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Abstract 

Streams provide essential ecosystem services including nutrient cycling and uptake, 

organic matter processing and ecosystem production and respiration. Stream ecosystem 

functioning provides an integrated metric of biological structures and processes that can respond 

to anthropogenic land use activities including removal of riparian areas and nutrient enrichment. 

Agricultural land use is common in the Boreal Transition, Parkland and Grassland ecoregions of 

Alberta, where streams are exposed to a range of land use intensities and levels of nutrient 

loading. Two key indicators of ecosystem function are stream metabolism and organic matter 

processing, which incorporate carbon cycling and community structure. This thesis aims to 

describe the direct and indirect effects of anthropogenic land use on stream metabolism and 

decomposition in streams within agriculturally-impacted areas of Alberta. I studied 34 streams 

along a gradient of nutrients over three years in spring, summer and fall. Metabolism was 

measured with the single station open-channel method over 3–5-day deployments in each season. 

Variation in stream physicochemical properties was analyzed across regions and seasons, and 

direct impacts on metabolism were studied through generalized linear mixed modelling and 

indirect impacts through structural equation modelling. Stream metabolism was driven primarily 

by water temperature and dissolved organic carbon concentrations and does not appear to be 

strongly influenced by increased concentrations of nutrients. Land cover has indirect impacts on 

metabolism by controlling changes in light and dissolved organic carbon availability. 

Decomposition was measured in-stream using litterbags deployed from June to September. 

Decomposition was assessed through decay rates and stoichiometry. Contrary to metabolism, 

decomposition was directly correlated with increasing total nitrogen concentrations, which 

increased microbial decay rates and lowered litter carbon:nutrient ratios. This research 
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showcases the diverse impacts of anthropogenic land use on stream function and the importance 

of nutrient criteria and riparian management for preserving ecological integrity.  
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Preface 

 

 This thesis is an original work by Emily Barrie and is divided into four distinct chapters. 

The first chapter is a general introduction to the thesis that provides background information on 

the objectives and project design. Chapters two and three are manuscripts intended for 

publication. The fourth chapter is a general conclusion that provides a summary and 

recommendations for future work. Chapters 2 and 3 are written in plural to reflect the 

collaborative work. Supervisory authors were Drs. S.E. Tank and R.D. Vinebrooke with further 

support from Dr. G.S. Piorkowski and M. Kobryn.  

 

Chapter 2  
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drivers of stream metabolism across land use gradients in agricultural ecoregions of Alberta, 
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Chapter 3 

Barrie, E., Kobryn, M., Tank, S. E., Vinebrooke, R. D., and Piorkowski, G. S. Microbial activity 

and nutrients impact organic matter decomposition in agricultural streams of Alberta, Canada 
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Chapter 1. General Introduction  

1.1 Project Background 

1.1.1 Stream Ecosystems in Agricultural Regions 

Stream ecosystems are important for biogeochemical cycling, agricultural water use, 

habitat, and recreation. The strong link between stream ecosystems and human activity has led to 

significant environmental stressors (Allan 2004, Sabater et al. 2018). Anthropogenic uses of 

streams can alter ecosystem health and function through changes to carbon cycling (Cole et al. 

2007), eutrophication (Carpenter et al. 1998, Dodds and Smith 2016), and climate change 

(Whitehead et al. 2009, Piggott et al. 2015). Agricultural land use in particular can have many 

impacts on stream health through non-point source pollution of nutrients and pesticides, and 

changes to riparian vegetation (Vitousek et al. 2009, Beketov et al. 2013). The variety of impacts 

agriculture can have on steam ecosystems requires examination of which drivers alter ecological 

integrity. 

Agriculture is often associated with increases in non-point source nutrient pollution and 

removal of riparian areas. The riparian areas of streams are important for providing a transition 

zone between the stream and uplands that controls the movement of materials between the two 

areas. Increasing nutrients can lead to eutrophication, increases in toxic blooms of cyanobacteria, 

shifts in species composition and changing biogeochemical functioning such as carbon cycling 

and decomposition (Burrell et al. 2014). Agricultural impacts on stream ecosystems can be 

mitigated through watershed management plans and the prescription of beneficial management 

practices. Appropriate management plans include the examination of biological indicators to 

assess preventative or restorative designs to preserve stream health.  

1.1.2 Functional Assessments of Stream Ecosystem Health 

Baseline structural metrics such as water chemistry and algal or invertebrate species 

composition are often used to characterize stream health. The inclusion of functional metrics that 

incorporate ecosystem processes in water quality monitoring can allow for more sensitive 

assessments that more directly quantify change in ecosystem services (Young and Collier 2009, 

Feio et al. 2010, Verdonschot and Lee 2020).  Functional metrics allow for the assessment of the 

interacting biotic and abiotic components of stream ecosystems (Palmer and Febria 2012). 

Functional metrics can also indicate changes to ecological integrity where structural metrics may 

not due to decoupling between structural traits and function (Feckler and Bundschuh 2020).  
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Therefore, functional metrics are complementary to structural assessment and necessary for a 

holistic approach to assessing stream health.  

Stream metabolism and organic matter decomposition are becoming more common methods 

of assessing stream function due to their ease of measurement and the lowering costs of 

equipment (Young et al. 2008).  Stream metabolism incorporates an integrated measure of gross 

primary production and ecosystem respiration within streams, while decomposition relates to 

local food web dynamics and carbon availability. Both of these metrics have the potential to 

respond to agricultural land use change and associated impacts (Piscart et al. 2009, Griffiths et al. 

2013, Clapcott et al. 2016, Wagenhoff et al. 2017). Stream metabolism has been shown to vary 

across land use types and anthropogenic intensity (Bernot et al. 2010, Pearce et al. 2020). 

Decomposition, often measured through leaf litter breakdown, can be affected through changes 

to temperature and flow regimes (Ferreira et al. 2006, Griffiths and Tiegs 2016, Manning et al. 

2018, Yeung et al. 2018, Palmer and Ruhi 2019) as well as nutrient concentrations in streams 

(Ferreira et al. 2015, Manning et al. 2015). By assessing links between the stream environment 

and agriculture though stream metabolism and organic matter decomposition, a comprehensive 

assessment of ecosystems’ responses to agricultural intensity can be completed.  

The effects of agriculture on stream function may also vary depending on specific 

geographic and climatic conditions (Woodward et al. 2012). In Alberta, streams in the Parkland, 

Grassland and Boreal ecoregions vary in their climate, dominant soil types, and land use but are 

all extensively affected by agriculture (Palliser Environmental Services, 2008). The variability of 

Alberta’s ecoregions thus provides an ideal opportunity for assessing the impacts of 

anthropogenic land use on stream function. Stream function can be affected through direct 

changes in local characteristics such as nutrient concentrations, canopy cover, water temperature, 

and channel characteristics, but also more indirectly by regional characteristics including climate 

and watershed morphology (Bernot et al. 2010, Handa et al. 2014, Farrell et al. 2018). Therefore, 

it is critical to understand how variation across ecoregions relates to the impacts of agriculture on 

streams. By understanding the environmental conditions within streams and watersheds of each 

ecoregion and across nutrient gradients, this project will allow for the determination of steam 

functional indicators’ responses for individual ecoregions.  
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1.2 Research Objectives 

The purpose of this thesis is to examine how stream function shifts along a gradient of 

nutrients and agricultural land use. Through describing ecoregion and land use effects on stream 

health, the impacts of agricultural land cover can be determined, which will be essential when 

developing watershed management plans. This thesis consists of two data chapters each with 

their own objectives. The first chapter assesses direct and indirect drivers of stream metabolism 

along a gradient of agricultural intensity where our primary objectives were to: (i) determine the 

influence of local environmental variables affected by land use change on stream metabolism, 

and (ii) describe how variation in watershed-scale characteristics indirectly impact stream 

metabolism. We hypothesized that watershed land cover and morphology would have indirect 

impacts on metabolism by controlling local conditions such as light, temperature and discharge. 

We also predicted that removal of riparian vegetation and increased nutrients would result in 

higher metabolic rates across all seasons. The second chapter assesses organic matter 

decomposition in response to nutrient enrichment in agricultural ecoregions with the objectives 

of: (i) examining microbial and invertebrate decay rates and their drivers, and (ii) assessing 

changes in detrital stoichiometry along a gradient of increasing nutrient concentrations. We 

hypothesized that increasing concentrations of essential nutrients of nitrogen and phosphorus 

would lead to faster decay rates and decreasing carbon: nutrient ratios of litter due to enhanced 

decomposer activity.        

1.3 Study Design 

The study was conducted in agricultural areas of the Boreal Transition Zone, Parkland and 

Grassland ecoregions of Alberta. Major river basins containing our study sites include the 

Athabasca, Red Deer, Oldman, North Saskatchewan, South Saskatchewan, and Battle rivers,  

with headwaters in the Rocky Mountains and Western Alberta. The Grassland and Parkland 

regions experience high levels of agriculture, while agricultural development in the Boreal is 

confined to the Dry and Central Mixedwood subregions. We assessed 34 streams ranging from 

3rd-5th Strahler order that were chosen to be wadable with similar physical characteristics in 

width and accessibility. Streams were chosen to span a gradient of increasing concentrations of 

nitrogen and phosphorus. Sampling was conducted in the spring, summer and fall seasons to 

account for temporal variation. The study spanned three years between 2017-19 with repetition 

between some sites to account for long-term trends. We measured stream metabolism for 3-5 day 
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periods in each season and organic matter decomposition between June and September. To 

assess the impacts of agriculture on stream function, we compared our metrics to gradients of 

nutrient enrichment, physical and chemical conditions, and land cover within the watershed.  

1.4  Significance 

The use of integrated measures of stream health will provide more comprehensive knowledge 

of the effects of agriculture across ecoregions in Alberta. The knowledge generated from this 

research will contribute to academic literature on how stream ecosystem function is impacted by 

nutrient loading and land use change in varying ecoregions. Understanding the impacts of 

nutrients and agriculture at a functional level will be important for developing watershed 

management plans for streams in agricultural areas. Current numerical water quality guidelines 

for Alberta surface waters only relate to major lakes and rivers. Therefore, there is a need for 

more explicit water quality standards for lower order stream reaches in these agricultural regions 

(Alberta Department of Health 1970, Government of Alberta 2018). This project is also a 

component of Alberta Agriculture and Forestry’s “Nutrient Objectives for Small Streams in 

Agricultural Watersheds of Alberta” which aims to recommend nutrient criteria for streams in 

these regions. Water quality management plans can be based on specific ecoregion responses 

determined from their impacts on functional response within the provincial project. Furthermore, 

changes to drivers of stream function altered by land use change such as temperature, canopy 

cover and light can also be directly targeted for mitigation by management plans. This project 

will evaluate the importance of riparian areas and land cover within the watershed.  
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Chapter 2. Environmental drivers of stream metabolism across land use gradients in 

agricultural ecoregions of Alberta, Canada 

2.1 Introduction 

Stream metabolism is an integrated measure of gross primary production (GPP) and 

ecosystem respiration (ER), where the difference reflects net ecosystem productivity (NEP), and 

acts as a sensitive indicator of stream function (Young et al. 2008). Stream metabolism was first 

quantified by Odum (1956) with the description of daily oxygen curves to calculate production 

and respiration. In recent years, methods of measuring diurnal oxygen have become more refined 

and accessible allowing for more robust metabolism measurements (Hoellein et al. 2013). 

Measurements of diel oxygen to find primary production and respiration allows for the 

integration of all organisms and processes influencing organic matter processing in streams, 

making metabolism a sensitive environmental metric (Hall and Hotchkiss 2017). Stream 

metabolism has been used as an indicator to discern the effects of nutrients (Frankforter et al. 

2010, Pearce et al. 2020), anthropogenic activities (Beaulieu et al. 2013, Griffiths et al. 2013, 

Yates et al. 2013, Clapcott et al. 2016, Arroita et al. 2018), temperature (Demars et al. 2011), 

light (Nebgen and Herrman 2019a, Reisinger et al. 2019), discharge (Blaszczak et al. 2019, 

O’Donnell and Hotchkiss 2019) and watershed morphology (Jankowski and Schindler 2019) on 

overall stream function.  

Many studies have used stream metabolism as an indicator of ecosystem health in 

agricultural areas (Griffiths et al. 2013, Alberts et al. 2017), but responses to land use can vary 

among ecoregions (Frankforter et al. 2010, Gurung et al. 2019). Due to the variety of stressors on 

metabolism related to agriculture, it is necessary to assess how regional trends relate to local 

drivers of metabolism. Previous studies have been conducted across wide spatial scales (Bernot 

et al. 2010, Appling et al. 2018b) but the focus on agricultural gradients in these studies is 

limited. Regional variation in factors such as climate, landscape morphology and land cover can 

influence and interact with local environmental variables to control metabolism within 

watersheds (Bernot et al. 2010, Bogard et al. 2020). In Alberta, streams in the Parkland, 

Grassland and Boreal ecoregions vary owing to differences in the associated climate, dominant 

soil types and land use of their catchments, but extensive modifications of the landscape for 

agriculture are common to all ecoregions (Palliser Environmental Services 2008). The broad 

ecoregion variability as well as strong agricultural gradient presents Alberta as an ideal area to 
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study metabolic responses to environmental variables across a differing land-use intensity within 

varying ecoregions. 

In addition to the direct effects of agricultural land use and nutrient rich soils on the 

functioning of Albertan streams (Prepas and Trew 1983), several broad drivers that vary 

seasonally can be expected. For example, precipitation and discharge regimes can affect seasonal 

metabolism through increases in dissolved organic carbon (DOC) and scouring of primary 

producers. Seasonal increases in chlorophyll a can be associated with changes in GPP due to 

greater numbers of primary producers and alterations in the number of grazers (Riley and Dodds 

2012, Alberts et al. 2017). Regional temperature regimes impact metabolism through 

temperature dependent enzymes and shifting community structures (Yvon-Durocher et al. 2012). 

Increased land use pressure has also been associated with increased seasonal variation as a result 

of associated temporal variation in plant biomass, flow, nutrient availability and reduced riparian 

shading (Clapcott et al. 2016).  

Agricultural land use is often associated with increases in non-point source pollution to 

receiving waterbodies, with nutrients being of particular concern for the eutrophication of 

aquatic ecosystems (Carpenter et al. 1998, Dodds and Smith 2016). Eutrophication of stream 

ecosystems can have detrimental impacts on stream functioning but impacts on metabolism have 

varied across studies depending on location, the type of agricultural land use, urbanization and 

latitude. Bernot et al. (2010) found ammonium and nitrate to be important in influencing GPP 

and ER, but found no relationships with soluble reactive phosphorus. Another large regional 

study of agricultural areas found no relationship between metabolism and nutrients, but found 

relationships between GPP and phosphorus when light was corrected for within agricultural areas 

of the United States (Frankforter et al. 2010). Pearce et al. (2020) also reported that even when 

total phosphorus (TP) concentrations increased downstream of a sewage treatment facility, there 

was no difference in GPP within mid-order streams. Taken together, these studies suggest that 

variation in the response of metabolism to nutrients may more often be due to other 

environmental factors that need to be examined. 

Agricultural land use practices can often lead to reduced or full removal of the riparian 

vegetation that acts as an important buffer between streams and adjacent lands. The reduction of 

the riparian buffer can reduce the attenuation of nutrients in runoff from adjacent fields and 
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inputs of allochthonous carbon from vegetation that will impact stream metabolism (Alberts et 

al. 2017). Increased dissolved organic carbon in streams associated with loss of riparian areas 

can limit GPP through reductions in light and increase ER by stimulating heterotrophic processes 

(O’Donnell and Hotchkiss 2019). Intact riparian cover can also contribute allochthonous organic 

material to the stream, which increases microbial respiration (Riley and Dodds 2012).  

The main goal of this research was to understand how stream metabolism varies across a 

wide range of environmental conditions and to infer potential influences of agricultural land use 

across contrasting ecoregions. Research objectives were to (i) characterize regional variation in 

drivers of stream metabolism, (ii) determine the influence of proximal environmental variables 

impacted by land use change on stream metabolism, and (iii) describe how regional variation in 

watershed morphology and land cover affect stream metabolism. We measured GPP, ER, and 

NEP across agricultural gradients in three ecoregions, with measurements across three seasons to 

determine the responses to variables altered by land use change. We hypothesized that watershed 

morphology and land cover, including a gradient of anthropogenic intensity will have indirect 

impacts on metabolism by altering local conditions such as temperature, light, and discharge. We 

also expected higher nutrient concentrations and increasing temperature regimes from riparian 

alterations to increase GPP and ER. This paper will provide insights into how stream metabolism 

responds to direct (stream level) and indirect (watershed level) impacts of agricultural land use 

across regions and offer information into watershed management practices necessary to preserve 

ecological integrity.   

2.2 Methods 

2.2.1 Study Area 

A total of 34 third-to-fifth Strahler-order perennial streams in the Parkland, Grassland 

and Boreal ecoregions were selected for this study (Figure 2.1). All streams within the Boreal 

ecoregion were contained within the Dry Mixedwood subregion, as agricultural activity is most 

prevalent in this subregion. There were no high-quality reference sites available in these regions 

as all watersheds have been impacted to some extent by agricultural land use. Sites were selected 

from a suite of candidate sites that span a gradient of agricultural intensity, and finalized based 

on site accessibility and measured concentrations of nitrogen and phosphorous to confirm the 

existence of a nutrient gradient. In 2017, 10 Grassland sites and three Parkland sites were 

sampled. A total of 10 Parkland sites were sampled in 2018 with an additional two sites in each 
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of the Boreal and Grassland. The final field season in 2019 involved 12 Boreal sites. All sites 

were accessed in spring (May), summer (July or August), and fall (September or October) for a 

total of 123 site visits.  

The three ecoregions vary in their physical and climatic characteristics with the Grassland 

being warmer and drier and the Boreal being cooler and wetter (Natural Regions Comittee 2006). 

Major watersheds containing our study sites include the Athabasca, Red Deer, Oldman, North 

Saskatchewan, South Saskatchewan and Battle rivers.  Annual average precipitation (from 1981-

2010) for our study watersheds ranged from an average of 492.5 mm in the Boreal (Moose 

Wallow Station), to 492.4 mm in the Parkland (Olds Climate Station) and 380.2 mm in the 

Grassland (Lethbridge A Climate Station) (see Figure 2.1 and Table S1.1 for climate station 

locations). Mean annual temperature within the watersheds ranges from 2.2°C in the Boreal 

(Moose Wallow Climate Station) to 5.9 °C in the Grassland (Lethbridge A Climate Station) 

(Environment and Climate Change Canada, 2020) The Boreal is characterized by Luvisolic and 

the Grassland by Chernozemic soils while the Parkland includes both soil types. Surficial 

geology across sites varied but was dominant in Glaciolacustrine Deposits and Stagnant Ice 

Moraine. The Grassland and Parkland are characterized by more glacial till than the Boreal.  

Riparian vegetation is variable due to specific landowner practices, but also varies regionally 

with the Grassland being characterized by more grasses and shrubs than the Parkland and Boreal 

ecoregions, which are naturally treed (AAFC 2019, Natural Regions Committee 2020). Beaver 

activity occurs within the study region but was not studied so their influence on flow and stream 

metabolism could not be evaluated.  

2.2.2. Data Collection 

Streams were visited twice during each of the spring, summer and fall seasons, with 4-5 

days between site visits. Stream width, mean velocity, mean depth, and discharge were measured 

during each site visit using an Acoustic Doppler Velocimeter (ADV) (SonTek FlowTracker 2, 

San Diego, USA) when navigable, and an Acoustic Doppler Current Profiler (ADCP) (Teledyne 

StreamPro, Poway, CA, USA) when water levels were high. All flow measurements were taken 

at a run section of stream reach with near-laminar flow, and discharge was calculated using the 

mid-section method (Turnipseed & Sauer, 2010). Samples for total nitrogen (TN), total 

phosphorous (TP), chlorophyll a, and dissolved organic carbon (DOC) were also collected once 
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during every deployment period.  Water samples were taken mid-stream and mid-depth and 

placed on ice for transport to ALS Environmental Laboratories (Edmonton and Calgary, Alberta) 

for analyses (Table S1.2). An EXO2 multi-parameter sonde (YSI, Yellow Springs, Ohio) was 

deployed mid-stream for 4-5 day periods to measure dissolved oxygen (DO), temperature, pH, 

conductivity and turbidity at 10-minute intervals. The sonde was calibrated before each 

deployment for conductivity, pH, turbidity and local oxygen saturation following manufacturer’s 

protocols. Sonde probes were thoroughly cleaned prior to each deployment and were deployed 

with an added wiper in 2019 to prevent biofouling. 

In addition to measured in situ variables, we acquired growing degree-days and 

precipitation data from Alberta Climate Information Service (ACIS) weather stations (Table 

S1.2) (ACIS, 2020). Antecedent cumulative precipitation occurring 3, 8 and 14 days prior to 

each sonde deployment was compiled. Varying lengths of antecedent condition were chosen to 

represent the direct impacts of different precipitation regimes on stream metabolism. Watersheds 

were delineated using the ArcGIS Spatial Analyst extension in ArcMap software (ArcGIS v. 

10.4; Esri Canada, Toronto, ON). Government of Alberta ArcHydro Phase 2 Data (AEP 2018) 

was used to support watershed delineation. Land cover data based upon optical satellite and radar 

imagery with a spatial resolution of 30 m (AAFC 2019) was aggregated within each watershed 

boundary through summation. Coarse land cover categories were created for each watershed by 

adding the areas of crops (cropland), tame pasture and forage (pasture), treed area types (forest); 

also included were the aggregate areas of open water, wetlands, developments (residential, 

industrial) and native grassland (Table S1.3, Figure S1.1). Total land cover was converted to a 

proportion by dividing the total area of the class by the watershed area for comparative analyses 

across watersheds. Watershed morphological characteristics were also calculated and included 

watershed area (km2), mean slope of the land area in watershed (%), overall watershed slope 

from start to outlet of main channel (%), drainage density (total length of streams in watershed 

basin divided by area), and shape factor (ratio of basin length to width). 

2.2.3. Metabolism Models 

Metabolism was calculated using the one-station, open channel method (Odum 1956, 

Hall and Hotchkiss 2017). We calculated daily GPP and ER for each 4-5 day deployment in 

spring, summer and fall for 109 site-season combinations (Table S1.4). A total of 14 
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deployments were not modelled due to stagnant water or equipment failures. Metabolism metrics 

were calculated using the ‘streamMetabolizer’ package in R (Appling et al. 2017, 2018a). The 

model ‘b_np_oipi_tr_plrckm.stan’ was chosen, which used inverse Bayesian modelling with no 

pooling of K600 (the gas exchange coefficient normalized to a Schmidt number of 600) to account 

for observation and process errors. Not pooling K600 was also better suited for shorter 

deployments (Appling et al. 2018b).  The model fitted daily parameters by fitting observed and 

modelled DO for each separate 24 h period using a Bayesian Markov chain Monte Carlo 

(MCMC) fitting procedure. K600 priors were selected based on measured values in a similar 

landscape (Campeau et al. 2014). The model contained a function to convert daily K600 into an 

oxygen- and temperature- specific gas exchange constant (Appling et al. 2018b). GPP and ER 

hyper-parameters were set based on the default model setting, which uses a range of literature 

values (Hall 2016). 

Data required for the model included diurnal (i.e., 10-minute) DO concentration (mg L-1), 

diurnal water temperature, diurnal light data, and stream depth, which was calculated as the 

mean depth from the 10-station discharge transects that were collected on deployment and 

retrieval. The light data included in the model were obtained using two methods. In 2019, light 

was measured using an Odyssey photosynthetically active radiation (PAR) logger (Dataflow 

Systems, Christchurch, New Zealand) deployed on the stream bank, away from the influence of 

shading from vegetation, to measure incident irradiance. The logger measured PAR at 10-minute 

intervals for the length of the deployment. In 2017-18, solar radiation data were retrieved from 

nearby weather stations (ACIS 2020), which measured irradiance hourly in W m-2. ACIS data 

were converted to PAR using the “convert_SW_to_PAR” function in streamMetabolizer 

(Appling et al. 2017), which is based on numerical coefficients from Britton & Dodd (1976). 

Light data were interpolated to match the 10-minute intervals using the ‘calc_light_merged’ 

function, which merged observed data from the weather stations with modelled data based the 

solar time at specific geographic co-ordinates at the specified interval. Comparisons of Odyssey 

recorded light and ACIS weather stations data were completed by comparing the final 

metabolism metrics of GPP, ER and K600 for the spring 2019 deployments and are shown in 

Figure S1.2. The mean relative percent differences for all sites are presented in Tables S1.5A-C. 

A Welch t-test was performed for each variable to compare methods and no significant 

differences were found (GPP, t57=-0.288, p=0.774; ER, t57=0.963, p=0.340; K600, t57=-1.264, 
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p=0.212). Weather station data were therefore used when stream bank collected light was 

unavailable.  

Metabolism models were inspected by viewing the fit of modelled DO relative to 

observed DO and confirming MCMC convergence with the Gelmin-Rubin statistic (Rhat). 

Convergence of MCMC indicates that enough samples have been drawn from the posterior 

distribution to characterize its shape and location (Hobbs and Hooten, 2015). Chains with 

metabolism parameters that did not converge (i.e., Rhat >1.1) were run with more steps (Appling 

et al. 2018b). Results that did not fit ecological expectations (GPP<0, ER>0) were discarded, 

which occurred on approximately 2% of days, possibly due to observation error from 

sedimentation or inadequate flow across the sensors. In total, 98 valid models of site-season 

combinations were used for further analyses and comparisons. 

2.2.4 Statistical Analyses 

Physical and chemical properties of the sites were assessed and compared across 

ecoregions. Between-site variation in physicochemical parameters was assessed using a principal 

components analysis (PCA) for individual seasons (Oksanen et al. 2019).  All variables except 

water temperature and PAR were log10- transformed to meet assumptions of linearity and scaled 

before being input to the PCA. Differences across ecoregions and seasons were assessed with a 

two-way Analysis of Variance (ANOVA) (Type I) using ecoregion and season as factors, and 

Tukey HSD post-hoc tests. The residuals for TN, TP, Chlorophyll a and DOC did not meet 

normality assumptions, and thus these water chemistry variables were log10-transformed before 

being input to the ANOVA.  Variation in GPP and ER across ecoregion and season were also 

assessed using two-way ANOVA and Tukey post-hoc, after being log10-transformed to meet 

normality requirements.  

All metrics of stream metabolism (calculated daily) and flow (measured at sensor 

deployment and retrieval) were averaged for each deployment. In cases where water quality data 

were missing, average antecedent data from the two months preceding the assessment period 

were used if available to fill the missing data record (two instances with all water quality data 

and six for chlorophyll a). Data were thoroughly explored to assess for outliers, normality, 

collinearity and possible relationships between metabolism and environmental drivers. NEP was 

calculated as the sum of GPP and ER, and the GPP:ER ratio was used to determine if sites were 
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net heterotrophic or autotrophic (Hall and Hotchkiss 2017).  To assess local (i.e., site-specific) 

drivers of GPP and ER, generalized linear mixed models (GLMM) were used to accommodate 

the non-normal distribution of the data and repeated site measurements in the ‘lmer4’ package 

(Bolker et al. 2009, Bates et al. 2015). A goodness of fit test in the ‘fitdistrplus’ package was 

used to evaluate the distributions of GPP and ER (Delignette-Muller and Dutang 2015), and 

considered the log normal and Gamma distributions, which are both suitable for continuous data. 

The Gamma fit was most appropriate for both GPP and ER (Table S1.6). GLMMs were run with 

a log link function and using the Laplace approximation (Bolker et al. 2009, Bates et al. 2015).   

The GLMM predictors were stream physicochemical and environmental variables that 

could alter metabolism at the scale of a local stream reach. Fixed effect variables included for 

GPP were PAR, TN, TP, water temperature, DOC, discharge, chlorophyll a, and antecedent 

precipitation. Possible predictors of ER were identified as TN, TP, water temperature, DOC, 

discharge, chlorophyll a, and antecedent precipitation. In both cases, antecedent precipitation 

was included as a local factor to account for seasonality and variation between years in 

precipitation regimes. Season was also included as a fixed effect. All variations of antecedent 

precipitation data (i.e., 3, 8, and 14 day) were tested with generalized linear relationships with 

GPP and ER. The strongest relationship between metabolism and total antecedent precipitation 

was seen with 8 days, so only this metric was used in further analyses to avoid issues of 

collinearity. Models were assessed to ensure variance inflation factors (VIF) of less than 3 which 

led to Season being removed as a fixed effect (Zuur et al. 2009). A random intercept effect term 

of site was chosen to represent the repeated structure of the data. The complete models were then 

assessed via multi-model inference to determine the top models and highest weighted variables. 

Akaike’s Information Criterion corrected for small sample sizes (AICc) was used to evaluate 

models due to a low number of observations. Top models were considered as those within ∆2 

AICc of the best model. Model relative weights were calculated using the ‘MuMIn’ package in R 

(Barton 2019). The Akaike Weight (ω) for each explanatory variable was also calculated as the 

sum the relative weight of each model within which the variable occurred (Burnham and 

Anderson 2002).  Model residuals were assessed for normality and homogeneity of variance, 

compared against the null model and convergence was assessed through the ‘allFit’ function 

(Bates et al. 2015). All predictor variables were scaled for the analysis using a z-score.  
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A structural equation model (SEM) was used in addition to the GLMM to better 

understand regional trends informed by local characteristics. A piecewise SEM was chosen due 

to repeated measurements at each site in the dataset. Piecewise SEMs (pSEMs) are confirmatory 

factor analyses based on directed separation tests and can account for random effects and smaller 

data sets (Shipley 2009, Lefcheck 2016). The pSEM uses partial correlation coefficients to show 

relationships between variables in the model and produces standardized coefficients, which are 

important for comparing the magnitude of effects in the model. Data were transformed to meet 

normality requirements and scaled using a z-score. The hypothesized causal relationships are 

presented in Figure 2.2, which shows the hierarchical relationship of the regional and stream-

specific variables. Within the pSEM, direct influences on GPP and ER were described with 

linear mixed effect models based on the highest weighted variables in the GLMMs and included 

“Site” as a random intercept effect. Following the GLMM results (see section 2.3.3), pSEM 

descriptors of GPP included PAR, water temperature, DOC and discharge, while descriptors of 

ER included water temperature, DOC and precipitation. Watershed-scale metrics, which 

included watershed land cover, watershed morphology, and precipitation have site-specific 

values and were input as linear models. Watershed land cover and morphology were expressed 

as gradients using a PCA approach to simplify multiple variables and preserve degrees of 

freedom, after land cover was arcsine-transformed and watershed morphology was log10-

transformed (See sections 2.3.1 and 2.3.4). All models in the pSEM were evaluated to ensure 

assumptions were met and then evaluated using the ‘piecewiseSEM’ package (Lefcheck 2016). 

All analyses were conducted using R 3.6.2 (R Core Team, 2019). 

2.3 Results 

2.3.1 Site and Regional Characterization 

Selected stream physicochemical characteristics are presented in Table 2.1 and 

summarized as PCAs by season in Figure 2.3. Physicochemical characteristics explained 

different levels of variation between sites in the three seasons with between 56.1 and 67.2% 

variation explained.  Streams within each ecoregion tended to cluster together but most so in the 

summer PCA. In spring, Grassland sites were characterized by greater pH and PAR while the 

Boreal was more associated with greater DOC. Parkland sites showed the greatest spread in the 

PCAs. The summer PCA explained the greatest amount of variance and a regional gradient was 

evident across the first principal component (43.1%). Along the gradient, Grassland sites were 
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more correlated to PAR and pH, and Boreal sites were correlated to discharge and DOC. 

Parkland sites were spread more throughout the PCA space than the Grassland and Boreal sites. 

The fall physicochemical variables explained a cumulative 56.5% of variation where Grassland 

sites were still correlated with higher PAR and pH.  

  Detailed seasonal and regional differences in physicochemical properties are presented in 

Figure 2.4. Mean water temperature differed marginally across ecoregions (F2,89=2.66, p=0.075) 

where streams in the Grassland region (Mean=16.24°C ± 0.81°C Standard error) were warmest. 

Water temperature differed significantly across seasons (F2,89=78.08, p<0.001) as the summer 

season had the highest mean water temperature in the study streams (19.53 ± 0.38°C). All 

seasonal temperatures were significantly different from each other based on the Tukey post-hoc 

test, with no significant interaction effect (F4,89=1.58, p=0.186).  Mean PAR during deployments 

also varied significantly across regions (F2,89=28.88, p<0.001) and seasons (F2,89=40.36, 

p<0.001). The Boreal (289.31 ± 24.27 µmol m-2 s-1) had significantly less light than the 

Grassland (490.96 ±29.75 µmol m-2 s-1) and Parkland (443.91 ±28.56 µmol m-2 s-1) regions based 

on post-hoc comparisons. The fall (236.08 ± 21.82 µmol m-2 s-1) also had the lowest PAR while 

there was no significant difference detected between spring (477.03 ± 22.48 µmol m-2 s-1) and 

summer (450.35 ± 30.27 µmol m-2 s-1). There was a significant interaction term (F4,89=2.74, 

p=0.033) where the Boreal summer PAR decreased compared to spring and other regions.   

TN did not vary seasonally or show an interaction, but did vary significantly between 

ecoregions (F2,89=7.21, p=0.001). The Grassland (M=0.85±0.09 mg L-1) streams had 

significantly lower TN concentrations than the Boreal streams (M=0.64 ± 0.15 mg L-1) based on 

post-hoc comparisons. In contrast, mean TP overall varied seasonally (F2,89=3.62, p=0.031), but 

not regionally. The concentrations of TP were highest (M=0.22 ± 0.23 mg L-1) in the summer 

and significantly greater than the fall (M=0.15 ± 0.05 mg L-1). Chlorophyll a did not vary 

significantly across seasons, but showed a small ecoregion effect (F2,89=2.96, p=0.057) where 

streams in the Parkland had higher concentrations than the Boreal streams. DOC varied 

regionally (F2,89=12.74, p<0.001) where the Boreal streams (M=27.94 ± 2.90 mg L-1) had 

significantly greater concentrations than streams in either the Parkland (M=16.88 ± mg L-1) or 

Grassland (M=15.23 ± 3.82 mg L-1). Site-specific discharge varied significantly by ecoregion 

(F2,88=3.21, p=0.045) where the streams in the Parkland had the highest discharge overall (1.09 

±0.48 m3/s). There was also a marginal seasonal difference in discharge (F2,88=2.82, p=0.065) 
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with highest discharge typically occurring in the spring (1.17 ±0.42 m3/s). However, it should be 

noted that sampling over three years could be confounding ecoregion differences.  

In addition to the demarcation by ecoregion, study sites also showed clear variation by 

watershed land cover and morphology as evident in Figure 2.5. The PCA for watershed land 

cover (Figure 2.5A) showed a clear regional gradient from Grassland to Boreal sites, along a 

gradient from exposed and cropland sites to more forest-covered and wetland dominated 

watersheds. The PCA for watershed morphology did not show clear separation among 

ecoregions, but did separate a gradient of watershed size, slope, and drainage area, with a 

gradient of large to small watersheds with increasing slope and decreasing drainage density 

along PC1, which explained 50.7% of the variance. Cropland is more common in the Parkland 

and Grassland ecoregions while agricultural practices in the Boreal are dominated by 

anthropogenically-altered pasture. Both TP and TN varied across the proportion of 

anthropogenic land use in the watershed and the land cover gradient (Land Use PC1). While TN 

rose more across the land-cover gradient (PC1), with positive values indicating greater watershed 

coverage of trees and wetlands, TP increased along with increasing proportion of anthropogenic 

land use and was driven by Parkland sites (Figure 2.6). Riparian areas at all sites are managed by 

landowners and often partially or completely removed. Upstream of study sites, the riparian 

areas can remain more treed due to topographic constraints or differing land use objectives. 

 

2.3.2 Patterns in Stream Metabolism 

Across all sites and seasons, mean daily GPP and ER ranged from 0.19 to 11.02 gO2
 m2 

day-1 and -0.31 to -22.05 gO2
 m2 day-1 respectively (Figure 2.7). Overall, there were significant 

differences among ecoregions for GPP (F2,89=6.56, p=0.002), with GPP in the Boreal 

(M=2.62±0.42 gO2 m
-2 day-1) significantly lower than the Parkland (M=3.67±0.41 gO2 m

-2 day-1) 

and Grassland (M=4.10±0.39 gO2 m
-2 day-1) based on a Tukey post-hoc test. ER did not vary 

significantly among ecoregions (F2,89=1.48, p=0.234), but the range of ER values tended to vary 

more among ecoregions than for GPP. Seasonal differences in ER were significant (F=2,89 

=15.00, p<0.001), where the summer had the highest rates of ER, and Fall the lowest. However, 

the interaction between ecoregion and season was not significant.  GPP was significantly 

different across seasons as well (F2,89=4.98, p=0.009) with fall (2.34±0.36 gO2 m
-2 day-1) being 

significantly less productive than the summer (4.58±0.48 gO2 m
-2 day-1) based on post hoc 
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comparisons. GPP and ER were generally coupled across seasons where production increased 

with respiration; however, there were some exceptions, primarily in the summer 2019 Boreal 

deployments where ER greatly exceeded GPP (Figure 2.8). The range of ER across sites was 

also highest in summer and – alongside GPP – most constrained in the fall.  

 NEP also varied significantly among ecoregions (F2,89=12.77, p<0.001) with Grassland 

(M=0.48±0.33 gO2 m
-2 day-1) sites exhibiting significantly greater NEP than the Boreal (M=-

3.18±0.71 gO2 m
-2 day-1) and Parkland (M=-1.47±0.48 gO2 m

-2 day-1) (Figure 2.9). While there 

was no significant variation in NEP across seasons, there was a significant interaction between 

seasons and ecoregions (F4,89=3.80, p=0.007). The Boreal NEP decreased in summer relative to 

other seasons, while summertime increases in NEP occurred in the Grassland and Parkland. Only 

11 of the 31 Grassland deployments were heterotrophic (a total of 35.5%), with the remaining 

sites having positive NEP. In contrast, both Boreal (82.9% of sites), and Parkland (71.9% of 

sites) sites were predominantly heterotrophic (Table S1.4).  

2.3.3 Local Drivers of Metabolism 

Our GLMM analysis to assess local drivers of metabolism returned four models within 

two ∆AICc of the top model for local drivers of GPP (Table 2.2). The best model for GPP 

included PAR (β=0.239, p=0.001), DOC (β=0.167, p=0.013), water temperature (β=0.279, 

p<0.001) and discharge (β=-0.187, p<0.001). Across all top models, the best predictors of GPP 

included discharge, DOC, water temperature, and PAR (each with a weighted importance of 

1.00), followed by TP (0.343), chlorophyll a (0.156) and antecedent precipitation (0.153).  DOC, 

TP, water temperature and light were all positively related to GPP. Discharge and chlorophyll a 

were negatively correlated with GPP, although the coefficient for chlorophyll a was not 

significant (β=-0.085, p=0.250). The GLMM analysis for ER resulted in six models within ∆2 

AICc of the top model. Discharge (β=0.092, p=0.108), DOC (β=0.233, p<0.001), precipitation 

(β=0.209, p<0.001), and water temperature (β=0.399, p<0.001) represented the best model for 

ER. Across all top models, the highest weighted variables (weighted importance of 1.00) were 

DOC, precipitation, and water temperature. Discharge was also present in three models (0.54), 

while TP (0.27) and TN (0.22) were each present in two models. All model-included variables 

were positively correlated with ER.  
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2.3.4 Regional Drivers of Metabolism 

Multiple pSEMs were similarly assessed through an AIC approach to describe the hierarchal 

relationships between regional and local variables (Shipley 2013). Watershed morphology and 

land cover were included in the pSEMs via two separate PCAs, using the first axis of individual 

PCAs to describe variation across individual watersheds (Figure 2.5).  The initial model (Figure 

2.2) represented how GPP and ER were expected to be impacted directly by local environmental 

conditions (discharge, PAR, TN, TP, DOC, and water temperature) and indirectly by watershed-

scale variables (watershed morphology, land cover and antecedent precipitation capturing 

temporal changes). Outputs from the initial hypothesized model showed a poor fit (Fisher’s 

C=89.47, p<0.001, df=42). Therefore, a second alternative pSEM was run with the local 

predictors defined by the results of the GLMMs and the PCA outputs of regional land cover and 

watershed morphology (Table S1.7). This model was statistically valid (C=22.20, p=0.677, 

df=26) with an AIC of 94.21. A final alternative model was run to include fraction of human 

land use (calculated as the cumulative proportion of cropland, pasture and developed land in 

watershed) in place of general land cover (i.e., Land Cover PC1). While this model was also 

statistically valid (Fisher’s C=37.187, p=0.072, df=26), it had a higher AIC at 111.18. Therefore, 

the second model was chosen as the optimal model. 

The optimal model showed a hierarchal relationship between regional and local variables 

(Figure 2.10). While watershed morphology was not significantly correlated with any direct 

predictors of metabolism (DOC, discharge, water temperature), it was a significant predictor of 

land cover where smaller, steeper watersheds were correlated with more forest cover (standard 

path coefficient= 0.190, p=0.047).  Land cover PC1 was related to metabolism by being 

positively correlated to DOC (0.552, p<0.001), indicating a positive relationship between DOC 

and increasing proportions of forested and wetland cover classes. Land cover also had a negative 

relationship with PAR (-0.460, p<0.001), representing a decrease in light in more forested 

watersheds. Water temperature had a strong residual correlation with increased watershed forest 

cover (0.230, p=0.013). Residual correlations were used to represent the relationship between 

water temperature and land cover as they are both influenced by other unspecified variables. 

Antecedent precipitation (as defined in 2.2.2) was assessed as a direct predictor of GPP and 

ER (see below), but also land cover, DOC and discharge. Precipitation was significantly 

positively related to Land Cover PC1, as greater precipitation was correlated with more trees and 
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wetlands within the watersheds (0.3772, p<0.001). However, precipitation was not a significant 

predictor of DOC, water temperature or discharge. Furthermore, the relationship between water 

temperature and PAR indicated that water temperature was positively correlated with PAR 

(0.634, p<0.001). There was no evidence for a relationship between DOC and discharge.  

In addition to precipitation, water temperature, DOC, PAR and discharge were assessed as 

direct predictors of either GPP or ER. Direct predictors of GPP within the pSEM (marginal 

r2=0.30, conditional r2= 0.48) differed somewhat when compared to the GLMM results. The only 

significant driver of GPP was water temperature (0.438, p<0.001). PAR was positively, but not 

significantly, correlated with GPP (0.164, p=0.162). Discharge and DOC had no correlation with 

GPP. Conversely, ER (marginal r2=0.42, conditional r2= 0.45) was significantly correlated with 

all tested local variables. Precipitation (0.297, p<0.001), DOC (0.333, p<0.001) and water 

temperature (0.428, p<0.001) were all positively correlated with ER, with water temperature 

having the greatest influence amongst all local variables. GPP and ER had a significant positive 

residual correlation (0.530, p<0.001). 

2.4 Discussion 

This research showcases the ecological variation across geographically proximate watersheds 

and ecoregions and how this variation drives stream metabolism. Our study comprises a large 

geographical region with a gradient of natural and land use practices as well as local 

environmental factors that influence metabolism. We found that GPP and ER were coupled and 

varied among ecoregions where the Grassland had the highest rates of autotrophy likely due to 

greater incidence of light. Land cover, which described regional gradient, was a better indirect 

predictor of metabolism than ecoregion as it represented riparian conditions. Local factors such 

as DOC, PAR and precipitation were important in predicting GPP and ER with temperature 

exhibiting the greatest effect. Unlike originally hypothesized, nutrients were not a direct 

regulator of metabolism. All local variables that were significant predictors of metabolism are 

heavily influenced by riparian vegetation, which is further represented by the land cover gradient 

used in this study. This paper aims to identify the importance of riparian conservation for 

preserving ecological integrity.  
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2.4.1 Regional and seasonal trends of stream physicochemical characteristics  

This study enables an assessment of stream metabolism across a gradient of nutrient 

concentrations, within multiple ecoregions. Concentrations for both TN and TP were often in 

excess of previously published numeric guidelines for Alberta surface waters (Alberta 

Department of Health 1970, Government of Alberta 2018). DOC and TN in our study were 

highly correlated and have been previously shown to increase in forested watersheds with 

agricultural activity due to litter decomposition and fertilizer application (Jiang et al. 2014). 

However, high concentrations of TN, TP and DOC in the Boreal are also likely driven by 

wetland cover within the watersheds. Other studies in Alberta also show an increase in TN and 

TP with agriculture. Specifically, Bayley et al. (2013) found that TN and TP in wetlands in the 

Boreal Transition Zone increase with agriculture. We also saw seasonally variation where TP 

was higher spring and summer most likely due to high phosphorus loads during spring runoff, 

(Jedrych 2008).  

In addition to nutrient concentrations, there was further regional variation seen in 

chlorophyll a, water temperature and PAR, where chlorophyll a was lower in Boreal streams and 

water temperature and PAR were highest in the Grassland streams. Although chlorophyll a is 

expected to increase with agriculture due to greater light and nutrient availability, previous 

studies have shown that chlorophyll a concentrations in Alberta have not been related to 

agricultural intensity and tend to be more related to ecoregion (Carr et al. 2005, Bayley et al. 

2013). Water temperature and PAR reflect both the expected climatic and seasonal variation 

(Strong and Leggat 1992), generally increasing in the summer with the exception of PAR in the 

Boreal. The variation in PAR reaching the stream in the Boreal region may be due to higher 

canopy cover but could also be due to the above-average amount of precipitation seen in summer 

2019 (Environment Canada, 2020). Discharge in our study also varied where the Parkland sites 

typically had higher rates of discharge than the Grassland and Boreal sites with the exception of 

the summer 2019 season. This is consistent with higher precipitation during the sampling period. 

While runoff associated with precipitation in the Boreal can be low due to surficial geology and 

wetland cover (Devito et al. 2017), precipitation is still indicative of temporal changes between 

sampling years. 
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2.4.2 Stream metabolism in watersheds along a regional gradient of land cover 

The range of GPP and ER were within the range of expected ecological values (Bernot et 

al. 2010), which have been shown to range from 0.1 to 16.2g O2 m
-2 d-1 for GPP and -0.4 to-23.1 

g O2 m
-2 d-1 for ER. GPP and ER were highly coupled at most sites, though ER sometimes did 

exceed GPP leading to more net heterotrophy at our sites. High rates of ER paired with GPP can 

indicate a large portion of ER is autotrophic respiration by algal biomass or that there are large 

inputs of organic material upstream leading to greater respiration (Hall and Beaulieu 2013). The 

high prevalence of net autotrophy in the Grassland ecoregion is consistent with greater light 

availability driving GPP, and ER being less connected to allochthonous inputs as a result of 

lower levels of precipitation. 

While Grassland sites had the highest GPP in each season, ER showed no regional 

variation. Higher GPP rates in the Grassland region are likely driven by lower proportions of 

forested areas and higher proportions of cropland within the watershed as streams in row-crop 

agricultural areas tend to be more productive than streams in forested areas (Griffiths et al. 

2013). While DOC was a significant predictor of ER, and varied significantly between 

ecoregions, ER itself did not show this same ecoregion variation. This may be explained by 

varying amounts of organic matter subsidies due to different riparian vegetation along the forest 

to grassland gradient. 

2.4.3 Temperature regulates metabolism in agricultural streams 

Both GPP and ER increased with water temperature, indicative of the temperature 

dependence of metabolic processes (Demars & Manson, 2013). Additionally, GPP and ER 

showed significant seasonal differences, with seasonal variation being greatest for ER.  The 

seasonality of stream metabolism in our study was consistent with streams in areas of high 

anthropogenic activity that show greater temporal variation in GPP and ER (Clapcott et al. 

2016). Seasonal trends across all regions are likely being primarily driven by water temperature 

and PAR as evident by their associated high variance inflation, where higher values correspond 

to high GPP and ER. Temperature in our study has stronger influence on ER, often leading to net 

heterotrophy, as seen in past studies due to increased organism metabolic activity (Demars et al. 

2011, Yvon-Durocher et al. 2012). Furthermore, greater PAR associated with less riparian 

shading has been suggested to lead to increased water temperature in low flows (Nebgen and 
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Herrman 2019b). As a result, NEP will be negative more frequently with both warmer seasons 

and greater reductions to riparian areas. We also saw ER decrease in the fall, most likely due to 

lower water temperatures but also possibly due to limited woody debris trapping leaf litter which 

is consistent with more land use alterations (Houser et al. 2005). Overall land use changes 

resulting in increased water temperatures over summer seasons can have important implications 

for increased carbon emissions from these streams (Song et al. 2018).  

The effect of PAR on GPP was also found to be highly weighted in our models. We 

measured PAR using two different methods that captured incident light at the stream surface 

influenced by riparian cover, but no attenuation of light in the stream due to DOC or turbidity. 

Frankforter et al. (2010) found that light influences GPP, where GPP decreases as canopy cover 

increases. While our study sites often saw the removal of riparian vegetation leading to open 

canopy cover, the use of the open-station method allows for the inclusion of upstream riparian 

areas that may be more natural (Hall and Hotchkiss 2017). Due to the relationship between GPP 

and PAR, we can infer that more closed canopy cover will result lower GPP. However, the 

appropriate riparian conditions needed to maintain healthy ecosystem metabolism requires 

further study.  

Although season was not included in the models due to high variance inflation, the 

impacts of seasonality are visible in PAR and water temperature. Our sites were only monitored 

for short-term deployments, which makes it difficult to infer seasonal trends. While we did detect 

some seasonal differences in GPP and ER, our deployments could also have been impacted by 

short-term disturbances. Clapcott et al. (2016) suggested that deployments should exceed 5 days 

to accurately measure stream health, while Munn et al. (2020) recommends 14 days. The 

resolution of our study could be improved by comparing longer-term data in our sites to short 

term deployments and assessing seasonal trends over longer time periods. 

2.4.4 Watershed land cover has indirect impacts on stream metabolism 

The study region represents a gradient of land cover and agricultural intensity in the 

Boreal, Parkland and Grassland ecoregions. The geographic gradient in our study enables 

examination of regional variation in natural land cover as well as agricultural practices (PC1 in 

Figure 2.5B). We also examined watershed morphology as it has been shown to influence 

metabolism where wider, flatter streams tend to have greater GPP due to increased light 
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availability, and stream metabolism in steeper watersheds is less sensitive to temperature 

(Jankowski and Schindler 2019). However, watersheds were not selected to account for gradients 

in size and shape; thus, impacts on stream function could not be adequately evaluated. Linkages 

between local and regional characteristics were assessed with a piecewise structural equation 

model. The model (presented in Figure 2.10) suggests that total land cover within the watershed 

is a better explanatory variable for local variables and stream metabolism than just the influence 

of human activities. Our findings contrast with past research studying local and regional effects 

on metabolism. Bernot et al. (2010) also looked at regional and proximal environmental 

variables impacts on stream metabolism. This study looked at a wider regional gradient and scale 

that this study and compared urban and reference streams. Unlike our study, they found nutrients 

impacted GPP and ER and that geographic controls on metabolism were less important than land 

use change. We expected to see the influence of anthropogenic land use on stream metabolism, 

but the regional gradient provided the better model. This is likely because the regional gradient 

incorporates upstream riparian conditions. Riparian areas at all sites are managed by landowners 

and often partially or completely removed. Upstream of study sites, the riparian areas can remain 

more natural due to differing land uses, thus other natural regional conditions such as wetland 

cover can influence local stream environments. 

Both TN and TP increased with anthropogenic land use in our study, but we found low 

variable weights for TP and TN in our models for GPP and ER. Furthermore, there seemed to be 

little evidence of the land cover gradient of increasing treed areas and pasture impacting TP 

concentrations. While our data consisted of a wide range of TN and TP including high 

concentrations, the effects of nutrients were not evident on GPP and ER. The impact of nutrients 

on metabolism is often masked by other variables such as temperature and flow regimes 

(Frankforter et al. 2010). It is likely that any impacts of nutrients were not evident due to strong 

effects of temperature and PAR. This is similar to past studies examining nutrients and 

temperature (Pearce et al. 2020). Alternatively, the effects of nutrients may be limited due to 

high background concentrations and limited inorganic nutrient concentrations being detectable. 

However, TN did increase along the land cover gradient and was correlated with DOC, which 

was found be highly important for driving both GPP and ER as it was present in all models. The 

correlation between DOC and TN suggests that N in our study is more organic and could be 

related to runoff of organic material. DOC was positively related to GPP indicating that 
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autotrophic respiration may be an important component of stream metabolism in these regions 

(Cole et al. 1982, Hall and Beaulieu 2013). There is also a positive relationship between ER and 

DOC which could be driven by increases in bacterial respiration with increases in DOC during 

high flows (Demars, 2019). The increases in DOC across a land cover gradient also point to 

greater control of regional factors on stream metabolism than nutrients. 

Watershed land cover including natural vegetation and agriculture was a significant 

driving factor for DOC, PAR and water temperature, which all impacted metabolism. Ecoregion 

was strongly correlated with DOC, which was much higher in the Boreal likely due to the higher 

proportion of wetlands within the watershed and high carbon flux in the region (Gergel et al. 

1999, Lapierre et al. 2013) (Figure S2). Land Cover PC1 is also an indicator of the climatic 

differences across regions, which is indicative of a gradient in light and temperature across our 

streams. Latitudinal gradients are often expected to drive changes in GPP and ER due to the 

sensitivity of metabolism to temperature, where higher latitude sites tend to have lower NEP. 

However, temperature trends can be impacted by watershed land use and cover (Gurung et al. 

2019). Water temperature was the only variable that was significantly correlated with GPP as 

evidenced by the GLMM analysis to determine local drivers. This was unexpected due to the 

evidence for higher ER sensitivity to temperature and the influence on PAR on GPP (Demars et 

al. 2011). The open station method did allow for the inclusion of upstream riparian impacts that 

were not directly measured; thus, the lack of significance by PAR could be because in our study 

PAR was not directly limited by riparian vegetation at all sites. Furthermore, PAR does have 

direct influences on water temperature which is highly correlated with GPP and ER. PAR was 

related to the regional gradient represented in the negative correlation with land cover indicating 

that regional trends a stronger driving force than local light limitation.  

Discharge was found to have divergent impacts on metabolism by increasing ER and 

decreasing GPP (Table 2.2).  Precipitation, which ultimately drives increases in discharge, was 

only present in models describing ER. The varying response of discharge and precipitation may 

be related to the decoupling of GPP and ER seen especially during the summer measurements 

collected in the Boreal region. High discharge can impact GPP through scouring of autotrophs 

attached to surfaces, and/or lower light availability due to increased turbidity and greater water 

depths. ER tends to be more resilient to high flows as there is greater fragmentation of organic 
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material needed for decomposition (O’Donnell and Hotchkiss 2019, 2020). With increased 

precipitation, there can also be greater DOC runoff from soils which enters waterways and leads 

to increased respiration (Demars 2019).  Discharge was the only proximal variable present in the 

GLMMs that was not significantly correlated with any variable in the pSEM. This is likely 

because discharge controls on GPP are primarily related to short-term disturbances and not 

related to the regional scale. While precipitation did not significantly influence discharge, there 

was a positive correlation (Table S7), which could explain the increase in ER with discharge in 

the GLMMs.   

2.5 Conclusion  

 This project conveys the influence of regional variation and agricultural land 

modifications on stream metabolism. Metabolic variables are strongly influenced by the 

latitudinal changes (ie. PAR and water temperature) with ecoregion. The agricultural practices 

within the Boreal, Parkland and Grassland ecoregions all vary, which can influence metabolism 

through alterations to DOC, PAR and water temperature. Water temperature was the most 

important regulator of metabolism for agricultural streams and can be influenced by seasonal 

changes and removal of riparian areas. While the impacts of TN and TP were not evident in this 

study, DOC was an important driver for both GPP and ER and was correlated with land cover, 

likely due to variation in forest and wetland cover. Land cover had important indirect effects on 

metabolism by correlating to PAR and DOC. All important proximal variables are highly 

connected to the landscape and riparian vegetation. Riparian areas near agricultural streams can 

act as buffers for nutrient runoff, provide allochthonous leaf litter used in heterotrophic 

respiration and control light availability and temperature regimes in the water. Riparian 

management is key mitigation technique for restoring and maintaining natural metabolic 

processes (Alberts et al. 2017). Therefore, maintenance of natural riparian buffer zones is 

recommended to help preserve the ecological integrity of streams in areas of high agricultural 

intensity. 
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2. 6 Tables 

Table 2.1. Select stream physicochemical variables, presented as a mean (± standard deviation) across all deployments. 

Site Latitude Longitude Width (m) Depth (m) Discharge 

(m3/s)   

Chl a (µg/L) TN (mg/L) TP  (mg/L) DOC (mg/L) 

Buffalo 

Creek 

53.01 -110.87 4.8±0.2 0.46±0.21 0.20 ±0.07 6.06±0.82 1.23±0.23 0.16±0.05 18.8±4.3 

Bullshead 

Creek 

49.96 -110.61 6.48±0.66 0.45±0.05 1.13 ±0.68 13.46±6.95 0.77±0.12 0.28±0.41 10.1±5.4 

Beaverhill 

Creek 

53.75 -112.68 6.11±0.22 0.85±0.07 0.03 ±0.03 29.90±13.27  2.02±0.22 0.33±0.11 23.5±2.1 

Connor 

Creek 

54.02 -114.92 7.20 ±0.41 0.89±0.27 1.13 ±1.44 4.81±2.25 2.36±0.44 0.33±0.18 39.0±11.5 

Dogpound 

Creek 

51.79 -114.36 7.76±0.78 0.43±0.19 0.88 ±0.91 1.70±0.95 0.30±0.15 0.02±0.02 6.2±1.4 

Eagle Creek 51.94 -114.43 3.94±0.76 0.43±0.17 0.03 ±0.02 5.83±1.11 0.41±0.26 0.02±0.01 7.2±5.2 

Grizzlybear 

Creek 

53.11 -110.64 2.92 ±0.28 0.50±0.16 0.15 ±0.17 25.50±17.39 3.60±0.90 0.76±0.66 43.5±15.1 

Goose 

Creek 

54.34 -114.93 6.04±0.36 0.72±0.28 1.48 ±0.84 3.94±1.28 1.32±0.30 0.09±0.01 25.8±4.5 

Horse Creek 54.33 -114.69 3.12±0.61 0.79±0.20 0.30 ±0.27 1.56±0.52 1.17±0.25 0.02±0.01 29.7±6.4 

Kneehills 

Creek 

51.48 -113.11 9.80±0.33 0.48±0.09 0.22 ±0.20 14.28±12.43 1.35±0.59 0.14±0.11 29.3±34.3 

Little 

Paddle 

River 

53.95 -115.02 5.96±0.65 1.09±0.72 3.63 ±3.49 8.15±9.13 2.30±0.10 0.19±0.09 38.9±10.2 

Lasthill 

Creek 

52.36 -114.46 12.11±0.63 0.58±0.12 0.66 ±0.64 6.65±4.40 1.38±1.39 0.05±0.02 12.7±6.0 

Lloyd Creek 52.74 -114.14 8.36±0.39 0.42±0.15 0.24 ±0.23 13.62±20.32 1.24±0.37 0.14±0.06 17.3±6.9 

Mosquito 

Creek 

50.25 -113.55 9.62±0.55 0.53±0.04 0.63 ±0.05 7.30±8.83 0.48±0.21 0.04±0.02 5.9±3.7 

Matzhiwin 

Creek 

50.84 -111.93 4.78±1.77 0.38±0.22 0.42 ±0.32 4.00±1.09 0.57±0.19 0.09±0.04 7.8±4.3 
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Namepi 

Creek 

54.08 -112.98 9.30±0.0 1.30±0.00 1.46 ±0.00 3.45±0.00 3.82±0.00 0.43±0.00 56.8±0.0 

Onetree 

Creek 

50.73 -111.69 6.51 ±0.76 0.65±0.08 0.97 ±0.45 9.81±7.18 0.71±0.12 0.21±0.12 7.5±0.9 

Seven 

Persons 

Creek 

49.9 -110.85 3.90±0.35 0.50±0.04 0.30 ±0.22 3.08±1.82 0.56±0.12 0.06±0.02 8.8±4.5 

Pipestone 

Creek 

53.03 -113.27 6.75±2.37 0.61±0.13 1.02 ±1.41 12.85±4.89 1.65±0.49 0.26±0.11 18.5±4.3 

Pine Creek 54.7 -112.97 5.81±1.20 0.45±0.40 0.27 ±0.34 12.06±12.65 2.73±0.05 0.22±0.05 43.8±10.1 

Pothole 

Creek 

49.52 -112.8 5.24±0.20 0.32±0.03 0.26 ±0.11 7.58±6.61 0.47±0.26 0.09±0.06 5.5±3.9 

Ray Creek 52.00 -113.6 1.25±0.05 0.27±0.00 0.14 ±0.00 2.82±0.00 0.97±0.00 0.18±0.00 16.3±0.0 

Rosebud 

Creek 

51.32 -113.33 5.09±0.48 0.31±0.02 0.56 ±0.23 19.63±15.54 1.17±0.32 0.15±0.09 26.4±29.5 

Sturgeon 

River 

53.83 -113.28 17.74±1.80 0.80±0.24 4.31 ±5.35 12.58±10.38 1.43±0.34 0.16±0.06 17.7±5.3 

Strawberry 

Creek 

53.31 -114.05 13.48±0.65 0.40±0.27 0.48 ±0.30 4.50±3.41 1.07±0.20 0.05±0.03 17.1±3.5 

Threehills 

Creek 

52.00 -113.57 1.99±0.62 0.62±0.09 0.06 ±0.09 10.01±3.38 1.41±0.24 0.31±0.08 21.8±3.9 

Tomahawk 

Creek 

53.35 -114.66 5.80±1.78 0.68±0.40 0.59 ±0.85 7.53±4.95 2.38±0.12 0.17±0.01 63.8±14.8 

Unknown 

Creek 

50.02 -112.75 3.01±0.51 0.56±0.14 1.02 ±0.47 6.35±0.81 0.56±0.09 0.15±0.10 3.9±1.0 

Upper 

Sturgeon 

River 

53.58 -114.89 10.60±0.11 1.10±0.00 0.48 ±0.00 3.66±0.00 1.43±0.00 0.10±0.00 39.7±0.0 

Weed Creek 53.3 -113.98 8.54±1.04 0.78±0.09 0.25 ±0.27 4.65±1.89 1.23±0.20 0.08±0.08 16.5±0.9 

Weiller 

Creek 

52.99 -113.22 3.05±0.42 0.70±0.07 0.16 ±0.06 46.60±25.80 1.65±0.50 0.84±0.31 13.3±2.7 
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Table 2.2. Top GLMM models of GPP and ER based on multi-model inference of all possible 

combinations of environmental variables. Marginal (R2
m) describes the variance explained by the 

fixed effects and conditional (R2
c) includes variance explained by fixed and random effects 

(site). Models are written to include intercept and coefficients.  

 AICc Δ AICc
 ω R2

m R2
c 

GPP ~ 

 0.832 -  (0.187×Discharge) + (0.167×DOC) + 

(0.239×PAR) + (0.279× Water Temperature) 

348.3 0 0.412 0.327 0.663 

 0.820- (0.192×Discharge) + (0.153×DOC) + 

(0.231×PAR) + (0.092×TP) +  

(0.269×Water Temperature) 

349.1 0.79 0.278 0.342 0.669 

 0.810 - (0.08×Chlorophylla a) - (0.182×Discharge) + 

(0.135×DOC) + (0.237×PAR) + (0.142×TP) + 

(0.260×Water Temperature) 

350.2 1.95 0.156 0.337 0.672 

0.829 - (0.190×Discharge) + (0.166×DOC) + 

(0.242×PAR) + (0.03×Precipitation) +  

(0.275×Water Temperature) 

350.3 1.98 0.153 0.329 0.665 

ER ~ 

 1.392 + (0.092×Discharge) + ( 0.233×DOC) + 

(0.209×Precipitation) + (0.399×Water Temperature) 

412.2 0 0.278 0.449 0.601 

 1.392 + (0.238×DOC) + (0.221×Precipitation) + 

(0.399×Water Temperature) 

412.6 0.43 0.225 0.443 0.591 

 1.386 + (0.090×Discharge) + (0.221×DOC) + 

(0.216×Precipitation) + (0.388×Water Temperature) + 

(0.071×TP) 

413.4 1.29 0.146 0.457 0.606 

1.385 + (0.224×DOC) + (0.216×Precipitation) + 

(0.386×Water Temperature) + (0.075×TP) 

413.7 1.58 0.126 0.452 0.598 

 1.386 + (0.088×Discharge) + (0.215×DOC) + 

(0.207×Precipitation) + (0.398×Water Temperature) + 

(0.057×TN) 

413.9 1.74 0.117 0.459 0.611 

 1.384 + (0.215×DOC) + (0.217×Precipitation) + 

(0.385×Water Temperature) + (0.067×TN) 

414.0 1.89 0.108 0.455 0.604 
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2.7 Figures 

 

Figure 2.1. Map of study region showing the Boreal, Parkland and Grassland ecoregions, 

individual study sites, and weather stations used to determine light regimes and precipitation.  
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Figure 2.2. Hypothesized relationships among regional and local variables affecting GPP and 

ER tested using a piecewise SEM (see also Figure 2.10). 
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Figure 2.3. PCAs for (A.) Spring, (B.) Summer, and (C.) Fall showing variation in select 

physicochemical characteristics across sites and coloured according to ecoregion.   
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Figure 2.4. Boxplots of select average physicochemical variables across ecoregions and seasons, 

showing the distribution of site means within individual seasons. Within plots, the box 

demarcates the 25th and 75th percentile, the bar indicates the data median, and the whiskers 

indicate highest and lowest points excluding outlier (Quartile±1.5*Inter-Quartile Range). Outlier 

data points are shown using dots. Significance testing was done using a two-way ANOVA where 

(.) represents a p-value of less than 0.1, * less than 0.05, **less than 0.01, and *** less than 

0.001, and n.s. indicates not significant.  
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Figure 2.5. A) Principal Components Analysis (PCA) of watershed morphology based on 

transformed and scaled data. Sites are colour coded by ecoregion. Area indicates watershed area 

in hectares, watershed slope indicates mean watershed slope from start of main channel, shape 

factor is the ratio of basin length to width, and drainage density is the summed length of all 

channels in the watershed divided by the watershed area. B) A PCA of land cover where sites are 

coded by region. Land cover variables were input as the arcsine of the proportion in the 

watershed from Agriculture and Agri-Food Canada’s Annual Crop Inventory. Both “Morphology 

PC1” and “Land Cover PC1” were used in the pSEM.  
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Figure 2.6 Relationships between TN, TP and proportion of anthropogenic land use in the 

watershed (sum of developed, cropland and pasture), and the land cover gradient (Land Cover 

PC1, where positive values indicate more trees and pasture). 
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Figure 2.7. Box-plots to show ranges in GPP and ER across seasons and ecoregions. Within 

plots, the box demarcates the 25th and 75th percentile, the bar indicates the data median, and the 

whiskers indicate highest and lowest points excluding outlier (Quartile±1.5*Inter-Quartile 

Range). Outlier data points are shown using dots. Significance testing was done using a two-way 

ANOVA where (.) represents a p-value of less than 0.1, * less than 0.05, **less than 0.01, and 

*** less than 0.001. 
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Figure 2.8. Mean daily GPP and ER within each season of deployment (spring, summer, and 

fall). The black line is a 1:1 line where points below are heterotrophic and points above are 

autotrophic.  
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Figure 2.9. Box plots of within-season mean daily NEP across sites for each ecoregion and 

season. NEP>0 is autotrophic and NEP<0 is heterotrophic. Significance testing was conducted 

using a two-way ANOVA where (.) represents a p-value of less than 0.1, * less than 0.05, **less 

than 0.01, and *** less than 0.001. Within plots, the box demarcates the 25th and 75th percentile, 

the bar indicates the data median, and the whiskers indicate highest and lowest points excluding 

outlier (Quartile±1.5*Inter-Quartile Range). 
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Figure 2.10. Best fitting pSEM based on multi-model inference. Solid lines depict positive paths 

while dashed represents negative paths. Grey represents non-significant relationships and 

variables. Diagram includes standardized path coefficients and marginal R2 values. Full model 

statistics are as follows: C=22.20, p=0.677, df=26, and AIC=94.21. Residual correlations are 

indicated by double-sided arrows. Only local variables with a weight of 1.00 in the GLMMs 

were assessed. 
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Chapter 3. Microbial activity and nutrients impact organic matter decomposition in 

agricultural streams of Alberta, Canada 

3.1 Introduction 

Organic matter decomposition is a key stream function that provides insights into carbon 

cycling and food webs (Hall et al. 2000, Gessner and Chauvet 2002, Tank et al. 2010). 

Decomposition integrates the effects of abiotic factors, such as temperature and physical 

abrasion with biological processes, including microbial activity and detritivory (Webster and 

Benfield 1986, Ferreira et al. 2015, Griffiths and Tiegs 2016). These processes can all be 

affected practices relating to increasing agricultural land use due, including increases in non-

point source nutrient pollution, shifts in available allochthonous material, and changes to 

temperature and flow regimes. Thus, the sensitivity of decomposition to the conversion of 

natural land cover to agricultural uses makes it an important metric for assessing stream 

functional health. Decomposition can also vary across ecoregions through shifts in invertebrate 

and microbial community structure and stream physicochemical properties (Hladyz et al. 2010, 

Pozo et al. 2011). Therefore, it is important to assess how decomposition responds to agriculture 

across a broad diversity of ecoregion types. Studying decomposition in three ecoregions with 

varying degrees of land modification to agricultural uses can therefore provide insight into 

decomposition changes along a gradient of agricultural intensity in a geographic area of natural 

variation. 

There are several key parameters known to affect decomposition that can vary across 

ecoregions or gradients of disturbance. Agricultural land use changes have been shown to impact 

decomposition through increased nutrients (Ferreira et al. 2015), which stimulate microbial 

activity and the colonization of leaf litter, and in turn the microbial priming increases shredder 

decay rates (Manning et al. 2015). However, increasing nutrient concentrations can also limit 

shredder decomposition when concentrations are elevated enough to have detrimental effects on 

invertebrate communities creating a “u-shaped” response to nutrients by invertebrates 

(Woodward et al. 2012). Water temperature, which is often higher in anthropogenically altered 

streams due to removal of riparian canopies, can also increase decomposition rates (Fernandes et 

al. 2009, Griffiths and Tiegs 2016). Finally, velocity can impact decomposition through 

increased physical fragmentation and stimulation of microbial conditioning of litter (Ferreira and 

Graça 2006, Ferreira et al. 2006). Increased decomposition rates due to disturbance have 
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important ecological implications for stream ecosystems. Increased rates of decomposition are 

indicative of increasing shredder and microbial species abundance and diversity (Gessner et al. 

2010), but can lead to lower carbon resources later on and thus lower shredder abundance (Cross 

et al. 2006). Furthermore, increased microbial activity can result in increased CO2 production 

which has positive feedback implications for climate warming (Boyero et al. 2011).  

Decomposition rates are assessed through the use of decay rates to describe the litter 

breakdown processes (Petersen and Cummins 1974, Benfield et al. 2017). Decay rates of specific 

litter allow for the assessment of how litter quality can impact decay, but a standardized substrate 

allows for assessments across different streams (Young et al. 2008). Decay rates are often 

assessed within mesh litter bags. Coarse mesh bash bags include litter exposed to invertebrates 

while fine mesh bags exclude invertebrate decomposers. Coarse mesh bags are more common as 

they can mimic natural decomposition, but fine bags and the comparison of the ratio of coarse to 

fine bags allows for more comprehensive understanding of processes regulating decomposition 

(Ferreira et al. 2020). Cotton-strip assays are becoming a more common substrate for assessing 

decomposition, with some proponents arguing for this substrate type as a global standard (Colas 

et al. 2019). However, a naturally occurring litter will provide more ecologically realistic insights 

into stream functioning as a response to local changes and reflect natural processes.  

Changing litter stoichiometry during decomposition provides insight into microbial and 

invertebrate community functions through analyzing changes in nutrient demands across food 

webs (Sterner and Elser 2002). The C:N and C:P ratios of organic matter change during 

decomposition depending on the nutritional needs of the decomposer communities and stream 

water concentrations (Manning et al. 2016). Detrital consumers can be limited by both N and P, 

as N is needed for the N-rich enzymes required to acquire C from complex polymers, while there 

is also a high P requirement for RNA (Elser et al. 2003, Sinsabaugh et al. 2009). Microorganisms 

can obtain these nutrients from the litter, or from stream water when litter quality is poor. Thus, 

nutrients can be released in the decomposition process when the litter is more nutrient rich and 

retained when litter quality is poor due to retention of the nutrients within the microbial-litter 

complex as carbon is mineralized (Suberkropp 1998, Findlay 2010). Microbial conditioning of 

litter also increases the proportion of decomposition that is attributable to detritivores by 

increasing the nutritional quality of their food source (Kaushik and Hynes 1968, Gulis et al. 
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2006). Understanding how C:N:P ratios change as decomposition progresses provides insight 

into the biogeochemical functioning of decomposer communities and how the quality of detrital 

food resources change with progressive litter decomposition.  

The purpose of this chapter is to assess how agricultural land use associated with nutrient 

enrichment affects organic matter decomposition and processing, and how this effect may vary 

across a series of three diverse ecoregions. We assess how nutrient enrichment influences 

microbial and invertebrate activity by assessing decay rates and stoichiometry in coarse and fine 

litterbags across a gradient of nitrogen and phosphorus concentrations in three agricultural 

ecoregions of Alberta. Our main objectives were to: (i) determine the response of microbial and 

invertebrate decay to nutrient enrichment; and (ii) evaluate detrital quality via an assessment of 

changing litter stoichiometry with decomposition. We hypothesized that increasing nutrients 

would lead to faster decay rates and that nutrient poor litter will have decreasing carbon: nutrient 

ratios of litter due to enhanced microbial activity.  

3.2 Methods 

3.2.1 Study Region and Project Overview 

Organic matter decomposition was assessed at 34 sites across the Boreal, Parkland and 

Grassland ecoregions of Alberta (Figure 3.1). Sites were chosen to span a gradient of 

anthropogenic land uses, which were intended to reflect a corresponding gradient in 

concentrations of total nitrogen and phosphorus. The project was completed over three years: In 

2017, decomposition was measured at 12 Grassland and 3 Parkland sites; in 2018, decomposition 

was measured at 10 Parkland (including the 3 Parkland sites from 2017) and 2 Boreal sites; and 

in 2019 decomposition was measured at 12 Boreal sites including the 2 sites measured the year 

prior. In total, 39 litterbag deployments were completed across 34 sites. However, the final 

statistical analysis was constrained to 32 deployments across 27 sites due to damage to some 

bags resulting in inability to complete analyses and two streams drying out or becoming stagnant 

(Figure S2.1).   

Different climatic and geographical features characterize the three ecoregions. The 

Grassland is typically the warmest region and has higher proportions of native grass and 

shrubland land covers than the other ecoregions. The Boreal is the coolest ecoregion and 

characterized by more forest land cover; this study focused on the Dry Mixedwood subregion of 
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the Boreal, where conversion of aspen and spruce forest to cropping and pasture systems is more 

prevalent than more northern subregions. Soils also differ regionally, with the Boreal dominated 

by Luvisolic soils and the Grassland by Chernozemic soils. The Parkland is a transition between 

the two soil orders and vegetation types, with a combination of aspen parkland and fescue 

grasslands (Natural Regions Comitteee, 2006). Surface waters in the Boreal region are 

characterized by higher concentrations of phosphorus, often leading them to be naturally 

mesotrophic or eutrophic (Prepas and Trew 1983). Additionally, 28.5% of all land in Alberta is 

commercially fertilized and 21.6% of farms apply manure, which can lead to increases stream 

water nutrients and thus in eutrophication (Carpenter et al. 1998, Dorff and Beaulieu 2014, 

Maheaux et al. 2016). Elevated concentrations of nutrients in stream waters across a range of 

climatic and geographic variables provide unique opportunities to study organic matter 

decomposition in this region.  

3.2.2 Litterbag Deployment and Retrieval  

Organic matter decomposition was assessed with litterbags, which were chosen over 

standard cotton substrates to better understand the natural decomposition processes in the 

streams (Chauvet et al. 2016).  Reed canary grass (Phalaris arundinacea) was chosen as the 

decomposition substrate because it is found in agricultural riparian areas throughout our study 

region, enabling a common substrate to standardize decay rates among sites. A common source 

of reed canary grass was collected at a stream within the Parkland region of Alberta in the 

preceding fall for the 2017 and 2019 field seasons, and in the early spring for the 2018 field 

season.  

Twelve fine (0.2 mm) and twelve coarse (2 mm) mesh-sized litterbags, constructed from 

Nitex nylon mesh, were filled with approximately 7.0 g of dried reed canary grass and strung 

along a vinyl-coated nylon wire alternating between fine- and coarse-bags. Separate sized 

meshes were chosen to account for microbial and invertebrate decomposition. The 24 bags were 

deployed at each stream site in late spring via attachment to the bottom of the deepest part of the 

stream while wire ends were anchored to the bank to simulate decomposition of riparian 

vegetation occurring at the banks.  Following deployment, two coarse- and two fine-mesh bags 

were removed from the stream immediately (representing time-zero), with subsequent bags being 

removed every two to three weeks until early fall (a total of 6 retrievals, including time zero).  
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3.2.3. Physicochemical and Land Use Data Collection 

Water quality samples and discharge measurements were taken upon each deployment 

and during every other bag retrieval (i.e., three measurements total, at deployment, at the third 

and at the sixth retrievals). Water samples were collected at mid-stream and mid-depth and 

analyzed for total nitrogen (TN), total phosphorus (TP), and dissolved organic carbon (DOC). 

Water chemistry analyses were completed at ALS Environmental Laboratories (Calgary and 

Edmonton, Alberta) following standard protocols (Table S2.1). Stream flow and associated 

measurements were taken with an Acoustic Doppler Velocimeter (ADV) (FlowTracker2, 

SonTek Inc., San Diego, CA) to calculate stream velocity, discharge, total stream width and 

mean depth.  

Daily water temperature was measured over the course of the 2017 and 2019 

deployments using a HOBO Pendent Data Logger (UA-002-64; Onset Computer Co., Bourne, 

MA). In 2018, and at some 2017 sites where the logger failed, mean water temperature was 

calculated from point measurements taken during the deployment using a multi-parameter water 

quality sonde (EXO2, YSI, Yellow Springs, OH) that was deployed at select sites for 4-day 

periods and intermittently during the litterbag deployment with a handheld multi-parameter 

sonde (SmarTroll, In Situ, Pittsburgh, PA). In addition to water temperature, pH was also 

collected intermittently using the deployed multi-parameter water quality sonde and a handheld 

multi-parameter sonde. Point measurements of water temperature and pH were collected on 9 to 

17 days over the course of the deployments. However, to standardize measurements across sites 

and parameters only those measurements coinciding with bag retrieval were used to find mean 

pH and temperature. 

For each sampling site, watersheds were delineated using the ArcGIS Spatial Analyst 

extension in ArcMap software (ArcGIS v. 10.4; Esri Canada, Toronto, ON) and Alberta 

ArcHydro Phase 2 Data (AEP 2018). Land cover was assessed using optical satellite and radar 

imagery with a spatial resolution of 30 m (AAFC 2019), and was aggregated within each 

watershed through summation as categories of cropland, tame pasture and forage (pasture), and 

treed area types (forest); also included were the aggregate areas of open water, wetlands, 

developments (residential, industrial) and native grassland. The proportion of land use in each 
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watershed was found as the quotient of total area of land use type and watershed area. 

Anthropogenic land use was defined as the sum of developed land, cropland and forage cover.  

3.2.4 Litter Decomposition and Stoichiometry 

After litter bag retrieval, bags were stored in a fridge at 4oC until they could be processed 

(up to one week). Bags were rinsed gently with distilled water and then dried in an oven at 60 °C 

for a minimum of three days to determine dry weight. The samples were then ground to 0.5 mm 

using a general purpose sample mill (FOSS CT 293 Cyclotec). After milling, samples were oven 

dried for 12 hours at 50°C and placed in a desiccator to cool. The ash-free dry mass (AFDM) for 

each litterbag was then determined by combusting 250 mg of ground sample in a muffle furnace 

at 550°C for 40 minutes with a ramp speed of 5°C min-1 (Benfield et al. 2017). Samples were 

cooled in a desiccator and weighed to find the mass of the ash remaining. The percentage of 

organic matter (%OM) in each sample was found by subtracting the weight of the combusted 

sample from the dry mass of the subsample and dividing by the original subsample weight. The 

%OM of the sample was then multiplied by the dry weight to find the AFDM of the litter bag. 

For samples where AFDM could not be measured due to limited sample size, we calculated the 

AFDM based on the relationship between AFDM and total carbon (g; see below) (r2=0.9977).  

Decay rates (k) were calculated using the slope of the regression between the natural log of 

percent AFDM remaining and days since deployment. We used the decay rate from fine bags to 

represent microbial decomposition (kmicrobial), and from coarse bags to represent total 

decomposition (ktotal), which represents the combined decomposition by microbial and 

invertebrate communities. Invertebrate decomposition rates were calculated as ktotal –kmicrobial
 = 

kshredder  (Manning et al. 2016). Ratios of kshredder to kmicrobial were calculated to assess relative 

contributions of shredder and microbial activity to decomposition, with kshredder/kmicrobial>1 

indicating a greater relative shredder contribution. 

The percentage of carbon and nitrogen contained within the ground samples were 

measured at the Alberta Agriculture and Forestry Soil and Water Laboratory (Lethbridge, 

Alberta) using a FlashSmart CHNS/O Element Analyzer with Multivalve Control (ThermoFisher 

Scientific Inc.).  Percent phosphorus was measured at the Natural Resources Analytical 

Laboratory at the University of Alberta (Edmonton, Alberta) using the PO4-P colourimetric 

method after sulfuric acid digestion (US EPA, 1993). Percentages of C, N and P were converted 
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to grams by multiplying by the litter bag dry mass, and molar ratios of C:N and C:P were 

calculated following conversion to molar units.  

3.2.5 Data Treatment and Statistical Analyses 

Physiochemical characteristics (TN, TP, DOC, pH, water temperature, velocity) were 

averaged for the entire deployment for each site. For measurements where TN or TP were below 

the detection limit (4% of TN samples and 5% of TP samples), half of the detection limit (0.10 

and 0.01 mg L-1 respectively) was used (USEPA, 2000). Physicochemical differences across 

ecoregions were tested with a 1-way ANOVA and assumptions verified. Velocity, discharge and 

N:P were log-transformed for analysis. Molar ratios of water column N:P were calculated for 

each site using TN and TP.  

Variation in decay across ecoregions for the classes of decay rates (kshredder, kmicrobial, and 

ktotal) was assessed using 1-way ANOVAs. Linear models were used to assess environmental 

drivers of decay. Input variables to these models included water temperature, TN, TP, DOC, the 

fraction of anthropogenic land use, velocity, ecoregion and stream pH. Variables were scaled and 

the variance inflation factor (VIF) checked. Due to DOC and TN being highly correlated 

(r=0.71), DOC was removed from the analysis to ensure VIF<3 (Zuur et al. 2010). Global 

models were assessed with multi-model inference to find the best model, and models within ∆2 

AICc were retained (Burnham and Anderson 2002, Barton 2019). All model residuals were 

assessed to validate assumptions and outliers were checked. Models were compared against the 

intercept only model. 

Although a common substrate was used across all litterbags, litter was collected for each 

deployment during the preceding year, and in some cases during different seasons.  As a result, 

1-way ANOVAs were conducted to see if the initial (day zero) C:N and C:P ratios were 

consistent across all deployments. There was variation in the nutrient composition of the bags 

tested at day zero between years (F2,65=48.5, p<0.0001) where the starting C:N ratio of 2018 

bags (mean= 54.4± 1.13 S.E.) was significantly lower than both 2017 (88.0 ± 2.53) and 2019 

(91.6±4.46) (Tukey post-hoc comparison, p<0.05).  Initial C:P also varied significantly 

(F2,58=7.65, p=0.001) where 2017 had the highest ratio (1534.4 ± 120.41) compared to 2018 

(1184.2 ±52.22) and 2019 (1192.4±28.37). Therefore, we calculated a standardized ∆C:N and  

∆C:P over the length of our deployments as the mean of the final bags within each site subtracted 
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from the mean of the starting bags within each site (Manning et al. 2016). To assess influences 

on changes in litterbag stoichiometry, we looked at the effect of decay rates, water column 

nutrients, ecoregion and stream nutrient limitation using ANOVAs to compare regional 

differences and linear regressions to assess drivers of C:N and C:P. All predictor variables were 

scaled and assumptions validated through residuals. All analyses were conducted using R version 

3.6.2 (R Core Team, 2019).  

3.3 Results 

3.3.1 Ecoregion Characteristics and Nutrient Limitation 

Physicochemical characteristics differed among sites and ecoregions (Figure 3.2). Mean 

water temperature ranged from 15.0-20.2 oC across all sites. Water temperature varied 

significantly between ecoregions with deployment-specific temperatures in the Grassland 

(mean=18.8 oC ± 0.40 S.E.) significantly greater than those in the Parkland (17.1 ± 0.43 oC) (1-

way ANOVA and Tukey HSD; F2,29=4.716, p=0.017). Total nitrogen varied by more than an 

order of magnitude across sites, with a range of 0.28-4.35mg L-1  (median of 1.38 mg L-1), 

indicating that streams spanned a range from oligotrophic to eutrophic (Dodds et al. 1998). 

Concentrations of TN did not vary significantly between ecoregions, but the Grassland streams 

did have the lowest concentrations with mean values in the oligotrophic range (0.77 ± 0.22 mg L-

1) (F2,29=2.861, p=0.073). Similar to TN, TP also ranged by nearly an order of magnitude from 

0.015 to 1.20 mg L-1 (median of 0.16 mg L-1).  This range corresponded with a classification of 

three streams as oligotrophic, with the rest falling in the mesotrophic to eutrophic range (Dodds 

et al. 1998). Concentrations of TP also showed no significant difference between ecoregions. 

Unlike TN and TP, DOC did vary significantly across ecoregions (F2,29=8.173, p=0.002) where 

streams in the Boreal had greater concentrations of DOC (34.0 ± 5.04 mg L-1) than streams in 

either the Parkland (18.3 ± 3.17 mg L-1) or Grassland (9.5 ± 2.25mg L-1), which did not differ 

from each other. Site-specific velocity also varied significantly between ecoregions, where 

Grassland sites had a slightly higher mean velocity (0.22 ± 0.06 m s-1) (F2,29=3.408p=0.047). 

Similarly, study-site discharge showed a small but significant difference between ecoregions 

(F2,29=3.533, p=0.042), with sites in the Boreal region (0.73 ± 0.20 m3 s-1) having significantly 

higher discharge than those in the Parkland (0.38 ± 0.15 m3 s-1). Finally, pH was also found to 

differ between ecoregions (F2,29=18.66, p<0.001), with sites in the Grassland having the highest 

pH (8.59 ± 0.006), and sites in the Boreal the lowest (7.74 ± 0.08). Across all sites, increasing 
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proportions of human land use at the watershed scale had a positive effect on mean 

concentrations of TP (β=0.467, p=0.023). There was no measurable effect of anthropogenic land-

use on TN concentrations (β=1.004, p=0.269) (Figure 3.3).However, a nutrient gradient was 

present across all streams as TN increased with TP (p<0.001; r2=0.716).  

Stream water nutrient ratios (as TN and TP) were determined across all sites and years, 

and used to assess possible limitation of ecological processes (e.g., decomposition) based on 

comparisons to Redfield ratios, and the limitation endpoints for microalgal growth laid out in 

Hillebrand and Sommer (1999) (Figure 3.4). There was a wide range of N:P ratios across sites, 

ranging from 8.0-198.5 (median = 19.2) but most streams were within the range of co-limitation 

(Hillebrand and Sommer 1999). An ANOVA comparing N:P across ecoregions found a marginal 

difference between ecoregions (F2,29 =2.656, p=0.087), although this was likely driven by the 

substantial apparent P-limitation at Horse Creek in the Boreal (N:P=198.5). Upon removing 

Horse Creek as an outlier, no significant difference in N:P was found among ecoregions (F2,28 

=1.847, p=0.176). However, the Boreal ecoregion did tend to have the highest incidence of 

apparent P-limitation. 

3.3.2 Variation in Decay Rates and their Drivers  

There was significant AFDM loss across all sites, with a mean final mass that was 

25.86±1.54% of the deployed mass. Variation in decay rates was assessed across decomposition 

type and ecoregion. Comparisons of kshredder, kmicrobial and ktotal across ecoregions are presented in 

Figure 3.5A. The two-way ANOVA indicated significant variation in decomposition rates among 

ecoregions, with Boreal sites having faster overall decomposition rates than the Grassland and 

Parkland sites (F2,83=5.299, p=0.007).  kmicrobial (0.012 ± 4.5x10-4 d-1) was greater than kshredder 

(0.006 ±  9.1x10-4 d-1), and all three types of decomposition (microbial, invertebrate and total) 

varied significantly where ktotal was highest (0.018 ± 1.2x10-3) (F2,83=46.848, p<0.001).  There 

was no interaction effect between ecoregion and the type of decomposition (F4,83=0.453, 

p=0.770). Comparisons of the ratio of kshredder/kmicrobial across ecoregions indicated no cross-

ecoregion variation in this metric (F2,27=1.025, p=0.372) (Figure 3.5B), with microbial 

decomposition exceeding invertebrate decomposition in all but five deployments.  

Environmental drivers of microbial, shredder and total decay were assessed with linear 

regression and multi-model inference (Table 3.1A). Four models were returned within 2.0 ∆AICc 
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of the top model for microbial decay rates. The best model for predictors of kmicrobial included a 

positive relationship with TN (β=0.0015, p<0.001) and a negative relationship with the 

proportion of anthropogenic land use in the watershed (β=-0.0010, p=0.019). Variable weights 

were determined for all top models, with TN present in all models (variable weighted, ω=1.0), 

anthropogenic land use present in three models (0.80), mean velocity in two models where it had 

a positive effect on kmicrobial(ω=0.42), and pH in one model only where there was a negative 

relationship (ω=0.17) (Table 3.1B). 

There were four models within 2.0 ∆AICc of the top model for shredder decay rates. The 

most highly weighted variable was TN, which was present in all models (Table 3.1A).  The best 

model for kshredder included mean velocity (β=0.018, p=0.036) and TN (β=0.002, p=0.007). The 

percent of anthropogenic land use was also present in two models as a negative predictor 

(ω=0.34). Velocity was also highly weighted (ω=0.8) and increased kshredder. The variables pH 

(ω=0.14) and TP (ω=0.21) were also each present in one model each and had a negative 

relationship with kshredder.  

Five models were found for describing ktotal. The best model for total decay included 

mean velocity (β=0.003, p=0.008), TN (β=0.007, p<0.001) and TP (β=-0.003, p=0.091). The 

highest weighted variables in total decay models were mean velocity and TN, which were 

present in all models (ω=1). Anthropogenic land use (ω=0.31) and pH (ω=0.29) were present in 

two models and had negative effects on ktotal, while TP (ω=0.28) was only present in the top 

model.  

A similar analysis was conducted for the kshredder/kmicorbial ratio but the top models were 

found to be not significantly different from the intercept only model. A comparison of the 

kshredder/kmicorbial ratio to TN and TP saw a general increase in invertebrate decay with increasing 

nutrients (Figure 3.6), but the relationships were not significant.  

3.3.3 Litterbag Stoichiometry 

 Initial litter stoichiometry varied due to differences in substrate retrieval times but tended 

to be carbon rich with high C:N and C:P ratios. Over the course of the deployment, the ratios of 

C:P and C:N decreased in both types of bags (Figure 3.7) (p<0.001 for all models). The initial 

C:N of the litter bags was 77.29±2.68  and decreased to 57.07±2.49, while C:P decreased from 



48 

 

1284.8±43.87 to 1043.46±60.00. At all time points, the litter was above Redfield proportions 

(i.e., 106:16:1). 

The change in litter stoichiometry was evaluated as the mean C:Xfinal-C:Xstart such that a 

negative ∆C:X signifies a carbon:nutrient decrease and relative N or P increase. Overall, there 

was a general trend of decreasing (i.e., negative ∆) C:N and C:P in all streams with a median of -

22.24 and -254.33, respectively. The change in litter nutrient content was assessed across bag 

types and ecoregions using 2-way ANOVA (Figure 3.8). The change in C:P (i.e., ∆C:P) did not 

vary between bag types or ecoregions.  In contrast, there was a significant difference between 

ecoregions in ∆C:N (F1,54=9.82, p<0.001), with the Boreal C:N ratio decreasing (greater N 

retention) more than the Parkland and Grassland ecoregions. While ∆C:N did not vary 

significantly among bag types, there was a marginally significant interaction effect (F2,54=2.95, 

p= 0.061).  

 To understand the effect of within-stream nutrient concentrations on this change in 

stoichiometry, we compared nutrient ratios of the final bags to mean stream water concentrations 

of TN and TP for the Boreal and Parkland ecoregions, which had a sufficient number of final 

retrievals to enable this assessment (Figure 3.9). In the coarse-mesh bags deployed in the Boreal 

region, there was a decrease in C:P with increasing TP (β=-0.465, p=0.013), but no significant 

relationship between final C:N and TN (β=-0.05, p=0.119). In the fine-mesh bags of the Boreal, 

there was no significant relationship between either TN and final C:N (β=-0.041, p=0.134) or TP 

and final C:P (β=-0.314, p=0.103). In contrast, there were marginal, or significant relationships 

between C:N and TN in the coarse- (β=-0.129, p=0.002) and fine-bags (β=-0.059, p=0.053), and 

between C:P and TP in the coarse (β-0.701, p<0.001) and fine bags (β=-0.297, p=0.020) in the 

Parkland. Across all sites, the relationship between final C:N and TN was significant in both the 

coarse-mesh (β=-0.094, p=0.002) and fine-mesh (β=-0.071, p=0.008) bags. The relationship 

between final C:P and TP was also significant for both coarse- (β=-0.562, p<0.001) and fine-

mesh (β=-0.239, p=0.012) bag types (Figure 3.9). 

 The influence of stream water nutrient concentrations on litter stoichiometry was 

additionally assessed for both fine- and coarse-mesh bags using multiple linear regressions 

(Table 3.2). Here, models testing the influence of TN or TP, the corresponding decay rate 

parameter (ktotal or kmicrobial), and their interaction were built for each bag type, and for each of 
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∆C:N and ∆C:P (Table 2). The ∆C:N in the fine-mesh bags was not impacted by TN in this 

model, but did decrease significantly with increasing kmicrobial (β=-15.026, p=0.002), indicating 

that the relative concentration of N at the end of the deployment was higher with increasing 

microbial activity. As both microbial activity and TN increased, the ∆C:N increased, meaning 

more litter N was remineralized. However, there was also a significant interaction between 

kmicrobial and mean concentrations of TN in the stream water (β=8.149, p=0.044) suggesting the 

effects of kmicrobial and TN have varying effects on ∆C:N in the fine bags. The ∆C:N in the coarse 

bags was only affected by ktotal (β=-10.243, p=0.015), where the proportion of N retained in the 

litter increased with increasing decomposition rates.  

 In contrast to the result for controls on ∆C:N, ∆C:P ratios were most strongly controlled 

by water column concentrations of TP. In the fine bags, there was a significant decrease in ∆C:P 

in streams with higher TP concentrations, indicating more P was retained in litter with increasing 

stream water nutrient concentrations (β =283.23, p=0.0205). However, the model itself was not 

significant (F3,25=2.147, p=0.1195) suggesting there could be other variables controlling the 

change in litterbag P composition that were not assessed. The effect of TP was also significant in 

the model for coarse bags (β= -417.7, p=0.002), where there was higher retention of P in the 

litter as TP increased. Linear relationships between ∆C:N and ∆C:P and microbial and total 

decay rates are shown in Figure 3.10, reinforcing that decay rates significantly affected ∆C:N 

(p<0.05), but not ∆C:P.  

3.4 Discussion 

Here, we describe organic matter decomposition across a nutrient gradient within three 

agricultural regions of Alberta. Despite clear differences between our ecoregion sites in 

temperature, velocity and DOC, there was little variation in decomposition responses across the 

three diverse ecoregions that we studied. Instead, we found that increasing nutrients were a 

primary control on decomposition of organic matter, and that stream water concentrations of TN 

and TP increasing with agriculture across all regions. We propose that increasing nutrients 

enhanced decomposition of organic material through reducing nutrient limitation to microbial 

communities and possibly also due to reductions or limited natural effects of detritivory. 

Multivariate assessments indicate that microbial activity increased by TN is most important for 

driving decomposition, and that invertebrate-mediated processes are less important. Finally, 
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through assessing changes in litter stoichiometry we found broad-scale increases in litter nutrient 

content with stream water nutrient concentrations, most likely as a result of microbial activity. 

Overall, these findings suggest bottom-up rather than top-down forces regulate decomposition of 

organic matter in our study sites. 

3.4.1 Decay rates and microbial contribution do not vary greatly between ecoregions 

 Across the three diverse ecoregions that we studied, decomposition rates were similar to those 

found for leaf litters of similar quality in nutrient enriched streams from other ecoregions, despite 

slight variation between studies in terms of litter material and litterbag mesh size (Hladyz et al. 2010, 

Manning et al. 2015). We assessed ecoregion differences due to broad variation in climate, vegetation, 

and soil, which can lead to variation in stream physicochemical characteristics that are important to 

consider when assessing decomposition responding to anthropogenic perturbations such as agriculture 

(Hladyz et al. 2010, Pozo et al. 2011). While streams from the Boreal, Parkland, and Grassland 

ecoregions varied in some key parameters including water temperature, DOC, pH and velocity, the 

response of decomposition to expected regional gradients was muted. In particular, while there was 

some difference of region on overall rates of decomposition, we found no difference in the relative 

contribution of microbial decomposers to the total decomposition rate. 

Decomposition rates overall varied by region where the Boreal region typically had greater 

rates of decomposition than those observed in the Grassland and Parkland ecoregions. However, 

ecoregion was not an important driver for any type of decomposition in the linear models.  Our 

ecoregions are largely differentiated by climate, which led to significantly different water 

temperatures between the regions. Previous studies have shown that temperature increases organic 

matter decomposition rates (Griffiths and Tiegs 2016). However, other studies have supported that 

temperature is not an over-riding determinant of decomposition rates across ecoregions and that local 

factors can be more important (Pozo et al. 2011). The Boreal in our study had lower temperatures but 

higher concentrations of DOC and TN, which may exert more control on decomposition rates than 

water temperature.   

The roles of microbial and shredder activity in decomposition of organic matter were similar  

among the studied ecoregions,  which suggests that the difference in decomposition rates between 

ecoregions is driven by physicochemical variation rather than shifts in community structure (Hladyz et 
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al. 2010). Overall, the rates of microbial decomposition were highest and made up the largest 

proportion of decomposition in our litterbags. While we saw a slight increasing proportion of 

invertebrate decomposition with increasing TN, there was no significant relationship between the 

proportion of invertebrate-mediated decomposition and concentrations of nutrients.  This is contrary 

to a similar study by Manning et al. (2016) that saw an increase in the proportion of shredder-

mediated breakdown in high nutrient streams.  Increased nutrient ratios of litter due to microbial 

conditioning typically increase invertebrate activity (Kominoski et al. 2015), but increases in 

agricultural activity and thus nutrient concentrations may lower carbon resources in streams and thus 

lower consumer populations (Cross et al. 2006). However, further studies into detritus quantity would 

be needed to test the impacts of this in our study systems. Additionally, increased N and P can inhibit 

invertebrates (Woodward et al. 2012), which may be why we see less shredder decomposition. 

Finally, invertebrate abundance is typically lower in prairie streams so the low invertebrate decay rates 

could be a result of natural variation in abundance (Tank et al. 2010). An increased proportion of 

microbial decomposition has important implications in stream function due to increased carbon loss as 

CO2 from increased respiration (Rosemond et al. 2015).  

3.4.2 Microbial activity and total nitrogen drive decomposition in Alberta’s agricultural 

ecoregions 

Anthropogenic land use within our watersheds ranged from 5-93% across all sites and was 

correlated to increasing concentrations of nutrients suggesting that pollution (i.e., urban uses) or 

land use alteration (i.e., agricultural uses) increases nutrient delivery to streams. Mean 

concentrations of nutrients during the litterbag deployments often exceed previously published 

numeric guidelines for Alberta surface waters (Alberta Department of Health 1970, Government 

of Alberta 2018). Additionally, TN and DOC were highly correlated indicating nitrogen in the 

streams is primarily organic. This is further substantiated by the majority of our inorganic 

nitrogen measurements being below detection limits.  

Total nitrogen was an important driver of decay rates in our streams. Increased TN was 

significantly related to higher rates of kmicrobial which is consistent with other studies (Ferreira et 

al. 2015). The positive effect of TN on kmicrobial  suggests N-limitation of microorganisms in our 

study streams and is consistent with our streams being predominantly N-limited or co-limited 

(Hillebrand and Sommer 1999).  Other studies have also seen increased microbial decay rates 
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along gradients of increasing concentrations of N and/or P (Kominoski et al. 2015, Manning et 

al. 2018). While TN was an important driver of kmicrobial, increasing TP had limited effect. 

Variation in TP may be less important for regulating decay in our streams due to more fungal 

activity than bacterial in microbial colonization of the litter. Aquatic fungi, typically comprised 

of aquatic hyphomycetes, also tends to exceed bacteria in litter decomposition (Gessner et al. 

2007). Further, fungi are often have higher N requirements (Manning et al. 2015, Jabiol et al. 

2018) and are more likely to colonize lower quality litter such as reed canary grass (Kominoski 

et al. 2015). Also, algae within our streams are most likely N- or co-limited, and the presence of 

increased algae in the biofilm can stimulate fungi leading to increased decomposition  

(Francoeur et al. 2020). However, TN was highly correlated with DOC suggesting that TN is 

associated with more organic material, and early decomposition is being driven by the carbon 

limitation of microbial heterotrophs (Soong et al. 2020).  

In contrast to the direct effects of TN, anthropogenic land use (in our study, the sum of 

cropland, pasture and developed land) had a negative relationship with decay rates in our models, 

suggesting that changes in watershed land cover will influence decomposition rates above and 

beyond the role of increasing nutrient concentrations alone. Increased anthropogenic land use 

often leads to the removal of riparian areas, which can increase light into surface waters. While 

light availability has been shown to increase organic matter production and thus stimulate 

microbial activity, this tends to occur in lower nutrient streams (Evans-White and Halvorson 

2017). Furthermore, exposure of UV-B radiation also damage fungi (Newsham et al. 1997) and 

microbes. Increased land use can also increase sedimentation in the water column which can 

negatively affect microbial enzymatic pathways and thus reduce the rate of decomposition 

(Piggott et al. 2015). The presence of shredder species is often limited in prairies due to lower 

allochthonous inputs, and agricultural land use conversions can further decrease these inputs 

(Tank et al. 2010).  

In addition to anthropogenic land use and nutrient concentrations, we assessed other likely 

drivers of decay rates including velocity, temperature and pH. Velocity was positively associated 

with kmicrobial in two of our top models. Increasing velocity can be important in driving physical 

abrasion of the leaf litter, but also decreases boundary layers between microbial mats and the 

water column, which can limit oxygen depletion (Bruder et al. 2016, Juvigny-Khenafou et al. 
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2020).  Though the positive relationship between velocity and litterbag mass loss can also 

indicate that physical fragmentation is an important driver of increased decomposition. Velocity 

was also an important driver of kshredder and ktotal, likely due to increased fragmentation in the 

larger mesh bags. However, velocity impacts often vary with year and may not be a primary 

driver in longer experiments (Yeung et al. 2018).This study limited repeated sites between years 

thus repeated experiments over many years are needed to properly infer the impact of velocity on 

decomposition in streams. 

Water temperature appeared to not affect microbial, shredder or total decay rates in our 

study. This was unexpected as temperature is expected to increase microbial decomposition due 

to increased cellular reaction rates (Yvon-Durocher et al. 2012). Water temperature in our study 

varied slightly between sites where the Grassland typically had the highest mean temperatures, 

but there may not have been enough variation between sites to see an effect, particularly given 

that our deployments ranged through the majority of the open water season (i.e., from late spring 

to early fall). Also, water temperature can negatively impact the influence of fungi due to 

decreased sporulation rates (Fernandes et al. 2009). In a similar study, Pozo et al. (2011) also 

found that temperature was not a driving factor in decay rates. 

While pH was not present in all models, the negative correlation between pH and kmicrobial 

was unexpected as microbial decay has been shown to increase in more alkaline waters with 

increased fungal and microbial growth (Suberkropp and Chauvet 1995, Riipinen et al. 2009). 

Microbial decomposition tends to increase with pH in the 6-8 range though the response beyond 

this may decrease (Ferreira et al. 2020). In addition to the impact microbial breakdown 

processes, pH can affect the community composition of shredders and has been shown to 

increase invertebrate decomposition in the 5-6.6 pH range (Riipinen et al. 2009, Ferreira et al. 

2020). The limited pH gradient in our study, where all sites ranged from 7.4-8.8, and lack of 

information on community composition makes it difficult to distill the impacts of pH on 

decomposition in these streams.  

3.4.3 Increased stream water concentrations of nutrients lower detrital nutrient ratios 

We assessed changes in detrital stoichiometry with decomposition and how stream water 

nutrients and microbial- and invertebrate-mediated decomposition influenced these changes. 
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Overall, litterbag C:N and C:P decreased at our sites which appeared to be driven by microbial 

decay and water column nutrients. When considering changes in C:N, microbial priming of litter 

is stimulated by periphytic algae (Kuehn et al. 2014), which appears to be N or co-limited in 

these streams (Hillebrand and Sommer 1999).  Further, our initial mean litter N:P of 17.8 was 

well in excess of the culture-based N:P stoichiometry for common aquatic hyphomycetes, which 

are important fungal decomposers (9.7; Brosed et al. (2017). Taken together, these metrics 

indicate that water column nitrogen may limit microbial activity in these streams. Microbial 

immobilization of N from the water column is consistent with the decrease in C:N we saw in our 

litter. The change in ∆C:N in our study was primarily driven by microbial activity in our models 

and likely due to fungal activity (Sinsabaugh et al. 2009). Microbes, particularly aquatic 

hyphomycetes, assimilate nutrients from the water column and immobilize N in the litter through 

the release of N-rich enzymes needed to acquire C from polymers when there is low quality litter 

that cannot meet microbial nutrient requirements (Parton et al. 2007, Pastor et al. 2014). Similar 

results were reported by Manning et al. (2016), who found that increasing nutrient content led to 

the convergence of stoichiometric ratios within the litter. Increasing TN increases microbial 

conditioning, which allows for the changes in C:N associated with fungal colonization.  Fungal 

colonization and immobilization of N provide more accessible litter for invertebrate 

decomposition, and fungi are also an important component of stream food webs.  

 There was a decrease in C:P ratios with increasing TP in the water column, which is 

consistent with other studies using alternate litter types (Scott et al. 2013). The decrease of C:P 

ratios in the litter was not related to decomposition type, but there was an interaction between 

ktotal and TP indicating that elevated phosphorus was associated with increased shredder activity. 

This finding is similar to Manning et al. (2016) who saw a relationship between decreasing C:P 

ratios of litter, increased nutrient enrichment and shredder induced decay. Shredder 

stoichiometry is typically lower than the litter they consume and the interaction may be an effect 

of lowered litter C:P due to increased TP and microbial activity, and thus increased invertebrate 

decay (Elser et al. 2000). The model for ∆C:P was not significant for the fine (microbial) bags 

suggesting that TP did not interact with microbial activity. This is unexpected as microbes have 

high P-demands due to P-rich RNA (Elser et al. 2003). Manning et al. (2015) saw a similar effect 

of stream water phosphorus affecting C:P more than C:N. They suggested that this is because 

C:N is mediated by fungal biomass and C:P is decoupled with fungal biomass due to cellular P 
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storage. Fungi are often more N-limited due to flexible P storage in cells which could be the 

reason that microbial activity is not driving C:P. Alternatively, microbial community shifts can 

influence P without a difference in decay rates, as shifts in species composition or diversity can 

lead to different nutritional requirements while biomass remains the same (Gessner et al. 2007). 

A second possible reason for the change in ∆C:P with increased TP is abiotic sorption. Microbial 

biofilms can enhance adsorption of inorganic materials, such as inorganic, leading to decreases 

in ∆C:P (Mehring et al. 2015). Further analysis of the phosphorus content of the litter and stream 

as well as species identification are needed to interpret the exact mechanisms.  

3.5 Conclusion 

 Overall, decomposition and mass loss increased along gradients of nitrogen and 

phosphorus concentrations in our sites. We conclude that: (i) microbial activity was more 

important than shredder activity in driving decomposition; (ii) nutrients, specifically TN, 

increased microbial activity; and (iii) there was convergence of C:N and C:P in our litterbags as 

stream water nutrients increased, which is likely due to microbial activity and in-stream TP 

availability. Increased stream water nutrients were positively correlated with anthropogenic land 

cover in our study, which could further influence decomposition if there is removal of riparian 

zones and subsequent reductions in the amount allochthonous material entering the stream. 

Alternatively, decomposition could vary due to regional changes along the anthropogenic land 

cover gradient. Even though there was a negative relationship between increased anthropogenic 

land use and decomposition, the impacts of nutrients and DOC with increased land use have 

important implications for stream function. Stimulation of decomposition rates can affect 

community structures and alter food web dynamics, as well as increase microbial respiration. If 

decay rates then lower with increased nutrients (i.e. a hump shaped relationship of decay rates 

with nutrients), this can be an indication of nutrient pollution causing decrease in dissolved 

oxygen and a reduction in aerobic metabolism (Woodward et al. 2012). To minimize the impacts 

of nutrients on stream function and to preserve ecological integrity, natural buffer zones should 

be retained in riparian areas within the Grassland and Parkland. Additionally, TN and TP can 

have impacts on stream function and reductions in nutrient runoff through riparian management 

and non-point source pollution decreases should be focus of management plans. This research 

demonstrates the strength of organic matter decomposition as an indicator of stream function in 
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response to anthropogenic land use change across ecoregions, and provides essential information 

needed to make management decisions.  
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3.6 Tables 

Table 3.1A. Linear models describing microbial and total decomposition based on multi-model 

inference of all possible combinations of environmental variables. All variables are mean 

variables for the watershed and the entire deployment period. Models display standardized 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1B. Relative variable importance based on Akaike weights for models returned in in top 

linear models investigating drivers of decay rates. Higher weighted variables indicate higher 

relative importance.  

Variable  Weight (ω) 

Kmicrobial  Ktotal Kshredder 

TN 1 1 1 

Mean Velocity 0.42 1 0.80 

% Anth 0.80 0.31 0.34 

pH 0.17 0.29 0.14 

TP 0 0.28 0.21 

Water Temperature 0 0 0 

Ecoregion 0 0 0 

 

 AICc Δ AICc
 ω R2

multiple R2
adjusted 

kmicrobial~ 

Intercept + (0.0015)TN – (0.001)%Anth -288.88 0 0.414 0.36 0.32 

Intercept + (0.0015)TN – (0.0007)%Anth + 

(0.0005)Velocity -287.63 1.25 0.222 

0.40 0.33 

Intercept + (0.0014)TN + (0.0009)Velocity -287.38 1.50 0.197 0.34 0.28 

Intercept + (0.0013)TN – (0.0009)%Anth – 

(0.0004)pH -287.08 1.80 0.168 

0.26 0.21 

Ktotal~ 

Intercept + (0.003)Velocity + (0.007)TN – 

(0.003)TP -231.17 0 0.28 0.44 

0.38 

Intercept + (0.003)Velocity + (0.004)TN -230.70 0.47 0.22 0.38 0.34 

Intercept + (0.002)Velocity + (0.004)TN – 

(0.001)%Anth -230.58 0.59 0.21 0.43 

0.37 

Intercept + (0.003)Velocity + (0.003)TN – 

(0.002)pH -230.37 0.80 0.19 0.43 

0.37 

Intercept + (0.002)Velocity + (0.004)TN – 

(0.001)%Anth – (0.001)pH -229.24 1.93 0.11 0.46 

0.38 

Kshredder~ 

Intercept + (0.018)Velocity + (0.002)TN -241.29 0.00 0.31 0.28 0.22 

Intercept + (0.017)Velocity + (0.004)TN – 

(0.008)TP 

-240.51 0.78 0.21 

0.32 

0.25 

Intercept – (0.008)%Anth + (0.002)TN -240.39 0.90 0.20 0.26 0.20 

Intercept + (0.013)Velocity – (0.005)%Anth + 

(0.002)TN 

-239.76 1.53 0.14 

0.31 

0.23 

Intercept +(0.018) Velocity – (0.002)pH + 

(0.002)TN 

-239.62 1.67 0.14 0.30 0.23 
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Table 3.2. Models testing influence of decomposer activity and total nutrients on the change in 

litter stoichiometry over the deployment. Decomposition in fine-mesh litter bags is modelled 

relative to microbial decay rates (kmicrobial), while mass loss from coarse-mesh bags is modelled 

relative to microbial and invertebrate decay rates (ktotal).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intercept Water 

Column 

Nutrient 

Decomposition 

Rate (k) 

Interaction Model 

Significance 

Multiple 

R2/ 

Adjusted R2 

∆C:N ~ 

 

TN+kmicrobial+ 

TN* kmicrobial 

-21.380 

p<0.001 

-6.149 

p=0.234 

 

-15.026 

p=0.002 

8.149 

p=0.044 

F3,26=6.927 

p=0.001 

0.442/ 

0.3801 

TN+ktotal+ 

TN* ktotal 

-26.386 

p<0.001 

-3.204 

p=0.461 

-10.243 

p=0.015 

4.730 

p=0.233 

F3,26=3.773 

p=0.023 

0.3033/ 

0.2229 

 

∆C:P ~ 

TP+ kmicrobial + 

TP* kmicrobial 

-205.29 

p=0.0152 

-283.23 

p=0.0205 

 

-31.27 

p=0.7198 

186.53 

p=0.1340 

 

F3,25=2.147 

p=0.1195 

0.2049/ 

0.1095 

TP+ ktotal + 

TP* ktotal 

-455.2 

p<0.001 

-417.7 

p=0.002 

-101.5 

p=0.4279 

397.4 

p=0.010 

F3,22=5.62 

p=0.005 

0.4338/ 

0.3566 
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3.7 Figures 

 

Figure 3.1. Study region showing in the range of study sites across the Boreal Mixedwood, 

Parkland and Grassland ecoregions of Alberta, Canada. Major cities and nearby weather stations 

are also represented.  
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Figure 3.2. Box-plots to show variation of physiochemical characteristics across sites within the 

ecoregions. Results of 1-way ANOVA analyses are shown within each panel with lettering showing the 

results of the Tukey HSD post-hoc test where applicable. Within plots, the box demarcates the 25th and 

75th percentile, the bar indicates the data median, and the whiskers indicate highest and lowest points 

excluding outlier (Quartile±1.5*Inter-Quartile Range). Outlier points are shown using dots.  
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Figure 3.3. Relationship between mean total phosphorus (A) and mean total nitrogen (B) and the 

proportion of anthropogenic land use in the watershed. Grey bands represent the 95% confidence 

interval of the regression line. R2 represents multiple R2 and R2
A

 is adjusted for differences in 

sample size. (C) The nutrient gradient present across all sites. In panels A and B the shaded area 

indicates the 95% confidence interval around the regression line.  
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Figure 3.4. N:P molar ratios (as total nitrogen: total phosphorus) during deployments across 

ecoregions on a log scaled y-axis. Dashed lines represent known limitations for stream 

microalgae, where less than 13 indicates N-limitation, between 13 and 22 indicates co-limitation 

and >22 indicates P-limitation (Hillebrand and Sommer 1999). The solid grey line represents the 

Redfield Ratio. Within plots, the box demarcates the 25th and 75th percentile, the bar indicates the 

data median, and the whiskers indicate highest and lowest points excluding outliers 

(Quartile±1.5*Inter-Quartile Range). Outlier points are shown using dots. Statistical results are 

presented in 3.3.1. 
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Figure 3.5. A) Decomposition rates (k; day-1) based on microbial, invertebrate and combined 

activity across ecoregions. B) The ratio of invertebrate (Ks) to microbial (Km) decomposition 

rates as kshredder/kmicrobial across ecoregions. A ratio of <1 signifies that microbial decomposition 

was dominant. Within plots, the box demarcates the 25th and 75th percentile, the bar indicates the 

data median, and the whiskers indicate highest and lowest points excluding outliers 

(Quartile±1.5*Inter-Quartile Range). Outlier data points are shown using dots. (n.s. = not 

significant at α=0.050; *** = p<0.001). 
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Figure 3.6. Relationships between the ratio of Ks/Km and mean stream TN and TP. Shaded area 

indicates the 95% confidence interval around the regression line. Relationships were not 

significant (p>0.05).  
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Figure 3.7. Mean within-site C:N and C:P for fine (left panels) and coarse (right panels) bags 

relative to time (days) since initial deployment. Linear regression outputs are provided in each 

panel.  The shaded area indicates the 95% confidence interval around the regression line.  
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Figure 3.8. Boxplots showing variation in ∆C:N and ∆C:P across ecoregion and litterbag type 

(coarse vs. fine). A negative change indicates that the C:nutrient ratio decreased over the 

deployment, and relative nutrient content increased.  Two-way ANOVA results are presented 

(n.s. = not significant at α=0.050; *** = p<0.001). Within plots, the box demarcates the 25th and 

75th percentile, the bar indicates the data median, and the whiskers indicate highest and lowest 

points excluding outlier (Quartile±1.5*Inter-Quartile Range). Outlier data points are shown using 

dots. 
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Figure 3.9. Relationships between mean stream water nutrient concentrations and C:N (A,B) and 

C:P (C,D) content of final bags in each ecoregion. Statistical outputs are presented in section 

3.3.3. Shaded area indicates the 95% confidence interval around the regression line.   
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Figure 3.10 The linear relationship between ∆C:N and ∆C:P and decay rates. Significance for 

each linear model is displayed in each panel. The shaded area indicates the 95% confidence 

interval around the regression line. Microbial represents changes in fine mesh bags while total 

shows change in coarse mesh bags. 
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Chapter 4. Summary of stream function in Albertan agricultural streams 

4.1 Summary of Findings 

 This thesis describes the relationships between agricultural land cover and stream 

function across a regional gradient. By assessing stream metabolism and organic matter 

decomposition in streams in the agricultural areas of the Boreal, Parkland and Grassland regions 

this research illustrates that the removal of riparian areas and increase in nutrient runoff from 

agricultural lands can alter stream ecosystem function. The regional gradient can alternatively 

provide insight into varying ecosystem function where the Boreal streams would also be 

influenced by the high wetland cover within their watersheds. Previous studies have used stream 

metabolism and decomposition as indicators of stream health as they encompass environmental 

processes over time across many levels of biological organization and can reveal broad changes 

to ecosystems (Clapcott and Barmuta 2010, Silva-Junior et al. 2014). This research contributes to 

knowledge that organic matter decomposition and metabolism are sensitive environmental 

metrics that can be used to infer the effects of land use change. 

 We assessed direct and indirect impacts of agriculture on stream function. In chapter 2, 

we found metabolism was indirectly affected by watershed land cover. Land cover within the 

watershed is often altered with agriculture and can include impacts on riparian vegetation.  The 

effects of land cover on local stream conditions have important implications for management of 

riparian areas. The natural riparian vegetation along stream banks controls light and water 

temperature which can result in lower rates of GPP and ER. Water temperature was the most 

important local variable driving GPP and ER and was further influenced by light and canopy 

shading.  The effects of nutrients and the amount of allochthonous material in an ecosystem will 

affect productivity with increases in respiration. Respiration is also more sensitive to 

temperature, which could lead to greater net heterotrophy if riparian areas of forested streams are 

removed. However, this effect may not be as evident in the grassland where streams are not as 

light or temperature limited.  

In chapter 3, we assessed organic matter decomposition and found decay rates generally 

decreased with anthropogenic land use in the watersheds after other variables were accounted for 

and were more strongly affected by water velocity and nutrient concentrations. Decomposition 

type did not vary between ecoregions, but the rates were slightly higher in the Boreal where TN 
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and DOC were also higher. Microbial decomposition was driven by TN, possibly due to fungal 

activity and the stoichiometric ratios of the litter converged with increasing TN and TP. Riparian 

vegetation can influence nutrient concentrations in the streams and microbial decay rates. This 

also has implications for streams acting as carbon sources with climate change. Nutrients have 

strong impacts on microbial decomposition and can increase decay rates. For invertebrate 

decomposition, the hump-shaped response to nutrients seen in other studies (Woodward et al. 

2012) and our limited contribution of invertebrates possibly due to agricultural activity indicates 

that excessive concentrations of nutrients could also reduce decomposition rates. However, the 

naturally lower populations of shredders in muddy-bottom prairie streams could also be a 

limiting factor in invertebrate decay rates.  

The assessment of anthropogenic impacts on stream function in this study will provide 

important information for watershed management plans (Wagenhoff et al. 2017). Riparian buffer 

zones that limit vegetation removal and restrict livestock access to stream banks can reduce 

erosion, maintain natural light availability and temperature regimes, and limit nutrient delivery to 

streams (Clapcott and Barmuta 2010). This in turn will effect metabolism as both ER and GPP 

tend to increase with removal of riparian vegetation (Burrell et al. 2014). Riparian areas will also 

influence the types of vegetation available for decay and decomposition rates. Management plans 

should include uncultivated or restored riparian buffer zones to mitigate the impacts of 

agriculture on stream function.  

4.2 Considerations and Limitations 

Our study compared stream ecosystem function across a gradient of agricultural intensity. 

One important consideration is that all sites are within anthropogenically-altered watersheds, so 

it is difficult to distill the complete impacts of agriculture. While the nutrient gradient approach 

does allow inferences of the impacts of non-point source pollution on decomposition, alternative 

drivers can be difficult to infer. For example, the regional gradient also varies across the study 

streams. Variation in land cover, such the influence of wetland cover in the Boreal, could also be 

important in driving stream ecosystem functioning. The inclusion of reference sites that are 

similar to agricultural sites in morphology and climate would allow for a more holistic 

comparison of the effects of land cover alteration on metabolism and decomposition (Young et 

al. 2008).  In addition to limitations through lack of reference sites, this study spanned three 
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years where not all sites were repeated. Due to variation in discharge and precipitation across 

years, and the long-term runoff effects in the Boreal ecoregion (Devito et al. 2016), a longer-term 

study would provide better understanding of these impacts on stream ecosystem functioning,   

Metabolism measurements have improved with technological advancements but are still 

limited by environmental conditions and variation in modelling techniques. Modelling of 

metabolism had progressed significantly since first described by Odum (1956). A variety of 

software exists from spreadsheet methods (Holtgrieve et al. 2010, Riley and Dodds 2013), 

modelling of CO2 flux (Bortolotti et al. 2016), to multiple varieties of Bayesian modelling of 

diurnal oxygen (Grace et al. 2015, Appling et al. 2018a). One primary limitation in modelling 

stream metabolism is estimating the gas exchange coefficient (k). While directly estimating k can 

provide improved accuracy, the process can be expensive and time-consuming across a large 

study area. Modelling k, often normalized to a 600 Schmidt number of k600, can be done from 

oxygen time series (Hall and Ulseth 2019, Nifong et al. 2019). The ‘streamMetabolizer’ package 

uses state-space models to estimate k and account for process errors, but error would still be 

lowest with direct measurements (Appling et al. 2018a). Futher, large inputs of groundwater can 

bias metabolism results by appearng to decrease primary production and increase respiration 

(Hall and Tank, 2005). Groundwater inflows should be meausured and corrected for in any 

future studies.  

An important component in understanding decomposition is knowing species 

composition and biomass. We cannot infer if increased agriculture will impact species richness 

within microbial communities due to their high functional redundancy.  We recommend further 

microbial and invertebrate monitoring due to the possible decoupling of species structure and 

function (Feckler and Bundschuh 2020). Finally, we used the relative concentration of TN and 

TP to assess nutrient limitation, which represent all forms of N and P, instead of the dissolved 

and inorganic forms that are more bioavailable to microbes.  However, our sites had low levels 

of dissolved inorganic nitrogen (DIN) with >50% of our sites being below detection limits 

during all water quality retrievals. However, TN and TP can still be effective especially when 

inferring nutrient limitation, as DIN and soluble reactive phosphorus proportions can be highly 

variable (Dodds 2003). 
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4.3 Future Research 

 This research illustrates the importance of agricultural land cover and associated changes 

in environmental conditions such as water temperature, TN and DOC on stream function. Further 

research should continue to look at the effects of nutrients on invertebrates and microbes through 

species identification and analysis of food web stoichiometry (Welti et al. 2017). Species 

identification should also be conducted to assess for possible decoupling of structure and 

function (Feckler and Bundschuh 2020). Structural metrics are also necessary to complement 

stream function, so we recommend further assessment of microbial and invertebrate communities 

in our understanding of these ecosystems. Further, studies using nutrient diffusing substrata 

would allow for a direct determination of nutrient limitation in these streams. Analysis of DOC 

composition is also crucial due its importance in driving GPP and ER. Finally, our study was 

conducted using relatively short deployments and with few sites repeated between years. The use 

of long-term monitoring of metabolism and repeated decomposition would enable a more 

complete assessment considering temporal changes.  
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Supplementary Data  

Appendix 1. Supplementary Data for Chapter 2 

Table S1.1. ACIS Weather stations used to gather climatic variables for nearby sites. 

Ecoregion Site Site Code Latitude Longitude ACIS Station 

Boreal Connor Creek CNR02 54.02 -114.92 Evansburg 2 AGCM 

Boreal Goose Creek GSE02 54.34 -114.93 Fort Assiniboine AGCM 

Boreal Horse Creek HRS01 54.33 -114.69 Fort Assiniboine AGCM 

Boreal Little Paddle 

River 

LIT01 53.95 -115.02 Evansburg 2 AGCM 

Boreal Lasthill Creek LST01 52.36 -114.46 Hespero AGCM 

Boreal Lloyd Creek LYD02 52.74 -114.14 Crestomere AGCM 

Boreal Namepi Creek NAM02 54.08 -112.98 Smoky Lake AGDM 

Boreal Pine Creek PNE02 54.70 -112.97 Atmore AGDM 

Boreal Strawberry Creek STW01 53.31 -114.05 St. Francis AGCM 

Boreal Tomahawk Creek TOM01 53.35 -114.66 St. Francis AGCM 

Boreal Upper Sturgeon 

River 

USR02 53.58 -114.89 Evansburg 2 AGCM 

Boreal Weed Creek WED01 53.30 -113.98 St. Francis AGCM 

Grassland Bullshead Creek BUL02 49.96 -110.61 Medicine Hat RCS 

Grassland Kneehills Creek KNE03 51.48 -113.11 Keoma AGCM 

Grassland Mosquito Creek MSQ02 50.25 -113.55 Barons AGCM 

Grassland Matzhiwin Creek MTZ01 50.84 -111.93 Rosemary IMCIN 

Grassland Onetree Creek ONE01 50.73 -111.69 Rosemary IMCIN 

Grassland Seven Persons 

Creek 

PER01 49.90 -110.85 Seven Persons IMCIN 

Grassland Pothole Creek POT01 49.52 -112.80 Raymond IMCIN 

Grassland Rosebud Creek RSB03 51.32 -113.33 Keoma AGCM 

Grassland Unknown Creek UNK03 50.02 -112.75 Barons AGCM 

Parkland Buffalo Creek BUF01 53.01 -110.87 Gilt Edge North AGCM 

Parkland Beaverhill Creek BVH01 53.75 -112.68 Oliver AGDM 

Parkland Dogpound Creek DOG01 51.79 -114.36 Olds College AGDM 

Parkland Eagle Creek EGL01 51.94 -114.43 Olds College AGDM 

Parkland Grizzlybear 

Creek 

GRZ01 53.11 -110.64 Gilt Edge North AGCM 

Parkland Pipestone Creek PIP01 53.03 -113.27 Wetaskiwin AGCM 

Parkland Ray Creek RAY01 52.00 -113.60 Three Hills AGCM 

Parkland Sturgeon River STU03 53.83 -113.28 Oliver AGDM 

Parkland Threehills Creek THR01 52.00 -113.57 Three Hills AGCM 

Parkland Weiller Creek WEI01 52.99 -113.22 Wetaskiwin AGCM 
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Table S1.2. Methods and units of water chemistry analyses completed by ALS Environmental 

Laboratories 

Environmental Variable Units Method Reference 

Total Suspended Solids (TSS) mg/L APHA 2540 D-Gravimetric 

Turbidity NTU APHA 2130 B-Nephelometer 

Dissolved Kjeldahl nitrogen (DKN) mg/L APHA 4500-NORG (DKN) 

Total Nitrogen (TN) mg/L APHA 4500 N-Calculated 

Ammonia (NH3) mg/L APHA 4500 NH3-NITROGEN 

(AMMONIA) 

Nitrate+Nitrite (NO3-+ NO2-) mg/L CALCULATION 

Nitrite (NO2-) mg/L EPA 300.1 (mod) 

Nitrate (NO3-) mg/L EPA 300.1 (mod) 

Total Phosphorus (TP) mg/L APHA 4500-P PHOSPHORUS 

Total Dissolved Phosphorus (TDP) mg/L APHA 4500-P PHOSPHORUS 

Dissolved Orthophosphate (SRP) mg/L APHA 4500-P PHOSPHORUS 

Total Kjeldahl nitrogen (TKN) mg/L APHA 4500-NORG (TKN) 

Dissolved Organic Carbon (DOC) mg/L APHA 5310 B-Instrumental 

Phaeophytin a µg/L EPA 445.0 ACET 

Chlorophyll a µg/L EPA 445.0 ACET 
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Table S1.3. Percent of land cover in watershed based on AAFC Crop Inventory Data 

Site 

 

Percent of Land Cover in Watershed 

Cropland Developed  Exposed Forest Grassland Pasture Shrubland Water Wetland 

Beaverhill 

Creek 

30.3 3.5 0.11 20.8 7.1 11.2 4.4 8.8 13.6 

Buffalo Creek 57.4 2.3 0.41 1.8 8.3 14.3 7.1 1.3 7.1 

Bullshead 

Creek 

9.8 1.2 0.28 2.6 80.8 0.34 3.7 0.45 0.8 

Connor Creek 15.1 1.9 0.06 35.5 0.39 39.0 0.98 0.36 6.8 

Dogpound 

Creek 

47.0 2.7 0.36 19.0 21.1 7.9 0.52 0.2 1.3 

Eagle Creek 21.3 2.8 0.71 28.4 23.2 21.6 0.44 0.13 1.5 

Goose Creek 1.9 1.0 0.03 75.8 0.06 2.9 2.1 1.8 14.3 

Grizzlybear 

Creek 

48.4 2.4 0.77 2.7 14.5 11.7 10.5 2.4 6.6 

Horse Creek 17.5 2.1 0.37 43.9 0.02 15.6 0.82 0.24 19.5 

Kneehills Creek 75.3 2.9 0.57 2.3 9.3 2.6 1.2 0.67 5.1 

Lasthill Creek 20.5 2.9 0.45 30.0 18.2 20.0 1.1 0.77 6.0 

Little Paddle 

River 

12.9 4.1 0.28 39.3 0.08 29.4 1.1 0.26 12.6 

Lloyd Creek 15.6 2.2 0.32 41.1 3.6 27.8 0.64 1.1 7.7 

Matzhiwin 

Creek 

40.6 1.7 0.72 0.22 44.7 2.9 0.84 2.6 5.8 

Mosquito Creek 35.9 2.3 0.25 1.7 44.1 4.6 8.3 0.45 2.3 

Namepi Creek 42.9 2.7 0.03 24.4 0.09 20.4 0.84 0.24 8.4 

Onetree Creek 24.2 3.5 1.4 0.2 54.2 5.5 1.2 3.0 6.9 

Pine Creek 17.8 1.6 0.02 41.6 0.28 18.4 2.1 2.2 16.0 

Pipestone Creek 50.2 3.8 0.19 13.7 3.1 23.4 0.51 1.4 3.8 

Pothole Creek 38.1 2.3 0.4 0.05 53.4 2.5 1.3 1.5 0.49 

Ray Creek 79.2 2.5 0.21 4.3 2.5 5.1 2.7 0.03 3.5 

Rosebud Creek 72.9 3.4 0.82 2.6 8.8 3.4 0.48 1.2 6.6 

Seven Persons 

Creek 

39.5 1.5 0.35 0.13 55.0 0.25 1.7 1.0 0.7 

Strawberry 

Creek 

31.9 3.1 0.54 22.8 0.99 32.3 0.29 0.26 7.8 

Sturgeon River 36.6 10.0 0.62 25.8 0.69 19.0 0.42 5.2 5.0 

Threehills 

Creek 

68.2 2.4 0.3 6.3 5.8 5.6 5.0 1.1 5.2 

Tomahawk 

Creek 

4.3 2.0 0.11 50.4 1.0 31.6 0.78 0.37 9.3 

Unknown Creek 87.7 2.6 0.8 0.06 4.6 2.8 0.24 0.13 1.2 

Upper Sturgeon 

River 

2.7 1.7 0.37 50.2 0.47 37.8 0.7 0.36 5.7 

Weed Creek 37.0 3.6 0.14 18.4 0.79 30.9 0.33 0.19 8.8 

Weiller Creek 69.6 8.6 0.33 6.8 2.5 6.3 0.52 1.1 4.5 
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Table S1.4. Descriptions for Metabolism Measurements and Deployments  

Site (Creek Name) Year Season Days Modelled GPP ER 

Beaverhill Creek 2018 Fall 1 1.05±0.00 -3.83±0.00 

Beaverhill Creek 2018 Spring 2 6.66±1.64 -13.79±4.03 

Beaverhill Creek 2018 Summer 1 2.98±0.00 -5.18±0.00 

Buffalo Creek 2018 Spring 2 3.43±0.01 -9.18±3.32 

Buffalo Creek 2018 Summer 2 5.98±0.44 -16.46±4.93 

Bullshead Creek 2017 Fall 2 2.79±0.45 -0.95±0.44 

Bullshead Creek 2017 Spring 1 3.24±0.00 -5.39±0.00 

Bullshead Creek 2017 Summer 2 8.37±0.88 -6.94±0.03 

Connor Creek 2019 Spring 2 2.07±0.36 -2.10±0.66 

Connor Creek 2019 Summer 2 2.88±1.50 -18.70±2.29 

Dogpound Creek 2017 Fall 2 2.15±1.07 -2.49±1.10 

Dogpound Creek 2017 Spring 4 5.07±1.32 -4.23±1.22 

Dogpound Creek 2017 Summer 2 6.17±3.71 -6.10±0.82 

Dogpound Creek 2018 Fall 4 1.10±0.05 -0.98±0.20 

Dogpound Creek 2018 Spring 2 1.31±0.18 -2.50±0.18 

Dogpound Creek 2018 Summer 2 10.16±0.24 -5.96±0.01 

Eagle Creek 2018 Fall 3 0.78±0.06 -1.06±0.06 

Eagle Creek 2018 Spring 2 1.62±0.09 -2.37±0.46 

Eagle Creek 2018 Summer 2 1.62±0.09 -2.37±0.46 

Goose Creek 2019 Fall 2 0.51±0.04 -2.01±0.48 

Goose Creek 2019 Spring 4 2.24±0.24 -3.56±0.19 

Goose Creek 2019 Summer 3 0.70±0.09 -7.54±2.30 

Grizzlybear Creek 2018 Fall 1 4.61±0.00 -5.33±0.00 

Grizzlybear Creek 2018 Spring 2 2.73±0.30 -3.48±0.09 

Horse Creek 2019 Fall 3 0.73±0.45 -7.56±5.81 

Horse Creek 2019 Spring 4 0.88±0.11 -2.68±0.45 

Horse Creek 2019 Summer 2 1.35±0.17 -3.24±0.61 

Kneehills Creek 2017 Fall 2 2.38±0.71 -2.36±0.22 

Kneehills Creek 2017 Spring 2 3.65±0.38 -2.21±0.33 

Kneehills Creek 2017 Summer 1 5.03±0.00 -5.34±0.00 

Kneehills Creek 2018 Fall 2 5.09±0.18 -5.16±0.96 

Kneehills Creek 2018 Spring 3 5.57±0.41 -4.42±0.38 

Kneehills Creek 2018 Summer 2 7.92±0.53 -5.72±1.27 

Lasthill Creek 2018 Fall 2 0.84±0.20 -1.49±0.15 

Lasthill Creek 2018 Spring 3 2.30±0.15 -2.49±0.19 

Lasthill Creek 2018 Summer 2 4.61±0.28 -3.84±0.26 

Lasthill Creek 2019 Fall 3 2.47±0.13 -1.98±0.04 

Lasthill Creek 2019 Spring 3 1.02±0.19 -2.37±0.14 

Lasthill Creek 2019 Summer 3 2.87±0.57 -3.85±0.60 

Little Paddle River 2019 Spring 2 0.42±0.26 -3.43±0.24 

Little Paddle River 2019 Summer 1 0.36±0.00 -9.25±0.00 

Lloyd Creek 2018 Fall 2 2.51±0.45 -4.64±1.28 

Lloyd Creek 2018 Spring 3 5.20±0.75 -5.06±0.61 

Lloyd Creek 2018 Summer 2 4.55±0.40 -3.74±0.06 

Lloyd Creek 2019 Fall 3 7.46±2.39 -16.92±1.59 

Lloyd Creek 2019 Spring 3 1.65±0.40 -2.57±0.65 

Lloyd Creek 2019 Summer 3 8.23±2.87 -13.41±2.47 

Matzhiwin Creek 2017 Fall 2 1.68±0.03 -1.92±0.01 

Matzhiwin Creek 2017 Spring 2 5.38±0.72 -4.72±0.40 

Matzhiwin Creek 2017 Summer 2 4.56±0.40 -4.56±0.73 
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Mosquito Creek 2017 Spring 2 4.11±0.31 -2.67±0.03 

Mosquito Creek 2017 Summer 2 8.70±2.05 -5.02±0.91 

Namepi 2019 Summer 2 5.08±0.77 -17.25±3.61 

Onetree Creek 2017 Fall 2 3.58±0.31 -5.24±0.29 

Onetree Creek 2017 Spring 2 3.10±0.40 -3.47±0.45 

Onetree Creek 2017 Summer 2 8.50±0.92 -4.92±0.22 

Pine Creek 2019 Spring 4 2.36±0.11 -3.27±0.13 

Pine Creek 2019 Summer 4 11.02±4.07 -22.05±3.09 

Pipestone Creek 2018 Spring 2 1.73±0.25 -3.18±0.06 

Pipestone Creek 2018 Summer 2 2.17±0.16 -2.60±0.27 

Pothole Creek 2017 Fall 2 5.14±0.26 -0.51±0.07 

Pothole Creek 2017 Spring 1 3.77±0.00 -2.86±0.00 

Pothole Creek 2017 Summer 2 3.83±0.69 -3.23±0.18 

Ray Creek 2018 Spring 4 2.22±0.89 -5.88±1.77 

Rosebud Creek 2017 Fall 2 2.32±0.55 -2.54±0.19 

Rosebud Creek 2017 Spring 2 2.53±0.20 -1.64±0.25 

Rosebud Creek 2017 Summer 2 5.42±0.84 -4.87±0.42 

Rosebud Creek 2018 Fall 2 1.93±0.03 -1.29±0.05 

Rosebud Creek 2018 Spring 3 4.90±0.50 -3.35±0.45 

Rosebud Creek 2018 Summer 2 5.39±0.05 -4.35±0.33 

Seven Persons Creek 2017 Fall 1 1.14±0.00 -0.71±0.00 

Seven Persons Creek 2017 Spring 2 3.04±0.51 -4.03±0.49 

Seven Persons Creek 2017 Summer 2 3.04±0.51 -4.03±0.49 

Strawberry Creek 2019 Fall 2 0.33±0.06 -0.31±0.01 

Strawberry Creek 2019 Spring 3 0.79±0.29 -0.84±0.30 

Strawberry Creek 2019 Summer 3 0.48±0.16 -1.03±0.17 

Sturgeon River 2017 Fall 2 5.74±0.09 -6.19±0.11 

Sturgeon River 2017 Spring 1 1.74±0.00 -4.97±0.00 

Sturgeon River 2017 Summer 2 6.49±0.95 -6.40±0.63 

Sturgeon River 2018 Fall 2 2.49±0.56 -2.68±0.24 

Sturgeon River 2018 Spring 1 1.73±0.00 -6.35±0.00 

Sturgeon River 2018 Summer 2 3.80±0.28 -3.77±0.24 

Threehills Creek 2017 Spring 4 7.58±1.36 -8.04±1.57 

Threehills Creek 2017 Summer 1 2.76±0.00 -3.45±0.00 

Threehills Creek 2018 Spring 3 5.71±0.79 -5.07±0.41 

Threehills Creek 2018 Summer 1 4.80±0.00 -9.48±0.00 

Tomahawk Creek 2019 Fall 3 1.74±0.37 -3.24±1.57 

Tomahawk Creek 2019 Spring 2 3.37±0.67 -5.76±0.30 

Tomahawk Creek 2019 Summer 2 0.25±0.06 -9.48±2.98 

Unknown Creek 2017 Spring 2 0.19±0.02 -5.33±0.86 

Unknown Creek 2017 Summer 1 0.75±0.00 -2.40±0.00 

Upper Sturgeon River 2019 Spring 3 2.41±0.77 -5.20±1.52 

Weed Creek 2019 Fall 3 0.53±0.25 -0.55±0.46 

Weed Creek 2019 Spring 3 2.58±0.70 -2.47±0.69 

Weed Creek 2019 Summer 3 4.83±2.52 -9.25±5.51 

Weiller Creek 2018 Fall 3 0.75±0.11 -0.62±0.18 

Weiller Creek 2018 Spring 2 5.59±0.66 -5.56±1.16 

Weiller Creek 2018 Summer 2 4.86±0.39 -5.38±1.10 
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Table S1.5. Mean metabolism metrics calculated based on ACIS weather station and stream 

bank Odyssey PAR with relative percent difference where (a) is GPP g O2
 m3 day-1, (b) is ER g 

O2
 m3 d-1, and (c) is K600 day-1

. Average metabolism metrics were calculated for Spring 2019 for 

all Boreal sites and compared via different light collection methods and compared to show 

relative percent difference between sites across all days metabolism was calculated.  

A.    Gross Primary Production 

Site Weather Station Stream Bank Mean Absolute Error Mean Relative Percent Difference 

GSE02 2.01 2.24 0.23 10.98 

HRS01 0.83 0.88 0.05 5.58 

LIT01 0.35 0.42 0.07 27.23 

LST01 1.07 1.02 0.05 4.87 

LYD02 1.91 1.65 0.25 14.40 

PNE02 2.18 2.36 0.18 7.95 

STW01 0.71 0.79 0.09 12.88 

TOM01 3.38 3.37 0.01 0.19 

USR02 2.38 2.41 0.23 9.86 

WED01 2.38 2.58 0.44 18.79 

Mean 1.70 1.77 0.17 10.82 

 

 

B.    Ecosystem Respiration 

Site Weather Station Stream Bank Mean Absolute Error Mean Relative Percent Difference 

GSE02 -3.00 -3.56 0.56 17.50 

HRS01 -2.53 -2.68 0.15 6.27 

LIT01 -2.68 -3.60 0.92 29.36 

LST01 -1.78 -2.37 0.59 28.66 

LYD02 -2.79 -2.57 0.21 8.07 

PNE02 -2.88 -3.27 0.39 12.58 

STW01 -0.77 -0.84 0.08 10.93 

TOM01 -5.77 -5.76 0.01 0.19 

USR02 -4.30 -5.20 0.90 17.69 

WED01 -2.30 -2.47 0.43 18.54 

Mean -2.79 -3.12 0.40 14.23 

C.    Gas Exchange Constant 

Site Weather Station Stream Bank Mean Absolute Error Mean Relative Percent Difference 

GSE02 3.35 4.63 1.28 33.41 

HRS01 4.74 5.08 0.34 7.16 

LIT01 2.92 4.29 1.37 38.09 

LST01 0.41 1.37 0.96 114.23 

LYD02 2.72 2.89 0.36 14.36 

PNE02 4.00 5.22 1.22 26.65 

STW01 7.27 7.95 0.68 8.99 

TOM01 8.48 8.47 0.02 0.20 

USR02 1.34 2.25 0.90 50.85 

WED01 1.33 .92 0.59 34.29 

Mean 3.58 4.34 0.78 32.52 
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Table S1.6. Distribution Statistics for Gross Primary Production and Ecosystems Respiration 

based on log normal and gamma distributions 

Gross Primary Production Distribution 

 Gamma Log Normal 

Goodness Of Fit Statistic 

Kolmogorov-Smirnov 0.086 0.102 

Cramer-Von Mises 0.073 0.252 

Anderson-Darling 0.467 1.556 

Goodness of Fit Criteria 

AIC 425.904 438.806 

BIC 431.076 443.976 

Ecosystem Respiration Distribution 

 Gamma Log Normal 

Goodness Of Fit Statistic 

Kolmogorov-Smirnov 0.104 0.104 

Cramer-Von Mises 0.177 0.194 

Anderson-Darling 1.134 1.176 

Goodness of Fit Criteria 

AIC 492.030 492.327 

BIC 497.200 497.497 
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Table S1.7. Partial structural equation model (pSEM) results for the most optimal model 

(C=22.20, p=0.677, df=26 and AIC of 94.21), with p-values and standardized path coefficients 

indicated for each modelled relationship. Increasing Land Cover PC1 represents increasing forest 

over and increasing morphology PC1 represents smaller, steeper watersheds. 

Response Predictor p-value Standardized path 

coefficient 

GPP Discharge 0.9224 0.0091 

GPP DOC 0.5273 0.0659 

GPP PAR 0.162 0.1642 

GPP Water Temperature 0.0001 0.4379*** 

ER Antecedent Precipitation 0.0006 0.2973*** 

ER DOC 0.0003 0.3332*** 

ER Water Temperature 0 0.4275*** 

DOC Morphology PC1 0.1688 -0.1241 

DOC Land Cover PC1 0 0.5523*** 

DOC Discharge 0.4838 -0.0611 

DOC Antecedent Precipitation 0.3086 0.096 

Discharge Land Cover PC1 0.8255 -0.0255 

Discharge Antecedent Precipitation 0.6557 0.0506 

Discharge Morphology PC1 0.1325 -0.1618 

Water Temperature PAR 0 0.6339*** 

Water Temperature Antecedent Precipitation 0.1504 0.12 

Water Temperature Morphology PC1 0.2166 -0.1016 

PAR Land Cover PC1 0 -0.4604*** 

Land Cover PC1 Morphology PC1 0.0473 0.1895* 

Land Cover PC1 Antecedent Precipitation 0.0001 0.3772*** 

~~GPP ~~ER 0 0.534*** 

~~ Land Cover PC1 ~~Water Temperature 0.0131 0.2294* 
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Figure S1.1. Proportions of land cover within the watershed colored by ecoregion. Categories 

are aggregates based on AAFC data.  
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Figure S1.2 Comparisons of metabolic variables calculated based on light from Odyssey logger 

on stream bank and nearby ACIS weather stations in Spring 2019. R2 represents adjusted R2 
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Appendix 2. Supplementary Data for Chapter 3 

Table S2.1. Methods and units of water chemistry analyses completed by ALS Environmental 

Laboratories 

Environmental Variable Units Method Reference 

Total Nitrogen (TN) mg/L APHA 4500 N-Calculated 

Total Phosphorus (TP) mg/L APHA 4500-P PHOSPHORUS 

Dissolved Organic Carbon (DOC) mg/L APHA 5310 B-Instrumental 
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Figure S2.1. All sites where there was complete deployment of coarse or fine bag types (n=62). 

Point represent average between two bags of the same type collected on the day.  
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Figure S2.2. Average C:N Ratio of bags retrieved over course of deployment (n=62). Point 

represent average between two bags of the same type collected on the day. 
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Figure S2.3. Average C:P Ratio of bags retrieved over course of deployment (n=62). Point 

represent average between two bags of the same type collected on the day. 
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Figure S2.4. Relationships between kmicrobial and kshredder and stream nutrient concentrations. 

Relationships were tested in and importance in shown in Table 3.1.   
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Figure S2.5. Relationships between mean concentrations of nutrients in stream water and C:N 

(A,B) and C:P (C,D) content of final bags including all streams. Statistical outputs are presented 

in section 3.3.3. Shaded area indicates the 95% confidence interval around the regression line.   

 

 

 

 

 

 


