e e

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

T T

University of Alberta

A QUALITY FRAMEWORK FOR SMALL SOFTWARE ORGANIZATIONS

by

Sundari Voruganti @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton. Alberta
Fall 1997

g |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre rdférence
Our file Notre référance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propnété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Il

Canada

0-612-22687-5

Dt A A sk A A sl et d . antin Al At At S A A S A S L I

D i A

University of Alberta

Library Release Form

Name of Author: Sundari Voruganti
Title of Thesis: A Quality Framework for Small Software Organizations
Degree: Master of Science

Year this Degree Granted: 1997

Permission is hereby grant« d to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private. scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis. and except as hereinbefore provided. neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Sundari Voruganti
2123, 111A Street.
Edmonton. Alberta.
Canada T6.J 4WS

Date: j—[/M/\Q HI)qq-f

Ll RS (ki 1 Aol el (AT

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled A Quality Framework
for Small Software Organizations submitted by Sundari Voruganti in partial
fulfillment of the requirements for the degree of Master of Science.

yl

..................

Dr. Paul G. Sorenspd (Supervisor)

G e

James Hoover (Co—superwsor)

----------- - . I'd . . .

.................

Dr. Ling Liu (Examiner)

Date: 10]SO&Q.‘Q:“.’ .

TR e e e o

SIS E . —

Ay

To Swami.
my Parents. Murthy and Kiran.
Attayya, Pavan and Ryan
and my love Kaladhar

C e wv e e

Abstract

Today software plays a critical role in various aspects of human life. from rockets to
health care. Not surprisingly. a number of organizations have sprung up in order to
meet this need for software. Among these are software organizations that comprise of
less than ten people which we term small organizations. Although these small orga-
nizations have few resources in terms of time. money and people. they often develop
leading edge software for new application domains or do important subcontracting
work for larger companies. In order to gain acceptability in the marketplace for their
products or to obtain contracts from the larger companies. it is necessary for them to
produce high quality software in the shortest possible time. A number of standards
have been proposed in order to assess and improve an organization's software and
process quality. But these standards are geared towards large organizations and are
hence too complex for small organizations. The main goal of this thesis is to address
this deficiency.

There are three main contributions of this thesis. First. an assessment of a par-
ticular small software company. NewCo. is performed to identify the quality issues
of small software organizations. Second. a Quality Framework that is affordable.
effective. scalable. usable and aids in out-sourcing of quality is proposed. The qual-
ity framework provides support for performing quality activities in a small software
organization. Third. the quality framework is prototyped using a semi-automated
tool developed as part of this thesis work in order to help NewCo perform quality

activities.

Acknowledgements

First of all. I would like to express my sincere gratitude to my husband Kaladhar
for his love. support and patience. He was always willing to listen and read. As my
toughest critic. he helped make my work better. My love and gratitude to my parents.
Vishwanadham. Subhadra and Syamala for their everlasting love and support. My
brothers. Murthy. Kiran and Pavan were always there for me. Thanks to my golden
retriever Ryan who helped me see the silver lining behind each cloud.

[am very grateful to my supervisors. Dr. Paul Sorenson and Dr. Jim Hoover for
their invaluable guidance and vision during my research. They were always willing
to listen to my ideas and gave me the freedom to explore them. Without their help
and guidance. this thesis could not have been accomplished. I would like to thank
the members of my examining committee Dr. Ling Liu and Dr. Michael Barrett for
their helpful suggestions. Thanks to Dr. U.M Maydell for chairing my defense.

I would like to thank Tony Olekshy for taking time off his busy schedule to attend
meetings and give feed back.

Special thanks to Narendra Raavi. Garry Froehlich. Dr. Piotr Findeisen for all the
help and numerous discussions. Special thanks to Amr Kamel for all the discussions
that led to the spiral model for quality.

Sincere thanks to Adriana and Asha for their friendship and for keeping me sane.

Finally. I would like to acknowledge the financial support offered by Josh Kolenc
of Teledvne Fluid Systems-Farris Engineering and the Department of Computing

Science. University of Alberta.

- e v e

PRy Sy

AR ks s bt o el 04 SN AT S LN R TR R ol BT]

Contents

1 Introduction 1
1.1 Motivation 3
1.2 Outlineofthe Thesis 1

2 Background 5
2.1 Small Software Organizations 3
2.2 Characteristics of a Small Software Organization 6

2.2.1 Strengths of a Small Software Organization 6

2.2.2 Weaknesses of a Small Software Organization T
2.2.3 Differences between a Large Software Organization and a Small

Software Organization T

2.3 Quality System for Small Software Organizations 8

2.4 Process Models for small software organizations 10

2.4.1 Waterfallmodel oL 11

2.4.2 Prototypifig ot e e e 11

243 Spiral Model oo oo 14

2.5 Conclusions and Recommendations 14

3 Case Study 16

3.1 Background - Quality Standardso 16
3.1.1 Capability Maturity Model (CMM) 16
3.1.2 ISO9001. o e 18
3.1.3 Bootstrap e e e e 19

3.1.4 Software Process Improvement and Capability dEtermination

(SPICE) o 20

e w a ——

o7 SIS 4 I N Ty

LAl CRERTVRN

AT s e,

ot

3.2 Choice of Assessment Approach
33 NewCo e
3.3.1 Characteristicsof NewCo.
3.4 SPICE Assessmentof NewCo
341 AssessmentPlan,
3.42 AssessmentResults
3.4.3 Initial Improvement Opportunities
3.5 Summaryo e e e e e e e

The Quality Process and Quality Framework

4.1 Quality Process L o
4.1.1 Quality Spiral 0: Base-lining the process
4.1.2 Quality Spiral 1-Onward: Process Evolution Cycle
4.1.3 NewCo Quality Spiral

4.2 Quality Framework Lo L oo oo

1.3 Properties of the Cuality Framework

4.4 Defining a Quality Framework
4.4.1 Automated Support

1.5 Summary e e e e e e

Components of the Quality System

5.1 Reviews e
5.1.1 Walk-throughs
5.1.2 Inspectionso
5.1.3 Technical Reviews

5.2 Metrics L e e e e
5.2.1 Collection of measurements

5.3 Interpretation of quality information

5.4 Summary ... L e e

Design and Implementation of the Quality System
6.1 Requirements of the Quality System

6.2 Architecture L

6.2.1 Database Design
6.22 Reports
6.3 Implementation of the quality system
6.4 Conclusions e

Contributions and Future Research
7.1 Contributions « . v v e e e e e e

7.2 Future Research e

User Manual
A.l LoginForm
A2 Options Form
A.3 Work-Product Information o o000
A.4 ChoosetheReview
A3 ReviewProcess Lo oo
A5.1 ReviewForm Lo L.
A.5.2 Individual Problem Form
A.6 Inspections L
A.6.1 Project Identification Form
A.6.2 Inspection Performance Form

A.6.3 Individual Problem Report Form

Reports

b
1072

Change/Query Form

B Technology Review

B.1 Requirements for the quality system.
B.2 Tools underreview
B.21 LotusNotes
B.2.2 Intranet

—

ST
ST
90
90
90
90
93
93

List of Figures

2.1 Experimental Prototyping 12
2.2 Exploratory Prototyping 13
2.3 Evolutionary Prototyping 15
4.1 The Spiral Model for Process Improvement 33
4.2 The Spiral Model for Process Improvement for NewCo 36

4.3 A model for interactions between Development and Quality processes 41

4.4 Work-product interaction between development and quality processes 43

5.1 Sample Company Profile 56
6.1 Entity-Relationship Diagram 61
6.2 Overview e e e e e e e e e 69
6.3 Reviews and Inspections L. 70
Al Login Form oo 32
A.2 Options Form Lo oo 34
A.3 Work-Product Form 35
A4 Choose Form 36
A.5 Review Information Form 38
A.6 Individual Problem Form 39
A.7 Project Identification Form 91
A.8 Inspection Performance Form 92
A9 Defect Form 94
AlOReports e e e 95
A.11 Process Improvement Reports 96

A.12 Change/Query Form L 97

List of Tables

6.1 Problem Table.o 60
6.2 Reason Table 62
6.3 Work-product Table 62
6.4 Inspection Table 63
6.5 Review Table oo oo 63
6.6 Measurements Tableo L. 63
Al Login Form 82
A.2 Work-product Form oo oo 33

A3 Problem Form o e e e e e e 90

S

o

- T AT e

G A eIy AT o

Chapter 1

Introduction

As computing power continues to increase. software solutions are being developed
for newer application domains. Presently. software plays a role in various aspects of
human life. from rockets to health care. Not surprisingly. a number of organizations
have sprung up in order to meet this need for software. Among these are small
organizations that comprise less than ten people. Typically. these organizations have
few resources in terms of time. money and people. The small organizations most often
develop leading edge software for new application domains or do subcontracting work
for larger companies. In order to gain acceptability in the marketplace for their
products or to obtain contracts from the larger companies. it is necessary for them
to produce high quality software in the shortest possible time.

A decade ago. software quality was determined mostly by its functionality. Com-
petition and the need for highly reliable computer systems have forced software sup-
pliers to create quality software that does more than simply meet its functional re-
quirements. Quality. in the broader sense. is defined in the International Standard

Quality Vocabulary [[SO86] as:

The totality of features and characteristics of a product or service that bear on its

ability to meet stated or implied needs.

This notion of quality is heavily based on customer satisfaction. assuming that
customers will be satisfied if their stated and implied needs are met. In order to

satisfy customers consistently. quality must be built into the software process through

R aaa LT o 2l SRUTIERV TIPLL LY L LA

R i e e T T

all the phases of the product life cvcle. from requirements capture to development
and support [SC94].

Quality may be measured by customer satisfaction. but more tangible methods
of measuring it have been identified and used. Assessment of the process used to de-
velop a product provides an indication of the quality of the product and is one of the
methods used to measure quality. Several assessment methods have been proposed
and several are used to assess and improve the quality of the software process. The
Capability Maturity Model (CMM)[PWG93], Software Process Improvement and Ca-
pability dEtermination (SPICE) [Dor93] and ISO 9001 [cou94] are a few of the popular
international standards that have been developed to assess software process quality.
But these standards are geared towards large organizations and hence are too all
encompassing for small organizations. This thesis investigates this gap and attempts
to fill it with a quality framework for small software organizations that provides the
necessary support for performing quality activities.

In this thesis. a model is defined and tools created to support process improvement

for a small software organization. The specific objectives of our study are to:
1. define the characteristics of a small software company:

2. assess a small company to evaluate its current process quality based on a suitable

software standard:
3. identifv the areas that need improvement:

1. develop a quality framework that supports the quality activities in an organi-

zation;

5. prototype a quality system that is an instantiation of the quality framework
and provides functionality for:

(a) collecting measurements;

(b) performing quality activities such as reviews/inspections:

(c) performing individual problem tracking and traceability in support of root

cause analysis:

SN E TR TR T ATd e

(d) providing reports for analysis.

Section 1.1 discusses the motivation for this thesis in greater detail. Section 1.2

outlines the remaining chapters of the thesis.

1.1 Motivation

The motivation for this research is the fact that small software organizations have
few resources in terms of time, people and money and therefore cannot perform many
of the recommended quality activities. The small software organization may need to
comply with given standards if they want to sub-contract with larger organizations.
Small organizations recognise the fact that the quality of a product depends greatly
on the kind of the process used to produce that product. But they do not have the
resources to perform quality activities recommended by existing quality standards.
Progress from an assessment to the implementation of a quality process requires
guidance (as in the CMM). Tool support. as provided for example in EssentialSET!
is also desirable.

The objectives of this r«search are to :
e propose a quality model that is effective. affordable. scalable and usable:

e examine the feasibility of a small software organization out-sourcing its qual-
ity assessment and improvement activities. That is. an outside agency would
perform these activities for the organization so that thev can concentrate on

product development.

A number of questions are considered in this investigation. Three of the most

important are:

e What are the quality activities that can be enacted by a small software devel-

opment organization without significant drain on essential resources?

o What is the tool support that can be provided in order to perform the quality

activities?

!'EssentialSET is a trademark of Software Productivity Centre.

R TR B R TE s

P TR RETTRY TR TR AT S T A T T R

o vhes TEREERARTE A OERE T

e Can the interfaces between the quality and development activities be clearly

defined so that small organizations can out-source their quality activities?

These issues are a major focus of the thesis and are discussed in the following

chapters.

1.2 Outline of the Thesis

This thesis is organized as follows. Chapter 2 presents an overview and definition of
small software organizations and their characteristics. The second half of the chapter
focuses on the quality system and process models pertaining to small organizations.
This chapter concludes with recommendations for small organizations about the de-
velopment models to use. In chapter 3, an overview of the current standards is
presented. This chapter provides the SPICE assessment of NewCo as a case study
and identifies improvement opportunities. Chapter 4 provides our quality process
and our proposal for a quality framework that is effective. affordable. scalable and
usable. Chapter 5 outlines the components of the quality system based on the SPICE
assessment. Design and implementation aspects of the quality process are described
in Chapter 6. Finally. the thesis concludes in Chapter 7 with a summary of the major

contributions of this research. followed by suggestions for future research in this area.

Chapter 2

Background

This chapter presents the main characteristics of small software organizations and
process models that apply to them. Section 2.1 and 2.2 gives a general classification
of small companies. Section 2.3 discusses the necessary properties of a quality system
for small software organizations. Section 2.4 discusses the generic process life-cycle

models.

2.1 Small Software Organizations

Small companies have been defined in a number of ways. The Canadian government

defines a small business as[SS8S]:

A small business is a firm whose gross annual revenue is less than $2.0
million and has less than fifty employees in a service sector or less than hundred em-

ployees in a manufacturing sector.

This thesis focuses on small organizations in the business of developing software
products. The type of products developed by a small software organization may be
divided into risky and non-risky ventures[Coo94]. Risky ventures are those products
that are new to the world and hence complex. Examples are the initial version of
MS-DOS or Java. Application domains where the company does not have previous
experience or expertise also fall into this category.

Low risk ventures are somewhat less ill-defined. such as improving or revising

existing product lines. or sub-contracting to a large software organization to develop

-~

R T L L

software subject to certain software standards and/or well-understood algorithms.

2.2 Characteristics of a Small Software Organiza-
tion

In this thesis, a small software organization is defined based on the number of people

in the organization because this measure offers the following advantages [Sir82]:
e I[nflation Proof: unaffected by changes in the purchasing power of the dollar:
e Transparent: easy to see and measure:

e Comparable: allows comparisons in size between companies in the same indus-

try:

e Available: the number of employees in a company is easily available whereas

information such as yearly revenues may not be as easily available.

The Corporate Directory {Inc96] listing of all computer organizations for the city
of Edmonton in the vear 1996 showed that approximately 78% of nearly 400 orga-
nizations had 9 emplovees or less. Even if 10% of these organizations perform non-
software development functions. there is still a large percentage of small organizations
producing software.

Specifically. we define a small software organization as:

A small software organization is one that is a primary producer of relatively

new software and which has between four and ten employees.

2.2.1 Strengths of a Small Software Organization

A small software organization has the following strengths:
e employees perform cross-functional tasks:;

e they have a flat organizational structure (that is. there is little or no manage-

ment hierarchy):

6

e

e communications are informal but effective. Each member usually knows what

the other members of the team are working on;

e more hours are likely to be donated. That is, team members work longer hours

without getting paid overtime but may be remunerated with shares in the com-

pany;

e very efficient in the use of resources because each emplovee is expected to be

actively involved in the company activities at all times:

e responds much more quickly and with less cost to changes in the market needs.

2.2.2 Weaknesses of a Small Software Organization

Small software organizations also have limitations:
e fewer resources in term of time. moneyv and people:
e generally. not many activities take place in parallel:

e communications and management are informal and therefore important deci-

sions may not be recorded:

e quality activities generally take a back seat because of the drain on resources

to verifv quality:
e the loss of team members can incapacitate the project: and

e new opportunities are difficult to undertake because they require a large number

of additional resources.

2.2.3 Differences between a Large Software Organization and
a Small Software Organization

o Large software organizations have a lot of resources in terms of people. money

and time.

e A lot of activities take place in parallel in large software organizations. For

example. quality assurance is typically carried out by a group separate from rhe

. A ————

MR AR R LG IR

development group. By necessity. in small software organizations. the quality

assurance and development activities are performed by the same people.
e Large software organizations have a well-defined organizational hierarchy.

¢ Teams work more independently in large software organizations and typically
do not perform cross-functional tasks. Therefore, one set of team members may

not be aware of what other team members are doing.

o The communication lines are more formal in large software organizations. There

are defined protocols for many of the communications.

o There is an opportunity and usuallv an expectation for the development and
quality activities to be well defined and well documented in large software or-

ganizations.

2.3 Quality System for Small Software Organiza-
tions

A software process is a sequence of steps required to develop or maintain software
[Hum95]. Specifically. a software process provides the technical and management
framework for applying methods. tools and people to the software tasks. A process
definition is the detailed definition of the software process. Defining and developing
the process is a time-consuming task. In principle. by using processes defined by a
previously successful project. time and resources can be saved. As a process is en-
acted (used). it may need changes and it is only a well defined process that can be
improved. For example. some parts of the process may be badly defined. or some
steps may not be followed. Changes to the process can then be made to address
the problems. Thus the process improves with use and experience. The software
process quality is defined by how well the process definition fits the actual process.
The software process definition should identify what quality assurance activities have
to performed and how. The quality activities may be reviews. inspections, testing
activities or collection of measurements. For example, developing code from design is

a development activity. Performing reviews on this code is a quality activity. Mea-

s e e At

surements have to be collected in order to measure the effectiveness of the quality
activities. Based on these measurements. changes may be made to the quality activi-
ties. In large software organizations, a separate group performs the task of developing
quality and development processes. and improving them.

A small software organization has few resources in terms of time, people and
money and cannot afford to have a separate quality group. But current software
standards assume the availability of a number of resources to the organization that
wants to perform the recommended quality activities. Since small software orga-
nizations have limited resources, a quality system for such organizations must. by

necessity. be effective. affordable. scalable and usable.

Effective
Webster's dictionary [Web88] defines effective as:

causing or capable ¢ causing a desired or decisive result

Assuming proper use of the quality system. its effectiveness can be measured
during a formal assessment of the organization. Since the organization’s pro-
cesses will mature as the quality activities are performed. comparison of as-
sessment results betore and after the use of the quality system will provide a

measure of effectiveness of the system.

Affordable
The quality activities that are suggested to a small software organization must
be within their resource limits. The quality activities should help a small orga-
nization do their development work better. For example. if for every 100 hours
of development work. an organization performs 10 hours of quality activities.

the result should be equivalent to at least 120 hours of development work.

In order to enable small software organizations to perform quality activities.
they should be supported by tools that help in automating some of the tasks.
Any quality system that is proposed should not have too much overhead in

terms of learning curves or startup time.

Scalable

A AP T AR TR - PR P § AR W AT et Rt

LEEE L TRt

NET TSN St gy s -

Scalability may be defined as the degree to which architectural. data or proce-

dural design can be expanded [Pre92].

As the organizations grows by hiring more people, getting more projects. in-
creasing its process maturity, the quality requirements change. For example.
as the organization’s processes mature, different types of measurements will be
collected. The quality system should be easily extendable and flexible to meet

the changing needs of the organization.

Usable
The ISO (International Standards Organization) definition of usability is the
effectiveness. efficiency, and satisfaction with which a specified set of users can
achieve a specified set of tasks in particular environments. This ISO definition
is operational in nature, requiring task and user definition, and requiring the

means for measuring effectiveness, efficiency. and satisfaction.

A common sense definition of usable is a software product that is easy to learn.
efficient to use. recovers quickly from errors and is easy to remember. The tool
support that is provided for the quality system must be easy to use and must
have a low learning curve. The tool should not be perceived by the developers

as being intrusive.

2.4 Process Models for small software organiza-
tions

A defined process model is an essential component of well-managed software develop-
ment. This principle is fundamental to the assumptions behind ISO 9001 and SEI's
Capability Maturity Model. A software organization’s process model depends on
the type of applications/product that are being developed. If the software organiza-
tion develops products in areas where the specifications are stable. for example. text
editors or compilers. the organization may use a waterfall model [Roy70].

But if the organization is developing products in areas where the requirements
are not fully understood or if the team does not have expertise in the application

domain. a risk assessment based model such as the spiral model {BoeSSh] should be

10

Ldhrudn XINL B

DLt it et et et e be bt i deianad sadas o bl Sxi AL N A2 i dndiiig et A e e b SR

used along with prototyping to further reduce risk. A brief overview of the process

models is give below.

2.4.1 Waterfall model

The waterfall model [Roy70] views the software process as a series of activities per-
formed sequentially: requirements specification. design, implementation, testing. Af-
ter each phase has been defined. development proceeds to the next stage.

The waterfall model is a serial model. that is, development moves from one stage
to another only after the previous stage is fully completed. In most cases. the require-
ments are not always clear at the start of a project and change frequently. Therefore.
even if project development continues under the assumption that all requirements are
stable. changes in requirements force iteration through all the phases again. There-
fore. a waterfall model is optimum only in application domains where the requirements

are stable or well defined at the start of the project.

2.4.2 Prototyping

A software prototyvpe is a partial model of a system used to investigate the system
requiremnents and specification and to test the feasibility and reliability of the design
{MWO1]. It helps in the discovery of missing or faulty requirements and to avoid the
unnecessary use of resources in developing the wrong product [Wal94]. Prototyping is
also an effective technique of risk management [Wal94] because it prevents the com-
mitment of major resources without evaluation. Since small software organizations
do not want to waste resources developing the wrong product. such risk management
techniques are recommended [Boo93]. There are different approaches to prototyping

[MW9IL]:
Experimental Prototypes

Experimental prototyping [Wal94] is used to clarifv the design specifications that
form the basis for implementation. These types of prototypes are used to support
system design. These prototypes involve mostly the developers who wish to evaluate
the architecture of the system. Such prototypes are generally thrown away. The

advantages of experimental prototyping are[Wal94]:

L1

LR iy N i iniahal

Design /
Architecture

| .
i Design/ I

mhiteczure

)

Prototyping
the design

U OV

]

Evaluating
with
developers

Figure 2.1: Experimental Prototyping

e early testing of system architecture and design:

e verification of intermodule interaction:

e consistent and complete specification of system components: and

e an extension to static design reviews.

A major disadvantage of experimental prototype development is the additional

cost and effort involved which can delay the project.

Exploratory Prototypes

Exploratory prototyping (see Figure

2.2) is used to clarify parts of the system and to

examine alternative solutions. Exploratory prototyping is informal and unstructured

and the prototypes are generally thrown away. The advantages are[Wal94]:

e Specification problems are dealt with early in the project at a lower cost.

12

§ ey e gy

P N A

R e e O SLT R TR T

—_—
Collect Requirements;
! specification |

L

A i

|
| Requirements
|

: Prototype
E UI & System

Y

Evaluate
with
customer

Figure 2.2: Exploratory Prototyping

o Besides the user interface. parts of the functionality of the system are also

modelled and tested.

e The language and communication problems between the developer and user are

eliminated.
e The user’s goals and needs are validated with a working system.
The disadvantages are:
e There is a danger of the user assuming that the prototype is the real system.

o If the prototype becomes part of the final product. the system might become
brittle at a later stage. This is because no quality assurance has been performed

for those parts of the system.

o A small software organization has very few resources and a throwaway prototype

wastes these resources.

13

R e T

bttt

A

Evolutionary Prototyping

Evolutionary prototyping depicted in Figure 2.3 is used to refine a solution gradually.
The prototype is refined as the nature of the problem is revealed over time. There-
fore, a fully functional system is iteratively built and tested as new requirements are

uncovered. The advantages are[Wal94]:

o The prototype is the manageable part of the system specification. Therefore. the

problem of incomplete or faulty requirements can be solved using this technique.

e Maintaining code and documentation is easier because maintainence require-

ments are in sight from the start.

e Quick validation of requirements is possible on a working system.

This technique has the disadvantage that it is very sensitive to the quality of
the architecture and therefore must be designed properly. The process of building
the svstem must follow a life-cvcle model incorporating quality activities. otherwise

changes will just be patched into the system which makes it brittle in later stages.

2.4.3 Spiral Model

The spiral model[{Boe88b] is a risk driven model in which tasks are evaluated relative
to their risk. Prototvping may be used as a risk reduction mechanism. This model
may encompass other models as parts of its spiral.

Since software packages are products. product development process models can
be used to develop software. Cooper’s model [Co090] is an iterative model where
the technical and marketing activities take place in parallel. There are frequent
evaluation points. called gates. between stages where "Go/No Go™ decisions are made.
The principal stages in the model include: idea generation, preliminary assessment.

secondary assessment. development. testing. and launch activities.

2.5 Conclusions and Recommendations

In summary. a small software organization has few resources in terms time, money
or people. As a result. any quality system that is introduced must be effective.

affordable. scalable and usable.

14

——
{ Requirements
Collect .
| R ‘ specification
Requirements; i
I
""""" 0
Explorative :
Prototyping .
H Design
: Experimental :
: Prototyping :
Y
Implement

Test

Figure 2.3: Evolutionaryv Prototyping

We argue that a small coftware organization developing new products where the
requirements are not fully understood should use a spiral model with evolutionary
prototyping. This is because the spiral model helps in assessing and mitigating risk.
The evolutionary prototype method helps in incrementally adding new requirements
and improving design.

Evolutionary prototyping has the advantage that all requirements need not be
known at the start of the project. The subset of the requirements that are understood
are built into the prototype in the first release. The remainder of the requirements
are subsequently built into the system using iterative refinements of the prototype.
Small software organizations do not have enough resources to build and then throw

away prototypes. Therefore. evolutionary prototyping is recommended.

Chapter 3

Case Study

This chapter provides an overview of quality standards and the SPICE assessment of
NewCo. Section 3.1 provides an overview of several current standards including the
Capability Maturity Model. [SO 9001. Bootstrap and SPICE. Section 3.2 outlines why
SPICE was chosen. Section 2.3 describes the characteristics of NewCo, the company
undertaking the SEAF! project development. Section 3.4 and 3.5 outline the formal

SPICE assessment performed on NewCo.

3.1 Background - Quality Standards

Software organizations that want to compete in today’s market need to have in place
a mature software development process or mechanisms to progressively improve their
software development process. That is, not only do they need to have a process.
but thev need a way to improve that process. To this end. a number of assessment
methods have been proposed and used in order to assess process quality. The purpose
of these assessments vary from wanting to establish that an organization has adopted
some of the best practices (eg. ISO 9001) to wanting to identify areas of process

improvement (eg. CMM). Some of the popular methods are outlined in this section.

3.1.1 Capability Maturity Model (CMM)

The Capability Maturity Model for software [PWG93]. developed by the Software
Engineering Institute(SEI). is a framework that describes an evolutionary improve-

ment path from an ad-hoc development process to a mature disciplined development

iSize Engineering Application Framework

16

raThes e vy

hiniadab R o dt] L RN

Sl LR e 2l TRE T, T

oW W -

process. The CMM recommends practices for planning. engineering and managing
software development and maintenance processes which improve the organization’s
ability to meet goals for cost, schedule, functionality and product quality. The CMMI

is organised into five maturity levels. The five levels of maturity are:

1. Initial:
The software process is characterized as ad-hoc and occasionally chaotic. Few

processes are defined and success depends on individual effort and heroics.

2. Repeatable:
Basic project management processes are established to track cost. schedule and
functionality. The necessary process discipline is in place to repeat earlier suc-

cesses on projects with similar applications.

3. Defined:
The software process for both management and engineering activities is docu-
mented. standardized and integrated into a standard software process for the
organization. All projects use an approved. tailored version of the organization’s

standard software process for developing and maintaining software.

4. Managed:
Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and con-

trolled.

5. Optimizing:
Continuous process improvement is enabled by quantitative feedback from the

process and from piloting innovative ideas and technologies.

Each maturity level is decomposed into several kev process areas that indicate
where an organization should focus in order to improve its overall process. Each keyv
process area is described in terms of kev practices that contribute to satisfving the
goals of the area. The key practices describe the infrastructure and activities that

need to be performed for effective implementation of the area. A Software Engineering

TR e e o S YR

B R Do LALEL gkl Loate aes a ol ala baectin bl e S s SRR 4

AEEEER LN

feaninh Lot g

A s A S g

Process Group (SEPG) is recommended that oversees the process activities in an
organization.

The CMM has a number of disadvantages[Sil92]: it institutionalizes quality as-
surance and process groups, does not provide any software support and provides no
quantitative process-performance metrics.

The CMM does not address issues that pertain to expertise in a particular appli-
cation domain: nor does it advocate specific tools. methods or software technologies.
It does not address issues related to human resources. concurrent engineering. team-

work. change management or systems engineering [SK93].

3.1.2 ISO 9001

[SO 9001. developed by the International Organization for Standardization (ISO). is
the management system standard for quality in manufacturing. A key goal is the
establishment of uniform methods of quality assurance across international borders.
The standardized quality assurance programs are intended to result in less costly. more
reliable products for customers. [SO 9000-3 is the guide for interpreting the ISO 9001
guidelines as thev apply to the development. supply and maintenance of software. The
only meaningful certification for a software producer is ISO 9001/9000-3.

ISO 9001 assumes that products are manufactured in a formal contractual envi-
ronment where the specifications are correct and do not change{Coa94]. But this is
generally not true in the development of software products. Software products are
complex and inherently hard to scope. develop. verify and maintain. Therefore. there
is a need for a quality approach focused on continuous improvement. [SO 9001 does
not support continuous process improvement[Coa94] and partially addresses areas
that are important to the development of a good quality software product: human
resources. management commitment. marketing, processes. technology and capital.
ISO 9001/9000-3 certification is heavily dependent on the experience of the auditor
and is awarded if the auditor is satisfied that the processes are in place. The certi-
fication does not provide any detailed information as to which processes are mature

and which of them need to be improved.

p—
Ve

R R e

3.1.3 Bootstrap

Bootstrap[HMK+94] was a project performed as a part of the European Strategic
Program for Research in Information Technology (ESPRIT). Its goal was to develop
a method for software process assessment, quantitative measurement, and improve-
ment. A basis for Bootstrap was the adaption of the SEI's Capability Maturity Model
to the needs of European non-defense industries such as banking. insurance and ad-
ministration. Bootstrap is a method that could be applied to a number of software
producing units. including small to medium sized software companies or departments
within a large company.

The Bootstrap method has the following major elements:

¢ a hierarchy of process-quality attributes from ISO 9000-3 guidelines for software
quality assurance and European Space Agency’s PSS05 software engineering

standards.

¢ a refinement of the SEI approach to maturity level calculation for each process

attribute.

e an enhanced SEI questionnaire that can be used as a part of the determination

of an organization's capability for quality attributes.

The Bootstrap method uses questionnaires based on the ISO 9000-3 guidelines so
that organizations can assess their compatibility with ISO 9000-3. Three different
kinds of questionnaires are used to extract information about the organization. its
methodology and technology[Koc93].

Though Bootstrap is based on the SEI methodology. there are a few basic differ-
ences. The CMM is a sequential methodology. that is. scores on the next capability
level are considered only if nearly all key questions are answered affirmative on the
previous levels. Bootstrap assesses all the processes at all levels. For example. sup-
pose an organization has an efficient methodology and a standardized way of creating
documents. but does not have an efficient project management method. With the
SEI methodology. the organization would be at a level 1 overall; but with Boot-

strap method. it might be rated a level 1 for project management and level 3 for

design[HMK*94]. This level of detail makes it easier to identify and plan improve-
ments.

[SO 9000-3 guidelines do not cover risk management and modern programming
practices such as reuse, library management and user interface prototyping. Bootstrap

is widely used in Europe.

3.1.4 Software Process Improvement and Capability dEter-
mination (SPICE)

SPICE [Dor93] is an international collaborative project under the auspices of the
International Committee on Software Engineering ISO/IEC JTC1/SC7 2 through
the software process assessment group, Working Group 10 (WG10). The project was
established in 1993 and provides a framework for software process assessment. [t
also embodies a sophisticated model of software process management drawn from
the world-wide experience of major Software Process Method suppliers. such as SEI
(Software Engineering Institute). and European Bootstrap Consortium. as well as the
experiences of Bell Canada and British Telecommunication.

The SPICE document set is a nine part document providing among other things:
e a framework for determining key process strengths and weaknesses:

o a framework for improving the software process and to measure such improve-

ments: and

e a framework for determining the risks of a business considering the development

of a new software product or service.

The embedded reference model is based on the principle of examining the practices
used to implement the process to determine the capability of that process. The
practices are grouped in two categories: Base Practices. that are specific to the process
being assessed and Generic Practices that apply to all processes. Base Practices
provide an indication of achievement for the process. On the other hand. Generic

Practices indicate how well managed the process is.

2International Organization for Standards/International Electrotechnical Commission Joint Tech-
nical Committee 1 (responsible for Information Technology)/Sub Committee 7 (responsible for Soft-
ware Engineering).

20

LMY et A W N A T TRV A A Sa

The model is a two dimensional. In the process dimension. it defines 29 different
processes grouped in five categories: Customer-Supplier (5). Engineering (7). Sup-
porting (8). Management (4) and Organizational (3). On the other dimension. the
capability dimension. the model defines nine different capability attributes, grouped
into six Capability Levels: Incomplete, Performed, Managed, Established, Predictable
and Optimizing.

The main difference between ISO 9001 and SPICE is that ISO 9001 is an audit
whereas SPICE is an assessment mechanism. The main differences between assess-

ments and audits are[ESI96]:

e An ISO 9000 audit is generally performed by a group external to the orga-
nization. Audits have to be performed by independent auditors because the
standard provides a set of abstract criteria which have to be interpreted by
the auditor context: ally. The SPICE reference model has a detailed set of cri-
teria that provide guidance for the assessment. These reduce the number of

judgements made by :he assessor.

e An assessment takes a thorough look at all the processes in the organization.
Depending on the time allocated for the assessment. only a few processess mayv
be examined. Therefore. an assessment focuses on positive evidence. An audit is
typically of short duration and as a result focuses on negative evidence. Audits
are generally viewed as fault finding exercises and auditors have to get informa-
tion by careful questioning in a confrontational manner. Most assessments are

voluntary and the participants are therefore more cooperative.

e ISO 9001 is a certification. which means that if the auditor finds anv non-
compliances. certification is not granted: otherwise it is. An organization may
achieve a positive result by obstructing and smoke-screening. In an assessment.
improvement opportunities are the result. therefore smoke-screening is less likely

to achieve anything.

The ISO 9000 series standards specify the minimum requirements for a quality

system. SPICE is a process improvement methodology. The ISO 9000 series specify

ey R @ T RIRET atew s - e e

a set of generalized. abstract requirements whereas SPICE specifies a detailed set of
process indicators.
The CMM and SPICE have similar applications, but there are several differences

between them:

e CMM is organised into five maturity levels: Initial, Repeatable, Defined, Man-
aged and Optimizing. SPICE is organized in six levels. The extra level. called

Incomplete is added.

e The CMM levels apply to a complete organization whereas the SPICE levels

apply to a single process.

o In the CMM. the sequence of improvements is built in because an organization
is not assessed for higher levels until the lower capability levels are completely
satisfiled. That is, an organization cannot be assessed for Level 3 if it has not
fullv satisfied Levels 1 and 2. As a result. it is clear what process areas an
organization has to concentrate on in order to move to the next level. But this
sequence may not be the best for an organization. The SPICE Model is two

dimensional: each process in any category can be at any level of capability.

e The CMMI provides a single figure as the capability level of an organization:
SPICE provides a process profile. The CMM assumes uniformity of processes
in an organization. This is generally not true. In small software organizations.
for example. the implementation processes are likely to be at a higher capability
level than supporting processes such as reviews. testing training. etc. A CMMI
assessment does not reflect this disparity. A SPICE assessment provides a

process profile of all the assessed processes.

Bootstrap uses questionnaires as an assessment method whereas any method of
data collection can be used for a SPICE assessment. The SPICE model is life-cvcle

independent whereas Bootstrap is tailored to the waterfall life-cycle model.

3.2 Choice of Assessment Approach

The CMM is geared towards large organizations and assumes uniformity of processes

across the organization. It does not take into consideration aspects that are kev to

)

T AT A

SRR LAY Oy

ey O

a small organization: highly competent staff. use of tools and how to use technology
and automation to increase process efficiencv[BM91]. An assessment profile is more
useful for an organization that wants to improve its process: a capability level does
not provide the same information. A study conducted by Johnson and Brodman
[BJ94] found that small businesses could not implement CMM because of a shortage
of resources. The research found that many of the CMM practices are not applicable
to small projects. Another study conducted on a medium sized company [CFL95]
showed that companies are well aware of their short comings and are more interested
in how to put the improvements in place. This area is not very well addressed by the
CMM.

The SPICE assessment. on the other hand. evaluates each individual process in
an organization. rather than a whole organizational unit. The assessment considers
the use of tools and technology. Since we are dealing with a small organization that
does not have a defined process. SPICE assessments seemed much more useful for the

current process improvement goals of NewCo and was therefore selected.

3.3 NewCo

A Size Engineering Application Framework is currently being developed by a startup.
small software organization in co-operation with the Software Engineering Lab at the
University of Alberta and an industrial partner. The small software organization.
NewC(Co. is an outgrowth of an engineering and manufacturing firm. Teledyne Fluid
Systems - Farris Engineering based in Edmonton. Its mandate is to produce engi-
neering tools for the petrochemical industry. The project was divided into a set of

parallel sub-projects [Ole96].

o Avra. the Small Enterprise Quality Process product. is a System Development
Process (SDP) model for applyving modern software engineering techniques and

technologies to programming in the small to medium.

e Soros is the suite of engineering tools that will be produced by NewCo. Soros

encapsulates the goal of applying our research results to product development.

e Soros/SM is the principal test project. This is a product instantiated from

the developed framework.

e Kalos is the system architecture and application framework technology for

Soros.

e Libras is the distribution mechanism for tools and techniques produced by

NewCo.

e Mesa is the group-ware and development environments used by NewCo devel-

opers and quality specialists.

3.3.1 Characteristics of NewCo

Apart from the characteristics of small organizations defined earlier. NewCo has the

following specific characteristics:
e During pre-beta prototype development few quality activities are performed.

e The development environment of NewCo is distributed. Each employvee is at
a different physical location and communication is achieved via e-mail. phone

and internet technology. Occasional face-to-face meetings also occur.
e New(Co has between four and six employees.]

¢ A non-functional requirement and quality goal of NewCo is ISO 9001 certifica-

tion.

Since the company recognizes the importance of a quality process in order to
produce a high quality product. a process improvement program was launched as the

product release phase of development commenced.

3.4 SPICE Assessment of NewCo

The following section outlines the context of the assessment. its objectives and results.
The Assessment of NewCo was performed using the SPICE standard. Three assessors

performed the assessment of which one was a second party assessor and the others

24

D o b ——

TURTA AT AHGIA Y, L

ARl dat e E Rt

o mteye yrien (el VR Y Net S0 0

SETEITIETY AR TR A e s

were part of the quality team at NewCo. Information was collected by one-to-one
interviews and verified using available documentation.
At the time of the assessment. NewCo was not fully staffed and the product was

in the pre-beta stage.

3.4.1 Assessment Plan

The objectives of this assessment are:[KV96].

1. Provide detailed information to support the ongoing process improvement ini-

tiatives at NewCo: more specifically to:

e establish a baseline for the current state of practice at NewCo:

e identify measurable targets for the process improvement program.

2. Provide information to support building an ISO 9000-conformant quality sys-

tem.
Assessment Scope
In the assessment the following processes are assessed up to capability Level 5:
o Customer-Supplier Processes:

— CUS.1: Acquire Software
— CUS.2: Manage Customer needs

— CUS.3: Supply Software
o Engineering Process Category:

— ENG.2: Develop software requirements
— ENG.3: Develop software design

— ENG.4: Implement software design
e Support Process category:

~ SUP.1: Develop documentation

TTErSRYTE YT e Ay e L L ey T

— SUP.2: Perform configuration management
— SUP.3: Perform Quality Assurance

~ SUP.4: Perform work product verification
— SUP.5: Perform work product validation

— SUP.6: Perform joint reviews

— SUP.7: Perform audits

— SUP.8: Perform problem resolution
o \lanagement Process:

— MAN.1: Manage the project
— MAN.2: Manage quality

— MAN.3: Manage risks
o Organization Process:

— ORG.1: Engineer the business

— ORG.2: Define the process

— ORG.3: Improve the process

~ ORG.4: Provide skilled human resources

— ORG.5: Provide software engineering infrastructure

Assessment Constraints and Outputs

Only one instance of each process was assessed. The instance for assessing the pro-
cesses in the Customer-Supplier. Engineering. Management and Supporting categories
was chosen from the application area of NewCo and is Soros/SM. The instance for
assessing the processes in the Organizational category was chosen from NewCo’s man-
agement projects.

The following deliverables were available on completion of the assessment:

1. Process profiles for the assessed processes

26

PTTETMRL LTS T IARY At

R dae b Bl v LALEEE RN

2. Assessment context statement
3. Improvement opportunities report

1. Assessment final report

3.4.2 Assessment Results

The key findings of the SPICE Assessment were:

e 1.5% of the assessed processes are at Capability Level 3 (Established). 13.6% of
the processes are at Capability Level 2 (Managed). 36.4% of the processes are
at Capability Level | (Performed) and 45.5% of the processes are at Capability

Level 0 (Incomplete).

o All applicable Engireering Processes were at Capability Level 1 (Performed).

These findings indicate the adequacy of the process to develop a specific product.

e All applicable Custorier-Supplier processes are at Capability Level 3 (Estab-
lished) which was th. best overall capability level achieved in the assessment.

These findings appl: to an in-house customer only.

e All applicable Supporting Processes have the lowest Capability levels - 75% of
the processes were at Level 0 and 25% at Level 1. Based on this assessment.

later phases of development of the projects are associated with high risk.

e The assessment participants are very enthusiastic about process improvement

which indicates a high degree of success for any process improvement program.

The assessment results also indicated specific areas of improvements that the com-
pany can concentrate on in the short term. These improvements will be discussed
based on organizational needs. expected challenges and high risk areas. The areas
identified were documentation. quality assurance. and handling customer require-

ments.

3.4.3 Initial Improvement Opportunities

1. Documentation

Rl Aot ot

Suggested improvements in this area directly map to the SPICE process SUP.1
(Develop Documentation). Lack of documentation is a major problem the com-
pany faces right now. The potential problems are the high learning curve for
new recruits as the organization is expecting to expand its programming staff

soon and the loss of rationale behind the design and coding decisions.

Currently. the project does not have an overview of the required document suite.
An overview of all the documents that are to be produced in connection with
a project is needed. This overview should describe the strategy that steers all
other documentation efforts. The suite of documents. as well as the contents of

each document. has to be specified in order to properly evolve the suite.

The suggested document suite is:

A Combination of Requirements and Release Plan documentation

This document will serve the purpose of capturing the requirements and
classifving them into releases. Release Planning and Project Planning can

be performed here.

Architecture and Design Documentation
These documents will capture the design rationale and the architecture of
the system.

Test Documentation
These documents will describe the test planning. definition of tests. and
other testing related activities.

User Documentation

These documents must be delivered to the user along with the software
product and include user and reference manuals. installation manuals and
any other information that a user might require to operate and install the

software product successfully.

Templates for these documents can be used to facilitate their creation.

.')‘\’

s PRAR

Tt e

2. Quality Assurance

Suggested improvements deal with performing and managing product quality
assurance. The improvements are mapped, to the SPICE processes. SUP.2 (Per-
form Configuration Management), SUP.3 (Perform Quality Assurance), SUP.4
(Perform Work Product Verification) SUP.5 (Perform Work Product Validation)
and MAN.2 (Manage Quality).

A number of areas of improvement were identified during the assessment. but
a few areas were targeted for immediate improvement based on the priority
and risk. The three major issues we concentrate on in the quality assurance

processes are:

(a) Metrics to help in measuring the process:
(b) Reviews to help in validating the work-products:

(c) Traceability to help in change management.

Metrics To provide better management of the quality of the product. a met-
rics program should be deploved. Metrics that provide information that helps
in scheduling (time taken for any task) and process improvement (number of
defects in each phase and during reviews) are good candidates for collection. To
be effective. metrics collection should be semi-automated since the developers
have little time to record extensive logs. As a result of the SPICE assessment.
the recommended metrics to be collected are: number of defects detected dur-
ing reviews and testing. number of class interface changes. time taken to do
each task. severity of problems found during reviews and the reasons for the

problems.

Reviews Reviews help in early detection of defects. Since defects are much
more expensive to fix in the later stages of the project [Gra92]. reviews improve
the quality of the product and save time in the later stages of the project.
Currently, the SEAF project is not performing any reviews. Reviews[BL89|

should be performed at each phase of the project: requirements. design. code

249

MR R E A

and test. A checklist will be provided for each type of review to aid in the review
process. Since a formal review is beyond the capability of a small project. we
suggest that reviews be performed off-line. That is. the reviewers are notified
of the availability of the work-product that is to be reviewed. The reviews can
be performed at any time by the reviewersfWBM96a]. A form will be provided
that records the results of the review. Once each reviewer is completed. their
comments are posted to a newsgroup. The author can then read these messages

and changes can be made accordingly.

Traceability As a first step towards a useful quality assurance program.
traceability among work-products has to be established to demonstrate com-
pleteness [SC94]. Ideally. it should be possible to trace work-products back
to requirements. To accomplish this, a view of all work products with their
connections and relations to each other should be established. The traceabil-
ity network is also effective in supporting change management. because work
products affected by a specific change can easily be identified. When the re-
views are being conducted for a work-product. the related work-products are
specified. thereby establishing forward traceability. Defects discovered during
testing should be traced back through the code. the design and then the re-
quirements thereby establishing backward traceability. Since this information
is stored in a database. reports of all the modules and their related documenta-
tion can be produced. Analyzing the traceability network helps in determining
the root causes for defects. Root cause analysis aids in process improvement
by identifying those phases and parts of the system that produced the most de-
fects. Initially. the development team has to evaluate the information manually
since automatic traceability analysis would be expensive to support. Therefore.

reports will be provided. but the analysis is manual.

3. Customer-Supplier relationship

Suggested improvements in this area are mapped to the SPICE processes CUS.2
(Manage Customer Needs) and CUS.5 (Provide Customer Service). The project

does not face major difficulties in this area at its current stage. However. this

30

T T TAR AR R W At

area was identified as a high risk area. Currently the project has one person
acting as customer (the managing director). which will not be the case in the

near future.

Customer change requests are managed in a semi-formal way. Typically. a new
request is assessed with respect to its severity. Trivial requests are incorporated
directly without any documentation. and the rest are queued in a waiting list

based on their priority as assessed by the project manager.

Even though this process is acceptable at the current stage. it is doubtful that it
can handle increasing numbers of customers. A new process has to be designed
and enacted to meet the requirements of the anticipated situation. This process
should be concerned with the time frame for handling requests and keeping

customers informed.

All processes that were enacted by the process participants were defined as com-
pulsory processes. All other applicable processes were defined as optional processes.
For example. the team was already performing revision control and this was defined
as a compulsory process. The team was not performing reviews and this was defined

as an optional process.

3.5 Summary

An assessment of NewCo identified initial areas of improvement. Based on immediate
needs. priority and risk. both the developers and assessors identified traceability.
reviews and metrics as areas requiring immediate improvement. The remainder of the

thesis focuses on the improvement opportunities and support in these three areas.

Chapter 4

The Quality Process and Quality
Framework

This chapter introduces the quality process that is used as a basis of improvement
and assessment activities for NewCo. Section 4.1 presents the quality process and

Section 4.2 gives the desirable properties of the quality framework.

4.1 Quality Process

Implementing a quality system that satisfies the dvnamic nature of a small project
requires a quality model that can be tuned as rapidly as the development model. This
model must be evolutionary to allow the introduction of new quality processes.

The Spiral Model[Boe88a] of the software lifecycle allows incremental evolution
of the software development processes. It is generally accepted as the most real-
istic approach to developing complex software[Pre92]. We adopt and extend the
traditional phases of the spiral model for process improvement as depicted in Fig-

ure 4.1[KVHS97].

4.1.1 Quality Spiral 0: Base-lining the process
In this quality spiral:

e The current process of the organization is modeled (formally or informally) to

understand the type and nature of activities in the organization.

o The process is then assessed formally to quantify the starting point for the

process improvement program. and to establish the maturity level of the current

32

Pe A AR T gy AP R AEETRATIAAN ey o e

LTl

Mladeiadl Al

Determine Objectives
Alternatives and
constraints

Evaluate alternatives
Identify and resolve risks

Joint reviews

Identify improvement

opportunities
- Formal
assessment)
./ Feed back
./ from
. 4
Plan for next spiral K process
S participants

Design improvements

Implement~~-_ __
*. Improvements Tl

‘. Enact S

. ~

Update . improvements "+ _
the process *, by adding them to tha-.
model '\ current process
A
AY

\
\

Figure 4.1: The Spiral Model for Process Improvement

33

N R)

EALE

ey

P e Y et N 84 ¢

e Wy - ere .

process.

e Areas of improvements are then identified to furnish the starting point for the

next spiral.

4.1.2 Quality Spiral 1-Onward: Process Evolution Cycle

Each spiral has four phases beginning with:
e Determine objectives for the current improvement cycle:
e Determine alternatives for implementing and enacting target improvements:
e [dentifv constraints imposed on each alternative.

The intent of the First Phase (upper left quadrant) of the spiral is to determine
objectives for process improvement and identify constraints related to schedule bud-
get and process enactment. Determining alternatives addresses process architecture.
identification of best industrial practices to apply and plans for enactment of required
improvements.

The objective of the Second Phase (upper right quadrant) of the spiral is to

identify and resolve risks. As the traditional paradigm suggests. this phase includes:
¢ Identify areas of uncertainty and sources of risk:
e Evaluate alternatives relative to objectives. constraints and risks:
¢ Resolve major risk issues:

e Perform joint reviews with the process participants in order to resolve risks and

agree on areas of improvement.

During this phase. the risk of process participants resisting the full enaction of the
improvements has to be addressed. Joint reviews and the recruitment of a client
representative for the development team are typical ways to resolve these risks.

The Third Phase (lower right quadrant) incorporates improvements in the cur-

rent process. This phase includes:

31

S T T EEEERE RSt A v vwy ot 2Py

e Tailoring the current processes. and/or developing new ones in order to incor-

porate the improvements in the current process model:

e Modifying the existing process model. testing the changes (the implementation

step);
e Enacting the new/modified process.

In this phase the chosen alternatives are designed. implemented and enacted. Among
alternatives to be considered are changing process standards. process programming.
buying off-the-shelf software or introducing templates and forms.

The Fourth Phase (lower left quadrant) of the spiral is to plan for the next

spiral. This phase includes:
e Collecting feedback from the development team;

e Formally assessing the new process after it has stabilized. Assessment results
are used to quantify the current state of the process. to evaluate current spiral

improvement efforts. and to suggest areas of improvements for next spiral.

4.1.3 NewCo Quality Spiral

The process assessment and improvement activities in NewCo are based on the quality
spiral described above. Spiral 0 (Figure4.2) was the SPICE assessment performed on
NewCo (described in Chapter 3). NewCo is currently performing Spiral 1. In the first
phase. the objectives were identified as [SO 9001 certification and the constraints were
the few resources available. In the second phase. the improvement opportunities were
identified as a result of the SPICE assessment. The developers and assessors together
decided to focus on traceability. reviews and metrics based on priority and risk. In
the third phase. a quality system was designed and built in order to support these
activities. NewCo must now use the system (beginning post-Beta) and incorporate
changes that are a result of feedback from the participants. In the fourth spiral.
NewCo has to perform another assessment to measure the effectiveness of the quality

system and to identify other areas of improvement.

35

Objectives: ISO 9001
Constraints: Resources

P

Alternatives: Results of assessment

-
-
-
-

.-~ Concentrate on:

- Metrics
- Reviews
-Traceability

Identify improvement
opportunities LT

-
-
-
-
-
- /
-
-

.- Formal ,
assessment ‘

; Feed back

s
4
7
14
s

'\ "~ Implementation: Using Intrabuilder
Update .
R Enact N
model N

‘. lmprovements

AN
\
AN

Figure 4.2: The Spiral Model for Process Improvement for New(Co

36

TR ey .

4.2 Quality Framework

As mentioned earlier. since a small software organization does not have many re-
sources. it needs a quality system that is effective. affordable. scalable and usable.
We propose a quality framework that addresses these needs. The quality framework
is based on the quality process described above. The quality framework provides
support to perform the quality activities and addresses the resource constraints faced

by small software organizations. The goals of the quality framework are to:

e provide a repository of processes to choose from: and directions on how to use

the repository:
e automate some of the tasks to be performed:

e help a small software organization not only improve its process but also become

[SO 9001 compatible.

¢ help a small software organization out-source its quality assessment and im-

provement activities:

4.3 Properties of the Quality Framework

A quality framework provides support for performing quality processes. The nature
of the support should satisfy the properties: effective. affordable. scalable and usable.
But the actual processes that are performed are the ones that evolve.

A quality framework can not only help a small software organization improve its
process and product quality. but also help it in becoming ISO 9001 certifiable. It
should support out-sourcing of quality and provide automated support.

Each of the properties are discussed in detail below.

Effective
The effectiveness of the quality system (that is generated using the quality
framework) can be measured during a formal assessment such as one described
elsewhere in this thesis (Chapter 3). If the organization has used the system
and performed the recommended activities. a comparison of the results of as-

sessment before and after the use of the quality system will provide a measure

37

of the effectiveness of the system. The assessment should also identify other
improvement activities that have to be incorporated in the quality system. The
assessment activities may be performed as part of a spiral process improvement

model.

Scalable

The quality framework should provide support for the quality activities of an
organization at each stage of the product development. In addition. it should
also provide support for the processes to evolve with the development process
and be extendable when the organization changes. That is. the quality svstem
must grow or shrink to meet the needs of the organization. For example. for an
organization that is introducing a quality assessment and improvement program.
the framework will consist of only a few core components. These components

will evolve as the organization’s processes mature.

An organization may expand in a number of directions:

1. People

As an organization expands. it loses some of the properties that are special
to small organizations (see Chapter 2). For example. as the number of
people increase. it is difficult for all the team members to keep track of
what every other team member is doing. Therefore. additional processes
(such as walk-throughs) that help to keep team members informed about
the project will be needed. The quality framework must provide support
for these activities.

Small organizations generally have a flat organizational structure. but as
the organization expands. the structure will become hierarchical. There-
fore the communications which are generally informal (via phone or e-mail)
in small organizations. have to be formalized. For example. documentation
in a small organization is typically informal since each team member knows
what the others are doing. But as the organization expands. documenta-
tion has to be more structured and organized. The quality framework

could provide document templates in order to make this task easier.

SRR AR =TT OV AT ATSIR A TRETRO TR T T T A REVRAT

A

2. Process Maturity
Since one of the goals of the quality framework is process improvement. the
framework should support changes to an organization’s processes as they
mature. For example, for an organization that is introducing elements of a
quality system, reviews and collecting a few basic measurements may typ-
ically comprise of the first spiral. In the second spiral, more measurements
and other activities such as training may be identified for improvement.
The quality framework should support this change without substantial

overhead.

3. Projects
The organization may accept more contracts and work on more than one
project concurrently. The quality framework should then scale up in order
to handle more than one project. Some activities can be defined organi-
zation wide. whereas some will be special to each project. The quality

framework should allow this customization.

Affordable

The quality framework must make quality affordable for small organizations
since they have very few resources. A small organization typically cannot afford
the startup costs for a quality system such as selecting and customizing quality

assurance processes. | he quality framework can reduce this startup time.

A tvpical small organization first starts product development and begins the
quality activities toward the end of the development cycle (typically testing).
This means that the organization has to ultimately spend more time fixing
defects that could have been caught early in development. This scenario is
probable because a small organization does not have the resources to select and
customize quality processes. For example. in order to perform reviews during
development. a number of support activities have to be performed. The types
of reviews to be performed have to be selected and the measurements to be
collected should be decided upon. Then, forms for recording these measure-
ments have to be created. The storage of the measurements (in a spreadsheet.

database or on paper) has to be planned and performed. and the generation of

39

reports facilitated. All this takes time that could be spent in development and

therefore is not performed.

The quality framework helps reduce the startup time because the activities (and
their procedures) to be performed are specified. In order to further reduce the
cost, forms and templates are provided for most of the activities and generation
of reports is automated. This means that the effort expended at the beginning of
the project in order to customize the quality framework to the current project
is significantly reduced. The quality activities are performed parallel to the

development activities from project inception.

Usable
The quality framewcrk should be easy to use and learn. As the framework
is used. usability tests can provide valuable feedback about how information

should be presented and collected.

4.4 Defining a Quality Framework

In order to help a small software organization out-source its quality assessment and
improvement activities. the interfaces between the quality and development activities
should be well defined. Most of the activities in a small software development orga-
nization are development activities. Quality activities are not performed because of
the drain on the resources.

When a new project starts. a process from the pool of generic processes is se-
lected. The pool contains processes that are described in the literature and/or based
on previous experience. The generic process may be customized to suit the needs
of the project. The processes that are selected include both development processes
and quality assurance processes (see Figure 4.3). When these selected processes are
enacted. they become actual processes. Development processes are those that directly
specify. implement or maintain a product{fKVHS97]. Quality assurance processes are
employed during a project life-cycle to reduce defects. measure process efficiency. es-
timate product quality and perform other tasks to ensure the quality of the product.

The actual development and quality processes interact through the following set of

10

PR RRE Y

ettt ST

Pool of :
Pool of genenc i
i genenc Quality 1
Development Assurance i
Processes Processes |
\ Project Processes ,—
Ac[ual) Ctua!
Software, ! Quality Process
Development | urance Improvement
Activities ™~ A& crivities

Project
Deliverables

Figure 1.3: A model for interactions between Development and Quality processes
repositories:

Work-Products are the various outcomes of the development processes. \Work-
products include both project deliverables and internal items. Each work-

product should be fed into at least one other actual process.

Problems are reported as a result of failures uncovered in the quality assurance pro-
cess. including external reports from customers. They are mismatches between

expected and actual behavior.

Enhancements are recorded as external reports that focus on things such as sug-
gested enhancements and requirement changes. and do not include specific mal-

functions in the software.

Measurement Data include product and process related measurements. This data

is used as a basis for process improvement.

Work-products are produced as a result of development processes. Quality activ-

ities such as testing or reviews performed on them result in measurement data. This

41

T —————

R S]

data is analvsed and used in process improvement.

The interfaces between the quality and development activities are not clearly
defined in a small software organization because the developers typically do those
quality activities that are performed. Figure 4.4 shows the inputs. outputs and states
of each process.

The actual processes are divided into compulsory and optional processes. Com-
pulsory processes must be performed as specified. while optional processes can be
partially enacted. depending on the needs and requirements of the project at various
points in the cycle. In a small organization. the set of compulsory processes consist
of the basic development activities and most of the quality assurance activities are
informal and will initially be viewed as optional.

In a quality svstem that is affordable. any process or activity can be compulsory
or optional depending on the project context. For example, develop detailed design
should be a compulsory process for large projects. but it can be optional for small
size projects. Similarly. walk-throughs may be omitted during the alpha phase. but
instantiated during beta. The benefits and additional costs of moving a process to
the compulsory side. as well as the risks of moving it to the optional side must be
addressed.

The quality assessment and improvement activities of an organization can be out-
sourced since these are supporting activities to software development. This will help
a small organization to focus on software development. When a small organization
out-sources quality. the quality framework defines all the support needed to perform
quality activities. Qut-sourcing quality allows an organization to use customized
forms and templates that are based on the experience of other organizations. By
performing the specified quality activities. the organization can improve its processes

and become ISO 9001 certifiable.

4.4.1 Automated Support

The quality framework should provide automated or semi-automated support to the
development team for performing quality activities. Forms that help in collecting
information about reviews. provide document templates. or support metrics collection

are a few examples. Generation of reports automatically will also provide valuable

12

*AJP 9‘5 s oﬁ

pady pUe EIBp JuoLL;

~aunsgaltt oY) o5 ﬁ:«.

a8uwyo ss004d 11N

VP WUALIINSI] U}

U701 ¢ 00dg
05-5.. wms

aoS.aEE._E
0 séoum.._&_.:@

133foud yanna oy
10) s31npasoid 12198

I ATonsodsy-

EvSo.a
ouvInssR nb

rs:&»wﬂ___.%
R 5
$ampadaly ‘inQ
sa1npoosd v)
1PH : oods
asntde) totmig

SINPIIOLJ

|_eoueinssy KyRnd

£199j9p 1340381
3,

vlep/sI129J3(IO
s1anpoud y1op ‘uf
ug7044 : 2dg
amde) :amg

WDISINSEI 1991(0])

QUBINSSY

And

28uwyd opo)
§192§9p) X1

L 1) 4
stanpoad popm inQ
199J9pAud|qoI uf

s1anposd y1om ping

R L
s1anposd yiom INQ
siuataiynboy :uf

upg : oadg 1py : %ods
X1y 91818 amde) 0y
uolinjosoy wawdojaasg
walqosd 918M1}0S

@&

120f01d waLNd o
10§ saanpasord 129138

~ImgAsonsoday

saunpasosd
awdo[aaap jo
Kioyisodas ping
TSIy
$UNPA20Y I
SANPAI0IJ "A(] ‘uj
npg : dsadg
anide) :a1ng

$21NPd0LY
watudojaas(y

aoueInssy Anpend)

NS S Uy g g S S S S e R e P A R

wawdojaad() aemijog

Figure 4.4: Work-product interaction between development and quality processes

13

i At L 205 e

A EEATERE T e TR

information for analysis. The current process can be benchmarked (i.e. compared)
with historical information of the organization or with information from a similar

organization.

4.5 Summary

The spiral model has been proposed for process improvement to help an organization
plan and implement their quality assurance activities in stages. Since the spiral model
assesses the risk at each phase, the viability of the quality program at the end of each
spiral can also be measured.

The proposed quality framework provides affordable. effective. scalable and us-
able support for a small software organization to perform quality activities. The
quality framework incorporates the spiral model in order to evolve as per the needs
of the organization. The quality framework provides a means of assisting a small
software organization out-source its quality assessment and improvement activities

and providing automated support.

14

LAy ey o

Chapter 5

Components of the Quality System

The quality framework just outlined will be used as a basis for developing the qual-

ity svstem for NewCo that has three basic components as derived from the SPICE
assessment:

e Reviews

e Metrics

e Interpretation of qua' ty information

The quality framework provides the support to perform quality activities. but it is
the actual processes that are performed that evolve and change. For example. a review
process that is suggested for a small organization should be effective. affordable.
scalable and usable. That is. the review process should evolve with the organization’s

needs.

5.1 Reviews

Reviews have been classified in numerous ways. In this thesis. reviews are classified

as [Hum95. Fre90. SC94]:

1. Walk-throughs are used to educate the participants as well as to find defects.

2. Inspections follow a well defined formal process and are aimed solely at detecting

defects.

w

. Formal and Informal Technical reviews are used in order to find defects and to

discuss their solutions.

o nanddl R EL]

et ade bhibtademansl ac b o ol IR LIPS

All the above types of reviews can be applied to any tvpe of work-product (for ex-
ample. requirements. design. code. test. documentation etc.) generated in any phase
of the project. Reviews have to be held in any organization that wants to improve its
process. The kinds of reviews used may be different as the organization expands and
evolves. For example, in an organization that is introducing reviews, the review pro-
cess may be informal(walk-throughs are an example); but as the organization expands
and its processes become more mature. the process may be formalized.

A software review is an evaluation of a work-product to detect differences from
planned results and to recommend improvements [SC94]. In addition to validating

work-products, they help in [Fre90. SE93, Wei9l] the following aspects:

Communication
Reviews help to communicate technical information thereby replacing or sup-
plementing formal written documentation. Review participants learn about
languages. tools. techniques and the work-product at hand. The participants
learn how much they know compared to others and how much more theyv have

to learn in an environment that is non-threatening.

Improving schedule performance and eliminating redundant work
Reviews help in early removal of defects which means that project time is not
spent in designing. documenting and implementing something that does not
meet the requirements. If design faults are found before coding is done. or if
mismatches between the specifications and product are caught early. much of

coding and recoding is eliminated.

Confirming parts of the product
Reviews are not an alternative to testing. Testing is performed on code. but
reviews can be performed on any work-product: for example. a design document.
Therefore. reviews catch faults directly and early on. rather than waiting for
the fault to show in testing when it will be expensive to fix. Reviews are also a
method of verifyving that the product conforms to the requirements. and that it
has no faults. Performing reviews at every stage in project development helps
to achieve technical work that is uniform in quality. Reviews help in resolving

issues of design and development.

406

5.1.1 Walk-throughs

IEEE STD 1028-1988 [ANS89] defines the requirements for a walk-through and its
objectives as primarily to find defects, omissions and contradictions and to improve
the software element, and to consider alternative implementations. Other objectives
include ezchange of techniques and style variations and education of the participants.
A walk-through may point out efficiency and readability problems in the code, modu-
larity in the design or untestable design specifications.

Walk-throughs [Fre90. WBM96a] can be held at any stage of the project and
generally start with a presentation. Though the objective of the walk-through is to
find defects. the participants are permitted to make suggestions for improvement.
Walk-throughs. by their nature. ensure that a large amount of material is covered
in a short time. When the project team is large, this is an excellent way to bring
the participants up to date. Prior preparation of the presentation material or work-
product under review is not essential.

Structured walk-throughs [You89] have been defined as a group peer review of a
product. The reviewers have to find defects. but suggestions are permitted.

Since advance preparation is not required for a walk-through. each participant
will have a different depth of understanding. This may make the walk-through less
productive than an inspection. Since the participants are allowed to digress from
finding errors into discussing improvements, the rate of finding errors may not be
very high.

Walk-throughs can be performed during combined reviews with the customer.
They help in clearing up any miscommunication or misunderstandings. Design and
code walk-throughs can be used in order to communicate system components to other

designers and programmers.

5.1.2 Inspections

Inspections are a means of verifving work-products where small groups of peers man-
ually examine them to ensure that they are correct and conform to product specifi-
cations [SE93]. The main purpose of inspections are to detect defects. No attempt is

made to solve the defects or provide suggestions for improvements during inspections.

The difference between inspections and other forms of quality control such as

reviews and walk-throughs is the formality of the inspection process. A set of specified

steps are defined and have to be followed. An inspection process requires several roles:

the moderator, a reader, a recorder and one or two inspectors. There are a number of

variations of inspections but most of them follow the six principal steps [WBM96b]

defined in Fagan's inspection process [Fag76]:

1.

!\'J

Planning: When a work-product is completed and is ready to be inspected. an
inspection team is formed and the moderator is designated who ensures that
the work-product meets the entry criteria. Roles are assigned to the inspectors

and copies of the work-products are distributed.

Overview: This optional step may be necessary if the inspectors are not familiar

with the development project.

Preparation: Inspectors prepare individually by studving the work-product and
related materials. Checklists may be used to help detect common errors. IEEE
STD 1028-1988 suggests 1.5 hours per inspector preparation time: but more

time may be needed if the inspectors are unfamiliar with the project.

. Eramination: This is the meeting where the work-product is reviewed. The

moderator ensures that the inspectors are sufficiently prepared and the reader
presents the work-product. Then all inspectors look for defects. No attempt is
made to find solutions for the defect and all criticism of the author is avoided.
Examination length is generally limited to a maximum of two hours because
the inspectors ability to discover defects decreases rapidly [Fag76]. At the end
of the meeting. the team decides if the work-product should be accepted as is.

re-worked with moderator verifving the results. or reworked and re-inspected.

Rework: The defects are corrected by the author after the examination meeting.

. Follow-up: The moderator checks the author’s corrections. and if satisfied. the

inspection is closed and the work-product placed under configuration manage-

ment.

I8

Design and code inspections are necessary in order to find defects and ensure that
they meet the specifications. Estimates of between 50 to 75% of all design errors can
be found with inspections [Gra92]. Fagan's inspection process [Fag76] is a well-defined
formal process for finding defects in design and code. Since Fagan proposed this
approach in 1976, a number of variations have been created and inspections have been
successfully used in the industry [Rus91, Wel93, GS94. Fow86, BB91, GHP86]. Most
inspections require an examination meeting where defects are found. But in large
projects or projects where the team members are at geographically diverse locations.
this is difficult and a lot of time is wasted in trying to schedule the meeting. Studies
have shown that 20% of time between requirements and starting design is spent
waiting for reviewers to meet [BPV93]. A number of solutions have been proposed to
solve this problem. Some of them are discussed here.

A distributed, collaborative software inspection method [MDTR93] supports a
structured meeting and lets participants work from different physical locations. In-
spection material is present on-line and inspection records are created during inspec-
tions enabling review metrics collection. A tool called CSI (Collaborative Software
Inspection) provides support for svnchronous (discussion and categorization of faults)
and asvnchronous (individual reviews to discover faults) activities. CSI allows anno-
tation of the work-product asynchronously and synchronously by creating hyperlinks
between the document and reviewer's annotations. Discussion is supported by a tele-
conferencing tool called Teleconf which helps in recording the results of the inspection.

A computer supported cooperative work environment called CSRS (Collaborative
Software Review System) was designed to aid in performing formal. technical reviews
[Joh94]. The FTArm (Formal. Technical. Asynchronous review method) is a computer
mediated method that addresses the problems that are associated with an inspection
meeting such as insufficient preparation by the participants. moderator domination.
recording difficulties and clerical overhead. The FTArm process has seven stages that
are not dependent on the work-product or the development phase. CSRS stores in a
database the outcome of the inspection.

Inspections. as defined by Fagan, have between three and six participants. with
no management personnel. For a small organization which does not have access to a

larger group. having six participants is difficult. Therefore. a two-person inspection

44

LLAEET O LY

R anthiditeterhe Sonnadunt 8t g aanas & o JU LRI

method has been proposed [BL89] which benefits the less experienced programmers.
The two-person method is useful when the organizations do not have or are reluctant

to assign resources for inspections.

5.1.3 Technical Reviews

Design and code must be reviewed separately [Hum95] in order to save implementation
time and to make sure that the design is of good quality before doing the coding.
But the same techniques can be applied to both of them. Design and code must be
reviewed [Hum93, Fre90] in order to ensure that they meet the specifications and can
be implemented.

Informal reviews may be conducted between two or more people when they review
each others work. Since the review is informal. there are no rules and regulations and
the results are not reported to anyone other than the owner of the work-product.

Desk-checking is another form of review where a single person reviews the work-
product. The success of this approach is totally dependent on the experience of the
reviewer.

Formal design and code reviews should be performed on the most critical parts of
the system [Boo93|. The system may be reviewed in parts. and the parts that have
been approved should be coded.

Some of the strategies for design and code reviews are discussed below. Most of

the strategies review the design and code in stages [Hum93].

Round-Robin reviews are useful when all the participants are at the same level of
expertise. In this type of review. the participants take turns reviewing a portion
of the work-product. This ensures that every participant learns about the work-
product thoroughly. A number of variations of this review type are in use to
educate the programmers about the system at hand [Fre90]. The participants

can discuss solutions for any faults that are found.

Selected Aspect reviews [WBM96a] are those that concentrate on a pre-selected set
of aspects of the work-product. Specific items to look for are typically specified
as a checklist. Selected aspect reviews can be performed as a series of reviews

where different aspects of the work-product are reviewed.

30

Phased inspections [KM93] are another variation of selected aspect reviews. where
each phase concentrates on one or a small set of related properties. These
inspections may be performed by a single inspector or by multiple inspectors.
In a single-inspector inspection, one person checks the work-product based on a
specific aspect. In multiple-inspector inspections, a number (more than one) of
reviewers inspect the work-product individually and then reconcile the defects

later.

Active design reviews [PWS87] are a type of selected aspect reviews where the de-
signers ask the reviewers questions through questionnaires. The designers pre-
pare questionnaires on the work-products to be reviewed. The reviewers answer
them and may have to provide justification for accepting/rejecting the design.
This type of review helps in focusing the attention of the reviewers on specific
parts of the work-p-oduct. Overall active design reviews are also held to find
any errors that might have been missed in the specific reviews. Each review
has three stages. Thc first is a brief overview of the module presented to the
reviewers: and the re.ewers are assigned to document sections and reviews. In
the second stage. the reviewers review and meet the designers to resolve any
questions. Finally. the designers read the questionnaire results and meet with

the reviewers to resolve any questions.

Test Plans have to be reviewed before coding begins [Fre90] to make sure that
tests do not just test the code. Test plans have to identify. among other things. test
inputs and expected outputs. Walk-throughs or technical reviews may be performed.

Release review takes place between releases and re-evaluates the system boundary
and context. identifies major extensions or deletions and designs for the new release
in order to assess its impact on the existing architecture.

All documentation must be reviewed at least once [Fre90] in order to ensure that
it is technically correct. Code comments. design documents. requirements documents
are usually reviewed during their respective reviews. But any user documentation
must be reviewed separately in joint reviews with the user. These reviews may be in

the form of walk-throughs or technical reviews.

5.2 Metrics

Software metrics help in measuring the effectiveness of the process and in estimating
and scheduling for future projects. Software metrics have been defined in a number

of ways [Mil88, Cd97], but in this thesis we use Goodman's [Goo93] definition:

Software metrics are the continuous application of measurement-based techniques
to the software development process and the products to supply meaningful and timely
management information. together with the use of those techniques to tmprove process
and its products.

As the organization grows. the types of metrics collected will change. Since NewCo
is introducing a quality program. the metrics that are collected are review, inspection
and work-product related metrics. As the organization’s processes mature, the metrics
collected will be different; metrics relating to code, efficiency of a development team
etc. might be collected.

Software metrics can therefore be used in order to improve all aspects of the
software development process and its management. They can also be used to predict
and estimate the cost (in terms of time and money) of the project and any overruns.

The goal of software metrics. among other things is [Cd97]:

o Measurement of development activities to predict or estimate subsequent devel-

opment costs

e \Measurement of quality activities in order to predict or estimate subsequent

development costs to achieve acceptable product quality

e \Measurement of the development and quality work-products in order to measure

the efficiency of the process
e)Measurement of the code to measure the quality of implementation

A quality assurance system is being introduced in NewCo. Very little is available in
the literature describing experiences in the introduction of quality assurance systems.
Some suggestions are [Wal94] to introduce a basic system first in order to test the

viability of the system. The basic svstem should introduce the minimum activities

S]]
e

R g L AT =TT i A e Sl

L XY KIV P

necessary for the quality assurance program. In the specific case of NewCo. support is
provided for collecting information pertaining to reviews and inspections in the first

development spiral (See Chapter 4).

5.2.1 Collection of measurements

A reviewed work-product is complete, correct and dependable to build upon. Reviews
are therefore a reliable way of measuring project progress. Review reports provide
information about the effectiveness of the review process. number and type of defects.
action items. defect-prone components and development performance [SE93].

Research has shown that user documentation and test plans are not inspected.
design and code inspections occur late in their phase and a majority of inspections
are held in the latter half of the software life-cycle [Shi92]. For inspections to be
effective, they have to be distributed evenly across the software life-cycle.

A tool has been prototvped in order to aid in the collection and reporting of review
information. This information is stored in a database. Although most of the review
information collected is conformant with the industry practice [Fre90. SE93. BBYI.

Wel93] it has been tailored to suit NewCo's development environment.

Work-Product Identification Data is used to identify each work-product and its
related work-products. This facilitates traceability [SC94]. All information per-
taining to a work-product is collected. This information will help in identifyving
work-products that are related to the one currently under review and hence the
ones that might need revising due to changes. The specific information collected

1s:
e Project name
e Work-product name

o Work-product status (New. Tested or Modified)

o Related work-products

Type of work-product (Document, Code)

Kind of work-product (Architecture Classes. File. Document. Business

Classes)

B R I R

A NETIRG b TR W T - o ey

e Author of work-product
e Size of the work-product
Review Information Data provides information about the review. This informa-

tion helps in controlling the process and predicting the length of the review.
This information can be used to create schedules for future projects.

e Reviewer (or moderator) Name

¢ Date of the meeting

e Review type (requirements. code, design. release. test)

e Preparation time (hours)

e Examination time (hours)

¢ Estimated rework

e Actual rework

e Number of inspectors

e Work-product disposition (accept. conditionally accept. reject)

e Meeting tvpe (for inspections only : inspection. re-inspection. overview)

Product defect data provides data about each defect that was discovered in the

reviews. For a technical review (not an inspection). the reason for the defects are
also collected {Wal94] which helps in determining the major causes of defects.
Since inspections are geared towards finding defects and not the causes [Fag76].
this information is not collected for inspections.

o Location of the defect (line number)

e Description of the defect

o Defect type (requirements. change report. review report. trouble report)

o Defect Class (wrong. missing. extra)

o Severity (medium, major)

e Defect status (Open. Closed. Next Release)

Reason for the defect (technical reviews only)

54

SRR AT AEE] ReRE T T

5.3 Interpretation of quality information

The quality system will enable collection of metrics and will generate reports for
analysis. But how can an organization measure how effective the program is. or how
to use the metrics to improve the process? In order to do this, the organization has
to have a yardstick or measurement basis by which to compare the measurements.
For example. if in requirements reviews. an organization finds 10 defects. is this good
or bad? If the organization has historic data that shows that requirements reviews
detected more than 50 defects. it means that there may be something wrong with the
current review process. If there is no historical data. the organization needs to look
at similar metrics collected for similar organizations. There are a number of studies
that give estimates for large companies [Gra92]. but none as yet that do the same for
small companies.

The analysis of the quality information has to be performed by the team mem-
bers. The quality system will provide reports. company profiles and other relevant
information. In order to help in comparing and analysing the quality information.
company profiles may be used. This profile will be automatically generated at the
end of each stage of development. The company profile will look like Figure 5.1. This
profile gives an overview of the activities in the organization.

Team size and development strategy are useful metrics when comparing two
project or organization profiles. Profiles of larger organizations will be different
because theyv have more resources in terms of time, people and money. Large or-
ganizations also generally have a separate quality assurance group that makes sure
that the quality activities are being performed. Small organizations do not have the
resources for a separate quality assurance group and so each team member has to be
self-motivated in order to perform quality activities.

The time spent in each of the phases is another useful metric. Averages from 125
Hewlett-Packard [Gra92] projects show that projects invest about 18% of total effort
during specifications/requirements phase. 19% during design. 34% during coding and
29% during testing. These figures act as a sanity check for project estimates and help
in future scheduling. This data is based on large projects and could be different for

small organizations.

(1}
-t

Company Profile _for NewCo

Team Size: 5

Development Strategy: Evolutionary prototyping

Reviews
Defects Avg. Time
Requirements 3 2 hrs
Design 10 20 hrs
Code 50 30 hrs
Inspections
Defects Avg. Time
Requirements 3 2 hrs
Design 20 20 hrs
Code 50 20 hrs

Avg. defects found in testing: 100
Avg. defects found by customers: 20

Time spent in req. phase: 200 hrs
Time spent in design phase: 300 hrs

Avg. Resources
2 people

3 people

2 people

Avg. Resources
3 people
3 people
3 people

Time spent in

implementation phase: 400 hrs

Figure 5.1: Sample Company Profile

Mt W YN T PR T AT TR TAR A RS et A et

B A Al b el 3 TS TR

The resources used (time and people) versus the defects found in reviews and
inspections provide valuable data about the efficiency of the review and inspection
process. This data varies depending on the experience of the reviewers and inspec-
tors. Historical data from the same organization would provide valid information for

comparison.

5.4 Summary

The Quality Framework addresses the quality needs of a small software organization
by providing support for the quality activities. The quality framework is scalable.
affordable. out-sourcable. effective, usable and is supported with automated tools for
the quality activities. The quality system for NewCo has review. metrics. traceability

and interpretation of quality information as its core components.

-

R e R RO EE TR el il L e ol Y S

Chapter 6

Design and Implementation of the
Quality System

This chapter describes the design and implementation of the quality system that was
prototyped to provide support for performing the improvement opportunities identi-
fied during the assessment. Joint reviews between the developers and the assessment
team identified traceability. reviews and metrics as immediate areas on which to con-

centrate.

6.1 Requirements of the Quality System

The goal of the Quality System is to provide support for New(Co to perform quality
activities that are part of a process improvement program that will allow NewCo to
achieve ISO 9001 certification. The quality activities that are to be performed byv
NewCo have been identified by the SPICE assessment. Based on the assessment. the

following requirements for the Quality System have been identified:

1. Review mechanism

Two types of reviews will be supported by the system:

o Technical reviews that occur between two or more members. They should
allow participants to express ideas and consider alternate solutions. These

reviews seek to resolve issues whenever possible.

¢ I[nspections are a means of verifying products by manually examining them

to ensure correctness and conformance to specifications. Inspections are

Ealei e B ot o Dlld

aimed at discovering defects and not at resolving any of the issues that are
discovered. Issues arising from inspections are resolved after the inspection

meeting.

2. Metrics and information collection mechanism
A system that enables the collection of metrics and other relevant information

in an €asy manner.

3. Problem tracking mechanism
A system that records the problems that are discovered during technical reviews
and inspections and their status. When any of these problems are solved. the

change in status is recorded in a database.

4. Forward and backward traceability
The system establishes traceability by collecting information about the doc-
uments/code related to the document/code under review. Each problem is

tracked individually. Reasons for the causes of the problems are also recorded.

5. Report Generation
A number of reports which summarize the metrics and information collected

during technical reviews and inspections will be generated.

6. Conforming with the Quality Framework
The quality system should conform to the properties of the quality framework.
This prototype implements the core components of the quality system which

supports reviews. metrics and reports for interpretation of quality information.

6.2 Architecture

The Quality System is designed to be tightly coupled with Cafe Seaf and vet can
be disabled when not needed. The responsibility of performing reviews lies with the
development team. The quality system is user-driven. in the sense that it does not
force the development team to perform reviews.

Intrabuilder' was used (see Appendix B for the technology review) to develop the

‘Intrabuilder is a trademark of Borland Corporation

3Y

quality system because it provides easy and efficient means of creating web-based

applications as well as a database backend connected to an HTML frontend {Kru}.

6.2.1 Database Design

The Database server accesses the local tables in order to retrieve/store information.
An Entity-Relationship diagram of the tables is shown (see Figure 6.1). Each review
and inspection must be associated with a work-product. Each problem must be

associated with a work-product and each reason must be associated with a problem.

Problems Table

The Problems Table is used to store the problem-specific information. See Table 6.1

for an explanation of the fields.

| Name | Reason |
Work-product Name The name of the work-product
Location of defect The line number the defect was found on
Description of the defect | The description of the defect
Defect Class One of: Wrong. missing or extra
Severity One of: Medium. Major
Name of the problem A unique name that describes the problem
Type of problem One of: Change request. trouble report. review report
or requirements
Kind of review One of Inspection or Informal Technical Review
Status of the problem One of: Open. Closed. Unsolvable or Next release

Table 6.1: Problem Table

Reasons Table

The Reasons Table is used to store the root causes for the problems. See Table 6.2

for an explanation of the fields.

Work-Product Table

The work-product table is used to store the information specific to work-products.

See Table 6.3 for an explanation of the fields.

60

" uonuooTy

siqey, (W 3lqey,

- > qoid"uonoadsuj
uoseas qold sw9jqoid

s 2\
& quid™malroy

aunu

suoseay

IqeL

SMOIATY

ajqeL,

e,ll 190P0I YIOM |

P

S

e
— o D

wd gmheie e

T P SN

lagram

itv-Relationship D

Ent

Figure 6.1

61

B e At TV AR A -

.

Eaihed A chianila b Do} ot R R L

| Name Reason |
Work-product Name | The name of the work-product ;
Name of the problem | A unique name that describes the problem
Reason The reason why the problem occured

Table 6.2: Reason Table

| Name | Reason]
Work-Product Name | The name of work-product for which the review ‘
is being held

Related work-products | All the work-products related to the current one.
This establishes forward traceability

Tyvpe of work-product | One of: Code. Document

Kind of work-product | One of: Business Classes. Architecture Classes. Document. File .
Work-product status One of: New. tested. modified !
Size of work-product Size :
Project Name The project to which the work-product belongs

Author The author of the work-product

Table 6.3: Work-product Table

Inspection Table

The inspection table is used to store all information specific to inspections. Table 6.

gives an explanation of the fields in the table.

Review Table

The review table is used to store information specific to reviews. Table 6.5 gives an

explanation of the fields.

Measurements Table

The measurements table is used to store the measurement data that is collected.

Table 6.6 gives an explanation of the fields.

6.2.2 Reports

Measurements serve a number of functions [Gra92]. They help in estimating and
tracking project progress. achieving a desired level of quality. analvzing defects and

process improvement. But the measurements collected in each organization reflect the

62

ek e Lasad

YW - P

S WEEIEEAR E TERE RTIATR YN

lr.\" ame

Reason |

Work-product Name
Type of inspection
Moderator

Meeting Type

Date of the meeting
Number of inspectors
Rework completion date
Work product disposition
Report Name

Name of work-product

One of: Requirements. Code. Test. Release. Design
The name of the moderator of the inspection

One of: Inspection, Re-inspection and Overview
The date inspection took place

Number of inspectors

The deadline for completing the rework

One of: Accept, conditionally accept. re-inspect
The name of the file where the minor defects are
specified

Table 6.4: Inspection Table

| Name Reason

| Work-product Name | Name of work-product

Tyvpe of review Orne of: Requirements. Code. Test. Release. Design
Date of review Date the review was completed

Comments Any short comments on the document under review
Reviewer Name The name of the reviewer

Minor problems file | A file where all the minor problems are
reported. All other types of problems will
be tracked individually

U | S

Table 6.3: Review Table

[Name

{ Reason

Work-product name
Preparation time
Examination Time
Number of minor problems
Kind of review

Estimated rework

Actual rework

Name of the work-product

How long the inspectors had to prepare (in hours)
How long the inspection lasted (in hours)

The number of minor problems in the work-product
One of Inspection or Review

Estimation of how long rework would take (in hours)
How long the rework actually took (in hours)

Table 6.6: Measurements Table

63

state of that organization and cannot be transferred to another. Historical databases
have to be built for each organization and each project individually.

The information collected in the tables has to be presented to the team members
in an easy-to-read format. Queries have been grouped into a number of categories

based on their function.

1. Process Improvement Queries are those that help in measuring the effec-
tiveness of the process. These reports aid in making decisions about the need

for changes in the process.

(a) What is the reason for the most number of defects? (Incorrect understand-
ing of requirements. incorrect requirements etc..)
This query will help in finding and eliminating the cause for the most
number of errors. For example. if the most number of errors are caused
by Incorrect understanding of requirements. then it probably means that
more time has to be spent in the requirements phase in order to understand
them. Since there is evidence that requirements defects are about 100 times
more expensive to fix [Gra92] in the later stages of the project. it is well

worth the extra time spent in this phase.

SELECT problem."WP_name" , problem."Severity" , reason. "Reason' ,
(count(reason.Reason)) as Total_wp

FROM "problem.db" problem , 'reason.db" reason

WHERE (problem.WP_name = reason.WP_name)

GROUP BY problem. "Severity" , problem."WP_name" , reason.'"Reason"

ORDER BY Reason

(b) How many defects were discovered during reviews in each phase?
This report provides information about how many defects were discovered
during reviews in each phase. There are several wayvs this report can be
used. For example. if there is a large disparity in the number of defects
detected amongst phases, then the effectiveness of the review process and

review participants in certain phases should be checked.

SELECT review."Type" , problem."Severity" , review."WP_name"

6-1

Landbadng oo o d

el e it ol L i il ol ad LD o T

FRIE T P ESIMAN L et e

s e AT A]

FROM "review.db" review , "problem.db" problem
WHERE (problem.WP_name = review.WP_name)
GROUP BY problem."Severity" , review."Type" , review."WP_name"

ORDER BY "review.db".'"Type"

(c) How many defects were discovered in inspections in each phase?
This report provides information about the number of defects found dur-
ing inspections in each phase. This information helps in determining the

effectiveness of the inspection process.

SELECT inspection."Type_inspec" , inspection."WP_name" ,
problen."Severity"

FROM "“inspection.db" inspection , "problem.db" problem
WHERE (inspection.WP_name = problem.WP_name)

GROUP BY inspection."Type_inspec", inspection."WP_name",
problem."Severity"

ORDER BY Type_inspec

(d) Information about all the problems.

This report provides information about all the problems in the system
and classifies them based type of review performed (technical review or

inspection}).

SELECT * FROM 'problem.db' ORDER BY Kind_of_review

2. Status Queries are those that provide status information about the problems
discovered during technical reviews and inspections. This report shows the
problems that are closed. those that are open and those chosen to resolve in
the next release. This report helps in tracing problems that should have been

solved and have not.

(a) The status of all the problems.

SELECT * FROM "problem.db' ORDER BY WP_name

3. Traceability Queries are queries that help in tracing work-products.

65

e AT N

{a) The work-products that have been reviewed and their related documents.

This report displays the work-products and their related work-products.

SELECT problem."WP_name" , workp."Rel WP" , problem."Status" ,
workp."Author" , workp.'"Type"

FROM "problem.db" problem , "workp.db" workp

WHERE (problem.WP_name = workp.WP_name)

GROUP BY problem."Status" , workp."Author" , workp."Type" ,
problem."WP_name" , workp.'Rel_WP"

ORDER BY WP_name

(b} Information about all the work-products.

This report displays all information about all the work-products.

SELECT * FROM "workp.db" ORDER BY WP_name

1. Management Queries are queries that help in scheduling. Theyv are reports
that provide information about how long the team and each member spent
in technical reviews and inspections: how many defects were found. If this
information is compared to how much time was spent in testing and how many

defects were found. the efficiency of reviews and inspections can be assessed.

(a) Houw much time did each member of the team spend on reviews and inspec-
tions and how many defects were found?
This report helps assess the time spent by each member versus the defects
found. If too much or too little time is spent. the process has to be re-

assessed.

SELECT measure."WP_name", measure."Prep_time",
measure."Exam_time", problem."Severity',review.'"Reviewer_name"
FROM "measure.db" measure , "problem.db" problem ,

"review.db" review

WHERE (measure.WP_name

problem.WP_name)

AND (measure.WP_name = review.WP_name)

GROUP BY measure."WP_name" , measure.'"Prep_time" ,

66

v e

& ITHR T PR WRAALIT § AV Y 11T

hdeadl i 2

T ITMERELTAYRPIT v R YA s

(b)

(c)

measure."Exam_time" , problem."Severity" , review.'Reviewer_name"

ORDER BY WP_name

How much time was spent in reviews in each phase?
This report provides information about how much time was spent in re-
views in each phase and the number of defects found. This information

will help in planning for future projects.

SELECT measure."WP_name" , measure.'"Exam_time" ,
measure.'"Prep_time" , review."Type" , problem.''Severity"
FROM "review.db" review , '"measure.db" measure,
"problem.db" problem

WHERE (measure.WP_name = review.WP_name)

AND (measure.WP_name = problem.WP_name)

GROUP BY measure."WP_name'", measure."Exam_time" ,
measure."Prep_time",

review."Type" , problem."Severity"

ORDER BY WP_name

How much time was spent in inspections in each phase?
This report provides information about the amount of time spent in in-

spections in each phase.

SELECT measure."WP_name'" , measure.'"Prep_time" ,

measure."Exam_time", problem.'"Severity" ,inspection."Type_inspec"

FROM “inspection.db" inspection , "measure.db" measure ,
"problem.db" problem

WHERE (measure.WP_name = inspection.WP_name)

AND (measure.WP_name = problem.WP_name)
GROUP BY measure.'"WP_name", measure."Prep_time",
measure."Exam_time",problem."Severity",inspection."Type_inspec"

ORDER BY Type_inspec

How much time was spent in technical reviews and inspections for each

work-product?

6,

This report provides information about the time spent in each phase on
each work-product. Too much time spent on a work-product could mean
that the work-product is not well understood. or is of low quality. Too

little time spent on a work-product could mean that it needs to be further

reviewed.
SELECT * FROM "measure.db' ORDER BY WP_name

(e} How much time was spent in technical reviews and inspection and how
many defects were found?
This report shows how much time was spent on both inspections and tech-

nical reviews in each phase.

SELECT measure."WP_name', measure."Prep_time", measure."Exam_time",
measure."Act_rework', measure."Est_rework", measure."No_minorpro" ,
measure."Kind_of_review'" ,problem."Severity"

FROM "measure.db" measure , "problem.db" problem

WHERE (measure.WP_name = problem.WP_name)

GROUP BY problem."Severity" , measure."Kind_of_review" ,
measure.'"No_minorpro", measure."Est_rework', measure."Act_rework",
measure."Exam_time", measure."Prep_time', measure."WP_name"

ORDER BY Kind_of_review

6.3 Implementation of the quality system

The client uses the web browser (see Figure 6.2) to access javascript forms or reports
created using Intrabuilder. When the URL (Universal Resource Locator) is used to

request a form or report. the following steps take place:

1. The request is passed to the Web Server which passes it to the IntraBuilder

Server.

2. The Intrabuilder server retrieves the required data from the database server.

determines the correct formatting, and dynamically creates an HTML page.

6>

At s W LE Rt At ek CATERN A EPTLTTYR 2t T

Client desktop Web browser

URL HTML
/

Borland web
server

Request for

form or report
po HTML

1
SQL
Intrabuilder Q Database
Server Server
Javascript
Fonns and B Locnl Data

Reporns

Figure 6.2: Overview

3. The IntraBuilder Server passes the dvnamically created HT ML page to the Web

server.

4. The Web Server passes the HTML page to the Web browser on the client ma-

chine which displays it.

6.4 Conclusions

1. Review mechanism
A sequence of forms (see Figure 6.3) support the performance of reviews and
inspections using Intrabuilder forms and databases. Performing reviews and
inspections will help NewCo verify their work products. This will not only
improve the quality of the work products but will also help related processes

move to Level 2 (Managed) on the SPICE scale.

2. Metrics and information collection mechanism
Since metrics and other relevant information are collected using the forms. and
analvzed using the reports that are generated. related processes will be at Level

4 (Predictable) on the SPICE scale in the area of metrics.

69

! Y
Login Form r——- WWW Browser

|

i Choose
~
iew Reports ork-product |
Information | Review
~ -~ Options
Form —_——
Review
Form ——ruw—-—y
Inspection ¢ Individual |
Proi l Problem !
oject { Form |
Identification o Lom
.Form___ "Inspection
Performance
E?En " Individual
Problem
Form

Figure 6.3: Reviews and Inspections

3. Problem tracking mechanism
During technical reviews and inspections. the medium and major problems are
tracked individually. Reports will be generated regarding problems that have
been discovered during technical reviews/inspections but not solved. Reasons
for the causes of the problems are also recorded which will help in process
improvement. This problem tracking mechanism will help related processes

move up to Level 2 (Managed) on the SPICE scale.

4. Forward and backward traceability
Since the related documents are collected during both technical reviews and
inspections. forward traceability will established. Since problems discovered in
reviews/inspections of all phases are traced back to previous phases. backward
traceability is established too. This will help related processes move up to Level

2 (Managed) on the SPICE scale.

5. Reports Generation
A number of reports which summarize the metrics and information collected
during the course of the review will be generated. These reports. described in

Section 6.2.2 will help in process improvement. Collecting metrics and analyzing

0

them for process improvement will help related processes move up to SPICE

Level 4 (Predictable).

6. Conforming with the Quality Framework
The quality system implements the components of the quality framework as

explained previously. The quality system is :

o Effective: The information collected via the forms in the quality system
is the information that is generally collected for reviews and inspection in
the industry today. The effectiveness of the quality system can only be

measured after NewCo uses it and then performs the assessment.

e Scalable It is web-based and can be accessed from anywhere via the inter-
net. More databases and forms can be easily created using Intrabuilder”.
The databases can be stored in a central location and accessed from any-

where in the world.

o Affordable The startup costs are low. This is because forms are provided
to enter review and inspection information. When these forms are filled in.
metrics are collected and reports are generated for human interpretation
of quality information. The quality system is deploved over the internet

and since most developers today are familiar with WWW browsers. the

Sl L e g A L e A R L L N

te A T

e #

TN TTEEAEY T gan e T R Al ta s s

learning curve is also very low.

Usable: Initial reviews show that the forms that are used to collect infor-
mation in the quality system are easy to read and understand. Options

are provided wherever possible so that the user can just pick one option.

Qut-sourcable because the quality system is deploved over the internet and
hence can used by any small organization which has access to the internet
and has a web browser. It can be easily modified to integrate with another
development process.

Semi-automated Users have to manually enter data. but reports are gen-
erated automatically and the forms provide an easy means of collecting

technical review, inspection and work-product information.

2Intrabuilder is a trademark of Borland

=1
—

Chapter 7

Contributions and Future Research

Most small software organizations do not have the time. money or people to perform
extensive quality activities. This thesis has described an approach for introducing
process improvement in a small software organization. The improvement strategy is
based on a spiral model supported by an ongoing SPICE assessment activity. This

thesis focuses on developing a quality framework for small software organizations with

the objectives of:

1. defining the characteristics of a small company;

2. assessing a small company to evaluate its current process quality based on a

suitable software standard:
3. identifving the areas that need improvement:

4. proposing a quality framework which provides support for quality activities in

a small software organization:

5. prototyping a quality system that meets the quality requirements of a specific

small company. NewCo. as an instantiation of the quality framework.

7.1 Contributions

Our research successfully fulfilled the thesis objectives with the following contribu-

tions:

=~
io

HaT IR T AN AT VR v e oo

Quality Framework

A quality framework that is effective. affordable, scalable and usable is pro-
posed in order to provide support for the quality activities in a small software

organization.

In order to be effective, the quality system has to evolve incrementally with the
development processes of the small organization. It is therefore important to
select and use the right development model in developing the product. A survey
of existing development models is performed which identifies the advantages and
disadvantages of each: and a development model is suggested for use in a small

software organization.

Assessment of NewCo

To assist in the refinement of the quality framework, an assessment of NewCo
was performed in order to identify problems faced by small software organiza-
tions. To this end. a survey of existing standards and their suitability for small
organization was performed. This survey identified the problems most existing
standards have when applied to small organizations. Of the current available
standards. SPICE was deemed the most appropriate for small company assess-
ment.

The SPICE assessment of NewCo identified areas of immediate improvement:
traceability. reviews and metrics. A survey of different types of reviews and

their use in the different stages of the project was performed.

Prototyped the quality system:

The suggested improvements were prototyped in a tool that provides support
for performing the quality activities. The tool is semi-automated and helps
in collecting review. work-product and inspection information. Reports are

generated for analysis. The prototype provides support for:

l. collecting measurements:

[)

. performing quality activities such as reviews/inspections:

3. performing individual problem tracking and traceability in support of root

cause analysis:

Lo n st ——

4. providing reports for analysis.

In order to prototype the tool, a survey of the existing technologies was per-
formed that identified the requirements of the tool, and technology that best

satisfied the requirements.

7.2 Future Research

Several promising and challenging areas of future research and development related

to the development of a quality model for small organizations include:

e Quality framework model refinement

LW T e T Y

P n TRt g

LRI RN - O

L TR

In this thesis. a quality framework model has been proposed that identifies the
interfaces between quality and development activities. This model must be
refined based on the experiences with NewCo. The interfaces between quality
and development activities may also need evolution. With these capabilities.
it will be possible to provide services that will enable small companies to out-
source their quality assessment and improvement activities. leaving them free

to focus more on product development.

Reviews

It is a well recognised fact that reviews help in early detection of defects. It
is also well know that defects are more expensive to fix in the later stages of
the project. A review model that could suggest the most appropriate kind
of review to be performed on the work-product at a given stage in the work-
product’s evolution would be invaluable. For example. if the work-product is
a high risk module. perhaps inspections should be performed. whereas if the
work-product is low risk a technical review can be performed. An analysis of

which kind of review has to be performed would fit well with the quality model.

Quality System Evolution
The quality system should evolve so that it incorporates all the potential quality
activities performed by small or medium organizations. Parts of the quality

system may be activated or de-activated based on the needs of a particular

el N bl olor' o B R

organization. For example. if an organization is introducing quality activities.
and wants to measure only the time taken for each task. the quality system
will display forms pertaining to this measurement for the rest of the spiral.
In the next spiral, if the organization wants to perform technical reviews or

inspections, forms pertaining to these are displayed.

=1

Ut

Bibliography

[ANS89]

[BBY1]

[BJ94]

[BLS9)]

[BM91]

{Boel3a]

[0}

[Boe83b]

[Boo95]

[BP\'93]

ANSI/IEEE. leee standard for software reviews and audits std 1028-1988.
June 30 1989.

F.W Blackey and M.E Boles. A case study of code inspections. In Hewlett-

packard Journal. pages 58-63, October 1991.

Judith G. Brodman and Donna L. Johnson. What small businesses say
about cmm. In Proceedings of International conference in Software Engi-

neering{ICSE 16). pages 331-340. 1Y94.

David B. Bisant and James.R Lyvle. A two-person inspection method to
improve programming productivity. In JEEE Trans. Software Eng.. Vol.
15 No. 10. pages 1294-1304. October 1989.

Terry B Bollinger and Clement McGowan. A critical look at Software

Capability Evaluations. In IEFE Software . pages 25-41. July 1991.

B Boehm. A spiral model for software development and enhancement. In

IEEE Computer, Vol 21. pages 61-72. May 1988.

Boehm. B. A Spiral Model for software development and enhancement.

In [EEE Computer, Vol 21, pages 61-72. May 1988.

Grady Booch. Object Solutions - Managing the Object Oriented project.
Addison Wesley Publications. 1995.

M.G. Bradac. D.E. Perry, and L.G. Votta. Prototyping a process ex-
periment. In Fifteenth International conference on Software Engineering.

May 1993.

76

(Cd97]

[CFL95]

[Coa94]

[Co090]

[Coo094]

[cou94]

[Dor93]

[ESI96]

[Fag76]

[FowS6]

[Fre90]

[GHPS6]

Dennis Champeaux de. Object-Oriented Development Process and Met-
rics. Prentice Hall. Upper Saddle River, NJ 07458, 1997.

Fabiano Cattaneo, Alfonso Fuggetta, and Luigi Lavazza. An experience
in process assessment. In 17th International conference in Software En-

gineering, Seattle, pages 115-121, April 1995.

Francois Coallier. How ISO 9001 fits into the software world. In [EEE
Software, Vol 11 No 1, pages 98-100. January 1994.

Cooper, Robert. G. Stage Gate Systems: A New Tool for managing New

Products. In Bustness Horizons . May/June 1990.

Robert. G Cooper. Winning at New Products, Second Edition. Addison
Wesley Publications, May 1994.

Llovd's Register TickIT Auditor’s course. Issue 1.4. lloyd’s register. March

1994.

A Dorling. SPICE: Process Improvement and Capability Determination.

In Information and Software Technology. Vol 35. June/July 1993.

ESI. Spice. Technical Report SPICE-TI-95-41/0.1.C. European Software

Institute. 1996.

M.E Fagan. Design and code inspections to reduce errors in program
development. In /BM Systems Journal. pages 182-211. Vol 13. No 3.
1976.

P.J Fowler. In-process inspections of work-products at at&t. In ATET
Technical Journal. pages 102-112. March/April 1986.

G.M Freedman. D.P. amd Weinberg. Handbook of Walkthroughs. Inspec-

tions and Technical Reviews. Dorset House. 3 edition. 1990.

M.E Graden. P.S Horsley. and T.C Pingel. The effects of software inspec-
tions on a major telecommunications project. In ATET technical Journal.

pages 32-40. May/June 1986.

T bt B s R

B A

[Goo93]

(Gra92]

[GS94]

[HMK+94]

[Hum95|

[Inc96]

1SO86]

[Joh94]

[KM93]

(Koc93]

[Kru]

[KV'96)

Paul Goodman. Practical Implementation of Software Metrics. McGraw-

Hill Book Company. 1993.

Robert. B Grady. Practical Software Metrics for project management and
process improvement. Prentics Hall, Englewood Cliffs, NJ 07632, 1992.

R.B Grady and T.V Slack. Key lessons in achieveing widespread inspec-

tion use. In [EEE Software. pages 46-57. July 1994.

Volkmar Haase. Richard Messnarz. Gunter Koch. Hans J Kugler. and
Paul Decrinis. Bootstrap: Fine-tuning Process Assessment. In [EEE

Software. Vol 11. No 4. pages 25-35, 1994.

Watts. S Humphrev. 4 Discipline for Software Engineering. Addison-
Wesley Publishing company, 1995.

Corporate Marketing Services Inc. Corporate directory. Technical report.
Direct Marketing and Mailing Services. 10624 - 169 St. Edmonton. T5P
3X6. 1996.

[SO. Iso quality vocabulary. iso8042. 1936.

P. M Johnson. An instrumented approach to improving software quality
through formal technical review. In Proceedings of [6th International

conference in Software Engineering, pages 113-122. IEEE CS press. 1994.

J.C Knight and E.A. Myvers. An improved inspection technique. In Comm.

of the ACM. pages 51-61. Vol 36. No 11, November 1993.

G R Koch. Process Assessment: the Bootstrap approach. In Information

and Software Technology. Vol 35, No 6. pages 387-403. June/July 1993.

Klaus Krull. Intrabuilder architecture overview. White paper

(http://www.borland.com/intrabuilder/papers/intraarch/).

Amr Kamel and Sundari Voruganti. Assessment Plan for NewCo. October

1996.

S

SRR LA T A T i Lol iy o Dl R SR R

[KVHS97)

[MDTRY3]

[Mil38]

[MW91]

[Ole96]

{Pre92

[PWST]

[PWG93]

[Roy70]

[Rus91]

[SC94]

Amr Kamel, Sundari Voruganti. James. H. Hoover. and Paul.G. Soren-
son. Software process improvement model for a small organization: an
experience report. In Annual Oregon Workshop on Software Metrics 97.

Coeur d’Alene, Idaho, May 1997.

Vahid Mashayekhi, M.J. Drake, Wei-Tak Tsai, and John Riedl. Dis-
tributed. collaborative software inspection. IEEE Software. pages 66-75.

September 1993.

E.E Mills. Software metrics, sei curriculum module sei-cm-12-1.1. Tech-

nical report. Carnegie Mellon University, Pttsburg. PA. 1988.

Tim Maude and Graham Willis. Rapid Prototyping - The management
of software risk. Pitman Publishing, 1991.

Tony Olekshy. Planning considerations. Document
AGO/CRK/WOOP Redaction 3.0.6 file:/usr/teesl/misc/seaf/seaf-

doc/plancons/section/document.htm, April 1996.

Roger. S. Pressman. Software Engineering - a practioner’s approach.

McGraw-Hill Inc. New York. 3 edition. 1992.

D.L. Parnas and D.M. Weiss. Active design reviews: Principles and prac-

tices. In J. of Systems and Software. No 7, pages 259-265. 1987.

M. C. Paulk. C. V. Weber. and S. M. et al. Garcia. Key Proctices of the
Capability Maturity Model Ver 1.1. Technical report. Software Engineer-

ing Institute. 1993.

W. W Royce. Managing the development of large software systems: Con-

cepts and Techniques. In Proceedings WESCO . 1970.

G.W Russel. Experience with inspection in ultralarge scale developments.

In IEEE Software. pages 25-31. January 1991.

Joc Sanders and Eugene Curran. Software Quality. Addison-Wesley. 1994.

9

[SE93]

[Shi92]

[Sil92]

[Sir82]

[SK93]

[SS8s]

[Wal94]

[WBM96a]

[WBM96b]

[Webss]

[Weidl]

[Wel93]

[You89]

Susan. H. Strauss and Robert. G. Ebenau. Software [nspection Process.

McGraw Hill Inc., 1993.

G.C Shirey. How inspections fail. In Proc. 9th International conf. Testing

computer software, pages 151-159, 1992.

B Silver. TQM vs the SEI Capability Maturity Model. In Software Quality
World, Vol 4, No 2, December 1992.

Siropolis. N. C. . Small Business Management . Houghton Mifflin Com-

pany. Boston, 2 edition. 1982.

Hossein Saiedian and Richard Kuzaran. SEI Capability Maturity Model's

impact on contractors. In [EEE Computer, pages 16-26. January 1995.

Andrew J Szonyi and Dan Steinhoff. Small business management funda-

mentals. McGraw-Hill Ryerson. 1988.

Ernest Wallmuller. Software Quality Assurance - A practical approach.

Prentice Hall Publications. 1994.

D Wheeler. B Brvkczynski. and R Jr. Meeson. Peer review processes
similar to inspection. In Software inspection - an industry best practice.

pages 228 - 236. IEEE Computer Society. 1996.

D Wheeler. B Brykczynski. and R Jr. Meeson. Software inspection - an

industry best practice. IEEE Computer Society. 1996.

Webster. New lexicon webster’s encvclopedic dictionary of the english

language. 1988.

Gerald. M Weinberg. Quality software management - First-Order mea-

surement, volume 2. Dorset House, 1991.

E.F Weller. Lessons from three years of inspection data. In /[EEFE Software.
pages 38-45. September 1993.

Edward Yourdon. Structured Walk-throughs. Prentice-Hall, Englewood
Cliffs. N.J.. 4 edition. 1989.

Appendix A

User Manual

This appendix provides an overview of the important forms of the system. The
Quality System can be accessed through the Uniform Resource Locator (URLi:
http:’, peoria.cs.ualberta.ca/seaf/review.htm. In order to prevent unauthorized ac-

cess. the users are required to login.

A.1 Login Form

o When the user first lc. < in to the Quality System. a login form 'see Figure A1,

is displaved.

e The user types in the login name and password. This helps to prevent unau-

thorized users from crashing into the system.
e An explanarion of the fields on the form is given in rabie A.1.
o Clicking on Submit Login will verifyv the user name and password.

— If the user name and password match the ones stored in the User Table.

the Options Form (see Figure A.2) is displayved.

— If nor. the text on the butron changes to Try Again.

A.2 Options Form

This form gives the users a choice of:

Nl

vem e

Lo

Figure A.1l: Login Form

ir.\ame Reason
| Login Name | The users login |
Password The users password to validate the access |

Table A.1: Login Form

Ve
v
[N

 ——

AR ST AT TR e ek - e

CEPRE LR SR TR

o Viewing reports: These reports are pre-generated and categorized.

o Work-product Information: This form has information about all the work-
products in the database and allows creation of new work-products and editing

of existing ones.

e Change/Query: This form displays all the problems and information regarding

them. The problem status may be changed.

A.3 Work-Product Information

This form (shown in figure A.3) allows the users to select existing work-products.
editing of existing work-products or entering new work-products into rhe database.

An explanation of the fields is given in Table A.2.

| Name | Reason

rProject Name name of the project the work-product belongs to

i Work-product name name of the work-product

| Related work-products | work-products related to current one ‘
. Work-product Tvpe Specifies if the work-product is a document or code

" Kind of work-product | Specific kind of work-product
Work-product status Specify the status of work-producr

i Size The size of work-product in pages or lines
Project Name The project to which the work-product belungs
. Author | Author of work-product

Table A.2: Work-product Form

Clicking OR here will display the Choose Option form shich allows input of review

and inspection related information.

A.4 Choose the Review

This form gives the user an option to enter review or inspection information. [ig-
ure A.1 shows how the form looks.
Clicking on /nput Review Information displays the Review Form. Clicking on [nput

Inspection Information displayvs the Project Identification Form iSe» ficure A.71

3

Select Option

| View Reponsl

Work~product Informa:iorj

Change/Query

Figure A.2: Options Form

1T e
S UL I I

f Project Name
Work-Product Name

Related Work-products

Type of Work-product
Kind of work-product
Status of work~-product

Author

Size of work-product
(in lines or pages)

S STy

PP

£=1]]

Figure A.3: Work-Product Form

7 4]
t

.-

3. R g W T W I T W P et 1

K e L g

e W esnyle

IR ST CIRE T

C e

eogoe

Work-product Name:
Work-~product Status:
Work-product Author:
Work-product Reviewer:

Input Review Informarion|

inpuz Irspection Information|

Design.doc
New
Jerome
sundari

Figure A.4: Choose Form

ST A I TS et JE LTI W

A.5 Review Process

The Review Information Form (shown in figure A.3) collects information about the

document under review.

A.5.1 Review Form

e All minor problems (like spelling mistakes) are reported in a document whose
file name can be specified in this form. The number of minor problems can also

be specified.

e Clicking on Done will save the information to the database and the Individual

Problem Form will be displaved (Figure A.6).

e Clicking on Cancel abandons the editing and returns to the previous Choose

Options Form.

A.5.2 Individual Problem Form

The individual problem for.1 (See table A.3 for an explanation! records the serious
problems that were discovered during the review. These problems may be categorized
as major problems or medium problems based on their severity. This form allows the

user to enter the description for the problem and the reasons for it.

e But the medium and major problems are recorded individually using the /[ndi-

vidual Problem Form isee Figure A.6) and tracked.

o Clicking on Done will save the problem information to the database and exit

the form.

e Clicking Nert Problem will save the current problem information to the database

and display an empty form to fill in for the next problem.

itz ee oo e

Work-Product Status: New

Reviewer name

Type of review

Date of review

(yyyy/mm/dd)

Preparation Time
(thh.mm)

Time taken for
review (hh.mm)

Report of Minor
Problems
(File Name)

Number of
Minor Problems

Work-Product Name: Design.doc

Work-Product Author: Jerome

sundari

Short Comments

Requirements &2

[._mauougzj

Figure A.3: Review Information Form

[

e

Work-Product name: Design.doc

Problem Severity Problem Type
Medium &
Problem Class Problem Status
Wrong

Reasons

@IUnclear or contradictory requirements
[Missing or incomplete requirements

Requirements
Review

Unsolveble =

WIRequirements which lie outside the scope of the problem

Oother

Problem Location
(Line #)

Problem Description

Next Preblex

Figure A.6: Individual Problem Form

R Mg el A AT thAl 2N

{ Name Reason

. Problem Severity If the problem is major or minor
| Problem Type The source of the problem: reviews or customer repors
Problem Class Missing means more information needed. wrong means

wrong information used and extra means more
information is needed

Problem status is the status of the problem: open, closed or next release
Reasons The reasons for the problem
Problem Location the line number the problem occured in !

Problem description | The detailed description of the problem

Table A.3: Problem Form

A.6 Inspections
A.6.1 Project Identification Form

This form collects project specific information. All the Inspection Forms collect in-

formation that is specified by Fagan.

o Clicking on Post will save the information to the database and display the

[nspection Performance Form (see Figure A.8).

o Clicking on Cancel will abandon the edit mode and return to the Options Form.

A.6.2 Inspection Performance Form

The [nspection Performance Form (as shown in FigureA.8) collects data ahout how

lone the inspections took.
2 p

o Clicking on Done will save the data to the database and display the Induidual

Problem Report Form (see Figure A.9) to enter defect related information.

e Clicking on Cancel will abandon the edit and go back to the Project [dentifica-

tion Form.

A.6.3 Individual Problem Report Form

The Individual Problem Report Form (shown in Figure A.9; collects information

about each defect. Most inspections classifv defects as minor defects or major de-

90

REC TN o i o el LR TIE L Sl Mt S ML LA Ll ol o e BN il

Bl bl e 4Rl T3

Type of inspection
Moderator Name
Meeting Type

Date of inspection
Number of inspectors

Minor report file name

Number of
minor problems

OIS TR S DY P

% et SR

Work-Product name: req.doc
Work-Product author: Jim
Work-~Product status: New

TR T T
) Y

vyl 7 1]

Figure A.7: Project Identification Form

c o EEem— T

B

SETTTR T m Aty TEETTEE A

Rt e e S

Work-Product name: req.doc

Preparation Time
(hh:mm)

Examination Time
(hh:mm}
Estimated Rework
(hh:mm)

Actual rework
(hh:mm)

Rework completion
date

Work-Product
disposition

[1992¢05729

IEondi:xonally accest & J

ey, 233 s
s

S TR AR ¥ ey Rt
I rasd vm e S -W;.‘_‘%ﬁlﬁ e

* "1 5

Figure A.8: Inspection Performance Form

fects. Since minor defects are spelling mistakes and trivial mistakes. they ceuid be
all specified in a report. But the medium and major defects are non-trivial defects

and will be tracked individually.
e Clicking on Done will save the data to the database.

e Clicking on Nezt will save the current defect description and move on to the

next one.

A.7 Reports

Reports are invoked wher the Reports button is clicked on the Options form. The
reports form (as shown in Figure A.10) displays the different categories of reports
available. For each category. a new form is displaved and the possible reports can be

checked prior to display. *ee the Process Improvement Reports from Figure A.11 as

an example.

A.8 Change/Qiery Form

When the Change “Query button on the Options forms is clicked. the change 'query
form is displaved. This form displays all information related to problems in the
database. [t allows changing of status of a problem. Problems can also be queried on

{See Figure A.12).

T

-y Y

Work-Produet name: req.doc

Location of Defect
(Line %)

Problem Class

Ty

Problem Severity

Problem Status

Problem Type

Problem Name

(Unique)

Description

Therd 1sinTormatIoieutaRt

i Mext Problem

Figure A.9: Defect Form

94

e AR e am e

i { Process Improvement Reports|

[Ma}iaéém&: Reports]

[Traceability Reports|

l Status Reportsi

Figure A.10: Reports

Process Improvement Reports

 Problems grouped by Reason

““Problems discovered in each phase in reviews

~Problems discovered in each phase in inspections

~/All about problems

Show Report|

Figure A.11: Process Improvement Reports

96

Problems

2 =
]
Class

Problem type Description Severity
Requirements I;ediuu e
New Status: —

Cance!|
" Closed =

Done!

Additional Description

T 2 TR

Figure A.12: Change/Query Form

-

RO AL e 3 52 Br') KL 2 a4

FIVE L PR -

Appendix B

Technology Review

This appendix provides an overview of the tools under review for prototyping the
quality system.
B.1 Requirements for the quality system

e A tool that can be used by a group of people. E-mails must be sent automati-

cally when events such as changes in documents occur.

A database back-end to store metrics and traceability information.

e A svstem that the developers do not have to spend appreciable effort to learn.
That is. a svstem that is fairly easy to use and integrated with the developer’s

environment.
¢ A tool that allows posting of comments relevant to a document/code.

A tool that allows forms and templates to be easily created.

A tool that allows data to be entered into the database in addition to displaying

information in the database.

e A tool that provides newsgroups or newsgroup-like facilities.

————

B.2 Tools under review

B.2.1 Lotus Notes

Lotus Notes is a groupware package that is currently being used to release versions.
discuss issues (design etc.) and as a medium of communication. [n order to develop

a quality framework in Lotus Notes, the following are the perceived advantages:

e It has a database where documents can be posted and changes can be just

responses to the main document.
e Databases for different discussion issues are easy to create and use.
o \Work-flow implemeutation is fairly easy.

e Notes can be integrated into the developer’s environment using agents that

watch for a specific «vent to happen.
o Replication. mail and security are automatically taken care by Lotus Notes.
o The setup is fairly si: ole - only one server and a number of clients.

The following are the perceived disadvantages:

Documents more than a few pages long are not easy to write.

e Notes database does not facilitate collection of metrics and traceabiliry infor-
matijon. This has to be done in a database engine and then linked to Nores iif
possiblel. Database classes can be used to link Notes with external databases.
but it is a one-way connection. The databases cannot be updated using Notes

forms and can only be displaved.

B.2.2 Intranet

An intranet is a company specific internet. There are a number of software packages
rhart help in building the intranet. The current one being assessed is Intrabuilder from
Borland.

The perceived advantages of using an intranet are:

99

ST TR R #TeT e,

e The quality svstem is more likely to be used because developers are more familiar
with web browsers. Code check-in and check-out can be performed using web

browsers. or a configuration management system can be integrated.

e Intrabuilder has Borland’s database engine as a back-end which supports ali the

database needs.

o Intrabuilder provides a two-way link between the database and the HTML doc-
uments displaved on the web. That is. data can be displayed from the database

and data can be entered into the database.

e There are a number of wizards that make building the application very easy

and fast.
The perceived disadvantages are:

e [t is very easy to categorize documents in Lotus Notes. If an intranet is con-
structed. newsgroups have to be created for discussions on each document. This

might make handling information more difficult.
e Replication-like functionality is not provided and has to be coded.

e A\ news server has to be used to manage the news groups. Securiry issues {or

the newsgroups have to be considered.
¢ A number of servers have to be used -

— News server
— Web server

Mail server

— Intrabuilder server
e E-mail has to be handled separately.

Another Intranet solution that is being considered is the Netscape Communicator
and Netscape SuiteSpot.

Advantages:

100

e The Communicator products are very useful. See
http:/ /home.netscape.com, comprod/products/communicator index.html

for more details.
Disadvantages:
e The Livewire product uses an Informix backend. which is very expensive.

¢ A number of servers have to be used.

