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Abstract

Distributed queueing is known to be a complex problem to model because of the high degree of
interaction between many stochastic processes. This makes classical analytic techniques inadequate
for modeling the problem. An algorithmic model is presented instead of an analytical one. Algorith-
mic probability is a methodological way of thinking. Instead of following a rigorous mathematical
approach until the final solution is achieved, mathematical representation is used until the best point
is reached for applying algorithms and data structures. So the modeling problem is transformed to
algorithms that can be implemented as a software package. Algorithmic probability is also known
as the linear algebraic approach for stochastic models and matrix analytic methods in stochastic
models.

We present efficient algorithms in this thesis to compute performance measures for a network of
DQDB stations. The algorithms capture details of the protocol that would make a classical solution
intractable. A discrete time semi Markov process of the M/G/1 type is defined for a tagged node in
the queue. The input processes to the node are assumed to be Poisson, general renewal and Bernoulli
processes for the arrival of segments, empty slots and requests respectively. By computing the
steady state probability distribution of the semi Markov process the buffer occupancy distribution
is derived. An algorithm to compute the distribution of the renewal process at the output of
the node is presented. This algorithm makes a network wide solution possible by computing the
buffer occupancy of the first node, computing the output process which is the input to the second

node, solving the second node and repeating the process until the last node is computed. Finally



an algorithm for the waiting time distribution is presented. Numerical examples are plotted and

compared with simulation results.
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Chapter 1

Introduction

In this thesis an Algorithmic model is presented to the basic distributed queueing protocol of the

IEEE (802.6) DQDB network. Two questions here might arise,

¢ What is the motivation behind modeling the DQDB network ?

e Why Algorithmic techniques ?

To answer the first question, recall that mathematical modeling is the science of representing physical
systems and phenomena using an analytic model. The analytic model is then analyzed to give
insight about the behavior of the corresponding physical system or phenomena. Throughout the
history of modeling it appeared that there are many abstract mathematical representations that have
corresponding realizations in unrelated areas. For example Markov Chains, Semi Markov Processes,
Renewal Processes, Random Walks, to name a few. have applications in Telecommunications, Civil
Engineering, Management Science, Industrial Engineering, Computer Science etc. So modeling a
complex protocol like DQDB may yield techniques and algorithms to solve other distributed protacols
and problems in other areas in general.

To answer the second question, note that in the past analytic models used the classical techniques
of representing a problem with a transform equation and solving that equation either by inversion or

numerically. Classical techniques failed to model many complex problems. So researchers moved to



advanced techniques of which algorithmic probability is one. Algorithmic research yielded systematic
algorithms to solve a general paradigm of problems. For example problems that can be represented
with G/M/1 type matrices can be solved using the techniques in [Neu8l}. On the other hand
problems that can be represented with M/G/1 type matrices can be solved using techniques in
[Neu89]. It is hoped that this thesis contributes to modeling distributed systems using algorithmic

probability.

1.1 Objectives

In modeling a physical system, two models differ from each other in the details of the physical
system that they capture. For example a natural picture has infinite refresh rate, as many colors
as the eye can see and unlimited resolution. One model for this picture is on a black and white
monitor with low refresh rate and limited resolution. We can enhance this model by increasing
the resolution or refresh rate or by using a color monitor. In stochastic models assumptions are
made to simplify the problem. These assumptions depend on the particular problem to be modeled.
By eliminating these assumptions we can get better models that represent the system. Most of the
DQDB literature models the busy slots on the forward bus by the memoryless geometric distribution.
The only exception for that was [CGLN94] where the authors used an n*? order Markov process. So
correlations depended on the past n slots. In this thesis a general renewal process is used to preserve

all the correlations on the bus after the occurrence of an empty slot.

1.2 Contributions and Contents

This thesis has three main contributions. The first, in chapter 3, is a discrete time semi Markov
process of M/G/1 type representation for a DQDB node with Poisson arrivals, general renewal
process for the forward bus and a Bernoulli process for the backward bus. The state matrices depend

on the location of the node in the network. Initially the state matrices have quadratic dimensions.



After some relabeling and reduction iterative algorithms are computed over sub matrices with linear
dimensions. Solution of this discrete time semi Markov process using the techniques in [Neu89] yield
the buffer distribution for a node. The second, in chapter 4, is the output process. By the output
process we mean the distribution of the continuous stream of busy slots at the output of the node
on the forward bus. The output process is derived from the semi Markov process defined in chapter
3. By approximating the arrivals on the reverse bus by a Bernoulli process, an overall approximate
network analysis is possible. The third, in chapter 5, is the waiting time distribution at each node.

The model was implemented in C language and the results are compared with simulation.

1.3 History of the Thesis

This thesis is the outcome and experience of two projects. In the first time I was a student at the
university of Alberta. I spent 15 month on the thesis from January 1992 until April 1993. In April
1993 I had a car accident and did not submit the thesis as I had health problems and other things to
take care of. During that time at the University of Alberta I learned Algorithmic Probability. It was
a step ahead of classical modeling. It needed strong background in stochastic models and algorithms.
I made a2 model for one DQDB node, but unfortunately the model was impractical to implement.
The model assumed an nf* order Markov process to model the arrival of busy slots on the forward
bus. The state matrices grew exponentially with the order of the Markov process and was thus hard
to implement. [ quit research and worked as a professional engineer to finance my plastic surgeries
after the car accident until October 1995. My supervisor sent me a paper [CGLN94] that resembled
my old model to a great extent. The difference is that they had an approximate algorithm for the
output process so that an overall network analysis was possible. Also, they approximated each node
by a FIFO while I used a state matrix to model the actual protocol.

Two things made me decide to do a new model. First [ wanted to complete the project for
TRlabs who gave me a scholarship for that purpose during my first enrollment at the Untversity of

Alberta. So I personally funded this new thesis by working in Electronic Research Institute (ERI)



in the morning and working on the new thesis in the afternoons. Second | was motivated by the
paper | read and felt that [ was on the right track and may be I can make an enhanced model. [

spent about 18 month in the new thesis beside my work at ERI.



Chapter 2

The Distributed Queue Dual Bus

Network

2.1 Introduction

The Distributed Queue Dual Bus (DQDB) has been adopted by the IEEE Standards Committee
as the IEEE 802.6 standard for Metropolitan Area Networks [Sta90]. In this thesis an algorithmic
approach is presented for modeling the basic distributed protocol of DQDB. This chapter is intended
as an overview of the distributed queueing protocol. In Sections 2.2 and 2.3 the architecture and
the basic protocol of DQDB are presented respectively. The architecture is explained independently
as it is almost the same for a class of protocols that employ distributed queueing. These protocols
employ different “add-on” strategies to improve fairness and throughput of the basic distributed
queueing protocol. For a good survey for such protocols the reader is referred to [MC92]. In Section
2.4 the interactions between different parameters are explained to give insight to the reader about
the stochastic behaviour of the protocol. In Section 2.5 previous analytic models relevant to the

thesis are reviewed.
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Figure 2.2: Access Control Field

2.2 The Dual Bus Architecture

A DQDB network consists of two unidirectional buses and a series of nodes attached to it as shown
in Fig (2.1). Nodes observe the activity on each bus as a sequence of empty and busy slots. Slots
traverse the bus starting from the slot generator (Head of the Bus) until they reach the sink. The
length of each slot was chosen by the standard committee to be 53 octets in order to be compatible
with the ATM standard. Information is transmitted in 48 octets while the other 5 octets are used
as a header. The first octet in the slot is the Access Control Field (ACF) with the format shown
in Fig (2.2). Although the request field is formed from 3 bits, only 1 bit is used by the standard.
The busy bit and the request bit of the ACF are used by the access protocol to coordinate the
transmission between nodes. Messages arriving at the node may be partitioned into segments equal
to slot size before they are transmitted on the bus. The segments are reassembled into the original
message at the destination node. In this thesis arrivals of busy slots will be referred to as packet
arrivals while internal arrivals will be referred to as segment arrivals. Bus A (the Forward Bus) and

Bus B (the Reverse Bus) have opposite directions in order to achieve full duplex communications.



For a node with index i, nodes with index j > i are called downstream nodes with respect to
bus A while nodes with index j < i are called upstream nodes. Full duplex communications is
achieved between two nodes ¢ and j, i < j, by using Bus A for transmission from i to j and Bus B
for transmission from j to i.

Each node has two taps that connect it to a bus, one for reading and the other for writing. The
node reads the busy bit at the beginning of the slot and then one of the following three scenarios

takes place,

o [f the bit is set then the slot is carrying a packet. The node reads the packet if it is destined

to it, otherwise, it just leaves it to traverse the bus.

e If the bit is unset and the Medium Access Control (MAC) protocol decides to use the first
empty slot for transmsission, then the node uses the writing tap to set the busy bit and writes

the segment in the information field.

¢ The node leaves an empty slot to pass to downstream nodes in one of two cases. Either it has
no segments to transmit, or the (MAC) protocol decides not to transmit the segment and just

passes the slot to downstream nodes.

The (MAC) protocol decides whether to leave an empty slot or not according to reservations made
by downstream nodes. Downstream nodes reserve empty slots on Bus A by sending requests on Bus
B to upstream nodes. Similarly upstream nodes reserve empty slots on Bus B by sending requests
on Bus A to downstream nodes. A node sends a request by setting the request bit in the ACF of
the first slot in which the request bit is unset.

Several access protocols appeared in the literature that employ this architecture. In the next
subsection the basic distributed queueing protocol is presented. It is worth noting that the access
protocol described in the next section has many problems such as unfairness in overload conditions
and bad throughput because the busy slots cannot be reused once they are read [vAWZ90, Won39].
So many schemes were introduced in the literature such as bandwidth balancing [HCMS90] and

erasure nodes to solve such problems. The new protocols employ almost the same architecture.
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These protocols are not presented in this thesis as the only concern here is to model the basic
distributed queueing protocol using algorithmic methods and show its complexities. It is hoped that
such techniques can be extended to more complex protocols employing the dual bus architecture

and other similar architectures.

2.3 The Distributed Queueing Protocol

In this section, segment transmission is considered on Bus A with the reservations made on Bus
B. The procedure is the same for transmission on Bus B with segment reservations made on Bus
A, due to the symmetry of the network. A node monitors the transmission on Bus A by keeping
track of two counters the request counter and count-down counter. Note that there are two similar
counters for Bus B so that we have request counter(A), request counter(B), count-down counter(A)
and count-down counter(B). Unless otherwise stated, in this thesis both counters are related to Bus
A. A node is either idle “has no segments to transmit” or busy “has segments to transmit”™ as shown
in Fig 2.3. If the node is busy it is in the count-down state and we reserve the term busy to a busy
slot on the Forward Bus. The two intermediate states, T1 and T2, show the actions performed by
the protocol during transitions from the idle and count-down states. The state diagram is due to
(Bis92] with minor modifications.

In the idle state the request counter is incremented by every request on Bus B and decremented
by every empty slot on Bus A. In other words its value gives the total reservations by the downstream
nodes minus the satisfied reservations which gives the total unsatisfied requests. Note if the request
counter is zero it is not decremented by empty slots.

On the arrival of a segment for transmission the node transits to the count-down state passing
by the state T1. In the state T1 the request counter is copied to the count-down counter to record
the number of reservations to be satisfied, empty slots to be passed to downstream nodes, before
transmitting the segment. A request is queued to be transmitted on Bus B in the first slot that has

the request bit unset. This request registers a reservation for this segment in all upstream nodes so
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Figure 2.3: The DQDB state diagram

that they pass an empty slot for it.

In the count-down state the count-down counter is decremented by the observation of an empty
slot on Bus A and the request counter is incremented by requests registered on Bus B. When the
count-down counter reaches zero the node transmits the segment in the next empty slot (state T2
in Fig 2.3). During the count-down time the accumulated requests in the request counter are the
reservations made by downstream nodes. These reservations have to be satisfied before the node
can transmit a new segment. So in the case when there are more segments to be transmitted, the
node must move back to state T1 and the loop is then repeated. The loop through the states Tl
, Count Down and T2 is repeated until all segments are transmitted and then the node enters the

idle state.

2.4 Stochastic Dependence of the Protocol Parameters

This subsection is intended to show the dependencies of different protocol parameters by intuition. It

is meant to help the reader understand the complexity of the DQDB protocol and the shortcomings
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Figure 2.4: A tagged DQDB node

of existing models.

2.4.1 The Busy Period

The total time (in slots) spent in the loop between the states T1 , Count Down and T2 is the busy

period from the viewpoint of node i, and is denoted by Typ. Clearly
Top=Tear + Tear + .. -+ Tear (2.1)

where T.4n is the count-down time of the n** segment in the busy period. T.4 is the count-down
time of the last segment in the busy period. Note that the count-down time is the time of transition
from state T1 to state T2 passing through the Count Down state. The duration of Ti.q4, is dependent
on the requests accumulated during Ted(n—1) by the request counter from downstream nodes on bus
B, and is also dependent on the number of empty slots passed by the upstream nodes on bus A. For

the special case of Teq; it is dependent on the unsatisfied requests at the end of the idle period.

2.4.2 A FIFO Queue with Zero Inter-nodal Delay

Let us assume that the inter-nodal delay is zero, although in reality it is 2 measurable quantity in
slots. Consider a tagged node as shown in Figure 2.4. The operation of the node can be thought of as
a FIFO queue with a server that has vacations. The server here is an empty slot passed by the LNET

(up stream Nodes). The vacations are the number of busy slots between successive empty slots on
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bus A. Also it can be modeled by a server that has a general service time. Customers to the FIFQ
are of two types: internal segments and requests from the R_NET (down stream nodes). Because of
the zero inter-nodal delay the requests from nodes down stream are registered in time thus taking
the appropriate position in the FIFO queue of the tagged node. This method of approximation
was used in the literature in [PGS90, CGL9la, CGL92a, CGLN94]. The first problem with this
approximation is that in reality the arrival process is a function of queue parameters. So it would
be more appropriate to model it as a queue with feedback or a controlled queue. To demonstrate
this intuitively, the following scenario is presented. Assume that a node i in the L_NET has an
overload, i.e. it will not pass an empty slot except when it receives a request on the reverse bus.
Assume that node j is the rightmost active node in the R.INET. Requests from node j constitute
arrivals to the tagged node. From the DQDB protocol node j cannot queue a new request until
the segment corresponding to the previous request has been transmitted, (refer to state TI in
Figure 2.3). Therefore, with this scenario node j will not send a new request to the tagged node
until the previous one has been served by the tagged node. Hence, the arrival process of requests to
the FIFO is dependent on the delay in the FIFO and the service time of the FIFO.

The second problem with this approach is that, even if we ignore this feedback, the arrivals of
requests and segments to the FIFO are related. This can be explained by considering the busy period
discussed in Subsection 2.4.1. The number of requests between the n** segment S, and the n + 14
segment S, 4 in the FIFO is equal to the requests registered during the n** count-down time Ted(n)-
Hence, the number of requests between two successive segments is a function of the count-down time
of the first one. Clearly this phenomenon has to be modeled by an arrival stream to the FIFO that
captures the dependence between segment and request arrivals. Therefore, modeling the arrivals of
segments and requests to the FIFO by two independent arrival sources is another approximation.

Hence the approximation of the DQDB MAC protocol at the tagged node by a FIFO queue
with two independent arrival streams, internal segments and requests from R_NET. ignores the

dependence of request arrivals on parameters from L.NET and tagged node arrivals. [t would be
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a better approximation to model the MAC protocol as a FIFO with feedback or a FIFO with two

dependent sources.

2.4.3 The Effect of Inter-nodal Delay

Consider two nodes with indices i and i + 1 with inter-nodal distance d slots where d is an integer.
Assume that the two nodes are the only active nodes in the network and that both nodes are under
overload conditions. In other words the segment queues of both nodes are never empty. Since node
t is the upstream node it observes only empty slots on the forward bus. [t then transmits in all the
slots except for the slots it passes to satisfy node i + | requests. The question is what is the rate of
empty slots passed to node i + 1 ? Clearly it is a function in the inter-nodal delay d. Node i + 1
sends a request on the reverse bus that arrives at node i after d slots, then node ¢ honors the request
by passing an empty slot on the forward bus that arrives at node i + 1 after d slots. After node i+ 1
transmits the segment it can send another request to node i. In the meantime node i uses all the
other slots. So the first effect of inter-nodal delay is on the throughput of the stations and this is
the main reason of the unfairness in the DQDB protocol. For a detailed account of this effect the

reader is referred to [Won89, vAWZ90].

2.4.4 The Effect of Correlated Requests

Throughout the bibliography of DQDB the arrivals of requests on the reverse bus were modeled by
the memoryless Bernoulli process [Bis90, CMM95, CGL89, CGL91b, CGL9la. CGL92b. CGL92a,
CGLN94, PGS90]. Also, in this thesis, a Bernoulli process is used to model the arrivals of requests on
the reverse bus. In reality arrivals of requests are correlated and modeling them by the memoryless
Bernoulli process is an approximation. The approximation was mainly adopted in the literature
to make the solution tractable. Little insight into the DQDB protocol shows that requests are
correlated. Consider a tagged node as in Figure 2.4, and assume it is in the busy period. The tagged

node will not send a request on the reverse bus unless the current segment is transmitted on the



forward bus. So that the duration between successive requests placed by the tagged node on the
reverse bus depends on the waiting time of segments in the queue. Also this duration depends on
the rate of requests arriving from the downstream nodes. By this simple argument. it easy to see
that the duration between successive requests on the reverse bus is not geometrically distributed as

the Bernoulli process.

2.4.5 The Effect of Correlated Busy Slots

As with requests on the reverse bus, busy slots on the forward bus have been modeled in the literature
by a Bernoulli process except in [CGLN94]. In [CGLN94] the authors used an n** order Markov
process to model the arrivals of busy slots on the forward bus. The process preserved the correlations
up to the past n*? slot. Unfortunately the state matrices of the model grew exponentially with n
and the model is practical only for small n. The theoretical contribution of the model in [CGLN94]
is great. It influenced this thesis, where the arrivals of the busy slots are modeled by a general
renewal process and the state matrices are independent of this renewal process.

A little insight into the DQDB protocol can show that the busy slots are correlated. Consider
the tagged node in Figure 2.4 and consider two durations ,T.q; and T.qo, between three successive
transmissions in the busy period. T.42 consists of a mixture of empty and busy slots passing by the
node on the forward bus. The number of empty slots in T.42 depends on the number of requests
accumulated in the request counter during T.4; which clearly depends on the length of T.4 . Hence
busy slots generated by one node are correlated and this means that busy slots on the forward bus

are correlated.

2.4.6 The Effect of Position Dependence

The effect of position dependence is the main consequence of inter-nodal delay. The position of the
node in the network affects all of its performance parameters. For example it was stated in [(CMM95]

that a node will not accumulate requests in it greater than the number of nodes downstream except
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in rare negligible situations. Although the authors showed this by extensive simulation. one can
sense this result intuitively from the mechanics of the DQDB protocol. Clearly the waiting time
distribution is affected by the maximum accumulated requests which is dependent on the position

of the node in the network.

2.4.7 The coupled nature of the stochastic processes observed by a tagged

node

The stochastic dependencies of the DQDB protocol parameters are circular . Consider the tagged
node in Figure 2.4, we will show that empty slots on the forward bus coming from LNET depend
on requests coming from R.NET and vice versa.

The dependence of empty slots on the forward bus on the requests from the reverse bus is clear
from the DQDB protocol. It is the dependence of the requests on the reverse bus on the empty slots
on the forward bus that is less clear. To show the latter, recall that nodes in the R.NET will not
schedule a request on the reverse bus until the previous segment is transmitted on the forward bus.
This transmission depends on the empty slot stream leaving the tagged node on the forward bus.
Hence the dependence is now obvious. It is this coupled nature that makes the protocol analytically
intractable. Some authors adopted the approximation in [CGL91a] to reduce the complexity of the

problemn. The same approximation is used in this thesis see Section 3.3.2.

2.5 Previous Models

In this section analytic models of DQDB are reviewed. Other models of DQDB that depend on
simulations and asymptotic analysis are not reviewed. Although these models added to the under-

standing of DQDB, but they are not relevant to the work in this thesis.



-

2.5.1 Analytic Models assuming Bernoulli arrivals on the Forward Bus

In [Bis90] an analysis for the waiting time distribution in a DQDB node is presented using generating
functions. The author did not provide a network wide model but rather a single node model. The

main assumptions are

Packet arrivals on the forward bus are modeled by a Bernoulli process with parameter a equal

to the probability of a busy slot.

Request arrivals on the reverse bus are modeled by a Bernoulli process with parameter 3 equal

to the probability of a request.
e Node buffer is of size one

e Segment arrivals at the node are geometrically distributed with parameter e~* equal to the

probability of no arrivals.

The author defined the concept of the virtual request counter VRQ_C'T R where

CDCTR+1 when the user is active
VRQCTR =

RQCTR when the user is idle

Let the value of the virtual request counter at the instant of the arrival of the n** packet be F,.
The sequence {F,;n > 1} forms a Markov chain. After cumbersome algebraic manipulations, the
author derived a functional equation for the generating function of the virtual request counter at
arrival instants, see equation (34) in [Bis90).

The derivation depended on the generating function of the conditional waiting time W (i) which
had an error as pointed out in [CMM95, page 875). Finally the author obtained an expression for
the generating function of the waiting time in equation (37). At the end of the paper some numerical

examples were plotted for different values of the parameters a, 8 and A.



Although there was an error in the derivation, the model was one of the early models that showed
the complexity of the DQDB modeling problem. The author did not show how to determine the
parameters @ and 3, so a network wide model was not possible.

The model was extended in [JP92] by Jing and Paterakis using the same approach to the case
where the buffer can queue a message of size I. They modified the definition of the virtual request

counter to

CD_CTR when the user is active
VRQ.CTR =

RQ_.CTR when the user is idle

Then a transform equation for the message delay analysis was derived. The single node model
in [JP92] was extended to a network wide model in [JP95] by the same authors. In [JP95] an
approximate method, based on the analytic results in [JP92], for computing a; and 3; is given.
Where a; is the probability that the i*# node observes a busy slot on the forward bus and J; is the
probability that it observes a request on the reverse bus.

An analytic model by Chen et al. [CMM95] was also based on the work in [Bis90]. The authors
did major changes to the assumptions and methods used in the model. Although they had an
approximate madel. they showed deep insight in the behavior of DQDB. The authors don't follow
a rigorous analytic approach using generating functions as in [Bis90] and [JP92]. They used a
numerical iterative approach instead. The main insight gained from their work is the upper bound
on the number of requests queued in a node. In [Bis90] and [JP92] the state space is assumed to
be infinite and this in turn unrealistically over-estimates the waiting time distribution. Also the
authors recognized the dependence of the arrivals of busy slots on the forward bus and the requests
on the reverse bus on the node state. So they defined @ and 3 as a function of the node state and
they called it the modified geometric distribution. They then provided an approximate iterative

scheme to compute these parameters for each node in a network-wide model.
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In another study by Stavrakakis and Tsakiridou in [ST93, ST94] a matrix analytic approach
was used. The occupancy distribution is derived from an M/G/1 type Markov chain embedded at
packet departures. They assumed that the number of requests queued in a node is bounded just as
in [CMM95]. Based on that the levels of the M/G/1 type chain correspond to packets queued in the
node and the phase corresponds to number of requests in the node at the point of departure. They
assumed Bernoulli processes for both of the arrivals of empty slots and requests on the forward and
reverse buses respectively. They computed the buffer distribution for one node and did not extend
it to a network-wide model. A major difference between this model and the model presented in
Chapter 3 is the location of the embedding points of the Markov chain of the M/G/1 type. In the
paper they used the packet departure instants and in the thesis we used the empty slots arrivals. [t is
only because of this choice that we could use a process other than Bernoulli to model the arrivals of
busy slots. Also in this thesis the state matrices of the M/G/1 type process captures the mechanics

of the DQDB protocol in a more detailed way.

2.5.2 Analytic Models Assuming Correlated arrivals on the Forward Bus

In a series of papers [CGL89, CGL91b, CGL91a, CGL92b, CGL92a] Conti et al. analyzed the
behaviour of DQDB using simulation and classical analysis. In these papers the authors introduced
an approximation to break the circular dependence, see Section 2.4.7, of the stochastic processes that
arise in DQDB. The approximation is to model the arrival of requests on the reverse bus as observed
by a node using a process with the same average arrival rate [CGL91a]. The authors then used the
approximation to solve for a network wide model in [CGL92a]. In [CGL92a] they modeled the slot
occupancy on the forward bus by a first order Markov process to capture the interdependence of
the slots on the forward bus. The authors together with M.F. Neuts then published a paper that
models the busy slots on the forward bus by an n'® order Markov process [CGLN94] and solved
the model using matrix analytic methods. Their work in studying the interdependence of busy slots

is unique. All other models in the literature, to our knowledge, assumed independence and hence
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modeled busy slots by a Bernoulli process. We will only review the model in [((GLN94] as it is the
outcome of the efforts made in the other papers. A simplified DQDB is modeled with the following

assumptions,

¢ A Poisson process is introduced at each node to model the arrivals of the requests from down-

stream nodes.

As in the DQDB network, the forward bus is slotted and each slot is either busy or empty.

e Nodes are numbered from | to K

The MAC protocol of each node is modeled by a queue where requests and segments are stored
on a FIFO basis. Every node reduces its queue by one whenever it sees an empty slot. The

slot remains empty if there is a request at the head of the queue and zero otherwise.

The arrival process to the queue is Poisson with parameter A(i) = As(i) + Ag(i). where Ag(i)
and Ag(t) are arrival rates of segments and requests, respectively. As{i) depends on the workload
characterization, whereas

K
Ar(i) = Y As(d)
J=i41

The probability that a queued packet is a request is

Ar(i)

Preq = 3 as 0

and
Pseg(i) = | = Preq(i)

To preserve the correlations among the busy slots on the Forward Bus the state of n successive
slots is considered. The binary random variable S} represents the state of the j** slot at the i**
node input which can be either empty (E) or busy (B). So the tuple {Sis1 .- Sty Jrepresents
the state of the input process to the i** node at time m. Increasing n results in good approximations

but increases the problem dimensions exponentially. Computing the output process at node i is the
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process of computing transition probabilities of the states {S,¥}, ... ¥} }. The random variable
A! is zero if the i** node does not transmit in the n*? slot and one otherwise. It is easy to observe

that

Sivt = B ifA; =1 (2.2)
S ifAl =0

By solving the M/G/1 type Markov chain given by {(Si,A1),...,(Sn,An), Ln} , where L, is
the queue length at time n, the transition probabilities can be computed for the output process as
shown in Section 4 of [CGLN94]. The dimensions of the state matrices of the M/G/1 type Markov
chain depends on the order of the Markov process that is used to model the forward bus. So if the
Markov process is of the n*? order then the matrices will have dimensions equal to 3*. This increases
the computational time dramatically as the steady state probabilities depend on the fundamental

period matrix G which is computed iteratively see Appendix A.6. This paper influenced the work

in this thesis as follows

e The same simplified DQDB is used to approximate the original DQDB and reduce the problem

complexity.

e Correlations on the forward bus in the paper is preserved by an n** order Markov Process

while in the thesis it is modeled by a general independent renewal process.

e The node operation in the paper is approximated by a FIFO while in the thesis the original

protocol is captured in the state matrices of an M/G/1 type semi Markov process.

e The state matrices of the M/G/1 type chain used in the paper has exponentially growing
dimensions with respect to the chain. In the thesis they have quadratic dimensions with
respect to the maximum numbers of requests that can be accumulated. Iterations are done on

linear matrices because they are sparse.



2.6 Thesis Model

In this section a high level description of the algorithm used to compute the buffer occupancy
distribution for each node in a DQDB network is outlined. This section serves as a road map to the
thesis. Before the analysis of any node in a DQDB network is performed three stochastic processes

have to be determined. These are
1. The arrivals of segments to the node.
2. The arrivals of empty slots on the forward bus.
3. The arrivals of requests on the reverse bus.

For each node only the arrivals of segments are known, except for the first node and the last node.
For the first node the arrivals of empty slots take place with probability one since no nodes are
before it to transmit. For the last node the arrivals of requests take place with probability one. The
problem now is to determine the arrivals of empty slots and requests at internal nodes. Notice that
the arrivals of requests to node n depends on arrivals of requests to node n+1, also arrivals of empty
slots to node n depends on arrivals of empty slots to node n-1. If we consider the first node. arrivals
of requests to the first node affect arrivals of empty slots to the second node. Also. if we consider the
last node, arrivals of empty slots to the last node affect arrivals of requests to the node before last.
So we have here a circular dependence of the arrivals of empty slots and requests. Representing the
whole network by one Markov chain to get an exact solution is impossible due to the huge number of
states. Any practical model would have to consider modeling nodes individually after determining
the arrivals at each node.

In this thesis we used the same overall algorithm used in [CGLN94], but the analysis of each
node is completely different. The overall algorithm used in [CGLN94] is to approximate arrivals of
requests on the reverse bus by another process that has the same average arrivals. In this thesis
we used geometric distribution. After this approximation the only unknowns would be the arrivals

of empty slots on the forward bus. Since the arrival of empty slots for node 1 is known. we start
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the analysis from that node. We compute the buffer distribution for node 1 then we compute
the output process which constitutes the arrivals of empty slots to node 2. The computation is
repeated successively for all nodes until the last node is analysed. At the end, the algorithm will
have computed the buffer distribution for each node at the instants of the occurrence of empty slots.
The buffer distribution at these instants is then used to compute the waiting time distribution for
segments at each node. In Chapter 3 a Markov renewal model of the M/G/1 type is presented for
each node. The steady state probability vector of the embedded chain gives the buffer distribution
at renewal epochs. In Chapter 4 an algorithm for the output process is presented. In Chapter 5 an

algorithm for the waiting time distribution is presented.
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Chapter 3

A Markov Renewal Representation

of a DQDB node

3.1 Introduction

In this Chapter a DQDB node is modeled using a discrete time Markov renewal process of the
M/G/1 type. In Section 3.2 an overview of Markov renewal processes of M/G/1 type is presented.
The intention of the overview is to give the reader an overall perspective of the concept without
distracting attention with formulas and proofs. This overview will help as a guide as we proceed
to represent the node in Sections 3.3 and 3.4. For a comprehensive reference on Markov renewal
process of the M/G/1 type the reader is referred to the book by Neuts [Neu89j. A summary of the
algorithms and results in this book is given in Appendix A. In Section 3.3 the arrivals of empty slots
on bus A are characterized by a Renewal process. In Section 3.4 a Markov renewal process is defined
for the node at the renewal epochs of the process defined in Section 3.3. The main goal of this model
is to take into account the correlations of busy slots on the Forward Bus (Bus A). In the model
presented in this Chapter the arrivals of packets on the Forward Bus has a general distribution and

the arrivals of requests are assumed to be a modified binomial distribution. In Section 3.5 reduction
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and reordering of the embedded chain is done in order to speed the computation of the first passage

times.

3.2 An Overview of Markov Renewal Processes of M/G/1

Type

Markov renewal processes of M/G/1 type are a subset of semi Markov processes. Semi Markov
process are a generalization of Markov chains. In Markov chains the next state is completely deter-
mined by the current state and hence it is memoryless with respect to the past. As a consequence
of this the sojourn time in any state in a discrete time Markov chain is geometrically distributed.
In the case of continuous time Markov chains it is exponentially distributed. This is because the
exponential distribution is the only memoryless distribution in the case of continuous time see for
example [Kle75, pages,45,46] for a proof or {Fel57, page, 413]. Similarly the Geometric distribution
is the only memoryless distribution in discrete time see for example [Fel57, pages,304.305]. In semi
Markov processes the next state depends on the state at the last transition not the current state.
Therefore, the sojourn time is general and the interest is in the embedded chain at transition times.
Semi Markov processes have a broad spectrum of applications because of the general distribution of
the sojourn times. Markov renewal processes of M/G/1 type are a class of semi Markov processes

that have M/G/1 state structure.

3.2.1 Levels and System states

In M/G/1 state structure, states have two dimensions the first is called levels and the second is called
system states. The set of levels can be infinitely countable while system states are finitely countable.
Note that the division of states to two dimensions is a logical division to help solve the problem in
a structured way but as a matter of fact they can be thought of as one dimension. For example the

variant of the M/G/1 queue where the server takes a maintenance period after the m*# service can
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be modeled by a Markov renewal process of M/G/1 type [Neu89, pages,64-63). Here alevel I,. n > 0
corresponds to n customers being in the queue, and the m system states {S;,0 < i < m} correspond
to a set of logical states in which the server has different service times. Service in the m*? state is
different from the first m — | states as the maintenance period is added to it. By merging levels and
system states in the tuple (I, S;) we can have the one dimensional perspective in which each state
correspond to a tuple.

The importance of the above concept may not be obvious with a simple example as the one
given, but this will be clear after presenting a complex model as the one for a DQDB node. It is
possible to model the DQDB protocol in many ways using Markov renewal processes of M/G/1 type
depending on how the system states are defined. System states can actually have many dimensions

as long as when they are reduced to one dimension they are finite.

3.2.2 Transition Probabilities

The transition probabilities for a Markov renewal process of M/G/1 type are given by
Qx’ji'j'(z) =P{l, = iIan =.7"an Lzl =i,Jn = j} (3.1)

where I, and J, are random variables denoting level and system states at the n*? transition epoch
respectively. 7, is a random variable denoting the time between the n‘® and (n — 1)t% transition

epochs. In matrix form we have,

Bo(z) Bi(z) Bi(z) Bs(z)
Co(z) Ai(z) Al(z) As(z)
Qx)= |o Ao(z) Ay(z) As(z) ... (3.2)

0 0 Ao(.‘t) A.l(.‘l.')

The matrix structure given in Equation 3.2 is called an M/G/1 type structure because it is a
generalization of the matrix representing the transition probabilities of the number of customers in

the classical M/G/1 queue. In the classical M/G/! queue the sub matrices A,. B, and C, are
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scalars. In the general M/G/1 type structure these sub matrices are of many dimensions as long as
the number of elements are finite. The matrix structure in Equation 3.2 is called left skip-free for
levels because the process cannot descend from a level i to a level j, j < i, without passing through
all intermediate levels. In other words the number of customers in the M/G/1 queue decreases
by at most | in a single transition. Putting z = oo in Equation 3.2 gives the embedded Markov
chain. Algorithms to solve for the steady state distribution of this chain are given in [Neu89] and
summarized in Appendix A. In the remaining sections of this chapter a Markov renewal process of

the M/G/1 type representation for a DQDB node is outlined.

3.3 Characterization of the Bus Process

The nodes of DQDB are numbered from | to N with node number one at the head-end on the
forward bus and node N at the sink. Node i in the network is tagged as shown in Figure 2.4. In
this section the busy stream on the Forward Bus and the request stream on the Reverse Bus are

characterized.

3.3.1 The Forward Bus

The sequence of empty and busy slots that the tagged node observes is characterized by a renewal
process. When the node observes an empty slot on the bus a renewal takes place. The tagged node
is either idle, “has no segments to transmit”, or in countdown state ,“has segments to transmit”.
While the node is idle the length of busy stream of slots can extend to oc. This can happen with
the following scenario, there is a node upstream with overload and all other nodes are idle. Let the
random variable T;4. denote the time between renewals at the input during idle state of the tagged

node. Let its probability mass function be Pr(Tige = n) = fig.(n) with fidie (0) = 0 and
o
fitre =Y fiare(n) <1 (3.3)
n=1

If fiwre < 1 then the renewal process during the idle period is transient. On the other hand if

fiaqte =1 then the renewal process is recurrent.
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When a segment arrives the node switches to the countdown state and then the time between
renewals becomes bounded by the DQDB protocol. The DQDB protocol implements a distributed
queue algorithm and hence the segment will eventually be transmitted. Transmission of the segment
means that the node will observe an empty slot at the input, i.e. a renewal. Let the time between
renewals during the countdown state be denoted by Tj,,, with an upper bound ¢ma.. The probability
mass function of Thysy is given by fousy(n) = Pr(Thusy = n) with fousy(n) = 0 when n > tp,, or

n = 0. So that

tmax

Z fbu:y(n) =1 (3.4)

n=1

The distinction between the renewal period distribution when the node is idle or in countdown
state is an attempt to take into account the recursive nature of the stochastic process observed
by a DQDB node as discussed in Section 2.4. In this chapter a representation for one node is
given assuming general distribution for both f;4. and fousy. The representation requires that the
polynomial representing the generating function of the distribution be finite. If the polynomialis not
finite it will be truncated at a sufficiently large index where the remaining probabilities are negligible.
The representation in this chapter can be used as an element in an overall network analysis. The
algorithms for the overall network analysis should supply fige and fousy from the output of the
L_net (upstream nodes). If the output algorithms for the L_net compute one distribution fy .. for
renewals independent of the state of the tagged node, then, a good approximation that takes into
account the recursive nature is to set figre = fLnec- An estimate is computed for ¢y, for the tagged

node and then fiusy(n) is computed using conditional probability for n < t .- as follows

fidte (1)
Z::T: fidle (I)

The normalization with conditional probabilities eliminates the unrealistic cases where Tousy >

Pr(Tbluy = n) = Pr(Tidle = nITidle < tma:) = (35)

tmaz- This prevents the model from overestimating the delay that the segment experiences until
transmission.
The time until the first renewal takes place, after switching from the idle period, has a different

distribution and is denoted by the random variable T}p;,. Clearly Tj,;. is bounded in the same way
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as Tpusy and its probability mass function is given by finie(n) = Pr(Tinic = n). With fine(n) = 0

when n > tmqz- So that

tmasx

Y~ finie(n) =1 (3.6)
n=0

In terms of classical renewal theory Tin;: is the residual life and the period in which the arrival
takes place is the life time. Refer to the “Paradox of Residual Life” in [Kle75, pages 169-174]. In
general if the renewal period has a continuous density given by f(t) and a mean m then the life
density is given by

Lf(t) (3.7)

m

Jrige(t) =
and the density of the residual life is given by
1— F(t
Jres(t) = _()' (3.8)
m

where F(t) is the distribution of the renewal period. We want to derive fin;; from fig.. which
have discrete mass functions, using the continuous time Equations 3.7 and 3.8. So we transform the
discrete equations to continuous using delta functions, then derive the result in continuous time and

finally switch back to discrete time. The density of Ti4. has the continuous representation

o3

feiaie(t) =Y fiare(n)d(t — nTy) (3.9)

n=1
where 4(t — a) is the delta Dirac function, see Appendix B.I, and 7, is the duration of a slot on the

bus. The continuous representation of the distribution is given by

Feate(t) = ) fiare(n)u(t — nTy) (3.10)

n=1
where u(t — a) is the unit step function, see Appendix B.2. The density of Tiige Is

oy 2T fiate (n)8(t - nT,)

figet) = = E(tiat)

(3.11)

where E(x) is the expectation of x . And the distribution is given by

Fh‘!e(t) = zflozl nng?‘;i:))u(t - nTy)

(3.12)
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and the discrete representations of the life time density and distribution in terms of slots are respec-

tively given by

fasge(n) = 2pLelt) (3.13)
and
Faife(n) = Z a;.g:‘:f;) (3.14)

i=1

The density of the residual life is given by

1= Y ov fidie (r)u(t — nTy)

res(t) = 3.15
fres () ) (3.15)
and hence its distribution is given by
t~ 3 e figte (n)u(t — nTs)(t — nT,
Freslt) = L= Zonzy frae(W)ull = nT3)(t = nT) (3.16)

E(tiare)
Now to return back to the discrete representation where time is measured by the number of slots

the mass function f4., is defined by

fdres(o) = Fre:(n) (317)
fdrea(n) = Fre:((n + 1)Ts) - Fres((n)ﬁ) (318)

and since T;., is bounded by the DQDB protocol in the same way as Tyusy then

fdres(n) _ fares(n)

finie(n) = Ztmu fdres(l) Fres((tmazn + NT;)

v < lmar (319)

In the calculation of fuise, Fres and finje, the value of T, is not needed as E (tidte) can be calculated

in terms of T, and then T, cancels from the fraction.

3.3.2 The Reverse Bus

To reduce the problem complexity, the approximation given in [CGLY1a] is adopted. In that paper.

the reverse bus is not modeled , and a Poisson process is used to account for the request stream
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of each of the downstream nodes. Let fr.q(t,i) be the probability of i requests in t slots with

freq(t,1) = 0 for ¢ < 0. Then f;.q is given by

[req(t, 1) = pgt (3.20)
i

where p is the probability of a request and g is the probability of no request. The values of p and
q are determined from the total traffic offered by the nodes downstream. It has been shown in
[CMM95] that a node cannot accumulate requests greater than the number of nodes downstream
except in rare situations that have negligible probabilities. Taking this into account we assume that
the sum of C D, and RQ, cannot exceed rpm,. at renewal epochs. The value of rmg,z is different for
each node on the network and depends on the node position on the bus. If at time T}, the sum of
CD, and RQp is rs, then the number of requests registered on the reverse bus during 7,4; cannot
exceed Tmgr — rn + 67,,,. If there is no transmission at T, on the forward bus then v,y =1
otherwise dr,,, = 0. Note that if there is no transmission at T, ,; either the countdown counter or
the request counter will be decremented depending on the node state. Hence we define Sereq(t. 1. )
to be the conditional probability of i requests in ¢ slots given that i cannot be greater than j. Hence

fereq is given by

freq(tv i)

Freq(t, J) G2l

fcreq(ta i.j) =

where Fi.q is the distribution of freq-

3.4 A Markov Renewal model for a DQDB node

In this section a Markov renewal model is formulated for a DQDB node based on the processes
defined in the previous section. It is assumed that propagation delay on the forward bus is equal to
the delay on the reverse bus, internodal delay is always an integer number of slots and slot arrivals
on both bus are synchronized. The random variables that constitute the node state are considered

at the beginning of each empty slot (renewal epoch) and they are defined as follows
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e [, is the number of packets in the system at the beginning of each empty slot after subtracting

the packet transmitted in this slot, if any.

e RQ, is the number of requests in the request counter at the beginning of the n** empty slot

including the one registered on the reverse bus, if any, and after decrementing it if in the idle

state.

e CD, is the number of the requests in the count-down counter at the beginning of the n‘%

empty slot after decrementing it if no transmission took place. If transmission took place then

the state is taken after copying the request counter in it.

e T, is the time at the beginning of the n** empty slot after updating the variables and 7, =

Ta = Thoy.

The pdf of the arrivals of segments at the tagged node is Poisson. and is denoted by o.(t). The

Markov renewal matrix for a DQDB node has its elements given by

Qiijike'(z) = P{l,=i,CDha=j RQun="F, m<cz|

Ino1 =i,CDp_y = j,RQn-1 = k}

and the transition matrix has the structure

Bo(z) Bi(z) B2(z)
Co(z) Ai(z) Az(x)
Q(x)= |o Ao(z) Ai(z)

0 0 Ao(z)

B3(1’)
A3(1‘)
A;(z)

Ay(z)

(3.22)

(3.23)

Each row in the matrix Q(z) is called a level. Levels correspond to number of segments queued

in the node. The first row is level zero, where the node has no queued segments (idle). The matrix
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Q(z) is an infinite matrix of the M/G/! type. The matrices Co(z),A,(z) and B,(z) v > 0 are
square matrices of dimensions rm,z, and their elements are matrices of dimensions rm,:. They have

the general form of matrix X shown below along with its sub-matrices.

[ xOO xOl . xOr...g \
xlo xll . xlr,,..,
X = (3.24)
\ xr....,o xr,...,l ... XTmarfmaz }

XY is a sub matrix that defines the transition probabilities for the states in which the count-
down counter transit from i to j. The elements of each sub matrix define its respective transition

probabilities for the request counter.

i)

[ iy ij
Zado Tor - Torpa
ij ij i
i zy E O o .
X = 0<tj<rmar (3.25)
ij ij ij
\ Irmuzo zrqul ttt xrmnxrma: )

In the next two subsections A,, B, and Cy are defined for the DQDB protocol described in Sec-

tion 2.3.

3.4.1 Transitions from Count-down States. (Level i > 1)

The matrix Cg defines transitions from count-down states to idle states (level 0) in which the
DQDB node has no segments to transmit. The count-down counter has to be zero at T,_, in order
to transrmit the last segment at T,. Since the node enters the idle state then C D, remains zero at

Tn. The requests registered during 7, on the reverse bus are added to the request counter.

¢ The matrix Cg(z) has the following elements

- C{;j (z) = 0 the zero square matrix of dimensions rmgz -+ 1

for j>0and j >0.
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- C3%(z) has elements
* ckk’(:) = Zf:x fcreq([uk, -k, Tmaz — k)¢0(l)fbusy(l)
The matrix Ag defines transitions from states at level (i + 1) to states at level i, i > 0 . A segment
is transmitted at Ty, and no arrivals take place during 7, that is why the process descends one level.
Unlike Cg at T, the node is still in the count-down state, since the queue is nonempty. Therefore.
the request counter is copied into the count-down counter, and this can be easily noticed from the

matrix structure. The request counter is zero at T,,. If there is a request registered on the reverse

bus just prior to Tp,, then it is added to the count-down counter.
o The matrix Ag(z) has the following elements

- A{;j,(::) = 0 the zero square matrix of dimensions ryq; + 1 for j > 0 .
- Agj l(z:) has elements
* ako() = iy fereq(Ld' =k Tmaz = K)$o(l) fousy (1)
¢ g (z) =0 for k>0
The matrices A, (z) for v > 0 are split into two parts such that
Av(z) = Xo(z) + Qu(z)

Y.(z) corresponds to v arrivals and one transmission. 2, (z) corresponds to v — | arrivals and no
transmission. The matrix structure of Y, (z) is similar to the structure of Ay except that here v

arrivals take place instead of no arrivals.
e Y,(z) has its elements defined by

- Y (z) = 0 the zero square matrix of dimensions rmyez + 1 for j > 0 .
- Y% (z) has elements

* Uko(z) = 372 fereq(, 5" = Ky Tmaz = K)o (1) fousy (1)

’

* v (z) =0 for k>0
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The matrix £, (z) defines transitions from states at level i to states at level i+v where i. v > | on the
condition that no transmission takes place at T,,. At T,,_; the count-down cannot be zero otherwise
transmission would take place at T, since the node has segments queued in it. The count-down

counter is decremented by one and the request counter is incremented by the requests during 7,.
e ,(x) has its elements defined by

- ﬂ{j' (z) = 0 the zero square matrix of dimensions rmqz + 1 for j = 0 or j' not equal j — 1.
~ Q37 (z) has elements

* wkk'(z) = Zf:l fcreq(lv k' - kv Tmar — ] -k + 1)¢u-l([)fbu:y([)

when j =j—1,j>0.

The matrices Co(z), Ag(z), Auv(z), YTu(z) and Q. (z) are distribution matrices over r. Their
respective mass matrices are ;,Co(2), mAo(z), mAy(z), mY,(z) and N, (z). Note that Cq(z) =
Y -i=1 mCo(z). and similar relations hold for the rest of the matrices. It is better to compute the
distribution matrices directly by summing over non zero elements only, and not use mass matrices

for summation as they are sparse. This saves computing time.

3.4.2 Transitions from Idle States (level 0)

The renewal period, in which the node switches from the idle state to the count-down state. is
divided into two periods. The first period is the time from the last empty slot (renewal epach) until
the slot where the arrival took place. The second period is the time until the next renewal. The
matrices ®,(z) and =,(z) define the transition probabilities for the two periods respectively. A
special case happens when the node enters the idle state again after the renewal. This happens only
when one arrival takes place between renewals and gets transmitted in the following empty slot. The
matrix ©(z) defines the transition probabilities for this case, given that an arrival has taken place.
The matrices defining the two periods are then convolved to get the transition matrices at level 0.

The conditional probability matrix ¥, (z) is defined as the square matrix of dimensions ryqz + |

33



LW . . .
and its elements ¥I7 (z) are also square matrices of dimensions rmsz + 1. The elements of these

matrices are given by

W% (z) = P{l.=v,CD;=j RQ.=k| (3.26)

Iy =0,...,I:_y =0,CDqo = j, RQo =k}

The slot at time 0 in Equation ( 3.26) is an empty slot during the idle period. The next renewal
takes place after the (z — 1)*® slot. The probability of this event is expressed by multiplying the
elements by (1 — Faige(z — 1)). Faige is used which is the discrete representation of the age
distribution instead of Figr. as the node acts as an observer to the renewal process. Arrivals take
place during the (z—~1)** slot and not before that. /., C D, and RQ; denote the number of packets in
the node, the value of the count-down counter and the value of the request counter at the beginning

of the r*” slot respectively.
e The elements of the matrix ¥,(z) are defined by

- L”Sjlko(-t) = fcreq(l’vj, -k, Tmazr — K)o (z)(1 - Fdli!e(x -1))
— ik (2) = 0 for k' > 0.

— W (2) = 0 for j > 0

where ¢, (z) is the probability that the first arrival is after the beginning of the (z ~1)*” slot and that
there are more v— 1 arrivals until the beginning of the z!# slot. For Poisson arrivals the inter-arrivals

are exponentially distributed with parameter A so ¢, (z) is given by
zT,
eu(z) = / Ae XM p(zT, —t;v— 1) dt (3.27)
(z—-1)T,

where p(t; k) = Qﬁ%.—t and hence

(/\T’)ve—AT,r

- (3.28)

pu(L) =
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The matrices ©(z), Zg(z) and =, (x) are almost similar to the matrices Co(). Ag(r) and A, (r).
The difference is that finic is used here instead of fiusy, and that @(0),Z0(0) and =, (0) have values
instead of the zero matrix. The values at z = 0 account for the case when packets arrive during
the slot immediately before the next empty slot. In this case the residual life is 0 in terms of the
remaining slots, and that is why fin::(0) can be positive unlike fyysy(0) which is equal to zero. Note
that ¢o(0) = 1 and that ¢,(0) = 0 for v > 1. Also fereq(0,0,7) =1 for j > 0 and fereq(0,v,5) =0

forv>1,7>0.

e The matrix ©(z) has the following elements

— @77 (z) = 0 the zero square matrix of dimensions rmgy + | for j > 0 and j* > 0.
— @9%(z) has elements

* 60,:'(2.') = Zf:o fcreq(lv kl -k, Pz ~ k)d’o(l)fxm:(l)

*0,(z)=0 k>0
e The matrix Zg(z} has the following elements

. .I
- E{)’ (z) = 0 the zero square matrix of dimensions rper + 1 for j > 0 .

'
[

- :3" (z) has elements

* Exo(T) = Soiog fereqll i = k. Tmaz — k)éo(l) finie(l)

’

* fkk:(z) =0 for k >0

e The matrices Z,(z) for v > 0 are split into two parts such that =, (z) = =, (z) +é,,(z:). =.(7)

corresponds to v arrivals and one transmission. Z,(z) corresponds to v — 1 arrivals and no

transmission. é,,(z) has its elements defined by
~ SJ7 (z) = 0 the zero square matrix of dimensions rmaz + 1 for j > 0 .

~ ZY% (z) has elements

¢ Exo() = e fereqllsJ = Ky Pmaz — B)By (1) finse (1)

'

¢ Ep(z) =0 for k>0
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é,,(::) has its elements defined by

- i{,’ (z) = 0 the zero square matrix of dimensions rmqz + 1 for j = 0 or j not equal j— 1.
— 247 () has elements

* gkk'(z) = Zf:o fcreq(lvk’ ~k, Pmaz—Jj—k+ l)¢u-l(l)finit(l) when j’ =j-1Lj>1L

The transition probability matrix I'(z) defines the transition probabilities at renewal epochs
during the idle period. It is a square matrix of dimensions rma: + | and its elements '3/ () are

square matrices of dimensions rma> + 1 with scalar entries given by

i (2) = P{I,=0.CDp=0.RQn=Fk,m<z| (3.29)

In-l = O,CDn_l = O.RQn-[ = k}

The matrix I‘jj’(a:) =0 for j >0 or j > 0. The elements of the matrix '%(z) are given by

hd 73000(3) = Zf:[(fcreq(lv 0, "maz + 1) + fcreq(lv l, Pmes + l))¢0(r)fdlije (z)

o 105 (z) = 7L fereq(l k' =k + 1. Pmaz — k + 1)60(z) fatife (z)

for K > 0, k > 0 except when &' = k = 0.

The mass matrices of @(z),=o(z) and E,(z) are denoted by 4, O(z), m=o(z) and =, (z),

respectively. The matrices B, (z) are given by

Bo(z) = ¥(z) 0 O(z) + I'(z) (3.30)
v+l
B,(z) = ) ¥i(z) 0 Zy_iti(2) v>0 (3.31)

i=1

and their respective mass matrices are given by

mBo(z) = ¥1(z) 0 mO(z) + WI(z) (3.32)
v41
mB,(z) = Y Fi(r) 0 mSy_ipy(z) v>0 (3.33)

1=1
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where the o denotes the convolution, with respect to the time z. To compute the transition
probability matrix of the embedded Markov chain we need to compute B, (c0}. Using transforms we

can find an efficient way to do this. For any matrix M(z) we denote its corresponding z transform

(Generating function) by ;M(z), where ;M(z) = Y ;o M(i)z*. Hence the transform equations
are given by
zmBo(2) = 2%1(2) zm®(2) + zmT(2) (3.34)
v+l
zmBu(2) = Y 2¥i(2) zmSumis1(2) v>0 (3.35)

=1

Note that ; ;B,(1) = By(0), z2mE,(1) = Zp(), zm©O(1) = O(cc) and , (1) = D).

So we finally have

Bo(oo) = . ¥,(1)O(c0) + I'(c0) (3.36)
v+1
By(0) = ) 2 ¥:(1)Eyis1(c0) v>0 (3.37)

=1

3.5 Reduction of the Chain

3.5.1 Deletion of States

The matrices Co(z) , A,(z) and B, (z) , v > 0, defines transition probabilities for states at different
levels.

Each state defines a different value for the tuple (CD,, RQ,). Since RQ can take values from
0 to rmaz, and similarly for CD, then there are (rmar + 1)° states. As stated previously the node
will not accumulate requests more than rmgz , so the states where (CD,, + RQn) > rmar can be
deleted. This is done by removing their corresponding rows and columns from the matrices Co(z) .

Ay(z) and B,(z) , v > 0 . The number of remaining states s, is given by

Tmax+1 2
= 3 i hest Iiner +2) (3.38)

i=1

and the number of deleted states s4 is given by

rma:(rma: + l)

2

54 = (Tmaz + 1) =5, = (3.39)
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Originally the number of elements in the state matrices are (rmaz + 1)* and after reduction they are
("2 +3rm¢x+2)2 : : 4 4 - M -
mar~—mez_—~ state. This reduction speeds the computation time of further performance matrices
as they use iterative algorithms.

There is a further reduction at the boundary (level 0). The process never visit the states
(CDy, RQy) where CD, > 0. This is obvious from the DQDB protocol since the count-down
counter can’t take positive values during the idle period. Rows with indices greater than (rpqer + 1)
are deleted from the B, matrices ,v > 0. Columns with indices greater than (rm.r + 1) are deleted

from By and Cy. Finally the dimensiouns of the matrices are
Bo (rmaz+1 X rmar +1)

Co (w X Tmaz + 1)

B, (Tmar + 1 x {martdmast?)) v>0

2 2
A, ((r +32rm¢x+2) % (ra “+32"qu+22) v>0

The states at level 0 have the order shown in Table 3.1.

State 1 2 [N Tmar + 1
Value of (CD, RQ) | (0,0) | (0.1 | ... 1 (0, rmaz)

Table 3.1: Order of states at level 0

The states at level i{,i > | have an ascending order as shown in Table 3.2 for the case where

Tmar = 3.
State 1 2 3 4 5
Value of (CD, RQ) | (0,0) | (0,1) | (0,2) | (0,3) | (1,0)
State 6 7 8 9 10
Value of (CD, RQ) | (1,1) | (1,2) | (2,0) | (2,1) | (3,0)

Table 3.2: Order of states for maximum requests of 3 at level i > 0

3.5.2 Relabeling States

The fundamental period matrix .G , described in section A.6 , is crucial to the computation of

many performance values related to the chain Q(oo). A significant reduction in computation can be
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done if the matrix .G is reducible as discussed in section A.7. The reducibility of .G depends on
the matrix Ao. It is proved by Lemma 2.3.6 in [Neu89, page 95] that for every zero column in A,
there is a zero column in .G. From the definition of Ag it has zero columns whenever RQ, > 0
i.e. k' > 0. So the number of nonzero columns in .G is equal to the number of states where
k' = 0 which is equal to rmer + 1. The matrices A, and B, are relabeled by reversing the tuple

(CDy, RQy) to (RQ,,CD,) as shown in table [ 3.3] for the case where rpq.. = 3.

State 1 2 3 4 5
Value of (RQ,CD) | (0,0) | (0,1) | (0,2) | (0,3) | (1,0)
State 6 7 8 9 10
Value of (RQ,CD) | (1,1} | (1,2) | (2,0) | (2,1) | (3,0)

Table 3.3: Relabeled order of states for maximum requests of 3 at level £ > 0

Finally the matrix .G can be partitioned as in equation { A.27) and computed as in equations
( A.28) and ( A.29). The matrices involved in the iterations are of dimensions ry.- + | instead of
(r2 42-3r+2) )

The zero rows in the fundamental period matrix expresses the fact that the process will never
enter a level on its first passage with RQ > 0. This is because the request counter is copied to the

count-down counter and then set to zero at the start of a new transmission.

3.6 Summary

In this chapter a Markov renewal model was formulated for a DQDB node. Once the distributions of
segments, requests and busy slots arrivals are determined, the algorithms in [Neu89] ( summarized
in Appendix A ) can be used to compute the steady state distribution of the buffer occupancy at
the beginning of any empty slot. The buffer distribution at these instants is important as it is used

by the output process and the waiting time distribution algorithms presented in the next chapters.
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Chapter 4

Computation of the Output

Process

4.1 Introduction

In Section 3.3 the occurrence of empty slots on the forward bus at the input of a DQDB node bus was
modeled by a renewal process. The renewal period is the number of busy slots between successive
empty slots. The distribution of this period was assumed to be general. Since the node may transmit
in some of the empty slots, the distribution of the renewal period at the output is different from the
input. Successive transmissions by the node concatenates some sequences of busy slots to make the

appear as one sequence in the output. The output process is derived for the following three cases

¢ Assuming successive transmissions are geometrically distributed and independent of busy slot

sequences at the input.

¢ Assuming general distribution for successive transmissions and independence of busy slot se-

quences at the input.
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e Assuming general distribution for successive transmissions and dependence on busy slot se-

quences at the input.

The three cases are documented here, as this was the initial flow of thought, to make it easier for the

reader understand the seemingly complicated matrix recurrence relations of the last exact algorithm.

4.2 The Output Process

Let T} (T?) be the random variable denoting time until the next renewal at the input (output)
respectively. Also let N{ ( N2 ) be the random variable denoting the number of busy slots between
renewals at the input (output) respectively. Clearly T2 = N} + | and at the output we have
T? = Ng + 1. Note that T} and T} are strictly positive random variables, cannot take zero values.
while the number of busy slots between renewals can be zero.

Let Nt be the random variable denoting the number of transmissions in successive renewals

(empty slots at the input). Then
TP = Ni(1) + Ni(2) + .. .Ni (N7 + 1) + Np (4.1)

where Ni(1),.... N{(Nr + 1) are i.i.d, due to our assumption that the arrival of empty slots on
the forward bus is a renewal process, with mass function fy, and transform . N;(z). Note that fn,
and :NNi(z) are the mass function and transform of N} respectively. Let .T,(z) and ..Nr(z) denote

the transforms of T? and Nr. Then .T,(:) is given by
:To(:) = :Ni(z) :NT(: :Ni(:)) (4.2)

Note that z .Nj(z) is just the transform of fiy. of Section 3.3. A simple algorithm to com-
pute equation (4.2) is to compute the polynomial .Np(z) and substitute the polynomial in the
equation (4.2). If we assume that N; has a geometric distribution with a parameter p equal to the

probability of transmission in a slot. In that case .T,(z) is given by

P = Ni(z)

:To(z) = ] - (l —p)z ;Ni(:)

(4.3)

41



Although this is simple in computation, it destroys the merits of the model which takes into account
the correlations on the bus. Even if we compute .Nr(z) and substitute it in equation (4.2) the
result is still approximate since in deriving equation (4.2), see Appendix C.1, we assumed that Nt is
independent of N}, i > 1, which is not true. In Section 4.3 an algorithm to compute the polynomial
:Nr(z) is outlined, which can then be used to compute .T,(z) approximately. In Section 4.4 an

exact algorithm is outlined to compute .T,(z).

4.3 Approximate Algorithm

The indicator random variable TR, is defined such that it takes the value one if there is transmission
by the tagged node in the empty slot at the end of the n®® renewal period and zero otherwise. The

Markov renewal process Q(z) of equation 3.23 is then expanded to

Qii'jj'kk'll'(z) = P{la=i,CDn=j RQn=4k TRy =11 < z|

[n-l = iv CDYI—I =jy RQn—l = vaRn—l = l} (44)

with transition matrix

-

Bo(z) Bi(z) Ba(z) Bs(e)
Colz) Ai(z) Aa(z) Az(2)
Qx)= | Ao(z) Ai(z) Asz) ... (4.5)

0 0 Ao(z) Ay(z)

The submatrices in Equation 4.5 are defined as follows

- Ao(.’t) 0
Ao(x) = (4.6)

Ao(l‘) 0
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[ ¢ Q
A.(x) = @ @ (4.7)

\Yu(z) Q,(x)

R (Co(z) 0
Co(x) = (4.8)

\ Co(z) ©

. (‘P1(=)°0(-'c) I(z)
Bo(x) = (4.9)

| #1(2)00() T)

B = (23:11‘1’-'(2)05«:-6“(1) T Bilz) 0 Eucina(2) (4.10)

\ i Til@) 0 Buini(z) i Wil@) 0 Bumini(2)

The first row (column) in all the submatrices denotes transitions from (to) transmission states
while the second denotes transitions from (to) idle states. The Markov renewal matrix Q(x) can be

rearranged in a different way to help observe its structural properties as follows

. Qu1(x) Qiz(x)
Q(x) = ik R (4[1)
Q21(x) Q22(x)
where
Q(z) QM(z) QP(x) QP(2)
Co(z) Y(z) Yaiz) Yi(z)
Qui(z) = Qulz) =| 0 Ao(z) TYi(z) TYaz) ... (4.12)

0 0 Ag(z) TYy(2)

and Q%%(z) = ¥, (z) o O(z) and Q¥ (z) = Z”“ O, (z) oé,,_.-.,.x(z), v> 1,

=1

QP%(z) QY(z) QR(z) QP(z)

0 Q(z)  Mafz)  Qlz)
Qu2(z) = Qaa(z) =| o 0 Q) D) ... (4.13)
0 0 0 Ql(l’)
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and Q9%(z) = I'(z) and QY (z) = T0F Wi(z) 0 Byiga(z), v > L.

In order to compute .Nr(z) we consider the embedded chain at co. Let ST be the set of states
where TR = 1 and SE be the set of states where TR = 0. Then Q;; represent transitions from ST
to ST and Q. represent transitions from S€ to SE. The steady state probabilities x of Q are also
partitioned such that x = [x(1) x(2)]. Q11 can be thought of as a transient chain with absorption
taking place whenever it steps in SE via Q2. If Qyy, Qi2, Q21, and Q22 were finite we could have

written

PriNr =k} = x(2)Q21Q}['Q1e

x(2)Q%,Qize (4.14)

where e is a column vector of ones with appropriate dimensions. This is the phase distribution

except that the matrices are infinite, with a special case at the boundary
Pr{NT =0} = x(2)Qaze = x(2)Qi2e (4.15)

In the following we show an algorithm to compute equation (4.14). The steady state prcbability
vectors are finite in practice. In other words, the probability that the Markov renewal process is at

state i decreases as 7 increases. If we write
x(1) = [xo(1),x1(1), - - Xy pas (1)] (4.16)
x(2) = [x0(2),x1(2), - - ., Xu,...(2)] (4.17)
Where we define the max level vmqr as the maximum level such that
x(lle+x(2)e>1—¢

where ¢ is a small value that can be set to the desired precision of computation. The summation
matrices are denoted by a bar to simplify notation. So we have &, = 532 Q., ¥, = &2 T,.

and QM = 370, Q"
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The first step is to compute the conditional probability vectors P.(k) where

P(0) = Qe (4.18)
P(l) = Q2uQize (4.19)
P(k) = QuQii'Qize k>1 (4.20)

Each vector can be partitioned to vyqz + 1 subvectors starting with the 0¢% subvector. Subvectors
with indices greater than vmsr are ignored as they will be multiplied by zeros when these vectors

are multiplied by z(2). The subvectors of P¢(0) are given by

P.(0,0) = Q%e (4.21)

P.(0.1) Qe i>0 (4.22)

and the subvectors of P.(1) are given by

P:(1,0) = Q°Q%%+Q}'Hfle (4.23)
P(l.1) = CoQ¥e+ ¥ e (4.24)
P(l.i) = (Ag+T)e i>1 (4.25)

and in general for k& > |

P.(k,0) = }: QYP.(k - 1,i) (4.26)
=0
Pe(k,1) = CoP.(k—-1,0)+ mzurip,(k- 1,i) (4.27)
i=1
Pe(k,2) = AoP.(k—1,1)+ f‘r;_lP,(k— 1,1) (4.28)
$=2
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and for 7 > 2

Umar

Pe(k,j) = AoPe(k — 1,j~ 1)+ Y YiojuiPe(k — 1,i) (4.29)
i=j
Note that
P(k,j) = (Ao + T1)*Qe Vi k<j (4.30)

Therefore, we need only compute the first k + 2 subvectors of each vector P,(k). Hence

k Umax
Pr{Nr =k} =) xi(2)Pe(k,i) + ( D_ xi(2)Pe(k, k+1) (4.31)
i=0 t=k+1

Equation 4.31 constitutes the algorithm and we need only store one vector of the P (k) at a time

to compute the next one.

4.4 Exact Algorithm

In Section 4.3 the vectors P,(k) were computed by a recursive scheme and were used to compute
Pr{Nt = k}. Pr{Nr = k} can then be fitted to a polynomial to give the transform .Np(z).
:NT(z) can then be used in Equation 4.2 to compute the generating function of the renewals at the
output.

In this section a direct algorithm is outlined to compute Pr{T? = k}. The algorithm takes into
account that N7 depends on N}’s in Equation 4.1.

A third index is added to the vectors P;(k). The new index denotes the number of slots, so
the P.(k,1,z) is the i** conditional probability subvector of k successive transmissions and renewal

period equal to z slots. We can then write

Pg(o, 0, 2.’)

mQ2°(z)e (4.32)

Pi(0,i,z) = mfi(z)e Vi>0 (4.33)

Let the minimum z at which »Q{%(z) , mQ3%(z) , m@i(z) . mTi(z) . mAo(z) and ,,Co(z)

will all vanish be z,4.
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Summing over z we can write

P0,0) = 3. mQP(z)e=QP(z)e
=1
i" m(z)e = Qi (z)eVi > 0

=1

P.(0.7)

and for £ = | we have

P.(1,0,z) = mQ?O(I) ° ngo(z)e'*‘ m —(1"(-1') ° mﬁl(z)e
Pi(l,1,z) = mCo(z)o mQP(z)e+ m¥i(z)o ol (z)e
Pe(l,i,z) = (mAo(z)+ mTi(z))0 mfi(z)e i>1

and the general recurrence equations for ¥ > | are given by

Umar

P(k.0,z) = Y mQ(zx)oPe(k—1.iz)
i=0
Pe(k.l.z) = nCo(z)oPi(k-1,0,z)+
Ui: mYi(z)o Pk —1,1,2)
i=l
Pe(k,j,z) = mAo(z)oPelk-1,j~1,2)+
uf mYXi—jyi(z) o Pe(k = 1,i,z) i>1
i=j

For P¢(k, j,z) the maximum z is Tmaz- (k) where zma- (k) = (k + 1)zmaz-

(4.36)
(4.37)

(4.38)

(4.39)
(4.40)
(4.41)
(4.42)

(4.43)

Note that P.(k.j,z) = 0, Vk > z. In other words we cannot have k transmissions in = < & slots.

So we can write

Pr{T° =t} = mz xi(2) Y Pk, i,¢)
i=0 k=0
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4.5 Summary

In this chapter an algorithm to compute the distribution of the output process is presented. This
algorithm is important to be able to iteratively solve a network wide model. We start by the most
upstream node (node 1). For node 1 the input process is trivial since with probability one all slots
are empty on the forward bus. The model of Chapter 3 is used to compute the buffer distribution
of node 1 then the output process is computed. The output process of node 1 becomes the input of
node 2 and we repeat this sequence until we get the buffer distributions for all of the nodes in the
network.

To be able to solve for the buffer occupancy at each node, the probability of a request arriving
on the reverse bus at each node has to be computed see Section 3.3.2. We adopt the approximation

in [CGL91a], see Section 2.5.2. Hence for a node i in a network of n nodes

n

. . ~T, A
Pr{node i observes no request in a slot} = e p=r

(4.45)

where T} is the duration of a slot and ); is the rate of arrivals at node i. This is the approximation
we used in our implementation to generate network wide results. Note that the model is exact
per node given the assumptions of input to the node, but it is approximate for the network wide

application.
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Chapter 5

Waiting Time Distribution

5.1 Introduction

In this chapter an algorithm for the waiting time distribution is outlined. A segment is tagged and
the waiting time unti! it is transmitted in a slot on the forward bus is studied. Recall that a node
observes activity on the forward bus as a discrete renewal process. Renewal takes place when the
node observes an empty slot. The tagged segment arrives at a point in time in the n'? renewal
period as shown in Fig 5.1.

The renewal period in which the tagged segment arrives has a different distribution. see " Paradox
of Residual Life” in [Kle75, pages 169-174]. Intuitively, it is more likely that the arriving segment

fall in a long renewal period than a short renewal period. The duration of the renewal period

e = empty slot b = busy slot

2, Tgl ‘Tn+l

l el 5! bl bl bl bl B! bl bl bl e

o } o
Tga | Tar

Tagged segment arrival

Figure 5.1: Structure of the renewal period of the tagged segment arrival
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gt = Tn41 — T is divided into two parts, as shown in Fig 5.1, such that 7y = 790 + 7. In terms
of renewal theory, 7 is the life time, 74, is the age and 7, is the residual life.

Suppose that there were i segments in the queue in front of the tagged segment at T,4;. Then
the tagged segment will wait until it observes i transmissions. The tagged segment will further
wait until all the requests accumulated during the #* countdown time are satisfied and then get
transmitted in the next empty slot. The waiting time of the tagged segment is then the sum of the
residual life and the total countdown time, where the total countdown time is the time from Ths1

until the segment get transmitted.

5.2 Transition probabilities for the residual life

The transition probabilities of the state variables of the DQDB node from T}, to T, 4, are defined by
the sequence of matrices R((i, j, k, z, y) if there is no transmission at T, 4, and by Ry (i. j, k, z. y) if

there is transmission at T, 4,. Where

e ¢ is the number of segments in the node at T,,.

J is the number of segments in the node at T, ,,, not including the one transmitted at T,, 4, if

transmission took place.

e k is the number of segments to be transmitted before the tagged segment. It is set to —1 if

the tagged segment is transmitted at T, ;.

e r is the number of slots in residual life.

y is the number of slots in the age not counting the slot of the arrival of the tagged segment.

So the total renewal period is z + y + 1 slots. The function g to compute the probability of arrivals.

during this special renewal period is defined by

(z+1)T,
eliviazg)= [ A plap((e 4y + T, - tiia)de 6-1)
T, s
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At

where p(t; k) = &1:—.‘-— and T is the slot duration. The function g computes the probability of i,
and #, arrivals before and after the tagged segment arrival respectively, with the condition that the

tagged segment will arrive during the (z + 1)®# slot. This integral can be computed, see Appendix

B.3, using
olir iz 2, y) = e~ MEHHIT (AT, )(1+a)
i i e (5.2)
1=0 k=0 kUi, + i — k= [+ 1)!

The matrix Ry(i,j,k,z,y) = 0if j < k+1 < ¢, Vi > 0,Vj > 0. That is, i is decremented by
the transmission at T;, and incremented by the tagged segment arrival if there are no other arrivals.
hence minimum j is equal to i. Also the tagged segment will not observe k transmissions after
residual time if there are j < k + | segments in the node. Finally & cannot be less than i — |
otherwise the segment is transmitted before the ones ahead of it in the queue. The tagged segment
can be transmitted at T, 4, only if the node was empty at T, i=0. This is the only case where & is
set to —1.

Similarly the matrix Ry(¢,j. k,z,y) = 0if j~1 < k < i, Vi > 0,¥j > 0. Note that for both
matrix sequences j can not be equal to 0 because the tagged segment is counted in j. The only
special case for this is at the boundary level, where the tagged segment is the only segment in the
queue and is transmitted at T,4;. In what follows the matrices elements will be defined and the
elements will be referred to by e(m,m',l,ll). Where m,! and m’,l’ are the values of countdown
and request counters at T, and T, respectively. The two sequence of matrices are first computed
according to the structure given in Equations 3.24 and 3.25 then they are passed to reduction and

relabeling algorithms of Section 3.5.1 and Section 3.5.2.



5.2.1 Transitions from upper levels i > 0

The matrix Rr(i, j, k, z,y) has elements e(m, m',l,l'), for i > 0, defined by

e(0,m',1,0) = foreq(y + 2 + 1,m — L, rmaz — [)*

elk—i+1,j~k~1,z, y)fl'nit(z)fdlife(y'f' 1) (5.3)

In this case, at T4 a segment in the queue is transmitted and the tagged segment waits for a
countdown time after the residual time. The countdown counter is equal to zero at T, and the

request counter is zero at T, 4;. and for the other cases

e(m,ml,l,l')=0 m>0 or I >0. (5.4)
The matrix Ry(i, j, k.z,y). i > 0, has elements

e(m.m'.l.l')=0 m=0 or m Fm—1. (3.5)

For the case where m > 0and m = m — 1

e(m, m',l,l') = fereqly+z+ l,ll — L rpar —{—m+ 1)*

olk —i.j—k =Lz, y)finie(z)farige(y + 1) (5.6)
This is the case that an empty slot is left to traverse the bus to the downstream nodes.

5.2.2 Transitions at the boundary level

Transitions from the boundary level are transitions from a set of states where the node has no
segments in it. In this set of states one state has the request counter equal zero and the other states
have the request counter greater than zero. For the states where the request counter is greater than
zero at T, there won’t be any transmission at T, ;. As for the state where the request counter is

equal to zero at T, the process can transit into one of three situations at T, as follows



e The node will not transmit any segment at T,;. This can happen if a request is registered

on the reverse bus before the arrival of any segment.

¢ The node will transmit the tagged segment at T,4;. In this case the total waiting time is
equal to the residual time. This can happen if no requests or segments arrive before the

tagged segment.

e The node will transmit a segment other than the tagged segment. This can happen if a segment
arrives before any request is registered on the reverse bus and before the arrival of the tagged

segment.

We define a transient Markov chain to model this behaviour at the boundary until the beginning
of the slot in which the tagged segment arrives. Then we define transition probability matrices R’r
and R', to compute transitions from the beginning of the slot in which the tagged segment arrives

until T, 4. Finally we compute Rt and R;,.

5.2.3 A Markov chain to model transitions from the idle state

The chain has states similar to the Markov renewal process in equation (3.23). The Markov chain
is used to compute the state probabilities at the beginning of the slot in which the tagged segment
arrives. Note that the Markov renewal process in 3.23 defines transition probabilities for successive
empty slots while the chain we are defining in this section defines transitions for successive busy
slots in the renewal period. Let the states of the chain be denoted by S(L.CD, RQ) where L is
the level, CD is the count-down counter and RQ is the request counter. Let the state probability
vector at time n be given by m,(n). The initial probability vector, at Ty, of this chain is given by
7s(0) = [1,0,0,..]. In other words the chain is started in state S(0,0,0). The state probability

vector at time n is partitioned with respect to levels so that

ms(n) = [ms(n,0), ms(n, 1), m(n, 2),.. ]



where m4(n,7) is the state probability vector at the n** transition and the i** level. Remember
that in this model levels denote the number of segments queued in the node. Note that the states

5(0,CD, RQ) where CD > 0 are never visited. Let

g if i< rma:

q(i) =
l if i=rmgs
and
. p if t < Pmaz
p(i) =

0 if it =rma:
where p is the probability of a request on the reverse bus and q is the probability of no request.

The transition probability matrix is sparse, and will be defined by the following equations.

Pr{5(0,0.44){S(0,0,in-1)} =
q(in-1)d0(l) if in =in_y
p(in—l)¢0(l) if in = in-l +1

0 otherwise

and for k, > 0 we have

Pr{S(kn,jn.1a}1S(0,0,1,_1)} =
q(iﬂ—l)éku(l) lf jn = in—lvin =0
p(iﬂ—l)¢kn(l) if Jn=th1+1Lin=0

0 otherwise

and for k,_; > 0 we have

Pr{s(knvjnvin)ls(kn—lyjn—l- in—l)} =



9(In-1)Bkp~kn_y (1) if in =in_i,jn = jn-1
P(in—l)¢k.,—k.-l(1) i.f in = in—] + Ljn =jn—l
0 otherwise

5.2.4 The transition matrices Ry(i, j, k,y) and R;(, j, k, y).

These two sequences of matrices define transitions from the beginning of the slot in which the tagged
segment arrives until 754 given that the residual time is equal to y slots. The parameter i denotes
the number of segments queued in the node at the beginning of the slot in which the tagged segment
arrives. The parameters j and k£ are the numbers of segments queued in the node and the numbers
of segments ahead of the tagged segment at T, respectively. y is the residual life in slots until
Tn+1- A library routine can easily compute the matrices given the values of the parameters i, j, k. y
based on the following definitions.

The matrix R,Ir(O, 0, -1, y) has elements e(m. ml,l,l') defined by

e(m,m',l,l') =0 for m>0 or m >0 or >0 (5.7)

e(0,0,0,') = q fereq(v,1', Tmaz)0(0.0.0, y) (5.8)
The matrix Rp.(0.j, —1,y) where j > 0 has elements e(m, m’,{,l') defined by

e(m,m',l,l')=0 for m>0o0r >0 0r I'>0 (5.9)

e(0,m',0,0) = ¢ fereq(y, ', rmaz)e(0,5,0, ) (5.10)
The matrix R,'r(O,j, k,y) where k > 0 and j > 0 has elements e(m, m',l,ll) defined by

e(mm 1,I')=0 for m>0o0r [>0 or [ >0 (5.11)

e(0,m,0.0) =  fereq(y. ™, rmaz)o(k + 1,j~ k = 1,0, ) (5.12)

Note that in this case ¥ > 0 and j = 0 is an impossible situation. The matrix R,'F(i,j, k.y) where

i > 0 has elements e(m, m’,1,I) defined by
e(m.m’,l,ll)=0 for m>0o0r I >0 (5.13)
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e(0,m',1,0) = fereq(y+ 1.m =, rmar — Do(k —i+ 1,7 —k—1.0.y) (5.14)

Note that in this case ¥ > 0 and j = 0 is an impossible situation. The matrix R',(O.j,lc,y) has

elements e(m, m',l,I') defined by

e(m,m ,1,I')=0 for m>0 (5.15)

e(0,m’,1,l) =
.
q fereq( ! s Pmaz — 1+ 1)o(k,j — k - 1,0,3)
if m=l-1,'>0
{ Pferea(¥ ! Tmaz — U+ 1)o(k,j — k —1,0,7)
if m =1

0 otherwise

.

The matrix R',(z’,j, k, y} has elements e(m, m',l,l') defined by e(O,m'.l,l') = 0. For m > 0 we have

e(mm',[,I') =
fcreq(y+ lyll —lLrmgr~1l~m+ ok —i,j—k— 1.0,y)
if mM=m-—1

0 otherwise

5.2.5 The matrix Ry(0,,k, z,y)
The matrix Rr(0,j, -1, z,v)

In this case k = —1. In other words the segment arrives to find itself the first in the queue and gets
transmitted at T, 4. So the waiting time is equal to the residual time. The matrix Rr(0.5,—-1l.z,y)
has zero elements except for the first row. If we denote the first row by the vector ry then

r1 = m,(z, )R (0,5, —1,y) finie(z) farige (y + 1)
Note that r; is the vector of transition probabilities from the state with both request counter and

count-down counter equal to zero.
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The matrix Rr(0, j, k, z,y) where £ > 0

The matrix Rr(0, j, k, z, y) has zero elements except for the first row. If we denote the first row by

the vector r; then

min(imaz,k+1) ,
r = Y w2 )Ry(i, 5, K, ) finie(Z) Farige (y + 1)
i=0

where i, is the max level at which m,(z,i) will vanish. Note that r, is the vector of transition

probabilities from the state with both request counter and count-down counter equal to zero.

The matrix R;(0,,k,z,y)

Denote the first row , elements with n=0 and m=0, by the vector r, then
min(imac.k+1)
= ) m(z OR(E .k y) finie(2) faige(y + 1)
=1
where inq, is the max level at which m,(z,{) will vanish. Note that r; is the vector of transition

probabilities from the state with both request counter and count-down counter equal to zero.

Elements of the matrix with n > 0 and m = Q are given by

e(O,m’,n,n') =
z
!
z fcrcq(zlym +1l—=n,rme —n)*
;=0

fcrcq(y +l+z—z,n,Tmer—m )fim't(x) *

faige(y+ Der(k,j—k=1,z1,2,y) (5.16)
where g, is given by
e-ng(ivjvovy) if.l' =TI

Ql(ivjy'rlvz_zl)y)z (517)
e~An (g(i,j,z - zlvy)_

e‘Ag(i,j,z -1 - 1,y) ifr==x

\

The elements are equal to zero when m > 0.
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5.3 Transition probabilities for the total countdown time

The probability that the tagged segment is transmitted after z slots from T, 4,, given that at T,
the node was at level j and there were k < j segments in the queue ahead of the tagged segment is
given by the column vector D(j, k, z). Note that D(j, k, z) is defined for j > 1 only since j includes
the tagged segment. D(j, k,z) has dimensions (w, 1} which is the dimensions of the
submatrices after reduction and relabeling, see Sections 3.5.1 and 3.5.2. Note that k represents
the number of transitons in S7 before the transmission of the tagged segment. The sojourn time
between successive transitions is computed by conditioning on the number of transitions into SE.
The following reccurrence relations can be easily deduced from the matrices in Equations 4.12

and 4.13.

Computation of the vectors for £ =0

We start by computing D(j,0,z). This is the case where the tagged segment is the head of the
queue. A fourth index /. that denotes the number of renewals without transmission observed by the

tagged segment from Tn,; until the next renewal with transmission, is added to D(j,0.z). So that

D(j,0,z) =) _ D(,0,z.1) (5.18)
=0

Note that ! cannot be greater than . In other words, in a period of r slots we cannot have [ > r

transitions in SE. By inspecting the matrix in Equation 4.12 we can write

mCa(z)e+ mYi(z)e ifj=1

D(;,0,z,0) = (5.19)
mAg(z)e+ mTi(z)e ifj>1

It is generally known that if a Markov renewal process of M/G/1 type is positive recurrent then

Coe = Age. The equality mCo(z)e = mAo(z)e may not necessarily hold, but fortunately it holds

for our case. So we can write Equation 5.19 as

D(j,0,2,0) = m(Aq(z) + mT1(z))e Viz2t (5.20)
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For [ > 0 we have the following recursive equation which can be deduced by inspecting the matrix

in Equation 4.13.

D(j,0,z,1) = mQi(z) oD(1,0,z,0-1) (5.21)

Computation of the vectors for k=1

For k = 1, the valid levels are j > 1 since the node have the tagged segment and one segment ahead

of it in the queue. D(j, 1, z) is given by

D(j,1,z) =) _D(j1,1,) (5.22)
{=0
where
D(j.1,z,0) = (mAo(z) + m¥T:(z)) o D(1,0,2) Vi>2 (5.23)

and for [ > 0 we have

D@, 1,z,0) = m@(z)oD(2,1,2.0—1) (5.24)

Computation of the vectors for k > |

For any value of k the vectors are defined for j > k only. By induction we can compute D(j. k.r)

for any k£ > 1, where

D(j,k,z)=Y_D(j.k.z,1) (5.25)
=0
and
D(j,k,z,0) = (mAoc(z) + mTi(z)) o D(k, k-1, 1) vi>k (5.26)

and for [ > 0 we have

DG,k z,l)= mQi(z)o Dk + 1,k,z,0— 1) (5.27)



5.4 Waiting Time Distribution

After the matrices Rr(i,j,k,z,y). R(i,j, k,z,y) and D(j, k, z) are computed as outlined in the
previous Sections the waiting time distribution of the tagged packet is computed. Let W (z) =

Pr{tagged segment waits for z slots}. Then

Wi(z) =
Jidlemaz Ymaz Ymax
Y xo(Y_ Rr(0,j,0,z,y)e+ > Ry(0,4,0,z,5) 0 D(j,0,z)) +
y=0 Jj=0 i=1

=1 Ymar

x0 ). 3 (Rr(0,j.k,z,y) + Rr(0, ).k, z,y)) o D(j, k,z) +
k=1j=k+1

T=1Ymar Ymar

>3 > xilRr(ijkiz,9)+ Rii j.k.2,y) o D(j. k,2)) (5.28)

k=0 i=1 j=k+1
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Chapter 6

Results and Conclusions

6.1 Introduction

The algorithms in chapters 3, 4 and 5 were implemented in a program using the C' programming
language. The program was run with different load patterns to generate performance measures.
Results are compared with simulation. An important note to make here is that the simulation
simulates the exact DQDB network while the analytic model models a network that closely resembles

DQDB. We don’t expect to get a perfect match in the results but we expect themn to be close.

6.2 Buffer Distribution and Output Process

An example for the buffer distribution and output process is plotted in Figures 6.1 and 6.2. In this
example a network of 10 DQDB nodes was studied. Each node was subjected to the same arrival
rate for segments, A = 0.05. From Figure 6.1 it is easy to see that we tend to have longer queues at
the nodes downstream which reflect the unfairness of the protocol reported in the literature. Also
as we traverse the bus downstream it is more likely to get longer sequences of busy slots, see Figure

6.2.
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6.3 Waiting Time Distribution

In the experiments for waiting time distribution a DQDB network of six nodes was used with the
load patterns shown in Table 6.1. Since the algorithmic model does not capture the internodal
delay, load patterns are compared with the same load patterns applied to a DQDB simulator with
four internodal delays. Internodal delays of 1,5,10 and 15 slots between successive nodes were used
in different simulations for the same load pattern. Results are shown in Figures 6.3, 6.4, 6.5, 6.6,
6.7, 6.8, 6.9, 6.10, 6.11, 6.15 and 6.16. As can be seen from these curves there is a close match
between the analytic model and the DQDB simulation for lower values of the waiting time. For
higher values of the waiting time a clear mismatch is observed. The reason for this is that in DQDB
as mentioned in Section 2.6 the stochastic processes have circular dependence. This dependence is
a sort of feedback that regulates the traffic and is meant to control longer queues. This feedback
is approximately modeled by the analytic model but for longer waiting times there will be larger

mismatches.

6.4 Conclusions and Future Work

In this thesis an algorithmic model for DQDB was presented. The algorithms compute the buffer
distribution, the output process and the waiting time distribution for each node. The model captures
many of the protocol dependencies but not all. The work in this thesis can be enhanced in many

ways and can also open directions for other studies as follows
e The Poisson arrivals at each node can be substituted by the Markovian arrival process.

e A better choice of embedding points for the Markov renewal process can yield better results.
For example, modeling the activity on the reverse bus by a renewal process that takes place
whenever a request arrives, then considering the superposition of this process with the renewal

process of the forward bus.
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o The approximation that was used to break the circular dependence of the stochastic processes
can be relaxed. Instead of computing the probabilities of requests initially, an iterative scheme

can be developed.

As a general point of research, it would be worth studying the effect of distance in distributed
systems. In DQDB the distance between nodes is measured in slots. If the distance between two
successive nodes is n slots, the transition in a node state will only affect the other node after time
equal to n. It appeared from the simulations that there is a threshold value for n after which any
increase in it doesn’t affect the waiting time distribution much. Our gesture that need some research
is that if the distance increases the correlations between nodes decreases. If this is true, it will help

in isolating the correct entities when modeling a distributed system.

Pattern | Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6

1 0.05 0.05 0.05 0.05 0.05 0.05
2 0.1 0.05 0.05 0.05 0.05 0.05
3 0.1 0.1 0.05 0.05 0.05 0.05
4 0.1 0.1 0.1 0.05 0.05 0.05
5 0.1 0.1 0.1 0.1 0.05 0.05

Table 6.1: Examples of load patterns applied to model
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Appendix A

Markov Renewal Processes of

M/G/1 Type

A.1 Introduction

In this appendix Markov Renewal Processes of M/G/1 type are described. There is a class of
problems that can be modeled with the same approach used for Markov Renewal Process of M/G/1
type. This approach uses algorithmic techniques for the solution and not classical techniques. The
trick is in the first representation that exploits the structural properties of the problem. Then the
general algorithms used for the canonical form can be used directly. In the following sections we
show how several problems can be represented and then describe the canonical form representation.
Then we proceed by summarizing the results and algorithms for the general solutions from [Neu89].
This chapter is intended as a summary , for a detailed disscussion and proofs the reader is refered

to [Neu89].



A.2 The M/G/1 Queue

The M/G/1 queue is modeled here according to the algorithmic approach developed by Neuts [Neus9]
and not according to the classical representation. The arrival process is poisson of rate A. Customers
are served singly and the service times are independent, identically distributed nonnegative random
variables with common probability distribution H(.). The time origin is taken to correspond to a
service completion. Let T, , n > 0 denote the times of successive service completions with Ty =
0. The number of customers in the system after the n®* service completion is denoted by /.. The
nth service time is denoted by 1, where 7, = T, — T, for n > 1. The sequence {{(I,,m).n > 0}
forms a Markov renewal sequence on the state space {i > 0} x {0,0c}. This follows from the fact

that [, 4+, depends on I, and the arrivals in 7, only and is given by
Int1 =(In = D)* +va4 forn> 0 (A.1)

where vn 4 is the number of arrivals during the (n + 1)** service time. Under the assumption of
poisson arrivals the, random variables v,. n > 1 are i.i.d.

The transition probability matrix Q(.) with elements
Qu(z)=P{la=i 1 <z|luoy = i} (A.2)

for i>0,i >0and z > 0is given by

Qoir(z) = [yAe™™Qu(z—u)du fori >0
Qirl(z) = [y e-*“%ﬁidﬂ(u) fori>1, i >i-1 (A.3)
Qi(z) = 0 fori>1, i <i-1

Remark:

Integrating the product of the probability that the first arrival happens at u and the probability
that i’ customers are in the system at z given that one customer was in the system at u from 0 to

z gives Q. () in equation [ A.3].



In what follows a mass function is a function that takes values between 0 and | but does not

necessarily tend to 0 at —co or 1 at +o0o. If we define the probability mass functions 4, (z) by
Ay (x) =/ e"'\"(—/\vu'—)dl{(u) forv>0,z2>20 (A.4)
0 H
and the probability mass functions B,(z) by
z T
B,(z) = / Ae™ A, (2 — u)du = / [1 - e == dA, (u) (A.5)
o 0

forv 20, z > 0, then we see that the matrix Q(.) has the structural form

Bo(z) Bi(z) Ba(z) Ba(z)
Ao(.‘t) Ax(:t) .42(1) A3(I)
Q(x)= |0 Ao(z) Ai(z) Al(z) ... (A.6)

0 0 Ao(z)  Ai(z)

A.3 The M/SM/1 Queue

The M/SM/1 Semi Markovian queue is a natural generalization of the M/G/1 queue. The service
times of successive customers form a Markov renewal process with a finite number m of states. The
sojourn times in successive states has general probability distribution which depend only on the
current state and the state to be visited next. The transition probability matrix H(.) of the markov
renewal process which describes the service times of the successive customers is an m x m matrix
of probability mass functions on [0, oc) Its row sums

Hj(z)= ) H,;(z) (A.7)

i'=1
are proper probability distributions of finite mean a; , 1 < j < m, and the matrix H = H(oc) is
an irreducible stochastic matrix.
If we consider the M/SM/1 queue after the successive service completions and form the trivariate

sequence (I, Ja, Xn) where I, denotes the queue length, J,¢l. ..., m the state of the Markov renewal



process H(.) and X, the time between the n*® and (n+1)** departures, we obtain . as for the M/G/1
queue the Markov renewal process of the M/SM/1 queue. Its transition probability matrix Q(z) .

z > 0 is given by

Bo(z) Bi(z) Bz(z) Bas(z)

Ag(z) Ai(z) Az(z) Ajz(2)

Qx)= |o Ao(z) Ay(z) Al(z) ... (A.8)
0 0 Ao(z) Al(I)
where
A, (z) =/re-*"£’-\;‘l—)"-dn(u) forv>0.z>0 (A.9)
0 -
B.(z) = /t Ae A (2 — u)du = /:[1 ~ e M= dA () (A.10)
0 0

and the elements of the matrix A,(z) is given by
A S ) >0,z>0 ALl
[ u(l')]jj’ = /o e o jj’(u) forv >0,z > (A.11)

The irreducibility of the matrix H is inherited by all the nonnegative matrices A, = A.(x) and

B, = B,{() , for v > 0.

A.4 The Canonical Form

The Markov Renewal process represented by the matrix Q(x) given by

Bo(z) Bi(z) B2(z) Ba(z)
Co(z) Ai(z) Aq(z) Ai(r)
Q(X) = 0 Ao(.’t) A] (::) Az(t) (A12)

0 0 Ao(z) Ay(z)

P4l



is a general form that describes many applications. As seen in the M/G/1 queue its elements
were scalar while in the case of the M/SM/1 queue the elements were matrices. There are many
applications in the literature that fits this general form from a wide variety of areas. The interested
reader can find more of them in the examples and problems given in [Neu89].

Markov renewal processes that have a structure of the form given by Q(x) are called Markov

renewal processes of the M/G/1 type. Its elements are defined by
Qijirj'(z) = P{l. = i Jn=7 T <z|laey =i, Ju_y =j} (A.13)

Note that J, is a r.v. that describes the server or system state. In some applications J, can be
a vector. The subset of states defined by { (i,j): 1 <j < m } are called level i. The matrix Q(oc)
is stochastic and Markov chains that have a structure of its form are called Markov chains of the
M/G/1 type.

The matrices A,(r).v > 0 are square matrices of dimension m. The matrices B,(x).v > 0 at
level 0 are of dimensions m; x m and the matrix Cyq is of dimension m x m;. And since Q(x) is

stochastic we have

Bo(o)e + ) By(xc)e=e (A.14)
v=l

Co(oo)e-i-ZA.,(oo)e: e (A.15)
vel

A(oo)e:ZAu(oo)ez € (A.16)
v=0

where e is a column vector of ones. In the next sections the matrices A, (oc), By(o0), Co(ox)
and A(oco) will be denoted by A,,B,,Cy and A respectively. The analysis ,algorithms and results
in the following sections for the matrix Q(oo) can be used for any markov chain of the M/G/1 type.
The invariant probability vector z of the Markov chain Q(oo) may be partitioned as x =
[x0,%1,%2,...] where xq is of dimensions m; and x; , i 2> 1 is of dimensions m. Its generating

function is given by .X(z) = ¥5° z'x;.



If the transition matrix A = Y ¢’ A; is irreducible then there is a stationary probability vector

w such that
TA =T, re=1
The vector 3 is defined by

ﬂ = f:iAge
1

The process is recurrent if and only if p = 78 < 1 see [Neu89] section 2.3.

A.5 The General Algorithm

After representing a problem with a Markov renewal process of the M/G/1 type, we usually want to
compute the steady state probability vector at renewals epochs. In this section we will outline this
in a high level manner that serves as a road map to the Appendix. The formulation of a2 Markov
renewal process of the M/G/1 type is just the definition of three functions A, (z). B.(z) and Cq(z).

After this the steps of computation are as follows

1. Compute the embedded chain at £ = co by summing over all possible values of r. This will
yield A,, B, and Cq. The sequence of matrices A, and B, are truncated at a suitable high

index v.

2. Check that the process is recurrent by computing p as given in the end of Section A 4. If pis

less than one proceed.
3. Compute the fundamental period probability matrix G as outlined in Section A.6.

4. Use G to compute the matrix L of the probability of transitions from level 1 to level § as

outlined in Section A.8.

5. Use G and L to compute the level 0 recurrence probability matrix K as outlined in Section

AB.

-1
-1



[=2)

. Compute the steady state probability vector T of K.

. Compute the vector m; of mean row sums of the matrix K as outlined in Section A.10.

-3

oo

. Using 7 and 7y compute the steady state probability subvector xo as in Equation A.39.

[l

. Compute the subvectors x;, { > 1 using xo and the Ramaswami‘s algorithm presented in

Section A.l11.

A.6 First Passage Times

In this section the equations governing the first passage times from one level to another are derived.
The first passage times for Markov renewal processes are studied by considering two random vari-
ables, the number of state transitions and the time spent in each state. The former is a discrete
random variable while the later is either continuous or discrete depending on the model. In the
DQDB model presented in section 3.4 time is discrete while in the M/G/1 and M/SM/I queue
presented in sections A.2 and A.3 time is continuous.

In studying first passage times in markov chains of M/G/! type as Q(cc) . one random variable
is considered which is the number of transitions between states. The random variable V(i j: i',j')
is defined as the time spent travelling from state j in level i to state j in level i where i > i". The

number of transitions has the probabilities
(k) = P{V(i.5ii, ') = k} (A.17)

Due to the homogeneity of the transition matrix in equation ( A.8), the above probabilities only

depend on the difference i —i' = r for i > 1. The probabilities are rewritten as
gy (k) = P{V(i+r jii,j) = k) (A.18)

where r > 0,i >0 and 1 <j,j' < m . In matrix form we have G"(k) = { gJ'.j,(k) }- The matrix
Q(oo) implies that the process is skip free to the left for levels. That is any path from level i to

level i’ with i > ¢ 2 0 must visit all intermediate levels. So the total time spent during the first

TR



passage is the sum of the times spent descending from a leve] to the level previous to it till the
process reaches the desired level. Hence the probability matrix & for r > 2 can be written as the

convolution of other matrices with r = | as given by the following lemma.

Lemma A.6.1
G (k) =D_G'(k1)* G'(kz) & ...+ G} (k) (A.19)

where r > 1,k > r and the summation is carried over all r-tuples satisfying k; > 1...k, > 1,

ki+...+ k- =k

The z transform of G" (k) is given by

:G™(2) = f: *G (k) (A.20)
k=0

From now on the matrix G!(k) is denoted by G(k) and its z transform by .G(z) and .G(l) by

:G for convenience. The transform of equation ( A.19) is given by
(G (2) = [:G(=)] (A.21)
Theorem A.6.2
oQ
G(l)=Ay ; Gk)=D A *+G'(k-1) for k>2 (A.22)

v=1

and the transform matriz is given by

G)=z2Y_ A, :GY(z) =2 ) AJ[:G(z))" (A.23)
v=0 v=0

Proof: By conditioning on the first transition and applying the law of total probability the
results follow. Setting z = 1 in equation A.23 the transform reduces to
[~
G=) A, .G (A.24)
v=0
The elements of .G are theconditional probabilities that the Markov renewal process Q(z) will

eventually hit the set i in the state (i,;') given that it starts in the state (i +1.5) , i > 1.



Corollary A.6.1 If the Markov renewal process Q{z) s irreducible , the matrir .G does not have

zero rows. If the Markov renewal process Q(z) is recurrent the matricr .G is stochastic.

Neuts showed in section 2.2 of [Neu89] that the matrix .G which is of interest is the minimal
nonnegative solution to A.24.

The matrix G is the limit of the sequence { G, } given by

oc
Go=0 ; Gryr1 = ZA,,G:,’ for r>0 (A.25)

v=0

The next theorem states the conditions for G to be stochastic the proof is omitted but we refer

the reader to section 2.3 in [Neu89] for the details.

Theorem A.6.3 If the matriz A is irreducible, then the matriz G is stochastic iff p < 1.

A.7 Structural Properties of .G

Lemma A.7.1 To every zero column of the matrir Aq there is a corresponding zero column in the

matrir .G

Proof: This follows directly from the fact that G is the minimal nonnegative solution to equation
A.24 and by considering the sequence A.25.
In this case the matrix Ag can be partitioned ,after relabeling the rows and columns appropriately

, as follows

Ao(l) ©
Ao = (A.26)
Ao(3) ©

Similarly .G is partitioned after relabeling such that

:G(1) 0
.G = (A.27)
:G(3) 0

Equation A.24 then leads to

(G(1) =D Ac(l) :GH(1) + D Aw(2) .G(3) :G*1(1) (A.28)
k=0 k=1
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:G(3) =D Ak(3) :G*(1) + D Ax(4) :G(3) .GF1(1) (A.29)
k=0 k=1

where
Ar(l) Ai(2)
A = k> 1 (A.30)
Ar(3) Ak(4)

A.8 Recurrence and the boundary states

In this section the first passage time from level | to level 0 and the return time to level 0 are studied.
The following probabilities are similar to those in equation A.18 except that they are from level |

to level 0.

Lo(k) = P{V(1,5;0,5) = k} (A.31)

17

where 1 < j.j < m . In matrix form we have L{k) = { l;;(k) } and the transform matrix is

given by .L(z) = T5%, *L(k).

Theorem A.8.1 The matriz .L(z) satisfies

:L(z) = 2Co + Y zA,[ :G(2)]"! .L(z) (A.32)
v=l
L(z) = (1= ) 2A[:G(2)" 7Y 12Co (A.33)
v=l

and .L = :L(1) is stochastic if .G is stochastic.

Proof: Equation A.32is verified by conditioning on the first transition and applying the law of
total probability. The term zCy contributes the probability of one transition to level 0. The second
term makes the first transition to level v > 0 and then the term [ . G(z)]?~! accounts for the return
back to level I and .L(z) to reach level 0.

In equation A.33 the proof that the inverse exists is given in [Neu89] page 98. Setting z = | in

equation A.32 we get

(=}
:L=CO+ZA., Gt L (A.34)

v=t
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multiplying both sides by e and setting .L e = V and noting that Cge = Age

o0
V=Ace+ ) A, .GV (A.35)

v=]

If .G is stochastic then the above equation is satisfied by V = e and it is the only solution since
(I = Yo, Ay :G¥"!] is non singular.
For the return time to level 0 there are similar results and proofs. First the distribution of the

return time to level 0 is defined by
x5 (k) = P{V(0,5:0,5') = k} (A.36)

where | < j,j < m . In matrix form K(k) = {r;;(k)} and the transform matrix is given by

:K(Z) = Zf:l :kK(k)-
Theorem A.8.2 The matrir .K(z) salisfies

K(z) =:Bo+ ) _ :B,[:G(z)]"" :L(2) (A.37)

v=l

and :Ke =-e if .G is stochastic.

The proofs are done in the same way as for the matrix .L(z).

A.9 Moment formulas for the matrix G(k)

In chapter 3 of [Neu89] moment formulas are given for the fundamental period matrix G(k.z).
Where k is the number of transitions during the period and x is the time spent during the first
passage. The formulas stated in the book uses Laplace transforms on one part as time is continous
there. The formulas there need little change if the time is discrete as in the DQDB model. In this
appendix the results are listed for the first passage time of the chain Q(o0). So in this case there
is no worry about time as the Markov Renewal process is not considered but rather the embedded
chain. The matrix M is defined as the first moment matrix of the matrix G(k) = G(k,~) and
hence is given by

d .Gz
M=[_~7:£_)']:=l
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differentiating equation ( A.23) we get

] v—1
M= .G+) A,y .G*'M.G"*! (A.38)
v=l k=0

If the matrix .G is reducible as in equation ( A.27) then M is also partitioned such that

M(l) O
= {A.39)
M(@3) o
The powers of .G are then given by
:G*(1) 0
GF = (A.40)
:G(3) :GF-1(1) o
and the matrix .G*M .G"~*~! for k > | is given by
SGF)M(1) :GU—*-1(1 0
:G*M GY¢T = ) (A.41)
:G(3) :G*H(M(1) .G*~*71(1) 0
equation ( A.38) can be split into two equations as follows
oo v—1
M(l) = G(I)+ DY A1) -GX(1)M(1) .G*~*~}(1) (A.42)
v=1 k=0
+_ A (2IM(3) :G*H(1)
v=l
[= 5] v—-1
+D_AL(2) D :G(3) .G*TH1)M(1) .Gy
v=2 k=1
-] v—1
M@3) = GE)+)_ A.03)Y GFIM(I) .G+ (A.43)
v=1 k=0

+)_A(9M(3) .G*7'(1)

v=]

oo ve1
+2Au(4)z :G(3) :G* 1 (1)M(1) .G *-1(1)

v=2 k=1
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For the case where the chain is positive recurrent the matrix M is finite. If the matrix .G is
stochastic the occurrence of infinite elements in M means that the chain is null recurrent.

In this section the cases where the process is recurrent are discussed. In such cases p < | The
vector ¢ = Me is the vector of row sums. [ts j.; is the expected number of transitions to reach level

i from state (7 + 1,7). Multiplying equation ( A.38) by e and noting that ,Ge = e we get

[} v=-1
-3 A :G*lu=e (A.44)
v=l k=0

Let g be the stationary probability vector of .G. Then g .G = g and g e = e. The following

two theorems that are stated without proofs , they are used in the computation of M and pu.

Theorem A.9.1 When .G is irreductble

oo v—1
I-) AY G '=(I- .G+eg)ll- A+ (e—f)g]™ (A.43)
v=1 k=0

where p < 1.
Using theorem A.9.1 with equation ( A.44) we get
p=(I- .G+eg)I-A+(e-B)g] e (A.46)

Using the equation ( A.46) and the relation

(1-pgll-A+(e—Bg]™'=n (A.47)
we get
gu = (1-p)! (A.48)

A different expression is deduced for 4 when .G is reducible as in equation ( A.27). Let g1 be

the stationary vector of .G(1). The matrix .G° is defined as

R eg; O

egy 0
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The dimensions of the vectors e agree with those of the blocks in equation ( A.27). It is clear

that .G :G° = .G° and that the matrix I - ;G + .G° is non singular. Then u is given by
p=(I- .G+ .G)I-A+ .G° - vA, .G]" e (A.50)

v=l1

The second theorem concerns the matrix M

Theorem A.9.2 Equation A.38 has unique solution and the sequence

00 v—1
Xep1= :G+)_Ay) | :G*X, .G'*! (A51)
v=1 k=0

starting with Xo = 0 converges to this solution.
The algorithm to compute g and M has the following steps

e Compute p according to equation ( A.46) if ;G is irreducible and according to equation ( A.50)

if .G is reducible.

e Compute M using successive substitutions as in equation ( A.51). If .G is reducible then
equations ( A.42) and ( A.43) are used as they reduce the computation time. The matrices
D, = i2s :G*X .G¥"%~!for v > | can be computed efficiently by setting D; = X and then
using Dy = Dy—; :G + :G'~'X. Also the matrices E, = Y721 .G*~(1)X(1) .G"~*-1(1)
in equations ( A.42) and ( A.43) can be computed using E, = E,_; ;:G+ .G"~?X and setting
E, = X. Neuts notes that any real matrix for Xg can be used as a start but for practical
reasons it should satisfy Xoe = u so that the iterates would have correct row sums. Hence X,

is set to ug.

o Finally equation A.48 is used as numerical check if the fundamental matrix is irreducible. Or

generaly the row sums of the computed matrix M with mu.



A.10 Moment formulas for the matrix K(k)

For the case where .G is stochastic .K(l)= .K is stochastic. Let its steady state probability

vector be T so that 7K = 7 and re = e. Expanding equation ( A.32) and equation ( A.37) we get

K(z) = zBo + Z B[ G(2)]""[I - ZZA,,[ GG (A.52)
v=l1 v=1

The mean vector of row sums 7, is given by

T = [%};:18 (A53)
oo v=-2 ]
= Ke+) B,) G*M.G*"*[I-) A, .G ']"'Cee
v=2 k=0 v=l
oo =)
+Y B, G I-D A, G«
v=1 v=1
o0 v-2

DA, .G+ iAu > :G*M, .G .
=2 k=0

0

o
M=) A, .G""']"1Goe
v=1

+ti (GUTII - iA., :G*"1"'Cqe

v=l v=1

Noting that Coe = Age and that [I— "2 | A, :G""!]7!Age = e then the above experession is

simplified to

oo v-2
n = e+) B,y .G (A.54)
v=2 k=0
o 00 o0 v—2
+3 By .G I-Y A, .G e+ ) B, Y .GHy
v=1 v=1l v=2 k=0

wb +iBu :GU—I[I- i Au zGu-l]—lwa

v=l1 v=1

Equation ( A.54) is a general equation that does not depend on the irreducibility of .G. If the

condition that .G is imposed then using equations ( A.46) and ( A.47) w, can be reduced to
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v—-2
Va = e+iAuZ;ka (A.55)
k=0

v=2

= e+ f:A.,[I- G 4 (v—l)eg]I- A + (e - B)g]™"e

v=2

= [I-A- iAvGu_l][I— A+ (e—P)g] e+ (1 —p) " 'Age

v=l

and ¥, can be reduced to

Yo = e+[) _B,—) B,GI-A+(e—Pg] e (A.56)

v=1 v=l

+1-p)"') (v—1)B.e

v=l

If .G is reducible as in equation ( A.27) then using equation ( A.50) v, can be reduced to

(o 2] oQ
Yo = [I-Ao—) A, :G" 'I-A+G° -5 vA,G e (A.57)
v=1 v=l
+(1-p) ' Age
and v can be reduced to
(==} 00 [« 2}
¥ = e+[) By,-) B, .G JI-A+G°-) vA,G e (A.58)
v=l v=l v=1

oo

+H1-p)"'d (v~ 1)Be

v=l
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A.11 Computation of the steady state vector

In this section formulas to compute the vector x = (X, X3, X3,X4,...) are summarized. The vector
Xo is equal to the inverse of the mean recurrence time provided that the process is positive recurrent

i.e. p < 1. Hence xo¢ is given by
Xg = (TTl)_IT (A59)

For the calculation of x; when ¢ > 1 the result given by Ramaswami in [Ram88] is used. It is

stated in the following theorem.

Theorem A.11.1

i—-1

xi = [xoB; + Y%A, JI-AD™Y >l (A.60)
Jj=1
where
’ Kt - ’ hing i3
B;=) B..G'" and A;=) A,.G" (A.61)

The computation of A.60 can be done efficiently by taking into account that as i — . A:-. B:- —
0. A large index can be chosen such that A; = B:- = 0 and compute the other required matrices by

the following back recursion.
B,=B;+B;,, .G and A;=A;+A,, .G (A.62)
as a check for the procedure we use the two following equations

:K=Bo+B,.L and .G=Ayo+A,:G (A.63)

A.12 Computation of the moments of the steady state vector

In this section the algorithm , to calculate the first two moments of the steady state probability
vector . is outlined. The details can be found in [Neu89] section 3.3. They are omitted here so as

not to lose focus.
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By inspecting the transition matrix in equation ( A.8) it is clear that for the chain Q(x)

xo = x9Bo + x:1Co (.-\.64)
i
xi =xXoBo+ ) Xi_jr1A; i>1 (A.65)
j=0

The generating function X(z) is redefined in this section as

X(z) =) 2'x (A.66)

i=1

The term z, is omitted from the summation to agree with Neuts results. In the differentiation it
will be zero and will not affect the final results for the first two moments. The only difference is that
the vector X(1) has different meaning now that is relevant to the following algorithm. Multiplying

equation ( A.65) by =* and summing from i = | to o then
g
X(:)=l - :A(2)] = 70 )_ Biz* ~ mx1A¢ (A.67)
k=1
By differentiating the above equation and setting z = I then X (1) and X" (1) can be computed.
The derivation is omitted and its details can be found in [Neu89] section 3.3 . The final results and

the intermediate quantities needed are listed here in the order of their computation. B(z) is defined

as

> Bi:* (A.68)
k=1

Then the following vectors are defined as

b, =B (l)e= ) k(k—1)...(k—n+1)Bre n>1 (A.69)
k=n
and
B(l)e = bg (A.70)

Note that these vectors are easily computed from the input data as By is negligible for large k.

X(1) is given by

X(l) = [XQB(I) -—X|AQ](I— A +e7r)" + (1 — xpe)m (A?[)
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where A = .A(l) and = is its stationary vector. The matrix U and its derivatives are defined

U(z) = zx0B(z) - 2x;A0 (A.72)
U(l) = xoB(1)—x1A0 (A.73)
U'(l) = xoB'(1) +x0B(1) — x1A¢ (A.74)
U (1) = xB™(1) +nxeBCP~1(1) n>2 (A.75)

and the row sums of these matrices are given by

U(l)e = 0 (A.76)
U'(l)e = xob; (A.77)
U™(l)e = xobp + nxeba—; n>2 (A.78)

Note that the U matrix , its derivatives and row sums are all computable from already computed
matrices and vectors. We now define R, = X(")(1)e and 8, = A®™)(1)e for v > 1. The matrix
(I- :A+en)~!is denoted by Z. The following equations uses all the above matrices and they are
computed in the order shown as each of them uses the ones previous to it.

6 = [U'(1) + X(1)A'(1) - X(1)]283 (A.79)
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R =[2(1-p)]"' {26, + U (1)e + X(1)5:] (A.30)

X' (1) =Ry + [U'(1) + X(1)A' (1) = X(1)]Z (A.31)
6, = [U"(1) + 2X(1) (DA (1) + X(1)A" (1) - 2X'(1))Z8 (A.82)
R =[3(1-p)]"'[382 + U (1)e + 3X (1) + X(1)5s] (A.83)
X"(1) = Ror + [U"(1) + 2X (1A' (1) + X(1)A" (1) - 2X'(1)]Z (A.84)
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Appendix B

Definitions

B.1 Delta Function

The delta function. also known as the Dirac delta function, is given by

oo t=0
é(t) =
0 t#£0
and
/m é{t)ydt =1 (B.1)

B.2 Unit Step Function

The unit step function is defined by

u(t) =

Note that
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_/‘ 8(s)ds = u(t) =

These functions are useful in applied probability in modeling problems that have both discrete

and continuous nature see [Kle75, pages 372-374].

B.3 Computation of the function ¢

The function g, is given by
(z+1)T.
olirjrz,p) = / - p(t:)p((z + y + VT, = £ j)de
zT, TJ

it can be split as follows

j i
oli.j.z.y) =) Y p(=Teik)eli — k,j~1.0.0)p(yT:: 1)

{=0 k=0

where

R /\7‘; i+5 .- AT, 1 ) .
g(lvj70~0)= %/ t'(l —t)Jdt
Hy 0

and

! 1
. . L
(1 =ty dt = ———
/‘; wmi(i+n)

so finally after some algebraic manipulation we get

olij,zy)= e AT (T )(4)
>
Lt b BI(i 4 — K — 1+ 1)
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Appendix C

Derivations

C.1 The moment generating function of the output process

In this section the transform of equation
TP=X; +Xa+.. "YNT-H + Vp
is drived. We have

fr.(j) = Pr{T7 =]}

= > Pr{Nr =n}Pr{X,+X>

n=0

oo+ Xnp41 + Nr =5}

= Y Pr{Nr=n}Pr{X,+X,...

n=0

= ZfNr(n){fN_(j — n)}{nte

n=0

+ Xn41 = j—n}

where {f}¥* means that f is convolved with itself y times.

The generating function is given by

To(z) = D fr()
j=0
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Z Z e (R){fn, (G = n)}nt1
(C.7)

j=0n=0

D e () Q_{fn (G —n) ¥ i)
n=0 j=0 i |
- (C.8)
> fne(n)z" NPFY(2)
2 (C.9)
zNi(z) :NT(Z st'(z))

(C.10)



Appendix D

Glossary of Notation

e A, Transition probability matrix that defines transitions from level i tolevel i— 1 +v .i > I.
e B, Transition probability matrix that defines transitions from level 0 to level v.
e Cq Transition probability matrix that defines transitions from level 1 to level 0.

e CDn The value of the countdown counter at the beginning of the n** empty slot after decre-
menting it if no transmission took place. If transmission took place then the state is taken

after copying the request counter in it.

* D(j, k. z) The conditional probability vector that a tagged segment will be transmitted after =
slots from the first renewal it observed given that the node was at level j and there are k < j

segments ahead of the tagged segment.
¢ frusy Probability mass function of the time until next renewal during the busy period.
® fciate Continuous representation of f;ge.
o F.au. Continuous representation of the distribution of fidte -

® fereq(t,1,j) The conditional probability of i requests in ¢ slots given that i cannot be greater

than j.
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fatige discrete representation of fi;ye.

Fy;y. discrete representation of Fiif,.

fdres discrete representation of f,.,.

fidte Probability mass function of the time until next renewal during the idle period.

finit Probability mass function of the time until next renewal after the switch from the idle

period to the busy period. Same as f4..; except that it is bounded.

ftige Probability density function of the life time in the special renewal period.

Fiis. Probability distribution function of the life time in the special renewal period.
freq(t, 1) The probability of i requests in ¢ slots.

fres Probability density function of the residual time in the special renewal period.

Fr.. Probability distribution function of the residual time in the special renewal period.

In The number of packets in the node at the beginning of each empty slot after subtracting

the packet transmitted in this slot, if any.

N{ Random variable denoting number of busy slots between renewals at the input of a node.
N¢ Random variable denoting number of busy slots between renewals at the output of a node.
N: Random variable denoting the number of transmissions in successive renewals.

P(k) Conditional probability vector whose i** element is the probability that the next renewal
without transmission is after k renewals with transmission given that at the last renewal

without transmission the process was at state i.
P(k, ) A partition of the vector P(k) that represent the set of states at level i.

P(k,i,z) The vector P(k,i) with the condition on the number of slots r between successive

renewals without transmission.



Qii'jj'kx Elements of the matrix Q(z).
Q({z) Markov renewal matrix of the M/G/1 type representing a DQDB node.

Q(z) Markov renewal matrix of the M/G/1 type representing a DQDB node with the inclusion

of the indicator random variable TR,.

Qi1 The submatrix of Q that represents transitions from S7 to S7.
Q12 The submatrix of Q that represents transitions from ST to SE.
Q21 The submatrix of Q that represents transitions from SE to S7.
Q.2 The submatrix of Q that represents transitions from S€ to SE.
Tmger Maximum number of requests the tagged node can accumulate.

RQ, The value of the request counter at the beginning of the n*" empty slot including the

one registered on the reverse bus, if any, and after decrementing it if in the idle state.

R; A matrix that defines transition probabilities for the renewal period in which the tagged

segment arrives with the condition that no transmission takes place at the end of the period.

Rr A matrix that defines transition probabilities for the renewal period in which the tagged

segment arrives with the condition that transmission takes place at the end of the period.
SE The set of states of Q in which no transmission takes place.

ST The set of states of Q in which transmission takes place.

T, The time at the beginning of the nt* empty slot after updating the state variables.

T} Random variable denoting the time until next renewal at the input of the node.

T? Random variable denoting the time until next renewal at the output of the node.

TR, an indicator random variable which is equal one if transmission took place at the nt?

empty slot and 0 otherwise.
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x Steady state probability vector of Q.

x(1) The partition of x that represent the steady state probabilities of the states in 57 .
x(1) The partition of x that represent the steady state probabilities of the states in SE.
I’y The matrix component of By that defines transitions during the idle period.

2, The matrix component of the A, matrix that corresponds to v — 1 arrivals and no trans-

mission.
#v(t) The probability of v segment arrivals at the tagged node in ¢ time units.

¥, The matrix component of B, that defines transitions from the last renewal epoch until the

node switches from idle state to countdown state.
Ta The duration between two successive renewals, which is equal to Ty, ~ T, .

© A component of the matrix By which defines transitions for the arrival of one packet that

is transmitted in the next empty slot.

T, The matrix component of the A, matrix that corresponds to v arrivals and one transmis-

sion.

vu(z) The probability that the first arrival is after the beginning of the (z ~ 1)** slot and there

are more v ~ | arrivals until the beginning of the z*? slot.

o(i,j,z,y) The probability of i and j arrivals before and after the tagged segment arrival,

respectively, with the condition that the tagged segment will arrive during the (z + 1)*# slot.

=, The matrix component of B, that defines transitions from the time the node switched from

idle state to countdown state until the next renewal epoch.
Ey The matrix component of the Z, matrix that corresponds to v arrivals and one transmission.

E, The matrix component of the =, matrix that corresponds to v — 1 arrivals and no trans-

mission.
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¢ X Moment generating function of random variable X.
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