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Abstract

The introduction of invasive species is a significant driving force of global change. 

Weed scientists, resource managers, conservation and restoration biologists have 

focused their attention on the control of invasive species trying to understand, 

mitigate and prevent impacts of biological invasions. Biological control, the control of 

invading organisms by means of their natural enemy, is one way to prevent impacts of 

biological invasions. Mathematical models are a useful tool for the design of biological 

control strategies. These models allow for the analysis of population growth and 

spread, and for determination of aspects of the life cycle of the organisms which can 

be manipulated to control populations. In this dissertation I use matrix models to 

study the life history of invading organisms. First, a new method for the calculation of 

an analytical net reproductive rate formula is derived. I show with examples how this 

formula can be applied to study the control of invading organisms, particularly weeds. 

I extend these results, to calculate a mean and variance of the generation time. Later 

in the thesis, I use coupled map lattice models, a time and space discrete formalism, 

to calculate rate of spread for scalar and matrix population models. I derive formulae 

for the wave speed for constant and stochastic environments for coupled map lattices. 

I then apply these to scentless chamomile, an invasive weed distributed all across 

North America. The methods for calculation of net reproductive rate and generation 

time, and formulae for rate of spread in coupled map lattices, are new to biological 

invasions and biological control.
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Chapter 1

Introduction

The introduction of invasive species is a significant driving force of global change, 
affecting biodiversity, serving as a vector of diseases, altering ecosystem function 
and having considerable economical impacts on production lands (Vitousek et al., 
1996). Weed scientists, resource managers, conservation and restoration biologists 
have focused their attention on the control of invasive species, trying to understand, 
mitigate and prevent impacts of biological invasions (Sakai et al., 2001). Biological 
invasions are complex, and successful control involves the understanding of the 
invader’s population dynamics during the arrival, establishment and spread phases of 
invading species (Williamson, 1996).

One way to control invading organisms is the introduction of natural enemies to 
control the host. This method is known as biological control by natural enemies 
(Huffaker and Messenger, 1976). The first successful documented case of biological 
control was the introduction of the vedalia beetle (Rodalie cardinalis) in 1888 to 
control cottony-cushion scale (Icerya purchasi), which was affecting citrus plantations 
in California. Biological control as a field of study became formal with the work of 
Varley and Gradwell (1970) and Huffaker and Messenger (1976), which incorporated 
ecological theory in the study of host-control agent dynamics.

Biological control is a field where mathematical modelling of invasions has a lot to 
offer (Fagan et al., 2002; Shea, 2004). The study of biological control is a two-fold 
problem. On the one hand, control agents need to be host specific, produce effective 
damage on the host, and capable of establishing a permanent population (McFadyen,
1998). On the other hand, detailed biology and life history information of the host 
are needed, in order to determine if growth and spread can be controlled (Shea et al., 
2005). Both of these can be studied using mathematical models. In this thesis, I study 
how a weed can be controlled by analyzing its life history and population spread.

Biological control of invasive species, alone or combined with other strategies, can 
be an effective method for the reduction of unwanted invasive species. However,

1
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a biocontrol system is complicated and methods for quantifying how much of an 
impact a control strategy can cause are essential for the successful application of this 
method. One way of modelling and analyzing potential effects of biocontrol, is using 
matrix population models (Murdoch and Briggs, 1996). Matrix models are discrete 
time models, that incorporate age or stage population structure, to model population 
dynamics (Caswell, 2001). They were first introduced by Leslie (1945) to model age- 
structured populations. Because some biological and physiological stages are a better 
representation of the life cycle of organisms, Leslie models were later extended to 
stage classified life cycles by Lefkovitch (1965). Matrix models are simple, intuitive 
and allow for a realistic representation of the life cycle of the organism (Murdoch and 
Briggs, 1996).

Matrix models have been widely used for the study of biological control of weeds 
(Shea, 2004). Using a method called elasticity/sensitivity analysis of the population 
growth rate, it is possible to establish which events in the life cycle of the organism, 
when perturbed, have the most impact on population growth (Caswell, 2001). Hence, 
those events should be the target of biocontrol efforts (e.g. Parker, 2000; Shea and 
Kelly, 1998; Krivan and Havelka, 2000).

The net reproductive rate (Rq), the number of newborn individuals that one 
individual can produce over its lifetime, can also be calculated from a simple 
decomposition of the projection matrix in matrix models (Cushing and Zhou, 1994). 
Ro is measured over a generation time, and thus is related to population growth rate. 
This parameter is a simplistic descriptor of the life cycle of an organism, but its study 
has vital implications for control (Myers and Bazely, 2003).

The calculation of population growth can be done directly on the graph 
representation of the life cycle (Caswell, 2001). Methods for working on graphs, to 
solve systems of linear equations, were pioneered by Mason and Zimmermann (1960). 
This graph theoretic approach has been little applied currently being used mostly in 
loop analysis (Caswell, 2001). I show in this thesis that these methods allow for the 
calculation of an analytical formula for the net reproductive rate, and further analysis 
of the life cycle graph is possible, shifting the focus of life cycle graph analysis to the 
analysis of pathways that contribute to the net reproductive rate.

The emerging discipline of biological invasions is also a fertile new ground for 
the development of new theoretical tools. Elton (1958) was the first to describe the 
ecology of invasive species and since his work was published, there has been substantial 
progress in the formalization of processes involved in arrival, establishment and spread 
of invasive organisms. The use of mathematics to describe the spread of invading 
organisms had a groundbreaking start with works of Fisher (1937) and Skellam (1951), 
who predicted the asymptotic rate of spread of populations using diffusion equations. 
Not only were these models interesting and mathematically robust, but they allowed 
the integration of empirical data and the prediction of population spread (Andow
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et al., 1990; Hastings et al., 2005; Shigesada and Kawasaki, 1997). Many years 
later, Kot et al. (1996) introduced integro-difference equations to invasions theory 
and showed how the rate of spread can be calculated by using a dispersal kernel that 
describes the probability of an individual moving in a continuous space and discrete 
time, while the population grows locally.

Environmental and demographic variability can also have an effect on spread. 
Thus models of spread that incorporate stochasticity in diffusion models, integro- 
difference equation and others, have also been developed that account for variation in 
environmental or demographic parameters (Hastings et al., 2005; Lewis and Pacala, 
2000; Neubert et al., 2000).

At certain scales, and because of landscape heterogeneity, it is often appropriate 
to replace continuous space with a discrete one (Keitt et al., 2001; Levin, 1992). 
Discrete space is usually done by coupling differential equations on a discrete lattice 
(Keitt et al., 2001; Owen and Lewis, 2001), using cellular automata (Wang et al., 2003; 
Sondgerath and B., 2002; Cannas et al., 2003; Marco et al., 2002) or using coupled map 
lattices (Bevers and Flather, 1999). Coupled map lattice models are discrete-space 
and time models (Ouchi and Kaneko, 2000), similar to integro-difference equations. 
The rate of spread equation, derived for integro-difference models, can also be used 
in discrete space (Weinberger, 1982). However, to my knowledge, this has not been 
done explicitly before. In this thesis, I work with these models and derive analytical 
calculations of the rate of spread, relate them to integro-difference equations, and 
show how they can be applied to study the spread of an invasive species.

Matrix models can also be extended to incorporate space (Neubert and Caswell, 
2000). Spatial matrix population models are useful to estimate the rate of spread and 
determine which transitions in the life cycle can be potential targets for control, to 
reduce the rate of spread (e.g Neubert and Parker, 2004; Buckley et al., 2005). These 
matrix integro-difference models combine the analysis of life history of organisms with 
their ability to spread (Shea, 2004), effectively linking invasion theory with biological 
control. I also extend these results to coupled map lattices.

The study of invasions, and particularly the analysis of spread rate, are essential to 
biological control. Fagan et al. (2002) and Owen and Lewis (2001), for example, 
showed how, by calculating rates of spread of host and control agent, it can be 
determined if the control agent will be successful in controlling the spatial spread of 
its host. Invasion theory can contribute to biological control in (Fagan et al., 2002): 
1 ) studying the spread of hosts and control agents, 2 ) understanding of role of long
distance dispersal, 3) analysis of structured population dynamics, 4) detectability of 
invasive species, and 5) incorporating stochasticity.
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Sec. 1.1 Thesis objectives 4

1.1 Thesis objectives
The main motivation of this thesis research is to formalize ideas that can solve 
problems in biological control and biological invasions research at both theoretical 
and practical levels. Using scentless chamomile (Matricaria perforata, Family: 
Asteraceae) as a case study, I develop a method for obtaining the net reproductive 
rate and generation time, based on the life cycle. I also derive rate of spread formulae 
for application to matrix coupled map lattices. The general objectives are: 1) derive 
a formula for the net reproductive rate based on the life cycle of organisms , 2 ) use 
the net reproductive rate to analyze control of invading organisms, 3) analyze the 
spread using matrix coupled map lattices.

1.2 Thesis outline
Through the thesis, I develop a theoretical framework, based on matrix population 
models, for the analysis of invasive species, using scentless chamomile as an example. 
Chapter 2  and 3 are background and data description chapters, and Chapters 4, 5 
and 6  are theoretical.

Chapter 2 is a general review of biological control. Historical, economical and 
ecological issues of biocontrol are presented. This provides an introductory context 
for the remainder of the thesis. In Chapter 3, field data on scentless chamomile 
collected in Vegreville, Alberta, Canada, are described and using matrix models and 
classic demographic analysis some implications for biological control are drawn.

In Chapter 4, the derivation of a new method for the calculation of the net 
reproductive rate is developed and all mathematical background is provided. This 
method is then applied to scentless chamomile and other weeds, to illustrate the 
applicability of the method.

Chapter 5 uses the method derived in Chapter 4, and expands it by deriving 
a formula for the calculation of the generation time. Starting with some general 
description of life cycle graphs, I then derive some general principles from these 
examples.

The focus of Chapter 6  is the derivation of the rate of spread formulae for matrix 
coupled map lattices. This chapter includes models for constant and stochastic 
environments and heterogeneous landscapes. Throughout the chapter, scentless 
chamomile is used as an example, and the rate of spread is estimated.

Chapter 7 discusses general conclusions and integrates the models in a general 
framework. Implications of the models developed are discussed.
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Chapter 2 

Biological Control of Weeds

2.1 Introduction

2.1.1 Biological Control Definition
Biological control is the control of host populations using natural enemies (Wilson 
and Huffaker, 1976). The goal of biological control is to reduce host population 
growth over an ecologically long period (Murdoch and Briggs, 1996). Strictly, here 
we refer to biocontrol as the use of parasites, predators and pathogens to regulate 
pest populations (Harris, 1993; DeBach and Rosen, 1991), although the term has been 
used for other forms of non-chemical control (Harris, 1993). The premise of biological 
control is that organisms that become pests in a region, have natural enemies that in 
their natural habitats keep their hosts under control, hence when the natural enemies 
are introduced, the pest populations should be controlled (Huffaker and Messenger, 
1976). Biological control is an important alternative (to chemical and mechanical 
techniques) for controlling pests. Biological control is different form other methods 
(chemical and mechanical) in the following ways (Radosevich et al., 1997): 1) does 
not necessarily kill the host, 2) slow acting (it takes many generations), 3) relatively 
inexpensive, 4) selective, 5) has few side effects, and 6 ) biocontrol is often permanent.

There are several strategies in which biocontrol can be applied (Waage and 
Greathead, 1988): Classical biological control, where an exotic control agent is
introduced to obtain long term control of a pest; Inoculation, where periodic 
establishments of the control agents are forced so the control agent persists; 
Augmentation, where supplemental release of indigenous species is included in the 
biocontrol; and Inundation were a large number of control agents are released to 
control a single pest generation. Although classical biocontrol still is an important 
part of integrated pest management programs (IPM), a lot of attention has been 
shifted to innudative methods (Waage and Greathead, 1988).

9
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Sec. 2.1 Introduction 10

In this Chapter, I explore the historical, ecological, economical and practical 
application of biological control. The first section gives a brief historical background. 
Next I mention some differences in the biological control of weeds as compared to 
other types of hosts. Later sections talk about the biocontrol research process, and 
economical considerations of biological control. The section biological control and 
ecology explores some of the fields of ecological research that are relevant to biological 
control.

2.1.2 Historical Remarks
Although historically biological control was used informally, the introduction of the 
vedalia bettle Rodalia cardinalis was one of the first well documented successful 
biological control cases (Waage and Greathead, 1988). This bettle was introduced 
in 1888 from Australia to control the cottony-cushion scale Icera purchasi which was 
threatening to destroy citrus plantations in California and successfully controlled this 
pest (Huffaker and Messenger, 1976). This successful case generated some enthusiasm 
about using natural enemies to control pest population (Huffaker and Messenger, 
1976; Waage and Greathead, 1988). The fact that pesticides would induce resistance 
in many pests, and that most of them had residual effects at that time (around 1940) 
the importance of ecological considerations made biological control a good alternative 
to classical pest control (Huffaker and Messenger, 1976). For example, the use of 
insecticides such as DDT was unsuccessful and actually increased the population of 
pests like the cottony-cushion scale (DeBach and Rosen, 1991).

Another interesting example is the control of the sugarcane leafhopper, Perkinsiella 
saccharicida in 1900, that attacked sugarcane plantations in Hawaii, and was 
controlled by the introduction of several natural enemies from Australia (Huffaker 
and Messenger, 1976). A second good example of successful biological control, is 
the control of the cacti Opuntia sp. introduced in Australia in 1925 by the cactus 
moth Cactoblastis cactorum (Huffaker and Messenger, 1976; Knight, 2001). There are 
many unsuccessful cases as well, including the introduction of toads(Bufo marinus) in 
1935 in Australia to control sugarcane beetles, that had adverse results on the local 
biodiversity (Knight, 2001). Biocontrol increased in popularity from 1920-1945, and 
then declined, due to the newly introduced synthetic organic insecticides, and in 1955 
began a new wave of popularity (Perkins and Garcia, 1999).

In the theoretical front, Varley and Gradwell (1970) and Huffaker and Messenger 
(1976) formalized the understanding of biological control, by incorporating ecological 
concepts. They suggested that the understanding of density-dependent processes were 
important to stabilize and control pest populations. Some of the desirable attributes 
of natural enemies, to achieve control of a pest, were host-specificity, synchrony with 
pest, ability to increase rapidly and high rate of successful search. All of these
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attributes came mainly from the dynamic properties of Nicholson-Bailey models 
(Murdoch et al., 1985). From these theoretical models, the concept of successful 
biocontrol was based on the stability of low pest densities. However, it has been 
argued that a more broad definition of stability of biocontrol system is needed, where 
simple persistence and bounded stochasticity are considered (Thorarinsson, 1990).

Murdoch and Briggs (1996) reviewed the contributions of ecological theory 
to biological control. Some of the issues mentioned included: 1) parasitoid
aggregation can induce stability to the host-parasitoid system, 2 ) metapopulation, 
3) spatiotemporal refuges and iv) ratio (predator-prey) dependence and density 
dependence. Most of this issues are specifically related to host-parasitoid systems but 
should also be applicable to predation and pathogens. They also mention the practical 
uses of matrix population models, that can incorporate realism and are easy to use 
and interpret. For example, Shea and Kelly (1998) use matrix population models to 
determine the susceptibility of different stages of nodding thistle (Carduus nutans) 
in New Zealand. With the sensitivity matrix they conclude that by suppressing 
germination and reducing seedbank inputs, this thistle can be controlled.

Nowadays there is an increase in the use of modelling tools to study biocontrol 
systems and the incorporation of spatial considerations in biological control. Barlow 
(1999) presents a review of modelling techniques used for biological control. In 
this review, most of the models are applied to host-parasitoid systems followed 
by weed-herbivore and insect-pathogen; and most of them are applied to classical 
biocontrol. How valuable models and theory are is still controversial, because 
many of the deterministic Nicholson-Bailey and Lotka-Volterra types of models are 
unrealistic (Myers and Bazely, 2003). There is a strong need to link models with 
field observations as models become more complicated and parameter estimation is 
needed to give models some realism (Murdoch and Briggs, 1996). Another front that 
is becoming important are the possible damaging effects that biological control can 
have, since many of the initial biological control programs have negative impact. This 
issue is considered in the Section ” Problems and Risks”.

2.1.3 Biological Control of Weeds
Invasive weeds constitute a major problem since they have direct impact on rangeland 
and wildland, threatening biodiversity and reducing production in the farming 
industry (Bangsund et al., 1999; Masters and Sheley, 2001; Ditomaso, 2000). In 
weed management, organic pesticides have played a major role in crop production. 
However, the temporary solution of chemical pesticides, weed resistance, safety of 
food products, in addition to the costs of developing, testing and producing synthetic 
herbicides, have created a good opportunity for biological control of weeds (Rao, 
2000; Goeden and Andres, 1999). Control of invasive plants are an important part of
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biological control. For example in Canada 881 exotic plants have become established, 
representing 28% of the total flora of the country (Parker and Gill, 2002). Many of 
these have become noxious plants with important consequences for crop production 
and local biodiversity.

Biological control of weeds has followed a different path than control of other pests 
(McFadyen, 1998). Less than 400 invertebrates and fungi have been introduced to 
control weeds as opposed to more than 5000 to control insects (Knight, 2001). About 
259 species of invertebrates have been used, most of them insects (254), with about 
62% of them becoming established, and 25% of these control agents being successful 
(Bellows and Headrik, 1999).

In biological control of weeds as opposed to biocontrol of other pests, a considerable 
part of the research process is focused on host-specificity tests (McFadyen, 1998). As 
McFadyen (1998) suggests, host-specificity is said to be the ’’holy grail” of biocontrol. 
In general the weed biocontrol community has been careful in testing host-range, to 
avoid non-target impacts, and in this case they have been fairly successful (Bellows 
and Headrik, 1999). In addition to this, biocontrol of weeds, instead of using mass 
releases of large numbers of enemies, has focused on the ecological context and the 
establishment of a stable population of biocontrol agents (Bellows and Headrik, 1999; 
Harris, 1993).

Another important aspect of biological control of weeds is that weed biocontrol 
practitioners have compiled a comprehensive catalog of weeds and the use of biological 
control agents to control them (Julien et al., 1992). Julien et al. (1992), provide a 
good catalogue of world wide biocontrol research programmes. Mason and Huber 
(2002) provide a good revision of biocontrol programmes in Canada from 1981 to 
2 0 0 0 , and has an important section about control of weeds.

2.2 Biocontrol Research Process
The biocontrol research process starts when a system is elected for biological control. 
Not all cases of attacks by pests are suitable for biological control and some scoring 
systems like McClay’s (Peschken and McClay, 1992) and others (Goeden, 1983), based 
on economical and biological factors, are used to choose systems for which biocontrol 
is a good option and could lead to successful control.

Once a pest has been detected, and biological control is thought to be appropriate, 
a biological control programme follows. McFadyen (1998) suggests that some of the 
steps in the research and application of biological control are Overseas exploration, 
selection and testing of agents (pre-release studies), rearing and release, evaluation 
and monitoring (see section Evaluation).
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2.2.1 Pre-release Studies
Agent selection is a critical step, in terms of finding an appropriate agent with narrow 
host range because this procedure is costly and time consuming, and the success 
and risks of the biocontrol programme depend heavily on this step (McFadyen, 1998; 
Schaffner, 2001). The general process consists of reducing the natural enemy complex 
to a few species for introduction (Waage, 1990). At this stage, pre-release studies 
are performed, consisting of verification of the taxonomic status of the pest and 
associated enemies, evaluation of the host range (list of species used as hosts by 
the biocontrol agents (Bernays and Chapman, 1994)) of the biocontrol candidates, 
population ecology of both agent and pest, and study of the potential damage that 
the agent inflicts on the pest (Schaffner, 2001). Pre-release studies can be considered 
in the area of origin of the pest, and studies in the target area (Shroeder et al., 1996)

The common methods for evaluating control agents and their interaction with their 
hosts are life-tables and manipulative field experiments (Luck et al., 1999). Life tables 
track the number of individuals surviving in the life cycle of an organism (Bellows 
and van Driesche, 1999). Life tables can be used to evaluate the quantitative impact 
of natural enemies (i.e. trying to reduce Ro) (Bellows and van Driesche, 1999). 
Experimental manipulations of predator presence/absence allow for the identification 
of predator species and also the estimation of their impact (Luck et al., 1999). These 
methods include the use of cages to evaluate pest population changes with and without 
the control agents and also for host-range tests (Luck et al., 1999). In weed biocontrol, 
open field tests are used as part of host-specificity determinations (Cristofaro, 1995). 
In such studies agents exercise free choice of hosts without the use of cages.

2.2.2 Rearing and Release
The initial goal of biocontrol agent releases is to establish its populations effectively 
in the region where control is desired (Shea et al., 2002). However, effective release 
its very complicated and a lot of uncertainties (biological and environmental) are 
involved. Many control agents fail to establish in the field (Memmott et al., 1998). 
Usually releases involve the release of a small population of control agents. Because 
these populations are small, they have a high probability of extinction due to 
demographic stochasticity, environmental variability, and Allee effects (Grevstad,
1999). It has been suggested that large releases can overcome these problems but large 
releases can have a high probability of extinction (Memmott et al., 1998). A successful 
release involves a trade-off between size of release and number of releases (Grevstad, 
1999; Memmott et al., 1998). Using stochastic simulation models Grevstad (1999) 
found that for variable environments, a large number of small releases is optimal.
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When an Allee effect with constant environment is suspected, one release would be 
optimal. It has been suggested by Shea et al. (2002) that, because of the uncertainties 
in biocontrol, active adaptive management, where learning about past experiences is 
included in the design of agent selection and release strategies, should be an active 
component of biocontrol programmes.

2.2.3 Evaluation and M onitoring
Evaluation and monitoring is essential in biocontrol programmes. In the past, it was 
thought unnecessary to follow up and evaluate biocontrol programmes (McFadyen, 
1998). This engendered criticism, specifically that the risks associated with biological 
control were not considered (see the section Problems and Risks). Most evaluations 
are done after release and establishment of the control agent, but only variables 
such as spread and presence are recorded, without much consideration of the changes 
in population dynamics (McFadyen, 1998; Myers and Bazely, 2003). In a literature 
survey of methods in weed biocontrol, McClay (1995) found that only a small fraction 
of surveys used formal experimental methods, and only a few of those measure some 
weed population variables.

It has been reported that about 17% of the insect pest biological control 
programmes have been successful over the last 100 years (Bellows, 2001). Estimates of 
success of herbivorous insects for biological control in the United States, for example, 
show 40% of projects with some success and 20% with significant control (Louda 
et al., 1997). Conclusions based on success stories are difficult to draw, since a lot 
of factors are not considered, such as the actual dynamics or the fact that it was the 
agent which actually controlled the pest (Perkins and Garcia, 1999).

Most of the biological control monitoring studies focus on detecting if the biological 
control agent is still present or not in a release area, or if it has spread from the 
release area (e.g Schaad et al., 2001; Suckling et al., 1999; Bidochka et al., 1996). 
Some advanced techniques, like analysis of remote sensing data, could be used for 
monitoring, when levels of infestation reach landscape levels, and the pest is spectrally 
detectable. In a study by Venugopal (1998), they calculated NDVI (Normalized 
Difference Vegetation Index) from SPOT satellite data to detect water hyacinth 
geographical expansion in India. With this data, the author was able to detect new 
areas of infestation and concluded that biological control, although effective locally, 
had limited effect in controlling re-invasions. Another similar study by Williams and 
Hunt (2002) used Airborne Visible Infrared Imaging Spectrometer (AVIRIS) imagery 
to detect leafy spurge distribution and abundance in northeastern Wyoming. These 
techniques can be useful to estimate the change in weed coverage over time as a result 
of weed management.
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2.3 Critical Issues in Biological Control

2.3.1 Economical Im portance
Suppressing pest organisms is not only a biological problem, but also a social and 
economical one (Perkins and Garcia, 1999). Perkins and Garcia (1999) point out 
that historically, biocontrol started as a method for controlling agricultural pest 
problems and that the main application of biocontrol is related to economical factors 
of increasing profits reducing costs. It has been difficult to quantify the actual 
economic cost-benefit of biological control (Perkins and Garcia, 1999). Harris (1979), 
proposed that the costs of biological control should be measured in scientists years, 
that is, the technical and administrative costs to support one scientist for one year. 
The USDA reported that in their laboratories and agencies, there are 190 scientist 
years devoted to biological control (Perkins and Garcia, 1999). In 1976 one scientist- 
year in biological control cost around US$80,000 (Gutierrez et al., 1999). In order to 
estimate more accurately the costs of biocontrol we have to consider the costs of: 1 . 
baseline research, 2. foreign exploration, 3. shipping, 4.quarantine, 5. mass rearing,
6 . field releases and 7. post release evaluation (Parker and Gill, 2002).

Although it is believed that biocontrol is very expensive, there is no evidence 
to suggest that biological control using natural enemies is more expensive than 
alternative forms of control (Perkins and Garcia, 1999). On the contrary, some cases of 
classical biocontrol seem to be very cost-effective (Perkins and Garcia, 1999; Gutierrez 
et al., 1999; Bangsund et al., 1999). Biological control is also economically beneficial 
if one considers that chemical pesticides can increase the populations of secondary 
pests to unmanageable levels (Gutierrez et al., 1999). As mentioned before, a good 
example was the use of DDT which increased the population of scales attacking citrus 
in California (DeBach and Rosen, 1991)

Another good example of the economic benefits of biocontrol is the effective control 
of cottony cushion in California in 1888. The current citrus crop is producing US$500 
million per year (Gutierrez et al., 1999). In a study of the economic impact of leafy 
spurge in the Great Northern Plains in the US, Bangsund et al. (1999) estimated a 
beneficial primary and secondary impact of US$58.4 million. These estimations are 
based on the expected ability of the control agent to reduce leafy spurge, projected 
to the year 2025. In mango plantations in Benin, biological control was used to 
control the mango mealybug Rastrococcus invadens Williams that was accidentally 
introduced in West Africa in the 1980’s (Vogele et al., 1991; Bokonon-Ganta et al.,
2002). It was estimated that economic production was increased by US$50 million in 
a year due to biocontrol, and a 2 0  year projection suggests an estimated production 
of US$ 531 million, with a cost of biocontrol of only US$ 3.66 million (Bokonon- 
Ganta et al., 2 0 0 2 ). A similar result was obtained earlier by Vogele et al. (1991) in
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Togo, showing that biocontrol of the mealybug was very cost-effective. Cost-effective 
biocontrol has also been shown for the biological control of the water hyacinth in 
Benin(De Groote et al., 2003), and the spiny blackfly in Swaziland (Van den Berg 
et al., 2 0 0 0 ) to name a few.

All these examples project the benefits of biocontrol assuming that the control 
agent will maintain the pest at low level, or eliminate it entirely. Another problem 
with some of these estimations is that there are no reports on biocontrol programmes 
that failed and the resulting economic loses.

In a study by Nordblom et al. (2002) an optimal release strategy was designed 
constrained by economical variables. They estimated the costs of the effect of 
Paterson’s curse and other weeds (Echium spp.) and the effect of the control agent, 
the crown weevil (M. larvatus). To obtain an optimal release strategy, they used 
simulation models incorporating the benefits of biocontrol expressed as the value 
of recovered pasture productivity. Incorporating explicitly spatial and temporal 
dimension they were able to obtain an economically optimal release strategy.

To establish the cost-benefits of biological control, the cost of invasions need also 
to be estimated, to determine how much these costs are reduced when biocontrol 
strategies are used. In the US alone, it has been reported losses due to invading 
species, combined with their control, ranges around US$137 billion dollars per year 
(Parker and Gill, 2002).

In terms of institutional costs, CIBC, the largest multinational network of 
biocontrol scientists, has a budget of US$ 1 million per year, and many of their 
projects are in developing countries and in Canada (Perkins and Garcia, 1999). 
Innundative biological control has also created new markets (Waage and Greathead, 
1988; Strong and Pemberton, 2000), and there axe new companies supplying agents 
(Perkins and Garcia, 1999)

2.3.2 Problem s and Risks of Biological Control
One of the problems of biological control is that the deliberate introduction of non- 
indigenous species is not free of environmental risks (Louda et al., 1997; Hoy, 2000; 
Simberloff and Stiling, 1996; Schaffner, 2001), the main concern is for the control 
agent host range stability (Pemberton, 2000), since there is increasing evidence that 
harm to non-target species is occurring (Pemberton, 2000; Louda et al., 2003a). The 
introduction of generalized predators can result in many non-target species being 
attacked by the control agent. For example, the introduction of the Indian mongoose 
(Herpestes auropunctatus) to the West Indies and other islands of the Pacific to 
control rats infesting agricultural fields, had damaging effects on native bird and 
reptile diversity (Simberloff and Stiling, 1996). The solution to this problem has been 
host-specificity tests of biocontrol agents. These tests try to ensure that the control
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agent has a sufficiently narrow host-range that it will not affect native non-target 
species. This concept has achieved such relevance that it is driving research and 
regulation of biocontrol programmes (Secord and Kareiva, 1996). In weed biocontrol, 
host-specificity is even considered the ’’holy grail” of biocontrol (McFadyen, 1998). 
However, it is clear that control agents also interact with competitors with other 
indirect effects (Secord and Kareiva, 1996), and there is a risk of host-shifts that 
are not considered when performing host-specificity tests. McEvoy and Coombs 
(1999) suggests that host range can be constrained based on physiological, genetical, 
ecological and behavioral properties of the control agents (Cory and Myers, 2000).

An example of the risks is the introduction of the Eurasian weevil Rhinocyllus 
conicus to control musk thistle in Canada and the United States. The weevil expanded 
its host range reducing some populations of native thistles (genus Crisium) and also 
lowering the density of native flies (Gutierrez et al., 1999; Louda et al., 1997, 2003a; 
Cory and Myers, 2000; Louda et al., 20036; Louda and O’Brien, 2002). Pre-release 
studies showed that the beetle Lema cyanella was limited to the Canada thistle, but 
open field studies showed that, even though other similar native species were rare, 
rarity does not guarantee that the beetle would not find and attack other non-target 
species (Cory and Myers, 2000). Another study reviewing the use of insects, fungi 
and nematodes established for biological control in Hawaii and United States, give 
evidence that many of these have expanded their host range, thus affecting native 
plants (Pemberton, 2000). Some of the possible explanations of host shifting of the 
Eurasian weevil range from the existence of increased ecological opportunities in the 
new area, genetic changes in host preference and availability of target and non-target 
hosts (Schaffner, 2001). Louda et al. (20036) provides a list of cases where non-target 
effects of biological control have been important.

Understanding the risks of biological control includes the prediction of 
establishment, geographical expansion (dispersal) and non-target effects (Hoy, 2000), 
and the knowledge of the control agent interaction with other species (Secord and 
Kareiva, 1996; Louda et al., 1997). In addition, evolutionary changes and spatial 
and temporal dynamics of biocontrol agents are important factors to consider when 
selecting agents (Thomas and Willis, 1998; Simberloff and Stiling, 1996)

Biocontrol practitioners have argued that all these non-target effects are the result 
of early biocontrol programmes, where some of the procedures were still under 
development. However, there are also very recent examples that show that even 
under strong regulation, non-target effects still occur often (Thomas and Willis, 
1998). Another reason, is related to the emergency situation in which most biocontrol 
programmes start, where there is not much time for detailed ecological analysis 
(Thomas and Willis, 1998).

In general biocontrol should be applied only when the target represents a serious 
problem, the potential problems of biocontrol are assessed and when the benefits and

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Sec. 2.4 Biological Control and Ecology 18

costs in economical and ecological dimensions are balanced (Strong, 1997). Thomas 
and Willis (1998) suggest that the risks of biocontrol programmes can be reduced by:

1. Evaluation before control. Quantifying the economical and ecological extent of 
pest damage. If the economical/ecological damage is estimated to be minimal, 
and the pest is restricted to small regions, use other methods of control

2. Improved non-target testing. Test a wider range of non-target organisms beyond 
economical and agricultural importance. Include behavioral, physiological and 
morphological constraints in host range tests.

3. Post-release studies. Use these to measure the effectiveness of biocontrol, and 
the rate and direction of spread of control agents.

4. Selection of initial control areas. Selecting priority areas with respect for 
geographical location, scale and state of the pest attack.

5. Changes in control policy. Biocontrol should not be the last resort, but an 
alternative to control pests.

Protocols for biocontrol introductions are not sufficient, to avoid problems, however, 
improved protocols could reduce some of the non target effects (Simberloff and Stiling,
1996).

2.4 Biological Control and Ecology
The theory of biological control contains elements of predator-prey systems and 
control theory (Berryman, 1999), but biocontrol has also strong linkages to biological 
invasions, since pests are invaders and the introduction of natural enemies is a process 
of invasion; and, because of the spatial nature of biological populations and the scale 
at which pests attack, some elements of landscape ecology. Here we review some 
examples and some important results in these areas.

2.4.1 Ecological Theory
Ecological theory has much to offer to biological control. However, since many 
biocontrol problems need quick solutions, many of the biological control programmes 
can not test or validate many ecological ideas (Gaugler et al., 1997). In any case, 
it is clear that ecological theory could solve many problems in biological control. 
Many of the formal ideas, now common practice in biocontrol, came from ecological 
theory. For example results of Nicholson-Bailey models and stability analysis of these
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kinds of models (Hassell, 2000; Hassell et al., 1991), establish under what conditions 
a low persistent host density can be obtained. All these contributions dealt mainly 
with density-dependent processes and the stability of host-natural enemy interactions. 
However other areas of important research, where ecology can contribute substantially 
to biological control come from: metapopulation dynamics, spatial aggregation, 
refugees and stage-structured models (Murdoch and Briggs, 1996). Other issues 
include spatial dynamics and biological invasions.

2.4.2 Biological Invasions
Biological invasion occurs when an alien species occupies a new geographic region 
(Shigesada and Kawasaki, 1997). The invasion process occurs when there is an 
unintentional or intentional introduction of a species, and occurs in several stages: 
arrival, establishment, spread and integration (Ehler, 1998). Biological control deals 
with intentional introductions, so it is evident that there is a strong link between 
biological control and biological invasions (Ehler, 1998; Shigesada and Kawasaki,
1997). Ehler (1998) argues that, although such a strong linkage exists, theory of 
biological invasions has not provided enough guidelines and generalizations about 
invasion processes are not useful. On the contrary, Fagan et al. (2002) note that 
general theory has much to contribute the the general understanding of the dynamics 
of invasion process. As an example they show how the calculation of rate of spread, of 
host and control agent, determines if the control agent will “catch-up” with the host, 
and be able to control the spread of the host. The authors believe that the areas of 
contact between both disciplines are the importance of spatial spread of both control 
and pest, long distance dispersal, structured population dynamics, detectability 
of invading species and stochasticity and complex dynamics under heterogenous 
environments.

Rates of spread represent a key concept in biological invasions (Fagan et al., 2002; 
Shigesada and Kawasaki, 1997). As discussed in the next section, spatial dynamics of 
host and control agent play an important role in the biocontrol dynamics. However, 
historically, biocontrol research has payed little attention to rates of spread (Fagan 
et al., 2002). Many of the unwanted effects of biological control come from the ability 
of the control agents to expand their geographic range from the new introduced region. 
For example, the Argentine caterpillar Cactoblastis cactorum that was introduced in 
the Caribbean for control, expanded to the continental United states in a matter of 
20 years (Strong and Pemberton, 2000). Probably, this would have been prevented if 
consideration of spread of the control had been considered.

Rates of spread are important, since in addition to trying to reduce host populations 
under biological control, we would also like to control the spread of the pest (i.e. a 
control agent that is capable of catching up with the spread of the pest) (Fagan et al.,
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2002). As an example of studies incorporating rate of spread for biocontrol, Grewal 
et al. (2 0 0 2 ) study the biological control of white grubs (Coleoptera: Scarabaeidae) 
using nematodes. White grub beetles cause damage in turfgrass, ornamental flowers 
and fruit trees in urban landscapes in North America. In their study they considered 
the ability of the control agent to reduce the spread of withe grubs. Their results 
suggest that using one of the native nematode species (Heterorhabditis bacteriophora 
) could delay and reduce the spread of the pest, enhancing biological control.

2.4.3 Spatial Considerations and Landscape Ecology
Habitat fragmentation is usually only considered in the context of conservation, 
but such heterogeneous spatial configurations also determine how effective biological 
control can be (Tscharntke and Kruess, 1999). Many of the studies that consider 
host-enemy interactions do not consider the spatial dimension and heterogeneity of 
the host and control agent distributions (Kareiva, 1990a). Although this simplifying 
assumption (spatial homogeneity) facilitates the study of such complex dynamic 
interactions, it omits important changes in the dynamics due to spatial configuration. 
For example, Kareiva (1990a, 1987) showed that the ability of a ladybug to control 
aphid prey is substantially reduced if the ladybug’s dispersal ability is hampered. 
Kareiva found that increasing patchiness caused local explosions of aphids leading 
to unstable dynamics. In general, the response to habitat fragmentation of host- 
enemy interactions will depend largely on the behavioral characteristics of both 
host and control agent (Kareiva, 1987). Understanding the spatial response of the 
biocontrol agent to variation in host density is crucial for biocontrol success (Kareiva, 
19906). With et al. (2002), in a recent study of ladybugs controlling aphids at a 
landscape scale, showed that landscape fragmentation affected the aggregation and 
searching ability of ladybugs, and that changes in the pest-enemy dynamics are 
related to fragmentation thresholds. Jonsen et al. (2001), showed that the ability 
of two Aphthona flea beetles to control leafy spurge is highly affected by matrix 
structure, hence, metapopulation dynamics is largely affected by landscape structure. 
Similar results exist for the host-parasitoid dynamics of the forest tent caterpillar, 
Malacosoma disstria in relation to forest cover (Roland and Taylor, 1997). Other 
studies like Rees and Hill (2001) on the biological control of gorse ( Ulex europaeus), 
show how broad scale disturbances that change the spatial configuration of infested 
areas (like fire used as control or herbicide application) are important on improving 
the effect of biological control agents.

On the theoretical front, for host-parasitoid systems, it has been shown that when 
space is incorporated explicitly (in coupled map lattices or cellular automata), a broad 
range of behaviors appear in the models (Hassell et al., 1991; Comins and Hassell, 
1987). These include global persistence of both species and a parameter space where
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host extinction is possible (under conditions of low host dispersal and high parasitoid 
dispersal). Using this type of model, White et al. (1996) found that increasing 
pathogen dispersal reduced host metapopulation levels and increased the period of 
host population fluctuations. Similar results were found by Kean and Barlow (2001) 
for the biological control of the weevil Sitona discoideus by the parasitoid Microctonus 
aethiopoides in a coupled map lattice model, and Bjornstad and Bascompte (2001) 
theoretically studying spatial correlations in host-parasitoid systems.
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Chapter 3

Population dynamics and control 
of Scentless Chamomile

3.1 Introduction
Invasive species have a major impact on habitat destruction, displacement of native 
species and invasion of agricultural lands (Myers and Bazely, 2003). Once invaders 
have established, often they need to be controlled or eliminated. Biological control, 
the control of pests by natural enemies, is one potential management strategy. The 
goal of biocontrol is to reduce host population growth and spatial spread over an 
ecologically long period (Murdoch and Briggs, 1996). The first step in invasion 
control is to understand aspects of the life cycle of the invader and how population 
changes over space and time. Hence, application of ecological theory and control 
theory (Berryman, 1999), as well as invasion theory (Fagan et al., 2002) is essential 
in designing successful control strategies.

Due to the complexity of ecological systems, predicting the outcome and success 
of a potential biocontrol strategy is difficult, therefore a modelling approach can be 
valuable. Matrix population models are a useful modelling approach for the control 
of highly seasonal hosts. These models are biologically realistic, and many of the 
parameter values are easy to obtain from empirical studies (Murdoch and Briggs, 
1996; Caswell, 2001). A matrix model summarizes the life cycle of the host in a series 
of transition coefficients that represent the probability of an individual growing from 
one life stage to the next, and then reproducing. The dominant eigenvalue of the 
matrix represents the net per capita population growth rate (frequently denoted A 
in mathematical literature, and r in ecological literature). With matrix models, it is 
possible to integrate the effect of management strategies directly into the life history 
stages of the invader (Thomson, 2005). Further, by analyzing the sensitivity of this 
eigenvalue to the different transition coefficients, it is possible to identify critical
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stage/age transitions that may be suitable targets for the application of biocontrol 
(Kean and Barlow, 2000).

In this chapter, demographic analysis is applied to scentless chamomile (Matricaria 
perforata), an annual, biennial or short lived perennial, introduced in western Canada 
(Douglas et al., 1991; McClay and De Clerck-Floate, 1999). Annual plants are 
represented by seeds that germinate and produce flowering plants the same year; 
biennial, by seeds that germinate and grow as rosettes (no flower stage) producing 
flowers the following year; and perennial, by plants (rosettes or annuals) that produce 
flowers for more than one year. Scentless chamomile has high seed production, an 
estimated 6300 seeds per lOg plant (Lutman, 2002), and a maximum of 1.8 million 
seed/m 2  for a single plant. It can spread rapidly to croplands and waste areas (Woo 
et al., 1991; McClay and De Clerck-Floate, 1999). This weed invades mostly annual 
crops, transition areas, field depressions and slough margins (Bowes et al., 1994; 
Hinz, 1999). Scentless chamomile has been reported to reduce yields of important 
agricultural crops (wheat) by 30% to 80% (Douglas et al., 1992, 1991; Milberg and 
Hallgren, 2004). Biological control of scentless chamomile has been attempted using 
a seed weevil (McClay and De Clerck-Floate, 1999), a gall midge (Hinz and Muller- 
Scharer, 2000; Hinz, 1998) and a fungi (Peng et al., 2005). Although the control 
agents have been successful in establishing populations, there is no evidence of their 
effectiveness in controlling scentless chamomile. However, biocontrol of scentless 
chamomile has been shown in greenhouse experiments to have some potential only 
using high densities of control agents and when s. chamomile is under high inter
specific competition (Hinz and Schroeder, 2003).

Some population modelling for scentless chamomile has been developed. Hinz 
(1999) used matrix population models to estimate population growth rate, and to 
calculate the elasticity matrix. Buckley et al. (2001) used an unstructured discrete 
time population model to study population dynamics and control. Both have 
estimated that a large reduction in fecundity (higher than 98%) would be necessary 
to control scentless chamomile populations. Peng et al. (2005) suggested that, when 
used alone, biocontrol could not control scentless chamomile and only the addition of 
chemical control could result in the control of scentless chamomile populations.

Using matrix models, I study the population dynamics of this weed in Alberta, 
Canada. By parameterizing the matrix model I address the invasive potential of 
scentless chamomile and how to control this weed.

3.2 M ethods
I set up a 3 year field study to estimate parameters for the transition matrix and 
calculate population growth of scentless chamomile.
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3.2.1 Field plots set-up and treatm ent application
In July 2003, 32 (4 rows, 8  columns) 2m by 2m plots were established in Vegreville, 
Alberta, Canada. Each plot was tilled to clear vegetation in a 25m by 30m area 
where scentless chamomile was not previously present. To create somewhat natural 
conditions and levels of competition of scentless chamomile, 1kg of Prairie Seeds’ 
Parkland Pasture Mix #2  was sown in the entire area. This mix contains 50% 
Fleet Meadow Bromegrass “Nutracoat”, 20% Glacier brand Orchardgrass, 10% Boreal 
Creeping Red Fescue, 5% Troy Kentucky Bluegrass and 15% Buffalo brand Timothy. 
In each plot, approximately 1000 scentless chamomile seeds were sown and the plot 
was raked to stimulate germination. All emerging scentless chamomile plants in an 
inner lm by lm subplot were counted as they emerged, and marked to avoid double 
counting. In late autumn, scentless chamomile flowering plants were counted, and all 
flowers were clipped. This ensured that only seeds from the seed bank and rosettes 
would remain available for germination or growth in the following year.

In spring 2004, newly emerging plants were counted and marked. At the end of the 
season, flowering chamomile plants were counted. The number of seeds per flowering 
head was estimated by counting a sub-sample of seeds from intact flower heads. In 
August 2004, flower clipping was applied as treatment to 16 randomly chosen plots (4 
per row). The treatments were applied to reduce fecundity (number of flower heads) 
to approximately 50%. Since the total number of flowers per plot was not known, 
the reduction was done by clipping all flowers in approximately 50% of the total plot 
area. The treatment was applied using a 2m by 2m frame with 10cm grid lines. This 
grid line configuration was chosen to facilitate flower cutting, without causing much 
disturbance. The frame was placed on top of each plot and in 13 of 25 cells of the 
grid, representing 53% of the area, all chamomile flowers were clipped and placed in 
bags. These chamomile flower heads were counted and used to estimate fecundity 
of that year. The following year (2005), in autumn, flowering chamomile plants and 
rosettes were counted, and the total number of flowering heads were counted. To test 
differences in fecundities between clipped and un-clipped treatments, a likelihood 
ratio test was used (Cameron and Trivedi, 1998)

3.2.2 Flower counting using digital images
In 16 of the 32 plots (where the flower cutting treatment was applied), the clipped 
flowers were counted manually for each plot. To estimate the number of flowers per 
plot in the remaining 16 plots, a 3.1 mega-pixel resolution picture (Figure 3.1) was 
taken with a Cannon Powershot G2 in each lx lm  inner plot. An RGB (red-green- 
blue bands) decompositions allowed for the identification of yellow flower heads in the 
green background in the picture. A red green difference was applied to enhance yellow
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Figure 3.1: 3.1 mega-pixel digital photograph of a scentless chamomile plot taken in 
August 2004. The 2 x2 m plot is shown clipped

and each digital image was contoured (a polygon drawn around yellow boundaries) to 
identify individual seed heads. The identification procedure is shown in Figure 3.4. 
Using the maximum likelihood estimator, the detection probability was calculated, 
calibrated with true counts from the clipped treatment, using the procedure described 
in Borchers et al. (2002). The detection probability is calculated by obtaining the 
maximum likelihood estimator of the likelihood function,

m /  __ \

LM  AT, n) =  J ]  (  )  P”‘( 1 -  P)K‘"’“ , (3.1)
i=  1 '  '

where Ni is the true counted number of flowers in plot i, Hi is the number of flo 
wers identified in the digital image, in the same plot, m = 16 is the number of plots 
sampled and p is the detection probability to be estimated.

3.2.3 Dispersal kernel
To estimate the dispersal ability of scentless chamomile, two healthy plants where 
transplanted from the Alberta Research Council (ARC) green house in Vegreville, to 
a hay field in July 2004. Each plant had 222 and 232 flowering heads with an average 
of 330 seeds/head. For each plant, 10cm diameter, 10cm deep, seed traps were placed 
in the North, East, South, West directions at 5m intervals from 0.5m to 20m from the
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Figure 3.2: Seed trap arrangement at different distances from a source plant. The 
source plant located at the center, had approximately 50,000 seeds. Seed traps were 
placed in all 4 directions. The seed traps were place in Vegreville, Alberta, Canada, 
and left from 2004 to 2005

source plant as shown in Table 3.1 and Figure 3.2. Seeds were collected the following 
year in late spring and manually counted. To summarize the dispersal ability of 
chamomile, all cardinal directions were summed and a piecewise linear interpolation 
was fit to the resultant seed densities.

3.2.4 M atrix m odel and parametrization
A matrix population model is defined as follows:

nt+i = An* (3.2)

where n t is a vector of the abundance of each life stage at time t, and A is a 
population projection matrix where entries atj represent transitions from stage j  to 
stage i (Caswell, 2001). With the transition matrix, it is possible to calculate the per 
capita population growth rate A, defined as the largest eigenvalue of A. Sensitivity of 
population growth A, to entries in the transition matrix can be analyzed by computing
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Table 3.1: Total number of seeds collected in seed traps from two plants in the four 
cardinal directions_________________________________________

Distance(m) Number of traps N S E W
0.5 1 6 18 7 5

1 1 6 24 3 1

5 2 1 1 1 0 0

1 0 4 1 2 0 0

15 8 1 0 0 0

2 0 16 0 0 0 0

the sensitivity matrix S,

S =
dX
da,v

and elasticity matrix E, defined as,

E
aVJ d \
X daij

(3.3)

(3.4)

Elasticities in this matrix can be interpreted as the relative contribution of life stage 
transitions to population growth. The elasticities can be calculated as (Caswell, 2001),

aij dX &ij V iW j

X daij X (v, w )’
(3.5)

where v, w are the right and left eigenvectors of A and (v,w) is the scalar product.
The year to year life cycle of scentless chamomile is described in Figure 3.3. The 

first node represents the seed bank stage. Seeds can germinate from early spring 
to late summer and produce flowering plants (stage 3) or over-wintering rosettes 
(stage 2). Flowering plants die, and rosettes produce flowering plants the next year 
(biennial). In matrix notation, Figure 3.3 can be written:

(3.6)

Parameter estimates of the transition matrix entries aij were obtained from field work 
and literature estimates as follows. In the 32 plots established, a cohort in an inner 
lm  by lm  plot was followed for 3 years. The first year (2003), all emerging scentless 
chamomile plants were counted, these plants were assumed to have germinated from 
the seed bank and not from additional sources (dispersal). At the end of the year 
all rosettes and flowering plants were counted and all flowering plants were clipped,

a n 0 O13

0-21 0 023
ozx 032 O33
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031

Figure 3.3: Life cycle graph of scentless chamomile. Node 1 represents the seed bank, 
node 2 rosettes and node 3 flowering plants. 0 ^ edges represent the transition from 
node j  to node i

Table 3.2: Transition matrix parameter estimation. S=seed bank, R=rosettes, 
F=flowering plants__________________________________________________

Transition Description Source
an 
0-21 
a3i 
a3  2  

O-13; a23, < 233

SB survival 
SB to R 
SB to F  
R to F 
F to SB,R, F

Hinz (1999)
Emerging R year 1
Emerging F year 1
Surviving R to F year 2
Field data. Proportional to Hinz (1999)

transition a3i was calculated from the number of flowering plants that year, and < 221 

from all scentless chamomile plants that had no flowers. The second year (2004), 
only surviving over-wintering rosettes remained. There were no new emerging plants. 
Transition a 3 2 was estimated from the number of rosettes that produced flowers at 
the end of the year. The number of flowering heads were counted in the clipped 
treatments (see section 3.2.2). The third year (2005) included rosettes and flowering 
plants, all flowering heads were removed and counted in September 2005. The total 
fecundity (ai3 + a 2 3 + a 33) was obtained from the flower counts and image data for 2004 
and from flower counts on 2005 (see Table 3.2). To differentiate between transitions 
fli3 )0 2 3 ,a 3 3  the number of seeds for each transition was estimated using the same 
transition probabilities of seeds going to the seed bank, rosettes or flowering plants, 
found by Hinz (1999).

Since the distribution of the population growth rate A is not known, 90 % confidence 
intervals (Cl) were calculated using 30,000 samples obtained by non-parametric 
bootstrapping. Bootstrapping was done by simulating of the number of new rosettes 
and flowering plants, starting with 1 0 0 0  seeds, sampling with replacement from a 
binomial distribution B(oy,iV), where â - is the transition probability from stage j  
to i, estimated from the data, and N  is the initial number of seeds in the interation.
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For each bootstrap sample, a projection matrix was estimated, and the population 
growth rate A and elasticity matrix were calculated. To analyze the robustness of 
the elasticity matrix, elasticity was calculated from the same bootstrapped samples 
used to calculate Cl for A, and the resulting matrices were summarized and counted 
based on the transitions that had elasticities higher than 2%. The procedure can 
be outlined as follows: 1 ) calculate the elasticity matrix, 2 ) replace elasticities higher 
than 2% with 1 and put 0 in the rest, 3) Count the resulting matrix structures (matrix 
structure refers to the positioning of 0  and 1  in the elasticity matrix)

The net reproductive rate Rq can be calculated using the method described in 
Chapter 4. For scentless chamomile, Ro is given by:

(a3 1 +  a2ia32)ai3
Ro — ------ :----------------1- a 32 ^ 2 3  +  0 3 3 , (3.7)

1  — an
Fecundity transitions are shown underlined.

3.3 Results

3.3.1 Param eter estim ation
Number of flowers for the cut and control treatments where both significantly over 
dispersed (Likelihood ratio test p < 0.0001), with a dispersion parameter, of the 
negative binomial distribution, of k = 0.48 for the clipped treatment and k = 0.38 for 
the unclipped, thus a negative binomial distribution was used to test for treatment 
differences. There was no significant differences between treatments on the number 
of flowering plants (Likelihood ratio test p = 0.283). Hence, the 53% reduction in 
fecundity had no effect on the number of flowering plants the following year. Because 
of this, all stage transitions were obtained from averages of all 32 plots. Using 
the estimated number of flowering heads, and the calculated detection probability 
p = 0.41, flower counts from the remaining 16 plots were estimated. Calibrating 
the image counts to manual counts resulted in an estimated correlation coefficient of 
r = 0.70 between counted flower heads and estimated flower heads (Figure 3.5).

3.3.2 M odel results
The estimated transitions parameters are shown in Table 3.3. In matrix form, Table 
3.3 can be written:

'0.08 0 {36376,1775}'
0.27 0 {517,25} (3.8)
0.04 0.45 {298,14}
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Table 3.3: Transition matrix parameter estimates for the scentless chamomile matrix 
model. Transition an  is taken from Hinz (1999)

Transition Mean Variance
an
a 2 i
«31
«32

« 1 3  +  « 2 3  +  a3 3  (year 1 ) 
« 1 3  +  0 2 3  +  0 3 3  (year 2 )

0.080
0.27
0.04
0.45
37192
1816

0 . 0 1 1  

0.0024 
0 . 0 2 0  

4,2 x 108  

4046

In the third column, {yearl,year2} indicates both fecundity estimates for year 1 
and year 2. The population growth rate from the matrix model was estimated to be 
A(l) =  303.46 with 90% Cl {275.93,331.86} for 2004 and A(2 ) =  19.37 with 90% Cl 
{14.97,24.89} for 2005. The computed elasticity matrices using equation (3.5):

'0.00041 0 1.57' '0.071 0 17.16'
E ( l)  = 0.016 0 0.25 ,E(2) = 2.32 0 2.36

1.55 0.26 96.35 14.83 4.69 58.56

The three highest elasticities are shown in bold face. Using the estimated parameters, 
for year 1 Ro = 6916.24 and for year 2 Rq = 337.51.

Results from the seed traps are shown on Table 3.1. The density of seeds trapped 
(in seeds/m2) are shown in Figure 3.6. The line in Figure 3.6, shows the piecewise 
linear interpolation applied to the seed density in all directions. Dispersal followed 
exponential decay, with no seeds being trapped at the 2 0 m seed trap.

3.4 Discussion
As shown by the high population growth rate A for both years, this plant has a high 
potential for becoming a weed. However, the large difference in A between year 1 
(2004) and 2 (2005), also suggest some susceptibility of scentless chamomile to local 
variations in climate and competition. Climatic data from Vegreville, suggests that 
there was a slight (30%) increase in 20 years standardized rainfall in 2005, triggering 
high germination and reduced fecundity in 2005. As seen in Figure 3.7, there is 
a small difference in growing degree days (GDD), the cumulative of difference of 
average daily temperature and baseline growth temperature of 5 degrees Celsius, 
between 2004 and 2005. The germination and flowering GDD, based on GDD for SC 
determination by Blackshaw and Harker (1997), was reached earlier in year 1 (2004). 
It has been suggested that growth of scentless chamomile is not greatly affected by
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Figure 3.4: Image profile along the middle horizontal section of the image shown in 
figure 3.5. (a) All RGB bands, (b)Difference between red and green band. The peaks 
show yellow, which indicates where the scentless chamomile flower heads are located
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(c) Correlation between true number of flowers per plot and 
number estimated from imaging analysis

Figure 3.5: (a) Section of the 2x2 plot, (b) Flower contoured using yellow recognition. 
The identified flowers have a purple contour, (c) Correlation (r =  0.70)
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Figure 3.6: Scentless chamomile seed density trapped at different distances from 
a source plant. All cardinal directions are summed. The line shows a linear 
interpolation curve

long term climatic conditions (Woo et al., 1991), this is consistent with our results. 
Differences in growth rates could be explained by inter and intra-specific competition. 
Year 1 was dominated by stinkweed (Thlaspi arvense) and year 2 and 3 dominated 
by absinth (Artemisia absinthium). Depending on the differing competitive ability 
of these 2  species, this could have had an important impact on survivorship of 
scentless chamomile. In addition to this, because of the high productivity of scentless 
chamomile in year 1 (approx. 12,000 seeds in 4m2), seedling density was higher at the 
beginning of year 2 , which could have triggered intraspecific competition and hence 
changes in survivorship and fecundity due to density dependent effects, not considered 
in the matrix model. Also, since no new SC plants emerged in 2004, as only flowering 
rosettes remained in the plots, which could have resulted in higher fecundities that 
year.

These elasticity results are consistent with those of Hinz (1999), indicating that 
flower to flower transition has the highest impact on population growth. The elasticity 
matrix from 30,000 bootstrapped matrices (Figure 3.8), shows that 99% of the 
matrices maintain transition 0 3 3  (flower to flower) as the entry with highest elasticity, 
which indicates the robustness of this result. However, looking at the net reproductive 
rate formula of scentless chamomile given by equation 3.7, it can be seen that flower 
to flower transition corresponds only to one reproductive pathway in the formula so 
even if this is reduced to less than 1 , there are other two pathways that can make
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Figure 3.7: Growing degree days from January to August, 2004 and 2005; Vegreville, 
Alberta, Canada. The horizontal lines show the GDD at which germination and 
flowering is expected based on Blackshaw and Harker (1997)

the population grow. As an example consider when an  is large and considering that 
Qii + 0 2 1 + 0 3 1  < 1 , the first term of the Ro becomes larger, suggesting that even if a3 3  is 
reduced to less than 1 , the population could still grow, because of other reproductive 
pathways. This suggests that only reducing fecundity may not be sufficient to reduce 
scentless chamomile populations. Suppose we could eliminate all seed heads in one 
year, by analyzing the Rq equation and looking at the life cycle (Figure 3.3), it can 
be seen that with enough seeds in the seed bank, scentless chamomile could reinvade 
in following years.

Our results show that a 53% reduction in fecundity had no measurable effect in 
densities the following year. Given this result, it seems that scentless chamomile is a 
difficult weed to control. Most likely a combined strategy with chemical, mechanical 
and biocontrol measures, would be most successful. The data also suggest that 
a theoretical approach to study Ro as shown here, and explored in detail in later 
chapters for scentless chamomile and other organisms, could be an complementary 
and important tool to study the control and management of invasive species.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Sec. 3.4 Discussion 42

Frequency

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Elasticity Structure

(a) Year 1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b) Year 2

Figure 3.8: Frequency of elasticity matrix structure for scentless chamomile, obtained 
from 30,000 bootstrapped samples. The dark squares in the matrices on the x-axis, 
indicate elasticities higher than 0.2. The matrix structure with the highest frequencies 
include the flower to flower transition as the most important
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Chapter 4

A new method for calculating net 
reproductive rate

4.1 Introduction
Matrix models are widely used for demographic analysis of age and stage structured 
population dynamics. Population dynamics of stage structured matrix models can be 
analyzed by calculating the population growth rate A, the dominant eigenvalue of the 
projection matrix, and the net reproductive rate Ro, the mean number of offspring 
per individual over its lifetime (Caswell, 2001). Here A =  1 if and only if R q =  1. 
The population grows when A or R q is greater than 1 and shrinks when A or Ro is 
less than 1.

One method for calculating the characteristic equation, and hence the population 
growth rate A, for a stage structured model, is directly from the graph representation 
of a matrix model, known as the life cycle graph. In this approach, a Z-transform is 
applied to the graph in order to use graph reduction rules and Mason’s formula to 
compute the characteristic equation and corresponding eigenvalues and eigenvectors 
(Werner and Caswell, 1977; Caswell, 1982a, 1984). Graph reduction is used to simplify 
matrix operations that can be tedious on large and complex matrices. Although these 
procedures have been well described for calculating A (e.g Caswell, 2001), no procedure 
has been developed using this technique to calculate R q.

In this paper we introduce a new method to calculate the net reproductive rate 
directly from the life cycle graph; as far as we are aware, no such method has been 
proposed before. We then show how this method can be applied, with some literature 
examples, to analyze the control of invading organisms.

46
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4.1.1 M atrix models and life cycle graphs
An age or stage structured matrix model is defined as nt+i = Ant, where nt is a 
vector of ages/stages at time t and A is a non negative irreducible matrix, describing 
transitions from one age/stage to another one (Caswell, 2001). Matrix models can be 
represented by a life cycle graph, where each age/stage is represented as a node in the 
graph, and transitions are arcs (directed edges) from node to node. More formally, for 
an n x n  transition matrix A = [ay], the associated graph Ga is a weighted, directed 
graph, whose nodes are V  = {1 ,... ,n}, such that if ay ^  0 in A, there is an arc 
from j  to i with weight ay in Ga, for i, j  =  1, . . . ,  n. As an example, the graph from 
figure 4.1(b) panel A has the projection matrix shown in figure 4.1(a). In a graph 
Ga a path is a sequence of arcs from one node to another. When the starting and 
ending nodes of a path are the same, the path is a loop (including a self loop at node 
i if an 7  ̂0). Two paths are disjoint when they have no nodes in common.

4.1.2 Population growth A and net reproductive rate Ro
For a non-negative primitive matrix A the Perron-Frobenius theorem ensures that 
there is a positive and simple dominant eigenvalue A (Horn and Johnson, 1985). This 
dominant eigenvalue, or population growth rate, can then be used as a parameter to 
establish the long-term growth rate of the system described by the matrix. For matrix 
A, when A < 1 the extinction steady state is stable, when A =  1 the population is
neutrally stable and when A > 1 the population grows (Caswell, 2001).

To calculate R q, the transition matrix is decomposed as A = T + F , where T = [ry] 
(with Tij G [0,1] and Y ljP j — 1) contains the survivorship transitions and F =  [/y] 
(with fij > 0) the fecundities. Each entry in T describes the probability of an 
individual in stage j  surviving to stage i in a single time step. Since individuals in 
a population eventually die, it is further assumed that p(T) < 1 (Li and Schneider, 
2002). Once the transition and fecundity matrix are given, A is uniquely determined. 
However, decomposition of A into transition and fecundity matrices is not unique. 
This decomposition allows for the calculation of the net reproductive rate, R q , defined 
mathematically as

Bo =  p(P(I -  T )-1), (4.1)

where I is the identity matrix and p denotes the spectral radius of the matrix
F(I — T)-1, referred to as the next generation matrix (Li and Schneider, 2002). If 
F(I — T)"1 is non-negative and primitive then Rq is the strictly positive dominant 
eigenvalue of the matrix. It has been shown (Cushing and Zhou, 1994; Li and 
Schneider, 2002) that when R q < 1, the extinction state is stable, when R q = 1, 
the extinction state is neutrally stable and when Ro > 1 the population grows. In 
other words, A > 1 R q > 1, where A is the dominant eigenvalue of matrix A.
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(b) Life cycle graph

Figure 4.1: A. A simple 2 node graph, B. The ^-transformed graph Ga (X),  C. Self loop 
of node 2 is eliminated using rule A of figure 4.2, D. Node 2 is eliminated using rule 
E of figure 4.2, E. Characteristic equation is calculated from equation (4.2) applied 
to the single-node graph given in D: 1 — L^  =  0, where l / 1) =
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4.2 Graph reduction of matrix models and net 
reproductive rate

We now introduce our new approach to calculating Ro directly from a graph, without 
the need for matrix calculations. First we review an establish graph-based method 
for the calculation of the characteristic polynomial for a matrix, and then we show, 
in the following section, the related procedure that can be used to calculate R q .

4.2.1 Established graph-based m ethod for calculating the  
characteristic polynomial

To compute the dominant eigenvalue A or any other eigenvalue from the graph Ga , 
Caswell’s formula (Caswell, 19826) for the characteristic equation of the ^-transformed 
graph, denoted Qa , can be used. A ^-transformed graph Qa {P) is defined as the 
graph obtained from replacing entries in Ga , with dij\ 1 (Caswell, 2001). Hence 
the characteristic equation, denoted P(Qa (A)) =  0, yields n possible values for 
A, the largest of which is the population growth rate A and the remaining n — 1 
values are additional smaller eigenvalues. The characteristic polynomial is defined as 
-P(£a(A)) =  det(AA_1 — I). If A =  1, then P(Qa(1)) =  det(A — I). The formula for 
the characteristic equation, due to Hubbell and Werner (1979) and Caswell (19826), 
is given by

* *
P(Ga (\))  =  1 -  £  Ip) _|_ ^ 2  -  ^ 2  +  . . .  =  0, (4.2)

i  i , j  i,j,k

where L® is the product of arc coefficients in the ith loop in the graph £a(A), and 
the asterisk indicates that the sum is taken over the product of pairs, triplets, and so 
forth. See Mason and Zimmermann (1960) and Chen (1976) for a detailed derivation 
of the formula and Caswell (2001) for applications to life cycle graphs.

By way of example consider the life cycle graph shown in figure 4.1. From the 
graph shown in figure 4.1A, there are two loops, iS ^  = 0 ,2 2 A-1 and — ai2 Q2 iA”2. 
Applying equation (4.2), we get P(Qa  (A)) =  1 — ( 0 2 2  A-1 +  0 2 1 ^ 1 2  A~2) =  0.

For a complicated life cycle graph calculation using equation (4.2) can be onerous. 
However, the same result can be obtained via graph reduction, a procedure that allows 
for the elimination of paths and nodes from a graph. Since a graph is a representation 
of a system of linear equations, graph reduction is equivalent to elimination of 
variables (nodes) by back-substitution. The application of graph reduction simplifies 
the calculation of equation (4.2). A graph can be reduced using the rules shown in 
figure 4.2. An important property of graph reduction is that the dynamic properties
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Figure 4.2: Mason equivalence rules for graph reduction (modified from Caswell, 
2001). A. Self loop elimination, B. parallel paths elimination, C,D and E. Elimination 
of node x-i

of the system remain invariant under graph reduction (Caswell, 2001), that is, the 
characteristic equation remains invariant (Chen, 1976; Lewis, 1977). As shown in 
figure 4.1, a graph can be reduced completely to one node to obtain the characteristic 
equation directly. From the previous example (figure 4.1), using graph reduction we 
obtain the same result (figure 4.IE).

4.2.2 Calculating R0 from the graph
As mentioned earlier, given a projection matrix, the net reproductive rate can 
be calculated using equation (4.1). To connect the calculation of R q with graph 
reduction methods we first observe that, for any irreducible and non-negative matrix
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A = T +  F, which can be decomposed into survivorship transitions T and fecundity 
F, as defined in Section 4.1.2, the basic reproductive rate can be rewritten implicitly 
as:

p(RoT +  F) = Ro, (4.3)

where p denotes the spectral radius. For detailed derivation of equation (4.3) see 
appendix A. Note that for a non-negative, primitive matrix, there is only one 
eigenvalue with modulus p, so this eigenvalue is called the dominant eigenvalue in 
demographic analysis (Li and Schneider, 2002).

Now, given equation (4.3), we can use the z-transform of the matrix B =  RqT +  F, 
to calculate using equation (4.2), the characteristic polynomial of B, P (G b (R o ) ) -  Note 
that G b (R o )  can be related to the graph of A, Ga, as follows: each entry a*,- =  % + /ij 
in Ga is replaced by h jR ^ 1 = (RoUj +  f ) R o1 =  Uj +  /-Rq1. In other words G b (R o )  
is found by multiplying the fecundity transitions in Ga by R ^1.

As we did previously, we can again apply Mason’s rules for graph reduction now 
to solve P (G b ( R o ) )  — 0 for Ro. According to equation (4.3), Rq is the dominant 
eigenvalue of B, and hence satisfies P (G b { R q ) )  =  0.

As an example consider a case where T and F are disjoint as shown in figure 4.3(a). 
Figure 4.3 shows the graph reduction procedure to obtain the characteristic equation 
for this example. Note that the rank of F is one and therefore the polynomial P (G b )  
is a polynomial of degree 1; hence there is only one possible value for Rq.

Suppose that Gb  is the graph obtained from applying Mason’s rules to Gb- We 
can always apply equation (4.2) to obtain P ( G b ) ,  and then solve for Ro, or  we can 
continue with reduction until there is one node left. In either case, Ro remains 
invariant, but the graph reduction method its easier to apply and the result yields a 
simplified equation.

While typical expressions for Ro are given explicitly, vegetative reproduction (or 
clonal reproduction) can lead to more complex reduced graphs, such as the one shown 
in figure 4.4. Note that all the fecundity transitions in figure 4.4A are multiplied by 
R q 1, that in the reduced graph (figure 4.4C) fecundity paths contain the term R q 1, 
and that these fecundity loops are not disjoint. To calculate Ro, we apply formula
(4.1) on the matrix corresponding to the remaining reduced graph to calculate Ro. 
This type of graph can occur when there is vegetative reproduction (see for example 
Dinnetz and Nilsson, 2002), and fecundity pathways in the life cycle graph that 
reproduce independently from other pathways.

In summary, given the matrix B = R q T  -I- F, and the corresponding graph G b,  the 
graph reduction algorithm to calculate Rq  can be applied as follows: 1) Eliminate 
survivorship self-loops from G b,  2) Reduce the graph until only nodes with fecundity 
self-loops are left, 3) If only one node is left, then eliminate the final node and the 
result will be Ro; otherwise solve the polynomial that comes from applying equation
(4.2) to the reduced graph.
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Figure 4.3: (a) An example of a transition and fecundity matrix, (b) Graph reduction 
procedure. A. The full transformed graph (with associated matrices (a)), B. 
Eliminating self-loop in node 1, C. Eliminating node 2, D. Eliminating node 1, E. 
Eliminating node 3 and solving for Rq
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Figure 4.4: Hypothetical life cycle graph with vegetative reproduction. This graph 
is the same as figure 4.3A, except an additional self loop is added in node 2. A. full 
graph, B. Elimination of self loop in node 1, C. Elimination of node 1, D. R q equation
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4.3 Applications

4.3.1 Scentless chamomile (M atricaria perforata)
Scentless chamomile is an introduced annual, biennial or short-lived perennial plant 
that has become a widely distributed weed in cultivated areas in North America (Hinz, 
1996; Hinz and McClay, 2000). In Hinz (1996), a stage-structure model is developed, 
and transition values are compared between different disturbance treatments (soil 
disturbance and herbivory). The full life cycle is shown in figure 4.3A. Hinz (1996) 
showed, using elasticity matrices, that in general, transition from rosettes to flowering 
plants 0 3 2  and fecundity transitions 0 2 3  and 0 3 3  contributed the most to population 
growth and would therefore be the most effective transitions to control. We calculate 
Ro by applying the graph reduction procedure (figure 4.3),

r, 3̂1013 +  ai3a21«32 . , A AsRo = ---------------   h ^3 2 ^ 2 3  +  O3 3  (4.4)1 — On

Examination of Ro gives additional insight. The fecundity transitions are 0 1 3 , 0 2 3 , 0 3 3 . 
Note that, if transition 0 3 3  is larger than one, Ro > 1 regardless of the contributions of 
other transitions, and population increase will occur. Similarly if the loop 0 3 2 0 1 2 3  > 1 
then the population will increase regardless of the other fecundity pathways. This 
is consistent with Hinz’s results (Hinz, 1996), which were based on parameter 
values, showed elasticity matrices where 0 , 3 3  is more important, and other treatments 
indicated that 0 3 2  and < 2 2 3 affect population growth the most. This suggests that any 
control strategy must focus on reducing fecundity below a critical level. However, 
this action alone would not ensure successful control. For example, as seed bank 
survival an  gets large, under the restriction that an + «2 i +  < 231 < 1, the term 
(1 — a n )-1 becomes large and the population will increase. Hinz (1996) found that
transitions 0 1 3 , < 231 and < 221 to be of minor importance. However, it can be seen from
the Ro equation that this situation would probably change as an  increases. With 
this example we have shown how the analysis of fecundity pathways using Rq can 
complement the design of effective control strategies.

4.3.2 N odding th istle ( Carduus nutans)
Shea and Kelly (1998) derived a matrix model to study the control of nodding thistle 
(Carduus nutans), a weed that causes economic damage to grazing lands in New 
Zealand. The authors described the life cycle of C. nutans by the graph in figure 
4.5A. They concluded using elasticity analysis that seed to seedling and small-plants 
to seeds transitions contribute the most to A (<721 and r i 2  in the graph). The numerical 
results indicate that seed losses of 69% are required to reduce the weed populations. 
A 30%-40% reduction in seed production has been unsuccessful in New Zealand, but
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successful in North America, which contradicts the numerical results and suggests 
regional differences. Their general conclusion was that, to control C. nutans, a large 
reduction in seed bank and suppression of germination is needed. For comparison, 
using graph reduction we obtained the 2 node graph in figure 4.5C, and further 
elimination yields:

921^12  +  021 <732^13 +  <721<742»"14 +  <732<743<72lt"l4
Rq — r 22 +  <742^24 +  <732 ̂ 23 +  <732 <743^24 + 1 — Sn

(4.5)

It is evident from Rq that if only survivorship <721 is reduced by control, but small 
plant fecundities (ri2  and 7*2 2 ) are not, then since r22 > 1 the system is unstable 
(.Ro > 1). As with the previous example, as Sn approaches 1, the term (1 — S n ) -1  
becomes large, driving Rq  above one. This is consistent with Shea and Kelly (1998), 
with <?2 i included in all pathways involving an , but it provides a more general result 
because we do not require numerical analysis to get to this result. Shea and Kelly
(1998) suggest that grazing could contribute substantially to thistle control. We 
extend the graph reduction procedure to calculate Ro to explore the combined effects 
of biocontrol and grazing. To simplify analysis further, we focus on the reproductive 
pathways, denoting P i , 2,...,n as a reproductive path that goes through nodes 1,2, . . . ,  n. 
Equation (4.5) can be rewritten as

P i ,2 +  P i , 2,3 +  P i , 2,4 +  P i ,  2,3,4 NRo = P 2 +  P 2,3 +  p2,4 +  P2,3,4 + (4.6)
1 — Sn ,

where P 2 =  r22,P2$ =  ^3 2 ^2 3 , P 2,4  =  ^4 2 ^ 4 ^ 2 ,3 , 4  =  g&g&ru, P i , 2  =  £2 1 ^1 2 , P i , 2 , 3  =
<721 <732^13, P i , 2,4 =  92l9A2'l'lA  a n d  P i , 2,3,4 =  <732<743<72lfl4-

Suppose a biocontrol agent is used to control fecundity of reproductive plants 
(transitions into node 1). The reduction in seed production is represented by scaling 
variable U \ .  The level of grazing, which reduces germination and affects transition <721 

, is represented by u2, where 0 < Ui < 1 is the proportional reduction in pathways. 
Note that all the fecundity paths go through node 2 or node 1. So, we can rewrite 
P* as the pathways of length k that start and end in node i. The Ro equation can 
thus be rewritten:

flo =  ( 1 +  ( 1 (4.7) 
+  1 - 3"  +

If Ui =  0, meaning no effort is applied to control germination (i.e. the only control of 
the path from node 1 to 2 is grazing), then we need a larger proportional reduction 
in grazing to control the system. Note that in this case control u2 is chosen based on 
the number of pathways where transition from 1, 2 is involved. This method confirms 
analytically the suggestion of Shea and Kelly (1998) that grazing could complement 
biological control.
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Figure 4.5: Nodding thistle life cycle graph as described by Shea and Kelly (1998). 
Node 1, seed bank; nodes 2, 3 and 4, small, medium, and large plants. Reproductive 
transitions are labelled coming out of three nodes (2,3,4). A. Full transformed 
graph, B. Elimination of node 1, C. Elimination of node 4 D. Resulting net 
reproductive rate.
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4.4 Conclusion
Because of their dynamical properties, A and Ro are demographic parameters by 
which optimization can be applied to design a control strategy for unwanted species. 
As we show here, with the new method given in this paper, it is straightforward to 
obtain an analytical formula for Rq  using graph reduction methods. The examples 
show that some analysis of the Ro equation can aid in biocontrol target selection 
and more generally in the design of control and conservation strategies. In some 
cases perturbations in the transition matrix that decrease Ro may increase A and vice 
versa (Caswell, 2001). Nonetheless since Rq < 1 implies A < 1, a control strategy 
that guarantees Ro < 1 for biocontrol, or Ro > 1 for conservation, can be useful in 
the first stages of planning and can be refined as more data are obtained. In this 
way, the use of Ro is a useful alternative to numerical analysis of A for designing a 
general control strategy framework that can be customized to accommodate different 
parameter values in different regions.

Appendix  

4.A Derivation of the Ro equation
Our goal is to show how to derive equation Rq = p(RoT +  F). The projection 
matrix A =  T +  F, can be decomposed into survivorship transitions T and fecundity 
F. The survivorship matrix contains the probability of stage transitions T =  [t^] 
with 0 < Tij < 1, p(T) < 1, and Y^jRj — 1- The fecundity matrix F has entries 
fij > 0. We know that (I — T)-1 is nonnegative, because T is nonnegative, p(T) < 1 
and lim/j^oo Tfc = 0 means (I — T)_1 = I +  T +  T2 +  . . .  is nonnegative. By 
definition F > 0. Hence F(I — T)-1 is also nonnegative. Let Ap be the eigenvalue of 
F(I — T )-1 with |Ap| =  Rq (equation 4.1). Since F(I — T)-1 is nonnegative, there is 
a nonnegative left eigenvector (Perron vector) uT corresponding to Ap that satisfies 
uTF(I -  T)"1 = ApuT. The eigenvalue Ap is real and positive, hence Ap =  Rq is the 
dominant eigenvalue of F(I — T)_1. Now, urF =  RqUt (1 — T) = RoUTl  — RoUTT. 
Therefore,

ut (F +  R0T) =  urF +  RqUt T = i?oUT (4.8)

The matrix A =  T  +  F is irreducible, hence Ga is strongly connected (see Horn 
and Johnson, 1985). Since Rq > 0, then the graph corresponding to RoT +  F  is 
also strongly connected, hence RoT +  F is irreducible. By Theorem 2.1b in Li and 
Schneider (2002), it follows that Ro is the unique dominant eigenvalue. From equation 
(4.8) we can write the formula for Rq as, Rq =  p ( R q T  + F). A similar argument to
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that used in this derivation is used by Li and Schneider (2002, Theorem 3.1) as part 
of the proof that Rq implies stability of a non-negative irreducible matrix.
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Chapter 5

Analysis of life cycle graph 
structure: R q and generation time

5.1 Introduction
One goal of controlling invading organisms is to reduce population growth. A useful 
way of achieving this is to identify aspects of the invader’s life history that can 
be targeted for control, using demographic analysis. Demographic analysis is the 
study of population growth as affected by the explicit life history of individuals. 
Demographic models follow the fate of organisms, in terms of growth, survival and 
reproduction; the life history is represented as stages and transition between stages 
(Wardle, 1998). Demographic analysis can be done using matrix population models, a 
mathematical formalism that allows for the calculation of intrinsic population growth 
rate A and the net reproductive rate R q. It also allows for analysis of survival, 
growth and reproduction contributions to population growth, a method known as 
elasticity analysis (Caswell, 2001). Elasticity analysis is often used in management 
and control, to determine the transitions in the matrix models that have the most 
effect on population growth rate A (Benton and Grant, 1999). In principle, any 
disturbance will ultimately have consequences in life history pathways (De Kroon 
et al., 2000). Hence analysis of these transitions is crucial to understand consequences 
of management and control.

The net reproductive rate R q can be calculated for matrix models. The net 
reproductive rate is the mean number of individuals that one individual will produce 
over its lifetime (Caswell, 2001). In that sense, R q is the per generation rate of 
increase. Both intrinsic growth rate and net reproductive rate determine if the 
population will increase or decrease over time (Cushing and Zhou, 1994). As shown 
in Chapter 4 A > 1 if and only if Rq > 1 (Cushing and Zhou, 1994; Li and Schneider, 
2002). Therefore, if complete control is desired (eradication of the invader), control
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strategies have to be designed that guarantee that A or Rq  will be less than one. In 
this chapter I propose the use of the net reproductive rate Ro to complement elasticity 
analysis for biocontrol. I use the method proposed on Chapter 4 to derive the Rq  
equation of several literature examples. I later show how Rq  can be used to study the 
control of invading organisms.

Since, Ro describes generation increments in population, it can be related to the 
population growth rate A via the mean generation time (Myers and Bazely, 2003). 
There are several methods for age classified matrices that calculate generation time 
as: the time it takes for the population to increase by Ro individuals, the mean age 
of the parents of the offspring produced over a cohort lifetime, and the mean age of 
the parents of the offspring produced by a stable age structure (Caswell, 2001). For 
stage-classified models, methods are not as direct. The generation time is calculated 
by relating the stage-classified model with an age-structured one (Cochran and Ellner, 
1992; Lebreton, 2005; Houllier and Lebreton, 1986). These methods are not easy to 
apply and are restricted to certain matrix structures. In this chapter I also derive 
a new generation time estimate based on the analytic Ro formula, and show with 
examples how it can be applied.

I believe the method of life cycle analysis, using Ro and the calculation of generation 
time presented here, have implications for the management and control of invasive 
species.

5.2 Life cycle graphs

5.2.1 Defining the life cycle graph
The life cycle graph is a graphical representation of the life cycle of an organism. As 
described in Caswell (2001), the life cycle graph is constructed as follows:

1. Define a set of states that describe life stages of the organism.

2. Define the projection interval between stages.

3. For each stage, define a node. This node represents a stage in the life cycle 
graph.

4. Connect one node to another with an arc only if there is a contribution from 
that node to the next one within a single projection interval.

More formally, a life cycle graph, denoted Ga , is a directed weighted graph whose 
nodes V  = {1, . . . ,  n} are connected with directed edges E  = {a^} for i , j  =  1 , . . . ,  n; 
that represent the projection a*j from node j  to node i. An example of a simple two
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a n  «12 
«21  «22

Figure 5.1: A 2 node life cycle graph and its associated projection matrix.

stage life cycle graph is shown in Figure 5.1. The life cycle graph is isomorphic to the 
projection matrix in matrix population models (Caswell, 2001). The relation of the 
graph Ga  to the associated matrix A is as follows. First define an age/stage matrix 
model as:

n t+1 =  A nt, (5.1)

where n t is a vector of ages/stages at time t and A is a non-negative irreducible 
matrix whose entries describe transitions from age/stage j  to i. For an n x n 
projection matrix A =  [a^], the associated graph Ga  is a graph that has n nodes, 
such that if ^  0 in A, there is a directed edge from j  to i with weight in Ga, 
for i , j  — 1, . . . ,  n. A projection matrix and the associated life cycle graph is shown 
in Figure 5.1.

5.2.2 Classes o f life cycle graphs
In general matrix models have been classified as age or stage structured matrix models 
(Caswell, 2001). The distinction is made in the method of classification of states in 
the matrix. In age classified matrices, each node in the graph represents an age in 
the life cycle of the organism, and in stage matrix models, each node in the graph is 
a particular behavioural or physiological state or mode.

Leslie matrices are the standard matrix for age-classified populations. In a Leslie 
matrix the population is divided in age categories and the width of the age class is 
the same as the projection interval (Cushing, 1998). A Leslie projection matrix has
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(a) Leslie matrix life cycle graph.

f i n

h ‘2 3̂3 hn
(b) Usher matrix life cycle graph.

Figure 5.2: Generalized Leslie and Usher graphs, 

the following matrix structure:

f u f l 2  • f i n —1 f i n
h i 0 • 0 0

A  = 0 h 2  ' 0 0

0 0 • tn n —1 0

Here /y  are fecundity transitions and ty are survival transitions. The associated life 
cycle graph is shown in Figure 5.2(a). Leslie matrices are widely used in ecology 
because of their relation to life table methods and particularly the calculation of 
generation time (Lebreton, 2005; Cochran and Ellner, 1992).

Another matrix known as the Usher matrix or the standard size classified matrix, 
is a size classified matrix similar in structure to the Leslie matrix (Cushing, 1998). 
The difference is that size classes can stay in the class for a period of time before
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moving to the next size class. The matrix is given by,

fu /l2 • fin—1 fin
h i h2 ■ 0 0

A = 0 h2 • 0 0

0 0 • hn—1 hn

(5.3)

Note that the diagonal now has ta entries that allow “stasis” , the continuation in 
a stage for more than one time step. The associated graph is shown in Figure 5.2. 
Because of the stasis arising from tu terms, the stage of an individual is not related to 
age (Lebreton, 2005). The Usher matrix is a special form of a stage-structure matrix 
where stage is size.

General stage-structure models are more complicated, since stages are defined 
based on biological states (Caswell, 2001). Matrices for these general stage-structured 
models are known as Lefkovitch matrices (Silvertown et al., 1993), as they were 
first introduced by Lefkovitch (1965). Since classes are determined by biological or 
physiological stages, the matrix can have any entry nonzero, making analysis more 
complicated, compared to Leslie or Usher matrices (Lebreton, 2005). An example of 
a stage-structure matrix is shown in Figure 5.4, earlier with the scentless chamomile 
model and later with literature examples. Stage transitions in these matrices are 
usually referred to as growth, when an individual in one stage projects to a new stage; 
stasis, when an individual stays in the same stage; retrogression, when an individual 
moves to a stage that it had at a previous time step; fission, when an individual splits 
into two stages; and reproduction when the individual reproduces (Silvertown et al., 
1993; Cochran and Ellner, 1992). Stage-structure models have been widely used for 
invasive plants because in most cases age is not a good indicator of plant demography 
and different modes of reproduction are easily incorporated as stage classes.

In Usher and Leslie matrices, all pathways (life history pathways) go through the 
same initial stage (e.g. eggs, newborns, seeds). Looking at Figure 5.2(a) and (b), 
it can be seen that all pathways that involve fecundities return to node 1 through 
transitions fu  for i = 1, . . . ,  n. In a stage-structured model, depending on the stage 
classification method, any node could potentially be an initial node, and having more 
than one initial node is also possible.

5.2.3 Weed life cycle graphs
Exploring life cycle structures for stage-classified invasive species can provide 
information on life history traits and invasibility. Life history traits that make plant 
species more invasive have been the subject of several studies (e.g. Brock et al., 
2005; Mcintyre et al., 2005; Muth and Pigliucci, 2006). Some of the traits that have
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been suggested for making a plant more invasive are short juvenile stages, small seed 
mass and large seed production (Rejmanek and Richardson, 1996; Grotkopp et al., 
2002; Hamilton et al., 2005; Sakai et al., 2001). All these traits suggest “r-selective” 
species (Sakai et al., 2001; Rejmanek and Richardson, 1996), and species that can 
shift between r- and K- selected strategies (Sakai et al., 2001). These traits affect 
parameters in the life cycle graph as opposed to the actual structure of the graph. 
On the other hand, the length of the life cycle in weeds also seems to favour annual 
and biennial life cycles as opposed to perennial (Mcintyre et al., 2005; Sutherland, 
2004). These traits affect the structure of the life cycle graph. Additionally, modes 
of reproduction (vegetative and seed reproduction), also affect the structure of the 
graph and may have different advantages in different stages of the invasion process 
(e.g. Lloret et al., 2005).

In summary, in Lefkovitch graphs, as opposed to Leslie and Usher graphs, fecundity 
pathways do not necessarily go through the same initial stage, and there are many 
possible pathways to represent different reproduction modes.

5.3 Life cycle graph analysis
Before I introduce life cycle analysis some definitions are needed. A pathway 
ai2ilai3i2 . . .  aitik is a sequence of transitions that start in node i\ and end in node 
i[. The length of a pathway is measured by the number of transitions involved in the 
product (for example 0 2 1 ^ 1 2  has length 2). A loop is a pathway of any length that 
starts and ends at the same node. A self-loop an is defined as a path of length 1 
that starts and ends at the same node i. A fecundity pathway is a loop of any length 
where there is only one fecundity transition involved. In this chapter I define life cycle 
analysis as the analysis of the Rq formula, obtained from a graph using the method 
described in Chapter 4, using pathways in the life cycle graph.

To simplify notation, a pathway a y y ay y . . .  aikik_1 that goes through nodes 
i\i *2 ) • • • j ik—Xi iki will be denoted Pi1,i2,...,ik_1,ik- Mortality terms (1 — an) will be 
denoted ra*.

5.3.1 Ro formula and the life cycle graph
As mentioned earlier, a life cycle graph Ga can be written in matrix form A. The 
matrix A can be decomposed in a survivorship matrix T (transition matrix), whose 
elements are transition probabilities, and a fecundity matrix F (fecundity matrix) 
that contains fertility values, such that A = T + F. For T =  fry] with 0 < 7y < 1, 
P(T) < 1, and J2 jrij — 1) and F has entries /y  > 0, the net reproductive rate Rq
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can then be calculated using (Li and Schneider, 2002),

f l o ^ a - T r ' F ) .  (5.4)

As an alternative, the Ro formula can also be calculated directly from the graph, 
using graph reduction methods on the transformed graph A =  T  +  Fi?o1 • The basic 
procedure is as follows:

1. Multiply all fecundity transitions in the graph by Rq1.

2. Eliminate survivorship self-loops.

3. Reduce the graph using the graph reduction rules defined in Chapter 4, until 
only nodes with fecundity self-loops are left.

4. If only one node is left, then eliminate the final node and the result will be Ro.

5. If more that one node is left, then apply the formula Ro = p((I — T )-1F) on 
the matrix corresponding to the remaining reduced graph to calculate Ro-

The resulting formula corresponds to the Ro equation, which can be used to analyze 
the life cycle graph. The analysis is performed on the derived Ro formula obtained 
from the graph. To illustrate the process, first I show how Ro is calculated for 
Leslie and Usher matrices, and then we analyze life cycle graphs for several literature 
examples. Additional examples for scentless chamomile and thistle can be found in 
Chapter 4.

5.3.2 Ro formula for classes of the life cycle graph
Cushing and Zhou (1994) have derived explicit Rq formulae for Leslie and Usher 
matrices (Figure 5.3(b)). An explicit equation is easy to obtain because all fecundity 
pathways go to a newborn age. For the Leslie matrix,

m  i

fl« =  E / « I I (ifa-i)- <5'5)
i= 1 j=1

The general reduced Usher life cycle graph is shown in Figure 5.3(c). For Usher 
matrices,

m  ^ 4-

^ “ E / u I I r z T - -  (5-6)i=i j= i 1 zi i

The Leslie graph is obtained when tjj = 0. It can be seen in the resulting
Ro equation, that for Leslie and Usher matrices there are a sequence of fecundity
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(b) Usher matrix life cycle.
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Figure 5.3: Generalized transformed Leslie and Usher matrices.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Sec. 5.3 Life cycle graph analysis 69

pathways from early reproduction (the first age of reproduction) to the last 
reproduction.

For general stage-classified graphs, a general formula is hard to obtain, because 
the life cycle depends on the method of stage classification. However, the graph 
reduction method Ro  allows for a quick method to calculate Rq. Using examples, 
I will highlight some common features found in stage-structures models that are 
applicable to population control, obtained by analyzing the Ro formula.

In the examples selected, the authors used traditional analysis based on their 
transition parameter estimates and the estimated A and corresponding elasticity 
analysis. The analysis I perform in the examples uses the analytical Ro formula, 
without the need for parameter values. The analysis of life cycle graphs is a new 
approach proposed in this thesis, not used before in matrix population analysis.

Fecundity pathways and stasis: Tansy ragwort (Senecio jacobaea)

Consider the life cycle of ragwort (Senec io  jacobaea)  a biennial or short lived perennial 
weed under successful biocontrol in some parts of North America, due to the use of 
multiple control strategies (McEvoy and Coombs, 1999). McEvoy and Coombs (1999) 
analyze the control of ragwort looking at the effect of two biocontrol agents, flea beetle 
and cinnabar moth, and plant competition. The flea beetle larvae and adults feed 
on leaves and stems reducing survivorship. The cinnabar moth, whose larvae affects 
flowering plants, reduces fecundity (McEvoy et al., 1991). Here I use life cycle analysis 
to study ragwort control. The full life cycle graph is shown in Figure 5.4. The life 
cycle shows the iteroparus (more than one reproduction) life cycle. Node 1 represent 
dormant seeds, node 2 and 3 juvenile stages and node 4 the mature stage. The 
resulting Rq  formula is:

Ro =
021014

 ----------b &24
1 -  an

a32a43 _ j _  a42 (5.7)
. ( 1  “  <J33)(1 “  O4 4 ) ( 1  -  <J44). '

McEvoy and Coombs (1999) consider 0 2 4  as the only fecundity transition. However, 
upon inspection of the graph, the dormant stage (node 1 ) are seeds produced by 
an adult plant, hence, transition 0 1 4  is also here considered a fecundity transition. 
Although this has no implications for the calculation of A, it yields different Ro- The 
rest of the transitions are all survivorship. Using the simplified notation and after 
some algebra Ro becomes:

# 0 =  Pl’2’3’4 +  3 m . +  fh h L  + (5 .8 )
771177137714 7713/714 77717774 7774

The biennial pathway is represented by path P2 ,4 > perennial ^ 2 ,3 ,4 , iteroparity Pi and
dormancy Pi,2 ,4 - Note that all of the pathways are fecundity pathways, pathways
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(a) Ragwort life cycle

° 2 1 a 14

<*32043 +  <*42

( 1  — O S 3 ) ( l  ~  <*44) ( 1  ~  <*44)

(b) Reduced life cycle

Figure 5.4: Ragwort (Senecio jacobaea) life cycle as described in McEvoy and Coombs
(1999). Node l=dormant seeds, node 2=juvenile 1, node 3=juvenile 2, node 4=adult 
plants.
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that involve one fecundity transition. In McEvoy and Coombs (1999) only the case 
where there is no dormancy (a2i =  0 ) and no iteroparity (CI4 4  =  0 ) is considered, i.e. 
reducing disturbance to remove dormant seeds from germination and facilitate adult 
survivorship, so equation (5.8) simplifies to:

R o = ^ M  + P  (5.9)
m3

Since Ro < 1 implies that population will decrease, an effective control strategy 
is to involve all pathways in the control of this weed. All three control strategies 
(flea beetle, cinnabar moth and plant competition) affect both terms of equation 5.9. 
The cinnabar moth only affects a 2 4 . The flea beetle affects all transitions including 
m3. Note that when m 3  approaches 1, the impact of the first term on Ro becomes 
large. Plant competition affect survivorship of first year juveniles (a32, <2 4 2 ). Although 
some consideration of interaction between strategies is needed when involving multiple 
control methods, from the Rq formula it seems reasonable to control both pathways. 
Additionally, control to reduce m3  could have a large impact on reducing Ro. Large 
values of m 3  (high survival of second year juvenile) could trigger a re-invasion in 
following years. McEvoy and Coombs (1999) suggest selecting the flea beetle over 
the cinnabar moth, since it affects more pathways, and promote plant competition to 
disrupt the transitions from node 2 to 3 and 4.

McEvoy and Coombs (1999) focus on elasticity analysis (loop analysis) to 
investigate the effectiveness of control of ragwort. I have shown how analysis of R q can 
yield similar conclusions. In this example several reproduction modes (semelparity 
and iteroparity) axe included in the life cycle graph. The pathways are clear in the Ro 
formula. The success of control is because of the focus on multiple pathways. These 
pathways can be identified in the Ro formula as well.

Time of reproduction: Bullfrog (Rana catesbeiana)

Bullfrogs (Rana catesbeiana) are raised in farms for the use of their legs in gourmet 
markets (Govindaxajulu et al., 2005). Because of escapes, these frogs have invaded 
many regions in different parts of the world, affecting native fauna (Govindarajulu 
et al., 2005). Aquatic bullfrogs feed on invertebrates and other amphibians and 
vertebrates, and have been suspected of being the main cause of other amphibian 
population decline (Kiesecker and Blaustein, 1997; Kiesecker et al., 2001).

In Govindaxajulu et al. (2005) a matrix model for the bullfrog is developed to 
study population growth and the effect of early metamorphosis in population growth. 
In general, amphibian population growth rate is more sensitive to post-metamorphic 
survival than tadpole survival (Govindarajulu et al., 2005). The life cycle graph is 
shown in Figure 5.5. Node 1 represents eggs, node 2 and 3 first and second year
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(a) Bullfrog life cycle.
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(b) Reduced life cycle.

Figure 5.5: Life cycle of the bullfrog (Rana catesbeiana). Node l=eggs, node 2 and 
3=first and second year tadpoles, node 4=metamorphic juveniles and node 5=adults.

tadpoles, node 4 metamorphic juveniles and node 5 adults. There are two possible 
pathways, a “fast track” where first year tadpoles change into juveniles without 
going into a second year tadpole stage, and a “slow track” that takes an extra time 
interval going into the second year tadpoles before metamorphosis occurs. After graph 
reduction and using pathway notation, the R q equation,

R q =  Pi, 2 ,4,5 +  Pi, 2 ,3 ,4,5- (5.10)
The “fast track” pathway, is given by Pi,2 ,4 , 5  and the “slow track” by Pi,2 ,3 ,4 ,5 - A 
full reproductive cycle can be completed in only 4 years (the length of pathway 
Pi,2 ,4 ,5 )- Using A estimates and elasticity analysis, the authors found that early 
metamorphic tadpoles (node 2) had the highest elasticities and therefore would be 
a good target for biological control. From the Rq equation, it can be seen that 
since node 3 can be “skipped”, the control of early tadpoles or juvenile-adults would 
be better. Because of other factors affecting survival of juveniles and adults, the 
conclusion that metamorphic juveniles could be the best target for control is clear 
from the R q equation, without necessarily obtaining parameter estimates.

The bullfrog example, shows how time of reproduction is included in the life cycle 
graph, and the effects on the R q equation. The “fast track” and “slow track” are 
evident in the R q equation. Possible control strategies can be studied using the R q 

formula.
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Common survival transitions: Common teasel (Dipsacus sylvestris)

Teasel is a herbaceous perennial plant introduced from Europe and restricted to 
disturbed habitats (Werner and Caswell, 1977). Teasel is not a serious problem in 
agriculture; however it usually invades disturbed areas where it can be a nuisance 
(Werner, 1975). The matrix model for teasel was derived by Werner and Caswell 
(1977) and Caswell and Werner (1978), and later modified by Caswell (2001). The 
full model is shown in Figure 5.6A. Caswell (2001) shows using elasticity analysis 
on data from Werner and Caswell (1977), that flowering plants-medium rosettes- 
large rosettes-flowering plants (a ^a ^a ^  in the graph), contribute 73% to A and the 
pathway flowering plant-seeds-large rosettes (fli6 «5 i) adds another 13% to population 
growth.

The reduced graph with only two nodes is shown in Figure 5.6B and the Ro obtained 
by eliminating all nodes is shown in Figure 5.6C. Using the same notation introduced 
for the previous example of nodding thistle, Ro can be rewritten,

Ry r „  I 'P 5 ’6 I ^ 4’5’6 +  ^ 3 ’4 ’5’6 I W , 5,6 + P i , 3,4,5,6 / g  ^
m3 m4m5 rnzm^rn^

From this, it can be seen that nodes 4, 5 and 6 are involved in all the reproductive 
paths. This suggests that, in addition to targeting fecundity transitions, effective 
control could be used in those transitions affecting paths from 5 to 6 and 4 to 6. In 
this life cycle, stasis (self loops at a given node) becomes critical (as evident in all 
the 1/(1 — an) terms). If any of these survivorship transitions are high (approach 1), 
then Ro grows quickly, making this system harder to control. From this example it 
can be seen that studying Ro is consistent with numerical analysis of A, but it allows 
for a more general analytical investigation of the possibilities of control. In Caswell 
(2001, example 4.1), it is shown that a flawed life cycle graph for teasel derived in 
Werner and Caswell (1977), a graph that has an extra dormant seed stage (extra node 
in the graph), yields the same numerical value for R q compared to the corrected one 
(presented in Caswell, 2001), but very different values for A. However, although R q 

is the same, generation time is longer in the flawed graph, hence an individual would 
replace itself faster in the corrected graph, resulting also in a higher A (as shown also 
in Caswell (2001)).

Finding the best strategy or transition to control in this example, involves finding 
a common transition that is shared in all pathways in R q .

Vegetative reproduction: Cat’s ear (Hypochaeris radicata)

When vegetative reproduction is present, life cycle graph analysis becomes more 
challenging. The graph cannot be reduced completely because there are more than 
one self-loop containing the term R q 1. However, inspection of the reduced graph
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Figure 5.6: Common teasel life cycle graph as described by Caswell (2001). Node 1 
and 2 represent dormant seeds; 3, 4, 5 rosettes and node 6 large flowering rosettes. 
A) Full graph, B) Reduced graph, C) R q .
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without explicitly calculating R q reveals some vital information. As an example, 
consider the life cycle of Hypochaeris radicata, a short-lived perennial herb that grows 
on grasslands and wetlands in Europe (Pico et al., 2004; De Kroon et al., 1987). As 
described in De Kroon et al. (2000) in Figure 5.7(a), the life cycle of this herb contains 
juvenile plants (node 1) that grow and produce mature plants (node 3). Mature plants 
can then reproduce vegetatively, producing a side ramification (rosette node 2), or 
sexually to produce more juvenile plants. In matrix notation,

'  0 0 0  ' 0 <212 (213
T  = 0 0 0 , F  = 0 (222 (223

<231 <232 <233 0 0 0

Using the graph reduction method on the transformed graph, the reduced graph 
shows the four possible reproductive pathways (Figure 5.7(b)). As shown in Figure 
5.7(c), nodes 1 and 2 contain reproductive self loops. Suppose that, under control, 
we can eliminate all mature plants. It can be seen from the remaining node 2, that 
this herb would persist since node 2 has a vegetative reproductive loop.

If one individual is introduced in node 1 (juvenile), then both fecundity pathways 
are of length 2, meaning that it would take two time intervals for reproduction to 
occur. On the other hand, if an individual is introduced in node 2, reproduction 
can occur immediately in one time interval (vegetative reproduction), or in two (also 
vegetative but maturing).

To calculate Ro, we remove R q1 from the graph (Figure 5.7(b)), and calculate Ro 
using the associated decomposed matrix of the remaining graph:

Consequently, using equation (5.4), the net reproductive rate is calculated as Ro = 
p(F'(l — 0)-1 =  p(F'). It can be seen from the reduced graph that different modes of 
reproduction have also an effect on Ro- For this herb, spatial and temporal variation 
have consequences on parameter values and therefore consequences on population 
growth (Jongejans and De Kroon, 2005). Hence, parameter estimates are valid only 
for the region where data were collected. By looking at the Ro equation, it is possible 
to derive general conclusions that do not depend on parameter estimates.

Modes of reproduction make the life cycle graph more complex. However, the 
reduced life cycle graph seems to provide useful information even when the Ro 
equation is not solved explicitly. Distinct reproductive modes appear as disjoint 
loops in the graph.

5.3.3 Properties of the Ro equation
After reviewing the examples, some general properties of the R q formula are evident:

(5.13)
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(c) Two disjoint loops are highlighted.

Figure 5.7: Life cycle of Hypochaeris radicata as described in (De Kroon et al., 2000). 
Node l=juvenile, node 2=side rosette, node 3= mature plant, (a) Full life cycle, (b) 
Reduced life cycle, (c) Disjoint reproductive pathways are highlighted.
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1. The Rq formula comes from a polynomial of Rq1, therefore all terms in the 
formula represent fecundity pathways.

2. If the population has a stable stage distribution, the path length is the time it 
takes for reproduction to occur in that pathway. This will be explored in the 
next section.

3. The number of modes of reproduction is equal to the number of disjoint 
fecundity pathways and hence the order of the polynomial of Ro-

4. Survivorship self loops can have a large impact on fecundity pathways. As 
they get large, the contribution of the pathways grows large.

5. Some possible control strategies: a) find a control mechanism that controls all 
pathways, b) target transitions that occur in the most number of pathways, c) 
target the pathways that potentially can contribute the most to Ro.

5.4 Generation tim e and tim e of first reproduction
Since the net reproductive rate defines growth per generation, generation time is also 
an essential quantity that should be calculated along with R q. Generation time is the 
time that it takes the population to increase by a factor of R q. There are several ways 
of calculating generation time (Caswell, 2001). The simplest calculation is given by:

^ = log#o ^ 5 1 4 ^

log A

One of the advantages of looking at the explicit graph of a species is that, as seen 
in the teasel example in Caswell (2001, example 4.1), a different structure in the life 
cycle graph may have the same Ro but different generation time and A.

One of the advantages of looking at the explicit R q is that it provides us 
with information about time of first reproduction just by inspecting the pathways. 
Consider again the teasel example presented here. If we start with a stable stage 
distribution, the time of first reproduction is 2 time intervals, since the shortest 
fecundity pathways are P^e and -— Psfi, I will call this the time of first reproduction. 
Similarly, the time of the last reproduction is the longest fecundity pathway, in the 
teasel example m3 T̂4 Tn,5 -Pi,2 ,3 ,4 ,5 ,6 - These reproduction times can have implications for 
control, since short pathways may have large contributions to Ro, hence might be a 
good target for control.

In stage-structured models, the calculation of generation time is difficult, since 
stage is not related to age and individuals can stay in a stage for a long period 
of time (Cochran and Ellner, 1992; Lebreton, 2005). To explore generation time
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Figure 5.8: Scentless chamomile life cycle.

in a stage-structure model using Ro, the time that it takes to go through each 
pathway has to be included in the Rq formula. Associate the weight r n with 
a path j P i j . i a , . t h a t  take n steps to complete. For a self loop, in a pathway 
m~l =  (1 — a^r)-1 = 1 +  a^r +  a | r 2 +  ... , where the expansion indicates that a 
self loop can be visited 1 ,2 , . . . ,  oo times in a pathway. Summing all the fecundity 
loops that have weight n into a coefficient Rn, and then summing across all possible 
values of n yields,

O O

R{T) = Y ,R n T n, (5.15)
n =  1

which will be called the R q-generating function. This generating function originates 
when taking the z-transform of the life cycle graph (see Caswell, 2001), with r  =  z_1.

Lets consider the scentless chamomile life cycle graph shown in Figure 6.2 as an 
example. Nodes 1, 2 and 3 correspond to seed bank, rosettes and flowering plants 
respectively as described in Chapter 3. The Ro equation is given by,

o  , , a 31a 13 +  0.13021032  / ' r - i c iRo — 0 3 3  +  a32°23 H z---------------• (5.16)1 -  an

The i?o-generating function,

m  \  , 2  , ( a 3 i a i 3 T 2 - t -  a i 3 a 2 i a 3 2 T 3 )  ( A
R{r) = a33r  +  a32a23 -I------------  . (5-17)

i  —  a u T

Suppose we start with one reproductive individual. The number of direct
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£  150

Figure 5.9: Plot of the number of new scentless chamomile flowering plants
descendants of the original flowering plant after 7 years.

descendants in 1 ,2 , . . . ,  n time steps will be:

*  -  £<°> (5.18)

(5.19)

1 <PR,ns 
n! aTn

(5.20)

The total number of new individuals produced that are direct descendants of the 
original individual is:

Ro = ^  Rn. (5.21)
7 1 = 1
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Using a Taylor series representation for R(r) about 0, we observe,
j d  _2 j 2 d

R(r) = R( 0) +  r ^ (  0) +  1 - ^ ( 0 )  +  • •. (5.22)
OO

= Y , r nRn. (5.23)
n = l

Hence R (l) = YlnLi Rn =  -̂ o which is the same as the /^-generating fimction 
evaluated at 1 (5.15). Given a randomly selected direct descendant of the original 
reproducing individual, the year in which the descendant was produced is a random 
variable T  with probability mass function:

P r{T  = n} = ^  = Qn. (5.24)
rto

The mean value for T  is:
°° 1 °° 1 °° 1 M

( 5 - 2 5 >

f ) -  <««)

The Taylor series of ^  about r  =  0, evaluated at r  =  1 yields,

<5-27>
With equation (5.27) it is possible to calculate the generation time of a stage- 

structure model based on the Rq generating function (5.15). Now, we can also 
estimate the variance Var[T] of the estimate T. Consider the generating function 
for the random variable T  (5.24),

OO
SM  =  (5-28)

n = 1

The first moment and variance, correspond to (Kot, 2001),

E [T] -  g'{ 1), Var[T] =  </'( 1) +  g \  1) -  gl2( 1). (5.29)

The estimated generation time (5.27) is an alternative to (5.14). The relation with
(5.14) is as follows. Consider the renewal equation,

OO
Nt = '£ R i N t-i, (5.30)

2= 1
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with No given and Ni = 0, i < 0. Consider a solution of the form Nt =  cXt, and 
substituting in (5.30), yields the Euler-Lotka equation

OO
l  = J 2 Rix ~i- (5.31)

i— 1

Hence, the characteristic polynomial is given by R(A-1) =  1. Consider now the entire 
population reproducing at time T. Then,

(5.32)

The Euler-Lotka equation gives 1 =  R qX~t , therefore (5.14).
Using parameter estimates from Chapter 3, the total number of new flowering 

plants produced that are direct descendants of the original flowering plant, using 
equation (5.18), are shown in Figure 5.9. The average generation time applying 
(5.27) is T  =  2.7318 with variance Var[T] =  0.41711. For scentless chamomile 
A =  19.37 and Ro =  337.52, using equation (5.14) to calculate generation time yields 
f  =  1.9643.

0 , ^ T

5.5 Discussion
The goal of control of invasive species is to reduce population growth. In matrix 
models, calculation of A to determine if the population is increasing, and how matrix 
entries affect A to target the most sensitive transitions, is the basis of demographic 
analysis for control (McEvoy and Coombs, 1999). Here, because we can calculate 
an explicit formula for R q , I propose to shift the focus and incorporate analysis of 
R o  as a common practice for the design of control strategies. The analysis presented 
shows the applicability of the explicit Ro formula for analyzing life cycle graphs and 
assisting in the design of control strategies. However, key to successful analysis of Ro 
is the correct construction of the life cycle graph. In principle it is assumed that any 
stage class truly represents a particular survivorship and/or fecundity that is unique 
to that class, and that the time intervals are correct with respect to the life history 
of the organism.

As shown by Shea et al. (2005) with thistle, there are changes in the life history of 
organisms that make control strategies context-dependent, and classic demographic 
analysis (calculation of A and the elasticity matrix) may yield different results for 
the same species in different regions, suggesting the need of more general control 
strategies. Although elasticity analysis is a very useful tool, the dependence on 
parameter estimates of transition entries make some of the predictions particular
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to a region of space and time. Even when elasticities of A to transitions are 
found numerically for control in a specific region, there might not be anything that 
can be done to control that transition, hence elasticity analysis may have no real 
consequences for management (Boyce et al., 2005). Life cycle analysis based on Rq 
is not affected by specific parameter estimates and allows for the design of a more 
general control strategy. The main focus of R q is to find pathways that could be 
affected by specific control strategies. Key transitions to target could be transitions 
that are present in most pathways, so to have a larger effect on R q

It is necessary to note that Ro is the rate of increase per generation, as opposed 
to A that is population increase in one time interval. The search for strategies that 
would reduce Ro only a small portion may not be effective measures as they might 
not have any large effect on A (Caswell, 2001). However, if strategies designed on Ro 
can guarantee that R q will be substantially reduced, and will become less than one, 
then indeed, the control measure would be effective. As seen here, analysis of Ro is 
useful in designing combined strategies that focus on pathways rather than individual 
transitions. There is already a general sense that combined strategies need to be used 
in order to have an effective biocontrol (Lym, 2005; McEvoy and Coombs, 1999). Also 
note that control agents are not explicitly included in this analysis, since the focus is 
on weaknesses of the organism to be controlled.

In this chapter I also derived a formula for the calculation of mean generation 
time T  and its variance, an essential quantity in demographic analysis. The general 
definition of iVgenerating function (5.15) can be extended to the case with disjoint 
fecundity loops, by defining R(r) to be the ^-transform of the life cycle graph, with 
the substitution r  =  z~x. This is subject to future research and analysis. The fact 
that variance of generation time can be estimated, might be useful to study the time 
at which the reproduction contribution to R q occurs in variable environments (Ellner, 
1985). This is subject of future investigation.

Mean generation time and Rq summarize complex life history schedules and 
determine intrinsic population growth rate. If indeed highly invasive species are 
“r-selected” (Rejmanek and Richardson, 1996; Davis, 2005), it is expected that these 
species have short generation times T  with large Rq- Along with Ro, generation time 
calculation allows for the comparison of different species life histories, different modes 
of reproduction, and their effect in population dynamics and the control of invading 
organisms.

In summary analysis of life cycle graphs using R q proves useful because: i) its 
possible to obtain an analytic expression based on the life cycle, ii) generation time 
can be estimated, iii) the first and last reproduction times can be calculated, iv) 
analysis can be done directly on the graph, even when no explicit formula for R q is 
calculated (as shown in the vegetative reproduction example).
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Chapter 6

Invasion with coupled map lattices: 
application to scentless chamomile

6.1 Introduction
When a non-native species is introduced and is established, the population starts 
growing, spreading and colonizing new regions (Ehler, 1998). Some of these exotic 
species are introduced on purpose, such as toads (Bufo marinus) to control sugarcane 
beetles, and later became pests (Knight, 2001). Some, like Canada thistle (Crisium 
arvense), a noxious weed introduced from Europe that has spread in Canada and 
the United States (McClay et al., 2002), are introduced by accident. Many are 
introduced as part of biological control efforts by weed and pest scientists to control 
other invasive species by means of their natural enemies, like the introduction of a 
gall midge (Spurgia esulae) to control leafy spurge (Euphorbia esula L.) (Lym, 2005).

Two fundamental aspects of invasion dynamics are population growth and 
population spread. The two related quantities (intrinsic growth rate and rate of 
spread) are essential to invasion theory. They have been the subject of study in 
mathematical models for invasions (Hastings et al., 2005), and the quantities are 
key control parameters in conservation management and biological control (Fagan 
et al., 2002; Shea, 2004; Neubert and Parker, 2004; Allen et al., 1996). Because of 
the long time and broad spatial scales at which invasions occur, the use of models is 
essential to understand the dynamics of invasions and design possible management 
and conservation strategies. The mathematical theory of invasions has much to offer 
in this respect (Fagan et al., 2002). One purpose of calculating the rate of spread is to 
use this to find ways to slow down the spread of invading organisms by biocontrol or 
other means (Fagan et al., 2002), and the prediction of invasion speed is essential in 
control and management of invading organisms and ecosystem management (Sharov 
and Liebhold, 1998; Sharov, 2004). In addition, models help to focus information

87
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on vital variables while enhancing collaborations between theorists and empirical 
researchers (Shea, 2004)

There are several modelling strategies for population growth and spatial spread: 
partial differential equations, integro-difference equations, coupled map lattices, and 
cellular automata. Partial differential equations incorporate continuous space and 
time, integro-difference equations, discrete time and continuous space, and coupled 
map lattice, discrete time and space. For cellular automata, in addition to time and 
space being discrete, the state space is also discrete. Which modelling strategy is the 
best depends upon the dynamical characteristics of the system under analysis, and 
upon spatio-temporal scales. In the last two decades there has been an increase in the 
use of discrete models due to their ability to incorporate stochastic components and 
local inhomogeneities (Durrett and Levin, 1994), and because personal computers 
now allow for fast numerical computations.

Integro-difference equation (IDE) models are discrete-time and continuous-space 
models, that incorporate dispersal data directly using a kernel function (Kot et al., 
1996). This dispersal kernel allows for the redistribution of individuals in continuous 
space. Mathematically an IDE is defined as

/
O O

jOjy/) f [My) \  dy. (6.1)
dispersal from y  to x growth at y

Here nt(x) is population density at time t location x  and f[nt(y)\ describes population 
growth. The dispersal kernel k(x, y) is a probability density function describing the 
likelihood of dispersal to point x. These models have been widely used to study spatial 
dynamics and control of invasive species (e.g. Allen et al., 1996; Buckley et al., 2005; 
Kot et al., 1996)

Coupled map lattices (CMLs) are models where space and time are discrete, 
and whose structure is similar to IDEs. Some CMLs have been used to study 
host-parasitoid interactions (Hassell et al., 1991; Kean and Barlow, 2001; Bjornstad 
and Bascompte, 2001; Bonsall and Hassell, 2000), metapopulation level applications 
(Janosi and Scheuring, 1997) and applied biological control (Rees and Paynter, 1997; 
Rees and Hill, 2001). A coupled map lattice is a dynamical system where time and 
space are discrete, and the state variable is continuous (White and White, 2005; 
Kaneko, 1992).

As with integro-difference equations, a CML describes the growth and dispersal 
of the population, but now on a discrete lattice. Strictly, a CML only involves local 
interactions, meaning dispersal occurs in a local neighbourhood D. However, there is 
no restriction on how large D is. Consider the continuous spatial domain X.  A one
dimensional discrete regular lattice over X  is defined as X  =  {cc-oo, . . . ,  Xo,. . . ,  x_oo}> 
with Xi = ih, where h is the cell size (scale) of the lattice and i is an integer (Figure
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—0 0 * »oo
X - X  X o  X X

Figure 6.1: Definition of a lattice on the real line. Lattice points are located at regular 
intervals of distance h.

6.1) . Mathematically a CML can be defined,

x-GQ3 dispersal from xj  to xi  growth at Xj

(6 .2)

where x^Xj  are points in a one dimensional lattice, nt(xi) is population at time t 
location X*, f[nt(xi)\ is a map that models population growth and k(xi, Xj) is a discrete 
probability mass function for dispersal. In a spatially homogeneous environment, 
dispersal kernels that only depend on signed distance xj  — Xi~Xj  are called difference 
kernels. As an example of a difference kernel k(xd),Xd — — Xj, consider,

J2nk(xd) — 1. When 10 1 =  3, this example is considered a classic CML model with 
nearest neighbour interaction. CMLs can be extended to a two-dimensional spatial 
lattice. Here the nearest neighbour interactions involve the central lattice point and 
eight neighbours so that |D| =  9.

Some comparative studies show how results can be obtained using CMLs are similar 
to those found with other modelling structures like IDEs and individual based models 
(White and White, 2005; Brannstrom and Sumpter, 2005). As I will show here, 
analytical tools developed for IDEs can be used directly to study spread in discrete 
space for structured population models.

In this chapter I apply tools developed for calculation of wave speed and spread 
rate in integro-difference equations to coupled map lattices. To my knowledge, 
the application of these to CMLs is new. I use CMLs to study the population 
dynamics and spread of structured populations with applications to a particular 
invader, scentless chamomile (Matricaria perforata). I further analyze possible 
control strategies, and explore CMLs in heterogeneous landscapes and stochastic 
environments.

6.1.1 Scentless chamomile as a spatial invader
Scentless chamomile is an introduced annual, biennial or short-lived perennial plant 
that has become a widely distributed weed in cultivated areas in North America (Hinz,

(1 — u) if Xd =  0 
inf-T, otherwise

(6.3)

where |f2| is the number of cells in the neighbourhood D. Note that u € [0,1] and
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1996; Hinz and McClay, 2000). Initially scentless chamomile spread slowly increasing 
its range only in the last decades (Hinz and McClay, 2000). The earliest records 
of scentless chamomile in Canada are in New Brunswick in 1876, Quebec in 1880, 
British Columbia in 1893, Saskatchewan in 1928 and Alberta in 1933 (Woo et al., 
1991; Douglas et al., 1991). A single plant of this weed can produce up to 256,000  
seeds per plant (McClay et al., 1995), and it grows in poorly drained low-lying areas 
(McClay et al., 1995; Woo et al., 1991), from which it spreads to adjacent fields (Hinz 
and McClay, 2 0 0 0 ). Chamomile has small seeds that are dispersed on the ground and 
can be further spread by wind or water (Hinz and McClay, 2000).

In Chapter 3, a stage-structured model was developed, and transition values 
(survival and fecundity) were estimated from field data. I showed using elasticity 
matrices, that, in general, transition from rosettes to flowering plants and fecundity 
transitions to rosettes and to flowering plants contributed the most to population 
growth and would therefore be the most effective transitions to control. With 
additional data collected in Alberta, Canada, this chapter extends the matrix model 
to incorporate local spatial dynamics. This new approach allows us to analyze spread 
speed and potential control of this invader.

6.2 Discrete structured spatial models

6.2.1 M atrix integro-difference equations
Matrix population models have been shown to be an effective tool to study population 
growth and control (Shea and Kelly, 1998, 2004; Parker, 2000; McLeod and Saunders, 
2001). Space can be incorporated in the matrix model formulation by extending a 
structured population across space, and considering dispersal between these locations 
in a continuous domain. As described by Neubert and Caswell (2000), the matrix 
integro-difference model is defined as

/
O O

[K (z , y) o A ] n t(y) dy, (6 .4)

■OO

where n t(x) is a vector of stages at time t and location x, A  is the transition 
matrix as defined for matrix population models (Chapter 5, equation (5 .1 )) , and 
K (x,y) = [kim(x,y)\ is a dispersal matrix whose elements kim(x,y) are kernels that 
describe dispersal as the individual moves from location y to x  from stage m  to stage 
I. Note that by definition, kernels kim in K  are probability density functions. If 
difference kernels are assumed then K  (x — y). The symbol “o” denotes Hadamard 
product which is element-wise multiplication. It is assumed that the n x n  matrix A  
is non-negative and primitive, hence there is a real and positive dominant eigenvalue 
A that corresponds to the population growth rate.
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tf3i

Figure 6.2: Life cycle graph of scentless chamomile as derived in Chapter 3. Node 
l=seed bank, node 2=rosettes, node 3=flowering plants.

The matrix model developed in Chapter 3 provides a good example. Figure 6.2 
describes the scentless chamomile life cycle graph. The projection interval for this 
model is 1 year. Nodes 1,2 and 3 correspond to seeds, rosettes and flowering plant
stages. In the life cycle, seeds can germinate and produce either rosettes (stage
without flowers) or flowering plants, or stay in the seed bank. Rosettes, can survive 
over winter producing a flowering plant next year. The projection matrix of scentless 
chamomile is given by

Qii 0 ai3
A =  a2i 0 a23 , (6.5)

O 31 ^32 «33

and the dispersal matrix is given by difference kernels

K(x - y )  =
8 ( x - y )  8(x — y) k(x -  y)
8 { x - y )  8{pc-y) k{x -  y)
8{x -  y) 8{x -  y) k{x -  y)

(6 .6)

Here k(z), z = x — y is the dispersal kernel describing the dispersal of seeds and the 
delta function 8(z) is used for transitions where no dispersal occurs. As can be seen 
from the third column of matrix K(z), seeds, produced by flowering plants, disperse 
and can remain as seeds, germinate to rosettes, or germinate to flowers in a single 
year.

A dispersal kernel for (6.6) can be defined using mechanistic principles, or can 
be obtained directly from data without assuming any particular shape (Lewis et al., 
2005). Consider the example when relative frequencies of disperser fj,  are collected in 
two directions and at regular distances from a point source. The data can be written 
as, {(y-m, / - m),. . . , (? /- 2 , / - 2 ),( 2/ - i , / - i ) , (y i , / i ) , (y 2 , / 2 ) , - - - , ( 2/m,/m)} where yj is 
the location of the sample and f j  is the corresponding frequency (Figure 6.3). Using 
a linear interpolation function, a continuous difference kernel suitable for an integro-
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♦H------------------- 1------1------1------1------1------------------!-►
y-m y - 2  y - i  yi 2/2 ym

Figure 6.3: Relative frequencies of dispersal are collected in two directions and at 
regular distances from a point source.
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Figure 6.4: Linear interpolation of the scentless chamomile data obtained in Chapter
3. The data is obtained from the sum in all four cardinal directions, from seed traps 
collected in Vegreville, Alberta.

difference model can be defined in terms of z = x — y,

k(x, y) = k(z) = fi +  ( f i  -  f i - 1 )—— —  with < z < y i  (6.7)
Vi Vi—1

(Figure 6.4).

6.2.2 M atrix coupled map lattice equations
Similar to a matrix IDE equation (6.4), a matrix CML equation with stage structure 
and difference kernels is described by

nt+i(*i) =  X  [^(Xi “  ° A] (6>8)
Xj&Cl

Here A is the projection matrix as defined previously, n t(xi) is a vector of stages 
at time t  location Xi  and K  is a matrix of discrete difference kernels. Each entry of 
K.(xi —  X j )  =  [kim(xi — Xj)] must satisfy:
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^   ̂ hm(Xi Xj) — 1, (6.9)

so that every disperser starting as Xj ends off at some Xi with probability one. The 
difference between matrix CML and matrix IDE is that the integral becomes a sum 
over discrete locations in space.

The kernel K  can come from discretizing K  (6.7) at any scale for use in terms of
xd -  Xi X

-OO <  Xd <  O O .
rxd+t

K xd) =  /  k(z)dz,
Jxd-§

For scentless chamomile, the discrete difference kernel K  becomes,

A (xi — Xj) A (xi — Xj) k(xi — Xj)
K  (xi} Xj) = K(xi  — Xj) = A  (xi — Xj) A(xi — Xj) k(xi — Xj)

_A (xi — Xj) A (xi — Xj) k(xi — Xj)_

where A (a;* — Xj) is a discrete delta function defined as,

(6 .10)

(6 .11)

A(®i -  Xj) -  S,
1, if i = j  
0, otherwise

(6 .12)

Later in this chapter I will apply this model to scentless chamomile.
In two dimensions, a radially symmetric matrix of kernels K(x, y) =  K(r), 

r  =  y/zf  + z\, z\ — x \ —yi, z-i = x ^ - y i  is discretized for use in a CML. With dispersal 
from (xj1,Xj2) to (xix, x i2) equation (6.10) can be written in terms of xdl =  x ix — Xjx 
and xd2 2/̂ 2 SIS

K (xd) =  / / K ( J z j  + z^)dz1dz2. (6.13)
J x d T - k  Jxd  a — 5d2 2

See Figure 6.5.

6.3 Population spread rates
The way invasive species move across space, and how fast this occurs, is essential in 
the understanding invasion processes and how it can be controlled. With matrix IDEs, 
it is possible to calculate the rate of spread of a local population. As described below, 
the rate of spread, denoted c*, is calculated as the minimum possible wave speed c 
of a moving wave front. In this section, I first describe how these two quantities can 
be calculated for matrix IDEs, and then show how these calculations hold for matrix 
CMLs.
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Figure 6.5: Two-dimensional kernel obtained from using equation (6.13) on the 
scentless chamomile data from Chapter 3.
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6.3.1 Calculating th e spread rate in a matrix IDE
A quantity that can be computed when space is included is the rate of spatial spread 
of a population that has been introduced locally. The spread rate c* is defined for 
a locally introduced population as follows. An observer moving along a ray oriented 
away from the local introduction will asymptotically observe a population density of 
zero if the movement speed is faster than c* and will asymptotically observe a positive 
population density if the speed is slower than c*. A rigorous discussion and analysis 
of spread rates for structured population models can be found in Lui (1989).

Neubert and Caswell (2000) showed that the spread rate c* can be related to the 
wave speed c(s) for an exponentially declining population density nt =  we-«(^-c0_ 
Substitution into equation (6.4) with a difference kernel K(x, y)  = K(x — y) ,

The matrix A is non-negative and primitive and M(s) is positive. Hence H(s) is 
non-negative and primitive n x n matrix with eigenvalues p i ( s ) ,  p 2( s ) , . . . ,  pn (s) .  By 
the Perron Frobenius theorem, the only eigenvalue corresponding to a non-negative 
eigenvector w is the dominant eigenvalue of H(s), p i ( s ) .  Hence, esc =  Pi ( s )  and a 
d isp ersio n  re la tio n ,

relates the speed of the wave c to the steepness of the wave s. The spread rate for 
the locally introduced population is given as:

(6.16)

(6.15)

(6.14)

where £ =  x — y .  Hence,

wesc =  [M(s) o A] w =  H(s)w, (6-17)(6.17)

where H(s) =  M(s) o A and M(s) is the moment generating function of the dispersal 
kernel:

(6.19)

c* =  minc(s).
s > 0  v 1

(6 .20)

(Figure 6.6).
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c(s)

Figure 6.6: The rate of spread c* is found by evaluating c(s) at the steepness s* that 
minimizes the wave speed function.

In summary, calculation of spread rate initially requires the transition matrix A 
and kernel matrix K. The kernel matrix is transformed to give a matrix of moment 
generating functions M(s) by A. This yields H(s) = A o M(s), whose dominant 
eigenvalue pi(s), is used in equations (6.19)-(6.20) to calculate the spread rate c*. 
Neubert and Caswell (2000) give a detailed derivation linking c* to the minimum of 
c(s).

Some examples of application of (6.20) include Neubert and Parker’s (2004), 
analysis of the spread of scotch broom (Cytisus scoparius), Buckley et al.’s (2005), 
analysis of invasion and spread of Pinus nigra, calculating the wave speed and 
determining control strategies to slow down the spread of this invader, and Jacquemyn 
et al.’s (2005), analysis of the effects of fire on the spread of the perennial tussock 
grass (Molinia caerulea) are studied.

Neubert and Caswell (2000) observed that c* is a basic measure of invasiveness 
that summarizes detailed structured population dynamics and dispersal into a single 
statistic. They argued that it could be used to characterize invasiveness of a species, 
much as A is used to summarize population growth rate. As with A, formulae for the 
sensitivity and elasticity of c* to the transition matrix entries can be derived. These 
are

dc* rriij dpi
daij s*pi dhij:

(6 .21 )
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for sensitivity and,

'hjj dpi 
pi dhi:j_

a,ij dc*
c* dciij In pi

(6 .22)

for elasticity. Equation (6.21) gives the absolute change in spread rate with respect to 
the projection matrix entries and (6.22) gives the relative change. Here s* is the value 
where c* is minimum and hij and are entries in H(s*) and M(s*) respectively 
(Figure 6.6). The quantity is calculated using the same methods for calculating 
the sensitivity of growth rate A, the dominant eigenvalue of A (see Caswell, 2001), 
that is,

dpi =  Vi(s*)wj(s*)
dh{j (w (s*),v(s*))’ [ J

where w(s*), v(s*) are the right and left eigenvectors of H(s*), and (w(s*), v(s*)) is 
the scalar product of the two vectors.

For density-dependent projection matrices, the so-called linear conjecture states 
that the rate of spread of the matrix IDE model with density dependent projection 
matrix An, is governed by its linearization around n =  0 (Neubert and Caswell, 
2000).

In other words, even if there are nonlinear interactions in the population, the rate 
of spread is given by the growth and dispersal behaviour of the leading edge of the 
invasion, where n  is close to zero. Generally, this conjecture requires that there are no 
Allee effects at low population density. Some mathematical conditions under which 
the linear conjecture is known to hold are given in Lui (1989).

The matrix IDE approach thus allows spread rate speed and its sensitivity and 
elasticity to be determined analytically for discrete time and continuous space. In 
some cases, however, it may be advantageous to model space as discrete. For this, 
matrix CMLs are the better choice.

6.3.2 Calculating rate of spread in a matrix CML
CMLs can be considered a special case of matrix IDE, where space is discrete, 
therefore the dispersal kernel takes the shape of a function on a discrete lattice. To 
define wave speed, first we define the wave front and relate the discrete space CML 
with an associated exponential profile in a continuous space system (Figure 6.7). I 
then show the derivation of the wave speed formula for discrete systems

Similar to a matrix IDE, a wave speed formula can be derived for structured CML 
models. The derivation follows that of Neubert and Caswell (2000), but in this case 
we are dealing with discrete points on a lattice. Here, when deriving the wave speed, 
we are looking at a linear transition matrix in equation (6.4). In linear matrix CMLs
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t + l

X{

(a)

(b)

Figure 6.7: (a) Associated exponential profile that moves a distance c «  0.9 in one 
time step. n° is the detection threshold, (b) The detection threshold n° in the 
exponential profile is located between points Xj(t) and Xj(t) + 1  ■
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the spread rate c* of a locally introduced population can be calculated using the 
approach of Neubert and Caswell (2000) by evaluating the minimum possible wave 
speed c for an exponentially declining population density,

nt(aji) =  we“s^ <_̂ .  (6.24)

Substitution into (6.4) yields equation (6.19) where pi(s) is the largest eigenvalue of 
H(a) =  A o  M(s) and M(s) is the matrix of generating functions:

OO
M(>) = £ K ( z , ) e “ '. (6 .25)

—OO

Figure 6.7a shows the exponential profile and wave speed.
The spread on the lattice Ct, as calculated by the average rate of spatial extent of 

the spread over time, that is, Ct = where Xj(t), called spatial extent of spread, 
is the furthest point in the lattice where n(xj(t)) > n°,n(xj(t)+1 ) < n° and n° is the 
critical level where a site is considered not empty (Figure 6.7b). Appendix 6.A shows 
that when the initial profile of the wave is exponentially decreasing with steepness s,
it is possible to show that Ct —> c(s) as t —> oo, where c(s) is the velocity of spread
given in (6.19).

6.3.3 Calculating two-dimensional spread
A two dimensional CML is defined as follows:

n i+l(Xj) =  [^ (Xi “  Xj) ° A nt(Xj) ’ (6-26)
Xj€Q

where nt+i(x*) now describes population density nt+i in location Xj = [xj yj]T in two 
dimensions, and K(xj — Xj), as described earlier, is a matrix of kernels. Spread in 
two dimensions is calculated by considering only one direction, perpendicular to the 
wave front (Lewis et al., 2005).

It turns out that it is the marginal distribution of this two dimensional kernel that 
is needed for calculating population spread (see also Lewis et al., 2005). In this case 
the marginal distribution can be calculated by summing over one direction to give

O O

K ( i * ) =  £  K(xj), (6.27)
X d 2 = - o o

with Xd =  [xdx Xd2]T, (Figure 6.8). The illustration in Figure 6.9 shows the 
reason why probabilities are summed in one direction when the kernel is used in
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Figure 6.8: Marginalized kernel for scentless chamomile data. The marginal
distribution is taken on the kernel in Figure 6.5.

one dimension to describe two-dimensional spread. Figure 6.8 shows the marginal 
distribution of the kernel in Figure 6.5.

Here we consider the case where spread is equal in all directions. Hence, equation
(6.13) and Figure 6.8 pertain.

In summary, the marginal distribution of the kernel (equation (6.27) and Figure 
6.8 ) is used in calculating the matrix of generating functions (6.27). From this the 
spread rate c*  is calculated from (6.19) -(6.20), where P i ( s )  is the dominant eigenvalue 
of H(s) =  A o M(s).

6.3.4 Scentless chamomile rate of spread
Using the projection matrix in equation (6.5), and the kernel as defined in equation 
(6.7), it is possible to calculate the rate of spread for scentless chamomile. From 
Chapter 3, the estimated projection matrix for scentless chamomile is given by:

'0.08 0 36376.45' '0.08 0 1775.22'
A 1 = 0.27 0 517 , a 2 = 0.27 0 25.24

0.04 0.45 297.85 0.04 0.45 14.53

Because of this large difference between years, rate of spread will be calculated for 
both.

Using equation (6.20) I calculated the rate of spread for scentless chamomile to be 
c* = 16.55 m/yr for year 1 and c* = 11.32 m/yr for year 2. The numerical simulations
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■y

Figure 6.9: This figure shows why the marginal distribution of the kernel is taken 
when analyzing spread in one dimension. Suppose position Xi is being updated, then 
propagules will arrive to location Xi in a two dimensional system from all directions, 
with probability indicated by the concentric circles (the circles represent a kernel 
describing probabilities associated with points of origin Xj for a seed dispersing to Xj, 
A:(xj,Xj)). If spread is taken only in the direction of the dashed line, contributions 
from locations below and above have to be considered. Hence, when the system is 
analyzed in one direction u, the contributions in direction v, have to be summed. A 
precise mathematical derivation is given in Lewis et al. (2005).
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Figure 6.10: Numerical simulation showing the front wave moving over time, in a 
one-dimensional simulation of the spread of scentless chamomile.

Table 6.1: Estimated rate of speed for scentless chamomile. The calculations were
done with data described in Chap er 3.

Method c year 1 c year 2

Equation 6.20 
Simulation in ID 
Bootstrap 90% Cl

c* = 16.55 m /yr  
c* ft 16.55m /yr  
{16.43, 16.67 }

c* = 11.32 m /yr  
c* ft; 11.32m/yr 
{10.33, 12.10 }

of the spread rate and the 90% confidence intervals are shown in Table 6.1. The 
confidence intervals were obtained from bootstrapping the sample of 8 6  seeds. Figure 
6.10 shows the moving front in the one dimension numerical simulation. Elasticity 
to spread rate (Figure 6.11), was calculated using equation (6.22). These elasticities 
show that c* is most sensitive to the flowering plant to flowering plant transition 
(a3 3 ). As Figure 6.12 shows, although this transition has the most impact on c*, a 
substantial reduction of fecundity is required to achieve large reductions in invasion 
speed. This indicates that control of scentless chamomile by reducing fecundity will 
unlikely be an effective control strategy, to control local growth (as seen in Chapter 
3) or local spread, as shown here.
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c ’  E lasticity

Wy'x

(a) Elasticity matrix year 1.

0.05

&

(b) Elasticity matrix year 2.

Figure 6.11: Elasticity of the wave speed c* to entries in the transition matrix for (a) 
year 1 and (b) year 2. Column and row refer to column and row of the projection 
matrix (6.5). The numbers on the axes show the corresponding node number in 
Figure 6.2. The highest elasticity is in entry <2 3 3 .
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Figure 6.12: Reduction in invasion speed (m/yeax) as a function of percentage of 
fecundity reduction in scentless chamomile (transition a33), for years 1  and 2 .
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6.4 Incorporating heterogeneous landscape
Coupled map lattice models provide a convenient and direct way of linking real 
landscape information with the population model. The basic equation for growth 
and spread (equation (6.26)) with a difference kernel can be written in two spatial 
dimensions and modified to include growth or establishment constraints

nt+i(xi) =  P(xi) o [K(xj -  o A] nt(xj). (6.29)
Xj

Here P(x*) is a vector whose entries contain the probability of establishment of 
propagules in each stage in location x,; =  [xi yi]T. A landscape P  can be defined 
directly from a raster layer in a GIS system, as I will show later with an example.

It is expected that any spatial constraints will change the wave speed depending 
on the ability of the dispersers to travel long or short distances, and thus disperse in 
a fragmented landscape (With, 2004). Consider, for example, an invading organism 
that spreads quickly, diluting local populations. It may reduce global populations 
in a landscape where patches are too small, failing to establish stable populations in 
local patches. Hence, spatial inhomogeneities could be of consequence when designing 
control strategies.

To investigate spread of scentless chamomile through the landscape, I ran 
simulations of scentless chamomile on a real landscape. To run simulations on a 
landscape, I simplified the scentless chamomile system to an unstructured population 
model of the form:

nt+1(xi) =  P(xi) Y  H x i ~  Xj)Airit(Xj), (6.30)
n

where Ai, is the SC population growth rate for year 1, and P(xj) is the growth 
constraint in location Xj.

On the real landscape the discrete dispersal kernel was scaled using coarser 25m 
bin sizes in equation (6.10) (3 by 3 cells in the landscape). The distances in 
the lattice are calculated from the center of the lattice point to the center of the 
adjacent lattice point. To illustrate the applicability of a CML model at a landscape 
level, I simulated spread using the estimated kernel over a 25m resolution classified 
satellite image of The Vegreville-Edmonton region (Figure 6.13), involving the area 
were the parameter estimates of the matrix mode were obtained, and dispersal data 
was collected. The classified image (Figure 6.14a), shows pasture, cropland, forest, 
water bodies and infrastructure on a 25m pixel resolution. Chamomile can grow 
in croplands, pastures, and infrastructure (road edges) (Bowes et al., 1994). The 
probability of establishment p were obtained from habitat occupancy reported for 
scentless chamomile in Saskatchewan (Bowes et al., 1994, Table 2 in Balgonie 1985).
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Based on occupancy probability, p for pastures was set to 0.6, cropland 0.024 and 
infrastructure 0.3. Results of the simulation are shown in Figures 6.14 and 6.15. 
The simulations show the spread after 50,150 and 300 iterations starting with an 
initial density of 1000 on a 25m2 area. Assuming spread equal in all directions, 
the velocity of spread was calculated using {l/t){\fareapK). The rate of spread 
for the heterogeneous landscape is 15.25m/year compared to 22.25m/year in the 
numerical simulation without constraints. The difference between the calculated 
c* — 16.55m/year, and the numerical simulation without constraints, 22.25m/year, is 
due to the rescaling of the kernel.

6.5 Environmental Stochasticity
The matrix IDE and matrix CML model described assume temporal invariance in 
population growth and spread. However, in many cases this assumption is unrealistic 
(Neubert and Parker, 2004). Strong resource dependencies change local population 
dynamics and as a consequence, the ability of organisms to spread (Dwyer and 
Morris, 2006; Fagan et al., 2005). Chamomile results show how growth rate differs 
substantially from one year to the next one (Chapter 3), and this difference also 
influences the rate of spread (Table 6.1)

The effect of these fluctuating environments can be incorporated by making 
population growth rate and the dispersal kernel a function of time (Neubert et al., 
2000). For a CML,

OO
[Kt(xi -  xj) o A t N t{xj). (6.31)

Here K t(xd),Xd = Xi~Xj  is a matrix whose elements are independent, and identically 
distributed (i.i.d.) discrete dispersal kernels, At axe i.i.d. projection matrices, 
independent of the dispersal kernels for t = 0 ,1 ,2 ,..., and J\ft{xi) is a stochastic 
process describing the density of individuals at grid point Xi and time t. In other 
words, for a given time t and lattice point Xi, Mt+iixi) is a vector of random variables 
describing the density of individuals from each stage.

Neubert et al. (2000) derived a formula to calculate the expected rate of spread 
and its variance for a stochastic IDE. Here I derive formulae that can be used for 
stochastic matrix CMLs. As in Section 6.3.1, Ht(s) =  M t(s) o A t for t — 1 ,2 ,..., 
where H*(s) is the matrix of generating functions for K t (see equation (6.25)). As 
in the earlier section H 4(s) is a time-dependent non-negative and primitive matrix, 
with dominant eigenvalue pu(s) and corresponding eigenvector W i( ( s ) .  Appendix 6.B 
shows that the random variable describing the spread rate Ct is given by the spread
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Figure 6.13: Map of the Edmonton-Vegreville region. The think line area indicates 
the subsection shown in Figure 6.14. Map taken from Young et al. (2006) and edited 
with authors permission.
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(b) time 50

Figure 6.14: Numerical simulations of equation (6.29) on a real landscape, the land 
uses classes correspond to, blue= water, dark green= forest, light green=pastures, 
yellow= cropland, light blue =  infrastructure, (a) landscape corresponds to a 
subsection of figure 6.13, (b) simulation after 50 years. Shades of grey show scentless 
chamomile density
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(b) time 300

Figure 6.15: (a) simulation of equation (6.29) parameterized for scentless chamomile 
after 150 iterations, (b) 300 iterations. Shades of grey show scentless chamomile 
density
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rate Ct = is now a random variable. As t —> oo,

Ct =
x■m \  l 7 l ] ln(Plr(s)) (6.32)

r=0
Ct(s), the mean of (6.49) up to time t, is evaluated using the dominant eigenvalue 
Pit of the time-dependant matrix H*(s). Because each eigenvalue is an iid random 
variable, and (6.32) calculates the mean of these from time r  =  0 t o r  =  t — 1, the 
central limit theorem applies as t —► oo. By the central limit theorem, Ct is normally 
distributed with mean

p(s) = £'[ln(pi0)s~1], (6.33)
and variance

v 2(s,t) =  -Var[ln(p10)s -ii (6.34)

for large time t.
As shown in Neubert et al. (2000) for scalar integro-difference equations, the 

expected spread rate for stochastic matrix CMLs is calculated as,

c* = min/z(s) =  p(s*). (6.35)

Consider the scentless chamomile example. In Chapter 3 ,1 showed that fecundities 
were substantially different between year 1 and year 2, therefore there is one projection 
matrix for each year, Ai and A 2  (6.28). As these were observed after two years I 
assume in the absence of any other information that they are equally likely to occur. 
The kernels are kept constant. For large times t the average speed and variance are 
given by p(s*) and a2(s*) where the mean is

K s) = ^  [M pi(Hi(s))) +  ln(pi(H2(s)))
and the variance is,

a2(s,t) = i
2s2

ln2(p1(H 1(S))) +  ln2(p1(H2(S))) A s ) ,

and s* is the wave steepness that minimizes (6.36)(see equation(6.35)). With

(6.36)

(6.37)

(6.38)

the expected spread rate calculated using equation (6.35), is c* = 14.29 and its 
variance <72(s*,t) = Figure 6.16 shows the calculated wave speed Ct and wave 
speed variance er2(f), for 20 realizations of the numerical simulations. As seen in 
the Figure, Ct converges to the calculated c* and the variance decreases according to 
(6.37) as time increases.

‘1 1 M(s*)" '1 1 M(s*)'
H i =  Ai 0 1 1 M  (s*) , h 2 =  A2 0 1 1 M(s*)

1 1 M(s*)_ .1 1 M(s*)_
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Figure 6.16: Estimated velocity of spread and variance for 20 realization of the 
stochastic model. The simulations were run 20 iterations. The dashed line indicates 
c obtained using equation (6.35).
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Table 6.2: Rate of spread formulae
Symbol Description Formula Source

c(s) wave speed for matrix IDEs, (6.19) Neubert and Caswell
and matrix CMLs (2000) (IDE) and this thesis

(CML)
c* spread rate for matrix IDEs (6.20) Neubert and Caswell

and matrix CMLs (2000) (IDE) and this thesis
(CML)

ct average rate of spatial extent (6.49) Neubert and Caswell
of spread fro matrix IDEs (2000) (IDE) and this thesis
and matrix CMLs (CML)

ct average rate of spatial extent (6.32) this thesis
of spread stochastic matrix
CMLs

c* expected spread rate for (6.35) this thesis
stochastic matrix CMLs

6.6 Discussion
In this chapter, I showed that the wave speed and rate of spread can be calculated 
for matrix CMLs in constant and stochastic environments in one and two dimensions. 
I also showed how heterogeneous landscape information can be incorporated to the 
CML model. Using scentless chamomile as an example, I showed how these methods 
can be applied.

6.6.1 M atrix coupled map lattices
Coupled map lattices are a convenient way of modelling spatial dynamics of invasive 
species. In these models population structure, age or stage structured, and spatial 
dynamics, using discrete kernels; can be incorporated to calculate vital quantities 
in biological invasion. The main result of this chapter is a CML framework for 
calculating rates of spread in constant, heterogeneous and stochastic environments. 
The methods shown here, calculation of rate of spread in stochastic and constant 
environments, are tools already developed for scalar and matrix IDEs (Kot et al., 
1996; Neubert et al., 2000; Neubert and Caswell, 2000).

There are few examples of CMLs being used for biological invasions. In most 
cases, the CML have been used informally to incorporate heterogeneous landscape 
information and study distribution patterns, and not to calculate spread. Bjornstad 
and Bascompte (2001), for example, build a CML to understand how the self
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organizing spatial patterns emerge; and Rees and Paynter (1997), build a spatially 
explicit structured models that studies the ground covered by scotch broom. These 
models do not formulate the calculation of rate of spread, nor do they allow for 
analytical work due to their complexity. Individual based models have been a choice 
for modelling spread in heterogeneous environment, but their results are not amenable 
to general analysis,, like formal differential equations or integro-difference equation 
models (Hastings et al., 2005).

The formulae derived here are summarized in Table 6.2. The quantity c* is the 
biologically relevant statistic. If an individual moves faster than c*, it will outrun the 
invasion. On the other hand if it moves slower than c* then it will fall behind. The
calculation of c* is done using the related wave speed quantity c(s). This quantity
describes the speed of a declining profile nt(x) oc exp(—s(x — ct)), where the speed 
is a function of the steepness of the wave s. The relation between c* and c(s) was 
initially investigated by Aronson and Weinberger (1978) for Fisher’s equation. They 
showed that the rate of spread is obtained by minimizing c(s) over all possible values 
of steepness s. The same holds for matrix IDEs (Neubert and Caswell, 2000), and it 
was assumed here that it holds for matrix CMLs. A rigorous mathematical proof of 
this is subject to future research.

The assumption that environments are constant over time is unrealistic. For that, 
Ct, a random variable describing the average rate of spatial extent can be used. It is 
possible to calculate the mean and variance for Ct, for large time.

6.6.2 Lessons for the design of control strategies
Matrix CMLs can be a useful tool for the design of control strategies, because they 
allow one to:

1. Calculate demographic parameters, X,Ro, and rate of spread c*.

2. Determine how fast a pest is spreading and what aspects of the life history of 
the invader should be target of control.

3. Establish how landscape heterogeneity, using real landscape information from 
GIS, affects the rate of spread of the invader.

4. Incorporate environmental stochasticity and study the effect of control strategies 
reducing spread.

5. Focus on measurable local dispersal data, rather than long-distance human- 
mediated dispersal.

6. Potentially use the CML model to optimize strategies in space and time to 
minimize c* and A with minimum effort.
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Although matrix CMLs and other models of spatial dynamics, are a simplified 
representation of the invasion process, assuming the basic dynamic is well defined 
in these models, they can serve as useful tools to focus control of invasive species 
research.

6.6.3 Spread o f scentless scentless chamomile
With the scentless chamomile data collected and presented in Chapter 3 ,1 studied the 
local rate of spread of scentless chamomile in constant, stochastic and heterogeneous 
landscapes using the matrix CML formalism. For the scentless chamomile model, a 
linear interpolation function was used to calculate a discrete dispersal kernel. This 
kernel is straightforward to estimate from data, and does not assume any particular 
shape. Although this method of estimating the kernel is useful, the tails are short 
and the function does not allow for extrapolation to longer distances. Calculation of 
spread, using integro-difference models, have shown to be sensitive to the shape of 
the kernel (Kot et al., 1996). As shown below, this is also true for matrix CMLs.

The rate of local spread for scentless chamomile was calculated to be 11.35m/year 
in year 1 and 16.55m/year in year 2. At the rate of year 2 for example, scentless 
chamomile could cover 1 hectare in approximately 4 years. The average farm size 
in Alberta is around 393 hectares (Statistics Canada, 2001 census). Hence, if local 
dispersal is the only factor driving dispersal, it would take a long time to cover 
an entire field. Indeed, one of the shortcomings of the model is that it does not 
incorporate long-distance dispersal mediated by wind or water, or human mediated 
dispersal, which would make the kernel “fatter” .

In the dispersal kernel measurement, the furthest measured dispersal distance was 
dmax — 25. To show the effect of fatter kernels, suppose that one seed is added to 
the sample at a dmax value of 20, 30 and 50m. The spread calculation was repeated 
for each augmented sample (iV =  86 seeds) as dmax. The location of the 87 th seed, 
was moved. Figure 6.17 shows that the time it takes to cover 10 hectares of land 
decreases quickly, as dmax increases. This means that if, dispersing locally 50m is 
possible, scentless chamomile would have a coverage of 10 hectares in less than 4 
years rather than approximately 11 years. This also indicates that, 1) the models is 
very sensitive to kernel shape, and 2) this model describes local spread, but longer tails 
are needed to explain faster spread long-distance spread. Despite these difficulties, 
this model serves as a model to test local dispersal hypothesis against long-distance 
dispersal (Clark, 1998).

As seen in Figure 6.14b, some disconnected patches were invaded by scentless 
chamomile through roads. Hence, landscape connectivity allows scentless chamomile 
to spread, even if in crops, the dominant class in the landscape, it has a low probability 
of occupancy.
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Figure 6.17: Time in years that 10 hectares of a farm axe covered, if one seed is found 
at x distance form the source plant in scentless chamomile

Figure 6.15b shows a simulation after 500 years. From historical data (presented 
earlier), it is clear that local dispersal is not sufficient to explain scentless chamomile 
spread in Canada, and that human-mediated dispersal could be the factor missing. 
Human mediated long distance dispersal has been a major driving force in the 
spread of invasive organisms (Sakai et al., 2001). For example plant species of the 
family Acanthaceae in tropical islands, introduced as ornamental, have spread widely 
because of a long history of human mediated transport (Meyer and Lavergne, 2004). 
This type of dispersal can spread species across large and disconnected landscapes. 
However, although it can be incorporated as stochastic rare events, human mediated 
dispersal is complex and may not follow clear mechanisms. Ultimately, many of these 
human dispersal problems can be controlled in part with appropriate government 
policies, but they are not part of local control of population growth and spread. 
Therefore, the focus should be on local dispersal to optimize control strategies and 
slow local spread based on targeting life cycle transitions of the pest. The numerical 
simulation shown in Figures 6.14 and 6.15, show how scentless chamomile can spread 
in a heterogeneous landscape.

The large difference in the rate of spread between both years suggested that 
environmental stochasticity could have a large impact on rate of spread of scentless 
chamomile. The stochastic models showed an average asymptotic rate of spread 
c =  14.29m/year. This is 14% slower than year 1 and 20% faster than year 2. The 
large variance Var[c] indicates that the difference between good year and bad year
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could yield very different scenarios. While the estimate of the mean spread rate 
becomes more precise as invasion progresses, the spatial extent (how far the invasion 
front has moved) cannot be predicted (Neubert et al., 2000).

Elasticity analysis showed that flower to flower transition (0 3 3 ) has the most impact 
on reducing the rate of spread of scentless chamomile. However, a large reduction 
in fecundity is needed to have a substantial reduction in spread for both years 
(Figure 6.11). Elasticity analysis of A indicated, that this transition should also 
be the target for control (Chapter 3). The seed weevil Omphalapion hookeri, targets 
flower heads and can potentially reduce fecundity (transitions ai3 , a 2 3 , 0 3 3 ). Although 
this biological control agent has spread and established, they have a low impact on 
fecundity with less than 10% reduction (McClay and De Clerck-Floate, 1999). Other 
control agents, like the gall midge (Rhopalomyia n. sp.) (Hinz and Muller-Scharer, 
2000) and the fungus Colletotrichum sp. (Peng et al., 2005), affect survival but not 
fecundity. Their impact on scentless chamomile in the field has not been quantified.

Demographic analysis of scentless chamomile has shown: 1 ) population growth 
rates are affected by flower to flower transitions, 2 ) local spread is also affected by 
flower to flower transitions 3) dispersal mechanisms like water and wind need to be 
incorporated in the model, 4) environmental stochasticity influences local spread, 
and 5) scentless chamomile high population growth rates, and the large reductions 
in fecundity needed to control it, suggests that combined strategies (mechanical, 
chemical and biological control) are needed to control this weed.

When the initial profile of the wave is exponentially decreasing with steepness s, it is 
possible to show that Ct —> c(s) as t —> 0 0 , where c(s) is the velocity of spread given 
in (6.19). For an initial condition of the form:

any solution to (6.4) can be written in term of eigenvalues pi(s) and eigenvectors 
W j ( s )  of H(s) as

nt(xi) =  [/?ipi(s)*wi(a) +  /%p2 (s)*w2 (s) +  . . .  +  /?npn(s)‘wn(s)] e 3Xi. (6.40)

Appendix  

6.A CML wave speed

no(«*) =  n°e SXi, (6.39)

Dividing by pi(s)* we get,

w2(a) +  . . .  +  A» (6.41)
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Because p\ is the largest eigenvalue, as t —> oo,

2 ^  = A w 1(S)e-” *, (6.42)

where Wi(s)  is the left eigenvector of H(s) and gives the stable stage distribution in 
the spreading population and s  is the steepness of the advancing edge of the wave. 
Rearranging equation (6.42),

n  t (xi) = f31w 1( s ) e ~ SXip 1(s ) t . (6.43)
Without loss of generality, we consider any component n t of n t with corresponding 
eigenvector component w\. Since we are dealing with a discrete lattice rather than 
the real line, at time t,  n°  lies somewhere between discrete points Xj(t) and Xj ( t ) + 1  

Figure 6.7b. Hence,

< n °  <  n t (xj{t)+i) 

f3 iWi(s)e~SXjWpi(s)* <  n° < P i W i ( s ) e ~ s(Xm+1 p̂i(s)*, (6.44)

which can be rewritten,

e-«*m < -Jf.7-p1(s)-t < e-sx̂ e~sh. (6.45)
Piwi{s)

(6.46)

Taking natural logarithms and dividing by s gives

1 (  nP \  t
~ X m  ~ e VA“ iW  )  ~  '  H P l W> -  ~ X m  ”  H'

and dividing by — t yields

^ > > 1 ^  "° _) + MoiW) > aa ( 6 .4 7 )t st \/3iWi(s) J s t t

which can be rewritten,

I l n ( \ + 1. (6.48)
st \(3iWi(s) J s t st \/3iWi(s) J s t

As t —>■ oo the left and right quantities in the above equation approach 1 ln(/9i(s)), 
the spread rate Ct is defined as,

Ct = ^  -  ln(pi(a)) =  c(s)> (6-49)
T S

as in equation (6.19).
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6.B Wave speed for stochastic environment matrix 
CMLs

In this appendix I show that with an initial condition of the form no =  n°e~sx, 
solutions to (6.31) can be written as a linear combination,

=  [/3iopio(s)wio(s) +  /?2op2o(s)w20(s) +  • • •] e ~ SXi (6.50)
=  [AiPio(s)Pn(s)wn (s) +  /?2op2o(s)p2i(s)w2i(s) +  ...] e~SXi (6.51)

e~SXi. (6.52)Pit-1 w it-i(s) +  • • •

Dividing by nt=o P^r(s), and since p\T{s) are the largest eigenvalues, as t —> oo,

■Vt(®i) /3it_iWit_i(s)e_sa:i ^JJpir(s)^ . (6.53)

Without loss of generality, consider any component Nt of N t  with corresponding
eigenvector component W it_ i ( s ) .  In the lattice at time t, n° lies somewhere between 
discrete points Xj(t) and Xj(t)+i (Figure 6.7). Hence,

N t(xm ) < n° <  N t(xm + i), (6.54)

which can be written,

e‘""> s i d h s )  ( n ^ w )  * <6-58>
Taking the natural logarithms and dividing by — st yields,

5 ln (a T ^ m )  + i 0 § ln("lT(s))) -  X~ f  (6'56)

2 5 1̂ A r ^ ) + j ( l | ln(ftT(s))) + i- (6'57)
The spread rate Ct =  is now a random variable. As t —► oo,

=  ln(piT(s))^ , (6.58)

Ct(s), the mean of (6.49) up to time t, evaluated using the dominant eigenvalue p\T 
of the time-dependant matrix H t(s).
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Chapter 7

Conclusion

In this dissertation I focused on matrix population models to study population growth 
and spread. The methodological tool presented here can prove useful in the study 
of the spread of invading organisms and their control. To my knowledge, the graph 
theoretic method for calculating Ro (Chapter 4), generation time with generation 
function (Chapter 5) and rate of spread formulae for coupled map lattice models 
(Chapter 6), are new and have not been developed before.

In Chapter 3 ,1 developed a new method for the calculation of the net reproductive 
rate, Ro. This method uses the graph representation of the life cycle of organisms 
without the need for matrix formalism, using Mason and Zimmermann’s (1960) 
methods of graph reduction. The calculation of Ro can also be done with the formula 
proposed by Cushing and Zhou (1994). The graph reduction method yields the same 
result. However, the method proposed here can be calculated directly from the graph, 
and yields a simplified equation.

The fact that an explicit formula for Ro can be calculated allows for an analytical 
interpretation of life cycle pathways and their contribution to the population growth. 
Apart from being a practical tool, as shown in Chapters 5 and 6, the explicit Ro reveals 
many aspects of the life history that can be analyzed in the context of control of 
invasive species. In the R q formula, all the pathways that contribute to reproduction 
like annual, biennial, perennial pathways, as well as vegetative reproduction, can be 
identified and their contributions to Ro can be explored analytically.

In some cases, the use of Rq to study the control of invading organisms has been 
suggested to be inappropriate (see Caswell, 2001; Levin et al., 1996). The fact that 
Ro describes population growth per generation as opposed to A that describes per 
year growth, does not determine how fast a population is growing. Thus, knowing 
the effects that particular life cycle events have on Rq does not reveal effects on A. I 
argue that, because of uncertainty of parameter estimation in matrix models, a safe 
strategy is to ensure that the population density of the invader will decrease over
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time, therefore A < 1. Since A < 1 if and only if Rq < 1, strategies can be designed 
using R q, to find ways of reducing Rq to be less than one.

As shown with Shea and Kelly’s (1998) nodding thistle example in Chapter 4 and 
examples in Chapter 5, the same conclusion reached with elasticity analysis on A, for 
specific parameter values, can be obtained in a much more general fashion for flexible 
parameter values using the analytical R q formula. The net reproductive rate can 
be use to complement demographic analysis based on the sensitivity and elasticity 
analysis.

Intrinsic growth rate and net reproductive rate are related throughout generation 
time (Caswell, 2001). In Chapter 5, I derived a formula for the calculation of the 
mean and variance of the generation time. Generation time, along with R q, allows 
for the analysis of impacts of modes of reproduction and time of reproduction on 
invasiveness of organisms. This demographic quantity has been elusive for stage- 
structured models. Earlier methods were based on building a parallel age structure 
model to keep track of age (Cochran and Ellner, 1992; Lebreton, 2005). These 
methods are complicated and do not yield an analytical formula for generation time. 
The method proposed here, is simple and works on the stage structure life cycle 
graph. Further analysis is needed to explore the full potential of the quantities 
derived, specifically when applied to determine the evolutionary advantage of modes 
of reproduction and time of reproduction, and to the understanding of what makes 
some species more invasive than others.

Spread analysis of invading organisms has been well studied using diffusion 
equations and integro-difference equations (Shigesada and Kawasaki, 1997; Hastings 
et al., 2005). In Chapter 6, I showed that coupled map lattice models can also 
be used to calculate the rate of spread of populations, and derived formulae for 
calculating the rate of spread. Formulae for scalar and matrix CMLs, as well as 
stochastic environments, were also presented. The results of this thesis extend the 
work of Kot et al. (1996) on the rate of spread in integro-difference equation, Neubert 
et al. (2000) on integro-difference models in stochastic environments and Neubert and 
Caswell (2000) on matrix integro-difference equation.

The results show high intrinsic growth rates for scentless chamomile in Vegreville, 
Alberta, Canada. Scentless chamomile plasticity and profuse seed production make 
this weed difficult to control. As shown in Chapter 3, only large reductions in 
fecundity could have an impact on population growth and rate of spread. In Chapter 
4, analysis of Ro for scentless chamomile also indicates that fecundity should be the 
target for control. This is consistent with Hinz (1999), who obtained similar results 
for scentless chamomile in Europe.

Chapter 6 also indicates that, to control scentless chamomile spread, a large 
reduction in fecundity is needed. The rate of spread calculated, based on dispersal 
data obtained from Vegereville, is slow, and cannot explain long distance dispersal of
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scentless chamomile across landscapes. The dispersal kernel used here only considers 
dispersal of scentless chamomile by seeds that fall on the ground, but does not consider 
wind or water dispersal.

The calculation of the true rate of spread is difficult. The tail of the kernel has large 
consequences to the rate of spread (Clark, 1998; Kot et al., 1996; Pielaat et al., 2006; 
Neubert and Caswell, 2000). Many studies reporting rate of spread for invading 
organisms, report a slow rate of spread when compared to the real distribution of 
the invading organism (e.g. Neubert and Parker, 2004; Garnier and Lecomte, 2006). 
In croplands, seeds could potentially be dispersed by mowing and tilling machines, 
and these dispersal mechanisms could disperse seeds further (see for example Bullock 
et al., 2003; Humston et al., 2005), making the tails of the kernel fatter, thus increasing 
the rate of spread.

Better calculation of the rate of spread for scentless chamomile should include a 
mechanistic model that include water and wind mediated dispersal in the kernel. 
Elasticity of life cycle entries on the rate of spread may yield a different result when 
fat tails are considered.

When studying scentless chamomile throughout this thesis, control agents were 
never considered. The focus was on what stages in the life history of scentless 
chamomile are better to target for control. This chapter also builds a model of 
scentless chamomile that could be used to optimize combined control strategies in 
space and time. Incorporating landscape information on heterogeneity, can be used 
to determine the distribution of control efforts over space and time.

In summary, the main results of this thesis are: 1) a method for the determination 
of an analytical Rq formula based on the life cycle of an organism, 2) the theoretical 
implications of pathway contributions to the net reproductive rate and its application, 
3) the calculation of a mean generation time and its variance, 4) the explicit 
formulation of unstructured or structured coupled map lattices and it application. 
5) study of scentless chamomile control potential.
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