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Abstract

Software build systems are often viewed as a solved problem by software engineers, since
there are many mature tools and techniques for implementing them. However, existing
tools and techniques focus on building single-language software and do not necessarily scale
to building multilanguage software. An exploratory qualitative study of five open-source
multilanguage software packages finds significant issues in getting these packages to build
at all. The key finding of this thesis is that there are commonalities among build problems
that could be systematically addressed. A comparative analysis of the five case studies
produces a set of build patterns and anti-patterns, some of which could also apply to single-
language software. One such finding is that multilanguage packages may avoid certain build
problems by supporting build-free extension. As well, there is evidence that abstractions
from the application and implementation domains may “leak” into the build system, with
both positive and negative effects.
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Chapter 1

Introduction

Build systems turn source code into executable programs by orchestrating the execution of
compilers, code generators, and other tools. They are also responsible for turning incremen-
tally updated source code into incrementally updated executable programs. They operate
by taking as input a specification of which artifacts are produced from which other artifacts
by which tools, and executing the tools necessary to bring all artifacts up-to-date. The
classic example of a build system is a Makefile interpreted by Make [19].

Build systems are commonly viewed as a “solved problem” by software engineers, because
there are many mature and well-known tools and techniques for creating build systems.
Some are fully automatic. For example, when developing Java source code using the Eclipse
Integrated Development Environment (IDE) available from eclipse.org, there is a “Build
automatically” option which is enabled by default. With no additional setup, this option
automatically gives near-instantaneous builds for Java source code. Many other build tools
have been developed with advances in terms of convenience, correctness, or speed [60].
For example, automatic dependency extractors help to infer build system specifications
from source code, partially automating a tedious and error-prone manual process; use of
checksums to detect changed artifacts avoids some edge cases with older timestamp-based
checks, such as cases where artifacts are edited while a build is in progress; and cloud
computing tools have been developed that automatically parallelize builds to the maximum
extent possible [50].

However, most of these advances focus on building software written in a single program-
ming language. What about building software written in multiple programming languages?
For example, Eclipse also supports automatic builds of C/C++ software. It is not uncom-
mon for Java software to call C/C++ routines via the Java Native Interface (JNI); this is
how Java software is able to access the platform windowing system, for example. However,
Eclipse has no support for JNI builds. Developers wishing to use Eclipse for combined Java–
C/C++ development via JNI must understand the internals of Eclipse’s automatic build
system, as well as Java and C++ build tools, in order to hook into Eclipse’s auto-generated
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Makefiles to automatically update JNI header files when Java classes change [6, p. 10].
This thesis examines build systems for multilanguage software. The term multilanguage

software is used to refer specifically to software that is written using multiple programming
languages, and in which the parts written in different languages are both necessary and
interdependent in the implementation of the software. This definition is necessary to distin-
guish ‘interesting’ cases where multiple languages are tightly integrated from less-interesting
cases where multiple programming languages happen to be used. Not every software pack-
age written using multiple programming languages satisfies this definition. For example,
a database server written entirely in C is not multilanguage in this sense merely because
a Java client library is available, because an optional client library is not a necessary part
of the server implementation. Nor would this hypothetical database server be considered
multilanguage if its developers used a unit test driver they had written for it in Tcl, or
if its build system were written in Ruby, or if the server shipped with a standalone GUI
documentation viewer written in Java. In these situations, the part written in the other
programming languages is not part of the database server implementation. However, if the
database server supported stored procedures written in Java, and the database had, for ex-
ample, a full-text search feature internally implemented in part as stored procedures written
in Java, then the database server would be considered multilanguage, because the Java and
C parts would be interdependent and both would be necessary in the implementation.

Multilanguage software has the potential to combine the unique strengths of different
programming languages while cancelling out their weaknesses. There are many thousands
of extant programming languages, created for many different reasons [55]. Multilanguage
software allows leveraging more than just one of them. For example, consider the Emacs
editor, in either its XEmacs or GNU Emacs manifestation. It is multilanguage software
written in both Lisp and C. Any individual function can be implemented in either language,
and changing the implementation language requires a recompilation but no other source
code changes. This allows either language to be used throughout, wherever it is most
convenient. For example, syntax highlighting is implemented in Lisp, to take advantage of
its expressiveness and run-time extensibility. This allows syntax highlighting definitions to
be customized at run time. In contrast, the terminal setup and display update routines
are written in C to take advantage of its low-level system access capabilities and its speed.
However, in order to get this combination, Emacs implements its own Lisp interpreter in C.

Anecdotal experience suggests that building multilanguage may not yet be “solved,” and
that tools and techniques for building single-language software may not scale to building
multilanguage software. In addition to the Eclipse JNI example, consider that a developer
wishing to create a Lisp–C application software package using an Emacs-like multilanguage
architecture may have to complete the extensive task of writing a Lisp interpreter in C be-
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fore being able to run a single line of Lisp code of the actual application software. Another
researcher, Bram Adams, investigated adding aspect-orientation to C programs, thereby
creating a form of multilanguage software. He encountered sufficiently many build system
problems and sufficiently little existing research on the subject that his doctoral dissertation
focuses on managing interactions between build systems and source code [2]. Multilanguage
software may have appealing advantages in the abstract, but these may appear to be out-
weighed by initial concrete difficulties. Multiple build systems for source code in multiple
programming languages must be developed and integrated before being able to develop the
actual multilanguage software, and the resulting customized hybrid build system must be
maintained as well. Potentially complex build systems may be perceived as a deterrent to
creating multilanguage software.

This thesis systematically examines build systems for multilanguage software in order
to determine if build systems are problematic for multilanguage software, and if so, what
might be done about it.

The specific research questions of this thesis are:
RQ1) What are the major issues in building multilanguage software?
RQ2) How can these build issues be addressed?
RQ3) Why do these build issues occur?

There are three major stages of this qualitative exploratory study. First, packages to
be studied are systematically selected from the Ubuntu 9.10 “Karmic Koala” operating
system distribution. Then, case studies are conducted on each package to understand the
multilanguage and build system architectures of each, and to record observations of both
the build problems encountered and the build features that prevent problems. Finally, a
comparative analysis of results from the case studies is summarized in a set of build patterns
and anti-patterns.

The key finding of this thesis is that build problems for multilanguage software are
error-prone, but there are commonalties among the problems which could be systematically
addressed.

1.1 Contributions

The contributions of this thesis are as follows:

• A procedure for identifying a diverse selection of multilanguage packages, including
discussion of how well it worked and what its limitations are. The selection procedure
uses filename patterns to identify the programming languages used in 101GB of source
files. This procedure is described in Chapter 3, including details of Ubuntu’s package
metadata, and the mechanics of extracting and using it. This knowledge could be
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useful to future researchers dealing with multilanguage packages.

• Deep exploration of the build systems of five multilanguage software case studies, as well
as exploration of the multilanguage architecture of the case studies themselves. This
partly addresses RQ1, and is detailed in Chapter 4. The observed build problems,
how to resolve them, and build features that help to avoid problems are described
for each package. The logical multilanguage architecture and the build structure of
each package are also explained, with corresponding diagrams, such as Figure 4.5 on
page 39 and Figure 4.20 on page 62. The notation of the diagrams is based on the
work of Godfrey and Tu [68], but the diagrams here use a higher level of abstraction.

• The finding that four of the five multilanguage case studies have error-prone build
systems, in the sense of requiring manual intervention to get a running development
version from source code. The fifth package’s build system has no problems building,
but does have some problems rebuilding. Since these packages are diverse along several
important dimensions and were selected without advance knowledge of how they would
build, and since all of them have build or rebuild issues, it is likely that build systems
for multilanguage software are, in general, error-prone.

• Build patterns and anti-patterns summarize the commonalities among build problems,
and how they may be dealt with. These address RQ1 and RQ2, and comprise Chap-
ter 5. The build patterns and anti-patterns are inferred from a comparative analysis
of the build problems and features observed in the case studies. Table 5.2 on page 76
links each pattern or anti-pattern to numbered observations in the case studies, and
its dual table is Table 5.3 on page 77.

• Discussion of potential uses and implications of the patterns and anti-patterns, and
how they address the research questions. This discussion comprises Section 5.9 and
Chapter 6. Section 6.2 also discusses the phenomenon of abstractions ‘leaking’ from
application and implementation domains into the build system, which may help ad-
dress RQ3.

Chapter 2 gives necessary background information about build systems and other concepts
that are used throughout this thesis. Chapter 3 details the systematic procedure used to
select the case study subjects, and includes its own discussion, threats to validity, and related
work sections. Chapter 4 gives in-depth case studies of each selected software package.
Chapter 5 describes the build patterns and anti-patterns. Chapter 6 discusses the results,
their generalizability, and their limitations, along with related work. Chapter 7 concludes
this thesis and discusses future work.

A peer-reviewed conference paper based on this research is also in press [48].
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Chapter 2

Background

This chapter provides necessary definitions related to build systems that will be used later
in this thesis.

Dependencies are relationships among tools and artifacts in a software package. If a tool
takes artifact B as input and produces A as output, then A is said to depend on both B and
the tool. For example, when a compiler produces an object file foo.o from a C file foo.c,
then foo.o depends on the compiler and all inputs to the compiler: header files included
by foo.c, system libraries loaded by the compiler, the compiler’s command-line options,
&c. Build systems use specifications of such dependencies to automatically build project
deliverables by running the appropriate tools with the appropriate inputs.

When a project has already been built and some of the input artifacts change, such
as when a source code file is modified by a developer, the build system is responsible for
rerunning the appropriate tools to bring all outputs up-to-date with respect to their inputs.
In most builds, there are many more dependencies that could change than can be checked
in a reasonable amount of time, so build systems use shortcuts. For example, many build
systems compare file timestamps to check whether input artifacts have changed since output
artifacts were generated. However, changed files may appear with old timestamps when
restored from backups, and an input file that is changed while a corresponding output file is
being produced can cause the output file to be out-of-date, even though the input file has an
older timestamp. Many build systems will also omit checking for changes to system header
files and compiler versions, even though these are occasionally upgraded. In theory, the key
challenge in build system design is to specify and check sufficiently many dependencies that
outputs are consistent with inputs, but not to perform so many checks that it would be
faster to regenerate artifacts than to check whether they are up-to-date.

Dependency graphs are defined in terms of manufacture graphs, a concept formalized
by Borison in the 1980s [10, 11]. A manufacture graph is the directed graph induced by
the depends relation on the artifacts and tools. It is usually a bipartite graph, where
artifacts alternate with tools on each path, and edges exist from each input artifact to each
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corresponding tool invocation, and from each tool invocation to each corresponding output
artifact. The graph is not bipartite when an artifact produced during the build is later used
as a tool in the same build. A dependency graph is a graph of dependency relations among
artifacts that is produced from a manufacture graph by adding an edge from each input
artifact to each output artifact that is reachable from it by passing through a single tool
node, and then removing all tool nodes.

The specification of all dependencies for use in the dependency graph can often be auto-
mated to a large degree through the use of automatic dependency extraction also known as
automatic dependency analysis [60] or dependency scanning [38]. Tools implementing auto-
matic dependency extraction are able to infer the dependencies of artifacts from the contents
of the artifacts themselves. For example, an automatic dependency extractor for C builds
can scan C source code files to determine the header files they include, and automatically
specify them as dependencies for the corresponding object files.

Using the concept of a manufacture graph, a software build can be divided into three
conceptual phases: configuration, construction, and packaging. Configuration is deciding
what to build: deciding, based on platform capabilities and developer input, exactly which
artifacts to produce from which other artifacts by using which tools. For example, which C
compiler to use with which compilation settings, and which optional features to include in
the built software, are the types of decisions that can be made during this phase. The output
of this phase is a manufacture graph. The construction phase takes the manufacture graph
generated by the configuration phase and traverses it, calling tools as required to bring all
artifacts up-to-date. The output of the construction phase is an executable software artifact.
Finally, the packaging phase gathers artifacts for distribution. The output of the packaging
phase is often a platform-specific installable package, such as a Ubuntu .deb file, a Mac
.dmg file, or a Windows .msi file. In actual build systems, there is often some overlap
between these conceptual phases; for example, some details of the configuration may be
deferred to the construction phase, and the installable package is often an artifact produced
by the construction phase. Nevertheless, these phases are useful concepts for discussing
build systems.

The requirements for each phase, and common methods of implementing them, vary by
programming language:

• Java’s write-once-run-anywhere design and absence of conditional compilation re-
sults in minimal configuration requirements. Construction is straightforward since
all sources can be quickly byte-compiled with a single tool invocation. Packaging is
often nothing more than zipping the byte-compiled .class files into a JAR archive.
Most of this can be handled completely automatically by, for example, Eclipse.

6



• In contrast, C/C++ software has extensive configuration requirements because of
the huge diversity of platforms it may run on. The construction phase is complex,
as conditional compilation via the preprocessor and the time-consuming nature of
C/C++ compilation place heavy demands on incremental recompilation tools. There
are are many operating-system-specific packaging formats.

One framework for addressing the build needs of C/C++ software is autotools [66,
74]. It consists of a number of related tools, including autoconf and automake. The
autoconf tool generates configuration probes as portable shell scripts, since a working
command shell is essentially the only commonality among all the operating systems
it is designed to work on. The configuration probes determine what platform features
and tools are available by attempting to use them and recording whether the attempts
succeed. The output is typically recorded as a header file of preprocessor definitions for
use with conditional compilation. The automake tool automatically generates a Make-
based build system that uses the makedepend automatic dependency extraction tool.
Packaging is accomplished by creating an archive file that contains the automatically-
generated configuration script.

• Software packages written in scripting languages such as Python and Ruby have simple
configuration requirements. Since source code runs on a portable runtime abstraction
layer, platform-specific configuration is usually not needed. However, extensive use
of third-party libraries by these development communities makes prerequisite library
satisfaction an important configuration-time requirement. Construction and packaging
involve only direct file copy for some languages or archiving of byte-compiled code for
others.

Build tools for such languages tend to be libraries with declarative APIs. For exam-
ple, Python package build systems often consist of a file called setup.py, containing
a single function call that passes metadata to the distutils library. The distutils

library can use the metadata to automatically handle tasks such as installing prereq-
uisites from the web, installing packages locally, building byte-compiled distribution
files, and uploading them to the central community Python library server.

As these examples show, build tools are often highly specialized for one language, and
may not be applicable to other languages. There are fundamental differences in what the
tools are designed for. For example, C builds are usually artifact-based with configuration-
phase emphasis on determining platform capabilities, while Python builds are task-based
with configuration-phase emphasis on installing prerequisite libraries.

An artifact-based build tool is one in which artifacts—usually files—are the primary unit
for specifying the build system [33]. One example of such a tool is Make. In contrast, a
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task-oriented build tool is one in which the primary units of specification are tasks. Tasks in
this context refer to stages of the build, such as compilation, running unit tests, or creating
an installable package. One task-oriented tool is Apache Ant. Consider the difference in
how one might add a unit-testing step to a build system implemented using each tool.
In Make, one could add a target file unit-test-report.txt that depends on individual
executable unit test files. In contrast, in Ant one could add a “unittest” target that depends
on the “compile” target which represents the act of compiling all source code, rather than
any particular file. Another example of an artifact-based build tool is Daniel J. Bernstein’s
redo [8, 31], in which build commands are specified for each artifact, and dependencies are
dynamically recorded during builds.

A build framework is a collection of tools, techniques, conventions, and/or template files
that are used together. Examples could include: Make together with a Makefile framework
file and the move-if-change script [60]; the autotools suite; or distutils together with the
libraries it uses.

An object-oriented build tool is one implemented as an API in a general-purpose pro-
gramming language, and an object-oriented build system is a build system implemented using
such tools. Object-oriented build systems are composed of objects that can be subclassed,
queried, and mutated. Such build systems can take advantage of reusable third-party li-
braries of build functionality. Examples of potential build functionality include documen-
tation generation and code quality metric reports. Examples of object-oriented build tools
include Rake [20] and SCons [37].

Apache Ant is a popular build tool for Java software that, while it does provide an API
in a general-purpose programming language, is not an object-oriented build tool as defined
here. The reason is that Ant’s primary interface is a custom XML-based programming
language that does not allow for dynamic interaction with the Java objects that implement
Ant’s builds. While Ant does support loading third-party libraries that provide additional
build functionality, individual projects cannot dynamically extend or modify their Ant-
based build systems from within Ant. Projects wishing to extend or modify Ant-based
build systems must build extension modules separately before invoking Ant.
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Chapter 3

Selecting multilanguage
packages

This chapter describes the systematic process for selecting the case studies in Chapter 4.
There are two major issues to address: how to identify multilanguage software, and which of
the identified multilanguage software packages to select. Identifying multilanguage software
is accomplished using a combination of automatic and manual procedures on the software
packages in the Ubuntu 9.10 “Karmic Koala” distribution. Packages that may be multi-
language are identified by automatically examining filenames. However, having source code
files in multiple programming languages does not necessarily imply that that a software
package is multilanguage in the sense of having multiple interdependent implementation
languages. To determine whether identified candidate packages are actually multilanguage,
manual investigation is performed. Finally, a subset of the multilanguage packages are
selected as case studies using random selection.

In software engineering studies in general, it is common not to explain how examined
cases are selected. Page space in publications is often severely limited, and is better spent
on the results found by examining the cases than on the somewhat tangential topic of
how those cases were selected in the first place. Additionally, many studies use familiar
open-source projects such as Linux, Quake, Eclipse, and Mozilla as benchmarks. Studying
benchmark cases means that other researchers understand results more easily because they
are already familiar with the cases. More importantly, researchers are able to compare
results [59]. However, there is potential for bias in always looking at the same cases, and
most of the well-known benchmark cases are not multilanguage. There is also potential for
bias in selecting cases that researchers conducting the study have already had experiences
with. For these reasons, this thesis does not use benchmark cases, or cases that the author
liked or disliked, but rather random selection.

The packages are selected from among the Ubuntu 9.10 distribution. Ubuntu is one of the
most popular Linux distributions. It has a huge number of software packages, representing
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much of the open-source software ecosystem. Ubuntu has more than 29 000 installable binary
packages built from 16 153 source packages. The exact number of binary packages depends
on the platform, as there are Intel-, Sparc-, ARM-, and PowerPC-specific packages. There
are more binary packages than source packages because artifacts built from source packages
are split into multiple binary packages for efficiency reasons—end-users can save download
time and disk space by omitting parts of software that they do not need.

In addition to a large number of available packages, one benefit of using Ubuntu, as
described by González-Barahona et al. [29], is that all of the package metadata is available
on the web in an easily-parsable plain text format. The metadata can be used for tasks
such as downloading source code, understanding the relationship between source and binary
packages, and determining software dependencies. To demonstrate how these tasks can be
performed using the metadata excerpts in Figure 3.1 and Figure 3.2, consider the following
entries from the metadata files:

Package: openssl
Binary:
openssl, openssl-doc, libssl0.9.8, libcrypto0.9.8-udeb, libssl-dev,
libssl0.9.8-dbg

Version: 0.9.8g-16ubuntu3
Priority: important
Section: utils
Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer:
Debian OpenSSL Team <pkg-openssl-devel@lists.alioth.debian.org>
Build-Depends:
debhelper (>= 5.0.22), binutils (>= 2.14.90.0.7), zlib1g-dev, m4, bc
Architecture: any
Standards-Version: 3.8.0
Format: 1.0
Directory: pool/main/o/openssl
Files:
1ff3251e3282265da35c7e1374350252 1429 openssl_0.9.8g-16ubuntu3.dsc
acf70a16359bf3658bdfb74bda1c4419 3354792 openssl_0.9.8g.orig.tar.gz
e17725c55943ef402de033789c201ab2 61628 openssl_0.9.8g-16ubuntu3.diff.gz
Uploaders:
Christoph Martin <christoph.martin@uni-mainz.de>,
Kurt Roeckx <kurt@roeckx.be>
Vcs-Browser: http://svn.debian.org/wsvn/pkg-openssl/openssl
Vcs-Svn: svn://svn.debian.org/pkg-openssl/openssl/
Checksums-Sha1:
4e9c5ced46...bde5c15da80fa1 3354792 openssl_0.9.8g.orig.tar.gz
9358d09d50...9edb6c6d22538e 61628 openssl_0.9.8g-16ubuntu3.diff.gz
Checksums-Sha256:
0e26886845d...aa5f7ee901cf0 3354792 openssl_0.9.8g.orig.tar.gz
2be42444fa9...e8444707ef272 61628 openssl_0.9.8g-16ubuntu3.diff.gz

Figure 3.1: Ubuntu 9.10 Sources excerpt for openssl source package
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Package: openssl
Priority: important
Section: utils
Installed-Size: 836
Maintainer:
Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer:
Debian OpenSSL Team <pkg-openssl-devel@lists.alioth.debian.org>
Architecture: amd64
Version: 0.9.8g-16ubuntu3
Depends: libc6 (>= 2.7), libssl0.9.8 (>= 0.9.8f-5), zlib1g (>= 1:1.1.4)
Suggests: ca-certificates, openssl-doc
Conflicts: ssleay (<< 0.9.2b)
Filename: pool/main/o/openssl/openssl_0.9.8g-16ubuntu3_amd64.deb
Size: 402260
MD5sum: 29b88b1a0a1898b5d7c41397407ee2cb
SHA1: 0c13848bf10d4a2baa54279ae22ac7372601c33b
SHA256: 1ec6f18bc8d66f9027aeb8e4c5bcb63d6b02efbce0d551a53cd95eb0b1254e02
Description: Secure Socket Layer (SSL) binary and related cryptographic tools
This package contains the openssl binary and related tools.
.
It is part of the OpenSSL implementation of SSL.
.
You need it to perform certain cryptographic actions like:
- Creation of RSA, DH and DSA key parameters;
- Creation of X.509 certificates, CSRs and CRLs;
- Calculation of message digests;
- Encryption and decryption with ciphers;
- SSL/TLS client and server tests;
- Handling of S/MIME signed or encrypted mail.

Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Build-Essential: yes
Origin: Ubuntu
Task: minimal

Figure 3.2: Ubuntu 9.10 Packages excerpt for openssl binary package

Package Description
openssl openssl command-line program
openssl-doc documentation
libssl0.9.8 shared library containing openssl functionality
libcrypto0.9.8-udeb documentation
libssl-dev header files
libssl-0.9.8dbg debug symbols

Table 3.1: Binary packages built from the openssl source package
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1. The Directory and Files entries can be concatenated with the URL of a Ubuntu
distribution site to yield a download link for the original vendor source code archive.1

2. The Binary entry in the source package metadata lists the six binary packages that
are produced from the source package; see Table 3.1.

3. The Build-Depends and Depends entries list the other packages that are required to
build and run the software.

Dependency metadata may appear useful for identifying multilanguage packages, but
is insufficient. Since packages are required to list their build- and run-time dependencies,
it appears that one could determine which languages are used in packages by looking for
programming-language-specific compilers and runtime libraries in Depends entries. But
there are two problems with this: (1) the default set of required packages is too large, and
(2) packages are not necessarily implemented in the same languages as the packages they
depend on.

1. Note the Build-Essential: yes entry for the openssl binary. This flags the binary
package as a prerequisite for building any package. There is also a related Essential

flag for designating a package as required on every Ubuntu system. There are 74 such
Essential or Build-Essential packages in Ubuntu, including gcc, g++, perl, and
python. Since these are automatic prerequisites, they are not listed in any dependency
metadata.

2. For efficiency reasons, dependency specifications are automatically transitively re-
duced. That is, if package A depends on B and C, but B also depends on C, then
only the dependency on B is recorded in A’s metadata. Because software package
dependency satisfaction is a transitive relation, this suffices for the Ubuntu package
management system, which is the intended client of dependency metadata. However,
this precludes using dependency specifications to determine language use, because
software need not be implemented in the languages that libraries it uses are imple-
mented in. For example, suppose there is a scientific package A written in Fortran,
an algorithms package B written in Ada, and a mathematical library package C writ-
ten in Fortran. If A depends on B and C, but B also depends on C, then both A

and B will both have dependencies on Fortran standard libraries that are transitively
implied, even though package B contains no Fortran, and package A does.

Dependency metadata is therefore insufficient for determining language use.
One strategy for overcoming this problem is to use metadata at a finer level of detail,

namely source code filenames. In the remainder of this chapter, the procedure for producing
1http://old-releases.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_0.9.8g.orig.tar.gz
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a random selection of multilanguage packages is detailed. The procedure is to extract all file-
names from all Ubuntu source packages, build a filename classifier to identify programming
languages, use the classifier to eliminate non-multilanguage packages, and then manually
verify whether or not randomly-selected candidate packages are actually multilanguage.

An initial attempt was made to use the Unix file(1)1 tool to classify files by their
contents. However, estimates from timing trial runs found that the tool would take ap-
proximately 2 days to classify all source files in Ubuntu. This estimate was based on using
the tool via an in-process shared library instead of as an external tool invocation. Even
then, the classifications produced would not be of much value for programming language
identification. The file(1) tool only looks at the first 4KiB of a file, and many Java and
C/C++ source files begin with more than 4KiB of license headers and copyright notices in
comments. Since Java and C/C++ support the same comment characters, such files are
indistinguishable to file(1). Since this tool for inspection of file contents seemed ill-suited
for the purposes of this study, a custom tool to classify files based on their names was
developed instead.

3.1 Filename classification

The first step in classifying filenames is to download the source code for every package
in Ubuntu. The source code URLs are specified in various package metadata files: each
Ubuntu release contains a top-level file called Release2 containing the names of all the
different Sources3 and Packages4 metadata files describing source packages and binary
packages, respectively. The metadata Directory and Files entries can be combined to
form a URL to access the source code directly from a Ubuntu distribution site. Additional
field columns contain file sizes and checksums for validation. In addition to original vendor-
supplied source code, Ubuntu supplies metadata and Ubuntu-specific patches. In the case
of openssl in Figure 3.1, the three files listed are the original 3.4 MB openssl source code
archive;5 a 1.4 KB signed copy of the metadata file;6 and a 62 KB compressed patch file
containing the combined Ubuntu patches and build scripts.7

It is usual practice for Ubuntu to distribute unmodified source code packages from the
software vendor separately from Ubuntu-specific separate patch files. In 266/16 153 ∼= 1.6%
of packages, the source code package is already modified by Ubuntu. Patch files are not
used in the selection process. Ubuntu is used in the selection process for convenience—

1ftp://ftp.astron.com/pub/file/
2http://old-releases.ubuntu.com/ubuntu/dists/karmic/Release
3e.g., http://old-releases.ubuntu.com/ubuntu/dists/karmic/main/source/Sources
4e.g., http://old-releases.ubuntu.com/ubuntu/dists/karmic/main/binary-amd64/Packages
5http://old-releases.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_0.9.8g.orig.tar.gz
6http://old-releases.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_0.9.8g-16ubuntu3.dsc
7http://old-releases.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_0.9.8g-16ubuntu3.diff.gz
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.tgz, .tar.gz, .tar.bz2, .tar, .lzma, .zip, .jar, .war

Table 3.2: Compressed archive file extensions

detailed easily-parsable metadata, a large number of packages, and a collection of package
versions that have been tested to be compatible with one another. However, the goal of
this thesis includes understanding build systems for multilanguage software packages from
the perspective of the developers of those software packages, which requires looking at the
source code released by those developers rather than as later modified by Ubuntu. Therefore,
Ubuntu-provided patches are not applied.

A tool called mosd, short for Mining Open-Source Distributions, was created as part of
this thesis for extracting and analyzing metadata and filenames from Ubuntu’s source code
packages. It is a Java program that links via JNI to the open-source libarchive archive and
compression library written in C. Note that the lzma tool must be installed for libarchive
to handle .lzma files. Each downloaded Ubuntu source archive in uncompressed and the
names of the files it contains are extracted. Compressed archives containing compressed
archives with filenames matching entries in Table 3.2 are processed recursively. If archives
cannot be decompressed by libarchive then they are treated as regular files. Such in-
valid compressed files occur, for example, as test inputs included with the source code for
decompression programs.

There are 6 267 094 source files totalling 101GB, with 2 724 429 unique filenames. On a
Late 2009 13” MacBook Pro with full-disk encryption, it takes about 30 minutes to process
all the archives and extract all of the filenames. The filenames are encoded into a 417MB
file; however, since filenames are largely highly-compressible text, the list of all filenames
compresses with gzip compression to a 64MB cache file, which takes only 3 seconds to
decompress. The compressed cache file takes under 20 seconds to load into memory, and
then under 3 seconds for analysis code in mosd to iterate over all filenames in all packages.
mosd supports reloading changed versions of its own Java classes on the fly, eliminating the
need to wait for the cache to be reloaded after most code changes. One current limitation
of mosd is that the in-memory representation of filenames is much less efficient than the
on-disk structure, requiring multiple gigabytes of RAM.

After the filenames are extracted from the source code, each filename is classified based
on its extension as being one of three types of files: source code in a specific programming
language listed in Table 3.3; a known non-programming-language file type listed in Table 3.4;
or an unknown type of file such as the ones in Table 3.5. Note that C and C++ are
counted as the same programming language ‘C/C++’ for multilanguage package selection
purposes. Makefiles and other build system scripts are counted as non-source-code since
the goal is to identify implementation languages. Also, as a special case, .in, files, which
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Language Extensions
Ada .ada, .adb, .ads
Asm .asm, .s, .S
AWK .awk
.bat .bat
Boo .boo
C/C++ .C, .C, .cc, .cpp, .cxx, .c++, .h, .H, .hh, .hpp, .hxx, .hin, .i
C# .cs
ELisp .el
Erlang .erl
Fortran .f, .F, .f90, .F90
Groovy .groovy
Haskell .hs
Java .java
JS .js
Lex .l, .ll
Lisp .lisp, .lsp
Lua .lua
M .m
MetaFont .mf
ML .ml, .sml, .mli
Pascal .pas
Perl .pm, .pl, .PL
PHP .php, .phpt
Pike .pike
Python .py
R .R
Ruby .rb
Scala .scala
Scheme .scm
sci .sci
sed .sed
SQL .sql
TCL .tcl
TeX .sty, .dtx
Visual basic .vb
XSL .xsl
YACC .y

Table 3.3: Filename classification: Programming languages
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Build scripts
makefile
Makefile
GNUmakefile
Imakefile
rules
.ac
.am
.guess
.m4
.mk
.mak
.make
.spec
.sh
.cmake
.jam
.sub
.pro
Generated files
configure
depcomp
install-sh
missing
Text
.txt
.TXT
.rst
ABOUT-NLS
AUTHORS
BUGS
CHANGES
COPYING
COPYRIGHT
copyright
FAQ
FILES
INSTALL
LICENSE

MANIFEST
NEWS
PORTING
PORTS
README
THANKS
TODO
VERSION
changelog
Changelog
ChangeLog
CHANGELOG
Translations
.po
.gmo
.pot
.mo
Documentation
.tex
.info
.texi
.texinfo
.pod
.man
.1
.2
.3
.4
.5
.6
.7
.8
.9
.Rd
.docbook
.htm
.html
.sgml
.css

Image files
.gif
.jpg
.jpeg
.png
.bmp
.eps
.svg
.svgz
.xpm
.xbm
.tga
.dot
.psd
.pdf
.tiff
.tif
.ico
.xcf
Sounds
.mp3
.wav
.gsm
.ogg
Object code
.so
.elc
.pyc
.dll
.pdb
.class
Fonts
.ttf
.otf
.bdf
.pfb
.vf
.afm
.tfm

Version control
Entries
Repository
Root
Tag
.cvsignore
.gitignore
.svn-work
.svn-base
.kndx
.knit
Other
.odt
.ppt
.mpg
.csv
.bsp
.swf
.dxf
.vcprog
control
Change
.strings
8gb-1
big
.md5
.vcproj
.ui
.desktop
.cache
.conf
.properties
.yaml
.sdf
.txt,v
.ppd
.ics
.rgb
.pk3

Table 3.4: Filename classification: Non-source code
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Extension File count % of all files
.xml 127 923 2.04%
.t 24 730 0.39%
.d 22 137 0.35%
.dtd 17 350 0.28%
.idl 14 755 0.24%
.def 14 244 0.23%
.map 13 074 0.21%
.dat 12 989 0.21%
.inc 12 883 0.21%
.out 11 788 0.19%
...

...
...

Extension Byte count % of all files
.xml 1 472 700 398 1.49%
.dfsg 503 952 752 0.50%
.ps 493 771 444 0.49%
.dat 435 060 818 0.43%
.ts 374 998 587 0.37%
.map 337 066 123 0.33%
.bin 237 519 131 0.24%
.0 228 689 365 0.23%
.out 198 667 107 0.20%
.dic 190 449 437 0.19%
...

...
...

Table 3.5: Top unknown filename extensions, by file count and byte count

packages ← list of all Ubuntu source packages in alphabetical order

{ create a sample of packages weighted by language count }
sample ← new List
for package in packages do

languageCount ← programming language count for package, using Table 3.3
weight ← languageCount ≥ 2 ? languageCount : 0
for i = 0; i < weight; i++ do

sample.add(package)
end for

end for

{ build up a permuted list of packages }
permutation ← new List
random ← new java.util.Random(seed = "multi language systems".hashCode())
while permutation.size() < packages.size() do

package ← sample[random.nextInt(sample.size())]
if package /∈ permutation then

permutation.add(package)
end if

end while

{ select 5 case studies }
numCaseStudies ← 0
i ← 0
while numCaseStudies < 5 do

candidate ← permutation[i]
if manualInvestigationShowsPackageIsMultilanguage(candidate) then

selectForCaseStudy(candidate)
numCaseStudies ← numCaseStudies + 1

end if
i ← i + 1

end while

Figure 3.3: Candidate selection algorithm
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are usually template files, and .gz and .bz2 files, which are usually compressed versions
of other files, have their suffixes stripped before classification. For example, Makefile.in
and background.bmp.gz are classified correctly as a Makefile and a bitmap image file,
respectively.

The classification tables were developed by manually adding rules for filename patterns
until 80% of all files, measured both by file count and byte count, had a known classification.
The remaining 20% of files are largely data files and project-specific files that would require
more detailed analyses to classify. The top unclassified filename patterns are shown in
Table 3.5. A target of 80% classification was chosen as an acceptable tradeoff between
classifier accuracy and research needed to improve accuracy. It is high enough to help
identify a variety of useful case studies, without requiring too much research on an issue not
directly relevant to build systems. This is discussed in more detail in Section 3.4

3.2 Multilanguage status verification

Manual examination of candidate packages is necessary because packages containing source
files in different languages are not necessarily multilanguage. Filename classification can
eliminate many non-multilanguage packages, but cannot determine how the languages are
used or whether the packages are multilanguage in the sense of using multiple interdepen-
dent implementation languages. There are 10 903 packages that cannot be multilanguage
because, according to filename classification, they contain fewer than two programming lan-
guages. For the remaining 5 250 candidate packages, the following procedure is used. A
previously unselected package is selected at random, but with each package’s chance of be-
ing selected weighted by identified language count. The intent of weighting is to increase the
likelihood of selecting a multilanguage package. Each selected package is manually inves-
tigated to determine whether it is multilanguage. This continues until a sufficient number
have been found for further study. The details of this selection procedure are given in Fig-
ure 3.3, which includes the java.lang.Random seed-value for reproducibility. The identified
language counts for the selected packages are shown in Table 3.7. The packages examined,
the languages found, and the multilanguage status determination is shown in Table 3.6.

Why do packages turn out to not be multilanguage even though filename classification
finds many different programming languages? The specific reasons for specific packages are
listed in Table 3.6, but in general one or more of the following reasons applies:

• Only one implementation language. There are source files in several languages, but
only one language is used in the implementation. Other languages are used for pur-
poses such as developer scripts, bootstrapping, sample code, testing, and so on.

One prevalent reason for a package with source files in multiple languages to have
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Package
Implementation

languages Multilanguage?

db4.6 C No. Written in C, with Java
bindings, and with Tcl scripts for
unit tests.

yacas C, Java No. Completely separate
implementations in two different
languages.

synopsis C, Python Yes. Python user interface with
some C/C++ components.

python3.0 C, Python Yes. Python interpreter written
in C, many standard libraries
written in Python.

libdb-sqlite2-perl C No. Some binding subroutines
written in Perl.

gears C No. Written in C/C++, with
sample code in other
programming languages.

zope-external-editor Python No. Contains one DOS batch file.

gnat-gps Ada, C, Python Yes. Mainly Ada, with C/C++
utility functions, and part of UI
written in Python.

axiom C, Lisp, Scratchpad Yes. Scratchpad compiler written
in C and Lisp with math library
written in Scratchpad.

supertux C No. Game data is stored in
Scheme-like data files, but there
is no Scheme code.

libunwind C No.

penguin-command C No. 11-line Objective-C wrapper
for Mac OS version.

fpc Pascal No. All Pascal. Some developer
utilities and tests in C.

eb C No. Some developer Perl scripts.

rtai C No. Has bindings for Scilab.

libparse-recdescent-perl Perl No. Parser comes with sample C
file to demonstrate parsing.

plplot C No. Bindings for 9 other
languages.

ruby-prof C, Ruby Yes. Mainly Ruby with profile
data collection module in C.

Table 3.6: Multilanguage status of candidate packages

XX Highlighted rows correspond to packages identified as multilanguage.
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Ada 1180
Asm 1 14 38 1 4634 31 2 1
AWK 13 6 1 15
.bat 1 31 1 1 27 6 2
C/C++ 611 131 527 534 44 1725 338 7428 478 415 31 64 99 428 1 264 10
C# 41
ELisp 1 46
Fortran 1 3 40
Java 327 94 10 1 34
JS 6 13 109 1 1 1
Lex 1 8 351 1 8 1
Lisp 1909
M 6 5 6 1 3 177
ML 32
Pascal 1717
Perl 15 3 4 3 57 2 3 1 66 42
PHP 2 28 1 8
Python 168 1545 94 18 78 1 61
R 1 37
Ruby 35
Scheme 9 1
sci 43
sed 1 1 62 6 2
SQL 2 3
TCL 378 23 13 103 1 62
TeX 19 35
XSL 12 1 3 2
YACC 1 3 24 2 1

Table 3.7: File counts per automatically-identified language for candidate packages

only one implementation language is through the presence of bindings. Bindings are
interfaces that allow software written in one language to be used by software written
in another language. For example, a user-interface widget package implemented in C
may provide an interface for Python scripts to use the widgets as well. Such bindings
are often automatically generated by tools like the Simplified Wrapper and Interface
Generator, also known as SWIG [7].

Bindings within a single package, even automatically-generated ones, may provide the
link between parts written in different languages that make the package multilanguage.
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Package Description Languages Industrial?
Age

(years) KSLOC Committers
synopsis Source code

documentation
C++
Python

No 9 94 5

python3.0 Programming
language

C
Python

No 18.5 585 150

gnat-gps IDE Ada
Python
C

Yes 5 450 17†

axiom Computer
algebra system

Lisp
Scratchpad
C

Yes and No 30+ 360 41†

ruby-prof Profiler Ruby
C

No 2.5 4 4

† Undercounts—gnat-gps and axiom have only 1 and 5 years, respectively, of public commit history

Table 3.8: Selected packages

However, when a package written in one language provides bindings to allow use
from a second language, without itself using the second language for anything other
than implementing the bindings, the package is not considered multilanguage. The
distinction is whether the package uses multiple languages in its implementation. For
example, a user-interface widget package written in C that provides Python bindings
but does not use them is not multilanguage. But if the package implements some of its
widget functionality in Python code via the bindings, then it would be multilanguage.

• No integration. For example, the yacas package contains a computer algebra system
implemented in both C++ and Java, but there are actually two independent parallel
implementations: Yacas and JavaYacas.

• Noise. An over-zealous attempt to classify all possible programming languages resulted
in a filename classifier that identifies many files such as DOS batch files, sed scripts,
and TeX files that, while technically files written in Turing-complete programming
languages, use languages that lack intra-process communication mechanisms neces-
sary to participate in multilanguage relationships. These classifications increase the
language count without any relevance towards whether the package is multilanguage.

The resulting selection of packages is shown in Table 3.8.

3.3 Discussion

The goal of this chapter is to systematically select multilanguage software packages in order
to perform case studies of their build systems. This is achieved. There are two specific
claims made:

1. The five packages in Table 3.8 are reasonable subjects for case studies.
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2. Using filename classification followed by manual inspection is an appropriate way to
systematically select case study subjects with desired properties.

Are these claims adequately justified? Are there faster, easier, or otherwise better ways
to get these results?

First, evaluation of case study subject selection is determined from the results of the
case study itself, not of the selection procedure. Qualitative studies, including this thesis,
use analytic inference and generalization, not the statistical inference and generalization
of experimentation [73]. In fact, it is recommended [52] that case studies not use random
sampling, but instead purposive sampling: the cases selected are specifically those considered
most likely to illuminate a subject or to confirm or refute theories. The driving concern in
selecting case studies is not that cases may not be strictly representative, but that they may
be uninteresting or so similar that no useful comparative conclusions may be drawn from
analyzing them.

However, this is largely an exploratory work—there is no previous research that focuses
specifically on build systems for multilanguage software. Not enough is known about build
systems for multilanguage software to be able to perform purposive sampling. For this
study, therefore, random selection is used to produce an initial set of cases for exploratory
analysis. The selection is diverse along many dimensions, as detailed in Table 3.8:

Variety of application domains, including automated documentation processing, pro-
gramming language implementation, computer algebra, and an interactive develop-
ment environment.

Various programming languages in different combinations, including C/C++, Ada,
Python, Ruby, Lisp, and Scratchpad.

Mix of industrial and non-industrial packages. gnat-gps is a commercial product of
AdaCore, Inc. axiom was a commercial product of IBM and then the Numerical
Algorithms Group, and was open-sourced at its commercial end-of-life. Most of the
source code was industrially developed, but the current build system was written by
open-source volunteers.

Variety of ages of packages, measured in years from the first release of the package to the
release of the version included in Ubuntu 9.10 and studied here.

Various sizes from the tiny ruby-prof to the 500+ KSLOC python3.0. Size is measured
in Kilo Source Lines of Code, i.e., number of 1 000s of non-blank non-comment source
code lines.

Various team sizes. As a proxy for team size, the given measurement is the number of
distinct usernames that committed to the source code repository up to the studied
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release. Note that the person committing changes is not necessarily the author of the
changes. Complete commit history is not available for axiom and gnat-gps.

Also, these figures reflect some manual dealiasing of the usernames for 14 different
python3.0 committers who have committed source code under multiple usernames,
such as the usernames guido, gvanrossum, and guido.van.rossum all belonging to
Python creator Guido van Rossum. There may be other such collisions, but these
14 are straightforward to identify because they involve similar usernames with high
numbers of commits. For example, without dealiasing, the list of usernames sorted by
commit counts contains guido at #1 and gvanrossum at #4. Manual inspection of
usernames indicates that the other projects do not appear to have multiple usernames
for individual committers in the data used for this table.

However, there is one dimension along which the packages lack diversity: while each pack-
age addresses a different application area, they are all tools for programming languages—
source code documentation, an IDE, a profiler, a general-purpose programming language,
and a computer algebra system that implements its own programming language. This may
be just a coincidence; it may be that most packages in the open-source ecosystem in general
or Ubuntu in particular are programming tools; it may be that open-source multilanguage
software packages tend to be programming tools; or it may be bias in the selection process,
the potential for which is discussed in the next section. In any case the criteria for whether
this sample is appropriate or not is whether the packages are different enough to draw useful
conclusions from comparison in future chapters.

The second claim is that filename classification followed by manual inspection is appro-
priate for identifying multilanguage packages. Filename classification removes more than
10 000 packages from consideration, but leaves 5 250 other packages requiring manual inspec-
tion. This manual effort can be managed with random selection, but might it be possible
to automate verification as well? The procedure used in this chapter counts either a single
file or a thousand files equally toward the total language count in a package. Could some
sort of threshold be used? It appears not. Consider the gnat-gps package. At shown in
Table 3.7, there are more than a thousand Ada files and only 78 Python files—less than
5% of the source code. From this number, it seems that Python may play an insignificant
role in the package. However, detailed investigation in the next chapter shows that Python
is a critical language in this software, and is the preferred language for adding new GUI
features. With such a small amount of source code playing a critical role in this package,
it does not seem that automated thresholding on file counts or sizes alone can properly
distinguish multilanguage packages. The presence of multiple languages is necessary but
not sufficient for a package to be multilanguage.
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3.4 Threats to validity

This section addresses factors that may affect the validity of the claims discussed in the
previous section. The factors are organized into four components: construct validity, internal
validity, external validity, and reliability [73].

Construct validity—are the various measures used measuring what they are intended to?
The primary question here is whether filename classification is measuring language use
correctly. The filename patterns used cover 80% of the source files in Ubuntu, measured
both by file count and byte count. This is an arbitrary threshold. What is in the other
20%? The top remaining unknown file types are shown in Table 3.5. The most frequent
file type is XML, which is not so much as an unknown file type as it is a known file type
that cannot be definitively classified as ‘source code’ or ‘not source code’ based on filename
alone. It is a generic file format usually used for pure data but which can contain literally
anything, including source code in XML syntax such as the build scripts for Ant’s build.xml
programming language. Similar issues apply to other top unknown file types, but also to
more common languages: some C files are actually XPM-format image files as in Figure 3.4;
and JavaScript is often used as a syntax for storing data in JavaScript Object Notation.
Lisp takes the idea even further, mixing data and code throughout source code but also
treating code as data when convenient. The filename classifier treats C and JavaScript as
programming languages because that is what they were designed for, and leaves XML files

/* XPM */
static char *smile[] = {

"18 18 6 2", /* columns rows colors chars-per-pixel */
" c None", ",, c yellow", "## c orange red",
"@@ c DodgerBlue1", ".. c honeydew3", "-- c light salmon",
/* pixels */
" ",
" ,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,..@@,,,,@@..,,,,,,,,,, ",
" ,,,,,,,,,,@@@@,,,,@@@@,,,,,,,,,, ",
" ,,,,,,,,,,..@@,,,,@@..,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,##--,,,,--##,,,,,,,,,, ",
" ,,,,,,,,--########--,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,,,,,,,,,, ",
" ,,,,,,,,,,,, ",
" "

};

Figure 3.4: Pixmap example for . The textual file format, which is supported by image
editors and viewers, is also valid C source code that can be compiled into a program so that
icons are available in memory immediately on program startup [32].
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as unknown because XML was not designed to be a programming language though it is
commonly used as one.

There is more that could be done to distinguish the uses of different file types, but it
would be a lot of work that would not reveal anything about build systems. Possibilities
requiring examination of file contents instead of just names include comparing root elements
of XML documents, looking at #!-interpreter lines in files without extensions, and counting
function definitions in JavaScript files to distinguish code from data. However, this would
involve either creating or acquiring and integrating fact extractors and dynamic analysis
tools for many different languages. Even then, many single-purpose language uses would be
missed. For example, the axiom package contains 1 349 .pamphlet files of literate source
code of C, Lisp, and Scratchpad, all embedded in LATEX, but there are no other .pamphlet
files in any other Ubuntu package. While it could be possible to develop tools to detect this,
such as by scanning through source files looking for C-like or Lisp-like strings—it would be
unlikely to provide additional insight about build systems.

As for the 80% threshold, a similar process of classifying files based on filename performed
by Robles [54] had classification rules resulting in 6% of commits containing unknown file
types. This is not necessarily significantly different from 20% of files being of unknown type,
because it is likely that changes to the more-numerous files with common extensions, such as
.c and .java, occur more frequently than changes to less-numerous files of rarer file types.
Another related study by Karus and Gall using filename classification for programming
language identification [36] does not quantify the proportion of classified and unclassified
files.

However, there is an issue with the random selection procedure. In an attempt to reduce the
number of packages requiring manual inspection, the packages are weighted by identified
language count when performing random sampling, on the assumption that multilanguage
packages, in general, use more programming languages than non-multilanguage packages.
This weighting or biasing increases the likelihood that the manually inspected packages are
multilanguage, but it also biases in other unknown ways. One possible bias is that, due to
the file classification’s inclusion of languages such as sed and Awk that cannot participate
in multilanguage relationships because they lack intraprocess communication mechanisms,
the selection is biased towards old-fashioned Unix programs that tend to have sed and Awk
scripts in their source distributions. This may be why, for example, there are no packages
using Java in the selection. This issue was not identified until after the detailed case studies
had been performed.

Internal validity—are discovered relationships more than just coincidence? Were the pack-
ages identified as multilanguage actually multilanguage? Manual investigation and detailed
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case studies to come show that this is not the case. However, it is possible that multi-
language packages using languages not identified by the filename classifier were incorrectly
pruned from consideration as candidates. As the goal is to find an appropriate selection of
multilanguage packages, not to identify every multilanguage package, this is not a serious
threat to validity of the study as a whole.

External validity—how generalizable are the findings? The specific selection of case studies
is not intended to be generalizable to other studies. The details of the selection process
will hopefully be useful to other researchers for other studies. Filename analysis is helpful
for identifying candidate multilanguage packages. However purposive selection for cover-
age along important dimensions should be used rather than uniform random sampling or
sampling intended to be random but actually biased in unknown ways.

Reliability—could someone else do this and get the same result? The full details of the
selection process are presented here in sufficient detail to reproduce it, including tables of
filename classifications and initial random seed values. There is some possibility for getting
different results: a different version of libarchive may successfully decompress a different
set of malformed archive files, resulting in different language counts and changing the sample;
there could be disagreement over whether a candidate package is truly multilanguage or not,
but the multilanguage status of the packages examined in Table 3.6 seems unlikely to arouse
controversy.

Conclusion The selection of case studies and the process that produced them are both valid
for an exploratory case study. Random selection must be used with care in qualitative
studies.

3.5 Related work

Other researchers use Ubuntu metadata, filename classification, or both, in related studies.
In his doctoral dissertation, Robles [54] shows that exhaustive analysis of thousands of

software projects is possible, and that socio-technical analysis is required in addition to
purely technical analysis. One aspect of that is an extended discussion of data sources and
formats for libre software research. The use of Ubuntu metadata and package files in this
thesis is based on that discussion.

There are two related studies in Robles’s dissertation. The first uses filename exten-
sions to classify source files into one of seven categories: developer source code, developer
documentation, user documentation, version control overhead, translations, user interface
files, and sound/video files. The categories are used to identify communities of open-source
contributors with different roles such as translators, technical writers, or designers. Robles
lists the filename extensions used in an appendix. In contrast, this thesis examines only
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the source code category but further classifies the files in that category by programming
language.

The second related study in his dissertation uses a third-party tool to gather statis-
tics about the number, size, and programming language of source code for all of Ubuntu.
The language statistics are aggregated across the entire operating system distribution and
changes between released versions are then analyzed. In contrast, the selection process
in this chapter examines only a single version of Ubuntu, but with per-project language
statistics rather than statistics aggregated across the entire distribution.

Robles also co-authored a later article [28] that demonstrates the utility of package
metadata for a variety of purposes, such as identifying competing packages or evaluating
packages by checking whether they depend on known buggy, insecure, or unmaintained
packages. German [27] uses similar techniques to define “dependency success”: packages
like iconv and curses can be considered highly successful because of how many other
packages depend on them. These studies use package metadata to infer package statistics
that are invariant under transitive reduction of the dependency graph. Examining only
metadata does not suffice for the selection process in this chapter because language use is
not such a statistic.

Karus and Gall [36] analyze trends of languages that are used together in order to
better understand the role of XML. They find, for example, that nearly all Java developers
use XML, but only half of C developers. Their method examines each historical revision
of a collection of open-source projects. All files committed together [22] are classified by
programming language or file type. This produces statistics about how often developers
work with specific different languages or file types at the same time. The selection process
in this chapter examines the files in released software versions rather than each intermediate
revision, but for all source files in Ubuntu rather than for a collection of 22 projects. Both
Karus and Gall and this chapter classify programming languages based on filenames, but,
due to the much larger number of files to be examined and peripherality of XML for the
selection process, this chapter does not examine file contents the way that Karus and Gall
do to subclassify different types of XML files.

3.6 Conclusion

This chapter gives an overview of the metadata associated with Ubuntu packages, shows that
metadata is insufficient for language identification, describes a combination of automated
and manual procedures for selecting multilanguage packages, and produces a selection of
cases to study in the next chapter.

Additionally, the procedure used and the tools developed can be adapted for purposive
selection in other software case studies. Filename patterns can be used to identify software
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packages using specific programming languages, tools, or file formats. While it is unnec-
essary and tangential to do so when selecting multilanguage packages for case studies of
build systems, the mosd tool could also be extended to examine not only filenames but also
the contents of specific file types. File contents could be used to extract software package
properties for purposive selection in other case studies.
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Chapter 4

Build system case studies

The procedure used for the case studies is for the investigator to build each package using
the vendor-supplied build system, while observing any issues encountered and examining
additional data sources such as source code, documentation, and mailing list archives in
order to determine the following about each package and its build system:

• Purpose and abstractions: What does the package do? What are the major abstrac-
tions?

• Architecture, languages, and interactions: What are the major parts of the software,
what languages are they written in, and how do they interact?

• Build system: What is the structure of the build system and how is it implemented?

• Build issues: What, if any, issues are there in building the package?

• Rebuild issues: What, if any, issues are there in building changes to the package?

The first three questions address the perspective of end-users, developers, and build system
developers, respectively, while the last two questions on build system issues are especially
relevant to developers but also relevant to end-users who may build the software from source
code.

An additional question:

• Build features: What build system features prevent build problems similar to those
encountered in other packages?

describes issues not experienced, compared to other case studies, and how they are avoided.
Some of these observations may seem incomplete, especially when they refer to case studies
that come after. However, the issues flagged with numbered icons ...1 , ...2 , ...3 , and so
on, as well as features flagged with numbered icons ..1 , ..2 , ..3 , and so on, are referred to in
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the following chapter when the findings from the case studies in this chapter are compared
and synthesized into build patterns and anti-patterns.

There are a few more details to cover about how the case studies are conducted.
The vendor-supplied build system is used, rather than the Ubuntu-specific patches and

build scripts that can automatically produce binary packages. This is done to support several
common use cases such as: an end-user installing a package they have downloaded the source
code for; a developer beginning to make their first changes to a package they use regularly
and would now like to modify; and a build expert examining a new package with an eye
towards improving its build system. Developers, including build system experts, will usually
want their changes integrated into future official releases of the software, and submitting
changes for inclusion usually requires patches against official releases, not against Ubuntu-
modified versions. However, end-users will typically install Ubuntu-supplied precompiled
binaries rather than using any build system.

Ubuntu’s package-management tools are used to automatically install each package’s
build-and run-time dependencies prior to build. This permits the study to focus on package-
specific build system issues, rather than issues such as missing dependent libraries and li-
braries, or incompatible tool, library and package versions. These are issues which Smith [60,
Ch. 15] identifies as some of the top issues for practitioners in building open-source soft-
ware, but which build system designers have little or no control over. For those encountering
this issue, the solution is straightforward though tedious and potentially frustrating: install
compatible versions of all required libraries, tools, and prerequisite packages.

When first building each case study package, the expectation is that the package contains
a single build script and optionally an automatic configuration script in the root directory
of the source code, and that the build system “just works”—executing the configuration
and build scripts quickly results in an executable binary without requiring any manual
intervention or source code modification. In general, in order to reduce the delay in the
feedback cycle from changing code to seeing the results in a running program, there is also
an expectation that the software can be run and tested directly from the build directory,
without requiring installation. Furthermore, once built, changing any source files and re-
executing the build system should quickly result in an updated executable binary. The
following case studies examine how this expectation matches with reality.

Diagrams

To help explain the answers to the case study questions, two types of architecture diagrams
are also given for each system: multilanguage architecture diagrams and build-time view
diagrams. The common notation for these diagrams is shown in Figure 4.1.

Multilanguage architecture diagrams are logical architectural view diagrams [39] that
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Figure 4.1: Notation legend for architecture diagrams, used in Figures 4.3, 4.4, 4.5, 4.7,
4.10, 4.11, 4.12, 4.16, 4.20, 4.24, and 4.25.

display the major parts of the software that are written in different programming languages,
and show how the parts written in different languages interact.

Build-time view diagrams are a view of the software architecture as it appears at build
time. The diagrams in this thesis use a modified version of the notation defined by Tu
and Godfrey, who introduced the concept of build-time view diagrams [67, 68]. The build
diagrams in this thesis focus on the structure of the build rather than implementation details
of the build system. That is, source artifacts, build products, and the compilation tools used
to derive build products are shown, rather than the build scripts which implement the build
process. Additionally, many implementation details such as which particular C compiler is
used are abstracted away. Such diagrams are divided into three stages vertically: the source
view, the build view, and the execution view. The source view displays source artifacts
shipped with the original source code. The build view shows intermediate artifacts and the
build tools that transform artifacts. The execution view shows how build products are linked
together at runtime. The left-to-right ordering of entities in these diagrams is not significant.
The transformations could be performed in any order, or in parallel, although many build
transformations will fail or produce inconsistent build products if transformations are run
before their inputs exist, or if inputs change after transformations are executed.

The build-time view diagrams are annotated with symbols showing where the encoun-
tered build problems occur. These symbols usually mark where the symptoms of the build
problem are noticed, rather than any root causes for the problems.

4.1 Case study: synopsis

A summary of the findings for synopsis is given in Table 4.1. The multilanguage diagram
is Figure 4.3 and the build-time view diagram is Figure 4.4.
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Question Findings
Purpose and abstractions Source code documentation tool using pipes and filters
Architecture, languages,
and interactions

Pipes and filters architecture. Mostly Python, but with
parser modules written in C/C++ that create Python data
structures. These are modified copies of third-party parsers

Build system distutils with independent synopsis-created autotools
build systems for documentation and C/C++ parser
modules

Build issues ...1 Running built software requires manual path setup
...2 Documentation build fails on case-insensitive filesystems
...3 PDF documentation does not build due to problem in

third-party tool
Rebuild issues No issues
Build features ..1 Uses automatic dependencies

..2 Uses shared libraries

..3 distutils-based build with autotools subbuilds

..4 Build aborts immediately on error
Conclusion Only major issues: path configuration, scalability

Table 4.1: Summary of findings for synopsis

What does the package do? What are the major abstractions?

synopsis is a source code documentation tool. It extracts symbol declarations and specially-
formatted comments from source code in order to produce documentation and class diagrams
as shown in Figure 4.2. It has extensible language support, currently supporting Python,
C, C++, and IDL source code. It also supports several different output formats including
HTML, DocBook, and Texinfo.

synopsis was created as part of an experimental CORBA-based UNIX windowing server
called Berlin/Fresco [35]. Berlin/Fresco uses higher-level interfaces than typical display
servers such as X11; while a typical X11 command from an application to the display might
be, “draw a line,” a typical Berlin/Fresco command is “create a window” or “create a but-
ton.” In technical terms, Berlin/Fresco embeds the windowing toolkit in the display server.
Berlin/Fresco is written in a combination of C/C++, Python, and IDL, and synopsis was
created as a documentation tool to support all of those languages. Berlin/Fresco’s website
is now gone, and there have been no source code changes since 2005,1 but synopsis is still
maintained.

The abstraction presented by synopsis to the end-user is a network of parsers, trans-
formers, and formatters. Instances of these components are connected together to form
an end-to-end processing chain from textual source code to publishable documentation.
Parsers extract symbol declarations and specially-formatted comments from source code.
Transformers perform many different sorts of useful operations, such as parsing Javadoc

1http://web.archive.org/web/∗/http://src.fresco.org/viewcvs/Fresco/
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Figure 4.2: synopsis-generated documentation

commands in comments, or access restriction, i.e., removing references to non-public dec-
larations. Transformers pass their outputs to the inputs of other transformers until a final
formatter is reached, which outputs documentation for viewing. Users can use standard
combinations of parsers, transformers, and formatters from the command-line; users can
create custom pipelines from the command-line with a sequence of synopsis calls that read
from and write to intermediate files; they can also create custom pipelines using the Python
API directly; and can also create their own parsers, transformers, and formatters in Python.

What are the major parts of the software, what languages are they
written in, and how do they interact?

A diagram showing the architecture and implementation languages of Synopsis and its APIs
is shown in Figure 4.3. The architecture closely mirrors the end-user abstractions described
in the previous paragraph.

There is a Pipeline API for configuring the network of parsers, transformers, and for-
matters. This pipeline API, the user-interface, the Python parsers, and all of the processors
and transformers are written in Python.

Each parser module take filenames and include-file search-path options as input, and
returns annotated lists of symbol declarations. There is a parser module for each of C,
C++, Python, IDL, and Cpp. “Cpp” is synopsis’s name for unpreprocessed C/C++
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Figure 4.3: synopsis multilanguage diagram, using the notation of Figure 4.1. Parsers writ-
ten in various languages extract declarations from source code. All subsequent processing is
implemented in Python. Pipelines are configured, consisting of transformers that annotate
declarations, and formatters that produce output for humans.

source code. A parser for this is needed to support macro documentation.
Each parser is derived from other open-source projects. The Python parser uses Python’s

builtin compiler and tokenize modules. The other parser modules all consist of Python
interfaces to modified versions of third-party parsers written in C++: the C, C++, IDL,
and Cpp parsers are based on ctool, OpenC++, omniORB, and ucpp, respectively. Each
has a different mechanism for passing the extracted data from C++ to Python. The C++
parser builds an in-memory representation and then transforms it by calling the low-level
CPython API directly. the C parser gets an in-memory representation from libsynopsis
and then calls on a C++ transformation class which uses an object-oriented C++ wrapper
Python:: for the CPython API. The Cpp parser creates a Python data structure directly
using Python::. Finally, the IDL parser uses an omniORB-authored Python wrapper for
which the synopsis developers supply a Python class implementing the Visitor pattern [23].

The parsers for C and C++ source code use a common library called libsynopsis to
generate full parse trees. Although only an annotated list of declarations is returned to
external callers, the C and C++ parsers create a full Abstract Syntax Graph with limited
support for rewriting source code. This is an artifact of an original design goal of synopsis,
namely to some day become a general-purpose source code transformation tool.

34



Synopsis libsynopsisC++
parser

Python
parser

IDL 
parser

Cpp 
parser

C
parser

Python
libsynopsis.soSynopsis

Source
view

Build
view

Execution
view

c++ compilerc++ compiler

generates

documentation
source for PDF

file copy

3

ParserImpl.soloads

Docs as HTML Docs as PDF

xmlroff

1
2

Figure 4.4: synopsis build diagram, using the notation of Figure 4.1. Executable Python
source code is copied to the execution environment. Modules of C/C++ code are compiled
to shared libraries, then loaded by synopsis at runtime. Documentation is produced by
running synopsis on its own source code.

What is the structure of the build system and how is it
implemented?

The overall build is driven by a Python distutils script, which is also responsible for pack-
aging and installing the source. For building the C++ portions of the source, the distutils
script in turn calls independent build systems for both the package’s documentation and
each C++ component: libsynopsis and each of the C, C++, Cpp, and IDL parsers. Each
of these build systems produces a shared library. The shared libraries for the parsers are
loaded by Python code. The shared library for libsynopsis is loaded by parsers that use
it. The build system scripts are relatively simple, generally totalling fewer than 100 lines
of autotools input. Each of these build systems is created by the Synopsis authors, rather
than being created by the authors of the open-source projects from which each component
is derived. One exception is the build for the Boehm garbage collector [9] used by and
distributed with libsynopsis, which uses an autotools build system created by Red Hat.

What, if any, issues are there in building the package?

Three issues were encountered when attempting to build this package: the software requires
manual path setup in order to run, the documentation does not build on case-insensitive
file systems, and the PDF documentation does not build at all.

...1 Running the built software requires manual path setup—By default, the synopsis build
products are placed in a variety of directories:

• build/clib.linux-x86_64/lib
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• build/ctemp.linux-x86_64-2.6/src

• build/lib.linux-x86_64-2.6/Synopsis

• build/temp.linux-86_64/Synopsis/Parsers

• build/scripts-2.6

These directories are used for the libsynopsis shared libraries, intermediate objects files for
libsynopsis, Python code, C++ parsers, and command-line program respectively—which
requires a lot of manual setup of Python and shared-library-loader search paths in order to
run development versions of synopsis.

The README files describes a custom setup.cfg file that can be created to cause the
build system to copy all files into one folder, such that the command to run development
versions of synopsis simplifies to

LD_LIBRARY_PATH=$PWD/lib

PYTHONPATH=$PWD/.:$PWD/Synopsis/Parsers/IDL

scripts/synopsis

However, the README instruction for doing this comes with a warning that it is not to be used
with builds that will eventually be installed, because the build system “will get confused
and not install extensions.”

The remaining two issues involve building the synopsis documentation. Such issues might
not normally be considered important for building software, but synopsis is an unusual
instance: it uses itself to scan its own source code to build its own documentation. Building
its own documentation is a smoke-test comparable to executing a newly-built GUI applica-
tion to see if the main application window appears. Additionally, the packaging phase of
synopsis’s build system includes the documentation in source and binary distributions of
synopsis if the documentation is present at packaging time, but there is no automatic mech-
anism to execute the build_doc target prior to packaging. Developers must remember to
manually execute a documentation build before a release or to get updated documentation.

...2 Documentation does not build on case-insensitive filesystems—The build system calls
a Python script named synopsis.py to produce documentation. This script tries to im-
port the module Synopsis.Parsers.Cxx. By Python’s conventions for importing modules,
Python first checks for Synopsis.py. On a case-insensitive filesystem—in this case, Mac
OS’s default HFS+ accessed on Linux via a network share—this results in a case collision
and the module is not loaded. Note that there is also a subtle interaction with Python’s
.pyc-file-creating bytecode-caching mechanism that can make this issue hard to reproduce
in a standalone example.

This is a portability issue, not only for Mac and Windows machines, but also Linux
machines that use Mac and Windows filesystems, such as on network shares.
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...3 PDF documentation does not build due to problems in a third-party tool—The PDF
documentation fails to build with an error message from the xmlroff DocBook formatting
tool: “The QName ‘rx:key’ has no namespace binding in scope.” The error message includes
a line number, but there are thousands of XML elements on that line, making it difficult to
diagnose the problem. Reformatting the XML file so that there is only one element on each
line results in the same error message with the same line number—even though all the line
numbers are changed and there is no rx:key on the indicated line. This is likely a bug in
xmlroff.

Since the HTML documentation does build correctly, this is not a serious issue.

What, if any, issues are there in building changes to the package?

There are no issues in building the package, apart from the need to remember to manually
execute a documentation build as described above. Python source code is automatically
read by the interpreter at run time, so no building is required to incorporate changes. Byte-
compilation is performed at packaging time, but this is fast because it is only parsing and
serializing source code statements, rather than compiling optimized machine code.

What build system features prevent build problems similar to
those encountered in other packages?

..1 Automatic dependency extraction from C/C++ source code—The autotools builds for
C/C++ parts use automatic dependency extraction. This helps to handle the dependencies
that some parsers have on libsynopsis. If a libsynopsis header file is changed, the auto-
matically extracted dependencies cause the client parsers to be rebuilt. If a libsynopsis
implementation file is changed, only the libsynopsis shared library needs to be rebuilt.

..2 Shared libraries for subbuilds—libsynopsis and each parser written in C/C++ are built
independently, generating shared libraries. Having distinct shared libraries for each compo-
nent eliminates build-time delays and dependency problems associated with linking together
several components into one library.

..3 Build uses distutils for its Python core and autotools subbuilds for its C/C++ parts—
This enables mature, well-tested build tools to be used for all parts of synopsis. The use of
distutils as the top-level build with other builds subsidiary to it avoids problems where
multiple subbuilds may become out of sync, such as when an API exported from one library
is updated and its clients need to be updated appropriately. The top-level distutils build
automatically ensures that all required sub-builds are executed.

..4 Build system aborts build immediately on error—in other case studies, the error-handling
capabilities of Makefiles and shell scripts are somewhat problematic. In synopsis, the
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complicated parts of the build logic are implemented as Python-language subclasses of
objects in the distutils API. The build code is able to take advantage of Python’s robust
error-handling and exception mechanisms. This helps the build system to abort the build
immediately when the build issues above are encountered.

Conclusion

synopsis uses a top-level distutils build with autotools subbuilds for C/C++ components
that rely on automatic dependency extraction and shared libraries to help ensure correctness.
The only major issues that synopsis’s build system has are path configuration issues, and
scalability—for five components the overhead of invoking a separate build system for each
component totals up to 0.5 seconds for a pure-overhead rebuild when there are no changes.
This is fast enough for this system, but such builds would take excessive amounts if they
involved hundreds of components.

4.2 Case study: python3.0

A summary of the findings for python3.0 is given in Table 4.2. The multilanguage diagram
is Figure 4.5 and the build-time view diagram is Figure 4.7.

What does the package do? What are the major abstractions?

Python is an interactive high-level object-oriented programming language, and python3.0

is version 3.0 of the interpreter and Standard Library.

Question Findings
Purpose and abstractions Interactive high-level object-oriented programming

language with functions, classes, methods, and modules
Architecture, languages,
and interactions

C for interpreter and builtin objects. C modules interact
with Python via equivalent API. Standard Library with
~200 modules, ~80% Python and ~30% C

Build system autoconf-based with hand-written Makefile, distutils for
building most of Standard Library

Build issues None
Rebuild issues ...1 Manual dependency management result is that

changing some header files forces a full rebuild, while
changes to other header files are ignored

Build features ..1 Checks if running from build directory
..2 Can extend with Python and C plugins
..3 Uses autoconf for configuration
..4 Standard distutils tool used to build standard library

Conclusion Few issues

Table 4.2: Summary of findings for python3.0
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Figure 4.5: python3.0 multilanguage diagram, using the notation of Figure 4.1. The Stan-
dard Library is a collection of interdependent C and Python modules. Python source code
is interpreted. C modules bypass the interpreter, but access the same APIs as Python code
does. python3.0’s built-in objects are implemented in C and are tightly-coupled.

Source code written in Python is organized as a hierarchy of modules containing func-
tions, classes, and methods defined in classes.

What are the major parts of the software, what languages are they
written in, and how do they interact?

The major parts of python3.0 are shown in Figure 4.5. There is an interpreter for the
Python programming language; implementations of built-in objects such as list that are
necessary parts of the language; and a large Standard Library of additional modules. The
interpreter executes Python source code by calling the necessary APIs provided by built-in
objects. The Standard Library consists of a large collection of useful modules that are not
part of the language itself.

The Interpreter

The interpreter is written in C. It executes Python code by parsing Python source code,
compiling the Python source code to bytecode, then interpreting the bytecode by calling
APIs for built-in objects. As an example of how it works, consider the bytecode execution
of the Python statement return a * b. The parser parses this statement into the parse
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tree shown in Figure 4.6.

Return

BinOp

Name

"a" Load

Mult Name

"b" Load

Figure 4.6: python3.0 abstract syntax tree for return a * b

The bytecode compiler compiles this into a small sequence of bytecode, the most relevant
fragment of which is the sequence of bytes 0x7C 00 00 7C 01 00 14 53. 0x7C is the opcode
for LOAD_FAST; it is used twice, each time followed by a 16-bit integer in little-endian format.
These first six bytes refer to the zeroth and first variables in this context, namely a and b.
0x14 is the opcode for BINARY_MULTIPLY and 0x53 is the opcode for RETURN_VALUE. Together
these opcodes say, load a, load b, multiply them, and return the result. When the interpreter
processes the BINARY_MULTIPLY instruction, it calls the C function PyNumber_Multiply

defined in the abstract object API to perform the actual multiplication.
The advantage of using bytecode is to simplify the implementation and speed up exe-

cution. The implementation is simplified because the parser, compiler, and interpreter are
separated with straightforward interfaces between them. Rather than having to deal with
parsing and compilation as well, the interpreter is in effect one giant switch statement on
the opcode. Execution is sped up because, as an optimization, the byte-compiler caches the
bytecode on disk when Python source code is compiled. This allows future loads and runs
of the same source code to save time by bypassing parsing and compilation.

The Built-Ins

The built-ins provide implementations of objects that are part of the Python language, such
as the list class. As shown in Figure 4.5, there is a web of tightly-coupled concrete object
implementations and an Abstract Object API. The objects are both necessary parts of the
language and tightly-coupled because they have been designed together as complementary
primitives. For example, the dict associative dictionary class is a subclass of the top-level
object class, and inherits functionality from it, but the namespace of functions and variables
associated with an object instance is implemented as a dict.

The built-in Abstract Object API provides an abstract interface to the concrete ob-
jects. This API is roughly equivalent to the semantics of the Python language. For exam-
ple, at the concrete level, Python float and long objects are implemented as different C
structs with different functions to operate on them. The Abstract Object API provides a
PyNumber_Multiply function to look up and execute the correct multiplication function,
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whether it be float_mul for floats or long_mul for longs or a custom overloaded mul-
tiplication operator for some other class. This is equivalent to simply writing a * b in
Python source code, and indeed it is PyNumber_Multiply that is called by the interpreter
when executing such a statement.

The Standard Library

The Standard Library consists of over 200 top-level modules, providing a huge variety of
functionality. The modules are written in a combination of C and Python. About 80%
of the modules in the Standard Library are written in Python, 30% in C, and 10% in a
combination of the two. Python is generally used whenever possible, with C used when low-
level system access or extra performance is required. For example, the termios module for
low-level POSIX TTY I/O services is written entirely in C; the pprint module for pretty-
printing Python data structures is written entirely in Python; and the random module is
written in both, with basic uniform random number generation implemented in C, and with
transformation to various other probability distributions implemented in Python.

Python modules can be written in C or Python or both, with clients of those modules
generally unable to tell the difference. A Python module is a collection of source files. A
C module is usually a shared library such as a .so or .dll, and uses the same API as
the concrete built-ins. How can one module be both a collection of Python source files
and a binary shared library? The answer is a consequence of the fact that all interaction
in Python is done via object-oriented interfaces: Python modules via the semantics of the
Python language, and C modules via the same APIs used by the Python interpreter. Code
in either language can operate on any Python objects in equivalent ways without regard for
the target object’s implementation language. Python and C modules can arbitrarily access,
subclass, and import from other modules without regard for the implementation language of
the target. A module written in both C and Python is actually two modules, say mymodule

in Python and _mymodule in C. But since classes defined in one can be extended in the other,
and methods in either language call each other the same way, this separation of languages
is merely an implementation detail hidden from callers.

What is the structure of the build system and how is it
implemented?

The structure of python3.0’s build is shown in Figure 4.7. First, an executable interpreter
capable of running distutils is built. This requires that certain Standard Library C mod-
ules needed by distutils, such as the _sre module implementing regular expressions, be
compiled into the python3.0 interpreter. Once the interpreter is built, all Python modules
in the Standard Library can be used. They are simply copied to the execution environment.
Finally, distutils compiles the remaining C modules of the Standard Library into indi-
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Figure 4.7: python3.0 build diagram, using the notation of Figure 4.1. The interpreter,
built-in objects, and the C portion of the Standard Library required by distutils are
compiled into an executable binary. This allows distutils to run, and it compiles the
remainder of the Standard Library.

vidual shared libraries. distutils also manages the configuration of these modules. For
example, certain optional database client modules in the Standard Library are built only if
the necessary libraries and header files are available.

The building of the interpreter uses autoconf and Make. autoconf is used for its con-
figuration phase. For example it checks which threading libraries are available and work
correctly. The construction phase uses a handwritten Makefile of approximately 1200 lines.
It is somewhat shorter and more comprehensible than typical autoconf-generated Makefiles.

What, if any, issues are there in building the package?

No build issues were encountered with python3.0. It simply worked. The configure script
and Makefile executed quickly, producing a functioning interpreter, which was able to run
distutils to build the Standard Library.

What, if any, issues are there in building changes to the package?

There was, however, one issue with rebuilds.

...1 Incorrect manually-specified dependencies result in full rebuilds for some source changes,
while some other source changes are ignored—instead of using an automated tool to extract
dependencies between intermediate object files and C source and header files, python3.0’s
handwritten Makefile contains manually-specified dependencies. The relevant Makefile frag-
ment is shown in Figure 4.8. It declares that all intermediate object files depend on all header
files. The result is that changing any exported header file forces a full rebuild of all source
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...
PYTHON_OBJS= \

Python/_warnings.o \
Python/Python-ast.o \
Python/asdl.o \
Python/ast.o \
Python/bltinmodule.o \
Python/ceval.o \
Python/compile.o \
... at least 33 more object files ...
... (depending on configuration) ...

...
PYTHON_HEADERS= \

Include/Python-ast.h \
Include/Python.h \
Include/abstract.h \
Include/asdl.h \
... 74 more header files ...

...
LIBRARY_OBJS= ... $(PYTHON_OBJS) ...
...
$(LIBRARY_OBJS) $(MODOBJS) Modules/python.o: $(PYTHON_HEADERS)
...

Figure 4.8: Python Makefile fragment

files, whether or not any particular source file included the changed header file or not. As
well, these manually-maintained lists of dependencies can easily get out of synchronization
with the source code, and in fact some of them are—Python/importdl.h is not mentioned
in any dependency lists, yet is included by several source files. Changes to this header file
are ignored by the build system.

In contrast, a typical autoconf-generated Makefile, or one calling on a tool such as
makedepend—as synopsis’s Makefiles for C/C++ components do—automatically extracts
the correct dependencies from the source code at build time.

What build system features prevent build problems similar to
those encountered in other packages?

..1 Checks if running from build directory—python3.0 runs without issue from inside the
build directory. python3.0 sidesteps the path issues encountered with synopsis by checking
at startup inside getpath.c whether it is running from a build directory, and, if so, adjusts
its library search paths accordingly.

..2 Can extend with Python and C plugins—python3.0 is structured as a C-language core
which modules written in Python or C can interact with through equivalent APIs. Although
there are no problems with building python3.0, most developers adding functionality to
python3.0 by contributing new libraries can do so without ever building python3.0 at all.

..3 Uses autoconf for configuration—python3.0 uses the standard autotools tool suite to
determine a configuration in a separate phase prior to construction. This avoids problems
experienced in the axiom case study to come, where configuration is transiently interleaved
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with construction.

..4 distutils tool used to build standard library—The distutils tool used for building
the Standard Library is also the standard tool for building third-party Python and C mod-
ules. This ensures that python3.0-project knowledge about how to build code using the
python3.0 APIs is captured in a reusable, general-purpose manner.

Conclusion

No issues were encountered in building python3.0. A single handwritten Makefile builds
the approximately 100 KSLOC C “core.” However, the manual dependency management
used in this Makefile can be error-prone, and can result in lengthy and broken rebuilds.

4.3 Case study: gnat-gps

A summary of the findings for gnat-gps is given in Table 4.3. The multilanguage diagram
is Figure 4.10. gnat-gps has two build systems. The build-time view diagram for the
“AdaCore” build system is Figure 4.11, and the build-time view diagram for the “Brenta”
build system is Figure 4.12.

What does the package do? What are the major abstractions?

gnat-gps, also known as GNAT-GPS or GNAT Programming Studio, is an interactive
development environment for Ada [70] and C/C++ source code. It provides features such

Question Findings
Purpose and abstractions Integrated Development Environment for Ada and C/C++
Architecture, languages,
and interactions

Primarily object-oriented Ada architecture, with Python
plug-ins, and C support libraries and tools

Build system Combination of Make and the Ada-specific gnatmake tool
AdaCore build issues ...1 References Ada libraries no longer part of the project

...2 Omits search paths for many third-party C libraries

...3 Incompatible project file syntax

...4 Inconsistencies between Ada and system interfaces

...5 Ubuntu maintainer rewrites build system
Brenta build issues ...6 Blank icons, dialogs when run from build directory

...7 Python console does not show output
Rebuild issues No issues
Build features ..1 Scripting interface allows build-free extension

..2 gnatmake handles dependencies automatically

..3 Build aborts immediately on error
Conclusion Vendor build system hard to build, but rewritten build

system also has issues

Table 4.3: Summary of findings for gnat-gps
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Figure 4.9: gnat-gps screenshot

as syntax highlighting, code completion, call graph browsers, and a debugger. Although
it also supports editing C/C++ source, it is primarily intended for Ada development. A
screenshot is shown in Figure 4.9.

gnat-gps is developed by AdaCore, the commercial Ada vendor which maintains GNAT,
the open-source Ada compiler that is part of GCC [56]. AdaCore also uses gnat-gps as a
different sort of development environment, namely as an incubator for Ada libraries. Many
gnat-gps features are implemented in general-purpose ways, then broken off and released
as separate libraries once they are mature. These libraries can be used by any Ada program,
making Ada a more attractive language for development. Examples of libraries developed
as part of gnat-gps include GtkAda, the bindings library that gnat-gps uses to access the
native windowing system from Ada code; XmlAda, for XML processing; and GNATCOLL,
the GNAT Component Collection that provides functionality such as scripting language
interfacing, logging, and file manipulation.
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Figure 4.10: gnat-gps multilanguage diagram, using the notation of Figure 4.1. Only a
sample of gnat-gps modules are shown. The core is a large collection of Ada modules of
related objects. Modules that implement high-level feature are loaded by the main module.
Most modules accomplish their tasks by calling lower-level modules and interacting with the
kernel module. The entities module manages semantic data about source code entities.
Many modules register themselves with the scripting interface, which loads features written
in Python. Source Navigator is invoked as a separate executable.

What are the major parts of the software, what languages are they
written in, and how do they interact?

gnat-gps is mainly composed of a network of interacting Ada objects, with Python plug-ins
to implement and expose other features, and C support code. The use of a central “kernel”
module is reminiscent of blackboard architectures [25]. The multilanguage diagram of a
selected portion of gnat-gps is shown in Figure 4.10.

The majority of gnat-gps is implemented as a collection of Ada objects interacting in
an object-oriented architectural style [25]. Ada is an object-oriented programming language
with an emphasis on developing reusable components. For example, instead of implementing
its own parser, gnat-gps’s support for parsing and interpreting the gnatmake project files
described below is enabled by using the gnatprj library. The gnatprj library is a key part
of the gnatmake build tool, and is distributed with the GNAT compiler.

Nearly all of the C source code in gnat-gps—97% of it—is a modified version of Red
Hat’s open-source Source Navigator project. It provides fact extraction and cross referencing
for C/C++. gnat-gps executes Source Navigator binaries to extract facts from source code,
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and then gnat-gps reads from the data files written out by Source Navigator. As it runs
in a separate process from gnat-gps and is not integrated with the main gnat-gps IDE,
Source-Navigator is not considered part of gnat-gps proper.

The remaining gnat-gps C code consists of pixmaps and utility code. Pixmaps are
described in Figure 3.4. The utility code exposes low-level functionality such as tty ma-
nipulation, memory mapping, and determining the path of the system temp folder in a
cross-platform way. Although Ada makes calling external C functions trivial—one simply
declares the function and issues a pragma Import statement—C code is still used for invok-
ing functions with complicated signatures involving macros, constants, and struct layouts.
For example, the Windows API for displaying a native file selection dialog is a macro alias
for a function with 20 parameters, most of which are themselves structs and/or combinations
of constants defined in Windows header files. Correctly defining all the required constants,
macros, and structs in Ada is much more difficult than writing a simplified wrapper function
in a C file that includes windows header files, and calling the wrapper from Ada. Similarly,
gnat-gps calls most Python API functions directly from Ada, but provides C-language
wrappers for Python API functions that are actually defined as macros.

There are Python bindings for the complete gnat-gps object model. There is also an
interactive console, as shown in Figure 4.9, where the references to the current unit are being
queried. The mechanism that implements the bindings is shown schematically in Figure 4.10.
Modules throughout the package register their functionality with the scripting interface
manager. The scripting interface manager invokes scripts and enables the scripts to call
back into gnat-gps. The scripting interface is abstract, with two concrete implementations:
one for Python, and one for an unnamed gnat-gps-specific shell-like language.

Many key features of gnat-gps are implemented in Python. For example, the Build →
Clean → All menu shown in Figure 4.9 is implemented as a Python script that extends the
user interface and calls the external gnatclean compiler tool to do the actual work. Users
can also extend the interface by providing their own Python scripts with access to the same
API. Users can develop their scripts interactively using the Python console, then place them
in the special directory ~/.gps/plugins to be automatically loaded by gnat-gps. gnat-gps
comes with a 60-line example script that adds a “soft tabs” feature to the IDEs source code
editor, whereby pressing the tab key inserts the syntactically correct amount of indentation
rather than a literal tab character.

What is the structure of the build system and how is it
implemented?

Before describing the build system for gnat-gps, it is first necessary to describe some
features of the GNAT compiler for Ada.
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Background

Unlike other Ada compilers which use a database-like master “library file” to manage com-
piled code, GNAT uses a C-like compilation model where implementation files are compiled
to individual intermediate object files which can then be linked together [16, 26]. To ensure
consistency, at compilation time the compiler writes out an Ada Library Information .ali

file containing the checksums of all referenced source files along with tool versions and com-
piler flags. At link time, a tool called the binder verifies consistency before calling the linker.
This avoids “version skew” problems in which objects compiled against different versions of
other objects are linked together.

The gnatmake build tool included with the GNAT compiler is often used to build Ada
software. It reads in .gpr GNAT project files declaring what is to be built, and, using the
same .ali files and parsing routines as the compiler and linker, rebuilds those files which are
missing or inconsistent. The syntax for project files is extremely similar to Ada source code.
gnatmake supports hierarchical builds using the same concepts, such as with statements,
used by Ada for inheritance. There is some support for configuration-phase functionality
in the form of conditionals that can appear inside project files. Configuration can also be
performed using tools such as autoconf to parameterize Ada-language source and project
files.

gnat-gps build systems

As is discussed below, there are two build system for gnat-gps: the original, vendor-provided
“AdaCore” build system, and a replacement “Brenta” build system written by Ludovic
Brenta, the Ubuntu maintainer for the gnat-gps package. Each uses a combination of
Makefiles to build C code and gnatmake to build Ada code. Diagrams of each are shown in
Figure 4.11 and Figure 4.12. The key difference is that the Brenta system builds the entire
package at once, while the AdaCore system builds each source directory independently.

The AdaCore build system is a hierarchy of cross-platform Makefiles that uses a Make-
based build framework developed by AdaCore for C, C++, and Ada. Each source directory
contains both a Makefile and a .gpr GNAT project file for building that directory and its
prerequisite directories. The Makefile in each source code directory textually includes the
Makefiles for the source directories it depends on. The structure of Makefile includes is
shown in the Source View graph of Figure 4.11. Intermediate object files are built in each
source directory, then linked together at the end to create the gnat-gps executable.

The Brenta build system uses a single Makefile and a single .gpr GNAT project file
for all gnat-gps source code. The structure of the build system is shown in Figure 4.12.
There is a single Makefile for all C code, and a single project file for all Ada code. The
entire project is compiled and linked together. The configuration of this build system is
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Figure 4.11: gnat-gps build diagram, AdaCore build system, using the notation of Fig-
ure 4.1. Each source code directory has its own build system that invokes the build systems
of all directories containing source code that it uses. Inside each directory, Ada and C
sources are compiled to intermediate object files. Once all directories are built, the object
files are linked together to form the gnat-gps executable.
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Figure 4.12: gnat-gps build diagram, Brenta build system, using the notation of Figure 4.1.
All gnat-gps Ada sources are compiled to intermediate object files; all C sources are com-
piled to intermediate object files; and the resulting set of object files is linked together to
create the gnat-gps executable.

hard-coded with Ubuntu-specific values. Brenta compares his build system to the AdaCore
system in a source code comment:

“This project file bypasses the complex structure of project files importing and in-
cluding each other, brittle configure scripts, evil recursive Makefiles and Makefile
fragments supplied by AdaCore. Now there is just one Makefile (debian/rules),
and one project file, which you are now reading. This radical simplification is
the Tao of Programming. In this file, I do away with all the flexibility and con-
figurability of upstream’s build machinery. I don’t need them. I only care about
Debian.

“Now, if you go to the top level of the directory and just call debian/rules with
no arguments, you get The Right Thing. Similarly calling ''gnatmake -Pgps''
does The Right Thing for the Ada part of GPS.”

—Ludovic Brenta, gps.gpr, 2006

What, if any, issues are there in building the package using the
AdaCore build system?

Discussion of the following build issues is complicated by the fact that the Ubuntu-supplied
source code for gnat-gps differs from the original vendor source code. As mentioned on
page 13, 1.6% of Ubuntu packages have modified source code packages, while the remaining
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98.4% distribute the original vendor source code alongside a Ubuntu patch file. Different
variants of the source code of the same version gnat-gps can be obtained from several
locations: the Ubuntu-modified version from the Ubuntu archives;1 AdaCore’s publically-
available source-control server;2 and source code archives that may be obtained by navigating
AdaCore’s interactive Download Package Builder.3 As discussed below as Build Issue ...1
, gnat-gps relies on external libraries that were once part of gnat-gps, and the AdaCore
build system expects the source code for those external libraries to be in the same place
as they once were. The Download Package version is the most complete, but cannot be
automatically retrieved from a stable URL. The version from the source-control server is
identical but only includes source code that is strictly part of gnat-gps. The Ubuntu
version falls between these—it is not complete but does include some source code that is
not strictly part of gnat-gps—but also adds its own modifications. Finally, the Download
Package version of gnat-gps appears to be a slightly different version from what the Ubuntu
archive with the same version number is based on.

In short, there are many variants of the source code for this package, among which the
following problems were encountered. Not every variant necessarily exhibited every one of
these build problems, but build problems ...1 and ...3 were universal across all variants,
and no variant of the software succeeded in building using the AdaCore build system.

...1 There are references to Ada libraries which are no longer part of the project—the
Ada libraries templates_parser, GtkAda, and XmlAda were once part of gnat-gps but
have since become independent libraries that are distributed separately. For example, tem-
plates_parser is available in Ubuntu as the independent package libtemplates-parser11,
which is used by both gnat-gps and the Ada Web Server framework project. However, in-
side the gnat-gps source code, the AdaCore build system still expects a templates_parser

source directory that can be built as part of gnat-gps. As this is missing from the Ubuntu-
distributed source code, build failures occur. Conversely, the gnatlib directory contains a
library that is still part of the source code of gnat-gps, but which has its own configure

script as if it were an independently-built library; this configure script is not automatically
invoked, causing build failures. Additional build failures also occur due to the build system
expecting the source code for Tcl/Tk and the GNAT compiler to be present, despite their
not being distributed with the gnat-gps source code.

This would be better handled if the configuration script checked for both system-installed
and local source versions of required libraries. Local source versions may still be desired when
development is occurring to fix bugs or to add new library features to support gnat-gps.

1http://old-releases.ubuntu.com/ubuntu/pool/universe/g/gnat-gps/gnat-
gps_4.3~2008.08.09ubuntu1.tar.gz

2http://svn.eu.adacore.com/anonsvn/Dev/trunk/gps @r127639
3http://libre.adacore.com/download/configurations
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1 with "../kernel/kernel";
2 with "../shared";
3

4 project Help is
5

6 for Source_Dirs use ("src");
7 for Object_Dir use "obj";
8

9 package Naming is
10 case Shared.OS is
11 when "Windows_NT" =>
12 for Implementation ("help_module.display_help")
13 use "help_module-display_help_win32.adb";
14 when "unix" =>
15 for Implementation ("help_module.display_help")
16 use "help_module-display_help_unix.adb";
17 end case;
18 end Naming;
19

20 package Compiler renames Shared.Compiler;
21 package IDE renames Shared.IDE;
22

23 end Help;

Figure 4.13: help.gpr project file

...2 Search paths for third-party C libraries are omitted—gnat-gps relies on C header files
and shared libraries for a number of third-party packages, namely Python and the GUI
libraries gtk, atk, glib, pango, and cairo. However, while the configure script does search for
these libraries and determine the include file search paths for them, this information does
not propagate to every compilation that requires them, and build failures result.

In the builds where this is encountered, it is possible to add them manually. Doing this
for six different prerequisite packages can become tedious.

...3 gnatmake fails to parse conditionals in project files—While the AdaCore build system
does use an autotools-generated configure script, some configuration decisions are handled
at the gnatmake project file level by conditionals. For example, the highlighted fragment
in Figure 4.13 specifies that the display_help interface has an OS-specific implementation
body. gnatmake fails to parse this, yielding the error messages variable "os" is not

typed, unknown variable "Os", and illegal case label.
The syntax for the conditional is as specified in the GNAT manual [1]. The apparent

cause is a difficulty in accessing the shared project file referenced on line 2. It is also
referenced by the kernel project file referenced on line 1, which in turn references many
other project files. A warning about a duplicate project name "shared" appears eleven
times with the error message about the case level. This confusion is likely an aspect of
what Brenta refers to as the “complex structure of project files importing and including
each other” in the source code for his replacement build system.

One possible workaround for this build issue is to manually resolve and remove the
conditionals from all project files in which they cause errors; while this does allow the build
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to proceed, it is not necessarily an effective workaround, as the build still does not ultimately
succeed.

...4 There are inconsistencies between Ada and system interfaces—gnat-gps calls various
C libraries, either directly from its own source code or indirectly via binding libraries such
as GtkAda. The underlying C libraries can change in incompatible ways as new versions
are released. One version of GtkAda refers to the struct fields n_bytes and text_size in
the Gtk API. However, these fields have been renamed to x_n_bytes and x_text_size in
Gtk. This error is caught by the linker.

It is possible to get gnat-gps’s compilation to proceed past this issue by renaming the
Ada declarations of the field as well. However, it is likely that there was a reason that these
fields were changed to names conveying the idea that they have been removed or “x”ed out,
and the GtkAda library may need further source code changes to adapt to the API change.

...5 This build system is sufficiently hard to get working that the Ubuntu maintainer
wrote a new build system—several other serious problems were encountered in trying to
build this system. One such issue was the persistent inability of the compiler to find the
g-traces.ads file needed throughout the system, even though it exists in what seems to be
the correct directory. Another was a build that appeared to proceed into the linking stage
only for the link to fail with an error message that all objects needed to be recompiled as
Position-Independent Code by using the -fPIC compiler option.

After encountering so many problems, many of which could not be easily solved, the
Ubuntu modifications to the build system were examined to see how it managed to build
successfully. Surprisingly, instead of modifying the build system to avoid build issues, it was
rewritten completely.

What, if any, issues are there in building the package using the
Brenta build system?

The Brenta build system is designed to build system-installable binary packages for Ubuntu.
There is no configuration phase because values for the desired configuration are hard-coded
into the build system. It is also not without problems.

...1 gnat-gps requires installation to run properly—while gnat-gps does build and run on
the first try, the resulting application is not functional until installed. Figure 4.14 shows the
main gnat-gps binary running from the development version on the left, and the installed
version on the right. The development version is missing the folder icons in the Project View
on the left, and, more importantly, the extensive Project Properties configuration dialog
shown on the right is replaced by a blank dialog featuring only Ok and Cancel buttons.

The cause is that resources such as icon files and also the XML templates used to render
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Figure 4.14: gnat-gps, development vs. installed versions

some dialogs are supposed to be in the system data directory /usr/share/gps, but this does
not exist until gnat-gps is installed. These resources are scattered across many different
source directories and gathered together at install time into a different directory structure.

If another version of gnat-gps is already installed, the resources from that version will
be used, but these may be out of synchronization, especially if, for example, a developer
is working on the Project Properties dialog. The AdaCore build system is able to gather
resource files into a temporary directory that gnat-gps can be configured to use. The
Brenta build system also gathers resource files into a temporary directory while building
a binary package, but it automatically deletes that same directory as part of the process,
making the temporary directory unusable as a development resource path.

...2 The Python console does not work due to inconsistent configuration—gnat-gps includes
an interactive Python console, as seen in the lower-right of Figure 4.9. However, in the built
version of gnat-gps, the output of Python statements does not appear on the console. The
console is interpreting Python statements, as can be tested by executing a Python command
to, say, create a file. However, no output appears.

After a great deal of debugging, it turns out that the version of the Python library
used at link-time is hardcoded in the .gpr project file as version 2.5, while the Makefile
that compiles Python-supporting C source code sets the header file search path by querying
the operating system for its default python version, namely 2.6. One result of compiling
against a different version of the headers from the library version used for linking is that
the PyString_Check call in the Python API always returns false. It is supposed to return
whether its argument is of string type; it is actually a macro that inspects Python-private
data structures that are different between the two Python versions. Since it always returns
false, the Ada code that calls it believes that the string objects coming from Python to be
printed in the console are not strings, so, instead of printing the output string, it raises
an exception which is logged but not reported to the end-user. The exception message—

54

/usr/share/gps


“Parameter 1 should be a string”—is of limited usefulness in debugging the issue.
Presumably the malfunctioning Python type-checking calls cause undesirable behaviour in
other parts of gnat-gps as well.

Modifying the Makefile to be consistent with the .gpr project file restores correct be-
haviour. It is likely that, at the time the build system was written, version 2.5 was the default
version of Python, so that the build was consistent, but the default changed between then
and when this version of Ubuntu was released.

What, if any, issues are there in building changes to the package?

Once gnat-gps was built, no issues were encountered in rebuilding after making changes
to the source code. Multiple files were repeatedly modified over an extended period of time
while debugging the Python-console issue. Each time, the build system quickly produced
an updated executable. When no files are changed, it takes about 2 seconds for the build
system to determine that no further compilation is necessary. When one or two source files
are changed, it take about 8 seconds to rebuild that one file and link the 63MB binary.

One interesting feature of gnatmake is the ability to ignore whitespace and comments
when deciding whether file are up-to-date. gnatmake calls the GNAT compiler’s object-
oriented input routines when performing its checksumming of source code. This provides
it with an option to ignore whitespace and comments when checksumming, eliminating
rebuilds when only comments or whitespace have changed. However, if lines are inserted
or deleted, then line numbers in debugging information generated at compile-time may be
slightly incorrect.

What build system features prevent build problems similar to
those encountered in other packages?

..1 Scripting interface allows build-free extension—gnat-gps’s interactive scripting interface
allows full access to gnat-gps’s object model, and allows it to be customized and new
features to be developed for it using scripting languages instead of compiled Ada source
code. This allows the build system all of its possible issues to be completely avoided for
many types of development tasks. In fact, since some critical features of gnat-gps are
implemented using the scripting interface, it may be that the gnat-gps developers prefer
the scripting interface over compiled Ada source code.

..2 gnatmake handles dependencies automatically—the gnatmake tool automatically ex-
tracts header-file dependencies from Ada source code. This prevents incorrect builds arising
from changes to header files being missed by the build systems. Some dependency extraction
tools for C source code may not always be exact, due to differences between the extraction
tool and the compiler in terms of header file search paths, defined preprocessor variables,
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or nonstandard preprocessor syntax extensions. However, when the gnatmake-based build
system performs dependency extraction directly from the build tool that also invokes the
compiler, and calls the compiler’s API directly, dependencies are exactly those as seen by
the compiler. In fact, gnatmake-based build systems have sufficiently detailed knowledge
about the build and the compilation that they can correctly handle inlining implementation
code into other build units.

..3 Build aborts immediately on error—in contrast to some other case study build systems,
problems encountered in building gnat-gps cause the build to abort immediately. The
gnatmake tool is written in Ada, which supports exceptions and is known for its use in
safety-critical software. The commands used in gnat-gps Makefiles are generally of limited
complexity, rather than complex inline shell scripts.

Conclusion

gnat-gps is difficult enough to build with the vendor build system that the Ubuntu main-
tainer wrote his own build system. However, this build system also has its own issues,
which are somewhat understandable given that it was designed to designed to build system-
installable binary packages for Ubuntu using a hardcoded configuration, rather than to be
a portable general-purpose build system.

4.4 Case study: axiom

A summary of the findings for axiom is given in Table 4.4. The multilanguage diagram is
Figure 4.16, and the build-time view diagram is Figure 4.20.

Question Findings
Purpose and abstractions Interactive computer algebra package with extensive library
Architecture, languages,
and interactions

Compiler-interpreter for Scratchpad, written in Lisp, runs
Scratchpad math library; C for portions of user-interface

Build system Literate source built with literate Makefiles
Build issues ...1 Relies on broken GNU Common Lisp

...2 Does not build on Ubuntu 9.10

...3 Build system inadvertently ignores some build errors

...4 No incremental rebuilds

...5 Build steps difficult to run manually
Rebuild issues ...4 No incremental rebuilds
Build features ..1 Interactive interpreter means most users and many

developers do not need to use the build system
Conclusion Does not build, and literate code of limited usefulness in

debugging build problems

Table 4.4: Summary of findings for axiom
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Figure 4.15: axiom screenshot

GNU Common Lisp

Interpreter-
Compiler

Documentation 
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Graphics
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code
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Figure 4.16: axiom multilanguage diagram, using the notation of Figure 4.1. This simpli-
fied diagram shows only a high-level view of the major parts of axiom. The Scratchpad
interpreter-compiler is written in Lisp, and runs inside GNU Common Lisp (GCL). It com-
piles Scratchpad code to Lisp code. GCL in turn can either interpret the Lisp code directly,
or compile it to C and call an external C compiler to generate object code that is then
dynamically loaded into the running GCL/axiom process. The math routines of axiom are
implemented in the Scratchpad language, and run inside the axiom environment. The in-
ternal data structure layouts of the interpreter-compiler are based on the structure of the
mathematical categories defined in the math library. There is also a documentation browser,
a graphics viewer, and a collection of utility functions written in C.
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What does the package do? What are the major abstractions?

axiom is a computer algebra package that provides both an interactive environment for
its own algebraic programming language called Scratchpad, and an extensive executable
mathematical library. As shown in Figure 4.15, the main interface is a command prompt,
but there is also a hypertext documentation browser and an interactive graphics viewer.
A further example of the Scratchpad language is given in Figure 4.17. Scratchpad was
originally developed in the 1970s by IBM for its mainframes [30], and was open-sourced in
2001 after being discontinued as a commercial project.

The math library is composed of three kinds of entities: packages, domains, and cate-
gories. Packages are collections of functions. For example, there is a package for computing
the Laplace transform of a function, one for triangulating matrices, one for computing power
series in function spaces, and more there are more than 800 other packages. Domains are
packages that store data, and implement the mathematical structures that packages operate
on. There are more than 400 categories implementing structures such as integers, polyno-
mials, p-adic integers, Clifford algebras, and also computing science structures such as hash
tables. Finally, categories are collections of axioms that define the type of a domain. For
example, the category Abelian Semi Group extends the category Set with the axiom that
there is an Abelian + operator.

Importantly, whether or not domains satisfy the axioms of the categories they declare
themselves as belonging to cannot be and is not verified automatically. If a domain declares
that its + operator is associative, that fact will be used by the compiler for optimization
regardless of whether the operator actually is associative. To prevent incorrect results due to
faulty assumptions, there are extensive regression tests to ensure that domains and packages
behave as they are intended to, and that changes to other definitions do not cause incorrect
results.

What are the major parts of the software, what languages are they
written in, and how do they interact?

The major parts of axiom are the interpreter-compiler, the math library, and the GUI. A
diagram showing the relationships between these parts, but not their internal structure, is
given in Figure 4.16. The math library is written in Scratchpad. The interpreter-compiler
for the Scratchpad language is written in Lisp. The graphics and documentation browser
subsystems, as well as some utility functions, are written in C.

axiom compiles Scratchpad code into Lisp code. An example Scratchpad package,
AddTwoNumbers, is shown in Figure 4.17. It defines a single function, addTwo, which adds
two numbers. The compiled Lisp version is shown in Figure 4.18. It is essentially unrecog-
nizable. The compiled Lisp code contains definitions of the axiom data structures pertaining
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1 )abbrev package ADDTWO AddTwoNumbers
2 AddTwoNumbers(A) : Exports == Implementation where
3 A : IntegerNumberSystem
4 Exports == with
5 addTwo: (A, A) -> A
6 Implementation == add
7 addTwo(a, b) == a + b

Figure 4.17: Example Scratchpad package

1 (DEFUN |ADDTWO;addTwo;3A;1| (|a| |b| $)
2 (SPADCALL |a| |b| (QREFELT $ 7)))
3

4 (DEFUN |AddTwoNumbers| (#0=#:G1763)
5 (PROG NIL
6 (RETURN
7 (PROG (#1=#:G1764)
8 (RETURN
9 (COND

10 ((LETT #1#
11 (|lassocShiftWithFunction|
12 (LIST (|devaluate| #0#))
13 (HGET |$ConstructorCache| (QUOTE |AddTwoNumbers|))
14 (QUOTE |domainEqualList|)) |AddTwoNumbers|)
15 (|CDRwithIncrement| #1#))
16 ((QUOTE T)
17 (UNWIND-PROTECT
18 (PROG1 (|AddTwoNumbers;| #0#)
19 (LETT #1# T |AddTwoNumbers|))
20 (COND ((NOT #1#)
21 (HREM |$ConstructorCache|
22 (QUOTE |AddTwoNumbers|))))))))))))
23

24 (DEFUN |AddTwoNumbers;| (|#1|)
25 (PROG (DV$1 |dv$| $ |pv$|)
26 (RETURN (PROGN
27 (LETT DV$1 (|devaluate| |#1|) . #0=(|AddTwoNumbers|))
28 (LETT |dv$| (LIST (QUOTE |AddTwoNumbers|) DV$1) . #0#)
29 (LETT $ (GETREFV 9) . #0#)
30 (QSETREFV $ 0 |dv$|)
31 (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#))
32 (|haddProp| |$ConstructorCache|
33 (QUOTE |AddTwoNumbers|)
34 (LIST DV$1)
35 (CONS 1 $))
36 (|stuffDomainSlots| $)
37 (QSETREFV $ 6 |#1|) $))))
38

39

40 (MAKEPROP
41 (QUOTE |AddTwoNumbers|)
42 (QUOTE |infovec|)
43 (LIST (QUOTE #(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . +) |ADDTWO;addTwo;3A;1|))
44 (QUOTE #(|addTwo| 6))
45 (QUOTE NIL)
46 (CONS (|makeByteWordVec2| 1 (QUOTE NIL))
47 (CONS (QUOTE #())
48 (CONS (QUOTE #())
49 (|makeByteWordVec2| 8
50 (QUOTE (2 6 0 0 0 7 2 0 6 6 6 8))))))
51 (QUOTE |lookupComplete|)))

Figure 4.18: axiom compiler output for Scratchpad code in Figure 4.17
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1 static object LI1(V4,V5,V6)
2

3 object V4;object V5;object V6;
4 { object V9;
5 goto TTL;
6 TTL:;
7 {object V7;
8 V7= ((V6))->v.v_self[(long)7];
9 {object V8 = (

10 V9 = CMPcar((V7)),
11 (type_of(V9) == t_sfun ?(*((V9)->sfn.sfn_self)):
12 (fcall.argd=3,type_of(V9)==t_vfun) ?
13 (*((V9)->sfn.sfn_self)):
14 (fcall.fun=(V9),fcalln))((V4),(V5),CMPcdr((V7))));
15 VMR1(V8)}}
16 return Cnil;
17 }

Figure 4.19: Lisp compiler output for the ADDTWO;addTwo;3A;1 function in Figure 4.18

to the package, and calls many internal axiom functions. The compiled addTwo function
is defined on lines 1–2. It takes three arguments: the original arguments a and b, and a
context argument $. The addition operation is specified by QREFELT $ 7; it corresponds
to the + function highlighted on line 43 at zero-based index 7 in its containing list. This
Lisp code bears a similar relationship to the original Scratchpad source code as compiled
machine code does to corresponding source code in other high-level languages.

axiom uses GNU Common Lisp, or GCL for short, to run itself and to produce machine
code. GCL was once known as Austin-Kyoto Common Lisp, or AKCL, and was derived from
Kyoto Common Lisp. Some of its development was under contract from IBM specifically for
Scratchpad. The Scratchpad interpreter compiler is written in Lisp, and compiles Scratch-
pad code to Lisp. While lisp code can be directly interpreted by GCL, for performance
reasons it is preferable to compile it to machine code. GCL compiles Lisp to C code. The
compiled version of the addTwo function from Figure 4.18 is shown in Figure 4.19—though
nearly unrecognizable, it is still looking up the + operator as the seventh element of a pack-
age property and then calling it. Note that the function now has the generic name LI1,
and is declared static—it will not be exported in the symbol table of the compiled code.
Despite this, GCL compiles this to an unrelocated intermediate object file and is able to
dynamically load it into the running executable, by implementing its own linking and load-
ing routines. GCL records the fact that the non-exported function LI1 is really addTwo by
concatenating its own custom symbol table data structure to the end of the compiled object
file, outside any section structure as defined by the Executable and Linking Format (ELF)
file specification [13]. This GCL-specific data is even invisible to binary-file inspection tools
like objdump which expect binary files to have custom data in custom file sections [40].
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What is the structure of the build system and how is it
implemented?

A build system diagram for axiom is given in Figure 4.20, and the build system structure is
described in the caption of that figure.

Some background information about Lisp concepts and terminology may be helpful in
understanding Figure 4.20. A Lisp environment, sometimes referred to as simply a Lisp, is
an interface that, in a loop, interactively reads Lisp code, evaluates it, and prints the result.
Lisp code evaluated by a Lisp environment can dynamically modify the Lisp environment
itself by defining new symbols and redefining existing ones inside the Lisp environment.
Large Lisp software projects can be developed interactively without complete textual source
code for the software ever existing; the functions and data structures in the memory of the
Lisp environment constitute the software. To preserve such software, Lisp environments
provide a means to save all the definitions of a Lisp environment as a Lisp image. Usually,
a Lisp image is an executable binary that starts up a Lisp environment prompt when run,
but has all the definitions of previous Lisp session embedded inside the image. These can be
distributed to other people, can be dynamically modified, and new derivative Lisp images
can be produced from them.

axiom is implemented using the noweb literate programming system. There are over
1.4 million lines of LATEX macro code, such as that in Figure 4.21. The source files are
individually as large as 7 MB. These files can be compiled into more than 20 000 typeset
pages of combined source code and documentation, such as the one in Figure 4.22, or into
approximately 360 KSLOC of Lisp, C, and Scratchpad source code.

The maintainer chose to use a literate programming system because, when axiom was
open-sourced, there were few source-code comments, and he wanted to preserve knowledge
of how and why the package works [14].

Most of the build system is implemented as Makefiles written in noweb. Configuration
is performed by selecting one of 37 different operating-system-specific top-level Makefiles
generated by the noweb macro system. These top-level Makefiles contain hard-coded con-
figuration parameters for each operating system.

What, if any, issues are there in building the package?

Many problems were encountered when attempting to build axiom, and in fact it does not
build at all. The key reason is that axiom relies on GCL, which is not compatible with
this version of Ubuntu. However, this key build issue is exacerbated by the build system
inadvertently ignoring errors; the absence of incremental rebuilds; and that individual build
steps are difficult to execute manually.

...1 axiom relies on a broken GNU Common Lisp—The relationship between axiom and
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Figure 4.20: axiom build diagram, using the notation of Figure 4.1. A Lisp image is defined
on page 61.
axiom relies on GCL, a Lisp environment written in a combination of C and Lisp. First
a C-language interpreter for a subset of Lisp is compiled. It loads the Lisp code for the
compiler and the Lisp APIs, and saves the resulting image. This image is a full-fledged Lisp
interpreter-compiler, but running as interpreted code. It recompiles itself, producing the
final compiled Lisp executable.
The source code for axiom is a collection of literate source files written in a macro-language
dialect of LATEX with fragments of source code in other languages. A tool called weave
extracts the LATEX markup and formats the other source code, producing LATEX source files
which are then typeset.
Source code in C, Lisp, and Scratchpad is also extracted from the source code. Some
C code produces standalone binaries. Other source code is linked into Lisps containing
axiom code. First, GCL saves a Lisp containing macro definitions and some build code
for axiom. This Lisp compiles the interpreter-compiler for Scratchpad, producing the main
axiom binaries. These in turn compile the math library written in Scratchpad, and then
execute the regression tests, consisting of Scratchpad input and expected output.
At runtime, the axiom interface is implemented by eight instances of five different binaries,
communicating via sockets.
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1633 \defun{setCurrentLine}{setCurrentLine}
1634 Remember the current line. The cases are:
1635 \begin{itemize}
1636 \item If there is no \$currentLine set it to the input
1637 \item Is the current line a string and the input a string?
1638 Make them into a list
1639 \item Is \$currentLine not a cons cell? Make it one.
1640 \item Is the input a string? Cons it on the end of the list.
1641 \item Otherwise stick it on the end of the list
1642 \end{itemize}
1643 Note I suspect the last two cases do not occur in practice since
1644 they result in a dotted pair if the input is not a cons. However,
1645 this is what the current code does so I won't change it.
1646 \usesdollar{setCurrentLine}{currentLine}
1647 <<defun setCurrentLine>>=
1648 (defun |setCurrentLine| (s)
1649 (declare (special |$currentLine|))
1650 (cond
1651 ((null |$currentLine|) (setq |$currentLine| s))
1652 ((and (stringp |$currentLine|) (stringp s))
1653 (setq |$currentLine| (list |$currentLine| s)))
1654 ((not (consp |$currentLine|)) (setq |$currentLine| (cons |$currentLine| s)))
1655 ((stringp s) (rplacd (last |$currentLine|) (cons s nil)))
1656 (t (rplacd (last |$currentLine|) s)))
1657 |$currentLine|)

Figure 4.21: noweb input example from axiom source code

44 CHAPTER 5. HANDLING TERMINAL INPUT

5.3.23 defun setCurrentLine

Remember the current line. The cases are:

• If there is no $currentLine set it to the input

• Is the current line a string and the input a string? Make them into a list

• Is $currentLine not a cons cell? Make it one.

• Is the input a string? Cons it on the end of the list.

• Otherwise stick it on the end of the list

Note I suspect the last two cases do not occur in practice since they result in a
dotted pair if the input is not a cons. However, this is what the current code
does so I won’t change it. [$currentLine p??]

〈defun setCurrentLine〉≡
(defun |setCurrentLine| (s)
(declare (special |$currentLine|))
(cond
((null |$currentLine|) (setq |$currentLine| s))
((and (stringp |$currentLine|) (stringp s))
(setq |$currentLine| (list |$currentLine| s)))

((not (consp |$currentLine|)) (setq |$currentLine| (cons |$currentLine| s)))
((stringp s) (rplacd (last |$currentLine|) (cons s nil)))
(t (rplacd (last |$currentLine|) s)))
|$currentLine|)

Figure 4.22: Typeset noweb output example from axiom source code
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GCL was explained above: the axiom interpreter-compiler is written in Lisp and compiles
to Lisp, while GCL compiles Lisp to C, invokes a C compiler, and then executes its own
linking and loading routines using its own symbol tables to dynamically load intermediate
object code into the running Lisp process. The last release of GCL on its homepage1 is from
2005, and there have been many changes to Linux since then. GCL appears to be currently
unmaintained. There is a version control repository,2 but there has been only one commit
in the last two years, and that to a single file.

Ubuntu’s precompiled GCL binary aborts with a segmentation fault on startup. It
predates the now-common use of exec_shield, which makes writable memory regions non-
executable to prevent malicious security exploits from loading executable code into memory,
and Address Space Layout Randomization, which loads libraries at random locations in
memory to prevent malicious security exploits from having well-known memory locations to
target. GCL both attempts to execute code it has just written into memory, and persists
library function addresses between executions. Disabling these security features allows GCL
to run, but it is unable to compile axiom, reporting the error message cannot read address

Lisp initialization failed.
axiom includes the source code for 3 different versions of GCL in its source distribution,

and patches for 14 different versions in total. Attempts to use these fail again with the
same cannot read address error message. On the axiom mailing list, the user Enrique
Perez-Terron described both the cause and his solution [51], though he was unable to build
the package even after resolving this issue. axiom’s build failure is a failure of GCL’s
compiler::link function, which is supposed to save a new Lisp image containing the current
environment. Perez-Terron found that the failure occurred because GCL was unable to
parse some newer statements in the memory map file output by the compiler’s linker. One
solution is to create a shim script with the same name as the linker that appears earlier in
the executable search path. The shim script executes the real linker, then edits the resulting
file to remove portions that GCL does not understand. This succeeds in overcoming the
cannot read address error, only to produce the similar error message I'm not an object

Lisp initialization failed instead.
GCL’s inability to save compiled code is likely the result of the low-level custom op-

erations it performs on object files. GCL implements its own nonstandard symbol table
format, and its own linking and loading mechanisms. These have no longer compatible with
updates to the standard linking and loading mechanisms of Linux, or the output of tools
that support those mechanisms.

...2 axiom does not build at all on Ubuntu 9.10—while the vendor build system was
1www.gnu.org/software/gcl/
2http://cvs.savannah.gnu.org/viewvc/?root=gcl
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originally used, the Ubuntu-supplied patches and build scripts were examined after repeated
failures of the vendor build system. Unlike the case with gnat-gps, there was no significant
difference between the build systems, and the Ubuntu build failed to produce a working
binary. One portion of the Ubuntu build script involves a mysterious attempt to start the
axiom build; wait 30 minutes; then kill the build and restart it.

The incompatibility of GCL on Ubuntu 9.10 is irreconcilable at the build level, and
makes axiom unbuildable. A significant amount of development work to update this version
of GCL to work on Ubuntu 9.10 would be necessary to make it build.

An attempt to build the newer Ubuntu-supplied version of axiom on Ubuntu 10.10 did
succeed on the first try, however; that is what was used to generate screenshots and make
the investigations described earlier in this section.

While axiom’s unbuildability is due to an incompatibility between GCL and the system
linker, the following build issues exacerbated determination of that cause.

...3 The build system inadvertently ignores build errors—The Makefiles contain many
complex multiline shell commands that lack proper error handling. When these fail, the
build proceeds anyway, only to fail later when the earlier build output is found to be missing,
resulting in error messages such as Command not found.

Consider the Makefile fragment in Figure 4.23.

1 gcldir:
2 # .. commands to patch GCL source code omitted ...
3 @(cd ${GCLVERSION} ;
4 ./configure ${GCLOPTS} ;
5 ${ENV} ${MAKE} ;
6 echo '(progn (load "cmpnew/gcl_collectfn.lsp")'
7 '(load "lsp/sys-proclaim.lisp") (compiler::emit-fn t)'
8 '(system::save-system "${OUT}/lisp"))' | unixport/saved_gcl )
9 @echo 13 finished system build on `date` | tee >gcldir

Figure 4.23: axiom makefile fragment

This Makefile rule has no prerequisites, and its effect is to enter the GCL source directory;
configure it; build it; and then attempt to save a new Lisp image by running the newly-built
GCL. The statements are joined by the shell’s ‘;’ sequential list operator, which executes
all commands regardless of their error return value, and returns the error return value of
only the last command executed to Make. If the directory does not exist, if the configure
fails, of if the GCL build fails, then the resulting error message is command not found when
saved_gcl cannot run on line 8. On the axiom mailing list, users asking for help with build
problems have posted apparent error messages, only to receive replies stating, “Your build
failure originated much earlier in the log – could you please forward the entire thing?” [41]

Even if the build of GCL succeeds, the save-system may not—as described above,
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compilation is broken for GCL running on this version of Ubuntu, and the emit-fn setting
enables the compiler, causing the save-system to fail. However, GCL does not propagate
the failure of the save-system call back to the shell as a return error value, and the build
of axiom proceeds as if GCL was successfully built, only to fail much later with a different
command not found error message when the Lisp built here is not found.

This problem occurs in other axiom Makefiles as well. While these Makefiles could
be modified to use the conditional ‘&&’ operator instead, there are other issues with this
fragment.

...4 There is no support for incremental rebuilds—The majority of axiom’s source code is
written in the noweb macro language, and expanded at build time to produce individual
source files. Using axiom’s build system, this procedure can only be performed en masse,
expanding every source file. Even if changes to the noweb source file result in changes only
to the typeset documentation, or to only a few expanded source files changing, every possible
source file is newly-expanded from the noweb source and receives an updated timestamp,
causing Make to rebuild hundreds of source files instead of just a few changed ones.

Another example of lack of support for incremental builds is found in Figure 4.23, where
the steps to build GCL are all chained together as one unit. If modifying GCL, for example
to insert tracing code to debug the linking problems described above, then this Makefile
fragment results in every compilation triggering a time-consuming full reconfiguration of
GCL. Since the configuration process writes out a header file containing inferred configura-
tion values which is #included directly in every header file and indirectly in every source
file, this also triggers a full rebuild of all of GCL.

The inability to make a small change and quickly see its effect, to say nothing of its
effect on the package development process, makes it difficult to debug build problems.

...5 Build steps are difficult to run manually, in part due to use of environment variables
for configuration—when debugging build problems, it is often necessary to manually try
variations of failing build commands until they succeed. axiom’s build system makes such
debugging difficult, in part due to coarse-grained build targets, and in part due to use of
environment variables for configuration.

One example of such a coarse-grained target is the mass-extraction of noweb source code
for a major source code component. Another example occurs in Figure 4.23. The target
is a custom version of of GCL. Building the target requires configuring GCL, building
GCL, and then loading custom code into it and saving a new Lisp image. All of these
operations are treated as a single step, and the Makefile provides no way to run only one
of them. Experimenting with variations of the final image-saving step cannot be done with
this Makefile as-is.
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The problem of coarse-grained targets is exacerbated by extensive use of environment
variables for configuration. When individual build steps are simple commands such as run-
ning a script or tool with one or two arguments, the build system’s inability to pinpoint
build steps is not a significant barrier, as a developer can manually execute the build com-
mands by typing them in. However, many of axiom’s build commands are more complicated
scripts such as the Lisp script in lines 6-8 of Figure 4.23. This script references the envi-
ronment variable ${OUT}, one of 25 environment variables set by top-level Makefiles. These
environment variables specify not only paths to tools and source code directories, but also
Makefile control flow and build system logging. The variables are propagated through a hi-
erarchy of 23 different Makefiles, and also used internally by some scripts called by the build
system. Manually running a build command that depends on these environment variables
requires all of them to be set correctly. While the environment variables are echoed to the
terminal at some points of the build, they contain spaces that are not properly escaped, so
copying-and-pasting them directly into the shell is not possible.

Build systems such as python3.0’s and synopsis’s use autoconf to store this configura-
tion data in files instead of environment variables. When there are hierarchies of Makefiles,
the configuration parameters are textually substituted into each Makefile, but can be over-
ridden from the Make command line when necessary.

What, if any, issues are there in building changes to the package?

As discussed above as build issue ...4 , axiom’s build system does not support incremental
rebuilds of itself.

However, there is full and excellent support for interactively rebuilding mathematical
code written in Scratchpad, so the lack of incremental rebuilds for the axiom environment
is not an issue for most end-users, and for many developers working on the mathematical
side of axiom. The mathematical library is implemented entirely in Scratchpad, and, once
an axiom binary is available, users and developers are free to interactively develop new
mathematical domains and mathematical packages.

What build system features prevent build problems similar to
those encountered in other packages?

..1 Because axiom is an interactive programming environment, the build system and its
problems do not affect most users and many developers—the interactive nature of the axiom

environment means that end-users and developers wishing to do mathematics or implement
mathematical algorithm with axiom do not use the build system to do so. As long as
some pre-compiled binaries are available somewhere, whether from an operating system
distribution repository or from the axiom web site, axiom can be used and extended. While
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some users will want to build the software themselves, only those wishing to modify the
internals of the Scratchpad interpreter-compiler need to deal with the build problems.

Conclusion

axiom’s high-level architecture shown in Figure 4.16 makes axiom seem simple. But the build
system is extremely complicated, with nonexistent tool support, and no use of frameworks
or abstraction in the build system implementation. It can not be built on Ubuntu 9.10, due
to its reliance on an incompatible version of the Lisp implementation GCL, and this key
problem is exacerbated by many other build system issues.

The use of literate programming for the implementation was of limited help in debugging
the numerous axiom build issues. It is voluminous, verbose, and outdated. For example,
src/interp/Makefile.pamphlet contains several definitions of variables whose names have
an “O” prefix; there is a comment with each that “O” stands for “old,” but, to quote the
file, “The use of ‘old’ is something of a sublet concept as there were several generations of
‘old’ and all meaning of the term is lost.” The corresponding variables are all set to blank
values and unused. There are extensive references to a Lisp dialect called Boot that parts
of axiom were once implemented in, which required additional build support. Despite the
fact that it is apparently not used anymore, there are lengthy discussions of it throughout
the build system source.

There are potentially valid reasons for these properties of the literate source code. axiom
was not developed as a literate program, but rather, open-sourced with minimal comments.
As described in Section 0.3.2 of Volume 4 of the source, the current maintainer was unable to
build the original open-source release at all, as it had been ported to the Lisp implemented
Codemist Common Lisp. The maintainer ported it back to GCL, and chose a literate format
in an attempt to preserve the limited remaining knowledge of how and why axiom works [14].

Overall, the dynamic interactivity of the axiom environment means that, once built,
build and rebuild problems matter little to end-users or developers doing mathematics in
and extending the capabilities of axiom, because doing so takes place entirely within the
axiom environment.

4.5 Case study: ruby-prof

A summary of the findings for ruby-prof is given in Table 4.5. The multilanguage diagram
is Figure 4.24 and the build-time view diagram is Figure 4.25.

What does the package do? What are the major abstractions?

ruby-prof is a profiler for the Ruby programming language. It can measure and report
how much time, memory, and/or ‘garbage’ is spent in different parts of Ruby-language soft-
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Question Findings
Purpose and abstractions Profiler for Ruby source code
Architecture, languages,
and interactions

Ruby script and Rake build plugin using Ruby library, with
C extension for collecting profile data

Build system Rake-based with auto-generated Makefile for C extension
Build issues ...1 Build happens at install time

...2 Unavailable options are exposed, causing crashes

...3 No mechanism to keep windows binary up-to-date

...4 Only works with compiler used to build Ruby
Rebuild issues ...5 No dependencies in auto-generated build system
Build features ..1 Exports reusable general-purpose build functionality
Conclusion Small packages have build issues too. Object-oriented build

systems show promise but may lack maturity

Table 4.5: Summary of findings for ruby-prof

ware. ‘Garbage’ consists of no-longer-referenced objects that are reclaimed by the garbage
collector.

What are the major parts of the software, what languages are they
written in, and how do they interact?

As shown in Figure 4.24, there are four parts to ruby-prof. The RubyProf library handles
analysis and formatting of profiling data collected by a profile data collection module. The
functionality can also be accessed via a command-line user interface, or via a build plugin
that can integrate profiling into the builds of other Ruby-language packages.

ruby-prof is written in Ruby, except for the profile data collection, which is written in
C. The nature of the interaction is similar to that between Python modules implemented in
C and Python, as described starting on page 39. The Ruby interpreter is written in C and
provides C-language APIs equivalent to those available to Ruby-language code. Although
implemented in C, ruby-prof’s profile data collection module calls methods on Ruby ob-
jects, and implements methods of Ruby object classes. The implementation language of a
Ruby class is an implementation detail hidden from clients.

RubyProf
library

ruby-prof
command line 

program

ProfileTask 
build 
plugin

Profile data 
collector

Figure 4.24: ruby-prof multilanguage diagram, using the notation of Figure 4.1. ruby-prof
can be used as a command-line tool, a build-time plugin, or as a library. The build-time
plugin and command-line user interface call the library to analyze and format profile data.
For speed reasons, the collection of profile data is implemented in C.
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Package
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Installation
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Runtime
view

Profile data 
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ruby_prof.so

C compiler

file copy

Ruby 
sources
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Ruby 
sources
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Figure 4.25: ruby-prof build diagram, using the notation of Figure 4.1. Parts implemented
in Ruby are copied unchanged into the execution environment. The profile data collection
module, consisting of a single C source file, is compiled into a shared library installation
time.

ruby-prof is a small package, totalling only 4 KSLOC, including 1 KSLOC of unit tests.
The profile data collection module consists of a single C implementation file and several C
header files.

What is the structure of the build system and how is it
implemented?

A diagram of ruby-prof’s build structure is given in Figure 4.25. The Ruby-language parts
are copied to the execution environment, and the C part is a single implementation source
file that is compiled against the Ruby headers and library to produce a shared library loaded
at runtime.

Before describing the implementation of ruby-prof’s build system, it is first necessary
to provide some background information about the Rake build tool that it uses.

Background: Rake

Rake is an object-oriented replacement for Make written in the Ruby programming language.
Fowler provides an enthusiastic overview [20]. It differs from Make in that its Rakefiles are
Ruby-language source code, with full access to Rake’s object model. This allows dynamic
customization and extension of the build system. While many other build tools are either
task-based or artifact-based but not both, Rake supports any paradigm that can be imple-
mented in Ruby by subclassing the Rake library’s Task object. This includes artifact- and
task-based builds. For example, the basic artifact-based Makefile

1 .PHONY: default
2

3 default: foo
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4

5 foo: foo.c
6 gcc $^ -o $@

has a straightforward transliteration as the Rakefile

1 task :default => 'foo'
2 file 'foo' => 'foo.c' do |t|
3 system *["gcc", *t.prerequisites, "-o", t.name]
4 end

which is Ruby source code. The File task implicitly uses file timestamp dependency con-
sistency checks. However, instead of being forced to use Make’s paradigm of file times-
tamp checks for consistency between individual files, the Rakefile-based build system can
be customized by subclassing Task or importing subclasses from other libraries. Tasks that
represent parts of files, aggregations of files, tasks, or other abstract entities can be used,
with dependency consistency checked by any desired computation. For example, ruby-prof
provides a ProfileTask subclass to automatically profile unit tests at build time.

ruby-prof’s build system implementation

The default build target produces an installable Ruby .gem package file that is installed by
the standard Ruby installation tool also called gem.

Surprisingly, ruby-prof’s profile data collection module, which is implemented in C, is
not built during the build, and there is no Rakefile build target to build it. Instead, during
the build, the need for the module to be built is recorded in metadata. The gem tool reads
this metadata at install time, and executes a non-Rake ruby-prof build script specifically
for building the profile data collection module. This non-Rake build script uses a different
Ruby build tool, namely the make-Makefiles tool called mkmf, to auto-generate a Make-based
build system. The auto-generated Make-based build system is then executed by gem.

Developers wishing to manually build the C parts of ruby-prof can run the build script
specified in the package metadata to auto-generate the Make-based build-system for it, and
then use Make.

What, if any, issues are there in building the package?

Getting ruby-prof to build and run initially was problematic, as the build system unexpect-
edly defers compilation until install time. Some optional features disabled at configuration
time are still exposed through the UI, but attempting to select them crashes the software.
Additionally, there are issues with possibly inconsistent binaries distributed with the source
code, and limited flexibility of the build system.

...1 The build happens at install time—when a developer downloads the source code for
ruby-prof and runs the build system, the necessary shared library that is part of it is not
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actually built. If the software is not installed, then trying to run it produces the error
message “no such file to load -- ruby_prof.so.” If ruby-prof is already installed,
then the shared library from the installed version is used, even if it is incompatible. The
software may crash, and if it does not, any recent changes to the ruby-prof source code
will not be in effect.

The gem tool that compiles the shared library at installation time does not provide an
option to compile a development version. Developers can manually run a script to generate
a Makefile, and then run Make.

...2 Unavailable options are exposed, causing crashes—some ruby-prof features, such as
profiling garbage collection, require a patched Ruby interpreter that includes extra instru-
mentation hooks. When building the profile data collection module at install time, the
needed hooks are checked for by the auto-generated build system. The mkmf tool checks for
the availability of these hooks by test-compiling a sample program, and defines appropriate
preprocessor symbols for each one if found. This is the same strategy used by autotools. The
profile data collection module then uses the preprocessor symbols to conditionally compile
support for only the hooks available in the Ruby runtime.

However, the RubyProf library and the ruby-prof command-line tool do not take this
configuration information into account. The help for the command-line tool indicates paren-
thetically that using certain profiling modes “(requires a patched Ruby interpreter).”
Trying to use unavailable modes causes ruby-prof to crash. Patching the Ruby inter-
preter and reinstalling it is also not enough; since the checks are performed at ruby-prof

installation time, ruby-prof must be reinstalled too.
This issue could be resolved with changes to ruby-prof. The build system could be

modified to propagate configuration information back to the Ruby parts of ruby-prof.
Or, the conditionally-compiled code could be modified to abort with an appropriate error
message instead of crashing when required instrumentation hooks in the Ruby runtime are
missing.

...3 There is no mechanism to keep the windows binary up-to-date when building on other
platforms—compilers are usually not present on the windows platform, causing complica-
tions with the compilation-at-installation issue described earlier. ruby-prof compensates
by including a windows .dll binary shared library as part of the source code distribution.
The .dll is a compiled version of the C-language profile data collection module, labelled
ruby_prof.so in Figure 4.25. This binary is automatically used, even if a compiler is avail-
able at install time, unless the --platform=ruby option is specifically passed to the gem

tool at install time.
However, there is no mechanism for keeping this Windows binary up-to-date with the
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source code. Developers modifying and releasing new versions of ruby-prof must remember
to manually find a Windows machine or cross-compiler to build an updated Windows binary.

This particular issue appears to be partially resolved in newer versions of ruby-prof than
that examined for this case study. In the latest versions of ruby-prof, there is no longer
a precompiled Windows shared library included with the source code. While some official
source releases of ruby-prof are accompanied by Windows binary releases1 and some are
not, the situation is improved in part due to evolution of the Ruby ecosystem. Installations
of versions of ruby-prof for which no Windows binary version has been uploaded now give
a useful error message with URLs of download packages and installation instructions for the
Ruby DevKit, a package containing header files and a self-contained compiler for building
C parts of Ruby software.

...4 The build system only supports the exact compiler used to build the Ruby inter-
preter—the mkmf build system generator queries the standard Ruby rbconfig library for
configuration information such as compiler options. However, the configuration information
in rbconfig is fixed at the time that Ruby is compiled. It may not be appropriate for builds
of C modules to be loaded into Ruby, and this limits flexibility.

In particular, on Windows, where the standard Ruby interpreter packages are built with
the Microsoft C compiler, the GCC compiler is much more common for building C modules
for Ruby, as it is freely available. The two compilers produce mutually compatible output
files, but have very different command-line syntaxes. The rbconfig library provides only
the Microsoft command-line options. To enable use of GCC on Windows, ruby-prof has
a separate build script for Windows with its own hard-coded compiler options. This is
in contrast to older build tools such as autotools which dynamically probe for compatible
compilers and command-line options.

What, if any, issues are there in building changes to the package?

...5 There are no header file dependencies in the auto-generated build system for the C
part of ruby-prof—the mkmf build tool auto-generates a Make-based build system for the
C part of ruby-prof. The C part consists of one .c implementation file and nine .h header
files. The header files in question have implementation code for various functions, not just
headers.

The auto-generated Makefile has no dependencies on any of the header files. Developers
who change the implementation code in the header files and then rerun Make will not have
their changes incrementally compiled. Instead, Make will say, “Nothing to be done.”

This is a bug in mkmf, which should automatically generate dependencies, or support
adding them to its generated Makefiles. This issue may be partly because this particular

1The versions mentioning ‘mswin’ or ‘mingw’ at http://rubygems.org/gems/ruby-prof/versions
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build system seems to be designed to only be run at install time. For single-use build
systems that do not need incremental recompilation, such dependencies are not necessary;
but then it seems strange to base the build system on Make, whose sole purpose is to enable
incremental recompilation.

What build system features prevent build problems similar to
those encountered in other packages?

..1 ruby-prof exports general purpose build functionality in the form of its ProfileTask

build plugin—while other build systems examined in these case studies exhibit varying levels
of modularity, none exhibit modularity to the extent of ruby-prof’s Rake-based system. It
allows packages to export build-level functionality in a modular way to other packages.
Specifically, the ProfileTask class that is part of ruby-prof extends Rake’s default unit-
testing task by adding the ability to profile unit test runs. Clients can add this feature
to their own builds without extensive reworking of build systems, by adding an import for
ProfileTask and use it in place of or in addition to Rake’s default TestTask. Normally,
a client package using ProfileTask would declare its dependency on ruby-prof in its
metadata, and the gem tool would use this metadata to automatically install ruby-prof
when it installs the client package.

Use of such modular extensions to build systems may be able to reduce the complexity
encountered in other case studies.

Conclusion

Although ruby-prof is quite small when measured by lines of source code, it still has
numerous build system issues. The lack of rebuilds when .h header files change is a serious
issue. The compiler flexibility and windows binary loss of synchronization issues are potential
issues noticed during investigation of the build system, rather than problems which broke
the build. The build-at-install feature is unusual, but once it is understood, it is not a
showstopper.

The extensibility features offered by Rake appear promising. However there appears to
be a lack of maturity in Ruby build tools, exemplified by that absence of dependencies on
header files. It seems likely that the situation will improve with time as the Ruby ecosystem
matures; some of the issues with ruby-prof’s Windows binaries have already been addressed
by library upgrades.
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Chapter 5

Build patterns and anti-patterns

Comparative analysis of the build problems experienced in some case studies but not experi-
enced in others yields knowledge about how the packages not experiencing problems avoided
them. These findings are summarized in terms of build patterns [23] and anti-patterns [12].
A summary of which patterns and anti-patterns are based on which build problems and
features identified in the case studies is given in Table 5.1; a more detailed version is given
in Table 5.2; and the reverse table, showing which build issues and features give rise to
which patterns and anti-patterns, is given in Table 5.3.

The following template is used to structure the findings for each pattern and anti-pattern:

• Description: What is the pattern or anti-pattern?

• Consequences: What results can come from following or avoiding the pattern or anti-
pattern?

• Evidence: What evidence for the pattern or anti-pattern is there in the case studies?

• Remedies: What fixes can allow individual builds to succeed despite the presence of
an anti-pattern? What are some steps that can be taken to incorporate a pattern into
existing software?

Pattern or Anti-pattern synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern: Filename Collision ...2
Anti-pattern: Installation Required ...1 ..1 ...6 ...1
Anti-pattern: Unverified Third-Party Software ...3 ...3 ...4 ...1 ...2
Anti-pattern: Incorrect Dependencies ..1 ..2 ...1 ..2 ...3 ...5
Anti-pattern: Ignored Error ..4 ..3 ...3
Pattern: Build-Free Extensibility ..2 ..1 ..1
Pattern: Object-Oriented Builds ..3 ..4 ..1 ...1 ...5
Pattern: Persistent Configuration ..3 ...2 ...7 ...5 ...2 ...4

Table 5.1: Abbreviated build and rebuild issues and features
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Pattern or
Anti-pattern synopsis python3.0 gnat-gps axiom ruby-prof

Anti-pattern:
Filename
Collision

...2
Documentation
build fails on
case-insensitive
filesystems

Anti-pattern:
Installation
Required

...1 Running built
software requires
manual path setup

..1 Checks if
running from build
directory

...6 Blank icons,
dialogs when run
from build
directory

...1 Build happens
at install time

Anti-pattern:
Unverified
Third-Party
Software

...3 PDF
documentation
does not build due
to problem in
third-party tool

...3 Incompatible
project file syntax

...4
Inconsistencies
between Ada and
system interfaces

...1 Relies on
broken GNU
Common Lisp

...2 Does not build
on Ubuntu 9.10

Anti-pattern:
Incorrect
Dependencies

..1 Uses automatic
dependencies
..2 Uses shared

libraries

...1 Manual
dependency
management result
is that changing
some header files
forces a full
rebuild, while
changes to other
header files are
ignored

..2 gnatmake
handles
dependencies
automatically

...3 No mechanism
to keep windows
binary up-to-date

...5 No
dependencies in
auto-generated
build system

Anti-pattern:
Ignored Error

..4 Build aborts
immediately on
error

..3 Build aborts
immediately on
error

...3 Build system
inadvertently
ignores some build
errors

Pattern:
Build-Free
Extensibility

..2 Can extend
with Python and
C plugins

..1 Scripting
interface allows
build-free
extension

..1 Interactive
interpreter means
most users and
many developers
do not need to use
the build system

Pattern:
Object-
Oriented
Builds

..3 distutils-
based build with
autotools
subbuilds

..4 Standard
distutils tool
used to build
standard library

..1 Exports
reusable
general-purpose
build functionality

...1 Build happens
at install time

...5 No
dependencies in
auto-generated
build system

Pattern:
Persistent
Configuration

..3 Uses autoconf
for configuration

...2 Omits search
paths for many
third-party C
libraries

...7 Python
console does not
show output

...5 Build steps
difficult to run
manually

...2 Unavailable
options are
exposed, causing
crashes

...4 Only works
with compiler used
to build Ruby

Table 5.2: Build and rebuild issues and features
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Issue or feature (Anti-)pattern
synopsis

...1 Running built software requires manual path setup IR

...2 Documentation build fails on case-insensitive filesystems FC

...3 PDF documentation does not build due to problem in third-party tool UTPS
..1 Uses automatic dependencies ID
..2 Uses shared libraries ID
..3 distutils-based build with autotools subbuilds OOB
..4 Build aborts immediately on error IE

python3.0
...1 Manual dependency management result is that changing some header files forces a

full rebuild, while changes to other header files are ignored
ID

..1 Checks if running from build directory IR

..2 Can extend with Python and C plugins BFE

..3 Uses autoconf for configuration PC

..4 Standard distutils tool used to build standard library OOB
gnat-gps

...1 References Ada libraries no longer part of the project

...2 Omits search paths for many third-party C libraries PC

...3 Incompatible project file syntax UTPS

...4 Inconsistencies between Ada and system interfaces UTPS

...5 Ubuntu maintainer rewrites build system

...6 Blank icons, dialogs when run from build directory IR

...7 Python console does not show output PC
..1 Scripting interface allows build-free extension BFE
..2 gnatmake handles dependencies automatically ID
..3 Build aborts immediately on error IE

axiom
...1 Relies on broken GNU Common Lisp UTPS
...2 Does not build on Ubuntu 9.10 UTPS
...3 Build system inadvertently ignores some build errors IE
...4 No incremental rebuilds
...5 Build steps difficult to run manually PC
..1 Interactive interpreter means most users and many developers do not need to use

the build system
BFE

ruby-prof
...1 Build happens at install time IR, OOB
...2 Unavailable options are exposed, causing crashes PC
...3 No mechanism to keep windows binary up-to-date ID
...4 Only works with compiler used to build Ruby PC
...5 No dependencies in auto-generated build system ID, OOB
..1 Exports reusable general-purpose build functionality OOB

Table 5.3: Use of build and rebuild issues in (anti-)patterns
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• Applicability: Is this (anti-)pattern a general software implementation issue, a general
build system issue, or an issue specific to build systems for multilanguage software?

This template heading helps to identify build patterns and anti-patterns that could
apply to build systems for single-language software as well.

In general, the build problems exemplify an anti-pattern and the build features help to
resolve it. The Evidence template heading for each (anti-)pattern clarifies the relationship.

5.1 Anti-pattern: Filename Collision
Description

Different source files have similar names that can be confused on certain filesystems, causing
build or run problems. For example, two files with identical names modulo case cannot both
exist on case-insensitive filesystems; files with similar names modulo case can be mistaken
for each other by build tools designed for case-sensitive filesystems; and different filesystems
have different definitions of what characters are legal in filenames.

Consequences

Developers may be unable to extract or build source code, and error messages may obscure
the cause of the problem.

For straightforward case collisions, such as files named Readme and README in the same
directory, error messages may vary. A non-systematic examination of a few common tools
shows that only one identifies the problem. The common tar unarchiving tool uses the
last file present in the archive, silently overwriting any others. The unzip tool prompts
for whether to replace an existing file. The Subversion version-control tool will display “No
such file or directory” and “working copy locked” error messages. The Mercurial
version-control tool, however, prints a meaningful error message: “abort: case-folding

collision between readme and README.”
There are other types of filename collision other than straightforward case collisions,

such as the issue with the Synopsis directory and synopsis.py file described on page 36.
That issue results in the error message, “ImportError: cannot import name config”
which does not not identify the underlying problem. Other filename collision issues may
involve similar error messages.

This is not strictly a Windows or Mac OS problem. The synopsis issue was encountered
in Ubuntu. An operating system using a non-default filesystem is not a contrivance, due to
extensive use of network filesystems, dual-booting, USB keys, and virtual machines.
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Evidence

The synopsis documentation fails to build in Ubuntu when using a Mac OS filesystem
over the network, as the case-insensitive filesystem causes the synopsis.py build script to
be mistaken for the Synopsis. The Python code from Synopsis import config directs
Python to load the config object from the Synopsis module, which could be a single file or
a directory. Before checking for the intended Synopsis directory, Python first attempts to
load a single-file Synopsis.py file; on the case-insensitive Mac OS filesystem, this succeeds,
returning the synopsis.py build script instead. The build script does not contain a config

object and the build aborts with an error.
To avoid this issue the Linux case-sensitive ext4 filesystem was used to complete the

synopsis build, and for the other case studies. However, an additional attempt was made
to build the other case studies in Ubuntu, but using a Mac OS filesystem. While no further
filename collisions were encountered, both the Brenta build system for gnat-gps and the
axiom build system contain commands to hard-link files. Since hard-linking files is not
supported in the specific configuration used to mount the Mac OS filesystem in Ubuntu,
these commands failed with Operation not permitted error messages.

Remedies

Once the problem is known, the remedy is to rename the files so that they no longer collide.
Automated detection of known classes of conflicts, such as straightforward case collisions

or Python module directories with the same name, modulo case, as single Python files, can
be quickly implemented by writing a short script.

One method of detecting the problem that can be implemented today, and can detect all
kinds of case-collision issues, is to regularly test-build the software on a variety of platforms
and filesystems. Even when a project does not support a specific platform, it may be useful
to perform basic tests, such as whether it is possible to unpack the source code on other
platforms without error.

Applicability

This anti-pattern is specific to build systems, but is not specific to multilanguage software.
It is possible that cross-language filename conflicts, such as differences of legal filenames
between programming languages, could be an issue, but this was not experienced in any of
the case studies.
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5.2 Anti-pattern: Installation Required
Description

Software does not work as soon as executables are built, but requires an additional instal-
lation stage. The uninstalled executables might not run at all, might have broken features,
or could produce error messages.

Consequences

End-users and new developers performing their first builds may believe they have done
something wrong when their just-built software does not run. For all developers, it is time-
consuming to re-install packages after every compilation, and frustrating for source changes
not to take effect when developers forget to reinstall. Installation may require administrator
privileges. Development versions of software can be unstable, untested, and/or incompatible,
and installing such software can interfere with day-to-day use of a computer.

Evidence

Running a newly-built but uninstalled version of synopsis requires extensive manual path
setup for the different parts of synopsis to be able to load each other.

When gnat-gps is not installed, a version run from the build directory displays blank
dialogs in place of necessary functionality. Dialog template resources are spread throughout
different source directories and aggregated at install time, but the resource-loading routines
can only load from a single directory.

In contrast, python3.0’s source code checks to see if it is running from a build directory,
and, if so, adjusts search paths accordingly so that the development version is fully functional
yet independent from any other instances of Python on the system.

Running the top-level build command for ruby-prof does not build all parts of the
software; the C part is compiled at installation time. Since the build system for the C
part is designed to run only once at install time, it is missing key rebuild features such as
dependency-checking for header files, as described under the Incorrect dependencies pattern.

Remedies

Using a source code or build output directory structure that mirrors the expected deploy-
ment directory structure is one option. This approach may not scale for larger projects
where artifacts are divided into different directories for different logical components. In
such cases, an approach similar to python3.0’s internal adjustments of its search paths
when running from the build directory can be used.

The negative consequence of installed development versions of software interfering with
day-to-day work can be mitigated somewhat by installing the software into a virtual machine,
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or a virtual-machine-like environment such as a Linux chroot or FreeBSD jail. However,
in addition to requiring extensive additional setup procedures, requiring developers to have
superuser privileges, being non-portable, and creating security risks, these mechanisms all
still require time-consuming installation procedures in which software does not work as soon
as executables are built.

Applicability

This is a general build system issue, but may be more pronounced in multilanguage software.
Instead of software written in one language needing only to load its own resources, different
parts written in different languages each need to be able to locate their own resources, and
to load code and resources from parts written in other languages too.

5.3 Anti-pattern: Unverified Third-Party Software
Description

A package’s build relies on third-party software, but does not probe at configuration time
whether the required functionality works.

This anti-pattern is not about merely using third-party software, but assuming that it
works, especially when there are known bugs or incompatibilities in some versions of the
third-party software.

Consequences

The build can fail due to bugs or incompatibilities in the third-party software, while making
it seem as if the original package is at fault.

Evidence

The problem of missing or incompatible versions of required third-party packages is a well-
known problem with building open-source software [60, Ch. 15]. An attempt was made
to sidestep this issue by having Ubuntu’s package manager install all prerequisite pack-
ages, using release versions that Ubuntu had found to be mutually compatible; errors were
encountered anyway.

The PDF documentation for synopsis does not build because of a bug in the third-party
xmlroff tool.

There is an incompatibility between some syntax used in gnat-gps’s project files and
the gnatmake tool used to build it. The gnat-gps package also has some inconsistencies
between field names in C libraries that it uses and its Ada bindings for those libraries.

On Ubuntu 9.10, axiom does not build at all due to its reliance on broken functionality
in GNU Common Lisp. GCL’s save-system function does not work on that platform. This
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failure occurs despite the axiom source code distribution including the full source code for
three different releases of GCL, and patches for a total of fourteen different releases.

Remedies

Functionality of third-party software can be verified at configuration time. Consider the
approach that autotools uses for finding a C compiler. It tries a sequence of common
compiler command names and compiler installation locations, and, for each compiler found,
attempts to build and execute a test program written in C. If no functioning compiler is
found, an error message is displayed that no working compiler is available and one must be
supplied before the software can be built.

A similar verification at configuration time by axiom for GCL’s save-system function
would make it clear that GCL, not axiom, is the culprit, and the large amounts of time
spent trying to debug the build could be spent updating GCL instead.

Each project will likely find it most efficient to probe for specific bugs that it has pre-
viously encountered in third-party software, rather than running general-purpose “Smoke
Tests” [43], which will likely not check for the relevant bugs, or full regression-test suites for
third-party software, which are generally too time-consuming to be used at configuration
time.

Applicability

While this anti-pattern applies to all build systems, it may be more likely with multilanguage
software due to use of tools such as GNU Common Lisp that are not used or updated nearly
as often as more popular tools like the GCC C compiler. For example, as there have been
no new releases for GCL on its homepage since 2005, many Lisp packages using GCL to
perform low-level operations may want to verify at compile-time that the operations still
function correctly.

5.4 Anti-pattern: Incorrect Dependencies
Description

Dependencies used by the build system are incorrect. Often the cause is manual specification
of dependences where automated extraction tools could be used instead.

Consequences

When some dependencies are missing, artifacts that depend on other changed artifacts are
not rebuilt, and the build products are not consistent with the source code. This can cause
much confusion for developers who change source code and rebuild the package only to find
the software’s behaviour unchanged.
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When extraneous dependencies are specified, build times can be much longer than they
need to be.

Evidence

The header file dependencies for python3.0 are manually specified, and for convenience, the
same list of nearly all header files is declared to be a dependency of every implementation
source file. The result is that almost any change to any header file forces a lengthy rebuild
of all of python3.0, while changes to some header files that are not on the list do not result
in any rebuilding. While this may be intended as a mechanism for detecting incompatible
changes to Python header files, more precise dependency specifications would be as effective.

The automatically-generated build system for ruby-prof does not include any depen-
dencies on header files. Changes to header filers are ignored by the build system. This is
arguably a bug in the Ruby library that automatically generates the build system.

There is also a Windows binary library of the C part of ruby-prof included in its source
distribution, as most Windows systems do not have compilers installed. However, there is no
mechanism to keep this up-to-date with the source code when developing on non-Windows
platforms, or to warn developers that they must use a Windows system or a cross-compiler
to update the library artifact.

In contrast, gnat-gps—once it is built—has no problems with tracking dependencies in
rebuilds. There are no C header files, only implementation files, in gnat-gps. The gnatmake
tool handles dependencies in Ada code automatically. Incompatible changes between Ada
and C code files are detected by the linker, but there are no build-level dependencies between
them.

The synopsis package also has no issues with incorrect dependencies. Each parser
written using C++ is independently built using an autotools-generated build system that
invokes the makedepend tool to automatically extract dependencies.

Remedies

Use automatic dependency extraction tools, rather than manually specifying dependencies.
The use of automatic dependency extractors is already effectively a “solved problem.”

The issue of computing the optimal set of dependencies has received a great deal of attention
in previous work [11, 57, 58, 65]. However, such problems are not serious issues for any of
the case studies. The python3.0 rebuild issue ...1 with importdl.h, described starting
on page 42, is somewhat contrived. The ruby-prof issue is not so much a case of having
incorrect dependencies as it is of not having any at all, due to missing features in an immature
library.
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Applicability

This issue is specific to build systems.
It was expected that dependencies between artifacts implemented in different program-

ming languages might be an issue. However, no such issues were encountered, and consid-
ering the case of gnat-gps helps to explain why. Some Ada source files rely on functions
implemented in C, but there is no build-level dependency between the source files, only a
dependency of the final executable on intermediate objects independently derived from C or
Ada sources. Intermediate object files produced by compiling C source files do not depend
on Ada source files, or vice versa.

5.5 Anti-pattern: Ignored Error
Description

An individual build step fails in such a way that the build cannot succeed, but the build
system continues without noticing the failure.

Consequences

If the failing build step does not result in subsequent detected build step failures, a corrupt
build is produced.

Otherwise, the build eventually fails in a way that obscures the root cause. There are
several other negative consequences. Time is spent waiting for unusable builds to finish.
Time is spent trying to make sense of error messages that appear unconnected to the source
of the error. Developers asking for help may be told something like, as is the case with
axiom, “Your build failure originated much earlier in the log—could you please forward the
entire thing?” [41]

Because the build system will have processed the build step as if it had succeeded,
subsequent rebuilds may use stale or corrupt artifacts, producing an invalid build.

Evidence

The axiom build ignores the failure of build steps involving GCL, as discussed in that case
study. The failures are inadvertently ignored due to a subtle error-handling interaction
between Makefiles and shell scripts. Debugging the issue in order to discover the cause
takes considerable time.

In contrast, build problems experienced with synopsis and gnat-gps are detected im-
mediately by their build systems. The builds abort immediately with errors that, while also
not straightforward to rectify, are at least closely related to their root causes.

The Makefile/shell script syntax issue that causes axiom to inadvertently ignore errors
is also present in some python3.0, synopsis, and gnat-gps Makefiles. No build problems
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in the case studies resulted from this, but if some of the corresponding build steps fail,
debugging the problem may be difficult.

Remedies

While this anti-pattern can occur with any build system, it is common when using Make, due
to the subtle difference between commands separated by Makefile newlines and commands
separated by the shell script ‘;’ sequential list operator.

Uses of the shell script ‘;’ sequential list operator should be replaced with the ‘&&’
conditional operator. One popular Make textbook calls this “one of the most important
aspects of programming robust Makefiles” [46, p. 236], yet many examples throughout the
same textbook exhibit this anti-pattern.

One way to correct the error-handling behaviour for all commands in a Makefile, as well
as to handle the additional cases of failing commands in pipelines and for loops, is to add
the lines

SHELL = /bin/bash -eu -c 'set -o pipefail && eval "$${@}"'

.DELETE_ON_ERROR:

at the beginning of a Makefile, at least for GNU Make running on Unix. When intentionally
ignoring errors, such as when grepping for warnings in a log file, the shell idiom ||:, which
is shorthand for || true, may be used.

However, these changes will not resolve all instances of this anti-pattern, even for Make-
only systems, Some build tools, such as GCL when using it for its save-system function,
do not report errors as nonzero return codes back to the shell, and additional tool-specific
remedies are required.

Applicability

Correct error-handling is a general software development issue. However, the issue of inad-
vertently ignored errors is especially common in Make-based build systems. It is not specific
to building multilanguage software.

5.6 Pattern: Build-Free Extensibility
Description

A package provides extension, modification, and adaptation mechanisms that do not involve
compilation or build systems.

Consequences

End-users and developers can develop new features and customize the package regardless
of how error-prone the build system is, and without needing specialized knowledge of build
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systems and their unique problems. However, the package itself and its extensibility mech-
anisms must still be built.

Evidence

The python3.0 and gnat-gps packages can be extended with Python scripts that have full
access to the internal APIs of each package, without building any C or Ada source code.

All of the problems with axiom’s build system matter little to most end-users and de-
velopers developing mathematics and mathematical algorithms rather than the internals of
axiom’s interpreter-compiler. As long as they are able to get binaries from somewhere, they
can develop freely inside the interactive axiom environment without dealing with the build
system.

The synopsis and ruby-prof packages are implemented primarily as object-oriented
packages in the dynamic languages Python and Ruby, respectively. While not all function-
ality is exposed as publicly-usable classes, it is possible to dynamically extend some of their
functionality by subclassing.

Remedies

Packages that do not exhibit this pattern can integrate scripting support, using either
general-purpose scripting languages such as Python, or by implementing custom languages
such as Scratchpad for specialized domains.

Packages that are already written in dynamic object-oriented languages can make por-
tions of their internal APIs public.

Applicability

This pattern is specific to build systems. It is not a multilanguage issue per se, but adding a
scripting language to an existing package can turn an existing package into a multilanguage
one. Once a scripting interface exists, it seems natural to start using it to implement some
features.

5.7 Pattern: Object-Oriented Builds
Description

The build system can be dynamically customized and extended using object-oriented APIs
by both project developers and by third-party build libraries.

Consequences

Object-oriented build systems can provide build systems with the benefits of encapsulation
and reuse familiar from other object-oriented software. When bug fixes and new features
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are developed for build systems, they can automatically propagate to many projects.
However, object-oriented build systems may not be as mature as tools like Make, and

may be buggy or lacking features.

Evidence

The python3.0 project uses the distutils library to build its standard library. No prob-
lems were encountered with Python’s build system for the parts where distutils was not
used. There were, however, some build problems with the interpreter which is not built by
distutils. Measured by lines of code, the problematic part not built by distutils is only
one-quarter the size of the part built by distutils, and has less complicated configuration
and construction requirements. As well, distutils is a well-tested standard tool used to
build other Python-language projects, such as synopsis.

The Rake tool used by ruby-prof enables ruby-prof to export functionality for profiling
unit-tests at build time as a general-purpose library that can be loaded by other Rake-based
build systems. However, some of the problems encountered with building ruby-prof are
related to the use of object-oriented builds: the questionable design decision to defer building
until install-time, and the bug that omits header file dependencies from generated Makefiles,
are symptoms of an immature ecosystem.

Remedies

Use a modern object-oriented build tool such as Rake, distutils, or SCons. Packages that
provide useful build-time functionality can export that functionality as general-purpose build
system modules. For example, a profiler could export the ability to profile performance-
cortical unit tests at build time, for use in the build systems of applications such as web
browsers or video encoders.

Applicability

This pattern is specific to build systems, and applies to both single-language and multi-
language software. Just as object-orientation allows implementations to better deal with
increased complexity, it is possible that object-orientation can help build systems deal with
the additional complexity of building multilanguage software.

5.8 Pattern: Persistent Configuration
Description

A complete configuration is determined before starting the construction phase, and that
configuration data is persisted in some way, for example as a file on disk.
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This pattern is not at odds with dynamic run-time configuration, but addresses only
those configuration parameters that are decided at build time.

Consequences

A persistent configuration allows for consistent builds in which each build step uses the same
configuration data. This eases debugging of the build system, as post-configuration build
steps become independent of one another, rather than relying on each other for configuration
decisions.

There can, however, be some loss of modularity when builds of individual components
must rely on an external configuration process.

Evidence

The Python console does not work in gnat-gps due to a configuration conflict, in which
the Python library version used by the linker is hard-coded as 2.5, while compilation uses
a different Python header version dynamically determined during the construction phase.
This could be resolved by configuring the Python version only once.

Although gnat-gps does use an autoconf-based persistent configuration for many pa-
rameters, some system library paths determined by autoconf are not used by other parts of
the build system, causing compilations to fail.

It is difficult to manually rerun axiom build steps because configuration is dynamically
determined in top-level Makefiles and passed down as environment variables to subsidiary
Makefiles in subdirectories. Build steps in subsidiary Makefiles can only be invoked correctly
via limited interfaces of top-level Makefiles, and debugging attempts to manually invoke
individual build steps fail due to missing configuration data.

Part of ruby-prof’s build system configuration suffers from excessive persistence: config-
uration data, including compiler options, from when the original Ruby interpreter was built
is used. This precludes the use of binary-compatible C compilers with different command-
line option syntax.

In contrast, another part of ruby-prof’s build system, implemented by core Ruby li-
braries and used without modification by ruby-prof, suffers from excessive persistence.
ruby-prof has some optional profiling features that are only functional when special in-
strumentation code has been compiled into the Ruby runtime. Although install-time con-
figuration probes are made for these features and are used to conditionally compile C code,
the results of these configuration probes is not available to the main ruby-prof executable.
The ruby-prof executable nevertheless documents and accepts command-line options for
enabling optional features which have not been compiled, causing ruby-prof to crash.

The two remaining case studies, python3.0 and synopsis, both use autoconf to deter-
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mine persistent configurations for building their C/C++ source code, and problems similar
to those of other packages are not encountered in the case studies.

Remedies

While not necessarily using the autoconf implementation, use the design decisions that
autoconf gets right [66, 74]: perform configuration probes as an initial phase separate from
construction, and persist the probe results to be used throughout the build.

If preserving modularity is a concern, the build system can be modified to automatically
generate an initial persistent configuration for multiple components.

Applicability

This pattern is specific to build systems. It is not specific to multilanguage software. How-
ever, lack of mature configuration tools for some languages may be a factor.

5.9 Discussion

This section discusses the significance, generalizability, uses, and limitations of build patterns
and anti-patterns.

The significance of the build patterns and anti-patterns is that, because they are inferred
from a comparative study of unrelated software packages, they represent shared problems
among build systems for multilanguage software. The implication is that build systems
for multilanguage software are error-prone, but problems among them could be systemati-
cally addressed due to the commonalities among the problems. All but one (anti-)pattern—
Filename Collision—is supported by observations from multiple case studies. The only ‘one-
off’ issues that could not be synthesized into patterns or anti-patterns were (1) axiom’s ab-
sence of support for incremental rebuilds, and (2) that the Ubuntu maintainer for gnat-gps
rewrote the build system. Otherwise, the build issues encountered in the case studies are
instances of general build problems, for which general solutions could be found. Even the
patterns for which only one observation was problematic, namely Filename Collision and Ig-
nored Error, could be issues for other packages; they are not highly localized to one specific
package and do not require ad hoc solutions.

While these patterns and anti-patterns can be used by practitioners who are developing
individual build systems, they are intended to be used in a more general way. Specifically,
they are intended to be applied in the design and implementation of build system frameworks
and tools. Build patterns can be designed into such tools, and build anti-patterns can be
used to guide the development inside build system tools and frameworks of automated
detectors and correctors for classes of build system problems.

Possible uses and prospects for automation vary among (anti-)patterns.
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• Filename Collision detection is easily automated for straightforward case collision.
However, an effective tool may require a comprehensive database of various filesystem
filename legality rules and potential programming-language-specific filename conflicts,
such as Python’s potential conflict between the module directory Foo/ and the file
foo.py. As well, developer input is required to supply meaningful replacement file-
names.

• Incorrect Dependencies is systematically correctable by using automated tools such
as dependency extractors. Such tools can be used automatically by build system
frameworks, and automatic dependency extraction can be built in to compilation
tools.

• Ignored Error is largely amenable to automation. Error-handling could be emphasized
as a requirement in the design of build frameworks. However, not all build tools report
error in standard ways such by returning appropriate process exit codes. They may
write error messages only to the terminal or a log file, or they may create zero-sized
or otherwise corrupt output files. A database of of tools known to conceal errors,
and executable techniques for detecting these errors anyway, such as with regular
expressions to check log files, could be useful to many build tools.

For legacy Make-based build systems, automated tools could fix problematic syntax
such as use of the ‘;’ shell operator. Since a valid need to ignore errors from some
build tools does sometimes exist, syntax such as the ‘-’ prefix [21] can be used in-
side Makefiles, both to ignore errors and to declare to an automated tool that error
suppression is intended.

• The use of Persistent Configuration is not something that could be easily determined
by an automated tool. It is instead a valuable technique from the design of autotools,
and it is called out because new build tools and frameworks may not understand or
value its importance.

• While the use of Unverified Third-Party Software can be done in a general way to
some extent, for example when autotools probes to find a working C compiler, it is
most effective when used on a case-by-case project-specific basis. For example, where
axiom knows that there are build problems with some versions of GCL, it can provide
probes for the known problems.

• Implementing solutions to Installation Required can be automated to some extent by
providing appropriately-designed templates for new projects that some object-oriented
build tools can generate. It can also be addressed in a general way through the use of
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standard libraries for managing search paths, such as the pkg_resources package 1

that accompanies a modified version of distutils. This particular path management
library can also help avoid the Installation Required anti-pattern by being integrated
with the build system.

As discussed under the Remedies for Installation Required on page 80, virtual machines
and virtual-machine-like environments can help mitigate some negative consequences
of this anti-pattern, but such mechanisms do not address the key negative consequence
of the anti-pattern.

There are certainly existing software packages with this anti-pattern that could not
be resolved without significant rearchitecting of the implementation.

• Apart from its helpful effect on modularity of build code, the use of Object-Oriented
Builds can have a synergistic effect to reduce the effort required to use patterns and
address anti-patterns. Detectors such as that for Filename Collision could be im-
plemented as modules to be imported into build systems with a few lines of code, as
ruby-prof’s build-time ProfileTask functionality can be. Additionally, practitioners
encountering their own build problems in their own software, rather than in an aca-
demic case study, can develop their solutions in general-purpose ways and distribute
them for use by others. With Rake, for example, it is already possible to distribute
reusable build actions via Ruby’s extensive existing web-based infrastructure for cu-
rating and distributing third-party libraries.

Note that while the popular Apache Ant tool has support for plugins, and dozens of
mature plugins are available for it, it does not fit the Object-Oriented Builds pattern
because Ant-based build systems cannot dynamically extend or modify themselves.
Ant build systems are implemented in a non-general-purpose programming language
and do not have access to the Ant plugin API. Ant plugins are developed completely
separately from and in a different language than the build systems. There is no
evolutionary path by which build functionality can initially be developed as part of a
build script and then, once sufficiently mature, be released as a plugin.

• Build-Free Extensibility is more of a feature that a software project must architect and
design, rather than something that can be had for free by using the right build tool
or build framework. However, it seems to be a worthwhile feature to implement for
software that grows large, is intrinsically difficult to build, or has strong interactivity
requirements, among other possible reasons.

It is possible that building multilanguage systems is simply more difficult than building
single-language systems, and that while research and development of multilanguage

1http://packages.python.org/distribute/pkg_resources.html#resourcemanager-api
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build systems can reduce the gap, it cannot eliminate it. If this is the case, effort
may be better spent on improving run-time extensibility rather than on the build
system. The Build-Free Extensibility pattern can shift the build difficulties away from
end-users and casual developers to build experts. Projects could accept that building
their software requires expert knowledge and encourage users to use binaries if possible,
while still allowing for a great deal of customization and extension by non-build-system
experts.

What are the limitations of patterns and anti-patterns? While they could be useful to
practitioners, they take effort to implement or to resolve, both in build tools and frameworks
and in individual build systems. Individual projects may have their own differing priorities
that conflict with using build patterns or resolving build anti-patterns. A software project
may feel that its build system works fine, is tangential to the goals of the project, and does
not require any additional development. Or, for example, it is possible that a Unix software
project, in addition to not resolving a Filename Collision, may actively disdain Windows
users1 requesting such a change. Automated support in build frameworks and tools could
reduce the burden of addressing (anti-)patterns for individual projects.

Some (anti-)patterns may not be applicable in all environments. For example, regarding
Ignored Error, Humble and Farley [33] caution that errors should be ignored inside a unit
test suite that runs as part of a build: if there are multiple failing unit tests, developers
need to know about all of them, not just the first one, to create a proper fix. However,
if every single unit test is failing, there is likely a more serious problem, and aborting the
tests quickly in such a case may be appropriate. Another example, regarding Persistent
Configuration, is that the influential Twelve-Factor App set of best practices for deploying
web applications [71], written by the Chief Technology Officer of the Heroku cloud webapp
platform, advises storing configuration exclusively in environment variables—the opposite
of the conclusion drawn in this chapter based on the axiom case study. The difference is
that Heroku’s priority is to use the simplest possible interface between its platform and the
applications that run on it, in order to allow both to evolve independently. That priority
outweighs the concerns associated with the anti-pattern.

In conclusion, build patterns and anti-patterns are significant because they represent
commonalities among the diverse build systems in the case studies. They are intended to be
used in generalized settings such as build frameworks and tools. However, their use will not
necessarily be appropriate in every case, and they may be considered to be of low priority
by individual projects.

1http://dilbert.com/strips/comic/1995-06-24
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Chapter 6

Discussion

This chapter discusses the significance and implications of the results. First, previous dis-
cussion sections are revisited. Then, possible causes for build problems are examined, and
the phenomenon of leaking abstractions is proposed as a partial explanation. Effort and
tool requirements for understanding build systems are discussed next. The chapter ends
with discussion of threats to validity and related work.

There are two other discussion sections in this thesis: one for the procedure used to
select the case studies, and one for the build patterns and anti-patterns.

The discussion section for the case study selection procedure, Section 3.3 starting on
page 21, discusses the diversity of the results and potential threats to validity of the pro-
cedure used to select the case study systems. That discussion left open the question of
whether the case study selection was suitable. That question can now be answered. As this
is a qualitative case study using analytic inference, evaluation of the selection is determined
by examining whether the case studies are sufficiently interesting and diverse that useful
comparative conclusions can be drawn [73]. The commonalities expressed in the form of
the build patterns and anti-patterns of Chapter 5, and the implications discussed in this
chapter, are evidence that the selection was indeed suitable.

The discussion of the build patterns and anti-patterns, Section 5.9 beginning on page 89,
examines the significance, generalizability, uses, and limitations of the build pattern and
anti-patterns in the context of developing build systems, tools, and frameworks that leverage
the patterns and avoid the anti-patterns.

This chapter examines the case studies and the build patterns and anti-patterns in a
broader context. The most significant result is that four of the five case studies had build
problems preventing an initial build from succeeding, and the fifth case study had rebuild
problems. As the case study systems are diverse along a variety of dimensions, as detailed
in Section 3.3, were systematically selected without knowing ahead of time how they would
build, and exhibit commonalities in their build problems, it is concluded that build systems
for multilanguage software are error-prone; that there are commonalities in their build
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problems; but that these could be systematically addressed.
The research questions set out in the introduction are as follows:

RQ1) What are the major issues in building multilanguage software?
RQ2) How can these build issues be addressed?
RQ3) Why do these build issues occur?

This thesis proposes build patterns and anti-patterns as a way to address these questions.
The fact that there were so many issues in getting the case studies to build at all provides
one answer to RQ1: the major issue in building multilanguage software is getting it to build
at all. This is a significant finding in light of the fact that previous work on single-language
build systems focuses on improving the convenience, correctness, and/or speed of existing
already-working build systems [34, 60]. The build patterns and anti-patterns themselves
provide another answer to RQ1, in that they specifically identify some of the major issues.
RQ2 is also addressed by the build patterns and anti-patterns themselves. This chapter
discusses RQ3.

6.1 Build problem causes

Why do build issues occur? There will always be bugs, but what causes underlie the build
problems represented by the build patterns and anti-patterns? Some (anti-)patterns rep-
resent requirements that may rarely be made explicit, and therefore simply do not get
implemented unintentionally. Installation Required and Filename Collision are examples of
this: developers are unlikely to value making software run from the build directory, or test-
ing it on unsupported platforms, when that time could be spent improving the deliverable
product. Other (anti-)patterns appear to arise from lack of knowledge of specialized tools
and techniques for build systems: Incorrect Dependencies, Persistent Configuration, and
Unverified Third-Party Software. However, knowledge of specialized tools and techniques
for build systems is of limited value in improving the user experience once the software
is installed. Developers omitting these build system requirements from their packages, and
lacking specialized build-system knowledge, are not lazy or ignorant: they are being efficient
by spending time on development and skills that contribute directly to the product being
created and the associated value being delivered, rather than the somewhat tangential topic
of build systems.

That said, two patterns hold promise for improving build systems regardless. Object-
Oriented Builds allows developers to develop their build systems in general-purpose lan-
guages, using encapsulation mechanisms that developers are already deeply familiar with.
This is in contrast to, for example, the shell script, Makefile, and M4 macro languages
that comprise an autotools-based build system which have extremely limited modularity
and encapsulation abilities. Modules that automatically resolve build anti-patterns could
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be loaded into object-oriented build systems. Prospects for reuse also mean that developers
may find it easier to justify working on their build systems, and to solve their build problems
in general-purpose ways. Embodying the solution to a build problem as a general-purpose
build system plugin not only solves the problem now, but can solve the same problem for
members of product families within an organization, and can be publicly release to solve
the same problem for many different build systems used by many different projects. It is
also likely more appealing to developers to develop reusable modules than to spend time
debugging a hacked-up shell script embedded inside a Makefile, the result of which will only
ever be usable by a single build system. The ability to solve problems in general ways could
reduce the view of build systems as ‘tangential.’

The other promising pattern is Build-Free Extensibility. While it also has the potential to
lead to essentially unbuildable packages, adding scriptability to a software package involves
implementing similar features to that of a build system. The shared goal of a build system
and a build-free software extension interface interface is to turn source code into running
code. When extensive features are implemented using build-free techniques, the host package
becomes responsible for correctly dealing with issues such as setting search paths correctly,
and such as reloading changed scripts, even if they are only indirectly referenced. Once this
is part of a key software feature, namely the extension interface, it is no longer tangential.
A concrete example: python3.0 has internal routines for loading referenced script modules
that are carefully thought out and tested. The build system does not and cannot receive
the same attention. Moving build code directly into the application may be the answer.
The build system already takes on abstractions from the implementation and application
domains anyway.

6.2 Leaking abstractions

One interesting finding of this thesis that may help explain RQ3 about why build problems
arise is the observation that abstractions, mental models, and other concerns from the
application and implementation domains may ‘leak’ into the build system. That is, the
build system has properties that resemble, at an abstract level, properties of the software
that are not related to the build system, and whose presence may only be explainable by
reference to the application and implementation domains.

Specifically:

• synopsis uses independently-developed and -built third-party components that are
integrated by using a standardized interface. The only major issues are library search
path setup issues.

This approach is similar to the architecture of the experimental CORBA-based win-
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dowing system for which synopsis was developed, wherein independently-developed
and -built components communicate using standardized interfaces. Service lookup
and path configuration are common problems in getting CORBA software to run.

• python3.0’s build structure uses the design philosophies of python3.0 itself: the
build system is simple, flat and explicit [53]. Like python3.0, the build system has a
relatively small core but is still powerful. However, since explicit lists of dependencies
are used rather than ‘magic’ dependency extractors, build system rebuild problems
result. The desire to be explicit and avoid ‘magic’ is common to both python3.0 and
its build system.

• gnat-gps’s AdaCore build system has an extremely complicated hierarchy of sub-
builds, as shown in the upper portion of Figure 4.11 on page 49. The build system
is sufficiently difficult to get working that the Ubuntu maintainer for the package
rewrote the build system, citing the “complex structure of project files importing and
including each other” and “evil recursive Makefiles” as reasons to rewrite it in the
source code of the new system.

However, the build structure makes sense in terms of the goals of the developers.
gnat-gps is a product of the AdaCore corporation, a commercial Ada vendor. They
provide free, open-source compilers and tools to individuals, while selling support and
products such as safety-critical offerings to other corporations. AdaCore the corpora-
tion uses gnat-gps as a development environment for Ada-language components that
start out as parts of gnat-gps but are released as separate libraries once they ma-
ture. Examples include the GtkAda window-system bindings, and the GNATCOLL
component collection which implements features such as logging and interfacing with
scripting languages. These libraries are released with the intention of making Ada a
more attractive language for development, thereby boosting sales. The hierarchical
build supports this strategy by ensuring that components do not become inadvertently
coupled to other parts of gnat-gps, which would make it harder to release components
as independent packages.

• axiom presents the user with an interactive ‘Scratchpad’ environment for doing math-
ematical work and developing mathematical algorithms. This environment is highly
dynamic, and allows new mathematical objects to be defined and redefined.

However, building axiom is a complicated process; it is not even possible to build it on
the version of Ubuntu used in this study. Even when axiom can be built, changing the
implementation code for the Scratchpad interpreter-compiler entails a complicated
process of marking up literate source code in a LATEX-based macro language, com-

96



pleting a lengthy rebuild of the software from scratch, and running comprehensive
regression tests to ensure correctness. There is no support for incremental rebuilds.

One possible parallel for this unusual build system is the process by which some pro-
fessional mathematicians work. Concepts and proofs are initially developed on scratch
pads of paper. When a generally useful result is obtained, adding it to the mathe-
matical literature becomes a time-consuming process. The result must be carefully
written up—often using LATEX—and submitted to a lengthy peer review process to
ensure correctness before it is finally published. This process mirrors that of axiom’s
build system.

• ruby-prof’s build system is largely implemented by external libraries. The build
system is adequate, and has novel and potentially useful features, but is not without
problems. However, the build problems are largely bugs in standard Ruby libraries,
and are likely to be fixed by library upgrades. Some of the bugs encountered during
the case study have been addressed in more recent releases. The condition of the
build system mirrors the developer-oriented Ruby ecosystem, where experimentation
is valued, and it is expected that bugs will be fixed by frequent library upgrades [72].

While leaking abstractions may have negative effects on buildability, it is not necessarily
always good or bad. It seems to have clearly negative effects on the buildability of axiom
and gnat-gps. However, the effect on the other case studies is mixed, as both advantages
and disadvantages of the overlying abstractions propagate to the build system.

python3.0 has a small, simple, and effective build system, which occasionally causes
build problems by avoiding ‘magic.’ synopsis’s build system exploits many disparate com-
ponents through simple interfaces, but it can be difficult to configure the components to
find each other and work together properly. ruby-prof’s build system relies on libraries
with useful novel features, but these somewhat experimental libraries also have bugs.

If negative effects are more likely, this could be relevant towards McIntosh’s conjecture
that concentrated build system ownership, wherein a small team of build system experts
maintain the build system, results in lower build maintenance effort than having build
maintenance dispersed among the entire development team [45]. The implication from this
thesis would be that build system experts working primarily on the build system, and
having limited exposure to the application and implementation domains, are less likely
to incorporate application and implementation domain abstractions into the build system
where they may not be appropriate.

This finding is highly speculative, but in some sense not all that surprising: people use
what they already know when attempting new tasks. Further research could shed light on
the topic. One possible approach is a systematic study comparing the various vocabularies
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Package Time to first
successful build

Time to understand
build system

synopsis < 1 hour 1 day
python3.0 < 10 minutes a few days
gnat-gps 10 hours before deciding it is

unbuildable and switching to the
Brenta build system;
then 2 full days of debugging to
resolve build problem ...7

time to learn Ada, gnatmake basics
+ 1 day

axiom 10 hours before deciding it is
unbuildable;
then 10 hours of debugging to find
the cause

weeks

ruby-prof < 1 hour time to learn Ruby, Rake basics
+ 1/2 day

Table 6.1: Subjective estimates of build effort

used in the application, implementation, and build system domains.

6.3 Effort and tool requirements

This section discusses the effort needed to build the case studies, to understand their build
systems, and tool requirements that could improve the process.

Rough estimates of the time required to build and understand the case study packages
are given in Table 6.1. These are inherently subjective estimates made long after the studies
were actually conducted, and dependent on the author’s prior experience. In this context,
‘understand’ is a mostly undefined term that means to be able to make small changes to the
build system, and explain its high-level operation to someone else, but does not encompass
the level of detailed knowledge required to, for example, make build diagrams similar to
chose of Chapter 4 for the build system.

The estimates are based on the experience of the author who was already familiar with
the Lisp, Python, C, and C++ programming languages, as well as autoconf and Make-based
build systems, but had no prior experience developing with distutils, Ada, or Ruby.

The understanding time for gnat-gps is only 1 day because the compilation model is so
similar to that of C. The understanding time for ruby-prof’s build system is even smaller
because there are only a handful of source files.

The technique used to understand the build systems for the case studies was almost ex-
clusively manual inspection of source code and documentation. There are exceptions for two
case studies. The multilanguage architecture for python3.0 in Figure 4.5 on page 39 was
produced in part by using the ASX [15] and LSEdit [63] fact-extraction and software land-
scape browsing tools to extract and organize python3.0’s function-call architecture. For the
gnat-gps case study, custom scripts were written to extract dependency information from
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the Ada .ali files generated by the compiler, and from the Makefiles, in order to generate
graphs of the component hierarchy reminiscent of the work of Mason and Ochotta [42]. In-
cidentally, that paper is what first got me interested in doing software engineering research.

The major requirements that a tool to support the build system understanding process
needs to have are:

• The ability to show different kinds of relationships between various software artifacts

• The ability to group different software artifacts together as one abstract entity

As understanding of the build systems in the case studies of this thesis was mainly a
manual process, one extremely useful tool that supported these requirements was the Omn-
iGraffle diagram editor available from http://www.omnigroup.com/products/omnigraffle/.
It is a vector-based diagramming program that allows labeled shapes to be drawn, con-
nected, and moved around. It also embeds the Graphviz toolkit for graph visualization [24],
which was extremely useful for Figure 4.10 and Figure 4.11.

Development of the diagrams was an iterative process. As hypotheses were developed
about how the multilanguage software was architected and how the build system works, the
tentative hypotheses were diagrammed. These hypotheses were verified, and parts of the
diagram that required additional understanding were investigated, using techniques such as
examining documentation, examining source code, and running experiments involving the
build system.

To support the evolution of the notation that was developed and refined in concert
with the diagrams, each graphical element was tagged with ‘user data’ denoting the artifact
or relationship type and/or programming language. Changes to the graphical notation
were applied by running a script that iterated over each graphical element and set the
corresponding graphical style.

In hindsight, a more automated approach that also supports these requirements could
have been developed by using standard fact extractors to determine build dependencies and
runtime call structure between artifacts, manipulating the extracted facts using relational
algebra to automatically group multiple artifacts into abstract entities, and exploring them
using a visualization tool. A concrete implementation of such a system could consist of the
LSEdit [63], ASX [15], and grok [69] tools, along with fact extractors for the other languages
encountered, and newly-developed fact extractors for build systems. While such a project
would be interesting future work, the process of understanding the case study build systems
in this thesis was dominated by cognitive processes, such as learning the workings of and
relationships between unfamiliar tools, libraries, and programming languages. The packages
were sufficiently diverse that there was little overlap between the understanding activities
across packages. For understanding similar software packages using similar languages and
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build technologies, automation would certainly be useful, but for this study, automation
would have helped little.

6.4 Threats to validity

This section examines potential threats to the validity of the results of this thesis. As with
the discussion of threats to the validity of the selection procedure in Section 3.4 on page 24,
these threats are examined using four standard criteria [73]: construct validity, internal
validity, external validity, and reliability.

Construct validity—are the various measures used measuring what they are intended to? The
research goals of this thesis were to determine the major build issues for multilanguage soft-
ware in general. However, instead of examining multilanguage software in general, Ubuntu
was used, both as a source of case study packages and as a platform to attempt to build
them on. The case study packages do not necessarily support the Ubuntu platform. How-
ever, as Ubuntu is extremely popular, many stakeholders would be using it, making it a
valid host platform for builds. As for Ubuntu being the source from which packages were
selected, that may limit the generalizability of the results to open-source Unix packages,
but does not affect the validity of the results within that realm.

This issue with reliance on Ubuntu was addressed in part by using vendor source code
distributions, not Ubuntu ones. Additionally, no Ubuntu-specific build problems were en-
countered, with the possible exception of axiom’s failure to build due to GCL incompatibil-
ities.

Internal validity—are discovered relationships more than just coincidence? Many of the
observations in the case studies are facts about the outputs of programs on known inputs,
rather than possibly spurious inferences. Spurious relationships are avoided in the synthesis
of build problems into patterns and anti-patterns by the use of comparative analysis, which
requires multiple data points for each inference. As for the discussion about how build
problems arise, that is admittedly speculative, but not out of place in an exploratory study—
exploratory studies are conducted to guide future research that can clarify the potential
issues and conjectures raised in the exploratory phase.

External validity—how generalizable are the findings? This thesis examines five case study
packages, and analyzes the commonalities among their build problems. It may seem pos-
sible that the build patterns and anti-patterns could apply only to these five systems, and
nothing else. However, the research design uses analytic inference, not statistical inference.
For example, Installation Required is a real problem in real build systems because it was en-
countered as a problem in several diverse build systems, and python3.0 had special-purpose
code to avoid the anti-pattern. This could not be the case if these were one-off problems,
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or problems limited to only these five systems. So while these findings are generalizable
to similar software packages, the generalizability can only be quantified by quantitative
studies.

Additionally, this thesis examines only open-source Unix software. The selection is di-
verse along many dimensions but still consists largely of programming language implemen-
tations and tools. Whether that reflects the nature of Ubuntu software, or is the product
of bias in the selection procedure, or results from some other cause, is not known. From
the perspective of examining the packages investigated in the study, it is not known to
what degree the build patterns and anti-patterns can be generalized beyond the realm of
open-source Unix programming language implementation and tool packages. However, con-
sidering the build patterns and anti-patterns produced by the study, none appear relevant
to only such packages.

Reliability—could someone else do this and get the same result? There are simply too
many inferences involved in this study that rely on the individual knowledge and experience
of the investigator for anyone else to get exactly the same result. However, someone else
conducting the same study would get a similar set of build problems, and would synthesize
them into a mostly similar set of (anti-)patterns, and interesting discussions could ensue
about disagreements of the interpretation. This claim is substantiated by the fact that
Smith, in his textbook on build systems [60], produces a much longer list of recommendations
for build systems that have much overlap, but some of which the investigator of this study
would disagree with based on the outcomes of these case studies; for example, Smith’s
recommendation to “Use a Consistent Build System” precludes successful heterogeneous
build systems such as synopsis’s distutils–autotools build.

While the selection of packages is completely reproducible, as well as the test build
environment down to the first error message from the build system for each package, at that
point the sole investigator must rely on his or her judgement, experience, and knowledge in
order to correct the build problem and move on to the next one.

This threat to validity is addressed somewhat by random selection, in that the investi-
gator encounters unfamiliar packages using unfamiliar programming languages, where prior
knowledge and prejudices are less applicable. However, familiarity with some of the lan-
guages in the case study can colour interpretation of build problems. For example, the
way that Ruby’s build system for extensions does not build them until install time, even
for development versions, seems strange and problematic to someone with a Python back-
ground, but Python’s methods may seem strange and problematic to someone from a Ruby
background. The case study systems used several languages completely unfamiliar to the
investigator. The investigator had not heard of any of the packages but python3.0 before
conducting this study, and, although quite familiar with the Python language, the investi-
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gator was not familiar with python3.0’s software architecture or build structure. However,
the presence of python3.0 in the majority of the packages may have affected the results of
the study. Purposive selection of cases that includes important dimensions such as inves-
tigator familiarity with programming languages, and thinking through possible threats to
validity while designing the study but before conducting it, are recommended case study
guidelines [73]. Another common way to ensure reliability in case studies is to have multiple
investigators examine the same cases and then compare their results. However, that is likely
too heavyweight for an exploratory study such as this one.

6.5 Related work

In his doctoral dissertation, Adams [2] performs deep case studies of the build systems of
a number of packages, including the Linux kernel [5], Quake, and a number of industrial
packages. He develops an interactive open-source tool called MAKAO [4] for visualizing
and refactoring Make-based build systems, and for integrating aspect-orientation, a form
of multilanguage programming, into build systems for legacy C software. While this thesis
also performs deep case studies, its goal is to understand build problems and their causes,
while the work of Adams aims to understand how and why build systems change in re-
sponse to implementation source code changes, and how these co-evolving changes can be
managed [3]. Although this thesis’s visualizations are manually created while MAKAO
automatically produces its diagrams automatically, this thesis goes beyond MAKAO by
examining multilanguage software that uses a variety of build systems instead of only C
software built by Make, and abstracting away implementation details to form conceptual
build architectures. Adams also discusses build ‘patterns’ and ‘idioms’ that are common
methods of implementing desired build functionality despite the limitations of Make, such
as the circular dependency chain pattern used throughout the build system of the Linux
kernel [2, Figure 4.15]. In contrast, the (anti-)patterns of this thesis involve higher-level
functional concerns, not their implementation.

Suvorov et al. [62] perform case studies of several large-scale build system migrations,
such as when the KDE project migrated its build system to CMake from autotools [49].
This thesis aims to understand build problems and their causes in multilanguage software,
while Suvorov et al. analyze the techniques of and forces behind successful and unsuccessful
build system migrations.

Godfrey and Tu introduce build-time software architectural views [67], and discuss build-
system architectural styles such as the “code robot,” which is an auxiliary tool that is built
and executed in order to automatically generate platform-specific source code, enabling
highly-portable software. The notation for the diagrams in this thesis are based on their
work. The diagrams in this thesis differ in that they attempt to show a more abstract view
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of the build, by using larger groupings of components, and by abstracting away many build
implementation details to make the structure more apparent. The diagrams in this thesis
show build problems in the diagrams as well, while the work of Godfrey and Tu deals with
functioning builds. The “code robot” build-system architectural style that they document
could be described in the form of a pattern analogous to the Build-Free Extensibility pattern
of this thesis; McIntosh refers to this build-system architectural style as a pattern [44].

McIntosh et al. empirically analyze the revision history of ten projects in order to
estimate the overhead associated with build maintenance [45]. They find a wide disparity
in estimates that could be caused by different build code ownership styles: a team of build
experts solely responsible for builds, or all developers sharing maintenance on the builds.
They conjecture that centralized build ownership may be more appropriate for open-source
systems. This thesis uses qualitative techniques on a different set of software packages,
and finds evidence of application- and implementation-domain abstractions ‘leaking’ into
the build domain, a phenomenon that could help explain reduced overhead and improved
buildability for centrally-owned builds. In his master’s thesis [44], McIntosh describes these
different ownership styles as organizational patterns among developers, while the patterns
of this thesis address build system structure and implementation.

Tamrawi et al. develop static analysis techniques for Makefile source code that permit
analysis and refactoring [64]. This thesis examines a variety of different build systems at
runtime. Their techniques are also used for the static detection of Makefile “code smells,”
which are conditions such as recursively-defined variables or cyclic dependencies that cause
Make warnings or errors at build time. None of the build problems encountered in the case
studies of this thesis involved such Makefile “code smells.”

Miller’s article “Recursive Make Considered Harmful” discusses a number of problems
with slow or incorrect builds that the author has experienced, and attributes them to the
use of recursive invocations of Make [47]. The author shows how the problems can be
overcome by an improved build system structure. The same strategy is used in this thesis,
where commonalities among build problems in various projects are analyzed and labeled as
symptoms of anti-patterns, and corresponding remedies are proposed. This thesis examines
a variety of build systems using a variety of programming languages, and refers to specific
systematically-selected projects.

Smith’s practitioner-oriented textbook on build systems has an extensive discussion of
“Various Ways to Reduce Complexity” [60, Ch. 17]. Some of his recommendations, such as
“use a modern build tool,” “automatically detect dependencies,” and “abort the build after
the first error” match the recommendations of some (anti-)patterns. The (anti-)patterns in
this thesis were developed independently, are empirically traceable to case studies, and are
structured in the form of patterns and anti-patterns. Additionally, Smith’s book is aimed
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at practitioners wishing to improve individual build systems, while this thesis explores the
possibility of systematically addressing build system problems.

The practitioner textbook Continuous Delivery [33] provides an overview of modern
build tools and build system practices, and expounds the needs for full automation. The
related practitioner textbook Continuous Integration [18] discusses techniques for creating
fully-automated builds within an organization, and why this is a good idea. One co-author
has published a developer article about “build smells,” which are suggestions for improving
the maintainability of build code for Java build tools [17]. Examples of such build smells
include duplicated code in build scripts, and overly-long build script sections. There is no
overlap between these “build smells” and the (anti-)patterns in this thesis.

Spolsky’s “Law of Leaky Abstractions” [61] bears some resemblance to this thesis’s find-
ings on leaking abstractions. Spolsky’s law states that developers must be familiar with
implementation details underlying abstract interfaces because abstract interfaces will some-
times ‘leak’ in the form of bugs from the implementation bubbling up. The existence of
bugs which occasionally require source code written in high-level languages to be debugged
at the assembly-code level is one such example. In contrast, the ‘leaking’ in this this thesis
corresponds to the findings that when developers work in multiple domains simultaneously,
abstractions from one domain may be reused in another, even if the domains are only loosely
related.
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Chapter 7

Conclusion

This thesis has shown that build systems for multilanguage software are not the “solved
problem” they may appear to be. In fact, build systems for multilanguage software are
error-prone. However, there are commonalities among the problems, allowing them to be
systematically addressed.

The technique used was that of an exploratory qualitative study. Case studies of the build
systems of five open-source multilanguage software packages were performed. The collection
of five packages was diverse among a number of important dimensions shown in Table 3.8
on page 21, and the packages were systematically selected without knowing ahead of time
how they would build. Four of the five packages had build problems which required manual
intervention to get a running development version from source code. The fifth package
also had problems rebuilding. The build problems experienced and the problem avoidance
features observed throughout the case studies were synthesized into build patterns and anti-
patterns using a comparative analysis. The resulting build patterns and anti-patterns are
largely not specific to multilanguage software.

The research questions spelled out in the introduction are as follows:
RQ1) What are the major issues in building multilanguage software?
RQ2) How can these build issues be addressed?
RQ3) Why do these build issues occur?

One answer to RQ1 is that the major issue in building multilanguage software is getting
the software to build at all, rather than the issues of convenience, correctness, and/or speed
that previous work in this area has focused on [34]. RQ1 and RQ2 are also answered by the
set of build patterns and anti-patterns, which summarize and provide remedies for the major
build problems encountered. RQ3 is addressed in Chapter 6. It appears that build problems
arise for two interrelated reasons: build systems are viewed as tangential to software project
goals, so receive little attention; at the same time, the development that is done on build
systems leaks abstractions from application and implementation domains into the build
system, with mixed results. However, application of the build patterns Object-Oriented
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Builds and Build-Free Extensibility may work together to help address these causes.
Along the way, some side contributions of this thesis include: a procedure for identifying

multilanguage packages, which could be of use for future researchers; deep exploration
of the build and multilanguage architecture along with observations of build problems and
features for five case study packages; corresponding diagrams of the build and multilanguage
architectures of these packages; tool requirements for conducting future similar studies; and
a set of build patterns and anti-patterns with remedies.

7.1 Future work

The results of this thesis suggest a number of directions for future research on build systems.
One of the central issues to be investigated is what factors contribute to whether software
builds “out of the box” or not.

One natural question suggested by the qualitative exploratory study conducted in this
thesis is the prevalence of the build (anti-)patterns. While they are present in the case study
systems, how frequent are they in larger populations of software packages? The qualita-
tive research method used in this thesis cannot answer this question directly. A large-scale
quantitative study of software portability could help to quantify the degree to which build
systems for multilanguage software are not a “solved problem.” Related questions include
whether specific programming languages are more likely to be associated with build prob-
lems, and whether there is a correlation with other software package dimensions such as age,
software size, team size, presence of corporate sponsorship for a package, or package popu-
larity. Correlations of build problems with code quality metrics could shed light on whether
build problems are symptomatic of poor software quality in a package, or whether buildabil-
ity suffers at the expense of implementation software quality. Since each software package
is made automatically buildable by operating system distribution maintainers, metrics of
maintainer effort, such as those extracted from the Ubuntu .diff.gz patch files distributed
alongside the source code, may be useful. Studies could include other operating systems and
operating system distributions to determine if buildability of the same software varies sig-
nificantly between platforms. Additionally, evolutionary studies could examine the question
of whether easily-buildable software has an easier time gaining users, gaining developers,
and becoming popular.

Future work involving automated ways to implement patterns and to remedy anti-
patterns, both for individual packages and as part of build frameworks, is discussed in
Section 5.9. For many individual (anti-)patterns, such as Filename Collision, the future
required work for automation consists largely of development work, not research. However,
there are research questions suggested by some of the build patterns and anti-patterns.
A better understanding of the Object-Oriented Builds pattern and its prospects alluded
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to in the discussion could result from, for example, case studies of existing packages that
provide or use third-party build plugins. The Build-Free Extensibility pattern suggests em-
pirical evolution studies about the effect that adding build-free extensibility mechanisms
such as scripting support has on package popularity, and on the use and degree of integra-
tion of multiple programming languages in the software. Filename Collision also suggests
studies of portability issues in open-source software. For example, the Python language is
well-supported on many platforms, yet software such as synopsis written in it can have
portability issues for reasons such as the use of C-language extensions, which can be ex-
pected to require some effort to be portable, but also for making assumptions about the
underlying operating system such as what filenames are legal. How can a portable language
such as Python encourage software written in it to also be portable?

Some of the manual techniques used to understand the build systems in the case studies
could be automated, and could also help developers understand their build systems. Existing
fact-extraction and analysis tools could be extended to support this. Of particular interest
is the use of dynamic build tracing to automatically produce abstract build diagrams using
the notation of this thesis, perhaps by extending MAKAO [4].

The finding of abstraction “leakage” is highly speculative and requires systematic study.
Comparative studies of developer vocabulary between application, implementation, and
build system domains, especially as they change over time, could help to understand this
phenomenon. It would be interesting to understand what additional factors cause it to have
negative instead of positive effects on buildability, or vice versa, and also to compare results
for various build code ownership styles [44, 45].
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