
Emergent Representations in Reinforcement Learning
and Their Properties

by

Han Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Han Wang, 2020

Abstract

This dissertation investigates the properties of representations learned by mod-

ern deep reinforcement learning systems. Representation learning plays an im-

portant roll in reinforcement learning. A representation contains information

extracted from states—the description of the current situation given by the

environment. Therefore, a high-quality representation is not only essential to

build a robust reinforcement learning agent but also can help improving learn-

ing efficiency. Many sub-problems of reinforcement learning, such as planning

with model and directed exploration, can be solved more efficiently with a

successful agent state discovery. There are a lot of representation learning al-

gorithms that have been proposed. Much of the earlier work in representation

learning for reinforcement learning focused on designing fixed-basis architec-

tures to achieve desirable properties, such as orthogonality. In contrast, the

idea behind deep reinforcement learning methods is that the agent designer

should not encode representational properties, but rather that the data stream

should determine the properties of the representation—desired representations

will emerge under appropriate training schemes. In this work, we discuss how

emergent representations learned with different tasks settings, both with and

without auxiliary tasks, perform on properties that people think a good rep-

resentation has. This thesis (1) empirically investigates how these emergent

representations relate to historical notions of good representations, and (2)

provides novel insights regarding end-to-end training, the auxiliary task effect,

and the utility of successor-feature targets. In particular, we will compare the

ii

representations learned by several standard architectures by discussing seven

representational properties and studying how these properties relate to control

and transfer performance.

iii

Preface

This thesis is based on a pending publication “Emergent Representations in

Reinforcement Learning and Their Properties”. It is a joint work with Muham-

mad Zaheer, Raksha Kumaraswamy, Vincent Liu, Adam White and Martha

White. Zaheer and I are responsible for the experiments. Martha, Adam and

Raksha wrote and edited the main part of the paper, Raksha, Zaheer and I

wrote the appendix.

iv

To my family

For all the support and love

v

We can only see a short distance ahead, but we can see plenty there that

needs to be done.

– Alan Turing

vi

Acknowledgements

I would like to express my sincere appreciation to Dr. Martha White and

Dr. Adam White. They have spent long time on discussing the project with

me, giving valuable suggestions, helping me with my writing skill, as well as

encouraging me. They have taught me a lot not only on solving the problem

I met in the project, but also, more importantly, on how to do good research.

I would like to thank Dr. Rich Sutton for letting me know there is such a

beautiful and elegant subject to study and there are more interesting things

to do. I would also like to thank Raksha Kumaraswamy, Muhammad Zaheer,

and Vincent Liu, for all the fantastic suggestions and advice, and supporting

me during all the difficult time. They are great teammates to work with.

Thanks Dylan Ashley, Andrew Jacobsen, and Fei Wang for spending a lot of

time on helping me with making this thesis better. I also appreciate Khurram

Javed, Yangchen Pan, Banafsheh Rafiee, Sina Ghiassian, Ehsan Imani, Sungsu

Lim, Niko Yasui, Chen Ma, Yi Wan and all others in RLAI and AMII, for all

their help and support during the past few years. It is a great honor and

pleasure to work in this friendly group.

vii

Contents

1 Introduction 1
1.1 Good Representations for Reinforcement Learning 1
1.2 Contribution . 4
1.3 Thesis Structure . 5

2 Background 6
2.1 Finite Markov Decision Process 6
2.2 Value Functions . 6
2.3 Function Approximation and Q-learning 7
2.4 Neural Network Specification 8

3 Representational Properties 11
3.1 Capacity . 11

3.1.1 Complexity Reduction 13
3.1.2 Dynamics-awareness 13
3.1.3 Linear Probing Accuracy 14
3.1.4 Diversity and Specialization 14

3.2 Independence . 15
3.2.1 Orthogonality . 15
3.2.2 Decorrelation . 17

3.3 Robustness . 18
3.3.1 Non-interference . 19

4 Representations Learning Architectures 20
4.1 Prediction Based Auxiliary Tasks 21

4.1.1 Input Decoder . 21
4.1.2 Next Agent State Prediction 22
4.1.3 Successor Feature Prediction 23
4.1.4 Expert-designed Targets Prediction 23

4.2 Control Based Auxiliary Tasks 24
4.2.1 Additional Goals (Simple Maze) 25
4.2.2 Flipped Reward (Picky Eater) 26

5 Experiments 27
5.1 Environments and Tasks . 27

5.1.1 Simple Maze . 27
5.1.2 Picky Eater . 28

5.2 Data Collection . 30
5.3 Representation Learning Pipeline 31
5.4 Details about Measured Properties 35
5.5 Experimental Results . 36

5.5.1 Simple Mazes . 37
5.5.2 Picky Eater . 46

viii

5.6 Summary Analysis Across Environments 55
5.7 Open Questions and Possible Answers 57

6 Conclusion and Future Work 59

References 62

ix

List of Tables

3.1 Representation Properties. All measures are normalized, to be
between [0, 1]. A value of 0 means a representations does not
have that property, and 1 is that it has the property maximally.
The feature vectors are computed on a set of N samples, to get
{φ1, ..., φN}, with Qi=̇maxaQ(si, a). 12

5.1 Representation learning network structures. 32
5.2 Auxiliary tasks explanation and environments they are applied

to. Expert target prediction and auxiliary control tasks are
defined separately for each environment. Single-goal and all-
goals control are only defined for Simple Maze, while Expert-
color, Expert-count, and Pick-red tasks are limited to the Picky
Eater environment. 33

5.3 Auxiliary tasks network structures. 34
5.4 Representation learning rate. The learning rate is swept in a

fixed list then chosen based on the best performance over 5 runs.
The best learning rate in Simple Maze is either 0.0001 or 0.0003,
while in Picky Eater, 0.00003 always performs the best. 35

5.5 Linear Probing learning rate. The learning rate is swept in a
fixed list then chosen based on the best performance over 5 runs.
The best learning rate varies from 0.1 to 0.00001, depending
on the representation and the target that it predicts, though
Input-decoder representation, Pick-red control representation,
and Next-agent-state prediction representation have the same
best learning rate (0.001) for all tagets. 37

x

List of Figures

2.1 We experiment with agents using this network architecture,
with different auxiliary losses. The representation network, φ
learns a mapping from input-state st to the agent-state (repre-
sentation of st). This φ is learned to improve two objectives:
performance on a main task and on an auxiliary task. The dia-
gram depicts the auxiliary tasks we use in this work, described
in Chapter 4. Our agent only uses one type of auxiliary task,
though of course it could choose to use multiple combinations. 10

3.1 Writing representations of all samples as a matrix, then rows
are representations and columns are features. 16

4.1 A random state of Simple Maze. The position of the agent is
shown by a blue pixel. Red blocks are walls and the background
is green. The goal area is shown in the white squre. However,
it is invisible to the agent. In the plot that the agent gets, the
goal state has the same color as the background. 21

4.2 The network architecture learning representation with the input
decoder auxiliary task. The agent reconstructs the input state
in the auxiliary task. 22

4.3 The network architecture learning representation with the suc-
cessor feature prediction auxiliary task. The agent predicts the
successor feature of the current agent state in the auxiliary task. 24

4.4 The network architecture learning representation with the ex-
pert target auxiliary task. The agent predicts the target defined
by the expert knowledge in the auxiliary task. 24

4.5 The network architecture learning representation with the aux-
iliary control task. The agent learns value functions based on
the changed goal state or reward function in the auxiliary task.
It will not affect the goal or reward in the main task. 25

5.1 Simple maze: 6 goal states of Simple Maze. The position of
the agent is shown by a blue pixel. Red blocks are walls and
the background is green. The goal state is shown in white.
However, it is invisible to the agent. In the plot that the agent
gets, the goal state has the same color as the background. The
figure on top left corner shows the goal state used in the original
task. The second and the third plots on the first row are the
goal states in transfer tasks. Plots on the second row show the
positions of goal states added in the auxiliary control task. . . 29

5.2 Picky Eater: the visualization of a random state. The walls
are black and background is grey, the agent is blue, fruits are
shown by coordinates of their respective colors (red/green), and
the white pixel on the lower-right corner is the exit. 30

xi

5.3 Representation learning in Simple Maze: Learning curves for
each DQN agent as it trained in the original task Simple Maze.
Plotted is the average return, averaged over 60 runs of the ex-
periment. The shaded region in the plot indicates ±2 std. . . . 38

5.4 Simple Maze transfer performance. Learning curves summarize
the performance of fixed, pre-learned representations on three
tasks: (left) original task that the representations were trained
on, (middle) the similar task, (right) the dissimilar task. In
all three cases the representations trained in experiment shown
in Figure 5.3 were used to initialize the representation layers
fresh DQN agent. The representations were not adapted during
the experiment, only the value network weights were adjusted,
representing a pure representation transfer setting. Most rep-
resentations exhibit good transfer compared with DQN (with
full representation learning from scratch). Notice that in the
hardest transfer task the representations learned from auxiliary
losses outperform the representation without auxiliary losses
(pre-trained DQN)—this is noteworthy because the auxiliary
losses were disabled during the transfer experiments. 39

5.5 Property obtainment for representations induced by different
auxiliary losses in Simple Maze. The red bar indicates the aver-
age normalized property per architectures. These visualizations
are meant to give a birds-eye view of all the properties, to aid
in comparison to the transfer performance. A table of all prop-
erties is in Figure 5.6. 40

5.6 Simple Maze: Raw properties data corresponding to the mea-
sures defined Table 3.1. Baseline-scratch (black color) is a base-
line added in transfer tasks only, because it is as same as No
Auxiliary case in the original task. Thus there is no data for
Baseline-scratch when measuring the task independent properties. 41

5.7 Complexity Reduction in Simple Maze. The measure of
complexity reduction is related to the learned value function,
which is different in different transfer tasks. The plot shows the
measure in three transfer tasks—the one as same as the original
task, the one similar to the original task, and the one differ-
ent from the original task. Auxiliary tasks generally improve
representations in terms of complexity reduction. The improve-
ment is stark for Next-agent-state and marginal for Expert-xy
prediction. Notice the decrease in No auxiliary’s and Successor-
Feature’s complexity reduction as the representation is used to
solve dissimilar task. 43

5.8 Specialization in Simple Maze. The measure of specializa-
tion is related to the learned value function, which is different
in different transfer tasks. The plot shows the measure in three
transfer tasks—the one as same as the original task, the one
similar to the original task, and the one different from the origi-
nal task. No Auxiliary resulted in representations that are spe-
cialized to the original task (less diverse) – specialization score
drops significantly as the representation is used to solve dissim-
ilar task. In contrast, auxiliary tasks resulted in less specialized
(more diverse) representations. 43

5.9 Decorrelation in Simple Maze. Auxiliary tasks improve
representations in terms of decorrelation. 44

xii

5.10 Dynamics Awareness in Simple Maze. Next-agent-state,
Expert-xy prediction, and auxiliary control tasks improved Dy-
namics Awareness relative to No Auxiliary ; Input-decoder re-
sulted in representations with poor Dynamics Awareness. . . 44

5.11 Linear Probing in Simple Maze. Except for Input-Decoder
and Successor-features, auxiliary tasks improve linear probing
scores of the learned representations. Input-Decoder reduces the
linear probing score – while the representation can be used to
successfully decode the input state (using a decoder network),
it cannot be used to linearly predict the position of the agent
with high accuracy. 44

5.12 Orthogonality in Simple Maze. With the exception of
Input-Decoder, auxiliary tasks improve orthogonality of the learned
representations. The improvement is stark for Next-agent-state,
Expert-xy prediction, and auxiliary control tasks. It is marginal
for Successor-features. 45

5.13 Non-interference in Simple Maze. Auxiliary tasks improve
non-interference only marginally relative to No auxiliary. . . 45

5.14 Representation learning in Picky Eater: Learning curves for
each DQN agent as it trained in the Pick Green task. Plotted
is the average return, averaged over 30 runs of the experiment.
The interval shows 2 times of the standard error. 46

5.15 Learning curves for fixed, pre-learned representations on the
original pick green task the representation was trained on, and
pick red task. The rightmost plot shows the impact of fine-
tuning the representation learned on pick red. Results are av-
eraged over 30 runs, with standard error bars. 47

5.16 Property obtainment for representations induced by different
auxiliary losses in Picky Eater. The red bar indicates the aver-
age normalized property per architectures. These visualizations
are meant to give a birds-eye view of all the properties, to aid
in comparison to the transfer performance. A table of all prop-
erties is in Figure 5.17 . 49

5.17 Picky Eater: Raw properties data corresponding to the mea-
sures defined Table 3.1. Baseline-scratch (black color) is a base-
line added in transfer tasks only, because it is as same as No
Auxiliary case in the original task. Thus there is no data for
Baseline-scratch when measuring the task independent properties. 50

5.18 Complexity Reduction in Picky Eater. The measure of
complexity reduction is related to the learned value function,
which is different in different transfer tasks. The plot shows
the measure in two transfer tasks. Auxiliary tasks generally
improved representations in terms of complexity reduction. On
pick red task, while complexity reduction of all methods de-
creased, representations with auxiliary tasks still scored higher
than No Auxiliary. 51

5.19 Specialization Picky Eater. The measure of complexity re-
duction is related to the learned value function, which is differ-
ent in different transfer tasks. The plot shows the measure in
two transfer tasks. No Auxiliary resulted in representations that
are specialized to the original task (less diverse). Specialization
score drops significantly as the representation is used to solve
the dissimilar task (Pick red fruit). In contrast, the auxiliary
task results in less specialized (more diverse) representation. . 51

xiii

5.20 Decorrelation in Picky Eater. Input-decoder, Expert tar-
gets, Pick Red Control, and Next-agent-state improved decor-
relation over No auxiliary, whereas successor-feature prediction
performed slightly worse than No auxiliary. 52

5.21 Dynamics Awareness in Picky Eater. Next-agent-state is
particularly less dynamics aware than No Auxiliary. The re-
maining methods do not improve representations in terms of
Dynamics Awareness when compared with No auxiliary. . . . 52

5.22 Linear Probing Accuracy (xy) in Picky Eater. Except for
Input-Decoder and Successor-features, auxiliary tasks improve
the linear probing (xy) score over No auxiliary. 52

5.23 Linear Probing Accuracy (Color) in Picky Eater. Input-
Decoder, Expert-(xy+color), Expert-(xy+count), and Pick-red
control improve the linear probing accuracy for predicting the
color of fruits. Interestingly, while Next-agent-state improved
linear probing accuracy for xy prediction, it performed particu-
larly worse than other methods for fruit color prediction. Note
that this linear probing accuracy property checks the predic-
tion accuracy of the color of fruit only, while Expert-(xy+color)
and Expert-(xy+count) auxiliary task keep the prediction on
agent position, since the position is considered as an important
information for the agent to know. 53

5.24 Linear Probing Accuracy (Count) in Picky Eater. With
the exception of Expert-(xy+count), auxiliary tasks do not im-
prove representations in terms of linear probing of fruit count.
Note that this linear probing accuracy property checks the pre-
dict accuracy of the number of fruits left only, while Expert-
(xy+color) and Expert-(xy+count) auxiliary task keep the pre-
diction on agent position, since the position is considered as an
important information for the agent to know. 53

5.25 Orthogonality in Picky Eater. While Pick-red control im-
proves orthogonality, successor-feature prediction most signifi-
cantly hurts orthogonality. 54

5.26 Non-Interference in Picky Eater. Auxiliary tasks do not
appear to affect representations in terms of Non-interference in
this problem setting. 54

xiv

Chapter 1

Introduction

1.1 Good Representations for Reinforcement

Learning

Reinforcement learning is a subfield in Artificial Intelligence. There are two

main components in reinforcement learning: the agent which learns through

the interaction with the environment to perform a better decision making,

and the environment, which is defined as other parts outside of the agent.

The agent learns through trial-and-error interactions with the environment

to choose the optimal action for a given situation that fulfills a specific goal.

The degree of success for each action is measured by the reward signal, a

number provided by the environment. Through estimating the total reward in

future if the agent starts from this state (and action), the agent learns a value

function to determine how good a state (and action) is [66]. An environment

state or observation is a summary of the current situation provided by the

environment. The given observation may include noise or details which are

useless for solving the task. The agent can learn its own summary of the

situation—a representation—which critically determines the agent’s ability to

generalize and discriminate. This step is called representation learning, or

agent state discovery.

Ultimately, many subproblems in reinforcement learning depend on suc-

cessful agent state discovery. For instance, in planning, the agent uses a

learned model to predict the next agent state, and to generate simulated in-

teractions [61], [62], [68]. In this case, accurately predicting the next state

1

will help the agent perform the task better [23], [71], [75]. Another example is

transfer learning, when the representation is learned in one task and is later

used in a different task; the representation may encode shared underlying fac-

tors of both tasks, thus reduce the learning time when the task changes [6].

Recent theoretical results [12], [32], [55], [74] highlight the importance of the

representation for sample efficient reinforcement learning—that is, a sufficient

representation is critical for agent to reach a certain level of performance with

a limited amount of data. Simple general principles like value functions and

optimism in the face of uncertainty might be all the agent needs to learn a de-

sirable policy, if only we could learn a good representation. The key question

is: what is a good representation?

To date, representation learning still remains one of the central challenges

in reinforcement learning. Much of the earlier work in representation learn-

ing for reinforcement learning focused on designing fixed basis architectures

to achieve different properties. Many of these properties are common to the

general machine learning setting. Many approaches either use or search for

orthogonal or decorrelated features, such as with orthogonal matching pur-

suit [45], Bellman-error basis functions [47], Fourier basis [29], and tile cod-

ing [65], [66]. Prototypical input matching methods have been extensively

explored, as in kernel methods, radial basis functions [66], cascade correla-

tion networks [13] and Kanerva coding [26]. Whereas, ideas from nonlinear

dimensionality reduction, such as in proto-value functions [28], [37], are not

as popular as in supervised learning. Finally, massive expansion architectures,

such as random representations [69], tile coding, and sparse distributed mem-

ories [52], use sparse connections and activations to reduce computation and

increase scalability. The representation learning algorithm that improves one

property through a designed loss function or constraint undoubtedly improves

the quality of representation respecting the property that is focused on. How-

ever, it remains unclear that these properties improve efficiency respect to

main task and transfer performance.

Recent developments in representation learning explore a different per-

spective: we should avoid optimizing specific properties and let the training

2

data through gradient descent dictate the properties of the representation.

This view is widely held, and is reflected in the focus on specifying training

regimes, including using multi-task (parallel) training [8], [18], [72], auxiliary

losses (i.e., auto-encoding, next observation prediction, and pixel control) [5],

[24], and training on a distribution of problems (ala meta-learning [15], [25],

[43], [59], [60]). The basic idea underlying all these approaches is that good

representations will emerge if the problem setting is complex enough; where a

good representation is defined by success on some held-out-test tasks.

One of the commonly used end-to-end representation learning algorithms is

Deep Q-Networks (DQN) [22], [34], [40]. As an approach combining reinforce-

ment learning and deep neural network, DQN uses function approximation

to approximate the value function of state-action pairs (action values). By

projecting the observation space on hidden layers of the neural network, each

hidden layer learns a representation space of the observation. The representa-

tion is learned online as the weights in the neural network is updated when the

agent interacts with the environment [39]. This algorithm offers a scalable rep-

resentation learning method, that has been applied to numerous tasks includes

playing atari games [40] and robotics [50]. DQN can also be incorporated with

model-based reinforcement learning for model learning and planning on the

representation space [17] and value function learning [23].

Auxiliary tasks can be added to change the architecture and the complex-

ity of problem setting. Through splitting the last layer of the neural network

into multiple heads, multiple tasks can be assigned to different heads then

solved together by the same network. The goal of adding auxiliary tasks is to

learn a better representation respect to the problem to be solved. Some aux-

iliary tasks which are related to the main task have been empirically shown

to be helpful in several experiments, such as learning an extra policy to max-

imally change pixels in the observation or maximally activate each bit in the

representation [24].

There are many different ways to evaluate and understand these emergent

representations. Recent work has explored this question in roughly two ways:

what good representations look like, and what capabilities good and bad repre-

3

sentations allow. The most common approach is to visualize the learned repre-

sentations [5], [11], [16], [17], [19], [20], [31], [40], [54], [62], [64], [77], [81]. This

approach has been used to provide evidence for the emergence of abstraction

and compositionally in supervised learning [6], [42], [80]. However, in reinforce-

ment learning the effects of delayed consequences and temporally correlated

data makes it difficult to import analysis techniques from other fields, and re-

cent evidence has highlighted that popular approaches like saliency maps may

not be totally appropriate [3]. More directly, good representations are previ-

ously defined as those that facilitate: efficient learning in complex tasks [24],

[77], good performance in new or future tasks [4], [15], [22], [41], [49], [56], [73],

[82], learning a model and planning with agent state [17], [20], [31], [60], [62],

[79], and discovering structure and understanding the world the way humans

do [16], [21]. Though there have been work defining properties that a repre-

sentation should have and work discussing how representations affect agents’

performance, there lack of discussion on how those properties related to the

performance. Furthermore, it is not always possible to evaluate the represen-

tation by looking at the performance, because the cost of running tasks can be

large. Thus, we need new methods to describe and evaluate the representation

before actually executing the task. Looking into the relationship between the

representation’s properties and its learning performance will be helpful for us

to describe and understand a learned representation.

1.2 Contribution

This work is an exploratory study. We explore the properties of representa-

tions learned by modern deep reinforcement learning systems, In addition to

visualization and different performance criteria, it can also be beneficial to

understand the properties of learned representations—particularly as they are

now implicit in the training regime. Specific properties can still be induced by

specific optimization techniques and training curriculum.

This thesis investigate the properties of representations that emerge, under

standard reinforcement learning training regimes, more specifically,

4

1. we propose a set of representation properties based on classic notions of

good representation and practical approaches to measure them,

2. we provide a methodology to evaluate emergent representations, that

should help future investigations,

3. we conduct a thorough empirical study, in two designed environments,

and provide novel insights about properties of learned representations,

and relationships to transfer performance. We mainly focus on capac-

ity (complexity reduction, dynamics-awareness, linear probing accuracy,

and diversity), independence (orthogonality and decorrelation), and ro-

bustness (non-interference) of the representation,

4. we provide novel insights regarding end-to-end training and the auxiliary

task effect by measuring the list of properties proposed and looking at

the transfer performance.

1.3 Thesis Structure

The next chapter describes the mathematical framework for formulating the

interaction between the agent and the environment. It also includes the no-

tation used in this thesis. Next, the specific properties we measure and the

rational behind why we investigate these exact properties is explained in Chap-

ter 3. Then, Chapter 4 talks about the neural network architecture we use

for learning representations. The experiment details including environment

description and parameter settings, results, and discussion, are included in

Chapter 5. The last chapter (Chapter 6) serves as a conclusion for the work

and discusses possible directions for future work.

5

Chapter 2

Background

This chapter briefly describes the problem fomulation and the algorithms re-

lated to our experiments.

2.1 Finite Markov Decision Process

The problem is formalized as a Markov Decision Process (MDP), a framework

modelling a discrete-time process. The MDP is a 4-tuple including state space

S, action space A, transition function P : S × A × S → [0,∞], and reward

functionR : S×A×S → R. In our case, we focus on finite state space and finite

action space (finite MDP). On time step t, the agent is in state St, takes action

At, transits to state St+1 ∼ P (·|St, At) and receives reward Rt+1. The discount

function γ : S × A × S → [0, 1] specifies a horizon, where the generalization

beyond constant γ allows for more general problem specification [67], [78]. The

agent’s objective is typically to find a policy, π : S×A → [0, 1] that maximizes

the expected discounted sum of rewards – the return, Gt =
∑i=0

∞ γiRt+i+1.

2.2 Value Functions

The goal of a reinforcement learning agent is generally defined by the reward

signal, a number given by the environment. The agent learns to maximize the

total reward it obtains in the long run. To reach this goal, an agent needs

to estimate how good a state is – that is to estimate the return it can obtain

if starting from this state. The value function gives the above estimation, a

6

state with a higher value is defined as a better state.

The state value function V (s) estimates the expected return given a state

s. Taking the expected value, it can be denoted as

vπ(s)=̇Eπ[Gt|St = s].

By maximizing the value over all states in the state space, we get the optimal

value function

v∗(s)=̇max
π

vπ(s).

To estimate how good an action is, given the current state, the action-value

function is applied. Different from the state value function, the action-value

function takes both the state and action as input. The expected and optimal

action-value functions are:

qπ(s, a)=̇Eπ[Gt|St = s, At = a]

and

q∗(s)=̇max
π

qπ(s, a).

The policy used in the optimal value function π∗ is called an optimal policy.

Though there can be more than one optimal policy, they share the same value

function.

2.3 Function Approximation and Q-learning

The policy is chosen according to the learned value function. Thus we need

an algorithm to learn the value estimation through interactions with the envi-

ronment. Q-learning [76] is often used in this case. It iteratively updates the

action-value to estimate Qθ : S × A → R, with parameters θ ∈ R
d, towards

the goal of approximating the optimal action-value Q∗ : S × A → R. Q∗ is

defined as the action-values that satisfy the Bellman optimality equation.

Q∗(s, a) = E[Rt+1 + γt+1 max
a′∈A

Q∗(St+1, a
′)|St = s, At = a]

It is updated iteratively with

Q(St, At)← Q(St, At) + α[Rt + γmax
a
Q(St+1, a)−Q(St, At)]

7

where Rt+γmaxaQ(St+1, a)−Q(St, At) is the temporal difference error (TD-

error) and α refers to the learning rate that controls the learning speed of the

agent.

In small domains, the true action-values of all states can be mathematically

solved. However, as the state space increasing, the computational resource

increases fast, thus determining the exact true values mathematically becomes

more difficult. To solve the problem with limited computational resources,

one can apply the function approximation to learning the action values. With

this method, we learn a function parameterized by θ, taking the state and

action as inputs then giving the estimated action-value. The neural network

is a commonly used function approximator.

When using neural networks for Qθ, it is common to augment Q-learning

with target networks and mini-batch updating from an experience replay

buffer, as in Deep Q-Networks (DQN) [40]. A frequent change of the tar-

get causes unstable learning in reinforcement learning. Both the replay buffer

and the target network in DQN helps with improving the stability. By saving

old transitions in a buffer and randomly sample a batch at each step, the buffer

makes a dataset where the elements of the dataset are less temporally corre-

lated. The target network contributes to the stable learning by providing a

target network Qθ− which is a copy of Qθ but is updated slower. It is synchro-

nized with the behaviour network every k steps, whileQθ is updated every step.

When calculating the TD error, DQN takes ri+1+γi+1 maxa′∈AQθ−(si+1, a
′)−

Qθ(si, ai) as the TD-error, where i refers to the index of a randomly sampled

transition from the buffer.

2.4 Neural Network Specification

In this work, for the simplicity of explanation, when we describe the network

used in DQN, we separate it into 2 parts. The first part is used for learning the

representation, the second part takes the learned representation as input then

learns the value function. When there exists an auxiliary task, another head

is added after the first part for learning the auxiliary task. The architecture

8

combining DQN with auxiliary tasks is shown in Figure 2.1. More details on

the auxiliary tasks are given in Chapter 4 and Chapter 5.

The representation learned by the neural network is typically improved

using auxiliary tasks, as shown in Figure 2.1. The first layers, parameter-

ized by θR, produce representation φθR(s). The last layers uses that rep-

resentation, with parameters θM , to estimate the action-values. Except for

the representation layer and the output layer, the rest of the neural network

uses activation functions to introduce the nonlinearity. For example, with

Rectified Linear Unit (ReLU, the equation is shown in Eq 2.1) as the acti-

vation function, φθR(s) could have 2 larger ReLU layers followed by a com-

pact (bottleneck) layer: φθR(s) = ReLU(ReLU(sW1)W2)W3, where s ∈ R
k,

W1 ∈ R
k×128, W2 ∈ R

128×128, W3 ∈ R
128×32, θR = {W1,W2,W3}. The estimate

for Qθ(s, a) with θM could involve a projection back up to a larger feature

space of 128, followed by a linear prediction: Qθ(s, a) = ReLU(φθR(s)W4)W5

where W4 ∈ R
32×128, W5 ∈ R

128×1 and θM includes {W4,W5} of all actions.

This distinction of making the bottleneck layer the representation is arguably

arbitrary, until we add auxiliary tasks to force feature re-use. For example,

to further constrain φθR(s), we can add next state prediction as an auxiliary

task, with parameters θA. Now φθR(s) needs to adjust to both be useful to

predict action-values and next state.

ReLU(x) =

{

x if x > 0

0, otherwise
(2.1)

9

Chapter 3

Representational Properties

Before the emergence of deep reinforcement learning, the study of representa-

tions and their effects on learning was focused on a fixed basis. The problem

with this is not that a fixed basis cannot capture complex non-linear relation-

ships, but rather that the representation is fixed—the features do not adapt

to the problem. In some sense, this is a good thing because it forces the agent

designer to consider what are desirable representation properties—a level of

analysis complementary to the design of good algorithms. Over the years re-

searchers proposed and debated numerous properties [6], [33], [34]. In this

work, we measure 7 of them for analyzing the representations’ performance.

Table 3.1 provides a summary of these measures, and more detailed review

can be found in the following sections.

3.1 Capacity

The first important property to consider for representation is the capacity : can

it represent the functions we want to learn? The assumption is that if the repre-

sentation has a high capacity, the value function network can be a simple func-

tion of these features, such as linear functions or simple neural networks. We

consider 4 properties reflecting the capacity, one direct measure—complexity

reduction (Section 3.1.1), and three indirect measures—dynamics-awareness

(Section 3.1.2), linear probing accuracy (Section 3.1.3), and diversity (Section

3.1.4.

11

Table 3.1: Representation Properties. All measures are normalized, to be be-
tween [0, 1]. A value of 0 means a representations does not have that property,
and 1 is that it has the property maximally. The feature vectors are computed
on a set of N samples, to get {φ1, ..., φN}, with Qi=̇maxaQ(si, a).

Name Measure Description
Complexity
Reduction

1− Lrep/maxx∈{rep} Lx

Lrep
def

= maxi,j:φi 6=φj

|Qi−Qj |
‖φi−φj‖

Learning a value func-
tion on a representation
space with a lower Lip-
schitz constant is easier.
Normalization is done rel-
ative to other representa-
tions, normalizing by the
largest L.

Linear Probing
Accuracy

1- 1
N

∑N
i=1

|θyφi−yi|
|yi|+1 , (regression)

1
N

∑N
i=1 1(argmax θyφi = yi),

(classification)

Representation can pre-
dict expert-defined vari-
ables useful for the task,
as percentage accuracy.
θy is learned using least-
squares loss for regression,
and cross-entropy for clas-
sification.

Dynamics
Awareness

∑N
i

||φi−φj∼U(1,N)||−
∑N

i
||φi−φ′

i||∑
N
i

||φi−φj∼U(1,N)||
Nearby states should have
similar representations,
far apart state dissimilar
representations.

Diversity
(1− Specialization)

1−
∑

i,j,i<j
(δs,i,j−δ̄s)(δq,i,j−δ̄q)√∑

i,j,i<j
(δs,i,j−δ̄s)2

∑
i,j,i<j

(δq,i,j−δ̄q)2
,

δs,i,j
def

= ‖φi − φj‖,
δq,i,j

def

= |maxa(Q(φi, a)−Q(φj , a))|

Reflects that this repre-
sentation is tailored to this
specific Q.

Orthogonality 1− 2
N(N−1)

∑N
i,j,i<j

|〈φi,φj〉|
‖φi‖2‖φj‖2

Feature vectors for differ-
ent states should be max-
imally different.

Decorrelation 1− 2
d(d−1)

∑d
k,j,k<j |corr(vk,vj)|

corr(vk,vj) =
∑N

i=1 v
k
i v

j

i

‖vk‖2‖vj‖2

vki
def

= φk
i − φ̄k, vk def

= [vk1 , . . . , v
k
N]T

Features are as decorre-
lated as possible.

Non-interference 1− 2
N(N−1)

∑N
i,j,i<j max

(

0,−1× 〈gi,gj〉
‖gi‖2‖gj‖2

),

gi =
∂L(φi)
∂θM

L(φi) =
1
2 (ri + γi maxa′ Q(φ′

i, a
′)−Q(φi, ai))

2

Update in one state points
in the same direction as
the update in another
state, on average.

12

3.1.1 Complexity Reduction

For complexity reduction, we directly measure the complexity of the value

function learned with a representation.

We measure the complexity by approximating the Lipschitz constant for

the value functions. The measured constant is normalized by the maximum

value.

Complexity Reduction = 1− Lrep

maxx∈{rep} Lx

Lrep
def

= max
i,j:φi 6=φj

|Qi−Qj |

‖φi−φj‖

(3.1)

In the above measure, i and j are indices of environment states from our

dataset, φi and φj are the representation of states si and sj separately, and Qi

and Qj are their action values respecting the action which causes the maximal

action value difference.

A small complexity score means features encoded much of the non-linearity

needed. On the contrary, a larger complexity implies that the value function

needs to be more complex to learn a reasonable policy, thus, is harder to learn.

This means lower complexity is a desired property for representations.

3.1.2 Dynamics-awareness

Along the same lines, we can also indirectly measure complexity without spec-

ifying a set of value functions—by testing if the representation is dynamics-

aware. This means that pairs of states, where one is a successor to the other,

should have similar representations, and states further apart in terms of reach-

ability should have a low similarity. This measure is related to the Laplacian

used for proto-value functions and successor features [36], [63]. This property

is measured using Formula 3.2, where φ′
i represents the next agent state of the

ith sample. The intuition behind this measure is that the distance between

representations of two consecutive states should be less than the distance be-

tween representations of two random states. The consecutive states pairs are

si and the next state s′i, we also uniformly sample another state sj to form a

random state pair with si.

13

Dynamics =
∑N

i ||φi−φj∼U(1,N)||−
∑N

i ||φi−φ′

i||∑N
i ||φi−φj∼U(1,N)||

(3.2)

3.1.3 Linear Probing Accuracy

The second indirect measure is to predict a set of expert-defined factors that

the agent would likely benefit from. We assume that to solve the task, the agent

must know the key information, in other words, the representation should

contain the key information extracted from the observation. For example, in

a top-down image in a navigation grid world, the agent would likely benefit

from retaining its (x, y) position in the representation and be able to predict it.

We test if these expert factors can be linearly predicted by the representation

(linear probing - xy, linear probing - count, and linear probing - color). This

approach was introduced as linear probing for classification [1], and later used

in reinforcement learning [2]; therefore we call it linear probing accuracy. When

the factor predicted by the linear transformation is formed as a regression

problem, such as predicting the coordinate of the agent, we report the negative

value of percentage error added by one. In the case of a classification problem,

like predicting the color of an object in the environment, we use the accuracy

instead (Formula 3.3).

Regression Accuracy = 1− 1
N

N
∑

i=1

|θyφi−yi|

|yi|+1

Classification Accuracy = 1
N

N
∑

i=1

1(argmax θyφi = yi)

(3.3)

where N is the number of samples in the dataset, θy refers to weights in the

linear transformation system. Note that we add one on the denominator to

avoid dividing by 0. In classification case, the argmax means to choose the

class with the highest probability.

3.1.4 Diversity and Specialization

Finally, we can measure how much a representation has specialized to a par-

ticular value function. If the representation is specialized to a small sub-

14

set of all possible value functions, it may not be as useful for learning other

functions. This property allows us to further indirectly measure representa-

tion capacity, as we are able to check the level of specialization for a given

function without needing to have access to the larger set of possible func-

tions. If the representation is specialized, then we might expect to see a

tight correspondence between distances in representations and values. For

two input states si and sj, if δs,i,j = ‖φθR(si) − φθR(sj)‖ is small (big) then

δq,i,j = |maxaQθM (si, a) − maxaQθM (sj, a)| should be small (big), and vice

versa. This can be measured by using the correlation between δs,i,j and δq,i,j

for across si, sj. We report diversity = 1 - specialization, as a potentially useful

property to have.

Diversity = 1− Specialization

Specialization =

∑

i,j,i<j(δs,i,j − δ̄s)(δq,i,j − δ̄q)
√

∑

i,j,i<j(δs,i,j − δ̄s)2
∑

i,j,i<j(δq,i,j − δ̄q)2

δs,i,j
def

= ‖φi − φj‖

δq,i,j
def

= |Qi −Qj|

(3.4)

3.2 Independence

Only performing well in the capacity may not be enough to learn on transfer

tasks, thus we also consider other functional properties of the feature such

as reducing redundancy in the representation—finding linearly independent

features. This property can be measured through orthogonality (Section 3.2.1)

and decorrelation (Section 3.2.2).

3.2.1 Orthogonality

Orthogonal representations satisfy the redundancy reduction requirement, and

additionally provide distributed features as well as minimal interference, for

example, a dense set of orthogonal (latent) factors found by factor analysis.

A representation like this is highly distributed, as the learned factors act as a

basis of the space, each input can be represented by more than one feature.

At the same time, orthogonality reduces the interference: the interference for

15

With this, below we show that
∑n

i,j(φ(si)
>φ(sj))

2 =
∑d

k,l(ψ(φk)
>ψ(φl))

2.

n
∑

i,j

(φ(si)
>φ(sj))

2 =
n

∑

i,j

(φ(si)
>φ(sj))(φ(si)

>φ(sj))

=
n

∑

i,j

(d
∑

k=1

φk(si)φk(sj)

)(d
∑

l=1

φl(si)φl(sj)

)

=
n

∑

i,j

d
∑

k,l

φk(si)φl(si)φk(sj)φl(sj)

=
d

∑

k,l

n
∑

i,j

φk(si)φl(si)φk(sj)φl(sj)

=
d

∑

k,l

(n
∑

i=1

φk(si)φl(si)

)(n
∑

j=1

φk(sj)φl(sj)

)

=
d

∑

k,l

(ψ(φk)
>ψ(φl))(ψ(φk)

>ψ(φl))

=
d

∑

k,l

(ψ(φk)
>ψ(φl))

2

Therefore, when the sample-space is not enumerable, that is φk is infinite-

dimensional, orthogonality of representations may be used as a surrogate for

measuring the orthogonality of features.

3.2.2 Decorrelation

Two properties related to orthogonality are decorrelation and sparsity. If the

correlation between pairs of features is small, then the features are decorre-

lated. If only a small number of features are activated for an input, then the

features are sparse, with an additional condition that each feature is active

for some inputs (in other words, no dead features). For non-negative features,

maximizing sparsity corresponds to finding orthogonal features: dot products

can only be zero when features are non-overlapping for two inputs. Besides

orthogonality, we also measure decorrelation (Formula 3.6), but omit sparsity

as we use a bottleneck architecture and the representation is supposed to be

dense. For expansionist architectures, sparsity could be included, as an over-

lapping but still complementary property to orthogonality and decorrelation.

17

Decorrelation = 1− 2
d(d−1)

d
∑

k,j,k<j

|corr(vk,vj)|

v
j
i

def

= φ
j
i − φ̄j

vk def

= [vk1 , . . . , v
k
N]

T

corr(vk,vj) =

∑N

i=1 v
k
i v

j
i

‖vk‖2‖vj‖2

(3.6)

Relationship between Orthogonal and Uncorrelated features

When the features are centered, decorrelation and orthogonality are equivalent;

otherwise, they are not precisely the same [7]. Next, We show the relationship

between orthogonal features and uncorrelated features.

Assume we have an finite set of input-states {s1, s2, . . . , sn} represented in

a d-dimensional space, where the corresponding representations are φ(si) =

[φ1(si), φ2(si), . . . , φd(si)]
> (φl being a function to produce the l-th feature di-

mension), and ψ(φi) = [φi(s1), φi(s2), . . . , φi(sn)]
>. Let ψ̄(fi) = [φ̄i, φ̄i, . . . , φ̄i]

>

where φ̄i =
1
n

∑n

j=1[φi(sj)], denoting the expected value of feature i over the

set of input-states. If all features are centered, that is, φ̄i = 0 for all i, then it

is trivial to see that

1

n2

d
∑

k,l

(ψ(φk)− ψ̄(φk))
>(ψ(φl)− ψ̄(φl)) =

1

n2

d
∑

k,l

ψ(φk)
>ψ(φl).

The LHS is a measure of correlation and the RHS is a measure of orthogonality.

3.3 Robustness

More recent work [35] in neural networks has also focused on robustness. Both

interference and noise are related to the robustness of representation. It is com-

mon to investigate if representations capture certain invariances and whether

they are robust to input-noise, particularly to adversarial noise [35]. The design

of meaningful invariances and noise is non-trivial, and environment-specific,

so we omit these properties from this study and focus on interference only.

18

3.3.1 Non-interference

Interference reflects how much updates in one state reduce accuracy in other

states; it can be thought of as bad generalization, that different inputs generate

gradients in different or even opposite directions so that the gradient given by

the later input cancels out the gradient of the earlier input. It is typically

difficult to measure whether the generalization is good or bad across value

functions, but we can do so for a specific value function. We use a random

initialization of θM and then measure gradient alignment [57]. This measure

reflects that if gradients point in opposite directions, then interference is likely

to occur:
〈gi,gj〉

‖gi‖2‖gj‖2
< 0, where gi and gj are gradients when updating the value

functions of the ith and the jth states.

Non-Interference = 1− 2
N(N−1)

N
∑

i,j,i<j

max
(

0,−1 ∗ 〈gi, gj〉
‖gi‖2‖gj‖2

)

gi =
∂L(φi)

∂θM

L(φi) =
1

2
(ri + γi max

a′
Q(φ′

i, a
′)−Q(φi, ai))

2

(3.7)

Our goal is to develop a systematic methodology for assessing learned rep-

resentations, based on a diverse set of properties. This evaluation list does

not suggest that a property is necessary; rather, it provides some quantitative

measures to supplement more qualitative evaluation like visualization. Such

a list is necessarily incomplete; we attempt only to start with a reasonably

broad set of properties.

19

Chapter 4

Representations Learning
Architectures

A common approach to induce useful representations is through the use of

auxiliary losses. The cross-combination of auxiliary losses with different net-

work architectures represents a vast array of possible agents to study. In this

work, our focus is the representations that emerge under different auxiliary

losses, with the same fixed network architecture depicted in Figure 2.1. The

intuitions are 1) the functional capacity and size of all the learned representa-

tions are equivalent, making comparisons more interpretable, and 2) the role

and impact of auxiliary losses in reinforcement learning remains poorly under-

stood, and constitutes an important area of study. We consider six auxiliary

losses, four of which are based on predictions (Section 4.1) and the last two

are based on control (Section 4.2).

Throughout we use environment Simple Maze to make it concrete. Simple

Maze is a grid world environment. It uses the RGB image of the current

situation as a state. The agent starts randomly from an empty pixel and

is trained to go to the goal area at [9, 9]. There are 4 actions regarding to

4 directions, each of which moves the agent to the adjacent pixel, but the

position of the agent remains the same when the action brings the agent into

the wall. Figure 4.1 shows a random state of the Simple Maze. More details

are given in Section 5.1.1.

20

4.1.3 Successor Feature Prediction

The Next Agent State auxiliary loss can be taken one step further, with the

target including not just the next agent-state but many future agent states.

Successor Features provide just such a target. For environment-state st, the

successor features are defined with respect to a particular policy π as ψπ(st) =

E
[
∑∞

i=1 γ
i−1φ(st+i)

]

, where we use a fixed γ ∈ [0, 1) for simplicity, though

general discount functions can also be used. Successor features have been

particularly motivated as a way to generalize quickly in reinforcement learning,

as value estimates can be quickly inferred for new reward functions that are

a linear function of agent-state φ(st) [4], [58]. For tabular features, successor

features correspond to successor representations, which have an equivalence to

the Laplacian [36].

The predictions for these targets can be estimated online using temporal

difference learning. For θA,j, we can update the value estimate VθA,j
(φt) ≈

ψπ(st)j using θA,j = θA,j + αδ∇VθA,j
(φt) where δ = φt+1,j + γVθA,j

(φt+1) −
VθA,j

(φt). With γ = 0, this auxiliary loss corresponds to predicting next agent

state, and so it is a strict generalization. Furthermore, there is another con-

straint that the reward rt+1 should be linearly predictable given φt, which is

done by a linear transformation added as another head. The choice of policy π

does make this auxiliary loss more complex than predicting next agent state.

We opt to use the greedy policy according to the action-values for the main

task, which means the successor features are tracking a changing policy. The

architecture is shown in Figure 4.3.

4.1.4 Expert-designed Targets Prediction

The final prediction auxiliary loss is based on Expert-Designed Targets used

for linear probing. These key variables are likely also useful auxiliary tasks.

Though it may not always be possible to design such expert targets, we include

it here as a reasonable baseline and sanity check. As an auxiliary task, these

targets are predicted with a two layer network under, as in Figure 2.1, rather

than linearly. The architecture is shown in Figure 4.4.

23

4.2.2 Flipped Reward (Picky Eater)

Instead of adding or changing the goal state, in Picky Eater (domain descrip-

tion can be found in Section 5.1.2), we keep the goal state unchanged, but

modify the reward function. While the main task assigns positive reward for

collecting green fruits and negative reward for collecting red, the auxiliary

tasks flip this. Similar to the auxiliary tasks applied to Simple Maze, this aux-

iliary task encourages the representation to generalize across different value

functions.

26

Chapter 5

Experiments

The goal of this experiment is to 1) investigate the properties, listed in Table

3.1, of representations that emerge when training to good performance on a

task, and 2) observe any relationships between these properties and transfer

performance. We train several DQN agents with the same architectures and

different auxiliary networks, as in Figure 2.1, until the agent learns a reasonable

policy. We then fix this learned representation and learn the value function

of a new task in the same environment. Either the goal state or the reward

function is changed. Because the environment dynamics remain unchanged,

the agent might be able to leverage the representation learned for transfer on

the new task. Our primary goal is not to obtain effective transfer, but rather

to evaluate the properties, and how they relate to transfer.

5.1 Environments and Tasks

5.1.1 Simple Maze

The first environment is a navigation environment with obstacles, called Simple

Maze, which naturally enables the specification of different subgoals. The

problem is episodic, with γ = 0.99. The reward is +1 when reaching the

goal and 0 otherwise. The input state consists of an RGB input of a 15x15

grid (size 15x15x3), showing the agent’s location and the position of the wall,

but the goal state is invisible. The actions correspond to the four cardinal

directions (up, down, right, left). One transition deterministically moves the

agent by one pixel, or not at all if the action is into a wall. The agent starts

27

in a uniform random state and episodes are cut-off at 100 steps to simplify

exploration, where the agent is teleported to a new random state without

termination.

We define three tasks in this environment, corresponding to different goals,

depicted in Figure 5.3. The agent learns first on the original task in which the

goal state is at coordinate [9, 9]. In transfer learning, one task is designed to

be similar to the original task, and one more dissimilar, in terms of the path

needed to reach the goal. Their goal states are [14, 14] and [0, 14] respectively.

For all-goals auxiliary control, tasks with goals at [0, 0], [14, 0], and [7, 7] are

used as additional auxiliary control tasks. In single-goal auxiliary control,

only [7, 7] is added as the goal state of the auxiliary task. Figure 5.1 shows

goal states positions of all above tasks. Recall that the intuition of defining

different goal state is to encourage the agent to learn different value functions

as well as encoding the transition structure in the representation function, we

prefer maximizing the difference between the auxiliary goals and original goal,

also let the auxiliary goals have coverage over the environment, thus we choose

all 4 corners and the middle of the environment as auxiliary goals.

5.1.2 Picky Eater

We design an environment that makes representation learning more difficult,

and less likely to transfer to the second task. In the Picky Eater problem,

depicted in Figure 5.15, the agent again observes a 15 × 15 RGB image, but

now of a four rooms problem with two different colors of fruit: Green and Red.

Four rooms are connected with openings of width 2.

Each episode begins with the 12 fruit locations randomly assigned to Red

or Green, with an equal number of each. Fruits are set on 4 corners of the

upper-right room and the lower-left room, as well as on the left side of each

door. When the agent gets to the lower-right corner, the episode ends. Figure

5.2 shows a random observation.

Given that we have a picky eater, only one color of fruit gives a reward of

+1; the other gives a negative reward of −1, encouraging the agent to collect a

specific type of fruit while avoiding the other. In the original task, Green gives

28

a dataset SC consisting of all possible state transition pairs is used to measure

Complexity Reduction, Diversity, and Decorrelation.

In Picky Eater, we take the state value learned with the original task and

collect additional data using an ε-greedy policy where ε = 0.1, to make sure

the dataset has more states reflecting situations when fruit being collected.

The budgets for collecting data are 250,000 and 100,000 steps in this envi-

ronment for SA and SB respectively, resulting in datasets with size 1017 and

403, with the latter being separated into validation and test sets equally. All

measures are measured with SA, except that linear probing is trained with SA

but validated and tested with SB. Picky Eater does not have SC .

5.3 Representation Learning Pipeline

The complete pipeline consisted of 1) training the representation network φθR ,

2) control performance evaluation on the transfer tasks with a fixed repre-

sentation, and 3) property evaluation. All agents used ε-greedy exploration,

with ε = 0.1, with standard training choices for DQN, including replay, target

networks, and the Adam optimizer [27]. We saved the learned representation

by saving parameters φθR . We then evaluated these fixed representations in

terms of properties and for transfer performance. A new action-value was

learned, from scratch, on the given task with this fixed representation, in-

cluding on the original task, as a baseline comparison for transfer. All plots,

therefore, including those on the original task, reported performance with this

fixed representation. We included two baselines: a Random representation

and Baseline-scratch. Random used the randomly initialized NN, without any

learning. Baseline-scratch was a DQN agent trained from scratch on that task,

including learning the representation (without auxiliary losses).

We utilized the same neural network architecture across representations

learned with the various loss functions, for both environments. The obtained

representations were in R
32, with details of the architectures as given un Table

5.1. During training, all inputs were normalized to be in the range −1 to 1.

We used the ADAM optimizer to update weights. Nonlinear layers used ReLU

31

activation function. For Expert Targets auxiliary loss – we used cross-entropy

as the loss function for predicting the color of a pixel, while other tasks used

mean-squared error.

Table 5.1: Representation learning network structures.

Environment layer input output kernel stride pad
Simple Maze 1 3 16 4 2 2

2 16 8 4 2 2
Picky Eater 1 3 32 4 1 1

2 32 16 4 2 2

In Simple Maze, the agent was trained for a fixed budget of 300,000 steps.

The agent with Input-decoder was trained longer, with an additional 200,000

steps, for it to obtain reasonable performance. In each step, 32 samples

were randomly chosen from a buffer of memory size 10,000. The target net

was updated every 64 steps. We chose the best learning rate from the list

[0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001] based on the averaged result of

5 runs. Then we performed 60 runs with the picked learning rate to report

the average number and standard error (std). We set a timeout threshold for

the agent, thus the episode ends either when the agent gets to the goal state

or when the number of steps of an episode reaches 100.

In Picky Eater, most experimental details are identical to Maze World,

except that we increased the learning time to 1,000,000 steps, applied a slower

target network synchronization (every 1024 steps), a larger buffer containing

100,000 samples, and a larger timeout threshold (500). We used the same

strategy for picking the learning rate as in Simple Maze, then performed 30

runs with the best learning rate. Besides, for this problem, the goal state does

not change. There was only one goal in the Auxiliary Control task (Pick Red

with γ = 0.99), as opposed to the five in Maze World.

The value network of each environment consisted of 2 fully connected layers.

We used 64 nodes on each layer in Simple Maze and 128 nodes in Picky Eater.

Auxiliary networks had different structures because of the capacity requested

by different tasks. We indicate what these auxiliary tasks do in Table 5.2 and

their architecture in Table 5.3. The main-task value network and the auxiliary

32

network were updated together with the representation network. The learning

rate chosen after the parameter sweep for each representation is shown in

Table 5.4. Note that the γ used in Single-goal control, All-goals control, and

Successor-feature prediction was 0.99.

Table 5.2: Auxiliary tasks explanation and environments they are applied to.
Expert target prediction and auxiliary control tasks are defined separately for
each environment. Single-goal and all-goals control are only defined for Simple
Maze, while Expert-color, Expert-count, and Pick-red tasks are limited to the
Picky Eater environment.

Representation Explanation Environment
Input-decoder Predict the input image Simple Maze &

Picky Eater
Expert-xy Prediction Predict the current position of the

agent
Simple Maze &
Picky Eater

Expert-(xy+color) prediction Keep the prediction of the current
position since it is an important in-
formation for the agent to know,
also add the prediction of fruits’
color

Picky Eater

Expert-(xy+count) prediction Keep the prediction of the current
position since it is an important in-
formation for the agent to know,
also add the prediction of the num-
ber that green and red fruits left

Picky Eater

Single-goal control Learn the value function of one aux-
iliary goal state on the auxiliary
head

Simple Maze

All-goals control Learn value functions of 5 auxiliary
goal states on the auxiliary heads

Simple Maze

Pick-red control Learn the value function given the
flipped reward function on the aux-
iliary head

Picky Eater

Next-agent-state prediction Predict the next agent state Simple Maze &
Picky Eater

Successor-feature prediction Predict the successor feature of the
current agent state

Simple Maze &
Picky Eater

33

Table 5.3: Auxiliary tasks network structures.

Representation Auxiliary network structure
(Simple Maze)

Auxiliary network structure
(Picky Eater)

Input-decoder 1 fully connected layer with 200
nodes
2 transposed convolutional layers
layer 1: input channel: 8,
output channel: 16,
kernel: 4, stride: 2, pad: 2
layer 2: output channel: 3,
kernel: 4, stride: 2, pad: 2

1 fully connected layer with 1024
nodes
2 transposed convolutional layers
layer 1: input channel: 16,
output channel: 32,
kernel: 4, stride: 2, pad: 0
layer 2: output channel: 3,
kernel: 4, stride: 1, pad: 0

Expert-xy
prediction

2 fully connected layers with
64 nodes on each

2 fully connected layers with
128 nodes on each

Expert-
(xy+color)
prediction

2 fully connected layers with
128 nodes on each

Expert-
(xy+count)
prediction

2 fully connected layers with
128 nodes on each

Single-goal
control

2 fully connected layers with
64 nodes on each

All-goals control 2 fully connected layers with
64 nodes on each

Pick-red control 2 fully connected layers with
128 nodes on each

Next-agent-state
prediction

2 fully connected layers with
64 nodes on each

2 fully connected layers with
128 nodes on each

Successor-
feature
prediction

3 fully connected layers with
512 nodes on each

3 fully connected layers with
512 nodes on each

34

Table 5.4: Representation learning rate. The learning rate is swept in a fixed
list then chosen based on the best performance over 5 runs. The best learning
rate in Simple Maze is either 0.0001 or 0.0003, while in Picky Eater, 0.00003
always performs the best.

Representation Simple
Maze

Picky
Eater

No auxiliary 0.0001 0.00003
Input-decoder 0.0003 0.00003
Expert-xy prediction 0.0001 0.00003
Expert-(xy+color) prediction 0.00003
Expert-(xy+count) prediction 0.00003
Single-goal control 0.0003
All-goals control 0.0001
Pick-red control 0.00003
Next-agent-state prediction 0.0003 0.00003
Successor-feature prediction 0.0003 0.00003

5.4 Details about Measured Properties

Complexity Reduction: We used SC in Simple Maze and SA in Picky Eater

as the test set when measuring this property. For every 20,000 and 50,000 steps

in Simple Maze and Picky Eater representation learning steps respectively, we

checked the action values for all states in the dataset and calculate the measure

according to the formula in Table 3.1.

Linear Probing: We used SA to train the linear network with ADAM

optimizer, cross-entropy loss for color prediction, and mean-squared error

(MSE) loss for other tasks. The learning rate is swept and chosen using

the same pipeline as representation learning, except the list for sweeping is

[0.1, 0.01, 0.001, 0.0001, 0.00001]. At each step, we randomly sampled 32 sam-

ples from the data set and update the linear network. Every 100 steps, we

tested the linear network on the validation set extracted SB. The training was

cut-off if the validation loss does not decrease for 10 consecutive tests. The

error measure reported is percentage error 1 −∑

i

|yi−ŷi|
1+|yi|

(when loss is MSE)

and accuracy
ncorrect prediction

ntotal sample
(when loss is cross-entropy), measured using the

test set which had around 200 samples. The learning rate used is shown in

Table 5.5.

In Simple Maze, we evaluated the learned representations in terms of their

35

ability to linearly predict (x, y) position of the agent (the measure is called lin-

ear probing - xy) (Section 3.1.3 and Table 5.6). In Picky Eater, we additionally

evaluated the accuracy of linear predictions of the fruit color on position (2, 7)

(the measure is called linear probing - color), as well as linear predictions of

the numbers of red fruits and green fruits (the measure is called linear prob-

ing - count). For linear probing - xy and linear probing - count evaluations,

we report percentage error. For linear probing - color evaluation, we report

accuracy.

Dynamics Awareness: We took all one-step transitions (st and st+1)

from SA as similar state pairs, which should give small distance as they are

temporally close. For every st in the dataset, we randomly sample another sj

to formulate a different state pair, which should give high distance. The data

reported are calculated using the formula given in Table 3.1.

Diversity (1−Specialization): We took all possible pairs from dataset

SA and the trained value network, then calculate the diversity according to

Table 3.1.

Orthogonality: We took all possible pairs from dataset SA, then calculate

the orthogonality according to Table 3.1.

Decorrelation: We took all possible pairs of features from the represen-

tation, then use states in SA to calculate the decorrelation according to Table

3.1.

Non-Interference: We took all possible pairs from dataset SA, then cal-

culate the non-interference according to Table 3.1. We use TD-error as δ in

this measure.

5.5 Experimental Results

In this section, we provide results on the two environments. We first show

learning curves on the original task, then the transfer task and finally summa-

rize the properties of learned representations.

36

Table 5.5: Linear Probing learning rate. The learning rate is swept in a fixed
list then chosen based on the best performance over 5 runs. The best learn-
ing rate varies from 0.1 to 0.00001, depending on the representation and the
target that it predicts, though Input-decoder representation, Pick-red control
representation, and Next-agent-state prediction representation have the same
best learning rate (0.001) for all tagets.

Representation XY predic-
tion
(Simple
Maze)

XY predic-
tion
(Picky
Eater)

Color
prediction
(Picky
Eater)

#
Red/Green
Fruits
prediction
(Picky
Eater)

No auxiliary 0.1 0.001 0.001 0.001
Input-decoder 0.001 0.001 0.001 0.001
Expert-xy prediction 0.001 0.1 0.1 0.1
Expert-(xy+color) prediction 0.0001 0.0001 0.0001
Expert-(xy+count) prediction 0.001 0.0001 0.0001
Single-goal control 0.1
All-goals control 0.01
Pick-red control 0.001 0.001 0.001
Next-agent-state prediction 0.001 0.001 0.001 0.001
Successor-feature prediction 0.00001 0.1 0.1 0.001
Random representation 0.1 0.01 0.1 0.1

5.5.1 Simple Mazes

Performance in the Original Task

Here we show the learning curve when learning the representation, with pa-

rameters described in Section 5.3. Except for Random-representation which

takes a randomly initialized neural network as the representation network,

all other agents converge to a reasonable policy. This is because the average

return equals or is close to 1, so the learning curves of them do not show

a large difference. At the end of this experiment, the representations were

stored to later be used for a new initialization of DQN to evaluate the learned

representations.

Transfer Performance

Figure 5.4 shows the transfer performance. Several auxiliary losses result in a

representation that is useful for efficient learning in the original task and the

similar task, but only compared to learning everything from scratch. They

37

Next, we evaluate the properties of these representations. A summary of

all properties measures is given in Figure 5.5. Below we give more detailed

results. The violin plots show the mean value (dash in the middle), maxima

and minima (dots on each bubble), and the data distribution (shadow). The

description and analysis are below each plot.

When looking at the summary in Figure 5.5, there are two relatively clear

groupings in terms of properties. The first group has both a relatively good

transfer performance and a relatively high averaged property score—the Con-

trol tasks (One-control and All-control), Next-agent-state (NAS pred) and

Expert-xy (xy pred) all resulted in generally higher level of the desirable prop-

erties, in the meanwhile, they all perform the best on the dissimilar task trans-

fer. When focusing on the score of each property, we find that representations

from this group generally exhibit high orthogonality (see also Figure 5.12), high

linear probing accuracy (see also Figure 5.11) and high dynamics awareness

(see also Figure 5.10). The notable differences are in complexity reduction on

the dissimilar task, where Next-agent-state scores high and Single-goal control

scores low (Figure 5.7-c).

The second group consists of No auxiliary (No aux), Input-decoder (Input

dec), and Successor-features (Succ pred). They have relatively lower transfer

score. The profiles for No auxiliary and Successor-features are very similar, and

they perform quite similarly on the control tasks. The main difference is that

Successor-features has slightly higher decorrelation and slightly higher control

performance. Input-decoder has different properties than No auxiliary, with

notably higher complexity reduction and diversity (see also Figure 5.8) and

lower linear probing accuracy and lower dynamics awareness. Input-decoder

has low orthogonality but high decorrelation, suggesting orthogonality might

be more predictive of transfer performance. Finally, non-interference is also

high for all methods; there are some differences, though it does not seem

to have much correlation with performance, even when only considering the

better agents.

42

Interestingly, the relative ordering of representations is almost the same under

fine-tuning, except that Successor-features vaults to the top.

Property Measures

Before going to the score of each property, we put the summary of the prop-

erties for these representations in Figure 5.16. Auxiliary control (control),

Next-agent-state (NAS pred), and Successor-feature prediction (Succ pred)

are highly performant methods regarding to the transfer learning. Different

from Simple Maze, this group does not show a clear better averaged property

score. When focusing on each property, we notice that orthogonality reflects

the transfer performance ordering in this group; decorrelation is not as clear

and is typically high for most agents. The complexity reduction measures are

reasonably predictive of positive representation transfer (Figure 5.18). The

cases with good complexity reduction and poor performance are due to small

values due to lack of learning (Figure 5.15-center and 5.18). This suggests a

natural improvement of this measure to distinguish these two cases. Dynamics

awareness is uninformative in this environment—potentially it is comprised of

open rooms—and most methods scored highly on it.

The conclusions are different from Simple Maze, particularly because fail-

ures from certain agents skew patterns. For example, the higher complexity

reduction of Expert-targets and Input-decoder seems to be due to their poor

transfer performance (Figure 5.15-center): the learned values are small and

result in a smaller Lipschitz constant. For the other methods, complexity re-

duction did correlate with performance. This suggests a natural improvement

of this measure to distinguish these two cases.

48

5.6 Summary Analysis Across Environments

Given the above results in both environments, we try to analyze whether repre-

sentations show consistent performance in different environments. Regarding a

given property measure, some representations have consistent performance in

both environments while others do not. There are also some measures that do

not have any strong relationship with the performance in the transfer. Below

we list points we see in our experiments.

1. One common result in both Simple Maze and Picky Eater is that some aux-

iliary tasks do help with transfer learning, but not all of them (Figure 5.4

and 5.15). Adding auxiliary tasks to predict the successor-feature

or the next-agent-state, or adding auxiliary control, consistently

helps with transfer learning for a relatively different task com-

paring to the original task. On the contrary, adding a decoder for re-

constructing the observation image was consistently bad at transfer. This

auxiliary task is also worse than predicting expert knowledge such as co-

ordinate of the agent, the color of the fruit, and the number of fruits left.

Adding the decoder forces the agent to include every detail in the observa-

tion, even part of them are useless. Thus, one guess is that such a constraint

requires a larger capacity in the representation than necessary and hurts

the representation’s ability to extract useful information.

2. When measuring orthogonality, we see that representations with a rel-

atively high orthogonality score always show a good performance

in transfer without fine-tuning, while a representation with a good

transfer performance does not imply a high orthogonality score (Figure 5.5,

5.12, 5.16, and 5.25). The guess is that except for orthogonality, there

are also other properties that help with improving transfer performance, so

that representations can still gain advantage in transfer learning even with-

out high orthogonality. However, this result may still suggest a potential

possibility of predicting transfer performance with orthogonality.

3. Auxiliary tasks generally improve, or at least not hurt, the representation in

55

terms of the complexity reduction and decorrelation, regardless of whether

the transfer performance is improved or not (Figure 5.7, 5.9, 5.18, and 5.20).

But there does not appear to be a clean relationship between the

measures of these two properties and the transfer performance,

especially that Input-decoder gains a high decorrelation score while per-

forming bad in transfer at the same time.

4. Without an auxiliary task, the representation highly specializes to

the original task. The score drops when the task changes. When there is

a large difference between the original and transfer tasks, the scores for all

representations drops; the score for No auxiliary representation drops more

than the others (Figure 5.8 and 5.19). With respect to the performance of

the same representation in different transfer tasks, when the representation

learns slower (has smaller area under the curve) in one task comparing

to the other, the specialization score is also lower than the score in the

other. This suggests that the specialization (diversity) reflects the

transfer ability in a limited way, but it is still not enough to

use it to predict the transfer learning performance, as it does not

predict which representation is better in transfer learning when we compare

multiple of them.

5. Representations have inconsistent performance regarding the dy-

namics awareness and linear probing measures. Thus they are not

predictive of transfer performance. In Simple Maze, representations learned

with auxiliary tasks that have higher scores than No auxiliary representa-

tion also show better transfer learning performance, and vice versa (Figure

5.10 and 5.11). However, in Picky Eater, the result is different – for dy-

namics awareness, representations learned with auxiliary tasks have similar

or worse scores than the No auxiliary representation, while the transfer

learning curves show a different result (Figure 5.21, 5.22, 5.23, and 5.24).

For linear probing, most auxiliary tasks do not show a significant differ-

ence comparing with the No auxiliary task, except those predicting expert

information which forces the representation to emphasize this information

56

during learning.

6. We notice that all representations show similar performance on non-

interference measure (Figure 5.13 and 5.26). It is possible that non-

interference only has a limited effect on transfer learning, this may also

suggest that we need to reconsider the formula we use and look for a better

measure of non-interference.

7. In two measures related to the value function—complexity reduction,

and specialization—all experiments show that a larger difference

between the original task and the transfer task leads to a larger

change in the property measure. This difference comes from the change

in the value function, which is caused by changes in transition and reward

function (Figure 5.7, 5.8, 5.18, and 5.19). However, these measures are not

correlated to the transfer learning performance either. Affected by the small

Lipschitz constant, the representation can gain a high complexity reduction

score even when it performs poorly in transfer learning.

5.7 Open Questions and Possible Answers

1. Should I use auxiliary task when learning representation end-to-

end?

Based on our experimental results, we confirmed that most auxiliary tasks

help with improving the transfer performance especially when the differ-

ence between transfer task and original task is large. However, when the

transfer task is similar to or same as the original task, we did not see obvi-

ous advantage given by auxiliary task. In conclusion, if the representation

is supposed to generalize to a different task, then training with an auxil-

iary task, such as predicting states in future or auxiliary control, could be

helpful.

2. What auxiliary task should I use when learning representation for

transfer?

57

There were 3 auxiliary tasks consistently help with generalizing to a transfer

task in both domains—next-agent-state prediction, successor-feature pre-

diction, and auxiliary control. So the prediction on future states and aux-

iliary control tasks help with generalizations.

We also saw a negative effect when adding input-decoder as auxiliary task,

but notice that the input-decoder auxiliary task has been empirically shown

effective in literature when it is used to prevent the representation from

converging to 0, if 0 is a fixed point of the problem that the agent is trying

to deal with. In short, auxiliary task should be chosen according to the

goal that the agent would like to achieve.

58

Chapter 6

Conclusion and Future Work

Our goal was to make progress towards the question: can we better understand

the representations learned by deep reinforcement learning agents? Towards

this goal, we surveyed an array of ideas on architectures (Chapter 4) and

properties (Chapter 3). We designed experiments to assess learned represen-

tations, under auxiliary losses, focusing on both when the representation was

transferable and not (Chapter 5).

From the mountain of data, we distilled down key comparisons, confirming

that auxiliary losses are beneficial for transfer. In particular, adding decoder

as auxiliary tasks to require the representation to keep all details—which is

unnecessary in learning—hurts the transfer learning speed, and it could learn

to solve the task with a much lower speed comparing to others.

Regarding properties, we found that representations with a higher lev-

els of orthogonality typically had a relatively efficient transfer learning, but

a good transfer performance did not imply a high orthogonality. Moreover,

our experiment suggests that diversity may be limited for predicting trans-

fer performance. When transferring to a different task, the diversity of the

no auxiliary representation drops, while the diversity of representations with

auxiliary task remains relatively stable. But the current measure takes the risk

of being affected by the absolute value of the weight in value function—We

will need to improve this measure.

We also found that several measures were not predictive of performance,

and instead were skewed by failures of learning, namely complexity reduc-

59

tion and decorrelation. Not being predictive either, some measures are similar

for all representations, such as non-interference. Some measures do not show

consistent pattern across domains when compared with the transfer learning

task—linear probing accuracy and dynamic awareness. These results also sug-

gested that we need to improve our measures and find new ones that are more

robust to the sometimes erratic behaviour of reinforcement learning agents.

This work focuses on understand the representations learned by deep RL

agents. We seek to understand the mathematical properties of these

representations—the knowledge encoding—of agents that are good and bad

at transfer. Much of the previous work in this area has focused on visualizing

the agent’s knowledge, which is problematic because we leave it to humans

to see what they want in the data; to extract correlations that might be bi-

ased in different ways. We explicitly try to avoid this bias in two ways: (1)

we study agents that are not forced to learn representations that are human

interpretable—the agents learn subjective features specific to the training data

that typically do not mean much to humans; (2) we do not induce measures

or properties related to human-defined notions of how an agent should repre-

sent knowledge (in RL and robotics we often call such properties objective or

public). As such our work focuses strongly on simply understanding current

agents, architectures, and training regimes using a very systematic, mathe-

matical, and performance mindset. Our results should not be used to draw

conclusions about how popular deep RL agents are similar and different from

humans.

Though we have made conclusions based on the above results, there remain

things we would like to investigate further. The first thing is to improve the

measure and look for better definitions for properties we have listed in this

work, especially the diversity. Futhermore, there has been a substantial effort

to characterize transfer, generalization, and overfitting in deep reinforcement

learning, primarily in terms of performance [10], [14], [44], [51]—motivating the

need for new domains and evaluation methodologies. Notably, prior work illus-

trated representation transfer is possible across Atari modes [14], but did not

yet quantify any properties of those representations. This strongly motivates

60

another future work: investigating the impact of other algorithmic choices—

like regularization—on the properties of emergent representations in a broader

suite of domains. The next of which is to understand how the next-agent-state

auxiliary task affects the learned representation. In Picky Eater, when mea-

sured by both dynamics awareness and linear probing accuracy (color) (Figure

5.21 and 5.23), this auxiliary task posed a negative effect to the learned repre-

sentations. Though this observation does not affect the conclusion we made,

a closer look on its performance may help us to find more about how these

properties affect the transfer learning. Last but not least, during this study,

we noticed that same properties can be change with time, we are interested

in checking measures online, to see how these scores change during learning

and to verify whether both the property and the learned policy get stabled

simultaneously.

61

References

[1] G. Alain and Y. Bengio, “Understanding intermediate layers using linear
classifier probes,” arXiv preprint arXiv:1610.01644, 2016. 14

[2] A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm,
“Unsupervised state representation learning in atari,” in Advances in
Neural Information Processing Systems, 2019. 14

[3] A. Atrey, K. Clary, and D. Jensen, “Exploratory not explanatory: Coun-
terfactual analysis of saliency maps for deep reinforcement learning,”
International Conference on Learning Representations, 2020. 4

[4] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van
Hasselt, and D. Silver, “Successor features for transfer in reinforcement
learning,” in Advances in Neural Information Processing Systems, 2017. 4, 23

[5] M. Bellemare, W. Dabney, R. Dadashi, A. A. Taiga, P. S. Castro, N. Le
Roux, D. Schuurmans, T. Lattimore, and C. Lyle, “A geometric perspec-
tive on optimal representations for reinforcement learning,” in Advances
in Neural Information Processing Systems, 2019. 3, 4, 22

[6] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2013. 2, 4, 11, 21

[7] R. G. Brereton, “Orthogonality, uncorrelatedness, and linear indepen-
dence of vectors,” Journal of Chemometrics, 2016. 18

[8] R. Caruana, “Multitask learning,” Machine learning, 1997. 3

[9] W. Chung, S. Nath, A. Joseph, and M. White, “Two-timescale networks
for nonlinear value function approximation,” International Conference
on Learning Representations, 2019. 22

[10] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” arXiv preprint arXiv:1812.02341,
2018. 60

[11] T. Dai, K. Arulkumaran, S. Tukra, F. Behbahani, and A. A. Bharath,
“Analysing deep reinforcement learning agents trained with domain ran-
domisation,” arXiv preprint arXiv:1912.08324, 2019. 4

62

[12] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang, “Is a good represen-
tation sufficient for sample efficient reinforcement learning?” In Interna-
tional Conference on Learning Representations, 2019. 2

[13] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning archi-
tecture,” in Advances in Neural Information Processing Systems, 1990.

2

[14] J. Farebrother, M. C. Machado, and M. Bowling, “Generalization and
regularization in dqn,” arXiv preprint arXiv:1810.00123, 2018. 60

[15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine
Learning, Journal of Machine Learning Research, 2017. 3, 4

[16] C. Finn, X. Y. T. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016. 4

[17] V. François-Lavet, Y. Bengio, D. Precup, and J. Pineau, “Combined re-
inforcement learning via abstract representations,” in AAAI Conference
on Artificial Intelligence, 2019. 3, 4, 22

[18] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends
in Cognitive Sciences, 1999. 3

[19] S. Greydanus, A. Koul, J. Dodge, and A. Fern, “Visualizing and under-
standing atari agents,” arXiv preprint arXiv:1711.00138, 2017. 4

[20] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cogni-
tive mapping and planning for visual navigation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 4

[21] I. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende,
and A. Lerchner, “Towards a definition of disentangled representations,”
arXiv preprint arXiv:1812.02230, 2018. 4

[22] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel, M.
Botvinick, C. Blundell, and A. Lerchner, “Darla: Improving zero-shot
transfer in reinforcement learning,” in International Conference on Ma-
chine Learning, Journal of Machine Learning Research, 2017. 3, 4

[23] G. Z. Holland, E. J. Talvitie, and M. Bowling, “The effect of planning
shape on dyna-style planning in high-dimensional state spaces,” arXiv
preprint arXiv:1806.01825, 2018. 2, 3

[24] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D.
Silver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint arXiv:1611.05397, 2016. 3, 4, 22, 25

[25] K. Javed and M. White, “Meta-learning representations for continual
learning,” in Advances in Neural Information Processing Systems, 2019. 3

[26] P. Kanerva, Sparse distributed memory. MIT press, 1988. 2

63

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 31

[28] V. R. Kompella, M. Luciw, and J. Schmidhuber, “Incremental slow fea-
ture analysis: Adaptive low-complexity slow feature updating from high-
dimensional input streams,” Neural Computation, 2012. 2

[29] G. Konidaris, S. Osentoski, and P. Thomas, “Value function approxima-
tion in reinforcement learning using the fourier basis,” in Twenty-fifth
AAAI Conference on Artificial Intelligence, 2011. 2

[30] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep suc-
cessor reinforcement learning,” arXiv preprint arXiv:1606.02396, 2016.

21

[31] T. Kurutach, A. Tamar, G. Yang, S. J. Russell, and P. Abbeel, “Learning
plannable representations with causal infogan,” in Advances in Neural
Information Processing Systems, 2018. 4

[32] T. Lattimore and C. Szepesvari, “Learning with good feature represen-
tations in bandits and in rl with a generative model,” arXiv preprint
arXiv:1911.07676, 2019. 2

[33] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of
state abstraction for mdps,” in International Symposium on Artificial
Intelligence and Mathematics, 2006. 11

[34] Y. Liang, M. C. Machado, E. Talvitie, and M. Bowling, “State of the
art control of atari games using shallow reinforcement learning,” arXiv
preprint arXiv:1512.01563, 2015. 3, 11

[35] B. Lütjens, M. Everett, and J. P. How, “Certified adversarial robustness
for deep reinforcement learning,” in Conference on Robot Learning, 2019. 18

[36] M. C. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesauro, and M.
Campbell, “Eigenoption discovery through the deep successor represen-
tation,” in International Conference on Learning Representations, 2018.

13, 21, 23

[37] S. Mahadevan and M. Maggioni, “Proto-value functions: A laplacian
framework for learning representation and control in markov decision
processes,” Journal of Machine Learning Research, 2007. 2

[38] D. J. Mankowitz, A. Ž́ıdek, A. Barreto, D. Horgan, M. Hessel, J. Quan, J.
Oh, H. van Hasselt, D. Silver, and T. Schaul, “Unicorn: Continual learn-
ing with a universal, off-policy agent,” arXiv preprint arXiv:1802.08294,
2018. 25

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013. 3

64

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” Nature,
2015. 3, 4, 8

[41] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Vi-
sual reinforcement learning with imagined goals,” in Advances in Neural
Information Processing Systems, 2018. 4

[42] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug
& play generative networks: Conditional iterative generation of images
in latent space,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 4

[43] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Advances in
Neural Information Processing Systems, 2017. 3, 22

[44] C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun, and D. Song,
“Assessing generalization in deep reinforcement learning,” arXiv preprint
arXiv:1810.12282, 2018. 60

[45] C. Painter-Wakefield and R. Parr, “Greedy algorithms for sparse rein-
forcement learning,” arXiv preprint arXiv:1206.6485, 2012. 2

[46] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman,
“An analysis of linear models, linear value-function approximation, and
feature selection for reinforcement learning.,” International Conference
on Machine Learning, 2008. 22

[47] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyzing feature
generation for value-function approximation,” in International Confer-
ence on Machine Learning, 2007. 2

[48] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2017. 22

[49] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
International Conference on Robotics and Automation, IEEE, 2018. 4

[50] M. M. Rahman, S. H. Rashid, and M. Hossain, “Implementation of q
learning and deep q network for controlling a self balancing robot model,”
Robotics and biomimetics, vol. 5, no. 1, p. 8, 2018. 3

[51] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, “To-
wards generalization and simplicity in continuous control,” in Advances
in Neural Information Processing Systems, 2017. 60

[52] B. Ratitch and D. Precup, “Sparse distributed memories for on-line
value-based reinforcement learning,” in European Conference on Ma-
chine Learning, 2004. 2

65

[53] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Van de
Wiele, V. Mnih, N. Heess, and J. T. Springenberg, “Learning by playing-
solving sparse reward tasks from scratch,” arXiv preprint arXiv:1802.10567,
2018. 25

[54] C. Rupprecht, C. Ibrahim, and C. J. Pal, “Finding and visualizing weak-
nesses of deep reinforcement learning agents,” CoRR, 2019. 4

[55] D. Russo and B. Van Roy, “Eluder dimension and the sample complexity
of optimistic exploration,” in Advances in Neural Information Processing
Systems, 2013. 2

[56] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Had-
sell, “Sim-to-real robot learning from pixels with progressive nets,” arXiv
preprint arXiv:1610.04286, 2016. 4

[57] T. Schaul, D. Borsa, J. Modayil, and R. Pascanu, “Ray interference:
A source of plateaus in deep reinforcement learning,” arXiv preprint
arXiv:1904.11455, 2019. 19

[58] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function
approximators,” in International, 2015. 23

[59] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S.
Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., “Mas-
tering atari, go, chess and shogi by planning with a learned model,”
arXiv preprint arXiv:1911.08265, 2019. 3, 22

[60] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G.
Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto, et al., “The pre-
dictron: End-to-end learning and planning,” in International Conference
on Machine Learning, Journal of Machine Learning Research, 2017. 3, 4

[61] J. Sorg and S. Singh, “Linear options,” in International Conference on
Autonomous Agents and Multiagent Systems, 2010. 1

[62] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” arXiv preprint arXiv:1804.00645, 2018. 1, 4, 22

[63] K. L. Stachenfeld, M. Botvinick, and S. J. Gershman, “Design principles
of the hippocampal cognitive map,” in Advances in Neural Information
Processing Systems, 2014. 13

[64] F. P. Such, V. Madhavan, R. Liu, R. Wang, P. S. Castro, Y. Li, J. Zhi,
L. Schubert, M. G. Bellemare, J. Clune, et al., “An atari model zoo
for analyzing, visualizing, and comparing deep reinforcement learning
agents,” arXiv preprint arXiv:1812.07069, 2018. 4

[65] R. S. Sutton, “Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding,” in Advances in Neural Information
Processing Systems, 1996. 2

[66] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction
2nd ed. MIT press Cambridge, 2018. 1, 2, 25

66

[67] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White,
and D. Precup, “Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction,” in International
Conference on Autonomous Agents and Multiagent Systems, 2011. 6

[68] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. P. Bowling, “Dyna-
style planning with linear function approximation and prioritized sweep-
ing,” International Conference on Machine Learning, 2012. 1

[69] R. S. Sutton and S. D. Whitehead, “Online learning with random rep-
resentations,” in International Conference on Machine Learning, 1993.

2

[70] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lec-
tures on Artificial Intelligence and Machine Learning, 2010. 22

[71] E. Talvitie, “Self-correcting models for model-based reinforcement learn-
ing,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

2

[72] S. Thrun, “Is learning the n-th thing any easier than learning the first?”
In Advances in Neural Information Processing Systems, 1996. 3

[73] J. Tyo and Z. Lipton, “How transferable are the representations learned
by deep q agents?” arXiv preprint arXiv:2002.10021, 2020. 4

[74] B. Van Roy and S. Dong, “Comments on the du-kakade-wang-yang lower
bounds,” arXiv preprint arXiv:1911.07910, 2019. 2

[75] Y. Wan, M. Zaheer, A. White, M. White, and R. S. Sutton, “Planning
with expectation models,” 2019. 2

[76] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, 1992. 7

[77] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from raw
images,” in Advances in Neural Information Processing Systems, 2015. 4

[78] M. White, “Unifying task specification in reinforcement learning,” in In-
ternational Conference on Machine Learning, Journal of Machine Learn-
ing Research, 2017. 6

[79] G. Yang, A. Zhang, A. S. Morcos, J. Pineau, P. Abbeel, and R. Calandra,
“Plan2vec: Unsupervised representation learning by latent plans,” arXiv
preprint arXiv:2005.03648, 2020. 4, 22

[80] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-
standing neural networks through deep visualization,” arXiv preprint
arXiv:1506.06579, 2015. 4

[81] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black box:
Understanding dqns,” in International Conference on Machine Learning,
2016. 4

67

[82] A. Zhang, N. Ballas, and J. Pineau, “A dissection of overfitting and gen-
eralization in continuous reinforcement learning,” arXiv preprint arXiv:1806.07937,
2018. 4

68

	Introduction
	Good Representations for Reinforcement Learning
	Contribution
	Thesis Structure

	Background
	Finite Markov Decision Process
	Value Functions
	Function Approximation and Q-learning
	Neural Network Specification

	Representational Properties
	Capacity
	Complexity Reduction
	Dynamics-awareness
	Linear Probing Accuracy
	Diversity and Specialization

	Independence
	Orthogonality
	Decorrelation

	Robustness
	Non-interference

	Representations Learning Architectures
	Prediction Based Auxiliary Tasks
	Input Decoder
	Next Agent State Prediction
	Successor Feature Prediction
	Expert-designed Targets Prediction

	Control Based Auxiliary Tasks
	Additional Goals (Simple Maze)
	Flipped Reward (Picky Eater)

	Experiments
	Environments and Tasks
	Simple Maze
	Picky Eater

	Data Collection
	Representation Learning Pipeline
	Details about Measured Properties
	Experimental Results
	Simple Mazes
	Picky Eater

	Summary Analysis Across Environments
	Open Questions and Possible Answers

	Conclusion and Future Work
	References

