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Dedication

To my mother, and two sisters,

those who do not need to know anything about spectral
sequences.



Abstract

This thesis has two parts. In the first part we start from an arbitrary

exact couple of R-modules and describe completely how the E∞ terms

of the associated spectral sequence relate to adjacent filtration stages of

the universal (co-)augmenting objects of the exact couple. This advances

earlier work, notably that of Boardman [3].

In the second part we use these insights to develop a framework which

permits spectral sequence methods to gain information about suitably

transfinitely filtered objects.

We offer several applications of this method:

1. We use Serre’s idea of working relative to a class of modules while

passing through the pages of the spectral sequence associated to an

exact couple and we spell out conditions under which the filtration

stages of countably or transfinitely filtered modules stay within such

a class.

2. We extend Zeeman’s comparison technique of spectral sequences to

apply to a map between countably or transfinitely filtered modules.

3. Finally, we develop a general setting of reverse engineering informa-

tion about finite pages in a spectral sequence from information about

the universally filtered objects of the underlying exact couple.
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Chapter 1

Introduction

“A spectral sequence is an algebraic gadget like an exact sequence, but more
complicated.”

J. F.
Adams

Please be advised that, to reduce the complexity that Adams has men-
tioned, we will use colorful diagrams throughout this thesis, in particular,
in the appendix Diagrams. If you print this thesis in black ink, you are
strongly recommended to look at the diagrams in the PDF file to enjoy
clarity provided by colors.

In appropriate settings spectral sequences help compute homology groups,
cohomology groups, or homotopy groups of groups or topological spaces
which are filtered by an ascending or a descending sequence of subgroups.
Someone who wants to learn how to use spectral sequences faces a certain
entrance hurdle of complexity that needs to be overcome.

We try to lower this hurdle here by first discussing components en-
countered in spectral sequences in isolation. Once these components are
understood, it is easier to understand their mutually complementary roles.
This enables us to extend the conventional theory of spectral sequences
for objects with a finite, N- or Z-indexed filtration to a theory of spectral
sequences for objects which have a filtration parametrized by an arbitrary
limit ordinal.

• Spectral Sequences and Exact Couples. Spectral sequence methods
are potentially relevant when one deals with a filtered module

· · · ⊆ Fp−1 ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ H, (1.1)

1



CHAPTER 1. INTRODUCTION 2

where the Fp’s are submodules of an R-module H; throughout the whole
thesis the rings we choose are all commutative and unitary. Assume in-
ductively, we have information about Fp and we want to extend this in-
formation to Fp+1 and ultimately up the tower of inclusions to H. In the
following short exact sequence

Fp ֌ Fp+1 ։
Fp+1

Fp

,

if
Fp+1

Fp

is known then information about Fp+1 is provided within the con-

text of the extension problem in Homological Algebra, where possible can-
didates for Fp+1 are studied. Thus we have two distinct tasks here:

1. the task to determine
Fp+1

Fp

, and

2. the task to infer properties of Fp+1 from information about Fp and
Fp+1

Fp

.

One of the main purposes of a spectral sequence is to provide information

about adjacent filtration quotients
Fp

Fp−1

.

A spectral sequence is similar to a “book”. Each page in the book
is an endomorphism d of a (Z × Z)-bigraded R-module which satisfies
d2 = 0. This turns each page in the book into a Z-indexed family of chain
complexes and flipping through pages is accomplished by taking homology.
The pages in a spectral sequence determine a “limit page”, which is again
a bigraded R-module not equipped with an endomorphism d. The entries
in this page are called the E∞-terms of the spectral sequence.

In the second chapter, the definition and basic mechanics of a spectral
sequence are discussed in isolation. However, the ultimate purpose of a
spectral sequence is not yet visible from this isolated perspective.

A prominent approach to spectral sequences is based upon an inter-
locking system of long exact sequences, called an “exact couple”, which
was defined by Massey, in [22] and [23], and is outlined in the figure below;
each subdiagram of the shape of same colored arrows forms a long exact
sequence and the blue and red colored long exact sequences interlock at
the green dots. However, the remaining pairs of neighboring long exact
sequences interlock at the appropriate black dots.
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...
...

...

· · · • ⋄ • ⋄ • · · ·

· · · • ⋄ • ⋄ • · · ·

· · · • ⋄ • ⋄ • · · ·

...
...

...

We will see three important objects obtained from an exact couple:

1. a Z-graded R-module, called the universal augmentation L∗, which
is the colimit of the vertical •-columns,

2. a Z-graded R-module, called the universal coaugmentation L∗, which
is the limit of the vertical •-columns, and

3. the first page of a spectral sequence, which are shown by ⋄ in the
following figure.

Ln+1 Ln Ln−1

...
...

...

· · · • ⋄ • ⋄ • · · ·

· · · • ⋄ • ⋄ • · · ·

· · · • ⋄ • ⋄ • · · ·

...
...

...

Ln+1 Ln Ln−1
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These L∗ and L∗ are the objects of interest and we use spectral se-
quences to compute them. For every n ∈ Z, by universality of augmenta-
tion and coaugmentation, for each • there is a canonical morphism

• −→ Ln (1.2)

and
Ln −→ • (1.3)

and hence we can

- filter L∗ by the images of the morphisms (1.2), and

- filter L∗ by the kernels of the morphisms (1.3).

In [22] and [23], Massey introduces a recursive method to distill a spec-
tral sequence from an exact couple. Hence, the limit page of the spectral
sequence can be obtained from the corresponding exact couple. Therefore,
we have

• the filtration of L∗,

• the filtration of L∗, and

• E∞-page of the induced spectral sequence.

The question is

Question 1. Is there any relationship between E∞, L∗ and L∗?

To answer this question, Peschke [26] matches the filtrations of L∗ and
L∗ with the induced spectral sequence; i.e., he connects the E∞ to the quo-
tient of adjacent filtration stages of L∗ and L∗, which he denotes by ǫ−,−

and ǫ−,−, respectively. As a result, he uses the E∞-terms of the spectral
sequence to inductively carry some information through the filtration of L∗

and L∗ as we explained in the previous page. Boardman, [3], provides the
relationship between ǫ−,− and E∞. Peschke [26], carried the discussion of
exact couples, their associated spectral sequences and associated filtered
objects a crucial step further. He shows that that there is a relationship
between ǫ−,−, ǫ

−,− and E∞ simultaneously. This phenomenon is explained
in the second chapter as the E∞-Distribution Theorem. Boardman and
many others who work with spectral sequences are very interested in con-
vergence issues. That is, they are interested in getting these three objects
very close to each other. So the second question arises:
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Question 2. What are the necessary and sufficient conditions to have
E∞ isomorphic to ǫ−,− or ǫ−,−? Is it possible to have both at the same

time?

The answer to this question is an immediate consequence of the E∞-
Distribution Theorem, which is not presented in Boardman’s work.

The next question is:

Question 3. What happens if one of ǫ−,− or ǫ−,− vanishes? How is the
non-zero one related to E∞?

The E∞-Distribution Theorem explains precisely what happens if one
of these quotients vanishes and how the relationship between the non-zero
one and E∞ is improved. Boardman explains this situation by introducing
a new type of convergence that he calls conditional convergence.

In fact, to answer the questions above, the E∞-Distribution Theorem
provides a diagram of where morphisms of the same color form an exact
sequence

B−,−

ǫ−,− E∞
−,− A−,−

f

ǫ−,−,

where A and B are modules which will be defined later in the second
chapter.

We will show that this theorem covers all known convergence types
stated in [3]. Moreover, it also enables us to distill information from spec-
tral sequences which fail to converge in any traditional sense of the word.
At the end, we will compare Peschke’s method which leads to the E∞-
Distribution Theorem with the approach that Boardman has taken.

• Matching Convenient Exact Couples to a Tower of Modules.
The idea of the inductive argument in this chapter is originally stated in
[26]. Climbing up the filtration stages in (1.1) by induction is enabled if
we are able to anchor the induction at some ordinal; i.e., if Fp0 is known
for some p0 ∈ Z. Such an anchor does not exist in general. But in many
practical examples it does. See examples in sections 3.2.2 and 3.2.4. For
simplicity, we assume p0 = 1. Therefore, the filtration (1.1) looks like the
following filtration indexed over ω, the least infinite ordinal:

F1 ⊆ F2 ⊆ · · · ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ Fω = H . (1.4)
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In the following exact couple, the filtration of the universal augmentation
is of the form (1.4)

0 0 0

...
...

...

· · · 0 0 0 0 0 · · ·

· · · 0 0 0 ⋄ • · · ·

· · · • ⋄ 0 ⋄ • · · ·

...
...

...

· · · • ⋄ 0 ⋄ • · · ·

· · · • ⋄ • ⋄ • · · ·

...
...

...

Ln+1 Ln Ln−1

We will call it an originally vanishing exact couple. In the third chapter,
for such exact couple and the filtration of its universal augmentation L∗,
we start from the known step 0 and we assume we have information about
Fp. To obtain information about Fp+1 we look at the following short exact
sequence

Fp ֌ Fp+1 ։
Fp+1

Fp

.

We will see in the third chapter that there is a very close relationship

between the quotients
Fp+1

Fp

and the E∞-terms of the spectral sequence

induced by an originally vanishing exact couple. In fact, we have

Fp+1

Fp

∼= E∞.

Now, if we have the desired information about the E∞-terms, it can be

inherited to the quotients
Fp+1

Fp

and hence we have the information about

Fp+1, up to extension.
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This originally vanishing exact couple is a special case of an exact couple
in which, instead of a zero range, we have isomorphisms in the blue range
in the diagram above. We will call it an originally stable exact couple. The
dual situations are called eventually vanishing and eventually stable exact
couples.

Now, the following question arises

is this approach applicable to transfinitely filtered modules?

The answer is “Yes”. Constructions associated to the homotopical (co-
)localization lead exactly to settings of the kind we have just described:
See Appendix B. In fact, the entire project was originally motivated by
this observation. We will generalize to the case that H is transfinitely
filtered over an arbitrary limit ordinal λ

F1 ⊆ F2 ⊆ · · · ⊆ Fω ⊆ Fω+1 ⊆ · · · ⊆ Fη ⊆ Fη+1 ⊆ · · · ⊆ Fλ = H . (1.5)

We try to obtain information about Fλ through transfinite induction. For
an arbitrary ordinal η ≤ λ, when trying to take the inductive step from
“information about Fβ, for all β < η” to “information about Fη”, we face
one of the following two situations:

Situation 1: η is a non-limit ordinal and, hence, has a predecessor. In
this case, we make the following elementary but crucial observation:

η has at most finitely many predecessors.

The foundation of the approach taken here is based on this technical
observation. Therefore, there exist a limit ordinal η0 and a positive
integer r such that η = η0 + r. Our method applies in cases that we
are lucky to have an exact couple matched to the ω-length segment
of the filtration

Fη0 ⊆ Fη0+1 ⊆ · · · ⊆ Fη0+r−1 ⊆ Fη0+r ⊆ · · · ⊆ Fη0+ω. (1.6)

That is, we assume there is an originally vanishing exact couple such
that Fη0+ω plays the role of its augmentation. This is, indeed, part
of the strategy which motivated the entire approach. It is also the
reason why ω-indexed filtrations play a key role in the development
here. Now we can use the same method we used in the ω-indexed
scenario to pass from Fη0+r−1 to Fη0+r = Fη.
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Situation 2: η is a limit ordinal. The inductive step from filtration
stages indexed by ordinals less than η to the filtration stage η is
outside of the scope of the spectral sequence machine developed here.
What we have here is a morphism ρη : colimβ<η Hβ → Hη and hence
an inclusion colimβ<η Fβ ֌ Fη. We will make the passage from
colimβ<η Fβ to Fη possible by putting assumptions on ρη.

For an alternative spectral sequence based approach to countably trans-
finitely filtered objects see [18].

• Classes of Modules Compatible with Spectral Sequences and
Transfinite Induction. In the fourth chapter, we extend the idea of
Serre in [29] working modulo a class of modules. As an application of
the inductive argument explained above, we will introduce a collection of
closure properties which, when satisfied by any class of modules, ensures
that the filtration stages of countably or transfinitely filtered modules stay
within this class; i.e., these closure properties are “tailor-made” for the
inductive argument above. For example, for a class C of modules with
some closure properties

if the homology groups of all cofibers of a transfinite tower of cofibrations
are in C, then the homology groups of the colimit of the tower will be also

in C.

It turns out that this collection, even with fewer closure properties,
is also “tailor-made” for the mechanics of every spectral sequence in the
sense that

if the entries of some page of an arbitrary spectral sequence are in this
class then all entries of the successive pages will be in the class, even the

entries of the limit page.

• Comparison Theorems Modulo a Class of Modules. As the sec-
ond application of the inductive argument above, for a morphism of two
spectral sequences, in the fifth chapter we consider a variety of situations
in which a choice of hypotheses about the effect of this morphism at the
E∞-page leads to conclusions about the effect of this morphism at the
universal (co-)augmenting objects. For example, we will prove that if we
have a morphism between two arbitrary exact couples such that

1. the morphisms between the E∞-terms, and
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2. the morphisms between the intersection of the filtrations of the uni-
versal augmentations

are C-monomorphisms, then the morphism between the universal augmen-
tations is a C-monomorphism.

Then, given a morphism of two transfinitely filtered modules, we use
the inductive argument above to carry some hypotheses about the effect of
this morphism through the filtration stages to the effect of the morphism
of the filtered modules.

All morphisms we work with in this chapter are morphisms with tamed
kernels and/or cokernels; i.e., they are morphisms that their kernels and/or
cokernels belong to a class C of modules with some closure properties.
So a C-monomorphism (C-epimorphism) is a homomorphism whose kernel
(cokernel) belongs to the class C. A C-isomorphism is a homomrphism
that is both C-monomorphism and C-epimorphism. Note that if C is the
trivial class consisting of only zero, then all these notions coincide with the
standard notions of monomorphism, epimorphism and isomorphism. The
idea of all proofs in this chapter are also originated from Peschke [26].

• Reverse Engineering in Spectral Sequences. Under some circum-
stances, it is possible to flip through the finite pages of a spectral sequence
backward. That is, we can start with some information about the universal
augmentation or coaugmentation of an exact couple and obtain informa-
tion about some page of the induced spectral sequence. In chapter six,
we see two scenarios that this reverse engineering phenomenon happens.
The idea of the first scenario comes from the second scenario which was
developed by Peschke [26]:

1. In the first scenario, we pick a class of modules with some closure
properties and we assume in the r-th page of the following spectral
sequence

q

p0 1 · · · n · · ·
0

1

...

n

...

� � · · · � · · ·

� � · · · � · · ·

...
...

...
...

...

� � · · · � · · ·

...
...

...
...

...
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• the red entries are in C,
• if a blue entry is in C then all entries above it are also in C, and
• the universal augmentation is in C.

Then, we conclude that all entries of the r-th page also belong to C.

2. In the second scenario, we pick two such spectral sequences and as-
sume the following

• the corresponding red entries are C-isomorphic,

• if a blue entry in one spectral sequence is C-isomorphic to the
corresponding blue entry of another, then all corresponding en-
tries above them are also C-isomorphic, and

• the universal augmentations are C-isomorphic.

Then we conclude that all entries of the r-th page of the spectral
sequences are C-isomorphic.

Note that Zeeman’s comparison theorem is a special case: It assumes
that the entries in the second page of the spectral sequence satisfy
the following short exact sequence

E2
p,0 ⊗ E2

0,q ֌ E2
p,q ։ Tor(E2

p−1,0, E
2
0,q).

History. Spectral sequences were invented in 1946 by Jean Leray [21] to
compute the (co-)homology of a graded chain complex. In 1947, Koszul [20]
stated the definitions made by Leray in a more abstract term and in 1951,
Serre [28] offered an important application of spectral sequences by pro-
viding the properties of the spectral (co-)homology sequence of a fibration.
Using this spectral sequence, he could show that a simply-connected space
has finitely generated homotopy groups iff it has finitely generated homol-
ogy groups. As a result, the homotopy groups of a sphere are finitely gen-
erated; before this result, it was only known that these homotopy groups
were countable. In 1952 and 1953, Massey, [22] and [23], introduced exact
couples as a source of spectral sequences and the development of a gen-
eral theory of spectral sequences. See [25] for a more detailed history of
spectral sequences.

Later, more complicated spectral sequences of interest appeared and
the old finiteness conditions which were imposed to guarantee convergence
were replaced by some limit conditions; look at [8]. In 1999, Boardman
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published his paper [3], which had been in circulation for many years before
publication, in which he describes the major players corresponded to an ex-
act couple and the induced spectral sequence and, to some extent, clarifies
the relationship between them. His paper has been a standard reference
on convergence. Peschke [26] in his (unpublished) lecture notes improved
upon the relationship between these major players and presented it in a
single picture, which he called it E∞-distribution diagram. This picture
can describe all convergence types that exist in the literature and provide
much more information.

Then series of successive spectral sequences arose and the need for a
single structure capable of managing them was felt. Po Hu [18] introduced
a generalization of spectral sequences called transfinite spectral sequences
and also a good source of them, transfinite exact couples. As a result, under
some conditions, we have a spectral sequence with transfinitely many pages
and transfinitely long differentials. This is done for countable ordinals.
Here, instead, we take a different approach and we consider a transfinitely
filtered module such that the filtration stages are suitably related to the
spectral sequence methods. We do not define any new type of spectral
sequences or any differentials of new length. We also do not restrict the
indexing ordinal to be countable.



Chapter 2

Spectral Sequences and Exact
Couples

2.1 Introduction

In this chapter, we review the definition of a “spectral sequence” and de-
velop its structural properties. We introduce the pages of a spectral se-
quence and, in particular, its infinity page, E∞.

An outstanding source of spectral sequences is an interlocking system
of long exact sequences, called an “exact couple”, which is outlined in the
figure below; each subdiagram of the shape of same colored arrows forms a
long exact sequence of bigraded R-modules and each arrow has a bidegree
a, b or c. Here we pick a = (−1, 1), b = (0, 0) and c = (0,−1) which are
the bidegrees in a homology spectral sequence.

...
...

...

· · · D(p,q)

a

E(p,q) D(p,q−1) E(p,q−1) D(p,q−2) · · ·

· · · D(p−1,q+1)
b E(p−1,q+1)

c D(p−1,q) E(p−1,q) D(p−1,q−1) · · ·

· · · D(p−2,q+2) E(p−2,q+2) D(p−2,q+1) E(p−2,q+1) D(p−2,q) · · ·

...
...

...

Every exact couple delivers three important objects:

12
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1. a Z-graded R-module L∗, where Ln = colimrD(p−r,q+r), called the
universal augmentation,

2. a Z-graded R-module L∗, where Ln = limrD(pr,q+r), called the uni-
versal coaugmentation, and

3. the first page of a spectral sequence, which are shown by Ep,q.

Ln Ln−1 Ln−2

...
...

...

· · · D(p,q)

a

E(p,q) D(p,q−1) E(p,q−1) D(p,q−2) · · ·

· · · D(p−1,q+1)
b E(p−1,q+1)

c D(p−1,q) E(p−1,q) D(p−1,q−1) · · ·

· · · D(p−2,q+2) E(p−2,q+2) D(p−2,q+1) E(p−2,q+1) D(p−2,q) · · ·

...
...

...

Ln Ln−1 Ln−2

For every n ∈ Z, by universality of augmentation and coaugmentation,
for each D(p,q) there is a canonical morphism

D(p,q) −→ Ln (2.1)

and
Ln −→ D(p,q) (2.2)

and hence we can

- filter L∗ by the images of the morphisms (2.1), and

- filter L∗ by the kernels of the morphisms (2.2).

Then we show how to distill a spectral sequence from an exact couple
and, in particular, how to distill the E∞-page of the induced spectral se-
quence. Much of this review is necessarily standard material covered in
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[3], [22] and [23]. However, in the end we carry the discussion of exact cou-
ples, their associated spectral sequences and associated filtered objects a
significant step further. In the E∞-Distribution Theorem, Peschke [26], in
his (unpublished) lecture notes, shows that E∞ is related to the filtrations
of L∗ and L∗ simultaneously and we describe this relationship completely
for all spectral sequences, and without any assumptions. In most appli-
cations, one is interested in either the universally augmenting object L∗

and its image filtration or the universally coaugmenting object L∗ and its
kernel filtration, not both at the same time. In this situation one hopes
to gain information about the quotient of adjacent filtration stages from
E∞, and this information is strongest if these quotients and E∞-terms are
isomorphic. The question whether or not this happens is the “convergence
question” for a spectral sequence.

In [3], Boardman presents the relationship between E∞-terms of a spec-
tral sequence and the quotients of the adjacent filtration stages of L∗, which
we denote by ǫp,q. Peschke [26] provides a relationship between E∞-terms
of a spectral sequence and the quotients of adjacent filtration stages of L∗,
which we denote by ǫp,q−1. In the E∞-Distribution Theorem both of these
relationships are offered. In this theorem, we see that we have the following
diagram, where morphisms of the same color form an exact sequence and
i and j are homomorphisms defined by the corresponding exact couple

lim1 ker(ir(p+r,q−r−1))

ǫ(p,q) E∞
(p,q)

Z∞
(p,q)

im(j(p,q))

f

ǫ(p,q−1)

This provides a complete answer to the first question we mentioned in the
first chapter. To answer the second question, we will provide necessary
and sufficient conditions for

1. ǫ(p,q) ∼= E∞
(p,q) (convergence to L∗), and

2. E∞
(p,q)

∼= ǫ(p,q−1) (convergence to L∗),

as follows:

1. ǫ(p,q) ∼= E∞
(p,q) if and only if

Z∞
(p,q)

im(j(p,q))
vanishes.
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2. E∞
(p,q)

∼= ǫ(p,q−1) if and only if ǫ(p,q) and the map

f :
Z∞

(p,q)

im(j(p,q))
−→ lim1 ker(ir(p+r,q−r−1))

vanish.

In particular, if only the map f vanishes then we obtain the following short
exact sequence

ǫ(p,q) ֌ E∞
(p,q) ։ ǫ(p,q−1).

This is the closest possible non-trivial relationship between these three
objects which is not in the scope of what Boardman has provided. To
complete the answer to the second question, we will show that E∞ can be
isomorphic to only one of ǫ(p,q) or ǫ

(p,q), because by the E∞-Distribution
Theorem we can see easily that

• if E∞
(p,q)

∼= ǫ(p,q) then ǫ
(p,q−1) = 0, and

• if E∞
(p,q)

∼= ǫ(p,q−1) then ǫ(p,q) = 0.

So E∞ is uniquely distributed over either ǫ(p,q) or ǫ
(p,q−1).

Then to provide the answer to the third question we will see what hap-
pens if ǫ(p,q) or ǫ

(p,q−1) vanishes and, in particular, the fact that vanishing of
one of these quotients is the motivation behind the definition of conditional
convergence in [3].

We will also show that this result implies all known convergence results.
For example, in Boardman’s terminology:

1. Vanishing of
Z∞

(p,q)

im(j(p,q))
means weak convergence to L∗.

2. Vanishing of f and ǫ(p,q−1) means weak (and strong) convergence to
L∗.

We will also extend this theorem to the case that an exact couple has an
arbitrary augmentation and coaugmentation and explain the relationships
between these augmentation and coaugmentation and the E∞-terms of the
induced spectral sequence.

We will finally compare our method with Boardman’s and state the
limitations which result from the absence of the E∞-Distribution Theorem
and the gains which result from its availability.
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All results and proofs in this chapter are part of what Peschke [26] has
developed in [26].

2.2 Spectral Sequences

2.2.1 Definition of a Spectral Sequence

Definition 2.2.1. A (Z× Z)−bigraded R-module is given by a family of
R-modules (A(p,q)|(p, q) ∈ Z× Z).

Definition 2.2.2. A morphism f : A→ B of (Z×Z)-graded R-modules of
bidegree (µ, ν) = u is given by a family of R-module maps (f(p,q) : A(p,q) →
B(p+µ,q+ν) | (p, q) ∈ Z× Z) = (f(p,q) : A(p,q) → B(p,q)+u | (p, q) ∈ Z× Z).

Definition 2.2.3. A spectral sequence is given by

1. a family {Er
(p,q) | 0 ≤ r0 ≤ r, (p, q) ∈ Z× Z} of bigraded R-modules,

where r0 is a fixed integer, and

2. a sequence of endomorphisms dr : Er
(p,q) → Er

(p,q)+ur
of bidegree ur =

(µr, νr) ∈ Z×Z; i.e., dr(p,q) : E
r
(p,q) → Er

(p,q)+ur
, such that the following

hold

(a) dr(p,q) ◦ dr(p,q)−ur
= 0, and

(b) Er+1
(p,q) =

ker(dr(p,q))

im(dr(p,q)−ur
)
.

We show each Er
(p,q) by a point with coordinates (p, q) in the plane.



2.2 Spectral Sequences 17

Er
(p,q)+ur

...
...

...
...

Er
(p−1,q) Er

(p,q)

dr
(p,q)

Er
(p+1,q)

...
...

...
Er

(p,q−1)
...

...

...
...

...
Er

(p,q)−ur

dr
(p,q)−ur

Terminology 2.2.4. For a fixed r, the bigraded objects Er
(p,q) form the

r-th page of the spectral sequence and the bigraded morphism dr is called
the differential of the r-th page of the spectral sequence.

Definition 2.2.5. A spectral sequence is called

1. first quadrant if E1
(p,q) = 0 for p < 0 or q < 0,

2. second quadrant if E1
(p,q) = 0 for p > 0 or q < 0,

3. third quadrant if E1
(p,q) = 0 for p > 0 or q > 0,

4. fourth quadrant if E1
(p,q) = 0 for p < 0 or q > 0.

2.2.2 Limit Page of a Spectral Sequence

We define a sequence of modules in each position (p, q) of the form

0 ⊆ Br0−1
(p,q) ⊆ · · · ⊆ Br

(p,q) ⊆ · · · ⊆ ⋃

r B
r
(p,q) ⊆

⋂

r Z
r
(p,q) ⊆ · · · ⊆ Zr

(p,q) ⊆ · · · ⊆ Zr0−1
(p,q) ⊆ Er0

(p,q)

and then define E∞
(p,q) =

Z∞
(p,q)

B∞
(p,q)

, where Z∞
(p,q) =

⋂

r Z
r
(p,q) and B∞

(p,q) =

⋃

r B
r
(p,q). We proceed by induction on r:

• Define Zr0−1
(p,q) = Er0

(p,q) and B
r0−1
(p,q) = 0.
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• Suppose inductively for r0 ≤ r we have defined

0 = Br0−1
(p,q) ⊆ · · · ⊆ Br

(p,q) ⊆ Zr
(p,q) ⊆ · · · ⊆ Zr0−1

(p,q) = Er0
(p,q)

satisfying Ek+1
(p,q) =

Zk
(p,q)

Bk
(p,q)

, for k ≤ r.

• Since Er+1
(p,q) is a quotient of Zr

(p,q) there is an epimorphism τ r(p,q) :

Zr
(p,q) ։ Er+1

(p,q)

Zr
(p,q)

τr
(p,q)

Er+1
(p,q)−ur+1

dr+1
(p,q)−ur+1 Er+1

(p,q)

dr+1
(p,q)

Er+1
(p,q)+ur+1

.

Now define
Br+1

(p,q) := (τ r(p,q))
−1(im(dr+1

(p,q)−ur+1
))

and
Zr+1

(p,q) := (τ r(p,q))
−1(ker(dr+1

(p,q))).

By passing from r-th page to the (r + 1)-th page we collapse Br
(p,q)

to zero and hence

Br
(p,q) = (τ r(p,q))

−1(0) ⊆ Br+1
(p,q) ⊆ Zr+1

(p,q) ⊆ Zr
(p,q).

Therefore,
Zr+1

(p,q)

Br+1
(p,q)

=
(τ r(p,q))

−1(ker(dr+1
(p,q)))

(τ r(p,q))
−1(im(dr+1

(p,q)−ur+1
))
.

Now, consider τ r(p,q)| : Zr+1
(p,q) ։

Zr+1
(p,q)

Br
(p,q)

. The homomorphism

τ r(p,q)| :
Zr+1

(p,q)

Br+1
(p,q)

−→
τ r(p,q)|((τ r(p,q))−1(ker(dr+1

(p,q))))

τ r(p,q)|((τ r(p,q))−1(im(dr+1
(p,q)−ur+1

)))
=

ker(dr+1
(p,q))

im(dr+1
(p,q)−ur+1

)

is a surjection. If τ r(p,q)|(z+Br+1
(p,q)) = 0, then τ r(p,q)(z) ∈ im(dr+1

(p,q)−ur+1
)

and hence z ∈ (τ r(p,q))
−1(im(dr+1

(p,q)−ur+1
)) = Br+1

(p,q); i.e., τ r(p,q)| is an
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injection and hence

(τ r(p,q))
−1(ker(dr+1

(p,q)))

(τ r(p,q))
−1(im(dr+1

(p,q)−ur+1
))

∼=
ker(dr+1

(p,q))

im(dr+1
(p,q)−ur+1

)
.

Therefore,

Er+2
(p,q) =

Zr+1
(p,q)

Br+1
(p,q)

.

Definition 2.2.6. A spectral sequence collapses on page r if dr+k = 0 for
all k ≥ 0.

Proposition 2.2.7. If (Er, dr) collapses on page r, then

Br = Br+1 = · · · = Br+k = B∞ and Zr = Zr+1 = · · · = Zr+k = Z∞

and hence

Er = Er+1 = Er+2 = · · · = Er+k = E∞ ∀k ≥ 0.

Lemma 2.2.8. The E∞-term of a spectral sequence can be represented as

1. a colimit via

E∞
(p,q)

∼= colim

{

Z∞
(p,q)

Br0
(p,q)

։
Z∞

(p,q)

Br0+1
(p,q)

։ · · · ։
Z∞

(p,q)

Br
(p,q)

։ · · ·
}

2. a limit via

E∞
(p,q)

∼= lim

{

Zr0
(p,q)

B∞
(p,q)

֋
Zr0+1

(p,q)

B∞
(p,q)

֋ · · · ֋
Zr

(p,q)

B∞
(p,q)

֋ · · ·
}

.

Proof. 1. We have the following diagram of short exact sequences
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Br0−1
(p,q)

Z∞
(p,q)

Z∞
(p,q)

Br0−1
(p,q)

...
...

...

Br−1
(p,q)

Z∞
(p,q)

Z∞
(p,q)

Br−1
(p,q)

Br
(p,q) Z∞

(p,q)

Z∞
(p,q)

Br
(p,q)

...
...

....

It is a well-known fact that the colimit functor on morphisms of
diagrams over directed towers is exact; see Appendix A. Therefore,
we obtain the following short exact sequence

B∞
(p,q) Z∞

(p,q) colimr

{

Z∞
(p,q)

Br
(p,q)

}

and hence E∞
(p,q)

∼= colimr

{

Z∞
(p,q)

Br
(p,q)

}

.

2. We have the following diagram of short exact sequences

...
...

...

B∞
(p,q) Zr

(p,q)

Zr
(p,q)

B∞
(p,q)

B∞
(p,q) Zr−1

(p,q)

Zr−1
(p,q)

B∞
(p,q)

...
...

...

B∞
(p,q) Zr0−1

(p,q)

Zr0−1
(p,q)

B∞
(p,q)

.
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It is a well-known fact that the limit functor on morphisms of dia-
grams over directed towers is left-exact; see Appendix A. Therefore,
we obtain the following exact sequence

B∞
(p,q) Z∞

(p,q) limr

{

Zr
(p,q)

B∞
(p,q)

}

lim1
rB

∞
(p,q) lim1

rZ
∞
(p,q) lim1

r

{

Zr
(p,q)

B∞
(p,q)

}

,

where lim1 is the first derived functor of the limit functor; see Ap-
pendix A. Since lim1 of a constant diagram is zero we have lim1

rB
∞
(p,q) =

0. Therefore, we obtain the following short exact sequence

B∞
(p,q) Z∞

(p,q) limr

{

Zr
(p,q)

B∞
(p,q)

}

and hence

E∞
(p,q)

∼= lim
r

{

Zr
(p,q)

B∞
(p,q)

}

.

2.2.3 Morphisms of Spectral Sequences

Definition 2.2.9. A morphism of bidegree m ∈ Z ⊕ Z of one spectral
sequence (Er(1), dr(1)) to another one (Er(2), dr(2)) is a family of mor-
phisms (f r : Er(1) → Er(2) | r ≥ r0) of bidegree m of bigraded R-modules
satisfying:

1. each f r commutes with the differentials in the r-th page; i.e., f r◦dr =
dr ◦ f r, and

2. f r induces f r+1 in homology; i.e., f r+1 = H(f r).

Lemma 2.2.10. A morphism of spectral sequences (f r : Er(1) → Er(2) | r ≥
r0) of bidegree m induces a morphism

f∞ : E∞(1) → E∞(2)

which is also of bidegree m.

Proof. For each (p, q) we build inductively the commutative diagram of
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solid arrows

Br
(p,q)(1) B∞

(p,q)(1) Z∞
(p,q)(1) Zr

(p,q)(1)

Br
(p,q)(2) B∞

(p,q)(2) Z∞
(p,q)(2) Zr

(p,q)(2)

(2.3)

where all vertical arrows are restrictions of f r0
(p,q).

• For r = r0− 1 the vertical map on the left is zero and the one on the
right is fr0 .

• Suppose the diagram is established for r − 1 ≥ r0 − 1. Look at the
diagram below

im(drp−µr,q−νr
(1))

fr|Br−1
(p,q)(1) Zr−1

(p,q)(1) Er
(p,q)(1)

frBr−1
(p,q)(1) Zr

(p,q)(1)

fr0 |

ker(dr(p,q)(1))

fr|

im(drp−µr,q−νr
(2))

Br−1
(p,q)(2) Zr−1

(p,q)(2) Er
(p,q)(2)

Br−1
(p,q)(2) Zr

(p,q)(2) ker(dr(p,q)(2))

We show that f r0
(p,q)(Z

r
(p,q)(1)) ⊆ Zr

(p,q)(2): Take

f r0
(p,q)(x) ∈ f r0

(p,q)(Z
r
(p,q)(1)).

Then
x ∈ Zr

(p,q)(1) = (τ r(p,q)(1))
−1(ker(dr+1

(p,q)(1)));

i.e., dr+1
(p,q)(1)(τ

r
(p,q)(1)(x)) = 0. Now

dr+1
(p,q)(2)(τ

r
(p,q)(2)(f

r0
(p,q)(x))) = dr(p,q)(2)(f

r0
(p,q)(τ

r
(p,q)(1)(x)))

= f r0
(p,q)(d

r+1
(p,q)(1)(τ

r
(p,q)(1)(x)))

= 0.

Therefore, f r0
(p,q)(x) ∈ (τ r(p,q)(2))

−1(ker(dr+1
(p,q)(2))) = Zr

(p,q)(2).

To see that f r0
(p,q)(B

r
(p,q)(1)) ⊆ Br

(p,q)(2) consider the diagram below
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Zr−1
(p,q)(1)

fr0 |

Er
(p,q)(1)

frBr
(p,q)(1)

fr0 |

im(drp−µr,q−νr
(1))

fr|

Zr−1
(p,q)(2) Er

(p,q)(2)

Br
(p,q)(2) im(drp−µr,q−νr

(2))

We know that f r| : im(drp−µr,q−νr
(1)) → im(drp−µr,q−νr

(2)). Thus
f r0(Br(1)) ⊆ Br

(p,q)(2). The dotted arrows f r| : B∞
(p,q)(1) → B∞

(p,q)(2)

and f r| : Z∞
(p,q) → Z∞

(p,q)(2) in diagram (2.3) follow from purely set
theoretic considerations. Thus f∞ is given by the universal property
of cokernel:

B∞
(p,q)(1)

fr0 |

Z∞
(p,q)(1)

fr0 |

E∞
(p,q)(1)

f∞

B∞
(p,q)(2) Z∞

(p,q)(2) E∞
(p,q)(2).

Corollary 2.2.11. Given a morphism (f r : Er(1) → Er(2) | r ≥ r0)
of spectral sequences, suppose that f r is an isomorphism of bigraded R-
modules for some r ≥ 1. Then

f∞ : E∞(1) → E∞(2)

is also an isomorphism.

Proof. Using the diagram below we show inductively that

• f r+k+1 is an isomorphism of bigraded objects, for each k ≥ 0,

• f induces isomorphisms.
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im(dr+k
p−µr,q−νr(1))

fr+k|

Br+k−1
(p,q) (1)

Br−1
(p,q)(1)

∼=

Zr+k−1
(p,q) (1)

Br−1
(p,q)(1)

∼=

Er+k
(p,q)(1)

fr+k

∼=

Br+k−1
(p,q) (1)

Br−1
(p,q)(1)

Zr+k
(p,q)(1)

Br−1
(p,q)(1)

fr0 |3
∼=

ker(dr+k
(p,q)(1))

fr|2
∼=

im(dr+k
p−µr,q−νr(2))

Br+k−1
(p,q) (2)

Br−1
(p,q)(2)

Zr−1
(p,q)(2)

Br−1
(p,q)(2)

Er+k
(p,q)(2)

Br+k−1
(p,q) (2)

Br−1
(p,q)(2)

Zr+k
(p,q)(2)

Br−1
(p,q)(2)

ker(dr+k
(p,q)(2))

Indeed,

f r+k| : im(dr+k
p−µr,q−νr

(1)) → im(dr+k
p−µr,q−νr

(2))

is one-to-one, being the restriction of an isomorphism. It is onto because

the diagram commutes. The isomorphisms
2∼= and, subsequently

3∼=, come
from the 5-lemma. In particular, f r+k+1 is an isomorphism. It remains to
verify the isomorphism

Br+k
(p,q)(1)

Br−1
(p,q)(1)

→
Br+k

(p,q)(2)

Br−1
(p,q)(2)

.

We have the commutative diagram

Br+k−1
(p,q) (1)

Br−1
(p,q)(1)

Br+k
(p,q)(1)

Br−1
(p,q)(1)

im(dr+k
p−µr,q−νr(1))

∼=

Br+k−1
(p,q) (2)

Br−1
(p,q)(2)

Br+k
(p,q)(2)

Br−1
(p,q)(2)

im(dr+k
p−µr,q−νr(2)).

The arrow on the right is an isomorphism as we have just seen. The
arrow on the left is an isomorphism by induction hypothesis. The arrow
in the middle is an isomorphism by the 5-lemma. Therefore, f induces
isomorphisms

Zr+k
(p,q)(1)

Br−1
(p,q)(1)

∼=−→
Zr+k

(p,q)(2)

Br−1
(p,q)(2)
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and
Br+k

(p,q)(1)

Br−1
(p,q)(1)

∼=−→
Br+k

(p,q)(2)

Br−1
(p,q)(2)

.

This yields isomorphisms

Zr+k
(p,q)(1)

B∞
(p,q)(1)

∼=
Zr+k

(p,q)(1)/B
r−1
(p,q)(1)

B∞
(p,q)(1)/B

r−1
(p,q)(1)

∼=−→
Zr+k

(p,q)(2)/B
r
(p,q)(2)

B∞
(p,q)(2)/B

r
(p,q)(2)

∼=
Zr+k

(p,q)(2)/B
r−1
(p,q)(2)

B∞
(p,q)(2)/B

r−1
(p,q)(2)

∼=
Zr+k

(p,q)(2)

B∞
(p,q)(2)

.

Lemma 2.2.12. Suppose a morphism f : E(1) → E(2) of spectral se-
quences induces the diagram below

Er
(p,q)−br

(1)
dr
(p,q)−ur

(1)

fr
(p,q)−ur

Er
(p,q)(1)

dr
(p,q)

(1)

fr
(p,q)

∼=

Er
(p,q)+ur

(1)

fr
(p,q)+ur

Er
(p,q)−ur

(2)
dr
(p,q)−ur

(2)
Er

(p,q)(2) dr
(p,q)

(2)
Er

(p,q)+ur
(2).

Then f r+1
(p,q) : E

r+1
(p,q)(1) → Er+1

(p,q)(2) is an isomorphism.

Proof. We have the two commutative diagrams

ker(dr(p,q)−ur
(1)) Er

(p,q)−ur
(1)

dr
(p,q)−ur

(1)

fr
(p,q)−ur

Er
(p,q)(1)

∼=fr
(p,q)im(dr(p,q)−ur

(1))

fr
(p,q)

|

ker(dr(p,q)−ur
(1)) Er

(p,q)−ur
(2)

dr
(p,q)−ur

(2)
Er

(p,q)(2)

im(dr(p,q)−ur
(2))

(2.4)
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and

ker(dr(p,q)(1))

fr
(p,q)

|

Er
(p,q)(1)

dr
(p,q)

(1)

fr
(p,q)

∼=

im(dr(p,q)(1))

ker(dr(p,q)(2)) Er
(p,q)(2) dr

(p,q)
(2)

im(dr(p,q)(2)).

(2.5)

In (2.4), the vertical dashed arrow is a monomorphism because f r
(p,q) is

an isomorphism and an epimorphism because f r
(p,q)−br

is an epimorphism.
Therefore,

f r
(p,q)| : im(dr(p,q)−ur

(1)) → im(dr(p,q)−ur
(2))

is an isomorphism. In (2.5), the vertical dashed arrow is a monomorphism
by isomorphicity of f r

(p,q) and an epimorphism by five-lemma.Therefore,

f r
(p,q)| : ker(dr(p,q)(1)) → ker(dr(p,q)(2))

is an isomorphism. Thus we obtain the commutative diagram below

im(dr(p,q)−ur
(1))

∼=fr
(p,q)

|

ker(dr(p,q)(1))

∼=fr
(p,q)

|

Er+1
(p,q)(1)

fr+1
(p,q)

im(dr(p,q)−ur
(2)) ker(dr(p,q)(2)) Er+1

(p,q)(2).

By five-lemma, we see that f r+1
(p,q) is an isomorphism as well.

2.3 Exact Couples: Source of Spectral Se-

quences

Many times a spectral sequence arises from a family of long exact sequences
of R-modules which are intertwined in a particular way. The sequences to-
gether with their intertwinement form a new type of structured object,
called an exact couple, which was introduced by Massey in [22] and [23].
However, in the previous section, spectral sequences were considered in
their standalone nature. From now on, we will specialize to spectral se-
quences that arise from an exact couple. We will see that from an exact
couples we obtain the following:
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1. Two Z-graded R-modules L∗ and L∗:

(a) Lp+q is filtered by

· · · ⊆ F(p,q)−a ⊆ F(p,q) ⊆ F(p,q)+a ⊆ · · · ⊂ Lp+q.

(b) Lp+q is filtered by

· · · ⊆ F (p,q)−a ⊆ F (p,q) ⊆ F (p,q)+a ⊆ · · · ⊆ Lp+q.

Here a is a bidegree which is determined by the exact couple.

2. A spectral sequence (Er, dr): The E∞-terms of this induced spec-
tral sequence are related to the quotients of adjacent stages of the
filtrations L∗ and L∗ as is shown in the following diagram:

F(p,q)

F(p,q)−a

֌ E∞
(p,q)+b

։ A(p,q)+b ֋
F (p,q)+a+b+c

F (p,q)+b+c

where a,b and c are certain bidegrees that are determined by the
spectral sequence and A(p,q)+b is an R-module obtained from the
exact couple.

In the E∞-Distribution Theorem 2.3.13 on page 35 we will see how these
information combine and produce a diagram that looks like a bird; the left
and right wings carry the filtration stages of L∗ and L∗, respectively, and
the body shows how the quotients of adjacent filtration stages of L∗ and
L∗ are related to the E∞-terms of the corresponding spectral sequence.
Later in this chapter, we will compare this theorem with what Boardman
has offered in [3].

2.3.1 Definition of an Exact Couple

Definition 2.3.1. An exact couple consists of bigraded R-modules D1 and
E1 with the following R-modules homomorphisms

i1(p,q) : D
1
(p,q) → D1

(p,q)+a
, of bidegree a ∈ Z⊕ Z,

j1(p,q) : D
1
(p,q) → E1

(p,q)+b
, of bidegree b ∈ Z⊕ Z,

k1(p,q) : E
1
(p,q) → D1

(p,q)+c
, of bidegree c ∈ Z⊕ Z,

such that j1 ◦ i1, k1 ◦ j1 and i1 ◦ k1 are zero homomorphisms. We require
(b+ c) · â 6= 0.
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It turns out that in most examples (b + c) · â = ±1. An exact couple
may be displayed as in the following diagram: here the sequence of blue
colored terms and arrows is long exact

...
...

E1
(p,q)−(r−1)a−c

D1
(p,q)−(r−1)a E1

(p,q)−(r−1)a+b
D1

(p,q)−(r−1)a+b+c
E1

(p,q)−(r−1)a+2b+c

...
...

E1
(p,q)−a−c

D1
(p,q)−a

i1
(p,q) −a

E1
(p,q)−a+b

D1
(p,q)−a+b+c

E1
(p,q)−a+2b+c

E1
(p,q)−c

D1
(p,q)

j1
(p,q)

E1
(p,q) +b

k1
(p,q)+b

D1
(p,q)+b+c

E1
(p,q)+2b+c

E1
(p,q) +a−c

D1
(p,q)+a

E1
(p,q)+a+b

D1
(p,q)+a+b+c

E1
(p,q)+a+2b+c

...
...

E1
(p,q)+(r−1)a−c

D1
(p,q)+(r−1)a E1

(p,q)+(r−1)a+b
D1

(p,q)+(r−1)a+b+c
E1

(p,q)+(r−1)a+2b+c

...
...

2.3.2 Distilling a Spectral Sequence from an Exact
Couple

The following theorem is proved by Massey in [23] for a spectral sequence
of bidegrees a = (−1, 1), b = (0, 0) and c = (1, 0). Here we state and prove
it for the general bidegrees. It shows the process of distilling a spectral
sequence from an exact couple.

Theorem 2.3.2. [26] Associated to an exact couple there is a spectral
sequence with

Er+1
(p,q)+b

=
(k1(p,q)+b

)−1 im(ir(p,q)+b+c−ra)

j1(p,q)(ker(i
r
(p,q)))

.

If we show (k1(p,q)+b
)−1 im(ir(p,q)+b+c−ra) by Z̄

r
(p,q)+b

, then the differential on
the r-th page is determined by the commutative diagram
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Z̄r−1
(p,q)+b

∆r
(p,q)+b

:=j1
(p,q)+b+c−(r−1)a

◦(ir−1
(p,q)+b+c

)−1◦k1
(p,q)+b

Z̄r−1
(p,q)+2b+c−(r−1)a

Er
(p,q)+b dr

(p,q)+b

Er
(p,q)+2b+c−(r−1)a

where ir(p,q) := (D1
(p,q)

i1
(p,q)

D1
(p,q)+a

i1
(p,q)+a · · ·

i1
(p,q)+(r−1)a

D1
(p,q)+ra) .

Proof. Let us show j1(p,q)(ker(i
r
(p,q))) by B̄

r
(p,q)+b

. We proceed by induction
on r:

• Put
Z̄0

(p,q)+b
:= E1

(p,q)+b
and B̄0

(p,q)+b
:= 0.

Then d1 = ∆1 is a differential on E1 because k1 ◦ j1 = 0. Further, Z̄1 and
B̄1 are as claimed.

• Suppose r ≥ 1 and for 0 ≤ s ≤ r, Es, ds and ∆s satisfy the claim.

• We show that Er+1 =
Z̄r

(p,q)+b

B̄r
(p,q)+b

:

Z̄r
(p,q)+b

B̄r
(p,q)+b

=
(k1(p,q)+b

)−1 im(ir(p,q)+b+c−ra)

j1(p,q) ker(i
r
(p,q))

=
Z̄r

(p,q)+b
∩ (k1(p,q)+b

)−1 im(ir(p,q)+b+c−ra)

j1(p,q) ◦ (ir−1
(p,q))

−1 ker(i1(p,q)+(r−1)a)

=
Z̄r−1

(p,q)+b
∩ (k1(p,q)+b

)−1ir−1
(p,q)+b+c+(r−1)a(ker(i

r−1
(p,q)+b+c−(r−1)a) + im(i1(p,q)+b+c−ra))

j1(p,q) ◦ (ir−1
(p,q))

−1(ker(i1(p,q)+(r−1)a) ∩ im(ir−1
(p,q)))

=
Z̄r−1

(p,q)+b
∩ (k1(p,q)+b

)−1ir−1
(p,q)+b+c+(r−1)a(ker(i

r−1
(p,q)+b+c−(r−1)a) + ker(j1(p,q)+b+c−(r−1)a))

j1(p,q) ◦ (ir−1
(p,q))

−1(im(k1(p,q)+(r−1)a−c
))

=
Z̄r−1

(p,q)+b
∩ (j1(p,q)+b+c−(r−1)a ◦ (ir−1

(p,q)+b+c−(r−1)a)
−1 ◦ k1(p,q)+b

)−1j1(p,q)+b+c−(r−1)a(ker(i
r−1
(p,q)+b+c−(r−1)a))

j1(p,q) ◦ (ir−1
(p,q))

−1 ◦ k1(p,q)+(r−1)a−c
(k1(p,q)+(r−1)a−c

)−1 im(ir−1
(p,q))

=
Z̄r−1

(p,q)+b
∩ (j1(p,q)+b+c−(r−1)a ◦ (ir−1

(p,q)+b+c−(r−1)a)
−1 ◦ k1(p,q)+b

)−1(B̄r−1
(p,q)+c+2b−(r−1)a)

j1(p,q) ◦ (ir−1
(p,q))

−1 ◦ k1(p,q)+(r−1)a−c
(Z̄r−1

(p,q)+(r−1)a−c
)

=
(∆r

(p,q)+b
)−1(B̄r−1

(p,q)+2b+c−(r−1)a)/B̄
r−1
(p,q)+b

∆r
(p,q)+(r−1)a−c

(Z̄r−1
(p,q)+(r−1)a−c

)/B̄r−1
(p,q)+b

=
ker(dr(p,q)+b

)

im(dr(p,q)+(r−1)a−c
)

= Er+1
(p,q)+b

• About dr+1: We first show that dr+1 is a homomorphism. To this end,
we need to show that ∆r+1

(p,q)+b
(B̄r

(p,q)+b
) ⊆ B̄r

(p,q)+2b+c−ra :
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∆r+1
(p,q)+b

(B̄r
(p,q)+b

) = j1(p,q)+b+c−ra((i
r
(p,q)+b+c−ra)

−1k1(p,q)+b
(B̄r

(p,q)+b
))

= j1(p,q)+b+c−ra((i
r
(p,q)+b+c−ra)

−1(k1(p,q)+b
(j1(p,q)(ker(i

r
(p,q))))))

= j1(p,q)+b+c−ra((i
r
(p,q)+b+c−ra)

−1(0))

= j1(p,q)+b+c−ra(ker(i
r
(p,q)+b+c−ra))

= B̄r
(p,q)+2b+c−ra.

So dr+1 is a bigraded homomorphism and it is related to ∆r+1 as required.

It remains to check that dr+1 is a differential. Thus we need to show
that

∆r+1
(p,q)+b

◦∆r+1
(p,q)−c+ra

(Z̄r
(p,q)−c+ra) ⊆ B̄r

(p,q)+2b−c−ra.

Indeed,

∆r+1
(p,q)+b

◦∆r+1
(p,q)−c+ra

(Z̄r
(p,q)−c+ra) ⊆ j1(p,q)+b+c−ra(i

r
(p,q)+b+c−ra)

−1k1(p,q)+b
j1(p,q)(D

1
(p,q))

= j1(p,q)+b+c−ra(i
r
(p,q)+b+c−ra)

−1(0)

= B̄r
(p,q)+2b−c−ra.

2.3.3 Morphism of Exact Couples

Definition 2.3.3. A morphism of bidegree m ∈ Z ⊕ Z from one exact
couple {D1

(p,q)(1), E
1
(p,q)(1)}(p,q)∈Z×Z to another {D1

(p,q)(2), E
1
(p,q)(2)}(p,q)∈Z×Z

is a family of morphisms
{

(f(p,q), g(p,q)) | f(p,q) : D1
(p,q)(1) → D1

(p,q)+m
(2), g(p,q) : E

1
(p,q)(1) → E1

(p,q)+m
(2)

}

(p,q)∈Z×Z

satisfying:

1. f(p,q)+a ◦ i1(p,q)(1) = i1(p,q)+m
(2) ◦ f(p,q),

2. g(p,q)+b ◦ j1(p,q)(1) = j1(p,q)+m
(2) ◦ f(p,q),

3. f(p,q)+c ◦ k1(p,q)(1) = k1(p,q)+m
(2) ◦ g(p,q).

Proposition 2.3.4. A morphism between exact couples induces a mor-
phism between the induced spectral sequences.

Proof. Note that, by Theorem 2.3.2 on page 28 and the proof of Lemma
2.2.10 on page 21, for every r ≥ r0, we obtain a morphism g(p,q)| : Zr

(p,q)(1) →
Zr

(p,q)+m
(2) and hence a morphism gr(p,q) : E

r
(p,q)(1) → Er

(p,q)+m
(2). There-

fore, the following relations hold:

1. f(p,q)+a| ◦ i1(p,q)(1) = i1(p,q)+m
(2) ◦ f(p,q)|,

2. g(p,q)+b| ◦ j1(p,q)(1) = j1(p,q)+m
(2) ◦ f(p,q)|,
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3. f(p,q)+c| ◦ k1(p,q)(1) = k1(p,q)+m
(2) ◦ g(p,q)|.

We need to check the following:

• gr ◦ dr(1) = dr(2) ◦ gr: By Theorem 2.3.2 on page 28, we are done if
we prove g(p,q)−(r−1)a+b+c| ◦∆r

(p,q)(1) = ∆r
(p,q)+m

(2) ◦ g(p,q)|:
g(p,q)−(r−1)a+b+c| ◦∆r

(p,q)(1) = g(p,q)−(r−1)a+b+c| ◦ j1(p,q)−(r−1)a+c
(1) ◦ (ir−1

(p,q)+c
(1))−1 ◦ k1(p,q)(1)

= j1(p,q)−(r−1)a+c+m
(2) ◦ f(p,q)−(r−1)a+c| ◦ (ir−1

(p,q)+c
(1))−1 ◦ k1(p,q)(1)

= j1(p,q)−(r−1)a+c+m
(2) ◦ (ir−1

(p,q)+c+m
(2))−1 ◦ f(p,q)+c| ◦ k1(p,q)(1)

= j1(p,q)−(r−1)a+c+m
(2) ◦ (ir−1

(p,q)+c+m
(2))−1 ◦ k1(p,q)+m

(2) ◦ g(p,q)|
= ∆r

(p,q)+m
(2) ◦ g(p,q)|.

• gr+1 = H(gr): From the homomorphism gr(p,q) : E
r
(p,q)(1) → Er

(p,q)+m
(2)

we obtain a homomorphism H∗(g
r
(p,q)) : H∗(E

r
(p,q)(1)) → H∗(E

r
(p,q)+m

(2)).
From the proof of the Theorem 2.3.2 on page 28, we know that
Zr

(p,q)(t)
∼= ker(dr(p,q)(t)) and B

r
(p,q)(t)

∼= im(dr(p,q)+(r−1)a−c
(t)), for t =

1, 2. Therefore, the homomorphism gr+1
(p,q) : E

r+1
(p,q)(1) → Er+1

(p,q)+m
(2) is

the same as H∗(g
r
(p,q)).

2.3.4 (Co-)Augmented Exact Couples

Now that we know how to distill a spectral sequence from an exact couple,
we focus on the two objects of interest L∗ and L∗ that we have talked
about in the introduction to this thesis.

Note 2.3.5. For a = (a1, a2), if we define â := (−a2, a1) and look at a and
â as vectors then their dot product is a · â = −a1a2 + a2a1 = 0. Note that
going up/down in a D1-column in an exact couple is by subtracting/adding
a to the bidegree of the D1-terms. The way â is defined guarantees that
D1

(u,v) andD
1
(p,q) are in the sameD1-column if and only if (u, v)·â = (p, q)·â.

So if we pick a D1-column, then for every D1
(p,q) in it, (p, q) · â is a fixed

integer, say n. We call this column the n-th D1-column of the exact couple.
The D1-column on the right of the n-th D1-column is reached by adding
b + c to every (p, q). Therefore, the D1-column to the right of the n-th
D1-column is the (n + σ)-th column where σ = (b + c) · â. This is the
reason in Definition 2.3.1 on page 27 we required σ 6= 0.
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Definition 2.3.6. An augmentation of an exact couple is a morphism
D1

∗,∗ → X∗ of the form

· · · D1
(p,q)−a

i1
(p,q)−a

D1
(p,q)

Q(p,q)

D1
(p,q)+a

· · · Xn

where this is the n-th D1-column of the exact couple and Xn is an R-
module and Q(p,q)−a = Q(p,q) ◦ i1(p,q)−a

.

Definition 2.3.7. A coaugmentation of an exact couple is a morphism
X∗ → D1

∗,∗ of the form

Xn

Q(p,q)

· · · D1
(p,q)−a

D1
(p,q)

i1
(p,q)

D1
(p,q)+a

· · ·

where this is the n-th D1-column of the exact couple and Xn is an R-
module and Q(p,q)+a = i1(p,q) ◦Q(p,q).

Remark 2.3.8. An exact couple always has a universal augmentation
given by

· · · D1
(p,q)−a

i1
(p,q)−a

D1
(p,q)

I(p,q)

D1
(p,q)+a

· · · Ln,

where n = (p, q) · â and Ln = colim(u,v)·â=nD
1
u,v.

An exact couple always also has a universal coaugmentation given by

Ln

I(p,q)

· · · D1
(p,q)−a

D1
(p,q)

i1
(p,q)

D1
(p,q)+a

· · ·

where n = (p, q) · â and Ln := lim(u,v)·â=nD
1
u,v.

Therefore, if we take X∗ as an arbitrary augmentation and X∗ as an
arbitrary coaugmentation we have the following diagram.
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Xn
ρn

Q(p,q)−ra

Ln

I(p,q)−ra

Xn+σ
ρn+σ

Q(p,q)−ra+b+c

Ln+σ

I(p,q)−ra+b+c

E1
(p,q)−ra−c

D1
(p,q)−ra E1

(p,q)−ra+b
D1

(p,q)−ra+b+c
E1

(p,q)−ra+2b+c

E1
(p,q)−(r−1)a−c

D1
(p,q)−(r−1)a E1

(p,q)−(r−1)a+b
D1

(p,q)−(r−1)a+b+c

j1

E1
(p,q)−(r−1)a+2b+c

E1
(p,q)−a−c

D1
(p,q)−a

i1
(p,q) −a

j1

E1
(p,q)−a+b

k1 D1
(p,q)−a+b+c

i1
(p,q)−a+b+c

E1
(p,q)−a+2b+c

E1
(p,q)−c

d1
(p,q)−c

D1
(p,q)

j1
(p,q)

i1
(p,q)

E1
(p,q) +b

k1
(p,q) +b

d1
(p,q) +b

=△1
(p,q) +b

△r
(p,q) +b

D1
(p,q)+b+c

E1
(p,q)+2b+c

E1
(p,q) +a−c

D1
(p,q)+a

E1
(p,q)+a+b

D1
(p,q)+a+b+c

E1
(p,q)+a+2b+c

E1
(p,q)+(r−1)a−c

k1

△r
(p,q)−(r−1)a−c

D1
(p,q)+(r−1)a

i1
(p,q) +(r−1)a

E1
(p,q)+(r−1)a+b

D1
(p,q)+(r−1)a+b+c

E1
(p,q)+(r−1)a+2b+c

E1
(p,q)+ra−c

D1
(p,q)+ra

I(p,q)+ra

Q(p,q)+ra

E1
(p,q)+ra+b

D1
(p,q)+ra+b+c

I(p,q)+ra+b+c

Q(p,q)+ra+b+c

E1
(p,q)+ra+2b+c

Ln ρn
Xn Ln+σ ρn+σ

Xn+σ

We can filter these augmentations and coaugmentations as follows.

Definition 2.3.9. The image filtration of Ln is the sequence of modules

0 ⊆ · · · ⊆ φ(p,q)−a ⊆ φ(p,q) ⊆ φ(p,q)+a ⊆ · · · ⊆ Ln

determined by
φ(p,q) = im(I(p,q) : D

1
(p,q) → Ln),

where (p, q) · â = n.

Each pair of adjacent terms in this image filtration gives a short exact
sequence

φ(p,q)−a ֌ φ(p,q) ։
φ(p,q)

φ(p,q)−a

.



2.3 Exact Couples: Source of Spectral Sequences 34

Definition 2.3.10. The kernel filtration of Ln is the sequence of modules

0 ⊆ · · · ⊆ φ(p,q)−a ⊆ φ(p,q) ⊆ φ(p,q)+a ⊆ · · · ⊆ Ln

determined by
φ(p,q) = ker(I(p,q) : Ln → D1

(p,q)),

wher (p, q) · â = n. so that

Each pair of adjacent terms in this kernel filtration gives a short exact
sequence

φ(p,q)−a ֌ φ(p,q) ։
φ(p,q)

φ(p,q)−a
.

Definition 2.3.11. The image filtration of im(ρn) is the sequence of mod-
ules

0 ⊆ · · · ⊆ F(p,q)−a ⊆ F(p,q) ⊆ F(p,q)+a ⊆ · · · ⊆ im(ρn)

determined by
F(p,q) = im(Q(p,q) : D

1
(p,q) → Xn),

where (p, q) · â = n.

Each pair of adjacent terms in this image filtration gives a short exact
sequence

F(p,q)−a ֌ F(p,q) ։
F(p,q)

F(p,q)−a

.

Definition 2.3.12. The kernel filtration of Xn is the sequence of modules

0 ⊆ · · · ⊆ F (p,q)−a ⊆ F (p,q) ⊆ F (p,q)+a ⊆ · · · ⊆ Xn

determined by
F (p,q) = ker(Q(p,q) : Xn → D1

(p,q)),

where (p, q) · â = n.

Each pair of adjacent terms in this kernel filtration gives a short exact
sequence

F (p,q)−a ֌ F (p,q) ։
F (p,q)

F (p,q)−a
.

2.3.5 E∞-Distribution Theorem

In Lemma 5.6 in [3], Boardman connects the quotient of the adjacent im-
age filtration stages of the universal augmentation L∗ to the E∞-term.
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Peschke [26], in the E∞-Distribution Theorem, states the simultaneous
relation between the quotient of adjacent image filtration stages of the
universal augmentation, E∞-term and the quotient of adjacent kernel fil-
tration stages of the universal coaugmentation. He does so for an arbitrary
spectral sequence, without any assumptions. This theorem plays a pivotal
role in the theory of exact couple based spectral sequences and the entire
thesis.

We state the E∞-Distribution Theorem here and postpone the proof
until the last section of this chapter. As we promised, it provides the
answer to the following question from chapter 1 on page 4.

Theorem 2.3.13. (E∞-Distribution Theorem [26]) For an exact cou-
ple the following hold:

1. The differential on Er has bidegree b+ c− (r − 1)a.

2. In the image filtration of Ln, a pair of adjacent filtration terms fits
into the 4-term exact sequence

φ(p,q)−a φ(p,q) E∞
(p,q)+b

Z∞
(p,q)+b

im(j1(p,q))
=

Z∞
(p,q)+b

ker(k1(p,q)+b
)
,

ǫ(p,q)

where ǫ(p,q) = Coker(φ(p,q)−a ֌ φ(p,q)).

3. In the kernel filtration of Ln+σ, a pair of adjacent filtration terms fits
into the 6-term exact sequence

φ(p,q)+b+c φ(p,q)+a+b+c

Z∞
(p,q)+b

im(j1(p,q))
lim1

r ker(i
r
(p,q)+b+c−ra)

ǫ(p,q)+b+c lim1
r ker(i

r+1
(p,q)+b+c−ra

)

lim1
rZ

r
(p,q)+b

where ǫ(p,q) = Coker(φ(p,q) ֌ φ(p,q)+a).

4. For (u, v)’s where (u, v) · â = n, we have colim(u,v) φu,v = Ln and
lim(u,v) φu,v fit into the following 6-term exact sequence
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ker(Ln → Ln) Ln lim(u,v) φu,v lim1
(u,v) ker(Iu,v)

lim1
(u,v)D

1
u,v

lim1
(u,v)φu,v

where Iu,v : D
1
u,v → Ln.

5. For (u, v)’s where (u, v)·â = n, we have lim(u,v) φ
u,v = 0 = lim1

(u,v)φ
u,v

and colim(u,v) φ
u,v = ker(Ln → Ln).

All of the assertions above are natural with respect to morphisms of exact
couples.

We can summarize the Theorem 2.3.13 in the following diagram where
sequences of the same color are exact: See [26].

0

⋂

r φ(p,q)−ra lim1
rZ

r
(p,q)+b

⋂

r φ
(p,q)+b+c−ra

lim1
r ker(i

r+1
(p,q)+b+c−ra

)

φ(p,q)−a lim1
r ker(i

r
(p,q)+b+c−ra) φ(p,q)+b+c

φ(p,q) ǫ(p,q) E∞
(p,q)+b

Z∞
(p,q)+b

im(j1(p,q))
ǫ(p,q)+b+c φ(p,q)+b+c+a

φ(p,q)+a
ǫ(p,q)+a E∞

(p,q)+b+a

Z∞
(p,q)+b+a

im(j1(p,q)+a
) ǫ(p,q)+b+c+a φ(p,q)+b+c+2a

⋃

r φ(p,q)+ra

⋃

r φ
(p,q)+b+c+ra

Ln ker(Ln+σ → Ln+σ)

E∞-Distribution Diagram
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In analogy with the anatomy of a butterfly or a bird we refer

• to the image filtration stages of Ln and their quotients as the “left
wing”,

• to the kernel filtration stages of Ln and their quotients as the “right
wing”, and

• to the E∞-terms, the
Z∞

−,−

im(j1−,−)
’s and the lim1-terms as the “body”

of the E∞-Distribution Diagram.

Remark 2.3.14. On the one hand, the monomorphism

ǫ(p,q) ֌ E∞
(p,q)+b

shows that E∞
(p,q)+b

measures the contribution of D1
(p,q) to the image filtra-

tion of Ln. On the other hand, the epimorphism

E∞
(p,q)+b

։
Z∞

(p,q)+b

im(j1(p,q))
,

in presence of the monomorphism
Z∞

(p,q)+b

im(j1(p,q))
֋ ǫ(p,q)+b+c, puts an upper

limit on the contribution of D1
(p,q)+b+c+a

to the kernel filtration of Ln+σ,

where σ = (b+ c) · â.
For example, assume we have an exact couple whose D1-columns are

originally stable; i.e., for sufficiently large r we haveD1
(p,q)−ra

∼= D1
(p,q)−(r+s)a,

for every s > 1. Then lim1
r ker(i

r
−,−) vanishes and hence we have the fol-

lowing short exact sequence

ǫ(p,q) ֌ E∞
(p,q)+b

։ ǫ(p,q)+b+c.

The following example shows how little it takes for an exact couple to
make the E∞-term distribute itself non-trivially over ǫ−,− and ǫ−,−.

Example 2.3.15. Assume we have a short exact sequence

A֌ B ։ C

and the following exact couple
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...
...

...
∼=

...

· · · 0 0 0 0 C

∼=

0 0 · · ·

· · · 0 0 A

∼=

B C 0 0 · · ·

· · · 0 0 A

∼=

0 0 0 0 · · ·

...
...

...
...

Let us denote the position of B, the only nonzero E1-term, by (p, q+b).
So we have the following

1. For r ≥ 0, we have φ(p,q)+ra = A and zero otherwise. Hence ǫ(p,q) = A
and for every nonzero s ∈ Z, ǫ(p,q)+sa vanishes.

2. For r ≥ 0, we have φ(p,q)−ra+b+c = C and zero otherwise. Hence
ǫ(p,q)+b+c = C and for every nonzero s ∈ Z, ǫ(p,q)+sa+b+c vanishes.

3. The spectral sequence collapses on the first page, so E∞
(p,q)+b

= B.

4. Since lim1
r ker(i

r
(p,q)−ra+b+c

) vanishes, we have the following short ex-
act sequence

ǫ(p,q) ֌ E∞
(p,q)+b

։ ǫ(p,q)+b+c,

that is,
A֌ B ։ C.

Even in a spectral sequence with only one nonzero E-term, E∞ can be
distributed non-trivially over both quotients of adjacent filtration stages.

We can generalize Theorem 2.3.13 to the case of an arbitrary (co-
)augmentation. The proof will be similar.

Proposition 2.3.16. [26] For an augmented and coaugmented exact cou-
ple the following hold.
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1. There is a filtration of Xn given by

F(p,q) = im(Q(p,q) : D
1
(p,q) → Xn).

Adjacent filtration terms are related by the following diagram of exact
sequences

F(p,q)−a F(p,q) δ(p,q)

φ(p,q)−a

ρn|

φ(p,q)

ρn|

ǫ(p,q)

E∞
(p,q)+b

Z∞
(p,q)+b

im(j1(p,q))

ker(ρn|) u(p,q)
ker(ρn|) coker(u(p,q))

where δ(p,q) = coker(F(p,q)−a ֌ F(p,q)).

2. There is a filtration of Xn+σ given by

F (p,q)+b+c = ker(Q(p,q)+b+c : Xn+σ → D1
(p,q)+b+c

).

Adjacent filtration terms are related by the following diagram of exact
sequences

ker(ρn+σ|) ker(ρn+σ|)

F (p,q)+b+c

ρn+σ |

F (p,q)+a+b+c

ρn+σ |

δ(p,q)+b+c

φ(p,q)+b+c φ(p,q)+a+b+c ǫ(p,q)+b+c

Z∞
(p,q)+b

ker(k1(p,q)+b
)

lim1
r ker i

r
(p,q)−ra+b+c

coker(ρn+σ|)ν(p,q)+b+c
coker(ρn+σ|) coker(ν(p,q)+b+c) lim1

r ker i
r+1
(p,q)−ra+b+c

lim1
rZ

r
(p,q)+b

3.
⋃

r F(p,q)+ra = im(ρn : Ln → Xn) and
⋂

r F(p,q)+ra fit into the exact
limn-sequences
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limr ker(Q(p,q)+ra) Ln
⋂

r F(p,q)+ra lim1
r ker(Q(p,q)+ra) lim1

rD
1
(p,q)+ra

lim1
rF(p,q)+ra.

4. We have

⋂

r

F (p,q)+ra+b+c = ker(ρn+σ : Xn+σ → Ln+σ)

and
⋃

r

F (p,q)+ra+b+c = ker(Xn+σ → Ln+σ).

Moreover, all of the exact sequences in the assertions above are natural
with respect to morphisms of (co-)augmented exact couples.

We can summarize this theorem and the E∞-Distribution Theorem in
the diagram on the first fold-out diagram in Appendix D, where ρn+σ

n+σ :
Xn+σ → Ln+σ and In+σ

n+σ : Ln+σ → Ln+σ.

2.4 Outcomes of the E∞-Distribution The-

orem

The E∞-Distribution Theorem shows that there are three major players
corresponding to every spectral sequence: ǫ−,−, ǫ

−,− and E∞, and it shows
the relationship between them. In this section, we provide necessary and
sufficient conditions to obtain ǫ−,−

∼= E∞ or E∞ ∼= ǫ−,−, and we see that
it is impossible to have both at the same time. Then we will see when we
obtain the closest possible relationship between these three; i.e., we will see
a necessary and sufficient condition for availability of the following short
exact sequence

ǫ−,− ֌ E∞
−,− ։ ǫ−,−.

We will also see what happens if ǫ−,− = 0 or ǫ−,− = 0. Therefore, the
Questions 2 and 3 stated on page 5 in the first chapter are answered.

Remember the following question from chapter 1 on page 5:

Question 2. What are the necessary and sufficient conditions to have E∞

isomorphic to ǫ−,− or ǫ−,−? Is it possible to have both at the same time?
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Here is the answer to the first part which is a result of the E∞-
Distribution Theorem:

Proposition 2.4.1. ǫ(p,q) ∼= E∞
(p,q)+b

if and only if
Z∞

(p,q)+b

im(j1(p,q))
= 0; i.e., if

and only if Z∞
(p,q)+b

= im(j1(p,q)).

Definition 2.4.2. Given an exact couple, we say that the induced spectral
sequence is convergent to its universal augmentation if ǫ−,−

∼= E∞.

When the spectral sequence converges to L∗, the E
∞-Distribution Di-

agram turns into the following diagram:

⋂

r φ(p,q)−ra

φ(p,q)−a

φ(p,q) ǫ(p,q)
∼= E∞

(p,q)+b

φ(p,q)+a
ǫ(p,q)+a

∼= E∞
(p,q)+b+a

⋃

r φ(p,q)+ra

Ln

◭ Convergence to Augmentation ǫ−,−
∼= E∞ ◮

Remark 2.4.3. This is what Boardman calls weak convergence to L∗. If
also limr φ(p,q)−ra =

⋂

r φ(p,q)−ra = 0 he calls it convergence to L∗ and if
limr φ(p,q)−ra = lim1

rφ(p,q)−ra = 0 he calls it strong convergence to L∗. See
[3].

We also have the following special case:

Corollary 2.4.4. If Ln+σ = 0, then any of the following conditions implies
that in the induced spectral sequence we have ǫ(p,q) ∼= E∞

(p,q)+b
:

1. Z∞
(p,q)+b

= im(j1(p,q)),
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2. im(Dr
(p,q)+b+c−ra → D1

(p,q)+b+c
)∩ im(k1(p,q)+b

) = 0 for some r > 0 (in

the literature it is called the Mittag-Leffler condition, see [24]),

3. D1
(p,q)+b+c−ra = 0 for some r > 0 sufficiently large,

4. lim1
r ker(i

r
(p,q)+b+c−ra) = 0.

Proposition 2.4.5. E∞
(p,q)+b

∼= ǫ(p,q)+b+c if and only if ǫ(p,q) and the map
Z∞

(p,q)+b

im(j1(p,q))
→ lim1

r ker(i
r
(p,q)+b+c−ra) vanish.

Definition 2.4.6. Given an exact couple, we say that the induced spectral
sequence is convergent to its universal coaugmentation if E∞ ∼= ǫ−,−.

When the spectral sequence converges toL∗, the E∞-Distribution Dia-
gram turns into the following diagram:

0

lim1
rZ

r
(p,q)+b

⋂

r φ
(p,q)+b+c−ra

lim1
r ker(i

r+1
(p,q)−ra

)

lim1
r ker(i

r
(p,q)+b+c−ra) φ(p,q)+b+c

E∞
(p,q)+b

∼=
Z∞

(p,q)+b

im(j1(p,q))

0

ǫ(p,q)+b+c
∼=

φ(p,q)+b+c+a

E∞
(p,q)+b+a

∼=
Z∞

(p,q)+b+a

im(j1(p,q)+a
) ǫ(p,q)+b+c+a

∼=
φ(p,q)+b+c+2a

⋃

r φ
(p,q)+b+c+ra

Ln+σ

◭ Convergence to Coaugmentation E∞ ∼= ǫ−,− ◮

Remark 2.4.7. This is what Boardman calls (weak) convergence to L∗.
See [3].
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We also have the following special case:

Corollary 2.4.8. Suppose Ln = 0. Then any of the following conditions
implies that ǫ(p,q)+b+c ∼= E∞

(p,q)+b
:

1. lim1
r ker(i

r
(p,q)+b+c−ra) = 0,

2. all D1
(p,q)+b+c−ra → D1

(p,q)+b+c
are onto.

The answer to the second part of Question 2 is “No”, because:

- if ǫ(p,q) ∼= E∞
(p,q)+b

then
Z∞

(p,q)+b

im(j1(p,q))
= 0 and hence ǫ(p,q)+b+c vanishes,

and

- if E∞
(p,q)+b

∼= ǫ(p,q)+b+c then E∞
(p,q)+b

∼=
Z∞

(p,q)+b

im(j1(p,q))
∼= ǫ(p,q)+b+c and

hence ǫ(p,q) vanishes.

Remark 2.4.9. The map

Z∞
(p,q)+b

im(j1(p,q))
−→ lim1

r ker(i
r
(p,q)+b+c−ra)

vanishes if and only if

Z∞
(p,q)+b

im(j1(p,q))
∼= ǫ(p,q)+b+c

and, equivalently, if and only if we have the following short exact sequence

ǫ(p,q) ֌ E∞
(p,q)+b

։ ǫ(p,q)+b+c.

This is the closest possible relationship between the E∞-terms of a spectral
sequence and the quotients of the adjacent filtration stages of the univer-
sal augmentation and coaugmentation of the corresponding exact couple.
Therefore, E∞ distributes itself uniquely over either ǫ(p,q) or ǫ

(p,q)+b.

Definition 2.4.10. Given an exact couple, the induced spectral sequence is
called purely distributed over the universal augmentation and coaugmen-
tation if we have the following short exact sequence for every (p, q) ∈ Z×Z

ǫ(p,q) ֌ E∞
(p,q)+b

։ ǫ(p,q)+b+c.
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Now we consider the third question we stated in the first chapter on
page 5:

Question 3. What happens if ǫ−,− or ǫ−,− vanishes?

Here is the answer:

Proposition 2.4.11. If ǫ(p,q)+b+c = 0 then E∞-Distribution Diagram has
no right wing:

⋂

r φ(p,q)−ra lim1
rZ

r
(p,q)+b

lim1
r ker(i

r+1
(p,q)+b+c−ra

)

φ(p,q)−a lim1
r ker(i

r
(p,q)+b+c−ra)

φ(p,q) ǫ(p,q) E∞
(p,q)+b

Z∞
(p,q)+b

im(j1(p,q))

φ(p,q)+a
ǫ(p,q)+a E∞

(p,q)+b+a

Z∞
(p,q)+b+a

im(j1(p,q)+a
)

Ln

⋃

r φ(p,q)+ra

Proposition 2.4.12. If ǫ(p,q) = 0, then the E∞-Distribution Diagram has
no left wing:

lim1
rZ

r
(p,q)+b

⋂

r φ
(p,q)+b+c−ra = 0

lim1
r ker(i

r+1
(p,q)−ra

)

lim1
r ker(i

r
(p,q)+b+c−ra) φ(p,q)+b+c

E∞
(p,q)+b

∼=
Z∞

(p,q)+b

im(j1(p,q))
ǫ(p,q)+b+c φ(p,q)+b+c+a

E∞
(p,q)+b+a

∼=
Z∞

(p,q)+b+a

im(j1(p,q)+a
) ǫ(p,q)+b+c+a φ(p,q)+b+c+2a

⋃

r φ
(p,q)+b+c+ra

Ln+σ
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Definition 2.4.13. Given an exact couple, the induced spectral sequence
is called

1. augmentation concentrated if ǫ−,− = 0, and

2. coaugmentation concentrated if ǫ−,− = 0.

The following corollary is an immediate outcome of the E∞-Distribution
Theorem and Remark 2.4.9 on page 43.

Corollary 2.4.14. Given an exact couple, if the induced spectral sequence
is convergent to the augmentation or coaugmentation, then it is augmen-
tation or coaugmentation concentrated, respectively. That is,

1. if ǫ−,−
∼= E∞

−,− then ǫ−,− = 0, and

2. if E∞
−,−

∼= ǫ−,− then ǫ−,− = 0.

The converse holds if and only if the map
Z∞

−,−

im(j−,−)
−→ lim1

r ker(i
r
−,−) is

zero (e.g., lim1
r ker(i

r
−,−) = 0).

2.5 E∞-Distribution Theorem vs Boardman

Approach

In this section, we compare Boardman’s approach in [3] and our approach
that led to the E∞-Distribution Theorem. We will see that Boardman’s
method enabled him to realize that there are three major players ǫ−,−, ǫ

−,−

and E∞ related to any spectral sequence. He successfully describes the
relationship between two of them; i.e., he shows that there is a monomor-
phism from ǫ−,− to E∞. However, supported by the E∞-Distribution The-
orem, here we can also provide the relationship between ǫ−,− and E∞.
Then we will see that his emphasis on providing necessary and sufficient
conditions for what he calls strong convergence keeps one away from the
fundamental fact that in convergence of any type what matters most is the
isomorphism between ǫ−,− or ǫ−,− and E∞, not requiring the limit and/or
lim1 of the filtrations to vanish.

We will see that he is also aware that if one of ǫ−,− or ǫ−,− vanishes
then there is a good chance to relate the non-zero quotient to E∞ and it
gives him the motivation to define the notion of conditional convergence.

We consider the following issues:
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1. Relationship between ǫ−,−, ǫ
−,− and E∞.

2. When do we have ǫ−,−
∼= E∞ or ǫ−,− ∼= E∞?

3. What happens if ǫ−,− = 0 or ǫ−,− = 0?

4. Boardman’s tools (RE∞ and W ) vs our tool (lim1 ker(i)).

2.5.1 Relationship between ǫ−,−, ǫ−,− and E∞

Boardman offers Lemma 5.6 that provides a monomorphism ǫ−,− ֌ E∞.
Here, using the E∞-Distribution Theorem, we can also describe the rela-
tionship between ǫ−,− and E∞. The E∞-Distribution Theorem offers the
following relationship between the monomorphism ǫ−,− ֌ E∞, E∞ and
ǫ−,−:

lim1
r ker(i

r
(p,q)+b+c−ra)

ǫ(p,q) E∞
(p,q)+b

Z∞
(p,q)+b

im(j1(p,q))
ǫ(p,q)+b+c

√
The first advantage of the E∞-Distribution Theorem is providing a

relationship between ǫ−,− and E∞.

2.5.2 When do we have ǫ−,− ∼= E∞ or ǫ−,− ∼= E∞?

Boardman is mostly interested in conditions that guarantee convergence
of different types. He defines four types of convergence

1. weak convergence,

2. convergence,

3. strong convergence, and

4. conditional convergence.

See Definition 5.2 and 5.10 in [3]. In the first three types, the main role is
played by the isomorphisms E∞ ∼= ǫ−,− or E∞ ∼= ǫ−,−. The other condi-
tions (e.g., vanishing of limit and/or lim1 of the filtrations) in the definition
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of convergence or strong convergence are only for extra comfort; look at
Definition 2.1, Proposition 2.2, the explanation after Theorem 2.6 and
Definition 5.2 in [3]. For example, as we have seen in the E∞-Distribution
Theorem, the limit and lim1 of the kernel filtration of the universal coaug-
mentation always vanish. So, with Boardman’s terminology, being weakly
convergent, convergent or strongly convergent to the universal coaugmen-
tation are all the same concepts. We will talk about the fourth type of
convergence in the next part.

To provide necessary and sufficient conditions to guarantee ǫ−,−
∼= E∞

or ǫ−,− ∼= E∞, he introduces an object RE∞, which in our notation is
lim1

rZ
r
(p,q)+b

; see section 5 in [3]. However, he often obtains more than just

an isomorphism. Look at Theorems 6.1 and 7.4 in [3].

But, what are the necessary and sufficient conditions to have only
ǫ−,−

∼= E∞ or ǫ−,− ∼= E∞?

The answer to Question 2 in the previous section, Corollary 2.4.4 on
page 41 and Corollary 2.4.8 on page 43 provide the necessary and sufficient
conditions. Therefore,

√
The second advantage of the E∞-Distribution Theorem is providing
necessary and sufficient conditions for ǫ−,−

∼= E∞ or ǫ−,− ∼= E∞.

2.5.3 What happens if ǫ−,− = 0 or ǫ−,− = 0?

By defining the notion of conditional convergence, Boardman uses the fact
that if L∗ or L

∗ vanishes then the quotients ǫ−,− or ǫ−,− vanish, respectively,
and then he can relate the E∞-terms to the non-zero quotients; look at the
proof of Theorems 7.2, 7.3 and 7.4 and also the statements of Theorems
8.10 and 8.13 in [3]. Vanishing of lim1 of the D1-columns in the definition
of conditionally convergence is only because of his policy to always mention
both limit and lim1 for every sequence; look at page 63 in [3].

To describe how to relate the E∞-terms isomorphically to the non-zero
quotients ǫ−,− or ǫ−,−, he introduces another object W , that he calls an
“obstruction group”. Look at Lemma 8.5 in [3]. But, again, he obtains
“sufficient” but “not necessary” conditions for existence of such isomor-
phism. Look at Theorems 8.2, 8.10 and 8.13 in [3].

Again the same question arises:

What are the necessary and sufficient conditions to have only ǫ−,−
∼=

E∞ when ǫ−,− = 0 or ǫ−,− ∼= E∞ when ǫ−,− = 0?
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Proposition 2.4.11 on page 44, Proposition 2.4.12 on page 44 and Re-
mark 2.4.9 on page 43 provide the necessary and sufficient conditions.

2.5.4 RE∞ and W vs lim1 ker(i)

Boardman introduces two objects RE∞ and W and uses them as some
sort of “obstructions” against the pleasant convergence. The object that
we introduce and work with is lim1

r ker(i
r
−,−); look at the E∞-Distribution

Theorem 2.3.13, part 3. Vanishing of lim1
r{ker(ir−,−)} provides a sufficient

condition for the closest possible relationship between the quotient of ad-
jacent kernel filtration stages of Ln+σ, quotient of adjacent image filtration
stages of Ln and the E∞-terms; i.e., we have the following short exact
sequence

ǫ(p,q) ֌ E∞
(p,q)+b

։ ǫ(p,q)+b+c

and hence the spectral sequence is purely distributed over the universal
augmentation and coaugmentation; recall the Definition 2.4.10 on page
43. Whereas, vanishing of RE∞ or W , or even both of them, does not
imply any immediate relationship between ǫ−,−, ǫ

−,− and E∞. See Lemma
5.9, Theorem 8.10, Lemma 8.11 and Theorem 8.13 in [3].

We should mention that RE∞ and lim1 ker(i) are very similar:

1. Remember that RE∞ is lim1
rZ

r
−,−. By the E∞-Distribution Theorem,

part 3, they both appear in a 6-term exact sequence.

2. If in an exact couple, for sufficiently large r we have D1
(p,q)−ra

∼=
D1

(p,q)−(r+s)a, for every s > 1, then lim1 ker(i) vanishes. Compare

this with Section 6 in [3] where RE∞ also vanishes for these types
of exact couples. For an exact couple that the D1-columns turn into
isomorphisms or vanish as we go down, neither lim1 ker(i) nor RE∞

necessarily vanish. Compare this with Section 7 in [3]. At this point,
we do not know if there are examples where one vanishes and the
other does not.

Therefore, the close connection between lim1 ker(i) and the quotients
ǫ−,− and ǫ−,− turns lim1 ker(i) into a more efficient tool than RE∞ and W .

√
The third advantage of the E∞-Distribution Theorem is providing an
immediate relationship between ǫ−,−, ǫ

−,− and E∞ when lim1 ker(i)
vanishes.
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It also shows the following:

Corollary 2.5.1. E∞ can be isomorphic to only one of ǫ−,− or ǫ−,−.

2.6 Proof of the E∞-Distribution Theorem

Before providing the proof of the E∞-Distribution Theorem from [26], we
state a few preliminary results first.

Definition 2.6.1. For a fixed n ∈ Z and any r ∈ N, define

gr(p,q) = ir(p,q)−ra|im(Q(p,q)−ra).

Xn
ρn

Q(p,q)−ra

Q(p,q)

Ln

I(p,q)−ra

· · · D1
(p,q)−ra

ir
(p,q)−ra

· · ·

...

· · · D1
(p,q) · · ·

...

Note that
ir(p,q)−ra : D1

(p,q)−ra → D1
(p,q)

and hence gr(p,q) is defined from im(Q(p,q)−ra) to im(Q(p,q)), because ir(p,q)−ra◦
Q(p,q)−ra = Q(p,q). Also, gr(p,q) is surjective, because forQ

(p,q)(x) ∈ im(Q(p,q)),
we have

gr(p,q)(Q
(p,q)−ra(x)) = Q(p,q)(x).

For any y ∈ ker(g1(p,q)), we have y ∈ ker(i1(p,q)−a
) = im(k1(p,q)−a−c

), be-

cause ker(g1(p,q)) ⊆ ker(i1(p,q)−a
).
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...

· · · E1
(p,q)−2a−c

D1
(p,q)−2a

i1
(p,q)−2a

E1
(p,q)−2a+b

· · ·

· · · E1
(p,q)−a−c

k1
(p,q)−a−c

D1
(p,q)−a

j1
(p,q)−a

i1
(p,q)−a

E1
(p,q)−a+b

· · ·

· · · E1
(p,q)−c

D1
(p,q) E1

(p,q)+b
· · ·

...

Therefore, for some ŷ ∈ E1
(p,q)−a−c

we have

k1(p,q)−a−c
(ŷ) = y.

We are trying to show that ker(g1(p,q)) is isomorphic to the quotient of adja-
cent kernel filtration stages of Xn and also it is mapped monomorphically

into
Z∞

(p,q)−a−c

ker(k1(p,q)−a−c
)
.

Lemma 2.6.2. For every r ∈ N \ {0}, we have

y ∈ im(gr(p,q)−a
).

Proof. The statement holds for r = 1, since g1(p,q)−a
is surjective. Now

assume that y ∈ im(gr−1
(p,q)−a

). So for some yr−1 ∈ im(Q(p,q)−ra) we have

gr−1
(p,q)−a

(yr−1) = y. Since g1(p,q)−ra is surjective, there is an element yr ∈
im(Q(p,q)−(r+1)a) such that g1(p,q)−ra(y

r) = yr−1. Therefore, by commutativ-
ity we have

gr(p,q)−a
(yr) = gr−1

(p,q)−a
◦ g1(p,q)−ra(y

r) = gr−1
(p,q)−a

(yr−1) = y;

i.e., y ∈ im(gr(p,q)−a
).
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Corollary 2.6.3. For every y ∈ ker(g1(p,q)), we have

ŷ ∈ (k1(p,q)−a−c
)−1(lim

r
im(gr(p,q)−a

)) ⊆ Z∞
(p,q)−a−c

.

Lemma 2.6.4. The function ϕ : ker(g1(p,q)) −→
Z∞

(p,q)−a−c

ker(k1(p,q)−a−c
)
defined by

ϕ(y) = [ŷ] = ŷ + ker(k1(p,q)−a−c
)

is a monomorphism of R-modules.

Proof. • ϕ is well-defined: If y = z ∈ ker(g1(p,q)), then ϕ(y) = [ŷ],

ϕ(z) = [ẑ] and

k1(p,q)−a−c
(ŷ) = y = z = k1(p,q)−a−c

(ẑ).

So ŷ − ẑ ∈ ker(k1(p,q)−a−c
); i.e., ϕ(y) = ϕ(z).

• ϕ is a homomorphism: Let y, z ∈ ker(g1(p,q)) and t ∈ R. We should
show that

ϕ(y) + tϕ(z) = ϕ(y + tz).

We have ϕ(y) = [ŷ], ϕ(z) = [ẑ] and ϕ(y + tz) = [ ˆy + tz]. So we
should show that

[ŷ] + t[ẑ] = [ ˆy + tz]

or equivalently,

ŷ + tẑ − ŷ + tz ∈ ker(k1(p,q)−a−c
).

We have

k1(p,q)−a−c
(ŷ + tẑ − ŷ + tz) = k1(p,q)−a−c

(ŷ) + k1(p,q)−a−c
(tẑ)− k1(p,q)−a−c

(ŷ + tz)

= k1(p,q)−a−c
(ŷ) + tk1(p,q)−a−c

(ẑ)− k1(p,q)−a−c
(ŷ + tz)

= y + tz − (y + tz)
= 0.

So ŷ + tẑ − ŷ + tz ∈ ker(k1(p,q)−a−c
).

• ϕ is a monomorphism: Take y ∈ kerϕ. So for some

ŷ ∈ (k1(p,q)−a−c
)−1(lim

r
im(gr(p,q)−a

))

we have 0 = ϕ(y) = [ŷ]. Therefore, ŷ ∈ ker(k1(p,q)−a−c
). So there is

w ∈ D1,η0
(p,q)−a−b−c

such that j1(p,q)−a−b−c
(w) = ŷ. But by exactness we



2.6 Proof of the E∞-Distribution Theorem 52

have

0 = (k1(p,q)−a−c
◦ j1(p,q)−a−b−c

)(w) = k1(p,q)−a−c
(ŷ) = y.

Therefore, ϕ is a monomorphism.

Proposition 2.6.5. There is a short exact sequence F (p,q)−a ֌ F (p,q) ։

ker(g1(p,q)).

Proof. Define
ψ : F (p,q) → ker(g1(p,q))

by ψ = Q(p,q)−a|F (p,q) . Let x ∈ F (p,q). Then Q(p,q)−a(x) ∈ im(Q(p,q)−a). By
commutativity, we have

g1(p,q)(Q
(p,q)−a(x)) = Q(p,q)(x) = 0;

i.e., Q(p,q)−a(x) ∈ ker(g1(p,q)). Also, x ∈ ker(ψ) iff Q(p,q)−a(x) = 0; i.e.,

ker(ψ) = F (p,q)−a.

Take y ∈ ker(g1(p,q)). Then there is some x ∈ Xn such that Q(p,q)−a(x) =
y. By commutativity, we have

Q(p,q)(x) = g1(p,q)(Q
(p,q)−a(x)) = g1(p,q)(y) = 0;

i.e., x ∈ F (p,q). Since ψ(x) = Q(p,q)−a(x) = y, we then obtain the desired
epimorphism.

Corollary 2.6.6. For any (p, q) ∈ Z× Z,

F (p,q)

F (p,q)−a

∼= ker(g1(p,q)) ֌
Z∞

(p,q)−a−c

ker(k1(p,q)−a−c
)
.

Remark 2.6.7. Note that those elements of the D1-terms of a D1-column
that are in the images of all Q(p,q)−ra’s are the only elements that are
involved in building limrD

1
(p,q)−ra: The inclusion maps im(Q(p,q)−ra) ⊆

D1
(p,q)−ra induce a monomorphism

lim
r

im(Q(p,q)−ra) ֌ lim
r
D1

(p,q)−ra.

This is actually an isomorphism, since for any thread (xn) ∈ limrD
1
(p,q)−ra,

we have Q(p,q)−ra(xn) = xr and hence xr ∈ im(Q(p,q)−ra). Since for any s >



2.6 Proof of the E∞-Distribution Theorem 53

0 we have is(p,q)−ra(xr) = xr+s, we get (xn) ∈ limr im(Q(p,q)−ra). Therefore,

lim
r

im(Q(p,q)−ra) ∼= lim
r
D1

(p,q)−ra.

Lemma 2.6.8. We have the following triangle of isomorphisms

im(ir(p,q))

im(ir+1
(p,q)−a

)

∼=
ker(k1(p,q)+b

)

Br
(p,q)+b

D1
(p,q)

ker(ir(p,q)) + im(i1(p,q)−a
)

∼=∼=

Proof. We have

ker(k1(p,q)+b
)

Br
(p,q)+b

=
im(j1(p,q))

j1(p,q) ◦ (ir−1
(p,q))

−1(im(k1(p,q)−c+(r−1)a))

=
im(j1(p,q))

j1(p,q) ◦ (ir−1
(p,q))

−1(ker(i1(p,q)+(r−1)a))

=
im(j1(p,q))

j1(p,q)(ker(i
r
(p,q)))

=
im(j1(p,q))

im(j1(p,q)|ker(ir(p,q)))

∼=

D1
(p,q)

ker(j1(p,q))

ker(ir(p,q)) + ker(j1(p,q))

ker(j1(p,q))

=

D1
(p,q)

im(i1(p,q)−a
)

ker(ir(p,q)) + im(i1(p,q)−a
)

im(i1(p,q)−a
)

∼=
D1

(p,q)

ker(ir(p,q)) + im(i1(p,q)−a
)
.

Also
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im(ir(p,q))

im(ir+1
(p,q)−a

)
=

im(ir(p,q))

im(ir(p,q) ◦ i1(p,q)−a
)

∼=

D1
(p,q)

ker(ir(p,q))

ker(ir(p,q)) + im(i1(p,q)−a
)

ker(ir(p,q))

∼=
D1

(p,q)

ker(ir(p,q)) + im(i1(p,q)−a
)
.

Lemma 2.6.9. If f : A → B and g : B → C are two R−module homo-
morphisms, then

ker(g ◦ f)
ker(f)

∼= im(f) ∩ ker(g).

Proof. The vertical arrow on the right in the following diagram is an iso-
morphism

ker(f) ker(g ◦ f) ker(g ◦ f)
ker(f)

ker(f) f−1(ker(g)) im(f) ∩ ker(g).

Lemma 2.6.10. We have the following triangle of isomorphisms

ker(ir+1
(p,q)+b+c−ra

)

ker(ir(p,q)+b+c−ra
)

∼=

∼=

Zr
(p,q)+b

ker(k1(p,q)+b
)

∼=

ker(i1(p,q)+b+c
) ∩ im(ir(p,q)+b+c−ra)

Proof. By lemma 2.6.9 we have
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ker(ir+1
(p,q)+b+c−ra

)

ker(ir(p,q)+b+c−ra
)

∼= ker(i1(p,q)+b+c
) ∩ im(ir(p,q)+b+c−ra)

= im(k1(p,q)+b
) ∩ im(ir(p,q)+b+c−ra)

∼=
(k1(p,q)+b

)−1(im(ir(p,q)+b+c−ra))

ker(k1(p,q)+b
)

=
(k1(p,q)+b

)−1(ir−1
(p,q)+b+c−(r−1)a(im(i1(p,q)+b+c−ra)))

ker(k1(p,q)+b
)

=
(k1(p,q)+b

)−1(ir−1
(p,q)+b+c−(r−1)a(ker(j

1
(p,q)+b+c−(r−1)a)))

ker(k1(p,q)+b
)

=
Zr

(p,q)+b

ker(k1(p,q)+b
)
.

We are finally ready to prove the E∞-Distribution Theorem 2.3.13.

Proof. (Theorem 2.3.13)

1. Remember that dr is defined in Theorem 2.3.2 on page 28 to be a
morphism

dr(p,q) : E
r
(p,q) → Er

(p,q)+b+c−(r−1)a.

Therefore, it is of bidegree b+ c− (r − 1)a.

2. We have the following short exact sequence of diagrams of towers

{im(ir+1
(p,q)−a

)}r∈Z ֌ {im(ir(p,q))}r∈Z ։

{

im(ir(p,q))

im(ir+1
(p,q)−a

)

}

r∈Z

.

Using lemma 2.6.8 we can write it as

{im(ir+1
(p,q)−a

)}r∈Z ֌ {im(ir(p,q))}r∈Z ։

{

ker(k1(p,q)+b
)

Br
(p,q)+b

}

r∈Z

.

This diagram of short exact sequences is directed. Therefore, the
colimit functor preserves exactness and so we obtain

colimr im(ir+1
(p,q)−a

) ֌ colimr im(ir(p,q)) ։ colimr

ker(k1(p,q)+b
)

Br
(p,q)+b
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because the colimit functor is exact. Note that

colimr im(ir(p,q) : D
1
(p,q) → D1

(p,q)+ra) = im(Q(p,q) : D
1
(p,q) → Ln) = φ(p,q)

and

colimr

ker(k1(p,q)+b
)

Br
(p,q)+b

=
ker(k1(p,q)+b

)

colimr Br
(p,q)+b

=
ker(k1(p,q)+b

)

B∞
(p,q)+b

.

So we obtain the short exact sequence

φ(p,q)−a ֌ φ(p,q) ։
ker(k1(p,q)+b

)

B∞
(p,q)+b

(2.6)

and hence ǫ(p,q) ∼=
ker(k1(p,q)+b

)

B∞
(p,q)+b

. Since ker(k1(p,q)+b
) = im(j1(p,q)) ⊆

Z∞
(p,q)+b

, we have the following short exact sequence

im(j1(p,q))

B∞
(p,q)+b

֌
Z∞

(p,q)+b

B∞
(p,q)+b

։
Z∞

(p,q)+b

ker(k1(p,q)+b
)
. (2.7)

But

E∞
(p,q)+b

=
Z∞

(p,q)+b

B∞
(p,q)+b

(2.8)

So we can combine (2.6), (2.7) and (2.8) in the following exact se-
quence

φ(p,q)−a φ(p,q) E∞
(p,q)+b

Z∞
(p,q)+b

ker(k1(p,q)+b
)

ǫ(p,q)

3. By lemma 2.6.10, we have the following short exact sequence of dia-
grams of inverse towers

{ker(ir(p,q)+b+c−ra)}r∈Z ֌ {ker(ir+1
(p,q)+b+c−ra

)}r∈Z ։

{

Zr
(p,q)+b

ker(k1(p,q)+b
)

}

r∈Z

.

If we take inverse limit, by Theorem A.0.7 in Appendix A, we obtain
the following exact sequence
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limr ker(i
r
(p,q)+b+c−ra) limr ker(i

r+1
(p,q)+b+c−ra

) limr

Zr
(p,q)+b

ker(k1(p,q)+b
)

lim1
r ker(i

r
(p,q)+b+c−ra) lim1

r ker(i
r+1
(p,q)+b+c−ra

) lim1
r

Zr
(p,q)+b

ker(k1(p,q)+b
)

where lim1 is the first derived functor of the inverse limit functor.
Note that for ir(p,q)+b+c−ra : D1

(p,q)+b+c−ra → D1
(p,q)+b+c

we have

limr ker(i
r
(p,q)+b+c−ra) = ker(Q(p,q)+b+c : Ln+σ → D1

(p,q)+b+c
)

= φ(p,q)+b+c

and

lim
r

Zr
(p,q)+b

ker(k1(p,q)+b
)
=

Z∞
(p,q)+b

ker(k1(p,q)+b
)
.

Therefore, the initial segment of the lim-sequence turns into

φ(p,q)+b+c ֌ φ(p,q)+b+c+a →
Z∞

(p,q)+b

ker(k1(p,q)+b
)
→ lim1

r ker(i
r
(p,q)+b+c−ra).

Therefore, part 3 follows.

4. If we take the inverse limit of the short exact sequence of towers

{ker(Iu,v)}(u,v)·â=n ֌ {D1
u,v}(u,v)·â=n ։ {φu,v}(u,v)·â=n

we obtain the mentioned exact sequence.

5. If we take inverse limits of the short exact sequence of towers

{φu,v}(u,v)·â=n ֌ Ln ։ {im(Qu,v)}(u,v)·â=n

we obtain the exact sequence

lim
(u,v)·â=n

φu,v ֌ Ln → lim
(u,v)·â=n

im(Qu,v) ։ lim1
(u,v)·â=nφ

u,v.

Now by Remark 2.6.7 we have Ln ∼= lim(u,v)·â=n im(Qu,v) and hence

lim
(u,v)·â=n

φu,v = lim1
(u,v)·â=nφ

u,v = 0.

That colim(u,v)·â=n Fu,v = Ln is immediate from the construction of
Ln. Now if we apply the colimit functor to the following short exact
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sequence of directed diagrams

{φu,v}(u,v)·â=n ֌ Ln ։ {im(Qu,v)}(u,v)·â=n

we have the short exact sequence

colim(u,v)·â=n φ
u,v ֌ Ln ։ colim(u,v)·â=n im(Qu,v)

that implies

colim(u,v)·â=n φ
u,v =

⋃

(u,v)·â=n

φu,v = ker(Ln → Ln).



Chapter 3

Matching Convenient Exact
Couples to Towers of Modules

3.1 Introduction

We now turn to applications of the machinery of exact couples and spec-
tral sequences. So consider an R-module H, filtered by an ascending or
descending sequence of submodules:

· · · ⊆ Fp−1 ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ H, (3.1)

where p ∈ Z. Here is an outline of the procedure, taken from [26], by
which we hope to use spectral sequence methods to gain information about
adjacent filtration steps and, eventually, about H itself:

1. we assume, inductively, some information about Fp,

2. we assume an exact couple is matched to this filtration; i.e., we as-
sume (3.1) is the filtration of an augmentation or coaugmentation of
an exact couple,

3. we use the relationship between the E∞-terms of the spectral se-

quence and
Fp+1

Fp

, explained in the E∞-Distribution Theorem, to

obtain information about
Fp+1

Fp

,

59
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4. and then using the following short exact sequence

Fp ֌ Fp+1 ։
Fp+1

Fp

we carry the information to Fp+1, up to extension.

This inductive argument for climbing up the filtration stages of (3.1) is
enabled when the filtration has a starting step which is known; i.e., when
the filtration is of the form

· · · = Fp0 = Fp0 ⊆ Fp0+1 ⊆ Fp0+2 ⊆ · · · ⊆ Fp−1 ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ H
(3.2)

and we have information about Fp0 . In this case, the filtration is indexed
over ω, the least infinite ordinal. Let us focus on the filtration of type

· · · = 0 = F0 ⊂ F1 ⊆ · · · ⊆ Fp−1 ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ H (3.3)

which is a special case of (3.2). In the second section of this chapter,
we introduce an exact couple with the property that the filtration of its
universal augmentation is of the form (3.3). This exact couple looks like
the following diagram. Here, we are assuming that H = L∗.

0 0 0

...
...

...

· · · 0 0 0 0 0 · · ·

· · · 0 0 0 E−,− D−,− · · ·

· · · D−,− E−,− 0 E−,− D−,− · · ·

...
...

...

· · · D−,− E−,− 0 E−,− D−,− · · ·

· · · D−,− E−,− D−,− E−,− D−,− · · ·

...
...

...

Ln+1 Ln Ln−1
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Many familiar spectral sequences can be induced from this type of exact
couples; e.g., Serre spectral sequence, Grothendieck spectral sequence.

We will call it an originally vanishing exact couple and will see that
we have a close connection between the E∞-terms of the induced spectral
sequence and the quotient of adjacent filtration stages of (3.3); i.e., we have

an isomorphism
Fp+1

Fp

∼=−→ E∞
−,−. Even if H is an arbitrary augmentation

of an originally vanishing exact couple, we can still argue similarly and
obtain information about colimp Fp. In this case, we have an epimorphism
Fp+1

Fp

և E∞
−,−. We will make the passage from colimp Fp to H possible by

providing sufficient conditions that are available by arguments not based
on spectral sequences or exact couples.

An originally vanishing exact couple is a special case of an exact couple
called originally stable in which the D1-columns turn into isomorphisms
as we go up. Look at the following diagram.

Ln+1 Ln Ln−1

...
...

...

· · · D−,− 0 D−,− E−,− D−,− · · ·

· · · D−,− 0 D−,− E−,− D−,− · · ·

· · · D−,− E−,− D−,− E−,− D−,− · · ·

...
...

...

· · · D−,− E−,− D−,− E−,− D−,− · · ·

· · · D−,− E−,− D−,− E−,− D−,− · · ·

...
...

...

Ln+1 Ln Ln−1

Such an exact couple allows us to draw conclusions stated above about
a filtration of the form (3.2). Here, again, H could be an arbitrary aug-
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mentation or coaugmentation.

Then, we introduce an exact couple with the property that the filtration
of its (co-)augmentation has the following descending form

H = F0 ⊇ F1 ⊇ · · · ⊇ Fp−1 ⊇ Fp ⊇ Fp+1 ⊇ · · · . (3.4)

We refer to these exact couples as convenient exact couples.

In the third section of this chapter, we generalize this method in [26]
to the case where we have bigraded R-modules with ascending filtrations
indexed over an arbitrary limit ordinal λ. We consider a transfinite tower
of bigraded R-modules indexed over a limit ordinal λ

H1 → H2 → · · · → Hp → Hp+1 → · · · → Hη → Hη+1 → · · · → Hλ = H,
(3.5)

the image filtration of Hλ

0 ⊂ F1 ⊆ · · · ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ Fη ⊆ Fη+1 ⊆ · · · ⊆ Fλ = Hλ (3.6)

and the kernel filtration of H1

0 ⊂ F 1 ⊆ · · · ⊆ F p ⊆ F p+1 ⊆ · · · ⊆ F η ⊆ F η+1 ⊆ · · · ⊆ F λ ⊆ H1 . (3.7)

Let us focus on the filtration (3.6). We use transfinite induction to obtain
information about Fλ. Given a property P , when trying to take the in-
ductive step from “ordinals less than η satisfy property P” to “ordinal η
satisfies property P”, we face one of the following two situations:

Situation 1: η is a non-limit ordinal and, hence, has at most finitely
many predecessors. Therefore, there exist a limit ordinal η0 and a
positive integer r such that η = η0 + r. We assume a convenient
exact couple is matched to the ω-length segment of the filtration

Fη0 ⊆ Fη0+1 ⊆ · · · ⊆ Fη0+r−1 ⊆ Fη0+r ⊆ · · · ⊆ Fη0+ω. (3.8)

That is, we assume there is an originally vanishing or stable exact
couple such that Hλ plays the role of its augmentation. Now we can
use the same method we used in the ω-indexed scenario to pass from
Fη0+r−1 to Fη0+r = Fη.

Situation 2: η is a limit ordinal. Here we have a morphism ρη :
colimβ<η Hβ → Hη and hence an inclusion colimβ<η Fβ ֌ Fη. We
will make the passage from colimβ<η Fβ to Fη possible by putting
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assumptions on coker(ρη).

Look at Remark 3.3.4 on page 81 for more explanation and the proof of
Proposition 5.8.1 on page 141 or Corollary 5.8.3 on page 143 for an example
of such argument.

At the end, we explain the same inductive argument for a descending
filtration indexed over an arbitrary limit ordinal.

We need to be more specific about the type of “information” we would
like to carry through the filtration stages. Here is one example: Let C be
a class of R-modules with the following properties:

1. C is closed under isomorphism; i.e., if A ∼= B then A ∈ C if and only
if B ∈ C,

2. C is closed under subobject; i.e., if A֌ B and B ∈ C, then A ∈ C,

3. C is closed under quotient; i.e., if B ։ C and B ∈ C, then C ∈ C,

4. C is closed under extension; i.e., if in a short exact sequence A ֌

B ։ C we have A ∈ C and C ∈ C, then B ∈ C,

5. C is closed under colimit of λ-length directed towers; i.e., if {Aη}η<λ

is a directed tower of R-modules in which Aη ∈ C for every η < λ,
then colimη<λAη ∈ C.

We are interested in “staying in C” as we climb up the filtration (3.6).
This is a generalization of the idea of Serre, [29], which will be explained
in Chapter 4.

To see another example, assume we have a morphism of filtered ob-
jects, where the filtrations are over a potentially transfinite limit ordinal
λ. In other words, assume we have two filtered objects H(1) and H(2) with
potentially transfinite filtrations

F0(1) ⊆ · · · ⊆ Fp(1) ⊆ · · · ⊆ Fη(1) ⊆ Fη+1(1) ⊆ · · · ⊆ Fλ(1) = H(1)

and

F0(2) ⊆ · · · ⊆ Fp(2) ⊆ · · · ⊆ Fη(2) ⊆ Fη+1(2) ⊆ · · · ⊆ Fλ(2) = H(2)

for an arbitrary limit ordinal λ, such that for every η ≤ λ, there is a mor-
phism from Fη(1) to Fη(2) and for every η < λ, the morphism from Fη(1)
to Fη(2) has certain properties; e.g., it is an (epi-, mono-)isomorphism, its
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(co-)kernel has a certain property, etc. We are interested in carrying this
type of information also to the morphism from H(1) to H(2). This leads
to the “comparison theorems” that will be covered in Chapter 5.

3.2 Convenient Exact Couples

In this section, we investigate the properties of special exact couples with
the property that their (universal) augmentation and coaugmentation are
induction-friendly; i.e., there is a starting point for the ascending or de-
scending filtrations of their (universal) augmentation and coaugmentation.

3.2.1 Originally Stable or Vanishing Exact Couples

An originally stable exact couple is an exact couple in which every D1-
column consists of isomorphisms from the universal coaugmentation down
until some D1-term. An originally vanishing exact couple is an originally
stable exact couple with 0 universal coaugmentation.

Definition 3.2.1. • An originally stable exact couple is an exact cou-
ple (D1

∗,∗, E
1
∗,∗) in which for every n ∈ Z there exists some (u, v) ∈

Z× Z, where (u, v) · â = n, such that

∀ t > 0 itu,v−ta : D1
u,v−ta −→ D1

u,v

is an isomorphism. In this situation, we say that D1
u,v−ta is in the

originally stable range of the n-th D1-column.

• An originally vanishing exact couple is an exact couple (D1
∗,∗, E

1
∗,∗)

in which for every n ∈ Z there exists some (u, v) ∈ Z × Z, where
(u, v) · â = n, such that

∀ t ≥ 0 D1
u,v−ta = 0.

There is a list of examples at the end of this section.

Remark 3.2.2. For an originally stable exact couple the following hold:

1. In the stable scenario depicted below, the E1-term vanishes:
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D1
u,v+(t−1)a

∼=

...
∼=

D1
u,v+ta E1

u,v+b+ta D1
u,v+b+c+ta

∼=

... D1
u,v+b+c+(t+1)a

2. Assume the n-th D1-column stabilizes from D1
(p,q) up. Therefore, L

n,

the universal coaugmentation in degree n, is isomorphic to D1
(p,q) and

hence the kernel filtration of ker(Ln → Ln) is of the form

0 ⊆ φ(p,q)+a ⊆ · · · ⊆ φ(p,q)+ra ⊆ φ(p,q)+(r+1)a ⊆ · · · ⊆ ker(Ln → Ln).

The universal augmentation Ln has image filtration

· · · = φ(p,q) ⊆ φ(p,q)+a ⊆ · · · ⊆ φ(p,q)+ra ⊆ φ(p,q)+(r+1)a ⊆ · · · ⊆ Ln.

Since every D1-column stabilizes, we have

lim1
r ker(i

r
−,−) = 0.

Therefore, in an originally stable exact couple, the three major play-
ers ǫ−,−, ǫ

−,− and E∞ form a short exact sequence

ǫ−,− ֌ E∞ ։ ǫ−,−;

i.e., the E∞-Distribution Diagram turns into
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0

⋂

r φ(p,q)−ra
...

... φ(p,q)+b+c

φ(p,q) ǫ(p,q) = 0 0 E∞
(p,q)+b

∼=
ǫ(p,q)+b+c φ(p,q)+b+c+a

φ(p,q)+a
ǫ(p,q)+a E∞

(p,q)+b+a ǫ(p,q)+b+c+a φ(p,q)+b+c+2a

...
...

φ(p,q)+(r−1)a ǫ(p,q)+(r−1)a E∞
(p,q)+b+(r−1)a ǫ(p,q)+b+c+(r−1)a φ(p,q)+b+c+ra

φ(p,q)+ra ǫ(p,q)+ra E∞
(p,q)+b+ra ǫ(p,q)+b+c+ra φ(p,q)+b+c+(r+1)a

...
...

⋃

r φ(p,q)+ra

⋃

r φ
(p,q)+b+c+ra

Ln ker(Ln+σ → Ln+σ)

E∞-Distribution Diagram of an Originally Stable Exact Couple

Note that, in general, E∞ may be non purely distributed over kernel
and image filtration stages of the universal (co-)augmentations of the
exact couple: See Remark 2.4.9 on page 43 and Definition 2.4.10 on
page 43.

3. For every originally vanishing exact couple, we always have ǫ−,− = 0
and hence ǫ−,−

∼= E∞. Therefore, every originally vanishing ex-
act couple converges to its universal augmentation. If the n-th D1-
column vanishes from D1

(p,q)−a
up, the E∞-Distribution Diagram

looks like the following diagram:
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⋂

r φ(p,q)−ra = 0

φ(p,q) ǫ(p,q)
∼= E∞

(p,q)+b

φ(p,q)+a
ǫ(p,q)+a

∼= E∞
(p,q)+b+a

...

φ(p,q)+(r−1)a ǫ(p,q)+(r−1)a
∼= E∞

(p,q)+b+(r−1)a

φ(p,q)+ra ǫ(p,q)+ra
∼= E∞

(p,q)+b+ra

...

⋃

r φ(p,q)+ra

Ln

E∞-Distribution Diagram of an Originally Vanishing Exact Couple

3.2.2 Examples

Example 3.2.3. (Tower of Cofibers) Assume, for r ≥ 1, Xr and Fr

are path connected topological spaces and consider the following tower of
cofibers

X1 X2 X3 · · · Xr Xr+1 · · ·

F1 F2 F3 Fr Fr+1

where every Fr → Xr is a map with homotopy cofiber Xr+1 and X :=
hocolimrXr. We can extend it to get

· · · X1 X1 X1 X2 X3 · · · Xr Xr+1 · · ·

{pt} {pt} F1 F2 F3 Fr Fr+1

For any choice of a (generalized) additive homology theory h, where
hq({pt}) = 0 for q < 0, each cofibration Fr → Xr → Xr+1 induces a long
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exact sequence of homology groups

· · · → hk(Fr) → hk(Xr) → hk(Xr+1) → hk−1(Fr) → · · · .

If we put
D1

(p,q) = hp+q(Xq) and E1
(p,q) = hp+q(Fq)

then we obtain an originally stable exact couple with homomorphisms of
bidegrees a = (−1, 1), b = (0,−1) and c = (0, 0) and also σ = (b+c) · â =
(0,−1) · (−1,−1) = 1. The differential on page r is of bidegree

b+ c− (r − 1)a = (0,−1)− (r − 1)(−1, 1) = (r − 1,−r).

Since additive homology theories commute with directed colimits, therefore
we have colimr h∗(Xr) ∼= h∗(X): See [31].

...
∼=

...
∼=

· · · 0 hk+1(X1)

∼=

0 hk(X1)

∼=

0 · · ·

· · · hk+1(F1) hk+1(X1)

i

0 hk(X1)

∼=

0 · · ·

· · · hk+1(F2) hk+1(X2)
j

hk(F1)
k hk(X1) 0 · · ·

· · · hk+1(F3) hk+1(X3) hk(F2) hk(X2) hk−1(F1) · · ·

...
...

hk+1(X) hk(X)

Exact Couple of a Tower of Cofibers

Example 3.2.4. (Tower of Cofibrations) Assume, for r ≥ 0, Xr and
Fr are path connected topological spaces and consider the following tower
of cofibrations

X0 X1 X2 · · · Xr Xr+1 · · ·

F1 F2 Fr Fr+1
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where Fr+1 is the cofiber of the cofibration Xr → Xr+1. Since the tower
consists of cofibrations we have X := hocolimrXr. We can extend this
tower to get

· · · {pt} {pt} X0 X1 X2 · · · Xr Xr+1 · · · .

{pt} {pt} F0 F1 F2 Fr Fr+1

For any choice of a (generalized) homology theory h, where hq({pt}) = 0
for q < 0, each cofibration Xr → Xr+1 → Fr+1 induces a long exact
sequence of homology groups

· · · → hk(Xr) → hk(Xr+1) → hk(Fr+1) → hk−1(Xr) → · · · .

If we put
D1

(p,q) = hp+q(Xq) , E1
(p,q) = hp+q(Fq)

then we obtain an originally vanishing exact couple with homomorphisms
of bidegrees a = (−1, 1), b = (0, 0) and c = (0,−1) and also σ = (b+ c) ·
â = (0,−1) · (−1,−1) = 1. The differential on page r is of bidegree

b+ c− (r − 1)a = (r − 1,−r).

By part 3 of Remark 3.2.2 on page 64, this spectral sequence is convergent
to h∗(X).
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...
...

...

· · · ∼= hk+1(F0) 0 0 0 0 0 · · ·

· · · hk+1(F1) hk(X0)
∼=

i

hk(F0) 0 0 0 · · ·

· · · hk+1(F2) hk(X1)
j

hk(F1)
k

hk−1(X0)
∼=

hk−1(F0) 0 · · ·

· · · hk+1(F3) hk(X2) hk(F2) hk−1(X1) hk−1(F1) hk−2(X0)
∼= · · ·

...
...

...

· · · hk+1(Fq) hk(Xq−1) hk(Fq−1) hk−1(Xq−2) hk−1(Fq−2) hk−2(Xq−3) · · ·

· · · hk+1(Fq+1) hk(Xq) hk(Fq) hk−1(Xq−1) hk−1(Fq−1) hk−2(Xq−2) · · ·

...
...

...

hk(X) hk−1(X) hk−2(X)

Exact Couple of a Tower of Cofibrations

This example can be generalized by taking Fr+1 as the homotopy cofiber
of an arbitrary map Xr → Xr+1.

Example 3.2.5. (Leray-Serre Spectral Sequence) Look at [31] for the
terminology: Let h∗ be an additive homology theory satisfying the weak
homotopy equivalence axiom and π : E → B be a homotopy fibration,
with fiber F , such that the action of π1(B, b0) on h∗(F ) is trivial for all
b0 ∈ B and B is a 0-connected CW-complex with skeleta Bp. If we define

E1
(p,q) = hp+q(E

p, Ep−1) and D1
(p,q) = hp+q(E

p),

where Ep = π−1(Bp), then we obtain an originally vanishing exact couple,
shown below, with bidegrees a = (1,−1), b = (0, 0) and c = (−1, 0).
Also, the differential in the r-th page of the induced spectral sequence is
of bidegree

b+ c− (r − 1)a = (−1, 0)− (r − 1)(1,−1) = (−r, r − 1).

We also have E2
(p,q) = Hp(B; hq(F )): See [31], p. 350. By part 3 of Remark

3.2.2 on page 64, this spectral sequence is convergent to h∗(E).
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...
...

...

· · · hk+1(E
1, E0) hk(E

0)
∼=

hk(E
0, ∅) 0 0 0 · · ·

· · · hk+1(E
2, E1) hk(E

1)

i

hk(E
1, E0) hk−1(E

0)
∼=

hk−1(E
0, ∅) 0 · · ·

· · · hk+1(E
3, E2) hk(E

2)
j

hk(E
2, E1)

k
hk−1(E

1) hk−1(E
1, E0) hk−2(E

0)
∼= · · ·

...
...

...

· · · hk+1(E
q+1, Eq) hk(E

q) hk(E
q, Eq−1) hk−1(E

q−1) hk−1(E
q−1, Eq−2) hk−2(E

q−2) · · ·

· · · hk+1(E
q+2, Eq+1) hk(E

q+1) hk(E
q+1, Eq) hk−1(E

q) hk−1(E
q, Eq−1) hk−2(E

q−1) · · ·

...
...

...

hk(E) hk−1(E) hk−2(E)

Exact Couple Inducing Leray-Serre Spectral Sequence

Example 3.2.6. (Atiyah-Hirzebruch-Whitehead Spectral Sequence)
If, in the previous example, we take π = id : X → X, where X is a 0-
connected CW-complex, and h∗ is an additive homology theory, then we
obtain the Atiyah-Hirzebruch-Whitehead spectral sequence induced by the
originally vanishing exact couple in which

E1
(p,q) = hp+q(X

p, Xp−1) and D1
(p,q) = hp+q(X

p),

where Xp is the p-skeleton of X. We also have E2
(p,q) = Hp(X; hq(pt)).

Again, by part 3 of Remark 3.2.2 on page 64, this spectral sequence is
convergent to h∗(X).
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...
...

...

· · · ∼=
hk+1(X

0, ∅) 0 0 0 0 0 · · ·

· · · hk+1(X
1, X0) hk(X

0)
∼=

i

hk(X
0, ∅) 0 0 0 · · ·

· · · hk+1(X
2, X1) hk(X

1)
j
hk(X

1, X0)
k

hk−1(X
0)

∼=
hk−1(X

0, ∅) 0 · · ·

· · · hk+1(X
3, X2) hk(X

2) hk(X
2, X1) hk−1(X

1) hk−1(X
1, X0) hk−2(X

0)
∼= · · ·

...
...

...

hk(X) hk−1(X) hk−2(X)

Exact Couple Inducing Atiyah-Hirzebruch-Whitehead Spectral Sequence

3.2.3 Eventually Stable or Vanishing Exact Couples

An eventually stable exact couple is an exact couple in which every D1-
column consists of isomorphisms from some D1-term down to the universal
augmentation. An eventually vanishing exact couple is an eventually stable
exact couple that stabilizes at 0.

Definition 3.2.7. 1. An eventually stable exact couple (D1
∗,∗, E

1
∗,∗) is

an exact couple in which for every n ∈ Z there exists some (u, v) ∈
Z× Z, where (u, v) · â = n, such that

∀ t > 0 itu,v : D
1
u,v −→ D1

u,v+ta

is an isomorphism. We say that D1
u,v+ta is in the eventually stable

range of the n-th D1-column.

2. An eventually vanishing exact couple is an exact couple (D1
∗,∗, E

1
∗,∗)

in which for every n ∈ Z there exists some (u, v) ∈ Z × Z, where
(u, v) · â = n, such that

∀ t ≥ 0 D1
u,v+ta = 0.

There is a list of examples at the end of this section.

Remark 3.2.8. For an eventually stable exact couple the following hold:
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1. In the stable scenario depicted below, the E1-term vanishes:

D1
u,v+(t−1)a

∼=

...

D1
u,v+ta

∼=

E1
u,v+b+ta D1

u,v+b+c+ta

∼=

D1
u,v+(t+1)a D1

u,v+b+c+(t+1)a

2. Assume the n-th D1-column stabilizes from D1
(p,q) down. Then Ln,

the universal augmentation in degree n, is isomorphic to D1
(p,q) and

hence the image filtration of Ln is of the form

∩rφ(p,q)−ra ⊆ · · · ⊆ φ(p,q)−(r+1)a ⊆ φ(p,q)−ra ⊆ · · · ⊆ φ(p,q)−2a ⊆ φ(p,q)−a ⊆ φ(p,q) = Ln.

The kernel filtration of ker(Ln → Ln) is of the form

0 ⊆ · · · ⊆ φ(p,q)−(r+1)a ⊆ φ(p,q)−ra ⊆ · · · ⊆ φ(p,q)−2a ⊆ φ(p,q)−a ⊆ φ(p,q) = ker(Ln → Ln).

As we have mentioned at the introduction to this chapter, we are
interested in carrying some information through the filtration stages
and to enable this induction we need a known starting point. Here,
for both objects L∗ and L∗, the first steps of the filtrations are the
filtered objects themselves! So we cannot think of them as the first
known steps. However, if we “turn the table” we can start from the
known step 1, as it is explained in the diagram on page 196, where
we assume that the (n + σ)-th D1-column, the column on the right
of the n-th D1-column, stabilizes at D1

(p,q)+sa+b+c
; i.e., it stabilizes s

steps lower or higher than the n-th D1-column depending on s being
positive or negative, respectively.

3. For every eventually vanishing exact couple, we have ǫ−,− = 0 and
hence it is coaugmentation concentrated: See Definition 2.4.13 on
page 45. It converges to its universal coaugmentation if and only if
f : E∞

−,− → lim1
t ker(i

t
−,−) vanishes. The E∞-Distribution Diagram

turns into the diagram on page 197.

3.2.4 Examples

Example 3.2.9. (Tower of Fibers) Assume, for r ≥ 0, Xr and Fr are
path connected topological spaces with Abelian fundamental groups and
consider the following tower of fibers
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X1 X2 X3 · · · Xn Xn+1 · · ·

F1 F2 F3 · · · Fn Fn+1

where each Xn → Fn is a homotopy fibration with fiber Xn+1. We can
extend it to get a long tower of fibers

· · · X−1 X0 X1 X2 X3 · · · Xn Xn+1 · · ·

· · · {pt} {pt} F1 F2 F3 · · · Fn Fn+1

Every fibration in the tower yields the following long exact sequence of
homotopy groups

· · · → πn+1(Fr) → πn(Xr+1) → πn(Xr) → πn(Fr) → · · · .

These exact sequences give rise to an eventually stable exact couple and
hence a homotopy spectral sequence where

D1
p,q = πp+q(Xq) and E1

(p,q) = πp+q(Fq)

with bidegrees a = (1,−1), b = (0, 0), c = (−2, 1), and σ = (b + c) · â =
(−2, 1) · (1, 1) = −1....

...
...

· · · πp+q(Xq)

f
q
∗

πp+q(Fq) πp+q−1(Xq+1) πp+q−1(Fq+1) πp+q−2(Xq+2) · · ·

· · · πp+q(Xq−1)
g
q
∗ πp+q(Fq−1)

∂ πp+q−1(Xq) πp+q−1(Fq) πp+q−2(Xq+1) · · ·

...
...

...
...

...

· · · πp+q(X1)

∼=

πp+q(F1) πp+q−1(X2) πp+q−1(F2) πp+q−2(X3) · · ·

· · · πp+q(X0)

∼=

0 πp+q−1(X1)

∼=

πp+q−1(F1) πp+q−2(X2) · · ·

· · · πp+q(X−1)

∼=

0 πp+q−1(X0)

∼=

0 πp+q−2(X1)

∼=

· · ·

...
...

...

Also, the differential in the r-th page is of bidegree

b+ c− (r − 1)a = (−2, 1)− (r − 1)(1,−1) = (−r − 1, r).
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Note that the induced spectral sequence is not necessarily convergent.

Example 3.2.10. (Tower of Homotopy Fibrations) Let

{pt} = X0 X1 X2 · · · Xn Xn+1 · · ·

F1 F2 · · · Fn Fn+1

be a tower of homotopy fibrations of path-connected spaces with Abelian
fundamental groups, where everyXn+1 → Xn is a fibration with fiber Fn+1.
In the literature, there are a few spectral sequences corresponded to this
tower. We mention three of them here.

1. (Adams-like Spectral Sequence of a Tower of Fibrations) If
we let

D1
(p,q) = πp(Xq) and E1

(p,q) = πp(Fq)

we will obtain an eventually vanishing exact couple, shown in the
following diagram, and the induced spectral sequence with bidegrees
a = (0,−1), b = (−1, 1) and c = (0, 0).

limq πp(Xq) limq πp−1(Xq) limq πp−2(Xq)

...
...

...

· · · πp(Xq) πp−1(Fq+1) πp−1(Xq+1) πp−2(Fq+2) πp−2(Xq+2) · · ·

· · · πp(Xq−1) πp−1(Fq) πp−1(Xq) πp−2(Fq+1) πp−2(Xq+1) · · ·

...
...

...

· · · ∼= πp(X1) πp−1(F2) πp−1(X2) πp−2(F3) πp−2(X3) · · ·

· · · 0 πp−1(F1)
∼= πp−1(X1) πp−2(F2) πp−2(X2) · · ·

· · · 0 0 0 πp−2(F1)
∼= πp−2(X1) · · ·

· · · 0 0 0 0 0 · · ·

...
...

...

Also, the differential in the r-th page is of bidegree

b+ c− (r − 1)a = (−1, 1)− (r − 1)(0,−1) = (−1, r).
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2. (Bousfield-Friedlander Spectral Sequence.) If we let

D1
p,q = πp+q(Xq) and E1

(p,q) = πp+q(Fq)

we will obtain an eventually vanishing exact couple, shown in the
following diagram, and the induced spectral sequence defined in [5]
with bidegrees a = (1,−1), b = (−2, 1) and c = (0, 0). Also, the
differential in the r-th page is of bidegree

b+ c− (r − 1)a = (−2, 1)− (r − 1)(1,−1) = (−r − 1, r).

limq πn(Xq) limq πn−1(Xq) limq πn−2(Xq)

...
...

...

· · · πn(Xq) πn−1(Fq+1) πn−1(Xq+1) πn−2(Fq+2) πn−2(Xq+2) · · ·

· · · πn(Xq−1) πn−1(Fq) πn−1(Xq) πn−2(Fq+1) πn−2(Xq+1) · · ·

...
...

...

· · · ∼= πn(X1) πn−1(F2) πn−1(X2) πn−2(F3) πn−2(X3) · · ·

· · · 0 πn−1(F1)
∼=

πn−1(X1) πn−2(F2) πn−2(X2) · · ·

· · · 0 0 0 πn−2(F1)
∼= πn−2(X1) · · ·

· · · 0 0 0 0 0 · · ·

...
...

...

3. (Bousfield-Kan Spectral Sequence) If we let

Dp,q
1 = πq−p(Xp) and E

(p,q)
1 = πq−p(Fp)

we will obtain an eventually vanishing exact couple, shown in the
following diagram, and the induced spectral sequence defined in [6]
with bidegrees a = (−1,−1), b = (1, 0) and c = (0, 0). Also, the
differential in the r-th page is of bidegree

b+ c− (r − 1)a = (1, 0)− (r − 1)(−1,−1) = (r, r − 1).
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limp πn(Xp) limp πn−1(Xp) limp πn−2(Xp)

...
...

...

· · · πn(Xp) πn−1(Fp+1) πn−1(Xp+1) πn−2(Fp+2) πn−2(Xp+2) · · ·

· · · πn(Xp−1) πn−1(Fp) πn−1(Xp) πn−2(Fp+1) πn−2(Xp+1) · · ·

...
...

...

· · · ∼=
πn(X1) πn−1(F2) πn−1(X2) πn−2(F3) πn−2(X3) · · ·

· · · 0 πn−1(F1)
∼= πn−1(X1) πn−2(F2) πn−2(X2) · · ·

· · · 0 0 0 πn−2(F1)
∼= πn−2(X1) · · ·

· · · 0 0 0 0 0 · · ·

...
...

...

See [6] or [12] for more properties of the last two spectral sequences.

It is well-known ([9]) that there is a short exact sequence

lim1
nπk+1(Xn) πk(X)

ρk

limn πk(Xn)

where X is the homotopy inverse limit of the tower. So, in all three exam-
ples corresponding to the tower of fibrations, limn π∗(Xn) is the universal
coaugmentation and π∗(X) is a coaugmentation of the exact couples. By
part 3 of Remark 3.2.8 on page 72, they are all coaugmentation concen-
trated.

Example 3.2.11. (Grothendieck Spectral Sequence) Given two ad-

ditive functors A G−→ B F−→ D, where A, B and D are Abelian categories
with enough injectives or projectives, the Grothendieck spectral sequence
expresses the derived functors of GF in terms of the derived fuctors of G
and of F . For the definitions of Abelian category, additive functor, enough
injective-projective and derived functors look at [27].

Here we assume that A and B are categories of S-modules and R-
modules, for two commutative unitary rings S and R and let F : B → Ab
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be an additive functor of either variance. We denote the left and right
derived functors of F by LF and RF , respectively.

• An object B in B is called right F -acyclic if (RpF )B = {0}, for every
p ≥ 1.

• An object C in B is called left F -acyclic if (LpF )C = {0}, for every
p ≥ 1.

For example, if F = homR(A,−), then every injective R-module E is right
F -acyclic because ExtpR(A,E) = {0}, for every p ≥ 1. Also, if F = A⊗R−,
then every projective R-module P is left F -acyclic, because TorRp (A,P ) =
{0}, for every p ≥ 1. Every flat R-module is also left F -acyclic.

There are four Grothendieck spectral sequences, depending on the vari-
ances of the functors involved. Here are two types of functor compositions
that have corresponding spectral sequences induced by originally vanishing
and eventually stable exact couples:

1. Let A G−→ B F−→ Ab be covariant additive functors. Assume that
F is right exact and that GP is left F -acyclic for every projective
P in A. Then, for every object A in A, there is a first quadrant
(homology) spectral sequence with

E2
(p,q) = (LpF )(LqG)A =⇒ Ln(FG)A.

This spectral sequence is functorial in A.

2. LetA G−→ B F−→ Ab be additive contravariant functors. Assume that
F is left exact and that GP is right F -acyclic for every projective
P in A. Then, for every object A in A, there is a first quadrant
(homology) spectral sequence with

E2
(p,q) = (RpF )(RqG)A =⇒ Ln(FG)A.

This spectral sequence is functorial in A.

The following are two types of functor compositions that the corre-
sponding spectral sequences are induced by originally stable and eventually
vanishing exact couples:

3. Let A G−→ B F−→ Ab be covariant additive functors. Assume that F
is left exact and that GE is right F -acyclic for every injective object
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E in A. Then, for every object A in A, there is a third quadrant
(cohomology) spectral sequence with

E
(p,q)
2 = (RpF )(RqG)A =⇒ Rn(FG)A.

This spectral sequence is functorial in A.

4. Let A G−→ B F−→ Ab be additive functors. Assume that F is con-
travariant left exact, G is covariant, and GP is right F -acyclic for
every projective P in A. Then, for every object A in A, there is a
third quadrant (cohomology) spectral sequence with

E
(p,q)
2 = (RpF )(LqG)A =⇒ Rn(FG)A.

This spectral sequence is functorial in A.

3.3 Matching Originally Stable or Vanish-

ing Exact Couples to a Tower

In this section, we present the structural background required for carrying
information through the ascending filtration stages of the first and last
term of a (potentially transfinite) directed tower of bigraded modules. To
avoid duplication, we do not distinguish the special case that the tower of
modules is indexed over ω, the least infinite ordinal, and work with towers
that are indexed over an arbitrary limit ordinal.

3.3.1 Matching Originally Stable Exact Couples to a
Tower

Assume we have a directed tower of bigraded modules

H1 → H2 → · · · → Hp → Hp+1 → · · · → Hη → Hη+1 → · · · → Hλ = H
(3.9)

where λ is a limit ordinal. For every η ≤ λ, we define Fη = im(Qη : Hη →
Hλ) to obtain the ascending transfinite image filtration of Hλ

F1 ⊆ · · · ⊆ Fp ⊆ Fp+1 ⊆ · · · ⊆ Fη ⊆ Fη+1 ⊆ · · · ⊆ Fλ = Hλ (3.10)

and define F η = ker(Qη : H1 → Hη) to obtain the ascending transfinite
kernel filtration of H1
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F 1 ⊆ · · · ⊆ F p ⊆ · · · ⊆ F η ⊆ F η+1 ⊆ · · · ⊆ F λ = ker(H1 → Hλ) ⊆ H1 .
(3.11)

Definition 3.3.1. We match originally stable exact couples to the tower
(3.9) if for every limit ordinal η0 < λ, there is an originally stable exact
couple EC(η0) (with nonzero stable range) and homomorphisms α and β,
as depicted in the diagram on page 198, such that

• Fη0+r(n) = im(D1
u,v+ra

αu,v+ra

Hη0+r(n)
Qη0+r

Hλ(n)) , and

• F η0+r(n) = ker(H1(n)
Qη0+r

Hη0+r(n)
βu,v+ra

D1
u,v+ra) ,

where H∗(n), F
∗(n) and F∗(n) are the n-th degree of H∗, F

∗ and F∗, re-
spectively, and (u, v) · â = n. The homomorphisms α and β are called the
matching homomorphisms.

Remark 3.3.2. By Definition 3.3.1 on page 80, we look at Hλ (in fact,
Fη0+ω) as a far augmentation of EC(η0) and we consider the following ω-
length filtration segment of Hλ

Fη0 ⊆ Fη0+1 ⊆ · · · ⊆ Fη0+r ⊆ Fη0+r+1 ⊆ · · · ⊆ Fη0+ω.

Similarly, we look at H1 (in fact, F η0+ω) as a far coaugmentation of EC(η0)
and we consider the following ω-length filtration segment of H1

F η0 ⊆ F η0+1 ⊆ · · · ⊆ F η0+r ⊆ F η0+r+1 ⊆ · · · ⊆ F η0+ω.

Note that EC(η0) has its own universal augmentation and coaugmentation.
By Remark 3.2.2 on page 64, for every r ≥ 0, we have the short exact
sequence

ǫu,v+ra−b−c E∞
u,v+ra−c ǫu,v+ra.

Therefore, by the E∞-Distribution Theorem we have

Fη0+r(n)

Fη0+r−1(n)

F η0+r+1(n)

F η0+r(n)

ǫu,v+ra−b−c E∞
u,v+ra−c ǫu,v+ra.

(3.12)
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For every limit ordinal η0 < λ, the universal property of colimit provides
a homomorphism ρη0 : colimβ<η0 Hβ → Hη0 .

Definition 3.3.3. The homomorphism ρη0 is called the clutching homo-
morphism and Hη0 is called the clutching term.

These filtrations and the information provided by the originally stable
exact couples can be combined in the diagram on page 199, where ar-
rows of the same color represent exactness. We postpone the proof of the
ingredients of the mentioned diagram to the end of this section.

Remark 3.3.4. Remember that, as we explained in the introduction to
this chapter, we are ultimately interested in carrying some information
through the filtration stages of H1 or Hλ and we use transfinite induction
as our tool. For example, if we want to carry some information through the
filtration stages of Hλ, we assume for an ordinal η ≤ λ we have information
about Fβ’s, where β < η, and we consider the following two situations:

Situation 1: η is a non-limit ordinal and hence it has finitely many
predecessors. So for a limit ordinal η0 and a positive integer r we
have η = η0 + r and hence Fη = Fη0+r. In the following short exact
sequence

Fη0+r−1 Fη0+r

Fη0+r

Fη0+r−1

,

by induction assumption, we have information about Fη0+r−1 and

using the diagram (3.12) we try to obtain information about
Fη0+r

Fη0+r−1

from the information we can assume about the E∞-terms of the
intermediate exact couple EC(η0). Look at the diagram on page
199. Therefore, information about Fη0+r = Fη is provided, up to
extension.

Situation 2: η is a limit ordinal. Our method works only for those
types of information about Fβ’s that can be carried to colimβ<η Fβ.
Therefore, in the following short exact sequence

colimβ<η Fβ Fη

Fη

colimβ<η Fβ

we have information about colimβ<η Fβ. Then, we obtain information

about
Fη

colimβ<η Fβ

by putting assumptions on coker(ρη). Look at
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the diagram on page 199. Therefore, the information about Fη is
provided, up to extension.

Look at the proof of Proposition 4.3.2 on page 100, Proposition 4.5.2
on page 109 and Section 5.8 for examples of such argument.

Example 3.3.5. (Transfinite Tower of Cofibers) Let

X1 X2 X3 · · · Xη Xη+1 Xη+2 · · ·

F1 F2 F3 Fη Fη+1 Fη+2

be a tower of cofibers indexed over a limit ordinal λ where each Fη →
Xη is a cofibration with cofiber Xη+1 and all spaces involved are path-
connected. We assume that for every limit ordinal η0 ≤ λ we have Xη0 =
hocolimβ<η0 Xβ. For every limit ordinal η0 < λ, the following ω-length
segment of the tower of cofibers

Xη0 Xη0+1 Xη0+2 · · · Xη0+r Xη0+r+1 · · ·

Fη0 Fη0+1 Fη0+2 · · · Fη0+r Fη0+r+1

defines an originally stable exact couple and hence induces a homology
spectral sequence as stated in Example 3.2.3 on page 67. Therefore, we
obtain transfinite towers of homology groups of cofibers that are shown
in blue in the diagram on page 200. As a result, the matching homomor-
phisms α and β in Definition 3.3.1 on page 80 are isomorphisms. Note
that, for every integer n we have the following

ρη0(n) : colimβ<η0 hn(Xβ)
∼=−→ hn(colimβ<η0 Xβ) = hn(Xη0).

Therefore, the clutching homomorphisms are also isomorphisms.

3.3.2 Matching Originally Vanishing Exact Couples
to a Tower

In this section, we match originally vanishing exact couples to the tower
(3.9) on page 79, with a minor modification of what we have provided in
the last section.
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Definition 3.3.6. We match originally vanishing exact couples to the
tower (3.9) if for every limit ordinal η0 < λ, there is an originally vanishing
exact couple EC(η0) and a homomorphism α, as depicted in the diagram
on page 201, such that

Fη0+r(n) = im(D1
u,v+ra

αu,v+ra

Hη0+r(n)
Qη0+r

Hλ(n)) ,

where H∗(n) and F∗(n) are the n-th degree of H∗ and F∗, respectively, and
(u, v)·â = n. The homomorphism α is called the matching homomorphism.

Remark 3.3.7. By Definition 3.3.6, we look at Hλ (in fact Fη0+ω) as a far
augmentation of EC(η0) and we consider the following ω-length filtration
segment of Hλ

Fη0 ⊆ Fη0+1 ⊆ · · · ⊆ Fη0+r ⊆ Fη0+r+1 ⊆ · · · ⊆ Fη0+ω.

Unlike the case we matched originally stable exact couples to the tower
(3.9), H1 does not play the role of a non-trivial coaugmentation of EC(η0),
because any homomorphism from a coaugmentation to the D1-terms of
EC(η0) must factor through the universal coaugmentation of EC(η0), which
is zero.

Remember that by part 3 of Remark 3.2.2 on page 64, the spectral
sequence induced by the intermediate originally vanishing exact couple
EC(η0) is convergent to its universal augmentation. Therefore, by the E∞-
Distribution Theorem we have the following diagram

Fη0+r(n)

Fη0+r−1(n)

ǫu,v+ra
∼= E∞

u,v+b+ra.

(3.13)

These filtrations and the information provided by the originally vanishing
exact couples can be combined in the diagram on page 202, where arrows
of the same color represent exactness.

We can modify the argument given in Remark 3.3.4 on page 81 when we
match originally vanishing exact couples to a tower. Look at the proof of
Proposition 5.8.1 on page 141 or Corolarry 5.8.3 on page 143 for examples
of such argument.
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Example 3.3.8. (Transfinite Tower of Cofibrations) Let

X1 X2 X3 · · · Xη Xη+1 Xη+2 · · ·

F2 F3 ∗ Fη+1 Fη+2

be a tower of cofibrations indexed over a limit ordinal λ where each Xη →
Xη+1 is a cofibration with cofiber Fη+1 and all spaces involved are path-
conneced. We assume that for every limit ordinal η0 ≤ λ, we have

hocolimβ<η0 Xβ = Xη0 .

For every limit ordinal η0 < λ, the following ω-length segment of the tower
of cofibrations

Xη0 Xη0+1 · · · Xη0+r Xη0+r+1 · · ·

Fη0+1 Fη0+r Fη0+r+1

defines an originally vanishing exact couple and hence induces a homol-
ogy spectral sequence as stated in Example 3.2.4 on page 68. Therefore,
we obtain transfinite towers of homology groups of cofibrations that are
shown in blue in the diagram on page 203. As a result, the matching ho-
momorphism α in Definition 3.3.6 on page 83 is isomorphism. Note that,
for every integer n we have the following

ρη0(n) : colimβ<η0 hn(Xβ)
∼=−→ hn(hocolimβ<η0 Xβ) = hn(Xη0).

Therefore, the clutching homomorphisms are also isomorphisms. Look at
Appendix B for an important example of a transfinite tower of cofibrations.

3.3.3 Proof of the Ingredients of the Diagram on
Page 199

Let η0 ≤ λ be a limit ordinal

F η0
= colimβ<η0 Fβ

and
F η0 = colimβ<η0 F

β.
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ker(ρη0(n))
F η0(n)

F η0(n)
:

Note that for the homomorphism Qη0(n) : H1(n) → colimβ<η0 Hβ(n)
we have F η0(n) = ker(Qη0(n)).

Lemma 3.3.9.
F η0(n)

F η0(n)
∼= im(Qη0(n))∩ker(ρη0(n)). In particular, we have

F η0(n)

F η0(n)
֌ ker(ρη0(n)).

Proof.
F η0(n)

F η0(n)
∼=

ker(ρη0(n) ◦Qη0(n))

ker(Qη0(n))
∼= im(Qη0(n)) ∩ ker(ρη0(n)).

Corollary 3.3.10. F η0(n) ∼= F η0(n) if and only if im(Qη0(n))∩ker(ρη0(n)) =
∅. In particular, if the clutching homomorphisms are monomorphisms,
then F η0 ∼= F η0.

Fη0(n)

F η0
(n)

coker(ρη0(n)) :

Lemma 3.3.11.
Fη0(n)

F η0
(n)

∼= Hη0(n)

ker(Qη0(n)) + im(ρη0(n))
. In particular,

coker(ρη0(n)) ։
Fη0(n)

F η0
(n)

.

Proof. We have

Fη0(n)

F η0
(n)

∼= im(Qη0(n))

im(Qη0(n) ◦ ρη0(n))

∼=

Hη0(n)

ker(Qη0(n))

ker(Qη0(n)) + im(ρη0(n))

ker(Qη0(n))

∼= Hη0(n)

ker(Qη0(n)) + im(ρη0(n))
.

Note that

coker(ρη0(n)) =
Hη0(n)

im(ρη0(n))
։

Hη0(n)

ker(Qη0(n)) + im(ρη0(n))
∼= Fη0(n)

F η0
(n)

.
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Corollary 3.3.12. F η0
(n) = Fη0(n) if and only if Hη0(n) = ker(Qη0(n))+

im(ρη0(n)). In particular, if the clutching structures are epimorphisms,
then Fη0 = colimβ<η0 Fβ.

3.4 Matching Eventually Stable or Vanish-

ing Exact Couples to a Tower

In this section, we consider a transfinite inverse tower of bigraded modules
and the descending filtration of its first and last term. Again, we match
convenient exact couples to this tower. Since the limit functor on inverse
towers is not exact, the situation here is much more complicated than the
one in Section (3.3.1) and Section (3.3.2). In particular, dualizing the
development in those two sections does not handle the situation here. So
we explain everything in details.

3.4.1 Matching Eventually Stable Exact Couples to
a Tower

Assume we have an inverse tower of bigraded modules

H = Hλ → · · · → Hη+1 → Hη → · · · → Hp+1 → Hp → · · · → H1 (3.14)

where λ is a limit ordinal. For every η ≤ λ, we define Fη = im(Qη : H
η →

H1) to obtain the descending transfinite image filtration of H1

H1 = F1 ⊇ F2 ⊇ · · · ⊇ Fp ⊇ · · · ⊇ Fη ⊇ Fη+1 ⊇ · · · ⊇ Fλ (3.15)

and we define F η = ker(Qη : Hλ → Hη) to obtain the descending transfinite
kernel filtration of Hλ

Hλ ⊇ ker(Hλ → H1) = F 1 ⊇ · · · ⊇ F p ⊇ · · · ⊇ F η ⊇ F η+1 ⊇ · · · ⊇ F λ.
(3.16)

Definition 3.4.1. We match eventually stable exact couples to the tower
(3.14) if for every limit ordinal η0 < λ, there is an eventually stable exact
couple EC(η0) (with nonzero stable range) and homomorphisms α and β,
as depicted in the diagram on page 204, such that
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• Fη0+r(n) = im(D1
u,v+ra

αu,v+ra

Hη0+r(n)
Qη0+r

H1(n)) , and

• F η0+r(n) = ker(Hλ(n)
Qη0+r

Hη0+r(n)
βu,v+ra

D1
u,v+ra) ,

where H∗(n), F ∗(n) and F∗(n) are the n-th degree of H∗, F ∗ and F∗, re-
spectively, and (u, v) · â = n. The homomorphisms α and β are called the
matching homomorphisms.

Remark 3.4.2. By Definition 3.4.1, we look at H1 (in fact Fη0) as a far
augmentation of EC(η0) and we consider the following ω-length filtration
segment of H1

Fη0 ⊇ Fη0+1 ⊇ · · · ⊇ Fη0+r ⊇ Fη0+r+1 ⊇ · · · ⊇ Fη0+ω.

Similarly, we look at Hλ (in fact F η0) as a far coaugmentation of EC(η0)
and we consider the following ω-length filtration segment of Hλ

F η0 ⊇ F η0+1 ⊇ · · · ⊇ F η0+r ⊇ F η0+r+1 ⊇ · · · ⊇ F η0+ω.

Note that EC(η0) has its own universal augmentation and coaugmentation.
By part 2 of Remark 3.2.8 on page 72, for every r ≥ 0, we have the following
diagram, where, as usual, arrows of the same color form exact sequences

Fη0+r(n)

Fη0+r+1(n)
lim1

t ker(i
t
u,v−ra+b+c

)
F η0+r−1(n+ σ)

F η0+r(n+ σ)

ǫu,v−ra E∞
u,v+b−ra

Z∞
u,v+b−ra

im(j1u,v−ra)
ǫu,v−ra+b+c.

(3.17)
For every limit ordinal η0 < λ, the universal property of colimit provides
a homomorphism ρη0 : Hη0 → limβ<η0 H

β.

Definition 3.4.3. The homomorphism ρη0 is called the clutching homo-
morphism and Hη0 is called the clutching term.

These filtrations and the information provided by the eventually stable
exact couples can be combined in the diagram on page 205, where arrows
of the same color represent exactness.
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Remark 3.4.4. We can modify the discussion in Remark 3.4.4 on page
88 for eventually stable exact couples matched to inverse towers. However,
we need a “twist” here: Assume, for example, we are interested in carrying
some information through the filtration stages of H1. For an ordinal η ≤ λ,
instead of assuming some information about Fβ’s, for every β < η, we

assume information about
H1

Fβ

’s. Look at the diagram on page 205. Again,

we consider two situations:

• Situation 1: η is a non-limit ordinal and hence it has finitely many
predecessors. So for a limit ordinal η0 and a positive integer r we

have η = η0 + r and hence
H1

Fη

=
H1

Fη0+r

. In the following short exact

sequence

Fη0+r−1

Fη0+r

H1

Fη0+r

H1

Fη0+r−1

by induction assumption, we have information about
H1

Fη0+r−1

and us-

ing the diagram (3.17) we try to obtain information about
Fη0+r−1

Fη0+r

from the information we can assume about the E∞-terms of the in-

termediate exact couple EC(η0). Therefore, information about
H1

Fη0+r

is provided, up to extension.

• Situation 2: η is a limit ordinal. Our method works only for those

types of information about
H1

Fβ

’s that can be carried to limβ<η

H1

Fβ

.

Therefore, in the following short exact sequence from the diagram
on page 205

limβ<η Fβ

Fη

H1

Fη

limβ<η

H1

Fβ

lim1
β<ηFβ

we have information about limβ<η

H1

Fβ

. Then, we obtain information

about
limβ<η Fβ

Fη

by putting assumptions on coker(ρη). Look at the

diagram on page 205. Then, we try to obtain information about
H1

Fη

,

up to extension. Sometimes we have to put some assumptions on
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lim1
β<ηFβ too.

Look at the proof of Proposition 4.6.3 on page 112, Proposition 4.4.3
on page 104 and Section 5.7 for examples of such argument.

Example 3.4.5. (Transfinite Tower of Fibers) Let

X1 X2 · · · Xη Xη+1 · · ·

F1 F2 · · · Fη Fη+1

be a tower of fibers indexed over a limit ordinal λ where each Xη → Fη

is a homotopy fibration with fiber Xη+1 and all spaces involved are path-
connected with Abelian fundamental groups. We assume that for every
limit ordinal η0 ≤ λ, holimβ<η0Xβ = Xη0 . For every limit ordinal η0 < λ,
the following ω-length stage of the tower of fibers

Xη0 Xη0+1 Xη0+2 · · · Xη0+r Xη0+r+1 · · ·

Fη0 Fη0+1 Fη0+2 · · · Fη0+r Fη0+r+1

defines an eventually stable exact couple and hence induces a homotopy
spectral sequence as stated in Example 3.2.9 on page 73. Therefore, we
obtain transfinite towers of homotopy groups of cofibers that are shown
in blue in the diagram on page 206. As a result, the matching homomor-
phisms α and β in Definition 3.4.1 on page 86 are isomorphisms. Note
that, for every integer n, ρη0(n) : πn(Xη0) → lim

β<η0
πn(Xβ) is the clutching

homomorphism.

3.4.2 Proof of the Ingredients of the Diagram on
Page 205

Let η0 ≤ λ be a limit ordinal.

limβ<η0 Fβ(n)

Fη0(n)
coker(ρη0(n)) :



3.4 Matching Eventually Stable or Vanishing Exact Couples to a Tower90

Lemma 3.4.6.
limβ<η0 Fβ(n)

Fη0(n)
∼= limβ<η0 H

β(n)

ker(Q̄η0(n)) + im(ρη0(n))
, where

Q̄η0(n) : lim
β<η0

Hβ(n) −→ H1(n).

In particular, coker(ρη0(n)) ։
limβ<η0 Fβ(n)

Fη0(n)
.

Proof. We have

limβ<η0 Fβ(n)

Fη0(n)
∼= im(Q̄η0(n))

im(Q̄η0(n) ◦ ρη0(n))

∼=

limβ<η0 H
β(n)

ker(Q̄η0(n))

ker(Q̄η0(n)) + im(ρη0(n))

ker(Q̄η0(n))

∼= limβ<η0 H
β(n)

ker(Q̄η0(n)) + im(ρη0(n))
.

Note that

coker(ρη0(n)) =
limβ<η0 H

β(n)

im(ρη0(n))
։

limβ<η0 H
β(n)

ker(Q̄η0(n)) + im(ρη0(n))
∼= limβ<η0 Fβ(n)

Fη0(n)
.

Corollary 3.4.7. limβ<η0 Fβ(n) = Fη0(n) if and only if limβ<η0 H
β(n) =

ker(Q̄η0(n)) + im(ρη0(n)). In particular, if the clutching homomorphisms
are epimorphisms, then Fη0 = limβ<η0 Fβ.

limβ<η0 Fβ

Fη0

H1

Fη0

limβ<η0

H1

Fβ

lim1
β<η0

Fβ :

Lemma 3.4.8.
limβ<η0 Fβ(n)

Fη0(n)
∼= limβ<η0

Fβ(n)

Fη0(n)
.

Proof. If we take the inverse limit of the short exact sequence of towers

Fη0(n) ֌ {Fβ(n)}β<η0
։

{

Fβ(n)

Fη0(n)

}

β<η0

we obtain

Fη0(n) ֌ lim
β<η0

Fβ(n) ։ lim
β<η0

Fβ(n)

Fη0(n)
,
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because lim1
β<η0

Fη0(n) = 0.

Lemma 3.4.9. We have the exact sequence

limβ<η0 Fβ(n)

Fη0(n)

H1(n)

Fη0(n)
limβ<η0

H1(n)

Fβ(n)
lim1

β<η0
Fβ(n) .

Proof. If we take inverse limits of the short exact sequence of towers

{

Fβ(n)

Fη0(n)

}

β<η0

֌
H1(n)

Fη0(n)
։

{

H1(n)

Fβ(n)

}

β<η0

,

we are done by the previous lemma. Note that

1

lim
β<η0

Fβ(n) ∼=
1

lim
β<η0

Fβ(n)

Fη0(n)
.

limβ<η0 F
β

F η0
֌ ker(ρη0) :

Lemma 3.4.10.
limβ<η0 F

β(n)

F η0(n)
∼= im(Qη0(n))∩ker(ρη0(n)). In particular,

we have a monomorphism
limβ<η0 F

β(n)

F η0(n)
֌ ker(ρη0(n)).

Proof. In the following diagram with short exact rows the vertical arrow
on the right is an isomorphism

ker(Qη0(n)) ker(ρη0(n) ◦Qη0(n))
ker(ρη0(n) ◦Qη0(n))

ker(Qη0(n))
∼=

ker(Qη0(n)) (Qη0(n))−1(ker(ρη0(n))) im(Qη0(n)) ∩ ker(ρη0(n))

and we have ker(Qη0(n)) = F η0(n) and ker(ρη0(n)◦Qη0(n)) = limβ<η0 F
β(n).

Therefore,

limβ<η0 F
β(n)

F η0(n)
=

ker(ρη0(n) ◦Qη0(n))

ker(Qη0(n))
∼= im(Qη0(n)) ∩ ker(ρη0(n)).
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Corollary 3.4.11. limβ<η0 F
β(n) = F η0(n) if and only if im(Qη0(n)) ∩

ker(ρη0(n)) = 0. In particular, if the clutching structures are monomor-
phisms (i.e., ker(ρη0(n)) = 0), then limβ<η0 F

β(n) = F η0(n).

limβ<η0 F
β(n)

F η0(n)

ker(Hλ(n) → H1(n))

F η0(n)
limβ<η0

ker(Hλ(n) → H1(n))

F β(n)
lim1

β<η0
F β(n) :

Lemma 3.4.12.
limβ<η0 F

β(n)

F η0(n)
∼= limβ<η0

F β(n)

F η0(n)
.

Proof. Take inverse limits of the short exact sequence

F η0(n) ֌
{

F β(n)
}

β<η0
։

{

F β(n)

F η0(n)

}

β<η0

.

Lemma 3.4.13. We have the exact sequence

limβ<η0 F
β(n)

F η0(n)

ker(Hλ(n) → H1(n))

F η0(n)
limβ<η0

ker(Hλ(n) → H1(n))

F β(n)
lim1

β<η0
F β(n).

Proof. If we take inverse limits of the short exact sequence of towers

{

F β(n)

F η0(n)

}

β<η0

֌
ker(Hλ(n) → H1(n))

F η0(n)
։

{

ker(Hλ(n) → H1(n))

F β(n)

}

β<η0

we are done by the previous lemma. Note that

1

lim
β<η0

F β(n) ∼=
1

lim
β<η0

{

F β(n)

F η0(n)

}

.

3.4.3 Matching Eventually Vanishing Exact Couples
to a Tower

In this section, we match eventually vanishing exact couples to the tower
(3.14), with a minor modification of what we have provided in the last
section.

Definition 3.4.14. We match eventually vanishing exact couples to the
tower (3.14) if for every limit ordinal η0 < λ, there is an eventually vanish-
ing exact couple EC(η0) and homomorphism β, as depicted in the diagram
on page 207, such that
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• F η0+r(n) = ker(Hλ(n)
Qη0+r

Hη0+r(n)
βu,v+ra

D1
u,v+ra) ,

where H∗(n) and F ∗(n) are the n-th degree of H∗ and F ∗, respectively, and
(u, v)·â = n. The homomorphism β is called the matching homomorphism.

Remark 3.4.15. By Definition 3.4.14, we look at Hλ (in fact F η0) as a far
coaugmentation of EC(η0) and we consider the ω-length filtration segment
of Hλ

F η0 ⊇ F η0+1 ⊇ · · · ⊇ F η0+r ⊇ F η0+r+1 ⊇ · · · ⊇ F η0+ω.

Unlike the case we matched eventually stable exact couples to the tower
(3.14), here H1 does not play the role of a non-trivial augmentation of
EC(η0), because any homomorphism from the D1-terms of EC(η0) to an
augmentation must factor through the universal augmentation of EC(η0),
which is zero.

We know that an eventually vanishing exact couple is coaugmenta-
tion concentrated: See Remark 3.2.8 on page 72. Therefore, by the E∞-
Distribution Theorem, we have

E∞
u,v−c−ra ǫu,v−ra F η0+(r−1)(n)

F η0+r(n)

These filtrations and the information provided by the eventually vanishing
exact couples can be combined in the diagram on page 208, where arrows
of the same color represent exactness.

Look at the proof of Proposition 5.7.1 on page 134 and Proposition
5.7.3 on page 137 for examples of the argument given in Remark 3.4.4 on
page 88, modified to the case we match eventually vanishing exact couples
to a tower.

Example 3.4.16. (Transfinite Tower of Fibrations) Let

X1 X2 · · · Xη Xη+1 Xη+2 · · ·

F1 F2 · · · {pt} Fη+1 Fη+2

be a tower of homotopy fibrations indexed over a limit ordinal λ where
each Xη+1 → Xη is a fibration with fiber Fη+1 and all spaces involved are
path-connected with Abelian fundamental groups. Let X := holimη<λXη

be the homotopy inverse limit of Xη’s. We assume that for every limit
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ordinal η0 ≤ λ, holimβ<η0Xβ = Xη0 . For every limit ordinal η0 < λ, the
following ω-length stage of the tower of fibrations

Xη0 Xη0+1 Xη0+2 · · · Xη0+r Xη0+r+1 · · ·

Fη0+1 Fη0+2 · · · Fη0+r Fη0+r+1

defines an eventually vanishing exact couple and hence induces a homo-
topy spectral sequence as stated in Example 3.2.10 on page 75. There-
fore, we have transfinite towers of homotopy groups of fibrations that are
shown in blue in the diagram on page 209, where we have picked Bousfield-
Friedlander spectral sequence. As a result, the matching homomorphism β
in Definition 3.4.14 on page 92 is isomorphism. Note that, for every integer
n, ρη0(n) : πn(Xη0) → limβ<η0 πn(Xβ) is the clutching homomorphism.

It is well-known ([9]) that if λ is an arbitrary limit ordinal, then for
every n ∈ N the following sequence that is exact on the first and second
positions

lim1
η<λπn+1(Xη) πn(X)

ρλ(n)
limη<λ πn(Xη)

exists if for all limit ordinals η0 < λ and integers k ≥ 2, lim1
β<η0

πn+k(Xβ) =

0. If, in addition, we have lim1
β<η0

πn+1(Xβ) = 0, then ρλ(n) is an epimor-
phism and hence we obtain a short exact sequence

lim1
η<λπn+1(Xη) πn(X)

ρλ(n)
limη<λ πn(Xη) .

In this case, the clutching homomorphisms are epimorphisms.



Chapter 4

Class of Modules Compatible
with Spectral Sequences and
Transfinite Induction

4.1 Introduction

The contribution of Serre to homotopy theory is very well-known. One of
the wonderful notions that he has used is the notion of a class of Abelian
groups as a generalization of 0: A class of Abelian groups is a non-empty
collection of Abelian groups that is closed under isomorphism, sub-object,
quotient, extension, Tor, tensor and homology with integer coefficients:
See [29]. By the Universal Coefficient Theorem, for a fibration E → B,
with fiber F , the second page of the Serre spectral sequence is of the form

E2
(p,q) = Hp(B; Hq(F )) ∼= Hp(B)⊗ Hq(F )⊕ Tor(Hp−1(B)⊗ Hq(F )).

See Example 4.3.6 on page 101. This class is “tailor-made” for the Serre
spectral sequence in the sense that while we flip through the pages of
the Serre spectral sequence, we stay in a given class. He used this class
beautifully to show that if the integral homology groups of any two of
E, B and F belong to a given class of Abelian groups, so do the integral
homology groups of the third. As an immediate application, he could show
that the homotopy groups of a sphere are finitely generated : See [29].

Hu [19] defines a class of Abelian groups to be a non-empty collection
of Abelian groups that is closed under isomorphism, sub-object, quotient
and extension and shows that if an E-term of the Serre spectral sequence

95
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belongs to this class then the E-terms in the successive pages also belong
to this class, even the E∞-term: See [19], p. 301. That is, he offers a more
general class that is “tailor-made” for the Serre spectral sequence, in the
sense mentioned above.

In this chapter, we start from a different platform and we consider
matching convenient exact couples to a (potentially transfinite) tower of
bigraded R-modules. For example, assume we have the following ascending
filtration of H

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ Fn+1 ⊆ · · · ⊆ Fη ⊆ Fη+1 ⊆ · · · ⊆ Fλ = H . (4.1)

Here, we are interested in “staying in a class C of modules” as we climb
up the filtration (4.1) by transfinite induction. The idea comes from the
discussions with Peschke and the ideas behind the inductive arguments in
[26]. We define C to be a non-empty collection of modules that is closed
under isomorphism, sub-object, quotient, extension and colimit of directed
towers and we show that if convenient exact couples are matched to the
filtration (4.1), as we have explained in Section 3.3 and Section 3.4, then
this class is “tailor-made” for the mechanics of transfinite induction; i.e.,
if one filtration stage of (4.1) is in C, with some extra assumptions, so are
all other filtration stages, in particular, H itself. When trying to take the
inductive step from “Fβ ∈ C, for every β < η” to “Fη ∈ C”, we face one of
the following two situations:

Situation 1: η is a non-limit ordinal and hence it has at most finitely
many predecessors. So there exists a limit ordinal η0 and a positive
integer r such that η = η0 + r. Since we have assumed that we have
matched a convenient exact couple to the ω-length filtration segment

Fη0 ⊆ Fη0+1 ⊆ · · · ⊆ Fη0+r−1 ⊆ Fη0+r ⊆ · · · ⊆ Fη0+ω,

we can use the relationship between the E∞-terms of the correspond-

ing spectral sequence and
Fη

Fβ

to take the inductive step from Fβ to

Fη.

Situation 2: η is a limit ordinal. The inductive step from colimβ<η Fβ

to Fη can be taken by putting assumptions on the clutching homo-
morphisms.

It turns out that even if we drop the last two conditions from the list
of the closure properties of a class, that is, if we have a class C of modules
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closed under isomorphism, sub-object and quotient, then C is “tailor-made”
for the mechanics of every spectral sequence; i.e.,

• if in an arbitrary spectral sequence, Er
(p,q) is in C then, for every

r ≤ s ≤ ∞, Es
(p,q) also belongs to C.

This is a generalization of the idea of Serre [29] that works for every spectral
sequence. We will explain this case in the first section of this chapter.

In the second and third sections, we consider the task of “staying in a
class of modules” as we climb up the ω-length filtration of the universal
augmentation and coaugmentation of our convenient exact couples. For
example, we show that

• if the E∞-terms of an originally (eventually) vanishing exact couple
belong to a class of modules with some closure properties, then the
universal augmentation (coaugmentation) also belong to that class.

In the third and fourth sections, we generalize this task of “staying in a
class of modules” to the case that we have a module which is transfinitely
filtered by a tower of modules where we can match convenient exact couples
to it. Using the inductive argument explained above, we will show, for
example,

• in a transfinite tower of cofibrations, if the homology groups of the
cofibers are in C, then so are the homology groups of the homotopy colimit

of the tower.

4.2 Compatibility with Spectral Sequences

In [29], Serre considered the spectral sequence associated to a fibration,
named after him as Serre spectral sequence, and showed that if Er

(p,q) is in
a class of Abelian groups - closed under sub-object, quotient, extension,
Tor, tensor and homology with integer coefficients - then Er+1

(p,q) also belongs
to this class; see Example 3.2.5 on page 70 and Example 4.3.6 on page 101.
In other words, he showed that this class of Abelian groups is compatible
with the mechanics of the spectral sequence associated to a fibration.

We flip through the pages of a spectral sequence by taking homology;
i.e., we find the kernel of the dr, the differential on page r, that leaves
the position (p, q) and then we find its quotient modulo the image of the
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dr that enters the position (p, q). In fact, every Er+1
(p,q) is a “sub-quotient”

of Er
(p,q). This is our motivation for the next definition. Throughout this

chapter we assume that R is a commutative unitary ring.

Definition 4.2.1. A class of R-modules is a collection C of R-modules
containing the trivial module that is closed under:

1. isomorphisms; i.e., if A ∼= B then A ∈ C if and only if B ∈ C,

2. sub-objects; i.e., if A֌ B and B ∈ C, then A ∈ C,

3. quotients; i.e., if B ։ C and B ∈ C, then C ∈ C.

The following proposition shows that C can pass through pages of any
spectral sequence, even to the limit page. Serre [29] and Hu [19] proved this
proposition only for the Serre spectral sequence and with more hypotheses
on C.

Proposition 4.2.2. Let (Er, dr | r ≥ r0) be a spectral sequence. If for
every (p, q) ∈ Z × Z there is some r ∈ N such that Er

(p,q) ∈ C, then for
every r ≤ s ≤ ∞ we have Es

(p,q) ∈ C.

Proof. Take r < s <∞. Since we have Er
(p,q) ∈ C, then, using the notation

in section 2.2.2 in Chapter 1, the inclusion

Zs−1
(p,q)

Br−1
(p,q)

֌
Zr−1

(p,q)

Br−1
(p,q)

= Er
(p,q)

shows that
Zs−1

(p,q)

Br−1
(p,q)

∈ C. From the following epimorphism

Zs−1
(p,q)

Br−1
(p,q)

։
Zs−1

(p,q)

Bs−1
(p,q)

= Es
(p,q)

we obtain Es
(p,q) ∈ C.

Let s = ∞. Since we have Er
(p,q) ∈ C, then, using the notation in section

2.2.2 in Chapter 1, the inclusion

Z∞
(p,q)

Br−1
(p,q)

֌
Zr−1

(p,q)

Br−1
(p,q)

= Er
(p,q)
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shows that
Z∞

(p,q)

Br−1
(p,q)

∈ C. From the following epimorphism

Z∞
(p,q)

Br−1
(p,q)

։
Z∞

(p,q)

B∞
(p,q)

= E∞
(p,q)

we obtain E∞
(p,q) ∈ C.

In the applications of class theory, the objects in a class C are usually
to be neglected in a certain sense, [19]. The following definition is classical
for class of Abelian groups that is closed under isomorphism, subobject,
quotient and extension: See [19] or [30]. Here we state it for a class of
R-modules.

Definition 4.2.3. Let C be a given class of R-modules and f : A → B be
a homomorphism. Then f is said to be

1. a C-monomorphism if ker(f) ∈ C,

2. a C-epimorphism if coker(f) ∈ C and

3. a C-isomorphism if it is both C-monomorphism and C-epimorphism.

If in this definition C is {0}, then these notions coincide with the cor-
responding classical notions.

Here is a rather trivial example:

Example 4.2.4. Let f : A → B be a module homomorphism and C be a
class of modules.

1. If A ∈ C, then f is a C-monomorphism.

2. If B ∈ C, then f is a C-epimorphism.

3. If A,B ∈ C, then f is a C-isomorphism.

4.3 Compatibility with Originally Stable or

Vanishing Exact Couples

In this section, we consider the spectral sequence induced by an originally
stable or vanishing exact couple and we show that with a few more as-
sumptions on a class C of modules, not only do we stay in C when we flip
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through the pages of the spectral sequence, but we can also show that the
universal augmentation and coaugmentation of the exact couple are also
in C.
Definition 4.3.1. 1. An ω-cocomplete class of R-modules is a class

C of R-modules that is closed under the colimit of ω-length directed
towers of R-modules; i.e., if {An}n∈N is a directed tower of R-modules
such that for every n ∈ N we have An ∈ C, then colimnAn ∈ C.

2. A class C of R-modules is closed under extensions when in a short
exact sequence A֌ B ։ C, if A,C ∈ C then B ∈ C.

Look at the E∞-Distribution Theorem 2.3.13 on page 35 for notations.

Proposition 4.3.2. Let C be an ω-cocomplete class of R-modules that is
closed under extensions and assume the E∞-terms of the spectral sequence
induced by an originally stable exact couple are in C. Then, for every
n ∈ Z,

1. if ∩sφ(p,q)+sa ∈ C then Ln ∈ C, where (p, q) · â = n, and

2. ker(Ln → Ln) ∈ C.

Proof. Let D1
u,v be the lowest stable term of the n-th D1-column.

1. We show that for every s ∈ N, we have φu,v+sa ∈ C:

• For s = 0 we know that ∩sφu,v+sa = φu,v. Therefore, φu,v ∈ C.

• Assume φu,v+(s−1)a ∈ C. By the following diagram from Remark 3.2.2
on page 65

φu,v+(s−1)a φu,v+sa

φu,v+sa

φu,v+(s−1)a

E∞
u,v+b+sa

E∞
u,v+b+sa ∈ C implies

φu,v+sa

φu,v+(s−1)a

∈ C and by induction assumption

we obtain φu,v+sa ∈ C.

Since Ln = colims φu,v+sa ∈ C, we are done.

2. We show that for every s ≥ 1, we have φu,v+sa ∈ C:
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• For s = 1 we know that ∩sφ
u,v+sa = φu,v = 0. Therefore, by the

following diagram from part 2 of Remark 3.2.2 on page 65

E∞
u,v+b

0 = φu,v φu,v+a
φu,v+a

φu,v

E∞
u,v+b

∈ C implies
φu,v+a

φu,v
= φu,v+a ∈ C.

• Assume φu,v+(s−1)a ∈ C. By the following diagram from part 2 of
Remark 3.2.2 on page 65

E∞
u,v+b+sa

φu,v+(s−1)a φu,v+sa
φu,v+sa

φu,v+(s−1)a

E∞
u,v+b+sa ∈ C implies

φu,v+sa

φu,v+(s−1)a
∈ C and by induction assumption

we obtain φu,v+sa ∈ C.

Since ker(Ln → Ln) = colims φ
u,v+sa ∈ C, we are done.

Corollary 4.3.3. Let C be an ω-cocomplete class of R-modules closed un-
der extensions and the E∞-terms of the spectral sequence induced by an
originally vanishing exact couple be in C. Then L∗ ∈ C.
Corollary 4.3.4. Let C be a class of R-modules closed under extensions
and the E∞-terms of the spectral sequence induced by an originally van-
ishing and eventually stable exact couple be in C. Then L∗ ∈ C.
Example 4.3.5. Let C be an ω-cocomplete class of Abelian groups closed
under extensions. In a tower of cofibrations, if the homology groups of the
cofibers are in C, then the homology groups of the colimit of the tower are
also in C: See Example 3.2.4 on page 68.

Example 4.3.6. In the setting of Example 3.2.5 on page 70, for a fibration
E → B with fiber F , whereB is a finite CW-complex, the Leray-Serre spec-
tral sequence is induced by an originally vanishing and eventually stable
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exact couple. For such a fibration, Serre picked a class of Abelian groups CS
that, in addition to closure under isomorphism, sub-object, quotient and
extension, is also closed under tensor product, Tor and integral homology;
i.e., for every A,B ∈ CS , A⊗B, Tor(A,B) and H∗(A;Z) are in CS . We call
this class of Abelian groups a Serre class. The Universal Coefficient The-
orem ensures that if for every (p, q) ∈ N×N, we have Hp(B),Hq(F ) ∈ CS ,
then E2

(p,q) ∈ CS , because

E2
(p,q) = Hp(B; Hq(F )) ∼= Hp(B)⊗ Hq(F )⊕ Tor(Hp−1(B),Hq(F )).

In [29], Serre showed that if, for every (p, q) ∈ N× N, we have Hp(B) and
Hq(F ) ∈ CS , then H∗(E) is also in CS .

Here, if we take C to be only a class of Abelian groups that is closed
under isomorphism, sub-object, quotient and extension and not neces-
sarily closed under tensor, Tor and integral homology, and also E2

(p,q) =

Hp(B; Hq(F )) ∈ C for every p, q ∈ N, then by Corollary 4.3.4, H∗(E) ∈ C.
Closure under tensor, Tor and integral homology are dictated only because
of the special description of the second page of the Leray-Serre spectral se-
quence.

Example 4.3.7. In the setting of the Grothendieck spectral sequence in
Example 3.2.11 on page 77, let C be a class of Abelian groups closed under

extensions and A G−→ B F−→ Ab be covariant additive functors. Assume
that F is right exact and that GP is left F -acyclic for every projective
object P in A. By Corollary 4.3.4 on page 101, if for every p, q ∈ Z and
A ∈ A we have (LpF )(LqG)A ∈ C, then for every n ∈ N, Ln(FG)A ∈ C.

As a special case, if F = A⊗R −, then every projective R-module P is
left F -acyclic because TorRp (A,P ) = {0}, for every p ≥ 1. So we have the
following

• (Change of Basis) Let f : R → S be a ring homomorphism. Then
there is a spectral sequence

E
(p,q)
2 = TorSp (Tor

R
q (A, S), B) ⇒ TorRp+q(A,B)

for every S-module A and R-module B.

By Corollary 4.3.4, if for every (p, q) ∈ Z × Z and every S-module A and
R-module B, we have TorSp (Tor

R
q (A, S), B) ∈ C, then TorRp+q(A,B) ∈ C.

Corollary 4.3.8. Let C be a class of R-modules closed under extensions
and {D1

∗,∗, E
1
∗,∗} be an originally vanishing and eventually stable exact cou-
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ple. If for every (p, q) ∈ Z × Z there is some r ≤ ∞ such that Er
(p,q) ∈ C,

then

1. the dashed arrow

Ln Et
u,v+b

Ln

im(i1u,v−a)

∼= E∞
u,v+b

is a C-monomorphism for any 2 ≤ t, where D1
u,v is a stable term and

(u, v) · â = n.

2. Ln → Es
u,v+b

is a C-isomorphism for large enough s, where D1
u,v is a

stable term and (u, v) · â = n.

Proof. First remember from Remark 3.2.2 on page 64 that every eventu-
ally vanishing exact couple converges to its universal augmentation. By
Corollary 4.3.4 on page 101, we know that Ln ∈ C. Since Ln

∼= D1
u,v we

also have a morphism

Ln ։
Ln

im(i1u,v−a)
= ǫu,v ∼= E∞

u,v+b
֌ Et

u,v+b

for every 2 ≤ t; the inclusion is given by the fact that the exact couple is
downward stable.

1. It follows from Example 4.2.4 on page 99.

2. Let r be the integer that Er
u,v+b

∈ C. Then, by Proposition 4.2.2 on
page 98, for every s that r ≤ s ≤ ∞, we have Es

u,v+b
∈ C. By part 1

and Example 4.2.4 on page 99 we are done.

Example 4.3.9. Let C be a class of Abelian groups closed under exten-
sions.

1. In the setting of the Leray-Serre spectral sequence in Example 3.2.5
on page 70, for a fibration E → B with fiber F and finite CW-
complex B, if for every (p, q) we have Hp(B; Hq(F )) ∈ C, then
Hp+q(E) → Hp+q(B) is a C-isomorphism. If C is a Serre class CS
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then we can restate the last sentence as: if for every (p, q), Hp(B)
and Hq(F ) are in CS , then Hp+q(E) → Hp+q(B) is a CS-isomorphism:
See Example 4.3.6 on page 101.

2. In the setting of the Atiyah-Hirzebruch-Whitehead spectral sequence
in Example 3.2.6 on page 71, for a finite CW-complex X, if for every
(p, q) we have Hp(X;hq(pt)) ∈ C, then hp+q(X) → Hp+q(X;h0(pt))
is a C-isomorphism. Note that the finiteness of X guarantees that
the corresponding exact couple is eventually stable. If C is a Serre
class CS then we can restate the last sentence as: if for every (p, q),
Hp(X) and hq(pt) are in CS , then hp+q(X) → Hp+q(X;h0(pt)) is a
CS-isomorphism: See Example 4.3.6 on page 101.

4.4 Compatibility with Eventually Stable or

Vanishing Exact Couples

In this section, we consider the spectral sequence induced by an eventually
stable or vanishing exact couple and we prove the analogous results we had
in the previous section for these exact couples too.

Definition 4.4.1. An ω-complete class of R-modules is a class of R-
modules C that is also closed under the limit of ω-length inverse towers
of R-modules; i.e., if {An}n∈N is an inverse tower of R-modules such that
for every n ∈ N we have An ∈ C, then limnAn ∈ C.

Remark 4.4.2. The cardinality of the product of ω-indexed towers of ob-
jects is bounded above by ℵ1: See Theorem 3.8 in [17]. So an ω-complete
class of modules closed under extension is not bigger than the class con-
taining all limits of towers indexed by a category whose objects are of
cardinality ℵ1.

Look at the E∞-Distribution Theorem 2.3.13 on page 35 for notations.

Proposition 4.4.3. Let C be an ω-complete class of R-modules that is
closed under extensions and assume the E∞-terms of the spectral sequence
induced by an eventually stable exact couple are in C. Then, for every
n ∈ Z

1. if lims φ(p,q)+sa ∈ C, where (p, q) · â = n, then Ln ∈ C.

2. ker(Ln → Ln) ∈ C.
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Proof. Let D1
(u,v) be the highest stable term of the n-th D1-column.

1. We show that for every s ≥ 1, we have
Ln

φ(u,v)−sa

∈ C:

• Since Ln = φ(u,v), for s = 1 using the following diagram

φ(u,v)

φ(u,v)−a

∼= Ln

φ(u,v)−a

0

E∞
(u,v)+b

E∞
(u,v)+b

∈ C implies
Ln

φ(u,v)−a

∈ C.

• Assume
Ln

φ(u,v)−(s−1)a

∈ C. By the following part of the diagram on

page 196

φ(u,v)−(s−1)a

φ(u,v)−sa

Ln

φ(u,v)−sa

Ln

φ(u,v)−(s−1)a

E∞
(u,v)+b−sa

E∞
(u,v)+b−sa ∈ C implies

φ(u,v)−(s−1)a

φ(u,v)−sa

∈ C and by induction assumption

we obtain
Ln

φ(u,v)−sa

∈ C.

Therefore, we have lims

Ln

φ(u,v)−sa

∈ C.

If we take the inverse limit of the short exact sequence of towers

{φ(u,v)−sa}s≥1 ֌ Ln ։

{

Ln

φ(u,v)−sa

}

s≥1

we obtain the following exact sequence
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lims φ(u,v)−sa Ln lims

Ln

φ(u,v)−sa
lim1

s φ(u,v)−sa.

Ln

lims φ(u,v)−sa

Since lims

Ln

φ(u,v)−sa

∈ C, we obtain
Ln

lims φ(u,v)−sa

∈ C. Using the assump-

tion of this part, we have lims φ(u,v)−sa ∈ C. Therefore, we obtain Ln ∈ C.

2. We show that for every s ≥ 1, we have
ker(Ln → Ln)

φu,v−sa
∈ C:

• Let s = 1. We know that
ker(Ln → Ln)

φu,v−a
=

φu,v

φu,v−a
. By the E∞-

Distribution Theorem, we have

E∞
(u,v)−a−c

։
Z∞

(u,v)−a−c

im(j1(u,v)−a−b−c
)
֋

ker(Ln → Ln)

φu,v−a
.

Since E∞
(u,v)−a−c

∈ C, we obtain
Z∞

(u,v)−a−c

im(j1(u,v)−a−b−c
)

∈ C and hence

ker(Ln → Ln)

φu,v−a
∈ C.

• Assume
ker(Ln → Ln)

φu,v−sa
∈ C. By the following part of the diagram on

page 196

E∞
(u,v)−(s+1)a−c

Z∞
(u,v)−(s+1)a−c

im(j1(u,v)−(s+1)a−b−c
)

φu,v−sa

φu,v−(s+1)a

ker(Ln → Ln)

φu,v−(s+1)a

ker(Ln → Ln)

φu,v−sa

E∞
(u,v)−(s+1)a−c

∈ C implies
Z∞

(u,v)−(s+1)a−c

im(j1(u,v)−(s+1)a−b−c
)
∈ C and hence we

have
φu,v−sa

φu,v−(s+1)a
∈ C. By induction hypothesis,

ker(Ln → Ln)

φu,v−(s+1)a
∈ C.

Since ker(Ln → Ln) ∼= lims

ker(Ln → Ln)

φu,v−sa
, we obtain ker(Ln → Ln) ∈ C.
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Corollary 4.4.4. Let C be an ω-complete class of R-modules closed un-
der extensions and the E∞-terms of the spectral sequence induced by an
eventually vanishing exact couple be in C. Then L∗ ∈ C.

Corollary 4.4.5. Let C be a class of R-modules closed under extensions
and the E∞-terms of the spectral sequence induced by an eventually van-
ishing and originally stable exact couple be in C. Then L∗ ∈ C.

Example 4.4.6. Let C be an ω-complete class of Abelian groups closed
under extensions. In a tower of fibrations as in Example 3.2.10 on page
75, if for every k ∈ N the k-th homotopy groups of the fibers are in C then
limn πk(Xn) ∈ C. By the following short exact sequence from [9]

lim1
nπk+1(Xn) ֌ πk(lim

n
Xn) ։ lim

n
πk(Xn)

if lim1
nπk+1(Xn) < in < CC, then πk(limnXn) is also in C.

Example 4.4.7. In the setting of the Grothendieck spectral sequence in
Example 3.2.11 on page 77, let C be a class of Abelian groups closed under

extensions and A G−→ B F−→ Ab be covariant additive functors. Assume
that F is left exact and that GE is right F -acyclic for every injective
object E in A. By Corollary 4.4.5, if for every p, q ∈ Z and A ∈ A we have
(RpF )(RqG)A ∈ C, then for every n ∈ N, Rn(FG)A ∈ C.

As a special case, if F = homR(A,−), then every injective R-module E
is right F -acyclic because ExtpR(A,E) = {0}, for every p ≥ 1. So we have
the following

• (Change of Basis) Let f : R → S be a ring homomorphism. Then
there is a spectral sequence

E
(p,q)
2 = ExtpS(A,Ext

q
R(S,B)) ⇒ Extp+q

R (A,B)

for every S-module A and R-module B.

By Corollary 4.4.5 on page 107, if for every (p, q) ∈ Z × Z and every
S-module A and R-module B, we have ExtpS(A,Ext

q
R(S,B)) ∈ C, then

Extp+q
R (A,B) ∈ C.

Corollary 4.4.8. Let C be a class of R-modules closed under extensions
and also (D1

∗,∗, E
1
∗,∗) be an eventually vanishing and originally stable exact

couple. If for every (p, q) ∈ Z×Z there is some r ≤ ∞ such that Er
(p,q) ∈ C,

then
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1. Et
(u,v)−c

→ Ln is a C-epimorphism for every 2 ≤ t, where D1
(u,v) is

the stable term and (u, v) · â = n.

2. Es
(u,v)−c

→ Ln is a C-isomorphism for large enough s, where D1
(u,v) is

a stable term and (u, v) · â = n.

Proof. First remember from Remark 3.2.8 on page 72 and Remark 3.2.2 on
page 64 that every eventually vanishing and originally stable exact couple
converges to its universal coaugmentation. By Corollary 4.4.5 on page 107,
we know that Ln ∈ C. Since Ln ∼= D1

(u,v) we also have a morphism

Et
(u,v)−c

։ E∞
(u,v)−c

∼= ǫu,v = ker(i1(u,v)) ֌ D1
(u,v)

for every 2 ≤ t. The rest of the proof is similar to the proof of Corollary
4.3.8 on page 102.

Example 4.4.9. Let C be a class of Abelian groups and f : R → S be a
ring homomorphism. If for every (p, q) ∈ Z×Z and every S-module A and
R-module B, we have ExtpS(A,Ext

q
R(S,B)) ∈ C, then, by Example 4.4.7

on page 107, homS(A,Ext
q
R(S,B)) → Extp+q

R (A,B) is a C-isomorphism.

4.5 Compatibility with Matching Originally

Stable or Vanishing ECs

In this section, we generalize the task of “staying in a class of R-modules”
to the case that we have an ascending filtration of the first and last term
of a tower of bigraded R-modules, indexed over an arbitrary limit ordinal,
where we can match originally stable or vanishing exact couples to this
tower. We need the following definition.

Definition 4.5.1. An ordinal-cocomplete class of R-modules is a class
C of R-modules that is also closed under the colimit of directed towers of
R-modules; i.e., for any limit ordinal λ, if {Aη}η<λ is a directed tower of R-
modules such that for every η < λ we have Aη ∈ C, then colimη<λAη ∈ C.

Assume we can match originally stable exact couples to the directed
tower of bigraded modules

H1 → H2 → · · · → Hp → Hp+1 → · · · → Hη → Hη+1 → · · · → Hλ = H,
(4.2)
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where λ is a limit ordinal: See Definition 3.3.1 on page 80. Also, look at
Remark 3.3.2 on page 80.

Proposition 4.5.2. Let C be an ordinal-cocomplete class of R-modules
closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally stable exact couples, are in C, and

2. for every limit ordinal η0 ≤ λ, coker(ρη0) ∈ C,

then Hλ ∈ C.

Proof. Fix n ∈ N. We show that for every η ≤ λ we have Fη(n) ∈ C:
For an arbitrary η ≤ λ, assume Fβ(n) ∈ C, for every β < η, and

consider the following two situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., for some β < η we have η = β+1. Let D1

(u,v) be the lowest stable

D1-term of the n-th D1-column of the intermediate originally stable
exact couple corresponding to the limit ordinal η0. Using the diagram
on page 199, we can see that E∞

(u,v)+ra+b
∈ C implies ǫ(u,v)+ra ∈ C and

hence
Fη(n)

Fβ(n)
∈ C. By the following short exact sequence

Fβ(n) ֌ Fη(n) ։
Fη(n)

Fβ(n)

and the induction assumption Fβ(n) ∈ C, we conclude Fη(n) ∈ C.

• η is a limit ordinal: By induction assumption colimβ<η Fβ(n) ∈ C.
From the epimorphism coker(ρη0(n)) ։

Fη(n)

colimβ<η Fβ(n)
on the dia-

gram on page 199 we obtain
Fη(n)

colimβ<η Fβ(n)
∈ C. From the short

exact sequence

colimβ<η Fβ(n) ֌ Fη(n) ։
Fη(n)

colimβ<η Fβ(n)
,

and colimβ<η Fβ(n) ∈ C we see that Fη(n) ∈ C.
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Therefore, for every η ≤ λ we have Fη(n) ∈ C. In particular, Hλ(n) =
Fλ(n) ∈ C.

Look at Definition 3.3.6 on page 83.

Corollary 4.5.3. Assume we can match originally vanishing exact couples
to the direct tower (4.2) and let C be an ordinal-cocomplete class of R-
modules closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally vanishing exact couples, are in C, and

2. for every limit ordinal η0 ≤ λ, coker(ρη0) ∈ C,

then Hλ ∈ C.

Look at Definition 3.3.6 on page 83 and Remark 3.3.7 on page 83.

Proposition 4.5.4. Assume we can match originally stable exact couples
to the directed tower (4.2) and let C be an ordinal-cocomplete class of R-
modules closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally stable exact couples, are in C, and

2. for every limit ordinal η0 ≤ λ, ker(ρη0) ∈ C,

then ker(H1 → Hλ) ∈ C.

Proof. Fix n ∈ N. We show that for every η ≤ λ we have F η(n) ∈ C:
For an arbitrary η ≤ λ, assume F β(n) ∈ C, for every β < η, and

consider the following two situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., for some β < η we have η = β+1. Let D1

(u,v) be the lowest stable

D1-term of the n-th D1-column of the intermediate originally stable
exact couple corresponding to the limit ordinal η0. Using the diagram
on page 199, we can see that E∞

(u,v)+ra−c
∈ C implies ǫu,v+ra ∈ C and

hence
F η(n)

F β(n)
∈ C. By the following short exact sequence

F β(n) ֌ F η(n) ։
F η(n)

F β(n)

and the induction assumption F β(n) ∈ C, we conclude F η(n) ∈ C.
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• η is a limit ordinal: By induction assumption colimβ<η F
β(n) ∈ C.

From the monomorphism
F η(n)

colimβ<η F β(n)
֌ ker(ρη0(n)) on the di-

agram on page 199 we obtain
F η(n)

colimβ<η F β(n)
∈ C. From the short

exact sequence

colimβ<η F
β(n) ֌ F η(n) ։

F η(n)

colimβ<η F β(n)
,

and colimβ<η F
β(n) ∈ C we see that F η(n) ∈ C.

Therefore, for every η ≤ λ we have F η(n) ∈ C. In particular, ker(H1(n) →
Hλ(n)) = F λ(n) ∈ C.
Corollary 4.5.5. Assume we can match originally vanishing exact couples
to the directed tower (4.2) and let C be an ordinal-cocomplete class of R-
modules closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally vanishing exact couples, are in C, and

2. for every limit ordinal η0 ≤ λ, ker(ρη0) ∈ C,

then ker(H1 → Hλ) ∈ C.
Example 4.5.6. Look at the Example 3.3.8 on page 84 and let C be
an ordinal-cocomplete class of Abelian groups closed under extensions.
In a transfinite tower of cofibrations indexed over a limit ordinal λ, if
the homology groups of the cofibers are in C, then the homology groups
of the colimit of the tower are also in C; note that here the clutching
homomorphisms are isomorphisms. In particular, for a connected space
X and a given cofibration f : A → B of CW-complexes, we obtain a
transfinite tower of cofibrations, indexed over a limit ordinal λ, that yields
the homotopy localization of X, LfX. If the homology groups of the
cofibers of this tower are in a class C, then the homology groups of LfX
are in C: See Appendix B.

4.6 Compatibility with Matching Eventually

Stable or Vanishing ECs

In this section, we generalize the task of “staying in a class of R-modules”
to the case that we have a descending filtration of a tower of bigraded
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R-modules, indexed over an arbitrary limit ordinal, where we can match
eventually stable or vanishing exact couples to it. We need the following
definition.

Definition 4.6.1. An ordinal-complete class of R-modules is a class of
R-modules C that is also closed under the limit of inverse towers of R-
modules; i.e., for any limit ordinal λ, if {Aη}η<λ is an inverse tower of
R-modules such that for every η < λ we have Aη ∈ C, then limη<λAη ∈ C.

Remark 4.6.2. The cardinality of the product of λ-indexed towers of
objects is bounded above by ℵk+1, where cardinality of λ is ℵk: See The-
orem 3.8 in [17]. So an ordinal-complete class closed under extension is
not bigger than the class containing all limits of towers indexed by a cat-
egory whose objects are of cardinality ℵk+1, when we pick an ordinal of
cardinality ℵk.

Assume we can match eventually stable exact couples to the inverse
tower of bigraded modules

H = Hλ → · · · → Hη+1 → Hη → · · · → Hp+1 → Hp → · · · → H1, (4.3)

where λ is a limit ordinal: See Definition 3.4.1 on page 86. Also, look at
Remark 3.4.2 on page 87.

Proposition 4.6.3. Consider an ordinal-complete class C of R-modules
closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
eventually stable exact couple, are in C,

2. for every limit ordinal η0 ≤ λ, coker(ρη0) ∈ C, and

3. limη<λ Fη ∈ C,

then H1 ∈ C.

Proof. Fix n ∈ N. We show that for every η ≤ λ we have
H1(n)

Fη(n)
∈ C:

For an arbitrary η ≤ λ, assume
H1(n)

Fβ(n)
∈ C, for every β < η, and

consider the following two situations:
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• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., for some β < η we have η = β+1. LetD1

(u,v) be the highest stable

D1-term of the n-th D1-column of the intermediate eventually stable
exact couple corresponding to the limit ordinal η0. Using the diagram
on page 205, we can see that E∞

(u,v)−ra+b
∈ C implies ǫ(u,v)−ra ∈ C and

hence
Fβ(n)

Fη(n)
∈ C. By the following short exact sequence

Fβ(n)

Fη(n)
֌

H1(n)

Fη(n)
։

H1(n)

Fβ(n)

and the induction assumption
H1(n)

Fβ(n)
∈ C, we conclude

H1(n)

Fη(n)
∈ C.

• η is a limit ordinal: Look at the following part of the diagram on

page 205. The epimorphism coker(ρη0(n)) ։
limβ<η Fβ(n)

Fη(n)
shows

that
limβ<η Fβ(n)

Fη(n)
∈ C. The following part of the diagram on page

205
limβ<η Fβ(n)

Fη(n)

H1(n)

Fη(n)
limβ<η

H1(n)

Fβ(n)

and limβ<η

H1(n)

Fβ(n)
∈ C show that

H1(n)

Fη(n)
∈ C.

Therefore, for every η ≤ λ we have
H1(n)

Fη(n)
∈ C, in particular,

H1(n)

Fλ(n)
∈ C.

Since Fλ(n) ⊆ limη<λ Fη(n), we have Fλ(n) ∈ C. From the following short
exact sequence

Fλ(n) ֌ H1(n) ։
H1(n)

Fλ(n)

we conclude that H1(n) ∈ C.

Look at Definition 3.4.14 on page 92.

Corollary 4.6.4. Assume we can match eventually vanishing exact couples
to the inverse tower (4.3) and let C be an ordinal-complete class of R-
modules closed under extensions. If
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1. the E∞-terms of all intermediate spectral sequences, induced by the
eventually vanishing exact couple, are in C,

2. for every limit ordinal η0 ≤ λ, coker(ρη0) ∈ C, and

3. limη<λ Fη ∈ C,

then H1 ∈ C.

Look at Definition 3.4.1 on page 86 and Remark 3.4.2 on page 87.

Proposition 4.6.5. Assume we can match eventually stable exact couples
to the inverse tower (4.3) and let C be an ordinal-complete class of R-
modules closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
eventually stable exact couples, are in C, and

2. for every limit ordinal η0 ≤ λ, ker(ρη0) ∈ C, and

3. limη<λ F
η ∈ C,

then ker(Hλ → H1) ∈ C.

Proof. Fix n ∈ N. We show that for every η ≤ λ we have

ker(Hλ(n) → H1(n))

F η(n)
∈ C :

For an arbitrary η ≤ λ, assume
ker(Hλ(n) → H1(n))

F β(n)
∈ C, for every

β < η, and consider the following two situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., for some β < η we have η = β + 1. Let D1

(u,v) be the lowest

nonzero D1-term of the n-th D1-column of the intermediate eventu-
ally stable exact couple corresponding to the limit ordinal η0. Using
the following part of the diagram on page 205

E∞
(u,v)−ra−c

Z∞
(u,v)−ra−c

im(j1(u,v)−ra−b−c
) ǫu,v−ra

F β(n)

F η(n)



4.6 Compatibility with Matching Eventually Stable or Vanishing ECs 115

from E∞
(u,v)−ra−c

∈ C we conclude that
Z∞

(u,v)−ra−c

im(j1(u,v)−ra−b−c
)
∈ C and

hence ǫu,v−ra ∈ C. Therefore,
F β(n)

F η(n)
∈ C. By the following short

exact sequence

F β(n)

F η(n)
֌

ker(Hλ(n) → H1(n))

F η(n)
։

ker(Hλ(n) → H1(n))

F β(n)

and the induction assumption
ker(Hλ(n) → H1(n))

F β(n)
∈ C, we conclude

that
ker(Hλ(n) → H1(n))

F η(n)
∈ C.

• η is a limit ordinal: Look at the diagram on page 205. By induc-

tion assumption, we have limβ<η

ker(Hλ(n) → H1(n))

F β(n)
∈ C. The

monomorphism
limβ<η F

β(n)

F η(n)
֌ ker(ρη0(n)) shows that we must

have
limβ<η F

β(n)

F η(n)
∈ C. The following part of the diagram on page

205

limβ<η F
β(n)

F η(n)

ker(Hλ(n) → H1(n))

F η(n)
limβ<η

ker(Hλ(n) → H1(n))

F β(n)

shows that
ker(Hλ(n) → H1(n))

F η(n)
∈ C.

Therefore, for every η ≤ λ we have
ker(Hλ(n) → H1(n))

F η(n)
∈ C and, in

particular,
ker(Hλ(n) → H1(n))

F λ(n)
∈ C. Since limη<λ F

η(n) ∈ C and F λ(n) ⊆
limη<λ F

η, we have F λ(n) ∈ C. From the following short exact sequence

F λ(n) ֌ ker(Hλ(n) → H1(n)) ։
ker(Hλ(n) → H1(n))

F λ(n)

we obtain ker(Hλ(n) → H1(n)) ∈ C.

Look at Definition 3.4.14 on page 92.
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Proposition 4.6.6. Assume we can match eventually vanishing exact cou-
ples to the inverse tower (4.3) and let C be an ordinal-complete class of
R-modules closed under extensions. If

1. the E∞-terms of all intermediate spectral sequences, induced by the
eventually vanishing exact couples, are in C, and

2. for every limit ordinal η0 ≤ λ, ker(ρη0) ∈ C, and

3. limη<λ F
η ∈ C,

then ker(Hλ → H1) ∈ C.

Example 4.6.7. Look at Example 3.4.16 on page 93 and let C be an
ordinal-complete class of Abelian groups closed under extensions. In a
transfinite tower of fibrations, if for every n ∈ N, every integer k ≥ 1 and
every limit ordinal η0 < λ, we have

• lim1
β<η0

πn+k(Xβ) = 0, and

• the n-th homotopy groups of the fibers are in C,

then Proposition 4.6.6 on page 116 shows that limη<λ πn(Xη) is in C. If
lim1

η<λπn+1(Xη) is in C, by the following short exact sequence from [9]

lim1
η<λπn+1(Xη) ֌ πn(X) ։ lim

η<λ
πn(Xη),

where X is the homotopy inverse limit of the tower of fibrations, we see
that πn(X) is in C.



Chapter 5

Comparison Theorems
Modulo a Class of Modules

5.1 Introduction

In the third chapter, we explained that when we deal with a module filtered
over a limit ordinal, in lucky cases, we can use transfinite induction and
spectral sequence methods to carry some information through the filtration
stages. In the previous chapter, we carried the property of “being in a
class of modules” through the filtration stages of a filtered module as an
example.

In this chapter, we give another example in which we assume we have
two filtered objects H(1) and H(2) with (potentially) transfinite filtrations

F0(1) ⊆ · · · ⊆ Fp(1) ⊆ · · · ⊆ Fη(1) ⊆ Fη+1(1) ⊆ · · · ⊆ Fλ(1) = H(1)

and

F0(2) ⊆ · · · ⊆ Fp(2) ⊆ · · · ⊆ Fη(2) ⊆ Fη+1(2) ⊆ · · · ⊆ Fλ(2) = H(2)

such that for every η ≤ λ, there is a morphism from Fη(1) to Fη(2) and for
every η < λ, the morphism from Fη(1) to Fη(2) has certain properties. We
are interested in carrying this property also to the morphism from H(1)
to H(2). To this end, we use the convenient intermediate exact couples
matched to these filtrations. The idea of all of the proofs are coming from
the proofs in [26].

We state all our results modulo a class of modules closed under exten-

117
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sions. We will use the following generalized 5-Lemma whose proof can be
found in Appendix C. It is also stated for a class of Abelian groups in [19]
and [30].

Lemma 5.1.1. (5-Lemma mod C) Let C be a class of modules closed
under extensions and consider a commutative diagram with exact rows

A1
f1

h1

A2
f2

h2

A3
f3

h3

A4
f4

h4

A5

h5

B1 g1
B2 g2

B3 g3
B4 g4

B5.

1. If h2 and h4 are C-monomorphisms and h1 is a C-epimorphism, then
h3 is a C-monomorphism.

2. If h2 and h4 are C-epimorphisms and h5 is a C-monomorphism, then
h3 is C-epimorphism.

3. If h1, h2, h4 and h5 are C-isomorphisms, then so is h3.

Proof. See Appendix C.

5.2 Comparing Arbitrary Spectral Sequences

Let C be an ω-complete class of modules. Look at the E∞-Distribution
Theorem 2.3.13 on page 35 for the notations.

Proposition 5.2.1. Let ϕ : EC(1) → EC(2) be a morphism of exact couples
such that

1. ϕ∞ : E∞
−,−(1) → E∞

−,−(2), and

2. ϕ̄| : limr φr(1) → limr φr(2)

are C-monomorphisms. Then the induced homomorphism ϕ̄ : L∗(1) →
L∗(2) is a C-monomorphism.

Proof. Fix n ∈ Z and φ(u,v), where (u, v) · â = n. The first condition
and the E∞-Distribution Theorem imply that for every r ∈ N, the dashed
arrow in the following diagram is a C-monomorphism
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ker(ϕ∞
(u,v)−c−ra) E∞

(u,v)−c−ra(1)
ϕ∞

(u,v)−c−ra
E∞

(u,v)−c−ra(2)

ker(ϕ∞
(u,v)−c−ra)

φ(u,v)−ra(1)

φ(u,v)−(r+1)a(1)

ϕ∞

(u,v)−c−ra
| φ(u,v)−ra(2)

φ(u,v)−(r+1)a(2)
.

(5.1)

Claim 1. For every r ≥ 1, f r :
φ(u,v)(1)

φ(u,v)−ra(1)
→ φ(u,v)(2)

φ(u,v)−ra(2)
is a C-

monomorphism.

Proof. We proceed by induction on r. For r = 1 the claim holds by the
following diagram and hypothesis 1

ker(ϕ∞
(u,v)−c

) E∞
(u,v)−c

(1)
ϕ∞

(u,v)−c

E∞
(u,v)−c

(2)

ker(ϕ∞
(u,v)−c

)
φ(u,v)(1)

φ(u,v)−a(1)

f1=ϕ∞

(u,v)−c
| φ(u,v)(2)

φ(u,v)−a(2)
.

Assume the claim holds for r. Using diagram (5.1), in the following dia-
gram

φ(u,v)−ra(1)

φ(u,v)−(r+1)a(1)

ϕ∞

(u,v)−c−ra
| (5.1)

φ(u,v)(1)

φ(u,v)−(r+1)a(1)

fr+1

φ(u,v)(1)

φ(u,v)−ra(1)

fr Ind. Hyp.

φ(u,v)−ra(2)

φ(u,v)−(r+1)a(2)

φ(u,v)(2)

φ(u,v)−(r+1)a(2)

φ(u,v)(2)

φ(u,v)−ra(2)

induction hypothesis and 5-Lemma mod C imply that f r+1 is also a C-
monomorphism. ⋄

Claim 2. For every s ≥ 1, fs :
φ(u,v)+sa(1)

φ(u,v)(1)
→ φ(u,v)+sa(2)

φ(u,v)(2)
is a C-

monomorphism.

Proof. The proof is exactly the same as the proof of Claim 1. ⋄
If we take the direct limit of the following tower of C-monomorphisms
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φ(u,v)+a(1)

φ(u,v)(1)

f1 φ(u,v)+a(2)

φ(u,v)(2)

...
...

φ(u,v)+sa(1)

φ(u,v)(1)

fs φ(u,v)+sa(2)

φ(u,v)(2)

φ(u,v)+(s+1)a(1)

φ(u,v)(1)

fs+1 φ(u,v)+(s+1)a(2)

φ(u,v)(2)

...
...

we obtain
Ln(1)

φ(u,v)(1)
−→ Ln(2)

φ(u,v)(2)

with kernel colims ker(fs) ∈ C and hence it is a C-monomorphism. If we
take the inverse limit of the following tower of C-monomorphisms

...
...

Ln(1)

φ(u,v)−ra(1)

fr Ln(2)

φ(u,v)−ra(2)

Ln(1)

φ(u,v)−(r−1)a(1)

fr−1 Ln(2)

φ(u,v)−(r−1)a(2)

...
...

Ln(1)

φ(u,v)(1)

f1 Ln(2)

φ(u,v)(2)

we obtain

lim
r

Ln(1)

φ(u,v)−ra(1)

f−→ lim
r

Ln(2)

φ(u,v)−ra(2)
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with ker(f) = limr ker(f
r) ∈ C and hence a C-monomorphism. By 5-

Lemma mod C in Appendix C, in the following diagram

limr φ(u,v)−ra(1)

C-monoϕ̄n|

Ln(1)

ϕ̄n

limr

Ln(1)

φ(u,v)−ra(1)

fC-mono

lim1
rφ(u,v)−ra(1)

limr φ(u,v)−ra(2) Ln(2) limr

Ln(2)

φ(u,v)−ra(2)
lim1

rφ(u,v)−ra(2)

ϕ̄n is a C-monomorphism.

Here, we used the immediate relationship between the quotient of ad-
jacent filtration stages of the universal augmentation and the E∞-term.
Since the quotient of adjacent filtration stages of the universal coaugmen-
tation is not closely related to the E∞-term, we cannot say anything in
general about a comparison theorem for universal coaugmentations. But,
for the rest of this chapter we focus on special cases where these two are
closely related.

5.3 Comparing Convergent Spectral Se-

quences

We consider two cases of convergence to the universal augmentation and
the universal coaugmentation. Look at Definition 2.4.2 on page 41 and
definition 2.4.6 on page 42.

5.3.1 Comparing Spectral Sequences Convergent to
the Universal Augmentation

Let C be an ω-complete class of modules closed under extensions. Look at
the E∞-Distribution Theorem 2.3.13 on page 35 for the notations.

Proposition 5.3.1. Let ϕ : EC(1) → EC(2) be a morphism of exact couples
such that the induced spectral sequences are convergent to their universal
augmentations and

1. ϕ∞
−,− : E∞

−,−(1) → E∞
−,−(2) are C-epimorphisms, and
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2. limr φr(1) → limr φr(2) are C-epimorphisms, and

3. lim1
rφr(1) → lim1

rφr(2) is a C-monomorphism.

Then the induced homomorphism ϕ̄ : L∗(1) → L∗(2) is a C-epimorphism.

Proof. Fix n ∈ Z and φ(u,v), where (u, v) · â = n. The first condition
and 5-Lemma mod C imply that for every r ∈ Z, the dashed arrow in the
following diagram is a C-epimorphism

E∞
(u,v)+ra+b

(1)
ϕ∞

(u,v)+ra+b

E∞
(u,v)+ra+b

(2) coker(ϕ∞
(u,v)+ra+b

)

φ(u,v)+ra(1)

φ(u,v)+(r−1)a(1)

∼=

ϕ∞

(u,v)+ra+b
| φ(u,v)+ra(2)

φ(u,v)+(r−1)a(2)

∼=

coker(ϕ∞
(u,v)+ra+b

|) .

∼=

(5.2)

Claim 1. For every r ≥ 1, f r :
φ(u,v)(1)

φ(u,v)−ra(1)
→ φ(u,v)(2)

φ(u,v)−ra(2)
is a C-

epimorphism.

Proof. We proceed by induction on r. For r = 1 the claim holds by the
following diagram and hypothesis 1

E∞
(u,v)+b

(1)
ϕ∞

(u,v)+b

E∞
(u,v)+b

(2) coker(ϕ∞
(u,v)+b

)

φ(u,v)(1)

φ(u,v)−a(1)

∼=

f1=ϕ∞

(u,v)+b
| φ(u,v)(2)

φ(u,v)−a(2)

∼=

coker(ϕ∞
(u,v)+b

)

∼=

Assume the claim holds for r. Using diagram (5.2), in the following dia-
gram

φ(u,v)−ra(1)

φ(u,v)−(r+1)a(1)

ϕ∞

(u,v)−c−ra
| (5.2)

φ(u,v)(1)

φ(u,v)−(r+1)a(1)

fr+1

φ(u,v)(1)

φ(u,v)−ra(1)

fr Ind. Hyp.

φ(u,v)−ra(2)

φ(u,v)−(r+1)a(2)

φ(u,v)(2)

φ(u,v)−(r+1)a(2)

φ(u,v)(2)

φ(u,v)−ra(2)



5.3 Comparing Convergent Spectral Sequences 123

induction assumption and 5-Lemma mod C imply that f r+1 is also a C-
epimorphism. ⋄

Claim 2. For every s ≥ 1, fs :
φ(u,v)+sa(1)

φ(u,v)(1)
→ φ(u,v)+sa(2)

φ(u,v)(2)
is a C-

epimorphism.

Proof. The proof is exactly the same as the proof of Claim 1. ⋄
If we take the direct limit of C-epimorphisms

{

φ(u,v)+sa(1)

φ(u,v)(1)

fs−→ φ(u,v)+sa(2)

φ(u,v)(2)

}

s∈N

over s, we obtain
Ln(1)

φ(u,v)(1)
−→ Ln(2)

φ(u,v)(2)

with cokernel colims coker(fs) ∈ C and hence it is C-epimorphism. If we
take the inverse limit of the C-epimorphisms

{

Ln(1)

φ(u,v)−ra(1)

fr

−→ Ln(2)

φ(u,v)−ra(2)

}

r∈Z

over r, we obtain

lim
r

Ln(1)

φ(u,v)−ra(1)

f−→ lim
r

Ln(2)

φ(u,v)−ra(2)

with coker(f) a sub-object of limr coker(f
r) ∈ C and hence coker(f) ∈ C;

i.e., f is a C-epimorphism. By 5-Lemma mod C, in the following diagram

limr φ(u,v)−ra(1)

C-epiϕ̄n|

Ln(1)

ϕ̄n

limr

Ln(1)

φ(u,v)−ra(1)

C-epi f

lim1
rφ(u,v)−ra(1)

C-mono

limr φ(u,v)−ra(2) Ln(2) limr

Ln(2)

φ(u,v)−ra(2)
lim1

rφ(u,v)−ra(2)

ϕ̄n is a C-epimorphism.

Corollary 5.3.2. Let ϕ : C(1) → C(2) be a morphism of exact couples
such that the induced spectral sequences are convergent to their universal
augmentations and
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1. E∞
−,−(1) → E∞

−,−(2),

2. limr φr(1) → limr φr(2), and

3. lim1
rφr(1) → lim1

rφr(2)

are C-isomorphisms. Then their universal augmentations are C-isomorphic.

5.3.2 Comparing Spectral Sequences Convergent to
the Universal Coaugmentation

Let C be an ω-complete class of modules closed under extensions.

Proposition 5.3.3. Let ϕ : C(1) → C(2) be a morphism of exact couples
such that the induced spectral sequences are convergent to their universal
coaugmentations and E∞

−,−(1) → E∞
−,−(2) is C-(mono-,epi-)isomorphism.

Then the induced homomorphism ϕ̄ : L∗(1) → L∗(2) is a C-(mono-, epi-
)isomorphism.

Proof. The proof is similar to the proof of Proposition 5.3.1 on page 121.

5.4 Comparing Concentrated Spectral Se-

quences

We consider two cases of the universal augmentation and the universal
coaugmentation concentration. Look at Definition 2.4.13 on page 45.

5.4.1 Comparing Universal Augmentation Concen-
trated Spectral Sequences

Let C be an ω-complete class of modules closed under extensions. Look at
the E∞-Distribution Theorem 2.3.13 on page 35 for the notations.

Proposition 5.4.1. Let ϕ : EC(1) → EC(2) be a morphism of exact cou-
ples such that the induced spectral sequences are universal augmentation
concentrated and, for every (p, q) ∈ Z× Z, the following hold:

1. ϕ∞
(p,q) : E

∞
(p,q)(1) → E∞

(p,q)(2) and
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2. ϕ̄| : limr φr(1) → limr φr(2) are C-epimorphisms,

and

3. ϕ′
(p,q) : lim

1
r{ker(ir(p,q)+b+c−ra(1))} → lim1

r{ker(ir(p,q)+b+c−ra(2))} and

4. ϕ̄| : lim1
rφr(1) → lim1

rφr(2) are C-monomorphisms.

Then the induced homomorphism ϕ̄ : L∗(1) → L∗(2) is a C-epimorphism.

Proof. Fix n ∈ Z and φ(p,q), where (p, q) · â = n. By the E∞-Distribution
Theorem on page 35, in the following diagram, ϕ′

(p,q)| is a C-monomorphism

ker(ϕ′
(p,q)) lim1

r{ker(ir(p,q)+b+c−ra(1))}
ϕ′

(p,q)
lim1

r{ker(ir(p,q)+b+c−ra(2))}

ker(ϕ′
(p,q)|)

Z∞
(p,q)+b

(1)

im(j1(p,q)(1))

ϕ′

(p,q)
| Z∞

(p,q)+b
(2)

im(j1(p,q)(2))

Conditions 1 and 2 and 5-Lemma mod C imply that, for every s ∈ Z,
the dashed arrow in the following diagram of exact sequences is a C-
epimorphism

φ(u,v)+sa(1)

φ(u,v)+(s−1)a(1)
E∞

(u,v)+sa+b
(1)

C−epi

Z∞
(p,q)+b

(1)

im(j1(p,q)(1))

C−mono

φ(u,v)+sa(2)

φ(u,v)+(s−1)a(1)
E∞

(u,v)+sa+b
(2)

Z∞
(p,q)+b

(2)

im(j1(p,q)(2))
.

The rest of the proof is similar to the proof of Proposition 5.2.1 on page
118.

Corollary 5.4.2. Let ϕ : EC(1) → EC(2) be a morphism of exact couples
such that the induced spectral sequences are universal augmentation con-
centrated and, for every (p, q) ∈ Z× Z, the following homomorphisms are
C-isomorphisms:

1. E∞
(p,q)(1) → E∞

(p,q)(2),

2. limr φr(1) → limr φr(2),
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3. lim1
r{ker(ir(p,q)+b+c−ra(1))} → lim1

r{ker(ir(p,q)+b+c−ra(2))}, and

4. lim1
rφr(1) → lim1

rφr(2).

Then their universal augmentations are C-isomorphic.

5.4.2 Comparing Universal Coaugmentation Concen-
trated Spectral Sequences

Let C be an ω-complete and ω-cocomplete class of modules closed under
extensions. Look at the E∞-Distribution Theorem 2.3.13 on page 35 for
the notations.

Proposition 5.4.3. Let ϕ : EC(1) → EC(2) be a morphism of exact cou-
ples such that the induced spectral sequences are universal coaugmentation
concentrated and E∞

−,−(1) → E∞
−,−(2) is a C-monomorphism. Then the

induced homomorphism ϕ̄ : L∗(1) → L∗(2) is a C-monomorphism.

Proof. For i = 1, 2, let {φr(i)}r∈Z be the kernel filtration of L∗(i). In the
proof of Proposition 5.2.1 on page 118, if we replace φ(p,q) by φ

(p,q) and the
last diagram by the following diagram

Ln(1)
∼=

ϕ̄n

limr

Ln(1)

φu,v+ra(1)

f

Ln(2)
∼= limr

Ln(2)

φu,v+ra(2)

the proof is similar.

Proposition 5.4.4. Let ϕ : EC(1) → EC(2) be a morphism of exact cou-
ples such that the induced spectral sequences are universal coaugmentation
concentrated and, for every (p, q) ∈ Z× Z, the following hold:

1. ϕ∞
(p,q) : E

∞
(p,q)(1) → E∞

(p,q)(2) is a C-epimorphism, and

2. the morphism

ϕ′
(p,q) : lim

1
r{ker(ir(p,q)+b+c−ra(1))} → lim1

r{ker(ir(p,q)+b+c−ra(2))}

is a C-monomorphism.
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Then the induced homomorphism ϕ̄ : L∗(1) → L∗(2) is a C-epimorphism.

Proof. Fix n ∈ Z and φ(p,q), where (p, q) · â = n. By the diagram on page
45, conditions 1 and 2 and 5-Lemma mod C, for every s ∈ Z, the dashed
arrow in the following diagram of exact sequences is a C-epimorphism

φu,v+(s+1)a+b+c(1)
φu,v+sa+b+c(1)

E∞
(u,v)+sa+b

(1)

C−epi

lim1
r{ker(ir(u,v)+b+c−ra(1))}

C−mono

φu,v+(s+1)a+b+c(2)
φu,v+sa+b+c(1)

E∞
(u,v)+sa+b

(2) lim1
r{ker(ir(u,v)+b+c−ra(2))}.

(5.3)

Claim 1. For every r ≥ 1, f r :
φu,v+ra+b+c(1)

φu,v+b+c(1)
→ φu,v+ra+b+c(2)

φu,v+b+c(2)
is a

C-epimorphism.

Proof. We proceed by induction on r. For r = 1 the claim holds by the
following diagram and hypothesis 1

ker(ϕ∞
(u,v)+b

) E∞
(u,v)+b

(1)
ϕ∞

(u,v)+b

E∞
(u,v)+b

(2)

ker(ϕ∞
(u,v)+b

)
φu,v+a+b+c(1)

φu,v+b+c(1)

f1=ϕ∞

(u,v)+b
| φu,v+a+b+c(2)

φu,v+b+c(2)
.

Assume the claim holds for r. Using diagram (5.3), in the following dia-
gram

φu,v+ra+b+c(1)

φu,v+b+c(1)

ϕ∞

(u,v)+ra+b
| Ind. Hyp.

φu,v+(r+1)a+b+c(1)

φu,v+b+c(1)

fr+1

φu,v+(r+1)a+b+c(1)

φu,v+ra+b+c(1)

fr (5.3)

φu,v+ra+b+c(2)

φu,v+b+c(2)

φu,v+(r+1)a+b+c(2)

φu,v+b+c(2)

φu,v+(r+1)a+b+c(2)

φ(u,v)+ra+b+c(2)

induction hypothesis and 5-Lemma mod C imply that f r+1 is also a C-
epimorphism. ⋄

Claim 2. For every s ≥ 1, fs :
φu,v+b+c(1)

φu,v−sa+b+c(1)
→ φu,v+b+c(2)

φu,v−sa+b+c(2)
is a

C-epimorphism.

Proof. The proof is exactly the same as the proof of Claim 1. ⋄
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If we take the direct limit of the following tower of C-epimorphisms

φu,v+a+b+c(1)

φu,v+b+c(1)

f1 φu,v+a+b+c(2)

φu,v+b+c(2)

...
...

φu,v+sa+b+c(1)

φu,v+b+c(1)

fs φu,v+sa+b+c(2)

φu,v+b+c(2)

φu,v+(s+1)a+b+c(1)

φu,v+b+c(1)

fs+1 φu,v+(s+1)a+b+c(2)

φu,v+b+c(2)

...
...

we obtain
Ln+σ(1)

φu,v+b+c(1)
−→ Ln+σ(2)

φu,v+b+c(2)

with cokernel colims coker(fs) ∈ C and hence it is a C-epimorphism. If we
take the inverse limit of the following tower of C-epimorphisms

...
...

Ln+σ(1)

φu,v−(r+1)a+b+c(1)

fr+1 Ln+σ(2)

φu,v−(r+1)a+b+c(2)

Ln+σ(1)

φu,v−ra+b+c(1)

fr Ln+σ(2)

φu,v−ra+b+c(2)

...
...

Ln+σ(1)

φu,v+b+c(1)

f1 Ln+σ(2)

φu,v+b+c(2)
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we obtain

lim
r

Ln+σ(1)

φu,v−ra+b+c(1)

f−→ lim
r

Ln+σ(2)

φu,v−ra+b+c(2)

with coker(f) = limr coker(f
r) ∈ C and hence a C-epimorphism. By the

following diagram

Ln+σ(1)
∼=

ϕ̄n

limr

Ln+σ(1)

φu,v−ra+b+c(1)

fC-epi

Ln+σ(2)
∼=

limr

Ln+σ(2)

φu,v−ra+b+c(2)

ϕ̄n is a C-epimorphism.

Corollary 5.4.5. Let ϕ : EC(1) → EC(2) be a morphism of exact couples
such that the induced spectral sequences are universal coaugmentation con-
centrated and, for every (p, q) ∈ Z× Z, the following homomorphisms are
C-isomorphisms:

1. ϕ∞ : E∞
(p,q)(1) → E∞

(p,q)(2), and

2. lim1
r{ker(ir(p,q)+b+c−ra(1))} → lim1

r{ker(ir(p,q)+b+c−ra(2))}.

Then their universal coaugmentations are C-isomorphic

5.5 Comparing Originally Stable or Vanish-

ing Exact Couples

5.5.1 Comparing Originally Stable Exact Couples

Let C be an ω-cocomplete class of modules closed under extensions.

Proposition 5.5.1. Let ϕ : EC(1) → EC(2) be a morphism of originally
stable exact couples and E∞

−,−(1) → E∞
−,−(2) is a C-epimorphism. Then

the induced homomorphism ker(Ln+σ(1) → Ln+σ(1)) → ker(Ln+σ(2) →
Ln+σ(2)) is a C-epimorphism.

Proof. Fix n ∈ Z and let D1
(u,v)+b+c

is in the originally stable range of the

n + σ-th D1-column, where (u, v + b + c) · â = n + σ. For simplicity, we
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take D1
(u,v)+b+c

to be the lowest D1-term of the mentioned column. The
first condition and 5-Lemma mod C imply that for every r ∈ Z, the dashed
arrow in the following diagram is a C-epimorphism

E∞
(u,v)+ra+b

(1)
ϕ∞

(u,v)+ra+b

E∞
(u,v)+ra+b

(2) coker(ϕ∞
(u,v)+ra+b

)

φu,v+(r+1)a+b+c(1)
φu,v+ra+b+c(1)

ϕ∞

(u,v)+ra+b
|

φu,v+(r+1)a+b+c(2)
φu,v+ra+b+c(2)

coker(ϕ∞
(u,v)+ra+b

|) .
(5.4)

Claim 1. For every s ≥ 1, f s : φu,v+sa+b+c(1) → φu,v+sa+b+c(2) is a
C-epimorphism.

Proof. We proceed by induction on s. For s = 1 the claim holds by the
following diagram and hypothesis 1

E∞
(u,v)+b

(1)
ϕ∞

(u,v)+b

E∞
(u,v)+b

(2) coker(ϕ∞
(u,v)+b

)

φu,v+a+b+c(1)

φu,v+b+c(1)

f1=ϕ∞

(u,v)+a+b
|φu,v+a+b+c(2)

φu,v+b+c(2)
coker(ϕ∞

(u,v)+b
).

Note that by part 2 of Remark 3.2.2 on page 64, φu,v+b+c(i) = 0, for
i = 1, 2. Assume the claim holds for s. Using diagram (5.4), in the
following diagram

φu,v+sa+b+c(1)

fs Ind. Hyp.

φu,v+(s+1)a+b+c(1)

fs+1

φu,v+(s+1)a+b+c(1)

φu,v+sa+b+c(1)

(5.4)

φu,v+sa+b+c(2) φu,v+(s+1)a+b+c(2)
φu,v+(s+1)a+b+c(2)

φu,v+sa+b+c(2)

induction assumption and 5-Lemma mod C imply that f s+1 is also a C-
epimorphism. ⋄

If we take the direct limit of C-epimorphisms

{

φu,v+sa+b+c(1)
fs

−→ φu,v+sa+b+c(2)
}

s∈N
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over s, we obtain the following C-epimorphism

colims φ
u,v+sa+b+c(1) −→ colims φ

u,v+sa+b+c(2).

We are done by the following diagram:

ker(Ln+σ(1) → Ln+σ(1))
∼=

ϕ̄n

colims φ
u,v+sa+b+c(1)

C-epi

ker(Ln+σ(2) → Ln+σ(2))
∼=

colims φ
u,v+sa+b+c(2).

5.5.2 Comparing Originally Vanishing Exact Couples

Let C be an ω-complete class of modules closed under extensions. From
Remark 3.2.2 on page 64, we know that every originally vanishing exact
couple is convergent to it universal augmentation. Therefore, the results
in section 5.3.1 on “Comparing Spectral Sequences Convergent to the Uni-
versal Augmentations” can be stated about the spectral sequences induced
by originally vanishing exact couples as the following corollary shows.

Corollary 5.5.2. Let ϕ : EC(1) → EC(2) be a morphism of originally
vanishing exact couples and, for every (p, q) ∈ Z×Z, E∞

(p,q)(1) → E∞
(p,q)(2)

is a C-(mono-,epi-)isomorphism. Then L∗(1) → L∗(2) is C-(mono-,epi-
)isomorphism.

Compare this with Theorem 5.3. in [3] where Boardman says “No new
comparison theorem is needed for such spectral sequences, because Theorem
5.3 is entirely satisfactory :

Theorem.5.3. [3] Suppose given a morphism f of spectral sequences,
with components fr : (D1

∗,∗(1), E
1
∗,∗(1)) → (D1

∗,∗(2), E
1
∗,∗(2)), where [the

induced spectral sequence of] (D1
∗,∗(1), E

1
∗,∗(1)) converges strongly to G(1)

and (D1
∗,∗(2), E

1
∗,∗(2)) converges to G(2) (not necessarily strongly), together

with a compatible morphism f : G(1) → G(2) of filtered target groups.
If fm : Em

∗,∗(1) → Em
∗,∗(2) is an isomorphism for some m ≤ ∞, then

f : G(1) → G(2) is an isomorphism of filtered groups.”

Example 5.5.3. In the setting of Example 3.2.4 on page 68, if we have
two towers of cofibrations and the corresponding exact couples are EC(1)
and EC(2) and if for every (p, q) ∈ Z × Z, ϕ∞

(p,q) : E∞
(p,q)(1) → E∞

(p,q)(2)
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is an C-(mono-, epi-)isomorphism, then, for every n ∈ Z, the induced
homomorphism

ϕ̄n : hn(X(1)) → hn(X(2))

is an C-(mono-,epi-)isomorphism.

5.6 Comparing Eventually Stable or Van-

ishing Exact Couples

5.6.1 Comparing Eventually Stable Exact Couples

Let C be an ω-complete class of modules closed under extensions.

Proposition 5.6.1. Let ϕ : EC(1) → EC(2) be a morphism of eventually
stable exact couples and, for every (p, q) ∈ Z× Z, the following hold:

1. ϕ∞
(p,q) : E

∞
(p,q)(1) → E∞

(p,q)(2) and

2. ϕ̄| : limr φr(1) → limr φr(2) are C-epimorphisms, and

3. ϕ′
(p,q) : lim

1
r{ker(ir(p,q)+b+c−ra(1))} → lim1

r{ker(ir(p,q)+b+c−ra(2))} and

4. ϕ̄| : lim1
rφr(1) → lim1

rφr(2) are C-monomorphisms.

Then the induced homomorphism ϕ̄ : L∗(1) → L∗(2) is a C-epimorphism.

Proof. The proof is similar to the proof of Proposition 5.4.1 on page 124.

Proposition 5.6.2. Let ϕ : EC(1) → EC(2) be a morphism of eventually
stable exact couples and, for every (p, q) ∈ Z× Z,

1. ϕ∞
(p,q) : E

∞
(p,q)(1) → E∞

(p,q)(2),

2. ϕ̄| : limr φr(1) → limr φr(2),

3. ϕ′
(p,q) : lim

1
r{ker(ir(p,q)+b+c−ra(1))} → lim1

r{ker(ir(p,q)+b+c−ra(2))}, and

4. ϕ̄| : lim1
rφr(1) → lim1

rφr(2)

are C-isomorphisms. Then their universal augmentations are C-isomorphic.
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Again, since the E∞-terms and the quotients of adjacent kernel filtra-
tions of the universal coaugmentation are not closely related we can not
provide any comparison between universal coaugmentations of two even-
tually stable exact couples in general. Look at the diagram on page 196.

5.6.2 Comparing Eventually Vanishing Exact Cou-
ples

From Remark 3.2.8 on page 72, we know that the spectral sequence induced
by an eventually vanishing exact couple is coaugmentation concentrated.
Therefore, the results in section 5.4.2 on “Comparing Coaugmentation
Concentrated Spectral Sequences” can be stated about the spectral se-
quences induced by eventually vanishing exact couples.

Example 5.6.3. Look at Example 3.2.10 on page 75. Let C be an ω-
complete class of Abelian groups closed under extensions and assume we
have two towers of fibrations {Xn(1), Fn(1)}n∈N and {Xn(2), Fn(2)}n∈N,
with X(1) and X(2) the (homotopy) inverse limit of them, a morphism be-
tween these two towers and the induced morphism between the correspond-
ing eventually vanishing exact couples. Assume, for every (p, q) ∈ Z × Z,
the following homomorphism are C-isomorphisms

1. E∞
(p,q)(1) → E∞

(p,q)(2),

2. lim1
nπk+1(Xn(1)) → lim1

nπk+1(Xn(2)), and

3. lim1
r ker(i

r
(p,q)+b+c−ra(1)) → lim1

r ker(i
r
(p,q)+b+c−ra(2)).

Then the homotopy groups of X(1) and X(2) are C-isomorphic.

Compare it with the “Mapping Lemma” in [6], p.261, or [12], p.325:

• Suppose f : {Xn(1)} → {Xn(2)} is a map of towers of pointed fibrations
and suppose there is a (finite) N ≥ 1 such that

f∗ : E
(p,q)
N (1) → E

(p,q)
N (2)

is an isomorphism for all (p, q). If Ep,p
r (1) = 0 for all p, then the map

limnXn(1) → limnXn(2) is a weak equivalence of connected spaces.
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5.7 Comparing Towers with Matched Even-

tually Vanishing Exact Couples

Let λ be a limit ordinal and C be an ordinal-complete class of modules
closed under extensions. Also, assume we have inverse towers of bigraded
modules

H = Hλ → · · · → Hη+1 → Hη → · · · → Hp → · · · → H1 (5.5)

and
H̄ = H̄

λ → · · · → H̄
η+1 → H̄

η → · · · → H̄
p → · · · → H̄

1
. (5.6)

Look at Definition 3.4.14 on page 92, Remark 3.4.15 on page 93 and the
diagram on page 208.

Lemma 5.7.1. Let ϕ be a morphism from the tower (5.5) to the tower
(5.6) where we can match eventually vanishing exact couples to them such
that

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally vanishing exact couples, are C-monomorphic, and

2. ϕ̂η0 : ker(ρη0(1)) → ker(ρ̄η0(2)), for every limit ordinal η0 ≤ λ, and

3. limη<λ F
η(1) → limη<λ F̄

λ(2)

are C-monomorphisms. Then ker(Hλ → H1) → ker(H̄
λ → H̄

1
) is a C-

monomorphism.

Proof. Fix n ∈ Z and let η = η0+r for a limit ordinal η0 and a non-negative
integer r. Then, the first condition and Remark 3.4.15 on page 93 imply
that the dashed arrow in the following diagram is a C-monomorphism

ker(ϕ∞
(u,v)−c−ra) E∞

(u,v)−c−ra

ϕ∞

(u,v)−c−ra
Ē∞

(u,v)−c−ra

ker(ϕ∞
(u,v)−c−ra|)

F η0+r−1(n)

F η0+r(n)

ϕ
∞,η0
(u,v)−c−ra

| F̄ η0+r−1(n)

F̄ η0+r(n)

(5.7)

where D1
(u,v) is the lowest nonzero D1-term of the n-th D1-column of the

eventually vanishing exact couple corresponding to the limit ordinal η0.
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Claim. For every η ≤ λ,
ker(Hλ(n) → H1(n))

F η(n)
→ ker(H̄

λ
(n) → H̄

1
(n))

F̄ η(n)
is

a C-monomorphism.

Proof. We proceed by induction. Let the claim hold for all

ker(Hλ(n) → H1(n))

F β(n)
→ ker(H̄

λ
(n) → H̄

1
(n))

F̄ β(n)
,

where β < η, and consider the following two situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., there is an ordinal β such that η = β+1. By the 5-Lemma mod
C and the diagram on page 208 the dashed arrow in the following
diagram is a C-monomorphism

F β(n)

F η(n)

(5.7) C−mono

ker(Hλ(n) → H1(n))

F η(n)

ker(Hλ(n) → H1(n))

F β(n)

Ind. Hypo.C−mono

F̄ β(n)

F̄ η(n)

ker(H̄
λ
(n) → H̄

1
(n))

F̄ η(n)

ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
.

• η is a limit ordinal: By induction hypothesis, for every β < η, there
exists a C-monomorphism

ker(Hλ(n) → H1(n))

F β(n)

fβ

−→ ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
.

If we take the inverse limit of these C-monomorphisms, we obtain a
C-monomorphism

lim
β<η

ker(Hλ(n) → H1(n))

F β(n)

f̄η

−→ lim
β<η

ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
.

By condition 2 and the following piece of the diagram on page 208

ker(ρη(n))
C-mono

ker(ρ̄η(n))

limβ<η F
β(n)

F η(n)

f̂η limβ<η F̄
β(n)

F̄ η(n)

we see that f̄ η is a C-monomorphism. By the 5-Lemma mod C, the
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dashed arrow in the following diagram is a C-monomorphism

limβ<η F
β(n)

F η(n)

f̂η

ker(Hλ(n) → H1(n))

F η(n)
limβ<η

ker(Hλ(n) → H1(n))

F β(n)

f̄η

lim1
β<ηF

β(n)

limβ<η F̄
β(n)

F̄ η(n)

ker(H̄
λ
(n) → H̄

1
(n))

F̄ η(n)
limβ<η

ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
lim1

β<ηF̄
β(n).

⋄

Therefore, for every η ≤ λ, ker(Hλ(n)→H1(n))
F η(n)

→ ker(H̄
λ
(n)→H̄

1
(n))

F̄ η(n)
is a C-

monomorphism. In particular, ker(Hλ(n)→H1(n))
Fλ(n)

→ ker(H̄
λ
(n)→H̄

1
(n))

F̄λ(n)
is a C-

monomorphism.

Using condition 3 and the following diagram

F λ(n) limη<λ F
η(n)

C−mono

F̄ λ(n) limη<λ F̄
η(n)

F λ(n) → F̄ λ(n) is a C-monomorphism. By the 5-Lemma mod C, the
dashed arrow in the following diagram is a C-monomorphism

F λ(n)

C−mono

ker(Hλ(n) → H1(n))
ker(Hλ(n) → H1(n))

F λ(n)

C−mono

F̄ λ(n) ker(H̄
λ
(n) → H̄

1
(n))

ker(H̄
λ
(n) → H̄

1
(n))

F̄ λ(n)
.

We will use the following lemma in the proof of the next proposition.
Look at Remark 3.4.15 on page 93 for notations.

Lemma 5.7.2. Assume we can match eventually vanishing exact couples
to the towers in (5.5) and, for every limit ordinal η0 < λ, the composite

Hλ
Qη0+ω

Hη0+ω
ρη0+ω

limβ<η0 H
β

is an epimorphism. If D1
(u,v) is the lowest nonzero D1-term of the n-th

D1-column of the eventually vanishing exact couple corresponding to η0,
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then for every r ∈ N

F η0+r−1(n)

F η0+r(n)
∼= ǫu,v−ra.

and hence
F η0+r−1(n)

F η0+r(n)
֌ E∞

(u,v)−ra−c
.

Proof. Note that the homomorphism ρη0+ω(n) ◦ Qη0+ω(n) is defined from
Hλ(n) to limβ<η0 H

β(n). By E∞-Comparison Theorem we have the follow-
ing diagram with exact rows and columns

coker(hu,v−ra) ǫu,v−ra
F η0+r−1(n)

F η0+r(n)

coker(ρη0+ω(n) ◦Qη0+ω(n)|) φu,v−(r−1)a F η0+r−1(n)
ρη0+ω(n)◦Qη0+ω(n)|

coker(ρη0+ω(n) ◦Qη0+ω(n)|)
hu,v−ra

φu,v−ra F η0+r(n)
ρη0+ω(n)◦Qη0+ω(n)|

If ρη0+ω(n) ◦Qη0+ω(n) is an epimorphism, then coker(hu,v−ra) = 0 and we
are done.

Proposition 5.7.3. Let ϕ be a morphism from the tower (5.5) to the tower
(5.6) where we can match eventually vanishing exact couples to them such
that for every limit ordinal

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally vanishing exact couples, are C-isomorphic, and

2. for every limit ordinal η0 ≤ λ, lim1
β<η0

F β → lim1
β<η0

F̄ β is a C-
isomorphism and ρη0 and ρ̄η0 are isomorphisms,

3. for every limit ordinal η0 < λ, Qη0+ω and Q̄η0+ω are epimorphisms,
and

4. limη<λ F
η → limη<λ F̄

η is a C-isomorphism.

Then ker(Hλ → H1) and ker(H̄
λ → H̄

1
) are C-isomorphic.
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Proof. Fix n ∈ Z and assume that η = η0 + r < λ, for a limit ordinal
η0 < λ and a non-negative integer r. Then, the first two conditions,
Remark 3.4.15 on page 93 and 5-Lemma mod C imply that the dashed
arrow in the following diagram is a C-isomorphism

F η0+r−1(n)

F η0+r(n)
E∞

(u,v)−c−ra

C−iso

lim1
r ker(i

r,η0
(u,v)−ra

)

C−iso

F̄ η0+r−1(n)

F̄ η0+r(n)
Ē∞

(u,v)−c−ra lim1
r ker(̄i

r,η0
(u,v)−ra

)

(5.8)

where D1
(u,v) is the lowest nonzero D1-term of the n-th D1-column of the

eventually vanishing exact couple corresponding to the limit ordinal η0.

Claim. For every η ≤ λ,
ker(Hλ(n) → H1(n))

F η(n)
→ ker(H̄

λ
(n) → H̄

1
(n))

F̄ η(n)
is

a C-isomorphism.

Proof. We proceed by induction. Let the claim hold for all

ker(Hλ(n) → H1(n))

F β(n)
→ ker(H̄

λ
(n) → H̄

1
(n))

F̄ β(n)
,

where β < η, and consider the following situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., there is an ordinal β such that η = β+1. By the 5-Lemma mod
C and the diagram on page 208 the dashed arrow in the following
diagram is a C-isomorphism

F β(n)

F η(n)

(5.8)

ker(Hλ(n) → H1(n))

F η(n)

ker(Hλ(n) → H1(n))

F β(n)

Ind. Hypo.

F̄ β(n)

F̄ η(n)

ker(H̄
λ
(n) → H̄

1
(n))

F̄ η(n)

ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
.

• η is a limit ordinal: In this case, by induction hypothesis there is a
C-isomorphism

ker(Hλ(n) → H1(n))

F β(n)

fβ

−→ ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
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for every β < η. If we take the inverse limit of these C-isomorphisms,
we get a C-isomorphism

lim
β<η

ker(Hλ(n) → H1(n))

F β(n)

f̄η

−→ lim
β<η

ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
.

By condition 2 and the following piece of the diagram on page 208

limβ<η F
β(n)

F η(n)
∼= limβ<η F̄

β(n)

F̄ η(n)
= 0.

By the 5-Lemma mod C, the dashed arrow in the following part of
the diagram on page 208 is a C-isomorphism

ker(Hλ(n) → H1(n))

F η(n)
limβ<η

ker(Hλ(n) → H1(n))

F β(n)

C−iso f̄η

lim1
β<ηF

β(n)

C−iso

ker(H̄
λ
(n) → H̄

1
(n))

F̄ η(n)
limβ<η

ker(H̄
λ
(n) → H̄

1
(n))

F̄ β(n)
lim1

β<ηF̄
β(n).

⋄

Therefore, for every η ≤ λ, ker(Hλ(n)→H1(n))
F η(n)

→ ker(H̄
λ
(n)→H̄

1
(n))

F̄ η(n)
is a C-

monomorphism. In particular, ker(Hλ(n)→H1(n))
Fλ(n)

→ ker(H̄
λ
(n)→H̄

1
(n))

F̄λ(n)
is a C-

monomorphism.

Using condition 4 and the following diagram

F λ(n)
∼= limη<λ F

η(n)

C−iso

F̄ λ(n)
∼=

limη<λ F̄
η(n)

F λ(n) → F̄ λ(n) is a C-isomorphism. By the 5-Lemma mod C, the dashed
arrow in the following diagram is a C-isomorphism

F λ(n)

C−iso

ker(Hλ(n) → H1(n))
ker(Hλ(n) → H1(n))

F λ(n)

C−iso

F̄ λ(n) ker(H̄
λ
(n) → H̄

1
(n))

ker(H̄
λ
(n) → H̄

1
(n))

F̄ λ(n)
.
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Example 5.7.4. Look at Example 3.4.16 on page 93 and assume we have
two transfinite towers of fibrations {Xη(i), Fη(i)}η<λ, for i = 1, 2 and a
morphism from one tower to another and C be an ordinal-complete class
of Abelian groups closed under extensions. Then we have the following:

1. If

(a) in every intermediate eventually vanishing exact couple the mor-
phism E∞

−,−(1) → E∞
−,−(2) is a C-monomorphism, and

(b) for every n ∈ N and every limit ordinal η0 ≤ λ,

lim1
β<η0

πn(Xβ(1)) = lim1
β<η0

πn(Xβ(2)) = 0,

then π∗(X(1)) → π∗(X(2)) is a C-monomorphism.

2. Assume in every intermediate eventually vanishing exact couple

(a) E∞
−,−(1) → E∞

−,−(2) is a C-isomorphism, and

(b) lim1
r ker(i

r
(u,v)−ra(1)) = lim1

r ker(i
r
(u,v)−ra(2)) = 0,

and for every n ∈ N, i = 1, 2 and every limit ordinal η0 ≤ λ

(c) lim1
β<η0

F β(1) → lim1
β<η0

F β(2) is a C-isomorphism,

(d) πn(X(i)) ։ πn(Xη0+ω(i)) is an epimorphism, and

(a) lim1
β<η0

πn(Xβ(i)) = 0.

Then π∗(X(1)) and π∗(X(2)) are C-isomorphic.

5.8 Comparing Towers with Matched Orig-

inally Vanishing Exact Couples

Let λ be a limit ordinal and C be an ordinal-complete class of modules
closed under extensions. Also, assume we have directed towers of bigraded
modules

H1 → · · · → Hp → · · · → Hη → Hη+1 → · · · → Hλ = H (5.9)

and

H̄1 → · · · → H̄p → · · · → H̄η → H̄η+1 → · · · → H̄λ = H̄. (5.10)
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Look at Definition 3.3.6 on page 83, Remark 3.3.7 on page 83 and the
diagram on page 202.

Proposition 5.8.1. Let ϕ be a morphism from the tower (5.9) to the
tower (5.10) where we can match originally vanishing exact couples to
these towers such that

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally vanishing exact couples, are C-epimorphic, and

2. ϕ̂η0 : coker(ρη0(1)) → coker(ρ̄η0(2)), for every limit ordinal η0 ≤ λ,
is a C-epimorphism.

Then H(1) → H̄(2) is a C-epimorphism.

Proof. Fix n ∈ Z and assume η = η0 + r for a limit ordinal η0 and a non-
negative integer r. Then, the first condition and Remark 3.3.7 on page 83
imply that the dashed arrow in the following diagram is a C-epimorphism

E∞
(u,v)+ra+b

ϕ∞

(u,v)+ra+b

Ē∞
(u,v)+ra+b

coker(ϕ∞
(u,v)+ra+b

)

Fη0+r(n)

Fη0+r−1(n)

ϕ
∞,η0
(u,v)+ra+b

| F̄η0+r(n)

F̄η0+r−1(n)
coker(ϕ∞

(u,v)+ra+b
|)

(5.11)

where D1
(u,v) is the highest nonzero D1-term of the n-th D1-column of the

originally vanishing exact couple corresponding to the limit ordinal η0.

Claim. For every η ≤ λ, Fη(n) → F̄η(n) is a C-epimorphism.

Proof. We proceed by induction. Assume the claim holds for all Fβ(n) →
F̄β(n), where β < η, and consider the following two situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., there is an ordinal β such that η = β + 1. By Five-Lemma mod
C and the diagram on page 202 the dashed arrow in the following
diagram is a C-epimorphism

Fβ(n)

C−epiInd. Hypo.

Fη(n)
Fη(n)

Fβ(n)

C−epi (5.11)

F̄β(n) F̄η(n)
F̄η(n)

F̄β(n)
.
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• η is a limit ordinal: In this case, by induction hypothesis, for every

β < η, there is a C-epimorphism Fβ(n)
fβ−→ F̄β(n). If we take the

direct limit of these C-epimorphisms, we obtain a C-epimorphism

colimβ<η Fβ(n)
f̄η−→ colimβ<η F̄β(n).

By condition 2 and the following piece of the diagram on page 202

coker(ρη(n))
C-epi

coker(ρ̄η(n))

Fη(n)

colimβ<η Fβ(n)

f̂η F̄η(n)

colimβ<η F̄β(n)

we see that f̄η is a C-epimorphism. By Five-Lemma mod C, the
dashed arrow in the following diagram is a C-epimorphism

colimβ<η Fβ(n)

f̄η C-epi

Fη(n)
Fη(n)

colimβ<η Fβ(n)

C-epi f̂η

colimβ<η F̄β(n) F̄η(n)
F̄η(n)

colimβ<η F̄β(n)
.

⋄

Therefore, for every η ≤ λ, Fη(n) → F̄η(n) is a C-epimorphism, in
particular, Hλ(n) → H̄λ(n) is a C-epimorphism.

We will use the following lemma in the proof of the next proposition.
Look at Remark 3.3.7 on page 83 for notations.

Lemma 5.8.2. Assume we can match originally vanishing exact couples
to the tower in (5.9) and, for every limit ordinal η0 < λ, the composite

colimβ<η0+ω Hβ

ρη0+ω

Hη0+ω

Qη0+ω

Hλ

is a monomorphism. If D1
(u,v) is the highest nonzero D1-term of the n-th

D1-column of the originally vanishing exact couple corresponding to η0,
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then for every r ∈ N

Fη0+r(n)

Fη0+r−1(n)
∼= E∞

(u,v)+b−ra.

Proof. The proof is similar to the proof of Lemma 5.7.2 on page 136 and
a result of part 1 of Proposition 2.3.16 on page 38 applied to the diagram
(3.13) on page 83.

Corollary 5.8.3. Let ϕ be a morphism from the tower (5.9) to the tower
(5.10) where we can match originally vanishing exact couples to them such
that

1. the E∞-terms of all intermediate spectral sequences, induced by the
originally vanishing exact couples, are C-isomorphic, and

2. for every limit ordinal η0 < λ, Qη0+ω and Q̄η0+ω are monomorphisms,
and

3. for every limit ordinal η0 ≤ λ, ρη0 and ρ̄η0 are isomorphisms.

Then H and H̄ are C-isomorphic.

Proof. Fix n ∈ Z and assume η = η0 + r for a limit ordinal η and a non-
negative integer r. Then, the first condition, Lemma 5.8.2 on page 142
and Remark 3.3.7 on page 83 imply that the dashed arrow in the following
diagram is a C-isomorphism

E∞
(u,v)+ra+b

ϕ∞

(u,v)+ra+b

Ē∞
(u,v)+ra+b

Fη0+r(n)

Fη0+r−1(n)

∼=

ϕ
∞,η0
(u,v)+ra+b

| F̄η0+r(n)

F̄η0+r−1(n)

∼=

(5.12)

where D1
(u,v) is the highest nonzero D1-term of the n-th D1-column of the

originally vanishing exact couple corresponding to the limit ordinal η0.

Claim. For every η ≤ λ, Fη(n) → F̄η(n) is a C-isomorphism.

Proof. We proceed by induction. Let the claim hold for all Fβ(n) → F̄β(n),
where β < η, and consider the following two situations:

• η is a non-limit ordinal: Therefore, η has an immediate predecessor;
i.e., there is an ordinal β such that η = β + 1. By the 5-Lemma
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mod C and the diagram on page 202 the arrow in the middle in the
following diagram is a C-epimorphism

Fβ(n)

C−isoInd. Hypo.

Fη(n)
Fη(n)

Fβ(n)

C−iso (5.12)

F̄β(n) F̄η(n)
F̄η(n)

F̄β(n)
.

• η is a limit ordinal: In this case, by induction hypothesis there is

a C-isomorphism Fβ(n)
fβ−→ F̄β(n), for every β < η. If we take the

direct limit of these C-isomorphisms, we obtain a C-isomorphism

colimβ<η Fβ(n)
f̄η−→ colimβ<η F̄β(n).

By condition 2 and the diagram on page 202 we have

Fη(n)

colimβ<η Fβ(n)
∼= F̄η(n)

colimβ<η F̄β(n)
= 0.

Therefore,

Fη(n) = colimβ<η Fβ(n)
f̄η

colimβ<η F̄β(n) = F̄η(n).

is a C-isomorphism. ⋄

Therefore, for every η ≤ λ, Fη(n) → F̄η(n) is a C-isomorphism, in
particular, Hλ → H̄λ is a C-isomorphism.

Example 5.8.4. Look at Example 3.3.8 on page 84 and assume we have
two transfinite towers of cofibrations {Xη(i), Fη(i)}η<λ, for i = 1, 2. Let ϕ
be a morphism from one tower to another and C be an ordinal-cocomplete
class of Abelian groups closed under extensions. Then we have the follow-
ing:

• If in every intermediate originally vanishing exact couple, E∞
−,−(1) →

E∞
−,−(2) is a C-epimorphism, then the induced morphism H∗(X(1)) →

H∗(X(2)) is a C-epimorphism.

• If
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– in every intermediate originally vanishing exact couple, E∞
−,−(1)

and E∞
−,−(2) are C-isomorphic, and

– for every limit ordinal η0 < λ and i = 1, 2, the morphism
Qη0+ω(i) : H∗(Xη0+ω(i)) → H∗(X(i)) is a monomorphism,

then H∗(X(1)) and H∗(X(2)) are C-isomorphic.



Chapter 6

Reverse Engineering

6.1 Introduction

In the last two chapters, we explained examples of carrying a property
from some page of a spectral sequence to the limit page and, ultimately, to
the universal augmentation or coaugmentation of the corresponding exact
couple. In this chapter, we go backward; i.e., we carry a property from the
universal augmentation or coaugmentation of an exact couple to the limit
page and, ultimately, to one of the pages of the induced spectral sequence.
We do so for some spectral sequences that collapse at some page.

In this chapter, we see two scenarios where this reverse engineering
technique can be applied. In both scenarios, we deal with spectral se-
quences induced by “super convenient” exact couples; i.e., exact couples
that are either originally vanishing and eventually stable or eventually van-
ishing and originally stable. Let us consider, for example, a first quadrant
spectral sequence induced by an originally vanishing and eventually stable
exact couple. From the third chapter, we know that this spectral sequence
is convergent to its universal augmentation. We then pick a class C of
modules that is closed under extensions and we look at the r-th page of
the spectral sequence

q

p0 1 · · · n · · ·
0

1

...

n

...

Er
0,0 Er

1,0 · · · Er
n,0 · · ·

Er
0,1 Er

1,1 · · · Er
n,1 · · ·

...
...

...
...

...

Er
0,n Er

1,n · · · Er
n,n · · ·

...
...

...
...

...
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with the following properties:

• the red entries are in C,

• if a blue entry is in C then all entries above it are also in C, and

• the universal augmentation is in C.

In the first scenario, we conclude that all entries of this page also belong
to C. In fact, the idea of the first scenario comes from the second scenario
which is developed by Peschke [26].

In the second scenario, we compare two such spectral sequences back-
ward; i.e., we pick two such spectral sequences and assume the following

• the corresponding red entries are C-isomorphic,

• if a blue entry in one spectral sequence is C-isomorphic to the corre-
sponding blue entry of another, then all corresponding entries above
them are also C-isomorphic, and

• the universal augmentations are C-isomorphic.

Then we conclude that all entries of these pages of the spectral sequences
are C-isomorphic. This scenario is developed in Peschke [26]. Here we
just state it modulo C. We will see that Zeeman’s comparison theorem
is a special case of these comparison theorems. At the end, we will see
a few examples that are not compatible with the structure of Zeeman’s
comparison theorem.

It should be mentioned that the results of this chapter are stated and
proved for spectral sequences of bidegrees (−r, r−1) and (r,−r+1), which
cover many examples in the literature. However, there is a brief section
which supplies the interested reader with a list of the tools we have used
in the proofs, revised for arbitrary bidegrees, and he/she can use them
to adjust the proofs for the spectral sequences induced by the mentioned
“super convenient” exact couples with arbitrary bidegrees.

6.2 Reverse Engineering Using a Class of

Modules

In this section, we cover the first scenario; i.e., we choose a class C of mod-
ules closed under extensions and start from the universal augmentation or
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coaugmentation of a first quadrant spectral sequence. Our goal is to show
that, under some assumptions, if the universal augmentation or coaugmen-
tation is in C then all entries of some page of the spectral sequence and
hence subsequent pages belong to C.

6.2.1 Reverse Engineering for Originally Vanishing
Eventually Stable Exact Couples

Let {D1
∗,∗, E

1
∗,∗} be an originally vanishing and eventually stable exact cou-

ple that induces a first quadrant spectral sequence with differentials of
bidegree (−r, r − 1) on page r and C be a class of modules that is closed
under extensions. From Remark 3.2.2 on page 64 and the diagram on
page 66 we know that this spectral sequence is convergent to its universal
augmentation.

Proposition 6.2.1. Let C be a class of modules closed under extensions
and assume, for some r0 ≥ 1,

1. Ln ∈ C for every n ∈ N,

2. Er0
0,q ∈ C for every q ≥ 0, and

3. whenever Er0
p,0 ∈ C, then Er0

(p,q) ∈ C for every q ≥ 0.

Then, for every p, q ≥ 0 and every r ≥ r0, we have Er
(p,q) ∈ C.

Proof. Look at theE∞-Distribution Diagram on page 36. For every (p, q) ∈
Z×Z, where (p, q) · â = n, we have φ(p,q) ∈ C, because φ(p,q) ⊆ Ln. There-

fore,
φ(p,q)

φp−1,q+1

∈ C and since
φ(p,q)

φp−1,q+1

∼= E∞
(p,q) we have E∞

(p,q) ∈ C.

In view of property 3, we only need to show that for every p ≥ 0 we
have Er0

p,0 ∈ C. We induct on p.

• p = 0: It holds by property 2.

• p: Assume inductively that Er0
k,0 ∈ C for every 0 ≤ k ≤ p. Therefore,

by property 3 and Proposition 4.2.2 on page 98, for every r ≥ r0 and
every q ≥ 0 we have Er

k,q ∈ C.

• p+ 1: We show that Er0
p+1,0 ∈ C: Note that we have the following

tower of monomorphisms

E∞
p+1,0 = Ep+2

p+1,0 ֌ · · · ֌ Er0+1
p+1,0 ֌ Er0

p+1,0
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and we know that E∞
p+1,0 ∈ C. Assume inductively that Er

p+1,0 ∈ C
and look at the following figure, where the entries in C are in red. In
the following exact sequence

Er
p+1,0 = ker(dr−1

p+1,0) ֌ Er−1
p+1,0

dr−1
p+1,0−→ ker(dr−1

p−r+1,r−1)

ker(dr−1
p−r+1,r−1) is in C because it is included in Er−1

p−r+1,r−1.

page r-1 page r

p+ 1p+ 1
p

Er−1
p−r+1,r−1

p− r + 1

r − 1

. . .

. . .

...

...

Er−1
p+1,0

Er
p+1,0

dr−1
p+1,0

Since p− r+1 < p by induction assumption we have Er−1
p−r+1,r−1 ∈ C.

This implies that Er−1
p+1,0 ∈ C. Therefore, inductively Er0

p+1,0 ∈ C.

By property 3 and Proposition 4.2.2 on page 98, for every r ≥ r0 and every
q ≥ 0 we have Er

p+1,q ∈ C. This completes the proof.

Example 6.2.2. Let C be a class of Abelian groups closed under exten-
sions.

1. In the setting of the Leray-Serre spectral sequence in Example 3.2.5
on page 70, let E → B be a fibration with fiber F and h = H, an
ordinary homology theory. If

(a) Hn(E) ∈ C for every n ∈ N, and
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(b) Hq(F ) ∈ C for every q ∈ N, and

(c) whenever Hp(B; H0(F )) ∈ C, then Hp(B; Hq(F )) ∈ C for every
q ∈ N,

then Hp(B; Hq(F )) ∈ C, for every p, q ∈ N.

2. In the setting of the Atiyah-Hirzebruch-Whitehead spectral sequence
in Example 3.2.6 on page 71, if X is a finite CW-complex and

(a) hn(X) ∈ C for every n ∈ N, and

(b) hq(pt) ∈ C for every q ≥ 0, and

(c) whenever Hp(X; h0(pt)) ∈ C, then Hp(X; hq(pt)) ∈ C, for every
q ≥ 0,

then Hp(X; hq(pt)) ∈ C for every p, q ≥ 0.

3. Let f : R → S be a ring homomorphism and look at Example 3.2.11
on page 77. If F = A⊗R−, then every projective R-module P is left
F -acyclic, because TorRp (A,P ) = {0}, for every p ≥ 1. Assume for
every S-module A and R-module B

(a) TorRn (A,B) ∈ C, for every n ∈ N, and

(b) TorRq (A, S)⊗S B ∈ C, for every q ≥ 0, and

(c) whenever TorSp (A ⊗R S,B) ∈ C, then TorSp (Tor
R
q (A, S), B) ∈ C

for every q ≥ 0.

Then TorSp (Tor
R
q (A, S), B) ∈ C for every p, q ≥ 0.

Corollary 6.2.3. Let C be a class of modules closed under extensions and
tensor product. If, for some r0 ≥ 0,

1. Ln ∈ C, and

2. Er0
0,q ∈ C for every q ≥ 0, and

3. Er0
(p,q)

∼= Er0
p,0 ⊗ Er0

0,q,

then Er
(p,q) ∈ C, for every p, q ≥ 0 and every r ≥ r0.

Example 6.2.4. Let C be a class of Abelian groups closed under extensions
and tensor product.
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1. In the setting of the Leray-Serre spectral sequence in Example 3.2.5
on page 70, let E → B be a fibration with fiber F where H∗(B) is
torsion-free and h = H, an ordinary homology theory. If for every
n ≥ 0 we have Hn(E),Hn(F ) ∈ C, then for every p, q ≥ 0 we have
Hp(B; Hq(F )) ∈ C. This is because by the Universal Coefficient The-
orem, condition c) in the first part of Example 6.2.2 on page 149
holds.

2. In the setting of the Atiyah-Hirzebruch-Whitehead spectral sequence
in Example 3.2.6 on page 71, for a finite CW-complex X and a ho-
mology theory h∗, if H∗(X) is torsion-free and hn(X), hn(pt) ∈ C for
every n ≥ 0, then Hp(X; hq(pt)) ∈ C for every p, q ≥ 0.

In the following proposition we consider the “dual” of Proposition 6.2.1
on page 148.

Proposition 6.2.5. Let C be a class of modules closed under extensions
and assume, for some r0 ≥ 1,

1. Ln ∈ C for every n ∈ N, and

2. Er0
p,0 ∈ C for p ≥ 0, and

3. whenever Er0
0,q ∈ C, then Er0

(p,q) ∈ C for p ≥ 0.

Then Er0
(p,q) ∈ C for every p, q ≥ 0 and every r ≥ r0.

Proof. Note that for every (p, q) ∈ Z × Z, where (p, q) · â = n, we

have φ(p,q) ∈ C, because φ(p,q) ⊆ Ln. Therefore,
φ(p,q)

φp−1,q+1

∈ C and since

φ(p,q)

φp−1,q+1

∼= E∞
(p,q) we have E∞

(p,q) ∈ C.

In view of property 3, we only need to show that for every q ≥ 0 we
have Er0

0,q ∈ C. We induct on q:

• q = 0: It holds by property 2.

• q: Assume inductively that Er0
0,k ∈ C for every 0 ≤ k ≤ q. Therefore,

by property 3 and Proposition 4.2.2 on page 98, for every r ≥ r0 and
every p ≥ 0 we have Er

p,k ∈ C.
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• q + 1: We show that Er0
0,q+1 ∈ C: Note that we have the following

tower of epimorphisms

Er0
0,q+1 ։ Er0+1

0,q+1 ։ · · · ։ Eq+2
0,q+1 ։ Eq+3

0,q+1 = E∞
0,q+1

and we know that E∞
0,q+1 ∈ C. Assume inductively that Er

0,q+1 ∈ C.
Look at the following exact sequence

Er−1
r−1,q−r+3

dr−1
r−1,q−r+3

Er−1
0,q+1 Er

0,q+1

and the following picture, where entries in C are in red.

page rpage r-1

r − 1

Er−1
0,q+1

0 0

q + 1 q + 1

. . .

. . .

q

...

...

q − r + 3

...

Er−1
r−1,q−r+3

Er
0,q+1

dr−1
r−1,q−r+3

Since q− r+3 ≤ q by induction assumption we have Er−1
r−1,q−r+3 ∈ C.

This implies that Er−1
0,q+1 ∈ C.

Therefore, Er0
0,q+1 ∈ C and hence, by property 3 and Proposition 4.2.2 on

page 98, for every r ≥ r0 and every p ≥ 0 we have Er
(p,q)+1 ∈ C. This

completes the proof of the proposition.

Example 6.2.6. 1. In the setting of the Leray-Serre spectral sequence
in Example 3.2.5 on page 70, let E → B be a fibration with fiber F
and h = H, an ordinary homology theory. If
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(a) Hn(E) ∈ C for every n ∈ N, and

(b) Hp(B; H0(F )) ∈ C for every p ∈ N, and

(c) whenever Hq(F ) ∈ C, then Hp(B; Hq(F )) ∈ C for every p ∈ N,

then Hp(B; Hq(F )) ∈ C, for every p, q ∈ N.

2. Let f : R → S be a ring homomorphism and look at Example 3.2.11
on page 77. Assume for every S-module A and R-module B

(a) TorRn (A,B) ∈ C, for every n ∈ N, and

(b) TorSp (A⊗R S,B) ∈ C, for every p ≥ 0, and

(c) whenever TorRq (A, S) ⊗S B ∈ C, then TorSp (Tor
R
q (A, S), B) ∈ C

for every p ≥ 0.

Then TorSp (Tor
R
q (A, S), B) ∈ C for every p, q ≥ 0.

Corollary 6.2.7. Let C be a class of modules that is closed under exten-
sions and tensor product and for some r0 ≥ 1

1. Ln ∈ C for every n ∈ N, and

2. Er0
p,0 ∈ C for p ≥ 0, and

3. Er0
(p,q)

∼= Er0
p,0 ⊗ Er0

0,q.

Then Er0
(p,q) ∈ C for every p, q ≥ 0 and every r ≥ r0.

Example 6.2.8. Let C be a class of Abelian groups closed under extensions
and tensor product. In the setting of the Leray-Serre spectral sequence
in Example 3.2.5 on page 70, let E → B be a fibration with fiber F
where H∗(B) is torsion-free and h = H, an ordinary homology theory. If
Hn(E),Hn(B; H0(F )) ∈ C for every n ≥ 0, then Hp(B; Hq(F )) ∈ C, for
every p, q ≥ 0.

6.2.2 Reverse Engineering for Eventually Vanishing
Originally Stable Exact Couples

Let {D1
∗,∗, E

1
∗,∗} be an eventually vanishing and originally stable exact cou-

ples that induces a first quadrant spectral sequence with differentials of
bidegree (r,−r + 1) on page r and C be a class of modules closed under
extensions. The proof of the following propositions is the “mirror image”
of the proof of the propositions in the previous section.
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Proposition 6.2.9. Assume, for some r0 ≥ 1,

1. Ln ∈ C for every n ∈ N, and

2. Er0
p,0 ∈ C for p ≥ 0, and

3. whenever Er0
0,q ∈ C, then Er0

(p,q) ∈ C for p ≥ 0.

Then Er0
(p,q) ∈ C for every p, q ≥ 0 and every r ≥ r0.

Proposition 6.2.10. Assume, for some r0 ≥ 1,

1. Ln ∈ C for every n ∈ N, and

2. Er0
0,q ∈ C for every q ≥ 0, and

3. whenever Er0
p,0 ∈ C, then Er0

(p,q) ∈ C for every q ≥ 0.

Then Er0
(p,q) ∈ C for every p, q ≥ 0 and every r ≥ r0.

Example 6.2.11. Let f : R → S be a ring homomorphism and look at
Example 3.2.11 on page 77. Assume C is a class of modules closed under
extensions and look at the Example 4.4.7 on page 107.

• Assume for every S-module A and R-module B

1. ExtnR(A,B) ∈ C for every n ∈ N, and

2. ExtpS(A, homR(S,B)) ∈ C for p ≥ 0, and

3. whenever homS(A,Ext
q
R(S,B)) ∈ C, then ExtpS(A,Ext

q
R(S,B)) ∈

C for p ≥ 0.

Then ExtpS(A,Ext
q
R(S,B)) ∈ C for every p, q ≥ 0.

• Assume for every S-module A and R-module B

1. ExtnR(A,B) ∈ C for every n ∈ N, and

2. homS(A,Ext
q
R(S,B)) ∈ C for q ≥ 0, and

3. whenever ExtpS(A, homR(S,B)) ∈ C, then ExtpS(A,Ext
q
R(S,B)) ∈

C for q ≥ 0.

Then ExtpS(A,Ext
q
R(S,B)) ∈ C for every p, q ≥ 0.
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6.3 Reverse Engineering for Comparison The-

orems

Here we explain the second scenario that we talked about in the introduc-
tion to this chapter, presented in [26], and we furnish reverse engineer-
ing results via comparison of spectral sequences. More precisely, suppose
(f, ϕ) : (C(1), L∗(1)) → (C(2), L∗(2)) is a morphism of universally aug-
mented exact couples. Assume ϕ : L∗(1) → L∗(2) is an isomorphism.

Under which circumstances is f : E2
∗,∗(1) → E2

∗,∗(2) an isomorphism?

We can state a more general question: Let C be a class of modules
closed under extensions.

Under which circumstances is f : E2
∗,∗(1) → E2

∗,∗(2) a C-isomorphism?

6.3.1 Reverse Comparison Theorems for Originally
Vanishing Eventually Stable Exact Couples

For i = 1, 2, let {D1
∗,∗(i), E

1
∗,∗(i)} be an originally vanishing and eventually

stable exact couples that induces a first quadrant spectral sequence with
differentials of bidegree (−r, r − 1) on page r and C be a class of modules
closed under extensions.

Proposition 6.3.1. [26] Let (f, ϕ) : (C(1), L∗(1)) → (C(2), L∗(2)) be a
morphism of universally augmented first quadrant exact couples with dif-
ferentials dr(i) : Er

(p,q)(i) → Er
p−r,q+r−1(i) satisfying the following hypothe-

ses:

1. ϕ : L∗(1) → L∗(2) is a C-isomorphism;

2. f0,q : E
2
0,q(1) → E2

0,q(2) is a C-isomorphism for q ≥ 0;

3. Whenever fp,0 : E2
p,0(1) → E2

p,0(2) is a C-isomorphism, then f(p,q) :
E2

(p,q)(1) → E2
(p,q)(2) is also a C-isomorphism for q ≥ 0.

Then
f(p,q) : E

2
(p,q)(1) → E2

(p,q)(2)

is a C-isomorphism for all p, q ≥ 0.
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Proof. We induct on p.

• p = 0: Claim. The homomorphism

f r
0,0 : E

r
0,0(1) → Er

0,0(2) (6.1)

is a C-isomorphism for all r ≥ 0 and

f r
k,1−k : E

r
k,1−k(1) → Er

k,1−k(2) (6.2)

is a C-epimorphism for all r ≥ 2 and 0 ≤ k ≤ 1.

Proof (Claim). (6.1) follows from 2 and the fact that E2
0,0 = Er

0,0 for
all r ≥ 2. To see (6.2), remember that

E3
0,1 = Er

0,1, r ≥ 3

and
E2

1,0 = Er
1,0, r ≥ 2

and consider the commutative diagram with exact rows below

ker(f0,1) ker(ϕ) ker(f1,0)

E2
0,1(1)

f0,1

L1(1)

ϕ

E2
1,0(1)

f1,0E3
0,1(1)

E2
0,1(2) L1(2) E2

1,0(2)

E3
0,1(2)

coker(f0,1) coker(ϕ) coker(f1,0)

Since coker(ϕ) ∈ C then coker(f1,0) ∈ C. Note that since f0,1 is a C-
isomorphism we already know that coker(f0,1) ∈ C. We can summarize
this part in the following picture.
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page r page r
...

0

1

0
1

. . .

...

0

1

0
1

. . .

Er
0,0(1)

Er
0,1(1)

Er
1,0(1)

Er
0,0(2)

Er
0,1(2)

Er
1,0(2)C−epi

C−iso

C−epi

• p: Assume inductively that

1. f 2
k,q : E

2
k,q(1) → E2

k,q(2) is a C-isomorphism for 0 ≤ k ≤ p and q ≥ 0.

2. f r
k,l : E

r
k,l(1) → Er

k,l(2) is a C-isomorphism for 0 ≤ k + l ≤ p and
r ≥ 2.

3. f r
k,p+1−k : E

r
k,p+1−k(1) ։ Er

k,p+1−k(2) is a C-epimorphism for 0 ≤ k ≤
p+ 1 and r ≥ 2.

We can summarize these three conditions in the following picture, where
red entries are C isomorphic and the morphisms between the blue entries
are C-epimorphisms.

page 2 page 2

p p

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

... ... ... ... ... ...

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

... ... ... ... ... ...

C−iso
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page r page r

p
p+ 1

p

p+ 1

p
p+ 1

p

p+ 1

∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗
∗

∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗
∗

C−epi

C−iso

• p+1: We need to show that 1, 2 and 3 hold with p replaced by p+1.
The argument is locally trivial and globally complicated, involving nested
and simultaneous induction arguments. We proceed through the following
steps:

Step 1 f∞
k,p+1−k : E∞

k,p+1−k(1) → E∞
k,p+1−k(2) is a C-isomorphism for

0 ≤ k ≤ p+ 1.

Step 2 f r
p+1,0(1) : E

r
p+1,0(1) → Er

p+1,0(2) is a C-isomorphism for r ≥ 2.
This implies that f 2

p+1,q : E2
p+1,q(1) → E2

p+1,q(2) is a C-isomorphism for
q ≥ 0, using 3.

Step 3 f r
p+1−l,l : E

r
p+1−l,l(1) → Er

p+1−l,l(2) is a C-isomorphism for 0 ≤
l ≤ p+ 1 and r ≥ 2.

Step 4 f r
p+1−λ,λ+1 : Er

p+1−λ,λ+1(1) → Er
p+1−λ,λ+1(2) is a C-epimorphism

for 0 ≤ λ ≤ p+ 1 and r ≥ 2.

Step 5 f r
p+2,0 : E

r
p+2,0(1) → Er

p+2,0(2) is a C-epimorphism for r ≥ 2.

Step 1 Proof: We have the commutative filtration diagram for Hp+1(1)
and Hp+1(2)

ker(f∞
0,p+1) ker(ϕ̄0,p+1) · · · ker(ϕ̄p,1) ker(ϕ)

E∞
0,p+1(1)

f∞

0,p+1

F0,p+1(1)

ϕ̄0,p+1

· · · Fp,1(1)

ϕ̄p,1

Lp+1(1)

ϕ

E∞
0,p+1(2) F0,p+1(2) · · · Fp,1(2) Lp+1(2)

coker(f∞
0,p+1) coker(ϕ̄0,p+1) · · · coker(ϕ̄p,1) coker(ϕ).
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Since ker(ϕ) ∈ C then ker(f∞
0,p+1) ∈ C and ker(ϕ̄k,p+1−k) ∈ C, for every

0 ≤ k ≤ p+ 1; i.e., every ϕ̄k,p+1−k is a C-monomorphism.

Part 3 of the induction assumption shows that coker(f∞
k+1,p−k) ∈ C, for

every 0 ≤ k ≤ p + 1. Therefore, coker(ϕ̄0,p+1) ∈ C. Assume inductively
that coker(ϕ̄k,p+1−k) ∈ C. The diagram of short exact sequences below

ker(ϕ̄k,p+1−k) ker(ϕ̄k+1,p−k) ker(f∞
k+1,p−k)

Fk,p+1−k(1)

ϕ̄k,p+1−k

Fk+1,p−k(1)

ϕ̄k+1,p−k

E∞
k+1,p−k(1)

f∞

k+1,p−k

Fk,p+1−k(2) Fk+1,p−k(2) E∞
k+1,p−k(2)

coker(ϕ̄k,p+1−k) coker(ϕ̄k+1,p−k) coker(f∞
k+1,p−k)

has the following consequences:

• coker(ϕ̄k+1,p−k) ∈ C. This shows inductively that every ϕ̄k,p+1−k is a
C-epimorphism and hence a C-isomorphism.

• Using the Snake Lemma we see that ker(f∞
k,p+1−k) ∈ C, for every

0 ≤ k ≤ p+ 1.

Therefore, f∞
k,p+1−k is a C-isomorphism, for every 0 ≤ k ≤ p+ 1.

Step 2 Proof: We have the following tower of inclusions for i = 1, 2

E∞
p+1,0(i) = Er+2

p+1,0(i) ֌ Er+1
p+1,0(i) ֌ · · · ֌ Er+2−s

p+1,0 (i) ֌ · · · ֌ E2
p+1,0.

From step 1 we know that

Er+2
p+1,0(1) = E∞

p+1,0(1) → E∞
p+1,0(2) = Er+2

p+1,0(2)

is a C-isomorphism. Let assume inductively that

Er+2−s
p+1,0 (1) → Er+2−s

p+1,0 (2)

is a C-isomorphism. We have the commutative diagram with exact rows
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Er+2−s
p+1,0 (1)

fr+2−s
p+1,0

E
r+2−(s+1)
p+1,0 (1) ker(d

r+2−(s+1)
p−r+s,r−s(1)) Er+2−s

p−r+s,r−s(1)

fr+2−s
p−r+s,r−s

Er+2−s
p+1,0 (2) E

r+2−(s+1)
p+1,0 (2) ker(d

r+2−(s+1)
p−r+s,r−s(2)) Er+2−s

p−r+s,r−s(2)

The three solid vertical arrows are C-isomorphisms by induction hypothe-
sis. Note that ker(d

r+2−(s+1)
p−r+s,r−s(i)) is in a position where (p−r+s)+(r−s) = p

and hence it satisfies the induction hypothesis. By C-5-Lemma the dashed
arrow is also a C-isomorphism.

Step 3 Proof: The claim holds for l = 0 by step 2. Suppose inductively
that

Er
p+1−λ,λ(1) → Er

p+1−λ,λ(2)

are C-isomorphisms for 0 ≤ λ ≤ l and r ≥ 2. To prove the claim for l + 1
we distinguish two cases.

Case 1. 2 ≤ r ≤ l + 2: We induct on r. By induction assumption 1 we
know that

E2
p−l,l+1(1) → E2

p−l,l+1(2)

is a C-isomorphism. Suppose that

Eρ
p−l,l+1(1) → Eρ

p−l,l+1(2)

is a C-isomorphism for 2 ≤ ρ ≤ r < l + 2. To see that

Er+1
p−l,l+1(1) → Er+1

p−l,l+1(2)

is a C-isomorphism as well, we use the commutative diagram with exact
rows below

ker(f r
p−l+r,l+1−(r−1)) ker(f̄ r

p−l,l+1) ker(f r+1
p−l,l+1)

Er
p−l+r,l+1−(r−1)(1)

dr
p−l+r,l+1−(r−1)

fr
p−l+r,l+1−(r−1)

ker(drp−l,l+1(1))

C−iso f̄r
p−l,l+1

Er+1
p−l,l+1(1)

fr+1
p−l,l+1

Er
p−l+r,l+1−(r−1)(2)

dr
p−l+r,l+1−(r−1)

ker(drp−l,l+1(2)) Er+1
p−l,l+1(2)

coker(f r
p−l+r,l+1−(r−1)) coker(f̄ r

p−l,l+1) coker(f r+1
p−l,l+1)

The vertical arrow in the middle is a C-isomorphism because it is on the
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r-th page and it satisfies the induction hypothesis. So the vertical arrow
on the right is a C-epimorphism. If we can prove that f r

p−l+r,l+1−(r−1) is a

C-epimorphism then by C-5-Lemma we get ker(f r+1
p−l,l+1) ∈ C.

Therefore, the vertical arrow on the right is a C-isomorphism once we
have shown the step 4. We restate the step 4 here.

Step 4 : If Er
p+1−λ,λ(1) → Er

p+1−λ,λ(2) is a C-isomorphism for 0 ≤ λ ≤ l
and r ≥ 2, then

Er
p+1−λ,λ+1(1) → Er

p+1−λ,λ+1(2)

is a C-epimorphism for 0 ≤ λ ≤ p+ 1 and

2 ≤ r ≤ max{2, l − λ}+ 1.

Step 4 Proof: For r = 2 it follows from step 2. Now suppose step 4
holds for 2 ≤ r ≤ l − λ+ 1. To establish step 4 consider the commutative
diagram with exact rows below

ker(drp+1−λ,λ+1(1)) Er
p+1−λ,λ+1(1)

dr
p+1−λ,λ+1(1)

C−epi

ker(drp+1−λ−r,λ+r(1))

C−iso

Er+1
p+1−λ−r,λ+r(1)

C−iso

ker(drp+1−λ,λ+1(2)) Er
p+1−λ,λ+1(2)

dr
p+1−λ,λ+1(2)

ker(drp+1−λ−r,λ+r(2)) Er+1
p+1−λ−r,λ+r(2)

The two vertical arrows on the right are C-isomorphisms by induction
hypothesis 2 and Step 2. The second vertical arrow from the left is C-
epimorphism by induction hypothesis. Consequently the vertical arrow on
the left is C-epimorphism, implying the induction step. Thus Step 4 holds
and Case 1 of Step 3 follows.

Case 2. r ≥ l + 3: From step 1 we have the isomorphism

Er
p+1−l,l(1) = E∞

p+1−l,l(1) → E∞
p+1−l,l(2) = Er

p+1−l,l(2)

for r ≥ l + 3 sufficiently large. But so long as s ≥ l + 3 we have the
commutative diagram with exact row below

Es+1
p+1−l,l(1)

C−epi

Es
p+1−l,l(1)

ds
p+1−l,l

(1)
ker(dsp+1−l−s,l+(s−1)(1))

C−iso

Es+1
p+1−l−s,l+(s−1)(1)

C−iso

Es+1
p+1−l,l(2) Es

p+1−l,l(2)
ds
p+1−l,l

(2)
ker(dsp+1−l−s,l+(s−1)(2)) Es+1

p+1−l−s,l+(s−1)(2)

Again the two vertical arrow on the right are C-isomorphims by induc-
tion hypothesis 2. So the dashed arrow is a C-epimorphis which proves
Case 2.



6.3 Reverse Engineering for Comparison Theorems 162

Thus the proof of step 3 is complete and the argument of step 4 shows

f r
k,p+1−k : E

r
k,p+1−k(1) ։ Er

k,p+1−k(2)

is a C-epimorphism for 1 ≤ k ≤ p+ 1.

Step 5 Proof: We begin by observing that since ϕ is a C-epimorphism,
then f∞

p+2,0 is a C-epimorphism in the commutative diagram below

ker(ϕ) ker(f∞
p+2,0)

Lp+2(1)

ϕ

E∞
p+2,0(1)

f∞

p+2,0

Ep+3−µ
p+2,0 (1)

Lp+2(2) E∞
p+2,0(2) Ep+3−µ

p+2,0 (2)

coker(ϕ) coker(f∞
p+2,0)

where µ ≥ 0. Assume inductively that

Ep+3−λ
p+2,0 (1) ։ Ep+3−λ

p+2,0 (2)

is a C-epimorphism for 0 ≤ λ ≤ l < p + 1 and consider the commutative
diagram with exact row below

Ep+3−l
p+2,0 (1)

f
p+3−l
p+2,0

E
p+3−(l+1)
p+2,0 (1)

dp+3−(l+1)(1)
ker(d

p+3−(l+1)
p+2,0 (1)) Ep+3−l

l,p+1−l(1)

p+3−l
l,p+1−l

Ep+3−l
p+2,0 (2) E

p+3−(l+1)
p+2,0 (2)

dp+3−(l+1)(2)
ker(d

p+3−(l+1)
p+2,0 (2)) Ep+3−l

l,p+1−l(2)

The two vertical arrow on the right are C-isomorphisms by step 3 and
induction hypothesis 2. The vertical arrow on the left is C-epimorphism
by hypothesis of the current induction. Therefore, the dashed vertical
arrow is a C-epimorphism. This completes the proof of the step 5 and the
proof of the proposition.

Corollary 6.3.2. Zeeman’s comparison theorem follows from Proposition
6.3.1.

Proof. Here C = {0}. Zeeman assumed that the entries in the second page
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of the spectral sequence satisfy the following short exact sequence

E2
p,0 ⊗ E2

0,q ֌ E2
(p,q) ։ Tor(E2

p−1,0, E
2
0,q).

See [33].

Example 6.3.3. Let C be a class of Abelian groups closed under exten-
sions. In the setting of the Leray-Serre spectral sequence in Example 3.2.5
on page 70, let E(i) → B(i) be a fibration with fiber F (i), for i = 1, 2,
with h = H, an ordinary homology theory. Also assume that there is a
map from the first fibration to the second one that induces a morphism of
the induced exact couples. If

1. Hn(E(1)) → Hn(E(2)) is a C-isomorphism for every n ∈ N, and

2. Hq(F (1)) → Hq(F (2)) is a C-isomorphism for every q ∈ N, and

3. whenever

Hp(B(1); H0(F (1))) → Hp(B(2); H0(F (2)))

is a C-isomorphism then Hp(B(1); Hq(F (1))) → Hp(B(2); Hq(F (2)))
is a C-isomorphism, for every q ≥ 0,

then
Hp(B(1); Hq(F (1))) → Hp(B(2); Hq(F (2)))

is a C-isomorphism for all p, q ≥ 0.

Proposition 6.3.4. [26] Let (f, ϕ) : (C(1), L∗(1)) → (C(2), L∗(2)) be a
morphism of universally augmented first quadrant exact couples with dif-
ferentials dr(i) : Er

(p,q)(i) → Er
p−r,p+r−1(i) satisfying the following hypothe-

ses:

1. ϕ : L∗(1) → L∗(2) is a C-isomorphism;

2. f 2
p,0 : E

2
p,0(1) → E2

p,0(2) is a C-isomorphism for p ≥ 0;

3. Whenever f 2
0,q : E

2
0,q(1) → E2

0,q(2) is a C-isomorphism, then

f 2
(p,q) : E

2
(p,q)(1) → E2

(p,q)(2)

is also a C-isomorphism for p ≥ 0.
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Then
f 2
(p,q) : E

2
(p,q)(1) → E2

(p,q)(2)

is a C-isomorphism for all p, q ≥ 0.

Proof. We apply induction on q:

q=0: By 2 we know that f 2
p,0 is a C-isomorphism for p ≥ 0.

q: Assume inductively that f 2
p,ν is a C-isomorphism for p ≥ 0 and 0 ≤ ν ≤ q.

q+1: To complete the induction, we need to show that f 2
(p,q)+1 is a C-

isomorphism for all p ≥ 0. In view of 3, it suffices to show that f 2
0,q+1 is a

C-isomorphism. Our argument involves several steps.

Claim. On the r-th page, for all (µ, ν) that are under the line passing

through (1, q) with slope −r − 1

r
, if f r

µ,ν is a C-isomorphism then f r
µ−r,ν+r−1

and f r
µ+r,ν−r+1 are also C-isomorphisms.

That is, in the following picture, if the red entries are C-isomorphic
then the blue ones are also C-isomorphic.

page r page r

q q

1 1

• (1, q) • (1, q)

lines with slopes − r − 1

r

�

�

�

�

�

�

dr

dr

dr

dr

C−iso

C−iso

C−iso

Proof (Claim). Note that such (µ, ν) satisfies

0 ≤ ν ≤ q and ν ≤ q − (µ− 1)
r − 1

r
.

We apply induction on r:
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• The claim holds for r = 2.

• Now suppose inductively that it holds for r ≥ 2. Then f r
µ,ν is a

C-isomorphism whenever

0 ≤ ν ≤ q and ν ≤ q − (µ− 1)
r − 1

r
.

• If (µ0, ν0) satisfies ν0 ≤ q and ν0 ≤ q − (µ0 − 1)
r

r + 1
, then using

r

r + 1
>
r − 1

r
we have

ν0 ≤ q − (µ0 − 1)
r − 1

r
.

Thus f r+1
µ0,ν0

is a C-isomorphism. But also

(µ, ν) := (µ0 − (r + 1), ν0 + r)

satisfies

ν0 + r ≤ q − (µ0 − 1)
r

r + 1
+ r

= q − (µ0 − (r + 1)− 1)
r

r + 1
− (r + 1)

r

r + 1
+ r

= q − (µ0 − (r + 1)− 1)
r

r + 1
.

So f r+1
µ0−(r+1),ν0+r

is a C-isomorphism. Similarly,

(µ, ν) := (µ0 + (r + 1), ν0 − r)

satisfies

ν0 − r ≤ q − (µ0 − 1)
r

r + 1
− r

= q − (µ0 + (r + 1)− 1)
r

r + 1
+ (r + 1)

r

r + 1
− r

= q − (µ0 + (r + 1)− 1)
r

r + 1

implying that f r+1
µ0+r+1,ν0−r is a C-isomorphism as well. This completes

the induction and hence the proof of the claim. ⋄

Step 1

1. f r
µ,ν is a C-isomorphism for all r ≥ 2 whenever µ + ν ≤ q + 1 and
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ν ≤ q.

2. f r
q+2−l,l is a C-isomorphism for 0 ≤ l ≤ q and 2 ≤ r ≤ q + 2− l.

Step 1 Proof:

1. If µ+ ν ≤ q + 1, then

ν ≤ q + 1− µ = q − (µ− 1) < q − (µ− 1)
r − 1

r

for all r ≥ 2. So this case holds by applying the Claim repeatedly.

2. If (µ, ν) = (q + 2− l, l) and 2 ≤ r ≤ q + 2− l, then

ν = q + 2− µ
q − (µ− 1) + 1

= q − (µ− 1)
r − 2

r − 1
− (µ− 1)

2

r − 1
+ 1.

Thus the Claim is applicable in the (r − 1)-th page so long as

−(µ− 1)
2

r − 1
+ 1 ≤ 0;

i.e., r − 1 ≤ 2(µ− 1). But we know that

1 ≤ r − 1 ≤ q + 1− l and µ− 1 = q + 1− l > 0.

We know that

r − 1 ≤ q + 1− l < 2(q + 1− l) = 2(µ− 1),

implying that f r
µ,ν is a C-isomorphism.

Step 2. f∞
0,q+1 is a C-isomorphism.

Step 2 Proof: ϕ induces the morphism of filtrations for Lq+1(1) and Lq+1(2)
displayed below

F1,q+1(1) F1,q(1) · · · Fk,q+1−k(1) · · · Fq+1,0(1) Lq+1(1)

C−iso ϕq+1

F1,q+1(2) F1,q(2) · · · Fk,q+1−k(2) · · · Fq+1,0(2) Lq+1(2).

From Step 1 we know that f∞
q+1−l,l is a C-isomorphism whenever 0 ≤

l ≤ q. Knowing that ϕq+1 is a C-isomorphism, let 0 ≤ l ≤ q + 1 and
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suppose inductively that

ϕ| : Fq+1−λ,λ(1) → Fq+1−λ,λ(2)

is a C-isomorphism for 0 ≤ λ ≤ l. The diagram of short exact sequences

Fq−l,l+1(1) Fq+1−l,l(1)

C−iso

E∞
q+1−l,l(1)

C−iso

Fq−l,l+1(2) Fq+1−l,l(2) E∞
q+1−l,l(2)

shows that ϕ| : Fq−l,l+1(1) → Fq−l,l+1(2) is a C-isomorphism as well. Setting
l = q gives the C-isomorphism

F0,q+1(1)

∼=

ϕq+1|

C−iso
F0,q+1(2)

∼=

E∞
0,q+1(1) f∞

0,q+1

E∞
0,q+1(2)

which proves Step 2.

Step 3. f 2
0,q+1 is a C-isomorphism.

Step 3 Proof. From Step 2 we know that f q+3
0,q+1 = f∞

0,q+1 is a C-isomorphism.
We will inductively work our way down to f 2

0,q+1. Part of the induction is
to show that f r

q+2−l,l is a C-isomorphism for 0 ≤ l ≤ q and r > q + 2− l.

Part 1. F∞
q+2,0 and ϕq+2| : Fq+1,1(1) → Fq+1,1(2) are C-isomorphisms.

Part 1 Proof. The morphism of short exact sequences below

Fq+1,1(1)

ϕq+2|

Hq+2(1)

C−iso

E∞
q+2,0(1)

f∞

q+2,0

Fq+1,1(2) Hq+2(2) E∞
q+2,0(2)

shows that f∞
q+2,0 is a C-epimorphism. The commutative diagram with

exact rows below

E∞
q+2,0(1)

f∞

q+2,0

Eq+3
q+2,0(1)

f
q+3
q+2,0

Eq+2
q+2,0(1)

dq+2(1)

C−iso

Eq+2
0,q+1(1)

f
q+2
0,q+1

E∞
0,q+1(1)

C−iso

E∞
q+2,0(2) Eq+3

q+2,0(2) Eq+2
q+2,0(2)dq+2(2)

Eq+2
0,q+1(2) E∞

0,q+1(2)
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shows that f∞
q+2,0 is also a C-monomorphism. Thus f q+2

0,q+1 is a C-isomorphism.
Moreover,

ϕq+2| : Fq+1,1(1) → Fq+1,2(2)

is a C-isomorphism.

Part 2 Suppose inductively that for 0 ≤ l − 1 < q we have

1. f q+2−λ
0,q+1 is a C-isomorphism, for 0 ≤ λ ≤ l − 1,

2. ϕq+2| : Fq+2−λ(1) → Fq+2−λ(2) is a C-isomorphism for 0 ≤ λ ≤ l,

3. (a) fq+2−λ+tr,λ−t(r−1) is a C-isomorphism for all r ≥ 2, 0 ≤ λ < l
and t ≥ 0,

(b) f r
q+2−λ+tr,λ−t(r−1) is a C-isomorphism for all r ≥ 2 and t ≥ 1.

We complete the induction through the following items:

(A) For ρ ≥ q + 3− l, fρ
q+2−l,l is a C-epimorphism.

Proof. f∞
q+2−l,l is C-epimorphism because of the morphism of short exact

sequences

Fq+1−l,l+1(1) Fq+1−l,l(1)

C−iso

E∞
q+2−l,l(1)

f∞

q+2−l,l

Fq+1−l,l+1(2) Fq+1−l,l(2) E∞
q+2−l,l(2)

. (6.3)

Next, for s ≥ 0 we have the commutative diagram with exact rows

ker(dq+3−l+s
−,− (1)) Eq+3−l+s

−,− (1)

C−iso

d
q+3−l+s
−,− (1)

Eq+3−l+s
q+2−l,l (1)

f
q+3−l+s
q+2−l,l

Eq+3−l+s+1
q+2−l,l (1)

f
q+3−l+s+1
q+2−l,l

ker(dq+3−l+s
−,− (2)) Eq+3−l+s

−,− (2)
d
q+3−l+s
−,− (2)

Eq+3−l+s
q+2−l,l (2) Eq+3−l+s+1

q+2−l,l (2)

(6.4)

From induction hypothesis 3.(b) we know that the second vertical arrow
from the left is a C-isomorphism. Knowing that f∞

q+2−l,l is a C-epimorphism,

assume inductively that f q+3−l+s+1
q+2−l,l is C-epimorphism. It follows that the

morphism f q+3−l+s
q+2−l,l is C-epimorphism for s ≥ 0. ⋄

(B) For ρ ≥ q + 3 − l, fρ
q+2−l,l is a C-isomorphism and f q+2−l

0,q+1 is a
C-isomorphism.



6.3 Reverse Engineering for Comparison Theorems 169

Proof. Consider the commutative diagram with exact rows below

ker(dq+2−l
q+2−l,l(1)) Eq+2−l

q+2−l,l(1)

C−iso

d
q+2−l
q+2−l,l

(1)

Eq+2−l
0,q+1 (1)

f
q+2−l
0,q+1

Eq+3−l
0,q+1 (1)

C−iso

ker(dq+2−l
q+2−l,l(2)) Eq+2−l

q+2−l,l(2)
d
q+2−l
q+2−l,l

(2)
Eq+2−l

0,q+1 (2) Eq+3−l
0,q+1 (2)

(6.5)

ker(dq+2−l
−,− (1)) Eq+2−l

−,− (1)

C−iso

d
q+2−l
−,− (1)

ker(dq+2−l
q+2−l,l(1)) Eq+3−l

q+2−l,l(1)

f
q+3−l
q+2−l,l

ker(dq+2−l
q+2−l(2)) Eq+2−l

q+2−l,l(2)
d
q+2−l
−,− (2)

ker(dq+2−l
0,q+1 (2)) Eq+3−l

0,q+1 (2)

(6.6)

From (6.5) we see that the second vertical arrow from the right in (6.6)
is a C-monomorphism. Chasing (6.6) shows that it is also C-epimorphism.
Consequently, f q+3−l

q+2−l,l is a C-isomorphism. Feed this information into (6.5)

to see that f q+2−l
0,q+1 is a C-isomorphism. Feed this information into (6.4) to

see that fρ
q+2−l,l is a C-isomorphism whenever ρ ≥ q + 3− l. ⋄

(C) ϕ| : Fq+1−l,l+1(1) → Fq+1−l,l+1(2) is a C-isomorphism.

Proof. Wwe know that fρ
q+2−l,l is a C-isomorphism whenever ρ ≥ q+3−

l. Thus f∞
q+2−l,l is a C-isomorphism. Using (6.3) we see that Fq+1−l,l+1(1) →

Fq+1−l,l+1(2) is a C-isomorphism. ⋄
In part (B), we took the induction step for 1, Part 2. In part (C), we

took the induction step for 2, Part 2. It remains to take the induction step
for 3, Part 2 :

• (a): It only remains to show that f r
q+2−l+tr,l−t(r−1) is a C-isomorphism

for all t ≥ 0. Combining Step 1 and part (A), we see that f r
q+2−l,l is

a C-isomorphism for all r ≥ 2. This settles the case t = 0. The case
t ≥ 1 is hypothesis (b).

• (b): We need to show that f r
q+2−(l+1)+tr,l+1−t(r−1) is a C-isomorphism

for all r ≥ 2 and t ≥ 1. The case r = 2 follows because f 2
µ,ν is a

C-isomorphism for all ν ≥ q. If r ≥ 3, we have

(q + 2− (l + 1) + tr, l + 1− t(r − 1)) = (q + 2− [(l + 1) + t] + t(r − 1), [l + 1 + t]− t(r − 2))
=: (µ, ν).

Now t ≥ 1. So [(l + 1) − t] ≤ q. Thus induction hypotheses (a)
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and (b), together with the completed induction step (a) show that
the Claim is applicable to f r−1

µ,ν . Thus f r
µ,ν is a C-isomorphism as

required. ⋄

Example 6.3.5. Let C be a class of Abelian groups closed under exten-
sions.

1. In the setting of the Leray-Serre spectral sequence in Example 3.2.5
on page 70, let E(i) → B(i) be a fibration with fiber F (i), for i = 1, 2,
and h = H, an ordinary homology theory. Also assume that there
is a map from the first fibration to the second one that induces a
morphism of the induced exact couples. If

(a) Hn(E(1)) → Hn(E(2)) is a C-isomorphism for every n ∈ N, and

(b) Hp(B(1); H0(F (1))) → Hp(X(2); H0(F (2))) is a C-isomorphism
for every p ∈ N, and

(c) whenever Hq(F (1)) → Hq(F (2)) is a C-isomorphism then

Hp(B(1); Hq(F (1))) → Hp(B(2); Hq(F (2)))

is a C-isomorphism, for every p ≥ 0,

then
Hp(B(1); Hq(F (1))) → Hp(B(2); Hq(F (2)))

is a C-isomorphism for all p, q ≥ 0.

2. In the setting of the Atiyah-Hirzebruch-Whitehead spectral sequence
in Example 3.2.6 on page 71, if X is a finite CW-complex and

(a) hn(X(1)) → hn(X(2)) is a C-isomorphism for every n ∈ N, and

(b) Hp(X(1); h0(1)(pt)) → Hp(X(2); h0(2)(pt)) is a C-isomorphism
for every p ∈ N, and

(c) whenever hq(1)(pt) → hq(2)(pt) is a C-isomorphism, then

Hp(X(1); hq(1)(pt)) → Hp(X(2); hq(2)(pt))

is a C-isomorphism, for every q ≥ 0,

then
Hp(X(1); hq(1)(pt)) → Hp(X(2); hq(2)(pt))

is a C-isomorphism for every p, q ≥ 0.
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6.3.2 Reverse Comparison Theorems for Eventually
Vanishing Originally Stable Exact Couples

The proof of the following propositions is the “mirror image” of the proof
of the propositions in the previous section.

Proposition 6.3.6. [26] Let (f, ϕ) : (C(1), L∗(1)) → (C(2), L∗(2)) be a
morphism of universally coaugmented first quadrant exact couples with dif-
ferentials dr(i) : Er

(p,q)(i) → Er
p+r,q−r+1(i) satisfying the following hypothe-

ses:

1. ϕ : L∗(1) → L∗(2) is a C-isomorphism;

2. f0,q : E
2
0,q(1) → E2

0,q(2) is a C-isomorphism for q ≥ 0;

3. Whenever fp,0 : E2
p,0(1) → E2

p,0(2) is a C-isomorphism, then f(p,q) :
E2

(p,q)(1) → E2
(p,q)(2) is also a C-isomorphism for q ≥ 0.

Then
f(p,q) : E

2
(p,q)(1) → E2

(p,q)(2)

is a C-isomorphism for all p, q ≥ 0.

Proposition 6.3.7. [26] Let (f, ϕ) : (C(1), L∗(1)) → (C(2), L∗(2)) be a
morphism of universally coaugmented first quadrant exact couples with dif-
ferentials dr(i) : Er

(p,q)(i) → Er
p+r,p−r+1(i) satisfying the following hypothe-

ses:

1. ϕ : H(1) → H(2) is a C-isomorphism;

2. f 2
p,0 : E

2
p,0(1) → E2

p,0(2) is a C-isomorphism for p ≥ 0;

3. Whenever f 2
0,q : E2

0,q(1) → E2
0,q(2) is a C-isomorphism, then f 2

(p,q) :

E2
(p,q)(1) → E2

(p,q)(2) is also a C-isomorphism for p ≥ 0.

Then
f 2
(p,q) : E

2
(p,q)(1) → E2

(p,q)(2)

is a C-isomorphism for all p, q ≥ 0.

6.4 Generalization to Arbitrary Bidegrees

We can generalize the previous sections to exact couples with arbitrary
bidegrees a, b and c. To this end, we state the general form of the tools
we have used so far.
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• Let {D1
∗,∗, E

1
∗,∗} be an originally vanishing and eventually stable exact

couple.

1. If D1
(u,v) is the highest nonzero term of the n-th D1-column then there

is a tower of epimorphisms

E2
(u,v)−c

։ E3
(u,v)−c

։ · · · ։ Es
(u,v)−c

= E∞
(u,v)−c

,

for some s ∈ N. Also, for every 3 ≤ r ≤ s, we have the following
exact sequence

ker(dr−1
(u,v)−b−2c+(r−2)a) Er−1

(u,v)−b−2c+(r−2)a

dr−1
(u,v)−b−2c+(r−2)a

Er−1
(u,v)−c

Er
(u,v)−c

.

2. If D1
(p,q) is the highest stable term of the n-th D1-column, there is a

tower of monomorphisms

E∞
(p,q)+b

= Et
(p,q)+b

֌ · · · ֌ E3
(p,q)+b

֌ E2
(p,q)+b

for some t ∈ N. Also, for every 3 ≤ r ≤ t, we have the following
exact sequence

Er
(p,q)+b

֌ Er−1
(p,q)+b

dr−1
(p,q)+b−→ ker(dr−1

(p,q)+2b+c−(r−2)a) ։ Er
(p,q)+2b+c−(r−2)a.

3. We also have
φ(p,q)

φ(p,q)−a

∼= E∞
(p,q)+b

.

4. To apply the induction, we need to find the highest stable term of
the n-th D1-column, say D1

(p,q). We start from an E-term in position
p, q + b that is equal to the E∞-term in that position and apply
induction on k to carry the information through a tower of inclusions
to E-terms in positions p, q − ka+ b.

To see how the results of last sections look, here is Proposition 6.2.1 on
page 148 for general bidegrees:

Proposition 6.4.1. Let {D1
∗,∗, E

1
∗,∗} be an originally vanishing and even-

tually stable exact couple. Assume, for some r0 ≥ 1,

1. Ln ∈ C for every n ∈ N, and

2. Er0
(p,q) ∈ C, where E1

(p,q) runs through all nonzero leftmost E-terms,
and
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3. if D1
(u,v)+sa is the highest stable term of the n-th D-column, then

whenever Er0
(u,v)+sa+b

∈ C, we have Er0
u+p,v+q+sa+b−c

∈ C, for every
p, q.

Then Er0
∗,∗ ∈ C for every r ≥ r0.

• Let {D1
∗,∗, E

1
∗,∗} be an eventually vanishing and originally stable exact

couple.

1. Let D1
(u,v) be the lowest nonzero term of the n-th D1-column. Then

there is a tower of monomorphisms

E∞
(u,v)+b

= Es
(u,v)+b

֌ · · · ֌ E3
(u,v)+b

֌ E2
(u,v)+b

for some s ∈ N.

2. Let D1
(p,q) be the lowest stable term of the n-th D1-column, there is

a tower of monomorphisms

E2
(p,q)−c

։ E3
(p,q)−c

։ · · · ։ Et
(p,q)−c

= E∞
(p,q)−c

for some t ∈ N.

3. Since the exact couple is upward stable we have lim1
r{ker(ir(p,q)−ra)} =

0 and hence the exact sequence

φ(p,q)

φ(p,q)−a
֌ E∞

(p,q)−a−c
→ lim1

r{ker(ir(p,q)−ra)}

implies that
φ(p,q)

φ(p,q)−a

∼= E∞
(p,q)−a−c

.

4. To apply the induction, we need to find the lowest stable term of the
n-th D1-column, say D1

(u,v), start from an E-term in position p, q− c
and apply induction on k to carry the information through a tower
of inclusions to E-terms in positions p, q + ka− c.

6.5 Zeeman-Unfriendly Examples

Zeeman’s comparison theorem is applicable to those spectral sequences
where the entries on the second page have a specific form; i.e., H∗(−; H∗(−)).
But, for example, if we consider the spectral sequence of the total complex
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of a double complex, then Zeeman’s comparison theorem is not applicable
anymore.

In the following three sections, we offer examples of spectral sequences
where their second pages are Zeeman-unfriendly, that is, they are not of
the form Hp(−; Hq(−)), and we can apply the results of this chapter.

6.5.1 Total Complex

Look at [27] for terminologies. Let A be a bicomplex. If A(p,q) = 0 for p < 0
or q < 0 (first quadrant bicomplex), then there is a spectral sequence

E2
(p,q)

∼= Hp(Hq(Ap,−, d
v
p.−), d

h
∗) = Hh

p(H
v
q A) ⇒ HnTot(A).

For a class C of modules closed under extensions we have the following

• If

1. HnTot(A) ∈ C for every n ∈ N, and

2. Hh
0(H

v
q A) ∈ C, for every q ≥ 0, and

3. whenever Hh
p(H

v
0 A) ∈ C, then Hh

p(H
v
q A) ∈ C, for every q ≥ 0,

then Hh
p(H

v
q A) ∈ C, for every p, q ≥ 0.

• If f : A→ B is a morphism of first quadrant bicomplexes and

1. HnTot(A) → Hn Tot(B) is a C-isomorphism for every n ∈ N,
and

2. Hh
0(H

v
q A) → Hh

0(H
v
q B) is a C-isomorphism, for every q ≥ 0, and

3. whenever Hh
p(H

v
0 A) → Hh

p(H
v
0B) is a C-isomorphism, then

Hh
p(H

v
q A) → Hh

p(H
v
q B)

is a C-isomorphism, for every q ≥ 0,

then Hh
p(H

v
q A) → Hh

p(H
v
q B) is a C-isomorphism, for every p, q ≥ 0.

Similarly, we can state the rest of the results of this chapter for the
spectral sequence of the total complex of A.
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6.5.2 Grothendieck Spectral Sequence

All four Grothendieck spectral sequences are Zeeman-unfriendly. We just
mention one of them here.

Let A G−→ B F−→ D be covariant additive functors, where A, B and
D are Abelian categories with enough projectives. Assume that F is right
exact and that GP is left F -acyclic for every projective P in A. Then, by
part 1 in Example 3.2.11 on page 77, for every homomorphism f : A→ B
in A, there are first quadrant (homology) spectral sequences with

(LpF )(LqG)A =⇒ Ln(FG)A

and
(LpF )(LqG)B =⇒ Ln(FG)B.

Now we have the following:

• Let C be a class of modules closed under extensions and

1. Ln(FG)A → Ln(FG)B is a C-isomorphism, for every n ≥ 0,
and

2. (L0F )(LqG)A → (L0F )(LqG)B is a C-isomorphism for every
q ≥ 0, and

3. whenever (LpF )(L0G)A → (LpF )(L0G)B is a C-isomorphism,
then

(LpF )(LqG)A→ (LpF )(LqG)B

is a C-isomoprhism, for every q ≥ 0.

Then (LpF )(LqG)A → (LpF )(LqG)B is a C-isomorphism, for every
p, q ≥ 0.

6.5.3 Bousfield-Friedlander

For the terminologies look at [12] and [5].

Theorem [Bousfield-Friedlander]. Let X be a bisimplicial set satisfying
the π∗-Kan condition, and let ∗ ∈ X0,0 be a base vertex (whose degeneracies
are taken as the basepoints of the sets Xm,n.) Then there is a first quadrant
spectral sequence

E2
(p,q) = πh

p (π
v
q (X)) ⇒ πp+q(diagX).
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The term Er
(p,q) is a set for p+ q = 0, a group for p+ q = 1 and an Abelian

group for p+ q = 2.

If we are lucky and for p + q = 0 and p + q = 1, Er
(p,q) is an Abelian

group then we have the following

• Let C be a class of modules closed under extensions and X be a
bisimplicial set satisfying the π∗-Kan condition, and

1. πn(diagX) ∈ C for every n ∈ N, and

2. πh
0 (π

v
qX) ∈ C for q ≥ 0, and

3. whenever πh
p (π

v
0X) ∈ C, then πh

p (π
v
qX) ∈ C for q ≥ 0.

Then πh
p (π

v
qX) ∈ C for every p, q ≥ 0 and every r ≥ r0.

• Let C be a class of modules closed under extensions and f : X → Y
be a morphism of bisimplicial sets where both sets satisfy the π∗-Kan
condition, and

1. πn(diagX) → πn(diagY ) is a C-isomorphism for every n ∈ N,
and

2. πh
0 (π

v
qX) → πh

0 (π
v
qY ) be a C-isomorphism for q ≥ 0, and

3. whenever πh
p (π

v
0X) → πh

p (π
v
0Y ) is a C-isomorphism, then the

morphism πh
p (π

v
qX) → πh

p (π
v
qY ) is a C-isomorphism for q ≥ 0.

Then πh
p (π

v
qX) → πh

p (π
v
qY ) is a C-isomorphism for every p, q ≥ 0 and

every r ≥ r0.



Chapter 7

Future Projects

The ideas and the questions presented in this chapter are the outcome of
hours of discussions with Dr. Peschke.

7.1 An Abelian Subcategory of Exact Cou-

ples

As Massey has mentioned in [22], p. 369, exact couples and the morphisms
between them form a category, which we show it here by EC.

Proposition 7.1.1. EC is an additive category.

Proof. See [15], p. 260.

Unfortunately, kernel and cokernel of morphisms in EC need not exist
and hence EC does not form an Abelian category, as the following example
shows:

Example 7.1.2. Assume we have a morphism between two short exact
sequences of modules F : SES(1) → SES(2), where, as usual, arrows of
the same color represent exactness

SES(1) :

F

A

f

B

g

C

h

SES(2) : A′ B′ C ′.

177
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By the Snake Lemma, the kernel of this morphism is not necessarily a
short exact sequence; the wavy arrow is not necessarily an epimorphism

ker(F ) ker(f) ker(g) ker(h)

SES(1) :

F

A

f

B

g

C

h

SES(2) : A′ B′ C ′.

Therefore, if we look at the two short exact sequences above as parts of
two exact couples, as shown below, then not every arbitrary nontrivial
morphism between these two exact couples has kernel.

Not an Exact Couple Exact Couple

0

...

Exact Couple

0

...

0

0

0

ker(h)

0

0

ker(f)

ker(g)

ker(h)

0

0

ker(f)

0

?

?

...

?

0

...

0

0

0

C

0

0

A

B

C

0

0

A

0

0

0

...

0

0

...

0

0

0

C ′

0

0

A′

B′

C ′

0

0

A′

0

0

0

...

0

h

g

f

That is, not every morphism in EC has kernel.

However, if we can find a “large enough” subcategory of EC that is
Abelian, then we can define the notion of “exactness” for the morphisms
of exact couples in that subcategory and, as a result, we can talk about
“the short and hence long exact sequence of exact couples” and “the short
and hence long exact sequence of their induced spectral sequences”. In
particular, the comparison theorems we stated in the fifth chapter become
special cases of more general theorems.

First we try to define the notion of an exact morphism of exact couples:

Definition 7.1.3. A morphism of exact couples is called exact if its image
is an exact couple.
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Lemma 7.1.4. A morphism of exact couples is exact if and only if its
kernel is exact.

Proof. Consider the following segment of a ladder of long exact sequences
of modules

· · · A
i

f

B
j

g

C

h

· · ·

· · · A′ i′

B′
j′

C ′ · · ·
and consider the following diagram where the middle row is exact

· · · ker(f) ker(g) ker(h) · · ·

· · · A
i

f

B
j

g

C

h

· · ·

· · · im(f) i′ im(g)
j′

im(h) · · · .

(7.1)

Note that by exactness of the middle row, we know that the composite
of the dashed arrows in the middle of the following diagram is zero. By
applying the Snake Lemma on the dashed morphisms between the following
two vertical short exact sequences and some diagram chasing

· · · ker(f)
i|

ker(g)
j|

ker(h) · · ·

im(i|) im(j|)

· · · A
i

f

B
j

g

C

h

· · ·

im(i) im(j)

· · · im(f) i′ im(g)
j′

im(h) · · ·

im(i′) im(j′)

we can show that in (7.1), the first row is exact if and only if the third row
is exact.

Using this observation, we see that the kernel of a morphism between
two exact couples forms an exact couple if and only if its image forms an
exact couple.
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Corollary 7.1.5. A morphism of exact couples is exact if and only if its
cokernel is exact.

Proof. The image of a morphism from the first exact couple to the second
one is the kernel of the morphism from the second exact couple onto the
cokernel of the original morphism. So we are done by the previous lemma.

Now, for every two exact couples EC(1) and EC(2) in EC, we can
define the subset of homEC(EC(1), EC(2)) consisting of exact morphisms
from EC(1) to EC(2), and show it by homEX(EC(1), EC(2)). Since the
zero morphism is exact, the set homEX(EC(1), EC(2)) is nonempty. The
question is

Do exact couples with morphism sets homEX(−,−) form an Abelian
subcategory of EC?

The following questions also arise, where some of them can be answered
regardless of the answer to the question above,

• What is the effect of an exact morphism on the E∞-distribution di-
agrams?

• How can we define the short exact sequence of exact couples and the
induced spectral sequences?

• How we can compare two short exact sequences of exact couples and
the induced spectral sequences?

7.2 Multiplicative Pairing of Spectral Se-

quences

As a generalization of the already existing notion of multiplication on a
spectral sequence, e.g., cup product in cohomology spectral sequences, we
can “pair” two spectral sequences into another spectral sequence.

Definition 7.2.1. A multiplicative pairing of two spectral sequences (Er(1)
, dr(1)) and (Er(2), dr(2)) in (Er, dr) is a family of morphisms

µr
(p,q);(u,v) : E

r
(p,q)(1)⊗ Er

(u,v)(2) → Er
(p+u,q+v)
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for r ≥ k > 0, such that for x⊗ y ∈ Er
(p,q)(1)⊗ Er

(u,v)(2), we have

dr(µr(x⊗ y)) = µr(dr(1)(x⊗ y)) + (−1)p+qµr(x⊗ dr(2)(y)).

Now, the following questions arise:

• What is the interaction between the differentials and pages of these
three spectral sequences?

• What is the relationship between the E∞-distribution diagrams of
these spectral sequences?

• What is the interaction with the notion of exact morphism in the
previous section?
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Appendix A

Colimit and Limit

Colimit. Let C be a category, J a small category, X ∈ Obj(C) and ϕ :
J → C a functor. The family of morphisms uj : ϕ(j) → X, j ∈ Obj(J ),
are called cone over X or cone from ϕ to X, if the triangles

ϕ(j)
ϕ(u)

uj

ϕ(j′)

uj′

X

commute for all u : j → j′ in J . Let

cone(ϕ,X) := {all cones from ϕ to X},

then cone(ϕ,X) is a proper set as J is small.

Definition A.0.2. A colimit for ϕ is given by

• an object L = colimϕ in C and

• a cone λ in cone(ϕ,L)

with the following property: for every cone u from ϕ to an arbitrary element
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X in C where the following diagram commutes

ϕ(j)

λj

uj

ϕ(u) L X

ϕ(j′)

λj′

uj′

there exists a unique function g : L → X such that uj = g ◦ λj and
uj′ = g ◦ λj′ for every j, j′ ∈ Obj(J ).

The proof of the following theorems can be found in standard literatures
on homological algebra, for example see [27].

Theorem A.0.3. Let J be an arbitrary small category and ϕ be a functor
from J to the category of R-modules, for an arbitrary ring R. Then colimϕ
exists.

Theorem A.0.4. If the set of objects of a small category J is directly
ordered, then colimJ is an exact functor; i.e., if α, β and γ are three
functors from J to a category C such that for every j ∈ J we have a short
exact sequence

α(j) ֌ β(j) ։ γ(j)

then we get a short exact sequence

colimj∈J α ֌ colimj∈J β ։ colimj∈J γ.

Limit. Let C be a category, J a small category, X ∈ Obj(C) and ϕ : J →
C a functor. The family of morphisms vj : X → ϕ(j), j ∈ Obj(J ) are
called cone from X to ϕ if the triangles

ϕ(j)
ϕ(v)

ϕ(j′)

X

vj vj′

commute for all v : j → j′ in J . Let

cone(X,ϕ) := { cones from X to ϕ } ,

then cone(X,ϕ) is a set as J is small. cone(−, ϕ) is a contravariant functor.
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Definition A.0.5. A limit for ϕ is given by

• an object Z = limϕ in C and

• a cone ρ in cone(Z, ϕ)

with the following property: for every cone u from an arbitrary element X
in C to ϕ where the following diagram commutes

ϕ(j)

ϕ(v)X

vj

vj′

Z

ρj

ρj′

ϕ(j′)

there exists a unique function g : X → Z such that vj = ρj ◦ g and
vj′ = ρj′ ◦ g, for every j, j′ ∈ J .

The proof of the following theorems can be found in standard literatures
on homological algebra, for example see [27].

Theorem A.0.6. Let J be an arbitrary small category and ϕ a functor
from J to the category of R-modules, for an arbitrary ring R. Then limϕ
exists.

Theorem A.0.7. If the set of objects of a small category J is inversely
ordered, limJ is a left-exact functor; i.e., if α, β and γ are three functors
from a small category J to a category C such that for every j ∈ J we have
a short exact sequence

α(j) ֌ β(j) ։ γ(j)

then we get an exact sequence

lim
j∈J

α ֌ lim
j∈J

β → lim
j∈J

γ →
1

lim
j∈J

α →
1

lim
j∈J

β ։
1

lim
j∈J

γ.

Note that lim1 is defined as follows: Let ᾱ :
∏

j∈J α(j) →
∏

j∈J α(j) be
defined by ᾱ(xj) = (xj − α(u)(xj+1)), for u : j + 1 → j. Then lim

j∈J
α(j) =

ker(ᾱ) and
1

lim
j∈J

α(j) = coker(ᾱ).
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Appendix B

Homotopy Localization

We borrow the following from [11] and [16]: Let X be a CW-complex and
f : A → B be a cofibration between two CW-complexes. We say that X
is f -local if f induces a weak homotopy equivalence

fX : BX → AX

where BX and AX are given compact-open-K-topology. Let λ be a limit
ordinal whose cardinality is greater than that of [0, 1] × (A ⊔ B). Define
L0X := X and assume that LηX is given, where η is an ordinal less than
the limit ordinal λ. Define Lη+1X := L1LηX, where L1X is the homotopy
pushout in the following diagram

A×XB
f×1

1×f∗

B ×XB

1×f∗

A×XA

f×1

A×XA
⊔

A×XB B ×XB

ev

f
∐

f∗

B ×XA

X L1X

and ev is the evaluation map. If η is a limit ordinal, define LηX :=
colimβ<η L

βX. We define the homotopy localization of X to be the homo-
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topy colimit of the following transfinite tower

X = L0X → L1X → · · · → LηX → Lη+1X → · · ·

and we show it by LfX. We have the following facts

1. Lf is a homotopy functor and for every CW-complex X, LfX is
f -local.

2. For every ordinal η < λ, LηX → Lη+1X is a cofibration. Therefore,
we can define LfX as the colimit of the tower of cofibrations above.

3. If the map ϕ : X → Y is a weak homotopy equivalence, then so is
Lf (ϕ).

4. If X is f -local, then X → L1X is a weak homotopy equivalence and
thus so is X → LηX, for every η < λ. For such X we have a weak
homotopy equivalence X → LfX.
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Appendix C

5-Lemma Modulo a Class of
Modules

The following is an exercise in [19] where C is a class of Abelian groups:
See [19] for Hu’s definition of a class of Abelina groups. Here, we prove it
when C is a class of modules closed under extensions.

Lemma C.0.8. (5-Lemma mod C) Consider a commutative diagram
with exact rows

A1
f1

H1

A2
f2

H2

A3
f3

H3

A4
f4

H4

A5

H5

B1 g1
B2 g2

B3 g3
B4 g4

B5.

1. If H2 and H4 are C-monomorphisms and H1 is a C-epimorphism, then
H3 is a C-monomorphism.

2. If H2 and H4 are C-epimorphisms and H5 is a C-monomorphism, then
H3 is C-epimorphism.

3. If H1, H2, H4 and H5 are C-isomorphisms, then so is H3.

Proof. 1. Since f3(ker(H3)) ⊂ kerH4 and ker(H4) ∈ C, then f3(ker(H3))
∈ C. Then if we show f3|ker(H3) by i3, we have the following short
exact sequence

ker(i3) ker(H3)
i3

im(i3)
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and im(i3) ∈ C. If we show that ker(i3) ∈ C, then ker(H3) ∈ C and
H3 is a C-monomorphism:

Since ker(i3) ⊂ ker(f3) and ker(f3) = im(f2), then for some Ā2 ⊂ A2

we have a surjection Ā2 ։ ker(i3). Since

g2(H2(Ā2)) = H3(f2(Ā2)) = H3(ker(i3)) = {0}.

So H2(Ā2) ⊂ ker(g2). Since ker(g2) = im(g1), then for some B̄1 ⊂ B1

we have a surjection B̄1 ։ H2(Ā2). There is an injection

B̄1 + im(H1)

im(H1)
֌

B1

im(H1)

and since
B1

im(H1)
= coker(H1) ∈ C we have

B̄1 + im(H1)

im(H1)
∈ C and

since
B̄1 + im(H1)

im(H1)
∼= B̄1

B̄1 ∩ im(H1)

then
B̄1

B̄1 ∩ im(H1)
∈ C. We have the following cases:

(a) B̄1 ∩ im(H1) = 0: In this case, B̄1 ∈ C and hence H2(Ā2) ∈ C.
Since ker(Ā2 → H2(Ā2)) ⊂ ker(H2) and ker(H2) ∈ C, then
ker(Ā2 → H2(Ā2)) and hence Ā2 are in C. Therefore, by the
surjection Ā2 ։ ker(i3) we have ker(i3) ∈ C.

(b) B̄1 ∩ im(H1) 6= 0: In this case, for some Ā1 ⊂ A1 we have a
surjection Ā1 ։ B̄1 ∩ im(H1). We also know that f1(Ā1) ⊆
ker(f2). So we have an epimorphism Ā2+ f1(Ā1) ։ ker(i3) and
hence an epimorphism

Ā2 + f1(Ā1)

f1(Ā1)
։ ker(i3). (C.1)

We have

H2(f1(Ā1)) = g1(H1(Ā1)) = g1(B̄1 ∩ im(H1)) ⊆ H2(Ā2).

Therefore, H2(Ā2+f1(Ā1)) = H2(Ā2). There is an epimorphism

B̄1

B̄1 + im(H1)
։

g(B̄1)

g(B̄1 + im(H1))
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and since
B̄1

B̄1 + im(H1)
∈ C, we have g(B̄1)

g(B̄1 + im(H1))
∈ C. Since

we have
g(B̄1)

g(B̄1 + im(H1))
=

H2(Ā2)

H2(f1(Ā1))

we also have
H2(Ā2)

H2(f1(Ā1))
∈ C. In the following diagram

f1(Ā1) ∩ ker(H2) f1(Ā1) H2(f1(Ā1))

(Ā2 + f1(Ā1)) ∩ ker(H2) Ā2 + f1(Ā1) H2(Ā2)

(Ā2 + f1(Ā1)) ∩ ker(H2)

f1(Ā1) ∩ ker(H2)

Ā2 + f1(Ā1)

f1(Ā1)

H2(Ā2)

H2(f1(Ā1))

since ker(H2) ∈ C, then (Ā2 + f1(Ā1)) ∩ ker(H2)

f1(Ā1) ∩ ker(H2)
∈ C and hence

the last row of the diagram shows that
Ā2 + f1(Ā1)

f1(Ā1)
∈ C. There-

fore, by epimorphism (C.1) we have ker(i3) ∈ C and we are done.

2. It can be proved similarly.

3. It follows from parts 1 and 2.
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Appendix D

Diagrams

ker(ρn+σ)

⋂

r F(p,q)−ra 0
⋂

r F
(p,q)+b+c−ra

⋂

r φ(p,q)−ra
...

⋂

r φ
(p,q)+b+c−ra ...

... F(p,q)−a lim1
r Z

r
(p,q)+b

... F (p,q)+b+c

ρn+σ

φ(p,q)−a

ρn|

lim1
r ker(i

r
(p,q)+b+c−ra) φ(p,q)+b+c

ker(ρn|)

u(p,q)

F(p,q) δ(p,q) lim1
r ker(i

r
(p,q)+b+c−ra) coker(ρn+σ|)

v(p,q)+b+c

δ(p,q)+b+c F (p,q)+b+c+a

ρn+σ

φ(p,q)

ρn|

...
ǫ(p,q) E∞

(p,q)+b

Z∞
(p,q)+b

im(j1(p,q))
ǫ(p,q)+b+c φ(p,q)+b+c+a ...

ker(ρn|) ... coker(u(p,q)) coker(v(p,q)+b+c) coker(ρn+σ|) ...

⋃

r F(p,q)+ra

⋃

r F
(p,q)+b+c+ra

⋃

r φ(p,q)+ra im(ρn)
⋃

r φ
(p,q)+b+c+ra ker(ρn+σ

n+σ)

Ln ker(In+σ
n+σ )

Generalized E∞-Distribution Diagram
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Ln limr φ(p,q)−ra ker(Ln+σ → Ln+σ)

∼=

limr

Ln

φ(p,q)−ra
lim1

rφ(p,q)−ra lim1
tZ

t
(p,q)−ra+b limr

ker(Ln+σ → Ln+σ)

φ(p,q)−ra+b+c

... lim1
t ker(i

t+1
(p,q)+b+c−(r+t)a)

...

Ln

φ(p,q)−(r+2)a
lim1

t ker(i
t
(p,q)+b+c−(r+t)a)

ker(Ln+σ → Ln+σ)

φ(p,q)−(r+1)a+b+c

Ln

φ(p,q)−(r+1)a

φ(p,q)−ra

φ(p,q)−(r+1)a

E∞
(p,q)−ra+b

Z∞
(p,q)−ra+b

im(j1(p,q)−ra
)

φ(p,q)−(r−1)a+b+c

φ(p,q)−ra+b+c

ker(Ln+σ → Ln+σ)

φ(p,q)−ra+b+c

Ln

φ(p,q)−ra

φ(p,q)−(r−1)a

φ(p,q)−ra

E∞
(p,q)−(r−1)a+b

Z∞
(p,q)−(r−1)a+b

im(j1(p,q)−(r−1)a)
φ(p,q)−(r−2)a+b+c

φ(p,q)−(r−1)a+b+c

ker(Ln+σ → Ln+σ)

φ(p,q)−(r−1)a+b+c

...
...

Ln

φ(p,q)−a

ker(Ln+σ → Ln+σ)

φ(p,q)+(s−1)a+b+c

Ln

φ(p,q)

ker(Ln+σ → Ln+σ)

φ(p,q)+sa+b+c

0 0

E∞-Distribution Diagram of an Eventually Stable Exact Couple
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Ln

∼=

lim1
tZ

t
(p,q)−ra−c

limr

Ln

φ(p,q)−ra

lim1
t ker(i

t+1
(p,q)−(r+t)a)

...

lim1
t ker(i

t
(p,q)−(r+t)a)

Ln

φ(p,q)−(r+1)a

E∞
(p,q)−ra−c

φ(p,q)−(r−1)a

φ(p,q)−ra

Ln

φ(p,q)−ra

E∞
(p,q)−(r−1)a−c

φ(p,q)−(r−2)a

φ(p,q)−(r−1)a

Ln

φ(p,q)−(r−1)a

...

Ln

φ(p,q)−a

Ln

φ(p,q)

0

E∞-Distribution Diagram of an Eventually Vanishing Exact Couple
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H1(n)

...

Hβ(n)

...

colimβ<η0 Hβ(n)

ρη0 (n)
. . .

...

Hη0(n)

βu,v

. . . D1
(u,v)α(u,v)

Hη0+1(n)

βu,v+a

D1
(u,v)+aα(u,v)+a

. . .

...
. . .

...
. . .

Hη0+r(n)

βu,v+ra

D1
(u,v)+raα(u,v)+ra

...
...

. . .

colimr Hη0+r(n)

ρη0+ω(n)

βη0+ω

Lnαη0+ω

Hη0+ω(n)

...

Hλ(n)

Matching Originally Stable Exact Couples to a Directed Tower
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F0(n− σ) F 0(n)

...
...

Fβ(n− σ) F β(n)

...
...

colimβ<η0 Fβ(n− σ) colimβ<η0 F
β(n)

Fη0(n− σ)
Fη0(n− σ)

colimβ<η0 Fβ(n− σ)
coker(ρη0(n− σ)) ker(ρη0(n))

F η0(n)

colimβ<η0 F
β(n)

F η0(n)

...
...

Fη0+r−1(n− σ) F η0+r(n)

Fη0+r(n− σ)
Fη0+r(n− σ)

Fη0+r−1(n− σ)
ǫ(u,v)+ra−b−c E∞

(u,v)+ra−c ǫu,v+ra
F η0+r+1(n)

F η0+r(n)
F η0+r+1(n)

...
...

colimη<λ Fη(n− σ) colimη<λ F
η(n)

Fλ(n− σ)
Fλ(n− σ)

colimη<λ Fη(n− σ)
coker(ρλ(n− σ)) ker(ρλ(n))

F λ(n)

colimη<λ F η(n)
F λ(n)

Hλ(n− σ) ker(H1(n) → Hλ(n))

E∞-Distribution Diagram Corresponding to Matching Originally Stable
Exact Couples to a Directed Tower
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hn(X1)

... hn−1(X1)

hn(Xβ) ...

... hn−1(Xβ)

colimβ<η0 hn(Xβ)

ρη0 (n)
∼=

...

colimβ<η0 hn−1(Xβ)

ρη0 (n−1)
∼=

...
∼=

...
∼=

· · · 0 hn(Xη0)

∼=

0 hn−1(Xη0)

∼=

· · ·

· · · hn+1(Fη0) hn(Xη0) 0 hn−1(Xη0)

∼=

· · ·

· · · hn+1(Fη0+1) hn(Xη0+1) hn−1(Fη0) hn−1(Xη0) · · ·

· · · hn+1(Fη0+2) hn(Xη0+2) hn−1(Fη0+1) hn−1(Xη0+1) · · ·

...
...

· · · hn+1(Fη0+r) hn(Xη0+r) hn−1(Fη0+r−1) hn−1(Xη0+r−1) · · ·

...
...

hn(hocolimrXη0+r)

ρη0+ω(n)

∼=

hn−1(hocolimrXη0+r)

ρη0+ω(n−1)

∼=

hn(Xη0+ω) hn−1(Xη0+ω)

...
...

hn(hocolimη<λXη) hn−1(hocolimη<λXη)

Transfinite Tower of Cofibers
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H1(n)

...

Hβ(n)

...

colimβ<η0 Hβ(n)

ρη0 (n)

. . .
...

. . . 0

Hη0(n) . . . D1
(u,v)α(u,v)

. . .

Hη0+1(n) D1
(u,v)+aα(u,v)+a

. . .

...
. . .

...
. . .

Hη0+r(n) D1
(u,v)+raα(u,v)+ra

...
...

. . .

colimr Hη0+r(n)

ρη0+ω(n)

Lnαη0+ω

Hη0+ω(n)

...

Hλ(n)

Matching Originally Vanishing Exact Couples to a Directed Tower
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F0(n)

...

Fβ(n)

...

colimβ<η0 Fβ(n)

Fη0(n)
Fη0(n)

F η0
(n)

coker(ρη0(n))

...

Fη0+r−1(n)

Fη0+r(n)
Fη0+r(n)

Fη0+r−1(n)
E∞

(u,v)+ra+b

Fη0+r+1(n)
Fη0+r+1(n)

Fη0+r(n)
E∞

(u,v)+(r+1)a+b

...

colimη<λ Fη(n)

Fλ(n)
Fλ(n)

colimη<λ Fη(n)
coker(ρλ(n))

Hλ(n)

E∞-Distribution Diagram Corresponding to Matching Originally
Vanishing Exact Couples to a Directed Tower
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hn(X1)

... hn−1(X1)

hn(Xβ) ...

... hn−1(Xβ)

colimβ<η0 hn(Xβ)

ρη0 (n)
∼=

...

colimβ<η0 hn−1(Xβ)

ρη0 (n−1)
∼=

...
...

· · · ∼= hn+1(Fη0) 0 0 0 · · ·

· · · hn+1(Fη0+1) hn(Xη0)
∼= hn(Fη0) 0 · · ·

· · · hn+1(Fη0+2) hn(Xη0+1) hn(Fη0+1) hn−1(Xη0)
∼= · · ·

· · · hn+1(Fη0+3) hn(Xη0+2) hn(Fη0+2) hn−1(Xη0+1) · · ·

...
...

· · · hn+1(Fη0+r+1) hn(Xη0+r) hn(Fη0+r) hn−1(Xη0+r−1) · · ·

...
...

hn(hocolimrXη0+r)

ρη0 (n)

∼=

hn−1(hocolimrXη0+r)

ρη0 (n−1)

∼=

hn(Xη0+ω) hn−1(Xη0+ω)

...
...

hn(Xθ) hn−1(Xθ)

...
...

hn(hocolimη<λXη) hn−1(hocolimη<λXη)

Transfinite Tower of Cofibrations
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Hλ(n)

...

Hη0+ω(n)

ρη0+ω(n)

limr H
η0+r(n)

βη0+ω

Ln
αη0+ω

...
. . .

...

Hη0+r(n)

βu,v−ra

D1
(u,v)−raα(u,v)−ra

...
. . .

...
. . .

Hη0+1(n)

βu,v−a

. . . D1
(u,v)−aα(u,v)−a

Hη0(n)

ρη0 (n)

βu,v

D1
(u,v)α(u,v)

. . .

...
. . .

limβ<η0 H
β(n)

...

Hβ(n)

...

H1(n)

Matching Eventually Stable Exact Couples to an Inverse Tower
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H1(n)

Fλ(n)

limη<λ Fη(n)

Fλ(n)
coker(ρλ(n)) ker(ρλ(n+ σ))

limη<λ F
η(n+ σ)

F λ(n+ σ)

ker(Hλ(n+ σ) → H1(n+ σ))

F λ(n+ σ)

limη<λ

H1(n)

Fη(n)
lim1

η<λFη(n) lim1
η<λF

η(n+ σ) limη<λ

ker(Hλ(n+ σ) → H1(n+ σ))

F η(n+ σ)

...
...

lim1
r ker(i

r
(u,v)−ra+b+c

)

H1(n)

Fη0+r+1(n)

Fη0+r(n)

Fη0+r+1(n)
ǫ(u,v)−ra E∞

(u,v)−ra+b

Z∞
(u,v)−ra+b

im(j1(u,v)−ra
) ǫu,v−ra+b+c

F η0+r−1(n+ σ)

F η0+r(n+ σ)

ker(Hλ(n+ σ) → H1(n+ σ))

F η0+r(n+ σ)

H1(n)

Fη0+r(n)

Fη0+r−1(n)

Fη0+r(n)
ǫ(u,v)−(r−1)a E∞

(u,v)−(r−1)a+b

Z∞
(u,v)−(r−1)a+b

im(j1(u,v)−(r−1)a)
ǫu,v−(r−1)a+b+c

F η0+r−2(n+ σ)

F η0+r−1(n+ σ)

ker(Hλ(n+ σ) → H1(n+ σ))

F η0+r−1(n+ σ)

...
...

H1(n)

Fη0(n)

limβ<η0 Fβ(n)

Fη0(n)
coker(ρη0(n)) ker(ρη0(n+ σ))

limβ<η0 F
β(n+ σ)

F η0(n+ σ)

ker(Hλ(n+ σ) → H1(n+ σ))

F η0(n+ σ)

limβ<η0

H1(n)

Fβ(n)
lim1

β<η0
Fβ(n) lim1

β<η0
F β(n+ σ) limβ<η0

ker(Hλ(n+ σ) → H1(n+ σ))

F β(n+ σ)

...
...

H1(n)

Fβ(n)

ker(Hλ(n+ σ) → H1(n+ σ))

F β(n+ σ)

...
...

H1(n)

F0(n)

ker(Hλ(n+ σ) → H1(n+ σ))

F 0(n+ σ)

0 0

E∞-Distribution Diagram Corresponding to Matching Eventually Stable
Exact Couples to an Inverse Tower
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limη<λ πn(Xη) limη<λ πn−1(Xη)

...
...

limr πn(Xη0+r) limr πn−1(Xη0+r)

...
...

· · · πn(Xη0+r) πn(Fη0+r) πn−1(Xη0+r+1) πn−1(Fη0+r+1) · · ·

· · · πn(Xη0+r−1) πn(Fη0+r−1) πn−1(Xη0+r) πn−1(Fη0+r) · · ·

...
...

· · · πn(Xη0)

∼=

πn(Fη0) πn−1(Xη0+1) πn−1(Fη0+1) · · ·

· · · πn(Xη0)

∼=

0 πn−1(Xη0)

∼=

ρη0 (n−1)

πn−1(Fη0) · · ·

· · · πn(Xη0)

∼=

0 πn−1(Xη0)

∼=

0 · · ·

... limβ<η0 πn(Xβ) ...

... limβ<η0 πn−1(Xβ)

πn(Xβ) ...

... πn−1(Xβ)

πn(X1) ...

πn−1(X1)

Transfinite Tower of Fibers
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Hλ(n)

...

Hη0+ω(n)

ρη0+ω(n)

limr H
η0+r(n)

βη0+ω

Ln

...
. . .

...

Hη0+r(n)

βu,v−ra

D1
(u,v)−ra

...
. . .

...
. . .

Hη0+1(n)

βu,v−a

. . . D1
(u,v)−a

Hη0(n)

ρη0 (n)

βu,v

. . . D1
(u,v)

. . .

0 . . .

limβ<η0 H
β(n) ...

. . .

...

Hβ(n)

...

H1(n)

Matching Eventually Vanishing Exact Couples to an Inverse Tower
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ker(ρλ(n))
limη<λ F

η(n)

F λ(n)

ker(Hλ(n) → H1(n))

F λ(n)

lim1
η<λF

η(n) limη<λ

ker(Hλ(n) → H1(n))

F η(n)

...

lim1
r ker(i

r
(u,v)−ra)

E∞
(u,v)−ra−b ǫu,v−ra

F η0+r−1(n)

F η0+r(n)

ker(Hλ(n) → H1(n))

F η0+r(n)

E∞
(u,v)−(r−1)a−b ǫu,v−(r−1)a

F η0+r−2(n)

F η0+r−1(n)

ker(Hλ(n) → H1(n))

F η0+r−1(n)

...

ker(ρη0(n))
limβ<η0 F

β(n)

F η0(n)

ker(Hλ(n) → H1(n))

F η0(n)

lim1
β<η0

F β(n) limβ<η0

ker(Hλ(n) → H1(n))

F β(n)

...

ker(Hλ(n) → H1(n))

F β(n)

...

ker(Hλ(n) → H1(n))

F 0(n)

0

E∞-Distribution Diagram Corresponding to Matching Eventually
Vanishing Exact Couples to an Inverse Tower
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limη<λ πn(Xη) limη<λ πn−1(Xη)

...
...

limr πn(Xη0+r) limr πn−1(Xη0+r)

...
...

· · · πn(Xη0+r) πn−1(Fη0+r+1) πn−1(Xη0+r+1) πn−2(Fη0+r+2) · · ·

· · · πn(Xη0+r−1) πn−1(Fη0+r) πn−1(Xη0+r) πn−2(Fη0+r+1) · · ·

...
...

· · · ∼= πn(Xη0) πn−1(Fη0+1) πn−1(Xη0+1) πn−2(Fη0+2) · · ·

· · · 0 πn−1(Fη0)
∼= πn−1(Xη0)

ρη0 (n−1)

πn−2(Fη0+1) · · ·

· · · 0 0 0 πn−2(Fη0)
∼= · · ·

... limβ<η0 πn(Xβ) ...

... limβ<η0 πn−1(Xβ)

πn(Xβ) ...

... πn−1(Xβ)

πn(X1) ...

πn−1(X1)

Transfinite Tower of Fibrations
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