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Abstract

Gravitational interaction of particles is understood in terms of energy-momentum tensor

(EMT) which gives information regarding the fundamental properties of a particle like mass

and spin. When the matrix element of the energy-momentum tensor is written in terms of

EMT form factors, we get an additional fundamental property, the D-term. The D-term is

related to the spatial components of the EMT and refers to pressure, shear force distribution,

and how strong forces inside the nucleon balance to form a bound state. However, the proper

interpretation of the D-term is still being disputed. The D-term started gaining a lot of

attention recently and experiments are ongoing in JLab and are planned in the Electron-Ion

Collider in Brookhaven to measure the D-term through the deeply-virtual Compton scattering

process.

In this thesis, we will present an intuitive explanation of radiative corrections in quantum

electrodynamics with examples of electron g � 2 and Lamb shift. We will determine the

D-term for a bound system like hydrogen and calculate the leading order and next-to-leading

order logarithmic correction to the D-term of hydrogen atom. The goal is to verify the claim

of [1] that the next-to-leading order logarithmic correction to the D-term of hydrogen follows

the same physics as the Lamb shift. As a main result of this thesis, using our discussion

of the radiative corrections, we will show that although the D-term has a logarithmically

enhanced term like the Lamb shift, the physics is quite different from the Lamb shift.
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Chapter 1

Introduction

The goal of this thesis is to provide an intuitive explanation of radiative corrections in quan-
tum electrodynamics (QED) processes. Radiative corrections in QED involve two kinds
of interactions: vacuum fluctuation and radiative reactions (self-interaction) [2]. Vacuum
fluctuation is a pure quantum mechanical effect corresponding to modifying an electron’s
dynamical properties due to its interaction with the vacuum. An example closely related to
vacuum fluctuation is the Lamb shift which discusses how the fluctuating vacuum affects the
motion of a bound electron. In Lamb shift, one averages the Coulomb potential of the nucleus
and the electron’s vibrational motion in the vacuum [8, 9]. In a bound system (i.e. Hydrogen
atom), the fluctuating vacuum creates fluctuating electric field due to the atomic nucleus
which causes fluctuation in the position of the electron which gives rise to the Lamb shift.
Radiative reaction means the interaction of the electron with its own fields which includes
interaction with the Coulomb and radiation field. This effect can be conceptualized using a
semi-classical point of view by considering an electron surrounded by its Coulomb field and
when one pushes the electron, one has to push the Coulomb field also. Basically, it represents
the inertia of the self-field that the electron carries [8, 2]. An example employing the concept
of self-interaction is the anomalous magnetic moment of the electron where an electron in-
teracting with its self-field obtains a modification to its mass and magnetic moment. In this
thesis, we will try to understand the concept of radiative corrections with several examples.
In this regard, the thesis can be divided into two parts. In the first part, as examples of
vacuum fluctuation and radiative reactions in QED processes, we will provide an intuitive
calculation of the anomalous magnetic moment of the electron and Lamb shift. The second
part will involve the main discussion of the thesis, a comparatively new concept, the so-called
D-term. The D-term is also a fundamental property like mass and spin and it arises when we
take the matrix element of the energy-momentum tensor (EMT) and write them in terms of
gravitational form factors [10]. The D-term usually refers to the pressure distribution, struc-
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ture, and how forces balance to form a bound state [11]. The D-term obtained very little
attention in the past as to measure the gravitational or EMT form factors, we need to probe
the experiment by the weakest of the fundamental forces, gravity or consider a scattering
experiment with the till unknown mediating particle of gravitational interactions, graviton
[10, 11]. In recent years, the D-term started receiving a lot of attention in the scientific arena
as now it is possible to measure the EMT form factors through an indirect process namely
deeply virtual Compton scattering or hard exclusive meson production [12, 13, 14]. In this
thesis, we will consider the D-term in the context of QED for a bound state like hydrogen.
We will follow the calculation of [7, 1] and work out the leading and next-to-leading order
corrections to the D-term. In [1], the authors have claimed that the next-to-leading order
correction to the D-term has the same physics as the Lamb shift. As our main result of
this thesis, we will refute this statement and the intuition gained from our discussion of the
physical interpretation of the radiative corrections will serve in this purpose. The outline of
the thesis is as follows.

In Chapter 2, we will study the anomalous magnetic moment of the electron or electron
g � 2. We will work out the non-relativistic contribution to the total one-loop anomaly of
the Schwinger factor ↵

2⇡ [15]. This chapter is motivated by the papers [2, 3]. This approach
of calculating the electron g � 2 is directly related to the experimental measurement of the
g factor. Experimentally the g factor is measured from the ratio of Larmor and cyclotron
frequency. The main theme of this chapter is to obtain the effective Hamiltonian containing
the effects of vacuum fluctuation and radiation reaction. From the effective Hamiltonian we
will get the modified Larmor and cyclotron frequency and the ratio of them to the first order
will provide us the non-relativistic contribution to the electron g � 2. We will see that most
of the contribution to the electron g � 2 comes from the non-relativistic domain and the
modification to the cyclotron frequency provides most of the contribution to this anomaly.

In Chapter 3, we will work out the total one-loop contribution to the electron g � 2 and
obtain the Schwinger factor using relativistic formalism. This chapter is motivated by the
work submitted by Jacques Dupont-Roc and Claude Cohen-Tannoudji to the Les Houches
summer school in the 1982 session [4]. In this chapter, we will identify the Feynman diagrams
that are relevant to the electron g � 2 from which we will then obtain the total effective
Hamiltonian. From the effective Hamiltonian, we will get the modified Larmor and cyclotron
frequency which will give us the electron g � 2. We will then take the non-relativistic limit
to justify our result obtained in chapter 2. We will see that the relativistic calculation does
not require a cut-off like the non-relativistic calculation which indicates a lack of covariance
in the non-relativistic formalism.

In Chapter 4, we will discuss Luttinger’s approach to the calculation of the anomalous
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magnetic moment of the electron [5]. This approach is intuitive and does not depend on any
renormalization schemes or cut-offs. The main motivation of Luttinger for his calculation was
to avoid the artificial renormalization scheme introduced by Schwinger for his calculation of
electron g�2 [15]. He thought of this problem in the context of an electron in a homogenous
magnetic field. The lowest energy state of the Dirac operator in a homogenous magnetic field
that does not depend on any applied field and it corresponds to the state where g = 2. So the
true contribution to the anomaly should come from the higher order terms upon employing
perturbation in powers of the external field. The self-energy terms or the 0th order terms
will contain all the divergences and by isolating the terms dependent on the magnetic field,
we will get the true change in energy corresponding to the anomaly of electron magnetic
moment.

In Chapter 5, we will study the first well-known example of radiative corrections, the
Lamb shift. Interaction between the vacuum energy fluctuation and the electron in the
hydrogen atom is the primary cause of the Lamb shift. In this chapter, we will start by
discussing Bethe’s approach to the Lamb shift [16]. Bethe considered the bound electron’s
self-energy in an intermediate quantum state and subtracted the free electron’s self-energy.
Although the self-energy of the bound and free electron are linearly divergent the result is
divergent logarithmically. This logarithmic divergence is the primary feature of the Lamb
shift. Next, we will discuss Welton’s heuristic approach to the Lamb shift [9]. This approach
is more intuitive and we can see a clear physical picture of the Lamb shift from this approach.
In a bound system, the fluctuating vacuum creates fluctuating electric fields which push the
electron causing position fluctuation in the motion of the electron. This position fluctuation
modifies the Coulomb potential energy between the electron and nucleus. The average of the
Coulomb potential energy and the electron’s vibrational motion in the vacuum give rise to
the famous Lamb shift.

Before discussing the D-term, in Chapter 6, we will derive the Feynman rules for non-
relativistic quantum electrodynamics (NRQED). We will follow the calculation scheme of
a Ph.D. thesis by Patrick Labelle presented at Cornell University in 1994 [6]. This way of
deriving the NRQED Feynman rules is far simpler than the proper way where one starts with
the derivation of QED Feynman rules and rederive them in the non-relativistic limit. Here
we will simply write down the QED Feynman rules and expand them in powers of p

m
[6].

This way of deriving the NRQED rules might introduce some sign ambiguity in the overall
phase but as most of the calculation in particle physics relays on taking the square of the
matrix element of scattering amplitude, we can ignore this drawback [6]. With the help of
these NRQED Feynman rules, we will calculate the logarithmic corrections to the D-term.

In chapter 7, we will discuss the D-term and present our main finding of this thesis.
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The mechanical properties of a particle are encoded in the gravitational form factors and
these form factors arise by taking the matrix element of the energy-momentum tensor. In
this chapter, we will see that when we take the matrix element of the energy-momentum
tensor, alongside mass and spin, one more fundamental property of a particle emerges, the
D-term. We will discuss several interpretations of the D-term namely pressure, shear force
distribution, charge radius, and mechanical stability. For gaining better intuition of the D-
term, we will calculate the D-term for a nucleus in the context of the liquid drop model. We
will also provide an experimental procedure for measuring the D-term by looking at deeply
virtual Compton scattering. Until this point, the D-term had been considered in the context
of quantum chromodynamics. To understand the D-term better, instead of considering the
bound system of quarks and gluons, we will look at a bound system like hydrogen and
calculate the leading and next-to-leading order correction to the D-term in the context of
quantum electrodynamics. The motivation is to verify the claim of [1] that the next-to-leading
order correction to the D-term follows the same physics as the Lamb shift. This will help us
to gain a better understanding of the Lamb shift as well as the D-term. We will follow the
paper [7] to calculate the leading order D-term and [1] to calculate the logarithmic divergent
term. From our understanding of the Lamb shift and radiative corrections described in the
earlier chapters, we will see that although the D-term has logarithmic divergence as the Lamb
shift, it is not the Lamb shift as advertised in [1]. This is the main result of this thesis.

Finally in chapter 8, we will present our concluding remarks for this thesis and discuss
future goals.

4



Chapter 2

Non-relativistic contribution to electron

g � 2

2.1 Introduction

The g factor is a dimensionless quantity that characterizes the magnetic moment of a particle.
To be more specific, it is the proportionality coefficient between the angular momentum ~J

and the magnetic moment ~µ expressed in the units of the so-called magneton q/ (2m), where
q is the charge and m is the mass of the particle,

~µ = g
q

2m
~J. (2.1.1)

For a point scalar particle orbiting a static nucleus, the angular momentum arises from the
orbital motion. In this case g equals 1, which is the reason of the particular form of the
magneton.

For a spinning particle in its rest frame, the angular momentum is the spin. Clearly, the
magnetic moment depends on the distribution of the charge in the particle. For example,
if all the charge is concentrated on the axis of rotation, the charge remains at rest and no
magnetic moment arises, so that g = 0. For a proton, which contains charged quarks, the
measured value of g is about 5.6 [17].

For an electron, the Dirac equation predicts that the g factor is 2. But in 1948, experi-
ments found that the electron g factor is slightly larger than 2 [18]. This discrepancy is known
as the anomalous magnetic moment of the electron or electron’s g� 2. Experimentally the g

factor of the electron can be measured from the ratio of Larmor and cyclotron frequencies.
In this chapter, we will see how the interaction of the electron with its own field and

vacuum modifies the Larmor and cyclotron frequency and thus the g factor. To get an
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understanding of how these effects play a role in modifying the g factor, we will work on
the non-relativistic domain and find the non-relativistic contribution to the total one-loop
anomaly in the magnetic moment of the electron. First, we will find the quantum version
of the Abraham-Lorentz equation for an atom-field system using the Heisenberg equation
of motion. Heisenberg equation of motion for field and atomic variables derived from the
combined atom-field system is analogous to the equation of motion of a forced harmonic
oscillator [2, 3]. The homogenous part of the solution describes the vacuum field where no
photon is present and it corresponds to spontaneous emission; the forced part describes the
source field produced by the electron itself (radiation reaction), corresponding to stimulated
emission of radiation [3]. From the quantum Abraham-Lorentz equation, we will see that the
mass of the electron has been changed. Then we will calculate the spin-dependent part of
the effective Hamiltonian which will give us the anisotropic Lande g factor. Finally from the
effective Hamiltonian containing the renormalized mass and anisotropic Lande g factor, we
will then obtain the modified Larmor and cyclotron frequency which will give us the electron
g � 2 in the non-relativistic domain. In this chapter, we will work with standard S.I. units.

2.2 Derivation of the quantum form of the Abraham-

Lorentz equation

2.2.1 Derivation of the quantum form of Abraham-Lorentz equation

In this section, we will derive the Heisenberg equation of motion for the combined atom-
field system and obtain the analogous quantum form of the Abraham-Lorentz equation. We
consider an electron subjected by some field (electric or magnetic) and the radiation field
exerted by the electron itself when moving. The radiation field of the electron has both electric
and magnetic components. The electric field is divided into two parts: the longitudinal field
E|| which is the instantaneous Coulomb field created by the electron and the transverse field
E?. The transverse field E?, vector field A and the magnetic field B expanded as a set of
plane waves normalized in a cube of volume L

3 are given by [2]

E?(R) =
X

k,✏

�
Ek✏eik.R

�
ak✏ + hc, (2.2.1)

A(R) =
X

k,✏

�
Ak✏eik.R

�
ak✏ + hc, (2.2.2)

B(R) =
X

k,✏

�
Bk⇥ ✏eik.R

�
ak✏ + hc, (2.2.3)
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where Ak =
q

~
2"0L3!

, Ek = i!Ak, Bk = i
!Ak
c

,  = k
|k| and ak✏, a†k✏ are the annihilation and

creation operators for a photon. hc denotes Hermitian conjugate. The fields described in
Eqs. (2.2.1) to (2.2.3) are characterized by frequency !, polarization ✏ and wave vector k.
The Coulomb field created by the electron is [2]

E||(R) = �rR
e

4⇡"0|R� r| , (2.2.4)

It is convenient to take the Fourier transform of the longitudinal field [2]

E||(R) =
X

k

�i
e

2"0L3k
eik.(R�r) + hc. (2.2.5)

Considering non-relativistic approximation, the Hamiltonian is given by [2]1

H = mc
2 +

(p� eA(r))2

2m
+
"0

2

Z
d
3
RE2

||(R) +
X

k,✏

~!
2

⇣
a
†
k✏ak✏ + ak✏a

†
k✏

⌘
. (2.2.6)

This Hamiltonian does not contain any spin-dependent terms which we will include in the
next section. The energy of the longitudinal field adds a correction to the mass of the electron

�m1c
2 =

"0

2

Z
d
3
RE2

||(R). (2.2.7)

2.2.2 Introducing approximations

In this section, we introduce necessary approximations: a cut-off to avoid divergences and
the electric dipole approximation.

2.2.2.1 Introduction of a cut-off

To avoid the divergences in the theory it is necessary to introduce cut-offs. The divergences
arise because of the contribution of the modes with large wave vectors. So, we are choosing
a cut-off kM so that

|k| < kM =
!M

c
. (2.2.8)

The bound for kM is
!0

c
⌧ kM ⌧ mc

~ . (2.2.9)

1We are considering non-relativistic approximation as the main contribution of QED corrections come
from the non-relativistic domain [8].
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The upper bound is to restrict kM to the non-relativistic domain (~!M ⌧ mc
2) and the

reason behind the lower bound is that !M must be larger than the characteristic resonance
frequency of the bound electron, !0 [2]. The drawback of introducing such cut-off is the loss
of relativistic invariance [19] but it is possible to introduce some sophisticated cut-offs which
maintain relativistic invariance [20]. Here we will not consider such cut-offs as we are not
dealing with the relativistic aspects of the radiative corrections. All the summations over k

written before and from now will be understood constrained by Eq. (2.2.8). The energy of
the longitudinal field is then finite and given by [2]

�m1c
2 =

X

k

e
2

2"0L3k2
. (2.2.10)

Transforming the summation into an integration,

X

k

! L
3

(2⇡)3

Z
kM

0

d
3
k =

L
3

2⇡2

Z
kM

0

k
2
dk, (2.2.11)

we get

�m1c
2 =

e
2

2"0L3

L
3

2⇡2

Z
kM

0

dk

=
↵

⇡
~!M . (2.2.12)

where ↵ ' 1/137 is the fine structure constant. From now ! should be understood with the
constraint of !M .

2.2.2.2 Electric Dipole approximation

To make the calculation simpler we will also consider the electric dipole approximation to
avoid spatial variations of the fields interacting with the electron. In this approximation
the binding potential energy localizes the electron in a volume centered on the origin with
a linear dimension a much smaller than the wave length of the modes interacting with the
electron and the cut-off kM satisfies kMa ⌧ 1. Using this approximation we can replace the
fields E(R), A(R) described in Eq. (2.2.1) to Eq. (2.2.3) with the fields at the origin E(0)

and A(0) without changing any physics [2].
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2.2.3 The Electromagnetic field in presence of the particle

Using Eq. (2.2.6) we can write the Heisenberg equation of motion for ak✏(t)

ȧk✏(t) =
i

~ [H(t), ak✏(t)] = �i!ak✏(t) +
ie

m~Ak✏
⇤.⇡(t), (2.2.13)

where
⇡(t) = p(t)� eA(0, t). (2.2.14)

The solution of Eq. (2.2.13) is given by [2]

ak✏(t) = ak✏(t0)e
�i!(t�t0) +

ie

m~Ak

Z
t

t0

dt
0
e
�i!(t�t

0)✏⇤.⇡(t). (2.2.15)

The time evolution of ak✏(t) has two terms: the first one corresponds to free evolution and
the second term corresponds to forced evolution driven by the motion of the charge. Upon
inserting Eq. (2.2.15) in the expansion of the transverse field, Eq. (2.2.3) to Eq. (2.2.1), we
get two terms: the free field (A0,E?0) and the source field (Ar,E?r). The subscript zero
stands for the free fields and r stands for radiation field or source field. It is sufficient to
evaluate A(0) and E?(0) by the use of the dipole approximation

A(0, t) = Ar(0, t) +A0(0, t), (2.2.16)

E?(0, t) = E?r(0, t) +E?0(0, t) (2.2.17)

where

A0(0, t) =
X

k,✏

Ak✏e
�i!(t�t0)ak✏(t0) + hc, (2.2.18)

Ar(0, t) =
4

3

�m1

me
⇡(t)� 2

3

e

4⇡"0mc3
⇡̇(t). (2.2.19)

and

E?0(0, t) =
X

k,✏

�
Ek✏e�i!(t�t0)

�
ak✏(t0) + hc, (2.2.20)

E?r(0, t) = �4

3

�m1

me
⇡̇(t) +

2

3

e

4⇡"0mc3
⇡̈(t). (2.2.21)

Detailed derivation of Eqs. (2.2.19) and (2.2.21) is given in Appendix A.
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2.2.4 The Quantum Abraham-Lorentz equation

The Heisenberg equation of motion for electron operator r and ⇡ are

mṙ(t) =
im

~ [H(t), r(t)] = ⇡(t), (2.2.22)

⇡̇(t) =
i

~ [H(t),⇡(t)] ' eE?(0, t), (2.2.23)

where we have only used the contribution of the last term in Eq. (2.2.6). Finally using Eqs.
(2.2.20) and (2.2.21) we get

mr̈(t) = eE?r(0, t) + eE?0(0, t)

= �4

3
�m1r̈(t) +

2

3

e
2

4⇡"0c3
...
r (t) + eE?0(0, t). (2.2.24)

This equation is the analogous quantum form of the Abraham-Lorentz equation which only
contains the radiation contribution. The electron is subjected by two fields: the free field and
its source field (its own field). The first term in Eq. (2.2.24) increases the mass of the electron
from m to m + 4

3�m1 due to its interaction with the source field2. The second term is the
quantum analogue of the force which produces the radiative damping of the classical particle.
Classically this term refers to the recoil force on an accelerating charged particle emitting
electromagnetic radiation. The last term is the field which describes the coupling of the
electron to the free field3. Contrary to the classical theory, in quantum mechanics E?(0, t) is
an operator and its vacuum expectation value is zero but its quadratic vacuum expectation
value is positive. The modification of the electron dynamical properties arising from the free
term (the last term in Eq. (2.2.24)) corresponds to the effect of vacuum fluctuations.

2.3 Spin dependence of the effective Hamiltonian

In the previous section, we calculated the renormalized mass
�
m+ 4

3�m1

�
of the electron due

to the effects of radiation reaction which modifies the kinetic energy part of the effective
Hamiltonian. To get the total effective Hamiltonian we also need to modify the coupling
of spin and magnetic field. In this section, we consider the modification of the coupling
of electron spin and magnetic field by radiation field. This introduces extra terms to the
Hamiltonian in Eq. (2.2.6). First, we consider the general case when an electron is irradiated

2The mass correction term here and Eq. (2.2.7) differ by a factor of 4
3 which is due to the lack of covariance

of the cut-off procedure [2]
3The free field is the field that would exist even in the absence of the particle. This field may be an

incident radiation field.
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by a monochromatic plane wave and submitted to constant (direct current, d.c.) electric
and magnetic fields described by the fields E0, B0 or the potential �0, A0. Here we are
considering the general Hamiltonian where �0 is present but when we will discuss the free
electron g � 2, they will not be relevant. Now using Foldy-Wouthuysen transformation with
a modification to introduce quantized fields, in the Coulomb gauge the Hamiltonian is given
by [21]

HFW = ~!a†a+ ⇡2

2m
+ e�0 �

e~
2m

�.Bt �
e~2

8m2c2
r.Et �

e~
8m2c2

�. (Et ⇥ ⇡ � ⇡ ⇥Et)

� 1

2mc2

✓
⇡2

2m
� e~

2m
�.Bt

◆2

. (2.3.1)

Detailed derivation of HFW is given in Appendix B. The subscript t stands for total field
(static + plane wave) which includes both the incident field and the radiation field of the
electron. ⇡ = ⇡0 � eAr, ⇡0 = p � eA0 and Ar is defined by Eq. (2.2.2). As mentioned in
the previous section, the subscript r stands for the radiation fields and zero stands for the
incident field. Now separating the parts with various contributions in HFW , we get

HFW = H0 +He +HI , (2.3.2)

where H0, He, HI corresponds to the free, electron, and interaction Hamiltonian respectively.
The free Hamiltonian

H0 = ~!a†a, (2.3.3)

corresponds to the last term in Eq. (2.2.6). The electron Hamiltonian is given by [21]

He =
⇡2

0

2m
+ e�0 �

e~
2m

�.B0 +
e~2

8m2c2
��0 +

e~
4m2c2

�. (r�0 ⇥ ⇡0)

� 1

2mc2

✓
⇡2

0

2m
� e~

2m
�.B0

◆2

. (2.3.4)

The interaction Hamiltonian can be split into two parts so

HI = H
1
I
+H

2
I
, (2.3.5)
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where H
1
I

only contains linear power of the radiation field Ar and H
2
I

contains Ar
2. They

are given by [21]

H
1
I
= � e

m
Ar.⇡0 �

e~
2m

�.B0 +
e
2~

4m2c2
�. (E0 ⇥Ar)�

e~
4m2c2

�. (Er ⇥ ⇡0)

+
e

2m2c2

⇢
Ar.⇡0

✓
⇡2

0

2m
� e~

2m
�.B0

◆
+ h.c.

�
, (2.3.6)

and

H
2
I
=

1

2m
e
2A2

r
+

e
2~

4m2c2
�. (Er ⇥Ar)�

e
2A2

r

2m2c2

✓
⇡2

0

2m
� e~

2m
�.B0

◆

� e
2

8m3c2

�
2Ar.⇡0 � eA2

r

�2
. (2.3.7)

Now inserting the expressions for Ar, Er and Br from Eq. (2.2.1) to Eq. (2.2.3) into the
Hamiltonians mentioned in Eq. (2.3.4) to Eq. (2.3.7) and collecting the spin dependent parts
we arrive at the spin dependent effective Hamiltonian

H
spin
eff = � e~

2m
�.B0 �

e~
4m2c2

�. (E0 ⇥ ⇡0) +
e~

4m2c2

✓
⇡2

0

2m
�.B0 + �.B0

⇡2
0

2m

◆

+
EV

2mc2

e~
2m

{2 (.B0) (.�) + (✏⇤.B0) (✏.�) + (✏.B0) (✏
⇤.�) + 2�.B0 � 2�.B0

+ (✏⇤.B0) (✏.�) + (✏.B0) (✏
⇤.�) + 2 [( ⇥ ✏⇤) .B0] [( ⇥ ✏) .�]

+2 [( ⇥ ✏) .B0] [( ⇥ ✏⇤) .�]} . (2.3.8)

The energy EV is expressed as

EV =
e
2

2

E
2

m!2
, (2.3.9)

This energy corresponds to the vibrational kinetic energy for any electric field described by
Eq. (2.2.1). The last two terms of Eq. (2.3.8) vanish by considering  = k

k
perpendicular

to ✏. The remaining terms of Eq. (2.3.8) in the braces can be written more compactly by
defining the anisotropic Lande g factor as [21]

e~
2m

X

i,j

�gij�iB0j, (2.3.10)

where
�gij =

EV

mc2
(ij � 2�ij). (2.3.11)

12



In deriving this definition, we have used the completeness relation for polarization of photon

X
✏i✏

⇤
j
= �ij � ij. (2.3.12)

2.4 Effective Hamiltonian and electron g � 2

Now we are in a position to calculate the electron g � 2. The g factor is experimentally
determined from the ratio of the Larmor frequency !L of the electron spin and the cyclotron
frequency !C of the electron in the same field

⇣
g

2 = !L
!C

⌘
[8]. Our goal here is to modify

the Larmor and cyclotron frequency by including radiative corrections to the Hamiltonian.
We suppose that an electron is subjected to a static and uniform external magnetic field
B0. In the absence of the potential �0 and considering only the linear terms, the electron
Hamiltonian in Eq. (2.3.4) can be written as

He =
⇡2

0

2m
� e~

2m
�.B0, (2.4.1)

where ⇡0 = p0�eA0, eA0 is the static vector potential that corresponds to the static magnetic
field B0. The Larmor frequency and the cyclotron frequency without any modification is then
given by

!C =
e

m
B0, (2.4.2)

!L = g
e

2m
B0. (2.4.3)

If g = 2 then !C = !L. Now to get the anomaly in the g factor it is necessary to modify !L

and !C . To include mass correction term �m, we have to modify the kinetic energy term in
Eq. (2.4.1) as

⇡2
0

2m
! ⇡2

0

2(m+ 4
3�m1 + �m2)

' ⇡2
0

2m

✓
1� 4

3

�m1

m
� �m2

m

◆
, (2.4.4)

where �m1 is the mass correction due radiation reaction and from Eq. (2.2.24) we get the
renormalized mass term

�
m+ 4

3
�m1
m

�
which represents the inertia of the self field that the

electron carries when it moves. �m2 is the mass correction due to vacuum fluctuation. The
correction to the coupling of spin and magnetic moment comes from the anisotropic Lande
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g factor mentioned in Eqs. (2.3.8) and (2.3.10). So the effective Hamiltonian becomes

Heff =
⇡2

0

2m

✓
1� 4

3

�m1

m
� �m2

m

◆
� e~

2m

 
�.B0 +

X

i,j

�gij�iB0j

!
, (2.4.5)

where �ij is defined by Eq. (2.3.11). It is to be noted that the second and third term of Eq.
(2.3.8) are not included in Eq. (2.4.5). The second term of Eq. (2.3.8) vanishes as in this
case there is no E0 and the third term is neglected as for first order there is no cross term of
⇡2

0
2m and �.B0. We now want to write Eq. (2.4.5) in terms of the renormalized mass and for
this purpose we only have to modify the term involving the Lande g factor. Substituting the
value of E from Eq. (2.2.1) into Eq. (2.3.9) we get

E
0
V
=

e
2

2m

~
2"0!L3

. (2.4.6)

We are denoting EV by E
0
V

to specify that this energy in this context refers to electron
vibration in the vacuum. More precisely E

0
V

is the vibrational kinetic energy associated
with the electron vibrating in the vacuum fluctuations of mode (k, ✏). Now evaluating the
summation in Eq. (2.3.11) using ij ! �ij

3 we get a factor of �5
3

E
0
V

mc2
. To first order there

is no effect of mass renormalization due to self interaction in the mass term of e~
2m�.B0. As

E
0
V

is associated with vacuum fluctuations, we can write E
0
V
= �m2c

2. Finally the effective
Hamiltonian becomes

Heff =
⇡2

0

2m

✓
1� 4

3

�m1

m
� �m2

m

◆
� e~

2m
�.B0

✓
1� 5

3

�m2

m

◆
. (2.4.7)

The cyclotron and Larmor frequency will then also be modified by the same factors to first
order

!̄C = !C

✓
1� 4

3

�m1

m
� �m2

m

◆
, (2.4.8)

!̄L = !L

✓
1� 0� 5

3

�m2

m

◆
. (2.4.9)

The first correction term in Eq. (2.4.8) and Eq. (2.4.9) corresponds to the contribution
of radiation reaction and the second correction term contributes to the vacuum fluctuation.
Now evaluating the fraction ḡ

2 = !̄L
!̄C

to the first order, we get

ḡ

2
=
!̄L

!̄C

' 1 +
4

3

�m1

m
� 2

3

�m2

m
. (2.4.10)
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The first correction due to radiation reaction is positive and is much larger than the negative
correction due to vacuum fluctuation which implies that the radiation reaction slows down
the cyclotron motion of the charge more efficiently than the Larmor precession of the spin.
Conventionally the factor referring to the anomalous magnetic moment of electron is defined
as ae =

ḡ�2
2 . So from our calculation, we get

ae =
4

3

�m1

m
� 2

3

�m2

m

=
2

3

�m1

m

✓
2� �m2

�m1

◆
. (2.4.11)

As �m2 is associated with vacuum fluctuation which is a higher order effect than mass correc-
tion due to self-energy, we can assume that in the non-relativistic domain and in the lowest
order �m2 ⌧ �m1. So using Eq. (2.2.12) we can finally write

ae '
4

3

↵

⇡

~!M

mc2
. (2.4.12)

Now using !M = mc
2

~ for the cut-off value as mentioned in [22, 8], we get the contribution of
non-relativistic modes to the anomalous magnetic moment

ae '
4

3

↵

⇡
, (2.4.13)

which agrees with [22].

2.5 Conclusion

In this chapter, we have reproduced the reasoning of [2, 3] to calculate the contribution of the
non-relativistic modes to the anomaly of the electron magnetic moment. The total one-loop
anomaly of the magnetic moment of the electron first obtained by Schwinger is [15]

ae =
g � 2

2

=
↵

2⇡
. (2.5.1)

We can conclude that most of the contribution to the electron g � 2 comes from the non-
relativistic domain. We have seen that the Larmor frequency is only modified by the fluctu-
ation of vacuum energy whereas the cyclotron frequency is modified by both vacuum fluctu-
ation and radiation reaction. Due to the effect of radiation reaction and vacuum fluctuation,

15



both Larmor and cyclotron frequencies are reduced but the cyclotron frequency is reduced
more than the Larmor frequency indicating that the modification of the cyclotron frequency
weighs more in modifying the g factor of the electron. As the main contribution in modify-
ing the cyclotron frequency comes from the self-energy or radiation reaction of the electron,
we can safely conclude that most of the modification to the g factor of the electron is a
non-relativistic effect and essentially due to the effect of self-interaction of the electron. In
the next chapter, we will perform relativistic calculations using the effective Hamiltonian
approach and obtain the total one-loop anomaly to the g factor of the electron.
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Chapter 3

Relativistic effective Hamiltonian

approach to electron g � 2

3.1 Introduction

In the previous chapter, we considered electron g�2 in the non-relativistic domain. Although
most of the contribution to the electron g � 2 comes from the non-relativistic modes, for
completeness of the effective Hamiltonian approach, in this chapter we will calculate the full
Schwinger factor ae =

↵

2⇡ . We will do so by splitting the QED Hamiltonian into two parts,
free and interaction Hamiltonian. The interaction Hamiltonian contains the electrostatic
interaction (self-interaction of the particles with their own Coulomb field) and the interaction
of the Dirac current with the transverse Maxwell field. Then we will take the matrix element
of the Hamiltonian and identify the relevant processes for electron g � 2 which will give us
the total effective Hamiltonian. From the total effective Hamiltonian we will then obtain the
modified Larmor and cyclotron frequencies. We will work with standard S.I. units in this
chapter.

3.2 Calculation of electron g � 2

In this section, we will calculate the electron g � 2 from relativistic consideration and repro-
duce the Schwinger factor ae = ↵

2⇡ [15]. We start with introducing the full QED Hamiltonian

H = H0 +HI , (3.2.1)
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where H0 is the unperturbed part of the Hamiltonian which is the summation of free Maxwell
field Hamiltonian H0 and free Dirac field Hamiltonian HD

H0 =
X

i

~!i

✓
a
†
i
ai +

1

2

◆
, (3.2.2)

HD =

Z
d
3
r †(r)

�
�mc

2 + c↵.⇡0 (r)
 
, (3.2.3)

where  † and  are the quantized Dirac fields and ⇡0 = p � eA0(r) and A0 is the static
vector potential. The interaction Hamiltonian HI can be spilt into two parts

HI = VCoul + U?, (3.2.4)

where VCoul is the electrostatic interaction and is defined as [4]

VCoul =
e
2

8⇡"0

ZZ
d
3
rd

3
r
0⇢(r)⇢(r

0)

|r � r0| , (3.2.5)

where ⇢(r) =  †(r) (r) and It corresponds to the same field caused by E|| described in Eq.
(2.2.4). U? is the interaction between the Dirac current j(r) where j(r) = ec †(r)↵ (r)

and the transverse Maxwell field A(r) [4]

U? = �
Z

d
3
rj(r).A(r)

= �ec

Z
d
3
r 

†(r)↵ (r).A(r). (3.2.6)

3.2.1 Matrix element of the effective Hamiltonian

In this section, we will derive the matrix element of the Hamiltonian and arrive at the form
from where we can figure out the relevant interactions for the process of electron g � 2. H0

in Eq. (3.2.1) corresponds to states with an arbitrary number of noninteracting electron,
positrons and photons and HI describes the coupling between them. We need selection rules
for describing virtual transition between different states. The quantized Dirac field operators
are given by [4]

 †(r) =
X

q

c
†
q
u
†
q
(r) + bqvq̄(r), (3.2.7)

 (r) =
X

s

csus(r) + b
†
s
vs̄(r), (3.2.8)
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where c
†
, c are the creation and annihilation operators for electron and b

†
, b are the creation

and annihilation operators for positron. u and v are the eigenspinors of the Hamiltonian

HD = �mc
2 + c↵.⇡0 (3.2.9)

corresponding to positive and negative energy. The energy corresponding to HD with ⇡0 = 0

is E0 + (Ne +Np)mc
2 where E0 is the energy of the vacuum (non-observable) which will be

subtracted later and Ne and Np are the number operators for electron and positron and they
are given by

Ne =
P
q

c
†
q
cq and Np =

P
q

b
†
q
bq (3.2.10)

The unperturbed energy levels of HD = �mc
2 for different number of electron and positrons

is given in the following figure which follows [4]

Figure 3.2.1: Unperturbed energy levels for HD = �mc
2 for different combinations of numbers

of electrons and positrons. Energy is plotted vertically and the total charge (Np � Ne) is
plotted horizontally. The horizontal line ranges from �2 to 2 corresponding to states with 2
electrons or 2 positrons. The distance between two energy levels in the same column is 2mc

2

which corresponds to creation or annihilation of electron-positron pairs.

The interaction Hamiltonian HI only couples to energy levels in the same vertical column
because of charge conservation and so the distance between two energy levels in the same
column should be 2mc

2 which corresponds to creation or annihilation of one or several pairs
of electrons or positrons. So for a system that has a single electron, the minimum coupling
because of HI can occur between the states with energy mc

2 and 3mc
2. Now for HD described

in Eq. (3.2.9) which describes the dynamics of single slow electron with no incident photon,
we start with a manifold E1 which describes the energy state mc

2 in Figure 3.2.1 where the
perturbation VCoul in Eq. (3.2.5) splits it into states n and n

0 . For the perturbation U? in
Eq. (3.2.6), the electron can now emit a virtual photon and virtually make a transition to
manifold E2 from n state and return to n

0 state, n0 ! a ! n. Here now we have one electron
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and one photon in E2. Finally, the manifold E4 which corresponds to the energy state 3mc
2

in Figure 3.2.1 now with two electrons, one positron and one photon where again due to
U? the transition n

0 ! b ! n occurs. The following figure depicts the analogous diagram
corresponding to Figure 3.2.1 and it follows [4]

Figure 3.2.2: Relevant virtual energy levels of HD. The perturbation potential VCoul splits
the energy level E1 into states n and n

0 and for the perturbation potential U? the electron
makes a virtual transition (n0 ! a ! n) to E2. The energy level E4 corresponds to 3mc

2 and
due to U?, the electron makes a similar transition n

0 ! b ! n.

We will now calculate the matrix element of the Hamiltonian between states n and n
0 in

the manifold E1 and transition to state a and b from n and n
0. The transition to n and n

0 is
mediated by VCoul described in Eq. (3.2.5) and transition from n

0 ! a ! n and n
0 ! b ! n

is mediated by U? Eq. (3.2.6). For a single particle state denoted as 1n and 1n0 of E1, we can
now write the effective Hamiltonian as follows [4]

h1n|Heff|1n0i = h1n|VCoul|1n0i

+
1

2

X

a2E2

h1n|U?|aiha|U?|1n0i


1

En � Ea

+
1

En0 � Ea

�

+
1

2

X

b2E4

h1n|U?|bihb|U?|1n0i


1

En � Eb

+
1

En0 � Eb

�
, (3.2.11)

where the first term describes virtual transition between states 1n and 1n0 due to VCoul and the
last two terms describe the virtual transition due to U?. For working out the matrix element
of VCoul we use the quantized Dirac field operators mentioned in Eqs. (3.2.7) and (3.2.8). From
different combinations of the creation and annihilation operators we can vary the number
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of particles by �N1 = 0,±2 for the combination  †(r) (r) and same for the combination
 †(r0) (r0) with �N2 = 0,±2. For example c

†
q

creates an electron and cs destroys one and
so �N1 = 0; bq destroys a positron and cs destroys an electron and so �N2 = �2. For the
purpose of charge conservation we need �N1+�N2 = 0 and so out of eight combinations we
get six terms altogether. The schematic diagram for various combinations follows from [4]

Figure 3.2.3: Various combinations of the creation and annihilation operators of electrons
and positrons. c

†
, c are the creation and annihilation operators for electron and b

†
, b are the

creation and annihilation operators for positron.

Analogously same for the matrix elements involving U? but now with the presence of ↵
matrices and polarizations.

3.2.2 Calculation of the matrix element of VCoul

Now we calculate contribution from the various terms mentioned in Figure 3.2.3 and for this
it is convenient to work with the Fourier transform of the VCoul given by [4]

VCoul =
e
2

16⇡3"0

ZZZ
d
3
rd

3
r
0
d
3
k
⇢(r) exp(ik.r)⇢(r0) exp(�ik.r0)

k2
, (3.2.12)

where ⇢(r) =  †(r) (r).

3.2.2.1 Contribution of term 1

The first term is denoted as (1) in Figure 3.2.3. Subtracting the vacuum shift, we get

(1) =
e
2

16⇡3"0

Z
d
3
k

k2

X

q

X

r

X

s

X

t

✓Z
d
3
ru

†
q
(r)eik.rur(r)

◆

⇥
✓Z

d
3
r
0
u
†
s
(r0)e�ik.r0

ur(r
0)

◆�
h1n|c†qcrc†sct|1n0i � �nn0h0|c†

q
crc

†
s
ct|0i

�
. (3.2.13)
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Now using

h1n|c†qcrc†sct|1n0i = �nq�rs�tn0 , (3.2.14)

h0|c†
q
crc

†
s
ct|0i = 0, (3.2.15)

and from the matrix element huq|eik.r|urihus|e�ik.ri obtained from the two integrals, we can
rewrite Eq. (3.2.13) as

(1) =
e
2

16⇡3"0

Z
d
3
k
1

k2
hun|eik.rP+e�ik.r|un0i, (3.2.16)

where P+ =
P
s

|usihus|. The process is shown in the diagram below taken from [4]

Figure 3.2.4: Diagram for term (1). The upwards arrow is for electron and the curve dotted
line represents electrostatic interaction. This diagram represents interaction between electron
and its Coulomb field with electron as the internal line.

3.2.2.2 Contribution of term 2 and 3

The second and third term denoted as (2) and (3) in Figure 3.2.3 can be written as

(2) =
e
2

16⇡3"0

Z
d
3
k

k2

X

q

X

r

X

s

X

t

huq|eik.r|urihvs̄|e�ik.r|vt̄i

⇥
⇣
h1n|c†qcrbsb

†
t |1n0i � �nn0h0|c†

q
crbsb

†
t |0i

⌘
. (3.2.17)
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Using

h1n|c†qcrbsb
†
t |1n0i = �st�rn0�qn, (3.2.18)

h0|c†
q
crbsb

†
t |0i = 0, (3.2.19)

Eq. (3.2.17) becomes

(2) =
e
2

16⇡3"0

Z
d
3
k

k2
hun|eik.r|un0i

X

s

hvs̄|e�ik.r|vs̄i. (3.2.20)

The term
P
s

hvs̄|e�ik.r|vs̄i is the Fourier transform of the charge distribution in the vacuum

and the overall process describes the electrostatic interaction of the electron with the charge
distribution in the vacuum and in the presence of uniform magnetic field, the contribution of
terms 2 and 3 is zero because charge distribution in vacuum is uniform and static magnetic
field is invariant under translation. The process is shown in the diagram below taken from[4]

Figure 3.2.5: Diagram for term (2) and (3). The arrows represent electron, the straight dotted
line represents electrostatic interaction and the circle is for charge distribution in vacuum.
This diagram represents electrostatic interaction of the electron with the charge distribution
in the vacuum.

3.2.2.3 Contribution of term 4

Denoted as (4) in Figure 3.2.3, the fourth term can be cast in the form

(4) =
e
2

16⇡3"0

Z
d
3
k

k2

X

q

X

r

X

s

X

t

hvq̄|eik.r|vr̄ihvs̄|e�k.r|vt̄i

⇥
⇣
h1n|bqb†rbsb

†
t |1n0i � �nn0h0|bqb†rbsb

†
t |0i

⌘
. (3.2.21)

Both matrix elements of the bracket are equal to �nn0�qr�st and so contribution of term (4)
is also zero. This term represents the electrostatic interaction in vacuum and is same in

23



presence and absence of the electron. When one subtracts the vacuum shift, then this term
becomes zero. The process is shown in the diagram below taken from [4]

Figure 3.2.6: Diagram for term (4). The circles are the charge distribution in the vacuum and
the dotted line represents the electrostatic interaction. This diagram represents electrostatic
interaction in vacuum.

3.2.2.4 Contribution of term 5

Denoted as (5) is Figure 3.2.3, this term is proportional to

h1n|c†qb†rbsct|1n0i � �nn0h0|c†
q
b
†
r
bsct|0i, (3.2.22)

which is equal to zero.

3.2.2.5 Contribution of term 6

In Figure 3.2.3, the sixth term is denoted as (6) and we can write it as

(6) =
e
2

16⇡3"0

Z
d
3
k

k2

X

q

X

r

X

s

X

t

hvq̄|eik.r|urihus|e�ik.ri

⇥
⇣
h1n|bqcrc†sb

†
t |1n0i � �nn0h0|bqcrc†sb

†
t |0i

⌘
. (3.2.23)

Now using crc
†
s
= �rs � c

†
s
cr for the first term in the bracket

h1n|bqcrc†sb
†
t |1n0i = �rs�nn0�qt � �sn�qt�rn0 , (3.2.24)

and the second term in the bracket

�nn0h0|bqcrc†sb
†
t |0i = �nn0�rs�qt. (3.2.25)

So Eq. (3.2.23) becomes

(6) = � e
2

16⇡3"0

Z
d
3
k

k2
hun|eik.rP�eik.r|un0i, (3.2.26)
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where P� =
P
q

|vq̄ihvq̄|. The process is shown in the diagram below taken from[4]

Figure 3.2.7: Diagram for term (6). The upwards arrow is for electron, the downward arrow is
for positron and the dotted line represents electrostatic interaction. This diagram represents
interaction between electron and its Coulomb field with positron as the internal line.

Combining all the contributions for term (1)� (6), we get

h1n|VCoul|1n0i = e
2

16⇡3"0

Z
d
3
k

k2
hun|eik.r(P+ � P�)e�ik.r|un0i. (3.2.27)

For P+ � P� we can use the identity [4]

P+ � P� =
HDp
H2

D

, (3.2.28)

where HD is defined by Eq. (3.2.9) and

H2
D
= m

2
c
4 + c

2⇡2
0 � q~c2�.B0, (3.2.29)

where for (↵.⇡0)
2 we have used Eq. (B.0.15). So first we have to evaluate

eik.r
HDp
H2

D

e�ik.r =
�mc

2 + c↵.(⇡0 � ~k)p
m2c4 + c2(⇡0 � ~k)2 � e~c2�.B0

, (3.2.30)

as the exponential factors transforms ⇡0 to ⇡0 � ~k. Upon expanding the denominator of
Eq. (3.2.30) in powers of ⇡0 and �.B0 and keeping terms in ↵.⇡0, ⇡2

0 and �.B0 and then
multiplying with the numerator and finally performing the angular integration we get

h1n|VCoul|1n0i = hun|VCoul|un0i, (3.2.31)
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where

VCoul =
↵

⇡

Z
xM

0

dx

⇢
�mc

2 1p
1 + x2

+ c↵.⇡0
1p

1 + x2

✓
1� x

2

3 (1 + x2)

◆

�� ⇡2
0

2m

1

(1 + x2)5/2
+ �

e~
2m

�.B0
1

(1 + x2)3/2

)
(3.2.32)

where ↵ is the fine structure constant and xM is the cut-off. Detailed calculation is given in
Appendix C.1

3.2.3 Calculation of the matrix element of the transverse Photon

(U?)

The calculation process involving U? is similar to VCoul as we can see from Eq. (3.2.6) that
U? has the same combination as VCoul. The differences are that now we have to take the
matrix elements of ↵.✏exp(ik.r) where ✏ is the polarization of the transverse photon and we
now have energy denominators from Eq. (3.2.11). We will denote the last two terms in Eq.
(3.2.11) more compactly as h1n|H?

eff|1n0i.

3.2.3.1 Contribution of term 1

For the transverse photon, we start with E2 in Figure 3.2.1. So in the intermediate state we
have one electron and one transverse photon. The process is shown in the diagram below
taken from [4]

Figure 3.2.8: Contribution of term (1). The upwards arrow represents electron and the wavy
line is for transverse photon. This diagram represents interaction between electron and its
transverse radiation field with electron as the internal line.
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3.2.3.2 Contribution of terms 2 and 3

The second and third term describes the interaction of the electron with the transverse field
of the vacuum current. In a uniform magnetic field, the vacuum current is equal to zero. So
the contribution of these two terms is zero. The process is shown in the diagram below taken
from [4]

Figure 3.2.9: Diagrams for terms (2) and (3). The arrows are for electron, the straight wavy
line represents interaction by transverse photon and the circle is charge in vacuum. This
diagram represents the interaction of the electron with the transverse field of the vacuum
current.

3.2.3.3 Contribution of term 4

This term describes the transverse interaction between the charges in the vacuum and it is
same in presence or absence of the electron and so its contribution will not affect H

?
eff. The

process is shown in the diagram below taken from[4]

Figure 3.2.10: Diagram for term (4).This diagram represents transverse interaction in vac-
uum.

3.2.3.4 Contribution of term 5

It is equal to zero for the same reason as VCoul.

3.2.3.5 Contribution of term 6

This term represents E4 in Figure 3.2.1 where in the intermediate state we now have two
electrons, one positron and one transverse photon. The process is shown in the diagram
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below taken from [4]

Figure 3.2.11: Diagram for term (6). The upward arrows are for electron, the downward
arrow is for positron and the wavy line is for transverse photon.This diagram represents
interaction between electron and its transverse radiation field with positron as the internal
line.

So from terms (1) and (6) and using Eqs. (3.2.6) and (3.2.11) we get [4]

h1n|H?
eff|1n0i = hun|H?

eff|un0i

=
e
2
c
2

2

Z
d
3
k

X

✏

~
2"0!(2⇡)3

⇥ hun|(✏.↵)eik.r
✓

p+

En � ~! �HD

+
P�

En + ~! �HD

◆
(✏.↵)e�ik.r|un0i

+ same term with En ! En0 , (3.2.33)

where we have used Eq. (2.2.2) for A(r) and the integration sign comes from converting the
summation over k. Now

p+

En � ~! �HD

+
P�

En + ~! �HD

=
1

En �HD � (P+ � P�)~!

=
En +HD + ~! HDp

H2
D

E2
n
�
⇣
H2

D
+ ~2!2 + 2~!

p
H2

D

⌘ (3.2.34)

The exponential factors transform ⇡0 to ⇡0 � ~k and like VCoul we expand the fraction of
Eq. (3.2.34) in a power series of ⇡0, �.B0 and E

2
n
�m

2
c
4 and sum over ✏ considering ✏ ? k.
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After integrating over solid angle we get [4]
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. (3.2.35)

3.2.4 Total effective Hamiltonian

Any Dirac Hamiltonian of the form

H = �mc
2(1 + ✏) + c↵.⇡0(1 + ✏

0) + �E (3.2.36)

can be transformed into [4]

H = �mc
2(1 + ✏) +

c
2(↵.⇡0)2(1 + ✏

0)2

2mc2(1 + ✏)
+ �E

= �

✓
mc

2(1 + ✏) + E +

✓
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2m
� e~

2m
�.B0

◆
(1 + 2✏0 � ✏)

◆
(3.2.37)

for ✏, ✏0 ⌧ 1. We have used Eq. (B.0.15) and expanded (1+✏
0)2

(1+✏) neglecting squared terms.
Now transforming the sum of Eqs. (3.2.32) and (3.2.35) like Eq. (3.2.37) we get one more⇣

⇡2
0

2m � e~
2m�.B0

⌘
factor from the square of c↵.⇡0 terms from Eq. (3.2.37) and summing it

with the existing
⇣

⇡2
0

2m � e~
2m�.B0

⌘
factor in Eqs. (3.2.32) and (3.2.35), we get [4]
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, (3.2.38)
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where

f1(x) =
1p

1 + x2
+ x� x

2

p
1 + x2

, (3.2.39)
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, (3.2.40)
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◆
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#
. (3.2.41)

3.2.5 Calculation of anomalous magnetic moment of electron

From Eq. (3.2.38), we can write the effective Hamiltonian for all modes as

Heff =
⇡2
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◆
. (3.2.42)

The cyclotron and Larmor frequency will also be modified by the same factor. The modified
cyclotron and Larmor frequency are

!̄C = !C
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Z
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0
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◆
, (3.2.43)
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◆
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So the modified g factor is

ḡ

2
=
!̄L

!̄C

=
1� ↵
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1� ↵
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. (3.2.45)

In first order
ḡ

2
=
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Z
xM

0

f3(x)dx

◆✓
1 +

↵

⇡

Z
xM

0
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◆
. (3.2.46)

Neglecting cross terms between f2(x) and f3(x), the anomalous magnetic moment now be-
comes

ae =
ḡ � 2

2
=
↵

⇡

Z
xM

0

[f2(x)� f3(x)] dx. (3.2.47)

After evaluating the integral for xM = 1, we get the same result as Schwinger [15]

ae =
↵

2⇡
. (3.2.48)
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3.3 Justification of the obtained non-relativistic contri-

bution of electron g � 2

In this section, we will take the non-relativistic limit of the relativistic calculation described
in the previous section and show that it matches with our non-relativistic calculations done in
section 2.4. For this purpose we start by expanding function f2(x) and f3(x) in Eqs. (3.2.40)
and (3.2.41). Some terms of the expanded series is

f2(x) =
4

3
+ x� 4x2 +

13x4

2
+O

�
x
6
�
, (3.3.1)

f3(x) = 0 +
5x

3
� x

2 � x
4

6
+O(x6). (3.3.2)

Using the lowest order in the expansion and inserting them in Eq. (3.2.47) we get

ae '
4

3

↵

⇡

Z
xM

0

dx

=
4

3

↵

⇡
xM . (3.3.3)

Here we can not use xM = 1 as the series is not convergent which indicates the lack of
covariance in the non-relativistic formalism. After setting !M = mc

2

~ , we get xM = 1 and
thus we reproduce our result in Eq. (2.4.13). This result justifies neglecting the effect
of vacuum polarization in the non-relativistic calculation and we can now safely conclude
that the main contribution comes from the non-relativistic modes and the effect of radiation
reaction is significantly larger than vacuum fluctuation in the process regarding the anomalous
magnetic moment of the electron.

3.4 Conclusion

In this chapter, we have reproduced [4] and calculated the Schwinger factor ae = ↵

2⇡ using
relativistic effective Hamiltonian approach. We have seen that among several processes,
only the interaction of the electron with the Coulomb photon (Figures 3.2.4 and 3.2.7) and
transverse photons (Figures 3.2.8 and 3.2.11) contributes whereas no diagrams involving
vacuum is relevant to the total one-loop electron g�2. This justifies ignoring effects of vacuum
fluctuation in our non-relativistic calculation of electron g � 2 discussed in the previous
chapter. We have also taken the non-relativistic limit of our final result and justified our
obtained result in the previous chapter. We can also see that the main contribution to
the electron g � 2 comes from radiation reaction and not vacuum fluctuation. From the full
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relativistic calculation, we can clearly see the main drawback of our non-relativistic approach.
The covariant relativistic formalism discussed in this chapter does not need any cut-offs and
the need of a cut-off in the non-relativistic calculation indicates the lack of covariance in
that formalism. This concludes our discussion of the anomalous magnetic moment of the
electron using the effective Hamiltonian approach. In the next chapter, we will see Luttinger’s
approach to electron g � 2 to get a new perspective of the radiation reaction [5].
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Chapter 4

Luttinger’s approach to the electron g� 2

4.1 Introduction

The anomalous magnetic moment of the electron and the discrepancy with the predicted
value of the g factor by the Dirac equation was first theoretically explained by Schwinger
in 1948 [23] and the detailed calculation was published in 1951 [15]. Schwinger considered
the coupling between the electron and radiation field. The self-energy of electron introduces
divergences in the theory and Schwinger used the concept of renormalization of the mass and
the magnetic moment of the electron to get rid of the divergences. In 1948, Joaquin Luttinger
provided an alternative approach to calculate the change in the magnetic moment without
any reference to the subtraction formalism of renormalization [5]. Luttinger tackled the
problem of electron g � 2 in the context of an electron in a homogenous magnetic field. The
electron interacting with the zero point vibration of the quantized radiation field gives rise to
infinite energies which are ascribed as change in mass and charge of the electron. Schwinger
got rid of the infinite energies by his construct of subtraction formalism of renormalization.
Luttinger wanted to avoid this artificial construct by targeting the corresponding energies
which arise only because of the electron’s interaction with magnetic field and avoiding the
corresponding energies due to electron’s self interaction. His insight was that the lowest
eigenstate of the Dirac operator in homogenous magnetic field has an energy E = me which
does not depend on the applied field. For this state of the electron with g = 2, the energy
from the orbital magnetic moment cancels the energy from the non-anomalous part of the
spin magnetic moment. The change in energy for such a state due to change in mass and
charge of the electron lies in the 0th power term upon employing perturbation theory in
powers of the external field. This corresponds to the self-energy terms

�E = �Eself(0). (4.1.1)
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As �Eself is independent of the external field then the true change in energy must come from
the higher order terms. All the divergent quantities are contained in the 0th power terms and
then the linear and higher order terms in the external field will now contain the contributions
from the anomalous magnetic moment of the electron. Here we will only consider the terms
linear in the strength of the applied field. So, by isolating the terms linear in the applied
field it is expected that we will get the alteration of the g-factor as a coefficient of the linear
terms. The total change in energy �E will contain two terms �Estatic and �Edynamic

�E = �Estatic +�Edynamic. (4.1.2)

The first term �Estatic contains the contribution of the electrostatic energy of the electron
and �Edynamic contains the contribution of electrons interaction with the external field. In
both cases we will use Dirac wave functions for electrons in magnetic field. We will consider
natural units i.e. ~ = c = "0 = 1 in this chapter.

4.2 Defining terms for the calculation

The total hamiltonian of an electron interacting with magnetic field is given by

H = H0 +H1 +Hstatic. (4.2.1)

where H0 is the unperturbed Dirac Hamiltonian minimally coupled to the external field. H1

and Hstatic are the perturbations corresponding to the interaction with radiation field and
electrostatic energy from the interaction between all charge densities of the system respec-
tively. Explicitly [5]

H0 =

Z
{� ⇤↵. (�ir� eA0) � im ⇤

� } d3x+
1

2

Z �
E

2 +B
2
�
d
3
x, (4.2.2)

H1 = �e

Z
( ⇤↵ ) .Ad

3
x, (4.2.3)

Hstatic =
e
2

8⇡

Z Z
⇢(x)⇢(x0)

|x� x0| d
3
xd

3
x
0
, (4.2.4)

where ↵ is the Dirac matrices, E and B are the electric and magnetic field (we will suppose
B = Bẑ), A0 is the vector potential of the external field (we will suppose A0 = Bxŷ),
A is the dynamical radiation field and ⇢(x) is the charge density. Eqs. (4.2.3) and (4.2.4)
corresponds to Eqs. (3.2.6) and (3.2.5) respectively. Now using  =

P
n

an n, Eqs. (4.2.2)-
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(4.2.4) can be written in quantized forms as [5]
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cs, (4.2.5)
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, (4.2.7)

where hc denotes Hermitian conjugate and En,  n are the eigenvalues and eigenfunction of
the Dirac equation

{↵. (�ir� eA0) + �m} n = En n. (4.2.8)

a
⇤
n
, an are creation and annihilation operators for electron in a state n and c

⇤
s
, cs are creation

and annihilation operator for a photon with momentum ks and with a unit polarization
vector ✏̂. The charge density is

⇢(x) =  ⇤(x) (x), (4.2.9)

and the quantized form of the vector potential of the radiation field is

A =
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s
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�
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iks.x + c
⇤
s
e
�iks.x

�
✏̂s, (4.2.10)

where As =
⇣

1
2ksG

⌘1/2

with G being the normalization volume. With ↵s ⌘ ↵.✏̂ , V (s)
nn0 is then

V
(s)
nn0 =

Z
d
3
x ( ⇤

n
↵s n0) e�iks.x, (4.2.11)

Now with all the definitions lined up, we are in position to calculate �Estatic and �Edynamic.

4.3 Calculation of �Estatic and �Edynamic

To calculate �Estatic, we consider the electron in state m where Em = me. Here we will use
the notation me for electron mass to differentiate from the state m. We now take the average
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value of Hstatic for one particle in the state m with no photons present
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where the vacuum charge density is

⇢0 =
X

l,El<0

 
⇤
l
(x0) l(x

0), (4.3.2)

and the charge density of the particle in state m is

⇢m =  
⇤
m
(x) m(x). (4.3.3)

The third term represents interaction between the particle charge density and vacuum charge
density and as homogenous magnetic field does not give rise to any polarization, it will be
same whether there is any magnetic field or not and so it can be dropped. We now have to
subtract the term when only vacuum is present as was done in chapter 3

�Estatic = hHstatic(m)i � hHstatic(vac)i, (4.3.4)

where

hHstatic(vac)i = e
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Then �Estatic will contain two terms representing positive and negative energy contribution
in the context of hole theory. Writing in a compact way

�Estatic =
e
2
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l

�l
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( ⇤

m
(x) l(x)) ( ⇤

l
(x0) m(x0))

|x� x0| , (4.3.6)

with �l = +1 for El > 0 and �l = �1 for El < 0. Recalling the Dirac wave functions in
a magnetic field from Appendix D, Eqs. (D.0.15) and (D.0.16), where for the state m the
orbital and spin magnetic moment exactly cancel each other and n = p2 = p3 = 0 and
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Em = me,
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with I0(x) = e
�eBx

2
/2
�
eB

⇡

�1/4 from Eq. (D.0.11). For n = l and En ! me, using the Dirac
wave functions  l(x) described in Eqs. (D.0.15) and (D.0.16), Eq. (4.3.6) transforms as [5]
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where ⇢n(x) ⌘ I0(x)In(x) exp i(p2y + p3z), En = (m2
e
+ p

2
3 + 2emB)1/2 , and In(x) is defined

in Eq. (D.0.11). In the Fourier space
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Eq. (4.3.8) becomes
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The result of Eq. (4.3.9) is [5]
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Using the delta function in Eq. (4.3.12), k2 can be written as k
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Replacing the sums by integrals
P
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G
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becomes

�Estatic =
e
2
me

16⇡3

1X

n=0

1

n!

1

En

Z 1

�1

Z 1

�1

Z 1

�1
dk1dp2dp3

1

k
2
1 + p

2
2 + p

2
3

✓
p
2
2 + k

2
1

2eB

◆n

exp


�(p22 + k

2
1)

2eB

�
.

(4.3.14)
Substituting the value of En from Eq. (D.0.13) and using polar coordinates (r2 = k

2
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2), we can write Eq. (4.3.14) as
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Then finally Eq. (4.3.15) becomes
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From this equation we can see that �Estatic(0) contains the self-energy or divergent terms
which we do not care about and the next order terms are linear in order of magnetic field B.
To calculate �Edynamic we have to use second order perturbation theory on Eq. (4.2.6) and
using Eq. (4.2.10) we get [5]
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where �l = +1 for El > 0 and �l = �1 for El < 0. Treatment of �Edynamic is quite similar to
the calculation of �Estatic. For the state Em = me and Em = �me [5]

�Edynamic = F (me)� F (�me), (4.3.21)
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Most of the terms in this equation resembles the terms of Eqs. (4.3.15) and (4.3.16). The
two terms here corresponds to �l = +1 and �l = �1. 1

En+1
and 1

En
terms comes from the two

fold degenerate solutions of the Dirac equation and is similar to 1
En

term in Eqs. (4.3.15) and
(4.3.16). The terms (k + En+1 �me) and (k + En �me) comes from the summation over l

after putting the values of �l = +1,�1in Eq. (4.3.20). Now to evaluate F (me) by following
the same procedure in evaluation of �Estatic, we arrive at [5]
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From Eq. (4.1.2) and taking only terms that are linearly dependent on B, we get
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Now discarding the divergent terms �Estatic(0) and �Edynamic(0) we get the true change in
energy of an electron in homogenous external magnetic field. So the modification to the
energy in the state m can be written as

E = � e

2me

B�, (4.3.25)

where � = e
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8⇡2 . Now considering the modification to the g factor to be g = 2(1 + �), we get
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Now using ↵ = e
2

4⇡ , we get
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2
=

↵

2⇡
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which is the exact result obtained by Schwinger in [15].
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4.4 Conclusion

In this chapter, we have discussed Luttinger’s approach of calculating the anomalous magnetic
moment of the electron. Luttinger’s approach to calculate the anomalous magnetic moment
of the electron differs from Schwinger’s in terms of renormalization. Luttinger’s approach is
independent of any renormalization scheme or any cut-offs. In that sense, this approach is
more natural. This approach is quite similar to that discussed in Chapter 3. Like in Chapter
3, here we also talk about the interaction of the Coulomb field and transverse field which
corresponds to �Estatic and �Edynamic respectively. We also saw that Luttinger’s approach
does not depend on a choice of a cut-off like the relativistic effective Hamiltonian approach.
Although these two approaches are more intuitive and natural but the calculation process
is quite lengthy and not so practical in modern day quantum field theoretical calculations
where the renormalization scheme proves quite useful. But from these approaches, we get
a better and more intuitive understanding of the radiative corrections. This concludes our
discussion of the anomalous magnetic moment of the electron. In the next chapter, we will
discuss the Lamb shift and illustrate how fluctuating vacuum affects the motion of a bound
electron.
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Chapter 5

Calculation of the Lamb Shift

5.1 Introduction

Lamb shift is perhaps the most significant discovery presented at the Shelter Island conference
in 1947 which implies the shortcoming of the Dirac theory. The Lamb-Retherford experiment
in 1947 found a slight difference in energy, equivalent to the frequency of about 1000 MHz,
between the levels 2s1/2 and 2p1/2 of the hydrogen atom. This energy shift is known as the
Lamb shift [24]. In this chapter, we will present two approaches to the Lamb shift. Hans Bethe
first theoretically explained the Lamb shift [16]. We thus first look at Bethe’s calculation
where he considered a bound electron’s interaction with radiation field and then subtracted
the free electron’s interaction. The result contains a logarithmically enhanced term and this
logarithmic effect is the primary feature of the Lamb shift. After Bethe, Theodore A. Welton
provided a heuristic approach to the Lamb shift [9]. This approach provides an intuitive
description of the Lamb shift. In this approach, one averages the Coulomb potential of the
nucleus and the electron’s vibrational motion in a vacuum.

5.2 Bethe’s calculation of the Lamb Shift

In this section, we will briefly discuss Bethe’s approach to the Lamb shift. Bethe’s approach
is non-relativistic where he considered self-interaction of the bound electron due to its inter-
action with transverse electromagnetic wave. We will first calculate the self-energy of a free
electron and then generalize it to a bound electron. Then the difference between the self-
energy of the free and bound electron will result in a logarithmic divergent quantity which
is the Lamb shift. The self-energy graph is represented by the diagram
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Figure 5.2.1: Self-energy Feynman diagram for free particle. The solid line represents fermions
and the wavy line represents transverse photon.

The QED Feynman rules give the following expression for the above self-energy graph ,
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ū(p) (�ie�

µ) i (�igµ⌫) (�ie�
⌫) u(p)

(�p�◆◆k �m+ i") (k2 + i")
, (5.2.1)

which, in the non-relativistic limit after carrying out the integration over k0, gives to the first
order
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Now considering Em, En ⌧ k for a free electron and using the projection gµ⌫ ! ✏µ✏⌫ on
the transversal photons with polarization ✏ and the velocity projection operator v in the
expression um�

µ
✏(k)un ! hm |v̂|ni✏(k), we can write the self-energy of the free electron as
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where in the second line we have considered that the velocity projection operator has only
diagonal elements for the free particle [16]. After performing the angular integration and
using the Eq. (2.3.12) for the completeness relation for the photon, we get
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For a bound electron, we can not assume Em � En ⌧ k. Eq. (5.2.5) can be generalized for
the bound case,

Eb = �2e2

3⇡

Z
kdk

X

n

|vmn|2

En � Em + k
, (5.2.6)
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where we have used the sum rule [16]
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Due to the self-interaction of the electron, electron’s bare mass is increased with the addition
of the electromagnetic mass. But the experimentally observed result contains the total mass,
so to get the true energy shift we have to subtract the self-energy of the bound and free
electron
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It is to be noted that both Eb and E0 are both linearly divergent whereas E is logarithmically
divergent. Now by introducing a cut-off K, the integration yields
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We now consider that the logarithmic divergence is approximately independent of n and then
we only have to evaluate
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Then using the Coulomb potential we get
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All wave function for l 6= 0 vanishes at the nucleus and so Lamb shift is only observable for
states with l = 0. Now considering the normalized hydrogen wavefunction
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where Z is the proton number, n is the principle quantum number, and ais the Bohr radius,
we get
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where Ry is the Rydberg constant. Using K = mc
2 for the cut-off and numerical value for

the average excitation energy for the 2s state 17.8 Ry, Bethe got a numerical value 1040 MHz
for the Lamb energy shift [16]. It is in excellent agreement with the observed result of 1000
MHz.

5.3 Welton’s heuristic approach to the Lamb shift

In this section, we review Welton’s heuristic explanation of the Lamb Shift [9]. The central
theme of Welton’s calculation of the Lamb shift considers how vacuum fluctuations of the
electromagnetic field affect the electron in a hydrogen atom. The fluctuation of quantum
states in their lowest energy state give rise to fluctuating electric field which pushes the
electron causing the electron to move randomly. This is known as the position fluctuation
of the electron. In other words, in a bound system (hydrogen atom) the fluctuating vacuum
causes fluctuations in the position of the electron which modifies the Coulomb potential
energy between the electron and nucleus which results in the Lamb shift. Now we consider
the motion of electron in a static potential �0(r). The variation of the coordinate of the
electron due to its random motion due to vacuum fluctuation changes the potential which
can be expanded as
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Since vacuum fluctuations are isotropic, we can write
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The expansion of the potential becomes
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We see that the fluctuation in electron’s position modifies the potential in which it moves.
The equation of motion for the electron’s displacement by the fluctuating electric field for a
single mode k can be written as

m
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k
= �eEk, (5.3.5)

where the radiation field is defined by Eq. (2.2.1) but without the summation over ✏. We
consider the electron to be slow and for a field oscillating at ! we use the Ansatz (c.c. denotes
complex conjugation)
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where in the last line we have converted the sum into integral by using Eq. (A.0.7). This
result is divergent so we have to select lower and upper cut-offs to make it convergent. The
lower limit arises from the condition that the wave length of the virtual photon should not
exceed the size of the atom, k >

⇡

a0
, where a0 = 4⇡"0~2

me2
is the Bohr radius. For the long

wavelengths larger than the size of atom, the electric field oscillates so slowly that by the
time it changes sign the electron will be at another place due to position fluctuation and so
their contribution is zero. The upper limit is k <

mc

~ . When the wavelengths get shorter than
the Compton wavelength, the super energetic photons effectively do not push the electron
but can create electron-positron pairs. After inserting the lower limit ⇡

a0
and the upper limit
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For evaluating r2
�(r), we will use Coulomb potential energy
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where  (r) is the normalized hydrogen wave function and r2
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= �4⇡�3(r). So the energy

shift now becomes

h��0i =
1

6

⌦
(�r)2

↵
vac

⌧
r2

✓
�e

2

4⇡"0r

◆�

=
4

3

e
2

4⇡"0

e
2

4⇡"0~c

✓
~
mc

◆2

ln
4"0~c
e2

| (0)|2 . (5.3.11)

Now using  2s(0) =
1p
8⇡a30

, we get the energy shift as

h��0i = ↵
5
mc

2 1

6⇡
ln

1

⇡↵
, (5.3.12)

where ↵ is the fine structure constant and the shift is about 500 MHz which is within an
order of magnitude of the observed result of 1000 MHz.

5.4 Conclusion

In this chapter, we have discussed the Lamb shift using two different approaches. Bethe’s
approach considers the electron’s self-energy in calculating the Lamb shift whereas Welton’s
approach considers the vibration of the electron in a fluctuating vacuum which modifies
the Coulomb potential. At first glance, these two approaches may seem contradictory as
one works with the self-interaction of the electron and the other works with the position
fluctuation of the electron in the vacuum. Obviously there is no such controversy and this
misunderstanding might arise from the word “vacuum”. It should be made clear that we
are not talking about vacuum fluctuation or the creation of electron-positron pairs in the
vacuum. We are saying how a fluctuating vacuum can influence the motion of the electron
which gives rise to the Lamb shift. The fluctuating electric field modifies the motion of
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the electron causing position fluctuation. The electron radiates a transverse photon and the
interaction of the electron and the transverse photon gives rise to the Lamb shift. Although
Bethe’s calculation gives a more accurate result than Welton’s, Welton’s calculation provides
a more intuitive and clear explanation of the physics behind the Lamb shift.

We point out two primary features of the Lamb shift. One is that Lamb shift is loga-
rithmically enhanced and other is that it primarily affects the s states (l = 0) of an atom,
because of the delta function in the calculation when we take the Laplacian of the potential
energy. This delta function signifies that the effect arises in the vicinity of the nucleus and
as the wave functions for l 6= 0 vanishes at the nucleus, s states have the largest Lamb shift.
This particular point should be noted as it will serve as our primary reasoning in refuting
the claim of [1] that the next-to-leading order correction of the D-term has the same physics
as the Lamb shift. This concludes our discussion of the well-known examples for interpreting
radiative corrections, electron g � 2, and the Lamb shift. In the following chapters, we will
explore the relatively new concept, the so-called D-term.
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Chapter 6

Feynman rules for NRQED

6.1 Introduction

In this chapter, we will derive Feynman rules for non-relativistic quantum electrodynamics
(NRQED). The proper way to derive these rules is by going back to the derivation of QED
Feynman rules and re-deriving them in the non-relativistic limit. We will follow a simple
approach where we will write down the QED Feynman rules for any process and then expand
them in powers of p/m [6]. The usual normalization convention is ū(p)�0u(p) = u

†(p)u(p) =

2E but in non-relativistic physics it is conventional to normalize the states in a way that there
is one particle per unit volume [6]. Throughout this chapter, we will use such normalization
that the wave functions will contain a factor of 1p

2E
. We will also work with the Coulomb

gauge, convenient in NRQED [6]. We will consider natural units i.e. ~ = c = "0 = 1 in this
chapter.

6.2 NRQED vertices

In this section, we derive the NRQED Feynman rules for vertices. We consider the interaction
of an electron with a photon. Then the Feynman rules read

ū(p)ie�µu(p) =

r
E 0 +m

2E 0

r
E +m

2E

⇣
 

0† �.p0

E0+m
 

0†
⌘
�0ie�µ

 
 

�.p
E0+m

 

!
. (6.2.1)

We will consider the zeroth component and the three-momentum component of the vertex
separately as the first couples to the Coulomb field and the later couples to the transverse
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photon as demonstrated in Eq. (7.3.12). Then Eq. (6.2.1) becomes
r

E 0 +m

2E 0

r
E +m

2E
ie

⇣
 

0†
 + 0† �.p0

E0+m

�.p
E0+m

 

⌘
. (6.2.2)

We then obtained our first NRQED rule

ie, (6.2.3)

which represents Coulomb interaction and can be represented graphically as

Figure 6.2.1: Graphical representation of Coulomb interaction where the solid line represents
fermions and the dashed line represents Coulomb photon.

Now from the term r
E 0 +m

2E 0

r
E +m

2E
ie 

0†
 , (6.2.4)

we get

 
0†
 ⇥ ie

✓
� p2

8m2
� p02

8m2

◆
(6.2.5)

where we have used r
E +m

2E
⇡
✓
1� p2

8m2

◆
. (6.2.6)

Now in the same order the �.p terms give

ie 
0†�.p

2m

�.p0

2m
 =


e 

0†�.
p⇥ p0

4m2
 + ie 

0p.p
0

4m2
 

�
(6.2.7)

where we have used Eq. (B.0.15). Now combining with Eq. (6.2.5) we obtain two more
NRQED rules

� ie
(p� p0)2

8m2
e�.

(p⇥ p0)

4m2
, (6.2.8)

where the first one represents the Darwin interaction and the second one is spin-orbit inter-
action. The graphical representation is
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Figure 6.2.2: Graphical representation of the Darwin and spin-orbit interactions. The first
diagram represents Darwin interaction and the second diagram represents spin-orbit interac-
tions. The solid line represents fermions and the wavy line represents transverse photon.

Now we will work with the �i parts. Then Eq. (6.2.1) becomes
r

E 0 +m

2E 0

r
E +m

2E
ie

⇣
 

0† �.p0

E0+m
�j +  

0†
�j

�.p
E+m

 

⌘
. (6.2.9)

Now using [6]

��.p = i (p⇥ �) + p, (6.2.10)

�.p0� = �i (p0 ⇥ �) + p0
, (6.2.11)

we get

ie 
0†

�i (p0 ⇥ �) + p

2m
+

i (p⇥ �) + p

2m

�
 , (6.2.12)

which gives the following NRQED rules

ie
p+ p0

2m
e
(p0 � p)⇥ �

2m
, (6.2.13)

which represent dipole and magnetic interaction respectively. The graphical representation
is

Figure 6.2.3: Graphical representation of the dipole and magnetic interactions. The first di-
agram represents dipole interaction and the second diagram represents magnetic interaction.
The solid line represents fermions and the wavy line represents transverse photon.

For positron using

v̄(p)ie�µv(�p) =

r
E 0 +m

2E 0

r
E +m

2E

⇣
�
0† �.p0

E+m
�
0†
⌘
�0ie�µ

 
�.p
E+m

�

�

!
, (6.2.14)
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leads to the same NRQED rules except now p0 is the three momentum before the interaction.

6.3 Virtual Fermions

In this section, we derive the NRQED Feynman rules for internal lines or virtual fermions.
The representative diagrams are

Figure 6.3.1: Representative diagrams for fermion (positron) as an internal line. The second
diagram is the crossed diagram. The solid line represents fermions and the wavy line repre-
sents transverse photon.

In QED the propagator for the fermion is

i

�p�m+ i"
= i

�p+m

p2 �m2 + i"
(6.3.1)

⇡ i

2p0

 
�p+m

p0 �
p
p2 +m2 + i"

+ �p+m

p0 +
p

p2 +m2 � i"

!
. (6.3.2)

In this expression p0 is positive in the first term and negative in the second term. Now using
Casimir trick, we get the fermion propagator containing both the propagation of particle
(forward in time) and the anti-particle (backward in time) as

i

2p0

0

B@

P
s=1,2

u
(s)
r (p)ū(s)

r (p)

p0 �
p

p2 +m2 + i"
�

P
s=1,2

v
(s)
r (�p)v̄(s)r (�p)

p0 +
p

p2 +m2 � i"

1

CA , (6.3.3)

where we have used the index r to signify that we are working in relativistic domain like [6].
In non-relativistic normalization for the wave-functions, we will absorb the factor 1

2p0
due

to the factor 1p
2E

in our non-relativistic normalization but then we have to change the sign
of the positron term [6]. We will also not include the terms concerning sum over spins as
electron and positron are in the internal line. Now we consider the interaction of an electron
with a photon of momentum k where the fermion line is an internal propagator. The electron
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propagator is then

i

p0 + k0 �
q

(p+ k)2 +m2 + i"

⇡ i

k0 +
p2

2m � (p+k)2

2m + i"

, (6.3.4)

and the positron propagator is

i

p0 + k0 +
q

(k + p)2 +m2 � i"

⇡ i

k0 � p2

2m + (k+p)2

2m � i"

. (6.3.5)

Until now we have only considered photon rules for coupling of a particle with a particle or an
anti-particle with an anti-particle. Now we will discuss coupling of particle and anti-particle.
We will consider the interaction which connects a virtual positron to external electrons. To
simplify calculation, we can set the momenta of the initial and final electron to be zero in
the lowest order. We then have

ūie�iv
(s) ⇡

⇣
 

† 0
⌘
�0ie�i

 
�.k
2m�

(s)

�
(s)

!
, (6.3.6)

where k is the photon three-momentum. Which gives

ie 
†
�i
�.k

2m
�
(s)
. (6.3.7)

Similarly v̄
(s)
ie�ju gives

ie�
†(s)�.k

2m
�j . (6.3.8)

So X

s

ūie�iv
(s)
v̄
(s)
ie�ju = � e

2

4m2
k2
 

†
�i�j . (6.3.9)

After adding the cross diagram (i $ j) and including the internal propagator for positron
i

k0� k2

2m

, we obtain

� ie
2

2m2

k2

k0 � k2

2m

�ij. (6.3.10)

The most important contribution comes from taking the fermion propagator pole instead of
photon and so by taking k0 = � k2

2m , we get [6]

ie
2

2m
�ij. (6.3.11)
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This NRQED rule represents seagull interaction and the corresponding diagram is

Figure 6.3.2: Seagull interaction where the solid line represents fermions and wavy line
represents transverse photon.

6.4 Annihilation diagram

We have been considering NRQED rules for scattering up to now. Here in this section, we
will work with annihilation diagrams. One example of this is positronium hyperfine splitting
due to one photon annihilation channel [6]. The QED rule for this kind of process is [6]

v̄(�p1)ie�µu(p2)
�i

q2
ū(p3)ie�

µ
v(�p4), (6.4.1)

where the transferred momentum is q = p2�p1 = p3�p4. Considering q = (m,0)�(�m,0) =

(2m,0), we get

v̄(0)ie�µu(0)
�i

4m2
ū(0)ie�µv(0) = � ie

2

4m2
�
†� . †��, (6.4.2)

where we have taken u(0) =

 
 

0

!
and v(0) =

 
0

�

!
. The spin average gives �ie

2

2m in the

ortho state where the spins are in the same direction and 0 for the para state where they are
in different directions of positronium. The NRQED interaction can be represented by the
following diagram

Figure 6.4.1: Annihilation contact interaction diagram where the solid line represents incom-
ing and outgoing fermions.
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6.5 Photon propagator

As photon travels at the speed of light, it is not possible to get a non-relativistic Feynman
rule for photon. In QED, the photon propagator is � igµ⌫

q2+i"
in the Feynman gauge. But in

NRQED calculations we use Coulomb gauge. So in this section, we will derive the photon
propagator in the Coulomb gauge. We start from the definition of the four current operator
of the Maxwell field

J
⌫(x) = @

2
A

⌫(x)� @
⌫ (@µA

µ(x)) . (6.5.1)

A
µ can be written in terms of Green’s function as

A
µ(x) =

Z
d
4
y(�i)Gµ⌫(x� y)J⌫(y). (6.5.2)

First we start with the scalar potential A0 (x, t). In the Coulomb gauge i.e. r.A = 0, we
have

J
0 = @

2
A

0 � @
0 (@µA

µ)

=
�
@
2
0 �r2

�
A

0 � @
0
�
@0A

0
�

= �r2
A

0
, (6.5.3)

where we have used @µAµ = @0A
0+r.A = @0A

0. The solution is just the Coulomb potential
for the electric charge density J

0 (y, t)

A
0 (x, t) =

Z
d
3
y

J
0 (y, t)

4⇡ |x� y| , (6.5.4)

and in terms of Green’s function it is

G
00 =

i� (x� y)

4⇡ |x� y| , (6.5.5)

which in momentum space becomes
G

00 =
i

k2 , (6.5.6)

which is the Coulomb photon propagator. Now we compute the propagator for the vector
potential A. The current is

J = @
2A+r (@µA

µ) , (6.5.7)

and in the Coulomb gauge
@µA

µ = @
0
A0 =

1

r2
(r.J) , (6.5.8)
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where we have used Eq. (6.5.3) and electric current conservation @0A
0 = �r.J . So Eq.

(6.5.7) then becomes
�
@
2
0 �r2

�
A = J �r 1

r2
(r.J) , (6.5.9)

or in the momentum space

�
�
k
2
0 � k2

�
A

i(k) = J
i � k

i
k
j

k2 ⇥ J
j
. (6.5.10)

In terms of Green’s function we get

G
ij(k) =

i

k
2
0 � k2

✓
�
ij � k

i
k
j

k2

◆
, (6.5.11)

which is the transverse photon propagator. We can regulate infrared divergences by intro-
ducing a small photon mass � and then components of the photon propagator become

G
00 = i

k2+�2 G
ij(k) = i

k
2
0�k2+�2

⇣
�
ij � k

i
k
j

k2

⌘
. (6.5.12)

6.6 Conclusion

In this chapter, we have derived Feynman rules for non-relativistic quantum electrodynamics
(NRQED) following [6]. We have derived the NRQED Feynman rules by expanding the
QED Feynman rules in the power of p

m
. This way of deriving the NRQED Feynman rules

is far simpler than the proper way which is rederiving the QED Feynman rules in the non-
relativistic limit. The main drawback of this approach is that the end result obtained from
these Feynman rules may differ by a factor of ±i or an overall phase [6]. If we had gone
back to the derivation of the QED Feynman rules and rederived them in the non-relativistic
limit, we would have fixed the overall sign of the imaginary factor as the usual rules come
from the normal ordering which provides a minus sign for fermion loops [6]. But as most of
the calculation in particle physics depends on taking the square of the matrix element of the
scattering amplitude, the overall sign does not matter. In the next chapter, we will use these
NRQED Feynman rules to calculate the next-to-leading order correction of the D-term.
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Chapter 7

The D-term for hydrogen atom

7.1 Introduction

All particles generate gravity and gravity couples to matter through the energy-momentum
tensor (EMT). In electromagnetism, matter interacts with the force field through a vector
current, indicating that a photon carries spin 1. Analogously for gravity, the field is coupled
to a source tensor, indicating a spin-2 graviton, the as yet undiscovered mediating particle
of gravity [25]. In examining electromagnetic properties of a quantum mechanical system
we take the matrix element of the total current operator which acts as a source for the
electromagnetic field. Analogously mechanical structure of a particle is given in terms of the
matrix element of the EMT between single particle states which describes the response of the
system to a probing gravitational field [26]. Thus working with energy-momentum or stress-
energy tensor is analogous to considering a scattering process by exchanging a graviton. The
graviton-matter scattering process has been considered in the literature [27, 28, 29, 30].

Here in this thesis, we will work with the matrix element of the energy-momentum tensor.
The matrix element of the EMT depends on fundamental properties of the particle namely
mass and spin. When the matrix element is written in terms of EMT form factors, one more
fundamental property of the particle emerges alongside mass and spin, the so-called D-term
[10]. The D-term is often used in the context of quantum chromodynamics (QCD) and is
referred to as the last unknown global property of the nucleon [10]. In the context of QCD,
the D-term is related to the spatial components of the EMT and gives information about the
pressure distribution inside the nucleon, structure, charge radius, and how the strong forces
inside the nucleon balance to form a bound state [11]. In this thesis, we will not perform
any QCD calculations. Instead of looking at the bound state of quarks and gluons inside the
nucleon, we will consider an analogous bound system like hydrogen atom and perform QED
calculations and obtain the D-term for hydrogen atom.
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In this chapter, in section 7.2, we will start by discussing how the mass and spin of the
particle can be obtained from the EMT without using form factors. Then we will discuss the
symmetric stress-energy tensors. The vanishing matrix element of the diagonal terms of the
symmetric stress-energy tensor is referred to as the self-stress [26]. As the self-stress vanishes
for a symmetric and Lorentz invariant stress-energy tensor, we will clarify our reasoning for
working with canonical EMT in a non-relativistic theory. Later in that section, we will write
the EMT in terms of form factors and define the D-term and discuss the interpretation of
the D-term. Then we will discuss a experimental procedure through which this so-called
D-term can be measured indirectly. In the next two sections, we will calculate the leading
and next-to-leading order correction to the D-term of hydrogen atom[7, 1]. The main goal is
to verify the claim of [1] that the next-to-leading order correction to the D-term for hydrogen
atom follows the same physics as the Lamb shift. We will see that although it has logarithmic
divergence like the Lamb shift, it is actually quite different from the Lamb shift. We will
work with natural units i.e. ~ = c = "0 = 1 in this chapter.

7.2 EMT form factors and the interpretation of the D-

term

From the matrix elements of the EMT, we get information about the most fundamental
properties of a particle, its mass and spin. In this section, first we will discuss how mass
and spin of a particle can be read off from the EMT. If the system’s Lagrangian density L
is known, we can find out the density of canonical EMT of the system from the well-known
relation [31],

T
µ⌫ =

@L
@(@µ�)

@
⌫
�� g

µ⌫L, (7.2.1)

where � is the field variable and g
µ⌫ is the metric tensor. Our reasoning of considering

canonical EMT will be discussed in the next section. The total EMT of the system is
conserved

@µT
µ⌫ = 0. (7.2.2)

In 4 ⇥ 4 matrix form, the T
00 component is the energy density and T

i0 components are
the energy flux. The T

0i, T ii and T
ij (where i 6= j) components correspond to momentum

density, pressure and shear stress respectively. From the T
00 and T

0i components of the
EMT, we get information regarding the mass and spin of the particle as they corresponds to
the Hamiltonian and the angular momentum operator respectively. The Hamiltonian H is

57



defined as
H =

Z
d
3
xT

00(x), (7.2.3)

which corresponds to the energy E =
p

p2 +m2 and for p = 0, we get the mass of the
particle. The matrix element of the angular momentum operator defined as [31]

J
i =

Z
d
3
x"

ijk
x
j
T

0k(x), (7.2.4)

corresponds to the particle spin. More specifically the T
00(x) and T

0k(x) components of the
EMT correspond to two Casimir operators of the Poincaré group. One is m

2 = p
µ
pµ with

the eigenvalue m
2 where m is the mass of the particle and p

µ is the four momentum. The
other operator is W

2 = W
µ
Wµ where W

µ = 1
2"

µ⌫�⌧
M⌫�p⌧ is the Pauli-Lubanski vector with

M⌫� =
R
d
3
xJ0⌫�(x) and Jµ⌫�(x) = T

µ⌫(x)x� � Tµ�(x)x⌫ . It has eigenvalues (�m
2) s(s + 1)

where s = 0, 12 , 1,
3
2 , ... is the spin of the particle [31, 32]. We do not get any information

regarding the spatial components T
ij(x) of the EMT as they are not related to the Casimir

operators of the Poincaré group. These spatial components correspond to the D-term. So,
to get additional information of the system we will write the matrix element of the EMT in
terms of form factors (EMT form factors).

7.2.1 Remarks about symmetric stress-energy tensor

Calculations in quantum field theory involve divergences due to self-energy interactions, vac-
uum polarization, and scattering of light by light [33]. To maintain Lorentz invariance and
conservation of the energy and momentum, the matrix elements of the diagonal components
of the stress-energy tensor (self-stress) vanishes [26]. In this section, we will briefly discuss
some approaches in removing divergences from stress tensors arising from interaction involv-
ing self-energies in the context of relativistic theory. We will discuss how we can make the
self-stress vanish and mention the reason for choosing canonical energy-momentum tensor
for our calculation of the D-term.

In [34], it is mentioned that upon applying a boost in a certain direction the self-stress due
to interaction with the electromagnetic energy would remain the same, and in case of a free
particle with zero momentum (rest frame), it would become zero. But that paper got a finite
result for the self-stress whereas Lorentz covariance demands that it must vanish [35]. This
inconsistency was subsequently solved by other groups [33, 36, 35]. In [33], the vanishing
of the self-stress was explicitly shown by going outside the framework of pure QED and
introducing an auxiliary neutral vector meson field coupled to an electron by an imaginary
coupling constant. That calculation splits the total stress-energy tensor into electron part
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and radiation part involving vector mesons. It was shown that in the rest frame, matrix
elements of all the components become zero.

Ref. [35] followed the same procedure as the renormalization scheme by Schwinger [15].
The idea is to identify the divergent integrals and interpret them as physical properties. For
example, if some integrands differ only by translation, suppose one term contains p0 � k and
other contains p

00 � k, then the second term then can be made equal to the first term by
the translation of the variable of integration (k ! k + p

0 � p
00). This type of integration can

then be eliminated and the reminder is either finite or interpreted as renormalization of some
physical quantity. For maintaining energy conservation, in this way it is possible to make the
self-stress vanish.

The stress tensor of any physical system must be symmetrical but the canonical tensor
need not satisfy this requirement. It is easier to work with a canonical tensor for its simpler
form. It is always possible to get the symmetric tensor with a straightforward calculations
[35] using the Belifante procedure [37, 38] where we add a total derivative of a super-potential
or couple the theory to a weak classical background gravitational field described by a sym-
metric metric tensor gµ⌫ [31]. The disappearance of the self-stress only applies for symmetric
and Lorentz invariant stress-energy tensor and not for canonical tensors. In [39], the author
claims that dealing with a symmetric energy momentum tensor is not natural in particle
physics. From the canonical procedure based on Noether’s theorem, one gets the canonical
energy-momentum tensor which is neither symmetric nor gauge invariant [39]. So one might
get inclined towards abandoning the canonical EMT and make it symmetric by the Belifante
procedure. But in this procedure, there is no clear distinction between the spin and orbital
angular momentum and also between the energy flow T

i0 and momentum density T
0i [39].

But spin and orbital angular momentum are clearly distinguishable as spin is a Lorentz in-
variant quantity contrary to the orbital angular momentum [39]. The symmetry requirement
comes from the classical theory of general relativity where gravity couples to the symmetric
EMT. The absence of space-time torsion is the underlying background of the requirement
of a symmetric EMT. But more general theories relax this assumption and do not require a
symmetric EMT [39]. This argument justifies working with the canonical EMT.

7.2.2 EMT form factors

In this section, we will discuss the EMT form factors for a spin-0 and spin-1/2 particles
by taking matrix elements of the EMT between the states |P i and |P 0i and expressing the
result in terms of the EMT form factors. For the spin-0 and spin-1/2 system we can write
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the matrix element as [10, 11]

spin-0: hP 0|T µ⌫ |P i = P
µ
P

⌫

2 A (q2) + q
µ
q
⌫�g

µ⌫
q
2

2 D (q2)

spin-1/2: hP 0|T µ⌫ |P i = u (P 0
S
0)
h
A (q2) P

µ
P

⌫

M
+ J (q2) i(Pµ

�
⌫⇢+P

⌫
�
µ⇢)q↵

2M

+
(qµq⌫�g

µ⌫
q
2)

4M D (q2)

�
u (PS)

(7.2.5)

where the normalization is hP |P 0i = 2E(2⇡)3�3(P 0 � P ), qµ = P
0µ � P

µ is the transferred
momentum and S

0 and S are the indices for spins. Particles with higher spin will have some
additional form factors. All the fundamental properties of the particle can be obtained in
the limit q2 ! 0. These properties in this limit are called global properties [31]. In the limit
q
2 ! 0 [31]

lim
q2!0

A
�
q
2
�
= A (0) = 1, (7.2.6)

lim
q2!0

J
�
q
2
�
= J (0) =

1

2
, (7.2.7)

lim
q2!0

D
�
q
2
�
= D (0) ⌘ D. (7.2.8)

The form factor A(0) indicates the T
00 component of the EMT whose eigenvalue at the rest

frame of the particle gives the mass of the particle. The form factor J (0) describes the spin
of the particle. For the form factor D(0) there is no such constraint and must be determined
from experiment [10, 11]. The form factor D(0) is referred to as the D-term. Like mass or
spin, the D-term is also a fundamental property of the particle which is referred to as the
last unknown global property of the nucleon [10, 11].

7.2.3 Interpretation of the D-term

In this section, we will describe how the D-term gives useful informations of the nucleon.
The D-term is related to the spatial components of the energy-momentum tensor and the
spatial components of the EMT or the D-term mainly refers to the pressure or shear force
distribution of a system. The D-term for spin-1/2 system can be written as [31, 12]

D (0) = �2

5
m

Z
d
3rTij (r)

✓
r
i
r
j � r2

3
�
ij

◆
⌘ D (7.2.9)
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The spatial part of the EMT or the stress tensor can be decomposed into a traceless part
(shear force s(r)) and a trace part (pressure p(r)) [31, 12]

Tij(r) =

✓
rirj

r2
� 1

3
�ij

◆
s(r) + �ijp(r), (7.2.10)

The conservation of the static EMT ri
Tij = 0 implies the following differential equation

relating s(r) and p(r) [31, 12]

2

3

@s(r)

@r
+

2

r
s(r) +

@p(r)

@r
= 0 (7.2.11)

The explicit relation between shear force and pressure with the D-term is given by [31, 12]

D = � 4

15
m

Z
d
3
rr

2
s(r) = m

Z
d
3
rr

2
p(r). (7.2.12)

The pressure satisfies the von Laue condition [40, 41]
Z 1

0

drr
2
p(r) = 0, (7.2.13)

which gives information on how the internal forces balance out inside a composite particle
[12]. The T

ii component of the EMT can be written as

T
ii(r) =

2

3
s(r) + p(r). (7.2.14)

s(r) is related to the distribution of the shear force and p(r) describes the radial distribution
of the pressure inside the nucleon. Mechanical stability of the system requires the following
inequalities [31]

T00(r) � 0 and Tii(r) � 0, (7.2.15)

The information regarding the pressure and shear force can reveal several useful information
about the nucleon such as mechanical mean square radius and force components inside the
nucleon. The force components are related to the EMT by The normal component of the
force on an infinitesimal area dA

i at distance r can be written as

dF
i(r) = T

ij(r)dAj
, (7.2.16)
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The normal and tangential components of the pressure is then [12]

dFr

dAr

=
2

3
s(r) + p(r) (7.2.17)

dF✓

dA✓

=
dF�

dA�

= �1

3
s(r) + p(r) (7.2.18)

The infinitesimal area element is dA = dArer + dA✓e✓ + dA�e�. To have a mechanically
stable system the corresponding force must point outwards so 2

3s(r)+p(r) > 0 which implies
that for a stable system the D-term should be negative [12]. The mechanical radius of the
nucleon is defined as [12]

hr2imech =

R
d
3
rr

2
�
2
3s(r) + p(r)

�
R
d3r

�
2
3s(r) + p(r)

� =
6D

R 0

�1 dtD(t)
, (7.2.19)

and from this it is possible to measure the size of a nucleon. The remarks of the authors
in the paper [7] differs from the statement of [12] regarding the relation between the sign of
the D-term and mechanical stability. Their analogy is that if we thought of the momentum
current T ij as the radiation pressure, the surface experiences some force or pressure when the
directional momentum current gets absorbed on the surface which can be measured from the
momentum flux. Then negative pressure only implies that the direction of the momentum
flow is negative with respect to a reference direction. As it depends on a reference frame,
the direction of the force and thus the sign of the D-term does not give conclusive statement
of the mechanical stability [7]. In [7], the D-term is defined in terms of momentum-current
monopole or tensor monopole

T
(0) =

1

5

Z
d
3rTij (r)

✓
r
i
r
j � r2

3
�
ij

◆
, (7.2.20)

and after comparing with Eq. (7.2.9), we get ⌧ = �T (0)
2 = D(0)

4m .

7.2.3.1 D-term of a nuclei in the context of the liquid drop model

Here we will calculate the D-term of a nucleus. We will use the simplest model of the nucleus
(liquid drop model) to gain physical intuition of the D-term. The pressure and shear force
distributions in the liquid drop is given by [42]

p(r) = p0✓ (r �R)� p0R

3
� (r �R) , (7.2.21)

s(r) = �� (r �R) , (7.2.22)
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where R is the radius of the drop, p0 is the pressure inside the drop and � is the surface tension
coefficient related to p0 and R by the Kelvin relation, p0 = 2�

R
[42]. It satisfies the von Laue

stability condition. The distribution of the normal pressure follows from Eq. (7.2.17) as [42]

dFr

dAr

=
2

3
s(r) + p(r) = p0✓ (r �R) . (7.2.23)

Finally inserting Eq. (7.2.22) into Eq. (7.2.12), we get the D-term

D = �16⇡

15
m�R

4
. (7.2.24)

If we consider � depends slowly on the atomic number A, mass of the nucleus mA / A, and
radii RA / A

1/3, then for a large nucleus Dnucleus / A
7/3.

7.2.4 Experimental procedure of measuring the D-term

In this section, we will discuss the reason for referring the D-term as the last unknown
global property and experimental procedure for measuring the D-term. The basic mechan-
ical properties of the nucleon are encoded in the gravitational form factors (GFFs) of the
energy-momentum tensor. If we want to measure the EMT form factors directly from experi-
ments, we have to probe it by gravity or consider a scattering process involving graviton [11].
Graviton-nucleon scattering is the direct way to measure these gravitational form factors
[14]. But gravity is a much weaker force and with current technology and known physics,
measuring the EMT form factors directly through the interaction of gravity is not possible
and with the lack of any physical process from which the D-term can be measured indirectly,
it received very little attention before the 1990s. Other global properties of the nucleon like
mass, spin, charge, have been measured through other processes rather than the direct mea-
surement from the coupling with gravity and are available in the Particle Data Book [43].
For this lack of knowledge regarding the D-term, it is referred to as the last unknown global
property of the nucleon.

During 1990s, practical indirect processes to measure the EMT form factors especially the
D-term were found [13, 12, 31]. Currently several experiments in CERN and in the Jefferson
National Laboratory are looking to measure the D-term through Generalized Parton Dis-
tribution functions (GPDs) from indirect processes like Deeply Virtual Compton Scattering
and hard exclusive meson production [12, 13, 14, 31]. Here we will briefly discuss the experi-
ment done in the Jefferson National Laboratory which considers the deeply virtual Compton
scattering (DVCS) [14].

In this process, high energy electrons are scattered from the proton in liquid hydrogen and
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the scattered electron, proton, and photon are detected. The high energy virtual photon ex-
changed between the scattered electron and proton serves as a probe to the nucleon structure
[14] and this process is called deeply virtual Compton scattering. The emitted real photon
controls the momentum transfer to the the proton [14]. This process can be described in
terms of Compton form factors (CFFs) and generalized parton distributions (GPDs) [14, 31].
The following figure depicts the Deeply Virtual Compton Scattering taken from[31]

Figure 7.2.1: The leading order handbag diagram for the Deeply Virtual Compton Scattering
(�⇤N(p) ! �N(p0)). Here x and ⇠ are the average and transferred momentum fractions. In
this process, a highly virtual photon is created with momentum q and then it interacts with
a nucleon with momentum P and results in a real photon and a nucleon with momentum P

0.
This process is described in terms of the GPDs and by measuring the GPDs it is possible to
get information regarding the D-term.

The CFF are directly related to the experimental DVCS data which includes differential
cross section [14]. The DVCS data are published in [44]. To get information about the D-
term and pressure within the nucleus, it is necessary to fit theoretical D-term parameters to
the experimental data through the relation between the GPDs, GFFs and CFF. The relation
between the GPDs and GFFs are [13, 44]

Z
x [H (x, ⇠, t) + E (x, ⇠, t)] dx = 2J(t), (7.2.25)

Z
xH (x, ⇠, t) dx = A(t) +

4

5
⇠
2
d1(t), (7.2.26)

where t is the four momentum transfer to the proton, x and ⇠ are the average and transferred
momentum fractions. H and E are the GPDs corresponding to the nucleon helicity conserving
and spin flip processes respectively. A(t), J(t) are the GFFs related the mass and spin and
d1(t) is the first Gegenbauer expansion of the D-term [14]. At t = 0 constraints applied to
A(t) and J(t) gives mass and spin. The dispersion relation between the CFFs and the D-term
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to the lowest order is [14]

ReH (⇠, t) = D(t) + P
Z 1

�1

dx

✓
1

⇠ � x
� 1

⇠ + x

◆
ImH (x, t) , (7.2.27)

where P is the principle part of the integral and the subtraction constant is the D-term and
as the average quark momentum is not observable it is integrated over. From these relations
and the observed experimental DVCS data, it is now possible to relate the D-term to the
experiment. The first Gegenbauer expansion of the D-term to fit the experimental result is
[14]

d1(t) = d1(0)

✓
1� t

M2

◆�↵

, (7.2.28)

where the parameters M , ↵ are to be adjusted to the data. Fits to the unpolarized cross-
sections of DVCS and d1(t) are given in the following figures taken from [14]

Figure 7.2.2: The figure on the left corresponds to the fits to the unpolarized DVCS cross-
sections as a function of � at fixed values of xB and Q

2. xB is the momentum fraction of
the quark and Q

2 is the virtuality of the exchanged photon. The black square represents the
experimental DVCS cross-section, local fits with the parameter d1(t) at fixed �t are shown
by the light-grey curve. The upper dark-grey curves give global fits to �t dependence of
d1(t). The real part of the DVCS are calculated from the dispersion relation given in Eq.
(7.2.27) and d1(t) is evaluated from the subtraction term D(t). The right figure corresponds
to the fit to d1(t). The error bars are obtained from the fit to the DVCS cross-section (left
figure) at fixed �t. The light shaded area represents estimated uncertainty corresponding
to fits to the regions without data and the dark shaded area corresponds to the projected
uncertainties from a future experiment at 12 GeV. The current experiment was done at 6
GeV and uncertainties represent one standard deviation.
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The fit results give d1(0) = �2.04 with statistical uncertainty of 0.14 and systematic
uncertainty of 0.33 [14]. As the D-term or the spatial components of the energy-momentum
tensor give information about the shear force or pressure distribution, from the relation be-
tween GPDs, d1(t) and CFF, it is possible to get information about the pressure distribution
in the proton. The fitted results to the experimental data regarding the pressure distribution
in the proton is given in the following figure which was taken from [14]

Figure 7.2.3: Radial pressure distribution in the proton. The figure shows the pressure
distribution r

2
p(r) vs the radial distance rfrom the center of the proton. The pressure

distribution results from the interaction of the quarks in the proton. The pressure obtained
from the D-term parameters fitted to the experimental data [14, 44] measured at 6 GeV is
shown by the black line. The light-green shaded area and the blue are corresponds to the
estimated uncertainties and all the data available before the 6 GeV experiment. The red area
shaded area is a projection of future experiments at 12 GeV which will be performed using
upgraded apparatus. Uncertainties are one standard deviation.

7.3 Relevant terms in the EMT in the context of QED

In the previous sections, we have provided a brief background on the D-term in the context
of QCD. In this section, instead of considering the bound state of quarks and gluon inside a
nucleon, we will consider the D-term in the context of QED for a bound state like hydrogen.
First we will obtain the relevant components of the EMT for the hydrogen atom. We start
with the non-relativistic Lagrangian density for an electron with background field from proton
and electron [1]

L = �
†
✓
iD0 +

DiDi

2me

◆
�� 1

4
Fµ⌫F

µ⌫
, (7.3.1)
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where we have neglected the spin contributions as the D-term gives the same physics for both
spin-0 and spin-1/2 system. D0 = @0 � ieVe � ieVp with Ve and Vp being the potential for
electron and proton respectively and D

i = @
i � ieA

i. F µ⌫ is the electromagnetic field tensor
with the definition F

µ⌫ = @
µ
A

⌫ � @
⌫
A

µ. The relation between the EMT and Lagrangian
density is given in Eq. (7.2.1). We will focus on the spatial components of the EMT as only
they are relevant to the D-term. Now considering the proton to be infinitely heavy compared
to the electron, the kinetic part of the EMT can be written as [1]
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, (7.3.2)

where me is the mass of the electron. The lowest order of kinetic contribution is
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where T
ij

e0 is the contribution to the kinetic part of the EMT which contains the @i parts of
D

i. We now obtain the potential part of the EMT from the �1
4Fµ⌫F

µ⌫ term in Eq. (7.3.1)
[34]
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In more familiar terms F j0 = E
j, F ij = �✏ijkBk and 1

2F
⇢�
F⇢� = B2 �E2 and so Eq. (7.3.4)

can be rewritten as
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j � E
i
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j
, (7.3.5)

with µ0 = "0 = 1. There are several fields at play and we can take different combinations of
them to get various terms for the potential part of the EMT. We can decompose T

ij

�
as

T
ij

�
= T

ij

�|| + T
ij

�||? + T
ij

�?, (7.3.6)

where the subscript � indicates the photon field. T
ij

�||, T
ij

�? and T
ij

�||? corresponds to pure
Coulomb field, transverse radiative fields and mixture of Coulomb and transverse radiative
fields respectively and they are [1]
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T
ij

�? = T
ij

�E
+ T

ij

�B
. (7.3.9)
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and
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where we have considered the gauge r.A = 0 and in this gauge the electric field is sepa-
rated into longitudinal (Coulomb) and transverse (radiative) parts denoted as E|| and E?

respectively

E = E|| +E?, (7.3.12)

where E|| = �rVe and E? = �@0A. These EMT’s represent interaction between electron
and photon field. Now, we are left with the mixed contribution between the photon field
and proton’s electric field, and the EMT of the proton. The mixed contribution between the
proton and photon field can be decomposed in two parts, one involving the longitudinal and
other for transverse field [1]
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T
ij

||p corresponds to mixing between electron’s Coulomb field and proton’s electric field and
T

ij

?P
corresponds the mixing between the radiative field and proton’s electric field. Finally

the EMT of the proton is derived from the classical electric field of the proton
⇣
E

i = er
i

4⇡r3

⌘

which in momentum space is [1]
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(q) =
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q
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ij
q
2
� ↵⇡

16|q| , (7.3.16)

7.4 Leading order calculation of the D-term for hydrogen

atom

From the EMTs obtained in the previous section, we are now in position to calculate the
D-term for the hydrogen atom. In this section, we will calculate the leading order D-term in
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the infrared region r ⇠ 1
↵

or |q|  O (↵me). We will determine the D-term for hydrogen in
terms of tensor monopole moment mentioned in the subsection 7.2.3

⌧ = �T (0)

2
=

D(0)

4m
. (7.4.1)

In SI units the tensor monopole moment of a free spin-0 boson reads [7]

⌧boson = � ~2
4m

. (7.4.2)

which motivated the authors in [7] to work in the unit ⌧0 = ~2
4m . We will also work with the

same unit as [7]. Now with all the definitions lined up, we start our calculation of the D-term
for hydrogen. We start with the Schrödinger equation

✓
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2me
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◆
�(r) = E�(r), (7.4.3)

where e is the charge of the proton and �(r) =
q

↵3

⇡
e�↵r is the normalized ground state

Hydrogen wave function. The potential for the static charge of proton is the Coulomb
potential Vp = e

4⇡r which satisfies the Laplace equation r2
Vp = �e�

3(r). Ve is the static
potential for the electron [7]

Ve(r) =
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, (7.4.4)

which satisfies the Poisson equation r2
Ve(r) = e|�(r)|2. The leading order EMT for the

hydrogen comprise of the kinetic contribution from the electron T
ii

e0 and mixing between
electron’s Coulomb field and proton’s electric field T

ii

||p. The total EMT is then T
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e0+||P =

T
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ii

e0 and T
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||p is described by Eq. (7.3.3) and Eq. (7.3.14) respectively. The
total EMT is
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From Eq. (7.2.1), we see that the form factor corresponding to the D-term, D (q2) is related
to the EMT by

T
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. (7.4.6)

or in position space
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So taking i = j for this process the relation between D (q2) and EMT becomes

T
ii

e0+||P = 2r2De0+||p(r)

4me

, (7.4.8)

The solution in the position space is [7]
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and in momentum space by taking Fourier transformation, we get
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The second term in both of these equations is called the Coulomb tail which prevents a finite
D-term in the limit q ! 0. But the self-energy contribution of both electron and proton
will cancel this Coulomb tail and we will obtain a finite D-term at q ! 0. The self energy
contribution of the electron comes from the interaction of the electron with its longitudinal
field described in Eq. (7.3.7).We will now calculate the self-energy contribution of the electron
in the infrared region r ⇠ 1

↵
and in this region by expanding the exponent in Ve described in

Eq. (7.4.4) to first order of ↵, we get the electron potential Ve = � e

4⇡r . From Eq. (7.3.7),
the self-energy contribution of the electron is then
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Now for a bound state of hydrogen atom, the self-energy contribution of the free electron will
get dressed by the bound state wave function described as [1]
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So the self-energy contribution of the electron to D (q2) is then

D�|| (q2)

4me
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+ 4↵2
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where the first term is the Fourier transform of ↵

32⇡r2 corresponding to the free electron
contribution and the second factor is the dressing in bound state wave function. Now from
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Eq. (7.3.16), we obtain D (q2) for proton
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4M
=

↵⇡

16|q| , (7.4.14)

where M is the mass of the proton. Now gathering all the D (q2) (Eqs. (7.4.10), 7.4.13, and
7.4.14 ), we get the total D(0)

H
(q2) for the hydrogen in the region |q|  O (↵me) as
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The superscript 0 refers to the leading order calculation. In the limit q2 ! 0, we can see that
the self-energy of the electron and proton cancels the Coulomb tail. Finally by expanding the
tan�1 term to the first order and expressing the D-term in terms of tensor monopole moment
using the relation ⌧ = D(0)

4m from subsection 7.2.3, we get

⌧
(0)
H

=
D

(0)
H
(0)

4me

= ⌧0 [1 +O (↵ln↵)] . (7.4.17)

where ⌧0 = ~2
4me

and the small logarithmic correction comes from the next-to-leading order
terms which we will calculate in the next section.

7.5 Logarithmic correction to the D-term for hydrogen

atom

The main goal of this section is to calculate the logarithmic divergent term for the next-to-
leading order correction to the D-term of hydrogen and confirm our claim that although it
has logarithmic divergence, the physics is not the same as the Lamb shift of energy levels
and thus refute the claim of [1]. We will give an overview of the calculation scheme of [1]
and not go into detail calculation for the terms that are not logarithmic divergent. Our
purpose is to understand the origin of the logarithmic divergent terms to check whether
the physics behind these terms is the same as the Lamb shift or not. For our calculation,
we will incorporate the concept of dimensional regularization (DR) to calculate the loop
integrals. Among various approaches to regularize divergent loop integrals such as cut-off,
Wilson regularization, Pauli–Villars regularization, etc., dimensional regularization is the
most appropriate one for our purposes as it preserves all the symmetries of the theory [45].
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In DR one works with a non-integer dimension instead of the usual 4-dimensional space-
time to regularize a divergent integral [45, 46]. As we are working in the non-relativistic
domain, we will use the standard dimensional regularization with D = 3 � 2✏ as [1]. The
remaining EMTs in section 7.3 are the contribution of the pure transverse radiative fields
(Eq. (7.3.9) and Eqs. (7.3.10), and 7.3.11) and mixed contribution of the Coulomb and
transverse radiative fields (Eq. (7.3.14)).

7.5.1 Photonic contribution and matching to QED

We start our calculation with the photonic contribution of the EMT which can be later
generalized for the bound system calculation. When using dimensional regularization using
D = 3 � 2✏, the final result will contain a term involving 1

✏
indicating UV divergence. The

photonic contribution of the EMT in NRQED will give the required coefficient when matching
with the full QED result obtained from several literatures [27, 28, 1]. When it is subtracted
from the bound state NRQED calculation, we will get a divergent free result in the UV sector.
The photonic contribution comes from the following diagrams [1]

Figure 7.5.1: The photonic contribution of T
ij

�
(Eq. (7.3.6)). The dashed lines represent

Coulomb interaction and and radiative interactions are given by the wavy lines. Diagram
(a) represents pure Coulomb interaction, diagrams (b) and (c) are the mixed contribution
of Coulomb and transverse photon and diagram (d) is the tadpole diagram originated from
pure transverse radiative fields (Eq. 7.3.9).

Before proceeding with calculating these Feynman diagrams, it should be mentioned first
that in dimensional regularization, integrals of the type

R
d
D
k

(k2)n is considered to be zero. This
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type of integrals are refereed as scaleless integral and this conjecture is known as ’t Hooft-
Veltman conjecture [47]. Now setting the scaleless integral to be zero, the Feynman rules for
the diagram 7.5.1(a) reads
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�||ia = �e
2
Q

2

Z
d
D
k
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1

(k +Q)2 (k �Q)2
, (7.5.1)

where we have used the Coulomb propagator derived in Eq. (6.5.12). Now using standard
Feynman parameters, we get
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So this diagram does not have any logarithmic divergence. Diagrams 7.5.1(b and c) will give
logarithmic contributions. The Feynman rules for these diagrams give [1]

hT ij

�||?ib,c = e
2
µ
2✏

Z
d
D
k

(2⇡)D
(k �Q)i P jk (k +Q)Qk + (i $ j)

me |k �Q|2 |k �Q|

� e
2
�
ij
µ
2✏

Z
d
D
k

(2⇡)D
(k �Q)l P lk (k +Q)Qk

me |k �Q|2 |k �Q|
, (7.5.3)

where µ is the fictitious mass of the photon and we have used the transverse photon propa-
gator given in Eq. (6.5.12) where

P
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i
k
j

k2
, (7.5.4)

We have used the Feynman rules for the standard triple vertex from Eq. (6.2.13) and the re-
lation P

jk (k +Q) (Q� k)k = 2pjk (k +Q)Qk [1]. One can decompose the above expression
into two scalar integrals and using the property of the scaleless integral we get [1]
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The result of these loop integrals are
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where �E is the Euler–Mascheroni constant and  (z) is the digamma function which can be
evaluated using the relation [1]
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These terms contain logarithmic IR divergence i.e. lnQ2. Detail calculation for evaluating
these loop integrals is presented in Appendix E. It is to be noted that Eq. (7.5.5) represents
conserved or trace part and Eq. (7.5.6) represent non-conserved part. Because for a diagram
that depends on Q and two indices i and j, the conserved part represent the structure
Q

i
Q

j��ijQ2 as when contracted with Q
i it gives zero. But this structure has a non-zero trace.

The coefficient of the other possible linear combination can be obtained by contracting with
Q

i and Q
j which represents the non-conserved part. The next job is calculate the tadpole

diagram in 7.5.1(d). The contribution of the non-conserved part of the tadpole diagram
cancels the non-conserved Eq. (7.5.6) [1]. The trace or conserved part of the tadpole diagram
is given by [1]

hT ii

�?id = � Q
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Now the total EMT is conserved. The EMT in terms of the form factor D (Q2) is defined as
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and so gathering the terms from Eq. (7.5.5) and Eq. (7.5.10), we get
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The form factor D (Q2) has been obtained in several papers [27, 28, 1]
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To match with the full QED, we write the total T ij

NRQED in terms of tree level and a correction
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which contains a coefficient d0
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ij

tree + d0

�
@
i
@
j � �

ij
@
2
�
 

†
 , (7.5.13)

where d0 contains only logarithm in µ and me and given by [1]
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we will later see that when d0 is subtracted from the bound state results, we will get rid of ✏
and get a finite result.

7.5.2 Bound state calculation for O (↵) correction to the D-term

In this section, we will calculate the bound state O (↵) correction to the D-term for hydrogen
and identify the origin of the logarithmic divergent term. The Feynman diagrams for the
bound state contribution to O (↵) correction in non-relativistic reduction is given by [1]

Figure 7.5.2: Bound state contribution to T
ij

�
+ T

ij

�P
(Eqs. (7.3.6) and (7.3.13) to calculate

order O (↵) correction to the D-term. The dashed line represents Coulomb photon and
the wavy line represents transverse photon. The double shaded line represents the nucleus
line and the thin line represents electron line. Diagram (a) and (b) represents the mixed
contribution of radiative and transverse photon from electron and proton line respectively in
a bound state. Diagram (c) represents purely radiative contribution and diagram (d) is the
tadpole diagram. The shaded circle represents the bound state wave functions.

In the bound state, the obtained IR divergence i.e. lnQ2 discussed in the previous section
7.5.1 will be regulated by binding energy difference in the bound state[1]. Diagrams 7.5.2(a)
and 7.5.2(b) are the interference diagrams containing mixed contribution of the Coulomb
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and radiative fields and as shown in the previous section 7.5.1, they will contain logarithmic
divergent terms but the IR divergences lnQ2 will be now get regulated by the binding energy
difference. In Diagram 7.5.2(b), the Coulomb photon is emitted from the proton line and
vanishes [1]. As earlier, diagram 7.5.2(a) will have both conserved and non-conserved parts.
The tadpole diagram 7.5.2(d) which represents pure transverse radiative fields is independent
of the bound state and the same as the free state and as the non-conserved part of this
diagram has lnQ2 dependence, it will not be able to cancel the non-conserved part of the
mixed diagram 7.5.2(a) as lnQ2 in the mixed diagram will now be replaced by the binding
energy contribution [1]. But the diagram 7.5.2(c) also represents pure transverse photons and
it will also have conserved and non-conserved part. The non-conserved part of the 7.5.2(c)
will cancel both the non-conserved part of tadpole and mixed diagram [1]. So, now we have
the conserved part of diagrams 7.5.2(a), (c), and (d) which indicates that the total EMT is
conserved. Analogously to the earlier discussion, only conserved part of the diagram 7.5.2(a)
has the logarithmic contribution and 7.5.2(c) and (d) will only contribute to the constants.
The Feynman rules for the conserved or trace part of the diagram 7.5.2(a) reads [1]
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. (7.5.15)

The integral is analogous to the integral in Eq. (7.5.5). The exceptions are the insertion of
the term 1

D

P
M

i (v0M .xM0 � x0M .vM0) which indicates taking matrix element in the bound

state. It comes from the dipole expansion of the matrix elements defined in[1]
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and the dipole expansion gives [1]

v
i (k) = v

i

MN
+O (↵) , (7.5.18)

⇢MN (k) = �MN � ik.xMN +O (↵) . (7.5.19)

In Eq. (7.5.15), we have considered interaction between intermediate state M and the ground
state. The commutation relation in the term 1

D

P
M

i (v0M .xM0 � x0M .vM0) any dimension
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gives [1]
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The evaluation of the integral in Eq. (7.5.15) is identical to the evaluation of Eq. (7.5.5)
which was shown in details in Appendix E. The result reads [1]
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which has the same ✏ dependency as Eq. (7.5.7) and the IR divergence lnQ2 is now being
regulated by the binding energy difference. The conserve part of the diagrams 7.5.2(c) and
(d) reads [1]
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Now combining Eqs. (7.5.21), (7.5.22), and (7.5.23), we get the full EMT as
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Now from the relation between EMT and the form factor D (Q2)
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we get

D
(1)
H

(0)

4me

=
e
2

6⇡2

X

M

2
vM0.v0M

D (EM � E0)

"
�1

✏
+ ln

(EM � E0)
2

µ2
+ �E � ln ⇡ +

1

2

#
, (7.5.27)

where the superscript 1 stands for next-to-leading order correction to the D-term for hydro-
gen. Now to match with QED, one needs to subtract 4d0 [1] and finally we get the D-term
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of hydrogen in terms of tensor monopole moment as
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where there is no ✏ and µ dependency. We have also added the leading order D-term for
hydrogen from Eq. (7.4.17). We can see from Eq. (7.5.20) that the term involving summation
scales as 1

me
and the ground state energy of the hydrogen atom scales as �m↵

2

2 . Using these
facts we can rescale Eq. (7.5.28) as
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4me
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⇤
. (7.5.29)

7.6 Discussion

From our above discussion, we can clearly see that only the conserved part of the diagram
7.5.2(a) contributes to the logarithmic divergence in terms of energy levels like the logarithmic
divergence shown in Bethe’s calculation scheme of the Lamb shift discussed in section 5.2.
The authors in [1] interpreted this logarithmic divergence as the same as the Lamb shift.
Although it is logarithmically divergent, the physics is not the same as Lamb shift. From
Welton’s calculation shown in section 5.3, we get a clear physical picture of the Lamb shift.
In a bound system, the fluctuating vacuum creates fluctuating electric field which modifies
the motion of the electron causing position fluctuation. The position fluctuation modifies
the Coulomb potential energy between the electron and nucleus which give rise to the Lamb
shift. So, one main feature of the Lamb shift is the fluctuating electric field. The diagram
7.5.2(a) refers to mixed contribution of Coulomb and transverse photon and it refers to the
EMT in Eq. (7.3.14) and this term is referred as the interference term which signifies the
interference between the Coulomb and transverse photon [1]. In the O (↵ ln↵) term, ↵ comes
from the vertex factors and the ln↵ term regularizes the IR divergence. In this regard, the
physics is not the same as the Lamb shift.

Another feature of the Lamb shift is that it primarily affects the s states because of the
delta function when taking Laplacian of the Coulomb potential. For this delta function,
the Lamb shift arises in the vicinity of the nucleus and only the s states does not vanish
at the origin. But in obtained next-to-leading order result for the D-term does not have
such constraints. The only part where the wave functions can play a role is the matrix
elements v and ⇢ in Eqs. (7.5.16) and (7.5.17). But in the calculation, we have considered
the combination

P
M

2 vM0.v0M
D(EM�E0)

to scale as 1
me

and so this result is applicable to all possible

states. This also indicates that the next-to-leading order correction to the D-term is not
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Lamb shift of energy levels.

7.7 Conclusion

In this chapter, we have provided a brief background to the D-term. The D-term is a rel-
atively rarely discussed topic in theoretical physics but is on the same footing as the other
fundamental properties like the mass and spin of a particle. We have discussed how the D-
term provides us with information about the pressure and shear force distribution of a bound
system. From the knowledge of pressure distribution inside a proton, it is possible to get
information about the charge radius of the proton and how the interaction between quarks
and gluons creates a bound system like a proton. There is still dispute about the proper
interpretation of the D-term regarding the mechanical stability of a system. Proper interpre-
tation and knowledge of the D-term can provide us with information about the fundamental
gravitational properties of the proton and might be possible to get knowledge about how
deconfined quarks and gluons in the early universe transitioned into a state of confinement
to produce a stable proton [14]. In this chapter, we have considered the D-term in the con-
text of QED and calculated the leading and next-to-leading order D-term for the hydrogen
atom. Using our intuition about radiative corrections developed in earlier chapters, we have
refuted the statement of [1] that the next-to-leading order correction has the same physics as
the Lamb shift. In one sentence, the summary would be that the Lamb shift is logarithmic
divergent in energy levels but not all logarithmic divergence in energy levels is a Lamb shift.
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Chapter 8

Conclusion

In chapter 2 of this thesis, we have calculated the non-relativistic contribution to the electron
g � 2 using effective Hamiltonian approach. We have seen that most of the contribution to
the electron g � 2 comes from the non-relativistic domain and essentially due to the self-
interaction of the electron. In chapter 3, we have performed full relativistic calculation to
obtain the total anomalous magnetic moment of the electron using effective Hamiltonian
approach. We have seen that the relativistic calculation does not require a cut-off as the
non-relativistic calculation due to the covariance of the relativistic theory.

We justified our result obtained in chapter 2 by taking the non-relativistic limit. The
main point of this chapter was to understand the processes that causes the anomaly in the
g factor of the electron which is the self-interaction of the electron with its Coulomb and
radiative fields. In this effective Hamiltonian approach, one finds the modified Larmor and
cyclotron frequency and their ratio gives the electron g � 2. In this regard, this approach is
relevant to experimental procedure of measuring this anomaly.

In chapter 4, we provided another scheme of calculating the electron g � 2. Luttinger’s
approach is more intuitive and natural in a sense that it does not introduce the artificial
concept of renormalization like Schwinger’s. In this approach, when employing perturbation
in powers of external fields, all the divergent terms lies in the 0th order term which can be
discarded. In Luttinger’s approach, one understands the electron g � 2 in terms of energy
differences caused by the external fields. The interpretation of this approach is quite similar to
the relativistic effective Hamiltonian approach as here one also considers electron’s interaction
with its Coulomb and radiative fields. We get an intuitive interpretation of the self-interaction
and electron g � 2 from all of these approaches. As a future project, it would be interesting
to calculate the bound state electron g � 2 by generalizing these approaches.

In 5, we have discussed Bethe’s and Welton’s approach to calculate the Lamb shift. We
have seen that the Lamb shift arises from the position fluctuation of the electron caused by
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the fluctuating vacuum. This chapter provides an intuitive explanation about the Lamb shift
which is essential to reach our main conclusion of the thesis that the next-to-leading order
correction to the D-term is not the same as Lamb shift. In this regard, this chapter serves
as a pivot for this thesis.

In chapter 6, we have derived the NRQED Feynman rules which is used to calculate
the logarithmic divergent contribution to the D-term of hydrogen. Chapter 7 is the main
part of this thesis. This chapter discusses about another fundamental property of a nucleon,
the so-called D-term. We have interpreted the D-term in terms of pressure, shear force
distribution, and the charge radius. The proper interpretation of the D-term’s sign is still
being disputed regarding the relation to the mechanical stability of a bound system. We
have also discussed how this fundamental property can be measured experimentally. In this
thesis, we have calculated the D-term for hydrogen atom in the context of QED. We identified
relevant components of the energy-momentum tensor and calculated the leading and next-to-
leading order correction to the D-term for hydrogen atom. As a main result of this thesis, we
have shown that the physics of the next-to-leading order correction to the D-term is not the
same as the Lamb shift as the origin of the logarithmic divergent term is the interference of
Coulomb and transverse radiative photon whereas Lamb shift arises from fluctuating electric
field caused by the fluctuating vacuum and thus we disproved a statement of [1].

The D-term is an exiting field to explore. As a future project, to understand the proper
interpretation of the D-term, I would like to calculate the D-term for a classical body like a
star or a black hole.
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Appendix A

Calculation of the source fields

In this appendix, we will present the detail calculation of the source fields discussed in chapter
2. More specifically we will derive Eqs. (2.2.19) and (2.2.21). From Eqs. (2.2.1) and (2.2.2)
we get the expression for E?(0, t) and A(0, t) with the condition |k| < kM
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Ak✏ak✏ + hc, (A.0.1)
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Inserting Eq. (2.2.15) to these two equations we get
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To evaluate these equations first consider the summation over ✏
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Now we do the summation over k
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where we have used the cut-off !M . Now using the definitions of Ak, Ek and using the factors
from the summations we get
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where we have used the definition of the � function

�M(⌧) =
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2⇡

Z +!M

�!M

d!e
�i!⌧

. (A.0.9)

and took ⌧ = t� t
0 where t0 = �1. Similarly for E?r(0, t) we get
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Now integrating by parts we get

Ar(0, t) =
e

3⇡"0c3m
�M(0)⇡(t)� e

3⇡"0c3m

Z 1

0
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E?r(0, t) = � e

3⇡"0c3m
�M(0)⇡̇(t)� e

3⇡"0c3m

Z 1

0

d⌧ ⇡̈(t� ⌧)�M(⌧). (A.0.12)

The characteristic time evolution of ⇡(t) are very long compared to the width of �(⌧) which
is 1/!M and so we can replace ⇡̇(t� ⌧) and ⇡̈(t� ⌧) by ⇡̇(t) and ⇡̈(t). The integral of the
�M(⌧) is equal to 1/2 because �M(⌧) is a symmetric function. So we obtain

Ar(0, t) =
e!M

3⇡2"0c
3m

⇡(t)� e

6⇡"0c3m
⇡̇(t), (A.0.13)

E?r(0, t) = � e!M

3⇡2"0c
3m

⇡̇(t)� e

6⇡"0c3m
⇡̈(t). (A.0.14)

Finally using the expression for �m1 from Eq. (2.2.12) we get our desired expressions for
Eqs. (2.2.19) and (2.2.21).
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Appendix B

The Foldy-Wouthuysen Transformation

In this appendix, we will perform standard Foldy-Wouthuysen transformation on the Dirac
equation in external fields with vector potential A (minimally coupled) and scalar potential
�. The Hamiltonian of the system is

H = ↵.(p� eA) + �m+ e�

= �m+O + ✏ (B.0.1)

where O = ↵.(p� eA) and ✏ = e�. We now consider the transformation

 
0 = e

iS
 (B.0.2)

There will be mixture of particle and anti-particle states in the hamiltonian and so it will
not be possible to make the hamiltonian diagonal for all order and so we have to be content
with the non-relativistic expansion of the transformed hamiltonian in a power series of 1/m.
Then the Schrödinger equation reads
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i
@ 

0
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◆
=


e
iS

✓
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@
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�iS

�
= H

0
 

0
. (B.0.3)

Now using the Baker–Campbell–Hausdorff formula to a desired order of accuracy H
0 becomes

H
0 = H+i[S,H]�1

2
[S, [S,H]]� i

6
[S, [S, [S,H]]]+

1

24
[S, [S, [S, [S,H]]]]�Ṡ� i

2
[S, Ṡ]+

1

6
[S, [S, Ṡ]].

(B.0.4)
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Using {↵, �} = 0, then �O = �O� and �2 = 1, the result of the commutator relations are

i[S,H] = �O +
�

2m
[O, ✏] +

1

m
�O2

, (B.0.5)
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2
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� 1
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2m2
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, (B.0.6)
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2m
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So H
0 becomes

H
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For further reduction, by applying a second Foldy-Wouthuysen transformation using the
same procedure, we find

H
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, (B.0.12)

where O is now in order of 1/m2 and S
0 = � i�O0

2m . Finally with S
00 = � i�O00

2m a third transfor-
mation gives
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Now
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2m
=

(↵.(p� eA))2

2m

=
1

2m
(p� eA)2 � e

2m
⌃.B, (B.0.14)
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where ⌃i =

 
�i 0

0 �i

!
and �’s are the Pauli Matrices and we have used the relation [48]

(↵.A)(↵.B) = A.B + i⌃.(A⇥B). (B.0.15)

and r⇥A = B. For the next terms in Eq. (B.0.13)

1
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ie

8m2
↵.E (B.0.16)

where we have considered A to be constant and E = �r�. Now

O,

ie

8m2
↵.E

�
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ie

8m2
[↵.p,↵.E]

=
e

8m2
r.E +

ie

8m2
⌃.(r⇥E) +

e

4m2
⌃.(E ⇥ p) (B.0.17)

here we have used Eq. (B.0.15) and substituted �ir for p. Now gathering Eq. (B.0.14) to
Eq. (B.0.17), Eq. (B.0.13) becomes

H
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✓
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4m2
⌃.(E ⇥ p) (B.0.18)

where we have considered A4 as very small and ✏ = e�. Now to get Eq. (2.3.1) in a complete
non-relativistic form Eq. (B.0.18) can be modified by discarding the � matrix and ⌃ then
converts to just �. For a constant magnetic field r⇥E = 0 and adding the quantized free
field ~!a†a, we get

H
000 = ~!a†a+ ⇡2

2m
+

⇡4

8m3
+ e�0 �

e

2m
�.B � e

8m2
r.E � e

4m2
�. (E ⇥ p) (B.0.19)

where ⇡ = p � eA. This is analogous to the standard Foldy-Wouthuysen Transformation
[48]. We can now perform another modification by not considering A4 as small as previously
mentioned. So there would be a term (p� eA)4 in case of p4 in Eq. (B.0.18). Then from
Eq. (B.0.13)
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=
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Now using Eq. (B.0.14) we get

O4

8m3
=

1

2m

✓
⇡2

2m
� e

2m
⌃.B

◆2

. (B.0.21)

Inserting it back to Eq. (B.0.19) by converting ⌃ to � and using the subscript t for total
field, we arrive at Eq. (2.3.1). We have restored ~ and c.
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Appendix C

Calculation of the matrix elements

C.1 Calculation of VCoul

In this appendix, we will provide the derivation of the Coulomb part VCoul of the total effective
Hamiltonian described in chapter 3. More specifically we will derive Eq. (3.2.32). We can
write the denominator in Eq. (3.2.30) as

�
m

2
c
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2) + ⇡2
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2 � 2~c2⇡0.k + ~2k2
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,
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(C.1.1)

where we have used m
2
c
4 + ~2k2

c
2 = m

2
c
4(1 + x

2). Now we expand in terms of ⇡2
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Now we multiply with the numerator in Eq. (3.2.30) and finally get the terms
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All the other terms are just trivial multiplication, the only non-trivial term is c↵.⇡0
x
2

3(1+x2)3/2
,

which comes from the multiplication of
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mc2
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So the final form of Eq. (3.2.27) becomes
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For convenience we will work only with the factor outside the integration and the integration
variables

e
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mc
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where the factor 4⇡ comes from the angular integration, ↵ is the fine structure constant and
1

mc2
comes form Eq. (C.1.3). Now changing the integration variable from dk to dx using

dk = mc

~ dx, we arrive at Eq. (3.2.32).

C.2 Calculation of H?
eff

In this appendix, we will provide a brief overview of the calculation of the transverse part of
the effective Hamiltonian H?

eff described in Eq. (3.2.35). We can write the numerator of Eq.
(3.2.34) including the ↵ matrices in Eq. (3.2.33)
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where we have used Eq. (C.1.3) for ~! HDp
H2

D

. Now we will evaluate the denominator and
after expanding the denominator becomes
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Now taking m
2
c
4 as a common factor and expanding this term again as it is in denominator,

we get
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with whole factor is multiplied by 1
m2c4

. Now the factor outside the integration becomes
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Another factor of 2 will come from the same calculation involving En ! En0 as described in
Eq. (3.2.33) and the term x gets multiplied with the numerator. Now finally we multiply the
numerator with the denominator and after summing over polarization using the completeness
relation of polarization using Eq. (A.0.5) we arrive at the same expression as Eq. (3.2.35).
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Appendix D

Dirac equation in magnetic field

In this appendix, we will derive the energy levels and Dirac wave functions for a particle
subjected by a homogenous magnetic field. For a particle of mass m and charge e, the Dirac
equation in the presence of a homogenous magnetic field A0 is

i
d 

dt
= [↵. (�ir� eA0) + �m] , (D.0.1)

with ↵ and � are the Dirac matrices. The wave function can be written in terms of two-
component spinors

 = e
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. (D.0.2)

where � and � are two component spinors and Eq. (D.0.1) can be written as
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now by eliminating � we arrive at
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we now use the prescription B = Bẑ and A0 = Bxŷ. With this choice Eq. (D.0.5) reduces
to
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where �3 is the diagonal Pauli matrix. Noticing that co-ordinates y and z appear in the
equation only through the derivatives, the solution can be then written as

� = e
i(p2y+p3z)f(x), (D.0.7)

where f(x) is a two-component matrix. There are two independent solutions of f(x) where
�3fs = sf with s = ±1 and
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(D.0.8)

The differential equation Eq. (D.0.6) can now be written in terms of Fs as
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where ⇠ =
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. The solutions exists for as = 2⌫ + 1 for

⌫ = 0, 1, 2, .... Then the energy eigenvalue can be written as [49]
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Here we are choosing that for s = 1, E2 = m
2 + p

2
3 + 2(n + 1)eB and for s = �1, E2 =

m
2 + p

2
3 + 2neB with ⌫ = n. Solutions for Fs are [49]
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where Hn are Hermite polynomials of order ⌫ and N⌫ is the normalization [49]
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. (D.0.12)

From Eq. (D.0.10), the energy levels can be written as

E
2
m
= m

2 + p
2
3 + 2meB, (D.0.13)

for m = n or m = n + 1. The first term in Eq. (D.0.8) then corresponds to the energy for
s = 1 and the second term for s = �1. To write the general solutions of the Dirac wave
functions in magnetic field, we will have to compare them with the free particle solutions of
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the Dirac equation. The free particle solutions are given by [50]
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where N =

q
E+m

2EV
is the normalization constant with V being the normalization volume.

Now comparing the energy levels in Eqs. (D.0.13) and (D.0.14), the combination of momen-

tum components p1 and p2 can be replaced by �
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and for E = �Em and m = n+ 1 for V+ and m = n for V�, we get
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here ⇠̃ is ⇠ changing the sign of the p2 term and N =
q

E+m

2EG2/3 is the normalization where
G is the normalization volume. We will get the Dirac wave functions in a magnetic field by
substituting these spinors in Eq. (D.0.7).
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Appendix E

Calculation of the loop integrals

In this appendix, we will present detailed derivation of Eqs. (7.5.7) and (7.5.8). We have to
solve the integrals

hT ii
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To solve the integrals, we first shift the k �Q to k and the integrals become
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For the contraction of Q
i
P

ij
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j, we have used the programing language FORM and this
contraction provides provides a structure like
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where n = 1 and m = �1, 0, 1 for Eq. (E.0.4) and m = �1, 0, 1, 2 for Eq. (E.0.5). We first
solve the above integral for general n and m. Using the Feynman parameters [51]
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where in the last line we have shifted k � 2Qx to k. Now using the formula [51]
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, (E.0.9)

the integral becomes
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where a = n+ 1�2m
2 and in the last line we have used the definition of the Beta function

B (z1, z2) =

Z
dtt

z1�1 (1� t)z2�1
. (E.0.11)

Now using D = 3� 2✏ and a = n+ 1�2m
2 , we get

I =
B
�
1 +m� ✏,

3
2 � n� ✏

�

B
�
n,

1
2 �m

� � (�1�m+ n+ ✏)

�
�
1
2 �m+ n

�
�
4Q2

�D
2 �(n+ 1�2m

2 )
. (E.0.12)

To get results of various values of n and m in a simplified formate, we redefine the integral
as

⇥
(4Q2)m (1� 2✏ ln 2� ✏ lnQ2)

⇤�1
I = loop (n,m). Now using n = 1 and m = �1, 0, 1, 2
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and expanding around ✏, we get

loop (1,�1) = � 1

4⇡2✏
+
�E � ln⇡

4⇡2
, (E.0.13)

loop (1, 0) =
1

4⇡2✏
+

4� �E + ln ⇡

4⇡2
, (E.0.14)

loop (1, 1) =
1

12⇡2✏
+

16� 3�E + 3 ln ⇡

36⇡2
, (E.0.15)

loop (1, 2) =
1

20⇡2✏
+

92� 15�E + 15 ln ⇡

300⇡2
. (E.0.16)

These results were obtained using Mathematica. Now substituting these results back into the
contracted Eqs. (E.0.4) and (E.0.5), we reproduce Eqs. (7.5.7) and (7.5.8). For reference,
the FORM code is given as follows
#- off stats;
* checking Eq. 87 and 88 in 2208.05029
* They are Eq .7.5.7 and 7.5.8 in the thesis

s [k2 -4kQ+4Q2],[k],n,m,D;
s EulerGamma ,ln2 ,ep,Pi ,lnPi ,lnQ2;
d D;
v k,Q;
i i,j;
ct P;
cf loop;
.global

g int7 = 2*(3 -2*ep -2)*Q(i)*Q(j)*P(i,j)/[k2 -4kQ+4Q2]/[k]; * Eq .7.5.7
g int8 = 2*(Q.k - Q.Q)*Q(i)*Q(j)*P(i,j)/[k2 -4kQ+4Q2]/[k]; * Eq .7.5.8

id P(i?,j?) = d_(i,j) - k(i)*k(j)/k.k;
id Q.k = (k.k + 4*Q.Q- [k2 -4kQ+4Q2 ])/4; if (count([k2 -4kQ+4Q2],1) >= 0) discard; *scaleless
id 1/[k2 -4kQ+4Q2]^n? * k.k^m?/[k] = loop(n,-m) * (4*Q.Q)^m * (1-2*ep*ln2 -ep*lnQ2);

id loop (1,1) = -1/4*1/(ep*Pi^2) + (EulerGamma - lnPi )/(4* Pi^2);
id loop (1,0) = 1/(4*ep*Pi^2) + (4 - EulerGamma + lnPi )/(4*Pi^2);
id loop(1,-1) = 1/(12* ep*Pi^2) + (16 - 3* EulerGamma + 3*lnPi )/(36* Pi^2);
id loop(1,-2) = 1/(20* ep*Pi^2) + (92 - 15* EulerGamma + 15* lnPi )/(300* Pi^2);
if (count(ep ,1) > 0) discard;
.store

g check7 = Q.Q/3/Pi ^2*(1/ep-lnQ2+EulerGamma -5+2* ln2+lnPi +2*(8/3 - EulerGamma -2*ln2))-int7;
g check8 = Q.Q^2/(15* Pi^2)*( -1/ep+lnQ2 -EulerGamma +3-2*ln2 -lnPi -2*(46/15 - EulerGamma -2*ln2))-int8;
print +s;
.end
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