National Lib
g o

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your hie Volre idlerence

Qur tre Notrer dlprence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

la qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

FINITE DIFFERENCE SIMULATION AND IMAGING OF SEISMIC WAVES
IN COMPLEX MEDIA

. ©

NANXUN DAI

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AMD RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY
IN
GEOPHYSICS

DEPARTMENT OF PHYSICS

EDMONTON, ALBERTA
Spring 1993



I I

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontaro
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
QOttawa ' Ontano)

Your e Volre rfeeny e

Qur e Nolie idldrence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-<ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©-315-82125-6

Canada



UNIVERSITY OF ALBERTA

RELEASE FORM
NAME OF AUTHOR Nanxun Dai
TITLE OF THESIS FINITE DIFFERENCE SIMULATION AND IMAGING

OF SEISMIC WAVES IN COMPLEX MEDIA

DEGREE FOR WHICH THESIS WAS PRESENTED Doctor of Philosophy
YEAR THIS DEGREE GRANTED Spring 1993

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to
reproduce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only. The author reserves other
publication rights, and neither the thesis nor extensive extracts from it may be

printed or otherwise reproduced without the author's written permission.

(SIGNED)/:;..-.zﬁ ........................

PERMANENT ADDRESS:
405/55 Zhengnine Road
Shanghai China

DATED: January £.1993



PAGINATION EKRROR. ERREUR DE PAGINATION,

TEXT COMPLETE. LE TEXTE EST COMPLET.

NATIONAL LIBRARY CF CANADA. BIBLIOTHEQUE NATIONALE DU GANADA.

CANADIAN THESES SERVICE. . SERVICE DES THESES CANADIENNES.



UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research, for acceptance, a thesis entitled FINITE
DIFFERENCE SIMULATION AND IMAGING OF SEISMIC WAVES IN
COMPLEX MEDIA submitted by NANXUN DAI in panrial fulfillment of the
requirements for the degree of DOCTOR OF PHILOSOPHY in GEOPHYSICS.

...............................................

Supervisor
E.R. Kanasewich (Physics)

External Examiner, W.M. Moon
(Geological Sciences
University of Manitoba)

Date: January 4,1993



Dedicated
To the fond memories of

my father, mother and mother-in-law.



ABSTRACT

Scismic wave propagation in two-dimensional non-homogeneous porous media is
simulated with a finite difference method which solves the first order hyperbolic systems
based on the theories developed by Biot, and de 1a Cruz and Spanos. Original solutions for
a P-wave point or liue source in a uniform porous medium are derived for the purposes of
source implementation and algorithm testing. The existence of seismically observabie
dhiferences due to the presence of pores has been examined through synthetic examples,
which indicate that amplitude versus offset variations may be observed on receivers at
increasing distance and could be diagnostic of the matrix and fluid parameters. These
methods are applied in simulating seismic wave propagation over an expanded steam heated
zone in Cold Lake Alberta area in enhanced oil recovery processing.

New approaches are developed to construct absorbing boundaries in wave modeling
problems. A wave propagation modification technique and a one-way sponge filter
technique are developed. Either of these approaches, when combined with the one-
dimensional absorbing boundary conditions, absorbs not only the body waves but also
surface waves effectively even in the poroelastic wave modeling where three types of
waves may be present.

A velocity-pressure finite difference method is developed for modeling viscoacoustic
wive propagation in heterogeneous media. A viscoacoustic medium is approximated by a
generalized Maxwell body and a first order hyperbolic system is formulated to describe the
wave motion. Viscoacoustic synthetic seismograms have been computed and compared
with data from crosshole seismic experiments for monitoring steam injection projects in the
Cold Lake area.

An original first order hyperbolic system is formulated for one-way waves in

-5-



heterogencous media. This syster is used in implementing absorbin 1 boundaries - |
extrapolating wave field in the space-time domain. A back-propagation method is
developed to implement seismic depth migration with a explicit finite difference scheme at 2
reduced computational cost. A number of examples illustrate the application of the one-way
wive system in modelling, in absorbing reflections from the computational boundaries and

in migrating pre-stack and post-stack synthetic seismic data.
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CHAPTER 1

INTRODUCTION

Seismic waves, the mechanical vibrations propagating through the earth, have long
been observed and studied for a variety of reasons. Natural earthquakes generate waves on
the grandest scale providing data for studying the deeper parts of the earth. Artificially
generated vibrations with relative smaller amount of energy and shorter wavelength are
utilized in crustal investigation, mineral prospecting and intensively in exploration for oil
and natural gas. In both exploration and earthquake seismology, the wave properties, such
as the amplitude as a function of space and time, the propagation velocities, the vibratory
frequency, the wave length, the attenuation, the dispersion and the polarization of particle
motion are studied to deduce the information about the the internal structure and
composition of the material of the earth.

Interpretation of seismic data invariably involves a conceptual "model” of the portion of
the earth involved in seismic measurements. The model, either physical or mathematical, is
a simplification of the real earth in which the only factors included are those expected to be
most important in affecting the measurements (Sheriff and Geldart 1983).

Seismic modeling generally falls into two types, forward and inverse. In forward
modeling one starts with an assumed earth model to generate the wave field by solving
wave equations. Synthetic seismograms produced by forward modeling can aid in
advancing our understanding of the kinematic and dynamic properties of seismic waves

propagating through the earth as well as in the interpretation of wave patterns observed on
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field seismograms. In order to gain an acceptable geological model, comparisons are often
made between the synthetic and observed seismograms; errors are attributed to either
inaccuracies in the model or other factors not accounted for. The model is then modified in
an effort to account for the errors until adequate agreement has been reached. In contrast, in
inverse modeling one attempts to construct a possible model from the observed seismic
wave field. One of the most commonly used inverse modeling methods in seismic
exploration is migration in which the recorded wave amplitudes are redistributed to their
true spatial reflector positions to better assemble a two-dimensional or three dimensional
image of the subsurface structure.

In this thesis new methods are described for simulating seismic wave responses in
porous and viscoacoustic media. and for imaging complex subsurface constructions using

seismic waves.

1.1 Seismic simulation

A basic problem of theoretical seismology is to determine the wave response of a given
model to the excitation of an impulsive source by solving the wave equations under certain
simplifications. When the geometric optic method of ray tracing is used only wave arrival
times are determined. In a scalar approximation, the acoustic wave equation may be solved
to evaluate the waveform but only compressional waves (P-waves) are considered. A more
complete approach is to study the vector displacement {ield using the full elastic wave
equation for modeling both P-waves and shear waves (5 -waves). However, important
wave properties such as attenuation and dispersion require a more sophisticated set of
equations.

Exact analytical solutions do not exist even for the simplest acoustic wave equation for

most subsurface geophysical configurations. Solutions for realistic models can be obtained



cnly through approximate approaches. In response to the growing desire for numerical
seismic modeling a wide proliferation of methods of varying degrees of intricacy, accuracy
and flexibility of implementation have been developed taking advantage of the prodigious
advance in computational facilities.

Starting in the fifties, early synihetic seismograms were used to simulate the normal
incidence reflections in a horizontally stratified model by simply applying wavelet
convolution with a reflectivity sequence. Multi-dimensional waveform modeling became
wige spread in the seventies. Many numerical methods stem from ray theory (Cerveny et
al., 1977). Since the ray-theory based methods evaluate the wave energy from the
contribution of individual rays, difficulties rise in specifying significant rays from the
infinite possible ones. The ART (Asymptotic Ray Theory) method (Hron and Kanasewich,
1971) expands the solution of a wave equation into an irfinite ray series but only the
leadling (zeroth) term is generally used to evaluate the amplitudes. A significant difference is
shown when the first order term is further taken into account (Zheng 1989). The WKBJ
seismogram technique (e.g. Chapman, 1978) provides an economical approach appliable to
a smooth velocity section. The basic assumption inherent in WKBJ techniques is that the
length scale defined by the material inhomogeneity should be much greater than the applied
wavelength. Near grazing points and shadow zones, WKBJ results can be unreliable. In
the reflectivity method (Fuchs and Muller, 1971) synthetic seismograms are generated by
integrating numerically on the slowness vector which is appliable to vertical heterogeneous
media. In the perturbation methods the seismic response is calculated by adding the effect
of a model perturbation to a known solution of some simple (reference) model and an
approximate (linear) scattering theory (e.g. the Born approximation) is used to estimate the
effect of perturbation. The basic disadvantage of these methods lies in the limitation to the
model of the media. On one hand, the reference model must be sufficiently simple for an

exact solution to be known. On the other hand the perturbations defined as the difference
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between the simple reference model and the true model, must be small everywhere in order
that approximate scattering theory gives valid results.

A different group of approaches of seismic modeling may be classified as discrete-
coordinate methods. This group includes the finite difference methods (Alterman and
Loewenthal, 1970; Alford et al., 1974; Boore 1972; Keily et al. 1976), the finite element
methods (Smith, 1975), and other methods which combine time-step advancing algorithms
and integral transformations with respect to space variables such as the pseudo-spectral
method (Gazdag, 1981; Kosloff and Baysal, 1982; Mikhailenko and Korneev 1984).
These methods generally require large computer memory sizes and high performance
speed. With the rapid advent of computer power they have received special attention,
especially in exploration seismology, because they are the only methods capable of
producing a complete synthetic seismogram for a realistic earth model.

Most previous seismic modeling methods treat the earth as a perfectly elastic single
phase fluid or solid medium. The major features of seismic waves, such as the pattern of
reflected and refracted body waves and the dispersion of surface waves which have been
observed experimentally can be simulated on the basis of a purely elastic earth. However,
there are differences between the observed and the synthetic seismograms. The principle
difference is the energy loss in excess of that due to geometrical spreading and reflection at
discontinuities. This extra loss, called intrinsic attenuation, reduces the penetrating depth of
an observation but can supply information on the lithological properties.

Because of the increasing difficulty of exploring for natural resources and the growing
realization that hydrocarbon reservoirs are more heterogeneous and complex than assumed
in the past, it has become more important to better characterize the subsurface material
lithologically and petrophysically by seismic methods. One of the efforts to meet this need
is the search for suitable 'models of earth media'. The considerable literature in this area
includes better models of wave propagation in viscoelastic and fluid filled porous media

together with a proliferation of experimental work on this subject in the past few decades.



Biot developed a theory from the view point of continuum mechanics for wave motion
in a porous elastic solid saturated with a viscous compressible fluid. The equations
obtained by Biot were rederived by Johnson (1986) using a Lagrangian formulation.
Katsube and Caroll (1987) extended Biot's theory by allowing a shear interaction between
the viscous fluid and the solid at the microscopic level. Levy (1979), and Burridge and
Keller (1981) derived coupled wave equations for time-harmonic motion in porous media
through the use of the two-space method of homogenization that is used in statistical
physics. Berryman and Thigpen (1985) and Berryman et al. (1988) derived wave equations
for partially saturated porous media by using variational techniques. More recently de la
Cruz and Spanos (1985, 1989, 1991a) constructed macroscopic wave equations for elastic
porous media filled with viscous fluid by using volume averaging techniques in
conjunction with physical arguments. Wave dispersion and dissipation in these models are
mainly due to the viscous fluid motion relative to the solid matrix. The frequency
dependence of the wave speed and attenuation are discussed by many authors (e.g. Biot
19564, 1956b; Geertsma and Smit 1961; de la Cruz and Spanos 1985; Hickey 1990).
These studies are simply based on the analysis of time harmonic plane waves in uniform
porous space. However, because of the complexity, the well established wave equations
for porous media have rarely been solved, either analytically or numerically, even for fairly
simple models. The problem of calculating seismic wave fields in fluid saturated,
heterogeneous media is the subject of the second chapter of this thesis (Dai et al 1992b; Dai
et al 1992¢).

Considerable progress has been also made in seismic wave attenuation for single phase
material. In this context, seismic attenuation is taken to describe any irreversible energ,
losses, other than those due to spherical divergence, reflections, transmissions and mode
conversions, which a seismic wave experiences as it propagates through a medium. This

definition is a broader concept than is the mechanism of dissipation which describes energy



lost due to particular physical procedure such as friction between moving rock particles or

fluid motion within rock pores. The most commonly used measures of attenuation is the

dimensionless quality factor Q or its inverse Q-1 which is defined as - ﬁ% , where

E is the peak strain energy stored in a volume of material and -AE is the energy lost in
each cycle because of imperfections in the elasticity of the material (Aki and Richards
1980). Q can be measured directly iirectly in laboratories or from observed seismic
wave records.

The incorporation of absorption with arbitrary Q-laws for seismic simulation is not
difficult in frequency-domain methods. However it has been almost impossible for the
direct methods in the time domain to include attenuation because in the time domain the
anelastic stress-strain relation has the form of a convolution integral which is intractable in
numerical computation. To circumvent this problem Day and Minster (1984) transform the
convolution integral operator into a convergent sequence of constant-coefficient differential
operators of increased order based on the approach of Pade approximation. Emmerich and
Korn (1987) utilized a generalized Maxwell body to approximate an arbitrary Q law
yielding a second order differential equation system with extra intermediate variables for
SH waves.

A first order hyperbolic system has been derived for anelastic acoustic wave motion by
Dai et al.(1992d) based on the generalized Maxwell body approximation. The system is
solved with a finite difference method for a realistic model of crosshole experiments which
were carried out at Cold Lake, Alberta before and after a steam injection operation.

Comparison is made between the synthetic seismograms and the observed onc:.

1.2 Seismic Migration

On the conventional seismic time sections prior to migration the echo amplitudes are



displayed in a complex manner on graphs of receiver location versus travel time. In areas of
steep dip, the reflection events appearing on the time sections are removed considerably
from the true position of the reflector segment, thereby giving a distorted picture of the
subsurface structure. Migration is a corrective data processing technique which attempts to
assemble an image of the correctly positioned subsurface reflecting interface.

The interpretative value of migration techniques has been recognized since the
beginning of seismic exploration. In the early years, migration was carried out manually
with graphical methods, not directly to the seismic data itself but to the interpreted horizon
sections or contour maps. In the sixties digital processing promoted the development of
diffraction-stack method for migrating the common midpoint (CMP) stack seismic section.
Based on Huygens' principle and the ray-theory concept, diffraction-stack migration
considers a reflector as a sequence of diffracting points. Seismic amplitudes are summed
along diffraction hyperbola on an unmigrated section to give the amplitude at the diffracting
points on the migrated section. All modern seismic migration processes are based on wave
theory. In these processes, the reflected field observed at the surface is used either as an
initial conditions or a boundary conditions to reconstruct the subsurface wave field
governed by the wave equation. An imaging principle is then applied to obtain the
subsurface reflectivity map. Apart from a correct image, the wave-equation based migration
processes also improve the lateral resolution by its property of focussing diffraction
energy.

Migration can be performed in various combinations of time, space, frequency and
wavenumber domain. (Berkhout 1982; Tsingas and Kanasewich, 1990). The numerical
techniques employed in migration processes can generally be subdivided in three broad
categories, namely, the finite difference approach (Claerbout 1570,1976), the summation
approach (French, 1975; Schneider, 1978), and the transformation approach (Stolt, 1978;
Gazdag, 1978).
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Migration can be applied to either post-stack sections or prestack sections. Post-stack
migration attempts to reposition reflected energy from its common midpoint position to its
true subsurface location. Prestack migration works directly on the original data set such as
a common shot gather. The fact that the common shot gather is acquired from a single
physical experiment imposes fewer assumptions and restrictions on the subsequent data
processing. Prestack migration avoids the CMP stacking artifacts and is therefore more
consistent with the wave theory in principle. A single shot gather usually does not give a
complete subsurface picture. Only the parts from which the reflection is seen by the
receivers will show up in a single shot gather migration. A complete image with high signal
noise ratio can be obtained by stacking a number of migrated shot gathers (Tsingas, 1990).
The conventional forms of wave-equation migration produces the migrated image in a
distance-time reference frame and are referred to as time migration. Hubral (1977)
showe ' a laterally inhomogeneous medium the diffraction pattern from subsurface
scatterers can depart significantly from the normal hyperbolic shape; the Kirchhoff-
summation method images seismic data at emergent “image ray” locations rather than at the
desired positions vertically above the scatterers. The conventional finite difference method
and frequency domain approach commit the same error and do not migrate seismic
reflections to proper positions if there is a significant lateral variation in velocity (Larner et
al., 1981). Larner et al (1981) proposed a partial solution to the later velocity variation
problem by a two stage procedure consisting of a conventional migration followed by a
depth conversion by an image-ray method based on the work of Hubral (1977). Judson et
al. (1980) proposed a finite difference implementation to obtain a migrated depth section
from a stacked time section. In their method the wave field extrapolation is processed in
small increments of depth instead of time steps and a time shift term is applied to each trace
to account for the transmission time changes resulting from the lateral velocity variation
along the thin layer of depth increment. They noted that the additional operation within the

migration algorithm can be difficult and expensive to implement. The same cencept is



applied by Schultz and Sherwood (1980) to migrate the prestack seismic data. These
methods give directly the image section on a distance-depth graph and are referred to as
depth migration. Tsingas and Kanasewich (1990) performed depth-migration in the space-
frequency domain in which a time-shifting or thin-lens term is involved where lateral
variation of velocity is present.

Most extrapolation operators in wave theory based migrations are constructed from an
one-way wave equation due to iiie fact that the signal recorded by the seismic surface
survey come from the upward traveling wave field only. The one-way wave equations
commonly obtained by seeking a polynomial or rational approximation to the dispersion
relation of a square root form. Although successful in many situations, the method is
limited by the assumptions made inherently in deriving the one-way wave equations. In
particular it is assumed that spatial derivatives of the velocity can be ignored (Claerbout
1972, 1976; Stolt, 1978; Gazdag, 1978; and Van Wulfften Palthe, 1979). On the other
hand, the existing one-way equations often fail in simulating the downgoing wave field at
large propagating angles. In order to overcome these shortcomings, full wave equations
were also employed for migration purpose (Kosloff and Baysal, 1983; Reshef and
Kosloff, 1986). For strong lateral velocity variation and steep dips the two-way wave
equation migration possesses certain advantages over the commonly used parabolic or
paraxial wave equation but suffers from unwanted internal multiple reflections which are
generated from strong velocity variations. This unwanted energy is especially troublesome
if it is coherent and migrates to a time when the primaries are weak (Tsingas and
Kanasewich, 1990),

Dai and Kanasewich (1992) and Dai et al. (1992a) developed a first order hyperbolic
system for one-way waves in heterogeneous media. This system is accurate in simulating
downgoing waves at propagating angles up to 80°. It is applied in performing two-

dimensional post-stack and prestack depth migration through a back-propagating procedure
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with a less expensive explicit finite difference scheme in the space-time domain with no
unwanted internal reflections being present. The computational cost of this procedure can
be the same as with forward modeling with the same finite difference scheme. Hence the
extension of this method to three-dimensional one-pass migration can be economically

feasible.

1.3 Finite difference methods

The finite difference method, since its introduction into computational seismology in the
late sixties, has proved to be particularly versatile in extending the scope of solvable
problems. The finite difference method is general, straightforward and flexible. It may be
applied to an arbitrarily inhomogeneous medium and random source-receiver separation.
As pointed out by Aki and Rechards (1980), the method is essentially similar to laboratory
simulation using a scale model, but has greater advantage over the latter in accuracy of the
result and in ease of implementation. The finite difference method offers a most direct
solution to the problem expressed in terms of the basic equations, and the initial and
boundary conditions. In the elastic case, the method automatically accounts not only for
direct waves, primary and multiple reflection waves but also converted waves, head waves,
diffraction waves and waves observed in ray-theoretical shadow zones.

Finite difference schemes can generally be placed in two broad categories: explicit and
implicit (Kelly et al., 1976). In explicit schemes the response is evaluated exclusively at
one space location at an advanced time directly from the response on the neighboring grid
points already determined at previous times. In implicit schemes the response is evaluated
simultaneously at all space locations at an advanced time from known values at previous
times through a matrix inversion technique. The explicit operators are easier and more

economical to implement but suffer from stability problems. For hyperbolic equations
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explicit schemes are preferred because the stable conditions are not as severe as with
parabolic equations,

Two distinct formulations are used in finite difference modeling (Kelly et al., 1976),
The homogeneous approach solves the wave equations for every homogeneous layer
separately. Boundary conditions must be explicitly imposed on the interfaces between
different layers (Alterman and Karal, 1968; Alford et al., 1974). In contrast, the
heterogeneous approach directly solves wave equations for the whole model. The wave
equations in this case allow the physical properties to vary both laterally and vertically. In
the heterogeneous approach, boundary conditions are satisfied implicitly and more
complicated geometries can be accommodated with no extra effort.

The heterogeneous approach is based on wave equations which have continuously
variable coefficients. When applying finite difference techniques to second order
heterogeneous wave equations, additional approximations for the derivatives of the
physical parameters are necessary (Kelly et al., 1976). First order hyperbolic systems
which describe wave propagation in inhomogeneous media do not directly involve
derivatives of physical parameters. When finite difference methods are applied to these first
order systems, the error from numerical differentiation of the medium parameters are
avoided. Finite difference methods were applied to first order hyperbolic systems by
Virieux (1984,1986), Bayliss el al. (1986) and Vafidis et al. (1992) for modeling elastic
SH and P-SV wave propagation in heterogeneous media.

Waves propagating on a discrete grid mesh become progressively dispersed with
increasing travel time due to replacement of the differential equation by a difference
equation. In any discretization, only the long waves are well approximated. Grid
dispersion, depending highly on the number of grid points per wavelength, places
restrictions on the applicability of the finite difference method in terms nf the capability of
the available computer making them more useful for finding the wave field in the vicinity of

the seismic source or inhomogeneity. Higher-order accurate (in space) schemes have the
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advantage of reducing the phase errors.

Numerical solutions from a finite difference method to a wave propagation problem are
usually obtained over a finite region due to the limitation of the computer memory size. The
techniques for construction of absorbing boundaries play an important role in reducing the
artificial effects due to the existence of the computational boundaries. Widely used
absorbing boundary conditions in seismic modeling are proposed by Clayton and Engquist
(1977). They obtain the absorbing boundary conditions from the rational approximation of
the one-way wave dispersion relation and their differential equation forms. The
effectiveness of these absorbing boundaries are limited when waves are incident on the
boundaries at large angles especially for elastic waves since shear waves are also involved
in this case. To improve the absorbing effectiveness of these boundaries various techniques
are introduced by Cerjan et al. (1985), Kosloff et al. (1986) and Sochacki et al. (1987) and
Higdon (1987), to mention a few. These additional techniques improve the absorbing
effectiveness but higher computational cost is required. Bayliss et al. (1986) in their
forward modeling with first order hyperbolic systems employed absorbing boundaries
based on one dimensional characteristic analysis (one dimensional absorbing boundaries).
These absorbing boundaries are just as effective for waves impinging on the boundary
perpendicularly and do not properly absorb surface waves. It is more challenging to
construct absorbing boundaries for simulating waves in porous media where slow P waves
may be present in additional to the regular P waves and S waves in solid elastic media.

New methods are proposed by Dai, Kanasewich and Vafidis (1992c) for assembling
absorbing boundaries for modeling seismic waves in nonporous or porous media. The
methods are based on the characteristic analysis of the first order hyperbolic system which
describe the wave motion. The combinations of the one-dimensional absorbing boundary
conditions and the wave propagation modification or sponge filter techniques not only

effectively absorb all the types of body waves but also the surface waves.
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1.4 Qutline of the Thesis

The thesis consist of six chapters.

Chapter 1 contains an overview of the background and direction of this research work.

Chapter 2 describes the velocity-stress finite difference method for simulation of
seismic waves in porous media. First, Biot’s equations and de la Cruz-Spanos equations
are reformulated into first order hyperbolic systems. Then the point and line source
solutions of the system are derived for the purpose of numerical algorithm testing and the
source implementation in the finite difference modeling procedures. Following a brief
description of the finite difference scheme, a number of numerical example are given to
illustrate the feasibility of the modeling methods.

In Chapter 3 the combined approaches of one dimensional absorbing boundary
conditions with a wave propagation modification technique or alternately with a one-way
sponge filter technique are developed to reduce artificial reflections from the margin of the
computational region for numerical simulation of seismic wave in elastic and porous media
with first order hyperbolic systems.

Chapter 4 describes a velocity-pressure finite difference method for simulation of
seismic waves in viscoaoustic media in the space-time domain. A first order hyperbolic
system is formulated by assembling a realistic quality factor law with generalized Maxwell
bodies. This system is applied to model the seismic data observed from crosshole seismic
experiments for monitoring steam injection projects in the Cold Lake area.

First order hyperbolic systems for one-way waves propagating in a heterogeneous
medium are derived in Chapter 5. Based on these systems an elegant method for two-
dimensional depth migration of seismic reflection data and a two-dimensional absorbing
boundary technique are presented with a number of synthetic examples.

Chapter 6 is a brief overview summarizing the original contributions of the work

presented in this thesis with some remarks on future directions.



14

CHAPTER 2

SIMULATION OF SEISMIC WAVES IN FLUID SATURATED POROUS
MEDIA WITH BIOT EQUATIONS AND DE LA CRUZ-SPANOS
EQUATIONS

2.1 INTRODUCTION

It has been long recognized that the data obtained from the observation of seismic
waves which propagate through the earth carries information not only about the spatial
allocation and geometrical configuration of interfaces between different rock types within
the earth, but also about the physical properties of rocks, their mineralogical composition as
well as their presentation state. Seismic methods, even though being very successful in
locating structures and, in some cases, stratigraphic features favorable for oil and gas
accumulation, have been used relatively little in directly locating the hydrocarbons
themselves and i investigating the rock properties of direct interest to the hydrocarbon
recovery such as porosity and permeability.

Since the resolution of seismic data has improved, detailed studies on the seismic
response of hydrocarbon reservoirs are receiving more and more attention. In recent years,
efforts have begun to be made in using seismic methods to evaluate and characterize
hydrocarbon reservoirs and to monitor reservoir production and enhanced oil recovery
(EOR) pro«esces. In these developments the numerical modelling together with the basis

theory of seismic waves plays an important role as they provide the basis for understanding
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and interpreting the seismic characteristics.

The environment of hydrocarbon reservoirs is a composite multiphase media with gas
or liquid occupying the voids betwecn solid grains. Seismic modeling methods, however,
have generally treated the medium as a single-phase elastic solid or more often as a layered
fluid. In these modeling techniques no direct correlations are established between the
seismic characteristics and the fundamental bulk characteristics of reservoirs in spite of the
well known fact that seismic wave amplitude, velocity, attenuation and dispersion depend
intrinsically on not only the solid mineralogy but also the porosity, the properties of pore
fluids, confining pressure and other factors.

Biot's theory (1956a,b, 1962a,b) has long been regarded as the basis for solving wave
propagation problems in porous media. The original equations (Biot 1956a) were set up for
uniform porosity and isotropic composites. Later Biot (1962a) extended his theory to the
non-uniform porosity case and further included anisotropic properties. Biot obtained his
equations by deliberately ignoring the microscopic level and assuming that the concepts and
principles of continuum mechanics can be applied to measurable macroscopic variables.
Strictly speaking, it is only justified a posteriori by the agreement of the results that it
provides with those obtained by other methods and experimental observations. In contrast,
de la Cruz and Spanos (1985) equations, abbreviated as the C-S equation in what follows,
for seismic wave propagation in fluid filled porous media were obtained by using the
technique of volume averaging in passing from the well established physical laws at the
microscopic level (in pore scale) to the macroscopic level. De la Cruz and Spanos (1989)
later extended their theory to account for thermomechanical coupling. Recently de la Cruz et
al. (1991a) examined the effects of inhomogeneity on the form of macroscopic equations
and constructed equations of motion for heterogeneous porous media. The development of
macroscopic equations through spatial averaging of the microscopic ones allows one to

assign physical meaning to the theoretically assigned parameters. In this chapter both the
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Biot equations and the C-S equations are studied in parallel for a comparison of their
similarity and divergence.

Seismic wave propagation in generally inhomogeneous porous media can be simulated
accurately with high order finite difference techniques. Finite difference numerical solutions
to the acoustic and elastic wave equations have been presented by various authors
(Alterman and Karal, 1968; Boore, 1972; Alford et al., 1974, Kelly et al., 1976; Vafidis et
al., 1992). Recently proposed second order accurate finite difference solutions to the
Biot's acoustic wave equations (Hassanzadeh, 1991) and to Biot's elastic wave equations
(Zhu and McMechan, 1991) are based on the homogeneous approach. In this approach the
homogeneous equations are numerically solved in each layer but boundary conditions
should have been explicitly imposed on the interfaces (Kelly, et al. 1976). Hassanzadeh
(1991) and Zhu and McMechan (1991) did not make any effort to compare their numerical
solutions with analytic solutions.

In this development a finite difference solution for Biot's and C-S equations are
proposed on the basis of the heterogeneous approach. One of the advantages of the
heterogeneous approach is that boundary conditions are satisfied implicitly when the fluid
phase is continuous. Therefore, complicated model geometries can be accommodated
without imposing explicitly the boundary conditions on the interfaces.

In the velocity-stress finite difference method, Biot's and C-S equations are
reformulated into first order systems whose vector of unknowns consists of the solid and
fluid particle velocity components, the solid stress components and the fluid pressure. The
first order systems are free of spatial derivatives of the physical parameters which are
present in the second order Biot's and C-S wave equations for neterogeneous porous
media. Consequently, the numerical approximation of the spatial derivatives of the physical
parameters is not required in the velocity-stress finite difference method. Numerical

approximation of these derivatives may sometimes result in large errors especially close to
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interfaces where the physical parameters change quickly. This source of error is not present
in our formulation of Biot's and C-S wave equations for heterogeneous media.

One of the key factors in finite difference simulations of wave propagation in porous
media is source implementation. An original solution for the poroelastic wave equations is
given in section 2.4 for an infinitely extended homogeneous porous medium with a pure
dilatational point source or line source acting on both the solid and fluid parts.

In the following sections, we describe the velocity-stress finite difference method in
solving Biot's and C-S equations. The finite difference scheme is based on dimensional
splitting and consists of one-dimensional finite difference operators of MacCormack type
which are fourth order accurate in space and of second order accuracy in time (Gottlieb and
Turkel, 1976). The algorithm is fully vectorized by making use of the method of matrix
multiplication by diagonals (Madsen et al., 1976; Vafidis et al., 1992). This finite
difference method was successfully tested by comparing the numerical solutions with an
exact known solution, Numerical examples are presented to illustrate the basic features of
the wave field in porous media. The method is applied in simulating seismic wave
propagation over an expanded steam heated zone during enhanced oil recovery (EOR)

processing.
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2.2 BIOT WAVE EQUATIONS FOR POROUS MEDIA

2.2.1 Macroscopic wave equations

Biot’s linear theory for wave propagation in fluid saturated porous media is established
under the following assumptions: 1) the fluid phase is continuous so that disconnected
pores are supposed to belong to the solid matrix; 2) the porous medium is statistically
isotropic, i.e. for all cross sections, the ratio of pore area to the solid occupied area is
virtually constant; 3) the microscopic pore size is much smaller than the wavelength; 4) the
deformations are small, which guarantees that the linearity of the mechanical processes; 5)
the solid matrix is elastic hence all mechanisms of viscous origin related to the matrix is not
under consideration. Also, it is assumed that the effect of the force of gravity and the
temperature variations due to dissipation of energy can be neglected. According to Biot's
theory, the equations of motion for a fluid-saturated, statistically isotropic, non-uniform

porous medium are given by

AL A I
P11 2 + P12 o V. +b5;(uf-ll ),
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Here, us and v are vectors of the macroscopic displacements of solid and fluid,
respectively. The displacement vectors are defined as the average displacements over the

volume of the particular phases in a representative element whose size is assumed to be
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large compared to the pores. In terms of the average displacement vector uw/ of the
continuous fluid phase in the macroscopic element and the average displacement vector u*
of the solid particle, the elementary macroscopic flow rate dQ through an area dS with a

normal n is given by (Biot 1956a)

_ . (0w dus|
agd=n, —-a-t—-—a;— ndsS. (2.2.2)

where 17, denotes the porosity of the medium. The scalar s in equation (2.2.1) is related to

the fluid pressure p and the porosity 7, according to
S =-NyP. (2.2.3)

¥ in equation (2.2.1) is a stress tensor

s Oxx ny Cxz
I'=| Oxy Oyy Oy, |. (2.2.4)

Oxz Oy; Oz

If we consider a unit cube of bulk material the components of z’ represent the force applied
to the solid part of the faces, and s represents the force applied to the fluid part of these
faces. The scalar s and the solid stress tensor £° can be expressed in terms of the

displacement vectors ( see Appendix A):
$ =QV-uS+RV-uf+-7;LVno- (u/-us), (2.2.5)

2= (P - 2M)V-wl + N|Vus {Vu] ]+ QV-0/ 1+ £V (o -ws) T, (2.26)
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where I is the second order identity tensor. The parameters P, Q, R and N are Biot's
elastic constants and represent the mechanical properties of the fluid-saturated porous
medium. The parameters p;j in (2.2.1) represent the inertia of the two phases and are

related to the mass densities of the solid and fluid, p$ and pJ,
prr+pr2=(1-n)p5=p1, (2.2.7)
P12+ P22 = Moph = pa. (2.2.8)

The parameter b in (2.2.1) represents the resistive damping due to motion of the fluid
relative to that of the solid and is expressed in terms of the porosity 7, the fluid viscosity

My and the permeability K as:

=2k
b=n3 . (2.2.9)

The relations between Biot's parameters and the basic physical parameters have been
investigated by many authors (e.g. Biot and Willis, 1957; Stoll 1974; Feng and Johnson,
1983). These relations are given in Appendix A. Laboratory measuren::nts of Biot's
parameters for sandstones were reported by Yew and Jogi (1976, 1978) and Winkler

(1985) among others.



2.2.2 First order hyperbolic sys

For a two-dimensional problem of
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tem for 2-D P-SV waves

wave propagation in porous media, it can be shown

that SH waves decouple from P and SV waves. If we suppose all physical parameters and

variables are independent of y, that i

S

3y =0 in equations (2.2.1)—(2.2.6), then after

taking the derivative of the 1i:icroscopic solid stress tensor T and scalar s with respect to

time t and writing them in component form, the two dimensional P-SV wave equations can

be formulated as:

avx aV{ _00x ao'xz
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S
where v§ = %ut—", v§= a(; tovf= 854 and v{ = u{ are the solid and fluid particle velocity

0 . .
components. v§ = —ati’ v = —(.;?—, Txy and Ty, do not appear in above equations because
they are related to SH wave motion and are independent of the rest of the unknowns.

The above equations can be written in matrix form as

du Ju Jdu

an —Aoa +Boa +Cou, (2.2.18)
where
g
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Gxx
u=| %= |, (2.2.19)
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, (2.2.21)
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(2.2.25)
(2.2.26)

+Cu,

1

Pij
pnp22 - P122
_.0u . Jdu
Agx_ + B—a—z—

where
R;=
we obtain
du
ot
where

(2.2.27)
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B, O 0 0 0 B, O 0

0O -B, O 0 0 0 B, O

-9« -q: 0 0 0 dx q: 0

| &x -2 0 0 0 g ¢ O
€=l o 0o o 0o o 0o 0 o | (22.29)

By 0 0 0 0 -By O 0

0O B O 0 0 0 By O

| -ry -or; O 0 0O ro r, 0 ]
with

By =b(Ry + Ry3), (2.2.30)
By =b(R12 + Ry) . (2.2.31)

The system (2.2.26) predicts the existence of three types of body waves, one shear and
two compressional ones with a faster and a slower velocity. The system is hyperbolic since
both A and B have the same real eigenvalues (-Vy, -V,, -V, 0,0, V, V,, Vp), where Vp,
V,, V, are the propagating velocities of the fast P wave, S wave and slow P wave. This

system is solved in the later sections.
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2.3 DE LA CRUZ-SPANOS WAVE EQUATIONS FOR POROUS MEDIA

2.3.1 Macroscopic wave equations

In this section a partial differential equation system is developed for wave motion in
fluid saturated heterogeneous porous media mainly following the procedures described by
de la Cruz and Spanos (1985, 1989) and de la Cruz et al. (1991). A first order wave
equation system is then formulated by neglecting the less important macroscopic viscous
stress of fluid. This modified system is utilized for wave field simulation with the finite
difference method in the following sections together with the system described in the
previous section.

The volume averaging technique is simple and offers great clarity in explaining what
kind of averaging occurs in the macroscopic quantities. The basic idea behind the approach
is the following. First it is assumed that on the pore scale the continuum equations for an
elastic solid and a viscous compressible fluid hold. These microscopic equations are then
spatially averaged over a representative element, say a sphere, in the sclid-fluid composite.
The diameter of the elementary sphere should be both sufficiently small and sufficiently
large, so that both the macroscopic and microscopic inhomogeneities do not affect the
results of the averaging procedure. The solid movement and fluid movement are coupled
through the microscop. - sundary conditions on the interfaces of the constituent phases of
the materials.

In de la Cruz-Spanos theory, a porous medium is envisaged as an elastic matrix whose
pores are filled with viscous compressible fluid. In the pore scale the motions of the solid
and fluid materials in a fully saturated porous medium are supposed to obey the linear

equations of motion for the particular single phases, that is,
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;% ”"’a'a!:i) Vs (2.3.1)
and
o) =- v-[pr1 - &), (23.2)

respectively, where I is the second order identity tensor, p*, W, denote the density and

microscopic displacement of the solid material, while p/, ¥/ and p/ denote the density,

microscopic velocity of fluid particles and the pressure of the fluid, £* and 3/ are the stress

tensor of the solid and fluid, respectively, given by

= K Vusl + px[Vus +(vus)f -% V-uSI] (2.3.3)
and

Y= ;1,{va+ (va)T % V-vfl] , (2.3.4)

where K, pis, and g are the bulk modulus, the shear modulus of the solid material and the
viscosity of the fluid material, respectively. The theory developed by de la Cruz and
Spanos is constructed by applying volume averaging theorems (Slattery 1969, Whitaker
1969) to equations (2.3.1) — (2.3.4) to provide the initial framework. Two microscopic
boundary conditions at the interface of the solid and the fluid are used to introduce the

interaction between the solid motion and the fluid motion. They are the no slip condition

v/ = Jus (2.3.5)
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and the stress continuity condition
o+ n=%"n, (2.3.6)

where n is the unit normal to the interface. In addition, order of magnitude considerations
and plausible physical arguments are incorporated to formulate a set of macroscopic
equations for seismic wave propagation in heterogeneous porous media, which can be

written (See Appendix B) in tensor form as

o%us 2w/ s f s
D12 p Y Svsta b L-J—-—) . 2.3.7
H 612 12 atz o l- Mo ( )

= (A - 2u)V-usl + yg (Vu’ +(Vus)T) +B V.l

+ N(wV o+ Vo) + Ny sV e+ Vnous)

+ Hpus:VGn,1- Hg/ -V, 1 (2.3.8)
o%us ovf f f s

D +Dyy=—=-Vpf+ V.Y . b(Y—-J——- , 2.3.9

21 ) 275, p . T-1, ( )

¥ <o {ovi]- —%—V-vfl) i ”fff‘”"’"o + Vo)
0

-yfl-'—d(vSVno + VnovS) +2 Ky (—‘S—v-‘Vno + J—'-ﬁvf-Vno) I, (2.3.10)
1-10 3 No I-10
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Q%{ =-CVvs-E VV+ FyVn,ve- Fp Vno-vf-ff[Vpg v, (2.3.11)
[¢
(]

where w/ is macroscopic fluid displacement and v* =§-al—:i is the macroscopic particle
velocity of the solid material. It is important to note that two kinds of averages may show
up in the averaging process (e.g. de Vries 1989). One is the average over the particular
phase called “intrinsic volume average’ and denoted by a bar over the variable, see equation
(B.3), the other is the average over the representative element called "volume average” as
such and denoted by the sign <>, see equation (B.4). The two kinds of average are related
by a factor of the volume fraction of the pertaining phase (see equation (B.5)). In equations
(2.3.7) - (2.3.11) the sign <> has been dropped for convenience, therefore all the variables
3 > p/, us, w, vs, and v/ from here on represent the their volume averages over a pre-
defined volume of the representative element. The derivation of the macroscopic equations

and the definitions of the coefficients are given in the Appendix B.
2.3.2 Neglect of macroscopic stress of fluid ¥/

In order to examine the magnitude of %/ let us consider a uniform porous medium. For

this case, the stress tensor in component form, from equation (2.3.10), is given by
ol = #/(akV{+ ok %‘ 55@1"{) : (2.3.12)

Inserting equation (2.3.12) into equation (2.3.9), and writing it in component form, w-~

have
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e _’ §
D210w{ - D220w;" = - Opyp + at{u,{ o + o - % (sikal"’)] - Hlk’,l'L (;‘;‘ - llri)) :

(2.3.13)

Here we have used b = ‘—1%732 as given in equation (B.23) in Appendix B, where K is the
permeability. Let us compare the last two terms on the right hand side of equation (2.3.13).
These terms represent the forces related to the viscosity of the fluid. For simplicity, we
investigate the two-dimensional homogeneous case (i.e. 5(); =0). For i = x, the

comparison of the last two terms in order of magnitude is expressed by

2

y gL | 0 10W) | b (vf vp : (2.3.14)
30x2  9z2 30x0:z K \n, 1-n,

If a plane harmonic wave is propagating in the z-direction, then v£ can be written as

vf = Asin (@t - kz + @,) . (2.3.15)

If the solid and the fluid materials are moving differently and v§ has the same order of

magnitude as v{, then expression (2.3.14) can be written as
uAAsin (ax - kz + gp) ~ “KﬂAsin (x-kz+@p).
So, the magnitudes of the two terms is compared as

k2 ~ Mo (2.3.16)
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If we suppose that the minimum velocity of seismic waves is 1,000 m/s and the maximum

frequency is 200 Hz, then the square of the wavenumber is

(2 <ATR00F o sgm2 . 2.3.17)
(1000)2

For typical values of permeability 10-12m2 and porosity 11, = 101, their ratio is
Mo _101"m2 . (2.3.18)
K

We see that the magnitude of the left hand side of expression (2.3.14) is over 10 orders

smaller than the right hand side. Therefore, 5t is negligible in seismic wave propagation

problems. Similar considerations can be found in the literature (e.g. Biot, 1956a; Bourbie

et al., 1987). After dropping 3/ we have a set of four macroscopic equations (2.3.7),

(2.3.8), (2.3.9) and (2.3.11), and equation (2.3.9) becomes

D210vs+ Dy 0, Vf = - fo- b (v_f_ v_s) + gf_ Vn,. (2.3.19)
Mo 1- Mo Mo

2.3.3 First order hyperbolic system for 2.D P-SV waves

For a two dimensional wave propagation problem, it can be shown SH waves decouple
from P-SV waves. If we suppose all physical parameters and variables are constant in the
y-direction, that is % =0 in equations (2.3.7), (2.3.8.),, (2.3.11) and (2.3.19), it is
readily shown that P-SV waves satisfy the follcwing first order differential equations:



vi. - ol dch .90k . (v
- = XX LUV -—
Dugi+Digi==57+=, *b(ﬁf 1-n,,),

ov} ovf dat, aog, v  vf
Dugit Dugp=5 o+, + oo 100)

d0%x

ov$
9O0xx . A D%,
3 A 5 +(A - 2;13)—+B

o 2
ox 0z

+ (2N + HA}aa% vi+(2Ns+ HB)a—(,;ﬂ v{ +H

ao,s,

=(A - 2us)-—£+A—z +B (—vft+aa—vz{

+ (2N, + HA)—-—vs+(2Nf+HB)——- v+ H 8510 vi+H aa"" v,
x

Qgg_=us‘ﬂg_+§_,&_)+ ano ‘{+ar’0

vi|+ N, (ano a;"’ vs’

ot dx oz
021%?+Dzzaa‘;f =- %E,f 'b(:)o ) I—V%I:) ’
Dzl%vfs-*Dﬁaavtz =" %sz ) b(:?{ 1 stﬂo) ’
ap__c avs Q‘l E%'vé'*'%_) 3nov§+az;72° i)

ano Ky ap?)v ano Ky 3Pf)v
o +pf ox £ " 0z +p;’ dz -

o,
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(2.3.20)

(2.3.22)

(2.3.23)

(2.3.24)

(2.3.25)

(2.3.26)

(2.3.27)
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Writing equations (2.3.20) - (2.3.21) in matrix form, we have

(2.3.28)

+Cou,

o
°9z

A(,%% +B

du
Eo’a—i"-

(2.3.29)

L Pr _

(2.3.30)

Ly

COCTC OO O —

o focoo fo
Q Q
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(2.3.31)
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cooFoocoo
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ox
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Ng =2 N;+

Hp ,

Np =2 N¢- Hp
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(2.3.32)

(2.3.33)

(2.3.34)

(2.3.35)
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~ g Mo, Ky 9p7
G,—FB‘(,}J‘ +—’—)f ax (2.3.36)
and
_ 0N,  Kr9pf
G: =Fo +pf ik (2.3.37)

Multiplying equation (2.3.28) by the inversion of E,

R, 0 0 O O -Rp 0 O
0 Rz 0 0 O O -R12 O
0O 0 1 0 0 0 0 O
E:l = 0 0 0 1 0 0 0 0 (2.3.38)
o 0o 0 0 0 1 0 0 O |
-Ryy 0 0 O 0 Ry O O
0 -R,y 0 O 0 O R O
. 0 0 0 0 0 o0 O 1
where
Di;
Ri: = J , 2.3.39)
Y DDy - D13Dy ( '
we obtain equation
du _,du _du
—a"t— =A % +Baz +Cu ’ (2'3'40)

where
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(2.3.41)

p

(2.3.42)

6.3.43)
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By =b( Ry1 +R7)) (2.3.44)

By =b(R12 + Ry)) (2.3.45)

The system (2.3.40) predicts the existence of three types of body waves, one shear and
two compressional ones with a faster and a slower velocity. The system is hyperbolic since
both A and B have the same real eigenvalues (-Vy, -V,, -V, 0,0, Vs, V,, Vp), where V,
V,, V are the propagating velocities of the fast P wave, S wave and slow P wave for fluid
viscosity tf = 0, respectively (See Appendix D). System (2.3.40) has the same form as the
Biot’s wave system (2.2.26), but the C-S system has more independent parameters. In
Biot equations the parameter corresponding to B and C in the C-S equations are restricted
to be equal, a condition imposed by the assumption of the existence of a unique potential
energy for a porous medium (Biot, 1956a). De la Cruz et al (1991a,b) released this
restriction by envisaging a porous medium as two superimposed interacting continua, thus
allowing two different energy potentials for the solid and fluid movement respectively.
Other differences appear in parameters associated with densities, which arise because of the
fact that Biot mixed the use of two diiferent kinds of volume averages. From equation
(2.2.2) it is clear that the "intrinsic volume average" is applied to the displacement vectors.
On the other hand, from the definition of macroscopic solid stress (Biot, 1956a, 1962a)
and equation (2.2.3), the solid stress in equation (2.2.1) and (2.2.6) and the scalar s in
equation (2.2.1) denote the "volume average" of those variables. A comparison of the

physical parameters in Biot’s equation and the C-S equations are given in Appendix E.
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2.4 POINT AND LINE SOURCE SOLUTIONS IN A UNIFORM POROUS
MEDIUM

One of the key factors in finite difference simulations is source implementation.
Analytic solutions of Biot’s equations for waves generated by a unidirectional point force in
a homogeneous porous medium were derived by applying Laplace transforms (Burridge
and Vargas, 1979) and Fourier transforms (Norris, 1985, Bonnet, 1987). Burridge and
Vargas (1979) obtained a far field solution by applying the "saddle-point” method. Boutin
et al. (1987) obtained solutions not only for unidirectional point forces but also for a
harmonic volume source which is related to fluid injection. In this development, the
analytic solutions of Biot’s equations and the C-S equations are presented for a P-wave
point source and a P-wave line source with the source force acting on both solid and fluid
materials, which is useful in the source implementation of finite difference simulations and
in testing the accuracy of the finite difference algorithms. In this chapter the solutions are
derived for the C-S equations. The corresponding solutions for Biot equations can be
obtained by a comparison of the physical parameters in the C-S equation and the

corresponding parameters in Biot’s equations (Appendix E; Dai et al., 1992a).

2.4.1 Point source solutions

For a point source in a three dimensional uniform medium, after neglecting >/ and
substituting (2.3.8) into (2.3.7), (2.3.11) into (2.3.9), we can write the macroscopic

equations with a body force f as
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D1104u5 + D120, - b (;7‘1,— - _1—-!%—)+ V(A - ps) V.us +B v + gV = (1-g)f

(24.1)

D105 + Dyaduwf + b (%ﬁ ; Tl%-)+ vicVaus + R V= gf, (2.4.2)
o R ]

where ¢ is an arbitrary quantity (1) which determine the force distribution in the two
phases. It can be set equal to 1, for instance. After Fourier transformation with respect

to time ¢, (2.4.1) and (2.4.2) become

D& + D1gdf) + V(A - u)V 0 +B V.o + v = (1-g)f (2.4.3)
Dy + Dagi) + V[CV.05 + RV = ¢ T, (2.4.4)

where §° , ¥ and f are the Fourier transforms of the solid and fluid displacements and the

body force, respectively, and

D1 =D - (-1)'"(—17%75 (m=1,2), (2.4.5)
Dz = Dy + (-l)f";,;;&—w (m=1,2). (2.4.6)

Introduce the potentials ¢, ¢2, Vs Wy, @and ¥ so that

= Ve, +Vxy, , (2.4.8)
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T=VO+Vx¥ (2.4.9)
with Vy,; =0, Vwy=0, V¥ =0,
If we suppose the source to be purely dilatational, then its rotational component W= () and

so are \; and y,. Substituting (2.4.7), (2.4.8) and (2.4.9) into equations (2.4.3) and

(2.4.4) and letting @ = &(r)S{w), we obtain an inhomogeneous system for the dilatational

potentials ¢ 1 and ¢2
D111 + D1aga] +AV 9y + BV = (1-9)8r)S(e) , (2.4.10)
w2[521¢1 + 5zz¢z] + CV2¢1 + EV2¢2 = qdr)S(w) . (2.4.11)

In this linear inhomogeneous differential equation system the right hand side terms are
Dirac delta functions which are singular at the source location. This inhomogeneous system
can be equivalently transformed into a problem described by the corresponding
homogenecus system with certain regularity conditions at the source point.

In order to obtain the regularity conditions, we take volume integrals of equations
(2.4.10) and (2.4.11) over a small spherical region with the center at the source and then let

the radius ¢ of the sphere approach zero

lim f (D101 + Brago)] +AV?9y + BV? ¢, | dv= (1-9)S(0) (2.4.12)

o0

lim f { @Dy + Do) +CV20y + EV2 gy } dv=gS(®) . (2.4.13)
o0/,
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Since ¢ | and,¢2 should be bounded at the origin from physical consideration, the volume
integrals of ¢ i and,¢2 approach zero as ¢ approaches to zero. After applying the
Gaussian theorem to (2.4.12) and (2.4.13), the volume integrals are transformed into

surface integrals

lim f (AV¢| + BV¢2) dse = (1-¢)S(w) , (24.14)
o0 J,
lim ] (CV¢1 + EV¢2) dsqg=qS(w) , (2.4.15)
o0 Js,

where sq is the surface of the sphere. Equation (2.4.14) and (2.4.15) are the regularity
conditions which describe the flux of the potential gradients at the source region. Since ¢ 1

and,¢2 are spherically symrmnetrical, one can write equation (2.4.14), (2.4.15) as

: 09 Of _
(l,l_r:;, (A—a—; + B';}',T) dsqg=(1-9)S(®) , (2.4.16)
So
and
- d¢1 O _
:l_r:;) (Cﬁr_ + E‘é‘,‘) dsqg = qS(w) . (2.4.17)

So

The problem expressed by the inhomogeneous equations (2.4.10) and (2.4.11) is now

equivalent to the one that consists of the homogeneous equations
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0] B1161 + B1ag] +AV29, +BVZe, =0, (2.4.18)
602[5214’1 + 5224’2] +CV2¢1 + EVZ¢2 =0, (2.4.19)

with the regularity conditions (2.4.16) and (2.4.17) at the source location. Since the

solutions are spherically symmetrical we have

2 d¢.—)_ d*(r ¢)
\v) ¢‘_.L.d_ ,-Z_E‘, _.}'_.___..____

S T (2.4.20)

Substitution of (2.4.20) into equation (2.4.18) and (2.4. 19) gives

~ - 2 2.

D), @, + Dy, ;] +A%Bd~d§l =0, (2.4.21)
By 4 B L2, pd20, _

D@y + D) +C A ECR =0, (2.4.22)

where @; = r¢; . Introducing the differential operator D defined by D& = 4{% and D2 =

DD, the general solution of the system can be found by using the differential operator

method. Rewriting equation (2.4.21) and (2.4.22) with the differential operator D, we have
(@2D1+ PD2)®; +(w2Dp+ BD?) @, =0 , (2.4.23)

(@2D2+ CDA), + (2D po+ ED) &, =0 . (2.4.24)

To have nontrivial solutions for equation (2.4.23) and (2.4.24) requires



Aw25||+ADz w25|2+B[)‘2 -0

det - =
WDy +CD? WDy +ED?

Equation (2.4.25) has the characteristic roots

Dy =+iky, D, =-ik/, Dy = +ikg, D4 =-ik, ,

where
k=2
Vi
w
ke=—
2
and
2_s+Vs2-
Vf- .
v2=8-Ys2-4n

r=DyDy; - Dyolyy

s=DE +DypA - DoC - DyB ,

t=AE -BC .

Therefore the general solutions have the following forms
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(2.4.25)

(2.4.26"

(2.4.27)

(2.4.28)

(2.4.29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)
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P =aelir +beikrycetibr 4 etiker (2.4.34)

Dy=a'eihr+ b e-ikiry ¢ etikiry f otikir , (2.4.35)

where a, b, cd a’ b’ ¢’ and d’ are underdetermined constants. Equation (2.4.34) and
(2.4.35) indicate that there are two kinds of dilatational waves, characterized by different
wave numbers k : and ks propagating in porous media. In our case the waves radiate from
the source, hence ¢, d, ¢’ and d’ are equal to zero. Furthermore, from equation (2.4.23)

or (2.4.24) we know that

D _ for D = tik , (2.4.36)
Dy
P2_a tor D = ik, , (2.4.37)
Dy
where
~ Z o 2
Af=_1311Vf-A =_€21V[-C , (2.4.38)
DyV:-B  DyuVEE
N 2 n 2
As=-D“Vs-A =_DZIVS'C (241())

Dyv2-B  DpVEE’

Therefore the general solutions become

y=aeitribeikr, (2.4.40)
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Dy =aAe M+ bAseik T (2.4.41)
or

pr=aelithben (2.4.42)

by = A ’“r”As et (2.4.43)

The arbitrary constants a and b can now be determined by making use of the regularity

conditions. Substituting (2.4.42) and (2.4.43) into (2.4.16) and (2.4.17), we have

im | [ -4A+BAexpCikE) 5y, [ BA+BA) expCikso) o) \=(1-q)S((o) ’
-0 tJ o? A o? ‘

(2.4.44)

lim | f AC+EA) expCikiO) o) ] HC+EAS) expC-iks®) 20 \=qs(w)’

o) o’ o?
(2.4.45)
where £2 is the solid angle. Or
(A + BAja+(A+ BAJ)b=- &-q‘%a_)) , (2.4.46)
(C+EAja+(C+EA)b=- ‘_I%(f’_)_ . (2.4.47)

Solving equations (2.4.46) and (2.4.47), we find the constants

=
a=L S, (2.4.48)
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b=-—Sa), (2.4.49)

where

_ (1-g)C +EA,)- q(A +BA,)

* (AE-BC)Ar-A)

(2.4.50)

_gA+BA)-(1-)(C+EA)
B= (AE{ BC)(Ar A ] : (2.4.51)

Substitution of (2.4.48) and (2.4.49) into equation (50) and (51) gives dilatational potential

solutions for a point source o pure P waves in the space-frequency domain

S(a))(a e-ikf" + ﬂ e-ik: ")
4rr

¢1(r0)=

, (2.4.52)

S(w) (o Are-ikr 7 + B A e-iks 1)
4mr )

Pa(r,w) = (2.4.53)

The corresponding solutions in the space and time domain are given by the inverse

Fourier transformation of equations (2.4.52) and (2.4.53).

( S(w) (a eikr+ e-l'k.r)
4nr

=L i 2.4.54
¢ilr,1)= 5L ei 0! da, ( )

J

-1 rS(a))(a Ak 4+ ﬂA,e""‘-’) ;
oA, 1) o J yPo eivtda . (2.4.55)
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When the porous medium is saturated with an ideal fluid without viscosity, thatis & =0 in
equations (2.4.1) and (2.4.2), all the coefficients in equations (2.4.52) and (2.4.53) are

real. The solutions in the space-time domain are given by

& R A
¢1(r,:)=m(' Vfl;rﬁs(t v , (2.4.56)
Arslt- L)+ Ay sft - L~
¢z(r,z)=a fs(t Vfl;rﬂ s(t VL,, (2.4.57)

where s(1) is the time variation of the source function.

24.2 Line source solutions
In the finite difference simulation of two-dimensional P-SV waves it is necessary to
implement a line source in the algorithm. For a P-wave line source along the y-axis, the
source force f in the right hand side of (2.4.1) and (2.4.2) is given by
f=Vo=v[dx)dz) Slo) . (2.4.58)
Equations (2.4.10) and (2.4.11) become

@[ D11¢1 + D12t) +AV 0y + BV2 9, = (1-9)Ax)&z2)S(00) , (2.4.59)

D219y + Dray) + CV29y + EVZ45 = qdx)A2)S(a) . (2.4.60)
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In order to find the solutions for ¢ 1 and ¢2, the simplest way is to integrate the point

source solutions (2.4.56) and (2.4.57) along the whole y-axis

¢1(x, z,8)= 217? x(t-_ +ﬂs(t‘—) dy , (2.4.61)

aA,s(t-— +/3A s‘t-—~)

dalx, 2, 0) = ;117; dy , (2.4.62)

where r =4/x” + y2+ z2 _ Since dy/r = drly and r is even in y, we have

= . .
o1lx, z,0) = 51;[ Ots(t Vf);Bs(t Vs

r

_ o (t-dy) st-) o, BH-dvy) N
2” ‘v 12 - d2/v2 275 "tz dZ/V2
d/Vy f d/Vs

(2.4.63)

where H() is a Heaviside step functionand d = Vx2 + 22, Similarly, we can get

oalx, z,1) = 517; waAjs(t-VLf);'BAss(t-ffr:)dr
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_ OAH(1-dIV)) LU . PA;H (t- d/Vs) (I
2m 72 a2y 27 2202
v, VT ANV gy V7 a2V
(2.4.64)

In the finite difference implementation we express the source in terms of the vector u which
is evaluated from equations (2.3.8), (2.3.11) for the C-S equations and from equations
(2.2.5) and (2.2.6) for Biot’s equations after the potentials are determined from equations
(2.4.63), (2.4.64), (2.4.7) and (2.4.8) for a line source . When equations (2.4.63) and
(2.4.64) are used to calculate the potentials for Biot’s equations, all of the physical
parameters in the formulae for the parameters should be replaced according to Table E1 in
Appendix E. A Gaussian function whose frequency response is practically band limited can

be used to define the source excitation s(1).
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2.5 FINITE DIFFERENCE METHOD

A heterogeneous, explicit finite difference method is employed to solve the first order
hyperbolic systems for wave propaga‘ion in porous media. In finite difference
approximations there are three related problems of primary concern, namely, the accuracy,
the stapility and the numerical dispersion properties of the algorithm. Generally the
numerical error depends on the grid spacing and the time step. The accuracy of a finite
difference scheme is measured by its truncation error. The problem of stability consists of
finding conditions under which the difference between the theoretical and numerical
solutions of the difference equation remains bounded as time progresses (Mitchell and
Griffiths, 1981). In common with most explicit finite difference approximations to partial
differential equations, a condition relating the time and space intervals must be satisfied if
the solution to the difference equations is to be stable. In wave propagation the stability
condition of the finite difference schemes is not as restrictive as in the heat flow problems
(Broore, 1972). The dispersion properties of difference approximations relate to the speed
of propagation of the numerical solution (Turkel 1974). A measurement of dispersion is the
phase error which occurs due to replacement of the differential equation by a difference
equation. Phase errors produce a variation of phase velocity with frequency or
wavenumber. Grid dispersion depends highly on the number of grid points per
wavelength.

The first order systems, (2.2.26) and (2.3.40), are solved numerically for ¢ > 0,
subject to the initial conditions u(x, z, t = 0). In order to set up the finite difference
method, a grid mesh is superposed on a two-dimensional rectangular model The discrete
points (x;, zm, ts) are defined by x;=j Ax for each j =0, 1, ---J ; z,, = m Az for each

m=0,1,.. M and ¢, = n At for each n =0, 1, .-.N, while the numerical
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approximation of the s>lution u(x;, z,, t,)is represented by u?,.

The finite difference algorithm is based on the the concept of splitting in time (Strang,
1968). The numerical solution u is updated for one time step by first applying a one
dimensional difference operator in the x direction and then in the z-direction. At
successive time levels the difference directions are reversed. The advancing procedure from

time level n to level n+2 can be expressed by

u+2 =F} FIF, Fun (2.5.1)

where F, and FI are one-dimensional difference operators approximating the solution of

the one- dimensional equation

u =A du + C*u (2.5.2)

ot ox

for constant 2, while F, and FI are one-dimensional difference operators approximating

the solution of the one- dimensional equation

§£=B§E—+C’u (2.5.3)

ot 0z

for constant x. In equation (2.5.2) and (2.5.3) the non-derivative term has been partitioned
into two terms to maintain cons:stency in the one-dimensional case. The decomposition is
arbitrary provided C = C*+ C*_Each of the operators in (2.5.1) advances the time ¢ by a
half-step so that the final output of the combined four operators is for two time steps. One
advantage of splitting methods is that stability properties are go.=rned by the one-

dimensional schemes. Furthermore, splitting methods have smaller phase error than a wide
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class of unsplit schemes (Turkel, 1974).

A MacCormack-like scheme (Gottlieb and Turkel, 1976) applied to (2.5.2) consists of

a predictor
ul) =u?, - AL A, (T, - W1+ )+ A1 CH 0l (2.5.4)
6Ax
and a corrector

N m Q 1) 1
u;';-nllz l.(u +unm)+_AL_A (7Uj‘ 811“)"l jzm)+ALCx u(

(2.5.9)
Equations (2.5.4) and (2.5.5) describe the operator F,. Fi is described by equations
similar to (2.5.4) and (2.5.5) where the direction of differencing is interchanged.
In order to define the operator F, and F!, one replaces matrix A in operators F, and
F} by matrix B and calculates the difference in the index m instead of j. The finite
difference algorithm is second order accurate in time and fourth order uccurate in space. A
truncation error analysis of this scheme is given in Appendix C. Gottlieb and Turkel ( 1976)

analysed its stability. They proved that the method is stable when

a4, <2, (2.5.6)

Ax 3
where v,y is the maximum wave velocity. Due to the presence of the term C*u in
equation (2.5.2) it is required that Ar< p(C*), where p(C*) denotes the spectral radius of
the matrix C*.

One of the major advantage of this high order (in space) finite difference scheme is its
smaller phase error compared to other (2,2) methods such as the popular Lax-Wendroff

and leapfrog schemes (Gottlieb and Turkel, 1976). To avoid grid dispersion, the condition
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Ax < Ain/6 should be satisfied, where A, is the minimum wavelength present in the
model. In the simulation of seismic waves in porous media the strict criterion imposed by
the minimum slow P-wave velocity can be relaxed because the slow P-wave attenuates very
fast in cases where the saturating fluid is viscous. In most case the minimum wave length
of the S wave is taken into account.

The fourth order scheme requires values at two points in both x and z directions from
the point for which new values are being computed. At points near the boundaries, there
are not enough neighbors to implement the scheme, so values are defined at points outside
the computational domain by a third order extrapolator (Turkel, 1980). A P-wave line
source is employed for the generation of the synthetic seismograms. The method of
Alterman and Karal (1968) was used for the source implementation. In the case where a
free surface is modelled, the solid stress components and the fluid pressure must be zero at
the surface while the velocity components are calculated by extrapolation of the
characteristic variables of the hyperbolic systems (Bayliss et al., 1986).

A new absorbing boundary technique is used in this development. This absorbing
boundary is implemented by adding a small transition zone adjacent to the artificial
boundary. In the transition zone, the direction of propagation is adjusted gradually so that
the wave reaches the boundary at normal angles. Then, the wave field is separated into
outgoing and incoming waves and the characteristics of the incoming waves are allowed to
vanish. Satisfactory absorbing effect is achieved when the width of zone is about one
wavelength for the peak frequency of the source wavelet. The details on the absorbing
boundary technique are described in Chapter 3.

The finite difference algorithm calculates the response over the whole mesh and is fully
vectorized by applying the method of matrix multiplication by diagonals (Madsen et al.,
1976; Vafidis et al., 1992). The computational time for 2400 iterations on the Convex 210

is 90 min for a mesh whose size is 300x300. Storage requirement for the velocity-stress
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method is quite high due to the additional memory required for the extra unknowns (i.c.

stress components) and for the intermediate variables present in the splitting schemes.
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2.6 EXAMPLES OF NUMERICAL SOLUTIONS AND APPLICATIONS

Uniform model

The accuracy of the numerical solutions is examined by comparing them with the exact
solutions given by (2.4.63) and (2.4.64). A homogeneous porous medium is considered
whose parameters are those of layer 1 (Table 2.6.1 for Biot’s equaticlm and Table 2.6.2 for
the C-S equation) with the damping coefficient b equal to zero. A P-wave line source
located at (x=0, :=0) employs a Gaussian time function whose peak frequency is at 30
Hz. The numerical solutions for two different grid spacings and the exact solution at
(x=100 m, z=100 m) are displayed as functions of time (Figure 2.6.1 for Biot’s equation
and Figure 2.6.2 for the C-S equation). It is shown, in this case, that a fast P-wave and a
slow P-wave are propagating in the porous medium. The oscillatory tails present in the
numerical solutions with the grid spacing of 4 meters are due to numerical dispersion of
slow P waves. When the grid spacing is equal to 2 meters, the numerical solutions fit the

exact solutions very well.

Two layer model

Seismic responses are calculated for a simple two layer model using both the Biot and
C-S equations in order to demonstrate the major features of seismic wave propagation in
porous media. In both the Biot theory and the de la Cruz-Spanos theory the attenuation is
related to the relative motion of the fluid to the solid through the damping coefTicient b or
the fluid viscosity i/, In these simulations, a small value of b or W/ is assigned to Layer 1
and a larger value of b or u/ to Layer 2 (See Table 2.6.1 and Table 2.6.2) in order to

examine the affects of the damping coefficient b or the fluid viscosity 1/ to various wave

types.
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Figure 2.6.3 illustrates snapshots of the vertical components of the solid particle

velocities (Figure 2.6.3a - 2.6.3¢ ) and fluid particle velocities (Figure 2.6.3d — 2.6.31)

for Biot’s equation modeling

Table 2.6.1 Physical parameters of porous media

P11 (kg/m3)
(2] (kg/m3)
Pi2 (kg/m?)
b (N's m?)
P (N/m?)
Q (N/m?
R (N/m?
s (N s/ m2)
q

Velocity of fast P-wave (m/s)**
Velocity of slow P-wave (m/s)**
Velocity of shear wave (m/s)**

LAYER 1*
2167

191

-83

3000
2.0332E10
0.0953E10
0.0331E10
0.684E10
0.1

3210

1180

1790
-0.337E-10
0.719E-11
1.1

-16.2

LAYER 2
2430

255

-100
700000
5.565E10
0.07E10
0.079E10
1.2E1

0.1

4860

1740

2240
-0.165E-10
0.210E-11
0.585
-48.2

*From Yew, C. H. and Jogi, P. N., 1978

** For ;=0



Table 2.6.2 Physical parameters of porous media

for the C-S equation modeling

LAYER 1
depth (m) 0~ 645
pikg/m?) 2400
phkg/m?) 1000
P2 (kg/m3) -100
Mo 0.3
K (m?) 9.56E-13
K (Pa) 2.298E10
U(Pa) 1.0E10
K¢ (Pa) 2.17E9
iy (Pas) 1.0E-7
05 0.28
Of 0.048
0 0.8
) 0.1
Velocity of fast P-wave (m/s)* 3348
Velocity of slow P-wave (m/s)* 1110
Velocity of shear wave (m/s)** 1997

LAYER 2

645 ~ 1000
2500
1000
-100
03~0.25

9.56E-13 ~ 7.8E-13

3.15E10
1.8E10
2.17E9
1.0E-$
0.27
0.035
0.8

0.1

4118 ~ 4165
1164 ~ 1120
2627 ~ 2633

*For f=0

57
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Figure 2.6.1 Comparison of analytical and numerical solutions of Biot equations for two
different grid spacings Ax and the same time step Ar=0.0001 sec.. The vertical
component of the solid part is shown as function of time. A P-wave line source generates
waves propagating in a two-dimensional porous medium. Model parameters are those for
layer 1 in Table 2.6.1. The oscillatory tails present at the large grid spacing are due to

numerical dispersion.
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Figure 2.6.2 Comparison of aralytical and numerical solutions of C-S equations for two
different grid spacing Ax and t.ime step At=0.000‘1 sec.. The vertical component of the
solid part is shown as function of time. A P-wave line source generates waves propagating
in a two-dimensional po-ous medium. Model parameters are shown in Table 2.6.2. The

oscillatory tails present at the large grid spacing are due to numerical dispersior.
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obtained by solving the Biot system. Infinitely extended models are simulated by applying
the absorbing boundary techniques described in Chapter 3 on the computational
boundaries. A P-wave line source is located in the upper layer at a distance of 244 m from
the interface . In these diagrams various phases are indicated by arrows and nomenclature.
The wave type W 1; indexed as P or S for a compressional or shear wave; a superscript is
used for the phase velocity (f for fast and s for slow) and a subscript for the layer: i.e.
Wﬁf;gfily. Multiple symbols are used to indicate reflected or transmitted phases.

The snapshots (Figure 2.6.3) at time ¢ = (.12 s shov" that the vertical components of
the solid and fluid particle velocities are in phase for tast P-waves and out of phase for
slow P-waves. At = 0.2 s, we observe the reflections P{P{, P{Sl and F‘?Ps, and a
transmuitted wave Pﬁsz of the fast P-wave as well as the slow P-wave which reaches the
interface. Finally at ¢=0.3 s, the slow P-wave is reflected at the interface while the
transmitted part is attenuated drastically since the fluid viscosity of the second layer is
higher.

In Figure 2.6.4, we present the synthetic seismograms of the solid (Figure 2.6.4a) and
fluid (Figure 2.6.4b) particle velocities (vertical components) from a solution of the Biot
system with the model used in Figure 2.6.3. The receivers are located along the line
running through the source :d parallel to the interface. Among the various reflected phases
indicated by arrows and the nomenclature, it is not surprising that the energy of the events
associated with S waves is weaker in the fluid movement (Figure 2.6.4b) than that in the
solid movement (Figure 2.6.4a), while the energy of the events associated with the slow P
waves varies in the opposite way.

Figures 2.6.5 and 2.6.6 present the solution of the Biot system for the same two-layer
model where the upper absorbing boundary is replaced by a free surface. In this case we
use an explosive source whose stresses o, and o,, are equal and proportional to a

Gaussian time function. The source is located at a depth of 12 m from the free surface. The
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Figure 2.6.5. Snapshots of the vertical component of the solid particle velocity from
the finite difference solution of Biot equations a two-layer model with the same
physical parameters 2s for Figure 2.6.3. Here the upper boundary is a free surface.
The source is located at a depth of 12 m and the interface is at 250 m.
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interface is located at a depth of 250 m.

Figure 2.6.5 shows snapshots of the vertical component of the solid particle velocity.
Any phase indicated with p(f, is due to reflection of the original wave at the surface, i.e. a
ghost. At r=0.05 s, it is seen that the wavc-train of the direct fast P-wave is followed by
the ghost reflection from the free surface. At 1=0.1 s, we can see the converted reflections
from the free surface (p(r,S 1), the Raleigh waves (Ra) and the slow P-wave (P§). At 1=0.15
s, one part of the energy of the direct fast P-wave has been transmitted (PqP’; and another
part has been reflected (P{P{). At =0.2 s, we observe the reflected phase p(f,S]Sl and the
transn:iited phases p{,S]Sz of p{,Sl while P{P{ is reflected at the free surface (Pt{ P{Pﬁ). We
also observe the converted phase of the direct fast P-wave from the interface (P{S]). A
1=0.25 s, P{P{Pﬁ and slow P-wave reach the interface. At 1=0.3 s, the surface reflecteu
wave, P{P{P{Pg, is propagating ac\.nward through the second layer and it catches up to
PhS1S2. The slow P-wave is reflected (P{PS) and the transmitted part is drastically
attenuated in the second layer.

Figure 2.6.6 shows the synthetic seismogram of th solid particle velocities (vertical
component). The seismogram is dominated by the Raleigh wave. The late arriving phases
are ~ither reflections or multiples from the interface at a depth of 250 m.

The response of a two layer model is also calculated by solving the C-S system to
demonstrate the major features of the wave field in porous media. The porosity is constant
in the first layer and depth dependent in the second layer (Table 2.6.2). A P wave line
source acting on both the fluid and tlie solid parts is located in the upper layer at a distance
of 200 m from the interface. The time step is 0.2 ms and the grid spacing is 3.75 m in both
the x and z directions. Figure 2.6.7 iilustrates snapshots of the vertical components of the
solid and fluid particle velocities. Similar phenomena are observed as in the results obtained
by solving the Biot system.

The snapshots show that the solid (Figure 2.6.7a, b) and fluid (Figure 2.6.7c, d)
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Figure 2.6.7. Snapshots at two Jifferent times of the vertical components of the solid
(a, - and fluid (c)-(d) particle velocities from the finite difference solution of C-$
equations for a two-layer model. The model parameters are presented in Table 1. A
P-wave line source, applied to both the solid and fluid parts, is located in the upper
layer at a vertical distance of 200 m from the interface.
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particle velocities are in phase for fast P-waves and out of phase for slow P-waves. At ¢ =

(.15 s, we observe the reflections P{P{ and PﬁSl of the fast P-wave as well as the slow P-
wave which is approaching the interface. The fluid velocity snapshots also show clearly the
converted slow P wave reflaction P{P‘vl’ from the incident fast P wave. At 1=0.25 s, the
slow P-wave is reflected (P{P}) at the interface while all the transmitted phases from the
incident slow P wave are attenuated drastically since the fluid viscosity of the second layer
is higher.

In figure 2.6.8, we present the synthetic seisraograms of the fluid and solid particle
velocity vertical components for the model used .n Fgure 2.6.7. The receivers are located
along the line running through the source and parallel to the interface. It is observed again
that the energy of the events associated with § . .v/es is weaker in the fluid movement
(Figure 2.6.8b) than that in the solid movemer: (¥: 'ure2.6.8a), while the energy of the
events associated with the slow P wave varies ir the opposite way. This implies that the
fast P waves and S waves are propagatu: through the solid framework and induce motion
in the fluid in the pores via viscous couupiing. In contrast, the slow P waves propagating
through the connected fluid content also irh ce motion in the solid material.

If the saturated fluid is an ideal fie 4 witk .2ro viscosity, there would be no energy
dissipation in the wave motion. Figure 2.6.9 gives a synthetic example for this situation.
The model is the same as for Figure 2.6.8 but here we let the fluid viscosity Uy = 0.
Compared to Figure 2.6.8 the energy of the the phases associated the slow P waves is
much strong:r in the seismogram for the vertical component of solid particle velocity
(Figure 2.6.93). In Figure 2.6.9b, which shows the seismogram for the vertical companent
of the fluiu particle velocity , the slow P wave associated events have the same energy level
as the others. This is because the attenuation of the slow P wave is very sensitive to the
fluid viscosity. On the other hand, the flvid viscosity does not provide a dominant energy

loss mechanism for the fast P waves and the S waves in porous media. The events
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Figure 2.6.10. Synihetic seismogram of the particle velocity vertical component obtained
from the numerical soi-uons of the C-S system. The model is the same as in Figure 2.6.9

but the porosity is set to be zero to simulate nonporous elastic solid media.
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associated with the slow P wave in Figure 2.6.9 are shown with obvious numerical
dispersion because of the low velocity of the slow P wave and the relatively large grid
spacing (3.75 m) that we chose. The numerical dispersion, however, is less serious in the
seismograms shown in Figure 2.6.8, since the slow waves are attenuated quickly in porous
media saturated with viscous fluid. This suggests that the minimum slow P wave velocity
criterion on numerical dispersion can be relaxed when realistic earth models are considered.

In the C-S system the porosity of the medium is included explicitly; the limiting cases
of zero porosity should properly simulate the wave propagation in a single phase (solid)
medium. Figure 2.6.10 is a synthetic seismogram showing the vertical component of the
(solid) particle velocity which results when the porosity is zero in the model used in
Figures 2.6.8 and 2.6.9. The result is exactlv the same as would be obtained using an
elastic wave equation.

The two layer examples verify the existence of a "slow" P-wave whose solid and fluid
vertical components are out of phase. The "slow" P-wave is attenuated drastically at the
lower layer where the fluid viscuxsity is higher. This is in accordance with theories given by
Biot (1956) and de la Cruz-Spanos (1985) which predict increasing attenuation of "slow"
P-wave as viscosity increases. Both the Biot theory and the da la Cruz-Spanos theory are
limited in their ability to describe the attenuation of the "fast" P-wave and S-wave, because
they have only one attenuation mechanism, related to the differential motion between solid

and fluid, which is not the dominant one of "fast" P-wave and S-wave dissipation.

Reflectivity variation versus engle of incidence study

The variations of refle~rvity versi s angle of incidence in a shale-sandstone interface are
st for three [A%erent <ases where the sandstone is fully saturated with gas, bitumen or
water. The e Juired parameters for the Biot system and the C-S system have been

calctitated from the properties of the rocks and fluids in the Cold Lake region (see Table F1
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for shale and Table F2, F3, and F4 for sandstone saturated with gas, bitum  and water
respectively in Appendix F). In calculating the P-P reflection coefficients, the naximum
amplitudes of the reflected P-wave in a two layer model as they are recorded at a finite
number of horizontal and vertical component receivers are added vectorially at each receiver
location. The reflection coefficients are obtained by dividing the resulting value for each
receiver by that of the direct wave in a uniform medium as recorded at the location
symmetrical to the reflection wave receiver about the interface location in the two layer
model. In this approach the effects of cylindrical spreading and attenuation are removed
since the same effects are suffered by the reflection wave and the direct wave. The model
geometry is given in Figure 2.6.11 where the depth from the receiver to the interface is 120
m which is large enough to ensure the separation of the P wave reflection from the
converted S wave reflection.

Figure 2.6.12a shows the reflection coefficients extracted from the finite difference
solutions of the Biot system. The P-P reflection coefficients from the shale-gas saturated
sandstone interface are always greater than the P-P reflection coefficients froin the other
two interfaces. When the angle of incidence is equal to zero, the reflection coefficient of the
interface between shale and gas saturated sandstone is 0.24, while the reflection coefficient
of the interfacs between shale and bitumen saturated sandstone and the reflection coefficient
of the interface between shale and water saturated sandstone are (.1 and (.08 respectively.
T.ie curves of the reflection coefficients versus the angle of incidence show a similar
changing trend. They decrease slightly at first and then at about 50°, increase quickly.
Figure 2.6.12b shows amplitude variation of the solid particle velocity versus angles of
incidence. The vertical components show a general decreasing trend while the total
amplitudes initially decrease and then increase at about 50°.

in figure 2.6.13 we present the results of amplitude variation versus angles of incidence

as well as the reflection coefficients from gas-bitumen, gas-water and bitumen-water
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Figure 2.6.11 Model geometry used in th: finite difference study of reflectivity variation

versus angle of incidence. “S” symbolizes a source and “G” symbolizes a receiver.
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Figure 2.6.12a P-P reflection coefficients extracted from finite difference solutions of the
Biot system over interfaces of shale and gas saturated sandstone (Sg), shale and bitumen

saturated sandstone (Sb) and shale and water saturated sandstone (Sw).
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Figure 2.6.12b Relative P-P reflection amplitude extracted from finite difference solutions
of Biot system over interfaces of shale and gas saturated sandstone (Sg), shale and bitumen
saturated sandstone (Sb) and shale and water saturated sandstone (Sw). Solid symbols for

total amplitude of the particle velocity and open symbols for vertical components.
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Figure 2.6.13a P-P reflection coefficients extracted from finite difference solutions of the
Biot system over fluid contacts of gas and water in sandstone (G/W), gas and bitumen in

sandstone (G/B) and bitumen and water in sandsrone (B/W).
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Figure 2.6.13b Relative P-P reflection amplitude extracted from finite difference solutions
of the Biot system over .luid contacts uf gas and water in sandstone (G/W), gas and
bitumen in sandstone (G/B) and bitumen and water in sandstone (B/W). Solid symbols for
total amplitude of the particle velocity and opet: symbols for vertical components. Beyond

the critical angle the reflection interfered with headwaves.
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Figure 2.6.13c P-P reflection coefficients extracted from finite difference solutions of the
C-S system over fluid contacts of gas and water in sandstone (G/W), gas and bitumen in

sandstone (G/B) and bitumen and water in sandstone (B/W).
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Figure 2.6.13d Relative P-P reflection amplitude extracted from finite difference solutions
of the C-S system over fluid contacts of gas and water in sandstone (G/W), gas and
bitumen in sandstone (G/B) and bitumen and water in sandstone (B/W). Solid symbols for
total amplitude of the particle velocity and open symbols for vertical components. Beyond

the critical angle the reflection interfered with headwaves.
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contacts in a Cold Lake sandstone (Appendix F). Figure 2.6.13a and b are calculated with
the Biot system while Figure 2.6.13c and d are the results of the C-S system. It can be seen
that the gas-water contact has a slightly higher reflectivity than the gas-bitumen contact
while the bitumen-water contact gives lov est reflectivity. All the curves of reflection
coefficients monotonically increase with angle of incidence (Figure 2.6.13a and c). The
solid particle amplitude curves also have a different pattern from those of the reflections
from the shale-sandstone interface. All of the vertical and total amplitude curves for the
solid particle velocity of the reflections from the gas-water, gas-bitumen and bitumen-wat-»
contacts generally increase with the angle of incidence (Figure 2.6.13b and d). The
decrease in amplitude at large incident angle is related to the interference between reflection

and head waves beyond the critical angles.

Field example

The methods of finite difference simulation of seismic waves in porous media described
in this chapter are applied in modeling the seismic surface experiments over a thermally
enhanced oil recovery (EOR) region. The largest, and potentially the most valuable, of
Alberta's subsurface mineral deposits is the crude oil in buried oil sands deposits. Since
only 7% of these deposits are accessible to surface mining, a large amount of research and
many pilot plant studies are being carried out to examine the recovery of the oil through in
situ methods. Most of these involve the application of heat to reduce the viscosity of
bitumen so it may be pumped to the surface. In a steam injection project the steara is
injected at pressures higher than the ambient formation pressure to increase the reservoir
temperature in order to mobilize the heavy oil. It is always difficult to know the geometry
of the heated zone. Drilling is very expensive and not always conclusive about the
properties of the heated zone since the act of drilling disturbs the fluids and the strata. The

measured effects of temperature and pressure on the elastic velocities strongly suggest that
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it may be possible for a seismic survey to monitor thermal fronts in EOR projects Viang
and Nur (1988) showed experimentally that by increasing the ternperature from 20° 10
120°C the compressional and the shear velocities decrease by 10%-60%. Crosshole seismic
experiments have proven (Macrides, Kanasewich and Baratha 1988) to be usetul tools in
imaging steam-heated rocks since they can provide moderate resolution remote sensing of
the anomalous zone. Hole to hole seismic measurements are expensive and a more cost
effective procedure is to monitor with near surface sources and receivers. Before the field
procedures are attempted it is useful to carry out computer simulation studies on various
methods of carrying out the field procedures and also to develop methods for the
interpretation of complex field data. The seismic modeling of a seismic surface survey over
a EOR region based on finite difference soluti: as to the elastic wave equations was
conducted by Dai et al. (1990). However, in the elastic simulations, no direct relationships
were established between the seismic characteristics and the reservoir characteristics, such
as the porosity and the bulk model of the fluid content in the pores etc..

Several seismic experiments have been conducted by ESSO R:sources Canada for
monitoring steam injection projects in the Cold Lake area. The computer simulations assist
in the interpretation of the real data where the models are modified until a reasonable match
is obtained between the field and the synthetic seismograms. In the following simulations
synthetic seismograms are obtained by solving the Biot system using the finite difference
method.

At Cold Lake the heavy oil or bitumen is contained in various sands of the lower
Cretaceous Mannville group which averages 210 m in thickness. The Mannville group is
subdivided into the McMurray, Clearwater, and Grand Rapids formations. The McMurray
formation is up to 60 m thick and charaterized by a continuous basal sand section and an
upper zone of thinner sands intersected with shales. The basal McMurray sands are mainly

water bearing with upper thin sands containing minor amounts of bitumen when adequately
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structured. ‘The Clearwater formation, which consists mainly of highly saturated sands, is
the target layer for most seismic surveys. It occurs at depths of 425-450 m having an
approximate thickness of 50 m and an average porosity of 30% - 35%. The bitumen
comained in the Clearwater formation accounts for approximately one-half of the total
heavy oil reserves at the Cold lake area. The Grand Rapids is up to 100 m thick and
primarily consists ot thin sands imbedded with shales. Geological and geophysical
descriptions of the Cold Lake region have been given by Harrison et al (1981) and
Kanasewich (19a3).

In the present study, computer simulations of the Cold Lake models are carried out in
order to examine the effects of the medium’s porosity and the fluid cont-ats on the wave
ampliudes and velocites hence the arrival time of the seismic waves and to confirm the
capability of surface seismic serveys in monitoring the EOR procedure. A simplified Cold
Lake earth model with a steam heated zone is illustrated in Figure 2.6.14. The steam zone
is « onsidered along with a heated bitumen transition region. The P wave velocities and the
porosities for each layer are indicated within the model. The maximum width of the steam
zone is 150 m. The steam zone is truncated at the top by a shale layer whose porosity is
0.01 above the Clearwater sandstone with porosity of 0.33. The physical parameters of the
model are given in Appendix G.

In the computer simulation with the finite difference method the time step is 0.25 ms,
the grid spacing is 3.5 m and the dominant frequency of the Gaussian line source is 40 Hz.
Figure 2.6.15 illustrates the seismic response during the process of steam injection. Figure
2. 6.15a shows the synthetic seismogram of a shot gather before the steam injection and
Figure 2.6.15b shows the synthetic seismogram of a shot gather after the steam injection
with the seismic source located above the center of the steam zone. The synthetic
seismogram before injection (Figure 2.6.15a) shows regular P-P reflections as well as

converted P-S reflection. As in real cases, no slow P wave phase is present because
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Figure 2.6.14. The Cold Lake depth model with a steam heated zone used for calculating

synthetic seismograms. The fast P wave velocity and porosity of each layer are given in the

left column; more physical parameters are given in Appendix G.
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Figure 2.6.15a Synthetic seismic shot gather obtained from a finite difference solution

Biot equations for the model in Figure 2.6.14 before steam injection.
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Biot equations for the model in Figure 2.6.14 after steam injection.
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87

Distance Steam injection location

0 m (SE) r 982 m (NW)

” ' = .00

B 0.200
0.400 ~J
3
®
2
it 0.600 £

!
I )
0.800
1.000

Injection” level Cold Lake Linc 82

Figure 2.6.17 Common midpoint stack section obtained by Esso in a steam injection site

near Cold Lake, Alberta, February 1984.
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of its high attenuation property. The reflection at about 0.45 s. which comes from the
interface between shale and bitumen saturated sandstone has a phase opposite to the others
because the upper shale layer has higher velocity than the lower bitumen saturated
sandstone layer. The synthetic seismogram after injection (Figure 2.6.15b) shows the
reflection and diffraction waves from the steam zone in addition to the reflections present in
Figure 2.6.15a. The reflection from the top of the steam zone shows stronger amplitude
since the the fluid content (bitumen) in the Clearwater sandstone is replaced by steam and
heated bitumen. It is also observed that the two reflections from the interfaces below the
steam zone have been delayed which is attributed to the low velocity of the steam zone.
Forward modeling of zero offset seismic response is calculated by positioning a series
of sources and receivers along the surface. The computed zero offset section (Figure
2.6.16) shows strong reflection from the top of the steam zone. The two lowest reflection
events show a discontinuity due to the parts below the steam zone being delayed and the
interference with the diffractions from the steam zone. Tue simulated section is compatible
with the common-mid-point stack section of field data (Figure 2.6.17) which was obtained
by Esso in a steam injection site near Cold Lake, Alberta, February 1984. Relative
amplitude processing has been performed on the data. The section shown in Figure 2.6.16
is migrated with a new method described in Chapter 5. The migrated section properly
images not only the steam zone but also the interfaces below the steam zone (see Figure
5.5.7) demonstrating the capability of the seismic reflection method in monitoring the

thermally enhanced oil recovery (EOR) process.
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2.7 CONCLUSION

An explicit, heterogeneous, high order finite difference method has been developed for
the simulation of seismic waves propagating in inhomogeneous porous media. The
simulation is based on the first order hyperbolic systems wkich are formulated from the
Biot and de la Cruz-Spanos theories. This formulation enables one to obtain not only the
particle velocity fields of the solid and fluid motion but also the solid stress and fluid
pressure wave fields and to model the seismic response of a heterogeneous medium
without introducing numerical approximations of the space derivatives of the physical
parameters. Biot’s equations and the C-S equations are analytically solved for point and
line sources with the source force acting on both solid and fluid materials and generating a
fast and a slow P-wave in a uniform porous medium.

Numerical solutions of Biot’s equations and the C-S equations for simple earth model
show similar features of the wave motion in porous media. Additional slow P-wave
propagation can be observed in the synthetic seismograms when very low fluid viscosity is
used, although the slow P-wave is not generally observable in the real world. Attenuation
is more pronounced for the slow P-wave. This is in accordance with Biot’s theory and the
de la Cruz-Spanos theory where the attenuation is related to viscous dragging or to solid
and fluid interactions. This attenuation mechanism, however, is of secondary importance
for fast P-waves and for S-waves. In porous medium modeling, more rock properties of
geophysical and petrophysical interests, such as porosity, fluid density, fluid bulk modulus
and fluid viscosity, are taken into account in calculating the seismic response. The realistic
examples and the studies of reflectivity variation versus angle of incidence over interfaces
of different rock types and different fluid contents indicate the application potential of this

method in seismic diagnosis of the rock type and fluid content.
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CHAPTER 3

ABSORBING BOUNDARIES FOR THE NUMFRICAL SIMULATION OF
SEISMIC WAVES IN ELASTIC AND POROUS MEDIA

3.1 INTRODUCTION

First order hyperbolic systems of wave equations have been used to simulate seismic
waves in elastic media (Virieux 1984, 1986; Bayliss et al. 1986; Vafidis et al. 1992) and
porous media (Dai et al., 1992a, b) with a finite difference scheme in the time-space
domain. Using the first order systems for forward modelling enables one to obtain not
only the particle velocity but also the stress of the wave fields. In addition, a properly
formulated first order system, in which each of the coefficient matrices relates to the
mechanical properties of the medium in one spatial direction, makes it easy to deal with the
complexity due to the anisotropy of the medium.

Numerical solutions to the problems involving wave propagation must be obtained
over a finite region due to the limitation of computer memory size. The time evolution of
the wave fields are governed not only by the state in the interior of the region but also by
the waves entering the region through the boundaries. Therefore boundary conditions
which describe the incoming waves should be specified to complete the description of these
problems. In seismic modelling it is assumed that there is no energy coming from the area

outside the region of computation. Then, the solution at the boundaries consists of
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outgoing waves. It is desirable to impose non-reflecting or absorbing conditions which
have the property of minimizing wave propagation from the boundaries.

A widely used absorbing condition in seismic wave modelling was proposed by
Clayton and Enquist (1977). They used the one-way wave equations based on the paraxial
approximations of the acoustic or elastic equations. Related material is given by Engquist
and Majda (1977). Another popular algorithm of this type was proposed by Reynolds
(1978). The effectiveness of these boundary conditions is limited for large angles of wave
incidence to the artificial boundary. Instabilities associated with paraxial approximation
methods for certain values of Poisson’s Ratio were reported by Emerman and Stephen
(1983), Mahrer (1986), and Staccy (1988). A more recent paraxial method for acoustic
wave modeling has been developed by Keys (1985) and independently by Higdon
(1986,1987) who used a product of one-way wave equations at the boundary. Higdon
(1991) further extended his method for elastic waves. These methods all break down for
surface waves and headwaves impinging on the model edges. Scandrett et al. (1986) used a
first-order boundary condition to absorb Rayleigh waves near a free surface of an elastic
medium. Cerjan et al. (1985) proposed a method by applying a simple spatial filter or
sponge which is based on enlarging the computational domain and using a damping
mechanism on the additional portion of the domain. Further discussion and extension are
given by Kosloff and Kosloff (1986) and a similar approach was developed by Sochacki et
al. (1987). In these methods the sponge effect mnst be applied smoothly over a transition
zone of three to five wavelengths in thicknes: o avoid artificial scattering from the the
sponge itself. Because of this extension of the computational domain, the sponge boundary
conditions are more applicable with large memory supercomputers. The implementations of
most of these methods are designed for second order wave equations. Hedstrom (1979)
developed a non-reflecting boundary condition for one dimensional first order nonlinear

hyperbolic systems and Thompson (1987) generalized it to multidimensional problems. A
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thorough review of non-reflection boundary conditions is given by Kelly and Marfurt
(1990).

A comprehensive description of the various damping mechanisms which allow the
simulation of radiation problems in finite regions was given by Israeli and Orszag (1981).
They also discussed the method of propagation modifications and they proposed a sponge
filter for the approximation of one dimensional wave propagation problems.

In this development, we consider the imposition of absorbing boundary conditions for
first order hyperbolic systems of which those describing seismic wave propagation in two
dimensional elastic or porous media are special cases. We use the one dimensional
absorbing boundary conditions which are based on the characteristic analysis of the
hyperbolic systems and absorb the waves impinging on the boundaries perpendicularly.
Two wave field modification approaches are employed in narrow transition zones near the
boundaries. A wave propagation modification method is used to adjust the travelling
directions of the waves so that they reach the boundaries at a right angle. A one-way
sponge filter method gives a dissipation mechanism to the transition zone, which selectively
damps the remaining incoming waves without affecting the outgoing waves. The
combination of the one dimensional absorbing boundary conditions with either of these two
approaches effectively absorbs not only the body waves but also the surface waves. These
methods are efficient and robust. They are specially suited to problems involving multiple
tvpes of propagating waves. These methods are utilized in Chapter 2 for seismic wave
simulation 1n porous media where “slow” P waves may be present in addition to the regular
(“fast™) P waves and S waves. Numerical examples are given in this chapter for P-SV

wave propagation simulations in elastic media.
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3.2 ONE DIMENSIONAL ABSORBING BOUNDARY CONDITIONS

The two dimensional seismic wave behavior in elastic and porous media can be
described by a first order differential system

%%=A%;}-+B%l:— +Cu, (3.2.1)
where A, B and C are nxn coefficient matrices; u is a vector whose components consist
of n dependent variables, such as the components of the particle velocity and the stress.
Matrices A and B have n real eigenvalues with n independent eigenvectors. The
elements of matrices A and B are given by the elastic properties of the medium in the x-
direction and z-direction, respectively. The matrix C represents an inhomogeneous term
(which often arises from wave-dissipation related properties). These matrices can be space
coordinate dependent for heterogeneous media. To solve system (3.2.1) by a finite
difference method in the space-time domain, special treatment at the computational
boundaries is required to minimize the incoming waves from artificial boundary reflections.
Difficulty arises in boundary condition specification since both incoming and outgoing
waves are propagating at the boundaries.

It is easy, however, to isolate the wave characteristics propagating in the opposite
directions for the one-dimensional problem, for instance in the z-direction:

du du

-a—;- = B-a—;— +Cu. (322)

Let u(z,r) be a solution of equation (3.2.2), and suppose that for ze (0, H), the
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computational region, 4; is an eigenvalue of B with the corresponding left eigenvectors 15

(a row vector) and the right eigenvectors r(;) (a column vector). Then

( )Il A,I( i (3.2.3)

Brid=ad). (3.2.4)
Because of the orthonormality of left and right eigenvectors we have

) < 5 (3.2.5)
It follows from equation (3.2.3) and (3.2.4) that

LpBRg=A, (3.2.6)

where the rows of the matrix Lp are the normalized left eigenvectors l( i) , the columns of
the matrix Rg are the normalized right eigenvectors "(B) , and the matrix A is diagonal,
with A;; = A;, ordered so that A1<A5...<A,,.

It follows from the linear transformation w = L g u that equation (3.2.2) becomes

ACLANF L (3.2.72)

ot 0z

where C*=L BCRg, or in component form

aw; aw .
_:)_L "9z 5.t 2 CJWJ (i=1,...n), (3.2.7b)

Jj=1
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provided that B is spatially independent. Equation (3.2.7) is the standard form of the first

order hyperbolic system with an inhomogeneous term. If C = 0, equation (3.2.7b)

becomes
%1}: /1,-%‘12’1 , (3.2.8)

which is a set of elastic wave equations for waves traveling at the characteristic velocity -A;.
Three different situation are possible. For 4;<0, the wave given by w; travels in the
positive z-direction (down in geophysical convention), which is the incoming wive
z=0, the top boundary and is the outgoing wave at z = H, the bottom boundary. For
Ai > 0, w; travels in the negative z-direction (or up), the outgoing wave at the top
boundary and is the incoming wave at the bottom boundary.

At the boundaries the outgoing waves depend on the information at and within the
boundaries. Therefore they can be found from a properly designed numerical
approximation of the solution of equation (3.2.2), such as a one-sided finite difference
method involving only interior and boundary points. To let the incoming waves at the
boundaries vanish, for general cases, we can specify the absorbing boundary conditions as

w;= Ig)u =0, (3.2.9)
if 4; corresponds to an incoming wave. Equation (3.2.9) is the equivalent form of the

absorbing condition given by Hedstrom (1979) (also see Tompson, 1987)

=0, (3.2.10)

aw,-’
z2=0,H

o
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which implies that the amplitude of the incoming wave w; is constant in time at the
houndaries. Since we assume an initial state of equilibrium at the boundaries, condition
(3.2.9) ensures that there are no waves coming from the boundaries.

If we denote u; as the values of u at the boundary calculated by a certain numerical
scheme using interior points, then the above discussion leads to the implementation of the

absorbing boundary condition (3.2.9) by letting

Ig)u( )=0, (for the incoming waves)

(3.2.11)

15; hu(e) = 15;) u 1), (for the others)

at the boundaries. At the bottom boundary (z = H), for instance, if A; >0, for

i=r+1, ..., n, then we can write

Lgu()) =g, (3.2.12)
where
Ig) uf1)
lg) ufs)
85 . (3.2.13)
0
— 0 —

We can therefore determine the values of the variables at the boundary by solving equation
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(3.2.12). It follows that

u(r) =Rpg, (3214

at the bottom boundary.

A straightforward extension of the problem from one dimension to two dimensions for
the commonly used rectangular models can be made by simply applying system (3.2.14) 10
the boundary of z = H, and applying its analogous forms to the other boundaries.

This idea was first applied by Bayliss et al. (1986) to the two dimiensional P-SV elastic
wave modelling. It is theoretically obvious that this method can only absorb the r{lections
of waves which impinge at the artificial boundaries perpendicularly. When a free surface
boundary condition is applied to the top boundary, Bayliss et al. (1986) claimed that this

simple extension does not absorb the Raleigh waves.

3.3 WAVE FIELD MODIFICATION APPROACHES

In order to improve the absorption of the outgoing waves Israeli and Orszag (1981)
suggested modifying the propagation characteristics of the waves near the boundaries.
They examined the one dimensional scalar wave equation and found that the artificial
reflection can be effectively decreased by smoothly modifying the wave speed as the space
coordinates approach the boundaries to match the approximate absorbing boundary
conditions applied.

This concept of wave propagation modification can be effectually generalized to multi
dimensional problems. In this development we adjust the wave propagation directivity and

the non-derivative term in a transition strip adjacent to a boundary so that the outgoing
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wiaves at the boundary are described by the wave equation with a zero inhomogeneous tenn
and impinge the boundaries perpendicularly. Then the one dimensional absorbing
boundary conditions can be effectively applied to the corresponding boundaries. Our
numerical experiments show that this method absorbs successfully not only the body
wives but also the surface waves.

Taking the bottom boundary for an example, we introduce a transition zone of
thickness L on the top of the boundary. In the transition zone the wave equation (3.2.1) is
maodified to
%l;'- = m(z) A%‘i + B%—‘zl +m(z)Cu, (3.3.1)
where m(z) is a smooth monotonic function introduced to impose the propagation
madification. When m(z) = 1, equation (3.3.1) is exactly equation (3.2.1) while m(z) = 0,
equation (3.3.1) is modified into the one dimension form (3.2.2) with the inhomogeneous
term equal to zero. We choose

mz) =1+ 12- cos (Z—-ti—*—L- It) ze(H-L,H) (3.3.2)

1
2
for a given L, so m(H-L) =1 and m(H) = 0.

The eigenvalues of the coefficient matrix m(z) A, which are the characteristic velocities
in the x components are now given by m(z) A;. Thus the transition zone is an anisotropic
layer in which the characteristic velocities in the x-direction change smoothly to zero while
: approaches H. Therefore the outgoing waves are vertically incident on the bottom
boundary and the imposition of the absorbing boundary condition according to equation
(3.2.14) will effectively reduce the artificial reflections from the boundary. The only

energy returning to the modelling region comes from the reflections due to the horizontal
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velocity change in the transition zone. These reflections are controlled by the smoothness
of the function m(z). When equation (3.3.2) is used, we find that /. equal to one
wavelength for the peak frequency gives very sausfactory results,

Another way to minimize the incoming reflections is to introduce a damping tenw in the
transition zones. Having isolated the incoming and outgoing waves we can determine the
proper forms of the damping terms that selectively affect the incoming waves while letting
the outgoing waves leave the domain without effect. This method can be called one-way
sponge filtering in order to distinguish it from the sponge method introduced by Cerjan et al
(1985). Taking the bottom boundary as an example, we rewritc equation (3.2.7a) into

Q!:—=A%% +LgCRpw - Dw (333
in the transition zone. Here D is a matrix of damping coefficients. To attenuate the

remaining incoming waves from the bottom boundary, we choose

D =v(2) , (3.3.4)

An

where v(z) > 0, if 4; > O for i= r+1,...n. An extra dissipative factor eV2IAd g
imposed on the incoming waves of each type by the additional damping term in a depth step
|aJ. Reflections are caused by the introduction of the damping coefficient v(z) which
changes the mechanical properties of the medium in the transition zone. However, if we lct

v(z) vary smoothly with z, only small reflections result. One choice of v(z) is given by
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Wz) = [1- cos(l—'L;TtL‘- 27z)] ze(H- L, H), (3.3.5)

v
2
which vanishes at the edge~ o the transition zone.

Multiplying equation (3.3.3) by Rp gives

du du

—=B=—+C , 3.3.6

ot 9z b ( )
where Cp = C - RgDLg. Therefore it is easy to combine the selective damping term into
the existing codes. Analogou. selective damping terms can be obtained for the other

boundaries.

34 EXAMPLES FOR TWO-DIMENSIONAL P-SV ELASTIC WAVES

The absorbing boundaries described in the previous section can be directly implemented
in all time advance schemes for wave field modelling with first order hyperbolic systems.
Here we present the numerical examples for the two dimensional isotropic elastic P-SV
system. The applications in the seismic wave simulation in porous media are given by Dai
et al. (1992a) for Biot's equations and Dai et al (1992 b) for the de la Cruz-Spanos
equations.

In two dimensional isotropic elastic media the P-SV waves are described by the first
order hyperbolic system.

M _ a9 gou (3.4.1)

o ox 0z



101

where
u
w
u=| oy |, (3.4.2)
Oz
Oxz
0 0 p' 0 o0 ]
0 0 0 0 p!
A=\ 2420 0 0 O 0 |, (3.4.3)
A 0 0 0
L 0 o 0 O i
and
0 0 0 0 pt ]
0o 0 0 pt 0
B={ 0 2 0 0 O (3.4.4)
0 2+2u O 0
L4+ 0 0 0 |

Here, u, and w are the horizontal and vertical components of the particle velocity
respectively while 0y x, 0;; and Oy, denote the components of the stress. p, A and u are
the density, the Lame constant and the shear modulus of the medium. Equation (3.4.1) is
numerically solved by applying the dimensional splitting method with an one dimensional
MacCormack type finite difference scheme which is an explicit scheme of fourth order
accuracy in space and second order accuracy in time (Vafidis et al., 1992).

It is easy to show that the matrices A and B have the same eigenvalues

(llv 12’ 13, l4, 2'5) = ('va'v.h O, Vs, Vp)a (345)



102

where
Vp = Z’_i__z_E_ , (346)

and

Vi=a/5 - (3.47)

are the P-wave and S-wave velocities respectively. The left eigenvector matrix Lp and the

right eigenvector matrix Rp of the matrix B are given, respectively,by

0 1 0 =1L 0
Vpp
1 0 0 0 -1
Vip
Lg =% 0 0 vz A2A , (3.4.8)
< A+ 2u
1 0 0 0 VIE
S,
0 1 0 1 0

and
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A 9 vz oo AL (3.4.9)
VP

~
>
I
S
=

-Vep 0 " 0 Vyp

0 -Vgp 0 Vip O

Substituting the left eigenvectors given in squation (3.4.8) into equation (3.2.13) we obtain

the vector g7 which is given by

(w(’)- o‘z’)) |

8= 0 , (3.4.10)

where u(), wl), o) and o{) are the values of u, w, 0;, and Oy at the bottom boundary
calculated by the finite difference scheme with the inner points. "o impose the one
dimensional absorbing boundary condition to the bottom boundary we use equation

(3.2.14) and obtain
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B B
— - wli)- o(zz)
0O 1 0 1 0 Vpp
)
u(l)-__xL
" 1 60 0 O 1 V,
w
on |=1 2 0 1 o & 0 . (3.4.11)
2|V, V,
GZZ
Ox: Vp 0 0 0 Vp 0
0 - sP 0 vsp 0
- - 0

For a one-way sponge filter an additional term Cpu is to added to the right hand side of

equation (3.4.1) in a transition zone on the top of the bottom boundary, where
Cp=RpDLg . (3.4.12)
From equations (3.3.4), (3.4.2), (3.4.5) and (3.4.12) we have

Vsu + Oxz

022

_1 Ao.
Cpu = 2 v(2) Au, + V,,';l (3.4.13)

V[%puz + Vpoy,

V.sg puy + VsOx,
l_ _—
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with v(z) given in equation (3.3.5).

The performance of the absorbing boundaries is illustrated by a two dimensional two
layer model of which the physical parameters are given in Table 3.4.1. The modelling
region is a 900 m square with a uniform grid spacing of 3 m.

For the first case, absorbing boundary conditions are imposed on all the margins of the
computational domain to simulate an infinitely extended model. The interface is positioned
550 m below the top margin. A line source of pure P waves is located in the upper layer
250 m above the interface. The time function of the source is of Gaussian form with a peak
frequency of 30 Hz. The receivers are placed along the line running through the source and
parallel to the interface.

Figure 3.4.1a displays the resulting seismograms for the vertical component of particle
velocity when only the one dimensional absorbing boundary is implemented with equation
34 r the bottom boundary and its analogous forms for the others. Prominent
artificial reflections are observed since only the perpendicularly impinging waves are
absorbed at the boundaries. Figure 3.4.1b is an enlarged trace from Figure 3.4.1a, which
shows how the quality of the synthetic record has deteriorated.

Figure 3.4.2a shows the improvement of the seismogram by applying the one-way
sponge filters in combination with the one dimensional absorbing boundary conditions.
The width of the transition zone L is equal to 120 m which is less than the peak
wavelength of 133 m and the damping coefficien: v in equation (3.3.4) is chosen to be
0.025/m. The seismogram shows weak artifacts on the reflections recorded in the
transition zone in the use of the one-way sponge filters (the first and last 8 traces). Figure
3.4.2b can be compared to Figure 3.4.1b showing that the artificial reflections have been
reduced.

The effectiveness of wave propagation modification is illustrated in Figure 3.4.3 which

exhibits the receiver output between 105 m and 795 m from the left boundary. The traces
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are of high quality and the artificial reflections are very weak as seen on the enlarged trace

in Figure 3.4.3b which is recorded at the saine location as those in Figure 3.4.1b and

3.4.2b.
Table 3.4.1 Physical parameters of a two layer elastic model
Layer 1 Layer 2
depth (m) 250.
r (kg/m3) 2300.0 2500.0
A (Pa) 0.69E10 1.33E19
1 (Pa) 0.69E10 1.33E10
V, (m/s) 3000.0 4000.0
Vs (m/s) 1732.1 2309.4
case 1 case2 case 1 case2
depth (m) 0 0 550 250
source depth (m) 250 15

The second case, as shown in Table 3.4.1, is for a two layer model in a half space with
a free surface at the top margin of the computational domain. The interface is now at a
depth of 250 m. The source is located 15 m below the surface.

When only the one dimensional absorbing boundary conditions are employed on the
other boundaries, strong artificial reflections of the Raleigh wave are observed among the
others as shown in Figure 3.4.4. In contrast, the combination of the wave propagation

modification technique and the one dimensional absorbing conditions absorbs both surface
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Figure 3.4.1 (a) Seismogram for a two layer elastic model with the one dimensional
absorbing boundary conditions imposed on all the computational margins. (b) An enlarged

trace from (a).
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Figure 3.4.2 (a) Seismogram for the same two layer elastic model. The one-way sponge
filter approach is applied to all computational margins in combination with the one-

dimensional absorbing boundary conditions. (b) An enlarged trace from (a).
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Figure 3.4.3 (a) Seismogram for the same two layer elastic model. The wave propagation

modification approach is applied for all computational margins in combination with the

one-dimensional absorbing boundary conditions. (b) An enlarged trace from (a).
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and body waves effectively as shown in figure 3.4.5. This yields high quality synthetic
seismograms with surface waves and multiple reflections in addition to primary reflected
cvents.

The one-way sponge filter has also been tested on the surface waves. It gives
satisfactory results too. It is yet possible to combine the wave propagation modification
and the one-way sponge filter approaches in the same transition zone. Very little more is
gained with this method and it does not appear to be cost effective.

For the one-way sponge filter the selection nf an optimum damping coefficient v is
important in order to obtain effective dissipation of the incoming waves and to avoid the
extra reflections from the transition zone. The one-way sponge fiirer d: s not introduce
significant distortion in the outgoing waves. In contrast, the wave propagation
modification approach is more efficient since it requires almost no extra computational time
although the information is degraded in a transition zone whose width is less than a wave

length.

3. 5§ CONCLUSION

In this chapter, sevaral approaches are proposed for the construction of absorbing
boundaries for numerical simulation of seismic waves in nonporous or porous media with
first order hyperbolic systems. When the one dimensional absorbing boundary conditions
are combined with a one-way sponge filter or wave propagation modification approach, it
absorbs effectively all incident waves without imposing local conditions. The one-way
sponge filter does not introduce significant distortion of the outgoing waves while the wave
propagation modification approach is more robust. A combination of these two modifying

approaches is possible but it seems not necessary. Comparisons of the new absorbing
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Figure 3.4.4 (a) Seismogram for the same two layer elastic model but the top margin of the
computational domain being a free surface. The one dimensional absorbing boundary

conditions are imposed on all other computational margins.
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Figure 3.4.5 (a) Seismogram for the same two layer elastic model as for Figure 3.4.4. The
wave propagation modification approach is applied for all other computational margins in

combination with the one-dimensional absorbing boundary conditions.
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boundary approaches with the existing ones indicate its superiority. The extension of these

methods to three dimensions is straightforward.
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CHAPTER 4

WAVE PROPAGATION IN VISCOACOUSTIC HETEROGENEOUS MEDIA

4.1 INTRODUCTION

Considerable progress has been made during the past two decades on aspects of
seismic attenuation. By seismic wave attenuation one means any irreversible energy losses
other than spherical divergence, transmission losses and mode conversions which a seismic
wave experiences as it propagates through a medium. Evidence from different experiments
supports the fact that several physical mechanisms must contribute to seismic attenuation in
rocks. The dramatic increase in attenuation due to the addition of trace amounts of water to
a dry porous rock has focused attention on details of flow within fine cracks (Nur et al.,
1980). Coulomb friction between grains yields attenuation which depends upon the
amplitude of vibration. The motion of lattice dislocations within the solid gives the right
dependence on frequency and the correct magnitude of attenuation in granite and makes this
an attractive choice for the energy loss mechanism (Mason, 1969).

For seismic waves in the shallow crust, the attenuation is usually proportional to
frequency. In principle, velocity must depend upon frequency in an attenuating medium.
Several attempts have been made to find modifications of Hooke's law that would account
for the effects of inelasticity. The attempts to account for the observed variation of quality

factorQ with frequency can be divided into two groups: those invoking linear models and
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those invoking ncn linear models (Knopoff, 1964). Non linearity seems to have been
largely ignored, because of the mathematical difficulties associated with non linear systems.

In perfect elasticity, strain is linearly proportional to stress and independent of the
duration of the stress. When the stress is removed the original form is recovered at once. In
viscoelasticity, the strain under constant stress increases at a decreasing rate. When the
stress is removed there is an immediate recovery by the amount of the initial strain and the
strain decreases further, ultimately tending to zero (Jeffreys, 1976). In Boltzmann's early
theory (1876) to explain the nature of acoustic loss, the strain due to an applied stress is
delayed by some sort of ‘'memory' behavior in the material. For a stress excitation, which
is a complicated function of time this can be expressed as a convolution with an elementary
creep function which expresses the delay.

It is difficult to incorporate attenuation in time-domain methods becaus. of the presence
of a convolution integral which describes Boltzmann's superposition principle. Day and
Minster (1984) proposed a method based on Pade approximations where the viscoelastic
modulus is expressed by a series of rational functions. Then, the convolution integral
which describes the stress-strain relation is transformed into a differential form. Carcione et
al. (1988a, b) and Tal-Ezer et al.(1990) apply a similar approximation and solve
numerically the wave propagation problem using the pseudospectral method. In practice,
the technique based on Pade approximations gives valid results only for relatively short
paths. Emmerich and Korn (1987) proposed a method for incorporating attenuation in the
time domain based on the rheological model of the generalized Maxwell body. The
advantage of this technique is that the results are satisfactory fc - longer propagation paths
and/or strong attenuation.

In this chapter, the viscoacoustic modulus which describes an arbitrary Q law is
approximated by the modulus of a generalized Maxwell body which is expressed in a

rational function in frequency domain. A first order hyperbolic system is formulated in the
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time domain and the velocity-pressure finite difference method is presented as it is applied
to the viscoacoustic wave system. Finally the results from the application of the method in a

crosshole experiment are presented and compared to the real data.

4.2 PROBLEM FORMULATION

4.2.1 Generalized Maxwell body approximation

In a two dimensional viscoacoustic heterogeneous medium, the equations of motion can

be expressed in terms of the particle displacement components u,, i, and the pressure p

as

d%u, _dp

p—a_—tz—_é;’ (4.2.1)
9%, _op 422
p—étz 9oz’ \4.2.2)

where p is the density. The viscoacoustic constitutive relation is expressed by

!
() = f K(t-0) e(n) dt (4.2.3)

-00

where K is the viscoacoustic modulus and € is the strain defined by the lilatation

T

= T3 (4.2.4)
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The relationship between stress and strain given in (4.2.3) was first introduced by
Boltzmann (1876) witi1 a different notation. Equation (4.2.3) is not useful in forward
modeling with finite difference methods because the numerical integration of the strain
history at each point of the medium and each time step would require an immense amount

of computer time and memory.

In the frequency domain, equation (4.2.3) is formulated as
p(w) = K() &w), (4.2.5)

where K(w) is the complex viscoacoustic modulus.

If we apply a strain of unit step H(z), equation (4.2.3) gives the relaxation function

t
R(t) = f K(t- 1) H(D)d1 (4.2.6)

=00

which implies that K(¢) is the first time derivative of the relaxation function,

K(z)=f%(’—) , (4.2.7)

that is, R(f) can be expressed as (see Figure 4.2.1)

R(t)=|Kp + Kaf Kwle-*dw| H(1), (4.2.8)
0

where K denotes the relaxed modulus defined by
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Kgp=lim R(1); (4.2.9)

[y

K 5 represents the difference of the relaxed modulus Kz from the unrelaxed modulus K,

which is defined by

K,= Kp + Kg=lim R(1); (4.2.10)
-1

r(o) is the normalized relaxation spectrum with

f r(w)do = 1. (4.2.11)

0

If the relaxation spectrum consists of n single peaks of strength g; at discrete relaxation

frequencies wj, that is

n n
How) =Y glw- a); >, aj=1, (4.2.12)
j=1 j=1
then from equation (4.2.8)
n
R =|Kr+KsY a,-e'“’"] H() (4.2.13)
j=1
and the corresponding modulus in frequency domain K () is
n
K- a;%;
Ko(w) =Ky -K 5,-2:1 0+ 0 (4.2.14)
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Figure 4.2.1 A typical relaxation function R(¢). Ky, is the unrelaxed modulus;

Kr =Ky -Kg is the relaxed modulus.
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Equation (4.2.14) expresses the frequency modulus in a rational form which allows the
viscoacoustic constitutive relation in the time domain to be expressed in differential form
through some intermediate variabies (Emmerich and Korn, 1987).

An equivalent expression of equation (4.2.14) is the complex modulus of the

rheological model of the generalized Maxwell body

Kn(w) = Kp + K52 a; ,—wkglé- (4.2.15)
i

Each term of the sum in equation (4.2.15) can be interpreted as a classical Maxwell body
with viscosity oK g/w; and elastic modulus a;K 5 (e.g. Christensen, 1982), and the term
Kpg repiesents an additional elastic element (Emmerich and Kom, 1987; see Figure 4.2.2).

The quality factor Q for the generalized Maxwell body is described by

n ayw
O ————
A ImKu(w) _ K5 j=1 1+ (@)
0D = pe Ko@) Kr | _K; Z @@y 4216
K = 1+(co/tzo,)2

For a given function Q(w), a generalized Maxwell body model can be found as an
approximation by determining the unknown weighting factors o through a fitting
procedure. Following Emmerich and Korn (1987), we utilize the values of Q 'l(a)) at certain
discrete frequencies o, with k= 1, ..., K which are uniformly distributed on a
logarithmic scale. Then, from equation (4.2.16), we obtain an over-determined linear

system
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Figure 4.2.2 Generalized Maxwell body with viscosities Egé , elastic moduli ok and an
/
additional elastic element K
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~ ~_] ~
k[‘”r“’k% 2(“’*]. y=0Na@), k= 1.k, (4.2.17)
Ao vy

n

which is solved for y; = a,-f-l by applying a least-squares method. The normalization
R

condition (4.2.12) can be expressed in terms of yj as

n n K K
PITED I/l (4.2.18)

The obtained generalized Maxwell body approximation for a arbitrary Q law can then be

expressed in terms of the solutions of the linear equation (4.2.17) as

Kn(w) = KR(I +Y Ta—l;?a_g_) . (4.2.19)
j=1

4.2.2 A first order hyperbolic system for viscoelastic waves

If we replace K(w) in equation (4.2.5) with K,(®) in equation (4.2.19), then the

constitutive relation becoming

n

‘W) = . i@
p(w) KR(I +,-=21 yj imay)dw) (4.2.20)



123

or
n
p(@) = Kpew) + 3, M) (4.2.21)
j=1
where
= V; _J.QL__ 5 99
niw) = yj it o) . (4.2.22)

After inverse Fourier transforming, equation (4.2.21) and (4.2.22) become

= KO O | S
p(t) = KR( 5t +/§1 ni) (4.2.23)
and
an,- o '{azux azu,) .
—5t_+ wn; = Kgry —a—x—é?'i'm , J=12,..n. (4.2.24)

After taking the time derivative on equation (4.2.23) and denoting the first order time
derivative of the two displacement components with v, and v,, the particle velocity
components, equations (4.2.1), (4.2.2), (4.2.23) and (4.2.24) form a system which, in
matrix form, can be mitten as

du _, du du
E°~37 = A°§; + B°§? +Cou . (4.2.25)

Therefore, the convolution integral present in the constitutive relation (equation 4.2.3) has

been replaced by a set of first order differential equations with a number of intermediate
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variables. By keeping the number of terms in (4.2.23) or in (4.2.17) small, this method of

incorporating attenuation into the time-domain computations of the seismic wavefield is

quite tractable.

If we chose n = 5, then the vector of unknowns of system (4.2.25) is

Vi |
Vv
p
m
7]
m
Ta
T

and the matrices become

1

=

J
cSCcCocoooCn
cocococRw o

SO —~CC

I

-0
SO
oo

CooOoCO —
oo~
SO~=QOO
O—- OO C
= =N =~

SCOCOOOCCCO

—

—

SO OO OO —

oo
oo

fu—y

Pt

SO OoOOoOOO

COOoOO0OOO0O

OO0 OCOOCO

COOCOCOOOO

OCOOCOCOCOOO

(4.2.26)

(4.2.27)

, (4.2.28)
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(4.2.29)

for I o R B e B B e N
ScC oo oo oo

oo CcC

SCOCCOCCTCOoOOCOo

CCOTCOCDTO0

SO CTCOCCO

and

(4.2.30)

f ]

cooccoccc §
)
x
cococoo Jo
1
coccococ S§co
1]
ccoo §coo
1
coco §ococoo
1
cooccoocoo
ccoocoocoo

COCOOCOOO

L j

]}
c
&)

Multiplying equation (4.2.25) by Eg ,

(4.2.31)

Ed=

we obtain
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(4.2.32)
(4.2.33)
(4.2.34)
(4.2.35)

-~

] ] — | f ]
O o c o o o0 o © o o o o o c o © cofococoo
] ]

c o cc o o © © o o 0o 0o 0 o o © coScoco 8o
1] ]

c o o c o Cc o O© o co0o o o o o O© co Sco oo
1] 1]

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

coc o focco
\ [}

c o & c cc e © O CcC O o o © co§fococcce
LI |

u,
1
1

m p\,.U c © © C© O O (=] pnu o O O O C e lel=R=Rol=R=X=
3| ~ X & &= & &
RS o ccc c o o o© o o o X X X X X ccococooo
] B -— o~ [aa) g 2}
>~ >~ A~ =~

+ . &= = RvMuM
H — p— . < —
213 c e g X XX XX ©c o < ©c o o c coccoccocce
g NN

| | | i L i
0 " [ "
2= < @ &

where



and

5
Ay1 =By =Kp+Kp) yi=Kp+Ks =Ky .

J=1

The characteristic equations of matrices A and B are

respectively. Therefore, the matrices A and B have the same eigenvalues
(A1, A2, 43, A4, A5, A6, A2, Ag) =(-v, 0, 0,0,0,0, 0, v),

where v =4 / A3 KS‘ , is the high frequency limit velocity of wave propagation.
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(4.2.36)

(4.2.37)

(4.2.38)

(4.2.39)

Since the eigenvalues of A and B are real and their eigenvectors are independent,

system (4.2.25) is hyperbolic. The first order system is free of spatial derivatives of the

physical parameters which are present in the second order wave equations for

heterogeneous media. Consequently, the numerical approximation of the spatial derivatives

of the physical parameters is not required in the velocity-pressure finite difference method.

Numerical approximation of these derivatives may sometimes result in large errors

especially at the location close to interfaces where the physical parameters change quickly.

This source of error is not present in the above formulation of viscoacoustic wave
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equations for heterogeneous media.

4.3 NUMERICAL SOLUTION

The generalized Maxwell body approximation method can be applied to an arbitrary Q
law of frequency dependence. In a seismic application, the quality factor Q is normally
assumed to be frequency-independent or nearly frequency-independent. To test the quality
of the Maxwell body approximation we have computed Q,(®) numerically according to
the approach described in the previous section for n =5 and n = 9 over a range of
frequency up to 250 Hz. The results are compared with the assumed exact value of a
constant @ model with @ = 30 in Figure 4.3.1.

In the viscoacoustic case, when a pressure-dilatation relation is combined with the
equilibrium equation, the resulting one-dimensional wave equation has a solution which

can be written in a form analogous to the classical case:

yx) = ellot - Hax] | 4.3.1)
or
1x(x,f) = e-olokgl e - xVw] ; (4.3.2)
where
1
k ()= (%‘%’ 2, (4.3.3)
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Figure 4.3.1a The inverse Q versus frequency for a constant @ model with Q=39 (solid
line) and its generalized maxwell body approximation for n = § and a frequency range of ()

to 250 Hz.
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Figure 4.3.1b The inverse Q versus frequency for a constant Q model with 9=30 (solid
line) and its generalized Maxwell body approximation for n = 9 and a frcquency range of 0

to 250Hz.
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the attenuation coefficient oi(®), in unite of inverse length, is

of @) = -Im K ) (4.3.4)

and the phase velocity,V(w), is given by

Vioy)=—L— | 3.5
(@)= g% (4.3.5)

respectively.

For a constant Q , the modulus K(w) is given by (Kjartansson, 1979)

.2 a1
- iY-tan ( ) .

K (o) = K (@) (wo)n ol (4.3.5)

the phase v.'.«*** V() and the attenuation coefficient o(w) are given by
p cos[1 tanl( }lw"l
2

and

oA a)= —Ql—tan [1 tan® (—1—)] (4.3.7)

Numerical computations of K,(w) and velocity V, (@) with the generalized Maxwell
body approach are shown in Figures 4.3.2 and 4.3.3for n=5and n =9 together with

the exact values calculated with equations (4.3.5) and (4.3.6).
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Figure 4.3.2a The absolute value of the complex modulus versus frequency for a constant
Q model with 0=30 and its generalized Maxwell body approximation for n = 5 and a
frequency range of 0 to 250 Hz.
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Figure 4.3.2b The absolute value of the complex modulus versus frequency for a constant
Q model with 0=30 (solid line) and its generalized Maxwell body approximation for n =

9 and a frequency range of 0 to 250 Hz.
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Figure 4.3.3a The velocity versus frequency for a constant Q@ model with Q=30 (colid
line) and its generalized maxwell body approximation for n = 5 and a frequency range of 0

to 250 Hz.
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Figure 4.3.3b The velocity versus frequency for a constant Q model with Q=30 (solid

line) and its generalized Maxwell body approximation for n =9 and a frequency range of ()

to 250Hz.
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The impulse response, which is the waveform resulting from a delta function source at
a given distance, is of particular interest since the waveform that results from an arbitrary
source is obtained by simply convolving the source with the impulse response. The
spectrum of the impulse response is obtained by omitting the it term in equation (4.3.1)
or (4.3.2). Figure (4.3.4) shows the spectrum amplitude of the impulse response at a
distance of 500 m for a constant @ model (Q = 30) and its generalized Maxwell body
approximation for n = 5 (Figure 4.3.4a) and n = 9 (Figure 4.3.4b). Figure (4.3.5) shows
the response for a source whose time variation is the second derivative of the Gaussian
function with a dominant frequency of 30 Hz (Figure 4.3.5a) at distance of 500 m for a
constant Q@ model (Q = 30) and its generalized Maxwell body approximation for n = 5
(Figure 4.3.5a) and n = 9 (Figure 4.3.5b).

The first order system (4.2.32) is solved numerically for ¢ > 0, subject to the initial
condition, u(x, 2, t = 0). The concept of dimensional splitting (Strang, 1968) is applied to
the system (4.2.32). A two step MacCormack-type finite difference operator is then
employed to solve the differential system alternately in the x and z directions. The fully
vectorized finite difference algorithm, which is second order accurate in time and fourth
order in space, is described in section 2.5. The fact that all the non-zero elements in
matrices A and B in system (4.2.32) are in the first three columns allows the difference
operations in space to be implemented only to the first three components in the variable
vector (4.2.25) as is the case for an acoustic wave system. Therefore an increase of the
number n of the terms in equation (4.2.15) will require more computer memory but will
not result in a significant increase of the computational time. On a Convex 210, the
calculation of 1500 time steps for a model with a 500x480 mesh costs about 90 minutes of
CPU time for n = 9. The absorbing boundary techniques described in Chapter 3 are also
utilized in this development in order to reduce the artificial reflections from the

margins of the computational region.
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Figure 4.3.4a The amplitude of impulse response spectrum of a constant Q model with
Q=30 (solid line) and its generalized Maxwell body approximation for n = 5, resulting

from a unit impulse plane wave source at distance x = 500 m.
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Figure 4.3.4b The amplitude of impulse response spectrum of a constant Q model with
Q=30 (solid line) and its generalized Maxwell body approximation for n = 9, resulting

from a unit impulse plane wave source at distance x = 500 m.
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Displacement

Time (ms)

Figure 4.3.5a Time variation of a seismic pulse source which is the second derivative of

Gaussian function with a dominant frequency of 35 Hz. The source is used in calculating

the results shown in Fig 4.3.5b and c.
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Figure 4.3.5b The waveform at distance x = 500 m resulting from a plane wave source
with the shape shown in Fig 4.3.5a for a constant Q model with Q=30 (solid line) and its

generalized Maxwell body approximation for n = 5 and frequency range of 0 to 250 Hz.
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Figure 4.3.5c The waveform at distance x = 500 m resulting from a plane wave source

with the shape shown in Fig 4.3.5a for a constant Q model with Q=30 (solid line) and its

generalized Maxwell body approximation for n = 9 and frequency range of 0 to 250 Hz.
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4.4 FIELD EXAMPLE

The bitumen from the oil sands of Alberta is normally recovered by an enhanced oil
recovery (EOR) operation. Many of these involve steam injection to make the oil mobile.
From the reservoir engineer point of view it is important to monitor the growth of the steam
fronts and to assess the changes occurring in the reservoir as a result of the steam
stimulation. In particular, a knowledge of the size, position and physical state of the heated
zone around the injection well is desired in the development of efficient heavy oil extraction
techniques. Invasive techniques, such as drilling observation wells, are expensive and
limited in spatial resolution. Non-invasive or remote sensing geophysical techniques,
especially seismic method has proven to be a successful tool in delineating informatior.
about the heated zone.

ESSO Resource Canada Limited carried out crosshole seismic experiments in the Cold
Lake, Alberta area to monitor a steam injection process. A velocity-depth model with a
steam heated zone and the geometry of an initial crosshole experiment are illustrated in
Figure 4.4.1. The source well and the receiver well are separated by 200 m. An explosive
source (100 grams of Primacord charge) was shot repeatedly at a depth of 440 m within the
source well for various positions of a receiver, generating high frequency waves up to 500
Hz. A well-locking vertical component seismometer was used for recording and was
positioned at depths between 372 m and 462 m within the receiver well. The data was
recorded at a sample rate of 1/ms.

Steam was injected from a well located half way between the receiver and source wells
into the Clearwater (CLGW) formation in order to mobilize the heavy oil. The velocity
model is derived from well log data (Kanasewich, 1983; Figure 4.4.1b). The top and

bottom boundaries of the Clearwater are at depths of 415 m and 465 m respectively. The
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top boundary is marked by the impermeable Grand Rapids (GR) shale formauun which

prevents the steam from escaping upwards. Two concentric ellipses are use’. to mode! the
heated zone which are truncated at the top by a plane interface. In the inner zone the
velocity is reduced 25% and the outer zone is the transition zone where the velocity
increases linearly from the velocity of the inner zone to the normal value for the Clearwater
layer.

The field experiment was conducted twice: the first time was before steam injection and
the second was after injecting steam at a pressure of 10 Mpa for 48 days. The first 147 ms
of the before and after steam injection experiments are shown in Figure 4.4.2. Delays of up
to 2 ms are measured after steam injection in the first arrivals at receivers 6 to 10. The
amplitudes of the arrivals from the two experiments show significant changes on traces 6 to
9, and are lower in the after injection traces. Reflections from layers below and above the
Clearwater are difficult to identify in the records. Macrides et al. (1987) studied this data set
and, based on evidence from theoretical and experimental studies (Tosaya et al., 1984; Nur
et al., 1980), modeled it with ray tracing with a P-velocity drop of 20% within the steam
zone. P-SV simulations with a finite difference method carried out by Vafidis and
Kanasewich (1991) provided insight into the later arrivals which correspond to converted
phases. Macrides et al. (1987) also studied the amplitudes and the power spectra of the real
data and they reported that in the steam zone the quality factor Q is equal to 10 whii: .. the
Clearwater formation the quality factor Q is equal to 30. The decrease of Q as the
temperature increases was explained by the increased saturation of heated bitumen and
steam condensate within the zone affected by the steam injection and the increase of
mobilization of the fluid contents. In addition, the increased microcrack porosity created in
the heated zone by the injection of highly pressurized steam is expected to further contribute

to an increase of attenuation in the anornalous zone (Macrides and Kanasewich, 1987).
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In orderto verify the validity of these interpretation points, we carried out realistic
simulations of the acoustic wave propagation in attenuating media. The time step, in the
finite difference method, is 0.05 ms and the grid spacing is 0.5 m. The excitation of the P-
wave line source is a Gaussian function with a dominant frequency of 400 Hz.

The modeling is started by using the acoustic wave equation without considering the
attenuation. Figure 4.4.3 illustrates the resulting seismogram for the vertical component of
particle velocity. The reflection events are labeled by the number of the interface (see also
Figure 4.4.1) from which the reflection occurred. The frequency content of the synthetic
data is much higher than that of the observed data. The first arrival time delays on traces 6
to 10 can be observed. The dominant amplitude is related to the reflections from interfaces
6 and 4, which is too high compared to the real data. In the synthetic after injection
seismogram the amplitude of the reflections from interface 4 and 5 reduces due to effect of
the low velocity in the steam heated zone. However, it is still too high, especially in traces
6 and 7, as compared to the seismic section in Figure 4.4.2. Those reflections from the
interfaces 1, 2 and 6 do not show significant decay across the synthetic seismograms
except that due to geometrical spreading, since they are not affected by the steam zone.

In order to take into account the attenuation of the different layers, especially the quality
factor change which occurred due to steam injection, viscoacoustic modeling is carried out
for the same model by using the method described in the previous two sections and the
same source function as the one used in acoustic modeling. The quality factor @ is
assigned 30, 10, and 20 for the Clearwater layer, the inner steam zone, and the transition
zone, respectively, according to Macrides et al. (1987). The quality factor @ versus depth
curve is given in Figure 4.4.1c. A constant Q model is approximated by a generalized
Maxwell body of 9 basic elements (n = 9). The elastic moduli and the viscosities of the

elements are determined by a least-squares fitting procedure for a frequency range up to
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800 Hz.

Figure 4.4.3 gives the synthetic seismograms from the viscoacoustic modeling before
steam injection and after steam injection. The frequency content of the data is lower and
more comparable with the real measurements than the results from acoustic modeling since
the higher frequency content suffers more severe attenuation in viscoacoustic wave
propagation. Apart from the first arrival time delays at receivers 7 to 10 of the after injection
traces, the synthetic seismograms from the viscoacoustic modeling give a compatible
energy distribution on the sections with that of the field data. At receivers 6 to 9 the
amplitude of the after injection traces are lower than the amplitude of the before injection
traces which is in agreement with the explanation given by Macrides et al. (1987).
Significant decays of the downgoing and upcoming reflections from the lower and upper
interfaces can be observed when the reflections travel into and through the Clearwater
layer, which is one of the factors making the reflection events difficult to be identified in the
real seismic observation when the data is contaminated by noise.

This model by no means explains the complexity of the real data but realistic finite
difference simulations with attenuation helped in the verification of the interpretation made
previously. These complications will not be covered here so that the focus is kept on the
main features of the example and the difference between the acoustic modeling and the
viscoacoustic modeling. Some minor amplitude difference arise because a two dimensional
model and a line source are used to model the three-dimensional case with a point source in
the field example and from the fact that converted phases are not included in the acoustic

wave simulations.
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4.5 CONCLUSION

In the velocity-pressure finite-difference method, attenuation is incorporated by
expressing the convolution integral, which is present in the viscoacoustic constitutive
relation, in a differential form. The equations of motion, the viscoacoustic constitutive
relation, and the additional differential equations form a first order hyperbolic system which
describes the wave motion in a heterogeneous medium. This system is solved by applying
a dimensional splitting approach and the MacCormack-type two step finite difference
operators which is second order accurate in time and fourth order accurate in space.

Visccacoustic synthetic seismograms have been compared with field data from
crosshole seismic experiments for monitoring steam injection projects in the Cold Lake area
and with the synthetic data from acoustic modeling. The viscoacoustic modeling produces
synthetic seismograms which are more compatible with the field measurements in terms of
the frequency content and energy distribution. The simulations assist in interpreting the
field data by establishing the relationship between the features of the seismic cections, such
as the wave events, arrival time and amplitude changes, and the velocity and quality factor

models and their changes after steam injection.
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CHAPTER §

SEISMIC MIGRATION AND ABSORBING BOUNDARIES WITH A
ONE-WAY WAVE SYSTEM IN HETEROGENEOUS MEDIA

5.1 INTRODUCTION

Wave equation migration is an imaging technique performed in either the space-time
domain (Claerbout, 1971; Sun and McMechan, 1986), in the space-frequency domain
(Tsingas and Kanasewich, 1990), in the wavenumber-frequency domain (Stolt, 1978) or in
the wavenumber-time domain (Baysal et al., 1983). In the space-time (x-t) domain, the
wave equation migration method, known as time migration, is based on the paraxial
approximation and gives accurate results only if there are no lateral velocity variations.
Reverse time migration ‘Sun and McMechan, 1986) incorporates lateral velocity variations
into the space-time operations by solving the two-way wave equation but suffers from
unwanted internal multiple reflections which are generated from strong velocity variations.
This unwanted energy is especially troublesome if it is coherent and migrates to a time
when the primaries are weak (Tsingas and Kanasewich, 1990).

The most commonly used wave equation migration method is performed in the space-
frequency (x-w) domain where the paraxial approximation is expressed by parabolic
partial differential equations. Although successful in many situations, the method is limited
by the assumptions made in deriving the one-way wave equations. In particular it is

assumed that spatial derivatives of the velocity can be ignored (Claerbout and Doherty,
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1972, Claerbout 1976; Stolt 1978; Gazdag 1980; Berkhout and Van Wulfften Palthe,
1979). In x-@ or x-t migration techniques based on the paraxial approximation, implicit
finite difference schemes are applied to avoid instabilities but Claerbout (1985) finds that
"in space dimensions higher than one the implicit method becomes prohibitively costly".

The one-way wave equations are commonly obtained by seeking a polynomial or
rational approximation to the dispersion relation of a square root form. They are not only
used as seismic migration extrapolators but also as absorbing boundary conditions. The
absorbing boundaries which are obtained from low order approximations fail to absorb
waves impinging at large incident angles. Similarly in seismic migration, wave
extrapolators based on low order approximations do not properly image subsurface
structures especially in a geological region with complex structure. Higher order
approximations improve the imaging at an expense of computational effort.

In this chapter, a hyperbolic system is derived which describes downgoing acoustic
waves propagating in heterogeneous media. It is demonstrated that the corresponding
dispersion relation is in accordance with the exact dispersion relation tor propagation angles
up to 80°. This first order hyperbolic system is equivalent to a third order partial differential
equation, which, for homogeneous media, is reduced into the same form as the 45°
paraxial wave equation. The one-way wave first order hyperbolic system is solved by
applying a (2, 4) explicit finite difference scheme. The resulting snapshots illustrate the
behavior of this system.

When the first order system is applied to the x-¢ migration problem, it offers a number
of improvements over conventional depth migration techniques. In particular, posing the
migration problem as an extrapolation in time instead of depth avoids problems associated
with evanescent energy (Kosloff and Baysal, 1982). Also, unwanted energy related to
internal reflections is not present because only downgoing propagating waves are present.

Since the instability of explicit schemes is less severe for hyperbolic one-way equations or
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systems (x-f domain) than for parabolic ones (w-x), explicit rather than implicit
schemes are applied in order to reduce the computational cost of the one-way wave
equation migration in the space-time domain.

A new set of absorbing boundary conditions are constructed based on the one-wiy
wave system. It is shown that these two-dimensional absorbing boundaries improve the
absorbing effectiveness. In the last section, examples are presented of the application of the
one-way wave system in modelling, in absorbing artificial reflections from the model

boundaries, and in migrating prestack synthetic seismic data with large propagation angles.

5.2 ONE-WAY WAVE SYSTEM

The basic equations of motion for two-dimensional acoustic wave propagation in a

heterogeneous medium, in the absence of body forces, are:

O u _2p (5.2.1)
o ox

2
.a__uz. = Qe. (5‘2'2)
o2 9z

with p, u,, and u, denoting the negative pressure, the x and z components of the
particle displacement respectively, and p denoting the density. The pressure can be

expressed in terms of the particle displacement components as

Ok i“_’) , (5.2.3)
ox Oz

p =K (
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where K is the bulk modulus. By taking the time derivative of (5.2.3) and replacing
particle displacements with particle velocities in (5.2.1), (5.2.2) and (5.2.3), we obtain a

first order hyperbolic system

du_,d0u gou (5.4.4)

a o ox 0z
where u is given by

u=£] (5.4.5)

9y
VzJ

with v,, and v, denoting the x and z components of the particle velocity; A and B are

coe icient matrices given by

A=%00, (5.4.6)

B=000]. (5.4.7)

Through a characteristic analysis of the one dimensional wave equation in the z direction
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%%': B%% . (5.2.8)

it is possible to isolate the upcoming and the downgoing waves. Suppose A; be an
eigenvalue of B with corresponding left eigenvectors |g) (a row vector) and right

eigenvectors r([;) (a columin vector). Then

g - 204 (5.2.9)
Brid=p,r!! (5.2.10)

The orthonormality of the left and right eigenvectors is described by

00 - 5, (5.2.11)
From (5.2.9) and (5.2.10) it follows that

LgBRg=A (5.2.12)

. . . i
where the rows of the matrix Ly are the normalized left ¢igenvectors l( ) the columns of the
& B

’

matrix Rp are the normalized right eigenvectors r“); and the matrix A is diagonal, with

Aii = Aj, ordered so that 21<43...€A,,.

Through the linear transformation w = L gu , equation (5.2.8) can be written

A ACA
E——A—a? . (5.2.13)



provided B independent of z. In component form equation (5.2.13) is

dw; ow;
OWj _ 2 .°Wi
ot Ai Jz '
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(5.2.14)

which describes a wav : traveling with a characteristic velocity -4;. For 4;< 0, the wave w;

travels in the positive z-direction (down in a geophysical convention). For 1;> 0, w;

travels in the negative z-direction (or up). In heterogeneous media (i.e. B depends on both

x and z) equation (5.2.8) can be expressed as
Jdu du
= =RpALg=— .
a ~ ReAlsg;
It can be easily shown that the eigenvalues of matrix B are
(Alv AZ» 13)'_'("/’ 0’ V) ’

where

vV =’V[§

is the velocity of the acoustic waves, while

, 1 0 -YKp
LB:F 0 V2 0
< 1 0 Kp

and

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)
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(5.2.19)

By letting A3 = 0 in (5.2.15), we obtain the wave system which describes only downgoing

waves
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(5.2.2D

By replacing the negative signs in (5.2.21) with positive ones this wave system describes

upcoming waves.

In two dimensions, since we have no restriction for waves propagating in the positive

or negative x-directions, a good approximation for a downgoing wave equation can be

obtained by replacing the second term on the right hand side of (5.2.1) with the right side

term of (5.2.21), that is
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ou du du ,
o A 5t D = (5.2.22)
This system has the general solution of the form
AR A I
vy |=| 9, |el@-kxk) (5.2.23)
v, ~
Vz

The necessary condition ‘o (5.2.23) to be a non-trivial solution of the system (5.2.22)

gives the dispersion relation, which is refer to as D1, for downgcing waves,

_ . k2 _ k2
DLk, = X2 “ % (5.2.24)
k? - 15 k2
where
k=4 (5.2.25)
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and
ke = {A} sin 6, (5.2.26)

with 6 denoting the wave propagation angle measured from the z-axis to the x-axis. This

dispersion relation may be compared to the exact downgoing wave dispersion
k:= Vk2 k2 (5.2.27)

in Figure 5.2.1. Slightly lower values of k: appear at incident angles above 45°. This can
be improved by multiplying matrix A in (5.2.22) with Yo ( 0<a<l) to slightly reduce the

characteristic velocity in the x-direction. i.e.

ou du Ju -
"a—t‘d_a_ A -é; +D -a—z- . (5.2.28)

The corresponding dispersion relation, which is refered to as D2, then becomes,

*

2 .2
D2 k, = k7 -oky g (5.2.29)
k- liock,c2

By minimizing the root mean square error of k*, relative to k, for angles up to 80° it is
found that or = 0.905. The dispersion relation D2 is shown in Figure 5.2.1. The system
(5.2.28) is hyperbolic because both coefficient matrices A and D have real eigenvalues and
independent eigenvectors. Eliminating v, and v, from system (5.2.28) an equivalent third

order partial differential equation can be obtained as
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which describes the pressure wave in a heterogeneous media. If we assume a

(5.2.30)
homogeneous medium, equation (5.2.30) can be reduced into

Pp a2 19 3%
27 tyTy caVo===0, 5.2.31
N2z 2 ox2:z Vg Jrox? ( )

where for a=1 or 0.905, one obtains the differential equation corresponding to th~
dispersion relations D1 or D2, respectively.

Originally, one-way wave equ:  's have been obtained by seeking a polynomial or
rational approximation to the dispersion relation (5.2.27). The ~ontinued fraction method
(Hildebrand, 1956) is commonly applied to (5.2.27) to obtain a raiional approximation.

Clayton and Engquist (1977) proposed the dispersion relation A3

A3:
o 1 -3 (kP
ke o 4~ (5.2.32)
' 1-14-(kx/k)2

Equation (5.2.32) after inverse Fourier transforming becomes

p vz &p 19 3y Ip
Y +12P =0 5.2.33
o120z 4 ox20z Vo3 4 orox2 ( )

This equation is known as the 45° paraxial approximation of the acoustic wave equation

and describes downgoing acoustic waves. In deriving equation (5.2.33) a homogeneous
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vel: ity model is assumed (Claerbout 1972, 1976; Stolt 1978; Gazdag 1980; Berkhout and
Van Wulfften Palthe, 1979).

The dispersion relation A3 and is error relative to the exact dispersion relation are
shown in Figure 1. A3 is called the 45° approximation since the error becomes large
beyond this angle. Similarly, higher order approximations can be obtained. However,
higher order differentials involved in the corresponding differential equations increase the
computational cost.

The dispersion relation D1 (see Figure 5.2.1) coincides with the exact relation at both
0° and 90°. The error at angles above 45°, however, is higher than that for A3. By
sacrificing the accuracy at 90° which is not important in practice, D2 gives high accuracy »

propagation angles ranging up to 80°.

The dispersion relations D1 and D2 correspond to the sat : .1 the first order
differential system as the full wave equation system (5.2.1 st order system
(5.2.28) describing wave motion in heterogeneous media has the .- -~tage in applications

over the scalar equatior © 2.30) not only because of the lower order differential operators
involved but also because of the absence of derivatives of elastic parameters. It avoids the
errors due to numerical differentiation of the physical parameters which are required in
finite difference approximations of higher order differential equations for wave ..i0n in
heterogeneous media. Hyperbolic systems and equations can be solved numerically at a
reduced cost by applying explicit rather than implicit finite difference s 1emes. Instabilities
of explicit schemes are not so severe for hyperbolic equations as they are for parabolic
equations (Vafidis, 1983).
In order to demonstrate the effectiveness of the one-way wave system we consider a
simple two layer model. The wave propagation problem is solved twice, the first time using
the full wave system (5.2.4) and the second timc using the one-way wave system

(5.2.28). The snapshots of the pressure field frc n the two methods are shown in figure
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0 30 60 90
Angle of incidence (°)

Figure 5.2.1 A comparison of the exact dispersion relation (continuous line) for the

acoustic wave equation with the dispersion relations A3 (squares), D1 (circles), D2

(triangles) and their errors (open symbols).
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5.2.2. It is obvious that the upcoming wave shown in the full wave equation snapshot is
not present in the one-way wave equation snapshot. The downgoing wave is of the same
quality in both snapshots. With this property, the one-way wave equation can be applied in
seismic migration and in construction of absorbing boundaries for numerically solving the

problerr .avolving wave propagation.

2.3 SEISMIC MIGRATION WITH THE ONE-WAY WAVE SYSTEM

Scismi migration consists of two steps: (1) propagating the reflected waves back along
their upcoming path and (2) imaging the waves at the reflecting interfuces. With the seismic
section considered as the surface record of an upcoming wave field, the major concern in
seismic migration is the formulation of equations which properly describe downgoing
waves in order to accomplish extrapolation of the reflected wave field. Most of the wave
equation migration techniques are based on dispersion relations of different accuracy in
terms of describing waves propagating at large angles. Full wave equations were also used
to implement wave field extrapolation.

Here, we use the downgoing wave system (5.2.28) as the wave ficid extrapolator. A
M Lo tinite difference scheme of fourth order accuracy in space and second order
accuracy in time and a dimensional splitting technique is applied to system (5.2.28). Two
of the main advantages of the splitting methods are that stability properties are governed by
-u¢ dimensional schemes and that splitting schemes have smaller phase errors than a wide

's of unsplit schemes (Turkel, 1974). The stability condition of the MacCormack explicit
finite difference scheme is p V,,,, < 2/3, where Vmax 15 the maximum P-wave velocity in
m/s, p = At/Ax, At is the time step in seconds and Ax is the grid size in meters. To avoid

grid dispersion, Ax < A,,;/6 where A,,;, is the minimum wavelength present in the
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Figure 5.2.2 Snapshots for waves described by the full wave equation (a) and for waves

described by the one-way wave equation (5.2.28) which corresponds to the dispersion

reration D2 (b).
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seismograms. The detailed description of the finite difference scheme is given in section §
of chapter 2.

The procedure for migrating seismic data with the one-way wave system (5.2.28) is
similar to reverse time migration (McMechan 1983, Baysal et al. 1983). Here, we consider
the time reversed seismogram of a common shot pather or a CDP stacked section as the
time variation of wave sources alony the receiver line. In other words, our method solves
an initial value problem rather than a boundary value problem which is encountered in
reverse time migration. The wave field is downward propagated by so'ving numerically the
acoustic one-way wave system. One of the advantages of migrating with the one-way wave
system is that during the extrapolation procedure, practically no reflections exist at the
discontinuities of the velocity model. Also, during the extrapolation procedure, the
geometric spreading of the reflected wave energy is compensated. So, the total energy of
each reflection event is carried back to the reflector. Hence, a reflectivity proportional image
of the subsurface can be obtained by this migration technique for long enough receiver lines
when geometric compensation of the incident waves is performed.

In post-stack migration, the velocity model is halved and the image step is taken for all
space points at time zero. For pre-ctack data, the extrapolated wave field is imaged at the
first arrival {'me of each space point. Absorbing boundaries are constructed to prevent the

artificial reflections from the borders of the computational domain.
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5.4 ABSORBING BOUNDARIES

An important application of one-way wave equations is to construct absorbing
boundaries. The literature on this subject was reviewed in Chapter 3. The effectiveness of
the various absorbing boundaries can be predicted by finding out the reflectivity at the
boundary. If we use a full acoustic wave equation in the interior of the model and an
appropriate one-way equation at the boundary, it can be shown that the effective reflect. ity

at the boundary is given by

r=ke ke ¢ 1.1)

or

1(1—5*,)2 1-¢(—k 1 cp(-‘fk,)z]'l

T <ol ol

where # = 1, ¢ = 1/2 for dispersion relation D1, ¢ = @, ¢ = 0/2 for dispersion relation D2

(54.2)

and ¢ = 3/4, ¢ = 1/4 for dispersion relation A3. By using equation (5.2.26) the reflectivity

can be written as

2 oY1 - osin?
,(0)_ cos 0 - (1 $sin GXI @sin 9) (5.4.3)
cos 8+(1 - gsin2 6)1 - @sin? 0)



167

where 8 denotes the incident angle of the impinging wave. Figure 5.4.1 shows the absolute
values of the reflection coefficients for the dispersion relations D1, D2 and A3. It is seen
that for D2 the reflection coefficient is smaller than those for A3 and D1 and a significant
increase of the reflection coefficient of D2 appears at the incident angle about R0°,
Therefore, using D2 or its corresponding differential equation as an absorbing boundary
condition, no additional techniques are required for compressing artificial reflections in
most practical problems unless waves propagating at angles larger than 80° are present.
Switching the boundary condition from A3 to D2 requires little change in the existing

codes.
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Figure 5.4.1 Reflection coefficients for absorbing boundarics with equations

corresponding to dispersion relations A3, D1 and D2.
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5.5 NUMERICAL EXAMPLES

The migration technique proposed in this paper is tested for a synthetic model (Figure
5.5.1) which consists of a dipping layer, a graben like structure and a horizontal layer. The
physical parameters for the layers are given in Table 5.5.1. Synthetic shot gathers with split
spread configuration have been generated using a finite difference technique for acoustic or
P-SV wave propagation (Vafidis et al., 1992). Figure 5.5.2 shows a common shot
synthetic scismogram from acoustic wave simulation at shot § (See Figure 5.5.1). This
shot gather is used as the input in the migration procedures using the one-way wave
systems (5.2.22) and (5.2.28) which are corresponding to the dispersion relations D1 and
D2 respectively. Figure 5.5.3 shows the migrated sections. Pre-stack migration with the
One-way wave systeta (5.2.28) (corresponding to D2) (Figure 5.5.3b) gives a better image
for the portions of the reflectors where the reflected waves propagace at high angles relative

to the z-axis than that with system corresponding to D1(Figure 5.5.3a).

Table 5.5.1 Physical parameters for model in Figure 5.5.1

V), (m/s) V; (mys) p (L 2/m3)
Layer 1 3500 2020 2300
Layer 2 4000 2310 2350
Layer 3 4500 2600 2400

Layer 4 4800 2780 2450
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Figure 5.5.2 Shot gather from acoustic wave simulation at Shot #5.
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Figure 5.5.4 shows three shot gathers for shots #3, #4, and #5 from a P-SV wave
simulation where, apart from the P-P reflections, additional converted phases are observed.
Figure 5.5.5 shows the migrated sections for the shot gathers displayed in Figure 5.5.4.
The migration properly images those portions of the reflectors from which reflections are
recorded by the receivers. The spots at depth around 450 m in the section of Figure 5.5.5
are observed at locations with different x-coordinates for different shot gathers. These
spots are related to converted phases and they are not present in the migrated sections (see
I oure 5.5.3) for acoustic shot gathers. By stacking nine shot migrated sections for shots
#. to #9, a very high quality image (Figure 5.5.6) is obtained. Stacking after migration
removes effects which are related to converted phases and other inherent noise. Figure
5.5.7 gives an example of post-stack migration section. The original zero-offset section,
given in Figure 2.6.16, is obtained from porous medium seismic modeling with Biot’s
equation. The earth model is given in Figure 2.6.14.

The superiority of the absorbing boundaries proposed in this chapter is also illustrated
by comparing them with the one dimensional absorbing boundaries (Bayliss et al., 1986)
available for solving first order hyperbolic systems. The synthetic seismograms displayed
in figure 5.5.8 have been calculated from acoustic wave simulations with one dimensional
(a) and two dimensional (b) absorbing boundaries. The two dimensional absorbing
boundaries based on the onc-way wave system (5.2.25) effectively absorb the artificial
reflections from the model boundaries. In the synthetic traces from the one dimensional
absorbing boundaries, we still observe energy related to the artificial reflections, because

only the waves impinging the boundary at normal incidence are properly absorbed.
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Figure 5.5.7 Post-stack migration section. The input zero-offset section, given in Figure

2.6.16, is from porous medium seismic modeling with Biot equation. The earth model is
given in Figure 2.6.14.



183

0.25 |. b &

Trace
1 43 85
0

- MR |

g N I

L

Q

E

-

====

Figure 5.5.8a Common shot synthetic seismogram with one-dimensional absorbing

boundaries.



184

Trace
1 43 85
0
:; ) lii
) ] I
£ 025 W )
) ¢ (« e
= SN el oy
AN N
0.5 |

Figure 5.5.8b Common shot synthetic seismogram with the two-dimensional absorbing

boundaries constructed from the one-way wave equation D2,
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5.6 CONCLUSIONS

A first order hyperbolic system, describing one-way wave propagation in
heterogeneous media, is formulated. Its dispersion relation is a close approximation for
waves propagating with angles of incidence up to 80°. This system provides the basis for
constructing absorbing boundaries and wave field extrapolation operators. Its equivalent
scalar differential equation is in third order. For homogeneous media the scalar equation
has the same form as the existing 45° paraxial wave equation.

A migration method is developed inherently for heterogeneous media based on the one-
way wave system. By comparing dispersion relations, it has been shown that this space-
time migration technique is more accurate than existing wave equation methods based on
the 45° paraxial approximation. A (2,4) explicit finite difference scheme is employed in the
downward wave extrapolation procedure. The application of this new method in synthetic
acoustic or P-SV shot gathers results in high quality migrated sections.

The new absorbing boundaries have smaller effective reflectivity at large incident angles
than those of the absorbing boundaries proposed by Clayton and Engquist (1977).
Synthetic seismograms illustrate that the two-dimensional absorbing boundaries have better
absorbing performance than existing one-dimensional absorbing boundaries for the first

order hyperbolic system of acoustic waves.



186

CHAPTER 6

CONCLUSION AND DIRECTION

Seismic wave propagation in an inhomogeneous fluid saturated poroelastic medium
has been accurately simulated by using the velocity stress finite-difference method. The
development of the first order hyperbolic systems for wave motion in non-homogeneous
porous media from Biot’s theory and the de la Cruz-Spanos theory allows one to model the
fluid and solid particle velocities, the solid stress components, and the fluid pressure
simultaneously. Since the first order systems are free of spatial derivatives of the physical
parameters, except the porosity, errors due to the numerical approximation of the spatial
derivatives of those physical parameters are avoided. The application of the dimensional
splitting method and the high order MacCormack finite difference scheme is effective in
reduceing the phase error (numerical dispersion) in the numerical solutions. General
analytic solutions have been derived for waves generated by a P-wave point or line source
whose body forces act on both the solid and fluid part of a poroelastic medium. These
solutions are useful not only in demonstrating the wave properties but also in source
implementation of finite difference modeling and in algorithm testing.

Biot’s theory was developed based on the a priori assumption that the concepts and
principles of continuum mechanics can be applied to the measurable macroscopic variables
whereas the de la Cruz-Spanos theory was developed through the technique of volume
averaging in passing from the well established physical laws at the microscopic level to the

macroscopic level. Although each thoery’s start point and development are different, both
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theories give similar results in the numerical simulations presented in this thesis.

In simulations with two layer models of porous media, "slow" compressional incident,
transmitted and reflected phases are present in addition to the regular (“fast”) P waves and
S waves in solid elastic media when we deliberately set the fluid viscosity of the porous
media unusually snall. Forward modeling with wave equations for porous media
establishes the relationships between the measurable wave characteristics, such as the wave
propagation velocities, the amplitude, the waveform etc, and the physical properties of the
solid framework and the fluid contents of the rocks, such as their elastic moduli, densities,
the porosity of the rock, etc. The different patterns of the reflection amplitude and
reflectivity variations versus angle of incidence extracted from the finite difference
modeling over the interfaces of shale to sandstone saturated with different fluid contents
and the contact interfaces of different types of fluids within sandstone indicate that these
methods are applicable in diagnosing the rock properties of direct interest to hydrocarbon
exploration and recovery.

In these simulations, it is observed that attenuation is more pronounced for the "slow"
compressional waves especially at high fluid viscosities. This is in accordance with Biot’s
theory and the de la Cruz-Spanos theory where the attenuation is related to viscous
dragging or to solid and fluid interactions. It is also observed that this attenuation
mechanism is of secondary importance for "fast" compressional waves and for rotational
waves. So, in porous media the other main attenuation mechanism should be related to the
inelasticity of the solid matrix and finite difference modeling should be extended to porous
viscoelastic media.

In order to incorporate the quality factor Q into seismic wave simulation in the time
domain a first order hyperbolic system has been established for wave motion in
inhomogeneous viscoacoustic media by transforming the convolution integral which is

present in the constitutive relation into several differential equations through the
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introduction of intermediate variables. In this development a general anelastic medium is
approximated by a generalized Maxwell body. The residual error decreases as the number
of the basic elements of the generalized Maxwell body increases for a given frequency
range. In the finite difference modeling with the first order system, although the increase of
the element number requires more computer memory, it does not result in significant
increase of computational time. This method may be extended to the viscoelastic problem
and, furthermore, may be combined with the Biot or C-S wave equations for porous media
in order to cooperate the attenuation due to the inelasticity of the solid matrix into the finite
difference modeling of seismic waves in porous media.

The formulation of absorbing boundary conditions have been difficult for elastic wave
modeling due to the presence of S waves. It is even more challenging to constru-t
absorbing boundaries in wave simulation in porous media since additional “slow” P waves
may be present. In this thesis several approaches are proposed for constructing absorbing
boundaries which are applicable to wave propagation problems in elastic and porous media.
The one dimensional absorbing boundary conditions are formulated to separate outgoing
waves from incoming waves for all wave types based on the characteristic analysis of the
wave equations, and to absorb the waves impinging upon the artificial boundaries
perpendicularly. The wave propagation modification apg:-oach is used to adjust gradually
the wave propagation direction in a transition zone so that the waves hit the artificial
boundaries at a right angle. The one-way sponge filters are designed for damping the
remaining incoming waves in the transition zone without affecting the outgoing waves. The
combination of the one-dimensional absorbing boundary conditions with either the wave
propagation modification approach or the one-way sponge filter approach effectively
absorbs all incident waves at the artificial boundaries. The one-way sponge filter approach
is distinguished from the existing sponge method (i.e. Cerjan et al., 1985) not only because

it is used in combination with the one-dimensional absorbing boundary conditions but also
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in its one-way damping property. In the application of these techniques the thickness of the
transition zone is reduced to about one wave-length for the wave of dominate frequency
and highest velocity. The extension of these methods to three-dimensional problems is
straightforward.

The first order hyperbolic system formulated in Chapter 5 for describing one-way
waves in heterogeneous media provides the basis for a new method of performing pre-
stack and post-stack seismic depth migration. It has been shown that the corresponding
dispersion relation is in accordance with the exact dispersion relation for propagation angles
up to 80°. When this first order system is applied to the migration problem in the space and
time domain, it offers a number of improvements over the conventional depth migration
techniques. In particular, posing the depth migration as a back-propagation procedure in
time instead of an exirapolation in depth avoids problems associated with evanescent
energy. Since the depth migration method here was developed inherently for heterogeneous
media based on the one-way wave system, no effort is needed for additional operations for
the time-shift or thin-lens term to account for the lateral variation of velocity as is required
in conventional depth migration. Also the unwanted image noise and energy loss related to
internal reflections in migration with the full wave equation are not present because only
downgoing propagating waves are involved in the present method. Since we work with a
first order system which is free of the space derivative of the physical parameters, the error
from the numerical approximation of the space derivative of the physical parameters is
avoided even though we are dealing with heterogeneous media. Because the instability
problem of explicit schemes is less severe for the hyperbolic one-way wave system (in the
x-t domain) than for parabolic ones (in the w-x domain), the less expensive explicit
finite difference scheme rather than the implicit scheme car: be applied in order to reduce the
computational cost in finite difference depth migration in the space-time domain. This is
important because it makes the extension of this method to three-dimensional depth

migration economically feasible. In fact, the computational cost of this migration method is
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exactly the same as that of acoustic forward modeling when the same finite difference
scheme is used.

The present one-way wave system is also successfully applied in constructing
absorbing boundaries in acoustic wave forward modeling problems and migration

problems. It is possible to extend this method to elastic wave propagation problems.
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APPENDIX A

DERIVATION OF EQUATIONS (2.2.5) AND (2.2.6)

Biot’s (1956a) equations for wave motion in the elastic isotropic porous solid
containing a viscous fluid were established in the context of uniform porosity. He extended
his wave equation (Biot, 1962a) to include inhomogeneous porosity. In the extended form,
a total stress tensor IT of the bulk material and the fluid pressure p are used instead of the

solid stress tensor Z° and the quatity s. The quantities IT and p are related to =% ands by

M=+, (A. 1)
and
p::--‘L (A 2)
Mo )

The quantities I'T and p can be given by
M=(A+ aMV-uLep[V-us +(V-usf] + aMV[nfu’ - us) (A. 3)
and
= MV[n,{u - us)] - aMV-us (A. 4)

where A and p; are the Lame coefficient and shear modulus of the solid material,
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=1.K
a=1 K.’ (A.5)
and
=Ll A. 6)
Mo, &-To (
Kf Ks

with K5, K¢ and K, denoting the bulk modulus of the solid material, the pore fluid and the
dry porous frame, respectively.

From (A.1), (A.2), (A.3) and (A.4) we have

s =QV.us +RV-uf+;1R—Vno- (uf-us) (A.7)

and

Z%=(P - 2N)V-usl +N[Vus +(Vu8)T] + QV-u/ I+ ;’Q_Vno- (u-u’)I, (A.8)

where
N=U, (A.9)
P=A+Ma- np+2u, (A. 10)
Q=ndo-nM, (A. 11)
and

R=nM . (A. 12)
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APPENDIX B

DERIVATION OF THE DE LA CRUZ AND SPANOS MACROSCOPIC
EQUATIONS

Let G (x,1) be a physical quantity associated with the fluid in a porous medium. The

volume average of Gyover aregion V is defined as

Gp=+ f Gy(x,ndV . (B.1)

14

A related quantity, called the intrinsic volume average, is defined by

“G",:-‘};I Gj(x,t)dV=%(Gf), (B.2)

which is the volume average over the fluid volume Vf in V. In (B.2) 1 denotes the
porosity of the medium and is given by 7 = V4V .
The volume averaging theorems (Slattery,1969; Whitaker,1969) can be expressed as

0iG)=2{Gp+ j GmidA (B.3)

Afs

for spatial derivatives and

(0:G = 34Gp- j Gy-ndA (B.4)

A
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for time derivatives, where Afg refers to the fluid-solid interfaces in the volume V, n is
the unit normal on those interfaces, directed toward the solid, and v is the particle velocity
on the interfaces. Replacing f with s in (B.3) and (B.4) one can have similar relations for

a physical quantity associated with the solid.

Upon applying (B.3) and (B.4) to microscopic equations (2.3.1) to (2.3.4) in Chapter

2, one has

P30 fus) = ak(o-,?,,) +—‘17I oinmdA (B.5)

Asf

phaivl) = alloly) - 6.-k(vf))+{,—f (of-BuplImaa (B.6)

Aps

(030 = KsBulddut)- (- nol+ pOufu) + i) - 2824t + el (B.7)
(oh)= foubl)+ o2 8]+ . ®

where pJ, p are the static density of the solid and fluid respectively, 7, N, denote the

porosity and the static porosity of the medium, and

B = %I (u.’nk + ugn; - %&kur‘m)dA ; (B.9)
A

H= %f (V.fnk + vin; %— ikV{nl)dA ; (B.10)
Afs

where we have used
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lvf udA=-(N-10) . (B.11)
Ay

L =9 ,
L f vindA =20 (B.12)
Afs

Following the condition (2.3.6) in Chapter 2, the integrals in (B.5) and (B.6) are

related by the equation
=%/-f o mdA = - j(d" Sup! JndA (B.13)
Ay Afn

which can be explained as a body force density (per unit volume) exerted on the fluid by
the solid matrix across the interface. For steady flow of fluid in porous media, /;is related
to the Darcian resistance which is proportional to the relative velocity between the fluid and
solid. For nonsteady flow, an extra term p:oportional to the relative acceleration is added

(de 1a Cruz and Spanos, 1985, 1989). For statistically isotropic porous media, /; is given
by ’

2
ti= B (f - v1) - praddof - v3), (B.14)
where K is the permeability and pj2 is called the induced mass coefficient.

De la Cruz et al. (1991a) noticed that I, does not vanish if the porosity is non-

uniform. They suggest

[ (! + “ }akﬂo*[—é— e{)+ 1-9) uk)}a,no
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-2 5ik[-§—(u{>+(—1:1—§l(uf>] Mo (B.15)
3 o 1-m,

which is a first order quantity in displacement and vanishes when the porosity is uniform.
Since I;f = 9/l following condition (2.3.5) in Chapter 2, by taking the time derivative

of (B.15), one obtains

Hy=- [f’i (vf) + (-11{—;,13(\»3)] Ao - [—,—;1 )+ (r‘—;? (vi‘)] Ailo

) a,k[ o)+ L

v,‘)] Mo (B.16)

Based upon the volume average of the microscopic equation of continuity for the fluid
and the analysis of the pressure-density relationship for fluids, de la Cruz et al. (1991a)

introduced the following macroscopic equation

—L_3/pf)= -J-an a—%))"ﬂ. (B.17)

Ky
They suggest (de la Cruz et al., 1991a,b) that
on = —-L-a,(vf -La,(v{) [—%— i)+ u(v{)] Mo » (B.18)

where 8, &, 8 and & are macroscopic parameters of the porous medium. In particular, 8,

andd; are given by

NoK{(1-10)K s - Kb)
05 = , (B.19
K; [(1-MKs -Ks] + MoK oKy ’
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_ noKf(1-n0) K - K]
U= K T(1-n0) Ks -Ks] + MoKy * (B.20)

While 8 and & must be determined experimentally. They are the subject of continuing
theoretical studies.

Substituting eq.(B.9), (B.10) and (B.1%) to (B.18) into (B.5)to (B.8), and writing
them in tensor form, we obtain the macroscopic ¢quat:-ns (2.3.7) to (2.3.11) in Chapter 2,
where the brackets < > are dropped for convenience. The coefficients in equations (2.3.7)

to (2.3.11) are given by

Dy =(P3-]—’_)1nz; , (B.21)
Diz= Bnlol : (B.22)
Dy = T‘%ll: , (B.23)
Dy =0 - 812, (B.24)
p= BME (B.25)
K
A=K+ Su;- %% , (B.26)
B = §§1’-“-’£ , (B.27)
c=9K (B.28)
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E=K/{l —§ﬁ). (B.29)
Mo
Hy =K - %ps—llj% : (B.30)
HB=K363+-2—;15J1. (B.31)
3 Mo
Ny= sl (B.32)
No
Ng=pyl=9 (B.33)
1- no
Fs = Kida , (B.34)
Fp= Kip , (B.35)
=1 |5. 9 ) (B.36)
% 1- 770( 1- No

and

6B=——1~(6, ] 1+§£). (B.37)
Mo Mo
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APPENDIX C

THE TRUNCATION ERROR
OF THE MACCORMACK TYPE FINITE DIFFERENCE SCHEME

Definition A finite difference scheme is called of order (p,q) if its truncation error

E has the form (Gottlieb and Turkel 1976)

E = At h(At, Ax),
n=0l(axf)  whenever ar=of(ax)”) ©C. D).

Gottlieb and Turkel (1976) proposed several two-step schemes similar to the original

MacCormack scheme for a first order hyperbolic system in one dimension

du ou
_B_T—A5;+ Cu (C.2)

One of those schemes consists of a 'predictor’

ulV) = u? + pA[aau? + BA{Au})] + ArCul (C. 3)

and a 'corrector’
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u! =%—(u," +u’f) +’2—’Al x‘V,us-') + ))V,( V;uﬂ‘))] + AtCuS” (. 9
where p denotes the mesh ratio Ar/Ax, the subscripts represent the grid points on the a-
axis and the superscript represents the grid point on the (-axis, and the forward difference
operator Ay and the backward difference operator V, are defined by A u =W - uyand
V.uj=uj-uj, respectively. For @ = x = 1 and b = -y = 1/6 the predictor and the
corrector become equations (2.5.4) and (2.5.5) in Chapter 2, respectively. In order to

calculate the truncation error of this scheme, the difference operators are expanded in

Taylor serieses
2 3 4 5
Axuj =uj1-u;=Axuy + Ag—-u,, +4é—u,,‘ + 4-1-—24 Uyexx +O(Ax ) . (C. 5
2 3 4
Ax(Axuj) = AX Uyx + AX Ugyy "JAI'%_“uxx "’dAx 5) ’ (C. 6
2 3 4
quj =Uj-Uj.] = Axuy - A%“uxx +Ag"'uxxx - Aixz‘uxxxx *dAx 5) , (C.7
and
2 3 4 5
Vx(Vx“j) = AX Uy - AX Uxpy "l%—u xxxx "'O(Ax ) , (C. 8)

where the subscripts on the right hand side of equations (C.5) - (C.8) denote purtial
derivatives with respect to the indicaied coordinate. To simplify the notation where the time
index n or space index j is miss, u is defined at time nAt or space location jAx.

Substitution of (C. 5), (C. 6) into (C. 3) and (C. 7), (C. 8) into (C. 4) gives

3
uD=un+ A{Am,+4%&u,x--4£l%—uxnx +O(AtAx4)]+AtCu, (C.9)
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and

et = L{un e u0) ¢ 4100~ AAK) , A1), solarax)| + 4 cutt)
(C. 10)

or

Ar?
untl = un + AtAu} + ArCu + ——é—[A(Au’})x + A(Cum), + C(Auy + Cu)]

i Axglti [A(Aug), + A(Cun), -CAug] + Olax?ac?) + darax®) . (€. 11)
On the other hand, by substituting u, = Au,+ Cu, and
u, =(Au, + Cu) =Auy+ Cui= Au,+ CAu,+ CCu
=(Au,), - Axu; +CAu, + CCu
=(AAu, +ACu), - Ax(Au, +Cu) +CAu, + CCu
= AAu, +AAuy +ACu + ACu; +CAux+ CCu
= A(Au, + Cu), +C(Au, + Cu) (C.12)

into the Taylor expansion of u, namely
2
untl =un +Atu,+42L-u,,+dAts), (C. 13)

one has
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2
wt =un + ArAug + ACu + A [A( Au, + Cu), +C{ Au, + Cu)] + olar?).

(C. 14

The truncation error is given by the difference between equation (C. 11) and (C. 14):

Ep= - A—x64L3[A(Axu§), + A(Cun)x -CAuz,] + Olax2ar?) + dar®) + darax?) .

(C. 15)

The scheme given in 2quations (2.5.4) and (2.5.5) has a variant defined by using backward
differences in the predictor and forward differences in the corrector. Similarly the

truncation error of this variant can be found as

By = Axétz [A(A %), + A(Cun), -CAwtd + Olax?ar?) + dar®)+ darax?) .
(C. 16)

. . o . 2
Alternating these two variants at successive time levels will cancel the AxAt ™ error term and

yield a (2,4) scheme even for variable coefficients according to the definition (C. 1).
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APPENDIX D

THE EIGENVALUES AND EIGENVECTORS OF THE C-S SYSTEM
AND THE BIOT SYSTEM

In the following discussion eigenvalues and eigenvectors of the matrices A and B in the
C-S system (2.3.40) are derived. The eigenvalues and eigenvectors of the matrices A and
B in the Biot system (2.2.26) can be obtained by comparing the elements in these matrices
of the C-S system and the Biot system (Appendix E).

In order to find the eigenvalues of matrix A given in equation (2.2.27) one solves the

characteristic equation

det (A- D=0, D. 1)
or
o 0 Ry 0 0 0 Ry |
0 A 0 Rz O 0 0
A A 0 0 B 0 0
A-24, 0o -A 0 B 0 0
det =0.
0 u 0 0 -A 0 0 0
0 0 Ry O 0o -A 0  -Ru
0 0 0 Ry O A 0
| 0 0 0 -E o A |

(D.2)
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Expanding equation (D. 2) one has

2422 - wRaa A" + AHR1E+RA-R12C-R12B) + (AE-BCYR\1R22-R 2R 1) = 0.
(D. 3

The solutions of (D. 3), which are the eigenvalues of A, can be written as
(21,22,23, 4,45, 46, A2,48) = (-Vs -V, V0, OV, Vi, Vi) , (. 4)
where V5, V,, and Vg, are the high frequency limit of the propagation velocity of the fast
P wave, S wave and slow P wave. Vy and Vare given in section 2.4 (see equations

(2.4.29) and (2.4.30)). V. is given by

V,=VuR22 . (D.5)
It is readily shown that matrix B has the same eigenvalues as matrix A by replacing matrix
A in equation (D. 1) with matrix B as given in equation (2.3.42).

A left eigenvector 13 of matrix A corresponding to eigenvalue A4; is a row vector

defined by
1GA = A1} . (D. 6)

A right eigenvector ry of matrix A corresponding to eigenvalue 4; is a column vector

defined by

Al‘fq = l,-rj" . .7
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If we use L4 to denote a matrix whose rows are composed of the left eigenvectors of
matrix A and R4 to denote a matrix whose columns are composed of the right eigenvectors

of matrix A corresponding to the eigenvalues in the order given by (D. 4), then we have

1 0 -hs O he O -lhig ]
0 1 0 0 s O 0 O
1 0 -l O 0 L O -l
0 0o | 1 0 0 0 I
La= 43 48 | D. 38
ATl o I, 0 0 0 0 1 0 ®.8)
1 0 I3 O 0 hBe 0 I3
0 1 0 0 hLs O 0 0
L1 0 L3 O 0 he 0O Lz U
where
V{CR; - ER31) D.9
R24{BC - EA) +VZC
ho=Raz.  VHCRzn-ERy) (D. 10)
Ra21 R2(BC - EA)+ RyV¥C
g = AVACR2; - ERy1) v (D. 11)
C Ry1 (BC - EA)+ V3c2 C
lys = “22 , (D. 12)
)
Iy = VACR2; - ERyy) (D. 13)
R2\(BC - EA)+ VAC
1y = R22. VHCR2; - ERy)) (D. 14)
R21 R2,(BC - EA)+ RyV2C
_ AV{CRy; - ERy1) Vs (D. 15)

C Ry (BC - EA)+vic? C



E(2us- A)+ BC
las = -

BC - AE ’
1 = AB +B(2u,- A)
48~ BC -AE
and
1 0 1 0 0 1 0 1 7]
0 1 0 0 0 0 1 0
-r33 0 -r33 O 0 ri3 0 ry
R =| "4 0 -rs 1 0 r3 0 ry
0 -r, 0 0 O O rs» O
sl 0 re3 0 O re3 0 re1
0 rm O 0 1 0O rn O
.-rs1 O -rg3 O O rgz3 O rg
where
ver = BVE- R1AEA-CB)
3" (RyB -REWV;
_BV}- RiJEA-CB) 2y
(R22B -R12EWVy Vi’
. - BVE-RiJEA-CB) 4
1" "(Ru2B -R2EB B’

_Ry)(EA-CB)- EV?
(R22B -R12E)V¢
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(D. 16)

(D. 1IN

(D. 18)

(D. 19)

(D. 20)

(D. 21)

(D. 22)

(D. 23)
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rs2 =’\/ 7!% ; (D. 29)

rp=-R2L (D. 25)
R22

_ BV2- R{EA-CB)

= D. 26
"3 (R22B -R12E)Vs (B. 26
_ BV} RJEA-CB) 24 D. 27
"= Rp2B -R1EV, Vi ®-2D
_BV2- RiJEA-CB) 5 D. 28
"3 "RuB -RiEB B’ ®-29
_Ry(FA-CB)- EV? . 29)

(R228 ‘RIZE)Vs

Similarly, a left eigenvector If; of matrix B corresponding to eigenvalue A; is a row vector

which satisfies

158 = At} . (D. 30)

A right eigenvector ri of matrix B corresponding to eigenvalue A; is a column vector

which satisfies

Bri = Ar} . (D. 31)

If we use Lp to denote a matrix whose rows are composed of the left eigenvectors of
matrix B and Rp to dennte a matrix whose columns are composed of the right eigenvectors

of matrix B corresponding to the eigenvalues in the order given by (D. 4), then we have



1

0 1 0 =514 0 0
1 0 0 0 -s555 O
0 1 0 -5s34 O 0
0 0 I sy O 0
Le<l &0 0 0 o0 o0 1
0 1 0 s34 O 0
1 0 0 0 s5 O
L 0O 1 0 si4 0 O
where
VACRy, - ER
s14= —VACR2 - ERy)

(CB - EARyy + CV?

s17==L—| Ryy - VA(CRy - ERy1) ,
R (CB - EARyy + CV?

s1e= L AV{CRy; - ERy;) i V]
18 C 2 ?
(CB - EARy1 + CV§

22
$25= 4/ R
s’

VA{CRy; - ERy;)
(CB - EA)Ry, + CV2

$34=

1 [ VA(CR, - ERy)) ]

§37=5 —| Ra2 -
R (CB - EARR2; + CV?

AV{CRy; - ER
s38___21:_[( {CRy2 - ERy)) -Vs},

CB - EA)R2y + CV?2

517

§37

537

517

-S18

-838
548

538

518
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(D. 32)

(D. 33)

(D. 34)

(D. 35)

(D. 36)

(D. 37)

(D. 38)

(D. 39)



o 2E;1L__1
TAE-CB T
Gpum 2B
8T AE-CB
and
0 1 0 0 0 0
1 0 1 0 0 1
31 0 -3 1 0 133
|t 0 -3 0 0O 143
Rz 0 42 0 0 0 O
0 t2 O 0 1 0
th 0 3z 0 0 13
[ <1531 0 -t53 0O O tg3
where

oAz B VZ- ARy + Cng)
Ve Vel BRj3y - ERy ’

=4+ B VZ- ARy + CR12)
Ve Vel BRy- ERqy ’

_V}- ARy + CRyp
BRy - ERy2 '’

m

- _Vr RpA . B Vtz - ARy + CRy2o

+

Ry2 R12lVr Ve\ BR2y- ERyy
15y = R’;,
t62=‘_R—2_1'3

R22

oCOoOO =

152
ls2

|

131
I

I71
I31

—

(D. 40)

(D. 41)

(D. 42)

(D. 43)

(D. 44)

(D. 45)

(D. 46)

(D. 47)

(D. 48)
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=2 'st“’ +& Vtzéla’:{zgkff 12) : (D. 49)
w=f-+ & Ve s EszR 12) : (D. 50)
3 = Vszé 1?21;2_2 ER?f 12 . 51)
TP T (o i v . (B-2)
It can be shown that

LaARA=Ny4 (D. 53)

and
LzpRp=Ngp (D. 54)

/here Ny and Np are diagonal matrices whose diagonal elements are non-zero real

numbers. These numbers can be used as factors to normalize the eigenvectors.
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APPENDIX E

A COMPARISON OF THE COEFFICIENTS OF THE BIOT SYSTEM
AND THE C-S SYSTEM

Comparisons of the elements of the matrices E_, A,, B, and C, in the Biot system
(2.3.28) and the C-S system (2.2.18) are given in tables E.1, E2, E3 and E4

respectively.

Table E. 1: A comparison of the non-zero elements in matrix E,

of the Biot system and the C-S system

Inconstant
element in E, Biot system C-S system
En=Exn pir:  (1-m0)p3 -p12 Dy ps- 113;12

1-Tlo
Eyg= Ea7 P12 Dyy: P2
No

Eqy=E : D, P12

61=£72 P12 21 1,
Ees=Em7 Py MoPh-p12 Dy  p5- P12
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Table E. 2: A comparison of the non-zero elements in matrix A,

of Biot system and C-S system

Inconstant
element in A, Biot system C-S system

(1- no)K.\(l Tor )nK”K’

Ay P Ky +4-y, A: Ks-+flus-—6ils~L *
1-n ~.1£2+r'___-1 3 3 L1
? Ks oKf
Ay P-2N: A2y
Ay O Nd(1-1o)K's - MoK ] c c- 8K
g1 @ K. K, : q—il_no
“No - X, + noi(“;
Asz N (1- o) s Uy
Azg=A4s O B: ,5%1
2
Agg R: MoK, %, E  E= K,(l - isﬁ)
1-n, - “‘b' + noK 0
* - 770(1 -TIOXKS - Kb) - nn{] "no)Kf
Os )

T Mo Ks+ (L-1)Ks T o Ks + (1-N)K s



Table E.3: A comparison of the non-zero elements in matrix B,

of the Biot system and the C-S system
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Inconstant
element in B,

By

Biot system C-S system
N Hs
P-2N A-2Us
P A
0 -C
Qo B
R -E
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Table E.3: A comparison of the non-zero elements in matrix C,,

of the Biot system and the C-S system

non-zero
elementin C, Biot system
Cyy=C b b= Tl
C16=C27 b
C61=Cm2 b
Ce6=C17 -b
a (/] 1 0 R
Ca ng_a% 0= na[(n)K m.Kb]
° 1 n -——+ nOK
.09,
Cay Mo ox
_Qoan,
C3 Tlo oz
_Qm,
Caz No 0z
Q0 I,
Cs6 o ox
Q dNo
Cae 7o x
Cu
C37 Q

Mo 0z

*
C-S system

b, Ty
1-n,’ h K
b
o
b
l - 770
b
No
aﬂo, _ 4, 18
A5 Na = K0, *3 M i,
N, - 2, 16
Hy FY Hj = K0, - 5 Hs i,
0
Ha e
0
N, a'l"
Mo _ 40U,
Ng by Np =, K0
1, - 2,6
-HB&— HB‘K.V5B+'3I1.\' To
d
Ha 5
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01,
Np
Q 91, i
Caz Mo 02 6
(7 1 |
Nsa‘a"f Ns=Hsi 0,
Cs)
M ano
Nsox
Csy
Mo s
Nf anz Nf #sno
Cse
0o
Nrax
Cs7 .
K F 9o Fas= Kida
no s A ax
B - Kp o pKs
C81 - Tlo ax 1'7]0- _K_;+ noKf
Mo
F
R e 479z
Cg2 ‘N, oz N +&ap{)
- Gy Kyo8 ox  pf ox
97,
R
C86 o ox ano +_[££ap£
Gy Koz 0z ol 0z
dNo
Cg7 '717% oz
4
Os 53—-—1—(51 -l+no
* 1 (5’ T-n) Mo
%4 = 1-70 o
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PHYSICAL PARAMETERS AND COEFFICIENTS OF THE BIOT SYSTEM
AND THE C-S SYSTEM FOR COLD LAKE SHALES AND SANDSTONES

Table F.1: Physical parameters and coefficients of the Biot system and

the C-S system for Cold Lake shale

Basic parameters

ps (kg/m3)

ph (kg/m3)
No

Ks (N/m2)
ps (N/m2)
K, (N/m2)
K¢ (N/m2)
K (1/m2)
My (Ns/m2)

2211

1040
0.01

6.97E9
3.575E9
6.6897E9
2.51E9
1.E-16
1E-3

Biot system

p11 (kg/m3)

P22 (kg/m3)
p12 (kg/m3)

P (N/m2)
N (N/m2)
Q@ (N/m2)

R (N/m2)
b (N sm4)

V¢ (m/s)
V, (m/s)
Vs (m/s)

2200

20.8
-10.4

1.1735E10
3.539E9

1.30741E6

2.463E7
1E9

2301
1270
1087

C-S system
Dy (kg/m3) 2221
Dy, (kg/m3) 2080
Dyp (kg/m3)  -1040
Doy (kg/m3)  -104
A (N/m2) 1.16157E10
Us (N/m2) 3.575E9
B (N/m2) 6.77983E9
C (N/m2) 7.21183E6
E (N/m2) 6.84832E6
b (Nsmid) 1E9
Vf {m/s) 2304
V¢ (m/s) 1270
Vf (m/s) 180
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Table F.2: Physical parameters and coefficients of the Biot system and the

C-S system for Cold Lake sandstone saturated with gas

Basic parameters

p* (kg/m3)
p/ (kg/m3)
n

Ks (N/m?)
Hs (N/m2)
Kp (N/m?2)
K¢ (N/m2)
K (1/m2)
1y (Ns/m2)

2650

10
0.335

3.67E10
4.4E9
2.23E9
1.44E6
1.E-12
2.2E-5

Biot system

p11 (kg/m3)
P22 (kg/m3)
p12 (kg/m3)

P (N/m2)
N (N/m2)

Q0 (N/m2)

R (N/m2)
b (N < md)

V¢ (m/s)
V, (m/s)
Vs (m/s)

1766

6.7
-3.35

6.1329E9
2.926E9

8.72456E5

4.837E6
2.47E6

C-S system
Dy (kg/m3) 2655
D,y (kg/m3) 20
Dyy (kg/m3)  -10
D,y (kg/m3) -5
A (N/m2) 8.09936E9
Ue (N/m2) 4.4E9
B (N/m2) 2.8662E6
C (N/m2) 1.35615E6
E (N/m2) 1.44389E6
b (N smd) 247E6
V¢ (m/s) 1748
Vr (m/s) 1287

Vf (m/s)

269
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Table F.3: Physical parameters and coefficients of the Biot system and the

C-S system for Cold Lake sandstone saturated with bitumen

4 e = e

Basic parameters Biot system C-S system
pS (kg/m3) P (kg/m3) 2092 Dy (kg/m3) 3146
pf (kg/m3) P (kg/m3) 660 Dy (kg/m3) 1970
P12 (kg/m3) -330 Dy, (kg/m3)  -985
D, (kg/m3)  -496
Ks (N/m2) P (N/m2) 7.8412E9 A (N/m2) 1.09993E10
Us (N/m2) N (N/m2) 2.926E9 Hs (N/m2) 4.4E9
Kp (N/m2) Q0 (N/m2) 9.47998E8 B (N/m2) 3.09045E9
K¢ (N/m2) C (N/m2) 1.46225E9
R (N/m2) 5.256E8 E (N/m2) 1.55685E9
My (Ns/m2) b (Nsmd) 1.68E13 b (N sm4) 1.68E13
V¢ (m/s) 2215 Vr (m/s) 2169
V, (m/s) 1232 Vs (m/s) 1232
V (m/s) 718 V¢ (m/s) 685
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Table F.4: Physical parameters and coefficients of the Biot system and the

C-S system for Cold Lake sandstone saturated with water

Basic parameters

p* (kg/m3)
p/ (kg/m3)
n

Ks (N/m2)
pts (N/m2)
Kb (N/m?)
K (N/m2)
K (1/m2)
py (Ns/m2)

2650

1040
0.335

3.67E10
4.4E9
2.23E9
2.51E9
1.LE-12
1.5E1

Biot system

p11 (kg/m3)

P22 (kg/m3
P12 (kg/m3

P (N/m2)
N (N/m2)
Q0 (N/m2)

R (N/m?2)
b (N sm4)

V¢ (m/s)
v, (m/s)
Vg (m/s)

)
)

2111

696.8
-348

8.56648E9
2.926E9

1.35E9

7.285E8
1.68E12

2386
1229
773

C-S system
Dy (kg/m3) 3174
D,y (k/m3) 2080
Dy, (kg/m3)  -1040
Dy (kg/m3)  -524
A (N/m?2) 1.22171E10
ps (N/m2)  4.4E9
B (M/m2) 4.38695E9
C (N/m2) 2.07568E9
E (N/m2) 2.20997E9
b (Nsm4) 1.68E12
V¢ (m/s) 2358
V¢ (m/s) 1229

Vs (m/s)

729
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