
Revisiting the Theory and Practice of Bidirectional and Suboptimal
Heuristic Search Algorithms

by

Jingwei Chen

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

© Jingwei Chen, 2022

Abstract

Heuristic Search is a general problem-solving method widely used in artificial intelli-

gence (AI). This thesis presents contributions to heuristic search, including contribu-

tions to bidirectional optimal search and unidirectional suboptimal search.

For bidirectional optimal search, this thesis presents fundamental theory for the

analysis of necessary expansions and the minimum possible number of node expan-

sions needed to solve a given problem in front-to-end heuristic search. A new front-to-

end heuristic search algorithm, NBS, which has a worst case guarantee for the number

of node expansions, is also presented in this thesis.

For unidirectional suboptimal search, this thesis presents the theory of best-first

bounded-suboptimal search using priority functions that do not need to perform state

re-expansions as long as the search heuristic is consistent. Also, particular priority

functions, such as piecewise linear functions are presented in this document. Several

new priority functions can significantly outperform existing approaches according to

empirical results.

ii

Preface

This thesis is an original work by Jingwei Chen. Part of this thesis has been previously

published.

iii

Acknowledgements

I would like to thank the following people, without whom I would not have been able

to complete this research, and without whom I would not have made it through my

PhD program!

My supervisor Dr. Nathan R. Sturtevant, whose insight and knowledge into the

subject matter steered me through my research career. The faculty and staff that

helped me in University of Denver and University of Alberta. And special thanks

to Robert Holte, who provides extra guidance and help in my bidirectional search

research.

NSF and NSERC, who funded me during my project.

And thanks to my family for all the support you have shown me through this

research.

iv

Table of Contents

1 Introduction 1

1.1 Motivation of this Thesis . 3

1.1.1 Bidirectional Search . 3

1.1.2 Unidirectional Suboptimal Search 4

1.2 Thesis Outline . 5

2 Brief Introduction to Search 6

2.1 Assumptions about Search Algorithms 6

2.2 Heuristic Types . 7

2.3 Search Domains . 8

2.3.1 Grid Map Pathfinding . 8

2.3.2 Sliding-tile Puzzles (STP) . 10

2.3.3 Rubik’s Cube . 12

2.3.4 4-peg Tower of Hanoi (4-peg TOH) 13

2.3.5 Pancake Puzzle . 13

2.3.6 Planning Domains . 14

3 Bidirectional Optimal Search 15

3.1 Background and Introduction . 15

3.2 Assumptions and Terminology . 23

3.3 Theory of Minimum Number of Expansions in Front-to-end Bidirec-

tional Search . 25

v

3.3.1 A Sufficient Condition for Node Expansion for Front-to-End

Bidirectional Search . 25

3.3.2 The Must-Expand Graph GMX (I): Reduction from Bidirec-

tional Search to the Vertex Cover Problem 28

3.4 The Near-Optimal Bidirectional Search (NBS) Algorithm 32

3.4.1 High Level Idea . 32

3.4.2 Properties of NBS . 35

3.4.3 Efficient Selection of State Pairs for Expansion 39

3.5 Results and Discussion . 43

3.6 Conclusions and Later Work . 45

4 Unidirectional Suboptimal Search 52

4.1 Background and Introduction . 52

4.1.1 Assumptions in Bounded Suboptimal Search 53

4.1.2 Representative BSS Algorithms 55

4.2 Reopening in Bounded Suboptimal Search 59

4.3 Algorithm: BFS-NR Guided by Φ . 64

4.3.1 Generalized Conditions Making BFS-NR Bounded 66

4.3.2 Φ Functions For Linear Bounds 78

4.3.3 Φ Functions For Additive Bounds 82

4.4 Improved Optimistic Search (IOS) . 83

4.5 Results and Discussion . 86

4.6 Conclusions . 90

5 Conclusions and Future Work 92

5.1 Conclusions . 92

5.2 Future Work . 94

Bibliography 98

vi

List of Tables

3.1 Average state expansions for unidirectional (A*) and bidirectional search

across domains. Problems marked as unsolvable are due to memory

limit. 43

3.2 Average running time and expansions per second for unidirectional

(A*) and bidirectional search across domains. 49

3.3 Percent of expansions with (f -cost = C∗) for each algorithm/domains. 50

3.4 This is the result from Sturtevant’s work [85] evaluating the critical

state measurements and algorithm performance on a variety of do-

mains. Measures C-G are theoretical measures reporting necessary

node expansions, while algorithmic results (H-K) report all node ex-

pansions. 51

4.1 The order of expansions in Figure 4.4(b) 61

4.2 The order of expansions in Figure 4.5(b) 62

4.3 Average state expansions for each priority functions on different domains. 87

4.4 Average path costs for each priority functions on different domains. . 88

4.5 IPC Problems solved (each domain contains 20 problems). 88

4.6 Average expansions on commonly solved problems 89

4.7 Node reductions in IOS using the improved termination condition. . . 89

4.8 Node reductions in IOS using solution updating. 89

4.9 Average performance for IOS with WA*, XDP and XUP as priority

functions for Focal. 90

vii

4.10 Average state expansions for algorithm on STP for additive bound

(h0 = max{h(start), γ + 1}.) . 90

4.11 Average state expansions for algorithm on DAO for additive bound

(h0 = max{h(start), γ + 1}.) . 90

4.12 Average performance for IOS with WA*, XDP and XUP as priority

functions for Focal. 91

viii

List of Figures

1.1 Illustration for (a) unidirectional search (b) bidirectional search. The

rectangle represents the whole state space, while the yellow zone rep-

resents the part that the algorithm explores. 2

2.1 An octile grid example. 9

2.2 An octile heuristic calculation example. The octile heurisic between

S and G is 4, given the cost of cardinal move is 1 and the cost of a

diagonal move is 1.5. 9

2.3 A Klotski puzzle [43]. 10

2.4 Illustration for a solved 15-puzzle (a) standard representation used in

board game, with the empty cell in bottom right corner (b) standard

representation used by computer scientists, with the empty cell in the

top left corner. 11

2.5 A 3 x 3 x 3 Rubik’s Cube in original state. 12

2.6 The pancake puzzle states (a) before (b) and after a flip action. . . . 13

3.1 MM-region analysis. N=Near, F=Far, R=Remote [40]. 21

3.2 A sample bidirectional search problem instance. 29

3.3 The Must-Expand Graph for Figure 3.2, where C∗=3. 29

3.4 A problem instance with C∗ = 2k + 1. 32

3.5 A problem instance with C∗ = 2k + 1. 32

3.6 The open list data structure used in NBS. 40

ix

3.7 A sample state space to illustrate the priorities of state pairs calculated

when running NBS. 41

4.1 The priority of states in (a) Dijkstra’s algorithm (b) WA*. 55

4.2 The priority of states during a DPS search procedure (a) with smaller

fmin (b) with larger fmin. 58

4.3 Best-case from performing re-openings in an example with w = 5. . . 59

4.4 (a) Generic example where re-openings require O(2N) re-expansions.

(b) Specific instance of part (a) for N = 4 and w = 2. 60

4.5 (a) Generic example where re-openings require O(N2) re-expansions.

(b) Specific instance of part (a) for N = 5 and w = 3. 60

4.6 Illustration for Theorem 26. 68

4.7 Illustration for Theorem 30. 69

4.8 Illustration for Theorem 31. 71

4.9 The successor parallelogram when the heuristic is (a) strongly consis-

tent (b) weakly consistent. 73

4.10 The examples for Theorem 37 . 74

4.11 Different functions produce isolines with different properties. 78

4.12 An example to show the limitation of the WA* priority function. . . . 79

4.13 The contour plots of (a) ΦWA∗ (b) ΦAB (c) Φz (d) ΦpwXD (e) ΦpwXU .

Red lines indicate free parameters. 81

x

Chapter 1

Introduction

A heuristic search problem, defined on a given state space, is to find a path from an

initial state (start) to a goal state (goal).

One direct application of such problems is to model a routing problem in a road

network system [3, 7, 38] or a path planning problem for robots [2, 12, 52, 68].

While it is less obvious, many other practical problems can also be modeled as a

heuristic search problem.

One example is puzzle-solving. More specifically, consider the task of restoring

a Rubik’s cube to its original state. Once we view the given configuration as the

start state, the goal state as the original state, the problem is to find a sequence of

operations that leads us from the start state to the goal state. A legal operation in

playing this puzzle is to turn a face 90, 180, or 270 degrees. If we let the actions be

the legal operations, this task can be solved as a heuristic search problem.

Another example is natural language processing (NLP) tasks, such as caption gen-

eration and machine translation, which involve generating sequences of words. The

target is to generate a full sentence. If we view an empty sentence as a start state,

and a complete sentence – a sequence of tokens with an“end of sentence” token –

as a goal state, then such a problem can be modeled naturally as a heuristic search

problem. Beam search is a popular heuristic search algorithm that is widely used in

NLP [18, 32, 93].

1

(a) (b)

Figure 1.1: Illustration for (a) unidirectional search (b) bidirectional search. The
rectangle represents the whole state space, while the yellow zone represents the part
that the algorithm explores.

Heuristic search problems are optimization problems. The target is to minimize

the search time or the total number of node expansions for a given problem instance.

For most algorithms, these two metrics are positively correlated, i.e., fewer total node

expansions implies less search time.

The most important constraint is the quality of the path. Problems can be divided

into two categories according to this: optimal search problems, where the goal is to

find the shortest path, and suboptimal search problems, which trade solution quality

for speed.

There are other constraints in practice, such as memory limits, but these will not

be addressed in this thesis.

Solvers designed for solving heuristic search problems are called heuristic search

algorithms. According to the behavior of the algorithm, we can divide them into two

classes: unidirectional algorithms, which explore the state space from start to goal,

and bidirectional algorithms, which explore the state space in both directions and try

to connect the two frontiers to get a complete path. As illustrated in Figure 1.1 (a)

and (b), usually unidirectional algorithms and bidirectional algorithms visit different

parts of the state space, resulting in a difference in performance.

Naturally, we can design unidirectional search algorithms to solve optimal search

2

problems or suboptimal search problems specifically. Also, we can have specific bidi-

rectional search algorithms designed for problems of each type. In total, there are

four types of algorithms: unidirectional optimal search algorithms, bidirectional opti-

mal search algorithms, unidirectional suboptimal search algorithms, and bidirectional

suboptimal search algorithms.

Unidirectional optimal search algorithms is solved, in the sense that A* is optimal

among all unidirectional algorithms [20, 42] given a few assumptions; this thesis

mainly presents contributions to bidirectional optimal search (in Chapter 3) and

unidirectional suboptimal search (in Chapter 4). The discussion for bidirectional

suboptimal search algorithms is presented in Chapter 5

1.1 Motivation of this Thesis

The ultimate motivation is to make search algorithms more efficient. The metrics

of measuring efficiency include the time and storage usage. In this thesis, the major

metric will be the time usage. We would like an algorithm to return an acceptable

solution as soon as possible.

1.1.1 Bidirectional Search

When doing optimal search, intuitively, by putting effort from both directions, the

total amount of work should be less, since the total number of nodes on two shallower

search trees is less than that on one large search tree.

However, although early research on bidirectional heuristic search dates back to

the 1960s [35], empirically, algorithms had not demonstrated significant improvements

over unidirectional algorithms until 2015.

In the history of bidirectional search, several theories were proposed to explain the

poor performance of bidirectional search.

BHPA [65] was proposed in the early 1970s. By looking into the behavior of that

algorithm, the first major theory to explain the poor performance is that the frontiers

3

miss [59]. Later, BS* [48] was proposed, which can guarantee that the frontiers will

never miss. Unfortunately, the performance of BS* is still disappointing.

Another explanation of the poor performance is that for bidirectional search the

solution is found early and most time is spent on proving optimality [44].

However, none of these efforts give bidirectional algorithms desirable performance

compared to unidirectional search algorithms. It has even been suggested that bidi-

rectional heuristic search algorithms should never be used [5].

Note that unidirectional search has a solid theory of necessary expansions, i.e.,

the minimum work to prove the optimality of the solution. In contrast, bidirectional

search algorithms were not built upon a theory of necessary expansions. That could

be a candidate explanation of the poor performance of bidirectional search: if an algo-

rithm does extra work which is not necessary, it is not strange that the algorithm has

poor performance. Also, it seems to be trivial for us to build an optimal bidirectional

search algorithm once we have that theory: just do the necessary expansions plus

some work to find a optimal solution. Such an algorithm would be optimal among all

bidirectional algorithms, just like A* is optimal among all unidirectional algorithms

[20].

Thus, this thesis starts by studying the necessary expansions for bidirectional

search. From this, we can then produce a bidirectional algorithm, NBS, which mini-

mizes the worst case necessary expansions.

1.1.2 Unidirectional Suboptimal Search

Unidirectional suboptimal search relaxes the constraint of the solution quality, so

algorithms can have more freedom when exploring a state space. We found it difficult

to quantify the necessary expansions that all algorithms must perform. The approach

we use to improve suboptimal search is to avoid reopenings and to prioritize the states

in a smart way so that, empirically, fewer nodes are expanded.

When Weighted A* [64] was first introduced, updating the cost of states already

4

generated on the Open list was always performed. At that time, it was not clear

whether such actions are necessary or not. Pearl et al. [62] suggest that reopening

and reexpanding states should always be performed once shorter paths are found.

However, later work [23, 50] clarifies that it is not necessary for Weighted A* to

re-open states to guarantee the found solutions are bounded-optimal.

In this thesis we present the general necessary and sufficient conditions for best-

first search to avoid reopenings while still finding feasible solutions. That is, we use

priority functions that are more general than Weighted A* (WA*) algorithm. Also,

we provide a few priority functions that work well empirically.

1.2 Thesis Outline

The two major bodies of work in this thesis will be addressed in two separate chapters.

For each chapter, we provide the problem definition and related work, the contribution

to the theory and the contribution to the algorithms.

Contributions include: (1) A theory of front-to-end bidirectional search [24]; (2)

The NBS algorithm [13]; (3) Theory of the cost of re-expansions [16]; (4) Necessary

and sufficient conditions for avoiding reexpansion in suboptimal search [14, 15]; (5)

The Improved Optimistic Search (IOS) [16] algorithm.

5

Chapter 2

Brief Introduction to Search

Search algorithms are a class of solvers designed to solve a type of problem, which we

call search problems. Search problems are problems whose start state and goal state

(or goal check) are provided, but the correct sequence of steps that transforms the

start state to goal state is not known a priori and is what we are pursuing. A sequence

from start to goal is called a path. According to the cost of the path, the problems

can be categorized into a few types such as shortest path problems, satisficing search,

longest path problems, etc.

For different types of problems, there are different solvers designed for them. In

the following chapters, we will address those types and solvers in detail.

2.1 Assumptions about Search Algorithms

In the following context, we assume the algorithms are deterministic, expansion-based

and black box (DXBB) [24].

Algorithm 1 is the pseudo-code for state expansion. An expansion is the procedure

of moving a state from the Open list to the Closed list, and then adding or updating

its successors’ information on the Open list.

Deterministic The algorithm will behave exactly the same each time on the same

instance I. The algorithm does not make any random choices.

Expansion-based The only way for the algorithm to figure out the topology of

6

Algorithm 1 Expand(n)

1: Move n from Open to Closed
2: for each w ∈ successor(n) do
3: if w /∈ Open ∪ Closed then
4: Add w to Open
5: else// w is already generated
6: if g(w) ≤ g(n) + d(n,w) then
7: Continue for loop // discard w
8: else
9: g(w) = g(n) + d(n,w)
10: end if
11: end if
12: end for

the graph is expansion.

Black Box The algorithm only has black box access to the graph information

such as the cost function and heuristic functions.

It does not mean that there cannot be other types of algorithms. There are many

randomized algorithms, for example ones that break ties randomly [1, 49, 92] or that

use randomized methods to diversify the kind of nodes selected for expansion such as

Monte Carlo tree search (MCTS) [11], which is widely used in reinforcement learning.

Also, there are algorithms that are not expansion-based, such as SAT-based solvers

[26, 56] and Integer Linear Programming [31, 70].

2.2 Heuristic Types

In general, a heuristic function h(u, v) is a function that provides an estimate of the

optimal path cost from u to v. It maps a pair of states to a real number, Which

is called the heuristic value. Sometimes we only care about the cost from one state

to an end point (in unidirectional search, the end point mentioned here is the goal).

Such a heuristic, h(n, goal), is usually simplified to h(n).

For pruning purposes, we prefer heuristic functions with particular properties. A

heuristic function is called admissible if ∀n, h(n) ≤ d(n, goal), where d(u, v) is the

7

cost of the shortest path from u to v.

A heuristic function is called consistent if ∀m,n, h(m) ≤ d(m,n)+h(n). Note that

when a consistent heuristic function satisfies h(goal) = 0, it is also admissible.

These are the general definitions of admissibility and consistency. In Section 4.1,

we will introduce definitions of strongly and weakly consistent heuristics.

2.3 Search Domains

The primary purpose of this section is to briefly introduce the domains on which the

experiments are run in later chapters. For each domain, the definition of states, size

of the state space, start and goal states, legal actions, and common heuristic functions

will be covered.

2.3.1 Grid Map Pathfinding

The grid map pathfinding problems are benchmarks by Sturtevant [81]. These are

actual maps adapted from well-known video games, including Starcraft (SC) and

Dragon Age: Origins (DAO).

In different games, the terrain is different, thus the openness of the map and the

connectivity of areas is very different in each test set.

State A state on 2D grid maps is the current location, represented by a pair of

integers referring to its coordinate.

Size of State Space The size of the state space depends on the size of the map.

For a 512x512 map, there are approximately 2.5× 104 states in total.

Start State and Goal State The start state and goal state are usually randomly

picked legal states.

Action The maps can be 4-connected or 8-connected. In this document, unless

otherwise specified, the maps are 8-connected. In this case, an action is to move from

the current cell to one of its legal eight adjacent cells. The definition of 4-connected

graph is analogous: an action is a move to one of the four neighbors. Figure 2.1 is an

8

example of an 8-connected graph. For state S, moving to any the cells surrounding

it labelled from S1 to S8 are legal actions 1.

Heuristic The heuristic used in this document is octile distance. On 8-connected

graphs, when the cost of a diagonal move is cheaper than the sum of a vertical

move and a horizontal move, then the shortest path should build upon as many as

possible diagonal moves. Figure 2.2 shows an example where the h-cost is 2D + 1,

where D is the cost of a diagonal move the cost of cardinal move is 1. In general,

the octile heuristic between two states whose coordinates are (x1, y1) and (x2, y2) is

min{|x1− x2|, |y1− y2|} ×D+ (max{|x1− x2|, |y1− y2|} −min{|x1− x2|, |y1− y2|}).

The octile heuristic is admissible and consistent. There are more advanced heuristics,

such as differential heuristics [34, 57], but they are not used in our experiments.

1A diagonal move is legal only if both associated cardinal moves are legal

Figure 2.1: An octile grid example.

Figure 2.2: An octile heuristic calculation example. The octile heurisic between S
and G is 4, given the cost of cardinal move is 1 and the cost of a diagonal move is
1.5.

9

2.3.2 Sliding-tile Puzzles (STP)

Sliding-tile puzzles includes the 4 x 4 Fifteen Puzzle, and its smaller relative the 3 x

3 Eight Puzzle. There are puzzles of even larger size, such as the 5 x 5 Twenty-Four

Puzzle.

For those N-puzzles, there are N 1x1 tiles that are numbered from 1 to N. There

are some other variants which employ letters or use larger tiles. Figure 2.3 is an

example of a variant called Klotski puzzle, or Huarong Dao.

State A state is the arrangement of current tiles.

Size of State Space For a standard N-puzzle, the size of the state space is

(N + 1)!/2. For example, for the fifteen-puzzle, the size is 16!/2 which is about

1× 1010.

Start State and Goal State An example of a solved 15-puzzle as a board game

is shown in Figure 2.4(a). The goal state is where each tile sits on its own cell.

For example, tile 1 in cell 1, tile 2 in cell 2, ... etc. However, computer scientists

prefer to use an alternative representation, which is shown in Figure 2.4(b). In such

representation, the empty cell is at index 0, tile 1 is at index 1, ... etc.

Figure 2.3: A Klotski puzzle [43].

10

(a) (b)

Figure 2.4: Illustration for a solved 15-puzzle (a) standard representation used in
board game, with the empty cell in bottom right corner (b) standard representation
used by computer scientists, with the empty cell in the top left corner.

The start state is usually generated by applying random actions to the goal state.

For example, the Korf instances [46] were generated by applying 100 random moves.

Action The legal moves of a state are to swap the empty slot with an adjacent

tile.

Heuristic There are two types of heuristics that are widely used in this domain,

Manhattan distance(MD) and pattern databases(PDBs).

Manhattan distance: for each tile, count its Manhattan distance from its current

location to target location, and then sum the MD of all tiles up. This heuristic is

admissible and consistent.

Pattern databases: Generic Pattern database (PDB) heuristics [17] are lookup

tables containing the distance to the goal in an abstracted state space. Such heuristics

are admissible and consistent. There is a trade-off between the heuristic strength and

the memory usage: the larger the PDB, the stronger the heuristic. Usually the size of

the lookup table is chosen carefully to not exceed the size of main memory. But there

are approaches for using PDBs which cannot fit in memory. An example technique

is to compress the values to fit the PDBs into memory [84].

Specifically, in the sliding tile puzzle, the PDB heuristic is generated through a

relaxed problem by unlabling some of the tiles, solving the relaxed problem using

11

breadth-first search, and then using that value as the heuristic for a given state.

2.3.3 Rubik’s Cube

Rubik’s Cube was invented in 1974 by Erno Rubik of Hungary. The standard version

consists of a 3 x 3 x 3 cube, with different colored stickers on each of the exposed

squares of the subcubes.

State A configuration of the cubes.

Size of State Space For a 3 x 3 x 3 cube, the size of the state space is approxi-

mately 4.3× 1019.

Start State and Goal State The goal state is a cube whose every face is the

same color. The start state is usually generated by applying random moves to the

goal state.

Action The actions allowed in solving this puzzle are rotations of 90, 180, or 270

degrees of a face relative to the rest of the cube.

Although it was proven that every puzzle an be solved in at most 20 moves, its large

state space makes it difficult to find an optimal solution for a given configuration in

a brute force way. An algorithm introduced in Chapter 3, PEMM, uses bidirectional

brute force search solved a 20-move puzzle for the first time [82].

Heuristic In this domain, pattern databases (PDBs) heuristics are effective. Rep-

Figure 2.5: A 3 x 3 x 3 Rubik’s Cube in original state.

12

(a) (b)

Figure 2.6: The pancake puzzle states (a) before (b) and after a flip action.

resentative PDBs include the Korf 1997 PDB which computes the moves of 8 corners,

6 edges and other 6 edges (8-6-6) [47], and 12-edge heuristics [83].

2.3.4 4-peg Tower of Hanoi (4-peg TOH)

Although the three-peg version of TOH has a simple recursive solution which has

long been known, the 4-peg variant is a non-trivial problem.

State The state is current status of the disks and the pegs.

Start State and Goal State The start state is a state where the disks are in

several pegs, while the goal state is all the disks are in another peg.

Action A legal action is to move a disk that is on the top of one peg to another

peg, whose top disk is larger.

Heuristic In this domain, the heuristics used are PDBs.

2.3.5 Pancake Puzzle

The pancake puzzle is a problem of sorting a disordered stack of pancakes using a

spatula that can be inserted at anywhere in the stack to flip all pancakes above it.

Figure 2.6 demonstrate how a flip changes a pancake puzzle state.

It has been shown that the maximum steps for solving any pancake puzzle instance

13

is approximately between 1.07n and 1.64n, where n is the number of pancakes [30].

However, the exact number for solving a particular problem is unknown and needs a

solver to find.

State Current stacks of pancakes.

Size of State Space For the pancake puzzle of size n, the size of the state space

is n!.

Start State and Goal State The start state is a random permutation of pan-

cakes, while the goal state is the pancakes are in sorted order.

Action An action in pancake puzzle is to flip the top k pancakes, where k ≤ n.

Figure 2.6 shows the stacks before and after a flip.

Heuristic The heuristic in this domain is the GAP heuristic [36]. The GAP

heuristic is calculated by adding 1 for every two adjacent numbers that are not con-

secutive.

There is also a weighted version of this problem, which is harder to solve [33]. In

regular pancake puzzle, the cost of an action, i.e., a flip, is of cost 1. In this weighted

version, the cost is the larger one of the two end points. i.e., flipping a prefix of

V [1], V [2], · · · , V [i+ 1] pancakes would cost max{V [1], V [i+ 1]}.

2.3.6 Planning Domains

For planning domains, we used the problem sets from the international planning

competition (IPC) 2018. Since our algorithm requires the heuristic to be consistent,

we have to use the FF heuristic [39], which is not the state-of-the-art heuristic. Details

are addressed in Chapter 4.

14

Chapter 3

Bidirectional Optimal Search

3.1 Background and Introduction

Dijkstra’s algorithm [21] is designed to solve shortest path problems. This algorithm

is guided only by the information of g-cost, where g(n) is the cost of the cheapest

known path from start to node n. Such uninformed search algorithms are called

unidirectional brute-force search, denoted Uni-BS.

A few years after the invention of Dijkstra’s algorithm, research on bidirectional

search started in 1966 [22, 58]. Bidirectional search algorithms interleave two separate

searches, a forward search from the start and a search backwards from the goal. We

can define g-cost in a similar way as uni-BS. For the backward search, the g-cost,

gB(n) is the cost of a path from n to goal. Bidirectional algorithms that only exploit

g-cost are called bidirectional brute-force search (Bi-BS). Here is the intuition why

Bi-BS should outperform Uni-BS: suppose the state space is 2-dimensional, i.e., the

number of states whose optimal g-cost is less than d is roughly proportional to d2.

Then solving a problem of cost C∗ using Uni-BS will have to expand all the states

with g-cost less than C∗, which means the total number of expansions will be k×C∗2,

where k is a constant. While, if we use a Bi-BS that meets at the half way point, i.e.

in each direction the Bi-BS will not expand states with g-cost greater than C∗, then

in each direction it will only have to do k × (C∗/2)2 expansions. Since 2k × (C∗/2)2

is smaller than k × C∗2, we could expect some benefit from using Bi-BS instead of

15

Uni-BS. This simple argument is that the area of two smaller circles, whose radius

are half of the larger one, is less than the area of one large circle.

In fact, for even higher dimensions or exponential domains, the improvement should

be even more significant. If the state space is exponential, and the branching factor

is b, then in solving a problem with C∗ = d, Uni-BS has to do bd expansion, while

Bi-BS could reduce the effort to 2b(d/2).

Almost at the same time Bi-BS algorithms were proposed, in 1968, a unidirectional

heuristic search (Uni-HS) algorithm, A* was invented [35]. The idea is to prioritize

the states by f(n) = g(n) + h(n), where h(n) is a heuristic function that provides an

estimate of the remaining path cost from n to goal.

A* is successful since the heuristic function can guide the search in a goal-oriented

way, thus reducing the node expansions.

Since then, researchers have been proposing bidirectional heuristic search (Bi-HS)

algorithms, hoping that such algorithms can benefit from heuristics and bidirection-

ality. However, the performance of such algorithms rarely met expectations.

There are two types of heuristic functions used in bidirectional search. One is

called front-to-front heuristic function, h(u, v), which estimates the distance between

any two states (u and v). The other is called front-to-end heuristic function, which

estimates the cost from some state to an end state. Front-to-end heuristics include

forward heuristics and backward heuristics. A forward heuristic function hF (n) pro-

vides an estimate of the cost from n to goal, while a backward heuristic function

hB(n) estimates the cost from start to n.

Examples of front-to-front algorithms include BHFFA2 [10], SFBDS [29, 51], and

BIDA* [53].

Algorithm 2 is the pseudo-code of generic bidirectional search. Line 5 is the con-

dition check for the main loop. If one of the Open lists becomes empty during the

search, the state space is guaranteed to be fully explored in that direction and we

can safely terminate. There are mainly three facts that make bidirectional search

16

different from and harder than unidirectional search:

(1)Direction selection (in line 6). Unidirectional search algorithms always do

the forward expansion, while bidirectional algorithms have the freedom of choosing

which direction to expand.

(2)Termination (in line 7). As long as the heuristic function is admissible, the

solution of cost C found by A* can be proven to be optimal once all the paths

with cost < C are expanded. Thus, A* can terminate with cost C once all the

paths with cost < C are expanded. However, the situation in bidirectional search

is trickier. First of all, the first solution found is not guaranteed to be optimal,

even if the heuristic is admissible. Thus, bidirectional search algorithms need some

termination condition check to guarantee that the solution they return is optimal,

i.e., any possible solution found afterwards will not be better than current solution.

There is a lot more information that can help us to prove the optimality of the current

solution, including the forward f -cost and the backward f -cost. What we pursue is

Algorithm 2 Pseudo-code for Generic Bidirectional Search Algorithm

1: gF (start) = gB(goal) = 0;
2: C ← ∞
3: OpenF ← start; OpenB ← goal
4: ClosedF ← ∅ ; ClosedB ← ∅
5: while OpenF ̸= ∅ and OpenB ̸= ∅ do
6: Choose dir ∈ {forward, backward}
7: if TerminationCondition is met then
8: return C
9: end if
10: if dir == foward then
11: Choose best ∈ OpenF

12: if best is on the other frontier then
13: Update C
14: end if
15: Forward-Expand(best)
16: else//do the expansion in the backward direction, analogously
17: end if
18: end while
19: return C

17

the termination condition can help the algorithm terminate as early as possible.

(3)Solution Detection (in line 12). For unidirectional search algorithms, the

solution detection is simple: just check if the current state is the goal state. While in

bidirectional search, a candidate solution is found when the two frontiers meet. There-

fore, for bidirectional search algorithms, the solution detection is to check whether

the current state is directly connected to the frontier of the other side. If the frontiers

are stored in memory, then the algorithms can use hash tables to perform solution

detection; however, if the frontiers are stored in external memory or not even stored,

then solution detection is challenging.

Pohl proposed BHPA [65], which keeps expanding states until its termination con-

dition is met. BHPA sorts states by f -cost in each direction and thus keeps track of

the minimum f -cost of each direction. The termination condition used in BHPA is

fmin: if the fmin of one direction is greater or equal to the cost of the current solu-

tion, the algorithm can safely terminate. The direction selection uses a cardinality

criterion: the direction with fewer states on its Open list is chosen. Once the direc-

tion is determined, a state with minimum f -cost in that direction will be picked for

expansion. In his experiments, however, Pohl found BHPA is worse than A* 1. His

explanation is that the shape of the expanded area for BHPA is not circles but cones.

In practice, the cones did not meet each other near the middle of their separation

but near the endpoints, causing almost twice the work of that of Uni-HS. Such an

explanation is called“frontier missing”. For a period, techniques such as wave shaping

(front-to-front) were developed for pushing the search frontiers towards each other to

solve this issue. BHFFA [79] and BHFFA2 [19] are algorithms of this family.

However, Kwa [48] observed that the frontiers weren’t missing; they were actually

going through each other, called “frontier crossing”. If frontier crossing happens,

then it means that there exist some states that get expanded in both directions.

The algorithm he proposed, BS*, fixed the issue of frontier crossing by nipping and

1In the paper he call it HPA, which is exactly what we call A* nowadays

18

pruning techniques, which rely on the consistency of the heuristic. The direction

selection strategy and the termination condition used in BS* is identical to BHPA.

The performance of BS* is improved compared to BHPA, by up to 30%; however the

algorithm is still slightly worse than Uni-HS in most domains.

Later, Kaindl and Kainz [44] suggested that BHPA and BS* actually find solutions

early but spend most of the effort on verifying optimality. They proposed Switch-

A*, hoping to prove the optimality of the solution more efficiently [45]. The idea

of Switch-A* is to use bidirectional search to find a solution with cost U , and then

switch to unidirectional search to exhaust all the states with f-cost less than U to

prove the optimality of the solution.

Although the theories above were widely accepted, there was not an algorithm

proposed that could overcome all the issues. In 2015, Barker and Korf suggested that

Bi-HS is never beneficial [4]: 1. If more than half of the nodes expanded by Uni-HS

have g(n) ≤ 1
2
C∗, then Uni-HS will beat Bi-HS. 2. Otherwise, if more than half of

the nodes expanded by Uni-HS have g(n) > 1
2
C∗, then the heuristic is so weak that

Bi-HS won’t do any better than Bi-BS.

Such claims drew people’s attention. Soon people notice that previous Bi-HS al-

gorithms do not have a guarantee on the meeting point of the search, while Barker

and Korf’s conjectures assume Bi-HS meets at 1
2
C∗. A new Bi-HS algorithm, MM, was

proposed to fix that issue [40]. MM, which stands for meeting in the middle, has a

strong theoretical guarantee that no states with g(n) > 1
2
C∗ will be expanded, i.e.,

the search frontiers will meet exactly halfway in terms of cost. Also, by defining the

regions and analyzing the work done by each type of algorithm, Holte et. al [40]

proposed general rules for predicting when Bi-HS will outperform Uni-HS and vice

versa. Figure 3.1 illustrates how the g-cost and f -cost divide the states into different

regions. N stands for “near”, F stands for “far” and R stands for “remote”. If the

distance from start to a state n is ≤ 1
2
C∗, it is called “near” the start; if the distance

from start to a state n is between (1
2
C∗, C∗], it is called “far” from start; if the dis-

19

tance from start to a state n is > C∗, it is called “remote” from start. The distance

to goal is defined analogously. Thus, there are 9 regions in total, NN , NF , RN , etc.

States in NF regions are “near” the start but “far” from the goal.

A* will expand states in NF, FF, NN, FN; wheveras MM will expands states in

NF, NR, NN, FN, RN. Note that FF is expanded by A* but not MM, while NR and

RN are expanded by MM but not A*. Qualitatively, if FF is large and NR/NR is

relatively small, then MM is promising to outperform A*. Unfortunately, the sizes of

these regions may not be known a priori.

Algorithm MM assigns each state u onOpenF a priority value PrF (u) = max{fF (u), 2gF (u)}

and each state v on OpenB with a priority value PrB(v) = max{fB(v), 2gB(v)}.

Algorithm MM still falls into the framework of Algorithm 2. It chooses the direction

with smaller Prmin to expand. The termination condition is revolutionary: it is the

first algorithm that exploits the gF + gB – all previous algorithms only used f -cost

for termination condition. MM terminates when U ≤ max{C, fminF , fminB, gminF +

gminB}, where C = min{PrminF
, P rminB

}.

The solution detection of a variant of MM using external memory, PEMM [82],

is also innovative. As is mentioned before, if all the states on the Open list can

fit in memory, then data structures such as a hash table can be used to perform

solution detection efficiently. However, when the state space is large and the problem

is difficult, it could be entirely possible that the Open lists cannot fit in memory.

Since random access to external memory such as disk is a few magnitude slower than

access to RAM, the performance of such an algorithm will become very poor. In

the PEMM paper, to resolve this issue, Sturtevant suggested that this can be solved

by storing states in buckets and performing delayed solution detection (DSD). Once

the states with same g-cost and same hash value are stored in the same buckets, we

can perform solution detection on a bucket of states instead of a single state. Thus,

the access to external memory is batched and the amortized time for accessing the

external memory is significantly reduced.

20

MM itself still has a few limitations. First, empirically, it is still worse than A* in

most benchmarks [40]. It remains unclear whether we can design a Bi-HS algorithm

that universally outperforms A*. Second, it is not justified that meeting in the middle

is the best choice. Later studies [73] show that we can choose anywhere we want to

meet. It seems that if the state space is unbalanced, meeting in some fraction instead

of the middle will result in fewer node expansions.

However, MM did achieve success to some extent. Its termination condition inspired

the study of the sufficient condition in front-to-end bidirectional search, which will

be addressed in the next section. Also, it laid the foundation for fMM [73], which is

an optimal off-line bidirectional algorithm and will be addressed in the end of this

chapter.

Looking at those limitations discussed above, we realized that one piece was missed

in Bi-HS’s study: the theory of necessary expansions.

In 1985, A* was proven to be “optimally efficient” [20], i.e., under certain assump-

tions, A* is doing the minimum work among all possible Uni-HS algorithms. The

argument is that there exist a set of states that must be expanded by all admis-

Figure 3.1: MM-region analysis. N=Near, F=Far, R=Remote [40].

21

sible algorithms and A* only expands those states. For bidirectional front-to-end

search, there has been no such theory that defines necessary expansion. As a result,

it was impossible to benchmark a Bi-HS algorithm: we do not know exactly how

its performance is compared to the true minimum. (There is a theory for front-to-

front heuristic search [24, 25]. The statement is very similar to the form of that of

front-to-end search [24].)

In the following sections, we will develop theories that lay the fundamental basis

for understanding Bi-HS.

(1) The sufficient condition for node expansions. Unlike Uni-HS theory, which

provides conditions as a set of necessary states, Bi-HS theory provides conditions as

necessary pairs of states. Based on this theory, we then show that no single state is

surely expanded by all Bi-HS algorithms. This fact makes it tricky to analyze the

minimum amount of work to solve a Bi-HS problem.

(2) We show that we can still find the theoretical minimum number of expansions

by reducing the search problem to a vertex cover problem; all algorithms must do

at least |V C| node expansions, where V C is a minimum vertex cover of a particular

bipartite graph.

(3) We show that no online algorithm can be guaranteed to always do fewer than

2|V C| node expansions. Suppose the behavior of the algorithm allows it to return a

solution with less than 2|V C| node expansions in some instances, then there must exist

some other instances on which the algorithm needs at least 2|V C| node expansions.

Based on these theories, we build an algorithm, NBS, which has a 2x guarantee on

the worse case node expansions.

There are a few recent related studies that are built on these theories. Details can

be found in section 3.6.

22

3.2 Assumptions and Terminology

We are trying to solve the front-to-end bidirectional search problem, which is defined

by a 5-tuple {G, start, goal, hF , hB}.

A state space G is a finite directed graph whose vertices are states and whose edges

are pairs of states.2 Each edge (u, v) has a cost c(u, v) ≥ 0. A forward path in G is

a finite sequence U = (U0, . . . , Un) of states in G where (Ui, Ui+1) is an edge in G for

0 ≤ i < n. We say that forward path U contains edge (u, v) if Ui = u and Ui+1 = v

for some i. Likewise, a backward path is a finite sequence V = (V0, . . . , Vm) of states

where (Vi, Vi+1) is a “reverse” edge, i.e. (Vi+1, Vi) is an edge in G for 0 ≤ i < m.

Backward path V contains reverse edge (u, v) if Vi = u and Vi+1 = v for some i. The

reverse of path V = (V0, . . . , Vm) is V −1 = (Vm, . . . , V0). The cost of a reverse edge

equals the cost of the corresponding original edge. A path pair (U, V) has a forward

path (U) as its first component and a backward path (V) as its second component.

If U is a path (forward or backward), |U | is the number of edges in U , c(U) is

the cost of U (the sum of the costs of all the edges in U), Ui is the ith state in U

(0 ≤ i ≤ |U |), and c(U, i) is the sum of the costs of the first i edges in U (the cost

to reach state Ui via path U). U|U | is the last state in path U , which we also denote

end(U). λF = (start) and λB = (goal) are the empty forward and backward paths

from start and goal, respectively. Note that end(λF) = start while end(λB) = goal.

Both λF and λB have a cost of 0. Forward (backward, resp.) path U is optimal if

there is no cheaper forward (backward, resp.) path from U0 to end(U). d(u, v) is the

distance from state u to state v, i.e., the cost of the cheapest forward path from u to

v. If there is no forward path from u to v then d(u, v) =∞.

Given two states in G, start and goal, a solution path is a forward path from start

to goal. C∗ = d(start, goal) is the cost of the cheapest solution path.

hF and hB are the front-to-end heuristic functions. hF is used to guide the forward

2If G has multiple edges from state u to state v, we ignore all but one cheapest of them.

23

search and hB is used to guide the backward search. The following is the definition

of a front-to-end heuristic function:

Definition 1 A front-to-end heuristic maps an individual state in G to a non-negative

real number or to ∞. Front-to-end heuristic hF is forward admissible iff hF (u) ≤

d(u, goal) for all u in G and is forward consistent iff hF (u) ≤ d(u, u′)+hF (u
′) for all u

and u′ in G. Front-to-end heuristic hB is backward admissible iff hB(v) ≤ d(start, v)

for all v in G and is backward consistent iff hB(v) ≤ d(v′, v) + hB(v
′) for all v and

v′ in G.

A problem instance is solvable if there is a forward path in G from start to goal.

IAD is the set of solvable problem instances in which hF is forward admissible and hB is

backward admissible. ICON is the subset of IAD in which hF is forward consistent and

hB is backward consistent. A search algorithm is IAD-admissible iff it is guaranteed

to return an optimal solution for any problem instance in IAD.

We assume the algorithms are Deterministic, Expansion-based and Black Box

(DXBB). Details of the definition of those assumptions can be found in Chapter

2; the following is a brief overview of the concept.

Deterministic The algorithm will behave exactly the same each time on the

same instance I. The algorithm does not make any randomized choices of the path

to expand.

Expansion-based The only way for the algorithm to figure out the topology of

the graph is by expansion. Before expansion, the algorithm cannot know the number

or other properties of the neighbors of a state.

Black Box The algorithm only has black box access to the cost function and

heuristic functions. Without making a query to the cost function and the heuristic

functions, the algorithm cannot know the exact costs or heuristic values.

24

3.3 Theory of Minimum Number of Expansions in

Front-to-end Bidirectional Search

3.3.1 A Sufficient Condition for Node Expansion for Front-
to-End Bidirectional Search

For any forward path U with U0 = start define

fF (U) = c(U) + hF (end(U)) ,

and for any backward path V with V0 = goal define

fB(V) = c(V) + hB(end(V)) .

Definition 2 For path pair (U, V) define

lb(U, V) = max{fF (U), fB(V), c(U) + c(V)} .

Note that when hF is forward admissible and hB is backward admissible, lb(U, V)

is a lower bound on the cost of a solution path of the form UZV −1, where Z is a

forward path from end(U) to end(V).

Theorem 3 Let a problem instance I = (G, start, goal, hF , hB) ∈ ICON have an

optimal solution cost of C∗. If U is an optimal forward path and V is an optimal

backward path such that U0 = start, V0 = goal, and:

lb(U, V) < C∗

then, in solving problem instance I, any admissible DXBB bidirectional front-to-end

search algorithm must expand (end(U), end(V)).

Proof. We prove the contrapositive. Suppose I, U, and V satisfy the premises of

the theorem, and that B is a DXBB bidirectional front-to-end search algorithm that

solves I correctly (returns a path B(I) costing C∗) without forward expanding end(U)

or backward expanding end(V). Then a new problem instance I ′ = (G′, h′
F , h

′
B) ∈ IAD

can be constructed having an optimal solution strictly cheaper than C∗ on which B

25

also returns path B(I) (costing C∗), thereby showing that B is not an admissible

algorithm.

I ′ = (G′, h′
F , h

′
B) is defined as follows: h′

F = hF , h
′
B = hB, and G′ has all the

vertices in G and all the edges in G except the edge, if there is one, from end(U) to

end(V), plus one new edge e from end(U) to end(V) costing

c(e) = max{ hF (end(U))− c(V),

hB(end(V))− c(U),

1
2
(C∗ − (c(U) + c(V))) }

c(e) is positive because C∗ > c(U)+c(V). This new edge creates a solution path UV −1

whose total cost is c(U) + c(V) + c(e), which is equal to max(fF (U), fB(V), 1
2
(C∗ +

c(U)+c(V))). According to the theorem’s premises, lb(U, V) < C∗, which is equivalent

to max(fF (U), fB(V), c(U)+ c(V)) < C∗, we know max(fF (U), fB(V), 1
2
(C∗+ c(U)+

c(V))) is strictly less than C∗. Thus the new edge is an essential part of any optimal

solution to I ′.

We begin by proving that I ′ ∈ IAD, i.e. that hF is forward admissible on G′ and

hB is backward admissible on G′. We give the proof for hF , the proof for hB is

analogous. Let x be any state in G′ and let W be any acyclic forward path in G′ from

x to goal. We claim that hF (x) ≤ c(W). If W does not contain the new edge e, the

claim trivially follows from the forward admissibility of hF on G. Hence, assume W

contains e, i.e. W = Y Z for some forward paths Y , from x to end(U), and Z, from

end(V) to goal. Using dG(u, v) to denote the distance from u to v in G, we have

26

hF (x) ≤ dG(x, end(U)) + hF (end(U))

(because hF is forward consistent on G)

≤ c(Y) + hF (end(U))

(because Y is a path from x to end(U))

≤ c(Y) + c(e) + c(V)

(by definition, c(e) ≥ hF (end(U))− c(V))

= c(Y) + c(e) + c(V −1)

(because c(V −1) = c(V))

≤ c(Y) + c(e) + c(Z)

(by optimality of V −1)

= c(W) .

Hence hF is forward admissible on G′. By an analogous proof, hB is backward ad-

missible on G′ and thus I ′ ∈ IAD.

Because B is DXBB it will behave the same on I ′ as it did on I. In particular

it will neither forward expand end(U) nor backward expand end(V), will thus not

discover the edge e, and will incorrectly return B(I) as an optimal solution for I ′.

Hence, B is not an admissible search algorithm.

Once we have Theorem 3, we can define surely-expanded pairs in front-to-end

bidirectional search as follows:

Definition 4 For a pair of states (u, v) on instance I ∈ ICON , if U is an optimal

path from start to u and V is an optimal path from v to goal, and lb(U, V) < C∗,

then we say (u, v) is a surely-expanded pair.

Dechter & Pearl [20] proved (their Theorem 8) that every admissible unidirectional

search algorithm must expand every state surely expanded by A* when the given

27

heuristic is consistent. We show that for bidirectional search algorithms, there are

no surely expanded states; instead, we have surely expanded pairs. For each of these

pairs of states, the algorithm has to expand at least one of them.

Unidirectional heuristic search algorithms are a special case of front-to-end bidi-

rectional heuristic search algorithms in which hB(u) = 0 for all u and where the

algorithm always chooses the forward direction to expand. Note that in this case, in

OpenB, we will only have one path with cost= 0, h-cost= 0, the lb of all possible pairs

are determined by fF . Thus, Dechter & Pearl’s results of surely expanded states can

be viewed as a special case of Theorem 3:

Theorem 5 Let a problem instance I = (G, start, goal, hF , 0) ∈ ICON have an opti-

mal solution cost of C∗. If U is an optimal forward path such that U0 = start and

fF (U) < C∗ then, in solving problem instance I, any admissible DXBB unidirectional

search algorithm must forward expand end(U).

3.3.2 The Must-Expand Graph GMX (I): Reduction from Bidi-
rectional Search to the Vertex Cover Problem

Definition 6 The Must-Expand Graph GMX (I) of problem instance I = (G, start, goal, hF , hB) ∈

ICON is an undirected, unweighted bipartite graph defined as follows. For each state

u ∈ G, there are two vertices in GMX (I), the left vertex uF and right vertex uB. For

each pair of states u, v ∈ G, there is an edge in GMX (I) between uF and vB iff there

exist an optimal forward path U with U0 = start and end(U) = u and an optimal

backward path V with V0 = goal and end(V) = v such that lb(U, V) < C∗. Thus,

there is an edge in GMX (I) between uF and vB if and only if Theorem 3 requires the

state pair (u, v) to be expanded.

We illustrate this in Figures 3.2 and 3.3. Figure 3.2 shows a problem instance

I = (G, start, goal, hF , hB) ∈ ICON . In this example a is the start state, f is the goal,

and C∗ = 3. Figure 3.3 shows GMX (I), where d refers to the cost of the shortest path

to each state and f refers to the f -cost of that path.

28

By construction, the edges in GMX (I) exactly correspond to the state pairs that

must be expanded according to Theorem 3, and therefore any vertex cover for GMX (I)

will, by definition, represent a set of expansions that covers all the required state pairs.

For example, one possible vertex cover includes exactly the vertices in the left side

with at least one edge–{aF , cF , dF , eF}. This represents expanding all the required

state pairs in the forward direction. This requires four expansions and is not optimal

because the required state pairs can be covered with just three expansions: a and

c in the forward direction and f in the backward direction. This corresponds to a

minimum vertex cover of GMX (I) : {aF , cF , fB}.

Theorem 3 can be interpreted as: every algorithm must expand states which form

a vertex cover on GMX (I). Then, the size of the minimum vertex cover is clearly a

lower bound on the minimum number of node expansions:

Theorem 7 Let I ∈ ICON . Let A be an admissible DXBB bidirectional front-to-

end search algorithm, and SF (resp. SB) be the set of states expanded by A on input

I in the forward (resp. backward) direction. Together, SF and SB correspond to a

hF = 0
hB = 2

hF = 0
hB = 1

hF = 0
hB = 0

hF = 1
hB = 0

hF = 2
hB = 0

hF = 4
hB = 1

a

c

f

e

d

b
2

2 2

1
11

start goal

Figure 3.2: A sample bidirectional search problem instance.

aF

bF

cF

dF

eF

fF

fB

eB

dB

cB

bB

aB

d:0, f:2

left right

d:2, f:6

d:1, f:2

d:2, f:2

d:2, f:2

d:3, f:3

d:0, f:2

d:1, f:2

d:2, f:2

d:2, f:2

d:5, f:6

d:3, f:3

Figure 3.3: The Must-Expand Graph for Figure 3.2, where C∗=3.

29

vertex cover for GMX (I). In particular, |SF | + |SB| is lower-bounded by the size of

the smallest vertex cover for GMX (I).

Proof. Let (uF , vB) be an edge in GMX (I). Then Theorem 3 requires the state

pair (u, v) to be expanded by A on input I, i.e., A must expand u in the forward

direction or v in the backward direction. Thus the set of states expanded by A on

input I corresponds to a vertex cover of GMX (I).

Shaham et al. proved that the bound is tight for off-line algorithms, i.e. there exists

an off-line algorithm, which is guarantee to find the minimum vertex cover with proper

parameters [73]. However, in general, those parameters can not be determined before

solving the problem. Thus, such algorithms are not practical tools to do the search.

How about online algorithms? If the algorithm has a guarantee on the number of

node expansions with respect to the size of the minimum vertex cover, what could be

the best guarantee? The best guarantee is 2x the size of minimum vertex cover.

Theorem 8 Let A be any admissible DXBB front-to-end bidirectional search algo-

rithm. Then, there exists a problem instance I ∈ ICON and a DXBB front-to-end

bidirectional search algorithm B such that A expands at least twice as many states in

solving I as B expands in solving I.

Proof. Consider the two problem instances I1 and I2 in Figure 3.4 and Figure 3.5

In these instances hF (n) = hB(n) = 0 for all states, S is the start and G is the goal.

There is an edge between S and G with cost 2k + 2, where k is a positive integer.

The cost of the edge from S to A1 and the cost of the edge from B1 to G is 1
2
; all

other edges have cost 1.

Assume A is given the first instance. Then it must expand some states in the

forward direction and some states in the backward direction, to prove that 2k + 2

is the optimal cost. Assume it expands up to Am in the forward direction and Bn

in the backward direction. For state Am+1, its forward g-cost is m + 1
2
. Likewise,

gB(Bn+1) = n + 1
2
. Since the h-cost is 0 everywhere, lb(Am+1, Bn+1) = gF (Am+1) +

30

gB(Bn+1) = m + n + 1. Then m + n + 1 ≥ 2k + 2, otherwise (Am+1, Bn+1) is a

sufficient pair: lb(Am+1, Bn+1) = max{fF (Am+1), fB(Bn+1), gF (Am+1)+gB(Bn+1)} =

gF (Am+1) + gB(Bn+1) = m+ n+ 1 < 2k + 2.

Without loss of generality, let m ≥ n. There are two cases: (1) m = n and (2)

m > n.

We analyze each case individually. (1) In this case, A expands the same number

of nodes in both directions on instance I1. There must be an order of expanding

states, either expanding Am before Bn, or expanding Bn before Am. Without loss of

generality, we assume it expands Am before Bn.

Then consider instance I2. Since A is a DXBB algorithm, it initially cannot dis-

tinguish I1 from I2 and it must initially behave the same on both instances. Hence,

on both instances, A will still expand m states in the forward direction. Note that

the algorithm expands Bn after An, it will not be able to detect that Bn is the end-

point, and thus it will expand n states in the backward direction. By comparison, let

algorithm B expand all states in backward direction. B would only expands n states

in the backward direction and then be able to terminate since it exhausted all the

states in the backward direction. On I2, algorithm A is doing m+n = 2n expansions,

which is two times worse than algorithm B.

(2) In this case, the argument is analogous. We can make an instance I2 such

that Algorithm A does m + n expansions while Algorithm B only expands n states,

causing A to be more than two times worse than algorithm B.

Once we view bidirectional search problems as vertex cover problems, we can do

the search in a vertex-cover way. The algorithm introduced in the next section, NBS,

and other algorithms such as DVCBS [74], are using a vertex cover solver at the top

level, i.e., they are trying to minimize the total number of expansions by finding a

minimal vertex cover.

31

3.4 The Near-Optimal Bidirectional Search (NBS)

Algorithm

3.4.1 High Level Idea

In this section, we present a new admissible front-to-end bidirectional heuristic search

algorithm, Near-Optimal Bidirectional Search (NBS), that is guaranteed to do no more

than 2|VC| expansions.

In Section 3.3.2, we have already shown that 2|V C| is the best theoretical guar-

Figure 3.4: A problem instance with C∗ = 2k + 1.

Figure 3.5: A problem instance with C∗ = 2k + 1.

32

antee. That is, it is not possible to design an algorithm that is guaranteed to always

do less than 2|VC| expansions. Therefore, NBS is near-optimal with respect to its

worst-case guarantee on necessary node expansions.

The high level idea of NBS can be described with pseudo-code Algorithm 3. The

main idea of NBS is to expand a pair with minimum lb until either a solution is found,

or the state space is exhausted. The pseudo-code for a single expansion procedure is

shown in Algorithm 4.

For a given surely-expanded pair of states, where expanding either one would be

sufficient, NBS expands both. This approach is adapted from the greedy algorithm for

finding a vertex cover [61] that selects an edge whose two endpoints are uncovered

and then adds both vertices to the vertex cover.

This way of making node selection is very different from traditional Bi-HS algo-

rithms. Previous algorithms usually pick a search direction and then choose the best

state; NBS, however, is trying to do a vertex cover.

Note that the size of the vertex cover found by the greedy vertex cover algorithm is

guaranteed to be no more than twice the minimum vertex cover; therefore, the size of

the set of states expanded by NBS will not be more than 2|VC|, as long as each state

is expanded in each direction at most once. However, if NBS has to re-expand states,

Algorithm 3 NBS outline

1: C ← ∞
2: OpenF ← start; OpenB ← goal
3: ClosedF ← ∅ ; ClosedB ← ∅
4: while OpenF ̸= ∅ and OpenB ̸= ∅ do
5: Pairs← OpenF ×OpenB

6: lbmin← min{lb(X, Y) | (X, Y) ∈ Pairs}
7: if lbmin ≥ C then return C
8: end if
9: Choose (U, V) ∈ pairs such that lb(U, V) = lbmin
10: Forward-Expand(U)
11: Backward-Expand(V)
12: end while
13: return C

33

Algorithm 4 NBS: Forward-Expand(U)

1: Move U from OpenF to ClosedF
2: for each W ∈ expandF (U) do
3: if ∃Y ∈ OpenB with end(Y) = end(W) then
4: C = min(C, c(W) + c(Y))
5: end if
6: if ∃X ∈ OpenF ∪ ClosedF with end(X) = end(W) then
7: if c(X) ≤ c(W) then
8: Continue for loop // discard W
9: else
10: remove X from OpenF/ClosedF
11: end if
12: Add W to OpenF

13: end if
14: end for

then the total number of expansions will be more than 2|VC|. This corresponds to

the tie-breaking strategy in Algorithm 3 Line 9. When choosing a pair of (U , V), we

have to guarantee that they have not only the minimum lb, but also optimal g-cost.

Conceptually, one tie-breaking strategy that can be used is presented in Algorithm

5. The idea is to first find all pairs for which lb is smallest. Among these pairs, it

then chooses the pairs (U, V) with smallest cost c(U) and finally, among those, the

ones with smallest cost c(V). Any pair (U, V) from the remaining candidates is a

valid choice. As long as the heuristics are consistent, such a tie-breaking strategy

guarantees that when the pair is picked, both states will have optimal g-cost, i.e., no

re-expansion is needed.

Algorithm 5 NBS outline sub-routine: choosing (U, V)

1: minset← {(X, Y) ∈ Pairs | lb(X, Y) = lbmin}
2: Uset← {X | ∃Y (X, Y) ∈ minset}
3: Umin← min{c(X) | X ∈ Uset}
4: Choose any U ∈ Uset such that c(U) = Umin
5: V set← {Y | (U, Y) ∈ minset}
6: V min← min{c(Y) | Y ∈ V set}
7: Choose any V ∈ V set such that c(V) = V min

34

3.4.2 Properties of NBS

In this section we first prove that, for all problem instances in IAD, NBS

• terminates, and

• returns a solution with cost C∗ if one exists. Otherwise it will return ∞.

We also prove that, for all problem instances in ICON , NBS never expands the same

state twice in the same search direction.

Theorem 9 For any finite state space S with non-negative edge costs NBS halts for

any start and goal states in S.

Proof. Since there are no negative edge costs, there will not be any negative-cost

cycles. Thus, NBS never expands a node via a path containing a cycle. i.e., NBS only

expands a node via an acyclic path. In a finite state space there are a finite number

of acyclic paths to each state. Therefore each state can only be expanded a finite

number of times in each search direction while reducing the g-cost of the state. Thus,

after a finite number of iterations all the reachable nodes will be exhausted and at

least one of the open lists will be empty, causing NBS to halt.

Definition 10 For any optimal path P = s0, s1, . . . sn from start (s0) to goal (sn),

let i be the largest index such that sk ∈ ClosedF ∀k ∈ [0, i − 1], and let j be the

smallest index such that sk ∈ ClosedB ∀k ∈ [j + 1, n]. We say that P “has not been

found” if i < j and that P “has been found” otherwise (i ≥ j).

In the following, we show that given an admissible heuristic, if no optimal path has

been found yet, then lbmin < C∗.

Definition 11 Node n is called “optimally expanded in the forward search direction”

if n ∈ ClosedF and gF (n) = d(start, n). Likewise, n is called “optimally expanded in

the backward search direction” if n ∈ ClosedB and gB(n) = d(n, goal).

35

Lemma 12 Let P = s0, s1, . . . sn be an optimal path from start (s0) to any state sn.

If sn is not optimally expanded in the forward direction and sn−1 is optimally expanded

in the forward direction, then sn ∈ OpenF and gF (sn) = d(start, sn). Analogously,

let P = s0, s1, . . . sn be an optimal path from any state s0 to goal = sn. If s0 is

not optimally expanded in the backward direction and s1 is optimally expanded in the

backward direction, then s0 ∈ OpenB and gB(s0) = d(s0, goal).

Proof. This proof is for the forward search, the proof for the backward search

is analogous. If n = 0, s0 = start has not been closed in the forward direction

and the lemma is true because line 2 of Algorithm 3 puts start ∈ OpenF with

gF (start) = d(start, start) = 0. Suppose n > 0. When sn−1 was expanded to become

optimally expanded in the forward direction, sn was generated via an optimal path

(in Algorithm 4 lines 6 and 12, gF (n) + cost(n, c) = d(start, sn−1) + cost(sn−1, sn) =

d(start, sn)).

There could be three possibilities for sn’s status when sn−1 is expanded to become

optimally expanded: (1) sn is not generated in the forward direction yet; (2) sn is on

ClosedF ; (3) sn is on OpenF . In cases (1) and (2), sn will be put onto OpenF with

cost gF (sn) = gF (sn−1) + cost(sn−1, sn), which is optimal; in case (3), the cost of sn

gets updated to the optimal cost gF (sn) = gF (sn−1) + cost(sn−1, sn).

Lemma 13 Let P = s0, s1, . . . sn be an optimal path from start (s0) to any state

sn. If sn is not optimally expanded in the forward direction then there exists an i

(0 ≤ i ≤ n) such that si ∈ OpenF and gF (si) = d(start, si). Let imin be the smallest

such i and define nF (for path P) to be simin
. Analogously, let P = s0, s1, . . . sn be

an optimal path from any state s0 to goal = sn. If s0 is not optimally expanded in

the backward direction then there exists a j (0 ≤ j ≤ n) such that sj ∈ OpenB and

gB(sj) = d(sj, goal). Let jmax be the largest such j and define nB (for path P) to be

sjmax.

Proof. This proof is for the forward search, the proof for the backward search is

36

analogous. If start /∈ ClosedF then i = 0 has the required properties (start ∈ OpenF

and gF (start) = d(start, start) = 0, because of line 2 of Algorithm 3.

Suppose start ∈ ClosedF . Let k (0 ≤ k < n) be the largest index such that sk is

optimally expanded. Such a k must exist because start (k = 0) is optimally expanded.

By Lemma 12 sk+1 ∈ OpenF and g(sk+1) = d(start, sk+1). Therefore i = k + 1 has

the required properties.

Lemma 14 When we run NBS on an instance I ∈ IAD, if C > C∗, then there exist

a pair (U, V) on open such that lb(U, V) ≤ C∗. (C is the value stored in Algorithm

3 as the best solution cost found so far)

Proof. Let P = s0, s1, . . . sn be an optimal path from start (s0) to goal state sn.

Since C > C∗, we know that P has not been found. Then (1) sn is not optimally

expanded in the forward direction, thus there exists an i (0 ≤ i ≤ n) such that

si ∈ OpenF and gF (si) = d(start, si). Let imin be the smallest such i and define nF

(for path P) to be simin
. (2) s0 is not optimally expanded in the backward direction

thus there exists a j (0 ≤ j ≤ n) such that sj ∈ OpenB and gB(sj) = d(sj, goal). Let

jmax be the largest such j and define nB (for path P) to be sjmax . (3) imin < jmax,

otherwise P has been found.

Based on those facts, we can let U = s0, s1, ...simin
, V = sjmax , ..., sn−1, sn.

Since the forward and backward heuristics are admissible, fF (U) ≤ C∗, fB(V) ≤

C∗. Combining the fact that gF (U) + gB(V) ≤ C(P) = C∗, lb(U, V) ≤ C∗.

Theorem 15 For any (G, hF , hB) ∈ IAD, NBS returns C∗.

Proof. Proof by contradiction. Suppose the solution returned C is greater than

C∗. According to Algorithm 3 Line 7, lbmin ≥ C > C∗. However, according to

Lemma 14, there exists a pair (U, V) such that lb(U, V) ≤ C∗. Thus, lbmin ≤

lb(U, V) ≤ C∗. This contradicts our previous observation that lbmin > C∗.

37

Now we have proven that for IAD, NBS will terminate with the optimal cost. There-

fore, NBS is optimal.

In the following, we show that when the heuristic is consistent, whenever NBS

expands a state, the state will be expanded with optimal cost. Therefore, NBS only

needs to expand a state once in a particular direction.

Lemma 16 Let I = (G, start, goal, hF , hB) ∈ ICON , U any forward path, and W any

forward path such that fF (U) ≥ fF (W) and c(U) ≥ c(W). Then lb(U, V) ≥ lb(W,V)

for all backward paths V . Similarly, if V is any backward path, and W any backward

path such that fB(V) ≥ fB(W) and c(V) ≥ c(W), then lb(U, V) ≥ lb(U,W) for all

forward paths U .

Proof.

This is the proof for forward direction. The proof for backwards direction is anal-

ogous.

lb(U, V) = max{fF (U), fB(V), c(U) + c(V)}

≥ max{fF (W), fB(V), c(W) + c(V)} = lb(W,V).

Corollary 17 Let I = (G, start, goal, hF , hB) ∈ ICON , U any forward path, and V is

any backward path. Then lb(U, V) ≥ lb(W,V) for any prefix W of U and lb(U, V) ≥

lb(U, Y) for any prefix Y of V .

Proof. This is the proof for forward direction. The proof for backwards direction

is analogous.

This follows from Lemma 16, noting that fF (U) ≥ fF (W) (because hF is forward

consistent) and c(U) ≥ c(W) (because edge costs are non-negative).

Lemma 18 Let I = (G, start, goal, hF , hB) ∈ ICON , If pair (U, V) is chosen for

expansion by NBS, then c(U) = d(start, end(U)), c(V) = d(end(V), goal),

38

Proof. Proof by contradiction. If c(U) > d(start, end(U)), according to Lemma

14, there exists a prefix of U , W , on OpenF . According to Corollary 17, lb(U, V) ≥

lb(W,V). Therefore, according to the tie-breaking strategy in Algorithm 3 Line 9,

pair (W,V) instead of (U, V) would be chosen, which contradicts our assumption.

Theorem 19 NBS never expands the same state twice in the same search direction.

Proof. According to Lemma 18, if a path is closed, it must be closed with optimal

cost. Therefore, once a path is closed, no shorter path will be found to the end point

of that path. As a consequence, no reopenings or re-expansions will occur.

It is possible for NBS to expand the same state twice by expanding it once in each

direction. However, because state spaces are finite and no state is expanded more

than twice by NBS, we get the following result. i.e. NBS is complete.

Theorem 20 Let I ∈ ICON , let GMX (I) be the Must-Expand Graph of I, and let

VC(I) be the size of the smallest vertex cover of GMX (I). Then NBS does no more

than 2VC(I) state expansions on GMX (I) to cover its surely expanded pairs.

Proof. If (u, v) is a surely expanded pair then lb(U, V) < C∗ for every optimal

forward path U from start to u and every optimal backward path from goal to v. NBS

will select exactly one such (U, V) pair for expansion and expand both end(U) = u

and end(V) = v.

A minimum vertex cover for I might require only one of them to be expanded, so

for each expansion required by a minimum vertex cover, NBS might do two.

3.4.3 Efficient Selection of State Pairs for Expansion

Algorithm 5 shows the conceptual principle for choosing pairs. A naive implemen-

tation is to look at all pairs from OpenF × OpenB, and select the best pair. Such

approach will require O(n2) time to find a pair, where n is the size of one Open list.

In this section, we will show an efficient data structure that returns such pairs in

amortized O(log n) time.

39

Algorithm 6 NBS pseudo-code for selecting the best pair from Open list. Clb is set
to 0 when the search begins.

1: procedure PrepareBest
2: while min f in waitingD < Clb do
3: move best node from waitingD to readyD
4: end while
5: while true do
6: if readyD ∪ waitingD = ∅ then return false
7: end if
8: if readyF .c + readyB.c ≤ Clb then return true
9: end if
10: if waitingD.f ≤ Clb then
11: move best node from waitingD to readyD
12: else
13: Clb = min(waitingF .f , waitingB.f , readyF .c+readyB.c)
14: end if
15: end while
16: end procedure

Low-to-high f Low-to-high f

Low-to-high c Low-to-high c

Next Pair

OPENF (WaitingF) OPENB (WaitingB)

OPENF (ReadyF) OPENB (ReadyB)
+

Clb

Figure 3.6: The open list data structure used in NBS.

Pseudo-code for the pair selection procedure is shown in Algorithm 6. The idea is

to introduce two priority queues, waiting and ready for each direction.

Here is the intuition why it will work: When a node is generated, it is put into

waiting; when moving states from waiting to ready, we have already filtered out those

nodes with high f -cost. Thus, when we pick a pair from readyF × readyB whose

sum of g-cost is minimum, that pair must have minimum lb, because lb comes from

max{fF , fB, gF + gB}.

The details of how the procedure works are explained as follows. First, paths with

f -cost lower than Clb must immediately be moved to ready (line 2). If readyD and

waitingD are jointly empty in either direction, the procedure is halted and the search

40

will terminate (line 6). If the best state pairs in ready have c(U) + c(V) ≤ Clb, the

procedure completes; these paths will be expanded next (line 8).

If the readyD queue is empty in either direction, any paths with f = Clb can be

moved to ready (line 10). While we could, in theory, move all such paths to ready in

one step, doing so incrementally allows us to break ties on equal f towards higher c

first, which slightly improves performance [78] 3. If there are no paths with f ≤ Clb

in waiting and in ready with c(U) + c(V) ≤ Clb, then the Clb estimate is too low, and

Clb must be increased (line 13).

We illustrate this on an artificial example from Figure 3.7.4 To begin, Clb ← 0 and

we assume that (A,B,C) are on waitingF and (D,E, F) are on waitingB. First, Clb

is set to 9 (line 13). Then, A and D can be added to ready because they have lowest

f -cost, and Clb = 9. However, c(A) + c(D) = 16 > Clb = 9, so we cannot expand A

and D. Instead, we increase Clb to 12 and then add B and E to ready. Now, because

c(B) + c(E) = 12 ≤ Clb we can expand B and E.

We can prove that the amortized run time over a sequence of Insertion and Pre-

pareBest operations of our data structure is O(log(N)), where N is the total number

of such operations.

Theorem 21 Let N be the total number of calls of Insertion and PrepareBest made

by NBS during search. Then the total time is N logN .

3In that paper, they renamed the NBS algorithm in this document as NBSF . The modified version,
which eagerly moves all paths with f = Clb from waiting to ready, is called NBSA. Table 1 of their
paper indicates that NBSA outperforms NBSF in terms of node expansions on many domains.

4This example also illustrates why we cannot just sort by minimum fF or c when performing
expansions.

A

B

C

D

E

F

c: 8
h: 1

c: 8
h: 1

c: 3
h: 10

c: 3
h: 10

c: 6
h: 6

c: 6
h: 6

Lower Bound
AD 16
AE 14
AF 13
BD 14
BE 12
BF 13
CD 13
CE 13
CF 13

Figure 3.7: A sample state space to illustrate the priorities of state pairs calculated
when running NBS.

41

Proof. (Amortized analysis. Proof by potential method.)

Let the number of states at a particular time t on OpenF ∪ OpenB be n, and the

number of states on readyF ∪ readyB be m.

Let the potential function P = 2(n − m) logN . Initially, n = m = 0, we have

P = 0; since m ≤ n at all times, P ≥ 0 during the course of computation. Now we

can start our analysis.

The amortized cost is defined as ĉ = c + ∆P , where c is the actual cost of an

operation and ∆P is the change in the potential function introduced by the operation.

(1) For a single Insertion operation, we will only add the state to waiting. c =

log(n −m). ∆P = 2((n + 1) −m) logN − 2(n −m) logN = 2 logN . Thus, in this

case, ĉ = c+∆P = log(n−m) + 2 logN ≤ 3 logN .

Therefore, for Insertion operation, ĉ = O(logN).

(2) For a PrepareBest operation, we might need to extract multiple states from

waiting and insert them to ready, and finally pop the front from ready. Let the total

number of states moved from waiting to ready be k.

Then c ≤ k log(n − m) + k log(m + k) + log(m + k) ≤ (2k + 1) logN . ∆P =

2((n− 1)− (m− k + 1)) logN − 2(n−m) logN = −2k logN .

Thus, in this case, ĉ = c+∆P ≤ (2k + 1) logN − 2k logN = logN .

Therefore, for PrepareBest operation, ĉ = O(logN).

Theorem 21 guarantees that even though the data structure looks complicated and

a single PrepareBest operation can be expensive, the amortized time of PrepareBest

operation over a sequence of operations is still inexpensive – the same as the data

structures typically used in A*. Note that there are decrease key operations which

will occur when we find a shorter path to a certain states on Open. The overhead of

that operation is similar to data structures in A*, thus we do not explicit discuss it

here.

42

Table 3.1: Average state expansions for unidirectional (A*) and bidirectional search
across domains. Problems marked as unsolvable are due to memory limit.

Domain A* BS* MMe NBS MM0

DAO 9,646 11,501 13,013 12,085 17,634

Mazes 64,002 42,164 51,074 34,474 51,075

4 Peg TOH (12+2) 1,437,644 1,106,189 1,741,480 1,420,554 12,644,722

4 Peg TOH (10+4) 19,340,099 8,679,443 11,499,867 6,283,143 12,644,722

16 Pancake(GAP) 125 339 283 335 unsolvable

16 Pancake(GAP\2) 1,254,082 947,545 578,283 625,900 unsolvable

16 Pancake(GAP\3) unsolvable 29,040,138 7,100,998 6,682,497 unsolvable

15 puzzle 15,549,689 12,001,024 13,162,312 12,851,889 unsolvable

3.5 Results and Discussion

In Section 3.4, we have proven the worst case performance of NBS is no more than

2x the theoretical minimum necessary node expansions. In other words, in theory,

there is no algorithm that will terminate with less than half the necessary expansions

of NBS. But the theory does not tell us about what happens in practice. Does NBS

tend to be close to minimum node expansions, or 2x the minimum? Also, since NBS

introduces more complicated data structures, how is it performing time-wise?

Experiments are designed to answer these questions.

In Table 3.1 we present results on problems from four different domains, including

grid-based pathfinding problems [81] (‘brc’ maps from Dragon Age: Origins (DAO)),

random 4-peg Tower of Hanoi (TOH) problems, random pancake puzzles, and the

standard 15 puzzle instances [46]. In this table, MMe [75] is a variant of MM and MM0 is

MM with the zero-heuristic.

The canonical goal state is used for all puzzle problems. Such a choice makes it

more efficient to search backwards to solve the 15-puzzle and TOH because of the

lower branching factor. For example, for a random 15-puzzle state whose empty cell

43

is in the center, the branching factor is 4, while branching factor of the goal state

is only 2. In our experiments, when we collect the results of unidirectional search

algorithms, we search forward to the standard goal states.

On each of these domains we use standard heuristics of different strength. More

specifically, we use octile distance for grid maps, the additive pattern databases heuris-

tics [28] for TOH, GAP [37] for the 16 pancake and Manhattan Distance for the

15-puzzle.

In grid maps we varied the difficulty of the problem by changing the map type-

/topology. In TOH and the pancake puzzle we varied the strength of the heuristic.

The GAP\K heuristic is the same as the GAP heuristic, except that gaps involving

the first k pancakes are not added to the heuristic. The general trend is that with

very strong heuristics, A* has the best performance. As heuristics get weaker, or the

problems get harder, the bidirectional approaches improve relative to A*. NBS is never

far from the best algorithm, and on some problems, such as TOH, it has significantly

better performance than all other approaches. Runtime and node expansions/second

are found in Table 3.2. NBS is 30% slower than A* on the DAO problems, but com-

petitive on other problems. NBS is slower than BS*, but this is often compensated for

by performing fewer node expansions.

In Table 3.3 we look at the percentage of total nodes on closed compared to total

expansions with f = C∗ by each algorithm in each domain. For the majority of

domain and heuristic combinations there are very few expansions with f = C∗. The

exception is the pancake puzzle with the GAP heuristic. On random instances this

heuristic is often perfect, so all states expanded have f = C∗. This is why NBS does

more than twice the number of expansions as A* on these problems—these expansions

are not accounted for in our theoretical analysis. BS* puts nodes on closed that it

does not expand, which is why it has a negative percentage.

Table 3.4 is the results from Sturtevant et. al. [85]. These results clearly show

where NBS stands.

44

Column B presents the heuristics used in the experiments. As for the pancake

puzzle problems, the GAP\K heuristic is computed by ignoring the top K pancake

and calculating GAP heuristic on the remaining pancakes. GAP − K heuristic is

computed by subtracting K from the GAP heuristic of the given state. GAP × K

is computed by multiplying a factor K (K < 1) to the GAP heuristic of the given

state. Those heuristics are weaker than GAP heuristic.

Column C is the percentage of the problems whose vertex cover are bidirectional.

Column D and E are the average size of the forward and backward minimum vertex

cover, respectively. A forward minimum vertex cover are all the states n with fF (n) <

C∗, and a backward minimum vertex cover is defined analogously. Column F is the

average size of the unidirectional vertex cover, i.e., the smaller one between forward

vertex cover and backward vertex cover. Column G is the average size of the vertex

cover.

The size of minimum vertex cover is in column MVC, and minimum possible node

expansions by a unidirectional search (the smaller one of forward search and backward

search) is in column UV C.

The general trend is that when the heuristic is weak, then the minimum vertex

cover is likely to be bidirectional and NBS tends to perform well. The ratio of total

expansion by NBS over the MVC is closer to 1 in that case. When the heuristic is

strong and the minimum vertex cover is likely to be unidirectional, then the ratio of

total expansion by NBS over the MVC is closer to 2. That ratio exceeds 2 only for

easy problems where a lot of pairs with lb = C∗ are expanded.

3.6 Conclusions and Later Work

This thesis (1) provides sufficient conditions for expansions in bidirectional search. It

turns out that no single state is surely expanded when an algorithm is guaranteed to

find optimal solution; however, in terms of pairs of states, if a pair meets the sufficient

condition for expansion, at least one of the states must be expanded.

45

(2) Based on the sufficient condition, this thesis shows that we can build GMX ,

which can link the bidirectional search problem to the vertex cover problem.

(3) Finally, it presents the first front-to-end heuristic search algorithm that is

near-optimal in necessary node expansions. It thus addresses questions dating back

to Pohl’s work on the applicability of bidirectional heuristic search [65]. When the

heuristic is not strong, NBS provides a compelling alternative to A*.

Once we have NBS, it seems to be more reasonable to use NBS0 instead of MM0 to

conduct Bi-BS. When the forward state space and the backward state space is sym-

metric, i.e., the branching factor is close, then the performance of NBS0 is identical

to MM0. However, if the state space is unbalanced, i.e., the branching factor of one

direction is much larger than the other direction, then doing MM0 could be arbitrarily

worse, while NBS0 still has the 2x guarantee. In fact, in road routing systems, bidirec-

tional Dijkstra’s algorithm with an alternative back and forth policy is widely used

[60, 67, 88], which is functionally identical to NBS0, since NBS0 will expand the state

with lowest g-cost in each direction at each step.

There has been some follow-up research focusing on how to further improve bidi-

rectional search based on the GMX theory.

Shaham et al.[73] 5 suggests that the minimum vertex cover of GMX is restrained.

That is, there exist a real number m, such that the union of all the forward states sat-

isfying {u|fF (u) < C∗, gF (u) < m} and all the backwards states satisfying {v|fB(v) <

C∗, gB(v) < C∗ −m} form a minimum vertex cover.

In that paper, a generalization of the MM algorithm is also proposed by introducing

one more free parameter p, which is called fMM.

The behavior of fMM is identical to MM, except for its priority computation. It

assigns each state u on OpenF with a value PrF (u) = max{fF (u), gF (u)/p} and

assigns each state v on OpenB with a value PrB(v) = max{fB(v), gB(v)/(1 − p)},

where 0 ≤ p ≤ 1. Basically, p is a parameter that determines the meeting point.

5I am one of the co-authors of this work.

46

When p = 1
2
, fMM becomes MM.

An observation is that fMM with the proper parameter will be able to do the ex-

act minimum vertex cover. fMM with a fixed p is not guaranteed to do minimum

node expansions all the time. In fact, p is a per instance parameter and cannot

be computed in advance. Therefore, in general, fMM is not guaranteed to provide a

worse-case guarantee in node expansions, let alone to find solution with minimum

node expansions.

General breadth-first heuristic search (GBFHS, [6]) is another algorithm that has

the control on meeting point. GBFHS expands states by g-cost layers and uses a

parameter called split function to determine the depth of search on each direction.

If the parameters are chosen carefully, the performance of GBFHS and fMM can be

identical [77].

Shperberg et. al. also proposed the algorithm iterative-deepening bidirectional

heuristic search, or IDBiHS [76]. IDBiHS is to GBFHS what IDA* is to A*. IDBiHS

uses linear memory (with respect to the solution depth), which is memory efficient

and is very useful in solving large scale problems.

There are other studies focused on vertex cover based search.

A representative algorithm is DVCBS [78], which selects a node for expansion in a

greedy way to find a dynamic vertex cover on GMX . Although it does not have the

worst-case guarantee, it is empirically better than NBS in many domains.

An open question is whether NBS can be implemented efficiently in front-to-front

bidirectional heuristic search.

The idea of NBS is to pick a pair of states with minimum lb and expand both states.

What makes it practical and successful is the data structure that allows the efficient

pair selection. If there exists a data structure that can return the pair with minimum

lb under the front-to-front heuristics, then there will be no obstacle in building the

front-to-front NBS. However, personally, I think the task is challenging, especially

when the heuristic calculation is purely front-to-front, since in general it cannot be

47

avoided to look up every pair of states from the frontiers.

It is possible, however, when the front-to-front heuristic is generated from a con-

sistent front-to-end heuristic, there could exist such data structures. For example, we

can create a front-to-front heuristic h(u, v) = max{0, |hF (u)−hF (v)|, |hB(u)−hB(v)|}.

Consistency will limit the change around the frontiers, thus it is possible we do not

have to compute the f -cost of all pairs in a brute-force way to find the best pair.

Another open question is whether the theory and algorithms can be further im-

proved when we know the heuristic is consistent. The sufficient condition assumes

that the heuristic is admissible but not consistent. However, if the heuristic is con-

sistent and the DXBB solver knows that, then it could exploit that information and

further reduce the expansions.

48

Table 3.2: Average running time and expansions per second for unidirectional (A*)
and bidirectional search across domains.

Average Running Time (in seconds)

Domain h A* BS* MMe NBS

DAO Octile 0.005 0.006 0.015 0.007

Mazes Octile 0.035 0.022 0.060 0.019

TOH4 12+2 3.23 2.44 4.17 3.54

TOH4 10+4 52.08 23.06 30.64 16.60

Pancake GAP 0.00 0.00 0.00 0.00

Pancake GAP\2 14.16 4.91 5.25 5.23

Pancake GAP\3 N/A 212.33 72.13 77.17

15 puzzle MD 47.68 29.59 41.38 37.67

Expansion Rate (×103 nodes per seconds)

DAO Octile 1,896 1,912 851 1,662

Mazes Octile 2,225 2,366 848 2,290

TOH4 12+2 444 453 418 401

TOH4 10+4 371 376 375 379

Pancake GAP 156 564 564 153

Pancake GAP\2 89 193 109 120

Pancake GAP\3 N/A 137 98 87

15 puzzle MD 326 406 318 338

49

Table 3.3: Percent of expansions with (f -cost = C∗) for each algorithm/domains.

Domain Heuristic A* BS* MMe NBS

DAO Octile 1.3% 0.6% 0.7% 1.2%

Mazes Octile 0.0% 0.0% 0.0% 0.0%

TOH4 12+2 PDB 0.0% 0.0% 0.0% 0.0%

TOH4 10+4 PDB 0.0% 0.0% 0.0% 0.0%

Pancake GAP 60.7% 81.6% 76.2% 81.0%

Pancake GAP-2 0.2% 1.6% 6.0% 0.0%

Pancake GAP-3 N/A -0.6% 5.7% 0.0%

15 puzzle MD 5.5% 0.5% 0.6% 0.3%

50

A B C D E F G H I J K

Domain Heuristic BMVC FVC BVC Min UVC MVC A* Rev-A* NBSϵ DVCBSϵ

12-Pancake

GAP 0% 10 10 8 8 30 28 101 54

GAP\1 64% 1,102 1,233 954 832 1,124 1,267 864 841

GAP\2 96% 30,794 39,135 28,371 12,466 32,134 40,876 9,528 8,011

GAP\3 100% 367,374 454,242 322,294 48,994 379,684 477,463 32,802 25,080

GAP−1 74% 228 236 205 187 229 237 241 174

GAP−2 100% 3,062 3,159 2,895 1,643 3,085 3,183 1,353 1,269

GAP−3 100% 28,853 29,366 27,844 8,406 29,209 29,717 6,441 5,290

GAP×0.9 56% 248 255 225 216 249 256 229 204

GAP×0.8 48% 2,149 2,212 2,056 1,904 2,150 2,213 1,755 1,712

GAP×0.7 88% 16,736 16,985 16,347 11,744 16,737 16,986 9,708 9,330

TOH4(12)

10+2 0% 64,264 68,149 59,153 59,153 64,334 68,173 100,080 69,010

8+4 34% 456,156 456,439 420,749 382,390 457,401 459,373 411,085 434,347

6+6 86% 772,889 796,639 697,965 463,586 789,603 806,767 446,603 525,811

4+8 66% 530,936 547,752 480,027 406,480 548,850 568,615 411,212 427,702

2+10 2% 162,656 174,659 152,421 152,384 172,088 190,364 199,880 192,271

Zero 100% 8,262,691 8,560,419 7,826,880 476,455 8,262,691 8,560,419 450,539 425,578

Grids Octile 1% 9,525 9,222 7,785 7,754 9,646 9,339 12,136 9,815

DAO Zero 100% 19,448 19,935 17,760 15,167 19,466 19,955 16,819 15,946

Grids Octile 90% 63,657 63,694 49,257 31,193 63,660 63,698 36,029 49,298

Mazes[1] Zero 100% 71,455 71,571 57,961 31,263 71,474 71,590 36,034 31,840

Grids Octile 69% 97,215 97,072 77,765 62,449 97,228 97,084 70,186 90,301

Mazes[4] Zero 100% 114,084 114,111 94,678 63,540 114,105 114,133 70,259 65,306

Grids Octile 29% 125,496 126,236 108,282 103,841 125,538 126,278 128,572 124,038

Mazes[16] Zero 100% 144,773 145,445 126,898 109,795 144,801 145,473 129,310 118,757

Road Maps ED 16% 72,119 69,461 47,702 47,666 72,119 69,461 69,110 69,461

Distance Zero 100% 226,041 229,400 184,419 129,484 226,041 229,400 143,428 160,940

Road Maps ED / speed 95% 133,147 128,165 93,645 80,456 133,148 128,166 97,889 128,165

Time Zero 100% 230,075 227,785 181,105 104,952 230,076 227,786 119,873 111,329

Table 3.4: This is the result from Sturtevant’s work [85] evaluating the critical state
measurements and algorithm performance on a variety of domains. Measures C-G are
theoretical measures reporting necessary node expansions, while algorithmic results
(H-K) report all node expansions.

51

Chapter 4

Unidirectional Suboptimal Search

4.1 Background and Introduction

Optimal heuristic search algorithms, whether unidirectional or bidirectional, are able

to find the shortest paths between a given start and goal state. A* and NBS from the

previous chapter are examples of this kind of algorithm.

However, there are scenarios where a suboptimal solution found quickly is preferred

over a optimal solution found slowly. In particular, time-sensitive applications such

as embedded systems [8] or video games [9] favor such solutions. This motivates the

study of suboptimal search algorithms.

Suboptimal search algorithms can be classified into three categories. The first

category is satisficing search, which aims at returning a solution that is “good enough”

by some metric. In practice, such search algorithms usually just return the first

solution found, regardless of the solution quality, such as Greedy Best First Search

(GBFS) [69]. The second category is bounded cost search (BCS) [80], which aims at

finding a solution whose cost is less or equal to C, where C is a given desired bound.

The third one, which we will focus on in this chapter, is bounded suboptimal search

(BSS), which has a guarantee on the cost of the returned solution.

52

4.1.1 Assumptions in Bounded Suboptimal Search

Most assumptions we make here are analogous to those in the bidirectional optimal

search chapter.

A bounded suboptimal search (BSS) problem is defined by a 5-tuple {G, start, goal, h, B}.

The state space G is a finite directed graph whose vertices are states and whose edges

are pairs of states.

Each edge (u, v) ∈ G has a cost c(u, v). We assume there is at most one edge

between each pair of states, and the edge costs are non-negative. A path in G is a

finite sequence U = (u0, . . . , un) of states in G where (ui, ui+1) is an edge in G for

0 ≤ i < n.

Let d(u, v) be the cost of the cheapest path from state u to state v in G. If there

is no path from u to v then d(u, v) =∞. We let g∗(u) = d(start, u).

The shortest path from start to goal is the optimal solution cost C∗ = d(start, goal).

In suboptimal search, the currently found path to a state is not necessarily the

shortest path. Let the g-cost of a state be the cost of the current best path from start

to that state. Thus, g(n) ≥ d(start, n)

Heuristic function h maps a state to a real number. A heuristic is admissible if

∀n, h(n) ≤ d(n, goal).

Definition 22 A heuristic is consistent on an undirected graph if ∀m,n, |h(n) −

h(m)| ≤ d(n,m). If this property holds on a directed graph, we say the heuristic is

strongly consistent. A heuristic is weakly consistent if ∀m,n, h(n) ≤ d(n,m)+h(m).

A weakly consistent heuristic only requires that the h-cost does not decrease more

than the edge cost, but can go up along an edge as much as it wants. A strongly

consistent heuristic limits the heuristic change in both directions, whether increasing

or decreasing, to not exceed the edge cost.

The BSS problem is to find a solution path with cost ≤ B(C∗), where B : R→ R

is a given bounding function that satisfies ∀x ≥ 0, B(x) ≥ x.

53

We assume that search algorithms only have black box access to the state space

(the same as that in the previous chapter). That is, they are only allowed to explore

the state space by node expansions, and they can only prioritize states based on the

g-cost and h-cost of a state.

There are constraints on solution quality for BSS problem solvers. Basically, we

need the algorithm to be B-admissible. The formal definition of B-admissible algo-

rithm is as following:

Definition 23 If an algorithm A is guaranteed to return a solution with cost ≤ B(C∗)

for a set of instances I, where B is a given bounding function, then A is B-admissible

on I.

The most popular bounding function is Bw(x) = w · x, which means when the op-

timal solution is C∗, the returned solution cost is no more than wC∗. Representative

algorithms for solving this problem include weighted A* (WA*) [64], A*ϵ [63], Op-

timistic Search [86], Explicit Estimation Search (EES) [87], and Dynamic Potential

Search (DPS) [33]. There are other types of bounding functions, such as the additive

bounding function Bγ(x) = x + γ, where γ is a given constant [89]. BFSFγ [89] is a

representative solver for this additive bounding function.

In the following, we give a brief introduction to a few representative BSS algo-

rithms. Before that, we introduce generic best-first search, since this is the foundation

framework that is used by many BSS algorithms.

Algorithm 7 is the pseudo-code for best-first search. When we change the way we

calculate f -cost, the priorities of states change, thus the order we expand changes

and we get a different algorithm. For example, when we use f = g, we get Dijkstra’s

algorithm; when we use f = h+ g, we get A*.

Details of best-first search, including how we should choose a proper f -cost function

in suboptimal search will be addressed in Section 4.3.

54

Algorithm 7 Best-First Search

Input: start, goal,G,h

1: Push(start, Open)
2: while Open not empty do
3: Remove state s with minimum f from Open
4: if s == goal then return success
5: end if
6: Expand s
7: end while

return failure

(a) (b)

Figure 4.1: The priority of states in (a) Dijkstra’s algorithm (b) WA*.

4.1.2 Representative BSS Algorithms

Weighted A* (WA*)WA* [64] is a best-first search algorithm that prioritizes nodes

by f(n) = g(n) + w · h(n), where g(n) is the known least cost from start to n, and

w is a chosen constant which satisfies w > 1. This is equivalent to prioritizing by

f(n) = h(n)+g(n)/w. The solution returned by WA* is upper-bounded by wC∗ [66].

It is proven that the solution is bounded even if WA* does not reopen states [23].

This bound is loose: in practice, the quality of the returned solution is often much

better than this theoretical guarantee. Details will be addressed in Section 4.4

The implementation of WA* is relatively simple. Applying a small modification

to the A* priority function can result in WA*, without having to change the data

structures or other parts of the algorithm.

55

Figure 4.1 illustrates how the expansion order changes when we change the way

we compute f -cost. In both examples, the red state has g = 2, h = 3, while the black

state has g = 4, h = 1.

In Dijkstra’s algorithm, the f -cost of the red state is 2 and that of the black state

is 4, therefore the algorithm expands the red state before the black state. However,

in weighted A* with w = 2, we can see that f(red) = 4 and f(black) = 3 and the

algorithm expands the black state first.

A*ϵ A*ϵ [63] was the first focal search algorithm. The idea of focal search is to

create a subset of the Open list as the focal list and only choose candidate states from

the focal list to expand during the search. States are placed on the focal list if their

cost satisfies f(n) ≤ w ·min(fOpen). A separate priority function ffocal is used to

sort all the states in focal. It can be proven that if a state on the focal list is expanded

and a solution is found, then the solution will be w-admissible. The pseudo-code for

focal search is Algorithm 8.

Different focal search algorithms use different strategies to prioritize the focal list.

A*ϵ selects the state with minimum d̂(n), where d̂(n) is an inadmissible distance-to-go

estimate, since that node appears to be the closest to a goal. If A*ϵ does not reopen

states, then the solution is not bounded by wC∗ [23].

Explicit Estimation Search (EES) EES is another focal search algorithm. It

uses three queues called the Open list, the focal list, and the cleanup list. The Open

list sorts states by f̂ which uses a cost-to-go estimate 1, while the focal list sorts states

by d̂ which uses a distance-to-go estimate 2. The f used in the cleanup list is the

regular f -cost.

The node selection strategy of EES works as follows:

1. if f̂(bestd̂) ≤ w · f(bestf) then bestd̂

2. else if f̂(bestf̂) ≤ w · f(bestf) then bestf̂

1A cost-to-go estimate is what we call a heuristic function, estimating the remaining path cost.
2A distance-to-go estimate is the estimated number of edges in the remaining path.

56

Algorithm 8 Focal Search

Input: start, goal,G,h

1: Push(start, Open)
2: Push(start, Focal)
3: while Focal not empty do
4: best← ChooseNode(Focal)
5: Remove best from Open
6: Remove best from Focal
7: if best == goal then return success
8: end if
9: if fmin increased then
10: FixFocal()
11: end if
12: for each successor n of best do
13: Add n to Open
14: if f(n) ≤ Bfmin then
15: Add n to Focal
16: end if
17: end for
18: end while

return failure

3. else bestf

EES must reopen states to guarantee a B-admissible solution.

Optimistic Search Optimistic Search exploits the fact that the solution found

by WA* is usually much better than its guarantee. It uses WA* with higher weights

(2w−1) to search for a solution, and then uses A* to improve the found solution until

the incumbent solution meets the solution quality requirement. Optimistic Search

reopens states both in the search stage and the proving stage. In Section 4.4 we will

revisit this algorithm and show an improved version of this algorithm.

Dynamic Potential Search (DPS) DPS is another focal search algorithm. In

its focal list, it chooses the states with maximum w·fmin−g(n)
h(n)

to expand, where fmin

comes from the Open list.

Note that w·fmin−g(n)
0−h(n)

is the slope of a line that goes through the point (h(n), g(n))

and the point (0, w · fmin) in the h − o − g plane. Then if we take a second look at

the DPS priority function, we will notice that w·fmin−g(n)
h(n)

is the absolute value of that

57

(a) (b)

Figure 4.2: The priority of states during a DPS search procedure (a) with smaller
fmin (b) with larger fmin.

slope. Thus the priority function for DPS can be viewed as the absolute value of a

slope of a line that goes through the point (h(n), g(n)) and the point (0, w · fmin) in

the h− o− g plane. We can call the reference point (0, w · fmin) the “viewpoint”.

Figure 4.2 provides an illustration of the priorities. Whenever fmin changes, the

“viewpoint” is changed, thus all the slopes are changed. For example, the order of the

priority of the red state and the black state changes in Figure 4.2 (a) and (b). There-

fore, the focal list needs to be resorted, which is computationally expensive. Also,

DPS needs to reopen states during the search to maintain B-admissible solutions.

The original DPS work proves that although conceptually two lists are used, DPS

can be implemented with only one list [33].

Above is the brief introduction to the representative BSS algorithms. We often

classify them into two categories: WA* and other algorithms. WA* is special because:

(1) WA* is a simple best-first search, which is easy to understand and implement; (2)

when the heuristic is consistent, it can find a bounded solution without re-openings.

As mentioned above, all other algorithms, such as EES and DPS, need to reopen

states to guarantee that the solution returned is bounded-suboptimal.

Re-openings, as we will show in the following section, can be harmful to suboptimal

search algorithms.

58

100as c

b

g

603 < f(n) < 1002

500

1 100

2 100

h(n) = 0

100200

200

f(a) = 1000 f(c) = 1002

f(b) = 1001 603

f(a) = 601 f(c) = 603

Figure 4.3: Best-case from performing re-openings in an example with w = 5.

Also, A*ϵ and EES require extra information (a cost-to-go estimate, which is dif-

ferent from normal the heuristic function), which is not always available.

These facts lead to a question: is there a way to keep the search as simple as

possible but still get improved performance? Our answer is, yes, by using BFS-NR

with Φ, which will be addressed in detail in Section 4.3.

4.2 Reopening in Bounded Suboptimal Search

In heuristic search, reopening, or re-expanding, means taking a state from the Closed

list and placing it back onto the Open list.

We will demonstrate that node re-openings can have a significant negative or pos-

itive impact on performance. Previous work has studied the influence of re-openings

on the solution quality in WA* [90], but we are not aware of any work that shows

worst-case bounds for the total number of expansions. In the following we show our

worst-case analysis of the impact of reopenings in WA* when the underlying heuristics

are consistent. The examples are inspired by the analysis of inconsistent heuristics

and BPMX [27]. In that paper, ∆ is defined to be the greatest common divisor of

all the non-zero edge weights. The critical observation they made is that each time a

59

(a) (b)

Figure 4.4: (a) Generic example where re-openings require O(2N) re-expansions. (b)
Specific instance of part (a) for N = 4 and w = 2.

node n is reopened, g(n) is increased by at least ∆. Therefore, they concluded that

if A* performs M > N node expansions then there must be a edge with cost of at

least ∆× ⌈(M −N)/N⌉.

The first example, in Figure 4.3, shows how performing re-openings can provide

arbitrarily large savings. In this figure edges are labeled with their cost in black.

Nodes are labeled with their h-cost in red. If re-openings are not allowed, a WA*

search with w = 5 will expand s, followed by a with f(a) = 1000 and b with f(b) =

t0 t1 t21 1 ti

h(ti) = N − 1 − i

b0 b1 b21 1 bi

e
1

N
h(e) = N

g

h(bi) = N − 1 − i

c(ti, bi) = (i + 1)(w − 1)
w

t0 t1 t21 1 t3

b0 b1 b21 1 b3

e
1

5
5

g

t4

b4

N = 5
w = 3

4

4 3

3 2

2

1

1

0

0
10
3

8
3

6
3

4
3

2
3

1

1

1

1

(a) (b)

Figure 4.5: (a) Generic example where re-openings require O(N2) re-expansions. (b)
Specific instance of part (a) for N = 5 and w = 3.

60

Table 4.1: The order of expansions in Figure 4.4(b)

Order State f -cost Order State f -cost

1 T 21615
16 17 T 216 7

16

2 A1 21814
16 18 A1 218 6

16

3 T 21614
16 19 T 216 6

16

4 A2 22012
16 20 A2 220 4

16

5 T 21613
16 21 T 216 5

16

6 A1 21812
16 22 A1 218 4

16

7 T 21612
16 23 T 216 4

16

8 A3 222 8
16 24 A3 222

9 T 21611
16 25 T 216 3

16

10 A1 21810
16 26 A1 218 2

16

11 T 21610
16 27 T 216 2

16

12 A2 220 8
16 28 A2 220

13 T 216 9
16 29 T 216 1

16

14 A1 218 8
16 30 A1 218

15 T 216 8
16 31 T 216

16 A4 224

1001. Then, because a cannot be re-opened, the cloud of nodes at the bottom, which

can be arbitrarily large, will be expanded with f(n) > 603. However, if re-openings

are allowed, then a will be re-opened with f(a) = 601, shown in blue. This leads

to c being expanded with f(c) = 603, followed by the goal with f(g) = 602. With

re-openings, only 6 expansions are required, but without re-openings, an arbitrarily

large number are needed.

In the second example in Figure 4.4(a) we show that WA* can do exponentially

worse if there are exponentially many edge costs. The example can be viewed as

Martelli’s family [54], where the number of edge weights grows exponentially with

the graph size [94].

61

Table 4.2: The order of expansions in Figure 4.5(b)

Order State f -cost Order State f -cost

1 t0 12.00 12 b1 11.33

2 t1 10.00 13 b2 9.33

3 t2 8.00 14 b3 7.33

4 t3 6.00 15 b4 5.33

5 t4 4.00 16 b0 12.67

6 b4 7.33 17 b1 10.67

7 b3 8.67 18 b2 8.67

8 b4 6.67 19 b3 6.67

9 b2 10.00 20 b4 4.67

10 b3 8.00 21 e 16.67

11 b4 6.00 22 g 6.67

In this graph, h(S) = h(T) = 100, h(Ai) = 100 + 2xi, c(T,A1) = c(A1, A2) =

...c(AN−1, AN) = 2x, where x is a real number such that x > 1
2w−2

1
2N

. Note that

there are 2N paths from S to T in the following format: S,Ak,k, Ak,k−1, ...Ak,1, T ,

where 0 ≤ k ≤ N and k, j > k, i if j > i.

For each path, we can make a one-to-one mapping of that path to a n-bit binary

string bN , bN−1, ..., b1 in this way: for each i, bi = 1 if Ai is not part of the path. Note

that is is equivalent to assigning an integer in the range [0, 2N) to a path.

Once we assign the edge costs carefully, as above, we can verify that the first time

the algorithm will find a path of cost 4x + 2N−1
2N

, and then a better path of cost

4x+ 2N−2
2N

, and then a better path of cost 4x+ 2N−3
2N

, ..., following the pattern all the

way to the final path of cost 4x. Since each time we strictly decrease the cost by 1
2N

,

we can guarantee that state T will be expanded 2N times.

A concrete instance of the exponential worst case is shown in Figure 4.4(b) for

N = 5 and w = 2. Table 4.1 shows the order of node expansions in this example.

62

The third example in Figure 4.5(a) shows the potential cost of performing re-

openings when we have polynomial many edge costs. While this is an artificial

example, the example is reflective of similar real-world problems that arise in grid

pathfinding problems. Figure 4.5(a) is a scalable example that works for any weight

w > 1 and for the problem size, N (the total number of states in the state space is

2N + 2). The start state is t0 and the goal is g. There is a top row of states ti and a

bottom row of states bi with identical heuristics and unit edge costs between states

in the same row. The cost of the edges between the top and bottom paths gradually

increases along the path. After expanding the top row, the states going across the

bottom row from left-to-right have decreasing f -costs. Thus, the bottom nodes will

be expanded right-to-left. After expanding each node, all subsequent nodes to the

right in the row will be re-expanded, as the g-cost has decreased.

We provide a concrete instance of the general graph in Figure 4.5(b) for N = 5

and w = 3. Table 4.2 shows the order of node expansions in this example. There are

22 total node expansions; b4 is expanded N = 5 times, b3 is expanded 4 times, and

so on.

In general, the top nodes (ti) will each be expanded once. The bottom nodes (bi)

will have N(N+1)
2

cumulative expansions. The last two nodes (e and g) will each be

expanded once. Cumulatively there are 2N+2 which is Θ(N) nodes in the graph and

there will be N(N+1)
2

+N + 2 which is Θ(N2) total expansions. This is equivalent to

the worst case performance of the A* variants B and B’ with inconsistent heuristics

[27, 54, 55].

Summarizing the results here, we provided examples showing that re-openings in

WA* can result in arbitrarily large savings or O(N2) total expansions in a problem

with O(N) states. Thus, the choice of whether to use re-openings is going to depend

on the properties of a domain. If there are many transpositions, such as in grid maps,

the overhead of re-openings can be expensive.

Reopening is not mandatory for suboptimal search. In next section, section 4.3, we

63

Algorithm 9 Best-First Search Guided by Φ

Input: start, goal,G,h,Φ,RP

1: Push(start, Open)
2: while Open not empty do
3: Remove state s with minimum Φ(h(s), g(s)) from Open
4: if s == goal then return success
5: end if
6: Move s to Closed
7: for each successor si of s do
8: if si on Open then
9: Update g(si) of si on Open if shorter
10: else
11: if si not on Closed then
12: Add si to Open
13: else
14: if RP == True then
15: reopen si if shorter
16: end if
17: end if
18: end if
19: end for
20: end while

return failure

will show that suboptimal search algorithms can be complete or even B-admissible

even if they do not reopen states.

4.3 Algorithm: BFS-NR Guided by Φ

Best-first search with a priority function is a general algorithm; its pseudo-code is

shown in Algorithm 9. The algorithm keeps expanding the state with minimum f -

cost according to the provided Φ function until the goal state is removed from Open,

when it terminates.

We introduce the notion of a Φ function which determines how potential subop-

timality is distributed across a path, potentially allowing more suboptimality at the

beginning or end of the search, i.e. where the portion of g-cost is small or large.

We assume Φ(x, y) is a function R2 → R. Φ(x, y) is continuous, but not necessarily

64

differentiable. Given a state u in Open reached with cost g(u), the priority of u is

f(u) = Φ(h(u), g(u)).

Once a state is expanded, it is removed from the Open list and put onto the Closed

list, while its successors are put on Open or updated to a lower cost if they already

are on Open with higher cost. If a shorter path is found to a state on Closed, it may

optionally be reopened.

When we do best-first search, one could try different reopening policies, such as

always re-expand (AR) and never re-expand (NR) [72]. Once we apply the NR policy

to best-first search, we get Best-First Search with the NR policy (BFS-NR) [91]. In

Algorithm 9, by simply setting the parameter RP to be False, we can get BFS-NR.

The first interesting fact is that BFS-NR is complete.

Theorem 24 In a finite state space, a best-first search with any priority function Φ

is complete (finds a solution if one exists) even if it does not re-open states.

Proof.

Assume that the optimal path from start to goal is p0, p1, p2, ...pn, where p0 = start,

pn = goal. If goal is not expanded, then prior to each expansion there always exists at

least one “frontline” state pi. A “frontline” state pi is a state such that 0 ≤ i ≤ n and

pi is on Open while none of pi+1, ...pn is closed. This implies that the search always

makes progress on exploring the optimal path (even if the costs used to explore the

path are not optimal), and thus will eventually expand the goal and complete. We

prove this by induction.

Base case: At the very beginning, p0, which is the start state, is on Open, meeting

the requirement for this lemma.

Inductive step: Assume at some point there exists some pi which meets this con-

dition. If the next state that is chosen for expansion is not from pi, pi+1, ...pn, then pi

is still a “frontline” state after the next expansion. Otherwise, suppose we choose to

expand pk which is one of pi, pi+1, ...pn. Then pk+1 will be placed on open and meet

65

the condition.

According to Section 4.2, we know reopening can be bad; according to Theorem

24, we are guaranteed to find a solution if we use NR policy. Then can we just use NR

policy? Unfortunately, for bounded suboptimal search, we not only want a solution

but also care about the solution quality; we want the algorithm to be B-admissible.

BSS algorithms such as A*ϵ [63], EES [87], and DPS [33] are forced to reopen states

in order to be B-admissible.

Thus, in the following context, we discuss how to find bounded suboptimal solutions

using the NR policy. More specifically, BFS-NR algorithm. When we apply the NR

policy to best-first search, we get Best-First Search with the NR policy (BFS-NR)

[91]. In Algorithm 9, by simply setting the parameter RP to be False, we can get

BFS-NR.

4.3.1 Generalized Conditions Making BFS-NR Bounded

We assume the underlying heuristic is consistent. In the following text, we will show

that when we make a few fair assumptions, it follows that a consistent heuristic is a

necessary condition.

Different Φ will result in different behaviors of the algorithm. What we are inter-

ested in are the Φ functions that make BFS-NR a B-admissible algorithm.

Here is the intuition why there exist such Φ functions: when we use WA*, we are

forcing each segment to be bounded. i.e., the cost of the path found between any two

states si and sj on the closed list is bounded. However, that is stronger than what we

need. We only care about the cost of the path between the start and the goal, and

we do not necessarily care if the cost to some non-goal state is not bounded. Thus,

it is possible that there exist some Φ functions that guarantee the overall solution

quality but locally allow paths not to be bounded. In the following context, we will

show that such Φ functions exist. There are infinitely many such functions, as long

as they satisfy the necessary and sufficient conditions that we will define shortly. We

66

will also provide a few specific functions.

We start with a few intuitive assumption that Φ will satisfy.

Property 1 For any given δ > 0, Φ(x+ δ, y) > Φ(x, y), Φ(x, y + δ) > Φ(x, y).

Property 2 For any given δ > 0, Φ(x, y + δ) ≤ Φ(x+ δ, y)

Property 1 means that the Φ-value grows monotonically along each axis. In terms

of the behavior of the search algorithm, it is equivalent to say that for two states with

same h-cost, the one with lower g-cost should be preferred; similarly, for two states

with same g-cost, the one with lower h-cost should be preferred.

Property 2 means when there are two states with the same sum of h-cost and

g-cost, the one with lower g-cost should not be preferred over the one with higher

g-cost, although they could be equally preferred.

Property 3 Φ(x, 0) = x.

The return value of the Φ function provides a partial ordering over states in Open.

In this sense, there are many possible partial orderings that Φ could use. We assume

Φ(x, 0) = x because (1) it gives Φ a semantic meaning: Φ is a lower bound on the

optimal solution cost, not only for the start state, but also for every state expanded;

and (2) it will simplify our remaining derivations.

With the first 3 assumptions made, now we can say something interesting about

Φ.

Definition 25 Let IAD be all problem instances with admissible heuristics and ICON

be all instances with consistent heuristics. Furthermore, let ICONS
stand for instances

with strongly consistent heuristics, while ICONW
stands for instances with weakly con-

sistent heuristics. The instances with inconsistent but admissible heuristics are de-

noted by IINC.

67

start

cost = B x +
𝜖
2

cost = 0

h = x

goaln
cost = x

h = x h = 0

Figure 4.6: Illustration for Theorem 26.

Theorem 26 If, for a given Φ, there exists an x ≥ 0 such that Φ(x, 0) > Φ(0, B(x)),

where B is the given bounding function, then BFS-NR using Φ is not guaranteed to

be bounded on IAD.

Proof. Suppose Φ(x, 0) > Φ(0, B(x)). Then, according to Property 1, there exists

an ϵ > 0 such that Φ(x, 0) = Φ(0, B(x) + ϵ).

Then, we can create a problem instance that belongs to IAD with 3 states, start, n,

goal, as illustrated in Figure 4.6. In this example h(start) = h(n) = x, c(start, n) = 0,

c(start, goal) = B(x) + ϵ
2
, c(n, goal) = x. On this problem BFS-NR will expand the

goal and find a solution of cost B(x) + ϵ
2
, meaning it is not bounded.

We now introduce two properties, the first of which, Property 4, is necessary ac-

cording to Theorem 26.

Property 4 Φ(x, 0) ≤ Φ(0, B(x)), where B is the given bounding function.

Property 5 Φ(x, 0) = Φ(0, B(x)), where B is the given bounding function.

Note that Property 5 is more strict than Property 4. Any Φ that meets Property

5 will also meet Property 4.

Weighted A* meets the stronger Property 5. This seems to be a natural choice,

since it makes full use of the allowable suboptimality. But, some algorithms, such

as Dynamic WA* [66], have Φ(x, 0) < Φ(0, B(x)). ΦAB, which will be introduced in

next section, satisfies Property 4 everywhere, but does not satisfy Property 5 in one

portion of the space.

Given Properties 1–4, we present an important result, the Φ-inequality.

68

n

cost = B h n + g∗ n + ϵ − g n

cost =
𝜖
3

h = hሺnሻ

goalm
cost = h n +

𝜖
3

h = h n +
𝜖
3

h = 0

IŶiƚiaů SƚaƚeƐ

Figure 4.7: Illustration for Theorem 30.

Definition 27 Suppose BFS-NR expands a state n with cost g(n). The Φ-inequality

is Φ(h(n), g(n)) ≤ g∗(n) + h(n)

When the heuristic is consistent, g∗(n) + h(n) is a lower bound on the optimal

cost from start to goal through n. Thus, Φ can be interpreted as an estimate of the

optimal path cost through the each state. Note that this contrasts with how f is used

in algorithms like WA* – as an estimate of the solution cost that will be found.

In the following, we will show that BFS-NR is bounded if and only if the Φ-

inequality holds. As the Φ function determines how potential suboptimality is dis-

tributed across a path, the Φ-inequality guarantees that the local suboptimality is

bounded such that a bounded suboptimal path to the goal always exists.

Theorem 28 [Sufficiency] Suppose that Φ satisfies Property 1 - 4. Then, if the Φ-

inequality holds for every state expanded, BFS-NR is bounded on IAD.

Proof. Suppose the Φ-inequality holds for every state expanded, then it also holds

for goal. Therefore, Φ(0, g(goal)) ≤ g∗(goal) + h(goal) = C∗. According to Property

4, C∗ ≤ Φ(0, B(C∗)). According to Property 1, g(goal) ≤ B(C∗), therefore the

solution is bounded.

Since Property 5 is stronger than Property 4, then Theorem 28 also holds for

Property 5, which we state below, as Corollary 29.

Corollary 29 Suppose that Φ satisfies Property 1 - 3 and Property 5. Then, if the

Φ-inequality holds for every state expanded, BFS-NR is bounded on IAD.

Theorem 28 suggests that the Φ-inequality is a sufficient condition for BFS-NR to

be bounded. But, is it a necessary condition? The short answer is, yes. The next

69

theorem, Theorem 30, tells us that this condition must hold for every single expansion.

Otherwise, there could be some instance I ∈ IAD on which BFS-NR would not be

bounded. This theorem requires Property 5; there is no equivalent theorem when

only Property 4 holds.

Theorem 30 [Necessity] Suppose Φ satisfies Property 1 - 3 and Property 5. Then,

only if the Φ-inequality holds for every state expanded will BFS-NR be bounded on

IAD.

Proof.

We prove the contrapositive.

Suppose there exists one state n expanded by BFS-NR on a problem I ∈ IAD that

violates the Φ-inequality. That is, Φ(h(n), g(n)) > h(n) + g∗(n). Then, we can show

that BFS-NR is not bounded on I.

Figure 4.7 illustrate an IAD instance with consistent heuristic. Suppose BFS-NR

expands a few initial states and comes to the situation illustrated in Figure 4.7,

where BFS-NR decides to expand the state n whose Φ(h(n), g(n)) > h(n) + g∗(n)

without knowing which states are after n. Since Φ is continuous, there must exist

ϵ > 0 such that Φ(h(n), g(n)) = h(n) + g∗(n) + ϵ. Now, we can alter the remaining

graph such that there are only 2 successors of n: m and goal. We set c(n, goal)

such that Φ(0, g(n) + c(n, goal)) = Φ(h(n), g(n)). h(m) = h(n) + ϵ
3
, c(n,m) = ϵ

3
,

c(m, goal) = h(n) + ϵ
3
.

Since the algorithm just expanded n, we know n was the state with minimum

priority on Open. Thus, once we expand n and put m and goal on Open, the goal

will be chosen for expansion immediately, since it will be the state with minimum Φ

value. In this case, Φ(0, g(goal)) = h(n) + g∗(n) + ϵ = Φ(0, B(h(n) + g∗(n) + ϵ)).

However, there exists a path from start-n-m-goal, whose cost is h(n) + g∗(n) + 2ϵ
3
.

In this problem, C∗ ≤ h(n) + g∗(n) + 2ϵ
3
, while the solution we returned has cost

B(h(n) + g∗(n) + ϵ), which is strictly greater than B(C∗).

70

start

cost =
𝜆ଵ + 𝜆ଶ

2

h = h

qr
cost = ϵ

h = h

cost = 0

h = h − 𝑘ϵ

Oƚheƌ SƚaƚeƐ

Figure 4.8: Illustration for Theorem 31.

Hence, the BFS-NR is not bounded on I.

In short, if BFS-NR expands a state that violates the Φ-inequality, we can construct

a new problem instance where BFS-NR will not be bounded.

Thus, to understand when BFS-NR is guaranteed to find bounded-suboptimal

solutions, we must study the properties that will cause the Φ-inequality to hold.

As we will now show, the Φ-inequality holds for each expansion if and only if we

have Properties 1–3, Property 5 and Property 6, and a consistent heuristic. Note

that Properties 1–3 and Property 5 are general assumptions and have already been

introduced; Property 6 will be introduced in the following context.

Theorem 31 Suppose that Φ satisfies Property 1 - 3. Then there does not exist a

Φ that can guarantee that the Φ-inequality holds for all states expanded on problem

instances I ∈ IINC.

By construction.

We create a parametric example where using any Φ function that meets Property

1 - 3 with an inconsistent heuristic will cause BFS-NR to not be bounded.

As is illustrated in Figure 4.8, create a I ∈ IINC where start has 2 successors, q

and r.

h(start) = h, h(q) = h − kϵ, h(r) = h, c(start, r) = 0, c(r, q) = ϵ. where k > 1.

Then we can see that the heuristic is inconsistent between q and r.

Since Φ is continuous, we can let Φ(h− kϵ, λ1) = h− kϵ+ ϵ and Φ(h− kϵ, λ2) = h.

According to Property 1, λ1 < λ2.

Then set c(start, q) = λ1+λ2

2
.

71

We can compute

f(q) = Φ(h(q), g(q)) = Φ(h− kϵ,
λ1 + λ2

2
)

f(r) = Φ(h(r), g(r)) = Φ(h, 0) = h

Since λ1 < λ2, according to Property 1,

Φ(h− kϵ,
λ1 + λ2

2
) < Φ(h− kϵ, λ2) = h

. Therefore f(q) < f(r). Thus we will expand q instead of r.

On the other hand,

h(q) + g∗(q) = h(q) + c(p, r) + c(r, q) = h− kϵ+ ϵ

Φ(h− kϵ,
λ1 + λ2

2
) > Φ(h− kϵ, λ1) = h− kϵ+ ϵ

which breaks the Φ-inequality on state q.

Theorem 32 Suppose that Φ satisfies Property 1 - 3. Then, there does not exist a

Φ that can guarantee that BFS-NR is bounded for instances I ∈ IINC.

Proof.

Theorem 30 tells us the Φ-inequality must hold for every single expansion. Theorem

31 shows that it will not on problems in IINC .

If the heuristic is not consistent, then without further assumptions, we cannot

guarantee that the algorithm returns a bounded solution on every instance. It may

return bounded solutions for some instances, but not for all. Thus, Theorem 32

indicates that consistent heuristics are a necessary condition to guarantee that BFS-

NR is bounded for all instances I ∈ ICON . This is not counter-intuitive; A∗ also

needs to perform re-expansions to guarantee optimal solutions when the heuristic is

inconsistent [27, 54].

Now we will study Φ functions given problems in ICON .

72

(a) (b)

Figure 4.9: The successor parallelogram when the heuristic is (a) strongly consistent
(b) weakly consistent.

Definition 33 Successor Parallelogram.

Figure 4.9 (a) and (b) illustrate the successor parallelogram for strongly consistent

heuristics and weakly consistent heuristics, respectively. Suppose that state q is a

descendant of state p. p is an expanded state. The h-cost and g-cost of p are h(p),

g(p), respectively. We put a point P in the h − o − g plane, whose coordinates are

(h(p), g(p)). We put another point Q, with coordinates (h(q), g(p) + d(p, q)). This

point represents the cost of q if we reach q optimally from p.

After that, we draw out two 45◦ straight lines from P and Q (45◦ straight lines

correspond to consistency). For a strongly consistent graph, we draw out two -45◦

straight lines from P and Q; for weakly consistent graph, we draw out two horizontal

lines from P and Q.

These four lines will give us a parallelogram in every possible case. Such a paral-

lelogram is called a successor parallelogram.

As the name indicates, we can prove that for any state p1 on the optimal path

from p to q, p1 must be in the successor parallelogram, given that the heuristic is

consistent.

Definition 34 We define R as the right most corner of successor parallelogram.

Point R is interesting because that is the point with the maximum Φ value in the

parallelogram.

73

start

𝑔଴

h = 𝑓଴

m

h = ℎ଴

goal

a b
𝑒ଵ 𝑒ଵ + 𝑓଴ − ℎ଴

𝐵ሺ𝑓଴ + 2𝑒ଵ + 𝑒ଶ + 𝛿଴ +
𝜖଴
2
ሻ − 𝑔଴

h = 𝑒ଵ + 𝑓଴ h = ℎ଴ + 𝛿଴

𝑒ଶ ℎ଴ + 𝛿଴

h = 0

Figure 4.10: The examples for Theorem 37
.

Lemma 35 Point R is the point with maximum Φ value.

Proof. According to Property 1, the maximum Φ value is on the line segment

QR.

For any given point S in line segment QR, Let x = xS, y = yR, δ = xR − xS.

According to Property 2, we know Φ(xR, yR) ≥ Φ(xS, yS).

The next property is the key property needed for avoiding re-expansions. It is a

sufficient condition to guarantee the Φ-inequality under Property 4. It is necessary

when Φ meets Property 5. There are two versions of the condition depending on the

consistency of the heuristic:

Property 6 [Consistency of Φ] For a strongly consistent heuristic: for any given

δ > 0, Φ(x+ δ, y + δ) ≤ Φ(x, y) + 2δ

For a weakly consistent heuristic: for any given δ > 0, Φ(x+ δ, y) ≤ Φ(x, y) + δ

We refer to this property as the Φ function being consistent, as it arises from the

consistency of the underlying heuristic. This limits a Φ function from changing too

quickly.

Theorem 36 Assume BFS-NR is using a priority function Φ which meets Properties

1 to 4 and 6 on an problem instance I ∈ ICON . Then for all expansions the Φ-

inequality holds.

Proof.

Proof by induction. This is the proof for strongly consistent heuristics; for weakly

consistent heuristics, the argument is analogous.

74

Base case: Initially start is chosen for expansion, so Φ(h(start), g(start)) = Φ(h(start), 0) =

Φ(h(start) + g∗(start), 0), and the claim holds.

Inductive step: Assume the Φ-inequality holds for all expanded paths and a state

q is the next state from Open is chosen for expansion. We need to prove that

Φ(h(q), g(q)) ≤ Φ(h(q) + g∗(q), 0)) = h(p) + g∗(p).

Let the node that is closed on an optimal path from start to q with highest g∗-value

be p. The hypothesis guarantees that:

Φ(h(p), g(p)) ≤ Φ(h(p) + g∗(p), 0) = h(p) + g∗(p) (4.1)

Since p is closed, there must exist a direct successor of p, px on Open, which is on

the optimal path from p to q. Examining the successor parallelogram formed around

p and q, according to Lemma 35, the right corner point R is of maximum priority,

whose coordinate is: (h(p) + t, g(p) + t), where

t =
d(p, q) + h(q)− h(p)

2
(4.2)

.

Therefore,

Φ(h(px), g(px)) = Φ(h(px), g(p) + d(p, px))

≤ Φ(h(p) + t, g(p) + t) (4.3)

According to Property 6,

Φ(h(p) + t, g(p) + t)

≤ Φ(h(p), g(p)) + 2t

= Φ(h(p), g(p)) + d(p, q) + h(q)− h(p)

(4.4)

75

By combining inequalities (4.1), (4.3) and (4.4) we can get

Φ(h(px), g(px))

≤ h(p) + g∗(p) + d(p, q) + h(q)− h(p)

= h(q) + g∗(p) + d(p, q)

= h(q) + g∗(q)

= Φ(h(q) + g∗(q), 0)

(4.5)

Since during the search, we chose to expand q instead of px, the priority of q will

be no more than that of px. Thus:

Φ(h(q), g(q)) ≤ Φ(h(px), g(px)) (4.6)

Combine inequality (4.5) and (4.6) together, we can get:

Φ(h(q), g(q)) ≤ Φ(h(q) + g∗(q), 0)

i.e. the Φ-inequality holds for expansion on q.

This proves that the Φ-inequality holds for each expansion.

Theorem 37 Assume BFS-NR is using a priority function Φ with a bounding func-

tion B(x) on a problem instance I ∈ ICON . If Φ is not consistent then the Φ-inequality

is not always guaranteed to hold. That is, if there exists h0, g0, δ0 such that (1) for a

strongly consistent heuristic Φ(h0 + δ0, g0 + δ0) > Φ(h0, g0) + 2δ0, or (2) for a weakly

consistent heuristic Φ(h0+δ0, g0) > Φ(h0, g0)+δ0, then the Φ-inequality is not always

guaranteed to hold.

By construction.

We will construct an example where BFS-NR fails if Φ is not consistent. In the

following proof, e2 = δ0 if the heuristic is strongly consistent, e2 = 0 if the heuristic

is weakly consistent.

76

Let Φ(h0, g0) = f0, Φ(h0 + δ0, g0 + e2) = Φ(h0, g0) + δ0 + e2 + ϵ0. Figure 4.10 shows

the instance where this holds where the h-costs are h(m) = h0, h(a) = f0+e1, h(b) =

h0+δ0, and the edge costs are c(start,m) = g0, c(start, a) = e1, c(a,m) = e1+f0−h0,

c(m, goal) = B(f0 + 2e1 + e2 + δ0 +
ϵ0
2
)− g0, c(m, b) = e2, c(b, goal) = δ + h0.

Where

e1 ≤
h0 + g0 − f0

2
(4.7)

and

e1 <
ϵ0
4

(4.8)

.

(Note that Φ(h0, g0) = f0 and h0 + g0 = Φ(h0 + g0, 0). According to Property 2,

Φ(h0, g0) ≤ Φ(h0 + g0, 0), which guarantees h0 + g0 − f0 ≥ 0. Therefore, there must

exist a non-negative e1.)

BFS-NR will expand start first and put m and a on Open. At that point, f(m) =

Φ(h0, g0) = f0, f(a) = Φ(h(a), g(a)) = Φ(f0 + e1, e1), which means we will expand m

before a.

According to Equation 4.7, the cost of start-a-m is 2e1+ f0−h0 ≤ (h0+ g0− f0)+

f0 − h0 = g0, which means start-a-m is shorter than start-m.

Since we do not re-open nodes, when we reach b, h(b) = h0 + δ0, g(b) = g(m) +

c(m, b) = g0 + e2.

Since f(b) = Φ(h(b), g(b)), we can compute that f(b) = f0 + δ0 + e2 + ϵ0.

At the same time,

f(goal) = Φ(0, g(goal))

= Φ(0, B(f0 + 2e1 + δ0 + e2 +
ϵ0
2
))

= f0 + 2e1 + δ0 + e2 +
ϵ0
2

According to Equation 4.8, f0 + 2e1 + δ0 + e2 +
ϵ0
2

< f0 + 2 ϵ0
4
+ δ0 + e2 +

ϵ0
2

= f0 + δ0 + e2 + ϵ0

77

g(
n)

0

5

10

h(n)
0 5 10

g(
n)

0

1

2

3

h(n)
3 4 5 6

(a) (b)

Figure 4.11: Different functions produce isolines with different properties.

Therefore, f(goal) < f(b) and we will expand goal. In such a case, the total cost

of the path will be B(f0 + 2e1 + e2 + δ0 +
ϵ0
2
).

However, the shortest path from start to goal should be start-a-m-b-goal, whose

cost is f0 + 2e1 + e2 + δ0. We can see that

B(f0 + 2e1 + e2 + δ0 +
ϵ0
2
) > B(f0 + 2e1 + e2 + δ0),

which means the expansion of the goal breaks the Φ-inequality.

To summarize the theoretical results:

(1) On instances in IINC , BFS-NR is not bounded.

(2) On instances in ICON , to make BFS-NR bounded, Φ needs to meet a few

properties. We always assume Properties 1 to 3. Then, Property 6 (consistency of Φ)

is both necessary and sufficient for BFS-NR to be bounded on ICON when Φ meets

Property 5.

If Φ only meets Property 4, then Property 6 is sufficient but not necessary for

BFS-NR to be bounded on ICON .

4.3.2 Φ Functions For Linear Bounds

In Section 4.3.1, we present the conditions that allow us to determine whether a Φ

function can be used in BFS-NR. In this section, we present specific Φ functions that

can be used in search.

78

Figure 4.12 provides an example showing the limitation of WA*. In this example,

we look for a 2-admissible solution. The top path, start−m−a−goal has fewer nodes

and higher cost, while the bottom path, start−m− b− b1...− goal has more nodes

and optimal cost, 100. Note that the top path has cost 185, which is 2-admissible.

However, WA* will not be able to discover that path. It will be forced to expand

b1, b2,... before expanding a due to their lower f -cost. Thus, WA* cannot solve this

problem instance with very few node expansions.

The problem is that WA* implicitly distributes the suboptimally evenly, that is,

every segment of the found path must be B-admissible. This is much stronger than

what we actually need: a total path that is B-admissible. The following Φ functions

we introduce focus on distributing the suboptimality unevenly. In short, Convex

Downward Parabola (XDP) and its piecewise version try to search optimally when

the g-cost is low and search greedily when the g-cost is high. Convex Upward Parabola

(XUP) and its piecewise version does it the other way around. They search greedily

when the g-cost is low and search optimally when the g-cost is high.

The formulas and derivations are shown below.

Convex Downward Parabola

Our first priority function has isolines similar to the bottom parabola shown in blue

in Figure 4.11. A parabola is a function is of the form y = ax2 + bx+ c, where a, b, c

are to be determined. Next, we will show how to solve a, b, c and get the equation for

Φ. Assume that parabola goes through the points (0, wU) and (U, 0) and has slope

−1 at (U, 0). The slope of −1 at (U, 0) means that paths with low g-cost must be

Figure 4.12: An example to show the limitation of the WA* priority function.

79

near-optimal. This results in the following equation set:

⎧⎪⎨⎪⎩
c = wU

a · U2 + b · U + c = 0

2a · U + b = −1
(4.9)

Solving for a, b and c, the equation of the parabola is

y =
w − 1

U
· x2 + (1− 2w) · x+ wU (4.10)

We can rewrite equation (4.10) as an equation of U :

wU2 + (x− 2wx− y)U + wx2 − x2 = 0 (4.11)

The Φ function we are looking for is in proportion to the larger root of equation

(4.11):

ΦXDP (x, y) =
1

2w
[y + (2w − 1)x+

√︁
(y − x)2 + 4wyx] (4.12)

Convex Upward Parabola

Our second function corresponds to the top parabola shown in red in Figure 4.11.

This parabola goes through points (0, wU) and (U, 0), has slope −1 at point (0, wU).

Because the slope is −1 near (0, wU) it means that near the goal the path found must

be near-optimal.

⎧⎪⎨⎪⎩
c = wU

a · U2 + b · U + c = 0

b = −1
(4.13)

Following the same steps as before we get the priority function:

ΦXUP (x, y) =
1

2w
(y + x+

√︁
(y + x)2 + 4w(w − 1)x2) (4.14)

This function is a convex upward parabola (XUP) and also meets properties 1 – 6.

80

!

ℎ

!

ℎ

!

ℎ

!

ℎ

!

ℎ

(a) (b) (c) (d) (e)

Figure 4.13: The contour plots of (a) ΦWA∗ (b) ΦAB (c) Φz (d) ΦpwXD (e) ΦpwXU .
Red lines indicate free parameters.

Piecewise Functions

A general piecewise function for Bw(x) is:

ΦBw(x, y) =

⎧⎪⎨⎪⎩
x+ y y < K1x

A(y +Bx) K1x ≤ y < K2x
1
w
(x+ y) y ≥ K2x

(4.15)

Figures 4.13(c)-(d) illustrate several possible contour plots for this priority function,

where (c) is the most general form. The behavior of the most general Φ function will

perform optimally near start and goal with suboptimal search in the middle region

(where K1x ≤ y < K2x). Note that equation set has 4 parameters, K1,K2, A and B.

However, there are only 2 free variables. Once we choose K1, A is determined. As for

the remaining variables, if we fix one, the other is determined. We manually choose

K1 and B = (2w − 1), and then compute K2 and A.

Intuitively, there are a few advantages of this approach over previous XUP and

XDP functions. Firstly, XDP and XUP are quadratic functions and are more com-

plicated to implement and analyze, involving a square root operation. The piecewise

curves are slightly easier to implement in A*, although both approaches only require

small changes to A* compared to standard algorithms. These new priority functions

also give us more degrees of freedom to distribute the suboptimality. When we are

near start, we usually need to expand a few states optimally to validate the final so-

lution; when we are close to goal, the heuristics are usually perfect, which means that

81

the path we find is typically optimal in those portions. It is in the middle where we

actually have the freedom to find suboptimal paths - and we can use a higher degree

of suboptimality there, instead of evenly distributing it across the solution path, as

WA* does. Φz1 implements this approach, as shown in Figure 4.13(c).

Φz1 =

⎧⎪⎨⎪⎩
y + x y < 1

w
x

w+1
2w2−w+1

(y + (2w − 1)x) 1
w
x ≤ y < 2w2+w+1

w−1
x

1
w
(y + x) 2w2+w+1

w−1
x ≤ y

(4.16)

We can get simpler forms by setting K1 = 0 or K2 = ∞ resulting in a 2-part

piecewise function. We call these the piecewise Convex Downward (pwXD) function

Figure 4.13(d) and piecewise Convex Upward (pwXU) Figure 4.13(e). Each function

has one free parameter, K. In our experiments, we always use K = 2w − 1 giving:

ΦpwXD =

{︄
y + x y < K−w

w−1
x

1
w
(y +Kx) K−w

w−1
x ≤ y

(4.17)

ΦpwXU =

{︄
1
K
y + x y < K(w−1)

K−w
x

1
w
(y + x) K(w−1)

K−w
x ≤ y

(4.18)

Not that for Equation (4.17), if K > 2w − 1, then property 6 is violated.

4.3.3 Φ Functions For Additive Bounds

This subsection discusses additive suboptimality bounds. For reference, the Φ func-

tion used by WA* with weight w corresponds to straight contour plots with a slope

of −w, as shown in Figure 4.13(a). We can achieve constant suboptimality with ΦAB

and a parameter K, K ≥ γ that can be tuned.

ΦAB(x, y) =

{︄
x+ K−γ

K
y y < K

x+ y − γ y ≥ K
(4.19)

Figure 4.13(b) illustrates ΦAB, a priority function that allows a BFS-NR to find

a solution with cost at most C∗ + γ. The behavior of this algorithm is easy to

understand: ΦAB searches with WA* and then switches to A*. There is one parameter

K, which defines the size of the region where WA* is performed. A larger K performs

82

WA* for longer distances; as a trade off, the weight of WA*, K
K−γ

, must be smaller.

We can verify that all the required properties are satisfied. Note that when x < K−γ,

only Property 4 holds because ΦAB(x, 0) < ΦAB(0, B(x)); when x ≥ K − γ, Property

5 holds because ΦAB(x, 0) = ΦAB(0, B(x)).

An interesting fact is that reversing the approach by doing A* and then switching

to WA* won’t work. The following Φ is not guaranteed to find bounded suboptimal

solutions because when x < b, Φ(x+ δ, y + δ) > 2δ.

Φ(x, y) =

{︄
b+γ
b
x+ y − γ x < b

x+ y x ≥ b

4.4 Improved Optimistic Search (IOS)

The theoretical guarantee of WA* is w-admissible, i.e., C/C∗ ≤ w, where C is the

cost of the solution found by WA* with weight w. It is believed that the bound is

loose. Studies show that in practice, C/C∗ grows in proportion to
√
w [41].

Then comes the research question: how can we leverage that empirical observation?

Thayer and Ruml proposed Optimistic Search to exploit that property [86]. The idea

is to split the search procedure into two phases, the searching phase and the proving

phase. In the searching phase, run WA* search with higher weights (2w − 1 in their

experiments) for an incumbent solution. While in the proving phase, run an A*

search to re-expand some states until the solution is shortened enough to be proven

w-admissible. Since the solution quality is usually much better than C/C∗ ≤ 2w− 1,

there is usually very little work in phase two.

We combine BFS-NR with Φ and Optimistic Search. A straightforward approach

is to try alternative priority functions in the searching phase, since we already know

other priority functions could outperform WA* in many cases.

There are other improvements, which will be addressed in detail below, that can

be integrated into Optimistic Search, together creating a new algorithm, Improved

83

Algorithm 10 Improved Optimistic Search

1: procedure Improved Optimistic Search(start, goal, w)
2: Push(start, Open)
3: Push(start, Focal)
4: I ← ∅ [c(I) =∞)]
5: while c(I) not w-admissible do
6: if est. path length of best on Focal < c(I) then
7: Expand best from Focal
8: if best == goal then
9: I ← path(best)
10: end if
11: else
12: Expand best from Open
13: if child s has shorter path to s on Focal then
14: // Choose one of the following policies:
15: (a) Update cost of s on Focal // Update
16: (b) Re-open s on Focal // Re-open
17: if s ∈ I then
18: (c) update cost of I // Solution-update
19: end if
20: end if
21: end if
22: end while
23: return failure
24: end procedure

Optimistic Search (IOS).

The pseudo-code for IOS is shown in Algorithm 10.

Despite the re-opening policies (lines 13-18), the approach is relatively simple. IOS

expands the best state on Focal until an incumbent solution I is found (line 6), and

stores the value c(I), where c(I) is the cost of the solution I. Then it expands the best

state on Open until w-admissibility is proven (line 12). If re-openings are allowed,

states re-opened on Focal in line 16 will then be re-expanded in line 6. Because some

priority functions such as ΦXUP do not directly estimate the length of the solution

that will be found, line 6 explicitly uses the estimated path length.

Termination and Proving Bounds

Existing algorithms, such as Optimistic search and EES, use the minimum f -cost

of a state on Open, fmin, to prove the optimality of the solution. In particular, fmin

84

on Open is a lower bound on the optimal solution cost. This holds because, with a

consistent heuristic, the minimum f -cost in Open never decreases, and at the goal

the f -cost is equivalent to the solution cost. Thus, a solution found in Focal with

cost less than or equal to w · fmin is guaranteed to be w-admissible. If the solution

cannot immediately be proven to be optimal, states on Open are expanded until the

bound on the solution quality is proven.

For example, if a solution is found with cost 100, and w is 1.5, those algorithms

are required to expand the states until the minimum f in Open is raised to 100/1.5 =

66.67.

While IOS uses this termination condition (c(I) ≤ wfmin), it can also use a second

termination condition. It uses the maximum f -cost seen during the search, since we

proved that value is a lower bound of the cost of an optimal path. As long as the

maximum f -cost is found at a state other than the start state, this approach will be

able to terminate faster.

Re-expansion Policies in IOS

Given the potential impact of re-expansions, several policies for dealing with re-

expansions are studied. Because re-expansions never occur with a consistent heuristic

in Open, there are only two contexts in which re-openings can occur: (1) When

expanding states in Focal, a shorter path to a state in Focal is discovered. (2)

When expanding states in Open, a shorter path to a state in Focal is discovered.

When a shorter path is found there are three simple policies that can be followed

in either context, although more complex policies have been studied [72]. The re-open

policy always moves states from Closed back to Focal when a shorter path is found.

The update policy updates the g-cost and parent pointers of a state when a shorter

path is found, but does not re-open the state by placing it back on Focal. The

ignore policy ignores states that are already in Closed.

An additional policy can be used when a state from Open leads to a shorter path

in Focal. This policy relies on the fact that IOS has an incumbent solution when

85

expanding Open. If all states on the incumbent solution path are marked, the search

will know when it has updated (reduced) the cost of the incumbent solution by reduc-

ing the g-cost of one of the states on the path. In this case, the cost of the incumbent

solution can be reduced without re-expanding the path to update all g-costs. The

search must simply take note of the reduction in g-cost, and reduce the stored in-

cumbent solution cost by the same amount. This policy is called the solution-update

policy. If shorter paths are found to several different states on the incumbent solution

path, only the maximum improvement can be used for updating the incumbent so-

lution cost. Thus, in Algorithm 10, one of the three policies following line 13 should

be used.

4.5 Results and Discussion

In the following, we run experiments on a server with 16 GB RAM and 24 processors

6-core Intel Xeon CPU E5-2630 (2.30GHz). We tested on the 15-puzzle with unit edge

costs and the heavy tile setting, where the cost of moving tile X is X. Manhattan

Distance (MD) and PDB heuristics are used as heuristic for regular tiles, and the

modified MD [87] is used for heavy tiles. The instances are the standard 100 Korf

instances [46]. We also tested on 1098 problems with solution length [128 − 132)

from the Dragon Age: Origins benchmark set [81]. Further experiments evaluated

performance on a heavy variant of the pancake puzzle [33], where the cost of flipping

a prefix (V [1] · · ·V [i + 1]) is max(V [1];V [i + 1]). We also use their HGAP heuristic

[33]. The problem set consists of 50 randomly generated 12-pancake instances. “-”

means the algorithm is not able to solve all instances due to running out of memory.

Results on linear bounds in Table 4.3 show that ΦpwXD and Φz1 typically perform

well. For instance, on the heavy pancake puzzle with w = 1.5, ΦpwXD is 8x better

than WA* and 2.48x better than ΦXDP . Note that ΦpwXD doesn’t depend on w

for states with g < h, after which it searches with weight of 2w − 1. Thus, if the

number of states with g < h is small, then ΦpwXD with w will perform similarly to

86

Suboptimality Bound/ (w)

Domain Φ 1.5 2.0 3.0 10.0

15-Puzzle ΦWA∗ 273,101 40,544 11,600 3,758

ΦXDP 166,447 21,338 7,550 3,586

ΦXUP 373,023 71,014 16,934 3,859

ΦpwXD 70,799 11,230 4,978 4,621

ΦpwXU - 2,792,255 823,029 67,065

Φz1 43,009 12,323 7,397 3,321

Heavy ΦWA∗ 333,320 114,848 57,778 44,207

15-Puzzle ΦXDP 200,318 82,295 48,203 43,141

ΦXUP 702,468 161,126 82,916 34,065

ΦpwXD 101,498 52,386 50,664 30,438

ΦpwXU - 4,335,932 1,970,396 125,473

Φz1 95,674 53,274 54,537 34,315

Heavy ΦWA∗ 8,498,635 973,556 22,732 33

Pancake ΦXDP 2,460,235 93,355 1,123 20

Puzzle ΦXUP - 7,072,634 404,622 318

ΦpwXD 988,899 23,718 367 29

ΦpwXU 51,245,052 - 11,244,399 24,377

Φz1 3,323,705 535,430 98,353 1,087

Table 4.3: Average state expansions for each priority functions on different domains.

ΦWA∗ with weight 2w − 1. We italicize entries ΦXDP with w = 1.5 and ΦWA∗ with

w = 1.5 ∗ 2 − 1 = 2 to highlight this in Table 4.3 on the heavy pancake puzzle and

heavy 15-puzzle. The cost for the reduced node expansions is slightly worse solution

quality. However, under the problem definition, the task is to find a solution within

the bound, not to optimize solution quality.

Results on additive suboptimality bounds are presented in Table 4.10 for the sliding

tile puzzle and Table 4.11 for grid maps. In our experiments, we tried 3 different K:

γ+1, 2γ and h0 = max{h(start), γ+1}, and compared against BFSFγ [89]. In most

cases K = h0 gives the best performance. On grid maps, the poor performance of

BFSFγ is fully due to reopening states.

We also run experiments in FastDownward with the CEGAR heuristic [71] on plan-

87

Suboptimality Bound/ (w)

Domain Φ 1.5 2.0 3.0 10.0

15-Puzzle ΦWA∗ 56.37 63.71 77.99 118.87

ΦXDP 56.79 64.35 78.65 121.07

ΦXUP 55.87 63.73 77.69 121.99

ΦpwXD 66.83 75.23 89.33 119.57

Heavy ΦWA∗ 442.34 509.10 619.62 930.06

15-Puzzle ΦXDP 454.28 516.78 620.98 933.08

ΦXUP 438.34 502.56 619.58 988.26

ΦpwXD 519.14 586.26 685.66 1038.12

Heavy ΦWA∗ 81.18 82.78 88.94 105.16

Pancake ΦXDP 81.56 84.34 92.78 106.26

ΦXUP 80.21 82.08 86.70 102.30

ΦpwXD 82.22 86.36 95.74 104.90

Table 4.4: Average path costs for each priority functions on different domains.

Suboptimality Bound/ (w)

Domain Φ 2.0 3.0 10.0

Data-network ΦWA∗ 15 14 16

ΦpwXD 16 16 16

Spider ΦWA∗ 13 17 20

ΦpwXD 18 18 18

Termes ΦWA∗ 11 12 16

ΦpwXD 12 13 15

Total of ΦWA∗ 69 72 77

all 8 domians ΦpwXD 74 79 74

Table 4.5: IPC Problems solved (each domain contains 20 problems).

ning domains from IPC 2018 problem sets. Table 4.5 shows the number of problems

WA* and piecewise XD can solve; while Table 4.6 gives the average number of nodes

expanded for solving the common set. These problems were run with a 15 minute

timeout on a cluster with 2.1 GhZ Intel Xeon E5-2683 CPUs where each job was

given 4 GB RAM.

In the final portion of this study, we look at the impact of the best previous en-

hancements with different priority functions for Focal that avoid node re-expansions.

Results are presented across all domains. No algorithm performs re-openings, but so-

88

Suboptimality Bound/ (w)

Domain Φ 2.0 3.0 10.0

Data-network ΦWA∗ 302,558 996,910 827,652

ΦpwXD 328,049 668,416 524,842

Spider ΦWA∗ 44,904 30,017 48,977

ΦpwXD 12,650 37,827 112,482

Termes ΦWA∗ 21,742,548 18,605,174 12,429,415

ΦpwXD 13,941,669 6,327,308 7,023,560

Table 4.6: Average expansions on commonly solved problems

Table 4.7: Node reductions in IOS using the improved termination condition.

Bound With Bound No Bound Gain

1.25 15,402 16,802 9.1%

1.50 10,797 11,219 3.9%

2.00 7,348 7,842 6.7%

3.00 5,425 5,750 6.0%

lution updating and the improved termination conditions are enabled.

The complete results are in Table 4.12. For each domain, three different priority

functions are used along with 4 different weights. All approaches are able to solve

all problems except in the Heavy Pancake puzzle, where some algorithms could not

solve problems with lower weights.

IOS with ΦXDP has the best performance in 11 of the 15 weight/domain combi-

Table 4.8: Node reductions in IOS using solution updating.

Bound Updating No Updating Gain

1.25 11,423 15,402 34.8%

1.50 8,715 10,797 23.9%

2.00 6,573 7,348 11.8%

3.00 5,386 5,425 0.7%

89

DAO Grids 15 Puzzle Heavy 15-Puzzle Heavy Pancake

Bound ΦXDP WA*(wf) ΦXUP ΦXDP WA*(wf) ΦXUP ΦXDP WA*(wf) ΦXUP ΦXDP WA*(wf) ΦXUP

1.25 10,940 11,423 11,695 264,112 350,976 521,722 668,032 397,710 741,031 - - -

1.50 8,533 8,715 8,573 35,280 47,659 76,756 427,210 152,310 174,369 211,783 1,074,523 -

2.00 6,829 6,573 6,266 12,050 14,240 17,397 64,128 71,672 85,007 3,412 23,567 405,185

3.00 5,818 5,386 5,060 4,468 4,633 6,627 48,226 52,868 48,949 63 382 10,342

Table 4.9: Average performance for IOS with WA*, XDP and XUP as priority func-
tions for Focal.

Additive Suboptimality Bound/ (γ)

Algorithm Parameter 0 4 16 64 256

BFSFγ 12,325 7,494 878 356 235

ΦAB K = γ + 1 12,325 12,265 7,186 446 204

ΦAB K = 2γ 12,325 12,010 1,972 399 399

ΦAB K = h0 12,325 6,273 1,160 446 204

Table 4.10: Average state expansions for algorithm on STP for additive bound (h0 =
max{h(start), γ + 1}.)

nations tested. The only exception is the Heavy 15-puzzle, where there are a few

problems where ΦXDP has very poor performance. We are continuing to study this

domain to better understand the performance here.

4.6 Conclusions

In this chapter, we show that our research on suboptimal search studies the following

question: (1) The impact of reopenings in suboptimal search; (2) the general proper-

ties of Φ which guarantee BFS-NR will find bounded suboptimal solutions, providing

Additive Suboptimality Bound/ (γ)

Algorithm Parameter 0 4 16 64 256

BFSFγ 1,240 1,182 1,219 986 1,078

ΦAB K = γ + 1 1,240 1,237 1,169 711 368

ΦAB K = 2γ 1,240 1,233 1,107 485 481

ΦAB K = h0 1,240 1,137 929 518 368

Table 4.11: Average state expansions for algorithm on DAO for additive bound (h0 =
max{h(start), γ + 1}.)

90

DAO Grids 15 Puzzle Heavy 15-Puzzle Heavy Pancake

Bound ΦXDP WA*(wf) ΦXUP ΦXDP WA*(wf) ΦXUP ΦXDP WA*(wf) ΦXUP ΦXDP WA*(wf) ΦXUP

1.25 10,940 11,423 11,695 264,112 350,976 521,722 668,032 397,710 741,031 - - -

1.50 8,533 8,715 8,573 35,280 47,659 76,756 427,210 152,310 174,369 211,783 1,074,523 -

2.00 6,829 6,573 6,266 12,050 14,240 17,397 64,128 71,672 85,007 3,412 23,567 405,185

3.00 5,818 5,386 5,060 4,468 4,633 6,627 48,226 52,868 48,949 63 382 10,342

Table 4.12: Average performance for IOS with WA*, XDP and XUP as priority
functions for Focal.

necessary and sufficient conditions on Φ; (3) specific choices for Φ that improve the

performance in practice.

A quick summary is that the priority functions generated from our framework

show improvements over existing methods for both linear and constant suboptimality

bounds. Two priority functions stand out, and we write them in the terms of f , g,

and h below:

For additive bounds one simple function is

fAB =

{︄
h+ h0−γ

h0
g g < h0

h+ g − γ g ≥ h0

where h0 = max{h(start), γ + 1}.

For a linear bounding function, the overall best performance was found with

fpwXD =

{︄
g + h g < h
1
w
(g + (2w − 1)h) g ≥ h

However, there are many other possible Φ functions. There is significant potential

to study these Φ functions in the context of algorithms such as ARA* [50] which use

suboptimal search within a broader search framework.

The major limitation of this work is the dependency on consistent heuristics. Our

theory shows that in general, if the heuristic is inconsistent, in an arbitrary way,

then the solution might be unbounded; however, if the inconsistency of a heuristic is

bounded or can be measured in certain way, then it might be still possible to create

a bounded algorithm.

91

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The thesis presents the following contributions to heuristic search:

Contribution 1: Establishes sufficient conditions for states that must be expanded

by all front-to-end bidirectional algorithms, including unidirectional search algorithms,

to guarantee an optimal solution:

Let I = (G, start, goal, hF , hB) ∈ IAD have an optimal solution cost of C∗. If U is

an optimal forward path and V is an optimal backward path such that U0 = start,

V0 = goal, and:

lb(U, V) < C∗

where lb(U, V) = max{fF (U), fB(V), c(U) + c(V)},

when solving problem instance I, any admissible DXBB bidirectional front-to-end

search algorithm must expand at least one of the following states: {end(U), end(V)}.

The pair {end(U), end(V)} is called a surely-expanded pair in front-to-end bidirec-

tional search.

Such conditions are a generalization of Dechter & Pearl’s results on unidirectional

search that all states n with g∗(n) + h(n) < C∗ must be expanded by unidirectional

algorithms (Theorem 8 [20]). Sufficient conditions are fundamental theory which

make it possible for analysis of the minimum work to guarantee the optimality of an

algorithm.

92

Contribution 2: Based on the sufficient condition, this thesis shows the key to

minimum possible work by analyzing a special bipartite graph, GMX . Unlike unidi-

rectional search, where the sufficient condition directly implies the minimum set of

states that must be expanded by all algorithms (the surely expanded states form a

unique set), the bidirectional search sufficient condition does not imply such a mini-

mum set of states (two algorithm can expand different sets of states while both expand

all surely expanded pairs).

This thesis makes the following observation: the sufficient condition is a binary

relation over set S, i.e., a subset of S × S, where S is the set of all states in the state

space. Such a binary relation can be represented using the bipartite graph GMX . If an

algorithm expands all the surely expanded pairs, then the states it expands must be a

vertex cover of GMX . Thus, we have a corollary that the number of state expansions

in the search problem is greater or equal to the size of the minimum vertex cover in

GMX . Other researchers proved that this bound is tight, i.e., the minimum number

of states expansion is strictly equal to the size of the minimum vertex cover in GMX

[73].

The link from heuristic search to vertex cover provides a revolutionary point of

view for doing bidirectional search. This link (i) allows us to build the theory of

when bidirectional search can be beneficial (for example, if the minimum vertex cover

is bidirectional, then it is likely that bidirectional search algorithm can do better

than A∗) (ii) inspire the invention of bidirectional algorithms that try to minimize

the vertex cover, such as NBS and DVCBS.

Contribution 3: Provides the proof that if a DXBB bidirectional admissible al-

gorithm that has a guaranteed bound λ in state expansions, λ|V C|, where |V C| is

the size of the minimum vertex cover of GMX , then λ ≥ 2. i.e., no algorithm can

guarantee that it can always find an optimal solution with < 2|V C| state expansions.

Note that A∗, as a special case of a front-to-end search algorithm which only does for-

ward expansions, does not have any guarantees for state expansions – it can perform

93

arbitrarily bad on a bidirectional search problem instance.

Contribution 4: Presents a front-to-end bidirectional search algorithm NBS, which

returns an optimal solution with a guaranteed bound in node expansions. The guar-

anteed bound of NBS is 2x, which is the best one can achieve.

Contribution 5: Shows analysis of the impact of reopenings in unidirectional sub-

optimal search. Weighted A* can do exponentially worse when there is no assumption

about edge costs. When there are assumptions about edge costs, for example, a very

limited number of different edge costs, then reopenings can be polynomially worse,

which happens a lot in practice, especially in grid maps. In theory, reopenings can

result in unbounded improvements in node expansions.

Contribution 6: Present a novel framework to do suboptimal search: best-first

search using a Φ function with a never-reopening policy (BFS-NR with Φ). BFS-NR

with Φ is a generalization of Weighted A*. As long as the Φ function satisfies a few

conditions, BFS-NR with Φ returns a bounded suboptimal solution. The conditions

are presented and proved to be sufficient and necessary in this thesis. Also, several

Φ functions, including pwXD, are proposed in this document. Empirical evaluation

shows that they can outperform previous algorithms.

Contribution 7: Suggest improvements that can be made to Optimistic Search

algorithms. Based on those improvements, we develop an new algorithm, Improved

Optimistic Search (IOS).

5.2 Future Work

The major limitation of the work presented in this thesis in bidirectional search is

that although the guarantee of NBS is the best possible, in practice NBS does not

outperform A* in many domains.

There are many open questions in bidirectional search.

(1) Some studies try to predict when bidirectional search algorithms should be

used [85]. However, those studies are closer to a posterior analysis. It is still an open

94

question whether we can have an algorithm or a portfolio of algorithms that apply to

a general graph and do the heuristic search efficiently.

(2) Our theory shows that bidirectional search can be modeled as a vertex cover

problem. The tricky part is that the graph, GMX is not known a priori; it is built

during the search. Thus, it is worthwhile looking at the state-of-the-art online vertex

cover solvers and seeing if any of them can be adapted to search algorithms.

(3) External memory bidirectional search, more specifically, an external memory

version of NBS or DVCBS. Using external memory enables an algorithm to solve harder

problems where the open lists can not fit in RAM. The external memory version of

the MM algoithm, PEMM, is better than external A∗ in a few cases [82]. Since NBS

in general, is better than MM, it would be interesting to see if an external memory

version of NBS can be even more effiecient.

(4) Effective front-to-end heuristics for bidirectional search. In this thesis, the

results indicate that when the heuristics are strong, A∗ tends to be better. Later

studies show that when the heuristics are strong, the vertex cover is unidirectional

[85]. In some sense, current front-to-end heuristics do not help bidirectional search as

much as they help unidirectional search. Are there techniques that could be benefi-

cial in building front-to-end bidirectional heuristics? Studies indicate that the value

compression technique [84] works well with MM, but it remains unclear whether it is

suitable for general bidirectional algorithms.

(5) Besides all the open questions for front-to-end bidirectional search, there are

some related open questions for front-to-front bidirectional search coming from the

theory of this thesis. Since there is a similar form of sufficient condition for state

expansions in front-to-front bidirectional search, the vertex cover reduction in front-

to-end search also applies to front-to-front search. The major challenge for front-to-

front search is to find the pair with a minimum lb efficiently. Front-to-end algorithms,

such as NBS, can reduce the time of selecting a pair to amortized O(log n), where n is

the size of the open lists. In contrast, the worst case for front-to-front pair selection

95

is O(n2). However, it is costly in general case does not mean that it is always costly.

There could be special cases in front-to-front search where the pair selection can be

made efficiently. For example, it looks promising when we know the front-to-front

heuristic is created by front-to-end heuristics.

Initially, the study of suboptimal search was trying to answer the following ques-

tion: can we define a maximal set of states that all algorithms must expand? One

trivial set is, when we are looking for solutions that are not more than wC∗, we have

to expand all the states n with d(n) + h(n) < C∗/w. However, in practice, this set is

very small and even can be negligible when w is relatively large, while the number of

states expanded to solve the problem could be a few magnitudes larger. i.e., there is

a huge gap between the current necessary work vs. the actual work.

One open question follows from that is, is the set of all the states n with d(n) +

h(n) < C∗/w the maximal necessary expansions? We could not either prove it to be

maximal or give a larger set since suboptimal search algorithms are a huge family. The

behaviors of the algorithms can differ widely. For example, some of them only expand

states that are provably good, while some others try to find a solution regardless

of its quality and then refine it; some of them reopen states, while others do not.

The diversity makes it difficult for the analysis of the necessary expansions that all

algorithms must do.

When we realized that it is hard to draw conclusions for all algorithms, we started

to focus on a specific family of algorithms, BFS-NR. We find the conditions that

allow this family of algorithms to return B-admissible solutions, where B is a given

bounding function. Nevertheless, we also leave a lot of open questions:

(1) Φ for general bounding functions. In this thesis, we present Φ functions for

additive and linear bounding functions. There could be other bounding functions,

such as B(x) = λx log x, where λ is a constant. Such a bounding function allows

the solution quality to be worse as the C∗ grows. The question will be if there is an

elegant way of representing the formula of Φ for such bounding functions. If we try

96

to solve Φ using the method provided in this thesis, the analytical solution can be

very complex, or there is no analytical solution.

(2) How to find good parameters for Φ functions? As presented in the thesis, a

few free parameters can be tuned in a Φ function. We do not have a systematic way

of picking parameters; we choose to run a few samples, picking the best parameters

and then fixing them during the remaining experiments. It is possible that a more

advanced parameter-picking strategy will further improve BFS-NR with Φ.

(3) How can extra information improve BFS-NR? When we do the analysis, we

assume the algorithm prioritizes the states only according to its g-cost and h-cost.

However, we could have extra information in practice, and it does not make sense

to throw it away and pretend it does not exist. For example, the difference between

the h-cost of the current state and start state; an inadmissible estimate, such as the

distance-to-go estimate used in EES or the backward h-cost. It is an open question

of how to design BFS-NR to use such information.

(4) Minimum work among BFS-NR. Since BFS-NR is a family of algorithms, an

interesting question is the theoretical minimum expansions among all possible BFS-

NR algorithms. Unfortunately, even though we limit ourselves to a particular family

of algorithms, the analysis of necessary work is still non-trivial.

(5) Analysis of Focal-NR. We know that in general, if we use a focal search algo-

rithm and never reopen states, the solution is not B-admissible. Are such solutions

not bounded at all, or are they still bounded in some way? If we have a concrete

conclusion for the bound of the solution returned by Focal-NR, we would be able to

set our mind at rest in many cases when we receive a solution from Focal-NR.

97

Bibliography

[1] M. Asai and A. Fukunaga, “Tie-breaking strategies for cost-optimal best first
search,” Journal of Artificial Intelligence Research, vol. 58, pp. 67–121, 2017.

[2] A. Athar, A. M. Zafar, R. Asif, A. A. Khan, F. Islam, O. Hasan, et al., “Whole-
body motion planning for humanoid robots with heuristic search,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2016, pp. 4720–4727.

[3] M. H. Baaj and H. S. Mahmassani, “An ai-based approach for transit route
system planning and design,” Journal of advanced transportation, vol. 25, no. 2,
pp. 187–209, 1991.

[4] J. Barker and R. Korf, “Limitations of front-to-end bidirectional heuristic search,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, 2015.

[5] J. K. Barker and R. E. Korf, “Limitations of front-to-end bidirectional heuris-
tic search,” in Proc. 29th AAAI Conference on Artificial Intelligence, 2015,
pp. 1086–1092.

[6] M. Barley, P. Riddle, C. L. López, S. Dobson, and I. Pohl, “Gbfhs: A generalized
breadth-first heuristic search algorithm,” in Eleventh Annual Symposium on
Combinatorial Search, 2018.

[7] S. Bate and K. Stanley, “Heuristic route planning: An application to fighter
aircraft,” in Proceedings of the IEEE 1988 National Aerospace and Electronics
Conference, IEEE, 1988, pp. 1114–1120.

[8] J Benton, M. Do, and W. Ruml, “A simple testbed for on-line planning,” in Pro-
ceedings of the ICAPS Workshop on Moving Planning and Scheduling Systems
into the Real World, Citeseer, 2007.

[9] V. Bulitko, Y. Björnsson, N. R. Sturtevant, and R. Lawrence, “Real-time heuris-
tic search for pathfinding in video games,” in Artificial Intelligence for Computer
Games, Springer, 2011, pp. 1–30.

[10] D. de Champeaux, “Bidirectional heuristic search again,” J. ACM, vol. 30,
no. 1, pp. 22–32, 1983.

[11] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo tree search: A
new framework for game AI.,” AIIDE, vol. 8, pp. 216–217, 2008.

98

[12] C. Chen, M. Rickert, and A. Knoll, “Kinodynamic motion planning with space-
time exploration guided heuristic search for car-like robots in dynamic environ-
ments,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2015, pp. 2666–2671.

[13] J. Chen, R. C. Holte, S. Zilles, and N. R. Sturtevant, “Front-to-end bidirec-
tional heuristic search with near-optimal node expansions,” International Joint
Conference on Artificial Intelligence (IJCAI), 2017.

[14] J. Chen and N. R. Sturtevant, “Conditions for avoiding node re-expansions
in bounded suboptimal search,” International Joint Conference on Artificial
Intelligence (IJCAI), 2019.

[15] J. Chen and N. R. Sturtevant, “Necessary and sufficient conditions for avoiding
reopenings in best first suboptimal search with general bounding functions,”
AAAI Conference on Artificial Intelligence, 2021.

[16] J. Chen, N. R. Sturtevant, W. Doyle, and W. Ruml, “Revisiting suboptimal
search,” Symposium on Combinatorial Search (SoCS), pp. 18–25, 2019.

[17] J. C. Culberson and J. Schaeffer, “Searching with pattern databases,” in Confer-
ence of the Canadian Society for Computational Studies of Intelligence, Springer,
1996, pp. 402–416.

[18] D. Dahlmeier and H. T. Ng, “A beam-search decoder for grammatical error
correction,” in Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
2012, pp. 568–578.

[19] D. De Champeaux, “Bidirectional heuristic search again,” Journal of the ACM
(JACM), vol. 30, no. 1, pp. 22–32, 1983.

[20] R. Dechter and J. Pearl, “Generalized best-first search strategies and the opti-
mality of a,” Journal of the ACM (JACM), vol. 32, no. 3, pp. 505–536, 1985.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[22] J. E. Doran, “Double tree searching and the Graph Traverser,” Dept. of Ma-
chine Intelligence and Perception, University of Edinburgh, Tech. Rep. Research
Memo EPU-R-22, 1966.

[23] R. Ebendt and R. Drechsler, “Weighted A* search–unifying view and applica-
tion,” Artificial Intelligence, vol. 173, no. 14, pp. 1310–1342, 2009.

[24] J. Eckerle, J. Chen, N. Sturtevant, S. Zilles, and R. Holte, “Sufficient conditions
for node expansion in bidirectional heuristic search,” in International Confer-
ence on Automated Planning and Scheduling (ICAPS), 2017.

[25] J. Eckerle and T. Ottmann, “An efficient data structure for bidirectional heuris-
tic search,” in ECAI, 1994, pp. 600–604.

[26] N. Eén and N. Sörensson, “An extensible SAT-solver,” in International confer-
ence on theory and applications of satisfiability testing, Springer, 2003, pp. 502–
518.

99

[27] A. Felner, U. Zahavi, R. Holte, J. Schaeffer, N. Sturtevant, and Z. Zhang,
“Inconsistent heuristics in theory and practice,” Artificial Intelligence (AIJ),
vol. 175, no. 9-10, pp. 1570–1603, 2011.

[28] A. Felner, R. E. Korf, and S. Hanan, “Additive pattern database heuristics,”
Journal of Artificial Intelligence Research, vol. 22, pp. 279–318, 2004.

[29] A. Felner, C. Moldenhauer, N. R. Sturtevant, and J. Schaeffer, “Single-frontier
bidirectional search,” in Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[30] G. Fertin, A. Labarre, I. Rusu, S. Vialette, and E. Tannier, Combinatorics of
genome rearrangements. MIT press, 2009.

[31] C. A. Floudas and X. Lin, “Mixed integer linear programming in process schedul-
ing: Modeling, algorithms, and applications,” Annals of Operations Research,
vol. 139, no. 1, pp. 131–162, 2005.

[32] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural machine
translation,” ACL 2017, p. 56, 2017.

[33] D. Gilon, A. Felner, and R. Stern, “Dynamic potential search—a new bounded
suboptimal search,” in Symposium on Combinatorial Search (SoCS), 2016, pp. 36–
44.

[34] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search
meets graph theory.,” in SODA, Citeseer, vol. 5, 2005, pp. 156–165.

[35] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[36] M. Helmert, “Landmark heuristics for the pancake problem,” in Third Annual
Symposium on Combinatorial Search, 2010.

[37] M. Helmert, “Landmark heuristics for the pancake problem,” in Proc. 3rd An-
nual Symposium on Combinatorial Search, (SoCS), 2010.

[38] H. Hiraishi, H. Ohwada, and F. Mizoguchi, “Time-constrained heuristic search
for practical route finding,” in Pacific Rim International Conference on Artifi-
cial Intelligence, Springer, 1998, pp. 389–398.

[39] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan generation
through heuristic search,” Journal of Artificial Intelligence Research, vol. 14,
pp. 253–302, 2001.

[40] R. C. Holte, A. Felner, G. Sharon, N. R. Sturtevant, and J. Chen, “MM: A bidi-
rectional search algorithm that is guaranteed to meet in the middle,” Artificial
Intelligence, vol. 252, pp. 232–266, 2017.

[41] R. C. Holte, R. Majadas, A. Pozanco, and D. Borrajo, “Error analysis and
correction for weighted A*’s suboptimality.,” in SoCS, 2019, pp. 135–139.

100

[42] R. C. Holte and S. Zilles, “On the optimal efficiency of cost-algebraic A*,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,
pp. 2288–2295.

[43] Horace.wk.chan,Huarongdao, https://commons.wikimedia.org/ wiki/File:HuaRongDao.jpg,
2012.

[44] H. Kaindl and G. Kainz, “Bidirectional heuristic search reconsidered,” J. Arti-
ficial Intelligence Resesearch (JAIR), vol. 7, pp. 283–317, 1997.

[45] H. Kaindl, G. Kainz, R. Steiner, A. Auer, and K. Radda, “Switching from
bidirectional to unidirectional search,” in IJCAI, 1999, pp. 1178–1183.

[46] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree search,”
Artificial Intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[47] R. E. Korf, “Finding optimal solutions to rubik’s cube using pattern databases,”
in AAAI/IAAI, 1997, pp. 700–705.

[48] J. B. H. Kwa, “BS*: An admissible bidirectional staged heuristic search algo-
rithm,” Artificial Intelligence, vol. 38, no. 1, pp. 95–109, 1989.

[49] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The
international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.

[50] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with provable
bounds on sub-optimality,” Advances in neural information processing systems,
vol. 16, pp. 767–774, 2003.

[51] M. Lippi, M. Ernandes, and A. Felner, “Efficient single frontier bidirectional
search,” in Proceedings of the Fifth Annual Symposium on Combinatorial Search,
SoCS, 2012.

[52] M. Madrid and A. Badan, “Heuristic search method for continuous-path track-
ing optimization on high-performance industrial robots,” Control Engineering
Practice, vol. 5, no. 9, pp. 1261–1271, 1997.

[53] G. Manzini, “BIDA*: an improved perimeter search algorithm,” Artificial In-
telligence, vol. 75, no. 2, pp. 347–360, 1995.

[54] A. Martelli, “On the complexity of admissible search algorithms,” Artificial
Intelligence, vol. 8, no. 1, pp. 1–13, 1977.

[55] L. Mérő, “A heuristic search algorithm with modifiable estimate,” Artificial
Intelligence, vol. 23, pp. 13–27, 1984.

[56] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proceedings of the 38th annual Design
Automation Conference, 2001, pp. 530–535.

[57] T. E. Ng and H. Zhang, “Predicting internet network distance with coordinates-
based approaches,” in Proceedings. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies, IEEE, vol. 1, 2002, pp. 170–
179.

101

[58] T. A. J. Nicholson, “Finding the shortest route between two points in a net-
work,” The computer journal, vol. 9, no. 3, pp. 275–280, 1966.

[59] N. J. Nilsson, Principles of Artificial Intelligence. Springer, 1982, isbn: 978-3-
540-11340-9.

[60] D. Ostrowski, I. Pozniak-Koszalka, L. Koszalka, and A. Kasprzak, “Compar-
ative analysis of the algorithms for pathfinding in GPS systems,” ICN 2015,
p. 114, 2015.

[61] C. H. Papadimitriou and K. Steiglitz, “Combinatorial optimization: Algorithms
and complexity,” 1982.

[62] J. Pearl, “Heuristics: Intelligent search strategies for computer problem solving,”
1984.

[63] J. Pearl and J. H. Kim, “Studies in semi-admissible heuristics,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-4, no. 4, pp. 392–
399, Jul. 1982, issn: 0162-8828. doi: 10.1109/TPAMI.1982.4767270.

[64] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial intelli-
gence, vol. 1, no. 3-4, pp. 193–204, 1970.

[65] I. Pohl, “Bi-directional search,” in Machine Intelligence, B. Meltzer and D.
Michie, Eds., vol. 6, Edinburgh University Press, 1971, pp. 127–140.

[66] I. Pohl, “The avoidance of (relative) catastrophe, heuristic competence, genuine
dynamic weighting and computational issues in heuristic problem solving,” in
Proceedings of the 3rd international joint conference on Artificial intelligence,
Morgan Kaufmann Publishers Inc., 1973, pp. 12–17.

[67] I. Rahayuda and N. Santiari, “Dijkstra and bidirectional Dijkstra on determin-
ing evacuation routes,” in Journal of Physics: Conference Series, IOP Publish-
ing, vol. 1803, 2021, p. 012 018.

[68] R. Robotin, G. Lazea, and P. Dobra, “Mobile robots path planning with heuris-
tic search,” Journal of Control Engineering and Applied Informatics, vol. 12,
no. 4, pp. 18–23, 2010.

[69] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd. Upper
Saddle River, NJ, USA: Prentice Hall, 2009, isbn: 0136042597, 9780136042594.

[70] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons,
1998.

[71] J. Seipp and M. Helmert, “Diverse and additive cartesian abstraction heuris-
tics,” in Twenty-Fourth International Conference on Automated Planning and
Scheduling, 2014.

[72] V. Sepetnitsky, A. Felner, and R. Stern, “Repair policies for not reopening nodes
in different search settings,” in Symposium on Combinatorial Search (SoCS),
2016, pp. 81–88.

102

https://doi.org/10.1109/TPAMI.1982.4767270

[73] E. Shaham, A. Felner, J. Chen, and N. R. Sturtevant, “The minimal set of
states that must be expanded in a front-to-end bidirectional search.,” in SoCS,
2017, pp. 82–90.

[74] E. Shaham, A. Felner, N. R. Sturtevant, and J. S. Rosenschein, “Minimizing
node expansions in bidirectional search with consistent heuristics,” Symposium
on Combinatorial Search (SoCS), pp. 81–89, 2018.

[75] G. Sharon, R. C. Holte, A. Felner, and N. R. Sturtevant, “Extended abstract:
An improved priority function for bidirectional heuristic search,” Symposium
on Combinatorial Search (SoCS), pp. 139–140, 2016.

[76] S. Shperberg, S. Danishevski, A. Felner, and N. R. Sturtevant, “Iterative-
deepening bidirectional heuristic search with restricted memory,” in Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), 2021.

[77] S. Shperberg and A. Felner, “On the differences and similarities of fmm and
gbfhs,” in International Symposium on Combinatorial Search, vol. 11, 2020.

[78] S. Shperberg, A. Felner, N. R. Sturtevant, A. Hayoun, and E. S. Shimony, “En-
riching non-parametric bidirectional search algorithms,” in AAAI Conference
on Artificial Intelligence, 2019, pp. 2379–2386.

[79] L. Sint and D. de Champeaux, “An improved bidirectional heuristic search
algorithm,” Journal of the ACM (JACM), vol. 24, no. 2, pp. 177–191, 1977.

[80] R. Stern, A. Felner, J. van den Berg, R. Puzis, R. Shah, and K. Goldberg,
“Potential-based bounded-cost search and anytime non-parametric A*,” Arti-
ficial Intelligence, vol. 214, pp. 1–25, 2014.

[81] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions on Com-
putational Intelligence and AI in Games, vol. 4, no. 2, pp. 144 –148, 2012.

[82] N. Sturtevant and J. Chen, “External memory bidirectional search,” Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 676–682, 2016.

[83] N. Sturtevant, A. Felner, and M. Helmert, “Exploiting the rubik’s cube 12-edge
pdb by combining partial pattern databases and bloom filters,” in International
Symposium on Combinatorial Search, vol. 5, 2014.

[84] N. Sturtevant, A. Felner, and M. Helmert, “Value compression of pattern databases,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, 2017.

[85] N. R. Sturtevant, S. Shperberg, A. Felner, and J. Chen, “Predicting the effec-
tiveness of bidirectional heuristic search,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 30, 2020, pp. 281–290.

[86] J. T. Thayer and W. Ruml, “Faster than weighted A*: An optimistic approach
to bounded suboptimal search.,” in International Conference on Automated
Planning and Scheduling (ICAPS), 2008, pp. 355–362.

[87] J. T. Thayer and W. Ruml, “Bounded suboptimal search: A direct approach
using inadmissible estimates,” in International Joint Conference on Artifical
Intelligence (IJCAI), 2011, pp. 674–679.

103

[88] G. Vaira and O. Kurasova, “Parallel bidirectional Dijkstra’s shortest path al-
gorithm,” Databases and Information Systems VI, Frontiers in Artificial Intel-
ligence and Applications, vol. 224, pp. 422–435, 2011.

[89] R. Valenzano, S. J. Arfaee, R. Stern, J. Thayer, and N. Sturtevant, “Using alter-
native suboptimality bounds in heuristic search,” in International Conference
on Automated Planning and Scheduling (ICAPS), 2013, pp. 233–241.

[90] R. Valenzano, N. Sturtevant, and J. Schaeffer, “Worst-case solution quality
analysis when not re-expanding nodes in best-first search,” in AAAI Conference
on Artificial Intelligence, 2014, pp. 885–892.

[91] R. Valenzano, N. Sturtevant, and J. Schaeffer, “Worst-case solution quality
analysis when not re-expanding nodes in best-first search,” in AAAI Conference
on Artificial Intelligence, 2014, pp. 885–892.

[92] R. Valenzano and F. Xie, “On the completeness of best-first search variants that
use random exploration,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016.

[93] P. Wang and H. T. Ng, “A beam-search decoder for normalization of social
media text with application to machine translation,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2013, pp. 471–481.

[94] Z. Zhang, N. R. Sturtevant, R. Holte, J. Schaeffer, and A. Felner, “A* search
with inconsistent heuristics,” in Twenty-First International Joint Conference
on Artificial Intelligence, 2009.

104

	Introduction
	Motivation of this Thesis
	Bidirectional Search
	Unidirectional Suboptimal Search

	Thesis Outline

	Brief Introduction to Search
	Assumptions about Search Algorithms
	Heuristic Types
	Search Domains
	Grid Map Pathfinding
	Sliding-tile Puzzles (STP)
	Rubik's Cube
	4-peg Tower of Hanoi (4-peg TOH)
	Pancake Puzzle
	Planning Domains

	Bidirectional Optimal Search
	Background and Introduction
	Assumptions and Terminology
	Theory of Minimum Number of Expansions in Front-to-end Bidirectional Search
	A Sufficient Condition for Node Expansion for Front-to-End Bidirectional Search
	The Must-Expand Graph GMX(I): Reduction from Bidirectional Search to the Vertex Cover Problem

	The Near-Optimal Bidirectional Search (NBS) Algorithm
	High Level Idea
	Properties of NBS
	Efficient Selection of State Pairs for Expansion

	Results and Discussion
	Conclusions and Later Work

	Unidirectional Suboptimal Search
	Background and Introduction
	Assumptions in Bounded Suboptimal Search
	Representative BSS Algorithms

	Reopening in Bounded Suboptimal Search
	Algorithm: BFS-NR Guided by Φ
	Generalized Conditions Making BFS-NR Bounded
	Φ Functions For Linear Bounds
	Φ Functions For Additive Bounds

	Improved Optimistic Search (IOS)
	Results and Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

