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Abstract

Distributed parameter systems (DPS) are models of fundamental conservation laws

in industrial processes, such as chemical, petroleum, metallurgical and solar thermal

energy processes. The major drawback of DPS models is that they take form of

partial differential equations (PDEs) containing higher order derivatives in space and

time. The complexity of PDEs models lies in spatial approximation arriving to a

finite dimensional model representation amenable for subsequent controller, observer

and/or monitoring device design. This thesis provides foundation of systematic mod-

elling framework for linear DPS which uses a finite and low dimensional setting for

controller/observer/estimator design without application of any spatial approxima-

tion or order reduction. First, we develop a linear model predictive controller design

for a class of linear DPS account for a constrained optimization based problem. The

discrete model of a linear DPS is obtained by using energy preserving Cayley-Tustin

transformation. We present our results applied to the DPS emerging from chemical

transport-reaction processes and solar boreal thermal energy processes. Second, we

address the servo controller design for a class of DPS described by coupled hyperbolic

PDE and ODE. The simple and easily realizable servo control algorithm is applied

to the solar thermal system with borehole seasonal storage in a real commercial com-
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munity. Finally, we propose the nonlinear controller design for a class of distributed

parameter system described by nonlinear hyperbolic PDEs. The nonlinear control

methodology is an extension of single-step formulation of full state feedback con-

trol design which lies in the fact that both feedback control and stabilization design

objectives given as target stable dynamics are accomplished in one step. The perfor-

mance of controllers is assessed by numerical simulation with application on different

distributed parameter systems.
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Chapter 1

Introduction

1.1 Motivation

In a real world engineering control applications, the states, inputs and outputs of

a mathematical model of a system depend on both temporal and spatial variables.

These systems have parameters distributed in space and therefore they are named

distributed parameter systems (DPS). On the contrary, systems which do not have

distributed parameter nature are lumped parameter systems (LPS) and system vari-

ables do not depend on spatial parameters, see [1].

Many industrial processes, such as chemical, petroleum, metallurgical and solar

thermal energy processes, belong to the class of DPS. In particular, an interesting

subset of continuous DPS processes in chemical and solar thermal energy engineering

is presented by the heat transport models. The above industrial processes are often

described by a mathematical model, which consists of partial differential equations

(PDEs), boundary conditions (BCs), as well as possible constraints on input, state

and/or output.

1



In order to classify the above models, we look into the mathematical classifications

of PDEs. Equations involving partial derivatives of a function of two or more inde-

pendent variables are PDEs. The order of the highest derivative is the order of the

equation. Because the properties of DPS depend strongly on the type of equations,

the classification of linear, second-order PDE is by the equation of the following form:

∂u

∂t
+ α(x, y)

∂2u

∂x2
+ β(x, y)

∂2u

∂x∂y
+ γ(x, y)

∂2u

∂y2
= f(x, y, u,

∂u

∂x
,
∂u

∂y
) (1.1)

An equation of the above form is said to be: parabolic PDE, if β2 − 4αγ = 0; elliptic

PDE, if β2 − 4αγ < 0; hyperbolic PDE, if β2 − 4αγ > 0.

In particular, the axial dispersion chemical reactor is described by parabolic PDE

which is augmented with either Dirichlet or Neumann boundary conditions. Moreover,

the plug flow reactor is modelled by hyperbolic PDEs. On the other hand, the solar

thermal energy process contains coupled partial differential equations and ordinary

differential equations (ODEs).

Advanced technology needs motivate control of physical and chemical DPS pro-

cesses of fluid flows, temperature distribution and material structures. Advanced pro-

cess control, monitoring and decision making in the context of DPS usually require

information on all states variables. In particular, the advanced control realization is

usually constrained by natural limits on the actuator power and/or the available posi-

tion where actuation can take place (in domain or boundary of the system). Moreover,

in the DPS setting, the knowledge of the system state variables is limited by the time

delay in obtaining the measurements, the number of available sensors and the noise

corrupting the data. This problem occurs in LPS, but is even more acute in DPS.

The objective of this thesis is to explore advanced controller design to improve

the chemical transport-reaction and solar thermal energy processes operations. In
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particular, the above PDEs models will be basis for the regulator (controller/observer)

synthesis. One of regulator design methodologies to be explored in this thesis is

model predictive control (MPC). MPC is an algorithm for optimal control synthesis

in which the control action is obtained by solving a finite horizon open-loop optimal

control problem at each sampling instant, see [2]. The optimization algorithm yields

a sequence of optimal control moves and the fist move is applied to the process, see

[3], [4]. The MPC in DPS setting has to account for distributed parameter nature for

optimal process performance characteristics, for naturally present constraints and/or

limitations on available measurements.

Another regulator design to be explored is the servo controller design for a class

of DPS described by coupled hyperbolic PDE and ODE. Servo controller design is a

well-know strategy that computes the required input which asymptotically attenuates

error between the output and a reference trajectory or set point to zero.

Another interesting research direction is to explore nonlinear controller design for

the DPS described by nonlinear PDEs. The nonlinear control methodology is an

extension of single-step formulation of full state feedback control design. With a si-

multaneous implementation of a nonlinear coordinate transformation and a nonlinear

state feedback law, both feedback control and stabilization design objectives given as

target stable dynamics are accomplished in one step.

1.2 Literature Review

The controller design and state estimation of DPS are more complex than in the

LPS. The presence of spatial variables imposes limitations to the controller design.

For example, in some cases, boundary conditions are used as inputs and outputs. In
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order to illustrate details, this section will review process models of DPS and ad-

vanced control methods of these processes. For controller design and state estimation

of DPS, in general, there are two approaches taken, see [5], [6]:

(1) Early lumping: in which DPS is first discretized into an approximate LPS model

consisting of a set of ODEs. Then, LPS control theory for controller design and state

estimation is applied directly to DPS. However, one disadvantage of this approach is

that conditions for controllability and stabilizability depend on the method of lump-

ing and the location of discretization points.

(2) Late lumping: in which DPS control theory is applied first to DPS and approxi-

mation method is applied at the final stage. It takes full advantages of the available

distributed parameter control theory and analyzes the full PDEs model for control-

lability and stabilizability. Once the design is accomplished, some type of finite

dimensional approximation in the controller realization is performed.

The design procedure of early lumping and late lumping is shown in Fig.1.1.

implementation

to approximate

lumped parameter

system(LPS)

Lumping of DPS Applicatipn of

DPS theory for

controller design

Application of LPS

control theory for

controller design

Lumping of controller

and system equations

for numerical solution

Distributed

parameter 

system(DPS)

Control system

Fig. 1.1: Design procedure via early lumping and late lumping

Since distributed parameter systems are modelled by partial differential equations,
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the evolution of states of a PDE is described in an infinite-dimensional space setting.

A number of researchers have explored many problems related to control of a system

described by PDE, such as dynamic optimization, output feedback controller design,

nonlinear and robust control, see [7], [8].

The traditional approach for control of some PDE systems utilizes spatial dis-

cretization techniques to obtain systems of ODEs, which are subsequently utilized

as the foundation of the finite-dimensional controllers design, see [9], [10]. This ap-

proach has a significant drawback since the number of states which must be preserved

to obtain a system of ODEs, might be quite large, which leads to a high dimensional

controller realization and complex controller design.

Optimal control is a problem of determining inputs to a dynamical system that

optimize a specified performance while satisfying any constraints on the motion of the

system. The theory of necessary conditions for optimal control problems is solution

of multipoint boundary value problems, see [11], [12]. For such problems, shooting

techniques have been established as efficient and reliable methods providing highly

accurate solutions, see [13]. However, the shooting methods have a severe drawback:

these methods need a rather precise initial guess of the optimal state, control and

adjoint variables and require a detailed knowledge of the structure of the optimal

solution.

Model predictive control refers to a class of control algorithms that compute an

input profile by utilizing a linear process model to optimize an open loop quadratic

objective function subject to constraints over a future time horizon, see [14]. In real-

ity, actuators and sensors have their limits due to physical properties, or the system

state is required not to be in excess of specified limit values. Motivated by this con-

sideration, model predictive controller for distributed parameter system is developed.

5



Various development of MPC have been explored by Dubljevic, Christofides, Alonso

and Armaou within the framework of distributed [15] and boundary applied actuation

[16], and predictive output and full state feedback control [17].

In order to utilize model predictive control, the discrete version of the overall

system is required. Traditional numerical time discretization approaches, such as

Euler, Runge-Kutta, etc. have the disadvantage that the accuracy of the approxi-

mate discrete time system rapidly deteriorates as the sampling period increases [18].

The Cayley-Tustin time discretization methodology preserves the intrinsic energy and

dynamical characteristics of distributed parameter systems [19, 20]. Along the line

of Cayley-Tustin transformation, the PDEs system is kept without any type of spa-

tial approximation and/or model reduction, see [21, 22, 23]. The issues arising from

analytic transformation of continuous to discrete distributed parameter setting are

addressed by providing guidance for appropriate choice of discretization parameters.

The discrete representation of distributed parameter systems obtained by the ap-

plication of Cayley-Tustin transformation provides an insight into frequency analysis

and controller design. The servo problem is a discrete controller which can be easily

realized and implemented in practice. Servo controller design is a well-know strategy

that computes the required input which asymptotically attenuates error between the

output and a reference trajectory or set point to zero [24, 25]. One of the advantages

of a servo controller is that it can account for disturbances which may affect the

process.

The controller synthesis for nonlinear DPS which is given in an infinite dimensional

setting is rather rare and difficult both in terms of design and/or implementation.

Within the linear DPS, the extensions of state feedback regulation, optimal control,

internal model control and backstepping are successfully realized [26, 27, 28, 29, 30,
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31, 32, 33, 34]. However, only small number of nonlinear finite dimensional control

design methodologies were extended to nonlinear DPS [35, 36, 37]. Motivated by

Luenberger’s early ideas on a single-step design approach for pole placement, the

development of single-step controller design that achieves simultaneously the feedback

linearization and desired pole placement is pursued for nonlinear DPS.

1.3 Semigroup Theory

The abstract formulation of linear infinite-dimensional system is described by the

following state space system:

ż(ζ, t) = Az(ζ, t), z(ζ, 0) = z0 (1.2)

the state z(ζ, t) ∈ H, where H is a real Hilbert space.

A C0-semigroup is an operator-valued function T (t) from R+ to (H) that satisfies

the following properties [38]:

(1) T (t+ τ) = T (t)T (τ) for t, τ ≥ 0;

(2) T (0) = I;

(3) ||T (t)z0 − z0|| → 0 as t→ 0+ ∀z0 ∈ H.

The operator A : D(A) ⊂ H → H is a generator of a C0-semigroup on H and one

can obtain:

z(ζ, t) = T (t)z0 (1.3)

Let us consider an example that a metal bar of length one is heated along its
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length according to:

∂z(ζ, t)

∂t
=
∂2z(ζ, t)

∂ζ2
, z(ζ, 0) = z0 (1.4)

∂z(0, t)

∂ζ
= 0 =

∂z(1, t)

∂ζ

z(ζ, t) represents the temperature at position ζ at timet, z0 the initial temperature

profile. We define the operators A on H as:

Az =
dz

dζ2
(1.5)

with D(A) = {z ∈ L2(0, 1)| z, dzdζ are absolutely continuous, d
2z
dζ2

∈ L2(0, 1) and
dz(0)
dζ

=

0 = dz(1)
dζ

}.
It is readily verified that A has the eigenvalues λn = −n2π2, n ≥ 0, and that

the corresponding eigenvectors φn(ζ) =
√
2 cos(nπζ) for n ≥ 1, φ0 = 1, form and

orthonormal basis for L2(0, 1). A is the Riesz-spectral operator given by

Az =
∞
∑

n=0

−n2π2 < z, φn > φn, z ∈ D(A) (1.6)

where D(A) = {z ∈ L2(0, 1)|
∑∞

n=1 n
4π4| < z, φn > |2 <∞}.

A is the infinitesimal generator of the following C0-semigroup:

T (t)z0 =< z0, 1 > +
∞
∑

n=1

2e−n
2π2t < z0, cos(nπζ) > cos(nπζ) (1.7)

Another example is the first-order hyperbolic PDE in the following form:

∂z(ζ, t)

∂t
= −∂z(ζ, t)

∂ζ
, z(ζ, 0) = z0 (1.8)
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z(0, t) = 0

the following C0-semigroup on L2(0, 1) can be obtained:

T (t)z0 =







z0(ζ − t) ζ − t < 1

0 ζ − t > 1
(1.9)

1.4 Thesis Outline and Contributions

This thesis is organized as follows:

In Chapter 2, a systematic linear model predictive control algorithm for linear

distributed parameter systems emerging from chemical engineering industry is de-

veloped. We consider the systems varying from the convection dominated plug flow

reactor models described by hyperbolic PDEs to the diffusion dominated axial disper-

sion reactor models described by parabolic PDEs. The discrete state space setting is

developed by applying Cayley-Tustin time discretization without spatial discretiza-

tion and model reduction. The issues of optimality and constrained stabilization

are addressed within the controller design setting leading to the finite constrained

quadratic regulator problem, which is easily realized and is no more computationally

intensive than the existing algorithms.

In Chapter 3, the modelling of a complex solar boreal thermal storage system

which is inspired by a real Drake Landing Solar Commercial Community is devel-

oped. The overall system is obtained from a coupled finite and infinite dimensional

subsystems of solar power plant process, heat exchanger process, borehole energy stor-

age process, hot tank process and district heating loop process. The discrete coupled

PDEs and ODEs system is obtained by applying Cayley-Tustin time discretization
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with the same sampling time. We address the problem of controlling a solar thermal

storage system with the purpose of achieving a desired thermal comfort level and

energy savings. As the energy output from the solar thermal plant with borehole

seasonal storage varies, the control system maintains the thermal comfort by using a

servo controller. A simple and easily realizable servo control algorithm is designed to

regulate the system operating at desired thermal comfort level despite disturbances

from the solar thermal plant system, the borehole geo-thermal energy storage system

and/or the district heating loop system.

In Chapter 4, we consider the same discrete solar boreal thermal storage system

developed in Chapter 3. The novel model predictive control addresses a house heat

regulation by constrained optimization problem with the manipulation constraints,

and accounts for possible unstable system dynamics and disturbances arising from

solar and geothermal radiations. The realistic output regulation is considered by the

inclusion of an observer which constructs finite and infinite dimensional states. The

proposed model development and control regulation can successfully account for the

long range variability in environmental and/or economic conditions associated with

the overall operational costs of the large scale solar energy community.

In Chapter 5, the thesis proposes an extension of single-step formulation of full

state feedback control design to the class of distributed parameter system described

by nonlinear hyperbolic PDEs. We consider an exothermic plug-flow reactor system

which is described by first-order hyperbolic PDE and a damped wave equation which

takes the form of second-order hyperbolic PDE. The methodology lies in the fact

that both feedback control and stabilization design objectives given as target stable

dynamics are accomplished in one step under a simultaneous implementation of a

nonlinear coordinate transformation and a nonlinear state feedback law. The mathe-
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matical formulation of the problem is realized via a system of first-order quasi-linear

singular PDEs. By using Lyapunov’s auxiliary theorem for singular PDEs, the neces-

sary and sufficient conditions for solvability are utilized. The solution to the singular

PDEs is locally analytic, which enables development of a PDE series solution.

Chapter 6 summarizes the main results of this thesis and discusses future research

directions.
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Chapter 2

Linear Model Predictive Control

for Transport-Reaction Processes

2.1 Introduction

Modelling of a transport process is the most important issue in the process analysis

and control design of transport processes. It is currently addressed by phenomeno-

logical modelling arising from first-principles, experimental studies and/or with the

help of the system identification theory. In many industries including chemical, petro-

chemical and pharmaceutical plants, model-based control has been very successful.

In majority of them, the underlying plant model is low dimensional and linear. In

general, mathematical models of many industrial relevant transport processes are ob-

tained from conservation laws, such as mass, momentum and/or energy, and take

forms represented by nonlinear partial differential equations (PDEs). The salient fea-

ture of these models is temporal and spatial dependence that captures the change

in shape and material properties, and can be associated with well known physical
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phenomena of the phase change, generation or/and consumption of chemical species

by chemical reaction mechanisms, heat and mass transfer phenomena.

Chemical process control of lumped parameter systems is a well established and

documented field of the process control. One of the most prominent achievements

in the broad area of process control is development of model predictive control for

lumped parameter systems [39, 40, 2, 41, 42, 43]. This refers to a class of control

algorithms which compute a control variable by utilizing a plant process model to

optimize a linear or quadratic open-loop performance objective subject to constraints

over a future time horizon. The computed control variable profile over the horizon

is utilized by applying only the first move and this process is repeated at each time

interval in a repetitive manner. In the case of linear models [2], linear predictive

control utilizes a linear state space or transfer function models obtained by the first

principles, or obtained by the pulse and/or step response of the controlled plant. The

great feature of linear model predictive control is that constrained and multivariable

processes can be addressed with emphasis on a robust algorithm realization that can

be implemented on-line.

Along the line of developed control areas, the control of linear distributed pa-

rameter systems is a mature control field [5, 44, 38, 45, 46]. The intrinsic feature of

distributed parameter systems is that the models take the form in an infinite dimen-

sional space setting which leads into infinite dimensional controller designs that are

not implementable and realizable in practice. In other words, control designers are

forced to apply some type of approximations in order to arrive at some finite dimen-

sional model setting that can be consequently explored within a finite dimensional

control design setting. Along this line of work, there are several contributions, for

example, the seminal work of Harmon Ray [5] laid foundation for spectral treatment
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for a class of distributed parameter systems, Ray and Seinfeld explored the design

of nonlinear distributed state estimators using stochastic methods [47]. Other no-

table works addressed the issue of identification and multivarable predictive control

applied to distributed parameter systems [48, 49]. More recently, Ng and Dublje-

vic considered the time-varying optimal control problem [50] and boundary control

formulation [51] for the crystal growth model regulation with time-varying domain

characteristic represented by the PDE as an abstract evolution equation on an infinite-

dimensional function space with a non-autonomous parabolic operator which gener-

ates a two-parameter semigroup. Despite the aforementioned developments and a

myriad of work on unconstrained stabilization, the issue of a low order constrained

optimal/suboptimal controller design remained elusive.

In the last decade, there were several attempts to address control of distributed

parameter systems within an input and/or state constrained optimal control setting.

In the case of transport systems modelled by the first order hyperbolic systems, there

were several works on dynamical analysis and control of hyperbolic PDEs systems,

and in particular, the work of Aksikas et. all. on linear quadratic control application

to a fixed-bed reactor [52] and optimal linear quadratic feedback controller design to

hyperbolic distributed parameter systems [53]. Other contributions considered model

predictive control applied to hyperbolic systems [54, 55]. In the same vein, the opti-

mal and model predictive control realizations are extended to Riesz spectral systems

(parabolic, and higher order dissipative PDEs) with a separable eigenspectrum of

the underlying dissipative spectral operator with successful realization of algorithms

that account for the input and PDE state constraints [56, 15, 57, 58, 59]. There are

also other extensions in the area of nonlinear model predictive control [60] in which

a combination of on-line model reduction and successive linearizations is applied. In
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all aforementioned control design realizations, some type of appropriate approxima-

tion is applied to a continuous model to arrive to a discrete model, which is used for

the controller design. It will be clear in subsequent sections, that one can treat the

linear distributed parameter system intact and design a controller without any model

approximation.

In this chapter, we provide development of an optimal constrained finite dimen-

sional controller for linear transport-reaction systems with input and PDE state/output

constraints which capture majority of linear transport-reaction chemical process sys-

tems of interest. The prominent feature of the proposed controller design is that no

spatial discretization is required. The linear transport-reaction system is completely

captured with the proposed transformations from a continuous to a discrete state

space setting without consideration of spatial discretization and/or any other type of

spatial approximation of the process model plant. The Cayley-Tustin time discretiza-

tion transformation is applied to the parabolic PDE system and hyperbolic PDE

system to preserve the infinite-dimensional nature of the distributed parameter sys-

tem [19]. Along the line of Cayley-Tustin transformation, the time discretization lies

in the fact that conservative characteristics of the system are preserved [20, 22, 23].

The issues arising from analytic transformation of continuous to discrete distributed

parameter setting are addressed by providing guidance for appropriate choice of dis-

cretization parameters. An important resolvent operator for discretization realization

of parabolic and hyperbolic PDE system is obtained. The underlying analytic form of

a discrete model is utilized in the design of the model predictive controller which ad-

dresses the input and PDE state/output constraints satisfaction and stabilization by

finite dimensional convex quadratic problem realization. The representative examples

of the novel algorithm design applied to hyperbolic and parabolic transport-reaction
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systems are discussed from the stability and optimality point of view.

This chapter is organized as follows. In Section 2.2, the Cayley-Tustin time dis-

cretization for distributed parameter systems is introduced. Further, the discrete-time

model representations for the hyperbolic and parabolic PDE system are provided. In

Section 2.3, the model predictive controller is designed and the issues related to

stability, input and state constraints satisfaction are addressed. In Section 2.4, we

demonstrate the features of the model predictive control algorithm built in the pre-

vious section through the simulation studies.

2.2 Time Discretization for Linear PDE

The linear infinite-dimensional system is described by the following state space sys-

tem:

ż(ζ, t) = Az(ζ, t) + Bu(t), z(ζ, 0) = z0 (2.1)

y(t) = Cz(ζ, t) +Du(t)

where the following assumptions hold: the state z(ζ, t) ∈ H, where H is a real Hilbert

space endowed with the inner product < · , · >; the input u(t) ∈ U and the output

y(t) ∈ Y , where U and Y are real Hilbert spaces; the operator A : D(A) ⊂ H → H

is a generator of a C0-semigroup on H and has a Yoshida extension operator A−1 (to

accommodate for boundary or point actuation) [61]; B, C and D are linear operators

associated with the actuation and output measurement or direct feed forward element,

i.e., B ∈ L(U,H), C ∈ L(H, Y ) and D ∈ L(U, Y ). In particular, the operator A is a

linear spatial operator associated with the hyperbolic or parabolic transport reaction

system.
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Taking a type of Crank-Nicolson time discretization scheme and given a time

discretization parameter h > 0, in the system engineering theory known as Tustin

time discretization is given by [62]:

z(jh)− z((j − 1)h)

h
≈ A

z(jh) + z((j − 1)h)

2
+Bu(jh), z(0) = z0 (2.2)

y(jh) ≈ C
z(jh) + z((j − 1)h)

2
+Du(jh)

Let uhj /
√
h be the approximation of u(jh), the convergence of yhj /

√
h to y(jh) as h→ 0

under rather general assumptions, the above set of equations yields the discrete time

dynamics:

zhj − zhj−1

h
= A

zhj + zhj−1

2
+B

uhj√
h
, zh0 = z0 (2.3)

yhj√
h
= C

zhj + zhj−1

2
+D

uhj√
h

After some basic manipulation, the discrete system takes the following form:

z(ζ, k) = Adz(ζ, k − 1) + Bdu(k), z(ζ, 0) = z0 (2.4)

y(k) = Cdz(ζ, k − 1) +Ddu(k)

where δ = 2/h, Ad, Bd, Cd and Dd are discrete time linear system operators, given

by

S :=





Ad Bd

Cd Dd



 =





[δ − A]−1[δ + A]
√
2δ[δ − A−1]

−1B
√
2δC[δ − A]−1 G(δ)



 (2.5)

where G(δ) denotes the transfer function of the system evaluated at δ and is defined as
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G(δ) = C[δ−A−1]
−1B+D. A continuous system with strictly proper transfer function

has physical realization and does not have the feedthrough operator D (e.g. D = 0).

However, the corresponding discrete representation for the linear transport reaction

systems poses the feedthrough operator Dd = G(δ) [19]. This continuous and dis-

crete infinite dimensional system representations discrepancy is nullified in the limit

of h → 0, which implies that discrete system given by Eq.2.4 becomes a continuous

counterpart in the limit given by Eq.2.1. Moreover, it is important to notice that

if the transfer function of the continuous system Eq.2.1 G(δ) is strictly proper, then

the limit of G(δ) at infinity exists and is 0, [63] which ensures the well posedness of

the system. An important notion is that all physically realizable dynamical systems

usually do not contain feedthrough operator which represents instantaneous transfer

of signal from the input to the output. The mapping between the continuous system

(A,B,C,D) to S discrete infinite dimensional systems is referred as the Cayley-Tustin

discretization method. Another important property of this discretization method is

that the discretization does not change the nature of the transformed system. Namely,

the classical application of the forward in time Euler discretization may potentially

transform a stable continuous system into an unstable discrete system, while the

backward in time Euler discretization may transform an unstable system into a dis-

crete, stable one [64]. Finally, if the Cayley-Tustin discretization method is applied

to a linear conservative continuous time system, then the resulting discrete system

is conservative in the discrete time sense. This transformation preserves the energy

equality among the continuous and the discrete model, in other words, it is simplectic

or Hamiltonian preserving. The Cayley-Tustin discretization method applied is also

a symmetric method, which means that the formula in Eq.2.2 is left unaltered after

exchanging zj ↔ zj−1 and h↔ −h [65].
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Remark 1: The Cayley-Tustin discretization method maps the generator A of the

continuous time system to its cogenerator Ad of the corresponding discrete time sys-

tem. The operator Ad can be also expressed as Ad = [δ−A]−1[δ+A] = −I+2δ[δ−A]−1,

with I being the identity operator.

Proof: One can easily show:

Ad(·) = [δ − A]−1[δ + A](·) (2.6)

=
δ + A

δ − A
(·)

= [−I + 2δ

δ − A
](·)

= [−I + 2δ[δ − A]−1](·)

In addition to the transformation of a distributed parameter system from con-

tinuous to discrete representation, important technical difficulties associated with

point and/or boundary actuation and observation in the continuous system repre-

sentation are remediated with construction of bounded operators associated with

(Ad, Bd, Cd, Dd). The Cayley-Tustin transform maps the unbounded operators A, B

and C of the continuous time system into the bounded operators in the discrete-time

counterpart, which brings technical advantages, since the generic properties, such

as stability, controllability and observability are the same for both representations.

In addition, one can extend the formalism of the above section to the analysis of

parametric variations on the solution of Eq.2.1. This indeed goes well with the no-

tions of dynamic simulators, so called ”time-steppers” in [66, 67, 68] used to perform

fixed-point and path following computations.
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2.2.1 Linear Hyperbolic Scalar System

In this section, we are interested in the construction of a discrete model for the

convection dominated system, such as the plug flow reactor model [5]. In general,

one can apply a spatial discretization and/or use method of characteristic to obtain

an approximate linear model suitable for the controller design. However, here we

consider the Cayley-Tustin approach by applying a transformation which completely

captures the nature of linear infinite-dimensional systems dynamics and translates a

1st order hyperbolic PDE from a continuous to a discrete state space setting.

Let us consider the model of transport-reaction system given by Eq.2.1, which

is the linear infinite-dimensional system model on the Hilbert space L2(0, 1), with

the spatial linear operator A = −v ∂
∂ζ

+ ψ(ζ) defined on its domain D(A) = {z ∈
L2(0, 1)|z is absolutely continuous dz

dζ
∈ L2(0, 1), z(0) = 0}. The output is taken

as the state at the exit of the reactor, that is at ζ = L, and it is obtained by the

operator C(f(ζ)) =
∫ L

0
f(ζ)δ(ζ − L)dζ = f(L) and we assume that the continuous

model does not contain a feedthrough term, that is D = 0. The discretized hyper-

bolic PDE system is obtained by the Cayley-Tustin transformation presented in the

previous section by Eq.2.4 where the operators Ad, Bd, Cd and Dd are calculated by

Eq.2.5. From Remark 1, one can notice that the realization of the operators in Eq.2.5

depends on the resolvent R(δ, A) of the operator A.

The resolvent operator for the scalar hyperbolic system can be obtained by utiliz-

ing the Laplace transform. Finding a Laplace transform is one of essential ingredients

of obtaining the Cayley-Tustin transform. Under the zero-input condition, the fol-

lowing hyperbolic PDE system arising from Eq.2.1 is considered:

ż(ζ, t) = A(ζ)z(ζ, t), z(ζ, 0) = z0 (2.7)
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The operator A arises as a model of tubular reactors with a linearized spatial reaction

term (that is ψ(ζ)), which models a large number of convection dominated transport

processes.

The resolvent operator R(s, A) = [sI − A]−1 of the operator A(ζ) is obtained by

applying the Laplace transform and expressed as follows:

R(s, A)z(ζ, 0) = [sI − A]−1(·) (2.8)

=
[

∫ ζ

0

1

v
(·)e− 1

v

∫ η
0 (ψ(φ)−sI)dφdη

]

e
1
v

∫ ζ
0 (ψ(φ)−sI)dφ

Proof: One can directly obtain the above expression by taking the Laplace trans-

form of Eq.2.7, and integrating the expression in space, which is given as z(ζ, s) =

[sI − A]−1z(ζ, 0) = R(s, A)z(ζ, 0).

∂z(ζ, s)

∂ζ
=

1

v
(ψ(ζ)− sI)z(ζ, s) +

1

v
z(ζ, 0) (2.9)

By solving the above ODE, one obtains:

z(ζ, s) = z(0, s)e
1
v

∫ ζ
0 (ψ−sI)dφ +

[

∫ ζ

0

1

v
z(η, 0)e−

1
v

∫ η
0 (ψ−sI)dφdη

]

e
1
v

∫ ζ
0 (ψ−sI)dφ (2.10)

With the boundary condition z(0, s) = 0, the resolvent operator of the operator A

applied on the state z(ζ, 0) can be expressed as:

R(s, A)z(ζ, 0) = [sI − A]−1z(ζ, 0) (2.11)

=
[

∫ ζ

0

1

v
z(η, 0)e−

1
v

∫ η
0 (ψ−sI)dφdη

]

e
1
v

∫ ζ
0 (ψ−sI)dφ
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With the system resolvent operator described in the previous section, one can

directly obtain the discrete time operators in Eq.2.4. The convenient form to express

the operator Ad is in the following form:

Ad(·) = [δ − A]−1[δ + A](·) (2.12)

= −(·) + 2δ
[

∫ ζ

0

1

v
(·)e− 1

v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

One can easily obtain the derivation of the Ad operator as below:

Adz(ζ, k − 1) = [δ − A]−1[δ + A]z(ζ, k − 1) (2.13)

= [δ − A]−1[−v∂z(ζ, k − 1)

∂ζ
+ (ψ + δ)z(ζ, k − 1)]

=
[

∫ ζ

0

1

v
[−v∂z(η, k − 1)

∂η
+ (ψ + δ)z(η, k − 1)]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

=
[

∫ ζ

0

1

v
[−v∂z(η, k − 1)

∂η
]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

+
[

∫ ζ

0

1

v
[(ψ + δ)z(η, k − 1)]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

=
[

∫ ζ

0

−e− 1
v

∫ η
0 (ψ−δ)dφdz(η, k − 1)

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

+
[

∫ ζ

0

1

v
[(ψ + δ)z(η, k − 1)]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

=
[

− e−
1
v

∫ η
0 (ψ−δ)dφz(η, k − 1)

∣

∣

∣

ζ

0
−
∫ ζ

0

−z(η, k − 1)d[e−
1
v

∫ η
0 (ψ−δ)dφ]

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

+
[

∫ ζ

0

1

v
[(ψ + δ)z(η, k − 1)]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

=
[

− e−
1
v

∫ ζ
0 (ψ−δ)dφz(ζ, k − 1) + z(0)−

∫ ζ

0

1

v
[(ψ − δ)z(η, k − 1)]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

+
[

∫ ζ

0

1

v
[(ψ + δ)z(η, k − 1)]e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ
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= −z(ζ, k − 1) + 2δ
[

[

∫ ζ

0

1

v
z(η, k − 1)e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

]

= [−I + 2δ[δ − A]−1]z(ζ, k − 1)

In the above derivation, one can extend the class of systems considered with having

velocity as spatial function v(ζ), and accordingly all above expressions can be easily

rewritten to account for it.

Similarly, one can directly obtain the expression for the discrete operator Bd. The

operator B in a continuous system can represent point or boundary actuation, or it

can represent in-domain actuation. Hence, for B(ζ) describing an in-domain operator

B(ζ), one can obtain the expression of Bd in the following form:

Bd =
√
2δ[δ − A]−1B(ζ) (2.14)

=
√
2δ
[

∫ ζ

0

1

v
B(η)e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

In the case of a point or boundary realized actuation, the input operator B is given

as B(ζ) = δ(ζ − ζ0), with ζ0 being a point position where the actuation is applied.

Therefore, one obtains the expression of Bd in the following form:

Bd =











0, 0 ≤ ζ < ζ0
√
2δ
v
, ζ0 ≤ ζ ≤ L

For example for boundary actuation at ζ0 = 0, one obtains Bd =
√
2δ
v
e

1
v

∫ ζ
0 (ψ−δ)dφ. For

boundary actuation at ζ0 = L, one obtains Bd =
√
2δ
v
δ(ζ − L).

Similarly, one can directly obtain the expression of discrete operators Cd and Dd.

In particular, C can be point and/or boundary observation, or the output can be
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considered in some region. When C is a boundary operator at ζ = L, the operator

Cd is obtained as follows:

Cd(·) =
√
2δC[δ − A]−1(·) (2.15)

=
√
2δ
[

∫ L

0

1

v
(·)e− 1

v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ L
0 (ψ−δ)dφ

The operator Dd is a straight forward representation of the transfer function of the

system parameterized by the parameter δ.

Dd = C[δ − A−1]
−1B +D (2.16)

=
[

∫ L

0

1

v
Be−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ L
0 (ψ−δ)dφ

One can notice that in the discrete state space representation, the operators (Ad, Bd, Cd,

Dd) are parameterized by the term δ which contains the discretization time so that

one can relate known spatial and temporal discretization numerical techniques and

numerical outcomes associated with them with the Cayley-Tustin discrete state space

realization. In particular, it is known that for the first order hyperbolic system, tem-

poral and spatial discretization of the simple ∂z
∂t

+ c∂z
∂ζ

= 0 transport problem leads

to Courant-Friedrichs-Lewy stability conditions. Namely, for many explicit finite dif-

ference schemes for hyperbolic systems in one space dimension, the claim is that for

numerical stability it is necessary that |c h
4ζ | ≤ 1. In other words, this condition

can be interpreted as 4ζ
h

≥ |c| that the numerical speed of propagation must be

greater than or equal to the speed of initial data propagation. Hence, if the numer-

ical scheme cannot propagate the initial data at least as fast as the solution of the

differential equation, then the solution of the scheme cannot converge to the solution

of the partial differential equation. Since the numerical scheme given by Eqs.2.4-2.5 is
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unconditionally stable, the numerical integration accuracy in Eqs.2.12-2.14-2.15-2.16

and the choice of δ needs to be selected adequately. In general, one must carefully

choose a reasonable value of h
4ζ in order to obtain an accurate enough solution, since

the accuracy of the solution can be heavily impacted with arbitrary h
4ζ .

Remark 2: In the case of the application of spatial discretization methods and

subsequent temporal discretization which is not a Cayley-Tustin, if there is no feed

forward operator D, the discretized approximation system will generate realization

(Ãd, B̃d, C̃d, 0), without a feedthrough term. Contrary to this case, the Cayley-Tustin

discretization generates Dd term as a direct transfer function parameterized δ term.

Adjoint Operator

In the subsequent section, the construction of the model predictive controller requires

finding adjoint operators of (Ad, Bd, Cd, Dd), that is (A
∗
d, B

∗
d , C

∗
d , D

∗
d). Therefore, the

adjoint operator A∗
d of the generator Ad is defined by the equation:

< Φ, Ad∗Ψ∗ >=< AdΦ,Ψ∗ > (2.17)

where Φ and Ψ∗ are arbitrary spatial functions on the domain L2(0, 1).

The expression of the adjoint operator A∗
d of the discrete operator Ad is given in

the following form:

A∗
d(·) = −(·) + 2δ

[

∫ L

ζ

1

v
(·)e 1

v

∫ η
0 (ψ−δ)dφdη

]

e−
1
v

∫ ζ
0 (ψ−δ)dφ (2.18)

One can construct A∗
d of a hyperbolic PDE system as follows:

< AdΦ,Ψ
∗ >=

∫ L

0

[

− Φ(ζ) + 2δ
[

∫ ζ

0

1

v
Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ ζ
0 (ψ−δ)dφ

]

Ψ∗(ζ)dζ
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=

∫ L

0

−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

(

∫ ζ

0

1

v
Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφdη

)

Ψ∗(ζ)e
1
v

∫ ζ
0 (ψ−δ)dφdζ

=

∫ L

0

−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

∫ ζ

0

1

v
[Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφ][Ψ∗(ζ)e

1
v

∫ ζ
0 (ψ−δ)dφ]dηdζ

=

∫ L

0

−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

∫ L

η

1

v
[Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφ][Ψ∗(ζ)e

1
v

∫ ζ
0 (ψ−δ)dφ]dζdη

=

∫ L

0

−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

(

∫ L

η

1

v
Ψ∗(ζ)e

1
v

∫ ζ
0 (ψ−δ)dφdζ

)

Φ(η)e−
1
v

∫ η
0 (ψ−δ)dφdη

Interchanging the ζ and η, one obtains:

< AdΦ,Ψ
∗ >

=

∫ L

0

−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

(

∫ L

ζ

1

v
Ψ∗(η)e

1
v

∫ η
0 (ψ−δ)dφdη

)

Φ(ζ)e−
1
v

∫ ζ
0 (ψ−δ)dφdζ

=

∫ L

0

[

−Ψ∗(ζ) + 2δ
[

∫ L

ζ

1

v
Ψ∗(η)e

1
v

∫ η
0 (ψ−δ)dφdη

]

e−
1
v

∫ ζ
0 (ψ−δ)dφ

]

Φ(ζ)dζ

=< Φ, A∗
dΨ

∗ >

Similarly, one can obtain the expression of the adjoint operator C∗
d of the discrete

operator Cd as below:

C∗
d(·) =

√
2δ
[

∫ L

0

1

v
(·)dη

]

e−
1
v

∫ ζ
0 (ψ−δ)dφe

1
v

∫ L
0 (ψ−δ)dφ (2.19)

The construction of C∗
d for a hyperbolic PDE system is as follows:

< CdΦ,Ψ
∗ >=

∫ L

0

[√
2δ
[

∫ L

0

1

v
Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφdη

]

e
1
v

∫ L
0 (ψ−δ)dφ

]

Ψ∗(ζ)dζ

=
√
2δe

1
v

∫ L
0 (ψ−δ)dφ

∫ L

0

∫ L

0

1

v
Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφΨ∗(ζ)dηdζ

=
√
2δe

1
v

∫ L
0 (ψ−δ)dφ

∫ L

0

∫ L

0

1

v
Φ(η)e−

1
v

∫ η
0 (ψ−δ)dφΨ∗(ζ)dζdη
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=
√
2δe

1
v

∫ L
0 (ψ−δ)dφ

∫ L

0

[

∫ L

0

1

v
Ψ∗(ζ)dζ

]

Φ(η)e−
1
v

∫ η
0 (ψ−δ)dφdη

=
√
2δe

1
v

∫ L
0 (ψ−δ)dφ

∫ L

0

[

∫ L

0

1

v
Ψ∗(η)dη

]

Φ(ζ)e−
1
v

∫ ζ
0 (ψ−δ)dφdζ

=

∫ L

0

[√
2δ
[

∫ L

0

1

v
Ψ∗(η)dη

]

e−
1
v

∫ ζ
0 (ψ−δ)dφe

1
v

∫ L
0 (ψ−δ)dφ

]

Φ(ζ)dζ

=< Φ, C∗
dΨ

∗ >

The adjoint operators B∗
d and D∗

d are self-adjoint: B∗
d = Bd and D

∗
d = Dd.

2.2.2 Linear Parabolic System

In this section, we apply the Cayley-Tustin time discretization to the diffusion dom-

inated model of an axial dispersion reactor described by the parabolic PDE with the

Dirichlet, Neumann or Robin boundary condition [5].

Let us consider a diffusion dominated transport-reaction system which leads to

the linear infinite-dimensional system model given by Eq.2.1 with the operator A

defined on Hilbert space H = L2(0, 1). In particular,

ż(ζ, t) = Az(ζ, t) + Bu(t), z(ζ, 0) = z0 (2.20)

y(t) = Cz(ζ, t) +Du(t)

A(ζ) = ∂2

∂ζ2
+ ψI is the linear operator defined on its domain D(A) = {z ∈ L2(0, 1)|

z is absolutely continuous, dz
dζ

∈ L2(0, 1),
d2z
dζ2

∈ L2(0, 1), ψ is constant,

Dirichlet boundary conditions : z(0) = 0 = z(1), Neumann boundary conditions :

dz(0)
dζ

= 0 = dz(1)
dζ

, Danckwerts boundary conditions : dz(0)
dζ

= Pez(0), dz(1)
dζ

= 0}. The

output is the state of the PDE at a point within the domain, for example at ζ = ζ0

and is obtained by the operator C(f(ζ)) =
∫ L

0
f(ζ)δ(ζ − ζ0)dζ = f(ζ0) and D = 0.
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The discretization of a parabolic PDE system described in Eq.2.4 is obtained by

the Cayley-Tustin transformation presented in the previous section with the oper-

ators Ad, Bd, Cd and Dd calculated by Eq.2.5. In order to realize discrete system

representation for parabolic PDE, let us consider the parabolic PDE system in the

following form:

ż(ζ, t) = A(ζ)z(ζ, t) (2.21)

The realization of the discrete operator Ad is constructed by substitution of the s

parameter with the δ in the resolvent operator in the expression for Ad in Eq.2.5.

One needs to address if any constraints are arising as a result of freely choosing any

discretization time δ = 2
h
. In particular, only one constraint is that the discretization

time does not coincide with the eigenvalues of the operator A, the δ /∈ σ(A), where

σ(A) is the point spectrum of the spatial operator A.

Therefore, one may easily apply Laplace transform to the parabolic system de-

scribed in Eq.2.21:

sz(ζ, s)− z(ζ, 0) =
∂2z(ζ, s)

∂ζ2
+ ψz(ζ, s) (2.22)

which leads to:

∂2z(ζ, s)

∂ζ2
= (sI − ψ)z(ζ, s)− z(ζ, 0) (2.23)
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Further, one can obtain the following system:

∂

∂ζ





z(ζ, s)

∂z(ζ,s)
∂ζ



 =





0 1

s− ψ 0









z(ζ, s)

∂z(ζ,s)
∂ζ



+





0

−z(ζ, 0)



 (2.24)

which leads to Z̄(ζ, s) =





z(ζ, s)

∂z(ζ,s)
∂ζ



, Ā =





0 1

s− ψ 0



 and B̄ =





0

−z(ζ, 0)



:

∂Z̄(ζ, s)

∂ζ
= ĀZ̄(ζ, s) + B̄ (2.25)

We can obtain the solution of the above ODE:

Z̄(ζ, s) = eĀζZ̄(0, s) +

∫ ζ

0

eĀ(ζ−η)B̄dη (2.26)

Since Ā is a constant matrix, one can calculate eĀt̄ with the Laplace inverse transform

eĀt̄ = L−1{[s̄I − Ā]−1}:

eĀt̄ =





cosh(
√
s− ψt̄) 1√

s−ψsinh(
√
s− ψt̄)

√
s− ψsinh(

√
s− ψt̄) cosh(

√
s− ψt̄)



 (2.27)

which leads to the solution of Eq.2.26 as:





z(ζ, s)

∂z(ζ,s)
∂ζ



 =





cosh(
√
s− ψζ) 1√

s−ψsinh(
√
s− ψζ)

√
s− ψsinh(

√
s− ψζ) cosh(

√
s− ψζ)









z(0, s)

∂z(0,s)
∂ζ





+

∫ ζ

0





− 1√
s−ψz(η, 0)sinh[

√
s− ψ(ζ − η)]

−z(η, 0)cosh[
√
s− ψ(ζ − η)]



 dη (2.28)
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Finally, we obtains:

z(ζ, s) = cosh(
√

s− ψζ)z(0, s) +
1√
s− ψ

sinh(
√

s− ψζ)
∂z(0, s)

∂ζ
(2.29)

−
∫ ζ

0

1√
s− ψ

z(η, 0)sinh[
√

s− ψ(ζ − η)]dη

The above expression is obtained as a solution to z(ζ, s) = [sI − A]−1z(ζ, 0), by the

application of the Laplace transform to the parabolic system described in Eq.2.21

for the case when s − ψ > 0. However, it can be demonstrated that the similar and

well posed expression will be obtained if s − ψ < 0. Assuming that, s − ψ < 0,

one obtains
√
s− ψ = i

√
ψ − s, here i2 = −1. We can obtain sinh(

√
s− ψζ) =

sinh(i
√
ψ − sζ) = isin(

√
ψ − sζ) and cosh(

√
s− ψζ) = cosh(i

√
ψ − sζ) = cos(

√
ψ − sζ).

Then, the state becomes:

z(ζ, s) = cos(
√

ψ − sζ)z(0, s) +
1√
ψ − s

sin(
√

ψ − sζ)
∂z(0, s)

∂ζ
(2.30)

−
∫ ζ

0

1√
ψ − s

z(η, 0)sin[
√

ψ − s(ζ − η)]dη

In the following section, without loss of generality we consider the case when the

following s − ψ > 0 holds. As expected in the case of parabolic PDEs, different

boundary conditions will lead to different expressions for the resolvent of operator A

and associated cogenerator Ad.

Dirichlet Boundary Conditions

When Dirichlet boundary conditions are applied, z(0, s) = 0 = z(1, s), one can utilize

Eq.2.28 -2.29, and ∂z(0,s)
∂ζ

= 1
sinh(

√
s−ψ)

∫ 1

0
z(η, 0)sinh[

√
s− ψ(1− η)]dη. The resolvent
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of the operator A is given as:

R(s, A)z(ζ, 0) = [sI − A]−1z(ζ, 0) (2.31)

=
1√
s− ψ

sinh(
√
s− ψζ)

sinh(
√
s− ψ)

∫ 1

0

z(η, 0)sinh[
√

s− ψ(1− η)]dη

−
∫ ζ

0

1√
s− ψ

z(η, 0)sinh[
√

s− ψ(ζ − η)]dη

Neumann Boundary Conditions

When Neumann boundary conditions are applied, dz(0,s)
dζ

= 0 = dz(1,s)
dζ

and from

Eq.2.28 -2.29, one obtains z(0, s) = 1√
s−ψ

1
sinh(

√
s−ψ)

∫ 1

0
z(η, 0)cosh[

√
s− ψ(1 − η)]dη.

The resolvent of operator A is:

R(s, A)z(ζ, 0) = [sI − A]−1z(ζ, 0) (2.32)

=
1√
s− ψ

cosh(
√
s− ψζ)

sinh(
√
s− ψ)

∫ 1

0

z(η, 0)cosh[
√

s− ψ(1− η)]dη

−
∫ ζ

0

1√
s− ψ

z(η, 0)sinh[
√

s− ψ(ζ − η)]dη

Danckwerts Boundary Conditions

Another important set of boundary conditions is arising from the description of an

axial dispersion reactor [5]: z′(0, t) = Pez(0, t), z
′(1, t) = 0, with Pe being a Peclet

number. One obtains:

∂z(1, s)

∂ζ
=

√

s− ψsinh(
√

s− ψ)z(0, s) + cosh(
√

s− ψ)
∂z(0, s)

∂ζ
(2.33)

−
∫ 1

0

z(η, 0)cosh[
√

s− ψ(1− η)]dη = 0
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so that z′(0, s) = Pez(0, s), we obtain:

z(0, s) =

∫ 1

0
z(η, 0)cosh[

√
s− ψ(1− η)]dη√

s− ψsinh(
√
s− ψ) + Pecosh(

√
s− ψ)

(2.34)

z′(0, s) =
pe

∫ 1

0
z(η, 0)cosh[

√
s− ψ(1− η)]dη√

s− ψsinh(
√
s− ψ) + Pecosh(

√
s− ψ)

finally resolvent can be easily defined.

Discrete Time Operators and Its Adjoint Operators

Dirichlet Boundary Condition

With the system resolvent operator described in Eq.2.31, one can directly obtain the

discrete time operators Ad, Bd, Cd and Dd of a parabolic system presented in Eq.2.5:

Ad(·) = [−I + 2δ[δ − A]−1](·) (2.35)

= −(·) + 2δ
[ 1√

δ − ψ

sinh(
√
δ − ψζ)

sinh(
√
δ − ψ)

∫ 1

0

(·)sinh[
√

δ − ψ(1− η)]dη

−
∫ ζ

0

1√
δ − ψ

(·)sinh[
√

δ − ψ(ζ − η)]dη
]

Bd =
√
2δ[δ − A−1]

−1B (2.36)

=
√
2δ
[ 1√

δ − ψ

sinh(
√
δ − ψζ)

sinh(
√
δ − ψ)

∫ 1

0

Bsinh[
√

δ − ψ(1− η)]dη

−
∫ ζ

0

1√
δ − ψ

Bsinh[
√

δ − ψ(ζ − η)]dη
]

Cd(·) =
√
2δC[δ − A]−1(·) (2.37)

32



=
√
2δ
[ 1√

δ − ψ

sinh(
√
δ − ψζ0)

sinh(
√
δ − ψ)

∫ 1

0

(·)sinh[
√

δ − ψ(1− η)]dη

−
∫ ζ0

0

1√
δ − ψ

(·)sinh[
√

δ − ψ(ζ0 − η)]dη
]

Dd = C[δ − A−1]
−1B +D (2.38)

=
1√
δ − ψ

sinh(
√
δ − ψζ0)

sinh(
√
δ − ψ)

∫ 1

0

Bsinh[
√

δ − ψ(1− η)]dη

−
∫ ζ0

0

1√
δ − ψ

Bsinh[
√

δ − ψ(ζ0 − η)]dη

The expression of an adjoint operator A∗
d of a discrete operator Ad is in the fol-

lowing form:

A∗
d(·) = −(·) + 2δ

[ 1√
δ − ψ

sinh[
√
δ − ψ(L− ζ)]

sinh(
√
δ − ψ)

∫ 1

0

(·)sinh(
√

δ − ψη)dη

−
∫ 1

ζ

1√
δ − ψ

(·)sinh[
√

δ − ψ(η − ζ)]dη
]

(2.39)

One can obtain the construction of A∗
d for a parabolic PDE system with the Dirichlet

boundary conditions as follows:

< AdΦ,Ψ
∗ >=

∫ L

0

[

− Φ(ζ) + 2δ
( 1√

δ − ψ

sinh(
√
δ − ψζ)

sinh(
√
δ − ψL)

∫ L

0
Φ(η)sinh[

√

δ − ψ(L− η)]dη

−
∫ ζ

0

1√
δ − ψ

Φ(η)sinh[
√

δ − ψ(ζ − η)]dη
)]

Ψ∗(ζ)dζ

=

∫ L

0
−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

∫ L

0

1√
δ − ψ

sinh(
√
δ − ψζ)

sinh(
√
δ − ψL)

Φ(η)Ψ∗(ζ)sinh[
√

δ − ψ(L− η)]dηdζ

−2δ

∫ L

0

∫ ζ

0

1√
δ − ψ

Φ(η)Ψ∗(ζ)sinh[
√

δ − ψ(ζ − η)]dηdζ

=

∫ L

0
−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

∫ L

0

1√
δ − ψ

sinh(
√
δ − ψζ)

sinh(
√
δ − ψL)

Φ(η)Ψ∗(ζ)sinh[
√

δ − ψ(L− η)]dζdη
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−2δ

∫ L

0

∫ L

η

1√
δ − ψ

Φ(η)Ψ∗(ζ)sinh[
√

δ − ψ(ζ − η)]dζdη

Interchanging the ζ and η leads to:

< AdΦ,Ψ
∗ >

=

∫ L

0
−Φ(ζ)Ψ∗(ζ)dζ + 2δ

∫ L

0

∫ L

0

1√
δ − ψ

sinh(
√
δ − ψη)

sinh(
√
δ − ψL)

Φ(ζ)Ψ∗(η)sinh[
√

δ − ψ(L− ζ)]dηdζ

−2δ

∫ L

0

∫ L

ζ

1√
δ − ψ

Φ(ζ)Ψ∗(η)sinh[
√

δ − ψ(η − ζ)]dηdζ

=

∫ L

0

[

−Ψ∗(ζ) + 2δ
( 1√

δ − ψ

sinh[
√
δ − ψ(L− ζ)]

sinh(
√
δ − ψL)

∫ L

0
Ψ∗(η)sinh(

√

δ − ψη)dη

−
∫ L

ζ

1√
δ − ψ

Ψ∗(η)sinh[
√

δ − ψ(η − ζ)]dη
)]

Φ(ζ)dζ

=< Φ, A∗
dΨ

∗ >

The adjoint operator B∗
d is self-adjoint: B∗

d = Bd.

For other boundary conditions, one can easily find discrete operators and adjoint

cogenerators which take the similar form as the one calculated in the case of Dirichlet

boundary conditions. When the boundary condition is a Neumann Boundary Condi-

tion, with the system resolvent operator described in Eq.2.32, one can directly obtain

the discrete time operators Ad, Bd, Cd and Dd of the parabolic system:

Ad(·) = [−I + 2δ[δ − A]−1](·) (2.40)

= −(·) + 2δ
[ 1√

δ − ψ

cosh(
√
δ − ψζ)

sinh(
√
δ − ψ)

∫ 1

0

(·)cosh[
√

δ − ψ(1− η)]dη

−
∫ ζ

0

1√
δ − ψ

(·)sinh[
√

δ − ψ(ζ − η)]dη
]

Bd =
√
2δ[δ − A−1]

−1B (2.41)
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=
√
2δ
[ 1√

δ − ψ

cosh(
√
δ − ψζ)

sinh(
√
δ − ψ)

∫ 1

0

Bcosh[
√

δ − ψ(1− η)]dη

−
∫ ζ

0

1√
δ − ψ

Bsinh[
√

δ − ψ(ζ − η)]dη
]

Cd(·) =
√
2δC[δ − A]−1(·) (2.42)

=
√
2δ
[ 1√

δ − ψ

cosh(
√
δ − ψζ0)

sinh(
√
δ − ψ)

∫ 1

0

(·)cosh[
√

δ − ψ(1− η)]dη

−
∫ ζ0

0

1√
δ − ψ

(·)sinh[
√

δ − ψ(ζ0 − η)]dη
]

Dd = C[δ − A−1]
−1B +D (2.43)

=
1√
δ − ψ

cosh(
√
δ − ψζ0)

sinh(
√
δ − ψ)

∫ 1

0

Bcosh[
√

δ − ψ(1− η)]dη

−
∫ ζ0

0

1√
δ − ψ

Bsinh[
√

δ − ψ(ζ0 − η)]dη

The expression of an adjoint operator A∗
d of a discrete operator Ad is in the fol-

lowing form:

A∗
d(·) = −(·) + 2δ

[ 1√
δ − ψ

cosh[
√
δ − ψ(L− ζ)]

sinh(
√
δ − ψ)

∫ 1

0

(·)cosh(
√

δ − ψη)dη

−
∫ 1

ζ

1√
δ − ψ

(·)sinh[
√

δ − ψ(η − ζ)]dη
]

(2.44)

The adjoint operator B∗
d is self-adjoint: B∗

d = Bd.
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2.3 Model Predictive Control for Linear PDE

The linear discrete-time model dynamics developed in Eq.2.4 is utilized in the for-

mulation of the model predictive control for linear transport-reaction systems. The

regulator is based on the similar formulation emerging from the finite dimensional

systems theory. In particular, there are similarities among constrained optimal con-

troller design formulations for finite and infinite dimensional systems. The important

differences in the controller synthesis are associated with the issue how the stable

and unstable infinite dimensional systems are treated and this will be discussed in

detail in the context of linear transport-reaction model equations. Along the line of

similarities, the well known formulation of the quadratic form optimization functional

on the infinite horizon is used for both infinite and finite dimensional systems. That

is, minimization of the following open-loop objective functional is given in the form

of inner products. Here, at a given sampling time k, the objective function with

constraints is given as:

min
uN

∞
∑

j=0

< y(ζ, k + j|k), Qy(ζ, k + j|k) > + < u(k + j + 1|k), Ru(k + j + 1|k) >

(2.45)

s.t. z(ζ, k + j|k) = Adz(ζ, k + j − 1|k) + Bdu(k + j|k)

y(ζ, k + j|k) = Cdz(ζ, k + j − 1|k) +Ddu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

ymin ≤ y(ζ, k + j|k) ≤ ymax
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where Q is a positive semidefinite spatial operator associated with the output (state

of PDE) and R is a positive definite spatial operator. The y(k+j|k) and u(k+j+1|k)
represent the output and input variables at the future time k + j given the current

time k. The vectors Y and U are given as follows:

Y =
[

y(ζ, k + 1|k) y(ζ, k + 2|k) y(ζ, k + 3|k) · · · y(ζ, k +N − 1|k)
]T

U =
[

u(k + 1|k) u(k + 2|k) u(k + 3|k) · · · u(k +N − 1|k)
]T

The infinite horizon open-loop objective function in Eq.2.45 can be cast as the

finite horizon open-loop objective function with an assumption that the input is zero

beyond the control horizon, that is u(k+N |k) = 0, and with inclusion of the terminal

penalty term:

min
uN

J =
N−1
∑

j=0

< y(ζ, k + j|k), Qy(ζ, k + j|k) > + < u(k + j + 1|k), Ru(k + j + 1|k) >

+ < z(ζ, k +N − 1|k), Q̄z(ζ, k +N − 1|k) > (2.46)

Without the loss of generality and with the assumption of observability, the output

terminal penalty term is replaced with the corresponding state penalty operator term.

The issue of how to determine the terminal state penalty term, the operator Q̄,

depends on the nature of the underlying transport-reaction linear model (that is

a parabolic or a hyperbolic PDE system), and whether the system is a stable or

unstable one. In general and in similar way as it is done for stable finite dimensional

systems, the spatial operator Q̄ for the stable PDE model is defined as the infinite

sum Q̄ =
∑∞

i=0A
∗i
d C

∗
dQCdA

i
d. Therefore, the operator Q̄ can be calculated from the
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solution of the following operator discrete Lyapunov function:

A∗
dQ̄Ad − Q̄ = −C∗

dQCd (2.47)

The straightforward algebraic manipulation of the objective function presented in

Eq.2.46 results in the following finite dimensional quadratic optimization problem:

min
U

J = UT < I,H > U + 2UT < I, Pz(ζ, k|k) >

+ < z(ζ, k|k), Q̄z(ζ, k|k) > + < y(ζ, k|k), Qy(ζ, k|k) > (2.48)

where H and P are computed as below:

H =



















D∗

d
QDd + B∗

d
Q̄Bd + R B∗

d
C∗

d
QDd + B∗

d
A∗

d
Q̄Bd · · · B∗

d
A

∗N−3

d
C∗

d
QDd + B∗

d
A

∗N−2

d
Q̄Bd

D∗

d
QCdBd + B∗

d
Q̄AdBd D∗

d
QDd + B∗

d
Q̄Bd + R · · · B∗

d
A

∗N−4

d
C∗

d
QDd + B∗

d
A

∗N−3

d
Q̄Bd

.

.

.

.

.

.
. .
.

.

.

.

D∗

d
QCdA

N−3

d
Bd + B∗

d
Q̄A

N−2

d
Bd D∗

d
QCdA

N−4

d
Bd + B∗

d
Q̄A

N−3

d
Bd · · · D∗

d
QDd + B∗

d
Q̄Bd + R



















P =



















D∗

d
QCd + B∗

d
Q̄Ad

D∗

d
QCdAd + B∗

d
Q̄A2

d

.

.

.

D∗

d
QCdA

N−2

d
+ B∗

d
Q̄A

N−1

d



















The objective function given in Eq.2.48 is subjected to the following constraints:

Umin ≤ U ≤ Umax (2.49)

Y min ≤ SU + Tz(ζ, k|k) ≤ Y max
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One obtains:

















I

−I
S

−S

















U ≤

















Umax

−Umin

Y max − Tz(ζ, k|k)
−Y min + Tz(ζ, k|k)

















where

S =























Dd 0 0 · · · 0

CdBd Dd 0 · · · 0

CdAdBd CdBd Dd · · · 0
...

...
...

. . .
...

CdA
N−3
d Bd CdA

N−4
d Bd CdA

N−5
d Bd · · · Dd























T =























Cd

CdAd

CdA
2
d

...

CdA
N−2
d























In the above case, the constraint is at the output which is taken as the state at ζ = L.

One can also have the constraint at any point within domain at ζ = ζ0. As a result,

the matrix S and T will change by using different discrete operators C̄d and D̄d.

A standard formulation of the quadratic programming problem in Eq.2.48 with

constraints leads to the finite dimensional quadratic programming problem with lin-

ear constraints that can be easily evaluated. This leads to the well known formulation

of the model predictive controller design emerging from the finite dimensional theory,

that if the system is optimizable then the system is stabilizable with satisfaction of

input and state constraints, which is guaranteed under no disturbance conditions.

Remark 3: When the regulator is based on the state, the minimization of the
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following open-loop objective function is considered:

min
uN

J =
N−1
∑

j=0

< z(ζ, k + j|k), Qz(ζ, k + j|k) > + < u(k + j + 1|k), Ru(k + j + 1|k) >

+ < z(ζ, k +N − 1|k), Q̄z(ζ, k +N − 1|k) > (2.50)

the terminal state penalty operator becomes Q̄ =
∑∞

i=0A
∗i
d QA

i
d and can be calculated

from the solution of the following discrete Lyapunov function:

A∗
dQ̄Ad − Q̄ = −Q (2.51)

The operators H, P , S and T are given as follows:

H =

















B∗
dQ̄Bd +R B∗

dA
∗
dQ̄Bd B∗

dA
∗2
d Q̄Bd · · · B∗

dA
∗N−1
d Q̄Bd

B∗
dQ̄AdBd B∗

dQ̄Bd +R B∗
dA

∗
dQ̄Bd · · · B∗

dA
∗N−2
d Q̄Bd

...
...

...
. . .

...

B∗
dQ̄A

N−1
d Bd B∗

dQ̄A
N−2
d Bd B∗

dQ̄A
N−3
d Bd · · · B∗

dQ̄Bd +R

















P =

















B∗
dQ̄Ad

B∗
dQ̄A

2
d

...

B∗
dQ̄A

N
d

















, S =

















Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...

AN−1
d Bd AN−2

d Bd · · · Bd

















, T =

















Ad

A2
d

...

ANd

















2.3.1 Model predictive control for hyperbolic PDE

Discrete Lyapunov Function

The realization of the model predictive controller given in quadratic program Eq.2.48

contains the term Q̄ which is obtained as solution of Eq.2.47 or Eq.2.51. The discrete
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Lyapunov function V (k) of the hyperbolic or parabolic PDE system is defined as

below:

V (k) =< z(ζ, k), Q̄z(ζ, k) >=

∫ L

0

zT (ζ, k)Q̄z(ζ, k)dζ (2.52)

Straightforward algebraic manipulation of the above discrete Lyapunov function be-

tween instances V (k) and V (k + 1) results in the following expression of a discrete

Lyapunov equation:

< z(ζ, k), [A∗
dQ̄Ad − Q̄]z(ζ, k) >= − < z(ζ, k), C∗

dQCdz(ζ, k) > (2.53)

It is known that Ad is the infinitesimal cogenerator of the stable A operator that

generates a stable C0-semigroup T (t) on the Hilbert space H. Therefore, the corre-

sponding power generator in a discrete setting T is power stable if and only if there

exists a positive operator Q̄ ∈ L2(0, 1) such that the expression in Eq.2.53 for Lya-

punov function holds. In other words, the solution Q̄ satisfies the following equation:

A∗
dQ̄Ad − Q̄ = −C∗

dQCd (2.54)

However, one can notice that the operator Q̄ needs to operate on some function which

is also true for the operators Ad and Cd and a solution for Q̄ in Eq.2.54 can not be

directly determined by calculation. The way to calculate the operator Q̄ is to link

the solution of the discrete and continuous Lyapunov equation for the hyperbolic and

parabolic linear transport-reaction PDEs. In particular, it can be demonstrated that

the unique solution of the continuous Lyapunov equation is directly related to the
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discrete one. One can find a unique solution Q̄ of the continuous Lyapunov equation:

A∗Q̄+ Q̄A = −C∗QC (2.55)

and it can be shown that Q̄ is also the solution to the discrete Lyapunov equation

described in Eq.2.54.

One can demonstrate that if the continuous Lyapunov equation A∗Q̄ + Q̄A =

−C∗QC holds, by simple algebraic manipulation one can obtain:

A∗
dQ̄Ad − Q̄ =

√
2δ[δ − A]−1∗[A∗Q̄+ Q̄A]

√
2δ[δ − A]−1

= −
√
2δ[δ − A]−1∗[C∗QC]

√
2δ[δ − A]−1

= −[
√
2δC[δ − A]−1]∗Q[

√
2δC[δ − A]−1]

= −C∗
dQCd

Therefore, by multiplying a spatial function X(ζ) ∈ L2(0, 1) on both sides of the

continuous Lyapunov equation described in Eq.2.55 one obtains:

A∗Q̄X + Q̄AX = −C∗QCX

[v
∂Q̄X

∂ζ
+ ψQ̄X] + Q̄[−v∂X

∂ζ
+ ψX] = −C∗QCX

vQ̄
∂X

∂ζ
+ v

∂Q̄

∂ζ
X + ψQ̄X − vQ̄

∂X

∂ζ
+ ψQ̄X = −C∗QCX

Finally, one can obtain the solution of the continuous Lyapunov equation by obtaining

the analytic solution for the operator Q̄ in the case of a hyperbolic PDE in the
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following equation:

v
∂Q̄

∂ζ
X + 2ψQ̄X = −C∗QCX (2.56)

Q̄ ∈ D(A∗)

In the case when the full state feedback is considered, which implies that the

output operator C is a constant, for example C = 1, then C∗ = C which implies

that one can remove the arbitrary test function X(ζ) on both sides in Eq.2.56. On

the other hand, if C measurement is applied to boundary or point observation, for

example at the exit of the reactor in the case of a hyperbolic PDE system, that is

C(f(ζ)) =
∫ L

0
f(ζ)δ(ζ − L)dζ = f(L), then C∗ is a spatial operator C∗(f(ζ)) =

∫ L

0
f(η)dηδ(ζ − L), that operates on the arbitrary function X(ζ).

Remark 4: In the case of a scalar hyperbolic PDE, it can be shown that the form of

a linear hyperbolic PDE given in this chapter is always stable one, and the issue of

calculating the Q̄ for an unstable PDE system can arise only in the case of a parabolic

PDE.

Simulation Results of Model Predictive Controller design and application

to scalar hyperbolic PDE

In simulation, we choose the output of the tubular reactor to represent the output

operator, that is C(f(ζ)) =
∫ L

0
f(ζ)δ(ζ−L)dζ = f(L), a uniform state weight function

in the Lyapunov function is chosen as Q(ζ) = 5, and the arbitrary function X(ζ) = 1.

By application of the following condition Q̄ ∈ D(A∗), the integration is obtained

by integrating Eq.2.56 from Q̄(ζ = L) = 0 to ζ = 0, see Fig.2.1. To demonstrate

successful application of the model predictive controller, the discretization time h =
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Fig. 2.1: Function Q̄(ζ) obtained as solution of Eq.2.56.

k
0 0.5 1 1.5 2

u
(k

)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Fig. 2.2: Input profile model predictive control law Eq.2.46-Eq.2.49 constructed on
the basis of a discrete time hyperbolic PDE system Eq.2.4 with input and output
constraints (solid line); input constraints are given by (dash-dot line).

0.05 is chosen, which implies that the δ = 40, and dζ = 0.01 is chosen for numerical

integration. The model system parameters are chosen as v = 1, ψ = 0.5, with constant
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spatial function B = 2, Q = 5 and R = 10. The initial condition is z0 = 1− cos(2πζ)

and MPC horizon is 15. The constraints for the input and output/state are given as

−0.08 ≤ u(k) ≤ 0.01 and −0.1 ≤ y(k) ≤ 0.7.

k
0 0.5 1 1.5 2 2.5 3

y(
k)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Open-loop
MPC

Fig. 2.3: Comparison between the profile of a closed-loop system under the implemen-
tation of the model predictive control law Eq.2.46-Eq.2.49 constructed on the discrete
time hyperbolic PDE system Eq.2.4 with input and output constraints (solid line) and
the profile of an open-loop system (dashed line); output constraints (dash-dot line).

The controller performance can be evaluated in Fig.2.3-2.4, and the corresponding

control input is given in Fig.2.2. Fig.2.3 provides a comparison of outputs y(k)

evolution with and without MPC control applied. The state z(ζ, k) with MPC is

shown in Fig.2.4.
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Fig. 2.4: State profile evolution under the applied model predictive control law
Eq.2.46-Eq.2.49 constructed on the basis of the discrete time hyperbolic PDE sys-
tem Eq.2.4 with input and output constraints.

2.3.2 Model predictive control for parabolic PDE

Discrete Lyapunov Function

In the previous section it has been demonstrated how one can calculate the terminal

penalty operator Q̄ in the case of a hyperbolic system. However, when it comes

to parabolic systems the calculation of Q̄ can not be completed in analytic sense.

It can be shown that the solution of a discrete Lyapunov equation A∗
dQ̄Ad − Q̄ =

−C∗
dQCd can be obtained by solving a continuous Lyapunov equation A∗Q̄ + Q̄A =

−C∗QC. The continuous Lyapunov equation of parabolic PDE system is consider in

the following inner product form [38]:

< Az1, Q̄z2 > + < Q̄z1, Az2 >= − < Cz1, QCz2 > (2.57)
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where z1, z2 ∈ D(A). Let us take z1 = φn and z1 = φm, where φi represent normalized

eigenfunctions of the parabolic linear operator A. Defining the operator Q̄nm =<

φn, Q̄φm >, one can obtain:

< Aφn, Q̄φm > + < Q̄φn, Aφm >= − < Cφn, QCφm > (2.58)

With Aφn = λnφn, the above equation becomes:

λnQ̄nm + λmQ̄nm = − < Cφn, QCφm > (2.59)

then,

Q̄nm = −< Cφn, QCφm >

λn + λm
(2.60)

Finally, one can obtain the operator Q̄ as a solution of continuous Lyapunov

equation by calculating the following equation:

Q̄(·) =
∞
∑

n=0

∞
∑

m=0

Q̄nm < ·, φm > φn (2.61)

=
∞
∑

n=0

∞
∑

m=0

−< Cφn, QCφm >

λn + λm
< ·, φm > φn

If the operator C is a constant spatial function, then Q̄nm = −C2<φn,Qφm>
λn+λm

. Since

< φn, Qφm >= δnm, when n 6= m, Q̄nm = 0, thus, Q̄nn = −C2<φn,Qφn>
2λn

, the expression

for the operator Q̄ simplifies to:

Q̄(·) =
∞
∑

n=0

−C
2 < φn, Qφn >

2λn
< ·, φn > φn (2.62)
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Stability

The definition of a positive definite operator is that if the inner product< ψ(ζ), Q̄ψ(ζ) >

is nonnegative, the operator Q̄ is a positive definite operator. Here, it can be shown

that the operator Q̄ in Eq.2.62 is a positive definite operator. Let us consider:

< ψ(ζ), Q̄ψ(ζ) >=

∫ 1

0

ψ(ζ)[Q̄ψ(ζ)]dζ (2.63)

=

∫ 1

0

ψ(ζ)[
∞
∑

n=0

−C
2 < φn, Qφn >

2λn
< ψ(η), φn(η) > φn(ζ)]dζ

=
∞
∑

n=0

−C
2 < φn, Qφn >

2λn
< ψ(η), φn(η) > [

∫ 1

0

ψ(ζ)φn(ζ)dζ]

=
∞
∑

n=0

−C
2 < φn, Qφn >

2λn
< ψ(η), φn(η) >< ψ(ζ), φn(ζ) >

=
∞
∑

n=0

−C
2 < φn, Qφn >

2λn
< ψ, φn >

2

Since Q(ζ) is a nonnegative spatial function, then < φn, Qφn >=
∫ 1

0
Q(ζ)φ2

n(ζ)dζ is

nonnegative. And the eigenvalues of the stable operator A are negative λn < 0, thus,

the above inner product is nonnegative which implies that the operator Q̄ is a positive

operator.

If the system is unstable with nonnegative eigenvalues λn ≥ 0, Q̄ is not a positive

definite operator. In order to address the unstable parabolic PDE, one needs to

identify the unstable modes of the continuous linear PDE. The issue to address is

that the unstable modes are associated with nonnegative eigenvalues λn. Therefore,

in order to guarantee stabilization, one needs to employ the stability constraints in

the optimization problem cast as equality constraints. Therefore, if optimization is

feasible, the controller will achieve stabilization by cancelling the unstable modes.
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The corresponding condition is given with the following inner product:

< z(ζ,N), φu >= 0 (2.64)

where φu are the eigenfunctions associated with the nonnegative eigenvalues.

The above equation leads to the following equality constraint expressed as stabi-

lization of unstable modes at the end of the horizon with the feasible input:

[

< AN−1
d Bd, φu > < AN−2

d Bd, φu > · · · < Bd , φu >
]

















u(1)

u(2)
...

u(N)

















(2.65)

= − < ANd z(ζ, 0), φu >

Eq.2.65 needs to be integrated in the constrained convex optimization problem given

by Eqs.2.50-2.51.

Simulation of model predictive controller design and application to scalar

parabolic PDE

Dirichlet Boundary Condition

We consider the case of the Dirichlet boundary condition z(0) = 0 = z(1), and

linear operator A = ∂2

∂ζ2
+ ψ, with ψ being constant. The operator A has eigenvalues

λn = −n2π2 + ψ which determine stability of the system and associated eigenvectors

φn(z) =
√
2sin(nπz), n ≥ 1. In the case when ψ < π2, which implies that the λ < 0,

the parabolic system with the Dirichlet boundary condition is stable, see Fig.2.5. The

application of the model predictive controller leads to the faster convergence to the
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Fig. 2.5: Evolution of the state profile of an open-loop parabolic PDE system Eq.2.4
with Dirichlet boundary conditions.
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Fig. 2.6: Evolution of the state profile when the model predictive control law Eq.2.50
is applied with the Dirichlet boundary condition and input and state constraints.

stable steady state with satisfaction of the input and state constraints, see Fig.2.6-2.7-

2.8. In simulation, the system parameters are ψ = 5, while the actuation distribution
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function is given as B = 0 (0 < ζ < 0.4 & 0.6 < ζ < 1) and B = 1 (0.4 < ζ < 0.6),

Q = 5 and R = 0.01. Initial condition is z0 = −(ζ − 0.5)2 + 0.52, and h = 0.05, with

MPC horizon 5. The value of the terminal penalty is calculated by accounting for 5

eigenmodes, that is n = m = 5. The constraints on the input and the state are given

as −0.16 ≤ u(k) ≤ 0 and 0 ≤ z(0.5, k) ≤ 0.3.

k
0 0.05 0.1 0.15 0.2 0.25 0.3

u
(k

)

-0.2

-0.15

-0.1

-0.05

0

0.05

Fig. 2.7: Input profile evolution under the model predictive control law Eq.2.50 ap-
plied with the Dirichlet boundary condition, input and state constraints. (solid line);
input constraints (dash-dot line).

Neumann Boundary Condition

The Neumann boundary condition ∂z(0)
∂ζ

= 0 = ∂z(1)
∂ζ

, with the linear operator A =

∂2

∂ζ2
+ ψ is considered. The operator A has eigenvalues λn = −n2π2 + ψ, n ≥ 0

and eigenvectors φn(z) =
√
2cos(nπz), n ≥ 1, φ0(z) = 1. When ψ ≥ 0, λ0 ≥ 0,

the parabolic system with Neumann Boundary Condition is unstable, see Fig.2.9.

The application of MPC control law leads to simultaneous stabilization, input and

stat/output constraints satisfaction providing that optimization is feasible, see 2.10-

51



k
0 0.05 0.1 0.15 0.2 0.25 0.3

z(
ζ=

0
.5

,k
)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Open-loop
MPC

Fig. 2.8: Comparison among profiles of the closed-loop system under the implemen-
tation of the model predictive control law Eq.2.50 constructed as a discrete time
parabolic PDE system in Eq.2.4 with the Dirichlet boundary condition and input
and state constraints (solid line) and open-loop system profile (dashed line); state
constraints (dash-dot line).

2.11-2.12. In simulation studies, the system parameters are ψ = 2, B = 0 (0 <

ζ < 0.4 & 0.6 < ζ < 1) and B = 1 (0.4 < ζ < 0.6), Q = 5 and R = 0.01. The

initial condition is z0 = −(ζ − 0.5)2 + 0.52, h = 0.01 and the MPC horizon is 5. The

value of the terminal penalty is calculated by accounting for 10 eigenmodes, that is

n = m = 10. Since, the case of unstable PDE is considered, the first eigenmode is

used in the stabilizing condition given by Eq.2.65. The constraints for the input and

the state are −3 ≤ u(k) ≤ 1 and −0.05 ≤ z(0.5, k) ≤ 0.3.

It can be noticed that the model predictive control law for the infinite dimensional

system achieves the input and state constraints satisfaction since the state evolution is

exactly at the state constraint, see Fig.2.11. This confirms the previous findings in [56,

15] in which the model predictive control was realized on the basis of an approximate
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Fig. 2.9: The evolution of state profile of the open-loop parabolic PDE system Eq.2.4
with the Neumann boundary condition.
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Fig. 2.10: The evolution of the state profile under the model predictive control law
Eq.2.50 constructed using discrete time parabolic PDE system Eq.2.4 with the Neu-
mann boundary condition and input and state constraints.
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Fig. 2.11: Input evolution profile under the model predictive control law Eq.2.50
constructed using discrete time parabolic PDE system Eq.2.4 with the Neumann
boundary condition and input and state constraints (solid line); input constraints
(dash-dot line).

model obtained by the Galerkin method with the PDE state constraints considered

and realized as slack variables in the model predictive control law. Contrary to any

previous published case where a linear PDE model is approximated with some type

of the spatial discretization, the proposed model predictive control law for single

scalar transport equation leads to an easy realizable constrained control algorithm

formulation which is not more complex than one when algorithms are dealing with

the scalar finite dimensional models.

2.4 Summary

In summary, finite dimensional and computationally realizable model predictive con-

trol algorithms are developed in this chapter for a class of linear transport-reaction

systems with consideration of input and state constraints arising in the context of a
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Fig. 2.12: The comparison between profiles of closed-loop system under the imple-
mentation of the model predictive control law Eq.2.50 constructed using discrete time
parabolic PDE system Eq.2.4 with the Neumann boundary condition and input and
state constraints (solid line) and profile of open-loop system (dashed line); state con-
straints (dash-dot line).

plug flow reactor and/or an axial dispersion reactor model. The dimensionless mod-

els described by hyperbolic PDE and/or parabolic PDE are explored and an exact

time discretization algorithm is applied by introducing the Cayley-Tustin transform.

The proposed discretization exactly maps from a continuous to a discrete infinite

dimensional counterpart of the hyperbolic or parabolic PDE, and also preserves sta-

bility, controllability and observability properties of the system. The model predictive

control formulation is developed in the inner product setting to account for the spa-

tial nature of the problem, and various discrete models of hyperbolic PDE and/or

parabolic PDE with different boundary conditions (Dirichlet, Neumann and Robin)

are developed and used in the construction of the performance objective function,

input and state constraints. Finally, the model predictive control laws are applied

and if optimization is feasible, the controllers achieve the control objectives which are
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demonstrated via simulation studies. An important issue of stabilization in the case

of linear unstable systems is addressed by the application of the terminal penalty

condition. The following framework can be easily extended to the systems of lin-

ear parabolic and/or hyperbolic problems, and to the class of second order hyper-

bolic systems that model wave propagation phenomena, or more complex models of

Kuramoto-Sivashinsky, Ginzburg Landau equations with boundary or/and in domain

actuation or observation.
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Chapter 3

Modelling and Control of Solar

Thermal System with Borehole

Seasonal Storage

3.1 Introduction

The modelling and control of the solar thermal system with borehole seasonal storage

is motivated by the need for accurate modelling and analysis of the state of the art

community development of the Drake Landing Solar Community (DLSC) in Okotoks,

Alberta, Canada [69]. The DLSC contains 52 energy-efficient houses with an inno-

vative heating system which includes a solar thermal power plant, borehole thermal

energy storage system (BTES), short term thermal storage system (STTS) and a

district heating loop system. Solar thermal energy is collected through roof mounted

plate collectors. A heat transfer fluid containing a high concentration of glycol is used

to collect solar energy. The energy collected by the glycol loop is transferred to STTS
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[73, 74, 75, 76].

The energy collected by a solar thermal plant system is sent to the STTS through

heat exchanger. The dynamics of the heat exchanger system is distributed in nature

and is modelled by the transport thermal distributed parameter system [77]. The

energy from the solar thermal system is transferred to the heat exchanger system

through the boundary and the counter-current flows exchange the energy, therefore,

the boundary controlled system realization is considered in the modelling of the heat

exchanger system.

The BTES uses a grid of boreholes with U-tube heat exchangers to preserve energy

as a long-term storage device in the overall system. To fulfill energy requirements in

different seasons, the BTES saves energy during the summer months by transferring

available thermal energy to the ground and provides energy from the ground during

the heating season. The energy balance and dynamics of the BTES is modelled as

a transport thermal distributed parameter system [78, 79]. In particular, when it

comes to the BTES, environmental temperature fluctuations make a possible sources

of disturbances to the BTES system and may affect the time evolution of the model.

In the STTS, water-filled storage tanks act as a thermal buffer between the solar

thermal plant system and the district heating loop system [70]. During the summer

months, the hot tank utilizes thermal energy from the solar plant. When the tem-

perature of the hot tank rises above the set-point, thermal energy from the hot tank

is transferred to the BTES system. During the heating season, the hot tank charges

thermal energy from both the solar plant and the BTES. Finally, the collected energy

of the STTS is sent to a district heating loop system.

In order to heat the energy efficient homes in the district heating loop system,

a backup gas boiler is provided to insure that heat is available to each and every
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home at all times. One important performance specification is to heat homes to

the prespecified temperature (which may fluctuate with seasonal changes in tempera-

ture), and therefore a controller for the natural gas boiler system is designed to track

the desired temperature set-point. The temperature regulation of the solar thermal

system with borehole seasonal storage is characterized by many uncertainties, such

as environmental changes, occupancy status changes, and changes in the operating

conditions of equipment in the building. Therefore, control systems play an impor-

tant role in maintaining the performance of the systems in the presence of possible

uncertainties and disturbances. The ultimate performance goal is that the proposed

controller maintains the temperature at a desired set point and keeps the integrity of

the energy demands in the district heating loop system.

Servo controller design is a well-know strategy that computes the required input

which asymptotically attenuates error between the output and a reference trajectory

or set point to zero [24, 25]. One of the advantages of a servo controller is that it can

account for disturbances which may affect the process. We propose a servo control

system design for the solar thermal system regulation with borehole seasonal storage,

which takes into account measurable disturbances, such as changes in ambient tem-

perature and disturbance predictions, such as weather forecast that may potentially

assist in the prediction of the availability of the different energy sources.

From the literature review, most of the modelling of subsystems, such as solar

thermal energy system [72], heat exchanger system [77], and BTES system [78, 79]

are continuous and distributed in nature. In this chapter, in order to realize ac-

curate modelling of the subsystems and to design a practical and usable controller,

discrete models of the subsystems and a discrete controller design are developed.

We utilize Cayley-Tustin time discretization which preserves the infinite-dimensional

60



nature of the distributed parameter system [19]. This transformation preserves the

energy equality among the continuous and discrete model which provides a discrete

model for controller design and frequency analysis. Other model reduction technique,

such as explicit Euler discretization may potentially transfer the stable continuous

system into unstable discrete system or require small time steps for approximation.

This proposed discretization transforms the system from a continuous to a discrete

state space setting without spatial discretization and/or any other type of spatial

approximation of the distributed parameter system. In this chapter, according to

the energy balance conservation laws, the processes in solar thermal system with

borehole seasonal storage are modelled using ordinary differential equations (ODEs),

hyperbolic partial differential equations (PDEs) or coupled PDEs-ODEs equations.

In particular, by application of Cayley-Tustin time discretization we maintain the

low dimensionality of the overall discrete model. The discrete representation of cou-

pled partial and ordinary differential equations does not include any high order plant

representation, which is contrary to the previous proposed methods [5]. In addition,

a discrete infinite-dimensional representation of the system realized in this chapter

provides an insight into frequency response of the subsystems and that of the overall

plant. This is of importance, since all well known frequency analysis methods and

controller synthesis can be easily applied, and one can obtain appropriate engineering

insight into plant operation. Finally, the controller designed for the servo problem is

a discrete controller which can be easily realized and implemented in practice.

The chapter is organized as follows: section 3.2 introduces the Cayley-Tustin time

discretization. In section 3.3, we address the model of the solar thermal system with

borehole seasonal storage and discretize the subsystems of the overall plant. Section

3.4 provides the servo controller design and the analysis of the system frequency
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response. Finally, we demonstrate the performance of the servo control formulations

built in previous section through simulation studies.

3.2 Time Discretization for Linear System

According to the energy balance, the processes in the solar thermal system with

borehole seasonal storage can be modelled by ordinary differential equations (ODEs),

hyperbolic partial differential equations (PDEs) and/or coupled PDEs-ODEs equa-

tions. In other words, the overall system contains internally coupled linear finite

and infinite dimensional systems, see Fig.3.2. The Cayley-Tustin time discretization

method is applied to obtain a discrete model version which provides an insight into

the subsystem’s performance and overall dynamical behaviour of the system.

3.2.1 Time Discretization for Linear Infinite-dimensional Sys-

tem

In this section, we introduce the time discretization called the Cayley-Tustin transfor-

mation of continuous time systems to discrete time systems [19]. The linear infinite-

dimensional system is described by the following state space sy-stem:

ẋ(ζ, t) = Ax(ζ, t) + Bu(t), x(ζ, 0) = x0 (3.1)

y(t) = Cx(ζ, t) +Du(t)

where the following assumptions hold: the state x(ζ, t) ∈ H ⊕Rn, H is a real Hilbert

space with inner product < · , · > and Rn is a real space, where n accounts for the

states associated with the lumped parameter system. This state-space representation
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accounts for coupled infinite and finite dimensional systems. The input u(t) ∈ U

and the output y(t) ∈ Y , where U and Y are real Hilbert spaces; operator A :

D(A) ⊂ H → H is the generator of a C0-semigroup on H and has a Yosida extension

operator A−1; B, C and D are linear operators associated with actuation and output

measurement or a direct feed forward element, i.e., B ∈ L(U,H), C ∈ L(H, Y ) and

D ∈ L(U, Y ).

Given the time discretization parameter h > 0, the Tustin time discretization is

given by [62]:

x(jh)− x((j − 1)h)

h
≈ A

x(jh) + x((j − 1)h)

2
+Bu(jh), x(0) = x0

y(jh) ≈ C
x(jh) + x((j − 1)h)

2
+Du(jh) (3.2)

Let uhj /
√
h be the approximation of u(jh) and yhj /

√
h be the approximation of y(jh),

the above set of equations yields the discrete time dynamics:

xhj − xhj−1

h
= A

xhj + xhj−1

2
+B

uhj√
h
, x

(h)
0 = x0 (3.3)

yhj√
h
= C

xhj + xhj−1

2
+D

uhj√
h

After some basic manipulation, the discrete system takes the following form:

x(ζ, k) = Adx(ζ, k − 1) + Bdu(k), x(ζ, 0) = x0 (3.4)

y(k) = Cdx(ζ, k − 1) +Ddu(k)

where δ = 2/h, Ad, Bd, Cd and Dd are discrete time linear system operators, given
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by:





Ad Bd

Cd Dd



 =





[δ − A]−1[δ + A]
√
2δ[δ − A−1]

−1B
√
2δC[δ − A]−1 G(δ)



 (3.5)

where G(δ) denotes the transfer function of the system from input to the output and

it is defined as G(δ) = C[δ − A−1]
−1B +D.

In the most general case, Eq.3.1 can be extended by introducing the affine distur-

bance input, which leads to the following form:

ẋ(ζ, t) = Ax(ζ, t) + Bu(t) + Ed(t), x(ζ, 0) = x0 (3.6)

y(t) = Cx(ζ, t) +Du(t) + Fd(t)

where E ∈ L(Rn, H) and F ∈ L(Rn, Y ) are linear operators. The corresponding

discrete operators are Ed =
√
2δ[δ − A−1]

−1E and Fd = C[δ − A−1]
−1E + F .

Remark 1: Discrete operator Ad can be expressed as Ad = [δ − A]−1[δ + A] =

−I + 2δ[δ − A]−1, here I is the identity operator.

Proof: In order to demonstrate the results in Remark 1, one can show that:

Ad(·) = [δ − A]−1[δ + A](·)

= δ+A
δ−A(·)

= [−I + 2δ
δ−A ](·)

= [−I + 2δ[δ − A]−1](·)

Remark 2: The Cayley-Tustin transform maps infinite-dimensional system from

continuous time to discrete time without spatial approximation. The novelty of using
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Cayley-Tustin time discretization is that this implicit method can be applied freely

with larger time steps for time integration compared to the explicit methods, such as

explicit Euler and/or Runge-Kutta method.

In the next section, we apply the Cayley-Tustin discretization described above to

the solar thermal system with borehole seasonal storage.

3.3 Model Formulation and Time Discretization

3.3.1 Overview of Solar Thermal System with Borehole Sea-

sonal Storage

The solar thermal system with borehole seasonal storage modelled in this chapter uses

the solar thermal system, heat exchanger, BTES system, STTS system, natural gas

system and the district heating loop system, see Fig.3.2. The thermal energy transfers

from the solar thermal system to the STTS system through a heat exchanger. The

BTES system stores thermal energy to the STTS system directly. Then, the STTS

system provides thermal energy to district the heating loop system. Finally, the inlet

to the district heating loop system is maintained at a reference temperature through

the control of the natural gas system.

In this chapter, the solar thermal system and the BTES system are described

by coupled PDEs-ODEs equations. The contraflow heat exchanger is modelled by

a series of first order hyperbolic PDES with consideration of boundary inputs. The

STTS system and the natural gas system are represented by ODE equations. In this

section, we introduce the modelling of these subsystems and discretize the subsystems

with the Cayley-Tustin method described above.
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Fig. 3.2: Diagram of the solar thermal system with borehole seasonal storage: so-
lar collector system (solar); borehole thermal energy storage system (BTES); heat
exchanger system (HX); hot tank system (HT); cold tank system (CT); natural gas
system (Gas); district heating loop system (District).

Remark 3: The system modelling in this chapter does not consider irreversible

processes in thermal dynamic system representation. The time discretization of the

closed-loop system has no modelling error associated with spatial domain discretiza-

tion since Cayley-Tustin transformation preserves system energy.

3.3.2 Solar Thermal Energy System

The solar thermal energy system uses a plate collector to focus solar radiation onto

the absorber pipe [72]. The energy balance of the flow in the solar collector is given

as follows:

ρglCpglssolar
∂Tsolar
∂t

= −CpglFsolar
∂Tsolar
∂ζ

+ hppA(TA − Tsolar) (3.7)

and the energy balance of the absorber is:

ρACpAsA
dTA
dt

= hppA(Tsolar−in − TA) +Qsolarw (3.8)
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The description of the system variables is shown in Table.3.1.

One can apply appropriate non-dimensional transformation of Eq.3.7-3.8, so that

the following states x1 = Tsolar−Tr
Tr

, x2 = TA−Tr
Tr

, and input u1 = Qsolar

Qr
are obtained.

Here Tr is the reference temperature and Qr is the reference heat flux. The parameters

of the system are α1 = Fsolar

ρglssolar
, β1 = hppA

ρglCpglssolar
, β2 = hppA

ρACpAsA
and γ1 = Qrw

ρACpAsATr
.

Therefore, the solar collector system can be described by the following coupled PDE

and ODE system:

∂x1
∂t

= −α1
∂x1
∂ζ

+ β1(x2 − x1) (3.9)

dx2
dt

= β2(x1in − x2) + γ1u1

y1(t) = x1(L, t)

By considering steady state conditions, one can obtain the following linear system

by applying x1(ζ, t) = x1ss(ζ) + x̃1(ζ, t), x2(ζ, t) = x2ss(ζ) + x̃2(ζ, t), and u1(t) =

u1ss + ũ1(t):

∂x̃1
∂t

= −α1
∂x̃1
∂ζ

+ β1(x̃2 − x̃1), x̃1in = x̃1(0, t) (3.10)

dx̃2
dt

= β2(x̃1in − x̃2) + γ1ũ1

ỹ1(t) = x̃1(L, t)

and we assume x1(0, t) operates around steady state, thus x̃1in = x̃1(0, t) = 0.

The discrete system can be obtained by using the time discretization method

described in Eq.3.4-3.5. According to Eq.3.4, the resolvent of the system is calculated

by using Laplace transform and the following representation: X1(ζ, t) =





x̃1(ζ, t)

x̃2(t)



,
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U1(t) = ũ1(t), A1 =





−α1
∂
∂ζ

− β1 β1

0 −β2



, B1 =





0

γ1



 and C1 =
[

C 0
]

, here

the operator C[f(ζ)] =
∫ L

0
f(ζ)δ(ζ − L)dζ = f(L). Thus, the solar collector system

can be expressed as:

Ẋ1(t) = A1X1(t) + B1U1(t) (3.11)

Y1(t) = C1X1(t)

From Eq.3.11, one can obtain the Laplace transformation with the mild assumption

that α1 = 1 (in general even α1(ζ) can be considered):

sx̃1(ζ, s)− x̃1(ζ, 0) = −∂x̃1(ζ, s)
∂ζ

+ β1[x̃2(s)− x̃1(ζ, s)] (3.12)

sx̃2(s)− x̃2(0) = −β2x̃2(s)

Solving the above set of equations, the resolvent of the operator A1 is expressed as:

R(s, A1) = [sI − A1]
−1X1(ζ, 0) =





R11 R12

R21 R22



X1(ζ, 0) (3.13)

where R11 =
∫ ζ

0
(·)e

∫ η
0 (s+β1)dφdηe−

∫ ζ
0 (s+β1)dφ,

R12 =
β1
s+β2

∫ ζ

0
(·)e

∫ η
0 (s+β1)dφdηe−

∫ ζ
0 (s+β1)dφ, R21 = 0 and R22 =

1
s+β2

.

Finally, the discrete system can be expressed as:

X1(k) = Ad1X1(k − 1) + Bd1U1(k) (3.14)

Y1(k) = Cd1X1(k − 1) +Dd1U1(k)
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here, the discrete operators Ad1, Bd1, Cd1 and Dd1 are given directly as follows:

Ad1(·) = [−I + 2δ[δ − A1]
−1](·) =





Ad1−11 Ad1−12

Ad1−21 Ad1−22



 (·)

where Ad1−11 = −(·) + 2δ
∫ ζ

0
(·)e

∫ η
0 (δ+β1)dφdηe−

∫ ζ
0 (δ+β1)dφ,

Ad1−12 =
2δβ1
δ+β2

∫ ζ

0
(·)e

∫ η
0 (δ+β1)dφdηe−

∫ ζ
0 (δ+β1)dφ, Ad1−21 = 0, and Ad1−22 =

−(·) + 2δ
δ+β2

(·), while the discrete input operator is:

Bd1 =
√
2δ[δ − A1]

−1B1 =





Bd1−1

Bd1−2





where Bd1−1 =
√
2δβ1
δ+β2

∫ ζ

0
γ1e

∫ η
0 (δ+β1)dφdηe−

∫ ζ
0 (δ+β1)dφ and Bd1−2 =

√
2δ

δ+β2
γ1. The output

operator,

Cd1(·) =
√
2δC1[δ − A1]

−1(·) =
[

Cd1−1 Cd1−2

]

(·)

where Cd1−1 =
√
2δ

∫ L

0
(·)e

∫ η
0 (δ+β1)dφdηe−

∫ L
0 (δ+β1)dφ,

and Cd1−2 =
√
2δβ1
δ+β2

∫ L

0
(·)e

∫ η
0 (δ+β1)dφdηe−

∫ L
0 (δ+β1)dφ, while the feedthrough operator is:

Dd1 = C1[δ − A1]
−1B1 =

β1
δ + β2

∫ L

0

γ1e
∫ η
0 (δ+β1)dφdηe−

∫ L
0 (δ+β1)dφ

3.3.3 Borehole Thermal Energy Storage System

The borehole thermal energy storage system uses a grid of boreholes with U-tube

heat exchangers [79]. The energy balance of the flow in the U-tube heat exchanger is
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Table 3.1: Parameters of the solar system used to model Eq.3.7-3.8.

Variable Unit Description

Tsolar K Flow temperature out of solar system
TA K Temperature of the absorber
Fsolar kg/s Flow rate of the solar system
Cpgl J/kgK Heat capacity of glycol in the solar system
CpA J/kgK Pipe heat capacity
Qsolar W/m2 Solar system heat flux
w m Solar collector width
ρgl kg/m3 Density of hot glycol flow
ρA kg/m3 Density of pipe
ssolar m2 Area of glycol flow
hp W/m2K Convective heat transfer coefficient for

the pipe
pA m Absorber pipe perimeter

given as:

ρH2OCpH2Osborehole
∂Tborehole

∂t
= −CpH2OFborehole

∂Tborehole
∂ζ

+ hwpW (TW − Tborehole)

(3.15)

The energy balance of the pipe wall is:

ρWCpW sW
dTW
dt

= hwpW (Tborehole−in − TW ) +Qboreholew (3.16)

the description of the system variables is shown in Table.3.2.

We consider the following change of variables with states x3 = Tborehole−Tr
Tr

, x4 =

TW−Tr
Tr

, and input u2 = Qborehole

Qr
. The system parameters are α3 = Fborehole

ρH2O
sborehole

, β3 =

hwpW
ρH2O

CpH2O
sborehole

, β4 = hwpW
ρWCpW sW

and γ2 = Qrw
ρWCpW sWTr

. By applying linearization

around the steady state of interest, the BTES system is described by the following
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Table 3.2: Parameters of the borehole thermal energy storage system used to model
Eq.3.15-3.16

Variable Unit Description

Tborehole K Flow temperature out of borehole system
TW K Temperature of the pipe wall
Fborehole kg/s Flow rate of the borehole system
CpH2O J/kgK Heat capacity of water in the borehole system
CpW J/kgK Heat capacity of the pipe wall
Qborehole W/m2 Collected Energy of the borehole system
w m Width of the borehole system
ρH2O kg/m3 Density of hot water flow
ρW kg/m3 Density of pipe wall
sborehole m2 Area of water flow
hw W/m2K Convective heat transfer coefficient for the

pipe wall
pW m Pipe wall perimeter

coupled PDE and ODE:

∂x̃3
∂t

= −α3
∂x̃3
∂ζ

+ β3(x̃4 − x̃3), x̃3in = x̃3(0, t) (3.17)

dx̃4
dt

= β4(x̃3in − x̃4) + γ2ũ2

ỹ2(t) = x̃3(L, t)

and we assume that x3(0, t) operates around the steady state of interest, thus x̃3in =

x̃3(0, t) = 0. By considering X2(ζ, t) =





x̃3(ζ, t)

x̃4(t)



, U2(t) = ũ2(t),

A2 =





−α3
∂
∂ζ

− β3 β3

0 −β4



, B2 =





0

γ2



 and C2 =
[

C 0
]

, here operator
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C[f(ζ)] =
∫ L

0
f(ζ)δ(ζ −L)dζ = f(L). Finally, the BTES system can be expressed as:

Ẋ2(t) = A2X2(t) + B2U2(t) (3.18)

Y2(t) = C2X2(t)

and discrete system can be expressed as:

X2(k) = Ad2X2(k − 1) + Bd2U2(k) (3.19)

Y2(k) = Cd2X2(k − 1) +Dd2U2(k)

The model of BTES system is similar to the model of the solar collector system,

thus, the expression of a discrete BTES system is similar to the solar thermal energy

system with different parameters.

3.3.4 System of Heat Exchanger

The heat exchanger in the solar thermal system is a counter-current heat exchanger

which is modelled by a set of coupled first-order hyperbolic partial differential equa-

tions [77]. Despite the non-linearity of the controlled system, an explicit charac-

terization of the equilibrium profiles can be given. As a consequence, the linearized

system around an equilibrium profile is obtained as a linear infinite dimensional time-

invariant system.

According to the heat exchange balance, we obtain the following differential equa-

tions for the heat exchanger HX-1:

∂THX−11(ζ, t)

∂t
=
FHX−11

ρgls1

∂THX−11(ζ, t)

∂ζ
− kl

Cpglρgls1
[THX−11(ζ, t)− THX−12(ζ, t)](3.20)
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∂THX−12(ζ, t)

∂t
= −FHX−12

ρH2Os2

∂THX−12(ζ, t)

∂ζ
+

kl

CpH2OρH2Os2
[THX−11(ζ, t)− THX−12(ζ, t)]

the description of the system variables is shown in Table.3.3.

Table 3.3: Parameters of heat exchanger HX-1 used to model Eq.3.20

Variable Unit Description

THX−11(ζ, t) K Temperature of hot flow in the HX-1
system

THX−12(ζ, t) K Temperature of cold flow in the HX-1
system

THX−11(L, t) =
Tsolarin

K Temperature of hot flow into the HX-1
system

THX−11(0, t) = Tsolar K Temperature of hot flow out of the
HX-1 system

THX−12(L, t) =
THT−1

K Temperature of cold flow out of the
HX-1 system

THX−12(0, t) =
TCT−1

K Temperature of cold flow into the HX-
1 system

FHX−11 = Fsolar kg/s Flow rate of hot flow into the HX-1
system

FHX−12 = FHX−1 kg/s Flow rate of cold flow into the HX-1
system

k W/m2K Exchange coefficient
l = 2πr2 m Contact circumference of the ex-

changer
s1 = π(r21 − r22),r1 >
r2

m2 Area of hot flow

s2 = πr22 m2 Area of cold flow

The change of variables leads to the states given as x5 = THX−11−Tr
Tr

and x6 =

THX−12−Tr
Tr

, input u3 =
FHX−12

Fr
, and parameters F1 =

FHX−11

Fr
, α5 =

Fr

ρgls1
, β5 =

kl
Cpglρgls1

,

α6 =
Fr

ρH2O
s2

and β6 =
kl

CpH2O
ρH2O

s2
. The linearized heat exchanger system is described
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by the following hyperbolic PDEs:

∂x̃5(ζ, t)

∂t
= α5F1

∂x̃5(ζ, t)

∂ζ
− β5[x̃5(ζ, t)− x̃6(ζ, t)] (3.21)

∂x̃6(ζ, t)

∂t
= −α6u3(t)

∂x̃6(ζ, t)

∂ζ
+ β6[x̃5(ζ, t)− x̃6(ζ, t)]− α6ũ3(t)

dx6ss(ζ)

dζ

ỹ6(t) = z6(L, t) + B6(L)x̃6(0, t)

It is important to note that the linearized system around an equilibrium point is

governed by the above equations with u3(t) replaced by u3ss.

The heat exchanger transfers the energy from the solar system to the hot tank

system, the flow into the state x5 is the flow out of the solar system which enters the

heat exchanger at ζ = L, thus, x̃5(L, t) = x̃1(L, t), see Fig.3.2. The flow into the heat

exchanger state x6 at ζ = 0 is the flow out of the cold tank system. Since the cold

tank is at the reference temperature, one can obtain x̃6(0, t) = 0.

Since the heat exchanger system is potentially exposed to boundary disturbances,

the boundary conditions need to be adequately considered in this coupled hyperbolic

PDEs system. In the ensuing section, we accurately account for boundary influence

and transfer the boundary applied disturbance to the in-domain disturbance.

The standard methodology to accurately account for transfer of boundary ac-

tuation to in-domain is to apply state transformation. Let x̃5(ζ, t) = z5(ζ, t) +

B5(ζ)x̃5(L, t), then z5(L, t) = 0, B5(L) = 1, x̃6(ζ, t) = z6(ζ, t) + B6(ζ)x̃6(0, t), then

z6(0, t) = 0, B6(0) = 1. With the assumptions α5F1 = 1, α6u3ss = 1, γ3 = α6
dx6ss(ζ)

dζ
,

the above system becomes:

∂z5(ζ, t)

∂t
=
∂z5(ζ, t)

∂ζ
− β5[z5(ζ, t)− z6(ζ, t)]− B5(ζ)

∂x̃5(L, t)

∂t
(3.22)
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+[
∂B5(ζ)

∂ζ
− β5B5(ζ)]x̃5(L, t) + β5B6(ζ)x̃6(0, t)

∂z6(ζ, t)

∂t
= −∂z6(ζ, t)

∂ζ
+ β6[z5(ζ, t)− z6(ζ, t)]− B6(ζ)

∂x̃6(0, t)

∂t

−[
∂B6(ζ)

∂ζ
+ β6B6(ζ)]x̃6(0, t) + β6B5(ζ)x̃5(L, t)− γ3ũ3(t)

With the assumption ∂B5(ζ)
∂ζ

− β5B5(ζ) = 0 and ∂B6(ζ)
∂ζ

+ β6B6(ζ) = 0, one can obtain

the analytic expressions of B5(ζ) and B6(ζ). Finally, the extended system can be

expressed as follows:

∂

∂t

















z5(ζ, t)

z6(ζ, t)

x̃5(L, t)

x̃6(0, t)

















=

















∂
∂ζ

− β5 β5 0 β5B6(ζ)

β6 − ∂
∂ζ

− β6 β6B5(ζ) 0

0 0 0 0

0 0 0 0

































z5(ζ, t)

z6(ζ, t)

x̃5(L, t)

x̃6(0, t)

















+

















−B5(ζ) 0

0 −B6(ζ)

1 0

0 1





















x̄5(L, t)

x̄6(0, t)



+

















0

−γ3
0

0

















ũ3(t) (3.23)

ỹ6(t) =
[

0 C 0 B6(L)
]

















z5(ζ, t)

z6(ζ, t)

x̃5(L, t)

x̃6(0, t)

















where x̄5(L, t) =
∂x̃5(L,t)

∂t
, x̄6(0, t) =

∂x̃6(0,t)
∂t

and the operator C[f(ζ)] =
∫ L

0
f(ζ)δ(ζ −

L)dζ = f(L).

We define extended state to be Z3 =
[

z5(ζ, t) z6(ζ, t) x̃5(L, t) x̃6(0, t)
]T

,
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then, the above system can be expressed as:

Ż3(t) = Az3Z3(t) + Bz3U3(t) + Ez3G3(t) (3.24)

Y3(t) = Cz3Z3(t)

By applying Laplace transform with the boundary conditions z5(1, s) = 0 and z6(0, s) =

0, the resolvent of the operator Az3 can be expressed as follows:

R(s, Az3) = [sI − Az3]
−1Z3(ζ, 0) =

















R11 R12 R13 R14

R21 R22 R23 R24

0 0 R33 0

0 0 0 R44

















Z3(ζ, 0) (3.25)

where

R11 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))](·)dη

−
∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η)) + cea(ζ−η)sinh(b(ζ − η))](·)dη

R12 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β5

b
ea(1−η)sinh(b(1− η))(·)dη

−
∫ ζ

0

β5

b
ea(ζ−η)sinh(b(ζ − η))(·)dη

R21 =
β6
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))](·)dη

−
∫ ζ

0

β6

b
ea(ζ−η)sinh(b(ζ − η))(·)dη

R22 =
β6
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β5

b
ea(1−η)sinh(b(1− η))(·)dη

+

∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η))− cea(ζ−η)sinh(b(ζ − η))](·)dη
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R13 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β5

b
ea(1−η)sinh(b(1− η))β6B5(η)

1

s
(·)dη

−
∫ ζ

0

β5

b
ea(ζ−η)sinh(b(ζ − η))β6B5(η)

1

s
(·)dη

R14 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))]β5B6(η)

1

s
(·)dη

−
∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η)) + cea(ζ−η)sinh(b(ζ − η))]β5B6(η)

1

s
(·)dη

R23 =
β6
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β5

b
ea(1−η)sinh(b(1− η))β6B5(η)

1

s
(·)dη

+

∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η))− cea(ζ−η)sinh(b(ζ − η))]β6B5(η)

1

s
(·)dη

R24 =
β6
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))]β5B6(η)

1

s
(·)dη

−
∫ ζ

0

β6

b
ea(ζ−η)sinh(b(ζ − η))β5B6(η)

1

s
(·)dη

R33 =
1

s
(·)

R44 =
1

s
(·)

with a = β5−β6
2

, b =
√

(β5−β6)2
4

+ s2 + (β5 + β6)s and c = 2s+β5+β6
2b

.

The discrete system is expressed as:

Z3(k) = Adz3Z3(k − 1) + Bdz3U3(k) + Edz3G3(k) (3.26)

Y3(k) = Cdz3Z3(k − 1) +Ddz3U3(k) + Fdz3G3(k)

The discrete operators in the above equation are Adz3(·) = [−I + 2δ[δ − Az3]
−1](·),

Bdz3 =
√
2δ[δ−Az3]

−1Bz3, Cdz3(·) =
√
2δCz3[δ−Az3]

−1(·), Ddz3 = Cz3[δ−Az3]
−1Bz3,

Edz3 =
√
2δ[δ − Az3]

−1Ez3 and Fdz3 = Cz3[δ − Az3]
−1Ez3.

The original states are obtained by the following transform:
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



x̃5(ζ, k)

x̃6(ζ, k)



 =





z5(ζ, k)

z6(ζ, k)



+





B5(ζ)x̃5(L, k)

B6(ζ)x̃6(0, k)



.

3.3.5 Short Term Thermal Storage System

Hot Tank System

The mass balance and energy balance of the hot tank system is modelled by the

following equations [5]:

AHT
dhHT
dt

= FHT−1 + FHT−2 − FHT−3 (3.27)

ρH2OCpH2OAHT
dhHTTHT

dt
= ρH2OCpH2O[FHX−1THT−1 + FHT−2THT−2 − FHT−3THT ]

where FHT−1 and FHT−2 are flow rates from the heat exchanger system and the BTES

system. FHT−3 is flow rate out of the hot tank and FHT−3 =
1
K1
hHT . The description

of the system variables is shown in Table.3.4.

The following change of variables is considered, states x7 =
hHT

hr
and x8 =

THT−Tr
Tr

,

and inputs u4 = FHT−1

Fr
, u5 = FHT−2

Fr
and u6 = FHT−3

Fr
. Disturbances x8in1 = THT−1−Tr

Tr

and x8in2 = THT−2−Tr
Tr

, and parameter β7 = Fr

hrAHT
, the hot tank system is described

by the following ODEs:

dx7
dt

= β7(u4 + u5 − u6) (3.28)

d[x7(x8 + 1)]

dt
= β7(u4(x8in1 + 1) + u5(x8in2 + 1)− u6(x8 + 1))

y8(t) = x8(t)

One can obtain the linearized system, x7(t) = x7ss+x̃7(t), x8(t) = x8ss+x̃8(t), u4(t) =

u4ss + ũ4(t), u5(t) = u5ss + ũ5(t) and u6(t) =
1
K1
x7(t) =

1
K1

(x7ss + x̃7(t)). The Taylor
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expansion around steady state yields x7(x8+1) ' x7ss(x8ss+1)+x7ssx̃8+(x8ss+1)x̃7

and u6(x8 + 1) = 1
K1
x7(x8 + 1), so the system becomes:

dx̃7(t)

dt
= β7[ũ4(t) + ũ7(t)−

1

K1

x̃7(t)] (3.29)

dx̃8(t)

dt
=

β7
x7ss

[(x8in1ss − x8ss)ũ4(t) + (x8in2ss − x8ss)ũ5(t)

+u4ssx̃8in1 + u5ssx̃8in2 −
1

K1

x7ssx̃8(t)]

ỹ8(t) = x̃8(t)

The flows which come into the hot tank are from the heat exchanger system

and the borehole thermal energy storage system, see Fig.3.2, thus, we have the

conditions: x̃8in1 = x̃6(L, t) and x̃8in2 = x̃3(L, t). With the representations of

X4(ζ, t) =





x̃7(t)

x̃8(t)



, U4(t) =





ũ4(t)

ũ5(t)



, G4 =





x̃8in1(t)

x̃8in2(t)



, A4 =





− β7
K1

0

0 − β7
K1



,

B4 =





β7 β7
β7(x8in1ss−x8ss)

x7ss

β7(x8in2ss−x8ss)
x7ss



, E4 =





0 0

u4ss u5ss



 and C4 =
[

0 1
]

, the

hot tank system is expressed as:

Ẋ4(t) = A4X4(t) + B4U4(t) + E4G4(t) (3.30)

Y4(t) = C4X4(t)

and the discrete system can be expressed as:

X4(k) = Ad4X4(k − 1) + Bd4U4(k) + Ed4G4(k) (3.31)

Y4(k) = Cd4X4(k − 1) +Dd4U4(k) + Fd4G4(k)
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here Ad4 =







2δ

δ+
β7
K1

− 1 0

0 2δ

δ+
β7
K1

− 1






, Bd4 =

√
2δ







β7

δ+
β7
K1

β7

δ+
β7
K1

β7
x7ss

(x8in1−x8ss)
δ+

β7
K1

β7
x7ss

(x8in2−x8ss)
δ+

β7
K1






,

Cd4 =
√
2δ

[

0 1

δ+
β7
K1

]

, Dd4 =

[

β7
x7ss

(x8in1−x8ss)
δ+

β7
K1

β7
x7ss

(x8in2−x8ss)
δ+

β7
K1

]

,

Ed4 =
√
2δ







0 0

β7u4ss

x7ss(δ+
β7
K1

)

β7u7ss

x7ss(δ+
β7
K1

)






, and Fd4 =

[

β7u4ss

x7ss(δ+
β7
K1

)

β7u7ss

x7ss(δ+
β7
K1

)

]

.

Table 3.4: Parameters of hot tank system used to model Eq.3.27.

Variable Unit Description

hHT m Height of flow in the hot tank
THT−1 =
THX−12(L, t)

K Temperature of hot flow from the HX-1
system

THT−2 = Tborehole K Temperature of hot flow from the borehole
system

THT = Tboilerin K Temperature of hot flow to the natural gas
boiler system

FHT−1 = FHX−1 kg/s Flow rate of hot flow from the HX-1 sys-
tem

FHT−2 = Fborehole kg/s Flow rate of hot flow from the borehole
system

FHT−3 = Fboiler kg/s Flow rate of hot flow to the natural gas
boiler system

AHT m2 Hot tank area

Cold Tank System

In Fig.3.2, the flow coming into the cold tank FCT−1 is from the district heating

loop system. The flows out of the cold tank are linked to the solar thermal system

and the BTES system, which are FCT−2 and FCT−3. Here, we assume that the flow

temperature out of the cold tank is at reference environment temperature, which is
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TCT−2 = TCT−3 = TCT = Tr. Thus, the disturbances to the solar thermal system and

the BTES system are considered as zero. In simulations studies, we do not model the

cold tank system.

3.3.6 Natural Gas Boiler System

The energy balance of the flow in the natural gas boiler system is given as follows:

ρH2OCpH2OVboiler
dTboiler
dt

= CpH2OFboiler(Tboilerin − Tboiler) +Qboilersboiler (3.32)

The description of the system variables is shown in Table.3.5.

Table 3.5: Parameters of the natural gas boiler system used to model Eq.3.32.

Variable Unit Description

Tboiler K Temperature of flow out of the boiler
system

Fboiler kg/s Boiler system flow rate
Vboiler m3 Boiler system flow volum
Qboiler W/m2 Boiler system collected energy
sboiler m2 Boiler system area

Let us consider the following change of variables: state x9(t) = x9(t)−Tr
Tr

, input

u6(t) = Qboiler

Qr
and parameters β9 = Fboiler

ρH2O
Vboiler

and γ6 = QboilersboilerQr

ρH2O
CpH2O

VboilerTr
. The lin-

earized natural gas system is described by the following ODE:

dx̃9(t)

dt
= β9(x̃9in − x̃9(t)) + γ6ũ6(t) (3.33)

ỹ9(t) = x̃9(t)

here, the flow into the natural gas boiler system is the flow out of the hot tank system,
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thus x̃9in = x̃8.

The discrete gas boiler system can be expressed as:

x̃9(k) = Ad5x̃9(k − 1) + Bd5ũ6(k) + Ed5x̃9in(k) (3.34)

ỹ9(k) = Cd5x̃9(k − 1) +Dd5ũ6(k) + Fd5x̃9in(k)

here Ad5 = 2δ
δ+β9

− 1, Bd5 =
√
2δγ6
δ+β9

, Cd5 =
√
2δ

δ+β9
, Dd5 = γ6

δ+β9
, Ed5 =

√
2δβ9
δ+β9

and

Fd5 =
β9
δ+β9

.

3.3.7 District Heating Loop System

The district heating loop system is modelled as a hyperbolic PDE system with the

heat sink Qdistrict:

ρH2OCpH2Osdistrict
∂Tdistrict

∂t
= −CpH2OFdistrict

∂Tdistrict
∂ζ

−Qdistrictw (3.35)

The description of the system variables is shown in Table.3.6.

Table 3.6: Parameters of district heating loop system used to model Eq.3.35.

Variable Unit Description

Tdistrict K Temperature of flow out of the district
system

Fdistrict kg/s Flow rate of the district system
Qdistrict W/m2 Heat flux of the district system
sdistrict m2 Area of water flow
w m District system width

The dimensionless system is obtained by considering the following change of vari-

ables: state x10 = Tdistrict−Tr
Tr

, input u7 = Qdistrict

Qr
, and parameters α10 = Fdistrict

ρH2O
sdistrict
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and γ7 =
wQr

ρH2O
CpH2O

sdistrictTr
. By applying linearization, the district heating loop sys-

tem becomes:

∂x̃10
∂t

= −α10
∂x̃10
∂ζ

− γ7ũ7 (3.36)

ỹ10(t) = x̃10(L, t)

The flow into the district heating loop system is the flow out of the natural gas

boiler system, thus, x̃10(0, t) = x̃9(t). With the consideration of boundary distur-

bance, let x̃10(ζ, t) = z10(ζ, t) + B10(ζ)x̃10(0, t), then z10(0, t) = 0, B10(0) = 1. With

the assumption α10 = 1, the above system becomes:

∂z10(ζ, t)

∂t
= −∂z10(ζ, t)

∂ζ
− B10(ζ)

∂x̃10(0, t)

∂t
− ∂B10(ζ)

∂ζ
x̃10(0, t)− γ7ũ7

ỹ10(t) = z10(L, t) + B10(L)x̃10(0, t) (3.37)

With the assumption ∂B10(ζ)
∂ζ

= 0, one can obtain the constant function B10(ζ) = 1.

The extension of the system can be expressed as follows:

∂

∂t





z10(ζ, t)

x̃10(0, t)



 =





− ∂
∂ζ

0

0 0









z10(ζ, t)

x̃10(0, t)



+





−1

1



 x̄10(0, t) +





−γ7
0



 ũ7(t)

ỹ10(t) =
[

C B10(L)
]





z10(ζ, t)

x̃10(0, t)



 (3.38)

where x̄10(0, t) =
∂x̃10(0,t)

∂t
and the operator C[f(ζ)] =

∫ L

0
f(ζ)δ(ζ − L)dζ = f(L).
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Applying the Laplace transform to the above system, one obtains:





z10(ζ, s)

x̃10(0, s)



 =





R11 0

0 R22









z10(ζ, 0)

x̃10(0, 0)



 (3.39)

where R11 =
∫ ζ

0
(·)e

∫ η
0 sdφdηe−

∫ ζ
0 sdφ and R22 =

1
s
(·).

The discrete system can be expressed as:

Z6(k) = Adz6Z6(k − 1) + Bdz6U6(k) + Edz6G6(k) (3.40)

Y6(k) = Cdz6Z6(k − 1) +Ddz6U6(k) + Fdz6G6(k)

The discrete operators Adz6, Bdz6, Cdz6, Ddz6, Edz6 and Fdz6 can be directly ob-

tained. The original state can be obtained by the transform: x̃10(ζ, k) = z10(ζ, k) +

B10(ζ)x̃10(0, k).

In this section, the discrete state space settings of the solar thermal system, BTES

system, heat exchanger system, STTS system, natural gas boiler system and the

district heating loop system are obtained. In the next section, we design a controller

which maintains the temperature at desired set point, while still fulfilling the energy

demands of the district heating loop.

3.4 Controller Design and System Analysis

Since large disturbances from the solar thermal plant system, borehole thermal energy

storage system or the district heating loop system greatly impact system operation,

the control system plays an important role in maintaining the system’s performance.

In this section, we propose a servo controller design which successfully rejects unde-
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sired disturbances and tracks a reference trajectory or a set point.

One of the important analysis tools of the controlled system performance is given

by the frequency analysis. The core of the frequency analysis is the frequency re-

sponse of the system. In particular, we obtain frequency responses of the subsystems

described in the previous section. The frequency response of the subsystems and units

provides an insight into operational and performance capabilities, and also provides

information on disturbance influence on the overall system’s performance.

3.4.1 Servo Control for Linear Discrete System

The performance of the servo controller design requirement is to maintain desired

temperature of the flow supplied to the district heating loop system and reject dis-

turbances simultaneously. In this chapter, we consider that the system operates

during the heating season. If the solar thermal system and the BTES can not provide

enough thermal energy, a backup natural gas boiler system is provided to ensure the

necessary supply of thermal energy. Therefore, the control strategy of the solar ther-

mal system with borehole seasonal storage is realized by the servo controller design

for the natural gas system, see Fig.3.3.

(z)
G p (z)E5C(z)

B5

+

_

yu2(z)e (z)yr

(z)1u

Fig. 3.3: Block diagram of the closed-loop system for the controller design of the
natural gas system.
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In this section, we design a servo controller for the discrete natural gas system.

According to Eq.3.34, the transfer function of the discrete system can be expressed

as follows:

Gp(z) =
z + 1

(z + β9)z − (z − β9)
(3.41)

realZ

Z imag

Fig. 3.4: Diagram of the pole placement of the controller design

Here, we assume that disturbances from different systems (solar thermal system,

heat exchanger system, BTES and hot tank system) are harmonic function which

model various sources with different frequencies. The servo control problem design is

to track step reference trajectory and reject harmonic disturbances with the frequen-

cies ω1 and ω2. Therefore, the transfer function of the controller contains the family

of poles of functions chosen to be tracked and rejected as disturbance signals, such

that:

C(z) =
α0 + α1z + α2z

2 + α3z
3 + α4z

4 + α5z
5

(z − 1)(z2 − 2 cos(ω1h)z + 1)(z2 − 2 cos(ω2h)z + 1)
(3.42)

here the parameters α0, α1, α2, α3, α4 and α5 are determined to stabilize the following
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characteristic equation:

π(z) = (z − 1)(z2 − 2 cos(ω1h)z + 1)(z2 − 2 cos(ω2h)z + 1)((z + β9)z − (z − β9))

+(α0 + α1z + α2z
2 + α3z

3 + α4z
4 + α5z

5)(γ6(z + 1)) (3.43)

In the ensuing section, we apply a pole placement regulator design for the closed-

loop system. The basic idea of the pole placement regulation is that the controller

design is realized such that all poles of the closed-loop system are placed at prescribed

desired values. Eq.3.43 provides enough design freedom to achieve a pole placement

regulation as desired. In particular, for a discrete system, the poles are assigned

within the unit circle to guarantee the closed-loop system’s stability, see Fig.3.4.

Remark 4: When it comes to the realization of a discrete controller, one needs to

be careful in designing digital discrete state space realization of elements formulated

in the Cayley-Tustin discretization framework. In particular, the appropriate care

is required for application of the algorithm to the nominal discrete plant in the real

time control setting.

3.4.2 System Analysis based on Frequency Response

The frequency response is based on the fact that a linear system can be completely

characterized by its steady-state response to harmonic signals [80, 81]. Therefore, we

can extend these results to discrete infinite and coupled infinite and finite dimensional

systems. Based on frequency response, performance requirements can be expressed

and in addition the evaluation of the effects of noise in the system can be achieved. In

this section, we will explore frequency responses of the discrete subsystems described

above.
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Fig. 3.5: Bode plot for the continuous solar thermal system (solid line), discrete solar
thermal system by Cayley-Tustin discretization with dt = 0.1 (dash line) and discrete
solar thermal system by Cayley-Tustin discretization with dt = 0.05 (dash-dot line).
Vertical solid lines indicate the Nyquist frequencies.

First, let us consider the frequency response of the solar thermal energy system.

The continuous transfer function of the solar thermal energy system is obtained from

Laplace transform as follows:

G1(s) =
Y1(s)

U1(s)
=

β1γ1
(s+ β1)(s+ β2)

[1− e(s+β1)] (3.44)

The variables z and s are related as z = es∆t when the system is mapped

from continuous time domain to discrete time domain. Using Cayley-Tustin time

discretization, the difference approximation corresponds to the series expansion of
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z = es∆t ≈ 1+s∆t
2

1−s∆t
2

, which yields the following expression:

s =
2

∆t

z − 1

z + 1
(3.45)

here ∆t is the sampling period. The discrete transfer function is obtained by replacing

s in G1(s) by the above equation.

The frequency response of the above solar thermal system is plotted in Bode dia-

gram, see Fig.3.5. In this Bode diagram, a comparison between continuous (solid line)

and discrete frequency responses (dash line or dash-dot line) with different sampling

times is given. The Nyquist frequency for two different discretization sampling times

are given as ωN1 = 34.14rad/s(∆t = 0.1) and ωN2 = 62.83rad/s(∆t = 0.05). From

the figures, it can be seen that the magnitude curves are very close for frequencies

that are much smaller than the Nyquist frequency and the phase curves coincide.

This is in agreement with physical plant features that high frequency signals will be

attenuated in the solar thermal plant system. It is obvious that as the sampling time

decreases, the magnitude curve is closer to the magnitude curve of the continuous

system. In addition, if one would consider to apply an output feedback control real-

ization by placing a local gain based controller, the gain margin of the solar thermal

system is 35dB.

The frequency response of the BTES system is similar in nature to the frequency

response of the solar thermal system with different parameters. The continuous trans-

fer function of the BTES is given as follows:

G2(s) =
Y2(s)

U2(s)
=

β3γ2
(s+ β3)(s+ β4)

[1− e(s+β3)] (3.46)

The Bode plot of BTES system is given in Fig.3.6-3.7.
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For the heat exchanger system, the continuous transfer function relates output

x̃6(L, t) to the input x̃5(L, t), and is given as follows:

G3(s) =
x̃6(L, s)

x̃5(L, s)
=

2β6 sinh(b)

2b cosh(b) + (2s+ β5 + β6) sinh(b)
(3.47)

where b =
√

(β5−β6)2
4

+ s2 + (β5 + β6)s. One can directly obtain the discrete transfer

function and frequency response based on the above continuous transfer function of

the system. The Bode plot is also given in Fig.3.6-3.7.

The inlet flows into the hot tank are from the heat exchanger system and the

BTES system. The continuous transfer function from the heat exchanger system

x̃8in1(t) to ỹ4(t) is obtained as follows:

G41(s) =
ỹ4(s)

x̃8in1(s)
=

β7u4ss

x7ss(s+
β7
K1

)
(3.48)

Similarly, the continuous transfer function from x̃8in2(t) in the BTES system to ỹ4(t)

is obtained as follows:

G42(s) =
ỹ4(s)

x̃8in2(s)
=

β7u5ss

x7ss(s+
β7
K1

)
(3.49)

The discrete transfer functions and frequency responses are directly obtained based

on the above continuous transfer functions of the system. The Bode plots of G41 and

G42 are given in Fig.3.6-3.7.

For the natural gas system, the open loop system discrete transfer function is

described in Eq.3.41 and the discrete transfer function of the controller is described

in Eq.3.42. Thus, the discrete transfer function of the close loop system from x̃9in(k)
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to ỹ5(k) is expressed as follows:

G5(z) =
ỹ5(z)

x̃9in(z)
=

β9Gp(z)

1 + γ6Gp(z)C(z)
(3.50)
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The discrete frequency response is obtained from the above discrete close-loop system.

The Bode plot is given in Fig.3.6-3.7.

Finally, the transfer function of the district heating loop system from x̃10(0, t) to

ỹ6(t) is obtained as follows:

G6(s) =
ỹ6(s)

x̃10(0, s)
= e−s (3.51)

This district heating loop system is a pure time delay system. The magnitude of the

system is 0 and the phase of the system is −π.
The frequency response of the above subsystems are plotted in Bode diagram, see

Fig.3.6 and Fig.3.7. The sampling period is ∆t = 0.1. In the natural gas system, we

assume the disturbances are with frequencies of ω1 = 0.3142 and ω2 = 0.2199. These

frequencies can be reflected in the Bode diagram of the transfer function G5.

3.5 Simulation Results

In this section, we demonstrate the implementation of the servo control system to

improve the overall efficiency of the system. The dynamic model of the collection-

storage-district heating loop system is simulated according to the energy balance

models developed in the previous section. With plant model available, a servo problem

is set up to compute the control input that maintains the energy demand constant and

rejects disturbances, with guaranteed asymptotic stabilization despite uncertainties

present within the system.

In the next, we introduce two simulation scenarios. First, the servo control prob-

lem rejects disturbances arising in the solar thermal system. In the second scenario,

the disturbances are arising from operating conditions of the district heating loop
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system and the BTES system.
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Fig. 3.8: Simulation of the solar thermal system profile given by the implementation
of the discrete system in Eq.3.14. The parameters of the system are α1 = 1, β1 = 0.3,
β2 = 0.4 and γ1 = 0.4. The input ũ1(t) is the periodic harmonic function containing
two frequencies ω1 = 0.3142 and ω2 = 0.4084.

3.5.1 Cloudy Day: Disturbances from the Solar Thermal

System

We consider a scenario when a cloudy day with larger variations of available solar

energy, the solar thermal system undergoes disturbance in the power output. Due to

the weather changes and according to the weather forecast, the possible disturbances

to the solar thermal system with the borehole seasonal storage can be considered

as periodic harmonic disturbances with different frequencies. The control goal is to

maintain the temperature of hot flow to the district heating loop system at desired

set point and to reject two disturbances described above. The simulation results show
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4 days (96 hours) operation of the solar thermal system with dζ = 0.01 and dt = 0.1,

see Fig.3.8-3.12. The initial conditions of all states are zeros.
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Fig. 3.9: Output profile of simulation of the solar thermal system given by the imple-
mentation of discrete system in Eq.3.14.

The solar thermal system is simulated as exposed to periodic harmonic distur-

bances given by two frequencies ω1 = 0.3142 and ω2 = 0.4084 , see Fig.3.8 and

Fig.3.9, where the input and output of the solar thermal system are given. Fig.3.11

shows the simulation result of the heat exchanger’s two states. The natural gas system

with servo control is given in Fig.3.10. The desired poles of the designed controller are

σ(ACL) = {0.65, 0.65,−0.75,−0.75,−0.55, 0.85}. It can be seen that the system can

track the step reference yr = 1 and reject periodic harmonic disturbances with differ-

ent frequencies. The designed controller has good performance since it can achieve

tracking the step reference in less than 5 hours. However, one can easily reconfigure

the controller and have faster tracking by placing σ(ACL) closer to the center within

the unit circle. Finally, Fig.3.12 shows the simulation result of the district heating
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Fig. 3.10: Simulation of the natural gas system profile given by the implementation
of the discrete system in Eq.3.34. The parameters of the system are β9 = 1 and
γ6 = 1.5. The input ũ6(t) is obtained by the servo controller in Eq.3.42.

loop system. From the simulation result, it is obvious that the district heating loop

system is driven by the input from the natural gas system.

3.5.2 Disturbances from Operating Conditions of the Dis-

trict Heating Loop System

When the operating conditions of the district heating loop system are affected by

the environment changes, the heating loop system undergoes disturbance in power

output. When the BTES system undergoes disturbance from the perturbations of

the environmental temperature, these two disturbances will influence the solar ther-

mal system with borehole seasonal storage. In this scenario, the control goal of the

controller design is similar as the previous scenario. Therefore, the controller rejects

disturbances in the district heating loop system and the BTES system and maintains
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Fig. 3.11: Simulation of the evolution of the heat exchanger system profile given by
the implementation of the discrete system in Eq.3.26. The parameters of the system
are α5F1 = 1, α6u3ss = 1, β5 = 0.15, β6 = 0.1. The input is a constant function
ũ3(t) = 0.
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Fig. 3.12: Simulation of the district heating loop system profile given by the im-
plementation of the discrete system in Eq.3.40. The parameters of the system are
α10 = 1 and γ7 = 1. The input is a constant function ũ7(t) = 0.

the required flow temperature into the homes in the district heating loop system. The

simulation results are shown in Fig.3.13-3.17. The initial conditions of all states are

zeros.

The BTES system is simulated with harmonic disturbance in the frequency of

ω1 = 0.2199, see Fig.3.13. Fig.3.14 gives the input and output of the BTES system.

Here, the harmonic disturbance with the frequency of ω2 = 0.3142 is also considered

as in-domain input to the heating loop system, see Fig.3.16. The natural gas system

with servo control is shown in Fig.3.15. The desired poles of the designed controller

are σ(ACL) = {0.5, 0.5,−0.8,−0.8,−0.7, 0.6}. As it can be seen from the simulation

result, the designed controller has good tracking and rejecting performance. Finally,

Fig.3.17 shows the simulation result of the district heating loop system. This second

scenario study shows that the designed controller has the ability to reject any linear
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Fig. 3.13: Simulation of the BTES system profile given by the implementation of
the discrete system in Eq.3.19. The parameters of the system are α3 = 1, β3 = 0.3,
β4 = 0.5 and γ2 = 0.2. The input ũ2(t) is the periodic harmonic function with
frequency ω1 = 0.2199.

combination of signals with known frequencies. In addition, the designed controller

is easily realized in practice to address a wide range of disturbances.

3.6 Conclusion

In this chapter, we provided a model of the state-of-the-art in the solar thermal

system with borehole seasonal storage mathematically modelled by ordinary differen-

tial equations (ODEs), hyperbolic partial differential equation (PDEs) and coupled

PDEs-ODEs according to the energy balance. Then, the discrete systems of these

integrated systems are obtained by the application of the Cayley-Tustin time dis-

cretization method. We developed a simple servo controller design for the solar ther-
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Fig. 3.14: Output profile of simulation of the BTES system given by the implemen-
tation of the discrete system in Eq.3.19.
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Fig. 3.15: Simulation of the natural gas system profile given by the implementation
of the discrete system in Eq.3.34. The parameters of the system are β9 = 1 and
γ6 = 1.5. The input ũ6(t) is obtained by the servo controller in Eq.3.42.
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Fig. 3.16: Simulation of the district heating loop system profile given by the im-
plementation of the discrete system in Eq.3.40. The parameters of the system are
α10 = 1 and γ7 = 1. The input ũ7(t) is the periodic harmonic function with frequency
ω2 = 0.3142, which is ũ7(t) = 0.6eζ sin(ω2t).

mal system which takes into account measurements of the disturbances. The control

system manipulates the natural gas energy into the system in order to track a step ref-

erence for fulfilling the demands of space heating in the district heating loop system.

The simulation results of different scenarios show that, the discrete servo controller

tracks step reference and rejects harmonic disturbances with different frequencies.

More advanced control and optimization schemes can be pursued in order to lever-

age the thermal energy storage. It is recommended that optimal control schemes are

developed to help the solar thermal system with borehole seasonal storage to operate

more efficiently.
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Chapter 4

Model Predictive Control of Solar

Thermal System with Borehole

Seasonal Storage

4.1 Introduction

The development and utilization of the solar thermal system with borehole seasonal

storage for a commercial community is one of the most promising topics in the re-

newable energy field. A typical commercial community is the Drake Landing Solar

Community (DLSC) in Okotoks, Alberta, Canada which has successfully integrated

the solar thermal system with borehole seasonal storage and supplied efficient renew-

able energy to its district heating system [69]. The energy efficiency of existing houses

in a commercial community can be improved through temperature operation control

of the complex solar boreal thermal storage system.

The temperature regulation of the solar thermal system with borehole seasonal
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storage is characterized by many uncertainties, such as environmental changes, oc-

cupancy status changes, and changes in the operating conditions of equipment in

the houses. The ultimate performance goal is that the proposed controller stabilizes

the temperature around steady state and keeps the integrity of economic demands

in the district heating loop system. Conventional solar thermal system control with

borehole seasonal storage uses control action to maintain temperature around steady

state [76, 73, 74]. However, this control strategy does not always result in optimal

performance. In literature, different optimization-based control strategies have been

used to improve the energy efficiency of a solar thermal system. Some examples

include the hierarchical control strategy presented in [82], the supervisory optimal

control strategy described in [75], and the model predictive control (MPC) strategy

presented in [83].

Model predictive control is a strategy that explicitly uses a model of the process

to compute the required manipulation that will minimize the energy cost [2]. One of

the advantages of model predictive control is that input/state/output constraints can

be taken explicitly in the computation of control law. We propose a model predictive

control design for the solar thermal system with borehole seasonal storage, which will

take into account measurements of the input disturbances, such as changes in ambient

temperature, and disturbances predictions, such as weather forecasts, which can assist

in the prediction of the availability of different energy sources. The Luenberger output

observer is considered to observe a real complex spatial solar boreal thermal system.

In addition, constraints can be enforced as limits on the actuators, manipulated and

controlled variables (e.g. upper and lower limits of the temperature, supply flow rate

limits, and energy sources limits).

The overall system includes a solar thermal energy system, borehole thermal en-
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ergy storage system (BTES), short term thermal storage system (STTS) and a district

heating loop system, see Fig.4.1. The solar thermal energy system collects solar ther-

mal energy through plate collectors mounted on the roof of the houses and transfers

the energy to the STTS by a heat exchanger [72, 77]. Then, the collected energy is

sent from the STTS to the district heating loop system to heat the 52 energy-efficient

houses. During the summer months, the borehole thermal storage system stores the

energy from the STTS to heat the ground and cool the storage tanks. During the

heating season, the BTES collects geothermal energy to send to the STTS by a grid

of boreholes with single U-tube heat exchangers [70]. If the stored water temper-

ature is insufficient to meet the current heating load, the natural gas boiler in the

district heating loop system is provided as a backup to ensure heating of each houses.

The system operation which fulfills the heat energy requirement of each house leads

the turn on and/or turn off operating modes of the natural gas boiler. The heat

fluctuations due to on and off operation is caused by the burning of natural gas,

making the natural gas boiler system operation possibly as unstable fluctuations and

chattering around desired temperature requirement. Therefore, the model predictive

controller for the district heating loop system is designed to ensure the system opti-

mal and stable working performance at desired steady state with the consideration

of constraints.

According to the energy balance conservation laws, the solar thermal system with

borehole seasonal storage is modelled using a combination of ordinary differential

equations (ODEs), hyperbolic partial differential equations (PDEs) and/or coupled

PDEs-ODEs. Initially, the thermal energy is transferred from the solar thermal sys-

tem to the STTS system through a heat exchanger. The solar thermal system is

described by coupled PDE-ODE and the counterflow heat exchanger is modelled by a
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which is realized by the Cayley-Tustin time discretization transformation [19]. The

novelty of the Cayley-Tustin time discretization transformation provides that both

PDEs and/or ODEs systems are discretized with the same sampling time, in addition,

the PDEs system is kept without any type of model reduction, see [21].

The novel model predictive controller developed in this chapter is designed by

construction of a finite dimensional constrained optimization problem accounting for

input disturbance rejection. In addition, a realistic discrete output observer which

constructs finite and infinite states is considered without spatial discretization and

state reduction. The solution to this discrete output observer is realized by solving

discrete Lyapunov equation which is related to the corresponding continuous Lya-

punov equation.

The chapter is organized as follows: section 4.2 addresses the model of the solar

thermal system with borehole seasonal storage. In section 4.3, the discrete version of

the overall system is obtained by using Cayley-Tustin time discretization. Section 4.4

introduces model predictive controller design for a coupled PDEs-ODEs system with

the consideration of an output observer. Finally, we demonstrate the performance of

the model predictive control built in previous sections through simulation studies in

section 4.5.

4.2 Model Formulation of Solar Thermal System

with Borehole Seasonal Storage

The overall solar thermal system with borehole seasonal storage contains solar thermal

system, BTES system, STTS system and district heating loop system, see Fig.4.2.

The first principle modelling of the overall system is in more details addressed in [84].
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where Tsolar−in = Tsolar(ζ = 0). The variables of solar power plant system are shown

in Table.4.1. One can apply appropriate non-dimensional transformation on Eq.4.1

with the following definition of states x1(ζ, t) =
Tsolar−Tr

Tr
and x2(t) =

TA−Tr
Tr

, and input

u1(t) =
Qsolar

Qr
. Here, Tr and Qr are the reference temperature and the reference heat

flux. The parameters of the system are α1 = Fsolar

ρglssolar
, β1 = hppA

ρglCpglssolar
, β2 = hppA

ρACpAsA

and γ1 =
Qrwsolar

ρACpAsATr
. Therefore, the solar power plant system can be described by the

following coupled PDE-ODE:

∂x1(ζ, t)

∂t
= −α1

∂x1(ζ, t)

∂ζ
+ β1[x2(t)− x1(ζ, t)] (4.2)

dx2(t)

dt
= β2[x1in(t)− x2(t)] + γ1u1(t)

Table 4.1: Parameters of the solar system used to model Eq.4.1.

Variable Unit Description

Tsolar K Temperature of glycol flow
TA K Temperature of absorber
Qsolar W/m2 Heat flux in solar system
Fsolar kg/s Flow rate of glycol flow
Cpgl J/kgK Heat capacity of glycol flow
CpA J/kgK Heat capacity of absorber
hp W/m2K Convective heat transfer coefficient of ab-

sorber
ρgl kg/m3 Density of glycol flow
ρA kg/m3 Density of absorber
ssolar m2 Area of glycol flow
sA m2 Area of absorber
wsolar m Solar collector width
pA m Absorber pipe perimeter

With the consideration of steady state conditions x1(ζ, t) = x1ss(ζ) + x̃1(ζ, t),
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x2(t) = x2ss + x̃2(t), and u1(t) = u1ss + ũ1(t), the coupled PDE-ODE in Eq.4.2

becomes:

∂x̃1(ζ, t)

∂t
= −α1

∂x̃1(ζ, t)

∂ζ
+ β1[x̃2(t)− x̃1(ζ, t)] (4.3)

dx̃2(t)

dt
= β2[x̃1in(t)− x̃2(t)] + γ1ũ1(t)

with x̃1in(t) = x̃1(0, t) = 0 and x̃1(ζ, 0) = ϕ1(ζ), where the variables ζ ∈ [0, l] and

t ≥ 0 denote the space and time domains.

4.2.2 Model of Heat Exchanger System

The heat exchanger HX-1 in the solar thermal system is a counter-current heat ex-

changer which is modelled by a set of coupled first-order hyperbolic PDEs [77]. De-

spite the non-linearity of the controlled system, an explicit characterization of the

equilibrium profiles can be given. As a consequence, the linearized system around an

equilibrium profile is obtained as a linear infinite dimensional time-invariant system

given as below:

∂THX−11

∂t
=
FHX−11

ρgls1

∂THX−11

∂ζ
− kl

Cpglρgls1
[THX−11 − THX−12] (4.4)

∂THX−12

∂t
= −FHX−12

ρH2Os2

∂THX−12

∂ζ
+

kl

CpH2OρH2Os2
[THX−11 − THX−12]

where THX−11(l, t) = Tsolar(l, t) and THX−12(0, t) = TCT .

The description of the variables in heat exchanger system is shown in Table.4.2.

The change of variables leads to the states given as x3(ζ, t) =
THX−11−Tr

Tr
and x4(ζ, t) =

THX−12−Tr
Tr

, input u2(t) = FHX−12

Fr
, and parameters F1 = FHX−11

Fr
, α3 = Fr

ρgls1
, β3 =

kl
Cpglρgls1

, α4 = Fr

ρH2O
s2

and β4 = kl
CpH2O

ρH2O
s2
. The linearized heat exchanger system
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Table 4.2: Parameters of the heat exchanger HX-1 used to model Eq.4.4.

Variable Unit Description

THX−11(ζ, t) K Temperature of hot flow
THX−12(ζ, t) K Temperature of cold flow
FHX−11 = Fsolar kg/s Flow rate of hot flow
FHX−12 = FHX−1 kg/s Flow rate of cold flow
CpH2O J/kgK Heat capacity of water flow
ρH2O kg/m3 Density of water flow
k W/m2K Heat exchange coefficient
l = 2πr2 m Contact circumference of heat ex-

changer
s1 = π(r21−r22),r1 >
r2

m2 Area of hot flow

s2 = πr22 m2 Area of cold flow

with the steady state conditions x3(ζ, t) = x3ss(ζ) + x̃3(ζ, t), x4(ζ, t) = x4ss(ζ) +

x̃4(ζ, t), and u2(t) = u2ss + ũ2(t) is described by the following hyperbolic PDEs:

∂x̃3(ζ, t)

∂t
= α3F1

∂x̃3(ζ, t)

∂ζ
− β3[x̃3(ζ, t)− x̃4(ζ, t)] (4.5)

∂x̃4(ζ, t)

∂t
= −α4u2(t)

∂x̃4(ζ, t)

∂ζ
+ β4[x̃3(ζ, t)− x̃4(ζ, t)]− α4ũ2(t)

dx4ss(ζ)

dζ

It is important to note that the linearized system around an equilibrium point is

governed by the above equations with u2(t) replaced by u2ss.

The heat exchanger system is potentially exposed to boundary disturbances, and

therefore boundary conditions need to be adequately considered in this coupled hy-

perbolic PDEs system. The flow which enters the heat exchanger is the flow out of

the solar power plant at ζ = l of the state x3(ζ, t), thus, x̃3(l, t) = x̃1(l, t), see Fig.4.2.

The flow into the heat exchanger state x4(ζ, t) at ζ = 0 is the flow out of the cold

tank system, which is at the reference temperature, then, x̃4(0, t) = 0.
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The standard methodology to accurately account for transfer of boundary ac-

tuation to in-domain is to apply state transformation [85]. Let x̃3(ζ, t) = z3(ζ, t) +

Bb3(ζ)x̃3(l, t), then z3(l, t) = 0, Bb3(l) = 1, and x̃4(ζ, t) = z4(ζ, t)+Bb4(ζ)x̃4(0, t), then

z4(0, t) = 0, Bb4(0) = 1. With the assumptions α3F1 = 1, α4u2ss = 1, γ2 = α4
dx4ss(ζ)

dζ
,

the above PDEs system in Eq.4.5 becomes:

∂z3(ζ, t)

∂t
=
∂z3(ζ, t)

∂ζ
− β3[z3(ζ, t)− z4(ζ, t)]− Bb3(ζ)

∂x̃3(l, t)

∂t
(4.6)

+[
∂Bb3(ζ)

∂ζ
− β3Bb3(ζ)]x̃3(l, t) + β3Bb4(ζ)x̃4(0, t)

∂z4(ζ, t)

∂t
= −∂z4(ζ, t)

∂ζ
+ β4[z3(ζ, t)− z4(ζ, t)]− Bb4(ζ)

∂x̃4(0, t)

∂t

−[
∂Bb4(ζ)

∂ζ
+ β4Bb4(ζ)]x̃4(0, t) + β4Bb3(ζ)x̃3(l, t)− γ2ũ2(t)

The functionsBb3(ζ) andBb4(ζ) can be calculated by taking that ∂Bb3(ζ)
∂ζ

−β3Bb3(ζ) =

0 and ∂Bb4(ζ)
∂ζ

+ β4Bb4(ζ) = 0, which simplifies the system of Eq.4.6.

4.2.3 Model of Borehole Energy Storage System

The borehole thermal energy storage system uses a grid of boreholes with U-tube heat

exchangers [78, 79]. The energy balance of the flow in the U-tube heat exchanger and

the energy balance of the pipe wall are given as:

ρH2OCpH2Osbore
∂Tbore
∂t

= −CpH2OFbore
∂Tbore
∂ζ

+ hwpW (TW − Tbore) (4.7)

ρWCpW sW
dTW
dt

= hwpW (Tbore−in − TW ) +Qborew

where Tbore−in = Tbore(ζ = 0).

Table.4.3 gives the description of the variables in BTES system. We consider
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Table 4.3: Parameters of the borehole thermal energy storage system used to model
Eq.4.7.

Variable Unit Description

Tbore K Temperature of water flow
TW K Temperature of pipe wall
Qbore W/m2 Collected Energy in borehole system
Fbore kg/s Flow rate of water flow
CpW J/kgK Heat capacity of pipe wall
hw W/m2K Convective heat transfer coefficient of

pipe wall
ρW kg/m3 Density of pipe wall
sbore m2 Area of water flow
w m Borehole system width
pW m Pipe wall perimeter

the following change of variables with states x5(ζ, t) =
Tbore−Tr

Tr
, x6(t) =

TW−Tr
Tr

, and

input u3(t) =
Qbore

Qr
. The system parameters are α5 = Fbore

ρH2O
sbore

, β5 = hwpW
ρH2O

CpH2O
sbore

,

β6 = hwpW
ρWCpW sW

and γ3 = Qrwbore

ρWCpW sWTr
. By applying linearization around the steady

state of interest with the assumptions x5(ζ, t) = x5ss(ζ)+ x̃5(ζ, t), x6(t) = x6ss+ x̃6(t),

and u3(t) = u3ss+ ũ3(t), the BTES system is described by the following coupled PDE-

ODE:

∂x̃5(ζ, t)

∂t
= −α5

∂x̃5(ζ, t)

∂ζ
+ β5(x̃6(t)− x̃5(ζ, t)) (4.8)

dx̃6(t)

dt
= β6(x̃5in(t)− x̃6(t)) + γ3ũ3(t)

Similar to the solar power plant system, we assume that that x5(0, t) operates around

the steady state of interest, thus x̃5in(t) = x̃5(0, t) = 0.
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4.2.4 Model of Short Term Thermal Storage System

The short term thermal storage system utilizes the hot tank and cold tank to transfer

the thermal energy obtained from the solar thermal system and the borehole energy

storage system to the district heating subsystem, see Fig.4.2.

The mass balance and energy balance of the hot tank system is modelled by the

following ODEs [5]:

AHT
dhHT
dt

= FHT1 + FHT2 − FHT (4.9)

ρH2OCpH2OAHT
dhHTTHT

dt
= ρH2OCpH2O[FHX1THT1 + FHT2THT2 − FHTTHT ]

where FHT1 and FHT2 are flow rates from the heat exchanger system and the BTES

system. FHT is flow rate out of the hot tank and FHT = 1
K1
hHT . The variable

description of the hot tank system is shown in Table.4.4.

Table 4.4: Parameters of the hot tank system used to model Eq.4.9.

Variable Unit Description

hHT m Flow height in hot tank
THT K Temperature of flow out of hot tank
FHT kg/s Flow rate out of hot tank
AHT m2 Hot tank area
THT1 K Temperature of flow into hot tank
THT2 K Temperature of flow into hot tank
FHT1 kg/s Flow rate into hot tank
FHT2 kg/s Flow rate into hot tank

The following change of variables are considered in hot tank system: states x7(t) =

hHT

hr
and x8(t) = THT−Tr

Tr
; inputs u4(t) = FHT1

Fr
, u5(t) = FHT2

Fr
and u6(t) = FHT

Fr
;

disturbances x8in1(t) =
THT1−Tr

Tr
and x8in2(t) =

THT2−Tr
Tr

; parameter β7 = Fr

hrAHT
. One
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obtains the model of hot tank system as below:

dx7(t)

dt
= β7(u4(t) + u5(t)− u6(t)) (4.10)

d[x7(t)(x8(t) + 1)]

dt
= β7[u4(t)(x8in1(t) + 1) + u5(t)(x8in2(t) + 1)

−u6(t)(x8(t) + 1)]

With the Taylor expansion around steady state in the following expressions x7(t) =

x7ss + x̃7(t), x8(t) = x8ss + x̃8(t), u4(t) = u4ss + ũ4(t), u5(t) = u5ss + ũ5(t), u6(t) =

1
K1
x7(t) = 1

K1
(x7ss + x̃7(t)), x7(x8 + 1) ' x7ss(x8ss + 1) + x7ssx̃8 + (x8ss + 1)x̃7 and

u6(x8 +1) = 1
K1
x7(x8 +1), the linearized model of hot tank system is given as below:

dx̃7(t)

dt
= β7[ũ4(t) + ũ5(t)−

1

K1

x̃7(t)] (4.11)

dx̃8(t)

dt
=

β7
x7ss

[(x8in1ss − x8ss)ũ4(t) + (x8in2ss − x8ss)ũ5(t)

+u4ssx̃8in1 + u5ssx̃8in2 −
1

K1

x7ssx̃8(t)]

The flows which come into the hot tank are from the heat exchanger system

and the BTES system, see Fig.4.2. Therefore, we have the conditions for Eq.4.6 as

x̃8in1(t) = x̃4(l, t) and x̃8in2(t) = x̃5(l, t).

The cold tank system plays an important role in the solar boreal thermal storage

system due to the fact that the cold tank flow temperature is assumed to be at

reference environment temperature. In Fig.4.2, the flow coming into the cold tank

FCT is from the district heating loop system. The flows out of the cold tank are

linked to the solar thermal system and the BTES system at reference environment

temperature, which are FCT1 = Tr and FCT2 = Tr. Therefore, the disturbances to
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the solar thermal system and the BTES system are considered as zero.

4.2.5 Model of District Heating Loop System

The district heating loop system is consist of coupled natural gas boiler model and

district heating model. The energy balance of the flow in the natural gas boiler model

is given as follows:

ρH2OCpH2OVboiler
dTboiler
dt

= CpH2OFboiler(Tboiler−in − Tboiler) +Qboilersboiler (4.12)

The district heating model is a hyperbolic PDE system with the heat sink Qdistrict as

below:

ρH2OCpH2Osdistrict
∂Tdistrict

∂t
= −CpH2OFdistrict

∂Tdistrict
∂ζ

−Qdistrictwdistrict (4.13)

The variable description of the district heating model is shown in Table.4.5. The

district heating loop system described in Eq.4.12-4.13 has coupled hyperbolic PDE

and ODE connected through the boundary of hyperbolic PDE, which is Tdistrict(0, t) =

Tboiler(t).

The dimensionless system is obtained by considering the following change of vari-

ables: states x9(t) = Tboiler−Tr
Tr

and x10(ζ, t) = Tdistrict−Tr
Tr

; inputs u7(t) = Qboiler

Qr
and

u8(t) =
Qdistrict

Qr
; disturbance x9in(t) =

Tboiler−in−Tr
Tr

; parameters β9 = Fboiler

ρH2O
Vboiler

, γ7 =

QboilersboilerQr

ρH2O
CpH2O

VboilerTr
, α10 = Fdistrict

ρH2O
sdistrict

and γ8 = Qrwdistrict

ρH2O
CpH2O

sdistrictTr
. By applying system

linearization with the conditions x9(t) = x9ss + x̃9(t), x10(ζ, t) = x10ss(ζ) + x̃10(ζ, t),

u7(t) = u7ss + ũ7(t), u8(t) = u8ss + ũ8(t) and x9in(t) = x9inss + x̃9in(t), the district
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ing model is connected by the boundary condition x̃10(0, t) = x̃9(t), see Fig.4.3. With

the consideration of boundary disturbance, let x̃10(ζ, t) = z10(ζ, t) + Bb10(ζ)x̃10(0, t),

then z10(0, t) = 0, Bb10(0) = 1. We assume α10 = 1, and the above district heating

loop system in Eq.4.14 becomes:

dx̃9(t)

dt
= β9(x̃9in(t)− x̃9(t)) + γ7ũ7(t) (4.15)

∂z10(ζ, t)

∂t
= −∂z10(ζ, t)

∂ζ
− Bb10(ζ)[β9x̃9in(t) + γ7ũ7(t)]

−[
∂Bb10(ζ)

∂ζ
− Bb10(ζ)β9]x̃9(t)− γ8ũ8(t)

ỹ5(t) = z10(l, t) + Bb10(l)x̃9(t)

The function Bb10(ζ) can be calculated from the assumption ∂Bb10(ζ)
∂ζ

−Bb10(ζ)β9 = 0.

The coupled PDE-ODE system in Eq.4.15 is decoupled by this assumption.

4.3 Discrete Model of Solar Boreal Thermal Sys-

tem

According to the energy balance, the modelling of the solar thermal system with

borehole seasonal storage contains internally coupled PDEs-ODEs, see Fig.4.2. The

Cayley-Tustin time discretization method is applied to obtain a discrete model version

which provides an insight into the subsystem’s performance and overall dynamical

behaviour of the system [19].
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4.3.1 Infinite Dimensional System Representation

The linear first-order hyperbolic PDE system is described by the following state space

system:

ẋ(ζ, t) = Ax(ζ, t) + Bu(t), x(ζ, 0) = x0 (4.16)

y(t) = Cx(ζ, t)

where the variables ζ ∈ [0, 1] and t ≥ 0 denote the space and time domains; the state

x(ζ, t) ∈ X and X is a Hilbert space L2[0, 1]; the input u(t) ∈ U and the output

y(t) ∈ Y , where U and Y are Hilbert spaces; the operator A is linear operator defined

in the domain: D(A) = {x ∈ X : x(ζ) is a.c. dx
dζ

∈ X and x(0) = 0}; the input

operator B = b(ζ) · I, where I is identity operator; the output operator is given by

Cx(ζ, t) = x(l, t), where l = 1 is the boundary point of the state x(ζ, t), see [85].

The output in infinite dimensional system is a point observation or point mea-

surement, so let us induce the space X1. The operator A generates an exponentially

stable strongly continuous semigroup TA on the space X [52]. The space X1 is in

the domain D(A) with the norm ||x||1 = ||(λI − A)x||, where λ ∈ ρ(A) and ρ(A)

is the resolvent set [86]. Since this norm is equivalent to the graph norm of A, the

restriction of TA on X1 is a semigroup on X1, which is isomorphic to the original one.

Then, we denote the restriction of TA on X1 by the same symbol TA, which is the

restriction of A to X. Denoting this restriction also by A, we have A ∈ L(X1, X).

This technical extension allows us to treat boundary and/or point actuation or/and

point measurements.

The input operator B is bounded B ∈ L(U,X) and the output operator C ∈
L(X1, Y ) is an admissible observation operator for the semigroup TA [87, 88]. Then,
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the system in Eq.4.16 is regular and can be defined as follows:

ẋ(ζ, t) = Ax(ζ, t) + Bu(t), x(ζ, 0) = x0 (4.17)

y(t) = CΛx(ζ, t)

where CΛ ∈ L(X, Y ) is Λ-extension of the operator C defined by:

CΛx = lim
λ→+∞

Cλ(λI − A)−1x, x ∈ X (4.18)

where λ ∈ ρ(A) and ρ(A) is the resolvent set.

Now, we can see that the system in Eq.4.17 has well defined the state space X,

the input space U and the output space Y . For any initial state x0 ∈ X and for any

u(t) ∈ L2([0,∞), U), Eq.4.17 has unique solutions x(ζ, t) and y(t) such that x(ζ, t) is

continuous on X and y(t) ∈ L2([0,∞), Y ).

4.3.2 Model Formulation of the System

With the physical models of solar thermal system, BTES system, STTS system and

district heating loop system described in the previous section, the model formulation

of the overall system is presented in this section.

The following representations are defined according to the solar power plant model

described in Eq.4.3: X1(ζ, t) =
[

x̃1(ζ, t) x̃2(t)
]T

, U1(t) = ũ1(t), G1(t) = x̃1in(t),

A1 =





−α1
∂
∂ζ

− β1 β1

0 −β2



, B1 =





0

γ1



 and E1 =





0

β2



.

Similarly, for the heat exchanger model in Eq.4.6, we have the following expres-

sions: X2(ζ, t) =
[

z3(ζ, t) z4(ζ, t) x̃3(l, t) x̃4(0, t)
]T

, U2(t) = ũ2(t), G2(t) =
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[

∂x̃3(l,t)
∂t

∂x̃4(0,t)
∂t

]

, A2 =

















∂
∂ζ

− β3 β3 0 β3Bb4(ζ)

β4 − ∂
∂ζ

− β4 β4Bb3(ζ) 0

0 0 0 0

0 0 0 0

















, B2 =

















0

−γ2
0

0

















and E2 =

















−Bb3(ζ) 0

0 −Bb4(ζ)

1 0

0 1

















.

Let us define the following expressions from BTES system in Eq.4.8 as X3(ζ, t) =

[

x̃5(ζ, t) x̃6(t)
]T

, U3(t) = ũ3(t), G3(t) = x̃5in(t), A3 =





−α5
∂
∂ζ

− β5 β5

0 −β6



,

B3 =





0

γ3



 and E3 =





0

β6



.

For the hot tank system described by Eq.4.11, we have the representations of

states and inputs as X4(t) =
[

x̃7(t) x̃8(t)
]T

, U4(t) =
[

ũ4(t) ũ5(t)
]T

,

G4(t) =
[

x̃8in1(t) x̃8in2(t)
]T

, A4 =





− β7
K1

0

0 − β7
K1



,

B4 =





β7 β7
β7(x8in1ss−x8ss)

x7ss

β7(x8in2ss−x8ss)
x7ss



 and E4 =





0 0

u4ss u5ss



.

The representations in district heating loop system in Eq.4.15 are defined as

X5(ζ, t) =
[

x̃9(t) z10(ζ, t)
]T

, U5(t) =
[

ũ7(t) ũ8(t)
]T

, G5(t) = x̃9in(t), Y5(t) =

ỹ5(t), A5 =





−β9 0

0 − ∂
∂ζ



, B5 =





γ7 0

−Bb10γ7 −γ8



, E5 =





β9

−Bb10β9



 and

C5 =
[

Bb10(l) CΛ

]

.

The model of overall solar boreal thermal energy system is given with the state
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x(ζ, t) =
[

X1(ζ, t) X2(ζ, t) X3(ζ, t) X4(t) X5(ζ, t)
]T

, the input

u(t) =
[

U1(t) U2(t) U3(t) U4(t) U5(t)
]T

, the disturbance

g(t) =
[

G1(t) G2(t) G3(t) G4(t) G5(t)
]T

and the output y(t) = Y5(t) in the

following form:

ẋ(ζ, t) = Ax(ζ, t) + Bu(t) + Eg(t), x(ζ, 0) = x0 (4.19)

y(t) = Cx(ζ, t)

where A =























A1 0 0 0 0

0 A2 0 0 0

0 0 A3 0 0

0 0 0 A4 0

0 0 0 0 A5























, B =























B1 0 0 0 0

0 B2 0 0 0

0 0 B3 0 0

0 0 0 B4 0

0 0 0 0 B5























,

E =























E1 0 0 0 0

0 E2 0 0 0

0 0 E3 0 0

0 0 0 E4 0

0 0 0 0 E5























and C =
[

0 0 0 0 C5

]

.

This state-space representation accounts for coupled infinite and finite dimensional

systems. The state x(ζ, t) ∈ X⊕Rn, X is a real Hilbert space and Rn is a real space,

where n accounts for the states associated with the lumped parameter system. The

input u(t) ∈ U , the disturbance g(t) ∈ G and the output y(t) ∈ Y , where U , G

and Y are real Hilbert spaces. The operator A ∈ L(X1, X) generates semigroup TA

on X; B ∈ L(U,X) and E ∈ L(G,X) are operators associated with actuation and

disturbance; C ∈ L(X, Y ) is linear output measurement operator.

121



4.3.3 System Time Discretization

In the next subsection, we apply the Cayley-Tustin transformation on the above

coupled PDEs-ODEs system, which maps the system from a continuous time to a

discrete time space setting and preserves all energy properties of the system without

spatial model reduction. With the sampling time ∆t, the discrete time version of the

system in Eq.4.19 takes the following form:

x(ζ, k) = Adx(ζ, k − 1) + Bdu(k) + Edg(k), x(ζ, 0) = x0 (4.20)

y(k) = Cdx(ζ, k − 1) +Ddu(k) + Fdg(k)

where Ad, Bd, Cd, Dd, Ed and Fd are discrete time operators, given by Ad =

[δ + A][δ − A]−1 = −I + 2δ[δ − A]−1, Bd =
√
2δ[δ − A]−1B, Cd =

√
2δC[δ − A]−1,

Dd = C[δ − A]−1B + D, Ed =
√
2δ[δ − A]−1E and Fd = C[δ − A]−1E + F . The

parameter is δ = 2/∆t.

Remark 1: It is known that for many explicit finite difference schemes for hyperbolic

PDEs in one space dimension, temporal and spatial discretization of the system leads

to the Courant-Friedrichs-Lewy stability condition, which is ∆ζ
∆t

≥ |v|. The advan-

tage of the implicit scheme of the Cayley-Tustin transformation given by Eq.4.20 is

that the transformation is unconditionally stable. In addition, the implicit scheme

preserves the distributed nature of the hyperbolic PDEs system without spatial ap-

proximation. Therefore, the Cayley-Tustin discretization needs the choice of δ to

be selected adequately for both PDEs and ODEs in the solar boreal thermal system

described in Eq.4.19.

The discrete operators in Eq.4.20 can be obtained with the consideration of re-

solvent operator by replacing s with δ. The resolvent of the linear operator A of the
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overall solar boreal thermal system in Eq.4.19 is defined as below:

R(s, A) = [sI − A]−1 (4.21)

and it can be obtained from Laplace transform applied on the continuous system

described in Eq.4.19. Since the subsystems in the overall solar boreal thermal system

in Eq.4.19 are decoupled and connected through boundaries, the resolvent of the

operator A in Eq.4.19 is expressed as below by applying Laplace transform:

R(s, A) = [sI − A]−1 =























R1 0 0 0 0

0 R2 0 0 0

0 0 R3 0 0

0 0 0 R4 0

0 0 0 0 R5























(4.22)

where the resolvent operators R1, R2, R3, R4 and R5 are related to operators A1, A2,

A3, A4 and A5.

The resolvent of the operator A1 in can be expressed as follows:

R1(s, A1)(·) = [sI − A1]
−1(·) =





R11 R12

R21 R22



 (·) (4.23)

where

R11 =

∫ ζ

0

(·)e
∫ η
0 (s+β1)dφdηe−

∫ ζ
0 (s+β1)dφ

R12 =
β1

s+ β2

∫ ζ

0

(·)e
∫ η
0 (s+β1)dφdηe−

∫ ζ
0 (s+β1)dφ

R21 = 0
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R22 =
1

s+ β2

The resolvent of the operator A2 can be expressed as follows:

R2(s, A2)(·) = [sI − A2]
−1(·) =

















R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

















(·) (4.24)

where

R11 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))](·)dη

−
∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η)) + cea(ζ−η)sinh(b(ζ − η))](·)dη

R12 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β3

b
ea(1−η)sinh(b(1− η))(·)dη

−
∫ ζ

0

β3

b
ea(ζ−η)sinh(b(ζ − η))(·)dη

R21 =
β4
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))](·)dη

−
∫ ζ

0

β4

b
ea(ζ−η)sinh(b(ζ − η))(·)dη

R22 =
β4
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β3

b
ea(1−η)sinh(b(1− η))(·)dη

+

∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η))− cea(ζ−η)sinh(b(ζ − η))](·)dη

R13 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β3

b
ea(1−η)sinh(b(1− η))β4Bb3(η)

1

s
(·)dη

−
∫ ζ

0

β3

b
ea(ζ−η)sinh(b(ζ − η))β4Bb3(η)

1

s
(·)dη

R14 =
eaζcosh(bζ) + ceaζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))]β3Bb4(η)

(·)
s
dη
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−
∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η)) + cea(ζ−η)sinh(b(ζ − η))]β3Bb4(η)

1

s
(·)dη

R23 =
β4
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0

β3

b
ea(1−η)sinh(b(1− η))β4Bb3(η)

1

s
(·)dη

+

∫ ζ

0
[ea(ζ−η)cosh(b(ζ − η))− cea(ζ−η)sinh(b(ζ − η))]β4Bb3(η)

1

s
(·)dη

R24 =
β4
b e

aζsinh(bζ)

eacosh(b) + ceasinh(b)

∫ 1

0
[ea(1−η)cosh(b(1− η)) + cea(1−η)sinh(b(1− η))]β3Bb4(η)

1

s
(·)dη

−
∫ ζ

0

β4

b
ea(ζ−η)sinh(b(ζ − η))β3Bb4(η)

1

s
(·)dη

R33 =
1

s
(·)

R44 =
1

s
(·)

with a = β3−β4
2

, b =
√

(β3−β4)2
4

+ s2 + (β3 + β4)s and c = 2s+β3+β4
2b

.

The resolvent of the operator A3 in can be expressed as follows:

R3(s, A3)(·) = [sI − A3]
−1(·) =





R11 R12

R21 R22



 (·) (4.25)

where

R11 =

∫ ζ

0

(·)e
∫ η
0 (s+β5)dφdηe−

∫ ζ
0 (s+β5)dφ

R12 =
β5

s+ β6

∫ ζ

0

(·)e
∫ η
0 (s+β5)dφdηe−

∫ ζ
0 (s+β5)dφ

R21 = 0

R22 =
1

s+ β6
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The resolvent of the operator A4 in can be expressed as follows:

R4(s, A4)(·) = [sI − A4]
−1(·) =





R11 0

0 R22



 (·) (4.26)

where

R11 = R22 =
1

s+ β7
K1

The resolvent of the operator A5 in can be expressed as follows:

R5(s, A5)(·) = [sI − A5]
−1(·) =





R11 0

0 R22



 (·) (4.27)

where

R11 =
1

s+ β9

R22 =

∫ ζ

0

(·)esηdηe−sζ

4.4 Model Predictive Control for Linear System

The formulation of the model predictive control is developed for the unstable discrete

coupled PDE-ODE inspired by district heating loop system accounting for input

disturbance rejection and constraints. The constrained optimal controller design for

coupled finite-dimensional and infinite-dimensional system is based on the similar

formulation emerging from the finite-dimensional system theory. In addition, since

the MPC is using the system state x(ζ, t), one needs to design observer in order to
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reconstruct the state. Therefore, the Luenberger boundary applied output observer

is considered in this section to reconstruct the state of plant system.

4.4.1 Input Disturbance Rejection

The continuous district heating loop system described in Eq.4.15 is a coupled hyper-

bolic PDE-ODE system. Let us rewrite Eq.4.15 as below:

dx̃9(t)

dt
= −β9x̃9(t) + γ7[ũ7(t) +

β9
γ7
x̃9in(t)] (4.28)

∂z10(ζ, t)

∂t
= −∂z10(ζ, t)

∂ζ
− Bb10(ζ)γ7[ũ7(t) +

β9
γ7
x̃9in(t)]− γ8ũ8(t)

ỹ5(t) = z10(l, t) + Bb10(l)x̃9(t)

The input ũ8(t) in district system is thermal energy disturbance from houses and we

consider it as ũ8(t) = 0 in this work.

The variables in the district heating loop system become X5(ζ, t) =

[

x̃9(t) z10(ζ, t)
]T

, U5(t) = ũ7(t), G5(t) = x̃9in(t), Y5(t) = ỹ5(t), A5 =





−β9 0

0 − ∂
∂ζ



,

B5 =





γ7

−Bb10γ7



 and C5 =
[

Bb10(l) CΛ

]

. By defining the parameter βu = β9
γ7

and the input with disturbance Ū5(t) = U5(t) + βuG5(t), the representation of the

district heating loop system is in the following form:

Ẋ5(ζ, t) = A5X5(ζ, t) + B5Ū5(t) (4.29)

Y5(t) = C5X5(ζ, t)

The discrete version of the above coupled hyperbolic PDE-ODE system is obtained
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by applying Cayley-Tustin discretization as follows:

X5(ζ, k) = Ad5X5(ζ, k − 1) + Bd5Ū5(k) (4.30)

Y5(k) = Cd5X5(ζ, k − 1) +Dd5Ū5(k)

The model predictive controller design in the following section will be applied on the

above discrete coupled hyperbolic PDE-ODE system with the consideration of input

disturbance rejection.

4.4.2 Model Predictive Control for Unstable Coupled PDE-

ODE System

For model predictive control, the regulator is based on the minimization of the fol-

lowing open-loop objective function at sampling time k [2]:

min
uN

∞
∑

j=0

[

< x(ζ, k + j|k), Qx(ζ, k + j|k) > + < ū(k + j + 1|k), Rū(k + j + 1|k) >
]

s.t. x(ζ, k + j|k) = Adx(ζ, k + j − 1|k) + Bdū(k + j|k) (4.31)

ūmin ≤ ū(k + j|k) ≤ ūmax

xmin ≤ x(ζ, k + j|k) ≤ xmax

where Q is positive semidefinite penalty spatial operator and R is positive definite

penalty spatial operator, x(k + j|k) and ū(k + j + 1|k) represent the state variable

and input variable with disturbance at future time k+ j predicted at current time k.

The infinite horizon open-loop objective function in Eq.4.31 can be expressed as

the finite horizon open-loop objective function with ū(k+N+1|k) = 0 in the following
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form:

min
ūN

J =
N−1
∑

j=0

[

< x(ζ, k + j|k), Qx(ζ, k + j|k) > + < ū(k + j + 1|k), Rū(k + j + 1|k) >
]

+ < x(ζ, k +N |k), Q̄x(ζ, k +N |k) > (4.32)

s.t. x(ζ, k + j|k) = Adx(ζ, k + j − 1|k) + Bdū(k + j|k)

ūmin ≤ ū(k + j|k) ≤ ūmax

xmin ≤ x(ζ, k + j|k) ≤ xmax

where the state penalty term Q̄ is defined as the infinite sum Q̄ =
∑∞

i=0A
∗i
d QA

i
d. The

calculation of terminal state penalty term Q̄ for unstable system is presented in [2].

Since the input variable contains disturbance term g(k) in the form of ū(k) =

u(k)+βug(k), the finite horizon open-loop objective function in Eq.4.32 can be rewrit-

ten as follows:

min
uN

J =
N−1
∑

j=0

[

< x(ζ, k + j|k), Qx(ζ, k + j|k) > (4.33)

+ < [u(k + j + 1|k) + βug(k + j + 1|k)], R[u(k + j + 1|k) + βug(k + j + 1|k)] >
]

+ < x(ζ, k +N |k), Q̄x(ζ, k +N |k) >

s.t. x(ζ, k + j|k) = Adx(ζ, k + j − 1|k) + Bd[u(k + j|k) + βug(k + j|k)]

ūmin − βug(k + j|k) ≤ u(k + j|k) ≤ ūmax − βug(k + j|k)

xmin ≤ x(ζ, k + j|k) ≤ xmax

Since the hyperbolic PDE system is stable, if the ODE system is stable, the

coupled PDE-ODE system is a stable one. Otherwise, the unstable ODE system leads

the coupled PDE-ODE system to be an unstable one. To deal with this instability of
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coupled PDE-ODE system, the finite horizon open-loop objective function described

in Eq.4.33 is subject to the following equality constraint on the unstable state xu(k)

at time k +N :

Aud x
u(k +N |k) = 0 (4.34)

where Aud denotes the discrete unstable operator associated with unstable subspace.

By denoting the vectors of state X, input U and disturbance G as follows:

X =
[

x(ζ, k + 1|k) x(ζ, k + 2|k) · · · x(ζ, k +N |k)
]T

U =
[

u(k + 1|k) u(k + 2|k) · · · u(k +N |k)
]T

G =
[

g(k + 1|k) g(k + 2|k) · · · g(k +N |k)
]T

the objective function presented in Eq.4.33 results in the following program by straight-

forward algebraic manipulation:

min
U

J = UT < I,H > U + 2UT
[

< I, Px(ζ, k|k) > + < I,RβuG >
]

+ < x(ζ, k|k), Q̄x(ζ, k|k) > + < βuG,RβuG > (4.35)

s.t.























I

−I
S

−S
S̄























U ≤























Ūmax − βuG

−Ūmin + βuG

Xmax − Tx(ζ, k|k)− SβuG

−Xmin + Tx(ζ, k|k) + SβuG

−T̄ xu(k|k)− S̄βuG






















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where

H =

















B∗
dQ̄Bd +R B∗

dA
∗
dQ̄Bd · · · B∗

dA
∗N−1
d Q̄Bd

B∗
dQ̄AdBd B∗

dQ̄Bd +R · · · B∗
dA

∗N−2
d Q̄Bd

...
...

. . .
...

B∗
dQ̄A

N−1
d Bd B∗

dQ̄A
N−2
d Bd · · · B∗

dQ̄Bd +R

















,

P =

















B∗
dQ̄Ad

B∗
dQ̄A

2
d

...

B∗
dQ̄A

N
d

















, S =

















Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...

AN−1
d Bd AN−2

d Bd · · · Bd

















, T =

















Ad

A2
d

...

ANd

















,

S̄ =
[

AuN−1
d Bu

d AuN−2
d Bu

d · · · Bu
d

]

, T̄ =
[

AuNd

]

.

The inner products < I,H >, < I, Px(ζ, k|k) > and < I,RβuG > in Eq.4.35 are

real numbers, thus the optimization problem described in Eq.4.35 is a standard finite

dimensional quadratic optimization problem. If feasible, then system stabilization is

guaranteed and constraints and optimality are satisfied.

4.4.3 Luenberger Observer Design

In order to reconstruct the state and utilize in MPC controller design, we consider

observer design. In particular, the coupled hyperbolic PDE-ODE system described

in the following form is considered:

ẋ(ζ, t) = Ax(ζ, t) + Bū(t), x(ζ, 0) = x0 (4.36)

y(t) = Cx(ζ, t)
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where the operators A =





Ao 0

0 Ap



 and C =
[

Co Cp

]

with Cp = CΛ. The input

variable contains disturbance term, ū(k) = u(k) + βug(k).

The Luenberger state observer is presented by the following equations:

˙̂x(ζ, t) = Ax̂(ζ, t) + Bū(t) + Lo[y(t)− ŷ(t)], x̂(ζ, 0) = x̂0 (4.37)

ŷ(t) = Cx̂(ζ, t)

where the gain Lo =





Lo1

Lo2



. The state estimation error ε(ζ, t) = x(ζ, t) − x̂(ζ, t)

satisfies the following equation:

ε̇(ζ, t) = [A− LoC]ε(ζ, t) (4.38)

The design problem of the above state observer is to compute the observer gain Lo

such that the state estimation error system described in Eq.4.38 is a stable one. The

solution of the observer gain Lo in Eq.4.37 can be obtained by solving the following

Lyapunov equation:

< Ãx,Qox > + < x,QoÃx >= − < C̃x,NoC̃x > x ∈ D(Ã∗) (4.39)

where Ã = A−LoC, C̃ = 1, Qo is nonnegative self-adjoint operator and No is positive

definite operator. The following theorem describes a general approach finding the

observer gain Lo in Eq.4.37 [89].

Theorem 1: Under the assumption that the pair
(





Ao 0

0 Ap



 ,
[

Co Cp

] )

is

exponentially detectable. If there exist the nonnegative self-adjoint operators Q1 and
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Q2 that solve the following constrained operator Riccati equations:

AoQ1 +Q1A
∗
o − 2Q1C

∗
oCoQ1 +N11 = 0 (4.40)

ApQ2 +Q2A
∗
p − 2Q2C

∗
pCpQ2 +N22 = 0

−2Q1C
∗
oCpQ2 +N12 = 0

where N11 is positive matrix and N22 is positive definite operator, and N12 satisfies

N12 = 2Q1C
∗
oCpQ2 such that No =





N11 N12

N∗
12 N22



 is positive definite. Then, Lo =





Lo1

Lo2



 =





Q1C
∗
o

Q2C
∗
p



 is the observer gain.

Remark 2: The Luenberger observer gain designed for continuous coupled PDE-

ODE system is related to the corresponding discrete system, see [21]. The unique

solution Qo to the continuous Lyapunov equation in Eq.4.39 is also the solution to

the discrete Lyapunov equation in the following form:

< x, [Ã∗
dQoÃd −Qo]x >= − < x, [C̃∗

dNoC̃d]x > x ∈ D(Ã∗
d) (4.41)

where Ãd = Ad − LdCd and C̃d =
√
2δC̃[δ − Ãd]

−1.

4.5 Simulation Results

In this section, we demonstrate the implementation of the model predictive control to

stabilize the subsystem at steady state and reject input disturbance, see Fig.4.4. The

optimal controller is designed to satisfy input constraint and achieve the requirement

of minimizing energy cost to improve the efficiency of the system. The output observer
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Fig. 4.6: Simulation of the solar thermal system profile given by the discrete system
in Eq.4.3. The parameters of the system are α1 = 1, β1 = 0.3, β2 = 0.4 and γ1 = 0.4.
The input ũ1(t) is the periodic harmonic function.

bance due to larger variations of the weather. According to the weather forecast, the

possible disturbance to the solar thermal system can be considered as periodic har-

monic disturbance, see Fig.4.5. In simulation of 2 days solar radiation, we consider

day 1 as a sunny day and day 2 as a cloudy day. Similarly, we consider the disturbance

from borehole thermal system as uniform disturbance with reasonable assumption.

These fluctuations cause a large burden on the rest of the energy system, therefore,

the control goal is to maintain the temperature of hot flow to the district heating

loop system at steady state and to reject two input disturbances described above.
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Fig. 4.7: Simulation of the heat exchanger system given by the discrete system in
Eq.4.6. The parameters of the system are α3F1 = 1, α4u2ss = 1, β3 = 0.15, β4 = 0.1.
The input ũ2(t) = 0.
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In the overall system, the inputs U1(t) and U3(t) are the solar and geothermal ra-

diations, which are transferred to district heating loop system as input disturbances.

We consider the flow rate in heat exchanger system and hot tank system operate at

steady state, which implies that the inputs U2(t) and U4(t) are zero in this modelling.

For the control of district heating loop system, the input ũ7(t) in U5(t) is the manip-

ulation obtained from the application of model predictive control and the input ũ8(t)

in U5(t) is the district radiation which is considered as zero here.

1

0.5

ζ
0

010

k

203040

0.2

0.6

0.4

0

x̃
5
(
ζ
,
k
)

Fig. 4.8: Simulation of the BTES system given by the discrete system in Eq.4.8. The
parameters of the system are α5 = 1, β5 = 0.3, β6 = 0.5 and γ3 = 0.2. The input is a
constant function ũ3(t) = 1.

The disturbances in the solar thermal system G1(t) and the BTES system G3(t)

are from the cold tank system and they are assumed as zero in this chapter. The

disturbances G2(t) in the heat exchanger system, G4(t) in the hot tank system, and

G5(t) in the district heating loop system are transferred from the solar thermal system

and the BTES system due to solar and geothermal radiations. Therefore, the model
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Fig. 4.9: Simulation of the hot tank system given by the discrete system in Eq.4.11.
The parameters of the system are β7 = 0.8 and K1 = 0.5. The inputs ũ4(t) = ũ5(t) =
0.

predictive controller for the district heating loop system is designed to reject input

disturbance G5(t) caused by solar and geothermal radiations.

The changes of solar radiation on warm sunny or cold cloudy days affect the

dynamics of the solar thermal system, see Fig.4.6. The energy can be quickly and

effectively retrieved from the heat exchanger and supplied to the houses without losing

too much energy to the environment, see Fig.4.7. When space heating is required,

energy from the STTS heats the district heating loop system. If there is insufficient

energy in the STTS to meet the anticipated heating requirement, heat is transferred

from the BTES into the STTS to meet the requirement. Fig.4.8 and Fig.4.9 show

simulation results of the BTES system and the hot tank system, separately. If the

stored water temperature is insufficient to meet the current heating load, natural

gas boilers raise the temperature of the district loop as required. Fig.4.10-Fig.4.12
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give the simulation of the model predictive control proposed in Eq.4.35 applied on the

district heating loop system described in Eq.4.15. In simulation, the initial conditions

of all states are zeros and dζ = 0.01 and dt = 0.1.

The manipulation of natural gas fired boilers in the turn on and off modes leads

to the possibly instability of district heating looping system. From the simulation

result given in Fig.4.10, it can be seen that the model predictive control stabilizes

the unstable coupled PDE-ODE system presented in Eq.4.15. Solar and geothermal

radiations are transferred to the district heating loop system as input disturbance

through the hot tank system, see Fig.4.9. The model predictive controller proposed

in this chapter rejects this input disturbance with good performance.

Fig.4.11 shows the input manipulation obtained from MPC, which is the solution

to the constrained optimization problem with the parameters Q =





1 0

0 1



, R =

0.001, and horizon N = 3. From Fig.4.11a, it can be seen that the input satisfies the

input constraints, which are upper and lower limitations of realistic manipulations

in the natural gas fired boilers system. In other words, this controller prevents the

excessiveness of inputs which may cause damage to equipment or shutdown of system.

Fig.4.11b gives the simulation result of input with disturbance and it shows that the

range of input constraints changes respect to the time.

Fig.4.12 gives simulate output of the solar boreal thermal system in 3 case studies.

In case study 1, Fig.4.12a shows the output of the district heating loop system without

the consideration of observer. The output profile indicates that the controller works

well to keep the district heating loop system operate at desired steady state.
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Fig. 4.10: Simulation of the district heating loop system given by the discrete system
in Eq.4.15 under the implementation of model predictive control described in Eq.4.35.
The parameters of the system are β9 = −0.5, γ7 = 2.5 and α10 = 1. The input
ũ8(t) = 0 and the input ũ7(t) is calculated from the model predictive controller
design.
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Fig. 4.11: Simulation of the input profile with disturbance ū(k) and the input profile
u(k) in the district heating loop system given by the discrete system in Eq.4.15 under
the implementation of model predictive control described in Eq.4.35.
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(b) System output y(k) and observer output ŷ(k)
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ŷ(k)

(c) System output y(k) with noise and observer out-
put ŷ(k)

Fig. 4.12: Comparison of the system output profile y(k) (solid line) and the ob-
server output profile ŷ(k) (dashed line) in the district heating loop system given by
the discrete system in Eq.4.15 under the implementation of model predictive control
described in Eq.4.35 with the consideration of Luenberger observer in Eq.4.37.
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However, case study 1 suits the case that the states of the district heating loop

system are measurable. Due to the limitation of measurement in realistic system,

the output observer is designed to reconstruct the states of the district heating loop

system as case study 2, see Fig.4.4. Fig.4.12b gives the comparison of the system

output y(k) (solid line) and the observer output ŷ(k) (dashed line). In simulation, we

assume N11 = N22 = 1, by solving Riccati equation in Eq.4.40, we obtain Q1 = 2.0328

and Q2(ζ) as a spatial function. N12 = 0.4926 satisfies the condition that No =




N11 N12

N∗
12 N22



 is positive definite. According to Theorem 1, we have observer gain

Lo1 = Q1C
∗
o = 1.2314 and Lo2 = Q2C

∗
p = 0.2000. The profiles indicate that the output

observer has good performance, such that the model predictive controller designed in

this case study can be applied in realistic system with the output measurement.

In the realistic district heating loop system, the noise from the operation environ-

ment can also affect the control manipulation. Therefore, we give the simulation of

case study 3, such that a measurement noise is considered for the system output. In

Fig.4.12c, the output y(k) is simulated with measurement noise which is modelled as

white noise with zero mean and standard variance as σ = 0.05, and it can be seen

that the model predictive controller has good control performance to let the district

heating loop system operate at desired steady state.

From the above 3 case studies, it indicates that the implementation of the model

predictive control on the solar boreal thermal system can stabilize the district heating

loop system at steady state and reject input disturbance from solar and/or geothermal

system. The optimal controller is designed to satisfy the input constraints, which pre-

vents damage to equipment or shutdown of system. In addition, the output boundary

observer has good performance to reconstruct the states of the district heating loop

system such that MPC is applicable in real physical plant system. The constrained
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optimal controller developed in this section minimizes the energy cost to improve the

efficiency of the system.

4.6 Conclusion

In this chapter, we provide a mathematical model of the solar thermal system with

borehole seasonal storage which is a coupled finite and infinite dimensional space set-

ting. The discrete system is obtained by applying the Cayley-Tustin time discretiza-

tion on coupled a PDEs-ODEs system modelled according to the energy balance. We

develop a model predictive controller design for the solar boreal thermal system which

takes into account the measurements of the input disturbances and the consideration

of the output observer. The control system regulates the natural gas energy into the

system in order to fulfil the demands of space heating in the district heating loop

system. The simulation results show that, the model predictive controller with an

output observer has good performance to stabilize the unstable coupled PDE-ODE

system and rejects input disturbances. This optimal control scheme with the con-

sideration of input constraints is developed to help the solar thermal system with

borehole seasonal storage to operate more efficiently.
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Chapter 5

Single-step Full State Feedback

Control Design for Nonlinear

Hyperbolic PDEs

5.1 Introduction

The most desirable feedback control design for finite dimensional nonlinear system is

based on the system’s feedback linearization and subsequent pole placement appli-

cation by the full state feedback control structure [90, 91, 92]. This exact feedback

linearization with pole placement is realized by the two-step procedure. The first step,

the implementation of nonlinear coordinate transformation to transform the original

nonlinear system to a linear and controllable one, and subsequent second step, the

employment of pole placement techniques with desired “target” closed-loop eigenval-

ues for the transformed linear system.

Although intuitive and straightforward, the two-step approach has drawbacks that
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the nonlinear coordinate transformation, which is based on very restrictive conditions,

is hardly met by any relevant physical system of higher order [90, 91]. Motivated by

Luenberger’s early ideas on a single-step design approach for pole placement, the de-

velopment of single-step controller design that achieves simultaneously the feedback

linearization and desired pole placement has been accomplished by Kazantzis and

Kravaris [93, 94]. In particular, the design method successfully solves the system

of singular first-order quasi-linear partial differential equations (PDEs) by applying

Lyapunov’s auxiliary theorem, and yields the nonlinear locally invertible coordinate

transformation that accompanies pole placement design.

Contrary to the abundance of results considering controller design methods for

nonlinear finite dimensional system, the controller synthesis for nonlinear distributed

parameter system (DPS) which is given in an infinite dimensional setting is rather

rare and difficult both in terms of design and/or implementation. Within the linear

infinite dimensional setting, the extensions of full state feedback, output feedback

regulation, optimal control, internal model control, and backstepping are successfully

realized [26, 27, 28, 29, 30, 31, 32, 33, 34]. However, only small number of nonlinear

finite dimensional control design methodologies were extended to nonlinear infinite

dimensional systems [35], and only some results of associated Lyapunov based meth-

ods have been explored in the infinite dimensional setting [36, 37]. Consequently, an

extension of finite dimensional design methods to DPS in infinite dimensional setting

is pursued as possible extension of finite dimensional controller design by intuitive

single-step method which achieves simultaneously state coordinate transformation

and pole placement.

In this chapter, we seek a novel extension of a single-step design method that

achieves simultaneous coordinate transformation and closed-loop desired target dy-
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namics assignment for the broad class of first-order nonlinear hyperbolic PDEs sys-

tems and second-order hyperbolic PDEs systems. Firstly, a scalar hyperbolic PDE

system which describes the dynamics of a tubular reactor is explored to develop

a solution of the associated system of first-order quasi-linear PDE. Specifically, we

consider the class of transport-reaction systems described by the first-order hyper-

bolic PDEs, which are physical relevant models of industrial exothermic plug-flow

reactors. In practice, reactor design and operation often involve a trade-off between

conflicting costs and in particular conversion and energy costs. For industrially im-

portant exothermic plug-flow reactors, the aim is to maximize reactant conversion,

while minimizing side products and compression power. In contrast to optimizing

a finite number of parameters, the optimal solution for conflicting conversion and

energy costs is derived from optimal heat exchanger temperature, which has been

accomplished by Smets, Dochain and Van Impe [95, 96]. The optimal solution with

respect to a defined cost function is the steady state of the temperature and reactant

concentration in an exothermic plug-flow reactor. However, the optimal temperature

and reactant concentration profiles of interest are unstable steady-states. Therefore,

we utilize the single-step full state feedback control design with a nonlinear coordinate

transformation that achieves desired stabilization of the closed-loop system dynamics.

In addition to the physically interesting and appealing exothermic plug-flow reac-

tors, we also consider the second example of the single-step full state feedback control

design realization in the case of second-order hyperbolic PDE system which describes

damped wave equation. The second-order hyperbolic PDE can be reduced to the

first-order hyperbolic PDEs by state transformation. Similarly, linear and quadratic

full state feedback control laws are proposed and utilized by single-step linearization

and simultaneous coordinate transformation to the target system. The appealing

147



of single-step coordinate transformation is that all eigenvalues of the damped wave

equation are shifted from unstable complex plain to the stable one. In some sense,

this transformation mimics the ”backstepping” approach which assigns target PDE

behaviour through the transformation.

The chapter is organized as follows. In section 5.2, the extension of single-step

design for the class of first-order nonlinear hyperbolic PDEs system is introduced. In

section 5.3, we explore the solution of the associated system of first-order quasi-linear

PDE by using scalar hyperbolic PDE system. In section 5.4, we explore the single-

step full state feedback control by applying the design methodology to two systems

and we demonstrate the method through simulation studies.

5.2 Preliminaries

We extend the single-step controller design of feedback linearization with desired

stable target system assignment applied to a certain class of distributed parameter

systems. In particular, we are interested in the class of the transport-reaction system

described by the first-order nonlinear hyperbolic PDEs. We consider the general

system representation which is described by the following form:

∂x

∂t
(ζ, t) = −v∂x

∂ζ
(ζ, t) + f [x(ζ, t)] + g[x(ζ, t)]u(t) (5.1)

x(0, t) = x0, x(ζ, 0) = x̄0

where the state x(ζ, t) ∈ Hn, H is a real Hilbert space, ζ ∈ [0, L] and t ∈ [0,∞] denote

the spatial and time coordinates; the input u(t) ∈ U ; f [x(ζ, t)], g[x(ζ, t)] are nonlinear

spatial vector fields on Rn; v is diagonal matrix. We assume that there is a well defined

spatial equilibrium state [xss(ζ), uss] such that −v ∂xss
∂ζ

(ζ)+f [xss(ζ)]+g[xss(ζ)]uss = 0
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holds, which can be obtained as spatially uniform steady state xss in the case of the

scalar conservative law or as a set of spatially nonuniform steady state profiles for the

system of first-order hyperbolic PDEs.

To apply the extension of the full state feedback linearization design from the

finite dimensional state space geometric control theory to the hyperbolic PDE class of

distributed parameter setting, we seek a nonlinear coordinate transformation z(ζ, t) =

w[x(ζ, t)] defined in the neighborhood of the steady state xss and application of static

state feedback control law u(t) = −Kz(ζ, t), with Kw[x(ζ, t)] being defined on input

space U . By applying the nonlinear coordinate transformation through the static full

state feedback control law, the closed-loop system admits the behaviour of “target”

stable distributed parameter system, so that Eq.5.1 is transformed to the following

form:

∂z

∂t
(ζ, t) = Az(ζ, t) = −v̄ ∂z

∂ζ
(ζ, t) + σz(ζ, t), z(ζ, 0) = w−1x̄0 (5.2)

where A is a stable linear operator which contains features of the spatial operator

identical to the one given by Eq.5.1.

The extension of Luenberger’s single-step design is a combination of a simulta-

neous locally invertible nonlinear coordinate transformation z(ζ, t) = w[x(ζ, t)] by

means of a linear static state feedback u(t) = −Kz(ζ, t) induces desired “target”

closed-loop dynamics. In other words,

∂x

∂t
(ζ, t) = −v∂x

∂ζ
(ζ, t) + f [x(ζ, t)] + g[x(ζ, t)]u(t) (5.3)

u(t)=−Kz(ζ,t)
=⇒

z(ζ,t)=w[x(ζ,t)]

∂z

∂t
(ζ, t) = −v̄ ∂z

∂ζ
(ζ, t) + σ(ζ)z(ζ, t)
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in the core of the design procedure is to identify locally invertible nonlinear trans-

formation which achieves target behaviour of desired closed-loop system through the

application of Lyapunov Auxiliary theory.

5.3 Scalar Hyperbolic PDE System

A typical conservative system found in the process control is governed by the following

scalar hyperbolic equation:

∂x

∂t
+ v

∂x

∂ζ
= αex − β(x− u), x(0, t) = 0 (5.4)

which represents common tubular reactor realization with simplified chemical ki-

netics. The above expression confirms the existence of spatially uniform nontrivial

steady-state. The form ex is for the temperature dependence result when the usual

Arrhenuius form k0e
−E/T is approximated by k0e

−E/T0eE(T−T0)/T 2
0 through a Taylor

series expansion of E/T about a reference temperature T0 [97], and the scaling leads

the state to be bounded as ||x(ζ, t)|| ≤ 1.

The design method implies to propose a nonlinear transformation

z(w1, w2, · · · , x) =
∑∞

i=1wi(ζ)x
i(ζ, t) = WX (matrices W = [w1 w2 · · · ] and

X = [x x2 · · · ]T ), such that the transformed target system admits stable desired

dynamics given by the following form:

∂z(wi, x)

∂t
= −v̄ ∂z(wi, x)

∂ζ
(5.5)

where i = 1, 2, · · · . Then, one can obtain an associated system of first-order quasi-
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linear PDE with full state feedback u = −Kz(wi, x) given as below:

∂z(wi, x)

∂x
[−v∂x

∂ζ
+ αex − βx− βKz(wi, x)] = −v̄ ∂z(wi, x)

∂ζ
(5.6)

Remark 1: Under the reasonable assumption that the control input does not

change the velocity term associated with the spatial derivative, we have v̄ = v in

the scalar case. Although, the velocity term v can be a spatial function v(ζ), in this

analysis, we consider that velocity term v is a constant.

We now present the so-called Lyapunov’s Auxiliary Theorem that can be employed

to guarantee the existence and uniqueness of solution to the first-order quasi-linear

PDE in Eq.5.6.

5.3.1 Lyapunov’s Auxiliary Theorem for Scalar System

Consider the following system of first-order quasi-linear partial differential equation,

see [98]:

∂w(x)
∂x

φ(x, w) = ψ(x, w) (5.7)

w(0) = 0

with

φ(0, 0) = 0

ψ(0, 0) = 0

∂ψ(0,0)
∂x

= 0
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where w ∈ R is the unknown solution of Eq.5.7 and φ(x, w) : R × R → R, ψ(x, w) :

R×R → R are analytic functions. The above system of first-order quasi-linear PDE

admits a unique analytic solution w(x) in a neighborhood of x0 = 0 with ∂w(0)
∂x

= 0.

Theorem 1: The system of first-order quasi-linear singular PDE of the form in

Eq.5.6 with initial condition z(x = 0) = 0 admits a unique locally invertible analytic

solution z = S(x) in a neighborhood of the equilibrium point x0 = 0.

Proof: With the assumptions that αex−βx = f(x) = 1
1!
∂f(x)
∂x

x+ 1
2!
∂2f(x)
∂x2

x2+ · · ·+
1
N !

∂Nf(x)
∂xN

xN + · · · = Fx+ f̄(x) and z(wi, x) = w1x+ z̄ = w1x+ W̄ X̄, here, we denote

matrices W̄ = [w2 w3 · · · ] and X̄ = [x2 x3 · · · ]T , so the first-order quasi-linear

PDE in Eq.5.6 becomes:

[w1 +
∂[W̄ X̄]

∂x
][−v∂x

∂ζ
+ Fx+ f̄(x)− βK(w1x+ W̄ X̄)] (5.8)

= −vw1
∂x

∂ζ
− v

∂w1(ζ)

∂ζ
x− v

∂[W̄ X̄]

∂x

∂x

∂ζ
− v <

∂[W̄ X̄]

∂W̄
,
∂W̄

∂ζ
>

From the Eq.5.8, w1(ζ) has to satisfy the following equation:

w1F − w1βKw1 = −v∂w1(ζ)

∂ζ
(5.9)

and the unknown function z̄ = W̄ X̄ in the following first-order system of quasi-linear

PDE:

∂z̄
∂x
φ(x, z̄) = ψ(x, z̄) (5.10)

z̄(x = 0) = 0
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where

φ(x, z̄) = (F − βKW )x+ f̄(x)− βKz̄

ψ(x, z̄) = −v < ∂[W̄ X̄]

∂W̄
, ∂W̄
∂ζ

> −Wf̄(x) +WβKz̄

Note that:

φ(0, 0) = 0

ψ(0, 0) = 0

∂ψ(0,0)
∂x

= 0

Theorem 1 guarantees the existence and uniqueness of an analytic solution z̄ of

the system with ∂z̄(0)
∂x

= 0. Given an initial condition w1(ζ = 0) 6= 0, the ordinary

differential equation Eq.5.9 has a unique solution [98]. We may conclude that the

associated first-order system of quasi-linear PDE in Eq.5.6 admits a unique analytic

solution in a neighborhood x0 = 0.

5.3.2 Analytical Solution of Quasi-linear PDE

The proof of existence and uniqueness of solution to the first-order quasi-linear PDE

can also be obtained by finding analytical solution of Eq.5.6, and is demonstrated

below.

Let us rewrite Eq.5.6 in the following form:

∂[WX]

∂x
[−v∂x

∂ζ
+ JX − βKWX] = −v̄ ∂[WX]

∂ζ
(5.11)
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here, J = [ 1
1!
∂f(x)
∂x

1
2!
∂f2(x)
∂x2

· · · ]. By straightforward algebraic manipulation, one

can obtain:

−v∂[WX]

∂x

∂x

∂ζ
+
∂[WX]

∂x
[JX − βKWX] = −v∂[WX]

∂x

∂x

∂ζ
− v <

∂[WX]

∂W
,
∂W

∂ζ
>

(5.12)

After cancelling the term −v ∂[WX]
∂x

∂x
∂ζ

on both hand sides, we have:

< W, X̃ > [JX − βKWX] = −v < ∂[WX]

∂W
,
∂W

∂ζ
> (5.13)

here, X̃ = [1 2x 3x2 · · · NxN−1 · · · ]T .
The solution of Eq.5.12 becomes a set of equations in the following summation

form:

v ∂w1

∂ζ
= βKw2

1 − ∂f(x)
∂x

w1 (5.14)

v ∂w2

∂ζ
= [3βKw1 − 2∂f(x)

∂x
]w2 − 1

2
∂2f(x)
∂x2

w1

...

v ∂wN

∂ζ
= βK

∑N
i=1 iwiwN+1−i −

∑N
i=1 iwi

1
(N+1−i)!

∂N+1−if(x)
∂xN+1−i

...

The ordinary differential equation of w1(ζ) yields the following Bernoulli equation:

dw1

dζ
= p(ζ)w1 + q(ζ)w2

1 (5.15)

here p(ζ) = − 1
v
∂f(x)
∂x

and q(ζ) = 1
v
βK. The function w1(ζ) is a solution of the

Bernoulli equation in Eq.5.15 if the function y(ζ) = 1
w1(ζ)

is solution of the linear
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differential equation as below:

dy

dζ
= −p(ζ)y − q(ζ) (5.16)

Given the constants ζ0 ∈ [0, 1] and y0 ∈ R, the above linear differential equation is

the initial value problem with y(ζ0) = y0 and has the unique solution y(ζ) on the

domain [0, 1].

The ordinary differential equations of w2(ζ), w3(ζ), · · · , wN(ζ), · · · yield the well-

posed initial value problem. Let us take w2(ζ) as an example which yields the following

equation:

dw2

dζ
= a(ζ)w2 + b(ζ) (5.17)

here a(ζ) = 1
v
[3βKw1 − 2∂f(x)

∂x
] and b(ζ) = − 1

v
∂2f(x)
∂x2

w1. w1(ζ) is the known function

obtained from Eq.5.15. Given the continuous functions a(ζ) and b(ζ), and constants

ζ0 ∈ [0, 1] and y0 ∈ R, the initial value problem yielded as below:

dy

dζ
= a(ζ)y + b(ζ), y(ζ0) = y0 (5.18)

has the unique solution y(ζ) on the domain [0, 1], given by the following expression:

y(ζ) = eA(ζ)[y0 +

∫ ζ

ζ0

e−A(s)b(s)ds] (5.19)

where the function A(ζ) =
∫ ζ

ζ0
a(s)ds is a particular primitive of function a(ζ).

Since w2(ζ) in Eq.5.17 has unique solution, the subsequent

w3(ζ), w4(ζ), · · · , wN(ζ), · · · are recursive functions and also have unique solutions.
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Next, we show that the sum
∑∞

i=1wi(ζ)x
i(ζ, t) converges to an analytic function.

Theorem 2: The solution of initial value problem obtained in Eq.5.18 is bounded.

Proof: ||A(ζ)|| = ||
∫ ζ

ζ0
a(s)ds|| ≤

∫ ζ

ζ0
||a(s)||ds ≤ AmT for all ζ ∈ [0, 1], where

Am = max||A(ζ)|| for all ζ ∈ [0, 1] and T = 1 − 0 = 1. One can obtain eA(ζ) ≤
e||A(ζ)|| ≤ eAm for all ζ ∈ [0, 1]. Then, ||

∫ ζ

ζ0
e−A(s)b(s)ds|| ≤

∫ ζ

ζ0
||e−A(s)||||b(s)||ds ≤

eAmBm for all ζ ∈ [0, 1], where Bm = max||b(ζ)||. Finally, ||y(ζ)|| = ||eA(ζ)[y0 +
∫ ζ

ζ0
e−A(s)b(s)ds]|| ≤ ||eA(ζ)||||y0+

∫ ζ

ζ0
e−A(s)b(s)ds|| ≤ eAm(y0+e

AmBm) for all ζ ∈ [0, 1].

Theorem 2 guarantees that w1(ζ), w2(ζ), · · · , wN(ζ), · · · are bounded solutions.

We assume that in domain ζ ∈ [0, 1], wM = max||wi(ζ)|| for i = 1, 2, · · · . Then,

one can obtain ||∑∞
i=1wi(ζ)x

i(ζ, t)|| ≤ wM ||∑∞
i=1 x

i(ζ, t)|| for all ζ ∈ [0, 1]. Since

||x(ζ, t)|| ≤ 1, the sum
∑∞

i=1wi(ζ)x
i(ζ, t) converges to an analytic function.

In the next design realization, we consider the stable target system given in Eq.5.5

with a design parameter σ in the following form:

∂z(wi, x)

∂t
= −v̄ ∂z(wi, x)

∂ζ
+ σz(wi, x) (5.20)

The analytical solution of w1(ζ) in Eq.5.15 is expressed as below with design param-

eter σ:

w1(ζ) =
e

1
v
[σ− ∂f(x)

∂x
](ζ−1)

[ βK

σ− ∂f(x)
∂x

e
1
v
[σ− ∂f(x)

∂x
](ζ−1) + 1

w1(1)
]

(5.21)

The simulation of w1(ζ) obtained above is given in Fig.5.1. Fig.5.1 also shows the

simulation of analytical solutions of w2(ζ), w3(ζ) and w4(ζ) with design parameter σ.

We also consider the case when σ = ∂f(x)
∂x

, and the analytical solution of w1(ζ) in
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Eq.5.15 is expressed as below:

w1(ζ) =
1

1
w1(1)

− βk
v
(ζ − 1)

(5.22)

Similarly, the numerical simulation of analytical solutions of w1(ζ), w2(ζ), w3(ζ) and

w4(ζ) are given in Fig.5.2.
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Fig. 5.1: Transform operator wi in Eq.5.14 with σ = −1, for i = 1, 2, 3, 4.

5.4 Problem Formulation for the Class of Distributed

Parameter Systems

Motivated by the design procedure described above, we extend the single-step coordi-

nate transformation and stabilization of scalar hyperbolic PDE to the class of system

of hyperbolic PDEs, see Eq.5.1. For the class of system of hyperbolic PDEs, we apply
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Fig. 5.2: Transform operator wi in Eq.5.14 with σ = ∂f(x)
∂x

, for i = 1, 2, 3, 4.

the single-step state feedback control design procedure described in the above section.

In particular, one may seek for the simplest spatial linear coordinate transformation

given by:

z[x(ζ, t)] = W (ζ)x(ζ, t) (5.23)

where W (ζ) is a spatial matrix. Eq.5.1 becomes the following expression with coor-

dinate transformation:

∂

∂x
[W (ζ)x]

[

−v∂x
∂ζ

+ σ(ζ)x+ f̄(x) + b(ζ)(−KW (ζ)x)

]

(5.24)

= −v̄ ∂
∂ζ

[W (ζ)x] + σ(ζ) [W (ζ)x]
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which yields linear term in x(ζ, t). So that the following equation is obtained:

(−Wv + v̄W )
∂x

∂ζ
+ v̄

∂W

∂ζ
x+Wσx− σWx−Wb(ζ)KWx = 0 (5.25)

Remark 2: The velocity term in the target system yields v̄ = WvW−1 under

the reasonable assumption that the control input does not change the velocity term

associated with the spatial derivative.

The above equation becomes the equation in W (ζ). The solution to the following

equation provides the spatial transformation function W (ζ):

v̄
∂W

∂ζ
+Wσ(ζ)− σ(ζ)W −Wb(ζ)KW = 0, W (0) 6= 0 (5.26)

For higher order approximation of the nonlinear coordinate transformation:

z(x(ζ, t)) = W (ζ)x(ζ, t) + P (ζ)x2(ζ, t) (5.27)

we account for the approximation of the nonlinear vector field given by the term

f̄(x) = ∂f(x)
∂x

|xssx2. In other words, the expansion of higher order terms of the nonlin-

ear transformation is required to be done to enlarge the region of stabilizing nonlinear

coordinate transformation and control law.

5.4.1 First-Order Hyperbolic PDEs

Let us consider the case of nonlinear exothermic plug-flow reactor which takes the

following hyperbolic PDEs form [99]:

∂T

∂t
= −v∂T

∂ζ
− ∆H

ρCp
k0Ce

− E
RT − 4h

ρCpd
(T − Tw) (5.28)
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∂C

∂t
= −v∂C

∂ζ
− k0Ce

− E
RT

with initial conditions and boundary conditions:

t = 0, T (ζ, 0) = Tin, C(ζ, 0) = Cin

ζ = 0, T (0, t) = T0, C(0, t) = C0

where ζ ∈ [0, L] and t ∈ [0,∞], the temperature in the reactor T (ζ, t) and the reactant

concentration C(ζ, t) are state variables, and the heat exchanger temperature Tw(ζ, t)

is input variable.

After some basic manipulation and transformation of the system, the above set of

equations is transformed to dimensionless form by defining state and input variables

as x1 =
T−Tin
Tin

, x2 =
Cin−C
Cin

and u = Tw−Tin
Tin

and process parameters as α = k0e
−E/RTin ,

β = 4h
ρCpd

, δ = −∆H
ρCp

Cin

Tin
and γ = E

RTin
. We assume initial conditions and boundary

conditions as Tin = 340(K), Cin = 0.02(mol ·L−1), T0 = 340(K) and C0 = 0.02(mol ·
L−1), so that the system becomes:

∂x1
∂t

= −v∂x1
∂ζ

+ αδ(1− x2)e
γx1/1+x1 − βx1 + βu (5.29)

∂x2
∂t

= −v∂x2
∂ζ

+ α(1− x2)e
γx1/1+x1

with initial conditions and boundary conditions:

x1(ζ, 0) = 0, x2(ζ, 0) = 0

x1(0, t) = 0, x2(0, t) = 0

160



where process parameters are v = 0.1(m · s−1), α = 0.0581, β = 0.2, δ = 0.25,

γ = 16.6607.

In steady state, the above partial deferential equations of the system reduce to

ordinary differential equations:

v
dx1ss
dζ

= αδ(1− x2ss)e
γx1ss/1+x1ss − βx1ss + βuss, x1ss(0) = 0 (5.30)

v
dx2ss
dζ

= α(1− x2ss)e
γx1ss/1+x1ss , x2ss(0) = 0

The optimal control of the system at steady state is to find control u∗(ζ) which causes

the system to follow an admissible trajectory x∗(ζ) while minimizing performance

criterion:

min
u

J = h[x(L)] +

∫ L

0

g[x(ζ)]dζ (5.31)

Here, we consider a cost criterion of the following type:

min
u

J = (1− A)(1− x2(L)) +
A

K

∫ L

0

x21(ζ)dζ (5.32)

where A is the trade-off coefficient between terminal and integral costs, and K is a

user-defined weighting factor to bring the two costs in the same order of magnitude.

The terminal cost part is a measure for the process efficiency, while the integral cost

part accounts for the total heat loss.
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Fig. 5.3: Optimal profiles of maximum-minimum profile (dashed line) vs. maximum-
singular-minimum profile (solid line) with A = 0.7 and K = 250, 000 in Eq.5.32.
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According to the Minimum Principle of Pontryagin, the optimal heat exchanger

profile u∗(ζ) can be maximum-minimum profile or maximum-singular-minimum pro-

file, which is shown in Fig.5.3a. The temperature in the reactor and the reac-

tant concentration profiles with respect to the optimal heat exchanger profiles of

maximum-minimum profile as well as maximum-singular-minimum profile are illus-

trated in Fig.5.3b and Fig.5.3c.

This optimal steady state of interest obtained above is an unstable steady state.

To make the system operate at the optimal steady state of interest, we apply single-

step full state feedback control design to stabilize the system at the optimal steady

state of interest. The second-order Taylor expansion of Eq.5.29 is given as follows:





∂x̃1
∂t

∂x̃2
∂t



 = −v





∂x̃1
∂ζ

∂x̃2
∂ζ



+





J11(ζ) J12(ζ)

J21(ζ) J22(ζ)









x̃1

x̃2



 (5.33)

+





1
2
H11(ζ)x̃

2
1 +H12(ζ)x̃1x̃2 +

1
2
H13(ζ)x̃

2
2

1
2
H21(ζ)x̃

2
1 +H22(ζ)x̃1x̃2 +

1
2
H23(ζ)x̃

2
2



+





β

0



 ũ(t)

where x̃ = x− xss and ũ = u− uss.

The controller synthesis goal is to apply the state feedback control law ũ =

−Kz[x̃(ζ, t)] and nonlinear transformation z[x̃(ζ, t)] = W (ζ)x̃(ζ, t) + P (ζ)x̃2(ζ, t) si-

multaneously, which yields the following expression:

ũ = −Kz (5.34)

= −
[

K1 K2

]





w11(ζ)x̃1 + w12(ζ)x̃2 + P11(ζ)x̃
2
1 + P12(ζ)x̃1x̃2 + P13(ζ)x̃

2
2

w21(ζ)x̃1 + w22(ζ)x̃2 + P21(ζ)x̃
2
1 + P22(ζ)x̃1x̃2 + P23(ζ)x̃

2
2




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With control, we achieve desired closed-loop target dynamics as below:





∂z1
∂t

∂z2
∂t



 = −v̄





∂z1
∂ζ

∂z2
∂ζ



+





σ11(ζ) σ12(ζ)

σ21(ζ) σ22(ζ)









z1

z2



 (5.35)

where v̄ = WvW−1 is identity matrix when v is identity matrix. In the simulation

studies, we choose K = [8 4.5] and σ = [−0.25 − 0.1; 0.075 − 0.45].

The linear control law synthesis considers only the first-order Taylor expansion of

the system dynamics and is obtained by determining the numerical solution of the

transformation w(ζ). In particular, with v̄ = v, the function w(ζ) is obtained by

calculating the following differential equation:

v̄
dw(ζ)

dζ
= σw(ζ)− w(ζ)J + w(ζ)βKw(ζ) (5.36)

with initial condition w(1) being design parameter. The function wij(ζ), for i, j = 1, 2

in Eq.5.36 is obtained by calculating the following differential equations:

v
dw11(ζ)

dζ
= (σ11 − J11)w11 − J21w12 + σ12w21 + βK1w

2
11 + βK2w11w21 (5.37)

v
dw12(ζ)

dζ
= (σ11 − J22)w12 − J12w11 + σ12w22 + βK1w11w12 + βK2w11w22

v
dw21(ζ)

dζ
= (σ22 − J11)w21 − J21w22 + σ21w11 + βK1w11w21 + βK2w

2
21

v
dw22(ζ)

dζ
= (σ22 − J22)w22 − J12w21 + σ21w12 + βK1w21w12 + βK2w21w22

In the simulation studies, we choose w(1) = [0.08 0.03; 0.005 0.01], which leads to

the following expression of w(ζ), see Fig.5.4. In particular, for the initial conditions

given as x1 = x1ss + 0.05eζ and x2 = x2ss − 0.1eζ , the linear controller is able to
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stabilize the state around spatially uniform unstable steady state, see Fig.5.5.
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w
ij(ζ

)(
i=

1
,2

;j
=

1
,2

)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
w11
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Fig. 5.4: Linear transform operator wij(ζ)(i, j = 1, 2) in Eq.5.36 for first-order hyper-
bolic PDEs described in Eq.5.29.

The quadratic control synthesis, which contains the second-order terms of the

system, is obtained by determining the numerical solution of the transformation w(ζ)

and P (ζ). In particular, the function w(ζ) takes the form in the Eq.5.36 and the

function P (ζ) is obtained with initial condition P (1). The function Pij(ζ), for i =

1, 2; j = 1, 2, 3 is obtained by calculating the following differential equations:

165



1
0.8

0.6
0.4

ζ

0.2
00

2
4

t

6
8

10

0.3

0.2

0.1

0
12

x̃
1
(
ζ
,
t
)

(a) Temperature x̃1(ζ, t)

1
0.8

0.6
0.4

ζ

0.2
00

2
4

t

6
8

10

1

0.5

-0.5

0

12

x̃
2
(
ζ
,
t
)

(b) Concentration x̃2(ζ, t)

Fig. 5.5: State profiles of linear single-step full state feedback control apply on first-
order hyperbolic PDEs described in Eq.5.29 with transform operator wij(ζ)(i, j = 1, 2)
in Eq.5.36.
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v
dP11(ζ)

dζ
= σ11P11 + σ12P21 − (

1

2
H11 − βK1P11 − βK2P21)w11 (5.38)

−2(J11 − βK1w11 − βK2w21)P11 −
1

2
H21w12 − J21P12

v
dP12(ζ)

dζ
= σ11P12 + σ12P22 + Γ13w21w22

−(H12 − βK1P12 − βK2P22)w11 − 2(J12 − βK1w12 − βK2w22)P11

−(J11 − βK1w11 − βK2w21)P12 −H22w12 − J22P12 − 2J21P13

v
dP13(ζ)

dζ
= σ11P13 + σ12P23 − (

1

2
H13 − βK1P13 − βK2P23)w11

−(J12 − βK1w12 − βK2w22)P12 −
1

2
H23w12 − 2J22P13

v
dP21(ζ)

dζ
= σ21P11 + σ22P21 − (

1

2
H11 − βK1P11 − βK2P21)w21

−2(J11 − βK1w11 − βK2w21)P21 −
1

2
H21w22 − J21P22

v
dP22(ζ)

dζ
= σ21P12 + σ22P22 + Γ23w21w22

−(H12 − βK1P12 − βK2P22)w21 − 2(J12 − βK1w12 − βK2w22)P21

−(J11 − βK1w11 − βK2w21)P22 −H22w22 − J22P22 − 2J21P23

v
dP23(ζ)

dζ
= σ21P13 + σ22P23 − (

1

2
H13 − βK1P13 − βK2P23)w21

−(J12 − βK1w12 − βK2w22)P22 −
1

2
H23w22 − 2J22P23

In the simulation studies, we choose P (1) = [0.01; 0.01; 0.02; 0.03; 0.01; 0.02], which

leads to the following expression of P (ζ), see Fig.5.6. The local quadratic nature of

the control law that stabilizes nonlinear plant is recognized in the case of initial

conditions from which the reactor exit undergoes large excursion from the nominal

operating point. For the same initial conditions in linear control simulation studies
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x1 = x1ss + 0.05eζ and x2 = x2ss − 0.1eζ , the quadratic controller is also able to

stabilize the state around spatially uniform unstable steady state, see Fig.5.7.
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Fig. 5.6: Nonlinear transform operator Pij(ζ)(i = 1, 2; j = 1, 2, 3) in Eq.5.34 for
first-order hyperbolic PDEs described in Eq.5.29.

As demonstrated clearly in Fig.5.5 and Fig.5.7, the first-order hyperbolic PDEs

can be stabilized around desired steady state by applying single-step controller of

linear control or quadratic control. However, by comparing the norms of the state

||x(ζ, t)|| with the application of linear control law and quadratic control law, see

Fig.5.8, it can be seen that the state norm with quadratic control is smaller than

the state norm with linear control. From the simulation results, it shows that the

performance of the quadratic control is better than that of the linear control. This

illustrates that the single-step controller design with second-order Taylor expansion

of the system’s dynamics has a good control performance to stabilize the first-order

nonlinear hyperbolic PDEs around desired steady state.
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Fig. 5.7: State profiles of nonlinear single-step full state feedback control apply on
first-order hyperbolic PDEs described in Eq.5.29 with transform operator Pij(ζ)(i =
1, 2; j = 1, 2, 3) in Eq.5.34.
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in Eq.5.29.
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5.4.2 Second-Order Hyperbolic PDE

In this section, we consider the damped wave equation which takes the following form

given as second-order hyperbolic PDE:

∂2φ

∂t2
(ζ, t) = ν

∂2φ

∂ζ2
(ζ, t) + c

∂φ

∂t
(ζ, t) (5.39)

with initial condition and boundary condition:

φ(ζ, 0) = φ0(ζ),
∂φ

∂ζ
(ζ, 0) = φ1(ζ) (5.40)

φ(0, t) = 0,
∂φ

∂ζ
(1, t) = 0

where ζ ∈ [0, L] and t ∈ [0,∞].

Remark 3: The eigenvalues of the damped wave equation are λi =
c±
√
c2+4νai
2

,

where ai = −(2i+1
2
π)2, i = 0, 1, 2, · · · . According to the eigenvalues, when c > 0,

the system is unstable; when c < 0, there is additional condition to determine the

stability of the system, and we will not go into details here. The physical model to

consider is motivated by the sucker-rod system which is described by the 1-D damped

wave equation with c < 0 in the following form:

∂2φ

∂t2
(ζ, t) = ν2

∂2φ

∂ζ2
(ζ, t) + c

∂φ

∂t
(ζ, t) (5.41)

where ν =
√

144Egc/ρ is the sound velocity in the rod material, ft/s; c is the

damping coefficient; φ(ζ, t) is the displacement of the rod. The application of single-

step simultaneous transformation and full state feedback should ensure desired rate

convergence to the steady state.
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In the next controller realization, we consider an unstable damped wave equation

with α = 2 in the following form:

∂2φ

∂t2
(ζ, t) =

∂2φ

∂ζ2
(ζ, t) + α

∂φ

∂t
(ζ, t) + βu(t) (5.42)

with initial conditions and boundary conditions:

φ(ζ, 0) = φ0(ζ),
∂φ

∂ζ
(ζ, 0) = φ1(ζ) (5.43)

φ(0, t) = 0,
∂φ

∂ζ
(1, t) = 0

By defining the state variables as ∂φ
∂t
(ζ, t) = v1(ζ, t) and

∂φ
∂ζ
(ζ, t) = v2(ζ, t), the system

reduces to the system of first-order hyperbolic PDEs:

∂

∂t





v1

v2



 =





0 1

1 0





∂

∂ζ





v1

v2



+





α 0

0 0









v1

v2



+





β

0



 u(t) (5.44)

Devoting A =





0 1

1 0



, it can be shown that the matrix A can be transformed as

follows:

A = QΛQ−1 (5.45)

where Λ =





1 0

0 − 1



, Q =





1 1

1 − 1



 and Q−1 =





0.5 0.5

0.5 − 0.5



.

Multiplying the Eq.5.44 on the left by Q−1, the system transfer to a diagonal
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decoupled system of first-order hyperbolic PDEs:

∂

∂t





x1

x2



 =





1 0

0 − 1





∂

∂ζ





x1

x2



+





0.5α 0.5α

0.5α 0.5α









x1

x2



 (5.46)

+





0.5β

0.5β



 u(t)

where
[

x1 x2

]T

= Q−1
[

v1 v2

]T

.

In the single-step controller design, the desired stable closed-loop target dynamics

is in the following form:

∂

∂t





z1

z2



 =





v̄11 v̄12

v̄21 v̄22





∂

∂ζ





z1

z2



+





σ11 σ12

σ21 σ22









z1

z2



 (5.47)

The function w(ζ) of linear transformation z[x(ζ, t)] = w(ζ)x(ζ, t) is obtained with

v̄ = wvw−1 as the solution of the following differential equation:

w(ζ)vw−1(ζ)
dw(ζ)

dζ
= σw(ζ)− w(ζ)J + w(ζ)βKw(ζ) (5.48)

Let us assume the simplest set of deign parameter given as diagonal matrix




σ11 0

0 σ22



 here. With linear transformation x̃ = w−1z, the desired stable closed-

loop target in Eq.5.47 becomes:

∂

∂t





x̃1

x̃2



 =





1 0

0 −1





∂

∂ζ





x̃1

x̃2



+





γ11(ζ) γ12(ζ)

γ21(ζ) γ22(ζ)









x̃1

x̃2



 (5.49)

where γ11(ζ) = w22σ11w11 − w12σ22w21, γ12(ζ) = w22σ11w12 − w12σ22w22, γ21(ζ) =
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−w21σ11w11 + w11σ22w21 and γ22(ζ) = −w21σ11w12 + w11σ22w22.

Similarly, with linear transformation ṽ = Qx̃, the above system is expressed in

the following form:

∂

∂t





ṽ1

ṽ2



 =





0 1

1 0





∂

∂ζ





ṽ1

ṽ2



+





ρ11(ζ) ρ12(ζ)

ρ21(ζ) ρ22(ζ)









ṽ1

ṽ2



 (5.50)

where ρ11(ζ) = 0.5(γ11 + γ21 + γ12 + γ22), ρ12(ζ) = 0.5(γ11 + γ21 − γ12 − γ22), ρ21(ζ) =

0.5(γ11 − γ21 + γ12 − γ22) and ρ22(ζ) = 0.5(γ11 − γ21 − γ12 + γ22).

The corresponding second-order hyperbolic PDE of the desired stable closed-loop

target in Eq.5.47 is given as below:

∂2φ̃

∂t2
(ζ, t) =

∂2φ̃

∂ζ2
(ζ, t) + α̃

∂φ̃

∂t
(ζ, t) (5.51)

where α̃(ζ) = ρ11(ζ)− ρ12(ζ)ρ21(ζ)
ρ22(ζ)

.

In linear control synthesis for second-order hyperbolic system, the function wij(ζ),

for i, j = 1, 2, in Eq.5.48 is obtained by calculating the following differential equations:





v̄11 v̄12

v̄21 v̄22









dw11(ζ)
dζ

dw12(ζ)
dζ

dw21(ζ)
dζ

dw22(ζ)
dζ



 =





ψ11 ψ12

ψ21 ψ22



 (5.52)

where v̄ is in the following form:

v̄11 =
w11w22 + w12w21

w11w22 − w12w21

(5.53)

v̄12 =
−2w11w12

w11w22 − w12w21

v̄21 =
2w21w22

w11w22 − w12w21
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v̄22 =
−w21w12 − w11w22

w11w22 − w12w21

and ψ takes the following form:

ψ11 = J11w11 + J21w12 − (β1K1w
2
11 + β2K1w11w12 + β1K2w21w11 (5.54)

+β2K2w21w12)− (σ11w11 + σ12w21)

ψ12 = J12w11 + J22w12 − (β1K1w12w11 + β2K1w
2
12 + β1K2w22w11

+β2K2w22w12)− (σ11w12 + σ12w22)

ψ21 = J11w21 + J21w22 − (β1K1w11w21 + β2K1w11w22 + β1K2w
2
21

+β2K2w21w22)− (σ21w11 + σ22w21)

ψ22 = J12w21 + J22w22 − (β1K1w12w21 + β2K1w12w22 + β1K2w22w21

+β2K2w
2
22)− (σ21w12 + σ22w22)

In linear control simulation studies, with β = 1.3, K = [15 10], σ = [−3 0; 0 − 3]

and w(1) = [0.5 0.4; 0.1 0.2], the numerical result of w(ζ) is shown in Fig.5.9.

Fig.5.10 gives the numerical result of α̃(ζ), which yields the condition |α̃(ζ)| < |42i+1
2
π|

for i = 0, 1, 2, · · · . This condition leads to the eigenvalues λi < 0 (i = 0, 1, 2, · · · ),
which implies that the target system is a stable one, see Fig.5.10, showing that α̃(ζ) is

negative in [0, 1]. From the result of simulation studies, it can be seen that the single-

step state feedback control shifts the eigenvalues of unstable system on the right hand

side of complex plain to the left hand side, see Fig.5.11. Here, the stable eigenvalues

obtained by single-step full state feedback control law in Fig.5.11 are simulated with

minimum α̃(ζ). The state of second-order hyperbolic PDE system is stabilized around

steady state with the initial conditions given as x1 = x1ss + eζcos(2πζ) and x2 =

x2ss + 1.2eζsin(2πζ), see Fig.5.12.
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Fig. 5.9: Linear transform operator wij(ζ)(i, j = 1, 2) in Eq.5.48 for second-order
hyperbolic PDE described in Eq.5.39.
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Fig. 5.10: Parameter α̃(ζ) of second-order hyperbolic PDE in Eq.5.51 with the appli-
cation of single-step full state feedback control.
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plex plain (o) to the left hand side (∗) by applying single-step full state feedback
control to second-order hyperbolic PDE in Eq.5.51.
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Fig. 5.12: State profiles of second-order hyperbolic PDE system described in Eq.5.39
with linear single-step full state feedback control with transform operator wij(ζ)(i, j =
1, 2) in Eq.5.48.
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In quadratic control synthesis for second-order hyperbolic system, the function

Pij(ζ), for i = 1, 2; j = 1, 2, 3 is obtained by calculating the following differential

equations:





v̄11 v̄12

v̄21 v̄22









dP11(ζ)
dζ

dP12(ζ)
dζ

dP13(ζ)
dζ

dP21(ζ)
dζ

dP22(ζ)
dζ

dP23(ζ)
dζ



 =





φ11 φ12 φ13

φ21 φ22 φ23



 (5.55)

where v̄ takes the same form in Eq.5.53 and φ is in the following form:

φ11 = −σ11P11 − σ12P21 + 2J11P11 + 2J21P12 +H11w11 +H21w12 (5.56)

−2(K1w11 +K2w21)(β1P11 + β2P12)− (β1w11 + β2w12)(K1P11 +K2P21)

φ12 = −σ11P12 − σ12P22 + J12P11 + (J11 + J22)P12 + J21P13 +H12w11 +H22w12

−(K1w12 +K2w22)(β1P11 + β2P12)

−(K1w11 +K2w21)(β1P12 + β2P13)− (β1w11 + β2w12)(K1P12 +K2P22)

φ13 = −σ11P13 − σ12P23 + 2J12P12 + 2J22P13 +H13w11 +H23w12

−2(K1w12 +K2w22)(β1P12 + β2P13)− (β1w11 + β2w12)(K1P13 +K2P23)

φ21 = −σ21P11 − σ22P21 + 2J11P21 + 2J21P22 +H11w21 +H21w22

−2(K1w11 +K2w21)(β1P21 + β2P22)− (β1w21 + β2w22)(K1P11 +K2P21)

φ22 = −σ21P12 − σ22P22 + J12P21 + (J11 + J22)P22 + J21P23 +H12w21 +H22w22

−(K1w12 +K2w22)(β1P21 + β2P22)

−(K1w11 +K2w21)(β1P22 + β2P23)− (β1w21 + β2w22)(K1P12 +K2P22)

φ23 = −σ21P13 − σ22P23 + 2J12P22 + 2J22P23 +H13w21 +H23w22

−2(K1w12 +K2w22)(β1P22 + β2P23)− (β1w21 + β2w22)(K1P13 +K2P23)
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In quadratic control law realization, function w(ζ) is given in Fig.5.9 and function

P (ζ) is simulated with initial condition P (1) = [0.00005; 0.00005; 0.00007; 0.00008;

0.00005; 0.00007], see Fig.5.13. The simulation result of single-step control law with

nonlinear coordinate transformation is given in Fig.5.14.

Fig.5.15 illustrates that the single-step controller design with nonlinear expansion

of the system has a good control performance for stabilizing the second-order hyper-

bolic PDE around desired steady state by comparing the state norms ||φ(ζ, t)|| with
the application of linear control law and quadratic control law.
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Fig. 5.13: Nonlinear transform operator Pij(ζ)(i = 1, 2; j = 1, 2, 3) for second-order
hyperbolic PDE described in Eq.5.39.
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5.5 Conclusions

In conclusion, this chapter explores an extension of the single-step Luenberger type

of feedback linearization with pole placement formulation to the class of system of

nonlinear hyperbolic PDEs. In particular, single-step full state feedback controller is

designed in this chapter for the nonlinear first-order hyperbolic PDEs system of the

exothermic plug-flow reactor and the damped second-order hyperbolic PDE system.

Simultaneous state coordinate transformation and full state feedback are realized

to achieve desired pre-specified stabilization of unstable hyperbolic PDEs system.

Two controller law realizations, linear and quadratic control, are developed and they

can successfully stabilize the unstable nonlinear first-order hyperbolic PDEs system

and unstable second-order hyperbolic PDE system. From the numerical simulation

results, it can be seen that the quadratic controller has a good control performance

for stabilizing various types of nonlinear or systems of hyperbolic PDEs at desired

steady state.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, model predictive control and nonlinear control are presented for dis-

tributed parameter systems. Furthermore, their performances are illustrated by hy-

perbolic PDE system, parabolic PDE system, coupled hyperbolic PDE and ODE

system emerging from chemical transport-reaction process and solar thermal energy

process.

Specifically, Chapter 2 provides foundation of systematic modelling framework for

a linear DPS which uses a finite and low dimensional setting for the model predictive

controller design without application of any spatial approximation or order reduc-

tion. The discrete DPS is developed by Cayley-Tustin time discretization with the

application of Laplace transform applying on the continuous DPS. In this chapter,

we consider the systems varying from the convection dominated plug flow reactor

models described by hyperbolic PDEs to the diffusion dominated axial dispersion re-

actor models described by parabolic PDEs. The model predictive control algorithms
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for hyperbolic PDEs and parabolic PDEs are quadratic regulator problems with the

consideration of manipulated input and process state constraints.

In addition, Chapter 4 addresses the low order model predictive controller design

for a coupled hyperbolic PDE and ODE system of a solar boreal thermal energy

process. The model predictive control algorithm addresses a constrained optimization

problem with the manipulation constraints, and accounts for possible unstable system

dynamics and disturbances arising from solar and geothermal radiations. The realistic

output regulation is considered by the inclusion of an observer which constructs finite

and infinite dimensional states.

Along the line of controller design for DPS, Chapter 3 addresses a simple and eas-

ily realizable servo control algorithm for a coupled hyperbolic PDE and ODE system

which models a complex solar thermal system with borehole seasonal storage in a

real commercial community. The overall discrete system is obtained from subsystems

modelling of solar power plant process, heat exchanger, borehole energy storage pro-

cess, hot tank and district heating loop process. The servo controller is designed to

regulate the system operating at desired thermal comfort level despite disturbances

from the solar thermal plant system, the borehole geo-thermal energy storage system

and/or the district heating loop system.

Finally, Chapter 5 proposes an extension of single-step formulation of full state

feedback control design to the class of distributed parameter system described by

nonlinear hyperbolic PDEs. The methodology lies in the fact that both feedback

control and stabilization design objectives given as target stable dynamics are accom-

plished in one step under a simultaneous implementation of a nonlinear coordinate

transformation and a nonlinear state feedback law. The mathematical formulation

of the problem is realized via a system of first-order quasi-linear singular PDEs. By
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using Lyapunov’s auxiliary theorem for singular PDEs, the necessary and sufficient

conditions for solvability are utilized. The solution to the singular PDEs is locally

analytic, which enables development of a PDE series solution.

6.2 Future Work

This thesis developed model predictive control and nonlinear control for distributed

parameter systems which are modelled from chemical transport-reaction process and

solar thermal energy process. There remain many open questions regarding this

subject and a number of them are briefly mentioned here.

In addition to chemical transport-reaction process and solar thermal energy pro-

cess which are described by the classes of hyperbolic PDE system, parabolic PDE

system, coupled hyperbolic PDE and ODE system, the wave equation system and

beam equation system which account for a large class of distributed parameter sys-

tems can be addressed in future. Furthermore, the model predictive control can be

applied to the port-Hamiltonian distributed parameter systems, such as undamped

wave equation system and heat exchanger system.

Another possibility is development of advanced control algorithms such as explicit

model predictive control and/or economic model predictive control for distributed

parameter systems, with emphasize on the different slight variations in realization of

constrained finite dimensional controllers.

Another promising area is the design of observer and/or estimation strategies such

as Kalman filter and/or moving horizon estimation for linear distributed parameter

systems.
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