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Abstract

Visual servoing uses camera feedback to control a robot’s motion. In particular,

Image-based Visual Servoing (IBVS) laws minimize an error signal defined in the

image space. This thesis considers IBVS design for rotary-wing Unmanned Aerial

Vehicles (UAVs). This is a challenging problem due to the nonlinear perspective pro-

jection of image formation and the underactuated nonlinear dynamics of the UAV.

Traditional IBVS approaches calculate the six Degrees of Freedom (DoF) velocity

reference and feed it into an inner velocity tracking loop. This approach cannot be

directly applied to IBVS of an underactuated UAV. To address this issue, all IBVS

laws developed in this thesis consider the vehicle’s dynamics, and this approach is

termed as Dynamic Image-based Visual Servoing (DIBVS). As compared to tradi-

tional position regulation or tracking of UAVs, the nonlinear image kinematics leads

to systems structure which makes the control problem challenging. In this thesis

a state transformation is proposed to eliminate the time derivative of attitude in

the image kinematics. This leads to a simpler system structure for control design.

The state transformation is obtained by solving a system of first-order homogeneous

Partial Differential Equations (PDEs). The existence of solutions is proven and the

general solution provided. Using the transformed state, image moment features for

a planar target with multiple points or parallel lines are proposed. The state trans-

formation approach requires an attitude measurement which is commonly available

for UAVs. However, this measurement contains small bias which results in state-

transformation error and introduces a disturbance into the translational velocity

dynamics. The state-transformation error is proven to be negligible. In this the-

sis, a quadrotor is adopted as the UAV platform to validate the proposed DIBVS
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schemes. The external force or torque is assumed to be the product of an aerody-

namic gain and the square of the Pulse Width Modulation (PWM) signal to the

Electronic Speed Controller (ESC). This gain gradually decreases as battery voltage

drops, and the resulting reduction in thrust has a noticeable effect on UAV motion

in practise. The attitude bias, aerodynamic gain, and mass of the UAV are treated

as unknown constants. Both Proportional-Integral-Derivative (PID) and adaptive

DIBVS schemes are proposed to stabilize image feature error and are robust to this

system uncertainty. Although in the transformed image state the convergence ap-

pears to remain in the camera Field of View (FoV), this may not be case for the

actual camera image. To address this issue, a visual servoing scheme based on a

nested saturation law is proposed to constrain the attitude of the quadrotor.
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Chapter 1

Introduction

1.1 Background

Rotary-wing Unmanned Aerial Vehicles (UAVs) such as ducted fans, quadrotors, and

traditional helicopters have unique flight characteristics including Vertical Take-off

and Landing (VTOL), hover, and low-speed flight while retaining cruising abilities.

This maneuverability makes them suitable for applications such as search and rescue,

infrastructure inspection, and surveillance. A recent survey of rotary wing UAVs

is in [1]. UAVs provide a number of benefits for inspection applications such as

improved safety, reduced cost, and improved inspection data quality. The motivation

of the work in this thesis is to automate small UAVs to inspect the infrastructure

used for the transmission of electricity, e.g. [2]. Electrical utilities are required to

frequently inspect transmission lines which can span thousands of kilometres of

adverse terrain. Inspection is required by law and is important to ensure the safety

and reliability of the power system. A traditional solution to inspection involves

costly, inefficient, and potentially dangerous manned flights. Given the magnitude

and importance of the inspection problem, even small improvements in efficiency

using UAVs can lead to significant benefits.

UAVs have a complicated, nonlinear, and underactuated dynamic model which

makes their motion control an interesting challenge. Motion control depends on

accurate pose estimation. Traditionally, UAV pose is estimated with an aided nav-

igation system which fuses inertial measurements with various sensors such as ul-

trasonic rangefinders, barometers, magnetometers, and Global Positioning Systems

(GPS) [3]. For outdoor applications most commercially available autopilots rely

on GPS for maintaining a stable position estimate which is used to autonomously

control the vehicle’s position trajectory. However, GPS signals are often unavailable

due to obstructions or intentional jamming, e.g. urban canyons [4]. Furthermore,

GPS cannot provide the relative position to a target of interest unless the target’s

GPS location is accurately known. For example, the GPS coordinates of a power
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transmission line are generally not known exactly. Computer vision provides rich

information about the environment and is potentially a good alternative to GPS as

an onboard sensor for measuring the UAV’s relative pose to its environment. As

compared to other sensors, such as Light Detection and Ranging (LIDAR), Laser

Detection and Ranging (LADAR), laser radar, and laser range finders, cameras are

inexpensive, passive, relatively lightweight and can be readily mounted on board a

UAV [5]. Furthermore, cameras can be alone or combined with Inertial Measurement

Unitss (IMUs) to form low cost vision-based navigation systems [6].

Based on how the image is processed, integrated with other sensors, and used

on an aircraft, a classification of computer vision applications for UAVs is proposed

in [5]. At the most basic level computer vision uses image processing techniques to

process the raw image captured onboard. This includes techniques such as object

identification and tracking, camera motion estimation, e.g. [7, 8]. At the next level

the information collected from image processing techniques is fused with other on-

board sensors to estimate the pose of the UAV or partially aid with motion control,

e.g. [9, 10]. Finally, at the highest level visual information from an onboard camera

can be integrated into the closed-loop motion control of the vehicle. This is referred

to as visual servoing [11] and is the focus of this thesis.

Visual servoing is divided into two main approaches: Position-based Visual Ser-

voing (PBVS) and Image-based Visual Servoing (IBVS) [11]. PBVS methods recon-

struct the vehicle pose from image measurements and control the motion directly in

SE(3). Examples of PBVS methods applied to UAVs include [12–19]. In general

PBVS requires more a priori knowledge of the target scene or object. For example,

to track relative pose between the UAV and target some researchers assume that a

Computer-Aided Design (CAD) model of the target is known in advance. The ob-

ject corresponding to this CAD model is identified in the environment and tracked.

Because the CAD model Euclidean dimensions are known, UAV-to-target relative

Euclidean pose can be calculated. Often a specially designed target marker (e.g.

landing pad pattern) is placed in the environment to facilitate tracking. However,

this can limit the application when the environment is unstructured. In addition,

intrinsic parameters of the camera are required for vehicle pose estimation and the

accuracy of the reconstruction depends on the accuracy of the camera calibration

procedure. Other examples of PBVS rely on Simultaneous Localization and Map-

ping (SLAM) methods (e.g. monoSLAM, visual SLAM, Parallel Tracking and Map-

ping (PTAM)) that construct a map of scene points and track the UAV pose relative

to it. Examples of visual SLAM include [20, 21]. A challenge of SLAM-based mo-

tion control for flying UAVs in unknown environments is that the coordinate frame

recovered by SLAM is arbitrary and needs to be aligned with the world frame. The

precision of the executed trajectory will depend both on this external alignment and
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the internal accuracy of the SLAM model. A benefit of PBVS is that non-vision

based motion controllers can be used directly. IBVS methods control the motion

of the vehicle indirectly by minimizing the image feature errors in the 2D image

space [11]. This thesis focuses on IBVS for a number of reasons. Since in IBVS the

task function is computed directly from image plane measurements, the need for

3D position reconstruction used in PBVS methods is avoided. Hence, in general,

IBVS is relatively insensitive to camera calibration even though the control law can

depend on intrinsic camera parameters [22]. Furthermore, for a given camera sen-

sor resolution IBVS has the potential to provide more accurate positioning [23, 24].

Another benefit of IBVS is the target object tends not to leave the field of view

since the design minimizes image feature error which directly depends on image

plane measurements. Although IBVS has many merits, the nonlinear perspective

projection image kinematics complicates the control law design and it is difficult to

design a globally asymptotically stable controller.

The control structure of a visual servoing law is often divided into two loops [11].

An inner loop accepts a reference velocity and determines force and torque inputs

to control the robot’s velocity at a relatively high bandwidth (e.g., 200 Hz). An

outer loop uses video camera feedback to generate reference velocities for the inner

loop. It operates at a relatively low frequency because of the low rate at which

images are acquired and processed (e.g., 30 Hz). A conventional visual servoing

design usually assumes that the inner loop tracks its reference velocity perfectly.

Analysis and design are based on a purely kinematic model. However, it is pointed

out in [25, 26] that the dynamics of a robot should be considered for high speed

tasks or when the system is underactuated. An IBVS law that directly accounts

for vehicle dynamics is referred as DIBVS. The UAV considered in this thesis has

six Degrees of Freedom (DoF) and four actuator inputs, which make the system

underactuated. The importance of treating the underactuated dynamics of a UAV

is underlined in [27]. Although dynamic IBVS has clear practical significance, there

is relatively sparse literature on the topic for any type of robotic application. This

is likely due in part to the difficulty in rigorously accounting for the nonlinearity of

the camera’s perspective projection and the robot’s dynamics.

The objective of this work is to explore dynamic IBVS techniques which can

be applied to automate power line inspections using rotary wing UAVs. This work

also aims to develop an indoor UAV experimental platform to simulate the basic

aspects of motion control in inspection outdoors. Working on an outdoor plat-

form introduces many practical challenges such as wind disturbances and difficult

weather conditions. Hence, the approach adopted in this thesis is to first validate

the proposed DIBVS control laws in a relatively controlled indoor environment.

This decision was made after significant outdoor field work was performed by our
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research team on a gas-powered helicopter UAV [28]. Our experience has been that

flying small quadrotor vehicles indoors can lead to large increases in work efficiency

including reduced operating costs and increased researcher safety. Working indoors

with computer vision has the advantage of better image processing performance. For

example, feature tracking can be achieved with higher accuracy on simpler visual

targets.

1.2 Literature Survey

A number of DIBVS approaches are identified for UAVs that have appeared in the

literature and classify them into four categories: the spherical image moment-based

design, the homography-based method, the virtual spring approach, and the virtual

camera approach.

The seminal work in [29] shows that a perspective projection camera model

destroys the triangular structure of the system dynamics. Hence, a spherical pro-

jection camera model is introduced to give the image feature kinematics a passivity

property, i.e., the time derivative of the norm of the image feature error function is

independent of angular velocity. By introducing first-order moment point features a

backstepping controller is proposed. The origin of the closed-loop system is proven

to be Globally Exponentially Stable (GES). This approach requires a UAV attitude

measurement to define a desired image feature. This attitude information is com-

monly estimated using an Attitude and Heading Reference System (AHRS) which is

integrated into most UAV autopilots. Further work in [30] removes the requirement

of an orientation sensor in [29] which makes the stabilization problem more challeng-

ing. A Local Exponentially Stable (LES) result is proven and a region of attraction

is provided. A similar approach to the work in [29] is in [31] where first-order line

image moment features with bi-normalized Plücker coordinates are proposed for

visual servoing of targets with linear structure, e.g. electrical power lines. A GES

result is achieved using backstepping. However, the proposed interaction matrices

in [29, 30] are ill-conditioned as the image feature is insensitive to change in altitude.

Hence, the performance suffers from a low rate of convergence in altitude. Various

modified spherical image moment features are proposed to address this drawback.

In [32] a rescaled spherical image moment is proposed. Although the interaction

matrix is no longer ill-conditioned, a global asymptotic stability results can not be

achieved. In [33] a partitioned image moment feature is introduced and the resulting

controller is implemented experimentally. Although this approach achieves a GES

result as in [29], the interaction matrix is still ill-conditioned when the camera is not

close to its desired pose. The work in [34] gives a survey of the spherical projection

approach using rescaled and partitioned image features. It is remarked that it is
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difficult to achieve yaw control of the vehicle due to the complicated kinematics of

the feature for yaw motion proposed in [29].

Another useful tool for IBVS is the homography matrix which embeds infor-

mation about the relative pose of a camera given two images of the same planar

object [35]. In [36] a homography matrix is used to extract the normal vector of the

target plane and a ratio of distances from the origins of the camera image plane to

target plane. Based on this extracted information, a scaled distance image feature

is defined and its kinematics has a passivity property. An adaptive law to the un-

known depth which appears in the feature kinematics, and a tracking law for the

pre-recorded images are developed. A Globally Asymptotically Stable (GAS) result

is achieved. In this approach only the position of the UAV is controlled, and the

control of yaw motion is not addressed. Motivated by [37, 38], work in [39] proposes

a six dimensional feature vector that is diffeomorphically related to camera pose.

A local stabilizing control law is developed that only needs angular velocity and

visual measurement of a planar target. Unfortunately, this method only works for a

small range of image error and this limits its application to small variation in yaw.

Compared to approaches using spherical moment features, this approach only works

for planar targets.

Work in [40, 41] introduce a virtual spring approach where image feature mo-

ments lead to an interaction matrix with an identity matrix in its translational

component. The work assumes knowledge of the desired height, a planar target

of point features which remains parallel to the image plane. This approach is mo-

tivated by the UAV’s underactuation where increasing image feature error reduces

lateral position error. The control law is independent of linear velocity and a Locally

Asymptotically Stable (LAS) result is proven. The virtual spring method is limited

by the assumption that the image plane is parallel to the target plane. Lateral

motion of a quadrotor UAV requires roll and pitch motion which means the image

and target planes are no longer parallel. Even a small change in roll or pitch may

cause a large change in the interaction matrix.

A different approach is based on a so-called virtual image plane which has zero

roll and pitch angles and has the same position and yaw angle of the real camera’s

image plane. This work is first introduced in [42, 43]. This virtual plane facilitates

the estimation of depth of image points. A classical IBVS method is used to generate

a reference velocity screw, and an adaptive sliding mode control is used in the

inner loop. This work gives a GAS result. In [27], image moments in the same

virtual plane are used and the feature kinematics has a passivity property. An

adaptive backstepping controller is developed to stabilize the feature error. The

image kinematics with the virtual camera approach is simpler since it is independent

of roll and pitch rates. A GAS result is also rigorously proven. However, similar to
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spherical image moment-based approaches in [29, 31, 34], the virtual camera requires

the UAV attitude measurement.

Other than the virtual spring approach which is based on an output feedback

design, the work mentioned above assumes measurement of the linear velocity. To

avoid the requirement of the velocity measurement, some IBVS designs use optical

flow instead. For example, in [44] the same image moment features proposed in [29]

are used and the optical flow is used to estimate a scaled linear velocity. A fully

nonlinear adaptive control design is proposed to ensure GAS of the closed-loop.

Similar work is also shown in [45]. In [46], the spherical optical flow and attitude

measurement from IMU are combined to estimate a scaled translational velocity of

the vehicle in the navigation frame. An adaptive output tracking controller is ap-

plied to landing a vehicle on a ship deck. A GAS result is also achieved. Instead of

using the optical flow feedback, some approaches adopt an output feedback method.

Work in [47, 48] uses spherical moment features and an observer to estimate the

translational velocity of the vehicle. The desired value of depth is used as a nom-

inal value for actual depth which appears in the observer. Both simulation and

experimental work show the observer’s robustness to unknown depth information.

However, this work lacks an analysis to prove this robustness. In [49] spherical image

moment features are also used for IBVS. An adaptive output feedback backstepping

approach from [50] is used. Although a GAS result is provided, this work is not

experimentally validated. This is possibly due to the complex controller structure

which results. Output feedback methods with moment features in a virtual camera

is receiving recent attention. Work in [51] uses a first-order image moment of points

in a virtual camera with zero roll and pitch. An output feedback control based

on the image moment feature in the virtual camera is proposed. In [52] a virtual

camera with no rotational motion is proposed, and an adaptive output feedback

controller from [53] is modified to track a moving target. The above two approaches

were validated only in simulation.

Due to the limited Field of View (FoV) of a camera, in IBVS the output of the

image should be kept in a compact set. Hence, in [54] an output constraint method

from [55] is used for landing a UAV with parallel line image features. Although the

work in [54] provides a new perspective in the field of visual servoing, a number of

unsolved issues remain. For example, the effect of inner loop tracking should be

analysed. An alternative and generally simpler approach is to constrain the input.

For example, in [56, 57] input saturation controls are adopted. However, these

approaches have no rigorous proof to show that the visual targets can be kept in

the FoV of the camera.
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1.3 Thesis Outline

Chapter 2 describes an indoor UAV platform, and the modelling of the UAV and

camera. To perform practical research on dynamic visual servoing of UAVs, the

indoor UAV platform has to be built. The developed platform is termed as Applied

Nonlinear Control Lab (ANCL) quadrotor platform. In Chapter 2, the details of

the hardware components of the UAV: a quadrotor frame, an onboard autopilot and

its peripherals, an onboard computer vision system, are covered. Next, the software

structure and data flow of the quadrotor autopilot firmware are briefly presented.

To design dynamic visual servoing law for the ANCL platform, a tractable model

is required. In Chapter 2, a pinhole camera model is considered. The kinematics

of image point coordinates of a single 3D point and parameters parametrizing a

single 3D line are also given based on the chosen camera model. Lastly, the UAV

is modelled as a rigid body. The thrust created by a propeller is simplified as the

product of a thrust gain and the square of Pulse Width Modulation (PWM) signal

which is fed into the Electronic Speed Controller (ESC) that drives the motor.

The countertorque created by propeller is also approximated by the product of an

aerodynamic constant and the square of PWM signal. Based on the simplification

of the aerodynamics above and the single rigid body dynamics, a tractable dynamic

model for the quadrotor is built. The combination of the image feature kinematics

and quadrotor dynamics forms the dynamic visual servoing model, which provides

a basis for developing dynamic visual servoing laws through the rest of the thesis.

In Chapter 3 a novel state transformation-based dynamic visual servoing ap-

proach for underacutated UAVs is presented. In the dynamic visual servoing model

built in Chapter 2, the image feature kinematics using perspective projection destroy

the passivity property possessed by the rigid body dynamics [29], which complicates

the dynamic visual servoing law design. Chapter 3 first chooses a cascade con-

troller structure: an outer loop regulates the image feature error with thrust and

attitude as the input, an inner loop tracks the reference attitude from the outer

loop. Next, a nonlinear control technique, which is based on state transformation,

is used to remove the time derivative of attitude in the outer loop. This state trans-

formation recovers the passivity property in the dynamics with the new state. A

constructive approach is given to define the state transformation by solving a system

of first-order linear homogeneous Partial Differential Equations (PDEs). To illus-

trate the philosophy, this approach is applied to a 2D Planar Vertical Take-off and

Landing (PVTOL) aircraft. Using the same philosophy and under constant height

assumption, a dynamic visual servoing law with image coordinates of a single 3D

point is presented to regulate the lateral motion of the quadrotor. Both simulation

and experimental work are conducted to validate the performance of the proposed

approach.
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Chapter 4 continues to explore the cascade controller structure and the state

transformation-based approach proposed in Chapter 3 to regulate the 3D transla-

tional motion and yaw motion of the quadrotor. To control this four DoF motion

of the quadrotor, the feature vector should consist of at least four independent vari-

ables. In Chapter 4 a target that consists of multiple points or multiple parallel lines

is considered. The image moment features in the transformed state are presented.

Next, under the assumption that all points or lines are located in a horizontal plane,

the image moment feature kinematics is derived. From the experimental results in

Chapter 3, it can be observed that there is non-zero steady image error. It is con-

cluded that the attitude estimate bias leads to this non-zero steady error. Lastly, by

treating the attitude estimate bias as constant and assuming unknown thrust gain,

a dynamic Proportional-Integral-Derivative (PID) visual servoing law is developed.

Experimental validation of the proposed visual servoing law for regulating four DoF

motion of the quadrotor is presented. Results for both point and line targets are

given.

Chapter 5 covers adaptive dynamic visual servoing approaches with the im-

age moment features proposed in Chapter 4. Although the controller proposed in

Chapter 4 is proven to be robust to the system’s unknown parameters, it requires

extensive controller tuning. In Chapter 5 adaptive control design techniques are

applied to dynamic visual servoing. These adaptive laws generally reduce the need

for controller tuning. An adaptive backstepping design technique is first applied to

develop an visual servoing law with point moment features. The same cascade struc-

ture as in Chapter 3 and Chapter 4 is adopted. The performance of this adaptive

visual servoing law is validated both numerically and experimentally. Next, another

adaptive DIBVS law based on backstepping for line moment features is presented.

This adaptive law is based on a different cascade structure: the outer loop regulates

the image feature error with the time derivative of thrust and angular velocity as

the input variables, an inner loop tracks the reference angular velocity from the

outer loop. Numerical simulation work is given to validate the performance of this

adaptive scheme.

Chapter 6 presents a dynamic visual servoing scheme with input saturation.

To keep the visual target in the camera’s FoV, the roll and pitch references are

constrained to small compact sets containing the origin. During typical motion of

the quadrotor in visual servoing applications, the thrust on the vehicle should be

kept positive. Using the same cascade control structure proposed in Chapter 3, the

attitude and thrust constraint leads to an input saturation control design problem.

Chapter 6 first introduces the background for saturation controller design. Next,

a less conservative nested input saturation controller is proposed for the height

subsystem, which ensures thrust remains positive. Then, another nested saturation
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control for the lateral subsystem is developed which limits the reference roll and

pitch angles to the inner attitude loop. Finally, both simulation and experimental

results are used to demonstrate the effectiveness of the proposed approach to keep

the visual target in the camera’s FoV.

Chapter 7 summarizes the thesis and discusses possible future research.

1.4 Contributions

The contributions of this thesis are summarized as follows:

• State transformation-based dynamic image-based visual servoing approach [58,

59]. In DIBVS with a perspective projection model, the image feature kine-

matics replaces the UAV’s 3D translational motion kinematics. This destroys

the passivity property of rigid body dynamics. A state transformation-based

approach is proposed to recover the passivity property. In the new state, tra-

ditional motion control design techniques can be applied to obtain a DIBVS.

This approach generalizes the virtual camera approach proposed in [42, 43].

• New image moment features for visual servoing of linear structure [60] [61].

Inspired by the moment features for targets of multiple coplanar points in [62,

63], a set of image moment features for parallel lines is proposed and their kine-

matics derived. The kinematics of the moment feature has a simple decoupled

structure which facilitates controller design.

• Dynamic PID IBVS law [59, 64]. The attitude measurement bias is unavoid-

able with a strap-down IMU. In addition, from experiments it is observed that

the thrust gain for the propellers decreases as the voltage battery drops. The

above two factors lead to non-zero steady image feature error. By treating

the attitude bias and thrust gain as unknown constants, a PID controller is

proposed and shown to be robust to uncertainties in gain and attitude bias.

• Adaptive DIBVS [61, 65]. Using adaptive backstepping techniques, adaptive

DIBVS controllers are proposed which account for parametric system uncer-

tainty including attitude bias, thrust gain, mass, and image feature depth.

• DIBVS with input saturation [66]. To keep the visual target in the camera’s

FoV and the thrust positive, nested saturation controllers are proposed for

height and lateral subsystems.

• Experimental validation of controllers [58, 59, 64–66]. It is important that the

controllers proposed in [58, 59, 64–66] are experimentally validated given the

general lack of experimental results for DIBVS of UAVs.
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Chapter 2

Experimental Platform and

Modelling

Ultimately the goal is to develop a UAV for outdoor inspection of power lines. In

order to achieve this goal efficiently initial indoor testing is performed. An in-

door quadrotor-based platform with onboard vision system has been developed at

ANCL for experimental research on visual servoing. A standard-sized quadrotor

UAV was chosen for the vehicle which falls into the “mini rotary-wing” category

given in [67]. Quadrotors have well-known benefits over other rotary wing UAVs

such as traditional helicopters, tandem rotors, and tricopters. They are relatively in-

expensive, mechanically simple, have high payload capacity, and reduced gyroscopic

effects [68, Chp. 3]. The simplicity of a quadrotor’s design make them reliable and

easy to maintain. Their numerous positive attributes have led to their popularity

with hobbyists and academic researchers in particular. Quadrotors share two main

features of rotary-wing UAVs: they are underactuated and dynamically unstable.

This makes their motion control a theoretical and practical challenge.

The details of the ANCL quadrotor platform are described in Section 2.1. In

Section 2.2 the necessary modelling for dynamic visual servoing is presented. These

models allow us to design visual servoing controls which are model-based. This

allows for a rigorous analysis of performance and robustness. Camera modelling is a

mature topic in the computer vision community. Normally a camera is modelled as

a pinhole camera [35, 69], which is provided in Section 2.2.1. Section 2.2.1 also gives

the image kinematics of some basic point and line features using the pinhole camera

model. In Section 2.2.2 the quadrotor UAV dynamics is presented. The presented

quadrotor dynamics is simple enough to be used for visual servoing control design,

but still captures the main aspects of the vehicle’s behaviour.
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2.1 Experimental Platform

2.1.1 Hardware

The ANCL quadrotor vehicle is shown in Figure 2.1. It consists of a 3D Robotics

(3DR) vehicle frame, four Turnigy 1100 KV brushless outrunner motors with four

APC 12” multi-rotor propellers, two 3 cell 2600 mAh LiPo batteries, a Pixhawk PX4

autopilot, and an onboard CMUcam5 Pixy (Pixy) computer vision system [70]. The

Propeller

Motor

LiPo

Vicon Marker

PX4/PX4IO

ESC

Pixy Camera

Figure 2.1: The ANCL quadrotor UAV

quadrotor frame dimensions are about 0.4 m × 0.4 m × 0.3 m, and flies in an indoor

volume of 4 m × 5 m × 2 m. The autopilot is based on the PX4 hardware which is an

open-hardware and open-source project [71]. Having source code publically available

reduces development time and makes it possible to customize the code according

to project requirements. Presently the PX4 Flight Management Unit (PX4FMU)

and PX4 Input Output (PX4IO) interface board as the core autopilot hardware are

used. The PX4FMU contains a 168 MHz ARM proccessor, a 3D accelerometer, a 3D

gyroscope, a 3D magnetometer, and a pressure sensor. The PX4IO attaches directly

to the PX4FMU and expands its interfacing capability. The PX4IO provides extra

input and output interfaces, such as Universal Asynchronous Receiver/Transmitter

(UART), I2C, and PWM outputs.

The peripherals connected to PX4FMU/PX4IO include four PWM outputs to

four Afro 30 A ESCs, three UARTs which communicate with a 3DR 915 MHz

radio, a Laird Technology (LairdTech) 2.4 Ghz radio, a Pixy vision sensor, and a

Pulse Position Modulation (PPM) input connected to Specktrum satellite receiver.

The pulse width of the four PWM outputs from the PX4FMU/PX4IO are the

desired velocities of the four motors. Two 3 cell 2600 mAh Libo batteries power

the system. The flight endurance is a maximum of about 10 minutes. The 3DR

radio communicates with a ground station PC running QGroundControl (QGC) [72].

This allows for real-time monitoring and visualization of the vehicle on the ground.
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QgroundControl can also send commands to the PX4FMU. For example, system

parameters can be changed and sensor calibration performed. The LairdTech 2.4

Ghz radio communicates with a PC dedicated to running the Vicon Tracker software

which calculates the vehicle’s pose based on the visual information from an eight

camera Bonita Vicon motion capture system (Vicon) [73]. The Vicon system can

provide the vehicle’s position with millimetre accuracy at up to 200 Hz. The pose

information from Vicon can either provide a GPS-like feedback for the autopilot or

ground truth for validating the controller’s performance. It is possible to configure

the LairdTech to send the vehicle’s pose information to the PX4FMU if required.

The Pixy is a low cost onboard computer vision system which can detect hundreds of

point objects or blobs in each frame at up to 50 frames per seconds with a resolution

of 640×480 pixels. The Pixy transmits the centre, height and width of each blob

to PX4FMU. Based on this basic blob information, various image features can be

defined for visual servoing. These features will be described in the following chapters.

The camera used in Pixy has a focal length of 2.8 mm, an image sensor size of 1/4”,

a maximum resolution of 1280×800 pixels, and an M12 lens with a 75○ horizontal
FoV and 47○ vertical FoV. It is noted that the Pixy can only detect salient feature

points due to its limited computation power. The Pixy is a temporary solution and

a more powerful onboard computer vision system is under development. Since the

focus of this thesis is to validate visual servoing schemes instead of developing new

computer vision algorithms, this temporary solution is sufficient. For safety and

for manual takeoff/landing, the PX4FMU/PX4IO is connected with a 8 channel

Spektrum satellite receiver paired with a Spektrum DX8 radio for manual control.

Figure 2.2 gives the overview of interconnection between various components.

CMUCam5 Pixy

Afro 30A ESC

Vicon System

4

U
A
RT

Spektrum

USB

USB

UART

PX4FMU

PX4IO

PWM

UART

3DR

Radio

3DR

Radio

Laird

Radio

Laird

Radio

Reciever

Turnigy

Motor

Ground Station

QGroundControl

Spektrum DX8

Radio
4

Figure 2.2: Overview of hardware interconnection for the ANCL quadrotor platform.
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2.1.2 Software

The software is composed of two main parts: the PX4 autopilot software which runs

on the PX4FMU and the computer vision software which runs on the Pixy. Both of

them are open-source. The PX4 autopilot software collects information from the gy-

roscope, accelerometer, magnetometer, pressure sensor, Vicon, and Pixy. From these

measurements it outputs the PWM control signals to the ESCs. The software in

Pixy mainly focuses on capturing and processing images. As stated in Section 2.1.1,

the focus of this thesis is to develop a visual servoing law instead of the computer

vision algorithms. Hence, the Pixy is effectively used as a black box which outputs

information about the salient blobs in the image. The PX4 autopilot runs on the

Real-Time Operating System (RTOS) NuttX [74], which complies with both POSIX

and ANSI standards. This compliance provides a familiar Unix environment which

reduces development time. The autopilot performs a range of computations such as

attitude estimation, control, communication, and data logging. To organize these

tasks, a modular system is a practical choice [75]. Each module is implemented with

one thread or process and middleware is used to support interprocess communica-

tion. A publish-subscribe micro Object Request Broker (uORB) interface design is

developed to achieve interprocess communication [75].

On top of NuttX, the PX4 open-source software provides libraries and driver

modules for hardware components, i.e., IMU, GPS, and PWM output. In addition,

the PX4 autopilot software provides various useful modules including an Inner PID

attitude controller, an Outer PID position controller, Data logging, an Extended

Kalman Filter (EKF) for attitude estimation, a flight safety state machine, control

signal mixer module which maps from desired body torques to the physical inputs

of the system (which are the PWMs signal for the ESCs in the ANCL platform),

a PX4IO module which provides drivers for various input and output interfaces,

and various sensors modules which collect sensor information. To set up the PX4

autopilot for the project, the flight state-machine module was heavily modified to

allow for switching between various controllers via a physical switch on the DX8

radio. The outer position loop module was modified to use Vicon signals as global

position and velocity feedback instead of a GPS signal which is normally used for

outdoor flight. This module also implements a switch for sending reference attitudes

from the Vicon position module or the visual servoing module, which is introduced

later, to the inner loop. The introduction of this switch provides a safety feature

when the visual target leaves the FoV of the camera or the quadrotor is close to

the boundary of the flight volume. In addition, following the same modular design

pattern several modules are added to meet the project requirements. A vicon module

is created to receive global position and velocity from the Vicon system through the

LairdTech radio. The communication with QGroundControl is handled by aMavlink
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module which uses the Micro Air Vehicle Communication Protocol (MAVLink) [76].

This protocol provides all of the packet structure, sequencing, identification, and

a checksum. MAVLink has proven its reliability in the field. A Pixy module is

built for receiving the salient image point coordinates via a UART interface, and

publishes a topic with this information. A Pixy FE module subscribes to this

topic and extracts advanced image features such as image moments, line features

and then publishes topics containing those features. This topic is subscribed to by

various visual servoing laws modules (VSs) and those modules calculate the reference

attitude and publish it to Inner module mentioned above. The abovementioned data

flow is summarized Figure 2.3. In this figure rectangular boxes denote data sources

such as sensors or devices. Ovals denote software modules. A blue color represents

modules that were added or modified. Items shown in black are original modules

from the open-source PX4 autopilot software.

uORB

EKF

MixerInnerOuter

State MachineSensorsData Logging

VSs

Vicon

Pixy FE

Vicon

MAVlinkQGC

PX4IODX8

ESCs

PIXY Pixy

O®board Sensors

Figure 2.3: Data flow in the PX4 autopilot software. The rectangular boxes are
data sources such as sensors or devices. The ovals are software modules. uORB is
the object broker for the interprocess communication based on a publish-subscribe
design pattern. The blue color represents modules that were added or modified.
Items shown in black are the original modules from the open-source PX4 autopilot.

2.2 Modelling

2.2.1 Image Kinematics for Basic Features

Before presenting the image feature kinematics, a pinhole camera model is intro-

duced as shown in Figure 2.4. The pinhole camera model is commonly used in

computer vision community [35, 69]. To describe this model, a camera frame C with

basis {c1, c2, c3} is introduced. The origin of C is fixed to the aperture of the camera.

The c3 axis is pointing in the viewing direction of the camera and is referred as the

optical axis. The image plane is perpendicular to c3 and intersects c3 at coordinate

λ, which is referred as the focal length of the camera. (It is noted that in reality
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Figure 2.4: Reference frame definitions and the pinhole camera model.

the coordinates is −λ.) The intersecting point OI is the image centre. In the image

plane, a 2D image frame Y is introduced with basis {Y1, Y2} parallel to c1 and c2,

respectively.

Visual features in an image can be decomposed into points and lines. Hence, here

two basic image feature kinematics, i.e., point feature kinematics and line feature

kinematics, are introduce. A 3D point with coordinates P = [X1,X2,X3]T in frameC is projected into the image plane with image coordinates p = [y1, y2]T in Y . The

expression of p is

p = ⎡⎢⎢⎢⎢⎣
y1

y2

⎤⎥⎥⎥⎥⎦ = λ

⎡⎢⎢⎢⎢⎣
X1

X3
X2

X3

⎤⎥⎥⎥⎥⎦ (2.1)

As in [11] when the 3D point is static, the kinematics of p is

ṗ = Lvpv
c +Lωpω

c (2.2)

where vc, ωc are the linear and angular velocity of the camera expressed in C,
respectively, and

Lvp = ⎡⎢⎢⎢⎢⎣
− λ
X3

0 y1
X3

0 − λ
X3

y2
X3

⎤⎥⎥⎥⎥⎦ , Lωp =
⎡⎢⎢⎢⎢⎣

y1y2
λ − (y21+λ2)λ y2

(y22+λ2)
λ −y1y2λ −y1

⎤⎥⎥⎥⎥⎦
A 3D straight line L can be expressed as the intersection of two planes

hTi P +Di = AiX1 +BiX2 +CiX3 +Di = 0, i = 1,2 (2.3)

where hi = [Ai,Bi, Ci]T is the normal vector of ith plane expressed in C. If the

degenerate case (D1 = D2 = 0) is excluded, which means that the origin of C does

not lie on L, as in [77] the projected line of L can be parametrized by lI with

following equation

lTI p̄ = 0
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with lI = [h1 h2] ⎡⎢⎢⎢⎢⎣
D2−D1

⎤⎥⎥⎥⎥⎦, p̄ = p/λ. It can be shown that the parametrization of the

projection of L in the image plane is

lTλ p = 0 (2.4)

with lλ = B(λ)lI , and B(λ) = diag([1,1, λ]). Since the parametrization l is not

minimal (e.g. l and σl represent the same line where σ is some nonzero constant), a

new pair of variables ρ and α is used to parametrize the projected line l as

lTλ p = y1sα + y2cα − ρ = 0 (2.5)

where lλ = [sα, cα,−ρ]T , sξ = sin(ξ), cξ = cos(ξ). This representation is ambiguous

since the same line can be parametrized by (ρ,α + 2kπ) and (−ρ,α + (2k + 1)π).
Hence, without loss of generality α is restricted to lie in (−π2 , π2 ]. The parameter α

represents the angle that the line makes with the positive y1-axis with positive α

taken in the clockwise direction and restricted to the range (−π2 , π2 ]. The parameter

ρ represents a perpendicular distance of the line to the origin of the image. The sign

of ρ can be determined from (2.5). Figure 2.5 shows the graphical representation α

½
OI

Y1

Y2

®

Figure 2.5: A graph of a line in the image plane and its dependence on feature
parameters α and ρ.

and ρ. Differentiating (2.5) with respect to time yields

ρ̇ − (y1cα − y2sα)α̇ = ẏ1sα + ẏ2cα (2.6)

From (2.3), the following equation can be obtained

1

Z
= −Aiy1 +Biy2 + λCi

λDi
(2.7)

From (2.5), y2 is expressed as a function of y1 when cosα is not equal to zero.

Alternatively, y1 can be expressed as a function of y2 when sinα is not equal to

zero. Assuming L is static and using (2.2) and (2.7), (2.6) is written as

−α̇y1 + cα(ρ̇ + α̇ρ tanα) = y1K1cαv
c +K2cαv

c
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where

K1 = [lαλsα lαλcα −lαρ −ρ tanαλ − ρλ − 1
cα

]
K2 = [lρλ sinα lρλ cosα −lρρ λ cosα + ρ2

λ cosα −λ sinα ρ tanα]
with lα = (Ai−Bi tanα)/(Diλ), lρ = (Biρ/cα + λCi)/(Diλ), and vc = [(vc)T (ωc)T ]T .
This leads to

l̇ = Lvlv
c +Lωlω

c (2.8)

where l = [α, ρ],
Lvl = ⎡⎢⎢⎢⎢⎣

μαλsα μαλcα −μαρ
μρλsα μρλcα −μρρ

⎤⎥⎥⎥⎥⎦ , Lωl =
⎡⎢⎢⎢⎢⎣

ρsα
λ

ρcα
λ 1(λ + ρ2

λ )cα −(λ + ρ2

λ )sα 0

⎤⎥⎥⎥⎥⎦
and μα = −(Aicα −Bisα)/(Diλ), μρ = (Aiρsα +Biρcα +Ciλ)/(Diλ).
2.2.2 Quadrotor Modelling

As shown in Figure 2.6, a navigation frame N is introduced to describe the dynamics

of the quadrotor. This frame is fixed to a point on the Earth with a basis {n1, n2, n3},

n1n2

n3

c1

N

C

c3

c2

dn
nc

Á

Ã

Figure 2.6: Frame definitions used for quadrotor modelling. The Euler angles φ-θ-ψ
and displacement dnnc are shown.

which is oriented north, east, and down, respectively. The frame N is approximately

inertial as the earth rotates slowly. The Pixy is rigidly fixed on the quadrotor as

shown in Figure 2.6. The origin of the camera frame C is assumed to be fixed at

the centre of mass of the quadrotor with its basis {c1, c2, c3} oriented forward, right,

down, respectively, and the quadrotor in this thesis adopts the “×” configuration.

The vector dnnc = [d1, d2, d3]T denotes the displacement of the origin of C in N , which

measures the translational motion of the vehicle. The rotation of C related to N
is represented by a matrix R ∶ C → N given by Xn = RXc, where Xn is a vector

expressed in N , and Xc its the same vector expressed in C. This rotation matrix
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belongs to the special orthogonal group SO(3) with the properties RTR = I and

det(R) = 1. The kinematics of R is

Ṙ = R [ωc]× (2.9)

where for any x ∈ R3

[x]× = ⎡⎢⎢⎢⎢⎢⎢⎣
0 −x3 x2

x3 0 −x1−x2 x1 0

⎤⎥⎥⎥⎥⎥⎥⎦
Although SO(3) is a three-dimensional manifold, there is no globally defined three

parameter coordinate chart of SO(3) [78]. Unit quaternions and Euler angles are

two popular choices for the parametrization of SO(3) [79]. Unit quaternions pro-

vide a nonsingular parametrization of SO(3) and lie in a non-Euclidean 3D sphere

S
3. However, this parametrization is not unique which can lead to unwinding be-

haviour [80]. Here, the so called ZYX Euler angles are used and the rotation matrix

R is expressed as

R = Rn3(ψ)Rn2(θ)Rn1(φ) = ⎡⎢⎢⎢⎢⎢⎢⎣
cψ −sψ 0

sψ cψ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
cθ 0 sθ

0 1 0−sθ 0 cθ

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cφ −sφ
0 sφ cφ

⎤⎥⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎢⎢⎢⎢⎣

cθcψ sφsθcψ − cφsψ cψsθcφ + sψsφ

cθsψ sψsθsφ + cψcφ cφsθsψ − sφcψ−sθ cθsφ cθcφ

⎤⎥⎥⎥⎥⎥⎥⎦
where Rnk

denotes an elementary rotation about the nk axis, and φ denotes roll, θ

denotes pitch, and ψ denotes yaw. The kinematics expressed in the Euler angles is

ωc = W (η) η̇ (2.10)

where η = [φ, θ,ψ]T , and
W (η) = ⎡⎢⎢⎢⎢⎢⎢⎣

1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ

⎤⎥⎥⎥⎥⎥⎥⎦
The Euler angle parametrization suffers from singularities which occur when θ =(2k + 1)π/2, k ∈ Z. These singularities are sometimes called gimbal lock and are

normally only encountered in acrobatic flight which is not typical in visual servoing.

The Euler angle parametrization has the advantage of being an intuitive representa-

tion for attitude and is a common choice in field-tested autopilots, e.g. [28, 71, 81].

The quadrotor is treated as a rigid body, using the Newton-Euler approach [78]
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the dynamics of the rigid body is written as

v̇c = − [ωc]× vc + gRTn3 + F c

m
(2.11a)

ω̇c = −J−1 [ωc]× Jωc + J−1τ c (2.11b)

where g is the acceleration due to gravity, m is the mass of the vehicle, J is the

inertia of the vehicle, F c is the applied force expressed in C, τ c is the applied torque

expressed in C. The quadrotor’s mass is approximately distributed symmetrically

about its camera frame axes, we take J ≈ diag([J1, J2, J3]). As shown in Figure 2.7,

c1

C

c3

c2

f1

f2 f3

f4 `

¿1

¿3¿2

¿4

Figure 2.7: The input force and torque model for a quadrotor with cross configura-
tion.

the quadrotor has four fixed-pitch propellers in a cross configuration with two pairs

of propellers rotating in an opposite directions. Each propellers will create a thrust

fi and drag moment τi. Here the four motors are assumed to be identical, and

the input models for fi and τi are assumed to be proportional to the square of the

physical input as

fi = KT W̃
2
i (2.12a)

τi = KτW̃
2
i (2.12b)

where KT , Kτ are aerodynamic constants, W̃ = Wi −Wmin, Wi is the PWM width

fed into the ith ESC driving the ith motor, and Wmin is the minimum pulse width

to rotate the propeller. The applied force F c and torque τ c are obtained as

F c = TMc3 (2.13a)

τ c =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
�√
2
(f2 + f3 − f1 − f4)

�√
2
(f1 + f3 − f2 − f4)∑4

i=1(−1)iτi
⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.13b)

where TM = ∑4
i=1 fi is the thrust created by four propellers. In visual servoing of

UAVs, the speed of the vehicle is slow and aggressive motion is avoided. The vehicle
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usually flies near a hover configuration. As pointed in [68, 82–84], in hover small

body forces and drag forces are negligible, and gyroscopic effects of propellers tend

to cancel. Hence, small body forces, drag forces, and gyroscopic forces are ignored

in the model using this thesis.

2.3 DIBVS Model and Problem Formulation

With basic image measurements, i.e., the image coordinates of points or the pa-

rameters of image lines, a more complicated feature s can be formed. Assuming the

target is static, a dynamic IBVS model is formed by combining the image kinematics

of s, rotational kinematics (2.10), and the dynamic model of the quadrotor (2.11)

as

ṡ = Lvv
c +Lωω

c (2.14a)

v̇c = − [ωc]× vc + gRTn3 + F c

m
(2.14b)

η̇ = W −1(η)ωc (2.14c)

ω̇c = −J−1 [ωc]× Jωc + J−1τ c (2.14d)

where Lv and Lω are the image Jacobians or interaction matrices. The control objec-

tive of DIBVS is to minimize the image feature error es = s−s∗ through considering

the quadrotor’s dynamics, where s∗ is the desired image feature value. Since the

quadrotor is symmetrical around its axes, The inertial matrix J is approximated

as J = diag([J1, J2, J3]). Table 2.1 summarizes the quadrotor and camera model

parameters.

m 1.6 kg
J1 0.03 kg⋅m2

J2 0.03 kg⋅m2

J3 0.05 kg⋅m2

λ 2.8 mm
Image size 1/4 ” (3.2 × 2.4) mm
FoV 75○ horizontal and 47○ vertical
� 0.25 m

Table 2.1: Quadrotor and camera model parameters.

2.4 Conclusion

The indoor ANCL quadrotor platform has been developed to perform experimental

research on visual servoing. It provides a flexible environment for research which
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is a step towards developing an outdoor platform for power line inspection. The

platform benefits from low cost open-source systems: the PX4 autopilot, the Pixy

onboard computer vision system, and the QgroundControl ground station software.

To achieve visual servoing tasks the open-source autopilot software is customized

and integrated into a generic quadrotor vehicle. A pinhole camera model is used

to describe image formation and the image kinematics of two basic features: 2D

point image coordinate feature and 2D line parametrization image feature. A rigid

body model is used to model the quadrotor. A simple and commonly used input

model results by ignoring effects such as gyroscopic effects, small body forces, and

drag force. Lastly, the dynamic IBVS model is presented, and the IBVS problem is

formulated.
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Chapter 3

State Transformation-Based

DIBVS

As discussed in Chapter 1, classical IBVS can not be applied directly to an un-

deractuated UAV where the velocities vc and ωc are not independently controlled.

In the case of UAVs, vehicle dynamics need to be considered and a scheme which

includes their effect is termed dynamic IBVS (DIBVS). As mentioned in [29], the

image kinematics of s in (2.14a) has dependence on angular velocity ωc and lin-

ear velocity vc. The angular velocity dependence destroys the triangular cascade

structure which the rigid body dynamics possesses when expressed in the inertial

frame. The lack of structure makes DIBVS a challenging global stabilization prob-

lem. Hence, in [29] a spherical projection model is used instead of a perspective

projection model (2.1). This approach is referred to as spherical projection IBVS

and is described in [29–31, 33]. Typically, spherical projection IBVS is characterized

by an ill-conditioned interaction matrix. Partitioning and rescaling approaches were

proposed in [32] and [33] to address the issue of ill-conditioning. This work only

removes the problem locally in the partitioning approach and no rigorous proof is

given in the rescaling approach.

In this chapter an approach using a state transformation is considered. The

proposed approach requires the attitude information as in spherical projection IBVS,

but leads to a simpler interaction matrix. The approach adopts a two-loop cascade

structure: outer IBVS loop and inner attitude loop. This structure is described in

Section 3.1. Section 3.2 presents the proposed approach and a simple Planar Vertical

Take-off and Landing (PVTOL) aircraft example is used to illustrate the proposed

scheme. Lastly, in Section 3.3 a DIBVS law using image coordinates of a single

point as the image feature is developed to show how the state transformation-based

approach is applied to control the motion of the quadrotor. Since only a single point

is used, only lateral position of the quadrotor is regulated to zero.
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3.1 Cascade Structure of DIBVS Model and Controller

The DIBVS model (2.14) is divided into two subsystems in cascade: an outer-loop

which outputs the image feature error es with applied force F c and attitude R as

inputs, and an inner loop which outputs attitude R for an input τ c. The controller

itself has inner-outer loop structure: the outer loop input is the image feature error

es and it outputs F c and desired attitude R∗ to the inner loop which outputs

τ c. Figure 3.1 shows a block diagram of the closed-loop system and the cascade

structure of the controller. The main reason for adopting this control structure is

Camera

Outer Dynamic
Visual Servoing Loop

Controller
Vehicle

TM

Inner Attitude
Loop Controller

R¤ ¿ c

RR; v

R; dn
nc

s

Figure 3.1: Inner-outer loop control structure.

that it provides a reliable and simple solution for motion control. In particular, each

loop becomes fully actuated and this simplifies the control design and gain tuning

to optimize performance. A similar two-loop structure for conventional position

control is found in many autopilots, e.g. [28], [71]. Stability of the closed-loop system

requires the inner loop to have a relatively high bandwidth. which is achieved with

high-gain. The visual servoing problem naturally fits the inner-outer loop structure

since AHRS measurements are relatively fast compared to image feedback. One

alternative is to use ωc as the control for the outer loop, e.g. [33]. However, a benefit

of the proposed structure is its direct control of attitude which ensure attitude

remains in a safe region. It also makes it easier to keep the target in the camera’s

FoV. A theoretical analysis of this structure can be found in [85].

3.2 General State Transformation-based Approach

This section begins with the general philosophy of the state transformation-based

approach. In Section 3.2.2 an example is provided to illustrate the theory. Sec-

tion 3.2.3 and 3.2.4 present the state transformation formula for a 3D point and a

3D line, respectively.
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3.2.1 Philosophy of the State Transformation-based Approach

From(2.10), (2.14b), and (2.14b), the outer loop is written as

ṡ = Lvv
c +Lη1 η̇1 +Lη2ψ̇ (3.1a)

v̇c = Hu +Hη1 η̇1 +Hη2ψ̇ (3.1b)

where [Lη1 , Lη2] = LωW , Hu = gRTE3 + F c/m, [Hη1 ,Hη2] = [vc]×W , and η1 =[φ, θ]T . The control variables for (3.1) are F c, η1, and ψ. The yaw angle ψ can be

controlled independently. It can be seen that the outer-loop contains the attitude

input and its derivative. The appearance of the input derivative makes the control

design challenging. One way to solve this problem is to lower the input derivative by

a state transformation. A state transformation is defined as sa (s, η1) and va (vc, η1)
with dependence on input η1. The time derivative of the state transformation is

ṡa = ∂sa

∂s
Lvv

c + (∂sa
∂s

Lη1 + ∂sa

∂η1
) η̇1 + ∂sa

∂s
Lη2ψ̇

v̇a = ∂va

∂vc
Hu + (∂va

∂vc
Hη1 + ∂va

∂η1
) η̇1 + ∂va

∂vc
Hη2ψ̇

If sa and va satisfy the system of first-order linear homogeneous PDEs

∂sa

∂s
Lη1 + ∂sa

∂η1
= 0 (3.2a)

∂va

∂vc
Hη1 + ∂va

∂η1
= 0 (3.2b)

the input derivative in (3.1) can be eliminated and the dynamics (3.1) expressed in

the new state is

ṡa = ∂sa

∂s
Lvv

c + ∂sa

∂s
Lη2ψ̇

v̇a = ∂va

∂vc
Hu + ∂va

∂vc
Hη2ψ̇

Hence, to choose a state transformation, the PDEs (3.2) have to be solved first.

Although it is usually difficult to solve PDEs explicitly, it is shown in following

sections that this PDEs are solvable and a general explicit solution is also given.

3.2.2 Example: PVTOL Aircraft

A Planar Vertical Taking-Off and Landing (PVTOL) aircraft is considered to illus-

trate the state transformation approach with a point measurement. By setting the

first and the third components of ωc, and the second component of vc, roll and yaw

angle, i.e., ωc1, ω
c
3, v

c
2, φ, ψ, and y2 in (2.2) and (2.14b) to zeros, the PVTOL aircraft
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model is obtained as

ẏ1 = [− λ
X3

y1
X3

] ⎡⎢⎢⎢⎢⎣
vc1
vc3

⎤⎥⎥⎥⎥⎦ − y21 + λ2

λ
ω2 (3.3a)

⎡⎢⎢⎢⎢⎣
v̇c1
v̇c3

⎤⎥⎥⎥⎥⎦ = −ω2

⎡⎢⎢⎢⎢⎣
0 1−1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vc1
vc3

⎤⎥⎥⎥⎥⎦ + g

⎡⎢⎢⎢⎢⎣
−sθ
cθ

⎤⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎣
0−TMm

⎤⎥⎥⎥⎥⎦ (3.3b)

Relative to the 3D UAV model, (3.3) has fewer states but keeps the essential

structure of (2.2) and (2.14b). The PDEs (3.2) become

∂ya1
∂y1

y21 + λ2

λ
− ∂ya1

∂θ
= 0 (3.4a)

∂vai
∂vc1

vc3 − ∂vai
∂vc3

vc1 − ∂vai
∂θ

= 0 (3.4b)

where i = 1,3. The general solutions of (3.4b) are

ya1 = κ1 (arctan(y1
λ
) + θ) (3.5)

vai = κ2i((vc1)2 + (vc3)2,arctan(vc1vc3 ) + θ) (3.6)

where κ1 and κ2 are smooth functions in their arguments. If the particular so-

lutions κ1(ζ) = tan ζ, κ21(ζ1, ζ2) = ζ1sζ2 , κ22(ζ1, ζ2) = ζ1cζ2 are chosen, the state

transformation is

ya1 = λ
cθy1 + sθλ−sθy1 + cθλ⎡⎢⎢⎢⎢⎣

va1
va3

⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎣
cθ sθ−sθ cθ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vc1
vc3

⎤⎥⎥⎥⎥⎦
and the outer loop expressed in the new state is

ẏa1 = λ

X3 (−sθy1 + cθλ) [−λ ya1] ⎡⎢⎢⎢⎢⎣
va1
va3

⎤⎥⎥⎥⎥⎦ (3.7a)

⎡⎢⎢⎢⎢⎣
v̇a1
v̇a3

⎤⎥⎥⎥⎥⎦ = g

⎡⎢⎢⎢⎢⎣
0

1

⎤⎥⎥⎥⎥⎦ − TM
m

⎡⎢⎢⎢⎢⎣
sθ

cθ

⎤⎥⎥⎥⎥⎦ (3.7b)

As shown in Figure 3.2, a virtual camera frame A with basis {ca1, ca3} is defined,

which has the same translational motion as C but with zero pitch. Any point in A
has coordinates

P a = ⎡⎢⎢⎢⎢⎣
Xa

1

Xa
3

⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎣
cθ sθ−sθ cθ

⎤⎥⎥⎥⎥⎦P
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The term λ/ (X3 (−sθy1 + cθλ)) in (3.7a) can be written as 1/(X3cθ −X1sθ) whose

ca
1

ca
3

c3

c1

P = [X1;X3]
T

¸ p

pa

¸

Figure 3.2: Virtual camera for the PVTOL aircraft.

denominator is the depth Xa
3 of the target in the virtual camera frame. Since the

vehicle always hovers above the target Xa
3 > 0. It can be also observed that

ya1 = λ
X3sθ +X1cθ
X3cθ −X1sθ

= λ
Xa

1

Xa
3

This is the image point in the virtual camera plane. Hence, the state transformation

approach includes the virtual camera approach in [27] as a special case.

3.2.3 State Transformation for 3D Point Target

Since points and lines are basic features in a image, this subsection and the following

describe the state transformation for a single point and a single line with 3D outer

loop (2.14a) and (2.14b). This state transformation will be used in the following

chapters.

The state transformations for the point coordinate feature case are denoted as

yai (y1, y2, φ, θ), vai (v1, v2, φ, θ), i = 1,2. From (2.2), (3.1), (3.2a), the new state yai
has to satisfy following PDEs

Gjp(yai ) = 0, j, i = 1,2 (3.8)

where

G1p = y1y2
λ

∂

∂y1
+ y22 + λ2

λ

∂

∂y2
+ ∂

∂φ

G2p = (y21 + λ2

λ
cφ + y2sφ) ∂

∂y1
+ (y1y2cφ

λ
− y1sφ) ∂

∂y2
− ∂

∂θ

As discussed in Appendix A, a solution to (3.8) exists and following the method
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presented there a general solution can be computed as

yai = κ3i (sφcθy2 + λcφcθ − y1sθ

λsφ − y2cφ
,
sφsθy2 + cφsθλ + y1cθ

λsφ − y2cφ
) (3.9)

where i = 1,2, and κ3i is an arbitrary smooth function in its arguments. The

PDEs (3.2b) are

Gjv(vai ) = 0, j = 1,2, i = 1,2,3 (3.10)

where

G1v = vc3
∂

∂vc2
− vc2

∂

∂vc3
+ ∂

∂φ

G2v = −(vc3cφ + vc2sφ) ∂

∂vc1
+ vc1sφ

∂

∂vc2
+ vc1cφ

∂

∂vc3
+ ∂

∂θ

As with (3.8) the general solution is obtained as

vai = κ4i(v2cφ − v3sφ, v1cθ + v2sφsθ + v3cφsθ,−v1sθ + v2sφcθ + v3cφcθ) (3.11)

where i = 1,2,3, and κ4i is an arbitrary smooth function. Taking

κ31(ζ1, ζ2) = λ
ET

1 Rcq

ET
3 Rcq

, and κ32(ζ1, ζ2) = λ
ET

2 Rcq

ET
3 Rcq

(3.12)

where q = [ζ2,−1, ζ1]T , Rc is a constant rotation matrix, E1 = [1,0,0]T , E2 =[0,1,0]T , E3 = [0,0,1]T , and
κ4i(ζ1, ζ2, ζ3) = ET

i Rc[ζ1, ζ2, ζ3]T , i = 1,2,3 (3.13)

the outer loop transformed in the new coordinates is

⎡⎢⎢⎢⎢⎣
ẏa1
ẏa2

⎤⎥⎥⎥⎥⎦ = Lavpv
a +Laη2R

T
c E3ψ̇ (3.14a)

v̇a = [ψ̇RT
c E3]× va + F a (3.14b)

where

Lavp = ⎡⎢⎢⎢⎢⎣
− λ
Xa

3
0

ya1
Xa

3

0 − λ
Xa

3

ya2
Xa

3

⎤⎥⎥⎥⎥⎦ , Laη2 = ⎡⎢⎢⎢⎢⎣
ya1y

a
2

λ − (ya1 )2+λ2λ ya2(ya2 )2+λ2
λ −ya1ya2λ −ya1

⎤⎥⎥⎥⎥⎦
and F a = RcRθφg1 (F c, η), g1 (F c, η) = gRTn3 + F c/m, Xa

3 = ET
3 RcRθφP , Rθφ =

Rn2(θ)Rn1(φ). The state transformations (3.12) and (3.13) generalize the work

in [27] to convert the points coordinate in the real camera image to the coordinates

of a point projected to a virtual camera with zero roll and pitch. It can readily be

shown that if Rc in (3.12) and (3.13) is replaced with RcRn3(ψ), the yaw rate ψ̇

27



in (3.14) will disappear and this is the virtual camera used in [52].

3.2.4 State Transformation for 3D Line Target

The state transformation for a line feature is lai (α, ρ, φ,ψ). Using (2.8) and (3.1),

(3.2a) becomes

Gjl(lai ) = 0, j, i = 1,2 (3.15)

where

G1l = ρsα
λ

∂

∂α
+ (λ + ρ2

λ
) cα ∂

∂ρ
+ ∂

∂φ

G2l = (ρcα
λ

cφ − sφ) ∂

∂α
− (λ + ρ2

λ
) sαcφ ∂

∂ρ
+ ∂

∂θ

Following the same procedure used to solve (3.8) and (3.10) a general solution to

(3.15) can be obtained . Similar to the 3D point case, the particular solution similar

to (3.12) is given by

la = ⎡⎢⎢⎢⎢⎣
αa

ρa

⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣
arctan ( le1le2 )− le3√

l2e1+l2e2

⎤⎥⎥⎥⎥⎥⎦ (3.16)

where

le = ⎡⎢⎢⎢⎢⎢⎢⎣
le1

le2

le3

⎤⎥⎥⎥⎥⎥⎥⎦ = BRcRθφB
−1

⎡⎢⎢⎢⎢⎢⎢⎣
sα

cα−ρ
⎤⎥⎥⎥⎥⎥⎥⎦ (3.17)

and B = diag([1,1, λ]), which is also defined in (2.4). According to (3.2), the state

transformation for velocity va should satisfy the same PDEs (3.10). If the same

solution in (3.13) is chosen. The new outer loop with the state la and va is

l̇a = Lavlv
a +Laη2R

T
c E3ψ̇ (3.18a)

v̇a = [ψ̇RcE3]× va +RcRθφg1 (F c, η) (3.18b)

where

Lavl = ⎡⎢⎢⎢⎢⎣
μaαλsαa μaαλcαa −μaαρa
μaρλsαa μaρλcαa −μρaρa

⎤⎥⎥⎥⎥⎦ , Laη2 = ⎡⎢⎢⎢⎢⎣
ρasαa

λ
ρacαa

λ 1(λ + (ρa)2λ ) cαa −(λ + (ρa)2λ ) sαa 0

⎤⎥⎥⎥⎥⎦
μaα = −(Aai cαa −Ba

i sαa)(Da
i λ) , μaρ = (Aai ρsα +Ba

i ρcαa +Ca
i λ)(Da

i λ)
and [Aai ,Ba

i , C
a
i ]T = RcRθφ[Ai,Bi, Ci]T ,Da

i = Di. It can be shown that if Rc is

chosen as a function of ψ that makes Aai = Ba
i = 0, The equation (3.18a) can be

simplified by setting μaα = 0, μaρ = −1/Xa
3 , where Xa

3 is the depth of any point on the

line.
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3.3 State Transformation-based DIBVS for Lateral Mo-

tion Control

3.3.1 Controller Design

In this section the quadrotor is assumed to fly at a constant height and have zero

yaw motion, i.e., vc3 = ωc3 = 0. As well, a small η assumption is considered, which

implies η̇ = ωc. With the image coordinates of one point as the image feature, the

outer-loop becomes

ẏ1 = − λ

X3
vc1 − λ2 + y21

λ
θ̇ + y1y2

λ
φ̇ (3.19a)

v̇c1 = −gθ (3.19b)

ẏ1 = − λ

X3
v2 + λ2 + y22

λ
φ̇ − y1y2

λ
θ̇ (3.19c)

v̇c2 = gφ (3.19d)

By ignoring the two coupling terms y1y2φ̇/λ and y1y2θ̇/λ, the outer-loop (3.19) can

be written as two independent nominal outer-loop as

ẏ1 = − λ

X3
vc1 − λ2 + y21

λ
θ̇ (3.20a)

v̇c1 = −gθ (3.20b)

ẏ2 = − λ

X3
v2 + λ2 + y22

λ
φ̇ (3.20c)

v̇c2 = gφ (3.20d)

The (y1, vc1) and (y2, vc2) subsystems of dynamics (3.20) can each be interpreted

as a PVTOL aircraft model with constant altitude. The inputs for (3.20) are the

Euler angles θ and φ, respectively. It can be seen that the input derivative also

appears in (3.20). The state transformation approach is applied to design a DIBVS

controller for (3.20). If κ1 in (3.5) is chosen as κ1(ζ) = ζ, a particular solution

ya1 = arctan(y1
λ
) + θ

can be obtained, and the transformed (y1, vc1) subsystem is

ẏa1 = −vc1 cos2 (ya1 − θ)
X3

(3.21a)

v̇c1 = −gθ (3.21b)
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A similar approach can be applied to obtain a new state for the (y2, vc2) subsystem:

ya2(y2, φ) = arctan(y2
λ
) − φ

and the transfomed system is

ẏa2 = −vc2 cos2 (ya2 − φ)
X3

(3.22a)

v̇c2 = gφ (3.22b)

Theorem 3.1. The origin of the dynamics (3.20)with input

θ = −k1k2k1 arctan(y1λ ) − vc1
1 + k21k2

(3.23a)

φ = k3k4
k3 arctan(y2λ ) − vc2

1 + k23k4
(3.23b)

is locally exponentially stable if k1, k3 > 0, and k2, k4 > 1/(gX3).
Proof. For convenience a new variable q = ya1 −vc1/k1 is introduced. From (3.21), the

following kinematics can be obtained

ẏa1 = −k1(ya1 − q) cos2 (ya1 − θ)
X3

q̇ = −k1(ya1 − q) cos2 (ya1 − θ)
X3

+ gθ

k1

The following Lyapunov function candidate is chosen as

Vθ = 1

2
(ya1)2 + 1

2
q2

Its time derivative is

V̇θ = − k1
X3

cos2 (ya1 − θ) (ya1)2 + q (k1q cos2 (ya1 − θ)
X3

+ gθ

k1
)

As in (3.23a), the control is chosen as

θ = −k21k2q = −k21k2ya1 + k1k2v
c
1

Then the time derivative of Vθ becomes

V̇θ = − k1
X3

cos2 (ya1 − θ) (ya1)2 + q2k1
X3

(cos2 (ya1 − θ) − gθk2X3)
To make the time derivative of Vθ negative, the inequality gθk2X3 > 1 is required
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and the state (ya1 , vc1) is restricted to the set

{(ya1 , vc1) ∈ R2 ∶ ∣ya1 + k21k2y
a
1 − k1k2v

c
1∣ < π

2
− ε,0 < ε < π

2
}

Hence, the equilibrium point ya1 = vc1 = 0 is LES and because the state transformation

is Lipschitz on its domain, stability is preserved for the original state (y1, vc1). An

analogous proof applies to the system (3.20c) and (3.20d) with

Vφ = 1

2
(ya2)2 + 1

2
(ya2 − vc2

k3
)2

The choice of controller gains k1, k2 determine the shape of the regions of attrac-

tion. To compute an estimate of the region of attraction for (3.20) The intersection

of the ellipse

Vθ = 1

2
(ya1)2 + 1

2
(ya1 − vc1

k3
)2 = c

with the lines

ya1 + k21k2y
a
1 − k1k2v

c
1 = ±π

2

is obtained. The expression for c is

c = π2

8 (k41k22 + 1)
An estimate of the region of attraction is

Ω̃c1 = {(ya1 , vc1) ∈ R2 ∶ Vθ < c}
This set can be expressed in the (y1, vc1) coordinates using the coordinate trans-

formation, and this set is denoted as Ωc1. Examples of these estimated regions of

attraction are given in Figure 3.3

To show the stability of the system (3.19) with the input (3.23) for the nominal

systems (3.20), a result from [86, Lem.9.1] can be used by treating the coupling

terms y1y2φ̇/λ and y1y2θ̇/λ as a disturbance. The details of the proof can be found

in [58].

3.3.2 Simulation Results

In this section the proposed controller in (3.23) is compared with a popular and

experimentally validated controller proposed in [33] and referred to as the spherical

projection IBVS. The approach in [33] is simplified to control only lateral motion
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(a) Region of attraction in new state (b) Region of attraction in original state

Figure 3.3: Estimates of region of attraction for controller gains k1 = 0.6, k2 = 0.49.

which results in the IBVS law

gRTn3 + F c

m
= −k21k2

m
δ2 (3.24)

where

δ2 = mv

k1
− δ1 and δ1 = s −RT s∗

where k1, k2 > 0 are controller gains, and s is the image feature in spherical coor-

dinates, and s∗ = [0,0,1]T is the desired image feature. The spherical coordinates

are calculated from the 2D image coordinates y = [y1, y2, λ]T using s = y/∥y∥. The

spherical coordinates are calculated assuming no calibration error. The expressions

for the spherical projection IBVS law (3.24) are more computationally complex rel-

ative to the proposed approach. Both controllers calculate reference attitude angle

φ and θ, which provide the reference attitude to the inner loop. The inner attitude

loop is controlled using

τ c1 = Kpφeφ +Kdφėφ

τ c2 = Kpθeθ +Kdθėθ

where eφ = φ∗ − φ, eθ = θ∗ − θ, and φ∗, θ∗ are desired reference attitude from (3.23)

and (3.24). It is remarked that the control laws for τ c1 and τ c2 determine the propeller

velocities based on the simplified input model given in Section 2.2.2. Additionally,

the Proportional-Integral-Derivative (PID) controlled height dynamics is included

with

F c
3 = Kpzez +Kiz ∫ t

0
ez(τ)dτ +Kdz ėz

where ez = d∗3 − d3, and d∗3 denotes the desired height setpoint. The controller gains

Kpθ = Kpφ = 16, Kdθ = Kdφ = 6.4, Kpz = 16, Kiz = 0.1 and Kdz = 6.4 are used.

Both controllers use the same controller gains k1 = 0.6 and k2 = 0.49. The vehicle’s
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height is initialized to 1 m above the ground (i.e., d3(0) = −1 m) and take a desired

height setpoint of 1.5 m (i.e., d∗3 = −1.5 m). The model parameters are shown in

Table 2.1. Images are captured with a 640 × 480 resolution. The initial value of

state and control gains are summarized in Table 3.1. The system states using the

k1 0.6
k2 0.49
d3(0) −1.0 m
d∗3 −1.5 m
v(0) (0,0) m/s
y(0) (150,−150) pixels

Table 3.1: Controller gains and simulation parameters.

proposed control and the controller (3.24) are shown in Figure 3.4, where the system

states using controller (3.24) are plotted in solid blue line, those corresponding to

the proposed controller are plotted with a dashed blue line, and the reference angles

for the inner PD loop are in red. From Figure 3.4 it is observed that the performance

Figure 3.4: Comparison of simulated state trajectories of the proposed approach
(solid blue) with spherical projection IBVS (3.24) (dashed blue). Reference angles
to the inner loop are shown in red.

of the two controllers is similar. The proposed approach has the benefit of being

simpler computationally relative to (3.24).

33



3.3.3 Experimental Results

In this section the experimental performance of the proposed control is demonstrated

on the ANCL quadrotor platform. These experiments demonstrate the method’s

robustness to various model uncertainties and the feasibility of implementation on

embedded hardware where resources are limited. As in Section 3.3.2, a comparison

with spherical IBVS (3.24) is provided. In practice the proposed approach requires

implementation of an inner attitude control. As is commonly done in practice, a

simple PID structure is chosen for roll and pitch. An integral term was added to

improve robustness. Tuning the inner loop gains required an outer loop position

control due to the coupling of the rotational and translational dynamics. The Vi-

con system initially provided position feedback in 3 DoF to facilitate this tuning.

Once a satisfactory inner-loop performance was obtained, DIBVS control one axis

is implemented at time. The control gains were tuned online to obtain k1 = 0.6 and

k2 = 0.49. The lateral velocity estimates used in the IBVS control law were obtained

from the Vicon system by low pass filtering a finite difference of position. Yaw was

regulated using proportional control and the on-board magnetometer. The use of a

magnetometer to control yaw indoors was possible even with the existence of dis-

turbance magnetic fields. This was because stabilization only required a constant

measurement; not necessarily an accurate measurement of the earth’s magnetic field.

The height was controlled using PID and the Vicon estimate of altitude and vertical

velocity. The experiments were performed in two phases. An initial phase consisted

of using the Vicon to control the three translational DoF. This allowed us to avoid

ground effects and ensure the image feature was in the camera’s FoV. The second

phase involved switching to IBVS.

The robustness of the controller was demonstrated for a wide range of initial

conditions in d1, d2, d3, and ψ. The intial values of d1 and d2 were varied up to

90 cm in all directions from the desired visual feature. The quadrotor was initialized

at about 25 cm below the desired height in every experiment. The initial yaw was

varied in a range of 60○. The height and yaw controllers would then regulate the

height to d3 = −1.5 m and yaw to ψ = 0. The experiments show that disturbances

due to nonzero vc3 and ψ̇ do not affect closed-loop performance.

The steady state performance of the controllers is shown in Figure 3.5 and 3.6.

The image trajectories of a single point using the two controllers are shown in

Figure 3.5, where the initial location is shown in red, and the goal location is in

green. The system states using the proposed controller are shown in Figure 3.6 in

solid blue lines. The reference angles for the inner PID loop are solid red lines.

Clearly, the proposed control demonstrates good hover performance with y1, y2

having maximum amplitudes of 71 and 102 pixels, respectively. The Vicon data

shows that this corresponds to variation in displacements of 0.18 m and 0.32 m in
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Figure 3.5: Comparison of image feature trajectories for the experimental results in
pixels. The initial location is shown in red, and the goal location is in green.
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Figure 3.6: Experimental results of state trajectories for the proposed DIBVS (solid
blue). Reference angles to the inner loop are shown in red.
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the n1 and n2 directions, respectively. Roll and pitch angles have relatively small

variation and exhibit non-zero average values due to non-ideal weight distribution

in the vehicle. Such a weight imbalance means zero roll and pitch create large

lateral velocity and causes the image feature to rapidly leave the camera’s FoV. The

experimental results demonstrate robustness to unmodelled dynamics neglected in

the design.

To further evaluate the robustness of the proposed controller, the visual target

was attached to a remote control car that was driven around the lab. Vicon markers

were placed on the car to establish ground truth data. The experimental results for

tracking a moving target are shown in Figure 3.7, where the quadrotor trajectory is

in red, the target trajectory is in blue, and the green dots represent the time when

IBVS is switched on. As seen in Figure 3.7 the tracking error is similar in magnitude

to the static target experiment.
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(
m
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(a)

time (second)

d
2
(
m
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(b)

d1 (m)

d
2
(
m
)

(c)

Figure 3.7: Experimental results for a moving target. The quadrotor position tra-
jectory is in red, the target position trajectory is in blue. The green dots represent
the time when IBVS is switched on.
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As in Section 3.3.2 the spherical projection IBVS in [33] was implemented. As it

is difficult to compare controller performance on different experimental platforms,

implementing this control on the ANCL platform allows for a fair comparison with

the proposed method. The experimental results of (3.24) are shown in Figure 3.8,

where system states are shown in blue and the reference angles for the inner PID

loop are in red. The performance is similar to the proposed controller. Figure 3.9
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Figure 3.8: Experimental results of state trajectories (solid blue) for the spherical
projection IBVS. Reference angles to the inner loop are shown in red.

shows that in both experiments the vehicle remained within a radius of about 30 cm

from the origin. The lateral errors, denoted ed1 , ed2 , for the proposed control were

4 cm and 5 cm for the n1 and n2 axis, respectively.

For (3.24) the standard deviation of the lateral errors were 8 cm and 9 cm for

the n1 and n2 axis, respectively. Other experimental quadrotor results such as

[87] show similar results with a non-vision-based position controller and without

compensation for advanced aerodynamic effects such as blade flapping and drag

force. Their position control which compensates for these effects improved hovering

performance from 40 cm to 10 cm radial error. On the other hand, the proposed

controller does not rely on position estimates and hovers in a radius of about 30 cm.

Another experimentally validated non-vision-based position controller is presented

in [88]. This control provides hover performance in a circle of about 20 cm radius.

Few experimental results for IBVS for UAVs have been published. Even fewer results

exist for DIBVS laws. An exception is the work in [34] which presents a comparison
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Figure 3.9: Experimental results for lateral position error.

of a number of IBVS algorithms including that in Guenard et al. [33]. Some of

these controllers are DIBVS and have hover performance similar to the proposed

controller. However, they have increased complexity due to the spherical projection

used.

3.4 Conclusion

This chapter has presented a DIBVS control with a cascade two-loop structure: an

outer IBVS loop calculates reference attitude and thrust, and an inner loop tracks

the given reference attitude. The outer loop of the DIBVS model contains both the

input and its derivative and this complicates the controller design. Hence, a scheme

using state transformation is presented to lower the order of the input derivative.

The existence of the state transformation is proven and can be computed by solving

a system of first-order homogeneous PDEs. The solutions of the PDEs for two basic

targets, i.e., points and lines, are given explicitly. The state transformation-based

IBVS is applied to control the lateral position of the the quadrotor. The design is

based on two decoupled PVTOL aircraft models with constant altitude. Simulations

and experiments are conducted to validate the control. A popular existing spherical

projection IBVS law in [33] is compared to the proposed approach. Simulation

and experimental results show similar performance of the proposed approach to the
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one in [33]. However, the proposed control has the advantage of being simpler to

implement.
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Chapter 4

PID DIBVS using a Virtual

Camera

Chapter 3 presented a state transformation-based DIBVS to control the 2D lateral

motion of a quadrotor. The present chapter chooses a particular solution for the

state transformation which corresponds to a virtual camera and extends the DIBVS

to control 3D translational and yaw motion. In order to control the full 4 DoF motion

of the vehicle with visual servoing more features are required. In Section 4.1 image

features based on coplanar points and parallel lines are described and image feature

kinematics are given. Section 4.2 describes important uncertainty in the DIBVS

model which is compensated in the PID DIBVS proposed later in the chapter.

Based on the experimental results in Figure 3.5 the image feature error converges

to a non-zero constant. After a thorough investigation of the source of this error, it

was concluded that roll and pitch estimate bias in the AHRS output was the cause.

Even small bias (i.e., 1○) leads to significant steady state error. This is because

the bias angle enters the outer-loop as an uncompensated disturbance. The bias in

the roll and pitch also affects the accuracy of the state transformation proposed in

Chapter 3. The analysis of the error in the state transformation due to this bias

is provided. During the modelling process it is observed that the thrust gain KT

decreases slowly with battery voltage. This variation has significant influence on

the vehicle’s altitude and should be compensated. Along with the uncertainty in

KT , variation in the mass and image feature depth is considered. The proposed PID

DIBVS is presented in Section 4.3, and a proof of closed-loop exponential stability

is given. Lastly, Section 4.4 presents the experimental work to validate the proposed

design.
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4.1 Feature Definition

In this section image features for planar targets are presented in transformed state

coordinates. The particular solutions (3.12), (3.13), and (3.16) of the PDEs (3.8),

(3.10), and (3.15), respectively, are used. As discussed in Chapter 3, equations

(3.12) and (3.16) transform the image features of a single point or single line to

image features in a virtual camera with fixed roll and pitch. In the non-horizontal

case and if the orientation of the plane in N is known, Rc can be taken as the

product of Rn3 and the rotation matrix representing the orientation of the plane inN . The kinematics of the new states for both point image coordinates pa and line

image parametrization la is independent of yaw motion. For a set of 3D points or

parallel lines located in the target plane, useful features for visual servoing are the

moment features given in [62]. For example, point image moments in [62] can be

used for regulating the translational motion of the vehicle. When the target plane

is not horizontal, moment features to regulate yaw motion of the vehicle is an open

problem. In this thesis the focus is on horizontal target planes with normal vector[0,0,1]T . In this case the feature to control yaw motion is available.

Using the state transformation-based approach in Chapter 3 with a horizontal

target, Rc is taken as an identity matrix in (3.12), (3.13), (3.17). Figure 4.1 shows

the image plane for the virtual camera, which is referred to as the virtual image

plane. This plane remains parallel to the n1-n2 plane, i.e., the horizontal plane.

To simplify the presentation of the controller design, a virtual camera frame A is

n1

n2

n3

ca
1

ca
2ca

3

c1

c2

c3

Y2

Y1

Y a
2

Y a
2

real image plane

virtual image plane

target plane

C;A

P

p

pa

Figure 4.1: Virtual camera with zero roll and pitch angles

introduced. The origin of A is fixed to the origin of C and has the basis {ca1, ca2, ca3}.
Since the frame A has zero roll and pitch, this means ca3 is parallel to n3. As with the

image plane for the real camera, a 2D image frame Y is introduced for the virtual
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image plane. The basis for this frame is {Y a
1 , Y

a
2 }. The vector Y a

k is parallel to cak
for k = 1,2. The coordinates P c = [X1,X2,X3]T of a 3D point in C transform to

P a = [Xa
1 ,X

a
2 ,X

a
3 ]T in A with

P a = Rn2(θ)Rn1(φ)P c (4.1)

The projection of P a onto the virtual camera plane is pa with coordinates

pa = ⎡⎢⎢⎢⎢⎣
ya1
ya2

⎤⎥⎥⎥⎥⎦ = λ

⎡⎢⎢⎢⎢⎣
Xa

1

Xa
3

Xa
2

Xa
3

⎤⎥⎥⎥⎥⎦
The parametrization of the image of a 3D line in the virtual image plane is denoted

as la = [αa, ρa]. The following two sections present the image features for planar

targets consists of only points or only parallel lines.

4.1.1 Point Moment Feature Definition and Kinematics

Assumption 4.1. The target plane is parallel to the n1-n2 plane and contains N > 1

3D points.

Under Assumption 4.1, Rc = I and kinematics (3.14) becomes

⎡⎢⎢⎢⎢⎣
ẏa1
ẏa2

⎤⎥⎥⎥⎥⎦ = Lavpv
a − S

⎡⎢⎢⎢⎢⎣
ya1
ya2

⎤⎥⎥⎥⎥⎦ ψ̇ (4.2a)

v̇a = [ψ̇E3]× va + F a (4.2b)

where

S = ⎡⎢⎢⎢⎢⎣
0 −1
1 0

⎤⎥⎥⎥⎥⎦ , Lavp =
⎡⎢⎢⎢⎢⎣
− λ
Xa

3
0

ya1
Xa

3

0 − λ
Xa

3

ya2
Xa

3

⎤⎥⎥⎥⎥⎦
and F a = Rθφg1 (F c, η), Xa

3 = ET
3 RθφP . Hence, the kinematics of the kth point is

ẏa1k = 1

Xa
3k

[−λ 0 ya1k] va + ya2kψ̇ (4.3a)

ẏa2k = 1

Xa
3k

[0 −λ ya2k] va − ya1kψ̇ (4.3b)

where ya1k and ya2k are the transformed coordinates of the kth image point, i.e., the

image coordinates of the kth point in the virtual image plane. The depth of the

kth point in A is denoted Xa
3k. From Assumption 4.1, all points in the target plane

share the same depth which is denoted Xa
3 . The coordinates of the centroid for the
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set of points are denoted y1g and y2g and given by

y1g = 1

N

N∑
k=1

ya1k, y2g = 1

N

N∑
k=1

ya2k

The kinematics of y1g and y2g is

ẏ1g = 1

Xa
3

[−λ 0 y1g] va + y2gψ̇ (4.4a)

ẏ2g = 1

Xa
3

[0 −λ y2g] va − y1gψ̇ (4.4b)

The centred moments are defined as

μij = N∑
k=1

(ya1k − y1g)i (ya2k − y2g)j , i, j ≥ 0

Using (4.3) and (4.4), the kinematics of μ20, μ02, and μ11 is

μ̇20 = 2

Xa
3

μ20v
a
3 + 2μ11ψ̇ (4.5a)

μ̇02 = 2

Xa
3

μ02v
a
3 − 2μ11ψ̇ (4.5b)

μ̇11 = 2

Xa
3

μ11v
a
3 − (μ20 − μ02) ψ̇ (4.5c)

Defining a = μ20 + μ02 and using (4.5) gives

ȧ = 2

Xa
3

ava3 (4.6)

Using Ẋa
3 = −va3 and (4.6), gives

d

dt
(Xa

3

√
a) = 0

Hence, Xa
3

√
a is a constant value and

Xa
3

√
a = Xa∗

3

√
a∗ (4.7)

whereXa∗
3 and a∗ are desired constant values ofXa

3 and a, respectively. The moment

feature for height is defined as

shp = √
a∗
a

(4.8)
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and using (4.6), (4.7), the kinematics of shp is

ṡhp = −1
2

√
a∗ ȧ

a
√
a
= − 1

Xa
3

√
a∗ v

a
3√
a
= − va3

Xa∗
3

(4.9)

Kinematics (4.9) depends only on va3 and this simplifies controller design. Next, the

feature for controlling lateral motion is defined as

slp = [y1g, y2g]T shp (4.10)

Using (4.4), (4.7), (4.9), the kinematics of slp is

ṡlp = ⎡⎢⎢⎢⎢⎣
ẏ1g

ẏ2g

⎤⎥⎥⎥⎥⎦ shp +
⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦ ṡhp
= shp

Xa
3

⎡⎢⎢⎢⎢⎣
−λ 0 y1g

0 −λ y2g

⎤⎥⎥⎥⎥⎦ va − Sshp

⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦ − va3
X∗3

⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦
= √

a∗√
aXa

3

⎡⎢⎢⎢⎢⎣
−λ 0 y1g

0 −λ y2g

⎤⎥⎥⎥⎥⎦ va − Sshp

⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦ − va3
X∗3

⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦
= 1

Xa∗
3

⎡⎢⎢⎢⎢⎣
−λ 0 y1g

0 −λ y2g

⎤⎥⎥⎥⎥⎦ va − Sshp

⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦ − va3
X∗3

⎡⎢⎢⎢⎢⎣
y1g

y2g

⎤⎥⎥⎥⎥⎦
= − λ

Xa∗
3

⎡⎢⎢⎢⎢⎣
va1
va2

⎤⎥⎥⎥⎥⎦ − Sslpψ̇

The feature for regulating yaw motion is taken as

sψp = 1

2
arctan( 2μ11

μ20 − μ02
) (4.11)

With (4.5) the kinematics of sψp is

ṡψp = 1

2

2μ̇11 (μ20 − μ02) − 2μ11 (μ̇20 − μ̇02)(μ20 − μ02)2 1

1 + ( 2μ11
μ20−μ02 )2= μ̇11 (μ20 − μ02) − μ11 (μ̇20 − μ̇02)(μ20 − μ02)2 + 4μ2

11

= ( 2
Xa

3
μ11v

a
3 − (μ20 − μ02) ψ̇) (μ20 − μ02)(μ20 − μ02)2 + 4μ2

11

− μ11 ( 2
Xa

3
μ20v

a
3 + 2μ11ψ̇ − 2

Xa
3
μ02v

a
3 + 2μ11ψ̇)(μ20 − μ02)2 + 4μ2

11= −ψ̇
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The kinematics of features (4.8), (4.10), and (4.11) is summarized as

ṡlp = − λ

Xa∗
3

⎡⎢⎢⎢⎢⎣
va1
va2

⎤⎥⎥⎥⎥⎦ − Sslpψ̇ (4.12a)

ṡhp = − va3
Xa∗

3

(4.12b)

ṡψp = −ψ̇ (4.12c)

4.1.2 Line Moment Feature Definition and Kinematics

Assumption 4.2. The target plane is parallel to the n1-n2 plane and contains a

set of N > 1 parallel lines.

Under Assumption 4.2, Rc = I and the outer loop (3.18) becomes

l̇a = Lavlv
a +Laη2ψ̇ (4.13a)

v̇a = [ψ̇E3]× va + F a (4.13b)

where

F a = Rθφg1 (F c, η) , Lavl = − 1

Xa
3

⎡⎢⎢⎢⎢⎣
0 0 0

λsαa λcαa −ρa
⎤⎥⎥⎥⎥⎦ , Laη2 = ⎡⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎦
and Xa

3 is the depth of any point in the line expressed in A. Hence, the kinematics

of the kth line parametrization becomes

α̇ak = ψ̇ (4.14a)

ρ̇ak = − 1

Xa
3k

[λsαa
k

λcαa
k

−ρa] va (4.14b)

From Assumption 4.2 it is straightforward to show that all αak are equal to the same

value which is denoted αa. It is also true that Xa
3k has the same value, which is

denoted as Xa
3 , for all lines. Inspired by the image moment based work in [63], a

moment-like line features for IBVS is proposed. The line centroid ρag is defined as

ρag = 1

N

N∑
k=1

ρak

Using (4.14) gives

ρ̇ag = − 1

Xa
3

[λsαa λcαa −ρag] va (4.15)

Next, the central moment μa20 is defined as

μa20 = N∑
k=1

(ρak − ρag)2 (4.16)
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Differentiating μa20 and using (4.14) and(4.15) gives

μ̇a20 = 2
N∑
k=1

(ρak − ρag) (ρ̇ak − ρ̇ag) = 2μa20
Xa

3

va3 (4.17)

Using (4.17) it can be shown that

d

dt
(Xa

3

√
μ20) = 0

Hence, Xa
3
√
μ20 is a constant and

Xa
3

√
μ20 = Xa∗

3

√
μa∗20 (4.18)

where Xa∗
3 and μa∗20 are desired constant value of Xa

3 and μ20, respectively. Defining

shl = '**,μa∗20
μa20

(4.19)

and differentiating gives

ṡhl = −1
2

√
μa∗20 (μa20)− 3

2 μ̇a20

= −√μa∗20
(μa20)− 1

2

Xa
3

va3 = − 1

Xa∗
3

Xa∗
3

√
μa∗20

Xa
3

√
μa20

va3 = − 1

Xv∗
3

va3

The moment features for the set of parallel lines are selected as

sll = ρgshl (4.20)

sψl = N∑
k=1

αak (4.21)

and shl. The kinematics of these features is

ṡll = − λ

Xa∗
3

[saα caα] ⎡⎢⎢⎢⎢⎣
va1
va2

⎤⎥⎥⎥⎥⎦ (4.22a)

ṡhl = − va3
Xa∗

3

(4.22b)

ṡψl = ψ̇ (4.22c)

4.2 Uncertainty in the DIBVS Model

Before introducing the visual servoing law, uncertainty in the DIBVS model is con-

sidered. During model identification experiments a slow decrease in thrust gain
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KT was observed as the battery voltage dropped during flight. This is shown in

Figure 4.2 for a single Turnigy 1100 KV motor attached to an 11×4.5” propeller.

In practice the effect of decreased KT is significant as the vehicle looses altitude
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Figure 4.2: Decrease in thrust and battery voltage. Decrease in thrust corresponds
to a decrease in KT . A battery is drained with PWM pulse width set to 1.4 ms.

if no compensation is performed. To account for this variation, the parameter KT

is taken as an unknown constant. Accounting for variation in KT is equivalent to

assuming mass m is uncertain as these parameters enter as a ratio in the dynamics

(2.11a).

To account for non-zero steady image feature error which results from angle

estimate bias, the expression for Rθφ is taken as

Rθφ = RT
n1

(φe)RT
n2

(θe)Rn2(θm)Rn1(φm)
where bias errors φe, θe are treated as constants, and φm, θm denote measured

values. From Figure 3.6, the reference φ and θ must be limited to a small range

to avoid the target leaving the camera’s FoV. Given the small range of φ and θ, a

small angle approximation is taken in the force model (3.14b) of F a:

F a = RT
n1

(φe)RT
n2

(θe)Rn2(θm)Rn1(φm) (gRTE3 + F c

m
)

≈ KTu

m

⎡⎢⎢⎢⎢⎢⎢⎣
−θm + θe

φm − φe−1
⎤⎥⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎢⎣

0

0

g

⎤⎥⎥⎥⎥⎥⎥⎦
(4.23)

where u = ∑4
i=1 W̃ 2

i , and W̃i is defined in (2.12). It can be seen from (4.23) that

the bias errors φe, θe enter as additive input disturbances to the outer loop. This

disturbance causes the image feature errors to converge to non-zero constants in

steady state.

The bias in roll and pitch also leads to an error in the state transformation ap-
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proach described in Chapter 3. The relation between bias and image feature trans-

formation error is derived. Define a 3D point expressed in C as P c = [X1,X2,X3]T .
Using (4.1) P c can be expressed in the ideal virtual camera coordinates

P a∗ = RT
n1

(φe)RT
n2

(θe)Rn2(θm)Rn1(φm)P c (4.24)

and in real virtual camera plane coordinates

P a = Rn2(θm)Rn1(φm)P c (4.25)

Using (4.24) and (4.25) gives

P a = Rn2(θe)Rn1(φe)P a∗

Assuming small bias implies

Rn2(θe)Rn1(φe) = ⎡⎢⎢⎢⎢⎢⎢⎣
cθe sθesφe sθecφe

0 cφe −sφe−sθe cθesφe cθecφe

⎤⎥⎥⎥⎥⎥⎥⎦ ≈ ⎡⎢⎢⎢⎢⎢⎢⎣
1 0 θe

0 1 −φe−θe φe 1

⎤⎥⎥⎥⎥⎥⎥⎦
Defining P a∗ = [Xa∗

1 ,Xa∗
2 ,Xa∗

3 ]T , the dependence of P a on the coordinates of P a∗
and bias is

P a ≈ ⎡⎢⎢⎢⎢⎢⎢⎣
1 0 θe

0 1 −φe−θe φe 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
Xa∗

1

Xa∗
2

Xa∗
3

⎤⎥⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎢⎣
Xa∗

1 + θeX
a∗
3

Xa∗
2 − φeX

a∗
3−θeXa∗

1 + φeX
a∗
2 +Xa∗

3

⎤⎥⎥⎥⎥⎥⎥⎦
Since φe and θe are small and in practise Xa∗

1 ≪ Xa∗
3 , Xa∗

2 ≪ Xa∗
3 , the image

coordinates of the point P in real camera are approximated by

⎡⎢⎢⎢⎢⎣
ya1
ya2

⎤⎥⎥⎥⎥⎦ ≈ λ

⎡⎢⎢⎢⎢⎣
Xa∗

1 +θeXa∗
3−θeXa∗

1 +φeXa∗
2 +Xa∗

3
Xa∗

2 −φeXa∗
3−θeXa∗

1 +φeXa∗
2 +Xa∗

3

⎤⎥⎥⎥⎥⎦ ≈ λ

⎡⎢⎢⎢⎢⎣
Xa∗

1 +θeXa∗
3

Xa∗
3

Xa∗
2 −φeXa∗

3

Xa∗
3

⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎣
ya∗1 + λθe

ya∗2 − λφe

⎤⎥⎥⎥⎥⎦
Hence, y1g = y∗1g + λθe, y2g = p∗2g − λφe, slp = s∗lp + λ

⎡⎢⎢⎢⎢⎣
θe−φe

⎤⎥⎥⎥⎥⎦, shp = s∗hp, and sφp = s∗φp.
This implies there is a small and constant error between the features in the real

virtual camera and the ideal virtual camera under the following assumption.

Assumption 4.3. The bias angles θe, φe are small and the altitude of the vehicle is

large relative to its lateral displacement.

Since only φm, θm are available, Rθφ in (3.12), (3.13), (3.17) is replaced with

Rn2(θm)Rn1(φm) = Rn2(θe)Rn1(φe)Rθφ. Hence, Rc in (3.12), (3.13), (3.17) is
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Rn2(θe)Rn1(φe). Under Assumption 4.3, Rn2(θe)Rn1(φe) ≈ I and hence the kine-

matics of the real and ideal virtual camera are almost the same. For this reason the

controller design presented in the following section uses a bias free model for the

kinematics.

4.3 Controller Design

Section 4.1 defined feature vector sp = [sTlp, shp, sψp] for multiple coplanar points and

sl = [sll, shl, sψl]T for multiple coplanar parallel lines. The objective of IBVS is to

minimize an image feature error esp = sp − s∗p and esl = sl − s∗l , where s∗p and s∗l are

the desired value of sp and sl, respectively. In this section a PID controller for the

outer-loop based on the image moment features sp and sl is proposed. The control

design accounts for the system uncertainty described in Section 4.2. Stability of the

closed-loop is proven.

4.3.1 Yaw Motion

For both the point and line case, the kinematics of the feature for yaw motion of

the vehicle is (4.12c) and (4.22c). The goal is to regulate sψp and sψl to zero. Thus,

the image errors are esψp
= sψp and esψl

= sψl. Evidently the controller

ψ̇ = Kψesψp
(4.26)

for point features and

ψ̇ = −Kψesψl
(4.27)

for line features, leads to closed-loop dynamics

ėsψp
= −Kψesψp

(4.28)

or

ėsψl
= −Kψesψl

(4.29)

Evidently the closed-loop dynamics (4.28) or (4.29) are GES.

4.3.2 Height Motion

The desired values for features shp and shl are set to 1. The image errors are

eshp = shp − 1 and eshl = shl − 1. The subsystems for height of both points and

lines are same. Thus, below sh is taken to denote either shp or shl, and the image

error is denoted esh = sh − 1. According to (4.12b), (4.22b), (3.14b), and (4.23), the
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open-loop height subsystem is

ėsh = − va3
Xa∗

3

(4.30a)

v̇a3 = g − KTu

m
(4.30b)

The PID controller

u = −Khpesh +Khdv3 −Khiξh (4.31)

is proposed, where ξh = ∫ t0 esh(ε)dε. Defining ξ̄h = g/Khi+ξh, from (4.30) and (4.31)

the closed-loop is

⎡⎢⎢⎢⎢⎢⎢⎣
˙̄ξh

ėsh
v̇a3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 − 1
Xa∗

3
KTKhi

m

KTKhp

m −KTKhd

m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
ξ̄h

esh
va3

⎤⎥⎥⎥⎥⎥⎥⎦ (4.32)

It can be shown that when Khp,Khd,Khi > 0 and satisfy

Khi < KhpKhdKT

m
(4.33)

the origin of closed-loop system (4.32) is GES.

4.3.3 Lateral Position Motion

Without loss of generality the desired values for slp and sll are set to zero. Hence, the

image errors for lateral motion are eslp = [eslp1 , eslp2]T = slp and esll = [esll1 , esll2]T =
sll.

Point moment feature

According to (4.12a), (3.14b), and (4.23), the open-loop lateral subsystem in the

transformed state coordinates is

ėslp = − λ

Xa∗
3

val − Seslpψ̇ (4.34a)

v̇al = KTu

m

⎡⎢⎢⎢⎢⎣
−θm + θe

φm − φe

⎤⎥⎥⎥⎥⎦ − Sval ψ̇ (4.34b)

where val = [va1 , va2]T . As above, the PID controller

u

⎡⎢⎢⎢⎢⎣
θm−φm

⎤⎥⎥⎥⎥⎦ = −Klpeslp +Kldv
a
l − uKliξlp (4.35)
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is proposed, where ξl = ∫ t0 eslp(ε)dε. Defining ug as the value of thrust which com-

pensates gravity, and ξ̄lp = ξlp + 1
Kli

⎡⎢⎢⎢⎢⎣
θe−φe

⎤⎥⎥⎥⎥⎦, the closed-loop system becomes

ẋlp = Aclxlp +D(t)xlp (4.36)

where xlp = [ξ̄lp, eslp , val ]T
Acl =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 I 0

0 0 − λ
Xa∗

3
I

KTugKli

m I KT

K lp
mI −KTKld

m I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, D(t) = ⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 −ψ̇S 0
KT ũKli

m I 0 −ψ̇S
⎤⎥⎥⎥⎥⎥⎥⎦

and ũ = u − ug. If the PID control parameters satisfy

Kli < KTKlpKld

ugm
(4.37)

Acl is Hurwitz. Because the closed-loop for height and yaw are GES, we have ψ̇ → 0

and ũ → 0. This implies D(t)x → 0. Using a converse Lyapunov theorem in [86,

Thm. 4.14], we can conclude that closed-loop (4.36) is GES.

Line Moment Feature

Based on (4.22a), (3.14b), and (4.23), the lateral subsystem is

ėsll = −λ va2
Xa∗

3

− λ
sαava1 + (cαa − 1) va2

Xa∗
3

(4.38a)

v̇a2 = KTu (φm − φe)
m

− va1 ψ̇ (4.38b)

A PID controller is chosen as

uφm = Klpesll −Kldv
a
2 + uKliξll (4.39)

where ξll = ∫ t0 esll(ε)dε. Defining ξ̄ll = −φe/Kli + ξll and using (4.38), (4.39), the

closed-loop becomes

ẋl = Aclxl +Dl(t) (4.40)

where xll = [ξ̄ll, esll , va2]T ,
Acl =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 0 − λ
Xa∗

3
KTugKli

m

KTKlp

m −KTKld

m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Dl(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

λ(saαva1+(caα−1)va2)
Xa∗

3
KT ũKliξ̄ll

m − va1 ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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ũ = u − ug. Since the closed-loop for height and yaw are GES, α → 0, ũ → 0, ψ̇ → 0,

Dl(t) → 0. Using a result in [89] if the PID control gains satisfy (4.37), then (4.40)

is GES.

Inner-outer Loop Stability Analysis

If the inner loop achieves perfect tracking of the reference provided by the outer

loop (4.35) or (4.39), then stability has been proven above. In this section the effect

of tracking error from the inner loop on the entire closed-loop stability is analyzed.

Denote eη1 = ηm1 − η∗m1
, ηm1 = [φm, θm]T , η∗m1

= [φ∗m, θ∗m]T , and ηe1 = [φe, θe]T , the
open-loop lateral subsystem (4.34) for point features becomes

ėslp = − λ

Xa∗
3

val − Seslpψ̇ (4.41a)

v̇al = KTu

m
S (η∗m1

− ηe1) − Sval ψ̇ + KTu

m
Seη1 (4.41b)

The desired attitude is chosen as

uSη∗m1
= Klpeslp −Kldv

a
l + uKliξlp (4.42)

From (4.41) and (4.42), the outer loop becomes

ẋlp = Aclxlp +Blpeη1 +Dlp(t) (4.43)

where

Blp =
⎡⎢⎢⎢⎢⎢⎢⎣

0

0
KTug
m S

⎤⎥⎥⎥⎥⎥⎥⎦ , Dlp = D(t)xlp +Bu(t)eη1 , Bu = ⎡⎢⎢⎢⎢⎢⎢⎣
0

0
KT ũ
m S

⎤⎥⎥⎥⎥⎥⎥⎦
Since ψ and u exponentially converge to constants, the term Dlp exponentially

converges to zero. Using (4.35) gives

u̇Sη∗m1
+ uSη̇∗m1

= Klẋlp + u̇Kliξlp (4.44)

where Kl = [uKliI2,KlpI2,−KldI2]. Substituting (4.36) into (4.44) yields

η̇∗m1
= 1

ug
S−1KlAclxlp + 1

ug
S−1KlBlpeη1 +D∗ηm1

(t) (4.45)

where

D∗ηm1
(t)

= 1

u
S−1 (KlD(t)xlp +KlBu(t)eη1 + u̇ (Kliξlp − Sη∗m1

) + ũ

uug
(KlAclxlp +Blpeη1))
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The vector D∗ηm1
exponentially converges to zero since u̇, ũ,D,Bu exponentially

converge to zero.

Motivated by work in [68] the inner loop is approximated as

ėη1 = η̇m1 − η̇∗m1
(4.46)

η̈m1 = J−112 τ
c
12 (4.47)

where J12 = diag([J1, J2]), and τ c12 is a vector of the first two components of τ c.

Following [85], one control design is

τ c12 = η̈∗m1
−Kη1peη1 −Kη1dėη1

In this case it can be shown that the control gains for the inner and outer loops

can be independently chosen to ensure stability. However, computing the first and

second derivative of the reference angle can introduce noise and is often avoided in

practice [83]. Noise is especially of concern in visual servoing where the reference

angle depends on noisy image features.

Defining the following variables

δ1 = ∫ t

0
eη1dt (4.48a)

δ2 = eη1
k1

+ δ1 (4.48b)

δ3 = η̇m1

k2
+ δ2 (4.48c)

Using (4.48a) and (4.48b) leads to

δ̇1 = −k1δ1 + k1δ2 (4.49)

Using (4.45), (4.46), (4.48b), (4.48c), and (4.49) gives

δ̇2 = −(k1 + KTKld

m
)δ1 − (k2 − k21

k1
− KTKld

m
) δ2 + k2

k1
δ3 (4.50)

Based on (4.47) (4.48c), and (4.50), we get

δ̇3 = −(k1 + KTKld

m
)δ1 − (k2 − k21

k1
− KTKld

m
) δ2 + k2

k1
δ3 + 1

k2
J−112 τ

c
12 (4.51)

From (4.49), (4.50), (4.51), and choosing the control law as

τ c12 = −k3δ3
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gives

ẋδ = Aδxδ + 1

k1
Bδxlp +Dδ(t) (4.52)

where xδ = [δT1 , δT2 , δT3 ]T

Aη =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1I2 k1I2 0−(k1 + KTKld

m )I2 −(k2−k21k1
− KTKld

m ) I2 k2
k1
I2−(k1 + KTKld

m )I2 −(k2−k21k1
− KTKld

m ) I2 −k3k2J−112 + k2
k1
I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bδ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0− 1

ug
S−1KlAcl− 1

ug
S−1KlAcl

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Dδ(t) = 1

k1

⎡⎢⎢⎢⎢⎢⎢⎣
0

D∗ηm1
(t)

D∗ηm1
(t)

⎤⎥⎥⎥⎥⎥⎥⎦
and Dδ(t) exponentially converges to zero. A nominal system for closed-loop (4.43),

(4.52) is defined as

ẋlp = Aclxlp +Blpeη1

ẋδ = Aδxδ + 1

k1
Bδxlp

Considering a Lyapunov function candidate

V = xTlpPlxlp + 1

2
xTδ xδ

where Pl > 0, and ATclPl + PlAcl = Ql, Ql > 0, the time derivative of V is

V̇ = −xTlpQlxlp + 2xTlpPlBlpeη1 + 1

2
xTδ (ATη +Aη)xδ + 1

2k1
xTlp (Bδ +BT

δ )xδ
Since Pl, Blp, and Bδ are independent of gains ki, i = 1,2,3, appropriate ki, i = 1,2,3

can be chosen so that ATη +Aη < −Qη, where Qη > 0. If the eigenvalues of Qη are

taken sufficiently large, Young’s inequality can be applied to ensure V̇ < 0. Since

the terms Dδ and Dlp are exponentially convergent, the result [89, Lemma III.1] can

be applied to show the entire closed-loop is GES. The control law is

τ c12 = −k3δ3 = −k3 ( η̇m1

k2
+ eη1

k1
+ δ1) = −Kiδ1 −Kpeη1 −Kdη̇m1 (4.53)

where Ki = k3, Kp = k3/k1, and Kd = k3/k2. Hence, the inner loop control can be

implemented with a PID structure.

Similarly, the inner-outer loop stability analysis using control law (4.39) and

(4.53) for line moment feature sl can be performed using the above procedure. It

can be shown that if the gain of the inner attitude loop is sufficiently large, the
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entire closed-loop is GES. It is remarked that the control law is independent of

desired image depth Xa∗
3 and the conditions on the gains are independent of this

parameter. Hence, the proposed control does not require estimation of depth as in

traditional IBVS.

4.4 Experimental Results

In this section the PID DIBVS is experimentally validated for point and line features.

The control laws implemented are given in (4.26), (4.27), (4.31), (4.35), (4.39),

and (4.53).

4.4.1 Point Features

The proposed controller considered in this section is (4.26), (4.31), and (4.35). Two

visual target points are placed on the horizontal ground and displaced by 0.44 m.

The control gains for the outer loop are given in Table 4.1.

Gain Value

Kψ 0.6
Khp 0.09
Khd 0.1
Khi 0.045
Klp 0.08
Kld 0.22
Kli 0.02

Table 4.1: Outer loop gains.

The inner loop PID controller for attitude has gains Kp, Kd, and Ki. The values

of these gains are in Table 4.2. An example of tracking performance for roll and

Roll Pitch Yaw

Kp 0.33 0.345 0.3
Kd 0.08 0.09 0.08
Ki 0.03 0.03 0.005

Table 4.2: Inner loop gains for the point and line feature experiments.

pitch is shown in Figure 4.3. To investigate the benefit of the integral component of

the PID controller to compensate the uncertainty in KT , m, and bias φe and θe, two

cases are considered: a PD controller with Kpi in (4.35) and Khi in (4.31) set to zero,

and a PID controller with Kpi and Khi set to values given in Table 4.11. The value

of a∗ in (4.8) is 0.4, which is obtained from an image when the vehicle hovers at the

1A video of this experiment is at www.youtube.com/watch?v=k3uyswJOJNo
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Figure 4.3: Experimental results: typical roll and pitch tracking performance.

desired height. The trajectories of es = [eTslp , eshp , esψp
]T are shown in Figure 4.4,

where Figure 4.4a and Figure 4.4b give the results with PD and PID controller,

respectively. The trajectories of dcnc are shown in Figure 4.5, where the cross mark

denotes initial position and circle denotes final position. Figure 4.6a and Figure 4.6b

show the corresponding 3D translational position error ed = [ed1 , ed2 , ed3]T = dnnc−dn∗nc
and eψ = ψ −ψ∗, where

dn∗nc = [0.108,−0.131,−1.393]Tm
and ψ∗ = −0.545 rad correspond to the desired dnnc and ψ, respectively, when eslp = 0,

eshp = 0, and esψp
= 0. It can be seen that both cases reach steady state in about

10 seconds. Table 4.3 gives the average and standard deviation of eslp , eshp , esψp
,

ed, and eψ after 10 seconds. It can be seen from Figure 4.4 and Table 4.3 that eslp

PID controller PD controller
variable μ σ μ σ

eslp1 (mm) -0.01 0.12 -0.10 0.08

eslp2 (mm) 0.00 0.16 -0.40 0.13

eshp -0.00 0.03 -0.27 0.02

esψp
(rad.) 0.03 0.08 0.05 0.06

ed1 (m) 0.003 0.071 0.057 0.046
ed2 (m) 0.005 0.065 0.179 0.056
ed3 (m) -0.008 0.029 0.451 0.034
eψ (rad.) -0.109 0.053 -0.026 0.053

Table 4.3: Statistics of the error for PID DIBVS and point features. Mean is denoted
μ and standard deviation σ.

and eshp are significantly reduced when the integral control is added. Also, from

Figure 4.4 and Table 4.3 it is evident that ed is reduced when the integral control

is added. The performance of yaw regulation for the two cases is similar since they

have the same closed-loop dynamics. Standard deviations of error for the two cases

are similar. Hence, the proposed PID controller effectively deals with the model
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(a) PD.

(b) PID.

Figure 4.4: Experimental results: image feature error es using point features.
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(a) PD.

(b) PID.

Figure 4.5: Experimental results: trajectories of vehicle’s 3D position dcnc using point
features. The cross mark denotes initial position and circle denotes final position.
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(a) PD.

(b) PID.

Figure 4.6: Experimental results: trajectories of vehicle’s 3D position error ed and
yaw error eψ using point features.
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uncertainties described in Section 4.2.

4.4.2 Line Features

The proposed controller considered in this section is (4.29), (4.31), and (4.39). The

line moment features used are (4.22). Two parallel visual target lines displaced by

0.2 m are placed on the ground. As with the point feature case, both PID and PD

control are implemented to show the benefit of the integral term which compensates

uncertainty2. The control gains for the outer loop are shown in Table 4.4. The PID

control gains for the inner loop are the same as for point features and are given in

Table 4.2. Hence, the inner loop attitude tracking performance is similar to that

shown in Figure 4.3. Similarly, the desired value μa∗20 in (4.18) is set to 0.082 which is

Gain Value

Kψ 0.4
Khp 0.09
Khd 0.08
Khi 0.01
Klp 0.08
Kld 0.2
Kli 0.02

Table 4.4: Outer loop gains.

acquired from an image when the vehicle flies at the desired height. The trajectories

of image feature error es = [esll , eshl , esψl
]T are shown in Figure 4.7, where Figure 4.7a

shows the performance of the PD controller and Figure 4.7b shows the performance

of PID controller. The trajectories of dcnc for the two cases are shown in Figure 4.8,

where the cross mark denotes initial position and the circle denotes final position.

Since it is impossible to regulate the 3D position of the vehicle with a set of parallel

lines, only the relevant components of 3D position errors ed2 = d2 − d∗2 , ed3 = d3 − d∗3
and yaw error eψ = ψ−ψ∗ are shown in Figure 4.9, where d∗2 = −0.124 m, d∗3 = −1.367
m, ψ∗ = −0.753 rad are the desired lateral position in the n2 direction, the desired

height, and desired yaw, respectively. We observe from Figure 4.7 and Figure 4.9

that the vehicle reaches its steady state after around 10 seconds. Table 4.5 gives

the means and standard deviations of signals es, ed, and eψ. It can be seen from

Figure 4.7 and Table 4.5 that when the PID controller is enabled the means of

image feature errors esll , eshl are significantly reduced relative to the PD controller

case. The standard deviations of these signals for the two cases are similar. From

Figure 4.9 and Table 4.5, the means of the corresponding 3D position errors ed2 , ed3
are significantly reduced. The image error esψl

and the yaw error eψ = ψ−ψ∗ for the
2A video of the experiment is at www.youtube.com/watch?v=N9u977iVZDs
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(a) PD.

(b) PID.

Figure 4.7: Experimental results: image feature error es using line features.

PID controller PD controller
variable μ σ μ σ

esψl
(rad.) 0.07 0.07 0.04 0.07

esll (mm) 0.03 0.18 -0.26 0.17
eshl -0.02 0.04 0.15 0.04
ed2 (m) -0.024 0.079 0.106 0.072
ed3 (m) -0.009 0.049 -0.228 0.040
eψ (rad.) 0.093 0.091 0.041 0.056

Table 4.5: Statistics of the error for PID DIBVS and line features. Mean is denoted
μ and standard deviation σ.
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(a) PD.

(b) PID.

Figure 4.8: Experimental results: trajectories of vehicle’s 3D position dcnc using
line features. The cross mark denotes initial position and the circle denotes final
position.
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(a) PD.

(b) PID.

Figure 4.9: Experimental results: trajectories of vehicle’s 3D position error ed and
yaw error eψ using line features. Only ed2 , ed3 and eψ are shown since it is impossible
to regulate the 3D position of the vehicle with a set of parallel lines.

two cases are reduced to small values starting from large initial values. The mean

and standard deviation of esψl
and eψ at steady state for the two cases are similar

because both have the same closed-loop dynamics.

4.5 Conclusion

Using the virtual camera particular solution of the state transformation-based ap-

proach in Chapter 3, a set of image moment features in the virtual camera is pro-

posed for DIBVS. The corresponding image feature kinematics are also given. Model

uncertainties including thrust gain and attitude measurement bias are accounted for

in the proposed PID DIBVS. An analysis of roll and pitch bias on the virtual cam-

era transformation error is provided. In addition, the control does not require an

estimate of depth, which is typically needed in classical IBVS. The ANCL quadrotor

platform is used to validate the proposed control. The experimental results demon-

strate improved performance with lower mean image and position error relative to

PD DIBVS.
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Chapter 5

Adaptive DIBVS

The PID DIBVS presented in Chapter 4 is robust to image feature depth Xa∗
3 , thrust

constant KT , vehicle mass, and angle estimate bias. To ensure outer loop stability,

tuning is required to ensure control gains satisfy constraint (4.33) and (4.37). The

first design in this chapter considers the application of adaptive control methods to

account for system uncertainty while avoiding the need to satisfy constraints (4.33)

and (4.37). Section 5.1 presents an adaptive DIBVS for planar targets consisting of

points. The two loop controller structure is the same as discussed in Section 3.1.

The design divides the outer loop into three subsystems: the height subsystem, the

lateral motion subsystem, and the yaw motion subsystem. An adaptive backstepping

method is applied to each subsystem. Simulation and experimental validations

are in Section 5.1.2 and 5.1.3. Next, Section 5.2.1 presents an adaptive DIBVS

for line moment features with a different cascade structure borrowed from [33].

This considers uncertainty in depth and focal length. Simulation and experimental

validations of this control are in Section 5.2.3.

5.1 Adaptive DIBVS for Point Moment Features

5.1.1 Outer-loop Control

As in Chapter 4, a small angle approximation is suitable for the input force model

given the small range of roll and pitch in IBVS. The approximate relation is

F a ≈ KTu

m

⎡⎢⎢⎢⎢⎢⎢⎣
−θm + θe

φm − φe−1
⎤⎥⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎢⎣

0

0

g

⎤⎥⎥⎥⎥⎥⎥⎦ (5.1)

where φm, θm are measured roll and pitch; φe, θe are roll and pitch measurement

bias; KT is defined in (2.12); and u defined in (4.23). The kinematics (4.12b) and

(4.22b), dynamics (3.14b), and (5.1) are combined to obtain the DIBVS height
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subsystem dynamics for point moment features:

ṡhp = − 1

Xa∗
3

va3 (5.2a)

v̇a3 = g − KTu

m
(5.2b)

where shp is defined in (4.8). In (5.2) the control input is taken as

u = (Kh2 + ĈzK
2
h1) δhp2 + Ĉg (5.3)

with
˙̂
Cg = Khgδhp2 (5.4)

where

δhp1 = shp − 1 (5.5)

δhp2 = va3
Kh1

− δh1 (5.6)

Kh1, Kh2, Khg are positive control gains, Ĉg is the estimate of Cg = mg/KT , and

Ĉz is the estimate of Cz = m/(Xa∗
3 KT ). The update laws for Ĉg and Ĉz are (5.4)

and (5.12), respectively.

From (4.12a), (3.14b), and (5.1), the DIBVS lateral motion subsystem dynamics

is

ṡlp = − λ

Xa∗
3

val − Sslpψ̇ (5.7a)

v̇al = KTu

m
S(ηm1 − ηe1) − Sval ψ̇ (5.7b)

where slp, v
a
l , S are defined in (4.10), (4.34), (4.2b), respectively; ηe1 = [φe, θe]T ;

and ηm1 = [φm, θm]T . In (5.7) the input is taken as ηm1 . Without loss of generality

the desired feature value s∗lp = 0. The control is taken as

uSηm1 = uSη̂e1 − λĈzK
2
l1δlp2 −Kl2δlp2 (5.8)

where Kl1, Kl2 are positive gains; η̂e1 = [φ̂e, θ̂e]T ; and θ̂e, φ̂e are estimates of θe, φe,

respectively. The update law for η̂e1 is

˙̂ηe1 = −uKlrpS
T δlp2 (5.9)
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where Klrp is positive, and

δlp1 = slp (5.10)

δlp2 = 1

Kl1
val − δlp1 (5.11)

The update law for Ĉz in (5.3) and (5.8) is

˙̂
Cz = Kz (λKl1δ

T
lp2δlp2 +Kh1δ

2
hp2) (5.12)

where Kz > 0. From Chapter 4, the kinematics of sψp is

ṡψp = −ψ̇ (5.13)

Without loss of generality the desired value of sψp is set to zero. In order to make

sψp converge to zero, the yaw reference is taken as

ψ = Kψ ∫ t

0
sψp(ξ)dξ (5.14)

where Kψ > 0.

Theorem 5.1. The equilibrium [δhp1, δhp2, δlp1, δlp2, sψp]T = 0 of the closed-loop sys-

tem (5.2), (5.7), (5.13) with control law (5.3), (5.8), (5.14) and parameter update

laws (5.4), (5.9), (5.12) is GAS.

Proof. Using the definition of δh1 in (5.5), the definition of δh2 in (5.6), and the

height subsystem dynamics (5.2) gives

δ̇hp1 = −Kh1

Xa∗
3

(δhp1 + δhp2) (5.15a)

δ̇hp2 = − KT

mKh1
(u −Cg) + Kh1

Xa∗
3

(δhp1 + δhp2) (5.15b)

The Lyapunov function candidate for the height subsystem (5.15) is chosen as

Vh = 1

2
δ2hp1 + 1

2
δ2hp2 + KT

2mKh1

C̃2
g

Khg
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where C̃g = Ĉg −Cg. Based on (5.15a) and (5.15b), the time derivative of Vh is

V̇h = −Kh1

Xa∗
3

δhp1 (δhp1 + δhp2) + KT

mKh1

C̃g
˙̂
Cg

Khg

+ δhp2 (− KT

mKh1
(u −Cg) + Kh1

Xa∗
3

(δhp1 + δhp2))
= −Kh1

Xa∗
3

δ2hp1 + KT

mKh1

C̃g
˙̂
Cg

Khg
− KT

mKh1
δhp2 (u −Cg −CzK

2
h1δhp2)

where C̃z = Ĉz −Cz. Using the adaptive control (5.3), (5.4) gives

V̇h = −Kh1

Xa∗
3

δ2hp1 + KT

mKh1

C̃g (Khgδhp2)
Khg− KT

mKh1
δhp2 ((Kh2 + ĈzK

2
h1) δhp2 + Ĉg −Cg −CzK

2
h1δhp2)

= −Kh1

Xa∗
3

δ2hp1 + KT

mKh1
C̃gδhp2 − KTKh2

mKh1
δ2hp2 − KT

mKh1
δhp2 (C̃zK2

h1δhp2 + C̃g)
= −Kh1

Zv∗ δ
2
h1 − KTKh2

mKh1
δ2h2 − KTKh1

m
δ2h2C̃z (5.16)

Using the definition of δl1 in (5.10), the definition of δl2 in (5.11), and the lateral

motion subsystem dynamics (5.7) gives

δ̇lp1 = −λKl1

Xa∗
3

(δlp1 + δlp2) − ψ̇Sδlp1 (5.17a)

δ̇lp2 = 1

Kl1
(KTu

m
S(ηm1 − ηe1) − Sval ψ̇) + λKl1

Xa∗
3

(δlp1 + δlp2) + ψ̇Sδlp1

= KTu

mKl1
S(ηm1 − ηe1) − SKl1

Kl1
(δlp1 + δlp2) ψ̇ + λKl1

Xa∗
3

(δlp1 + δlp2) + ψ̇Sδlp1

= KTu

mKl1
S(ηm1 − ηe1) − Sδlp2ψ̇ + λKl1

Xa∗
3

(δlp1 + δlp2) (5.17b)

The Lyapunov function candidate for the lateral subsystem (5.17) is

Vl = 1

2
δTlp1δlp1 + 1

2
δTlp2δlp2 + KT

2mKl1Klrp
(θ̃2e + φ̃2

e)
where θ̃e = θ̂e−θe and φ̃e = φ̂e−φe. Based on (5.17a), (5.17b), and the skew-symmetry

property of S

xTSx = 0, for all x ∈ R2
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the time derivative of Vl is

V̇l = δTlp1 (−λKl1

Xa∗
3

(δlp1 + δlp2) − ψ̇Sδlp1) + KT

mKl1Klrp
(θ̃e ˙̂θe + φ̃e

˙̂
φe)

+ δTlp2 ( KTu

mKl1
S(ηm1 − ηe1) − Sδlp2ψ̇ + λKl1

Xa∗
3

(δlp1 + δlp2))
= −λKl1

Xa∗
3

δTlp1δlp1 + KT

mKl1Klrp
(θ̃e ˙̂θe + φ̃e

˙̂
φe) + δTlp2 ( KTu

mKl1
S(ηm1 − ηe1) + λKl1

Xa∗
3

δlp2)
= −λKl1

Xa∗
3

δTlp1δlp1 + KT

mKl1

⎛⎝ η̃Te1 ˙̂ηe1Klrp
+ δTlp2 (uS(ηm1 − ηe1) + λCzK

2
l1δlp2)⎞⎠ (5.18)

where η̃e = η̂e1 − ηe1 = [φ̃e, θ̃e]T . Substituting (5.8) and (5.9) into (5.18) gives

V̇l = −λKl1

Xa∗
3

δTlp1δlp1 − KT

mKl1
η̃Te1uS

T δlp2

+ KT

mKl1
δTlp2 (uSη̂e1 − λĈzK

2
l1δlp2 −Kl2δlp2 − uSηe1 + λCzK

2
l1δlp2)

= −λKl1

Xa∗
3

δTlp1δlp1 − KT

mKl1
η̃Te1uS

T δlp2 + KT

mKl1
δTlp2 (uSη̃e1 − λC̃zK

2
l1δlp2 −Kl2δlp2)

= −λKl1

Xa∗
3

δTlp1δlp1 − KTKl2

mKl1
δTlp2δlp2 + KT

mKl1
(−η̃Te1uST δlp2 + δTlp2 (uSη̃e1 − λC̃zK

2
l1δlp2))

= −λKl1

Xa∗
3

δTlp1δlp1 − KTKl2

mKl1
δTlp2δlp2 − λKTKl1

m
C̃zδ

T
lp2δlp2 (5.19)

The Lyapunov function candidate for the closed-loop translational motion is chosen

as

V = Vh + Vl + KT

mKz
C̃2
z

From the update law (5.12) and (5.16), (5.19), the time derivative of V is

V̇ = −Kh1

Zv∗ δ
2
h1 − KTKh2

mKh1
δ2h2 − λKl1

Zv∗ δTl1δl1 − KTKl2

mKl1
δTl2δl2

According to the LaSalle-Yoshizawa theorem [50, Thm. 2.1] the equilibrium point[δh1, δh2, δl1, δl2]T = 0 is GAS.

From (5.13) and (5.14) the closed-loop yaw subsystem is

ṡ4 = −Kψs4

which is GES. Hence, the equilibrium [δhp1, δhp2, δlp1, δlp2, sψp]T = 0 of the closed-

loop is GES.

It is remarked that in the stability analysis above, the convergence of the transla-

tional motion subsystem does not require exponential convergence of ψ̇. This should
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be compared to the stability analysis of the PID DIBVS in Chapter 4 where expo-

nential convergence of ψ̇ was needed. This fact makes the adaptive DIBVS more

suitable for applications where the vehicle tracks a time varying yaw trajectory.

5.1.2 Simulation Results

The visual servoing objective is to hover the vehicle at a constant position and yaw

by regulating image feature error. Two cases are considered in simulation. The first

case is the proposed control law with parameter update laws (5.4), (5.9), and (5.12)

turned off. The second case simulates the entire proposed adaptive DIBVS. Com-

paring the two cases shows the benefits of adding the parameter adaptation. The

model parameters used are given in Table 2.1. Image resolution was set to 320×200,
the thrust coefficient KT = 4× 107 N/s2, and desired depth Xa∗

3 = 1.335 m. The ini-

tial displacement of the vehicle in the navigation frame is [0.15,−0.15,−1]T m with

zero roll and pitch, and the initial value of yaw is π/3 rad. The initial values of va

and ωc are zero. Both φe and θe are set to 2○. The initial estimates of Cg, φe, θe

used in the control law are 3.8×10−4 s, 0 rad, 0 rad, respectively. Two target points

are located at coordinates [−0.18,0,0]T m and [0.18,0,0]T m in N . The control

gains are given in Table 5.1. A high gain PID controller is used to track reference

attitude.

Gain Value

Kh1 0.9
Kh2 0.09
Khg 0.04
Kl1 0.3182
Kl2 0.07
Klrp 0.02
Kψ 0.5
Kz 0.01

Table 5.1: Outer loop control gains.

The image feature error is denoted

es = [es1 , es2 , es3 , es4]T = [sTlp, shp, sψp]T − [0,0,1,0]T
The desired translational displacement of the UAV is denoted dn∗nc and translational

error is

ed = [ed1 , ed2 , ed3]T = dnnc − dn∗nc
where dn∗nc = [0.048,−0.047,−1.335]T m. This value of dn∗nc corresponds to es = 0. The

desired yaw of the UAV is ψ∗ = −0.221 rad, and yaw tracking error is eψ = ψ − ψ∗.
The trajectories of es, ed, and eψ are shown in Figure 5.1a. This figure shows that
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(a) Non-adaptive case. (b) Adaptive case.

Figure 5.1: Simulated trajectories of image feature error es, vehicle’s 3D position
error ed, and eψ.

when the parameter update law is off, the image features es1 , es2 , and es3 converge

to −0.499 mm, 0.499 mm, and −0.138, respectively. The vehicle position error

converges to ed = [0.231,−0.227,0.208]T m. This significant steady state position

error is due to the additive input disturbance φe, θe, and the inaccurate estimate of

KT /m.

Next, the parameter update laws are turned on to ensure es and ed converge to

zero. This convergence is shown in Figure 5.1b. The estimates φ̂e, θ̂e, Ĉg and Ĉz

are shown in Figure 5.2. It can be seen that φ̂e, and θ̂e converge to their actual

value 2○ = 0.0349 rad. The estimate Ĉg also converges to 0.3924 which corresponds

to the amount of thrust needed to compensate gravity. The value of Ĉz converges

to 7.5 × 10−9 kg⋅s2/(m⋅N). Since there is no uncertainty in the yaw kinematics, in

both simulation cases es4 and eψ converge to zero. Hence, the simulations show that

the proposed adaptive control compensates for constant additive input disturbances

(i.e., measurement bias) and uncertainty in KT and Xa∗
3 .

5.1.3 Experimental Results

In practice the vehicle’s state measurements contain noise which can lead to diver-

gence of the adaptive law (5.12). A typical solution to this problem is to use the

projection algorithm as in [90]. This method requires a range of Cz is known a
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Figure 5.2: Simulated trajectories of estimated parameters φ̂e, θ̂e, Ĉg, and Ĉz. In
the units of Ĉg and Ĉz, “ms” denotes milliseconds.

priori. Another approach is to remove the term involving Ĉz in (5.3) and (5.8),

and to choose controller gains satisfying Kl2 > λCzK
2
l1 and Kh2 > CzK

2
h1. Such an

approach ensures the closed-loop is asymptotically stable in the presence of measure-

ment noise. Since both abovementioned approaches assume a known range for Cz,

the method which eliminates Ĉz is chosen due to its relative simplicity. The values

of Kh1,Kh2,Kl1, and Kl2 still require tuning so they satisfy their inequality con-

straints. Hence, the control law (5.3) and parameter update (5.4) are implemented

as

u = Kh2δhp2 +Khg ∫ t

0
δhp2(ξ)dξ (5.20)

It is remarked that when the vehicle hovers, u is approximately constant and equal

to a value which compensates gravity. Thus, u is taken as a constant in the con-

trol (5.8). Consequently, the control (5.8) is combined with the parameter update

law (5.9) to obtain

ηm1 = −Klrp∫ t

0
ST δlp2(ξ)dξ −Kl2S

−1δlp2 (5.21)

The values of the control gains in (5.20), (5.21), and (5.14) are the same as in the

simulation and given in Table 5.3. The PID inner loop attitude controller used in

experiment is the same as that presented in Section 4.4.1. A block diagram of the

implementation is shown in Figure 5.3, where the mixer block distributes PWM to

the individual ESCs based on u and τ c.

As in the simulation we consider two cases in experiment 1,i.e., with the adaptive

law (5.4) and (5.9) on and off. In the adaptive case, the initial values of φ̂e, θ̂e are

set to zero. The nominal value of Cg in the non-adaptive case is 0.435, which is

obtained from a manual flight test, and this value is the initial value of Ĉg in the

adaptive case. The trajectory of the image feature error es is given in Figure 5.4 for

both cases. The trajectories of the two image points in the image plane are shown

in Figure 5.5, where the initial coordinates are shown as a square and the circle

1A video of the adaptive DIBVS experiment is at www.youtube.com/watch?v=O1HvoiQXg7k
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Figure 5.3: Block diagram of Adaptive DIBVS control with inner-outer loop struc-
ture.

denotes the final point. Figure 5.6 shows the trajectories of vehicle position dnnc for

two cases. Figure 5.7a and Figure 5.7b show the corresponding 3D translational

error ed and eψ. Figure 5.8 illustrates the estimates φ̂e, θ̂e, and Ĉg. From the

above figures, both cases reach steady state in about 15 seconds. Table 5.2 gives

the mean and standard deviation of es, ed and eψ after 15 seconds. It can be seen

from Figure 5.4 that in the non-adaptive case es3 decreases slowly due to the slowly

decreasing battery voltage. On the other hand, in the adaptive case es3 stays near

0 for most of the experiment. Table 5.2 shows that in the adaptive case es1 and es2

have significantly reduced mean values and similar standard deviations relative to

the non-adaptive case. The trajectories of es4 converge to zero for both cases, and

the performance for regulating yaw motion is similar in the two cases. This is to be

expected since the same control law (5.14) is used. The trajectories in the image

plane shown in Figure 5.5 are consistent with Table 5.2. That is, the lower mean

values of es1 and es2 correspond to a more centered steady state image coordinates.

Figure 5.7 and Table 5.2 show the 3D position errors in the adaptive case are much

smaller than the non-adaptive case. Hence, the adaptive nature of the proposed

control helps to improve visual servoing performance.

Adaptive control Non-adaptive control
Error Mean Standard deviation Mean Standard deviation

es1 (mm) 0.00 0.13 0.25 0.1042
es2 (mm) -0.01 0.18 -0.23 0.1694

es3 -0.00 0.02 0.05 0.03
es4 (rad) 0.02 0.07 0.02 0.06
ed1 m -0.008 0.072 -0.128 0.060
ed2 (m) -0.002 0.077 0.116 0.070
ed3 (m) 0.004 0.021 -0.074 0.044
eψ (rad) 0.070 0.061 -0.108 0.082

Table 5.2: Statistics of the error signals es, ed , and eψ.
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Figure 5.4: Experimental results of the trajectories of image feature error es.
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Figure 5.5: Experimental results of the image point trajectories shown in the image
plane. The initial coordinates are shown as a square, and a circle denotes the final
point.

5.2 Adaptive DIBVS for Line Moment Features

This section presents a different adaptive DIBVS for a set of coplanar parallel lines.

As compared to the adaptive DIBVS proposed in Section 5.1, the control system

has a different cascade structure. The outer loop still regulates the image feature

error, but has angular velocity ωc instead of Euler angle η as an output. The inner

loop tracks reference angular velocity from the outer loop. The applied force model

parameters and mass are assumed known. The proposed DIBVS is adaptive to

depth, which is typically required in conventional IBVS.

5.2.1 Translational Motion

As in Chapter 4, the feature vector for a set of horizontal parallel lines is taken

as s = [sll, shl, sψl]T where the components are defined in (4.19), (4.20), and (4.21).

The motion control objective is to stabilize the UAV above parallel lines at a desired

height. This height is determined by μa∗20 defined in (4.16), and when μa20 = μa∗20 the

desired value s∗hl = 1. The control objective is also to position the UAV laterally

relative to the parallel lines. This means the desired value of s∗ll = 0. The value of s∗ψl
is 0 which implies translational motion can only occur along the “forward” direction

of the lines. The “forward” direction of the vehicle is definied by a vector obtained

by projecting the ca1-axis onto the line. Clearly, it is assumed the singular case

initial conditions where ca1 is perpendicular to the line are avoided, i.e., α(0)a = π/2.
Finally, the vehicle velocity in the direction of the parallel lines is regulated to vd.

That is, as shown in Figure 5.9, the desired UAV velocity va∗ projected onto the

direction of the line should be vd. This means

(va)T hαa − vd = 0 (5.22)
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(a) Non-adaptive case

(b)

Figure 5.6: Experimental results: trajectory of the vehicle’s 3D position dnnc. The
initial and final values are denoted by a cross and circle, respectively.

75



(a) Non-adaptive case

(b)

Figure 5.7: Experimental results: the vehicle’s 3D position error ed and eψ.
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Figure 5.8: Experimental results: trajectories of estimated parameters φ̂e, θ̂e, and
Ĉg. In the units of Ĉg, “ms” denotes milliseconds.
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where hαa = [cαa ,−sαa ,0]T . The image feature error is defined as

es = ⎡⎢⎢⎢⎢⎣
est

esψ

⎤⎥⎥⎥⎥⎦
where est = [es1, es2]T = [shl −1, sll]T , esψ = sψl. From (2.9), (2.11b), (3.14b), (4.22),

the DIBVS model is

ėst = − 1

Xa∗
3

D(λ)Lst(αa)va (5.23a)

ėsψ = ψ̇ (5.23b)

v̇a = [ψ̇E3]× va + F a (5.23c)

Ṙ = R [ωc]× (5.23d)

ω̇c = −J−1 [ωc]× Jωc + J−1τ c (5.23e)

where

Lst(αa) = ⎡⎢⎢⎢⎢⎣
0 0 1

sαa cαa 0

⎤⎥⎥⎥⎥⎦ , D(λ) = ⎡⎢⎢⎢⎢⎣
1 0

0 λ

⎤⎥⎥⎥⎥⎦ , F a = −TM
m

RθφE3 + gE3

Here, as compared to the Section 5.1, the input for system (5.23) is TM and τ c, which

means KT , m, is assumed known. The outer loop is (5.23a), (5.23c), and (5.23d)

with ωc and TM as inputs, while the inner loop is (5.23e). The proposed control is

adaptive to two parameters γ1 and γ2 define as

γ1 = 1

Xa∗
3

, γ2 = λ

λ̂Xa∗
3
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Introducing these parameters eliminates the requirement of knowing the desired

depth Xa∗
3 . Three error variables are introduced

δl1 = ⎡⎢⎢⎢⎢⎣
est

vd

⎤⎥⎥⎥⎥⎦ (5.24a)

δl2 = Q−1H(λ̂)Wαava − δl1 (5.24b)

δl3 = F ′ + kl2δl2 + M̂Qδl2 (5.24c)

where

H(λ̂) = ⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 λ̂ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , Q = ⎡⎢⎢⎢⎢⎣
kl1I2 0

0 1

⎤⎥⎥⎥⎥⎦ , Wαa = ⎡⎢⎢⎢⎢⎣
Lst(αv)
hTαa

⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1

sαa cαa 0

cαa −sαa 0

⎤⎥⎥⎥⎥⎥⎥⎦
F ′ = Δ1WαaF a, Δ1 = Q−1H(λ̂), M̂ = ⎡⎢⎢⎢⎢⎢⎢⎣

γ̂1 0 0

0 γ̂2 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
kl1, kl2 are constant gains, and γ̂1, γ̂2 denote estimated values of γ1, γ2, respectively.

Theorem 5.2. If the control TM and ωc satisfy

Δ1WαaRθφ ([ωc]× TM + ṪMI3)E3 =(k2I3 + M̂Q) (M̂Qδl1 − kl2δl2 + δl3) + ˙̂
MQδl2 + δl2 + kl3δl3

(5.25)

where kl1, kl2, kl3 > 0, and the update law for γ̂1 and γ̂2 is

˙̂γ1 = kγ (kl1δ221 + (kl2 + γ̂1kl1)kl1δ31 (δ11 + δ21)) (5.26a)

˙̂γ2 = kγ (kl1δ222 + (kl2 + γ̂2kl1)kl1δ32 (δ12 + δ22)) (5.26b)

where δij is the jth component of vector δli, and kγ > 0, then the error signals est,

δl2, δl3 globally asymptotically converge to zero.

Proof. The controller in (5.25) is obtained via a backstepping approach. The back-

stepping procedure starts with the image error kinematics (5.23). A Lyapunov

function candidate V1 is chosen as

V1 = 1

2
eTstest (5.27)

Then the time derivative of (5.27) is

V̇1 = − 1

Xa∗
3

eTstD(λ)Lst(αa)va
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Since Xa∗
3 is positive, if the following equations holds

D(λ)Lst(αa)va = k1est

it can be seen that system (5.23) is GES. In order to make est converge to zero and

the UAV fly at a desired velocity along the power lines, the input velocity va∗ should
satisfy

H(λ)Wαava∗ = Qδl1

where H(λ) = diag([1, λ,1]). With the term δl2 defined in (5.24b) describing the

difference between the desired and the actual velocity, the time derivative of δl1 and

L1 can be obtained as

δ̇l1 = − 1

Xa∗
3

⎡⎢⎢⎢⎢⎣
D(λ)Lst(αa)

0

⎤⎥⎥⎥⎥⎦W−1
αaH−1(λ)Q(δl2 + δl1) = −MQ (δl1 + δl2) (5.28)

where M = diag([γ1, γ2,1]), and
V̇1 = − 1

Xa∗
3

eTstD(λ)Lst(αa)W −1
αaH−1(λ̂)Q(δl2 + δl1)

= − 1

Xa∗
3

eTstD(λ)D−1(λ̂)kl1est − δTl1MQδl2 (5.29)

Differentiating Wαa in (5.24b) yields

Ẇαa = ⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

cαa −sαa 0−sαa −cαa 0

⎤⎥⎥⎥⎥⎥⎥⎦ α̇
a

= ⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1

sαa cαa 0

cαa −sαa 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
0 −1 0

1 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ψ̇ = Wαa [ψ̇E3]× (5.30)

Using (5.24b), (5.28), (5.30), and the expression of F ′ in (5.24c) yields

δ̇l2 = Q−1H(λ̂) (Ẇαava +Wαa v̇a) − δ̇l1= Q−1H(λ̂) (Wαa [ψ̇E3]× va +Wαa (− [ψ̇E3]× va + F a)) +MQ (δl1 + δl2)= F ′ +MQ (δl1 + δl2) (5.31)

Continuing the backstepping method, the second Lyapunov function candidate is

defined as

V2 = V1 + 1

2
δTl2δl2 + 1

2kγ
(γ̃21 + γ̃22) (5.32)
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where γ̃i = γi − γ̂i, i = 1,2. From (5.29) and (5.31), the time derivative of (5.32) is

V̇2 = − 1

Xa∗
3

eTstD(λ)D−1(λ̂)kl1est + δTl2 (F ′ +MQδl2) − 1

kγ
(γ̃1 ˙̂γ1 + γ̃2 ˙̂γ2) (5.33)

Choosing

F ′ = −kl2δl2 − M̂Qδl2 (5.34)

then (5.33) can be written as

V̇2 = − 1

Xa∗
3

eTstD(λ)D−1(λ̂)kl1est − kl2δ
T
l2δl2 + δTl2M̃Qδl2 − 1

kγ
(γ̃1 ˙̂γ1 + γ̃2 ˙̂γ2)

where M̃ = M − M̂ . Based on the definition of δl3 in (5.24c) an expression for F ′ is
solved and substituted into (5.31) to obtain

δ̇l2 = MQδl1 − kl2δl2 + M̃Qδl2 + δl3

and the time derivative of V2 is

V̇2 = − 1

Xa∗
3

eTstD(λ)D−1(λ̂)kl1est − kl2δ
T
l2δl2 + δT2 M̃Qδl2 − 1

kγ
(γ̃1 ˙̂γ1 + γ̃2 ˙̂γ2) + δTl2δl3

(5.35)

Using (5.34) the time derivative of δl3 is

δ̇l3 = Ḟ ′ + (kl2I3 + M̂Q) (MQδl1 − kl2δl2 + M̃Qδl2 + δl3) + ˙̂
MQδl2= Ḟ ′ + (kl2I3 + M̂Q) (M̂Qδl1 − kl2δl2 + δl3) + ˙̂

MQδl2 + (kl2I3 + M̂Q) M̃Q (δl2 + δl1)
(5.36)

Considering the Lyapunov function candidate

V3 = V2 + 1

2
δTl3δl3

and using (5.35) and (5.36), gives

V̇3 = − 1

Xa∗
3

eTstD(λ)D−1(λ̂)kl1est − kl2δ
T
l2δl2

+ δTl3 (Ḟ ′ + (k2I3 + M̂Q) (M̂Qδl1 − kl2δl2 + δl3) + ˙̂
MQδl2 + δl2)

+ δTl2M̃Qδl2 − 1

kγ
(γ̃1 ˙̂γ1 + γ̃2 ˙̂γ2) + δTl3 (kl2I3 + M̂Q) M̃Q (δl2 + δl1)

From the definition of Rθφ, an expression for its time derivative is

Ṙθφ = Rθφ [ωc]× − [ψ̇E3]×Rθφ (5.37)
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Then from the expression of F ′, (5.30), and (5.37) gives

Ḟ ′ = −Δ1WαaRθφ ([ωc]× TME3 + ṪME3)
It can be seen that choosing the control law (5.25), and the parameter update

law (5.26), the time derivative of L3 can be written as

V̇3 = − 1

Xa∗ eTstD(λ)D−1(λ)kl1est − kl2δ
T
l2δl2 − kl3δ

T
l3δl3

Hence, the system is GES.

It is remarked that (5.25) appears to define the four inputs, i.e., three angular

velocity inputs and thrust. However, expanding (5.25) reveals only expressions for

the first and second components of ωc are determined. The third component is given

by the yaw control in next subsection.

5.2.2 Yaw Rate

In order to control eα, the yaw rate of the UAV is taken as

ψ̇ = −kαesψ = −kαsψl
with kα > 0. Since the Euler rates and ωc are related by (2.10), the third component

of the angular velocity fed to the inner loop is

ωc3 = cθ
cφ

(−kαsψl − ωc2
sφ

cθ
) (5.38)

The DIBVS law for TM and ωc is given by (5.25) and (5.38). As mentioned

above, (5.25) defines the control for the first two components of ωc and (5.38) pro-

vides the third component ωc3.

5.2.3 Simulation Results

In this section the proposed DIBVS (5.25), (5.26), and (5.38) is tested in simulation.

The control law update frequency is 30 Hz. The inner loop PID control for angular

velocity is updated at the frequency of 200 Hz which is a typical IMU measurement

rate. Four lines (i.e., N = 4) are defined in the navigation frame N as

L1 ∶ 2X1 +X2 = 1, X3 = 4

L2 ∶ 2X1 +X2 = −1, X3 = 4

L3 ∶ 2X1 +X2 = 2, X3 = 4

L4 ∶ 2X1 +X2 = 0, X3 = 4
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The control gains and scaling coefficient β are given in Table 5.3. The initial states

Gain Value

kl1 10
kl2 5
kl3 2
kα 0.6
kγ 1

Table 5.3: Control gains

of the vehicle dnnc(0), va(0), ωc(0) are taken as zero. Also, the initial conditions for

the parameter estimates are γ̂i = 0, i = 1,2, and R(0) = I3. The reference roll and

pitch are bounded by ±10○. The desired velocity along the parallel lines is set as

vd = 0.2 m/s and the μv∗20 is chosen to correspond to a UAV position with d3 = −1.
That is, the UAV should move down by 1 m to achieve the desired s∗hl.

First, focal length is assumed perfectly calibrated. Figure 5.10 shows the result-

ing trajectory of the UAV in the navigation frame N , and the translational velocity

expressed the camera frame C. The trajectories of the proposed line feature and its

image error are shown in Figure 5.11. It can been seen that the altitude of the UAV

decreases to its desired value of −1 m in a few seconds. This makes sh1 converges to

s∗hl. Also, the desired velocity of vd = 0.2 m/s is achieved. As expected, Figure 5.11

shows that the image errors converge to zero. Figure 5.12 shows the estimated value

γ̂i, i = 1,2 converges to a constant value.

In order to check the proposed approach’s robustness to calibration error of

intrinsic camera parameters and measurement noise in attitude, the estimated focal

length is set to λ̂ = 1.5λ and attitude noise is added with a spectral power of 2.5×10−6,
i.e., roughly corresponding to a magnitude of 2○. Before using the measured attitude

to convert the real image feature to the virtual image feature, a second-order low pass

filter is used to filter the attitude signal. The simulation results with noise corrupted

attitude measurement are shown in Figure 5.13, 5.14, and 5.15. In spite of the

presence of noise and calibration error the performance of the proposed controller

is satisfactory with trajectories for dnnc and vc being similar to the ideal case in

Figure 5.10.

Assumption 4.2 restricts the 3D target line to a horizontal plane. In some sce-

narios this assumption may not hold, and the case where the lines lie in a plane

rotated 20○ about n1 axis is simulated. The same noise level and error in estimated

focal length was considered. The results are shown in Figure 5.16 and 5.17. As

shown in Figure 5.16, unlike previous cases the UAV keeps moving upwards because

it controls its height above the inclined plane to a constant to achieve the desired

value s∗1 . It can also be seen from Figure 5.17 that the image feature errors converge

to zero even though the 3D target lines lie in a non-horizontal plane.
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Figure 5.10: Simulated trajectories of UAV’s position dnnc and velocity vc.

Figure 5.11: Simulated trajectories of line feature s and error es.
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Figure 5.12: Simulated trajectories of parameter estimates γ̂i, i = 1,2.
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Figure 5.13: Simulated trajectories of UAV’s position dnnc and velocity vc with atti-
tude measurement noise and λ̂ = 1.5λ.

Figure 5.14: Simulated trajectories of line feature s and its error es with attitude
measurement noise and λ̂ = 1.5λ.

Figure 5.15: Simulated trajectories of parameter estimates γ̂i, i = 1,2 with attitude
measurement noise and λ̂ = 1.5λ.
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Figure 5.16: Simulated trajectories of UAV’s position dnnc and velocity vc with atti-
tude measurement noise, λ̂ = 1.5λ and non-horizontal target plane.

Figure 5.17: Simulated trajectories of line feature s and error es with attitude
measurement noise, λ̂ = 1.5λ and non-horizontal target plane.
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5.3 Conclusion

This chapter presents two adaptive DIBVS using the moment features for points and

parallel lines given in Chapter 4. This first control is for point moment features. It

does not assume known depth, mass, or thrust coefficient. The method is robust to

measurement bias in roll and pitch. As compared to the PID DIBVS in Chapter 4,

the conditions on the control gains can be readily satisfied. The second control

employs a different cascade structure where the inner loop tracks angular velocity.

This control is adaptive to the image feature depth. Although the simulation results

presented in Section 5.2.3 demonstrate that the proposed approach still works with

lines in a non-horizontal plane, no rigorous proof of this robustness is provided.
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Chapter 6

DIBVS with Input Saturation

As mentioned in Chapter 1, a camera’s limited FoV means that during visual ser-

voing the vehicle motion should be appropriately constrained to keep the target in

view. For the designs proposed in Chapters 3–5 this is normally achieved by reducing

controller gains and restricting the initial image feature error to a sufficiently small

neighbourhood. In this chapter a practical solution is proposed where reference at-

titude is constrained in order to keep the target in the FoV. A similar approach is

taken in [56, 57]. Constraining attitude corresponds to an input saturation design

for the outer loop of the DIBVS model described in Chapter 4. Another motiva-

tion for considering an input saturation design is that thrust needs to be positive

for quadrotors [52]. Compared to output saturation control proposed in [55], input

saturation control is simpler and easier to implement. In this chapter, thrust gain,

mass, and desired depth are treated as unknown parameters as in Chapter 4 and 5.

The attitude measurement is assumed accurate, i.e., the attitude bias is not consid-

ered. This chapter is organized as follows. Section 6.1 describes several saturation

functions used in the input saturation control. The details of the control design and

the proof of stability for the closed-loop system are given in 6.2. Lastly, Section 6.3

provides simulation and experimental results.

6.1 Background

The proposed input saturation control requires a number of saturation function

which are defined in this section. The first saturation function is a continuous

function σi ∶ R → R with following properties:

(a) ξσi(ξ) > 0, ξ ≠ 0

(b) 0 ≤ dσi
dξ ≤ ki,∀ξ ∈ R

(c) σi(ξ) = kiξ, ∣ξ∣ ≤ li
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(d) ∣σi(ξ)∣ ≤ Mi, ∣ξ∣ ≥ li

The second saturation function Σi ∶ R2 → R
2 is defined as

Σi(ζ) = [σi(ζ1), σi(ζ2)]T
where σi is the first saturation function with properties defined above, ζ ∈ R2, and

ζ = [ζ1, ζ2]T .
Theorem 6.1. Given two vector δ, ζ ∈ R2 , if ∥δ∥ < li/2 and ∥ζ∥ > li/2, where ∥ ⋅ ∥ is

the Euclidean norm, then ζTΣi (ζ + δ) > 0.

Proof. The vector ζ is parametrized by θ and αζ as

ζ = αζ li

2

⎡⎢⎢⎢⎢⎣
cθ

sθ

⎤⎥⎥⎥⎥⎦
where ∣αζ ∣ > 1. As shown in Figure 6.1, the angle between δ and ζ is denoted χ, and

³

Â

±

Figure 6.1: Vectors δ and ζ.

vector δ can be written as

δ = αδli
2

⎛⎝cχ
⎡⎢⎢⎢⎢⎣
cθ

sθ

⎤⎥⎥⎥⎥⎦ + sχ

⎡⎢⎢⎢⎢⎣
sθ−cθ

⎤⎥⎥⎥⎥⎦
⎞⎠

where ∣αδ ∣ < 1. Then the expression ζTΣi (ζ + δ) is

ζTΣi (ζ + δ) = αζ li

2
ϕ(θ,αζ , χ,αδ)

where

ϕ(θ,αζ , χ,αδ) = [cθ sθ]Σi ⎛⎝αζ li2

⎡⎢⎢⎢⎢⎣
cθ

sθ

⎤⎥⎥⎥⎥⎦ + αδli
2

⎛⎝cχ
⎡⎢⎢⎢⎢⎣
cθ

sθ

⎤⎥⎥⎥⎥⎦ + sχ

⎡⎢⎢⎢⎢⎣
sθ−cθ

⎤⎥⎥⎥⎥⎦
⎞⎠⎞⎠

To prove ζTΣi (ζ + δ) > 0 is equivalent to proving ϕ(θ,αζ , χ,αδ) > 0. For the case

0 ≤ θ < π/2 and the non-decreasing property (b), the following inequality can be
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obtained

ϕ(θ,αζ , χ,αδ) ≥ [cθ sθ]Σi ⎛⎝ li2
⎡⎢⎢⎢⎢⎣
cθ

sθ

⎤⎥⎥⎥⎥⎦ + αδli
2

⎛⎝cχ
⎡⎢⎢⎢⎢⎣
cθ

sθ

⎤⎥⎥⎥⎥⎦ + sχ

⎡⎢⎢⎢⎢⎣
sθ−cθ

⎤⎥⎥⎥⎥⎦
⎞⎠⎞⎠

= [cθ sθ]Σi ⎛⎝ li2
⎡⎢⎢⎢⎢⎣
cθ + αδ (cχcθ + sχsθ)
sθ + αδ (cχsθ − sχcθ)

⎤⎥⎥⎥⎥⎦
⎞⎠

Since ∣αδ ∣ < 1, it follows that cθ + αδ (cχcθ + sχsθ) ≤ 2 and sθ + αδ (cχsθ − sχcθ) ≤ 2.

It can be concluded that each element of Σi lies in its linear region and

ϕ(θ,αζ , χ,αδ) ≥ li
2
[cθ sθ] ⎡⎢⎢⎢⎢⎣

cθ + αδ (cχcθ + sχsθ)
sθ + αδ (cχsθ − sχcθ)

⎤⎥⎥⎥⎥⎦ = li (1 + αδcχ)
2

Since ∣αδ ∣ < 1, it can be shown that ϕ(θ,αζ , χ,αδ) > 0. For the case π/2 ≤ θ < 2π,

the procedure presented above can be used to show ϕ(θ,αζ , χ,αδ) > 0. This proves

ζTΣi (ζ + δ) > 0.

It is remarked that the above theorem can be extended to the general case where

Σi ∶ Rn → R
n and

Σi(ζ) = [σi(ζ1), . . . , σi(ζn)]T
where ζ = [ζ1, . . . , ζn]T ∈ Rn. The last saturation function introduced is h ∶ R2 → R

2

which is defined as

h(u) = u

1 + uTu
(6.1)

It can be easily seen that ∥h(⋅)∥ ≤ 1.

6.2 Controller Design

6.2.1 Height Control

From Chapter 4, the height subsystem is

ṡhp = − 1

Xa∗
3

va3 (6.2a)

v̇a3 = g − KTu

m
(6.2b)

where u is defined in (4.23). Defining b1 = 1/Xa∗
3 , b2 = KT /m, and dg = mg/KT , the

height subsystem (6.2) becomes

ṡhp = −b1va3 (6.3a)

v̇a3 = b2(dg − u) (6.3b)
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Here b1, b2, and dg are taken as unknown parameters, and dg is assumed to lie in a

known compact set

Ωdg = {dg ∈ R ∶ ∣dg − dg0∣ ≤ dgm}
where dg0 is any initial estimate of dg which ensures every element of Ωdg is greater

than zero. Defining

δh1 = shp − 1 (6.4a)

δh2 = va3 − σ1(δh1) (6.4b)

and using (6.3), the time derivatives of δh1 and δh2 are

δ̇h1 = −b1(σ1(δh1) + δh2) (6.5a)

δ̇h2 = b2(dg − u) + b1
dσ1
dδh1

(σ1(δh1) + δh2) (6.5b)

The control law for subsystem (6.3) is taken as

u = σ2(δh2) + d̂g + dg0 (6.6)

with d̂g providing an estimate of dg − dg0 and updated from

˙̂
dg = Proj(μ, d̂g) = μ − ν1ν2

4 (ε2 + 2ε (dgm − ε))n+1 (dgm − ε)2 ▽ pd(d̂g) (6.7)

where μ = kdgδh2, pd(d̂g) = d̂2g − (dgm − ε)2, ▽pd(d̂g) = 2d̂g, n is an non-negative

integer,

ν1 = ⎧⎪⎪⎨⎪⎪⎩ (d̂2g − (dgm − ε)2)n+1, if pd(d̂g) > 0

0, otherwise

ν2 = d̂gμ + √(d̂gμ)2 + δ2, and ε, δ > 0 are positive constants. The function Proj(⋅)
is a projection operator from [91] which is n times continuously differentiable and

guarantees d̂g falls in the compact set

Ω̄dg = {d̂g ∈ R ∶ ∣d̂g ∣ ≤ dgm} (6.8)

Theorem 6.2. The equilibrium [δh1, δh2]T = 0 of the closed-loop system (6.3) with

the input (6.6) and (6.7) is GAS if the control parameters k1, k2, l1, l2, and M1 satisfy
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−(b2k2 − b1k1) l2 + 2b2dgm + b1k1M1 < 0 (6.9a)

k1l1 > l2 (6.9b)

k2l2/2 > dgm (6.9c)

and the control signal u lies in the following compact set

Ωu = {u ∈ R ∶ dg0 − dgm −M2 ≤ u ≤ dg0 + dgm +M2}
Proof. Using the law (6.7) it can be shown that ∣d̃g ∣ < 2dgm, where d̃g = dg − d̂g −dg0.

With the control law (6.6), dynamics (6.3b) becomes

v̇a3 = −b2(σ2(δh2) − d̃g)
When δh2 ≥ l2 and using (6.9c) it can be shown that σ2(δh2) − d̃g ≥ k2l2 − 2dgm > 0.

Hence, it follows that

va3(t) ≤ va3(0) − b2(k2l2 − 2dgm)t (6.10)

From the definition of δh2 in (6.4b), inequality (6.10) can be written as

δh2 + σ1(δh1) ≤ δh2(0) + σ1(0) − b2(k2l2 − dm)t
Using property (d) of σi gives

δh2 ≤ δh2(0) + 2M1 − b2(k2l2 − 2dgm)t
Hence, if

t > T2 = δh2(0) + 2M1 − l2
b2(k2l2 − 2dgm)

then δh2 enters the linear of σ2. For the initial value δh2(0) = l2, the time derivative

of δh2 is

δ̇2h = −b2(k2l2 − d̃g) + b1
∂σ1
∂δ1

(σ1(δ1) + l2)
If inequality (6.9a) is satisfied, it follows that δ̇2h < 0. Similarly, it can be shown that

when δh2 < −l2, δh2 will enter the linear region of σ2 in finite time, and δ̇h2 > 0 when

δh2 = −l2 if inequality (6.9a) is satisfied. Hence, it follows that δh2 will enter the

linear region in a finite time Th2 and stay in this region for t > Th2. Using (6.5a) and

the fact that δh2(t) ≤ l2, t > Th2, it is also easy to show that when inequality (6.9b)

is satisfied, δh1 will enter the linear region of σ1 at a finite time Th1. Hence, after a
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finite time, the system (6.5) becomes

δ̇h1 = −b1(k1δh1 + δh2) (6.11a)

δ̇h2 = −b2(k2δh2 − d̃g) + b1k1(k1δh1 + δh2) (6.11b)

To show the stability of closed-loop system (6.11), the Lyapunov function candidate

is chosen as

Vh = k21
2
δ2h1 + 1

2
δ2h2 + b2

2kdg
d̃2g (6.12)

Using (6.11), the time derivative of (6.12) is

V̇h = k21δh1 (−b1 (k1δh1 + δh2)) − b2
kdg

d̃g
˙̂
dg + δh2 (−b2 (k2δh2 − d̃g) + b1k1(k1δh1 + δh2))

= −b1k31δ2h1 − b1k
2
1δh1δh2 − b2

kdg
d̃g

˙̂
dg + (−b2k2 + b1k1) δ2h2 + b1k

2
1δh1δh2 + b2δh2d̃g

= −b1k31δ2h1 − (b2k2 − b1k1) δ2h2 − b2d̃g ( 1

kdg

˙̂
dg − δh2)

From [91] the projector operator has the property

d̃gProj(μ, d̂g) ≥ d̃gμ

Hence, it can be shown that

V̇h ≤ −b1k31δ2h1 − (b2k2 − b1k1) δ2h2 − b2d̃g ( 1

kdg
kdgδh2 − δh2)

= −b1k31δ2h1 − (b2k2 − b1k1) δ2h2
From the inequality (6.9a), it can be shown that

(b2k2 − b1k1) > 2b2dgm + b1k1M1

l2
> 0

Using the LaSalle-Yoshizawa theorem [50, Thm. 2.1] it has been shown the equilib-

rium [δh1, δh2]T = 0 is GAS.

6.2.2 Lateral and Yaw Motion Control

With the assumption of zero attitude measurement bias and Assumption 4.1, the

lateral subsystem with point image moment feature is

ṡlp = − λ

Xa∗
3

val − Sslpψ̇ (6.13a)

v̇al = KTu

m
Sη1 − Sval ψ̇ (6.13b)
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where S is defined in (4.2), val = [va1 , va2]T , and η1 = [φ, θ]T . Choosing ū = uSη1 as

the input, the lateral system (6.13) becomes

ṡlp = −λb1val − Sslpψ̇ (6.14a)

v̇al = b2ū − Sval ψ̇ (6.14b)

For the lateral subsystem (6.14) the control law is chosen as

ū = −Σ3 (val − k4h(βslp)) (6.15)

where k4 and β are positive constants. The derivative of h(βslp) at zero is propor-

tional to β. The parameter β is used to tune the rate of closed-loop convergence.

From Chapter 4, the kinematics of image feature for yaw is

ṡψp = −ψ̇ (6.16)

The controller in (4.26), i.e.,

ψ̇ = Kψsψp (6.17)

is adopted, and the closed-loop becomes

ṡψp = −Kψsψp (6.18)

Theorem 6.3. The equilibrium [slp, val , sψp]T = 0 of the closed-loop system (6.13),

(6.16) with the input (6.15) and (6.17) is GAS if the control gains satisfies

k4 < l3/2 (6.19)

Kψ, k3 > 0, and the magnitude of each element of the control input is less than M3.

Proof. The first step is to show the saturation function Σ3 will enter its linear region

in finite time. To prove this, a energy storage function is introduced as

Vl2 = 1

2
(val )T val

Using the control law (6.15), the time derivative of Vl2 is

V̇l2 = (val )T (−b2Σ3 (val − k4h(βslp)) − Sval ψ̇)= −b2 (val )T Σ3 (val − k4h(βslp))
From Theorem 6.1, it can be concluded that V̇l2 < 0 when ∥val ∥ > l2/2 and (6.19) is

satisfied. Hence, the saturation function Σ3 enters its linear region in a finite time.
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The closed-loop system becomes

ṡlp = −λb1val − Sslpψ̇ (6.20a)

v̇al = b2 (−k3val + k3k4h (βslp)) − Sval ψ̇ (6.20b)

The Lypunov function candidate is chosen as

Vl = 1

λb1β
(√1 + β2sTlpslp − 1) + 1

2b2k3k4
(val )T val

The time derivative of Vl is

V̇l = β2

λb1β

sTlpṡlp√
1 + β2sTlpslp

+ 1

b2k3
(val )T v̇al

= β

λb1

sTlp (−λb1val − Sslpψ̇)√
1 + β2sTlpslp+ 1

b2k3k4
(val )T (b2 (−k3val + k3k4h (βslp)) − Sval ψ̇)

= − βsTlpv
a
l√

1 + β2sTlpslp
− 1

k4
(val )T val + (val )Th(βslp)

= − 1

k4
(val )T val

(6.21)

The Lyapunov function candidate for both lateral motion and yaw motion is chosen

as

Vs = Vl + 1

2
s2ψp (6.22)

Using (6.18) and (6.21), the time derivative of Vs is written as

V̇s = − 1

k4
(val )T val −Kψs

2
ψp

Hence, using LaSalle’s Invariance Theorem the equilibrium [slp, val , sψp]T = 0 of the

closed-loop system is GAS.

6.3 Simulation and Experimental Results

In this section simulation and experimental results are provided to validate the

proposed DIBVS with input saturation.
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6.3.1 Simulation Results

As in Section 5.1.2, the system model parameters used in the simulation are in

Table 2.1, the image resolution is 320× 200, and the thrust coefficient KT is chosen

as KT = 4×107 N/s2. The initial displacement of the vehicle in the navigation frame

is [0.55,−0.55,−2.3]T m with zero roll and pitch, and the initial value of yaw is

π/3 rad. The initial velocities are set as v2(0) = [−0.4,−0.4,0.2]T and ωc(0) = 0.

The visual target consists of two points located at coordinates [−0.18,0,0]T m and[0.18,0,0]T m in N . The desired value of the image feature s = [slp, shp, sψp]T is

chosen as s∗ = [0,0,1,0]T . The image feature error is es = [es1, es2, es3, es4]T = s−s∗.
The desired 3D translational displacement of the UAV is dn∗nc = [0,0,−1.5]T m which

corresponds to es = 0. A high gain PID controller is used to track reference attitude.

The saturation function σi is chosen as

σi(x) = ⎧⎪⎪⎨⎪⎪⎩ kix, if ∣x∣ < li

sign (x) (kili + c1i arctan (c2i (∣x∣ − li))) , otherwise
(6.23)

where c1i = 2(Mi − kili)/π, c2i = ki/c1i. Figure 6.2 shows an example of the graph

for σi. The controller parameters for σi, i = 1,2,3 are given in Table 6.1. The

Figure 6.2: Saturation function σi.

Gains ki li Mi

i = 1 1 0.5 0.55
i = 2 0.4 0.42 0.17
i = 3 0.5 0.16 0.1

Table 6.1: Parameters for saturation functions σi, i = 1,2,3.

other control parameters are selected as k4 = 0.06, kdg = 0.04, Kψ = 0.1, and the

parameters in (6.7) are chosen as n = 1, ε = 0.001 , δ = 0.01. From the value of dn∗nc it

follows that Xa∗
3 = 1.5 m. Hence, the values of b1 = 1/Xa∗

3 = 0.5 and b2 = KT /m = 25

can be computed. From the values of KT and m it follows that dg = 0.3924. The

initial estimate of d̂g is dg0 = 0.38, and the estimated value d̂g is limited in the

compact set Ω̄dg defined in (6.8) with dgm = 0.04. It can be easily verified that the

control gains chosen above satisfy the constraints (6.9) and (6.19).
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To verify the input saturation helps to keep the visual target in the FoV of the

camera, two cases are considered in simulation. The first case the input saturation

controllers (6.6) and (6.15) are applied. In the second case, all saturation functions

in (6.6) and (6.15) are removed. This leads to the control being the linear region

expression of (6.6):

u = k2δh2l + dg0 + d̂gl (6.24)

where δh2l = va3 − k1δh1, and d̂gl is updated by

˙̂
dgl = kdgδh2l (6.25)

It can be easily verified that the origin of the closed-loop system (6.3) with in-

put (6.24) and (6.25) is GES. To remove the saturation function from control (6.15),

the expression is linearised at the origin to obtain

ū = −k3(val − k4βslp) (6.26)

It can be easily proven that the origin of the closed-loop (6.13) with input (6.26) is

GES.

Figure 6.3 shows the trajectories of es, and ed = dnnc − dn∗nc for both cases. In

both cases the image feature error and position error converge to zero in finite time.

The difference between the two cases is that es and ed asymptotically converge to

zero with controller (6.6) and(6.15), whereas they exponentially converge to zero

using controller (6.24) and (6.26). As expected, the control signal u lies in Ωu ={u ∈ R ∶ 0.17 ≤ u ≤ 0.59} using the controllers (6.6) and (6.15). Figure 6.4a shows

the trajectory of the control signal u where its values lie in Ωu. The dotted line

in Figure 6.4a denotes the boundary of Ωu. Figure 6.4b shows the trajectory of u

with controller (6.24) and (6.26). Here it can be seen u leaves Ωu. Figure 6.5

shows the trajectories of the reference input η1 for the inner loop for both cases.

It can be seen that the input signal, i.e., the roll and pitch fall in the compact

sets Ωφ = {φ ∈ R ∶ ∣φ∣ ≤ 0.1} and Ωθ = {θ ∈ R ∶ ∣θ∣ ≤ 0.1} when the proposed input

saturation law is used. The reference roll and pitch signal leave the compact set Ωφ

and Ωθ when (6.24) and (6.26) are applied. Figure 6.6 shows the image trajectory for

the two cases. The rectangle in Figure 6.6 represents the boundary of the camera’s

image plane. From the figure, when input saturation is applied the visual target is

kept in the FoV of the camera. The image of one of the two points leaves the FoV

of the camera when the input saturation is off.
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(a) Using control law (6.6) and (6.15) (b) Using control law (6.24) and (6.26)

Figure 6.3: Simulated trajectories of image feature error es, vehicle’s 3D position
error ed, and eψ.

(a) Using control law (6.6) and (6.15) (b) Using control law (6.24) and (6.26)

Figure 6.4: Simulated trajectories of input u.

(a) Using control law (6.6) and (6.15) (b) Using control law (6.24) and (6.26)

Figure 6.5: Simulated trajectories of the input signals for the inner loop.
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(a) Using control law (6.6) and (6.15) (b) Using control law (6.24) and (6.26)

Figure 6.6: Simulated image plane trajectories of the two points.

6.3.2 Experimental Results

In this experiment two visual points are put on the horizontal ground with a dis-

placement of 0.4 m1. The saturation function σi used in the experiment is (6.23).

The control parameters ki, li, Mi, i = 1,2,3, kdg, k4, Kψ, ε, δ, dgm are chosen as in

Section 6.3.1. The inner loop attitude control used is the same PID controller in

Section 4.4.1.

Figure 6.7 shows the trajectory of image feature error es. Figure 6.9 gives the 3D

trajectory of the vehicle’s CoM. The corresponding 3D trajectories of translational

error ed = [ed1 , ed2 , ed3]T = dnnc−dn∗nc and yaw error eψ = ψ−ψ∗ are shown in Figure 6.8.

The definitions of dn∗nc and ψ∗ are in Section 4.4.1, and their values are

dn∗nc = [0.077,−0.078,−1.140]Tm
and ψ∗ = 1.157 rad. It can be seen that all error signals reach steady state after 10

seconds. The average and standard deviation of es, ed, and eψ in steady state are

in Table 6.2. With the saturation controller proposed in Section 6.2, the regulation

errors are significantly reduced. Errors esi , edi , i = 1,2 converge to non-zero con-

stants because the attitude measurement bias is not compensated. This bias was

accounted for in Chapter 4 and 5. However, steady state performance is significantly

improved relative to the PD control in Section 4.4 and the non-adaptive controller

in Section 5.1.3. This is because the saturation controller proposed in this chapter

allows for high gains when the error approaches zero. This high gain reduces the

average steady state error. The control output trajectories for the outer loop are

shown in Figure 6.10. As expected the control u remains in Ωu and reference roll

and pitch lie in Ωφ and Ωθ, respectively. Figure 6.11 shows the trajectories of the

points in the image plane. The square denotes initial image point and the circle

denotes the final point. Evidently the trajectories remains in the camera’s FoV.

1A video of the DIBVS with input saturation is at www.youtube.com/watch?v=X8ws1oHJdcA
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Figure 6.7: Experimental results: trajectories of image feature error es.

Figure 6.8: Experimental results: trajectories of vehicle’s 3D position error ed and
yaw error eψ.
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Figure 6.9: Experimental results: trajectories of vehicle’s 3D position dcnc.

Image Feature Mean Standard deviation

es1 (mm) 0.02 0.04
es2 (mm) 0.07 0.08

es3 -0.01 0.02
es4 (rad) 0.00 0.03
ed1 (m) -0.008 0.020
ed2 (m) -0.028 0.028
ed3 (m) 0.010 0.011
eψ (rad) 0.003 0.017

Table 6.2: Statistics of es, ed , and eψ.
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Figure 6.10: Experimental results: trajectories of outer loop controller outputs.

Figure 6.11: Experimental results: Trajectories of the points in the image plane.
The square denotes initial image point and the circle denotes the final point.
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6.4 Conclusion

Two DIBVS with input saturation were proposed to keep the visual target in the

camera’s FoV and keep thrust positive. This objective is met indirectly by designing

an input saturation control for the lateral subsystem. This ensures reference roll

and pitch are bounded. By avoiding large roll and pitch when the image feature

error is large, the visual target can be kept in the camera’s FoV. A unique feature

of the input saturation controllers proposed is that they allow high gains when the

image feature error approaches zero. This helps to reduce the steady state error.

Simulation and experimental results demonstrated the performance of the proposed

control.
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Chapter 7

Summary and Future work

7.1 Summary of Results

This thesis has proposed new IBVS theory for rotary wing UAVs. IBVS is a challeng-

ing control problem given the nonlinearity of the system model, the underactuated

UAV dynamics, various system uncertainties, and a complex embedded experimen-

tal platform. An important aspect of the work involved experimental validation of

the controller designs on the ANCL quadrotor platform.

This thesis contributed to the ANCL quadrotor platform itself. A description

of this platform and the contributions made are in Chapter 2. The platform de-

velopment is a large collaborative effort together with other researchers at ANCL

and the communities which support the PX4 autopilot, CMUcam5 Pixy computer

vision system, and QGroundControl ground station software. These components are

open-source (hardware and/or software) projects. Their open nature makes them

particularly suitable for the development of research projects in general and the de-

velopment of IBVS as described in this thesis in particular. The work in this thesis

involved the modification of the position and attitude control modules so they could

be integrated into an indoor flight environment. Additional modules were added to

the PX4 autopilot. These include a communication module between Pixy and PX4,

an image moment feature extraction module, and IBVS controller modules. The

controller designs in Chapter 3–6 are model-based. This has the benefit of allowing

their performance and robustness to be analyzed rigorously. Chapter 2 presents a

DIBVS model whose inputs are physical signals, i.e., PWM inputs to the ESCs.

Certain assumptions have be chosen in the modelling whose validity is based on our

experimental testing. The models presented are sufficiently simplified so they can

be used for controller design, and yet still capture important dominant effects. For

example, they retain important nonlinear dependence on state.

A state transformation approach is proposed in Chapter 3. This state transfor-

mation removes the time derivative of the input, i.e., the Euler angle rate in the outer
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loop. The reason for removing this dependence is to simplify the system structure

for control design. A constructive method based on solving first-order homogeneous

PDEs is provided to compute the state transformation. The state transformation

approach generalizes the virtual camera approach which has recently appeared in

the literature. A particular choice of state transformation which does not coincide

with the virtual camera method is provided in Section 3.3 to regulate the lateral

motion of a quadrotor.

Using another particular solution of the state-transformation approach in Chap-

ter 4, i.e., the image coordinates of points or parameters of lines in a virtual camera

which remains parallel to the target plane, image moment features for planar tar-

gets with a set of points or parallel lines are proposed. The image moment feature

kinematics is given and used to derive a PID DIBVS. This control accounts for un-

certainties including attitude estimate bias, unknown thrust gain, mass, and image

depth. Experimental results demonstrate the controller’s robustness properties.

An alternative way to account for parametric uncertainty is to use an adaptive

control design. Chapter 5 first applies the adaptive backstepping design to visual

servoing of planar targets with multiple points. Both simulation and experimental

results show its robustness to unknown attitude estimate biases, thrust gain, mass,

and image depth. Using the same adaptive backstepping technique, another DIBVS

law is proposed for planar targets with parallel lines. This control adopts a different

cascade structure where the input of the outer loop is angular velocity, and the inner

loop tracks a reference angular velocity provided by the outer loop. The proposed

IBVS control for parallel lines does not require a depth estimate and is robust to

camera calibration errors.

The control gains for the DIBVS laws mentioned above have to be chosen small

enough to avoid large values of attitude. Normally this keeps the visual target in

the camera’s FoV. Alternatively, an input saturation DIBVS law is proposed in

Chapter 6. This IBVS law consists of two nested saturation controllers. The first

input saturation controller is developed for the height subsystem and guarantees

positive thrust. The second controller constrains the reference roll and pitch in a

compact set. This ensures bounded reference roll and pitch which helps to keep the

visual target in the FoV of the camera. The design treats thrust gain, mass, and

image depth as unknowns. Simulation and experimental results show the controller

can keep the visual target in the FoV, provide positive thrust, and is robust to

parametric uncertainty.

To compare the performance of three approaches, i.e., PID, adaptive, and input

saturated DIBVS; the mean values of steady state errors in experiment are pre-

sented. As well, the performance of a PD DIBVS is included. A target consisting

of multiple points is considered, and the results are given in Table 7.1. As can be
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Image Feature Input saturation Adaptive PID PD

es1 (mm) 0.02 0.00 -0.01 -0.10
es2 (mm) 0.07 -0.01 0.00 -0.40
es3 -0.01 0.00 0.00 -0.27
es4 (rad) 0.00 0.02 0.03 0.05
ed1 (m) -0.008 -0.008 0.003 0.057
ed2 (m) -0.028 -0.002 0.005 0.179
ed3 (m) 0.010 0.004 -0.008 0.451
eψ (rad) 0.003 0.070 -0.109 -0.026

Table 7.1: Experimental values of mean steady state error for four IBVS laws.

seen, the adaptive IBVS and PID IBVS have the best performance as they directly

account for attitude bias. The steady state error using DIBVS with input satura-

tion approach is significantly reduced as compared to PD IBVS and slightly worse

than PID IBVS and adaptive IBVS. This is because the input saturation control

provides high control gains near the origin. These high gains lead to reduced steady

state error. Among the proposed approaches, only in the adaptive IBVS design is

the stability of the lateral closed-loop subsystem independent of yaw motion. This

allows us to track time-varying yaw trajectories.

7.2 Future Work

In this section possible future extensions and applications of the research in this

thesis are provided.

• Output feedback DIBVS. The IBVS law developed in this thesis relies on the

measurement of the vehicle’s linear velocity. These measurements can be ob-

tained from GPS or a Vicon system. In some applications GPS or Vicon

measurements are not available. Hence, an interesting future topic of research

is to apply output feedback methods to DIBVS. Two output feedback methods

show particular promise: the high-gain observer-based output feedback in [51],

and the adaptive output feedback in [50, Chp. 7]. Preliminary work using a

high-gain observer design computes a scaled linear velocity estimate by low

pass filtering the derivative of the image feature measurement. From experi-

mental results it can confirmed that the rate of change in the image feature

is proportional to linear velocity. The high-gain observer-based approach is a

practical choice because of its simple structure. The adaptive output backstep-

ping method provides a GAS result with a complex controller structure [49].

A comparison of the performance of these output feedback methods would be

useful.

• Although the state transformation approach generalizes the virtual camera
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method, only in the PVTOL vehicle case was it possible to find a particular

solution for the transformation which differed from the virtual camera. Future

work would involve searching for other particular solutions of the PDEs given

in Chapter 3. The solutions considered should transform the kinematics into

a form which is simple enough for controller design.

• In order to simplify the kinematics of the image moment features and the

time derivative of the norm of the image feature to decouple from the yaw

motion, the target is assumed horizontal. Although simulation results shows

the proposed approaches are robust to non-horizontal target planes, a proof

of robustness is missing. Future work involves extending the theory to non-

horizontal planar targets.

• The saturation control proposed in Chapter 6 does not consider attitude mea-

surement bias, and this leads to non-zero steady state error. Although the

input saturation controller can reduce the non-zero steady state error with

high gains near the origin, it is impossible to completely remove it. Future

work should extend the input saturation controller to compensate steady state

tracking error for attitude measurement bias.
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Appendix A

Solving a System of first-order

linear homogeneous PDEs

A system of q < n linear homogeneous PDEs in an unknown function f(x1, x2, ..., xn)
is defined as

Gi(f) = n∑
j=0

aji
∂f

∂xj
= 0, 1 ≤ i ≤ q (A.1)

whereGi = (a1i, . . . , ani)T is a vector field with aji smooth functions of n independent

variables xi,1 ≤ i ≤ n. According to the Frobenius Theorem, e.g. [92], there exists

n − q independent solutions of (A.1) if the q-dimensional distribution

D = span{G1,G2, ...,Gq}
is involutive. A distribution D is said involutive if for any two vector fields Gi,Gj ∈ D
their Lie bracket [Gi,Gj] ∈ D. In the case where for any Gi,Gj ∈ D the Lie bracket[Gi,Gj] = 0, the system of PDEs is said complete. In this case there exist local

coordinates z1, . . . , zn where vector fields are simultaneously rectified, i.e.,

Gi = ∂

∂zi
, 1 ≤ i ≤ q

This result is stated in [93, Thm. A.4.5].

It can be shown that the Lie brackets [G1p,G2p] in (3.8) , [G1v,G2v] in (3.10),

and [G1l,G2l] in (3.16) are equal to zero. Hence, distributions Dp = span{G1p,G2p},Dv = span{G1v,G2v}, and Dl = span{G1l,G2l} are involutive. Hence, PDEs (3.8),

(3.10), and (3.16) are solvable and a method for computing the general solution is

given next. The approach is based off [94, p. 271].

It is assumed distribution D is q-dimensional and therefore Gi,1 ≤ i ≤ q in (A.1)

are independent. Further, the system of PDEs (A.1) is assumed complete and so

the Lie brackets [Gi,Gj] = 0,1 ≤ i, j ≤ q. If y2, . . . , yn are independent integrals of
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Gk(f) = 0, for some k, and a function y1 is chosen such that y1, y2, . . . , yn are new

independent variables, Gk(f) = 0 for some k reduces to ∂f/∂y1 = 0. The system of

PDEs expressed in the y-coordinates becomes

Li(f) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂f

∂y1
= 0, i = k

n∑
j=2

bji
∂f

∂yj
= 0, i ≠ k

(A.2)

where bji is function of n − 1 independent variables y2, y3, . . . , yn. Hence, Li(f) =
0, i ≠ k, forms a complete system of q − 1 PDEs in n − 1 independent variables

y2, y3, . . . , yn. By repeating this procedure, the system can be reduced to one PDE

in n − q + 1 independent variables. The general solution of this PDE will be an

arbitrary smooth function of n − q independent solutions.

The procedure is illustrated by computing a solution to (3.8) where q = 2 and

n = 4 and

Gjp(yai ) = 0, j = 1,2 (A.3)

where

G1p = y1y2
λ

∂

∂y1
+ y22 + λ2

λ

∂

∂y2
+ ∂

∂φ

G2p = (y21 + λ2

λ
cφ + y2sφ) ∂

∂y1
+ (y1y2cφ

λ
− y1sφ) ∂

∂y2
− ∂

∂θ

It is straightforward to show that the integral of G1p(yai ) = 0 is an arbitrary smooth

function of (y2sφ + λcφ) /y1, (y2cφ − λsφ) /y1, and θ. Taking new independent vari-

ables y11 = (y2sφ + λcφ) /y1, y21 = (y2cφ − λsφ) /y1, φ, θ. The function yai (y1, y2, φ, θ)
is expressed in the new independent variables and denoted yai1(y11, y21, φ, θ), and
(A.3) becomes

∂yai1
∂φ

= 0 (A.4a)

∂yai1
∂y11

(y211 + 1) + ∂yai1
∂y21

y11y21 + ∂yai1
∂θ

= 0 (A.4b)

Hence, it can be concluded that yai1 is not a function of φ. The PDE (A.4b) has three

independent variables y11, y21, and θ. The general integral of (A.4b) is an arbitrary

smooth function of (sθ − y11cθ)/y21 and (cθ + y11sθ)/y21. Hence, transformed to the

original state y1, y2, φ, and θ, the general integral of (A.3) is

κ2 (sφcθy2 + λcφcθ − y1sθ

λsφ − y2cφ
,−sφsθy2 + cφsθλ + y1cθ

λsφ − y2cφ
)
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