more significant 

passengers than the local airport (Ryerson & Kim, 2013). The driving distance between a 

candidate local airport and the corresponding substitute airport ranges from 45 miles to 237 miles, 

which is within the distance that air passengers may be willing to drive to a substitute airport 

(Suzuki & Audino, 2003). It should be noted that one candidate local airport may have more than 

one candidate substitute airport, because the driving distances to these candidate substitute 

airports are comparable as well as the number of passengers at each substitute airport.  

Top 10 destinations with the highest passengers were identified for each candidate local 

airport based on the 10-year DB1B market data. As a result, there are 250 local OD pairs after 

this step. For each local OD pair, the average airfare per passenger, average flight legs per 

passenger, and non-stop miles were also obtained. Meanwhile, these three values have also been 

obtained for each corresponding substitute OD pair. In order to strengthen the hypothesis of 

airport leakage, six criteria were used to select ODs.  

1. Substitute airports are included in the Operational Evolution Partnership (OEP) 35 

airports by the U.S. Federal Aviation Administration (FAA) (Federal Aviation 

Administration, 2009).  

OEP 35 airports are the 35 busiest commercial airports in the U.S., taking on over 70% of 

air passenger movements in U.S. (Federal Aviation Administration, 2009; Federal 

Aviation Administration, 2014b). They serve major metropolitan areas as airlines’ hub 

airports to transfer traffic volume (Ryerson & Kim, 2013). 

2. Average airfare per passenger for local OD pair < average airfare per passenger for 

substitute OD pair. 
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3. Average flight legs per passenger for local OD pair < average flight legs per passenger 

for substitute OD pair.  

Based on our assumption that passengers travel to the substitute airport to take advantage 

of better air services, the average airfare and flight leg for the substitute OD pair should 

be lower than the local OD pair.  

4. Passengers for substitute OD pair   150% * passengers for local OD pair 

This criterion is based on economies of density in aviation industry, meaning that the 

more passengers an airport serves, the lower the airport cost per passenger will be. To 

guarantee that a substitute airport serves more passengers to the destination than the local 

airport, we assume that passengers for the substitute OD pair will be least 50% more than 

passengers for the local OD pair. Thus, the substitute airport is more likely to provide 

lower airfare and attract passengers from the local airport.  

5. Distance from local airport to destination airport is greater than 500 miles.  

Because airport leakage is less likely to occur for short-haul air trips (Hsu & Wu, 1997), 

the OD pairs that are less than 500 miles were eliminated.  

6. Destination airport is not a low-cost carrier (LCC) hub airport.  

If the destination airport is served by at least one LCC, the local OD pair may also be 

served by LCC, regardless of whether the local airport is a LCC hub airport. However, 

we only consider LCC as an attribute of the local airport. Thus, the destination airport 

cannot be a LCC hub.   

The six criteria have been used to filter the OD pairs in the 10-year DB1B data and 2-

year DB1B data. The 2-year DB1B data is from 2012 quarter 2 to 2014 quarter 1 (8 quarters in 

total). The reason to use the 2-year DB1B data is to exclude the potential impact of the 2008 

economic downturn on airport leakage. As shown in Figure 3.1, based on the 10-year DB1B data, 

there are 50 results that satisfy the above six criteria. Based on the 2-year DB1B data, there are 
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36 results that satisfy the six criteria. Together, there are only 29 overlapping OD pairs for the 

two periods. Due to the fact that many OD pairs share the same origin airport, the 29 OD pairs 

were filtered again using the following three criteria.  

1. Only OD pairs with more than 30 quarterly observations of passenger enplanement in T-

100 dataset are retained in the dataset. All other variables from DB1B dataset have 41 

quarterly observations without missing values.  

2. For each local airport, only the OD pair with the highest number of passengers is selected. 

12 OD pairs are left. 

3. Only one substitute airport with the highest passengers is selected for each local airport.  

As shown in Figure 3.1, finally, there are 10 local OD pairs left after filtering. The local 

airports, their corresponding substitute airports and destination airports are displayed in Table 3.1. 

Their detailed airfare, flight leg, passengers and distance information from 2004 to 2014 (with 

only one quarter in 2014) are contained in Appendix A.  
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Table 3.1 Result of OD Selection 

Local Airport Substitute Airport Destination Airport Local OD 

Pair (Code) 

Jacksonville 

International Airport, 

FL 

Orlando International 

Airport, FL 

Philadelphia International 

Airport, PA 

JAX - PHL 

Tucson International 

Airport, AZ 

Phoenix Sky Harbor 

International Airport, AZ 

Seattle–Tacoma 

International Airport, WA 

TUS - SEA 

Gerald R. Ford 

International Airport, 

MI 

Detroit Metropolitan 

Wayne County Airport, MI 

Tampa International 

Airport, FL 

GRR - TPA 

Columbia 

Metropolitan Airport, 

SC 

Charlotte Douglas 

International Airport, NC 

LaGuardia Airport, NY CAE - LGA 

Portland International 

Jetport, ME 

Logan International 

Airport, MA 

Charlotte Douglas 

International Airport, NC 

PWM - CLT 

Bradley International 

Airport, CT 

John F. Kennedy 

International Airport, NY 

Tampa International 

Airport, FL 

BDL - TPA 

Port Columbus 

International Airport, 

OH 

Detroit Metropolitan 

Wayne County Airport, MI 

Tampa International 

Airport, FL 

CMH - TPA 

Charleston 

International Airport, 

SC 

Charlotte Douglas 

International Airport, NC 

LaGuardia Airport, NY CHS - LGA 

Chattanooga 

Metropolitan Airport, 

TN 

Hartsfield–Jackson Atlanta 

International Airport, GA 

Ronald Reagan 

Washington National 

Airport, VA 

CHA - DCA 

Huntsville 

International Airport, 

AL 

Hartsfield–Jackson Atlanta 

International Airport, GA 

Ronald Reagan 

Washington National 

Airport, VA 

HSV - DCA 
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3.1.3. Description of Dataset 

After origin-destination selection, data from different sources were processed to create the final 

dataset. Because the DB1B data is presented in a quarterly format, all variables will be in 

quarters except census data which are in years.  

The average airfare per passenger, average group size, flight legs per passenger, and non-

stop miles are from the DB1B market dataset as mentioned in Section 3.1.1. Traffic data from 

the T-100 dataset have been processed and organized to derive more variables related to traffic 

volume. The total passenger enplanement per quarter from the local airport to all the U.S. 

airports except the subject destination airport is set as the total enplanement variable for the local 

airport. The reason to exclude the subject destination is to eliminate the endogeneity between this 

enplanement variable and the passenger variable. The passenger variable represents the number 

of passengers from the local airport to the subject destination (Suzuki & Audino, 2003). Total 

passenger enplanement from the substitute airport to all the U.S. airports is set as the 

enplanement variable for the substitute airport to show traffic volume of the substitute airport in 

a certain quarter. The total passenger enplanement from all the U.S. airports to the destination 

per quarter, excluding that from the local airport and from the substitute airport, has been used as 

the seasonality variable to reflect seasonal fluctuation of air passengers to the destination (Suzuki 

& Audino, 2003). The reason of excluding the local airport and the substitute airport is also to 

eliminate the endogeneity between the passenger variable and the seasonality variable, or the 

endogeneity between the enplanement variable and the seasonality variable. In addition, the 

number of passengers served by low-cost carriers (LCC) in each quarter has been assessed for 

the 10 local OD pairs. Identified LCCs are Southwest Airlines, AirTran Airways, Allegiant Air, 

Frontier Airlines, JetBlue Airways, Spirit Airlines, Sun County Airlines, and Virgin America.  

Yearly population and per capita income in metropolitan areas are only available in the 

years between 2005 and 2013 (Census Bureau, U.S. Department of Commerce, 2014a). The 

population in 2004 was estimated by using population change rate from 2004 to 2005 for each 

state. When one metropolitan area covers more than one state, the average population change 
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rate was used. Per capita income in 2004 was estimated by using per capita income growth rate 

from 2004 to 2005 in the United States. Population and income in quarter 1, 2014 was set as the 

same values as 2013. In addition, freight enplanement for each local OD pair per quarter from T-

100 has been included in the dataset which may also be able to reflect economy (Suzuki & 

Audino, 2003). 

Aviation fuel cost and consumption are in months from Air Carrier Financial Reports (or 

Form 41 Financial Data), U.S. DOT (Bureau of Transportation Statistics, U.S. Department of 

Transportation, 2014c). Quarterly fuel cost per gallon is not the mean value of fuel cost per 

gallon in three months; instead, it is weighed by fuel consumption. Fuel cost is time specific, 

meaning it does not change for different routes. The values are shown in Figure 3.2. From this 

figure, the economic crisis in 2008 caused a significant decrease in fuel cost. Since 2009, fuel 

cost has been increasing and remained relatively stable after 2011.  

 

Figure 3.2 Quarterly aviation fuel cost per gallon for domestic services (U.S. carriers) 

Descriptive statistics, including the number of observations, mean, standard error, 

minimum, median, and maximum of all variables in the dataset are shown in Table 3.2.  
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Table 3.2 Descriptive Statistics of Variables in the Dataset 

Variable Explanation Obs. Mean Std. Error Min. Median Max. 

     
Airfare from local airport, per 

passenger per quarter 
410 177.00 46.37 97.88 171.36 372.67 

    
Flight leg from local airport, per 

passenger per quarter 
410 1.40 0.25 1.06 1.37 2.07 

      Non-stop miles for local OD pair 410 814.53 224.01 523.00 777.00 1,216.00 

     
Passengers for local OD pair per 

quarter 
395 14,829.31 11,153.00 190.00 13,170.00 53,726.00 

        
Freight for local OD pair per quarter 

(pounds) 
395 9,622.15 31,630.00 0.00 538.00 304,816.00 

     
Performed departure for local OD 

pair 
393 229.55 156.10 2.00 185.00 661.00 

    

Seasonality; total passenger 

enplanement per quarter from all 

U.S. airports excluding local airport 

and substitute airport to the 

destination  

410 2,586,606.00 724,544.00 1,545,803.00 2,337,216.00 5,001,127.00 

        
Passengers served by LCC for local 

OD pair per quarter 
410 4,498.10 7,452.00 0.00 0.00 26,017.00 

     
Portion of passengers served by 

LCC for local OD pair per quarter 
395 0.22 0.36 0.00 0.00 1.00 

     
Average group size for local OD 

pair per quarter 
410 1.89 0.62 1.03 1.75 4.15 

    

Passengers from local airport to all 

U.S. destinations excluding 

passengers for local OD pair per 

quarter 

410 365,565.20 256,617.00 51,795.00 257,806.50 1,007,612.00 

    Population in the metropolitan area 410 882,339.60 415,970.00 348,211.00 773,619.00 19,990,193.00 
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of local airport per quarter 

    

Per capita income in the 

metropolitan area of local airport per 

quarter 

410 6,611.70 761.84 5,451.00 6,460.00 8,833.00 

   
Airfare from substitute airport, per 

passenger per quarter 
410 152.02 31.20 88.66 149.63 308.12 

   
Flight leg from substitute airport, 

per passenger per quarter 
410 1.10 0.06 1.01 1.08 1.36 

      
Performed departure for substitute 

OD pair 
410 1,193.07 523.35 260.00 1,218.00 2,141.00 

   
Passengers from substitute airport to 

all U.S. destinations 
410 4,912,370.00 2,486,211.00 2,183,002.00 3,944,060.00 10,822,651.00 

    
Driving distance between local 

airport and substitute airport 
410 130.90 28.71 88.00 139.00 181.00 

     
Unit aviation fuel cost per gallon per 

quarter in the U.S. 
410 2.34 0.70 0.97 2.21 3.49 
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3.2. Model Estimation and Results 

The two-stage least square (2SLS) model has been chosen for use. The reason is that the 2SLS 

model is able to estimate simultaneous equations model. More specifically for this research, the 

2SLS model is able to estimate how airfare and other variables impact airport demand, and, 

meanwhile, how airport passengers impact airfare. In the first stage of the model, the airfare is 

estimated by the passenger variable and other exogenous variables. In the second stage, the 

demand is estimated by the predicted airfare variable from the first stage (i.e., instrumental 

variable) and other variables (Dougherty, 2011; Pindyck & Rubinfeld, 1998). 

The 2SLS model in this research is based on model form and findings in Suzuki and 

Audino (2003). Log-linear form is used for the first-stage model and second-stage model, 

because it performed better than linear form (Suzuki & Audino, 2003). One principle of variable 

selection is to keep as many variables as possible in each model so as to explore their impacts on 

demand (Suzuki & Audino, 2003). Variables that have been tested include route indicator 

variables, flight leg, seasonality variable, quarter indicator variable, freight, airfare at the 

substitute airport, flight leg at the substitute airport, and interaction variables of the driving 

distance between the local airport and the substitute airport with the airfare at the substitute 

airport and with the flight leg at the substitute airport, travel group size, fuel cost per gallon, the 

enplanement at the local airport and the substitute airport, low-cost carrier (LCC) indicator 

variables, non-stop miles, flight frequency, population, and income (Suzuki & Audino, 2003). 

3.2.1. Model 1-a: Two-Stage Least Squares (2SLS) Model 

Two-stage least squares model, which is also called Model 1-a in this thesis, can be estimated in 

the Statistical Analysis System (SAS) software. All the variables mentioned above including 

their interaction terms have been tested in the airfare model and the demand model. The final 

model form obtained is below.  

  



33 

 

First-stage Model 

  (      )  ∑    (   )

 

     (      )      (     

  )      (    )      (            )     
( 3-1 ) 

Where  

The subscript   denotes the local OD pair, particular to each of the 10 OD pairs represented in the 

dataset. 

The subscript   denotes time or quarter.  

       is the average airfare per passenger for the local OD pair   at quarter  .  

 (   ) is the route indicator variable.     if the route is for the local OD pair  ; and     

otherwise.  

       is the number of passengers for the local OD pair   at quarter  .  

 (       ) is the low-cost carrier (LCC) indicator variable.     if 25% or more passengers 

used low-cost carriers (LCC) for the local OD pair   at quarter  ; and     otherwise.  

     is the average airfare per passenger for the substitute OD pair corresponding to the local OD 

pair   at quarter  .  

      is the unit aviation fuel cost per gallon for U.S. domestic services provided by U.S. 

carriers at quarter  .  

       is the non-stop miles of from origin airport to destination airport for the local OD pair  . 
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There are two reasons to use the interaction term             . Firstly, total fuel cost, as one 

of the major airline costs, depends on miles flown. Secondly,       is time-specific and        

is route-specific, so their combination is specific for every observation. 

   is the error term in the airfare model at quarter  .  

     , and    are parameters.  

Second-stage model 

The predicted airfare from the first-stage model is used in the second-stage demand model. 

  (      )  ∑    (   )

 

     (      )̂      (     )       (     )

     (     )      (    )      (      )           

   (    )             (     )     
( 3-2 ) 

Where 

       is the number of passengers for the local OD pair   at quarter  .  

 (   ) is the route indicator variable.     if the route is for the local OD pair  ; and     

otherwise.  

  (      )̂  is the fitted log value of airfare per passenger for the local OD pair   at quarter  . 

      is the average flight leg per passenger for the local OD pair   at quarter  . If all passengers 

take direct flights from the origin airport to the destination airport, the average flight leg is one. 

If all passengers transfer once between origin and destination, the average flight leg is two.  
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      is the seasonality variable, represented by total number of passengers from all U.S. 

airports except the local airport and the substitute airport to the destination airport for the local 

OD pair   at quarter  . 

      is the annual population in the year of quarter   in the metropolitan area served by the 

local airport (i.e., origin airport) of local OD pair  .  

     is the average airfare per passenger for the substitute OD pair corresponding to the local OD 

pair   at quarter  .  

       is the average group size of passengers for the local OD pair   at quarter  .  

         (    ) is to show how the airfare at the substitute airport impact the demand when 

group size changes.  

     is the driving distance between the local airport and the corresponding substitute airport for 

the local OD pair  ; in miles.  

      is the total passenger enplanement from the local airport to all U.S. destination airports 

minus the number of passengers of the local OD pair   at quarter  .  

   is the error term.  

     , and    are parameters.  

3.2.1.1. Estimation Results 

Parameter estimation results and goodness of fit for Model 1-a are in Table 3.3. 
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Table 3.3 Estimation Result of Two-stage Least Squares Model (Model 1-a)  

First 

Stage 

Parameter 

Notation 
Variable 

Coefficie

nt 

Std. 

Error 
t-value Pr>t 

          (         ) 2.90 0.25 11.66 <.0001 

          (         ) 2.76 0.25 10.93 <.0001 

          (         ) 2.64 0.23 11.49 <.0001 

          (         ) 2.83 0.24 11.82 <.0001 

          (         ) 2.87 0.25 11.61 <.0001 

          (         ) 2.83 0.25 11.35 <.0001 

          (         ) 2.85 0.24 11.63 <.0001 

          (         ) 2.93 0.25 11.67 <.0001 

          (         ) 2.87 0.23 12.26 <.0001 

          (         ) 3.40 0.25 13.64 <.0001 

          -0.09 0.01 -6.8 <.0001 

    (       ) -0.13 0.02 -5.18 <.0001 

        0.24 0.03 6.92 <.0001 

                0.26 0.02 15.29 <.0001 

Model fit 

statistics 

Sum of squared 

residual 
19.349 

Mean squared Error 0.010 

R-square 0.832 

Adjusted R-square 0.827 

Second 

Stage 

Parameter 

Notation 
Variable 

Coefficie

nt 

Std. 

Error 
t-value Pr>t 

          (         ) -6.31 1.12 -5.65 <.0001 

          (         ) 0.00 . . . 

          (         ) -7.07 1.04 -6.8 <.0001 

          (         ) -13.97 2.26 -6.18 <.0001 

          (         ) -11.28 1.99 -5.68 <.0001 

          (         ) -11.07 1.96 -5.66 <.0001 

          (         ) -4.73 0.85 -5.56 <.0001 
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          (         ) -4.22 0.71 -5.95 <.0001 

          (         ) -10.63 1.67 -6.35 <.0001 

          (         ) -1.99 0.47 -4.27 <.0001 

          -1.60 0.24 -6.7 <.0001 

         -3.05 0.29 -10.54 <.0001 

         1.00 0.16 6.34 <.0001 

         1.89 0.33 5.74 <.0001 

        0.38 0.13 2.96 0.0033 

          1.03 0.40 2.55 0.011 

            (    ) -0.12 0.04 -3.16 0.0017 

        -0.15 0.03 -5.9 <.0001 

         0.27 0.12 2.23 0.0265 

Model fit 

statistics 

Sum of squared 

residual 
380.194 

Mean squared Error 0.083 

R-square 0.924 

Adjusted R-square 0.920 

 

  



38 

 

In Model 1-a, almost all variables are significant at the 99% confidence level while only 

the enplanement at the local airport is significant at the 95% confidence level. Demand and 

airfare have a negative relationship, meaning higher demand leads to lower airfare while higher 

airfare leads to lower demand. When the airfare increases, passengers are less willing to choose 

the local airport. Thus the demand at the local airport reduces. The negative impact of demand on 

airfare occurs when airline competition exists. If more than one airline serves for the same route, 

increasing demand will intensify their competition which will eventually reduce the average 

airfare.  

As expected, the presence of LCC on the route will reduce the average airfare. The 

airfare at the local airport will decrease if the airfare at the substitute airport decreases. This may 

result from competition of airlines serving the two airports. The interaction effect of unit fuel 

cost and non-stop miles is positive on the airfare because increase of both unit fuel cost and non-

stop miles will increase airline cost. The longer distance is or the higher fuel cost is, the more 

expensive air ticket will be. Comparing the absolute values of the parameters, the passenger 

variable is small because the digits of passenger values are more than other variables. The impact 

of low-cost carrier on the airfare at the local airport is smaller than that of the airfare at the 

substitute airport. Parameters of route indicator variables are close to each other, but they are 

able to reflect characteristics of local OD pairs which have not been explained by other variables 

such as non-stop miles itself and driving distance to the substitute airport. The goodness of fit for 

the first-stage airfare model is not good as the second-stage model because the R-square value is 

0.832. The goodness of fit for the first-stage airfare model can also be shown by Figure 4, which 

is the plot of observed   (      ) against predicted   (      )̂ .  
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Figure 3.3 Observed airfare vs. predicted airfare 

Comparing with TUS-SEA route indicator variable, all other route indicator variables 

have negative impacts on demand. The characteristics of these routes that have not been captured 

by other explanatory variables, such as existence of a hub airport nearby and non-stop miles, 

actually decrease demand comparing with the Route TUS-SEA. The airfare and flight legs at the 

local airport have negative impacts on the demand, showing passengers are less willing to choose 

the local airport if airfare increases or more transfers are needed. The seasonality variable 

indicates seasonal fluctuation of traffic to the destination and contributes positively to the 

demand at the local airport. In other words, more passengers going to the destination in a 

season/quarter means more passengers for the local OD pair. Population in metropolitan area has 

also a positive impact on demand. Normally, more activities exist when population increase, 

which leads to higher passenger demand at the local airport. Looking at the airfare at the 

substitute airport alone, its parameter is positive. This means if the substitute airport provides 

lower airfare, the demand at the local airport will decrease. On the contrary, if the airfare at the 

substitute airport increases, there will be more passengers using the local airport. This supports 

our hypothesis of airport leakage in the process of origin-destination selection. The positive 

impact of travelers’ group size can be interpreted to mean that for a larger travel group, 
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passengers would prefer to use the local airport. Dividing the parameter of airfare at the 

substitute airport by the parameter of the interaction variable of group size and airfare at the 

substitute airport, it shows that the positive impact of airfare at the substitute airport will be 

eliminated when group size is more than three. In other words, lower airfare at the substitute 

airport does not have attraction to passengers from the local airport when passengers travel in a 

group of more than three people. Driving distance to the substitute airport impacts the demand at 

the local airport negatively, showing that more passengers would use the local airport if the 

substitute airport is farther. The enplanement at the local airport contributes positively to demand. 

Higher traffic at the local airport would attract more passengers, which is a positive feedback 

effect found in the previous study (Hansen, 1995). More variables, such as interaction effect of 

the driving distance and airfare at the substitute airport, are tested in the demand model, but they 

are insignificant. Goodness of fit for the second-stage model can be shown be R-squared value, 

which is         . The goodness of fit for the second-stage model can also be shown by 

plotting observed   (      ) against predicted   (      )̂  in Figure 3.4.  

 

Figure 3.4 Observed demand vs. predicted demand 
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3.2.1.2. Test for Autocorrelation 

Hypotheses of airfare model and demand model in Model 1 are that values of the error terms (or 

residuals) are independent with time periods (Dougherty, 2011). That is, in the first-stage model, 

    is independent with     when     . In the second-stage model,    is independent with     

when     . If these hypotheses do not meet, time serial autocorrelation exists, which is also 

called autocorrelation. Two types of tests have done for autocorrelation. The first one is Durbin-

Watson test based on linearity assumption of error term and lagged error term; and the second 

test is Lagrange Multiplier General test by adding lagged residual into regression. The purpose of 

conducting more than one test is to eliminate the impact of test assumptions on the result and to 

validate the results (Ayyangar, 2007).  

 Durbin-Watson Test 

The standard test for first-order autocorrelation is Durbin-Watson d statistic.  

  
∑ (       )

  
   

∑   
  

   

 

Where    is residual, and      is lagged residual (Dougherty, 2011).  

Whether to reject the null hypothesis of no autocorrelation is based on value of  , lower-

level threshold   and upper-level threshold   . Values of the two thresholds depend on the 

number of explanatory variables in the model and the number of observations (Dougherty, 2011).  

First-order Durbin-Watson test is available for the 2SLS models in SAS software. The 

result for Model 1-a is in Table 3.4. 
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Table 3.4 Result of Durbin-Watson Test 

First-stage model 

Durbin-Watson (DW) 0.921 

Number of Observations 395 

First-Order Autocorrelation 0.530 

Second-stage model 

Durbin-Watson (DW) 1.069 

Number of Observations 395 

First-Order Autocorrelation 0.462 

Durbin-Watson test shows that           (                )        for 

the first-stage model and           (                )        for the second-stage 

model, so we can reject the null hypothesis of no autocorrelation and conclude that that there is 

positive autocorrelation in both the first-stage model and second-stage model. To have a better 

understanding of how residual correlates with lagged residual, two plots of residual against the 

time-dependent (i.e., quarter) variable for the first-stage model and second-stage model are 

shown below respectively.  

 

Figure 3.5 Residual against time-dependent variable in the first-stage model (Model 1-a) 
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Figure 3.6 Residual against time-dependent variable in the second-stage model (Model 1-a) 

Residuals in the two figures are not randomly distributed against time; instead, they have 

formed a wave-like curve along            axis. Such formation suggests that there is 

positive autocorrelation, meaning lagged residuals have positive relationship with residual 

(Dougherty, 2011).  

 Lagrange Multiplier General Test 

The Lagrange Multiplier General test checks model performance by adding a lagged residual as a 

variable in the regression. Lagrange Multiplier General test includes Breusch–Godfrey test and 

Durbin alternative test. Criterion of Breusch–Godfrey test is to check whether the assumption of 

      
  holds, where   is the number of lagged residual and   is the number of observations 

minus number of lagged residual (Godfrey, 1978; SAS, 2014). The Durbin alternative test checks 

whether lagged residuals are not equal to zero (Park, 2006; Wooldridge, 2012) . 

A lagged residual was added to Model 1-a, and only results that are related to the two 

tests are shown in Table 3.5.  
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Table 3.5 Result of Lagrange Multiplier General Tests 

Breusch–

Godfrey test 

Number of observations 390 

Number of lagged residual 1 

R-Square 

First-stage 

model 
0.284 

Second-stage 

model 
0.104 

Durbin 

alternative 

test 

Variable  
Parameter 

Estimate 
t Value Pr > |t| 

Lagged residual 

 

First-stage 

model 
0.531 12.12 <.0001 

Second-stage 

model 
0.320 5.94 <.0001 

In the Breusch–Godfrey test,    =(390-1)*0.284=110.476>     
 = 3.841 for the first-

stage model and   =(390-1)*0.104=40.456>     
 = 3.841 for the second-stage model. Thus, we 

can reject null hypothesis of no autocorrelation and conclude that autocorrelation is present in the 

first-stage model and second-stage model. 

For the Durbin alternative test, both parameters of lagged residual are significantly 

positive in the first-stage model and second-stage model, indicating that positive first-order 

autocorrelation is present. In conclusion of all the tests above, there is positive first-order 

autocorrelation in Model 1-a.  

3.2.1.3. Test for Heteroskedasticity  

Test for heteroskedasticity is to check whether distribution of error term is homogenous, 

meaning whether the variance of error term is fixed with respect to different time periods. White 

test is able to detect heteroskedasticity (Dougherty, 2011), and thus has been conducted for the 

first-stage model and second-stage model respectively. Results of the White tests are shown in 

Table 3.6.  
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Table 3.6 Result of White Test for Heteroskedasticity 

White Test 

First-stage model 

Chi-Square 76.92 

Pr > ChiSq 0.011 

Second-stage model 

Chi-Square 102.51 

Pr > ChiSq 0.930 

Under the hypothesis of no heteroskedasticity,     is distributed as chi-squared statistic, 

i.e.,       
  where   is number of regressors minus one and   is number of observations minus  

 . If the P-value as shwon in the table is smaller than 5%, we can reject null hypothesis of no 

heteroskedasticity. In the first-stage model, P value is 0.011 and smaller than 0.05, so we can 

reject the null hypothesis, and conclude that heteroskedasticity is present. In the second-stage 

model, P value is 0.930 and larger than 0.05, so we cannot reject the null hypothesis of no 

heteroskedasticity. In conclusion, heteroskedasticity has been detected in the first-stage model of 

Model 1.  

3.2.2. Model 1-b: Feasible Generalized Least Squares (FGLS) Model 

Due to the detection of first-order autocorrelation and heteroskedasticity in Model 1-a, it will be 

estimated using feasible generalized least squares. Feasible generalized least squares is able to 

estimate parameters in the model when first-order autocorrelation and heteroskedasticity are 

present (Wooldridge, 2012). To compare with the 2SLS estimation method for Model 1-a, we 

call this model as feasible generalized least squares (FGLS) model or Model 1-b. As Model 1-b 

uses the same explanatory variables as Model 1-a, the variables will not be explained again in 

this section. The variables that have appeared in the previous section are also listed in Appendix 

C.   
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First-stage Model 

  (      )  ∑    (   )

 

     (      )      (     

  )      (    )      (            )     
( 3-3 ) 

                     

Where  

   is the error term in airfare model at quarter  .  

     is the error term in airfare model at quarter    .  

             is the autoregressive error model.  

   is the first-order autoregressive parameter. 

   is the error term in the autoregressive error model, which is assumed to be normally and 

independently distributed with mean 0 and variance   ,     (    ).  

Second-stage model 

The predicted airfare from the first-stage model is used in the second-stage demand model. 
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  (      )  ∑    (   )

 

     (      )̂      (     )       (     )

     (     )      (    )      (      )           

   (    )             (     )     
( 3-4 ) 

             

Where 

   is the error term in the demand model at quarter  .  

    is the error term in the demand model at quarter    .  

             is autoregressive error model.  

   is the first-order autoregressive parameter. 

  is the error term in the autoregressive error model, which is assumed to be normally and 

independently distributed with mean 0 and variance   ,     (    ).  

3.2.3.1. Estimation Results 

Parameter estimation results and goodness of fit for Model 1-b are in Table 3.7. 
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Table 3.7 Estimation Result of Feasible Generalized Least Squares Model (Model 1-b)  

First 

Stage 

Parameter 

Notation 
Variable 

Coefficie

nt 

Std. 

Error 
t-value Pr>t 

          (         ) 2.75 0.29 9.36 <.0001 

          (         ) 2.63 0.30 8.83 <.0001 

          (         ) 2.58 0.28 9.26 <.0001 

          (         ) 2.72 0.29 9.5 <.0001 

          (         ) 2.76 0.30 9.34 <.0001 

          (         ) 2.62 0.30 8.85 <.0001 

          (         ) 2.70 0.29 9.35 <.0001 

          (         ) 2.75 0.30 9.29 <.0001 

          (         ) 2.74 0.28 9.66 <.0001 

          (         ) 3.25 0.29 11.14 <.0001 

          -0.06 0.01 -4.4 <.0001 

    (       ) -0.07 0.03 -2.26 0.0246 

        0.33 0.04 7.29 <.0001 

                0.17 0.02 7.68 <.0001 

   
Autoregressive 

Parameter 
0.65 0.04 -15.88 <.0001 

Model fit 

statistics 
       (  ) 0.007 

Regress R-Square 0.998 

Total R-Square 

(computed from the 

autoregressive model 

residuals) 

1.000 

Durbin-Watson Test 2.030 

Second 

Stage 

Parameter 

Notation 
Variable 

Coefficie

nt 

Std. 

Error 
t-value Pr>t 

          (         ) -32.70 5.07 -6.45 <.0001 

          (         ) -32.32 4.96 -6.51 <.0001 

          (         ) -32.70 4.89 -6.69 <.0001 
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          (         ) -32.23 4.85 -6.65 <.0001 

          (         ) -30.57 4.75 -6.44 <.0001 

          (         ) -32.24 5.03 -6.41 <.0001 

          (         ) -33.32 5.17 -6.45 <.0001 

          (         ) -31.48 4.82 -6.53 <.0001 

          (         ) -31.55 4.72 -6.68 <.0001 

          (         ) -29.77 4.62 -6.45 <.0001 

          -1.20 0.19 -6.37 <.0001 

         -3.11 0.26 -12.1 <.0001 

         0.91 0.13 6.89 <.0001 

         2.21 0.36 6.11 <.0001 

        0.39 0.14 2.85 0.0047 

          1.32 0.36 3.62 0.0003 

            (    ) -0.12 0.03 -3.63 0.0003 

        0.00 . . . 

         0.25 0.10 2.4 0.0168 

   Autoregressive 

Parameter 
0.53 0.05 -10.33 <.0001 

Model fit 

statistics 
       (  ) 0.050 

Regress R-Square 0.998 

Total R-Square 

(computed from the 

autoregressive model 

residuals) 

1.000 

Durbin-Watson Test 1.982 
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All variables in Model 1-b are still significant at 95% confidence level. The signs of the 

variables do not change from Model 1-a except TUS-SEA route indicator variable and     . 

The coefficients of the route indicator variables are smaller than Model 1-a, meaning that the 

impact of route indicator variables on passengers is smaller if we account for time serial 

correlation. Positive autoregressive parameters in first-stage and second-stage models verify the 

detection of positive autocorrelation in Model 1-a. After considering first-order autocorrelation, 

the impact of LCC indicator variable on airfare reduces as shown by the absolute value of LCC 

parameter. Normally, LCC serves an airport in consecutive quarters, so the effect of LCC 

indicator will be captured by autoregressive error model. The effect of the fuel cost variable can 

also be captured by autoregressive error model. In the second-stage model of Model 1-b, the 

impact of the airfare at the local airport on the demand decreases slightly while the impact of the 

airfare at the substitute airport increases slightly. A further discussion of the estimated 

parameters in Model 1-a and Model 1-b will be presented in the section of discussion of results. 

For both the first-stage model and second-stage model in Model 1-b comparing with 

Model 1-a, goodness of fit improves because total R-square values are close to one. The   values 

from Durbin-Watson tests indicate that there is no autocorrelation in the first-stage model and 

second-stage model of Model 1-b.  

3.2.3. Model 2: Feasible Generalized Least Squares (FGLS) Model with an Additional 

Enplanement Variable 

A new model is built to test the hypothesis that other variables excluded from Model 1 (1-a and 

1-b) have impact on the local airport’s demand. As autocorrelation of the data has already been 

detected, we will use FGLS estimation. Other variables, such as the flight legs at the substitute 

airport, income, and the interaction effect of the driving distance and airfare at substituent airport, 

have been tested. The result indicates that the addition of the enplanement variable at the 

substitute airport into the second-stage model is appropriate. This feasible generalized least 

squares model with an additional enplanement variable is called Model 2 in this thesis. The 
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variables will not be explained again if they have been used in Model 1-a and Model 1-b. Also 

these variables are contained in Appendix C. 

Second-stage Model 

The first-stage model is the same as Model 1-b. The predicted airfare from the first-stage model 

is used in the second-stage demand model. The second-stage model of Model 2 is below. 

  (      )  ∑    (   )

 

     (      )̂      (     )       (     )

     (     )      (    )      (      )           

   (    )             (     )       (    )     
( 3-5 ) 

             

Where      is the total passenger enplanement from the corresponding substitute airport 

for the local OD pair   to all the U.S. destination airports at quarter  . 

Because the first-stage model of Model 2 is the same as Model 1-b, the estimation result 

of the first-stage model will not be shown again. Parameter estimation results and goodness of fit 

for the second-stage model in Model 2 is in Table 3.8.  
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Table 3.8 Estimation Result of the Second-Stage Model in Model 2  

Parameter 

Notation 
Variable 

Parameter 

Estimate 

Std. 

Error 
t-value Pr>t 

          (         ) -31.32 5.24 -5.98 <.0001 

          (         ) -30.76 5.14 -5.98 <.0001 

          (         ) -31.13 5.07 -6.14 <.0001 

          (         ) -30.50 5.04 -6.05 <.0001 

          (         ) -29.00 4.93 -5.89 <.0001 

          (         ) -30.95 5.19 -5.97 <.0001 

          (         ) -32.02 5.33 -6.01 <.0001 

          (         ) -29.82 5.00 -5.96 <.0001 

          (         ) -29.27 4.98 -5.88 <.0001 

          (         ) -27.55 4.87 -5.66 <.0001 

          -1.11 0.20 -5.67 <.0001 

         -3.07 0.26 -11.99 <.0001 

         0.96 0.13 7.2 <.0001 

         2.38 0.37 6.41 <.0001 

        0.29 0.15 1.91 0.0567 

          1.17 0.37 3.16 0.0017 

            (    ) -0.11 0.03 -3.16 0.0017 

        0.00 . . . 

         0.40 0.13 3.2 0.0015 

         -0.43 0.21 -2.1 0.0368 

   
Autoregressive 

Parameter 
0.56 0.05 -11.13 <.0001 

Model fit 

statistics 

       (  ) 0.049 

Regress R-Square 0.998 

Total R-Square 1.000 

Durbin-Watson Test 2.008 
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In Model 2, the variable      has a negative impact on demand for the local OD pair. 

This means that the substitute airport with higher passenger traffic will attract more passengers 

from the local airport. Interestingly, the absolute value of its coefficient is close to that of      . 

In other words, the higher traffic at the local airport, the more passengers it will retain; the higher 

traffic at the substitute airport, the more passengers from the local airport will “leak” to the 

substitute airport. This verifies the existence of positive feedback effects at the local airport and 

the substitute airport, and the sensitivities of the demand on the local OD pair are similar to the 

total passenger enplanements at the local airport and the substitute airport. Comparing with 

Model 1-b, Model 2 has a higher coefficient of      . It indicates that the positive feedback 

effect has been underestimated in Model 1-b. Other coefficients have experienced small changes 

between Models 1-b and 2. Goodness of fit (i.e., R-squares value) for Model 2 is also similar to 

Model 1-b, and the result of the Durbin-Watson test also shows no autocorrelation exists in 

Model 2.  

3.2.4.  Discussion of Results 

Model 1-a is a two-stage least squares (2SLS) model to capture the endogeneity between airfare 

and demand. Model 1-b has been improved by correcting first-order autocorrelation and 

heteroskedasticity in Model 1-a. Model 2 used the same estimation method of feasible 

generalized least squares (FGLS) as Model 1-b but introduced one more variable in the second-

stage model. In the three models, all the signs of the estimated parameters change slightly.  

All variables are significant at the 95% confidence level. Variables that impact airfare 

include the route indicator variables, passengers, LCC indicator variable, airfare at the substitute 

airport, and the product of unit fuel cost and non-stop miles. Passengers impact airfare negatively 

when higher passenger traffic intensifies airline competition which eventually leads to lower 

airfare. Low-cost carrier (LCC) availability decreases airfare. The airfare at the local airport will 

decrease if the airfare at the substitute airport decreases. The positive sign of the product of unit 

fuel cost and non-stop miles suggests that airfare will increase if unit fuel cost increase or non-

stop miles is longer. By introducing a positive autoregressive parameter in Model 1-b and 2, the 
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R-square value of airfare model largely improves. To have a better understanding of airfare 

models in Model 1-b, airfare against passengers has been plotted in the figure below. The LCC 

indicator variable is set as zero. The lagged residual is set as zero because we are interested in 

impact of passengers on airfare in the same time period. Values of other variables are the mean 

values in the dataset for the Route JAX- PHL. Based on the results shown in Figure 3.7, airfare 

ranges from $164 to $178 when the number of passengers ranges from 2,000 to 8,000.  

 

Figure 3.7 Relationship between airfare and passengers for local OD pair based on airfare 

model (Model 2) 

Based on the result of Model 2, the local airport demand variables include the route 

indicator variables, airfare at the local airport, flight leg at the local airport, seasonality, 

population, driving distance, total enplanement of the local airport, total enplanement of the 

substitute airport, airfare at the substitute airport, group size, and the interaction variable of 

group size and airfare at the substitute airport. The estimated coefficients of the two enplanement 

variables reflect that the positive feedback effects exist at both the local airport and the substitute 

airport. The positive feedback effect means that an airport with higher passenger traffic will 

attract more passengers (Hansen, 1995). However, Model 1-b does not reflect the positive 

feedback effect at the substitute airport, and underestimates the positive feedback effect at the 

local airport. On the other hand, the results of Model 2 suggest that passengers may be attracted 



55 

 

to the substitute airport not only because of lower airfare but also because more people are using 

the substitute airport. The attractiveness of lower airfare at the substitute airport will be 

eliminated if passengers travel in a group with more than three people. To show how 

autocorrelation would impact the estimation result, the relationship between the passengers and 

the airfare at the local airport as in two-stage least squares model (Model 1-a) and feasible 

generalized least squares model (Model 1-b) are presented and compared in Figure 3.8. The 

lagged residual in Model 1-b is set as zero because we are interested in the same time period. 

Other variables are the mean values of the 41 observations for the Route JAX- PHL. In Figure 

3.8, the number of passengers based on Model 1-a is at a scale of 10
13

 which is not realistic. The 

number of passengers based on Model 1-b is much smaller at a scale of 10
4
. The difference of 

Model 1-a and Model 1-b suggests that estimation result is misleading if autocorrelation is not 

considered.  

 

Figure 3.8 Relationship between passengers and airfare for local OD pair based on demand 

model (Model 1-a and Model 1-b) 
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A similar plot for Model 1-b and Model 2 are shown in Figure 3.9.  

 

Figure 3.9 Relationship between passengers and airfare for local OD pair based on demand 

model (Model 1-b and Model 2) 

Adding a variable in Model 2 only slightly changes the demand value comparing with 

Model 1-b. The number of passengers in Model 2 ranges from         to       when the 

airfare at the local airport ranges from $50 to $300. When the enplanement at the substitute 

airport is considered, the demand for local OD pair is less sensitive to the airfare at the local 

airport.  
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CHAPTER 4. SUPPLY-DEMAND EQUILIBRIUM MODEL 

A binary logit model is used to determine the market shares of two airports for a population that 

is expected to be served by a local airport but may leak to a “substitute” airport outside the 

region under certain conditions. The airfare model in Chapter 3 is used to determine the airfare 

variable in the binary logit model. A numerical analysis is performed to explore the impact of 

variables and coefficients on equilibrium solutions.  

4.1. Model Specification 

Discrete choice models have been used extensively in describing passengers’ airport choice 

behaviors, and airports’ market share (de Luca, 2012; S. Hess, 2005; Hsiao, 2008; Warburg, Bhat, 

& Adler, 2006). The underlying objective of a discrete choice model is utility maximization, 

when there is a set of alternatives to choose from. A binary logit model was built to understand 

leakage from a local airport to a substitute airport. Also, the impact of airfare on demand has 

been considered.  

4.1.1. Binary Logit Model Structure 

Passenger’s utility of choosing an airport is (Train, 2009) :  

         ( 4-1 ) 

Where  

  indexes the airport, of which there are two such that      or 2.  

   is the utility of choosing Airport  .  

   is the deterministic utility of Airport  .  

   is the unknown part of utility that is not captured by   .  
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Passengers will choose Airport 1 when the utility of patronizing Airport 1 is higher than 

the utility of patronizing Airport 2. So the probability of choosing Airport 1 is    

    (     ), which can be further written as follows: 

       (     )      (           )      (           )

     (           ) ( 4-2 ) 

By assuming that    and    follow the standard Gumbel distribution, their difference 

      follows the logistic distribution (Train, 2009). Derivation of this can be checked in Train 

(2009). Ultimately, the final expression for the probability of choosing Airport 1 can be written 

in closed form as: 

   
    (  )

   (  )      (  )
 ( 4-3 ) 

The probability of choosing Airport 2 (  ) can be written in a similar fashion. We know 

that        , because Airports 1 and 2 are the only airports in the choice set. 

4.1.2. Supply-Demand Equilibrium Model Specification 

A binary logit model has been developed to estimate airport leakage from a local airport (Airport 

1) to a substitute airport (Airport 2). To make the substitute airport attractive to the “leakage” 

passengers, the substitute airport is supposed to provide services that are superior to those 

offered by the local airport. The airfare variable in the airport market share model is based on the 

airfare model from Chapter 3. This variable is designed to explain how demand affects airfare in 

the passenger-airfare relationships. Some assumptions have been made when specifying airport 

market share model and airfare model.  
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4.1.2.1. Airport Market Share Model 

In this model, Airport 1, as mentioned in Equation 4-3, is treated as the local airport. The 

population for which this choice model applies is from the metropolitan area that is expected to 

be served by that local airport. But the other airport (Airport 2), located in a different 

metropolitan area, is also available for the passengers. Assuming that every individual in the 

population follows an identical airport choice pattern, the aggregated market share of the local 

airport (Airport 1) will be equal to the disaggregate probability of choosing the local airport. 

Thus, the market share of Airport 1 to a specific destination airport can be calculated in the 

following expression.  

    
    (  )

   (  )      (  )
 ( 4-4 ) 

   is the deterministic utility of Airport 1, and    is the deterministic utility of Airport 2. 

The attributes in utility functions are different in disaggregate airport choice and aggregate 

airport market share. Generally, attributes that are specific to individuals, such as a passenger’s 

experience, cannot apply to the airport market share model. In addition, for the important 

attributes such as airfare and ground access time, which vary with respect to individuals, the 

average values are normally used in aggregate airport market share models. In this model, three 

attributes that were found to be significant in previous studies for explaining airport choice are 

chosen, including airfare, flight frequency and ground access distance (S. Hess, 2005; S. Hess & 

Polak, 2010). Ground access distance is the distance from ground access origin (such as home) to 

the airport. The utility of departing from Airport   to the destination is  

            (  )       (  ) ( 4-5 ) 

Where 

   is the average airfare  from Airport   to the destination airport, i=1 or 2. 
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   is the flight frequency from Airport   to the destination airport, i=1 or 2. 

   is the average ground access distance to Airport   for the population, i=1 or 2. 

          are parameters. They can be interpreted as weights of corresponding attributes in the 

utility function. 

4.1.2.2. Airfare Model 

The airfare term of Airport 1 (  ) in Equation 4-5 is assumed to be a function of the number of 

passengers at Airport 1 on the subject origin-destination (OD) pair, as shown in Equation 4-6.   

    (     ) ( 4-6 ) 

The airfare model is based on the results of the feasible generalized least squares model 

(Model 2) in the previous chapter, which indicates Equation 3-3. The lagged residual in 

autoregressive model is set as zero because we only consider the impact of the number of 

passengers on airfare in the same period. Route indicator variables and non-stop miles variable 

need to be specified with respect to a specific origin-destination (OD) pair. As a result, the OD 

pair from Jacksonville International Airport (JAX) to Philadelphia International Airport (PHL) is 

randomly chosen from the 10 local OD pairs in Table 3.1. Although we use the empirical model 

as defined for the route from JAX to PHL, the entire modeling exercise itself is based on a 

hypothetical situation. The airfare model for Airport 1 is below.  

       (           (     )        (   

  )        (  )        (          )) ( 4-7 ) 

Where  

  is the total air passenger demand in the metropolitan region of Airport 1. 
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    is the market share of Airport 1.            . 

      is the number of passengers departing from Airport 1 to the destination airport. 

 (     )  is the low-cost carrier (LCC) indicator variable.     if LCC are available at 

Airport 1;     otherwise. 

   is average airfare from Airport 2 (i.e., the substitute airport) to the destination airport, in 

dollars. 

     is unit fuel cost per gallon. 

      is non-stop miles of the flight from Airport 1 to the destination airport. 

4.2. Numerical Analysis 

If all the variables except     in Equation 4-7 are known, we are able to obtain a range of    

values by inputting    , which is in the range of        .  Then, by using the    values in 

Equation 4-4, we will obtain the new values of    , which are the output market shares of 

Airport 1. We say that an equilibrium condition exists when the output market share equals the 

input market share, because it is a closed loop feedback.  In this section, the numerical analysis 

focuses on equilibrium market share given the values of variables and parameters. The following 

descriptions explain how the base values of parameters and coefficients are set. 

1. Because we do not have empirical survey data to populate the model (Equation 4-5), the 

values of coefficients           are taken from the literature (Brooke, Caves, & Pitfield, 

1994; Caves, Ndoh, & Pitfield, 1991; Ndoh, Pitfield, & Caves, 1990; Pels, Nijkamp, & 

Rietveld, 2000).  

2. Different from airfare term of Airport 1, the airfare term of Airport 2 (i.e., the substitute 

airport) is not in a function of the market share at Airport 2.This is because the demand 

“leaking” to the substitute airport is only a small part of total demand at the substitute 
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airport. The total demand will impact airfare at that airport. Thus, the average airfare 

from Airport 2 to the assumed destination is set as $200 per passenger. 

3. The non-stop miles variable (     ) is set as 742 miles, which is the flight distance 

from JAX to PHL. The same value has been used to estimate the coefficients in Equation 

4-7. Thus, the estimated airfare may be more accurate than others when           

miles. 

4. The flight frequency at Airport 1 is 100 flights per quarter, while the frequency at Airport 

2 is 200 flights per quarter. This means that Airport 1 provides one flight per day to the 

assumed destination airport, while Airport 2 provides two flights per day to the 

destination.  

5. Average ground access distance to Airport 1 is set as 30 miles. The Orlando International 

Airport (MCO) is the substitute airport for JAX. Based on the driving distance between 

JAX and MCO, which is 141 miles, the average ground access distance to Airport 2 is 

171 miles.  

6. The total air passenger demand from the metropolitan area of Airport 1 to the destination 

is assumed to be 20,000 passengers in a quarter. By assuming that one aircraft provides 

200 seats on average, Airport 1 has the capacity to satisfy the total demand.   

7. The local airport is not a low-cost carrier (LCC) hub, and    . 

8. The unit aviation fuel cost is based on the record for 2013, which is around $3/gallon 

(Bureau of Transportation Statistics, U.S. Department of Transportation, 2014c). 

The parameters, descriptions, and their base values are listed in the table below. The 

variables and coefficients will be set to different values to assess how sensitive the market share 

equilibrium is to these parameters. Without specifying the exact values, the inputs of other 

parameters are the base values in Table 4.1. 
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Table 4.1 Explanation and Base Values of Parameters in Utility Function and Airfare 

Function  

Utility Function 

Notation Description Base Value 

  Coefficient of Airfare -0.04 

  Coefficient of Frequency 1.15 

  Coefficient of Ground Access Distance -0.04 

   
Flight Frequency at Airport 1 per 

Quarter 
100 

   
Flight Frequency at Airport 2 per 

Quarter 
200 

   
Ground Access Distance to Airport 1 

(miles) 
30 

   
Ground Access Distance to Airport 2 

(miles) 
171 

Airfare Function 

Notation Explanation Base Value 

  Total Passenger Demand 20,000 

 (     ) LCC Indicator Variable, for Airport 1 0 

   Airfare at Airport 2 ($) 200 

     Unit Fuel Cost ($/gallon) 3 

      
Non-stop Miles of Flight form Airport 1 

to the Destination (miles) 
742 

According to Equation 4-7, the value of    ranges from $190 to $230 when     ranges 

from zero to one. Meanwhile, other variables are set the base values in the airfare function. 

When         ,   equals to   , which is $200. 

4.2.1. Impact of Airfare Coefficient ( ) in Utility Function  

In Figure 4.1, the solid line with no markers is the 45
o
 reference line. An equilibrium exists when 

the output market share (i.e., y-axis) equals to the input market share (i.e., x-axis), because, by 

definition, they are the same value. Therefore, the equilibrium exists where each curve intersects 

with the 45
o
 reference line. Only the equilibrium points reflect real situations, so we are only 

interested in how equilibrium points change when the value of a specific coefficient or variable 

changes. There are two types of equilibrium points: stable equilibrium and unstable equilibrium. 

“If at the intersection point the curve cuts the 45
o
 line from above as MS1 increases, the 
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equilibrium is stable” (Hansen, 1995). The intuition for this is that after any derivation from the 

stable equilibrium, the market share will return to the stable equilibrium (Sharov, 1996). On the 

contrary, after any derivation from the unstable equilibrium, the market share will never return to 

the stable equilibrium (Sharov, 1996). 

 

Figure 4.1 Equilibria under alternative airfare coefficients in utility function 

The coefficient   is given four different values of -0.01, -0.04, -0.09, and -0.33, as shown 

in Figure 4.1. Only negative values of   are applied, because the sensitivity of utility to airfare is 

normally negative. Such a negative relationship can be interpreted to mean that an airport with 

higher airfare reduces the probability of passengers choosing this airport.         is set to 

investigate equilibrium market share when   is larger than -0.04.         is the base value 

from Table 4.1.There are two possible equilibrium points when   is larger than (approximately) -

0.09. When   is smaller than -0.09, the number of equilibrium points drops to one. However, if 

  decreases to (approximately) -0.33, there will be two possible equilibrium points again. When 

  is smaller than -0.33, the number of equilibrium points increases to three.  

Two equilibrium points exist when        . One is a stable equilibrium at 

(approximately)         , and the other is an unstable equilibrium at      . When 

       , the unstable equilibrium stays at       , but the market share of Airport 1 at 
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stable equilibrium reduces. In consideration that the absolute value of   represents how much 

consideration a passenger gives to airfare when choosing an airport (i.e., the weight of the airfare 

in utility), the market share of Airport 1 reduces when the weight of airfare increases (meanwhile 

       ). In addition, based on the values of stable equilibrium when        , the airfare 

at Airport 1 (  ) is higher than the airfare at Airport 2 ($200), according to Equation 4-7. It can 

be interpreted to mean that more passengers will leak to the substitute airport when airfare is 

increasingly important to passengers (under the circumstances that the substitute airport provides 

lower airfare than the local airport). When              , only one stable equilibrium 

exists at      . This means that all passengers will leak to the substitute airport when the 

weight of airfare is in a specific range (under the circumstances that airfare at the substitute 

airport is $200 while the airfare at the local airport is $230). When        , there are three 

equilibrium points. Two stable equilibrium points exist at       and         respectively, 

while one unstable equilibrium exists at          . The stable equilibrium at         

will increase when   decreases. In addition, based on the values of stable equilibrium when 

       , the airfare at Airport 1 (  ) is lower than the airfare at Airport 2 ($200). This means 

that more passengers will use the local airport when airfare is increasingly important to 

passengers (under the circumstances that the local airport provides lower airfare than the 

substitute airport).  

In conclusion, the airport with lower airfare always has an advantage in airport market 

share. This advantage will be magnified when passengers consider airfare to be more important 

when choosing an airport. Normally, airfare is more important to leisure passengers than 

business passengers, which is evident in the fact that leisure passengers are more likely to leak to 

the substitute airport when it provides lower airfare. However, if the local airport provides lower 

airfare, more leisure passengers will be retained at the local airport. 

4.2.2. Impact of Frequency Coefficient ( ) in Utility Function  

In the utility function, coefficient   is given three values of 0.01, 1.15, and 2.90. The positive 

sign of   is fixed, assuming that frequency contributes positively to utility in Equation 4-5.  
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       is to show the equilibrium results when   is much lower than the base value.        

is the base value from Table 4.1. There are two possible equilibrium points when   is smaller 

than (approximately) 2.90. When   is larger than 2.90, the number of equilibrium points drops to 

one. The equilibrium results are shown in the figure below. 

 

Figure 4.2 Equilibria under alternative frequency coefficients in utility function  

Two equilibrium points exist when       . One is a stable equilibrium at 

(approximately)         , and the other is an unstable equilibrium at      . The 

corresponding airfare at Airport 1 ($190) is smaller than the airfare at Airport 2 ($200) when 

        . When   increases, the market share of Airport 1 at the stable equilibrium decreases. 

Because the absolute value of   represents the weight of frequency in utility, we can conclude 

that the market share of Airport 1 reduces when the weight of frequency increases (under the 

circumstance that frequency at Airport 1 is 100 while frequency at Airport 2 is 200). It should 

also be noticed that airfare at Airport 1 is also changing with respect to different equilibrium 

points. When       , only one stable equilibrium exists at      , meaning that all 

passengers will use the substitute airport (Airport 2) when frequency is very important to them 

(under the circumstance that the frequency at Airport 1 is 100, the frequency at Airport 2 is 200, 

the airfare at Airport 1 is $230, and the airfare at Airport 2 is $200). 
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In conclusion, this advantage of Airport 2 with higher flight frequency will be magnified 

when passengers consider frequency to be more important when choosing an airport. Meanwhile, 

in the long term, when Airport 1 has a lower market share, the airfare at Airport 1will increase, 

which may further reduce its market share. Normally, business passengers are more sensitive to 

flight frequency. Thus, it is important for the local airport to know the ratio of business 

passengers in its market.   

4.2.3. Impact of Ground Access Distance Coefficient ( ) in Utility Function  

As shown in Figure 4.3, the coefficient   is given three values of -0.01, -0.04, and -3.50. Only 

negative values of   are used, because the sensitivity of utility to ground access distance is 

negative. In other words, a longer ground access distance reduces the utility and reduces the 

probability of choosing an airport.         is to show the results when   is larger than the 

base value.         is the base value from Table 4.1. A third value of         is given to 

show the results when   is smaller than the base value.  

 

Figure 4.3 Equilibria under alternative ground access distance coefficients in utility 

function 

There are two equilibrium points when        . One stable equilibrium exists at 

         and one unstable equilibrium exists at      . The stable equilibrium changes 
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very slightly when   decreases to -0.04. At its stable equilibrium point, the airfare at Airport 1 is 

$205 according to Equation 4-7. This means that around 72% of passengers in the metropolitan 

area of Airport 1 will leak to Airport 2 when airfare at Airport 1 is $205 (and, as stated earlier, 

the airfare at Airport 2 is $200, the frequency at Airport 1 is 100 flights per quarter, the 

frequency at Airport 2 is 200 flights per quarter, the ground access distance to Airport 1 is 30 

miles, and the ground access distance to Airport 2 is 171 miles). When   decreases, the market 

share of Airport 1 at the stable equilibrium increases. We can conclude that the market share of 

Airport 1 reduces when the weight of ground access distance increases (and, of course, the 

average ground access distance to the local airport is shorter than the distance to the substitute 

airport). It should also be noted that the airfare at Airport 1 also changes with respect to different 

equilibrium points. The market share of Airport 1 reaches one when         , meaning that 

there is no airport leakage when the weight of ground access distance is very high.  

In conclusion, local airport is more likely to attract passengers that treat ground access 

distance as an important factor of their airport choices. If the local airport is able to increase its 

market share, it will provide lower airfare in the long term. Normally, business passengers are 

more sensitive to ground access distance. Thus, it is important for the local airport to know the 

ratio of business passengers in its market. Meanwhile, in the raining or snowing seasons, 

passengers are more likely to patronize the local airport.    

4.2.4. Impact of Airfare at Substitute Airport (  ) in Utility Function and Airfare Function 

As shown in Figure 4.4, three values of $150, $200, and $350 for    have been provided. 

        is chosen to reflect the equilibrium when    is lower than the base value.         

is the base value from Table 4.1.         is chosen to reflect the equilibrium when    is 

higher than the base value. There is only one equilibrium that is stable at       when 

       . When    exceeds $150, the number of equilibrium points increases to two. One 

stable equilibrium exists at       and one unstable equilibrium exists at      .  
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Figure 4.4 Equilibria of market share at Airport 1 under alternative airfares at Airport 2  

With the increase of    (and        ), the market share at stable equilibrium point 

also increases. Such a result not only depends on the impact of    in the utility function 

(Equation 4-5) but also depends on the combined effect of    and     on    in the airfare 

function (Equation 4-7). Based on Equation 4-7, changes of    will lead to different values of   . 

To have a better understanding of how    impacts    and further impacts equilibrium, the values 

of     for different    are plotted in Figure 4.5. 
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Figure 4.5 Relationship between airfare at Airport 1 (  ) and market share of Airport 1 

(   ) under alternative airfares at Airport 2 (  ) 

Based on Figure 4.5, when        ,     is always higher than $170. When        , 

  ranges from $190 to $230. So when        , whether    is larger than    depends on the 

value of input market share. When        ,     is always lower than $230. Comparing the 

three cases, the change rate of    is smaller than   .  

In Figure 4.4, when    is no higher than $150, all passengers will leak to Airport 2, under 

the circumstance that the airfare at Airport 1 (  ) is higher than $170. When    increases,     

will also increase but at a slower rate. Thus, the difference between the airfares at the two 

airports is reduced, and Airport 1 will attract more passengers. If    increases to $350,    will be 

much lower than   . As a result, all the passengers will use the local airport.  

In conclusion, when airline competition is intense at the substitute airport, or low-cost 

carriers are available at the substitute airport, the average airfare at the substitute airport is likely 

to be lower than at the local airport. The local airports may introduce more airlines to retain its 

market share. 
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4.2.5. Impact of Frequency Variable (  ) in Utility Function  

Three values have been given for   . This is to reflect the impact that    has on equilibrium when 

it is larger than, equal to and smaller than   . The three values are 33, 100, and 200. When    is 

smaller than 33, there is one equilibrium point. When    exceeds 33, the number of equilibrium 

points increases to two.        is the base value from Table 4.1. When       , the flight 

frequencies at Airport 1 and Airport 2 are the same. The equilibrium results are shown in the 

figure below.  

 

Figure 4.6 Equilibria under alternative flight frequency at Airport 1   

Only one stable equilibrium exists at       when       and       . This means 

that all passengers at the local airport will “leak” if the airport’s flight frequency is much smaller 

than that of the substitute airport. At that point (     ), the airfare at Airport 1 is $230 while 

the airfare at Airport 2 is $200. If    increases, the market share of Airport 1 at the equilibrium 

will increase. If the frequency is the same for the two airports when        and       , the 

stable equilibrium exists at (approximately)         , meaning around 45% of the market 

will “leak” to the substitute airport in the long term when the flight frequencies at Airport 1 and 

Airport 2 are 200 (and the airfare at Airport 1 is around $200, the airfare at Airport 2 is $200, the 
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ground access distance to Airport 1 is 30 miles, and the ground access distance to Airport 2 is 

171 miles).  

4.2.6. Impact of Frequency Variable (  ) in Utility Function  

Three values of    have been set as 100, 200, and 600.        when the flight frequencies at 

Airport 1 and Airport 2 are the same.         is the base value from Table 4.1. When    

   , two equilibrium points exist. When    exceeds 600, the number of equilibrium points drops 

to one. The equilibrium results are shown in the figure below.  

 

Figure 4.7 Equilibria under alternative flight frequency at Airport 2   

When       , one unstable equilibrium exists at       and one stable equilibrium 

exists at      . The market share of Airport 1 at stable equilibrium decreases when    

increases. This means that when Airport 2 provides higher flight frequency, it will attract all of 

the passengers from Airport 1. When          , the equilibrium market share is around 0.55, 

which is the same equilibrium value when          . By setting other values, it is observed 

that the equilibrium does not change when the frequency at Airport 1 equals the frequency at 

Airport 2.  
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In conclusion, passengers at the local airport will “leak” if the substitute airport provides 

flights with higher frequency. With fewer passengers using the local airport, the average airfare 

at that airport will increase in the long term, which will further reduce its market share. In order 

to retain the market share, the local airport needs to be sensitive to the frequency changes at the 

substitute airport, and to make sure that airlines at the local airport provide sufficient flights for 

different destinations.   

4.2.7. Impact of Ground Access Distance Variable (   and    ) in Utility Function  

Five sets of values for    and     have been provided to show market share equilibria of five 

locations around Airport 1. Their locations are shown in Figure 4.8.  

 

Figure 4.8 Five locations used to show impact of ground access distance on equilibria 

The star on the north is Airport 1 and the other star is Airport 2. The five locations are the 

five circles in the figure, labeled A to E. Location A and Location E are 30 miles from Airport 1 

while Location B and Location D are 21 miles from Airport 1. Location C is 1 mile to the south 

side of Airport 1. Because the distance between Airport 1 and Airport 2 are assumed to be 141 

miles, the ground access distance from Location A to Airport 2, minus the ground access 
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distance from Location A to Airport 1, should be equal to 141 miles. Thus, the ground access 

distances to Airport 1 (  ) and Airport 2 (  ) from Location A are 30 miles and 171 miles 

respectively. For Location E, the sum of its ground access distances to Airport 1 and Airport 2 is 

equal to 141 miles. Thus, the ground access distances to Airport 1 (  ) and Airport 2 (  ) from 

Point E are 30 miles and 111 miles respectively. The equilibrium results are shown in Figure 4.9.  

 

Figure 4.9 Equilibria under alternative locations and ground access distances  

Two equilibrium points exist for all five locations. One unstable equilibrium exists at 

      and one stable equilibrium exists at         . The market share of Airport 1 at the 

stable equilibrium is approximately one for Location C (     and       ). Location C is 

very close to Airport 1 and can be treated as the center of the catchment area of Airport 1. When 

the ground access distance to Airport 1 (  ) increases, market share of Airport 1 at stable 

equilibrium decreases. It is consistent with findings in previous studies that as the radius around 

an airport spreads, market share reduces (Fuellhart, 2007; Lieshout, 2012). However, the 

reduction rate of market share is asymmetric on the two sides of the airport. As shown in Figure 

4.9, the curves of Location A and Location D overlap, and the two locations have the same 

equilibrium point. However, compared with Location A, Location D is closer to Airport 1. We 

can conclude that the reduction rate of such market share on the south side of Airport 1 is higher 
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than on the north side. This is because for locations on the south side of Airport 1, when the 

ground access distance to the airport (  ) increases, the ground access distance to Airport 2 (  ) 

decreases. 

In conclusion, passengers who live between the local and substitute airport are more 

likely to use the substitute airport than passengers in other locations. This research has shown 

that an existing local airport should provide lower airfare and higher flight frequency to attract 

passengers. Municipalities planning to build a medium-size airport should consider major hub 

airports in other areas that are reachable to the market.  

4.3. Discussion 

A binary logit model has been specified to determine the market shares of two airports. The 

airfare model in Chapter 3 is used to determine the airfare variable in the binary logit model. 

Log-forms of the frequency variable and the ground access distance variable are applied in the 

utility functions while the airfare variable is in linear form. The log-form indicates that the 

impact of a variable changes very slowly (to a point where it does not change at all) when its 

value exceeds a critical value. Many studies have verified that frequency has such a relationship 

with utility (de Luca & Di Pace, 2012; Harvey, 1987; S. Hess & Polak, 2005a; S. Hess, Adler, & 

Polak, 2007). However, the form of ground access distance (or ground access time) variable 

varies (Lian & Rønnevik, 2011; Phillips et al., 2005; Suzuki et al., 2003), and whether log-form 

or linear-form is more appropriate for this variable needs more work. 

The numerical analysis is based on some data from previous studies (Brooke et al., 1994; 

Caves et al., 1991; Ndoh et al., 1990; Pels et al., 2000), some artificially constructed values, and 

distances based on the case of the Jacksonville International Airport (JAX) in Florida as 

discussed in Chapter 3. The input values are chosen to reflect the advantage of airfare and flight 

frequency at Airport 2, which may attract passengers from Airport 1. Parameters in the utility 

functions are given different values to show the sensitivity of equilibrium market share with 

respect to coefficients, airfare, frequency and ground access distances.  
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The coefficients in the utility function (Equation 4-5) can be treated as the weight of the 

corresponding variable. It was found that the advantage of lower average airfare for either a local 

airport or substitute airport will be magnified, when passengers consider airfare to be more 

important when choosing an airport (i.e., the weight of airfare increases). If the weight of flight 

frequency increases, the advantage of higher flight frequency at Airport 2 will be magnified. 

Meanwhile, in the long term, when Airport 1 has a lower market share, its airfare will increase, 

which may further reduce its market share. If the weight of ground access distance increases, the 

advantage of a local airport (Airport 1) is magnified. In this case, when Airport 1 has a higher 

market share, its airfare will decrease in the long term, which may further increase its market 

share. The increase of airfare at Airport 2 leads to a higher market share for Airport 1. Because 

of the positive frequency coefficient in the utility function, when Airport 1 provides higher flight 

frequency, its market share increases. When the frequencies at Airport 1 and Airport 2 are the 

same, Airport 1’s market share at equilibrium remains at (approximately)         . Five 

locations on the north and south sides of Airport 1 have been chosen to show how the ground 

access distance impacts equilibrium. When the radius around Airport 1 spreads, the market share 

reduces. However, the reduction rate is asymmetric on the north and south sides because the ratio 

of ground access distances to Airport 1 and Airport 2 are asymmetric in the two directions.   

In future work, this type of model may be populated by real data collected through a 

survey of air passengers. Firstly, the forms and coefficients of variables in the utility functions 

need to be verified using survey data. Secondly, the airfare model is obtained for 10 U.S. airports 

as shown in Chapter 3. If airport leakage is identified through a survey for another airport, the 

airfare model should be rebuilt. Thirdly, when the equilibrium model is applied to a specific 

airport, the boundary of the area served by that airport can be explored further.   
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CHAPTER 5. CONCLUSIONS AND DISCUSSIONS 

This chapter provides an overview of this research, and summarizes the major findings and 

contributions of the previous two chapters. The limitations of this research are discussed, along 

with suggestions for future work in data collection and model building.      

5.1. Research Overview 

The overall objective of this research is to investigate what factors affect airport leakage and how 

they affect airport leakage, in the context of models that consider the two-way interactions 

between air transportation demand and supply. These included empirical instrumented models 

that were estimated using two-stage least squares (2SLS) and feasible generalized least squares 

(FGLS) methods, as well as a theoretically-derived equilibrium model based on a binary logit 

specification. The focus of the empirical models is to find variables that are significant by 

replacing the endogenous airfare variable with an instrumental variable in an airport demand 

model. The focus of the supply-demand equilibrium model is to find equilibrium solutions when 

considering airfare (supply) and airport market share (demand) endogeneity. 

In the empirical model in Chapter 3, 10 medium-size airports were identified as “local” 

airports in the airport leakage problem. This is based on a number of criteria. These criteria 

include: 1) the substitute airport should belong to Operational Evolution Partnership (OEP) 35; 2) 

the average airfare at the substitute airport should be lower than at the local airport; 3) the 

average flight leg at the substitute airport should be lower than at the local airport; 4) 50 percent 

more passengers should be using the substitute airport than the local airport to the destination; 5) 

the air trip needs to be over 500 miles; 6) the destination should not be a low-cost carrier (LCC) 

hub. There are three additional selection criteria: that there are sufficient observations in the 

dataset, that every local airport has only one destination, and that every local airport has only one 

substitute airport. The two-stage least squares (2SLS) and feasible generalized least squares 

(FGLS) models first estimated airfare by passengers and other attributes of the air trip, and then 

input the predicted airfare (instrumental variable) into the demand model. The 2SLS model is 
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based on a previous study (Suzuki & Audino, 2003). The FGLS models are able to correct the 

autocorrelation and heteroskedasticity in the 2SLS model. Significant variables that impact 

passengers include airfare at the local airport, airfare at the substitute airport, and the driving 

distance between the local and substitute airports. Other variables include route indicator 

variables, the flight leg at the local airport, seasonality, population, group size, total passenger 

enplanement at the local airport, total passenger enplanement at the substitute airport, and the 

interaction variable of group size with airfare at the substitute airport. 

The supply-demand equilibrium model in Chapter 4 applied the airfare function from the 

FGLS model and combined it with a binary logit model. The binary logit model is able to 

estimate market share for each of the two airports, assuming that all passengers choose their 

airport to maximize utility. Airfare, flight frequency, and ground access distance were considered 

as the three variables in the deterministic utility function. The total market in this model is a 

population that is expected to use the local airport (Airport 1). Because the input in the model is 

the market share of Airport 1 and the output is also the market share of Airport 1, equilibrium 

exists when the output equals the input. Unstable and stable equilibria were obtained when 

coefficients and variables in the binary logit model were set to different values. This shows the 

sensitivity of the equilibrium market share with respect to airfare, flight frequency and ground 

access distance coefficients, airfare and frequency at the substitute airport, frequency at the local 

airport, and different combinations of ground access distances. The coefficient in the utility 

function represents the weight of the corresponding variable in the utility function. Five sets of 

ground access distances were chosen to represent locations on the north and south sides of 

Airport 1. The equilibrium results greatly depend on the values that are assumed in numerical 

analysis.   

5.2. Research Findings 

Both models from Chapters 3 and 4 show that major hub (or substitute) airports will impact the 

demand at medium-size local airports. This finding further supports the hypothesis of this 

research that airport leakage exists, when there are major hub (or substitute) airports near 
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metropolitan regions served by medium-size airports, and these hub airports provide better air 

services. In addition, a variety of factors were found to affect demand at local airports, such as 

airfare, ground access distance, enplanement, and so on. All factors that impact airport leakage 

are listed in Table 5.1. This table shows how the demand or market share at the local airport will 

change, when each factor changes.  

Table 5.1 Factors Impacting Demand at the Local Airport 

Feature If feature should 
Then local airport 

demand will 

Airfare at local airport     

Airfare at substitute airport     

Average group size      

Population in metropolitan area of local airport     

Seasonal fluctuation of passenger traffic to the 

destination airport 
    

Total passenger enplanement at local airport     

Total passenger enplanement at substitute airport     

Average flight leg at local airport      

Weight of airfare     / - /   

Weight of flight frequency     

Weight of ground access distance     

Flight frequency at local airport     

Flight frequency at substitute airport      

Ground access distance to local airport     

Ground access distance to substitute airport     

It was found in the empirical models of Chapter 3, if a substitute airport provides lower 

airfare, the demand at the local airport will decrease. Alternately, if airfare at the substitute 

airport increases, more passengers will use the local airport. The positive impact of the travelers’ 
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group size shows when a larger group is travelling, passengers prefer to use a local airport. 

Dividing the parameter of airfare at the substitute airport by the parameter of the interaction 

variable of the group size and airfare at the substitute airport shows that the positive impact of 

airfare at the substitute airport will be eliminated when there are more than three people in the 

group. In other words, lower airfare at the substitute airport is not as attractive to passengers 

from the local airport when passengers travel in a group of three or more.  

In addition to the airfare at a substitute airport, total enplanement at a substitute airport 

was found to impact the demand for a local airport. Furthermore, this impact is negative. 

Enplanement at an airport has a positive impact on that airport’s demand. This verifies the 

existence of positive feedback effects at the local airport and the substitute airport. In other 

words, the higher the traffic at a local airport, the more passengers the airport will retain; the 

higher the traffic at a substitute airport, the more passengers the substitute airport will attract. 

In the numerical analysis of the supply-demand equilibrium model, passengers may be 

attracted to the substitute airport to take advantage of lower airfare and higher flight frequency. If 

the substitute airport reduces its airfare, the airfare at the local airport will also reduce. As a 

combination effect of the two airfares, the equilibrium market share changes. Similarly, if the 

substitute airport provides higher flight frequency, more passengers will “leak” to the substitute 

airport from the local airport. In the long term, the average airfare at the local airport will 

increase, which will further reduce the market share at the local airport. In addition, it was found 

that market shares are different for locations even if their ground access distances to the local 

airport are identical.  

5.3. Research Contribution 

There are three contributions in this research.  

 It has demonstrated that airport leakage exists when a major hub (or substitute) airport is 

located within a reasonable driving distance of the metropolitan region of a local airport, 

and provides lower airfare, higher flight frequency, and more direct flights. The 
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sensitivity of airport demand (or airport leakage) with respect to a variety of factors have 

been tested in this research.  

 The interaction between airfare (supply) and demand has been considered through a 

feasible generalized least squares (FGLS) model, and a supply-demand equilibrium 

model. 

 FGLS estimation was used to understand the interaction between airfare and air 

passengers because autocorrelation (i.e., time serial correlation) and heteroskedasticy (i.e., 

the variance of error term is unequal with respect to the time variable) are present.  

5.4. Limitations of the Research 

The major limitations of this research are listed below.  

 The empirical model focused on two competing airports in two metropolitan regions. In 

the origin-destination selection, simplification has been made by considering only one 

substitute airport. However, this cannot be applied to all the cases of airport leakage. 

There are local airports that are competing with two or more airports. These substitute 

airports may be located in one metropolitan region (i.e., a multi-airport region) or in 

different metropolitan regions. In either case, the airport should be studied in a different 

model.  

 Airport leakage was identified, based on certain selection criteria, at 10 local airports in 

the United States. However, whether the criteria are sufficient to support the existence of 

airport leakage is unknown.  

 All the 10 local airports were assumed to be independent in the 2SLS model and the 

FGLS models. However, some of these 10 airports have the same substitute airport. 

Whether this fact will impact the result is unknown. 
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 Because both the airfare and passenger models have route indicator variables, the models 

cannot be used for other routes.  

 Due to the time period unit of data, airfare and passengers models were estimated on a 

quarterly basis, it may be biased to use yearly or monthly data. In addition, population 

and income data are only available in years, which may impact the model estimation 

result.   

 The supply-demand equilibrium model was analyzed numerically with assumptions. 

Although some assumptions are based on previous studies, the findings from the 

equilibrium model may vary with different values of coefficients and variables.  

5.5. Future Work and Recommendations 

Future work can be conducted, including an air passenger survey. Through this survey, we will 

obtain information about passengers’ ground access origins, to identify whether airport leakage 

exists for the subject airport. Then, an airfare and airport passenger model can be built 

specifically for airports where airport leakage has been observed. Furthermore, models can be 

built differently for business travelers and leisure travelers if the trip purpose is investigated in 

the survey. Furthermore, survey data are helpful to estimate coefficients in a binary logit model 

or other discrete choice models. In this research, more attributes can be considered in the utility 

function in addition to airfare, flight leg and ground access distance. Meanwhile, real values will 

improve equilibrium results.  

More research opportunities will be created by different combinations of approaches. In 

the study of the supply-demand equilibrium model, we are able to obtain the market share 

equilibria for five locations around the local airport. In combination with geographical software, 

the supply-demand equilibrium model will be able to show the distribution of market share in the 

entire metropolitan area of a local airport. Based on the literature review, a spatial competition 

model assumes even distribution of the market in the airport catchment area. Spatial competition 

model may be improved in combination with geographical approaches. Also, a spatial 
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competition model can combine with a discrete choice model to account for characteristics of the 

market when highlighting the impact of airport accessibility on airport demand. In consideration 

of passengers’ spreading out to airport competitors when airlines also compete, the geographical 

approach is able to show market distribution. Meanwhile, game theory with mathematical 

optimization and a discrete choice model is able to show the supply-and-demand interaction. 
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APPENDIX A. DESCRIPTIVE STATISTICS OF DATASET 

Table A. 1 Descriptive Statistics of Leakage and Substitute Origin-Destination (OD) Pairs (Quarter 1, 2004 - Quarter 1, 2014) 

Local 

Airport 

Destination 

Airport 

Passengers 

for Local 

OD Pair 

Average 

Airfare 

for Local 

OD Pair 

Flight 

Legs 

for 

Local 

OD 

Pair 

Non-stop 

Flight 

Distance 

for Local 

OD Pair 

Substitute 

Airport 

Passengers 

for 

Substitute 

OD Pair 

Average 

Airfare for 

Substitute 

OD Pair 

Flight legs 

for 

Substitute 

OD Pair 

Driving 

Distance 

to 

Substitute 

Airport 

JAX PHL 112,265 142.63 1.24 742 MCO 612,363 125.71 1.07 144 

TUS SEA 65,489 173.11 1.42 1,216 TPA 395,242 156.18 1.11 181 

GRR TPA 29,561 158.64 1.72 1,041 DTW 237,723 131.90 1.16 120 

CAE LGA 26,531 166.61 1.43 617 CLT 266,991 159.78 1.07 88 

PWM CLT 17,653 182.75 1.68 812 BOS 169,340 160.65 1.21 96 

BDL TPA 140,991 142.15 1.23 1,111 JFK 287,696 134.20 1.03 106 

CMH TPA 102,344 138.50 1.30 829 DTW 237,723 131.90 1.16 155 

CHS LGA 62,314 171.01 1.18 641 CLT 266,991 159.78 1.07 148 

CHA DCA 11,309 185.57 1.49 523 ATL 385,501 164.42 1.04 106 

HSV DCA 42,162 277.50 1.11 613 ATL 385,501 164.42 1.04 151 
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APPENDIX B. BOX PLOT OF EACH VARIABLE IN DATASET 

 

 

Figure B. 1 Box plot of passengers per quarter for the local OD pair with respect to each 

local airport 
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Figure B. 2 Box plot of average airfare per passenger per quarter for the local OD pair 

with respect to each local airport 
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Figure B. 3 Box plot of average airfare per passenger per quarter for the (corresponding) 

substitute OD pair with respect to each local airport  
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Figure B. 4 Box plot of population in the metropolitan area with respect to each local 

airport 
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Figure B. 5 Box plot of annual per capita income in the metropolitan area with respect to 

each local airport 
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Figure B. 6 Box plot of average flight leg per passenger per quarter for the local OD pair 

with respect to each local airport 
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Figure B. 7  Box plot of average flight leg per passenger per quarter for the (corresponding) 

substitute OD pair with respect to each local airport 
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Figure B. 8 Box plot of freight enplanement per quarter for the local OD pair with respect 

to each local airport 
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Figure B. 9 Box plot of seasonality per quarter for the local OD pair with respect to each 

local airport 
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Figure B. 10  Box plot of passenger portion served by LCC per quarter for the local OD 

pair with respect to each local airport 
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Figure B. 11  Box plot of average group size per quarter for the local OD pair with respect 

to each local airport 
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Figure B. 12 Box plot of flight frequency per quarter for the local OD pair with respect to 

each local airport 
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Figure B. 13  Box plot of flight frequency per quarter for the (corresponding) substitute 

OD pair with respect to each local airport 
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Figure B. 14 Box plot of passenger enplanement per quarter with respect to each local 

airport 
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Figure B. 15 Box plot of passenger enplanement per quarter at the (corresponding) 

substitute airport with respect to each local airport 
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APPENDIX C. LIST OF VARIABLES 

       is the average airfare per passenger for the local OD pair   at quarter  .  

 (   ) is the route indicator variable.     if the route is for the local OD pair  ; and     

otherwise.  

       is the number of passengers for the local OD pair   at quarter  .  

 (       ) is the low-cost carrier (LCC) indicator variable.     if 25% or more passengers 

used low-cost carriers (LCC) for the local OD pair   at quarter  ; and     otherwise.  

     is the average airfare per passenger for the substitute OD pair corresponding to the local OD 

pair   at quarter  .  

      is the unit aviation fuel cost per gallon for U.S. domestic services provided by U.S. 

carriers at quarter  .  

       is the non-stop miles of from origin airport to destination airport for the local OD pair  . 

       is the number of passengers for the local OD pair   at quarter  .  

  (      )̂  is the fitted log value of airfare per passenger for the local OD pair   at quarter  . 

      is the average flight leg per passenger for the local OD pair   at quarter  .  

      is the seasonality variable, represented by total number of passengers from all U.S. 

airports except the local airport and substitute airport to the destination airport for the local OD 

pair   at quarter  . 

      is the annual population in the year of quarter   in the metropolitan area served by the 

local airport (i.e., origin airport) of local OD pair  .  
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     is the average airfare per passenger for the substitute OD pair corresponding to the local OD 

pair   at quarter  .  

       is the average group size of passengers for the local OD pair   at quarter  .  

     is the driving distance between local airport and the corresponding substitute airport for the 

local OD pair  ; in miles.  

      is the total passenger enplanement from local airport to all U.S. destination airports minus 

the number of passengers of the local OD pair   at quarter  .  

     is the total passenger enplanement from the corresponding substitute airport for the local 

OD pair   to all U.S. destination airports at quarter  . 

     , and    are parameters in the airfare model, where the subscript   denotes the local OD 

pair, particular to each of the 10 OD pairs represented in the dataset. 

     , and    are parameters in the demand model.  

   is the error term in the airfare model at quarter  .  

   is the error term in the demand model.  

   is the first-order autoregressive parameter in the airfare model. 

   is the first-order autoregressive parameter in the demand model. 

   is the error term in the autoregressive error model (of the airfare model), which is assumed to 

be normally and independently distributed with mean 0 and variance   ,     (    ).  

   is the error term in the autoregressive error model (of the demand model),  which is assumed 

to be normally and independently distributed with mean 0 and variance   ,     (    ).  

 


