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Abstract 

An industrial construction enterprise operating in the City of Edmonton wants to 

improve its bidding strategies that are currently plagued with uncertainty, lack of 

information and historical price variability. The present research studies a 

compilation of documents obtained from company archives detailing previous 

pipe fabrication performances in order to improve and support decisions during 

tendering. Two stages constitute the present study: 1) the creation of industrial 

indicators accumulating company data into a single source facilitating past event 

consultations; and 2) analysis of data comprising these indicators using a 

combination of Clustering, Association Rules and Distribution Fitting techniques 

designed to detect embedded trends and arrangements, enhancing previous 

performance comprehension. Results obtained in this research ranged from 

industrial indicator creation to constitution of multiple project profiles, project 

characterization and statistical distribution fitting reflecting different fabrication 

aspects and historical knowledge present in previous pipe module fabrication 

projects. 
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Chapter 1: Introduction 

1.1.  Problem Statement 

An industrial construction enterprise with base operations in the City of 

Edmonton wants to improve its bidding strategies. Essentially, current company 

decisions during development of bidding proposals are based on a combination 

of in-house standard factors and records from past experiences. During this 

process, special percentages known as discount/adders factors are adjusted. To 

do this, the company relies on information that may not totally reflect actual 

operations. Influential aspects such as disorganization during project 

documentation and lack of records related to fabrication operations can 

negatively affect decisions, representing a risk during determination of an 

activity’s final price. 

The company is looking to explore and analyze its historical data to augment its 

inner-operations knowledge. Increasing it not only represents a direct benefit 

but also improves the company’s own tendering processes and enhances its 

competitiveness.  

The scope of this research involves a collection of records from different 

departmental areas of the company and its past projects, containing data from 

previous pipe module fabrication assignments. Capturing, cleaning and 

organizing this vital information represent a challenge. Finding coherency 

between different departmental records adds difficulty to the decision making 
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process, due to a combination of instability and lack of criteria present in 

historical data.  

The desired outcome is to observe previous project trends and compare them 

with new ones generated by potential projects. By doing this, decisions will be 

supported by past documented experiences, determining new factors affecting 

estimation.  

Positive results can be achieved through documenting and organizing 

knowledge, thereby producing a solid foundation to eventually guide a company 

through many decisions in the immediate future.  

1.2.  Research Objectives 

In order to review historical data to determine a solid knowledge base of 

previous performances to be used by the company, three objectives need to be 

defined:  

1. Create a set of Industrial Indicators reflecting past operations. 

2. Consolidate data from different departmental areas of the company 

related to these indicators into a single source to facilitate 

understanding of previous project performances.  

3. Analyze data constituting these Industrial Indicators, to detect 

embedded trends and arrangements in previous performance 

records, enhancing project comprehension.  
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1.3.  Thesis Organization 

Chapter No. 2 includes a detailed literature review of concepts relevant to the 

present research. Industrial Construction, Construction Project Bidding, Data 

Warehousing and Data Mining concepts are reviewed in this chapter. It serves as 

knowledge base for analysis techniques applied during the course of the present 

Thesis. 

Chapter No. 3 introduces an overview of different company departments and 

some of the documents produced by each operational area. It also presents a 

description of all projects constituting the scope of this research and their 

distinct characteristics. Furthermore, a research process performed during visits 

to this company is depicted in conjunction with alternative Industrial Indicators. 

Chapter No. 4 explores five alternatives specifically designed to analyze data 

from departmental records, using a combination of Clustering, Association Rules 

techniques and Distribution Fitting. In addition, alternative sources of 

information are analyzed, enhancing research robustness and the understanding 

of fabrication operations.  

Chapter No. 5 contains Conclusions, Recommendations and Research 

Contributions to the study of industrial construction activities, specifically pipe 

module fabrication processes. 

Appendices can be found at the end of this Thesis. All remaining charts, tables 

and other types of graphs that were removed from previous chapters due to 

space restrictions are presented in this section. 
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Chapter 2: Literature Review 

2.1.  Introduction 

The subsequent chapter is structured in three main sections: Industrial 

Construction, Construction Project Bidding and Data Mining. Research work 

performed by different authors in each of these areas has been reviewed.  

Firstly, Section 2.2 presents Industrial Construction concepts. Through this 

section, a definition of this construction discipline is presented. Secondly, Section 

2.3 introduces different research associated with Construction Project Bidding 

and certain elements potentially influencing bidding decisions. 

Thirdly, Section 2.4 describes Data Warehousing by elucidating support and 

contribution of information sources within an industrial construction company. 

This section presents an outline on data handling and pre-processing. Fourthly, 

Section 2.5 discusses certain applications of Data Mining in construction and 

their different outcomes. This section includes a literature review on Data 

Mining techniques applied in this study: Clustering and Association Rules. Main 

concepts related to these techniques are explained. Lastly, Conclusions are 

presented at the end of this chapter. 

2.2.  Industrial Construction 

Industrial construction represents a branch of the Construction Industry that 

involves a mixture of specialized activities, characterized by its unique 
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techniques and processes. This area of construction is often used in major-sized 

projects, such as today’s industrial facilities.  

Furthermore, in this engineering area, modular construction is engaged. This 

construction technique generates large industrial facilities such as oil processing 

plants and refineries built with single entities comprised by pipe spool modules 

(Mohamed et al., 2007). In addition, one of the highest degrees of complexity 

within construction disciplines is found in industrial construction (Wang et al., 

2009). 

2.2.1. Pipe Spool and Steel Fabrication 

Pipe spool modules are structures usually formed by different arrangements of 

equipment, pipes, steel structures and other assorted elements (Mohamed et 

al., 2007). Their fabrication is characterized by presenting multiple stages  

(Sadeghi & Fayek, 2008), (Song et al., 2009): 

• The module construction process begins with the production of shop 

drawings, which will include spool and steel production data. This process 

is known as drafting. 

• Pipe Spools are generated in a fabrication shop, using industrial 

techniques of cutting, welding and fitting of pipes. The processed pipes 

will constitute spools made of different materials, weights and lengths. 

Furthermore, steel members are also produced to be used as structural 

elements according to specifications. 
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• Fabricated spools are transported to the module yard and grouped with 

steel structures that have been previously erected. These items will be 

joined sequentially, initially assembling steel structures to be superseded 

by the installation of pipe spools and equipments, forming decks. 

Combination of assembled decks constitutes a complete pipe module.   

• Once construction of pipe modules is completed, these are transported 

and later installed on-site. 

Figure 2-1 depicts the fabrication process of a pipe module (Sadeghi & Fayek, 

2008), (Song et al., 2009): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Pipe Module Fabrication process (Sadeghi & Fayek, 2008), (Song et al., 2009) 

Due to diverse features of each produced item in a fabrication shop, precise 

construction methods are demanded (Sadeghi & Fayek, 2008). As a consequence 

of this, distinctive modules are created in terms of composition and enclosed 

arrangements (Mohamed et al., 2007). 
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Modular construction has proven to be a technique that efficiently reduces costs 

and is frequently used in industrial construction sites located outside urban areas 

(Taghaddos et al., 2010).  

2.3. Construction Project Bidding 

With the use of tendering, innumerable tasks have been and are being acquired 

worldwide (Seydel, 2003).   

When determining bidding prices, a correct estimation of an industrial 

construction project represents a highly intensive and time-demanding phase. 

Diverse factors could potentially impact an estimator’s perspective about a 

determined production rate, for example weather impact and workforce 

expertise availability (AbouRizk et al., 2001).  

Halpin & Woodhead (1998) mentioned unit pricing and resource enumeration as 

two common approaches used to evaluate construction costs. More to the point, 

there are other existing factors that can affect a bid’s final price (Flanagan & 

Norman, 1985): 

- The quality of tendering data. With a greater quality of information, an 

optimal final bid price tends to be lower. 

- Competence of other companies participating in the bid. Experienced 

competition likely diminishes bid prices. 
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Flanagan & Norman (1985) mentioned in their research that contractors’ 

knowledge of their own processes (effectiveness and familiarity with 

construction techniques) has greater influence in bidding prices than tactically 

made decisions against competitors during tendering. 

Experience represents an important influence while developing bidding 

proposals. According to Seydel (2003), in single auctions the main difficulty in 

bidding lies in establishing the most favorable gain for a company while 

presenting a lower tender to achieve it. To overcome this, experience is one 

important feature to acquire for any construction company. Fayek (1998) stated 

experience and instinct support numerous conclusions concerning calculation of 

a final bid’s price. 

Fan et al. (2007) expressed in their research that a combination of long practical 

expertise and skilled instruction are unique factors needed to build experience in 

decision makers, either from company managerial or operative areas. However, 

this research presents an additional alternative to build experience in a 

construction company. Experience can be stored in documented events 

translating situations lived during a particular endeavor especially when 

reviewing previous performances of past projects. 

Enhancing a company’s knowledge about its inner operations represents an 

opportunity for increasing its competitiveness. Through continuous learning, 

auditing and improvement of construction operations a company will reduce 
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uncertainty in its tenders by having at hand previous patterns and action paths 

to consider during current bidding processes.  

Different approaches have been performed by researchers in the field of 

construction bidding and mark-up estimation: 

• Dozzi et al. (1996) developed a multi-criteria utility theory model, created 

in Visual Basic® programming language. It included 21 different bidding 

arguments, classified in a hierarchal arrangement. Using utility theory 

functions, the model was capable of calculating bidding mark-ups 

incorporating different types of individual and assessable data through 

the entire decision-making process.  

• Fayek (1998) created a tendering approach model to facilitate margin size 

calculation, to fulfill construction companies’ requisites during tendering. 

This model used Fuzzy Set Theory concepts to determine suitable mark-

up boundaries. 

• Chua & Li (2000) designed a multi-attribute bid reasoning model that 

comprised four different contractor judgments during bidding: rivalry, 

company’s situation during bidding, risk scope and urge for work. The 

authors also created hierarchic configurations for each judgment to 

identify the factors with greater control in bid decisions.  

• Christodoulou (2000) created a probabilistic neural network (PNN) model 

that merges qualitative/quantitative figures with factual information. This 
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model adjusts to a specific margin, consequently determining likelihood 

of success of a particular bid. 

These applications considered internal and external factors influencing a 

construction company’s bidding decisions. Criteria, need of work, resource 

availability and risk represented some factors explored by researchers. 

Nonetheless, the main focus of this research involves historical records obtained 

from an industrial construction company. Characteristics of past projects and 

their resemblance to conditions found in potential projects will dictate bidding 

decisions during estimation processes.  

Construction companies need to have as a main priority reorganizing and 

documenting previous project data before participating in new tendering 

opportunities. Proposal Managers require the best data available to execute 

proper decisions adjusted to company’s requirements by creating and 

consolidating a good knowledge base to analyze incoming projects, constituting 

a guideline which will guarantee success in the development of solid bidding 

proposals. 

2.4.  Data Warehousing 

Construction projects normally comprehend several parties coordinated by 

trading copious quantities of single documents (Zhiliang et al., 2005). Although 

most systems do not reach absolute synergy, information technologies 
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commonly sustain the greater part of construction operations (Bouchlaghem et 

al., 2004).   

One of the techniques used to handle information derived from multiple areas is 

Data Warehousing. Ahmad et al. (2004) defined its concept as the result of 

incorporating several information sources into a single database, capable of 

handling and manipulating diverse quantities of data. 

Azhar et al. (2010) mentioned in their research additional applications of a Data 

Warehouse. According to these authors, a Data Warehouse can be applied to 

store and analyze historical information, arrange data in a constant form and 

consequently simplify its usage and manipulation by a user. 

Data Warehousing is an appropriate technique for those activities requiring 

information synchronization between managerial areas. Some of its applications 

are reviewed by the following researchers: 

• Zhang (2010) recommended the creation of a platform to administer 

logistics information. This system is essentially assembled by a 

combination of two elements. First, metadata is used to implement data 

organization in documentation processes. Second, an Oracle database is 

employed to store information from diverse areas. Within this database, 

a Data Warehouse is found. The proposed combination enhances data 

review by homologizing its input into a Data Warehouse and enabling its 
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analysis through Data Mining and other applications, properly sustaining 

decisions in transport operations. 

• Ahmad et al. (2004) applied Data Warehousing techniques in the creation 

of a Decision Support System (DSS) in residential construction. This 

system collected information from different sources and formats, stored 

its data in a Data Warehouse and manipulated its output using online 

analytical process (OLAP). The purpose of this system was to provide 

additional support to construction companies interested in choosing 

potential sites for future developments. 

• Shi and Halpin (2003) stated in their research the significance of creating 

a computer-integrated system to manage construction company 

resources. The authors recommended a system that combines company 

data stored in a Data Warehouse, process models containing managerial 

duties and input provided by classified user interfaces (according to their 

functional areas), creating a system known as Construction Enterprise 

Resource Planning System (CERP).   

Due to the nature of the construction business, individual decision making 

approaches generated in environments with numerous and diverse types of 

information represents an unsuitable solution (Shi and Halpin, 2003). A unique 

informational display containing trustworthy information can be generated by 

Data Warehousing, in which construction company data is integrated from 

distinct functional areas (Ahmad, 2000). 
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2.5.  Data Mining 

Data Mining is a practice dedicated to the withdrawal of knowledge from 

records. The knowledge obtained is generally substantially beneficial but 

unfamiliar (Witten & Frank, 2005). As Soibelman & Kim (2002) mention, the 

purpose of their application of Data Mining in construction activities is to 

produce a tool that extracts arrangements, elucidating and forecasting trends 

within these ventures. The product of evidence extraction is converted, creating 

facts. Afterwards, those facts are transformed into knowledge (Witten & Frank, 

2005). 

Data Mining involves heavy computing using specific algorithms which can vary 

depending on the problem to be analyzed. In some scenarios, data can be 

scattered and incomplete. To overcome this, Data Mining can establish 

correlations between different items to properly classify them and create 

knowledge.  

In construction, knowledge derived from Data Mining can become a vital 

decision-support tool to construction managers. Its application can improve 

project understanding. For example, with a broader project comprehension, 

managers will be able to evade potential issues during project building by 

making correct decisions (Soibelman & Kim, 2000). In addition, Data Mining 

applications represent an exceptional answer to the problem of studying 

complex information present in construction records (Buchheit et al., 2000).  
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Some of the algorithms built in Data Mining are classified by their outcomes (Lee 

et al., 2008). These are the following: 

• Classification  

• Clustering 

• Association Rules 

As Zhang et al. (2004) discussed in their study, Data Mining presents two main 

duties: first, it can describe generalities and gather hidden rules from figures; 

secondly, depending on data and required specifications, Data Mining can 

anticipate significant outcomes. 

Fan (2007) declared Data Mining models hold two distinctive characteristics are 

build and processed mainly from acquired data through specialized algorithms 

and are capable of obtaining outcomes in those situations in which the 

complexity of information is problematic for alternative analysis approaches. 

According to the author, support for these models is skewed towards assumed 

details in data instead of opinions or professional expertise. 

In today’s world, data mining has been used in different areas as a support tool, 

motivated by the need of discovering significant arrangements in factual sets of 

data (Soibelman & Kim, 2002) 

Several authors have researched different applications of data mining in the 

construction industry: 
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• Fan et al. (2008) modeled an auto-regressive tree to forecast residual 

value of construction equipment. Their research focused on wheel 

loader’s residual values. Data was collected from different sources 

including an online database (LastBid® software) and other historical 

information sources such as U.S. Bureau of Economics and Statistics 

Canada. Their model detected relationships between records efficiently 

calculating as output the residual value of a wheel loader with unique 

characteristics. This model offered a visual interface to the user, in which 

parameters and analysis results of historical data could be observed. 

• Song and AbouRizk (2008) suggested a new modeling method to 

determine productivity, gathering information from past projects and 

creating new productivity models based on previous experiences. 

According to the authors, a consistent estimate can be derived from a 

company’s historical records. In addition, they stated the significance of 

historical records in a company’s potential ventures, because of their 

relevant forecasting content. In this research, an artificial neural network 

(ANN) was the tool selected to deal with large amounts of data coming 

from steel drafting and fabrication tasks.  

• Lee et al. (2008) applied data mining techniques to generate knowledge 

from service records of a construction enterprise. The author’s obtained 

7790 different cases collected from the maintenance department of the 

company. Decision-tree analysis was performed to identify elements that 
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could be generating concrete cracks in structural elements of high-rise 

buildings. This analysis obtained positive outcomes identifying potential 

causes for this issue.  

• Hammad (2009) proposed a framework to improve labor asset 

management. In addition, a feature produced by this study was a Data 

Warehouse conception to properly manage company information. 

Furthermore, Data Mining techniques were applied to historical data 

derived from this archetype warehouse. Unit costs, resource 

requirements and durations were determined for three diverse case 

studies, representing knowledge to be used in future scenarios. 

Science, farming and health have been different areas in which machine learning 

through Data Mining has been applied in the past. Its effect in increasing 

business knowledge has been positive, resulting in many people considering its 

use (Witten & Frank, 2005). Furthermore, as Hammad (2009) expressed in his 

study, managers will become more interested in Data Mining if the cost of its 

application in industrial construction is minimal as it generates improved 

productivities, accentuating its expenditure compensation.  

2.5.1. Clustering 

Clustering is a Data Mining method that has the capability of grouping records by 

their resemblance: It magnifies both agglomeration of comparable records into 

groups and diversification of such groups by their distinctness (Foss & Zaїane, 
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2002). Ankerst et al. (1999) portrayed clustering as one of the main techniques 

to analyze databases. Likewise, these authors mentioned two different 

applications of clustering in Data Mining:  Firstly, it is a technique suitable to 

initially prepare a set of data into different groups to apply further analysis using 

additional Data Mining algorithms. Secondly, as another application it can be 

implemented independently to obtain an overview of a data set’s composition. 

To analyze pipe module fabrication data obtained in this study and implement 

Data Mining, two different clustering algorithms have been selected due to their 

efficiency and reliability: K-Means and DBScan algorithms. A literature review of 

both techniques of analysis is described in the following sections. Their 

application in four different Case Studies is in Chapter No. 4. 

2.5.1.1. Clustering Algorithm: K-Means 

Foss & Zaїane (2002) mentioned a well-known approach used to divide data: K-

Means algorithm, in which clusters of records are symbolized by their respective 

centroids. In addition, in the survey paper by Wu et al. (2007), K-Means 

algorithm is chosen as one of the 10 most important algorithms in Data Mining. 

MacQueen (1967), detailed in his work the procedure followed by K-Means 

algorithm: 

• First, k groups are initially established. These groups are formed by 

unique arbitrary points. 
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• Secondly, new points are attached to those groups with means closer to 

the value of the new point. 

• Thirdly, to consider a new point included, the group’s mean is adapted. 

However, K-Means algorithm presents two disadvantages (Pavan et al., 2010): 

a. Initial quantities of k groups specified by a user prior cluster 

determination.  

b. Primary seeds choice is arbitrary. 

Extended iteration cycles and deficient outcomes can be generated by 

unsuitable selection of cluster amounts (Pham et al., 2005) and primary seeds. 

2.5.1.2. Clustering Algorithm: DBScan 

Density Based Spatial Clustering of Applications with Noise or DBScan is an 

algorithm with the capability of detecting randomly-shaped clusters (Ester et al., 

1996). This method is capable of dealing with noise in data (Rehman & Mehdi, 

2006). Moreover, in this algorithm the determination of a single point’s density 

is estimated through detection of items in its vicinities, delimited by a radius 

(Ertöz et al., 2003). The same authors defined three point types estimated during 

the implementation of the DBScan algorithm:  

• Core Points are those characterized by having a density higher than 

initially established. These points remain inside the area correlated to a 

point. 



19 

 

• Non-Core Points are those points lacking related Core Points. These are 

also known as Noise Points. 

• Non-Noise, Non-Core Points are points implanted to those clusters 

present in their vicinities. These are also identified as Border Points. 

DBScan is a density-based algorithm that presents the benefits of not requiring 

an initial input for number of clusters and also detects randomly-shaped arrays 

(Zaïane et al., 2002). Nevertheless according to researchers, one of the 

downsides of the DBScan algorithm is observed when cluster densities are 

drastically fluctuating: it does not accurately perform cluster detection (Zaïane et 

al. 2002, Ertöz et al. 2003). 

2.5.2. Association Rules 

Witten & Frank (2005) defined Association Rules as a Data Mining technique 

similar to Classification algorithms. In addition, these authors highlighted 

particular differences between these methods: one of them lies in the capacity 

of Association Rules to predict attributes and their multiple permutations within 

a dataset without regarding sample sizes. Furthermore, the same researchers 

stated that detection of congruity values governing a data set is another function 

of Association Rules.  The distinct results can be obtained through their 

application on a data set and only those rules covering a larger amount of 

records with greater precision need to be considered for analysis.  
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In order to define Association Rules, two factors must be taken into 

consideration (Witten & Frank, 2005): 

• Support: Indicates the number of occurrences that are accurately covered 

by the requirements of a particular rule. 

• Confidence: States the amount of occurrences appropriately foreseen 

under a rule from all attributes detected. It can be represented by a 

percentage, indicating rule precision. 

To evaluate relationships between fabrication attributes and review the effect of 

their diverse arrangements in a set of data, two different Association Rules have 

been selected: Apriori and Predictive Apriori algorithms. These techniques are 

applied during Case Study No. 3 and Case Study No. 4 and are explained 

thoroughly in Chapter No. 4 of the present thesis.  

These algorithms are used as a secondary method for analysis of pipe fabrication 

data. Once a large group of records has been extracted using Clustering 

algorithms, Association Rules take effect. This improves analysis of data obtained 

from pipe spool fabrication operations and serves as base for chart 

development, creating a data display, improving results visualization and 

benefitting decision makers in the Company. 

2.5.2.1. Apriori Algorithm 

According to Agrawal & Srikant (1994), this association algorithm performs the 

following tasks: 
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• Firstly, minimum support and confidence measures must be defined prior 

algorithm application. This establishes a limit that will be imposed on the 

algorithm in order to purge all not complying rules.  

• Secondly, the algorithm performs an initial pass into the database 

detecting attribute frequencies, generating a large list containing all 

items and their respective occurrences. 

• Thirdly, this algorithm performs additional passes searching for all 

existing attribute combinations, according to initial conditions.  

• Fourthly, once these combinations are found, a list of attributes with 

their different support and confidence values will be calculated and 

displayed. 

2.5.2.2. Predictive Apriori Algorithm 

This algorithm is similar to Apriori in terms of rule generation. Nevertheless, 

Scheffer (2004) highlights in his research some qualities of Predictive Apriori 

algorithm:  

• Predictive Apriori is a method that attempts to discover those association 

rules considered best among all present in a set of records. 

• It does not involve a user establishing either minimum Support or 

Confidence values. Instead, these measures are automatically 

determined.  
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• Support and Confidence measures are entered in an equation within this 

algorithm calculating predictive accuracy values.  

• One single requirement that has to be inputted by the user: total number 

of rules to be generated.  

• As a final product of analysis, each of this algorithm’s rules will present 

maximum predictive accuracy values. 

2.6.  Conclusions 

In Chapter No. 2, concepts and perceptions from different authors in Industrial 

Construction have been presented. In addition, some interesting applications of 

Data Mining techniques in the construction area have been reviewed. 

Professional experience is the main topic mentioned by referred authors when 

developing applications to improve the quality of bid decisions. Some 

researchers integrated experience with techniques such as Utility Theory 

Models, Fuzzy Set Theory concepts, Contractor Judgments and Probalistic Neural 

Networks (PNN). On the other hand, when observing applications of Data Mining 

in consulted works, a common element was noticed: historical information. This 

was present during the entire development of decision-support tools.  

Even though these studies and their applications proved to generate knowledge 

in their respective areas, their utilization was focused to forecast residual 

equipment values, determining productivity, event investigation and resource 

allocation respectively. None of the consulted literature was dedicated to project 
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profile determination to support bidding decisions. Furthermore, no studies 

dealt with project characterization using fabrication quantities of industrial 

fabrication activities, representing an area of opportunity for analysis using 

Clustering and Association Rules algorithms. 

Using these Data Mining techniques it is possible to identify and classify new 

information derived from historical records. This represents an interesting area 

to explore: comparing data from a potential projects versus historical records 

can enhance a construction company’s competitiveness during bidding, by 

having knowledge of its previous performances at hand. It can also enable a 

construction company to establish pricing of potential projects with a starting 

baseline supported by profile comparison and identification of average 

characteristics within a project. 

 

 

 

 

 

 



24 

 

Chapter 3: Creating Industrial Indicators 

3.1.  Introduction 

An industrial construction enterprise has its base of operations in the City of 

Edmonton. This company has more than thirty years of experience in the 

construction industry with an important level of participation in oil-related 

projects, specializing in pipe module fabrication.  

Fabrication shop and module yard are facilities specifically designed for the 

execution and progress of this type of industrial construction. Within the 

fabrication shop activities such as cutting, fitting and welding of different pipe 

diameters and materials are performed continuously as demanded. In the 

module yard, located next to the fabrication shop, assembly and erection of steel 

structures is executed progressively. These structures will hold in place diverse 

arrangements of pipes and equipments. This chain of events occurs on an 

uninterrupted basis during the duration of a project. It represents multi-million 

dollar activities that will permit construction of industrial facilities using modular 

construction techniques. 

The Company wants to improve its current bidding strategies through analysis of 

previous operations. It has chosen a sample of the five best construction projects 

performed within the last 10 years, according to certain parameters: 

• Quality of the information (complete and reliable data). 

• Performance during construction. 
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• Obtained profits. 

These projects will represent a benchmark used by the Company to compare 

performances and make decisions regarding final bidding prices in future 

tendering processes. A description of analysis performed during the last eight 

months for this corporation is presented in corresponding sections: 

Section 3.2 describes Actual Scenario and Current Practices of different 

departments in charge of elaborating bidding proposals. Duties, documentation 

used and responsibilities of each area are explained. 

Section 3.3 presents an overview of the projects integrating the Research Scope. 

Five different industrial construction projects are described throughout this 

section. Due to confidentiality reasons, all graphs, figures and tables present in 

this chapter have been scaled. 

Section 3.4 details diverse Information Sources and documentation provided 

supporting development of Industrial Indicators detailed in this chapter.  

Section 3.5 explains Data Gathering and Cleaning approaches used in acquired 

data to properly apply Data Mining techniques for further analysis.  

Section 3.6 introduces Industrial Indicators elaborated during this research to 

review past performances of the company. These become visualization tools to 

improve analysis of specific characteristics between industrial construction 

projects. 
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Section 3.7 displays the Research Process used to review results derived from 

application of Industrial Indicators. 

Section 3.8 presents Conclusions about explored topics in this chapter.  

3.2.  Actual Scenario 

Personnel from different departments of the company schedule meetings to 

discuss bidding strategies in their proposals. These teams include multiple 

individuals from the Project Controls, Project Estimation and Project Execution 

departments. Previous and current project performances, market demand, 

competition and current workload (both for fabrication shop and module yard) 

are discussed and reviewed. During these sessions each department provides 

different insights concerning fabrication activities. 

3.2.1. Project Controls Department 

The Project Controls department collects actual quantities performed in each 

project. It is the department responsible to account for all projects being carried 

out.  One of its duties is to gather factual data in a report system known as 

Project Cost Management System (PCMS).  

PCMS collects data from projects and it is in complete synergy with the company 

accounting. Furthermore, reports produced by this system include information 

from different project areas such as direct and indirect labor, construction 

management personnel and other overhead costs related to fabrication 

activities.  
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In addition, Work Content Budget (WCB) and Job to Date (JTD) quantities are 

presented for these operational areas in .pdf reports, developed on a monthly 

basis accumulating data from both fabrication shop and module yard.  A high-

level view of project information is introduced in PCMS reports. Fabrication 

activities are depicted generally. Single tasks are grouped into larger categories. 

Measures of quantities performed and man-hours invested in different activities 

are presented using ranges (e.g. pipe welding 2.5” to 10”). 

This level of perspective does not support deep analysis of fabrication activities. 

These reports are not suitable for those cases in which productivities of single 

activities and their behaviors in different projects are reviewed and compared in 

a detailed way. 

Finding out which unit type was measured in an activity represents a challenge 

when reviewing PCMS reports. In these documents, quantities are presented as 

general figures (unit values) without distinction (e.g.  quantities for pipe cutting 

activities are presented as unit values, rather than linear feet or linear meters). 

Only personnel related to these reports know which unit type was measured. 

This increases the risk of comparing two distinct registered measures when 

analyzing project behaviors, causing irregularities and questionable results.  

In some occasions, uncertainty was present in company personnel at the 

moment of reviewing factual data. Sometimes people from this department 
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were not sure about which unit type was measured for certain activities at 

particular times. 

Alternative reports generated by Project Controls are spreadsheets derived from 

a FoxPro® database managing system, known as Quantity Takeoffs. These are 

spreadsheets that specify all items involved in fabrication of pipe modules. In 

these documents, items are classified by activity (piping, welding, handling, 

hydrotesting, etc), item type (pipes, valves, bolt-ups and supports) and can 

contain additional measures such as unit price, man-hours invested in a 

particular activity and diameter inches weld (DIW).  

Information related to man-hours was frequently not present in these reports. 

Estimated man-hours were registered in some fabrication activities. No record of 

actual man-hours is present in these files. However, Quantity Takeoffs reports 

provide more robust data related to fabrication activities than PCMS reports. 

These reports contain a higher level of detail for analysis of specific tasks. 

3.2.2. Estimation Department 

The Estimation department gathers all information related to project costs in 

another database system that has a spreadsheet designed to facilitate input and 

output of information and prepare estimates for bids. This system is called ESP 

(Estimating Summarizing Program) and is an add-on application to MS Excel®.  
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In a highly detailed manner, all requirements constituting a bid’s final price are 

listed: execution areas, items and quantities, specifications, factors and currency 

exchange rates (for those projects located outside Canada). Furthermore, ESP 

holds macros designed to link and calculate figures between different tabs 

containing estimation data. In addition, these macros generate complete 

estimate reports and different data outputs included in tenders, according to the 

client’s specifications. 

3.2.3. Project Execution Department 

Project Execution is the department responsible for tender elaboration and 

revision. This department gathers information from both Estimation and Project 

Controls areas. In addition, legal company documentation such as company 

qualifications, subcontract information and other requirements are included in 

tender packages by this department. Furthermore, one of the functions of the 

Project Execution department is to monitor previous performances and compare 

them with potential opportunities.  

Recently, this department has been using alternative analysis methods to review 

past information. Via industrial indicators, multiple comparisons between 

projects characteristics are being made. As an example of this, Figure 3-1 

associates data from past averages (tons of steel used in modules in Projects A to 

E) against potential averages forecasted in new projects (Project F packages 1 to 

6). 
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Figure 3-1: Historical and Potential project data comparison 

According to this data, the closest match between Project F packages and 

historical data is Project B. This basic analysis supports personnel in the decision 

to use, as a starting base of estimation, prices derived from Project B tenders.  

Nevertheless, these types of analysis are characterized by being one-dimensional 

approaches, in which single measures are merely compared. This currently 

represents a potential risk when making bidding decisions, because this method 

does not necessarily reflect the entirety of the variables contained in a particular 

scenario. Multiple variables affecting fabrication activities could if omitted affect 

negatively a project’s bid price. Because of this simplistic approach, the quality of 

final decisions can be jeopardized. 

For visualization purposes, graphs and charts provide an acceptable 

representation of how a project performs through its lifecycle. But some of the 

current views do not necessarily represent whole project profiles, specifically 

when single characteristics are compared without creating relationships with 
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other factors. The goal of this study is to enhance a company’s knowledge and 

awareness of its operations to become more competitive during bidding. 

The necessity of creating new ways of observing and reviewing project 

characteristics is imperative. Upgrading comparison methods for different 

characteristics using data discovery techniques can diminish decision risks by 

having good quality data on time during development of bidding proposals. 

Adding new data tools to this process will increase the company’s operational 

knowledge. This research presents a decision support tool based on industrial 

indicators and knowledge discovered through implementation of Data Mining 

and Distribution Fitting techniques.  

 

 

 

 

 

 

 

Figure 3-2: Interaction between Company Departments 
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3.3.  Research Scope 

Five different industrial projects were selected by managerial personnel to be 

used as benchmarks during proposal elaboration. These projects and their 

characteristics are presented below: 

3.3.1. Project A  

• Location: 75 Km at the northern area of Fort McMurray, Alberta. 

• Project created to support an additional development for an Oil 

Sands treatment plant. 

• 40 modules were fabricated. Most material used in fabrication 

was carbon steel (90% CS). 

• Pipe size distribution: 10% small bore – 90% large bore. 

• 27,310.80 man-hours invested between steel assembly and pipe 

installation activities. 

3.3.2. Project B 

• The project was a secondary upgrader unit for a larger project. 

• 95 modules built. 

• It presented several delays caused typically by a lack of materials. 

• Originally scheduled for 4 months. Total project completion time: 

12 months. 

• Pipe size distribution: 20% small bore – 80% large bore pipe. 



33 

 

• 53,399.50 man-hours spend in pipe installation and steel 

assembly activities. 

3.3.3. Project C 

• Project designed to improve and enlarge a refinery close to the 

city of Edmonton.   

• 40 modules were built for this project.  

• 80% of the pipe material used in this project was carbon steel. 

The remaining 20% were alloys. 

• Pipe size distribution: 75% small bore – 25% large bore pipe. 

• 61,706.70 man-hours spent in pipe installation and steel 

assembly. 

3.3.4. Project D 

• Designed to be a part of an oil upgrader. 

• Took 12 months to be completely built. 

• 123 modules were fabricated. 

• Material mix: 80% carbon steel – 20% alloys applied in fabrication. 

• Pipe size distribution: 40% small bore – 60% large bore pipe. 

• 134,839.38 man-hours entrusted in fabrication activities (steel 

assembly and pipe installation). 
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3.3.5. Project E 

• 45 modules built. 

• Project scheduled to be completed in 8 months. 

• Pipe material mix: 85% carbon steel – 15% alloys. 

• Pipe size distribution: 30% small bore – 70% large bore pipe. 

• 31,956.38 man-hours invested during its fabrication between 

steel assembly and pipe installation activities. 

3.4.  Sources of Information 

Two different information sources were selected for the development of this 

study: 

3.4.1. Company records  

Company records were obtained from the following sources: 

• Project Controls  

• Project Execution 

• Field Operations 

• Estimation  

Project Controls provide quantity takeoff data from fabrication activities of 

previous projects. This information is specific and can be classified by activity 

(handling, welding, etc). Quantity takeoffs are presented in MS Excel® 

spreadsheets. In addition, PCMS reports are generated using an in-house 
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database management system. These reports present in a high-level perspective 

the amount of man-hours and cost involved in previous projects. 

Project Execution gathers information coming from Project Controls and 

Estimation departments. Meeting regularly, their responsibility is to organize 

data to revise tendering decisions. Furthermore, this department collects 

different spreadsheet reports and flat text files producing tendering packages 

and proposals. 

Field Operations are handed by project managers, generating different types of 

spreadsheets containing information about fabrication of pipe spools, steel 

assembly and module loading. 

The Estimation department calculates tender financial outcomes. By using a 

specifically designed spreadsheet called ESP this department calculates final 

prices on items belonging to fabrication activities of a particular project.  

The first three sources provided data to analyze case scenarios. Estimation 

department data was used to understand certain unit measures and their 

associated costs. It was only used for reference. 

Each document presented its own structure and method of reporting. Data 

organization from all sources was deficient because there was no consistency 

during record review. Absence of responsible personnel who prepared previous 

reports represented an additional obstacle during research. People occupying 
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key roles during data documentation were no longer working with the company. 

This increased the difficulty level of data processing because of a lack of 

understanding on how certain figures and factors were calculated. 

3.4.2. Meetings with company personnel  

Weekly meetings were held to discuss aspects related to the creation of 

alternative indicators to portray past project experiences of the company. In 

these series of meetings, the following participants were present: 

Representing the company: 

• Vice-President of Operations 

• Director of Operations 

• Project Execution Manager 

• Project Controls Manager 

• Field Project Manager 

3.5.  Data Warehousing 

In the present study, diverse types of information associated with pipe module 

fabrication are collected individually from various departments of the company. 

Data from both the fabrication shop and module yard is uniquely treated 

according to its usage. For data analysis purposes, information was collected and 

stored following a star schema in a data base. According to Zhang et al. (2004), 

realistic and descriptive tables are present in a star schema, representing two 
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different types of storing arrangements. These can contain accurate and 

explanatory data, respectively.  

This is the case for the present study, in which spreadsheets containing valuable 

data from different departments were transferred to a main database created in 

MS Access 2007®. This database is static and will generate reports in 

spreadsheets according to Data Mining needs and approaches.  

In this research, information sources inside the company were identified as 

follows: 

• Project Controls Department: Produces Project Cost Management System 

reports (PCMS) on a monthly basis including Work Content Budget (WCB) 

and Job to Date (JTD) measures for each activity belonging to a project 

(quantities and hours performed, respectively). These reports are stored in 

flat text files (.pdf reports). 

• Project Execution Department: Elaborates proposals for different potential 

projects. During this process, company experience documents, legal 

documentation and bid prices are assembled together forming tender 

packages. These are generally the product of a combination of flat text files, 

presentations and spreadsheets.  

• Estimation Department:  It produces calculations of every item present in 

tenders. The combination of these elements generates tender prices. Most 
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of the documents created within this department are spreadsheets with 

multiple uses such as price bidding and benchmarking. 

All data coming from these sources is gathered and stored in network drives 

within the company’s local area network (LAN). There are several access levels to 

this network and its information is considered to be sensitive and strictly 

confidential. 

Once data was available from sources, a database created in MS Access® using 

queries was used to collect and pre-process information for Data Mining 

purposes. Furthermore, formatting of these files was modified, creating 

alternate versions analyzed by Data Mining software selected: WEKA® software. 

An overview of a case study involving Clustering and pipe module fabrication 

database queries is presented in Chapter No. 4.   

3.6.  Data Gathering and Cleaning 

Reports were obtained from Project Execution, Project Controls and Field 

Operations. Depending on use, records were organized and cleaned for either 

indicator creation or Clustering and Association rules analysis. It is important to 

mention that data tables, graphs and others presented in this thesis have been 

scaled due to confidentiality reasons. Some of the cleaning and organizing 

techniques used in the acquisition of data were the following: 

• PCMS reports generated MS Excel® documents. Fabrication measures for 

both the Fabrication Shop and Module Yard were selected, obtaining as 
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final result a condensed spreadsheet. Due to space limitations, this file 

was divided into two sections, observed in Table 3-1 and Table 3-2.  

 

 

 

 

 

Table 3-1: PCMS spreadsheet registering Work Content Budget figures (WCB) 

 

 

 

 

 

Table 3-2: PCMS spreadsheet registering Job to Date figures (JTD) 

• Quantity takeoff spreadsheets were organized and categorized according 

to processing requirements, removing special characters (Table 3-3, raw 

data). Any item affecting functionalities of .ARFF files used by WEKA® was 

eliminated. A final extract is portrayed in Table 3-4 (cleaned data). 

Project Item WCB Qty WCB Hr WCB Amount WCB Hr/Qty WCB Amt/Hr

PROJECT A MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 121074.8 12034 656689 0.11 60.027

PROJECT A MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 223744.4 19817.6 1081450.7 0.099 60.027

PROJECT A MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 0 4541.9 247892.7 0 60.038

PROJECT A MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 134191.2 14588.2 796088.7 0.121 60.027

PROJECT A MODULE YARD A/G PIPE WELDING 12" AND LARGER 2983.2 2139.5 116778.2 0.792 60.038

PROJECT B MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 14060.2 5140.3 140197.2 0.407 29.997

PROJECT B MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 104089.7 9983.6 272280.8 0.11 29.997

PROJECT B MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 3227.4 7275.4 198413.6 2.475 29.997

PROJECT B MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 57968.9 5166.7 140908.9 0.099 29.997

PROJECT B MODULE YARD A/G PIPE WELDING 12" AND LARGER 1922.8 3911.6 106683.5 2.233 29.997

PROJECT C MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 36735.6 10304.8 392304 0.308 41.877

PROJECT C MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 204267.8 10491.8 399424.3 0.055 41.877

PROJECT C MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 2956.8 2985.4 113654.2 1.111 41.877

PROJECT C MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 75324.7 5998.3 228356.7 0.088 41.877

PROJECT C MODULE YARD A/G PIPE WELDING 12" AND LARGER 610.5 1304.6 49666.1 2.354 41.877

PROJECT D MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 23466.3 3340.7 122733.6 0.154 40.414

PROJECT D MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 102047 5981.8 219754.7 0.066 40.414

PROJECT D MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 123.2 145.2 5332.8 1.298 40.403

PROJECT D MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 232247.4 7858.4 288686.2 0.033 40.414

PROJECT D MODULE YARD A/G PIPE WELDING 12" AND LARGER 79.2 64.9 2383.7 0.902 40.403

PROJECT E MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 53710.8 6958.6 260112.6 0.143 41.118

PROJECT E MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 237794.7 13670.8 511013.8 0.066 41.118

PROJECT E MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 484 1360.7 50987.2 3.091 41.228

PROJECT E MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 153450 6741.9 252012.2 0.044 41.118

PROJECT E MODULE YARD A/G PIPE WELDING 12" AND LARGER 308 466.4 17475.7 1.661 41.228

Work Content Budget

Project Item JTD Qty JTD Hr JTD Amount JTD Hr/Qty JTD Amt/Hr Utilization

PROJECT A MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 40723.1 29903.5 1786524.3 0.803 65.714 0.12023

PROJECT A MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 140642.7 35426.6 2108493.2 0.275 65.472 0.53669

PROJECT A MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 0 5492.3 342956.9 0 68.695 0.63987

PROJECT A MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 109083.7 11817.3 703973.6 0.121 65.527 0.44297

PROJECT A MODULE YARD A/G PIPE WELDING 12" AND LARGER 783.2 2478.3 156487.1 3.476 69.454 0.46013

PROJECT B MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 7026.8 3612.4 201809.3 0.561 61.446 0.12023

PROJECT B MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 52021.2 9298.3 542047 0.198 64.119 0.53669

PROJECT B MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 1613.7 702.9 48068.9 0.484 75.229 0.63987

PROJECT B MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 28971.8 2249.5 128020.2 0.088 62.612 0.44297

PROJECT B MODULE YARD A/G PIPE WELDING 12" AND LARGER 961.4 265.1 17758.4 0.308 73.689 0.46013

PROJECT C MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 36671.8 18012.5 670695.3 0.539 40.964 0.12023

PROJECT C MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 188843.6 23331 850705.9 0.132 40.106 0.53669

PROJECT C MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 1441 4439.6 171141.3 3.388 42.405 0.63987

PROJECT C MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 71612.2 4842.2 177493.8 0.077 40.315 0.44297

PROJECT C MODULE YARD A/G PIPE WELDING 12" AND LARGER 501.6 932.8 37247.1 2.046 43.923 0.46013

PROJECT D MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 23466.3 3111.9 104920.2 0.143 37.092 0.12023

PROJECT D MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 102047 7175.3 238472.3 0.077 36.564 0.53669

PROJECT D MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 123.2 553.3 18458 4.939 36.729 0.63987

PROJECT D MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 232247.4 5449.4 182397.6 0.022 36.817 0.44297

PROJECT D MODULE YARD A/G PIPE WELDING 12" AND LARGER 79.2 134.2 4103 1.859 33.638 0.46013

PROJECT E MODULE YARD A/G PIP LAB SPL ERT 2" & LESS 53710.8 11161.7 408824.9 0.231 40.293 0.12023

PROJECT E MODULE YARD A/G PIP LAB SPL ERT 2 1/2" - 10" 237794.7 17600 684358.4 0.077 42.768 0.53669

PROJECT E MODULE YARD A/G PIPE WELDING 2 1/2" - 10" 484 1426.7 56570.8 3.245 43.637 0.63987

PROJECT E MODULE YARD A/G PIP LAB SPL ERT 12" - 34" 153450 8560.2 311832.4 0.066 40.073 0.44297

PROJECT E MODULE YARD A/G PIPE WELDING 12" AND LARGER 308 565.4 23657.7 2.024 46.024 0.46013

Job To Date
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Table 3-3: Quantity takeoffs for Project A (raw data) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-4: Quantity takeoffs for Project A (cleaned data) 

 

3.7.  Industrial Indicators 

Over a number of months, Industrial Indicators were assembled, each 

customized to reflect and register individual characteristics of a particular 

PROJECT DESC SIZE QTY SIZEDESC UNITPRICE

PROJECT A PIPE, STD, ASTM A53 Gr B ERW 16.000 0.000 54 16" 172.03

PROJECT A ELBOW 90 DEG LR BW, STD, ASTM A234 Gr WPB 16.000 0.000 2 16" 331.22

PROJECT A ELBOW 45 DEG LR BW, STD, ASTM A234 Gr WPB 16.000 0.000 2 16" 242.10

PROJECT A NIPPLE, XS, PE, ASTM A106 Gr B Smls 0.500 6.000 2 1/2" x 6" 3.70

PROJECT A NIPPLE, XS, PE, ASTM A106 Gr B Smls 0.500 3.000 2 1/2" x 3" 2.75

PROJECT A ORIFICE FLANGE SET WELDNECK, STD, 300 lb, RF, 125-250 AARH, ASTM A105N 16.000 0.000 2 16" 458.91

PROJECT A GASKET, 300 lb, 316SS FLEXGRAPH-CS O/R-1/8" 16.000 0.000 3 16" 24.84

PROJECT A PIPE SUPPORT  LS13 16.000 0.000 3 16" 919.91

PROJECT A HANDLE PIPE, STD, CS 16.000 0.000 57 16" 266.01

PROJECT A HANDLE PIPE, XS, CS 0.500 0.000 3 1/2" 29.15

PROJECT A BOLT-UPS, 300 lb, CS 16.000 0.000 2 16" 687.71

PROJECT A BOLT SET(SPEC BLIND, 1" THICK), 300 lb, Bolt-A193 GrB7/Nut-A194 Gr2H (Liqd Q&T) 16.000 0.000 2 16" 149.60

PROJECT A HANDLE...  FO300 16.000 0.000 2 16" 1489.85

PROJECT A PIPE, STD, ASTM A106 Gr B Smls 4.000 0.000 58 4" 37.66

PROJECT A HANDLE PIPE, STD, CS 4.000 0.000 183 4" 69.23

PROJECT A PIPE SUPPORT  GU11 4.000 0.000 14 4" 178.87

PROJECT A PIPE, STD, ASTM A333 Gr 6 SMLS 4.000 0.000 144 4" 44.90

PROJECT A PIPE, STD, ASTM A333 Gr 6 SMLS 2.000 0.000 158 2" 15.49

PROJECT A TEE (REDUCING) BW, STD, ASTM A420 Gr WPL6 4.000 2.000 7 4" x 2" 38.75

PROJECT A FLANGE WELDNECK, STD, 150 lb, RF, 125-250 AARH, ASTM A350 Gr LF2,Class 1 2.000 0.000 24 2" 16.86

PROJECT A PIPE SUPPORT  GU04-A1 4.000 0.000 14 4" 225.53

PROJECT A HANDLE PIPE, STD, LOW TEMP CS 4.000 0.000 145 4" 69.23

PROJECT A HANDLE PIPE, STD, LOW TEMP CS 2.000 0.000 81 2" 40.08

PROJECT A ELBOW 90 DEG LR BW, STD, ASTM A420 Gr WPL6 2.000 0.000 35 2" 4.33

PROJECT DESC QTY SIZEDESC UNITPRICE

PROJECTA PIPESTDASTMA53GrBERW 54 16 172.03

PROJECTA ELBOW90DEGLRBWSTDASTMA234GrWPB 2 16 331.22

PROJECTA ELBOW45DEGLRBWSTDASTMA234GrWPB 2 16 242.10

PROJECTA NIPPLEXSPEASTMA106GrBSmls 2 0.5 3.70

PROJECTA NIPPLEXSPEASTMA106GrBSmls 2 0.5 2.75

PROJECTA ORIFICEFLANGESETWELDNECKSTD300lbRF125250AARHASTMA105N 2 16 458.91

PROJECTA GASKET300lb316SSFLEXGRAPHCSOR18 3 16 24.84

PROJECTA PIPESUPPORTLS13 3 16 919.91

PROJECTA HANDLEPIPESTDCS 57 16 266.01

PROJECTA HANDLEPIPEXSCS 3 0.5 29.15

PROJECTA BOLTUPS300lbCS 2 16 687.71

PROJECTA BOLTSETSPECBLIND1THICK300lbBoltA193GrB7NutA194Gr2HLiqdQ&T 2 16 149.60

PROJECTA HANDLE...FO300 2 16 1489.85

PROJECTA PIPESTDASTMA106GrBSmls 58 4 37.66

PROJECTA HANDLEPIPESTDCS 183 4 69.23

PROJECTA PIPESUPPORTGU11 14 4 178.87

PROJECTA PIPESTDASTMA333Gr6SMLS 144 4 44.90

PROJECTA PIPESTDASTMA333Gr6SMLS 158 2 15.49

PROJECTA TEEREDUCINGBWSTDASTMA420GrWPL6 7 4 38.75

PROJECTA FLANGEWELDNECKSTD150lbRF125250AARHASTMA350GrLF2Class1 24 2 16.86

PROJECTA PIPESUPPORTGU04A1 14 4 225.53

PROJECTA HANDLEPIPESTDLOWTEMPCS 145 4 69.23

PROJECTA HANDLEPIPESTDLOWTEMPCS 81 2 40.08

PROJECTA ELBOW90DEGLRBWSTDASTMA420GrWPL6 35 2 4.33
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project. In addition, through the use of graphs, they become visualization tools 

to review past company performances. 

3.7.1. Production Indicator 

The purpose of this indicator is to calculate a historical average number of 

modules fabricated (average production) in all previous projects and review 

which projects surpassed an estimated average due to their unique 

characteristics. Modules fabricated in each project are represented with 

columns, while the historical average is portrayed as a benchmark line in Figure 

3-3. 

 

 

 

 

 

 

 

Figure 3-3: Fabricated Modules per Project 

3.7.2. Steel Assembly Indicators 

3.7.2.1. Steel (Ton)/Mod. Tons of steel per module fabricated. An average 

number of Tons of Steel per Module fabricated is represented in Figure 3-4. This 

was calculated using the following equation: 
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Figure 3-4: Steel Assembly Steel(Ton)/Mod Indicator 

3.7.2.2. Direct Hrs/Steel Ton. Direct Fabrication Man-Hours per Ton of Steel. Its 

purpose is to reflect how many direct man-hours were invested in the steel 

assembly of a single module, portrayed in Figure 3-5. This indicator was built 

using the next equation: 
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Figure 3-5: Steel Assembly Direct Hrs/Steel(Ton) Indicator 
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3.7.2.3. Steel member usage per project. Indicates the utilization percentage of 

structural steel (according to specifications) used in a pipe module construction 

project. For this indicator, records from steel assembly activities were gathered 

and ordered and are depicted in Figures 3-6 to 3-10. 

 

 

 

 

 

Figure 3-6: Steel analysis chart – Project A 

 

 

 

 

 

Figure 3-7: Steel analysis chart – Project B 
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Figure 3-8: Steel analysis chart – Project C 

 

 

 

 

 

Figure 3-9: Steel analysis chart – Project D 

 

 

 

 

 

Figure 3-10: Steel analysis chart – Project E 
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3.7.2.4. Items used per Steel Category. This measure expresses how many 

structural steel items were used during steel assembly phase. In Table 3-5, steel 

items present in construction were quantified according to their weight 

following company standards. 

Structural steel is categorized in the following denominations: 

� Extra Heavy Steel: More than 90 kg per linear meter of steel. 

� Heavy Steel: 60 to 90 kg per linear meter of steel. 

� Medium Steel: 30 to 60 Kg per linear meter of steel. 

� Light Steel: Less than 30 Kg per linear meter of steel. 

� Miscellaneous Steel: Present in different fabricated items such as ladders, 

handrails, grating and plates. 

 

 

 

 

 

 

Table 3-5: Steel Assembly Items Used per Steel Category indicator 

Project Description Number of Items Used Total Items

Extra Heavy Steel 9

Heavy Steel 12

Light Steel 81

Medium Steel 26

Miscellaneous Steel 63

Extra Heavy Steel 33

Heavy Steel 23

Light Steel 224

Medium Steel 188

Miscellaneous Steel 4

Extra Heavy Steel 9

Heavy Steel 51

Light Steel 87

Medium Steel 106

Miscellaneous Steel 112

Extra Heavy Steel 4

Heavy Steel 54

Light Steel 84

Medium Steel 29

Miscellaneous Steel 46

Extra Heavy Steel 0

Heavy Steel 12

Light Steel 17

Medium Steel 15

Miscellaneous Steel 7

Items used per Steel Category - Company Projects

PROJECT A

PROJECT B

PROJECT C

PROJECT D

PROJECT E

191

472

365

217

51
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3.7.2.5. Top 5 Steel Items utilization. In Table 3-6, a ranking of the most used 

structural steel items during assembly is depicted with a description and a 

utilization percentage for each item. 

 

 

 

 

 

 

 

Table 3-6: Steel Assembly Top 5 Items Utilization chart 

3.7.2.6. Steel involved in Module Fabrication. Figure 3-11 represents a steel mix 

distribution present during steel assembly. All observed percentages were 

categorized by their weight. 

 

 

 

 

Project Description Item Description Weight (tons) Utilization %

Extra Heavy Steel W360X134 204.92 18.05%

Medium Steel W310X52 142.20 12.52%

Heavy Steel W310X67 136.14 11.99%

Medium Steel W310X39 101.85 8.97%

Extra Heavy Steel W310X129 67.92 5.98%

Extra Heavy Steel W310X107 212.45 12.31%

Medium Steel W310X45 183.24 10.62%

Medium Steel W310X60 170.63 9.89%

Miscellaneous Steel Grating 146.40 8.48%

Heavy Steel W310X86 122.62 7.11%

Heavy Steel W310X79 205.88 12.42%

Medium Steel W310X60 199.78 12.05%

Heavy Steel W310X129 129.88 7.83%

Heavy Steel W310X97 110.54 6.67%

Heavy Steel W310X118 104.24 6.29%

Medium Steel W10X33 719.87 17.44%

Miscellaneous Steel Grating 377.40 9.15%

Heavy Steel W12X87 341.10 8.27%

Heavy Steel W12X53 273.53 6.63%

Heavy Steel W12X72 194.18 4.71%

Heavy Steel W12X65 297.89 27.49%

Heavy Steel W12X53 140.88 13.00%

Medium Steel W10X33 128.40 11.85%

Medium Steel W10X26 118.72 10.95%

Miscellaneous Steel Grating 104.38 9.63%

PROJECT A

PROJECT B

PROJECT C

PROJECT D

PROJECT E

Top 5 Items Utilization  - Company Projects
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Figure 3-11: Steel percentages involved in Module Fabrication 

3.7.2.7. Major frame structures. Figure 3-12 indicates a measure of man-hours 

per ton of steel invested during steel structure assembly and erection phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12: Number of man-hours per steel ton invested in assembly of Major Frame 

Structures 
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3.7.3. Pipe Spool Installation Indicators: 

3.7.3.1. Pipe(m)/Mod. In Figure 3-13, this measure represents average linear 

meters of pipe used in the fabrication of a single module. It was calculated using 

the following equation: 
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This graph has two different lines: a continuous line represents average linear 

meters of pipe used per module for different projects. The dotted line depicts 

the total average linear meters of pipe used in a single module. 

 

Figure 3-13: Pipe Installation Pipe(m)/Mod Indicator 

3.7.3.2. Pipe(ft)/Mod. Figure 3-14 reflects the total number of linear feet of pipe 

used in fabrication of a module. It was elaborated using a similar equation: 
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The only difference remains in its units. Instead of calculating linear meters of 

pipe per module, this graph presents the average linear feet of pipe per module 

fabricated. 

 

 

 

 

 

Figure 3-14: Pipe Installation Pipe(ft)/Mod Indicator 

3.7.3.3. Direct Hrs/Pipe(m). This indicator was made to express a total amount 

of direct man-hours per linear meter of pipe installed (Figure 3-15). 

������ ���

!�����	
=

���� ������ �� −  ℎ���� �������� �� !��� $���������

���� "���� 
����� �� !���
 

 

 

 

 

 

 

Figure 3-15: Pipe Installation Direct Hrs/Pipe(m) Indicator 
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3.7.3.4. Direct Hrs/Pipe(ft). It is the equivalent of the above mentioned 

indicator, with the only difference of measuring a total number of direct man-

hours per linear foot of pipe installed (Figure 3-16).   
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Figure 3-16: Pipe Installation Direct Hrs/Pipe(ft) Indicator 

3.7.3.5. Performance Hr/Ft. It is a measure classified in three different 

categories to determine performances during pipe spool installation.  

These categories were established according to PCMS reports representing 

performances for three different pipe diameter ranges (Figure 3-17): 

� Spools erected in the Module Yard, averaging a diameter between 

12”-34”. 

� Spools erected in the Module Yard, averaging a diameter between 2 
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� Spools erected in the Module Yard, averaging a diameter between 2” 

& less. This presented higher performance measures, possibly due 

increased complexity in spool arrangements for this category. 

 

 

 

 

 

Figure 3-17: Pipe Installation Performance (Hr/Ft) Indicator 

3.7.4. Fabricated Spools Indicators 

3.7.4.1. Number of Spools per Module. It reflects an average number of spools 

fabricated for a single module (continuous line in Figure 3-18). 

 

 

 

 

 

 

 

 

 

 

Figure 3-18: Average number of Spools fabricated per Module Indicator 
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3.7.4.2. Diameter Inches per module. Indicates an average welding diameter 

inches measure used in the fabrication of a module. It is symbolized with a dark 

line in Figure 3-19. 

 

 

 

 

 

 

Figure 3-19: Average diameter inches (DI) fabricated per Module Indicator 

3.7.4.3. Multi-level modules number. Designates how many multiple deck 

modules existed in a single project. This number is presented in Table 3-7. 

3.7.4.4. Direct Hrs/Spool. Denotes average man-hours invested in a single spool 

of a module. As its predecessor, it can be observed in Table 3-7. 

 

 

 

Table 3-7: Fabricated Spools Data 
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Project Module Number Spool Number Total DI's
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Module
No. of Multi-level Modules

Average Direct 

Hrs/Spool

Project A 40 1,570 65,335 39.24 1633.36 0.00 11.51

Project B 95 3,095 102,678 32.58 1080.83 16.00 13.97

Project C 40 9,637 198,911 240.93 4972.77 0.00 5.78

Project D 123 7,856 260,995 63.87 2121.91 25.00 12.76

Project E 45 1,673 55,132 37.18 1225.16 20.00 10.21

Sub-Totals 343 23,832 683,051 28.66 1991.40 20.33 10.85
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3.7.5. Historical Piping Average Project Profile Curve 

Quantity takeoffs for each project were extracted from company records. In 

these files, pipes used in fabrication were classified by diameter size and their 

quantities were summed in linear meters. In addition, percentages of each 

diameter present in fabrication were calculated.  

Figure 3-20 presents a diameter distribution line that reflects how much each 

pipe diameter was used during pipe module fabrication. Furthermore, for the 

development of this profile curve, all quantities derived from those projects 

integrating the research’s scope were taken into consideration. It represents the 

historical average distribution of different pipe diameters implicated in this 

variant of industrial construction. 

 

Figure 3-20: Historical Average Project Profile Indicator 

 

0.08%

5.10%
4.32%

0.38%

40.68%

16.69%

13.09%

16.29%

11.29%

7.12%

3.33%

0.89%

1.35%

1.32% 1.46% 0.89% 0.31% 0.20% 0.18% 0.02%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

U
ti

li
za

ti
o

n
 %

Size (in)

Historical Average Project Profile Curve

Historical Average Project Profile



54 

 

An additional graph (Figure 3-21) was used for profile comparison by the 

managerial team of the company. It reflects the average piping project profile 

curve with the addition of new curves representing different pipe utilizations in 

each project. By comparing profiles, the managerial team can decide which 

project characteristics could be closer to those reflected in historical company 

data. 

 

Figure 3-21: Historical Average Project Profile vs. Project Profiles Indicator 

3.8.  Research Process 

Weekly meetings reviewed and monitored the research process for industrial 

indicators creation. Once a week, select personnel from different departments of 

the company observed work performed and provided feedback.  
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Indicator results were discussed, according to personnel expectations and 

operational knowledge. 
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Research Process

Different Sources:

-Estimating 

Department

-Field Operations

-Project Controls

-Project Execution

With feedback from:

-Vice-President of Operations

-Director of Operations

-Project Execution Manager

-Project Controls Manager

-Field Project Manager

Data 

Acquisition

Tools used:

-MS Access®

-MS Excel®

Data 

Organization

Tools used:

-MS Excel®

-MS PowerPoint®

Data 

Representation

Data 

Revision

Legend:

-Bidirectional

-Unidirectional

Most of their recommendations included remarks about their experiences in the 

field. Those indicators requiring adjustments were extensively reviewed, 

consulting all available data sources. In other occasions, observations were 

merely related to aesthetical changes in some indicators, to establish 

consistency in the way these were presented. 

Irregularities were eliminated in each case as required. New ways of depicting 

historical information were considered reliable only when experts in the field felt 

satisfied with results.  Figure No. 3-22 explains this cycle, representing this 

process completely. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-22: Research Process 
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3.9.  Conclusions 

Discussed in this the present chapter, data from different departments of an 

industrial construction company was collected in an eight month study. This 

information was characterized by having deficient organization and lack of 

consistency in their representation. No homologated structures between 

documents were observed. Moreover, the absence of those responsible for the 

development of previous documents caused delays when understanding reports, 

representing a limitation for data analysis.   

The necessity of creating alternative ways to depict and organize historical data 

is important. Industrial Indicators were generated and reviewed in weekly 

meetings with company personnel, receiving positive reviews. In this way, 

additional value and knowledge is created by having tools designed to visualize 

past performances improving company decisions, specifically during proposal 

elaboration.  

Upgrading a company’s operational knowledge with Industrial Indicators raises 

its business vision, integrating new information facets to support assessment 

during revision of historical performances. These alternative Industrial Indicators 

were adopted by the company and are currently used by their personnel as a 

reference of previous performances. Company knowledge has been documented 

in a compilation that can be consulted whenever required. 
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Chapter 4: Knowledge Discovery Techniques applied in case studies 

4.1. Introduction 

The present chapter constitutes the core of this thesis, introducing two main 

sections delimiting its content. Firstly, Section 4.2 introduces a Data Overview of 

all obtained records for case study development: how these records are 

composed and which are the variables considered for analysis. Five industrial 

construction projects related to pipe module fabrication activities are presented.  

Alternatively, additional data samples were extracted from previous fabrication 

studies. As a product of this development, different spreadsheets, graphs and 

databases were assembled. Due confidentiality reasons, all graphs and tables 

present in the development of this chapter have been scaled. 

Secondly, Section 4.3 presents four case studies with application of Clustering 

and Association rules techniques using factual data from Company records. A 

description of applied methods and their outcomes is thoroughly presented. Its 

intention is to discover important characteristics of past projects and distinguish 

possible profiles and patterns. In addition, Distribution Fitting is applied to the 

last case, reviewing how distributions can resemble records present in raw data 

virtually creating input models for further construction simulation research. 

Lastly, conclusions for all experiments are presented at the end of this chapter. 
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4.2.  Data Overview 

Analysis of company records was performed during the course of one year, once 

data from different departments of the company was acquired. Documentation 

from Project Controls and Project Execution departments was collected acting as 

raw data for three case studies. Two additional analysis scenarios were included 

in this chapter, using alternative data samples collected by previous researchers. 

Data Ordering and Cleaning techniques applied to different spreadsheets and 

flat text files originated new records in the form of additional spreadsheets, 

graphs and databases. Furthermore, usage of these tools generated alternative 

ways of reviewing past performances through distinct Industrial Indicators 

creation. 

However, certain characteristics of specific fabrication processes such as 

welding, handling Pipe, supports and handling valves were difficult to analyze by 

using simple approaches and visual displays. Scattered records and multiple 

behaviors and trends in each category were observed, challenging proper 

analysis. These records quantified several items and materials used during 

fabrication. Different item measures captured during fabrication of piperack, 

pipe and stair modules were contained in these sets of data.  

For confidentiality reasons, all project names, quantities and other measures 

concerning historical project data have been scaled during discussion of case 

studies presented in this chapter. 
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4.2.1. Data Ordering and Cleaning 

Project Execution and Project Controls departments are the prime sources of 

information studied for Data Mining and Distribution Fitting applications used in 

this chapter. 

Project Execution supplied multiple files containing different fabrication 

characteristics for each scope project, including the following: 

• Number of fabricated modules 

• Length of pipe installed in modules 

• Direct manhours for fabrication activities (both pipe installation and steel 

assembly) 

• Carbon steel mix present in pipe fabrication (CS %) 

• Man-hours per diameter inch weld fabricated (Mh/DIW)  

These characteristics were extracted forming new arrangements called Project 

Descriptions. 

Project Controls possessed files which included details related to steel assembly 

and pipe fabrication activities. For steel assembly, Project Controls supplied data 

which included different structural steel records, captured and quantified by 

field personnel.  

Lists of several steel items used during assembly of steel structures supporting 

pipe modules were observed, detailed on large spreadsheets. Within these files, 
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steel items used were classified according to their weight and by module number 

as their final destination. In addition, costs associated with each item were noted 

within these records. Extracting, ordering and cleaning information from only 

steel quantities created supporting versions representing percentages of 

utilization for each steel category:  

• Extra Heavy % 

• Heavy Steel % 

• Medium Steel % 

• Light Steel % 

• Miscellaneous Steel % 

These records are called Structural Steel Utilization and each steel category in 

steel assembly activities is represented by a percentage. Another important 

collection of data supported by Project Controls are Quantity Takeoffs files. 

These records included different configurations of pipes, valves, supports and 

others used during pipe spool fabrication. 

Quantity Takeoffs represented outputs of a database management system run in 

FoxPro®, used by company personnel. These files contained unpolished and 

unordered data: disorganized raw outputs of pipe spool fabrication activities. 

Welding, handling pipe, pipe supports and handling valves were activities 

portrayed in these records. 
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Using spreadsheets, information derived from these files was ordered and 

cleaned of particular characters affecting negatively Data Mining software 

performance. Once this process was finished two different data sets were 

obtained. 

The first data set collected and quantified information about all pipe diameters 

used during fabrication, for each project. Within this data set a utilization 

measure was calculated. In this way, each pipe diameter was represented by a 

percentage of utilization. This measure was called Pipe Diameter Utilization 

Percentage. The other data set contained ordered information related to four 

fabrication areas. It is represented by the following groups, classified by project:  

 

 

 

 

 

Table 4-1: Summary of records in each fabrication area 

These data groups were called Fabrication Main Characteristics. 

A third information source was defined by a previous study, Fabrication Time 

Studies, performed by PhD students of the Hole School of Construction of 

University of Alberta. Data was compiled in a MS Access® database, containing 

Welding 33 Welding 99 Welding 132

Handling Pipe 39 Handling Pipe 282 Handling Pipe 140

Supports 51 Supports 1138 Supports 589

Handing Valves 11 Handing Valves 169 Handing Valves 129

Sub-total Records: 134 Sub-total Records: 1688 Sub-total Records: 990

Project A Project B Project C

Welding 131 Welding 80

Handling Pipe 166 Handling Pipe 127

Supports 843 Supports 67

Handing Valves 97 Handing Valves 305

Sub-total Records: 1237 Sub-total Records: 579

Project D Project E
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detailed fabrication information related to an external project outside the 

present research scope. This database included detailed fabrication data, 

comprising multiple attribute information specifying man-hours performed in 

each fabrication activity (e.g. cutting, welding and fitting). Required data for 

further analysis was obtained from this database through query development 

and data tables. Additional modifications to the data were performed using 

spreadsheets. As a result of Data Ordering and Cleaning techniques, five Case 

Studies were arranged. 

Case Study No. 1 was formed by grouping Project Descriptions, Structural Steel 

Utilization and Pipe Diameter Utilization percentages. This case study attempts 

detection of different project profiles by creating comparisons between 

historical and potential projects using factual data. Through project profiling, the 

company will have an alternative view to review the closest match between 

current opportunities and past performances and potentially decide its bid 

starting prices. 

Case Study No. 2 collects information from activities performed during pipe 

spool fabrication in past projects: welding, handling pipe, supports and handling 

valves. The purpose of this case study is to detect main trends embedded in 

these activities for each historical project. Its detection will increase analysis and 

comprehension of past performances. By comparing characteristics of activities 
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included in potential projects with previous executions, the company reinforces 

its bidding strategies by strengthening knowledge of previous operations. 

Case Study No. 3 is similar in structure to Case Study No. 2. Both cases also 

acquired data from the same data source. The difference between these cases 

lies in the approach used while ordering data. In this case, all project data is 

merged as one knowledge source. Once this step is performed, data is then 

divided into four fabrication areas. Clustering techniques, Association Rules and 

graphical representations are applied to enhance understanding of these 

fabrication activities. 

Case Study No. 4 introduces an extract of data related to pipe spool fabrication 

activities collected from the Fabrication Time Studies database. This data has 295 

unique records which combine six different attributes. In this case study, 

Statistical Analysis is performed to detect particular distributions of man-hours 

performed in each weld. In addition, Clustering is applied in conjunction with 

Association Rules to detect knowledge enclosed in data. 

Case Study No. 5 presents the largest data sample from all experiments. 19,960 

records are gathered in a table containing five attributes. This is the most 

detailed data comprising welding information classified by fabricated spools. The 

purpose of this experiment is to determine the best distributions derived from 

raw data resembling project performances for certain data attributes.   
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The process of Data Ordering and Cleaning for all Case Studies involving 

historical data is presented in Figure 4-1 and Figure 4-2. These figures display all 

knowledge contributions from different departments in each of the cases that 

are explained in the present chapter.  

 

 

 

 

 

 

 

 

 

Figure 4-1: Data Acquisition, Ordering and Cleaning processes for Cases No.1 to No.3 
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Figure 4-2: Data Acquisition, Ordering and Cleaning processes for Cases No.4 and No.5 
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spent in fabrications activities were not collected by the company. This 

represented a constraint for analysis of past performances. The company lacked 

the technology necessary to capture real-time performances, specifically during 

particular fabrication tasks.  

Managerial reports contained information regarding fabrication but were 

collected in an aggregated manner, establishing an amount of man-hours per 

category at a very high level (e.g. pipe spool erection 2”-10”). This does not 

reflect all behaviors observed in each fabrication operation. 

4.3.  Analysis of Industrial Construction activities  

To review the information and discover new knowledge from company records, 

WEKA® software was chosen as Data Mining tool.  This program has the 

capability of running different types of Data Mining algorithms and it possesses a 

friendly user interface for those that are not experts in the Knowledge Discovery 

field. As Witten & Frank (2005) mentioned in their work, WEKA® has an 

integrated collection of algorithms and pre-processing tools designed to 

recognize best analysis alternatives for particular scenarios, through approach 

association between different algorithms.  In addition, the authors mentioned 

some of the algorithms embedded in WEKA®: 

• Classification 

• Association 

• Clustering 



67 

 

• Data Visualization 

Examples of some of the algorithms that can be run in WEKA® are presented in 

Figure 4-3. 

 

 

 

 

 

 

 

Figure 4-3: Different Tasks performed by WEKA® (Witten and Frank, 2005) 

Depending on analysis scenario, quality and number of data items certain 

algorithms will be more suitable than others while mining data.  

Analysis of four different case scenarios through application of Clustering 

algorithms is presented. These methods are implemented in those occasions in 

which attributes are associated into spontaneous groups according to their 

similarities, for cases in which a class prediction is not required (Witten & Frank, 

2005). 

Bayesian

Decision Trees

Functions

Neural Networks

Examples of algorithms used by WEKA® Software:

Classification Associations Clustering

Data    

Visualization

Apriori

FP Growth

Predictive Apriori

Tertius

Cobweb

EM

Simple K Means

DBScan

Multiple Plots

Data Mining Algorithms
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4.3.1. Case Study 1: Project profiling 

Data was extracted from company records, after which ordering and cleaning 

techniques were applied creating multiple spreadsheets. These spreadsheets 

were later uploaded into a MS Access® database, constituting tables used for 

further data manipulation. In this experiment, a single query was created using 

MS Access®, reflecting the following fields: 

• Project name 

• Module number 

• Pipe Diameter Utilization: pipe diameters between < 2” and 48” 

• Structural Steel Utilization: percentages of Extra-Heavy, Heavy, Medium, 

Light and Miscellaneous steel used during Steel assembly  

• Installed length of pipe (both in meters and feet) 

• Direct man-hours involved in steel assembly 

• Direct man-hours involved in pipe installation 

• Carbon steel percentage present in fabrication (CS %) 

• Man-hours per diameter inch of weld produced (Mh/DIW) 

 

 

 

 



 

 

 

 

 

Figure 

As an output of this query, a spreadshe

and spaces were removed to prepare it for 

The Simple K Means algorithm was the tool chosen in this first 

used specifically to create five different clusters, resemb

constituting research scope. Each cluster represents unique historical 

characteristics, forming diverse project profiles. 

According to Witten & Frank (2005),

items in randomly-chosen centroid

between items and centroids. As initial step during this analysis, the number of 

centroids in this algorithm has been set by the user, defining an initial 

As mentioned by these authors, once cluster assignm

for each cluster are calculated, reassigning new cluster centroids. Once this 
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Figure 4-4: Database Query for Case Study 1 

an output of this query, a spreadsheet was obtained and special characters 

and spaces were removed to prepare it for Data Mining analysis using WEKA®. 

algorithm was the tool chosen in this first Case Study

used specifically to create five different clusters, resembling each project

research scope. Each cluster represents unique historical 

characteristics, forming diverse project profiles.  

Witten & Frank (2005), this clustering technique allocates different 

chosen centroids by calculating the euclidean distance

between items and centroids. As initial step during this analysis, the number of 

centroids in this algorithm has been set by the user, defining an initial 

As mentioned by these authors, once cluster assignments are finalized, means 

for each cluster are calculated, reassigning new cluster centroids. Once this 

pecial characters 

analysis using WEKA®.  

Case Study. It is 

ling each project 

research scope. Each cluster represents unique historical 

this clustering technique allocates different 

euclidean distance 

between items and centroids. As initial step during this analysis, the number of 

centroids in this algorithm has been set by the user, defining an initial k factor. 

ents are finalized, means 

for each cluster are calculated, reassigning new cluster centroids. Once this 
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feature has been performed, the entire process will be repeated until the value 

of the cluster centers becomes constant.   

By training this algorithm to specify five cluster centers, a base structure with 

five different project profiles is trained. This enables Simple K Means algorithm 

to make profile comparisons by testing it against new data derived from 

potential projects. 

It is important to mention that new data must have a similar structure to those 

observed during training. In other words, to make proper comparisons the same 

distribution of features as described at the beginning of this Case Study must be 

present. The experiment performed in the analysis of Case Study No. 1 exhibits a 

comparison of singular project profiles and also a classification of potential 

project profiles according to similarities of previous company experiences.  

Moreover, as a result of this experiment, the company will know the closest 

match between characteristics of a potential project and those previously 

performed. 

With this, the company can begin defining its base starting prices having at hand 

useful information about possible trends present in current characteristics.   
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Figure 4-5: Profile comparison between Historical and Potential projects 

This technique improves the way the company analyzes and compares potential 

projects with its previous performances. It is based on a multi-dimensional 

analysis in which different characteristics are compared simultaneously rather 

than uni-dimensionally as currently performed by personnel through use of 

simpler charts derived from previous executions. Using past data, the algorithm 

was trained to create five different projects as clusters. These were randomly-

created, assigning different cluster numbers to previous projects: 

Project Profile A:  Cluster 2 

Project Profile B:  Cluster 1 

Project Profile C:  Cluster 3 

Project Profile D:  Cluster 0 

Project Profile E:  Cluster 4 

Project A 

Profile

Project B 

Profile

Project C 

Profile

Project D 

Profile

Project E 

Profile

Sample Project 

Profiles (F,G & H)



 

Each of the five clusters created presents a structure depicted in Figure 4

addition, clustering assignments can be observed in Figure 4

different centroids have been defined, corresponding to each histo

Moreover, six different 

samples to test this clustering algorithm:

• Project Profile F 

• Project Profile G 

• Project Profile H 
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Each of the five clusters created presents a structure depicted in Figure 4

addition, clustering assignments can be observed in Figure 4-6, in which five 

different centroids have been defined, corresponding to each historical project.

Moreover, six different Industrial construction projects have been chosen as 

samples to test this clustering algorithm: 

 

 

• Project Profile I 

• Project Profile J 

• Project Profile K 

gure 4-6: Cluster creation. Initial Centroids  

Each of the five clusters created presents a structure depicted in Figure 4-5. In 

6, in which five 

rical project. 

projects have been chosen as 
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4.3.1.1. Results obtained during Project Profiling 

As a main result of the application of Simple K Means algorithm, different 

Clustering assignments were observed for each test project. Each was run 

independently, obtaining unique allocations.  

All measures involved in project profiling for Projects E, F and H are depicted in 

Table 4-2.  Missing records are depicted with a question mark (?) character. 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2: Potential Projects F, G and H. Measures involved during Clustering 

Project Name Project F Project G Project H

Module Number 29 68 17

<2" 17.95% 6.27% 2.13%

2" 23.47% 5.73% 23.62%

3" 23.41% 2.00% 17.43%

4" 15.95% 0.99% 11.07%

6" 8.56% 0.00% 0.00%

8" 9.09% 0.16% 0.00%

10" 5.66% 0.37% 0.00%

12" 0.00% 0.46% 0.00%

14" 0.00% 0.20% 0.00%

16" 0.02% 0.20% 0.00%

18" 4.50% 0.21% 0.00%

20" 1.40% 0.00% 0.00%

24" 0.00% 0.14% 0.00%

30" 0.00% 0.00% 0.00%

36" 0.00% 0.00% 0.00%

42" 0.00% 0.00% 0.00%

48" 0.00% 0.00% 0.00%

ExtraHeavyPct ? 0.00% ?

HeavyPct ? 0.00% ?

MediumPct ? 97.60% ?

LightPct ? 0.00% ?

MiscPct ? 12.40% ?

LengthPipeM 3,786.65 22,061.09 6,532.47

LengthPipeFt 12,423.40 72,378.90 21,432.00

DirectSteelHrs 7,308.40 21,227.80 935.00

DirectPipeHrs 32,639.20 34,927.20 10,644.00

%CS 99% 81% 100%

Mh/DIW 0.94 1.27 0.78

Cluster Classification

Method

Simple K Means 3 4 2
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The closest profile matches between historical and Projects F, G and H were the 

following: 

• For Project Profile F, its closest match found by K Means Algorithm is 

Cluster 3, represented by Project Profile C. 

• In the case of Project Profile G, its closest match is Cluster 4, portrayed by 

Project Profile D. 

• Finally for Project Profile H, its equivalent is determined by Cluster 2, 

containing information of Project Profile B. 

 

 

 

 

 

 

 

 

 

Table 4-3: Potential Projects F, G and H cluster assignments. Simple K Means algorithm 

implementation (results in right columns) 

 

Project F Project C Project G Project D Project H Project B

29 40 68 123 18 95

17.95% 12.52% 6.27% 4.40% 2.13% 12.65%

23.47% 32.85% 5.73% 42.05% 23.62% 35.21%

23.41% 12.41% 2.00% 14.23% 17.43% 16.88%

15.95% 15.07% 0.99% 8.17% 11.07% 9.40%

8.56% 15.79% 0.00% 12.49% 0.00% 13.28%

9.09% 10.93% 0.16% 9.77% 0.00% 6.64%

5.66% 5.51% 0.37% 5.90% 0.00% 7.89%

0.00% 0.44% 0.46% 5.81% 0.00% 2.48%

0.00% 1.31% 0.20% 0.36% 0.00% 0.52%

0.02% 0.42% 0.20% 2.12% 0.00% 1.35%

4.50% 0.63% 0.21% 1.81% 0.00% 0.96%

1.40% 1.14% 0.00% 1.09% 0.00% 2.07%

0.00% 0.97% 0.14% 0.36% 0.00% 0.52%

0.00% 0.00% 0.00% 0.60% 0.00% 0.14%

0.00% 0.00% 0.00% 0.42% 0.00% 0.00%

0.00% 0.00% 0.00% 0.38% 0.00% 0.00%

0.00% 0.00% 0.00% 0.02% 0.00% 0.00%

? 17.14% 0.00% 2.62% ? 34.66%

? 42.87% 0.00% 45.66% ? 17.34%

? 33.03% 97.60% 33.76% ? 32.63%

? 7.89% 0.00% 12.56% ? 16.63%

? 9.08% 12.40% 15.40% ? 8.75%

3,786.65 20,062.48 22,061.09 51,256.81 7,185.72 24,550.90

12,423.40 65,820.70 72,378.90 168,165.38 23,575.20 80,547.58

7,308.40 28,788.10 21,227.80 66,474.10 1,028.50 25,879.70

32,639.20 32,918.60 34,927.20 68,365.28 11,708.40 27,519.80

99.00% 80% 88% 80% 110% 80%

0.9427 0.715 1.2661 0.77 0.7766 1.045

Cluster 3 Cluster 4 Cluster 2
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Table 4-4: Potential Projects I, J and K cluster assignments. Simple K Means algorithm 

implementation (results in right columns) 

4.3.1.2. Further analysis using alternative Clustering techniques 

To review the results of this experiment, different runs with four alternative 

clustering algorithms were performed: 

• Simple EM  

• Farthest First  

• Filtered Clusterer  

• Make Density Based Clusterer  

A similar procedure of training WEKA® to create historical clusters stated in the 

first part of this experiment was engaged, selecting this time different 

Project I Project C Project J Project D Project K Project B

108 123 73 45 78 45

0.19% 4.40% 1.59% 2.48% 0.17% 2.48%

5.64% 42.05% 29.41% 25.44% 22.96% 25.44%

23.04% 14.23% 6.00% 24.88% 14.16% 24.88%

5.26% 8.17% 8.02% 10.41% 10.49% 10.41%

10.93% 12.49% 9.80% 17.25% 13.17% 17.25%

6.12% 9.77% 9.53% 11.77% 16.68% 11.77%

8.42% 5.90% 7.37% 8.46% 6.08% 8.46%

7.28% 5.81% 13.90% 3.22% 12.77% 3.22%

7.63% 0.36% 0.92% 0.01% 6.17% 0.01%

11.12% 2.12% 9.55% 0.23% 4.13% 0.23%

1.85% 1.81% 4.29% 1.20% 0.65% 1.20%

2.98% 1.09% 5.08% 1.27% 0.33% 1.27%

3.76% 0.36% 3.78% 2.20% 2.23% 2.20%

7.64% 0.60% 0.77% 0.43% 0.00% 0.43%

3.76% 0.42% 0.00% 0.32% 0.00% 0.32%

4.39% 0.38% 0.00% 0.28% 0.00% 0.28%

0.00% 0.02% 0.00% 0.15% 0.00% 0.15%

0.00% 2.62% 0.00% 0.00% 0.00% 0.00%

33.70% 45.66% 21.22% 51.84% 11.11% 51.84%

50.87% 33.76% 55.84% 37.61% 63.99% 37.61%

17.31% 12.56% 19.10% 9.28% 22.21% 9.28%

8.12% 15.40% 13.85% 11.26% 12.69% 11.26%

36569.53 51256.81 19195.60 14492.50 36769.57 14492.50

119977.30 168165.38 62976.92 47549.73 120633.60 47549.73

34325.28 66474.10 19497.46 20314.80 23255.23 20314.80

64812.31 68365.28 43873.28 11641.58 49131.94 11641.58

? 80% ? 83% ? 83%

? 0.77 ? 0.66 ? 0.66

Cluster 3 Cluster 4 Cluster 4
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algorithms. For each case the amount of clusters to be created remained equal, 

testing a new sample of data at a time to establish its classification. 

Once testing ended, results of this classification were obtained. In some 

occasions, clusters assignments were identical to those accomplished during 

Simple K Means testing. In others, these allocations were different but consistent 

to those project profiles initially acquired. For example, during Simple K Means 

testing, Cluster 3 was assigned to Project C, defining the closest historical project 

profile to Project F. Furthermore, while verifying this hypothesis using Farthest 

First algorithm, a different cluster appeared. This cluster was Cluster 4.  

However, all results for this example remained consistent, determining Project C 

as the closest historical project profile to Project F no matter cluster allocation. 

The same behavior was observed during testing of the remaining five sample 

projects. Depending on the Clustering algorithm, centroid calculation and 

clustering assignments occurred differently. The results of these algorithms are 

represented in Table No. 4-5:   
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Table 4-5: Results comparisons of different Clustering algorithms 

To summarize all results obtained, Figure 4-7 presents results of application of 

Clustering algorithms to determine closest matches between potential and 

historical project profiles: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7: Suggested profiles by Clustering Algorithms 

Project Name

Project F K Means EM Farthest First Filtered Make Density

Cluster Assignment 3 3 4 3 3

Project Name Project C Project C Project C Project C Project C

Project Name

Project G K Means EM Farthest First Filtered Make Density

Cluster Assignment 4 2 2 4 4

Project Name Project E Project E Project E Project E Project E

Project Name

Project H K Means EM Farthest First Filtered Make Density

Cluster Assignment 2 1 0 2 2

Project Name Project A Project A Project A Project A Project A

Project Name

Project I K Means EM Farthest First Filtered Make Density

Cluster Assignment 0 0 1 0 0

Project Name Project D Project D Project D Project D Project D

Project Name

Project J K Means EM Farthest First Filtered Make Density

Cluster Assignment 4 2 2 4 4

Project Name Project E Project E Project E Project E Project E

Project Name

Project K K Means EM Farthest First Filtered Make Density

Cluster Assignment 4 2 2 4 4

Project Name Project E Project E Project E Project E Project E

Clustering Algorithms

Clustering Algorithms

Clustering Algorithms

Clustering Algorithms

Clustering Algorithms

Clustering Algorithms

Historical ProjectsPotential Projects

Project F

Project G

Project H

Project J

Project K

Closest Match to

Project C

Project E

Project A

Project I Project D

Project E

Project E
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4.3.1.3. Case Study 1 Limitations 

Project profiling through Clustering application presents two major limitations: 

• In this multi-dimensional analysis, all attributes are considered equal. Their 

unique importance is not defined within this analysis. This does not 

represent factual conditions present in pipe module fabrication. 

Establishing weight percentages for each fabrication attribute can improve 

profile determination by creating a more realistic model with an improved 

fabrication structure, in which attributes are evaluated differently and 

aligned to company requirements. 

• Fixing cluster amounts to determined quantities are not recommended. 

The purpose of this unsupervised data mining technique is to create groups 

from multiple records, randomly. In this case study, clustering has been 

determined through unique and finite historical project characteristics. 

Comparisons between historical and potential project data are based on an 

installed structure created by the user. Even though project profiling 

represents an interesting topic, other analysis methods must be explored 

to reach improved outcomes in this area.       

4.3.2. Case Study 2:  Project Characterization using fabrication quantities 

Only Quantity Takeoffs files were considered during development of this 

particular experiment. These represented one of the most detailed samples of 
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data found in the company archives. It depicts every item used in pipe module 

fabrication activities of historical projects.  

These files were ordered, cleaned and divided in four main fabrication areas: 

• Welding. 

• Handling pipe.  

• Pipe supports. 

• Handling valves. 

Welding includes all different weld types used to join different metallic pieces, 

forming a larger fabrication component (e.g. butt welds, o-let welds quantified 

by unit). Handling pipe depicts different pipe types and materials used in 

fabrication of pipe modules (e.g. handle pipe XS CS: pipe with presenting a XS 

schedule type and made of carbon steel, in meters). Pipe supports shows 

different parts used to sustain pipe spool configurations (e.g. Pipe support AC70, 

according to company’s specifications). Handling valves presents all valve types 

used during fabrication of pipe spools (e.g. handle manual valve, 150 lb made of 

carbon steel, determined by piece). Sizes for all measures are represented in 

inches (“). 

Once this categorization process was completed, Simple K Means and DBScan 

algorithms were used to compile records and detect unique patterns that may 

highlight main characteristics of each fabrication area in an industrial 

construction project. The Clustering structure is explained in Figure 4-8. 
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Figure 4-8: Clustering Structure for Project Characterization  

Clustering of historical projects was performed individually analyzing single 

fabrication areas one at a time. Once this process is finished, weighted averages 

of predominant groups within all fabrication areas were determined and 

presented as key factors. Clusters with great presence within these areas 

represent average project characteristics. These can highlight unique project 

features to decision makers, supporting bidding decisions when tendering. 

By consulting these main groups, the company will know which characteristics 

were often present establishing patterns and identifying key factors in past event 

fabrication activities. 

Quantity 
Takeoffs

Welding Handling Pipe Pipe Supports Handling Valves

Clustering Structure

Project Characterization

Four  different Fabrication Activities: 

- Weld Type

- Average Quantity

- Average Size

- Pipe Material

- Pipe Schedule

-Average Quantity

-Average Size

- Support type

-Average Quantity

-Average Size

- Valve type

-Valve material

-Average Size

Patterns containing Fabrication Data: 
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4.3.2.1. Parameters specified in clusters derived from this study 

Results for each historical project are presented using tables containing the 

following parameters: 

• Total Clusters: Represents the total amount of clusters created by the 

selected Clustering algorithm. Depending on the algorithm type, cluster 

creation can be supervised specified in Simple K-Means algorithm 

(MacQueen, 1967) or unsupervised, created automatically by DBScan 

algorithm (Zaïane et al., 2002).  

• R squared error: Specifies the R Squared Error percentage obtained 

during application of clustering algorithms. It measures in what manner 

forecasted values in a trendline are aligned to current figures (Winston, 

2011). 

• Cluster No.: Denoted the cluster number with highest percentage of 

presence in the data sample. 

• Presence:  A percentage representing the amount of items clustered from 

total data. 

• Description: Illustrates which are the characteristics of the item present 

in the cluster with greatest presence. 

• Avg. Quantity: Calculates a measure representing the average quantity of 

an item representing a cluster’s center. 
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• Average Size: similar to the previous measure, calculates an average size 

for a particular item (in inches).   

4.3.2.2.  Project A Characterization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-6: Project A Characterization, using a Simple K Means algorithm 

Table 4-6 presents compiled results derived from the utilization of Simple K 

Means algorithm. Clusters having the largest presence within total data in each 

fabrication areas were selected.  

Total Clusters 12

R Square Error 27.43%

Cluster No. 5

Prescence 19%

Description FLANGE WELDNECK, STD, 150 lb

Avg Quantity 16.86663

Avg Size 2.2

Total Clusters 4

R Square Error 28.85%

Cluster No. 14

Prescence 37.00%

Description HANDLE PIPE, XS, CS

Avg Quantity 15.50219

Avg Size 1.73646

Total Clusters 22

R Square Error 27%

Cluster No. 20

Prescence 10%

Description PIPE SUPPORT, LS12

Avg Quantity 2.64

Avg Size 6.6

Total Clusters 7

R Square Error 30.7%

Cluster No. 3

Prescence 20%

Description HANDLE MANUAL VALVE, 150lb, CS

Avg Quantity 172.205

Avg Size 1.65

Project A Main Characteristics. Fabrication Activities.
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From all produced clusters, only those fulfilling the above mentioned 

requirement were considered as representative samples for each fabrication 

activity. This restriction is also applied in Projects B to E, in which DBScan 

algorithm was used to analyze scattered data present in each fabrication sample.   

4.3.2.3. Project B Characterization 

 

 

 

 

 

 

 

 

 

 

 

Table 4-7: Project B Characterization, using a DBScan algorithm 

 

Total Clusters 3

Cluster No. 0

Prescence 43%

Description BUTTWELD, STD, LOW TEMP CS

Avg Quantity 1.32

Avg Size 6.424

Total Clusters 15

Cluster No. 13

Prescence 10%

Description HANDLE PIPE, STD, LOW TEMP CS

Avg Quantity 8.536

Avg Size 16.522

Total Clusters 11

Cluster No. 7

Prescence 11%

Description HANDLE PIPE, Sch80, CHROME MOLY

Avg Quantity 1.892

Avg Size 2.629

Total Clusters 9

Cluster No. 2

Prescence 13%

Description HANDLE MANUAL VALVE, 150lb, CS

Avg Quantity 3.586

Avg Size 1.584

Project B Main Characteristics. Fabrication Activities.
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4.3.2.4. Project C Characterization 

 

 

 

 

 

 

 

 

 

 

 

Table 4-8: Project C Characterization, using a DBScan algorithm 

 

 

 

 

Total Clusters 2

Cluster No. 0

Prescence 67%

Description HYDROTEST END WELDCAP, CS

Avg Quantity 3.333

Avg Size 6.281

Total Clusters 6

Cluster No. 5

Prescence 18%

Description HANDLE PIPE, Sch80, CS

Avg Quantity 155.639

Avg Size 2.871

Total Clusters 8

Cluster No. 0

Prescence 14%

Description PIPE SUPPORT INSTALL, SA6CS

Avg Quantity 23.287

Avg Size 5.346

Total Clusters 8

Cluster No. 0

Prescence 19%

Description HANDLE MANUAL VALVE, 300lb, CS

Avg Quantity 7.766

Avg Size 3.663
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4.3.2.5. Project D Characterization 

 

 

 

 

 

 

 

 

 

 

 

Table 4-9: Project D Characterization, using a DBScan algorithm 

 

 

 

 

 

Total Clusters 6

Cluster No. 5

Prescence 20%

Description BUTTWELD, STD, CS

Avg Quantity 5.753

Avg Size 8.041

Total Clusters 9

Cluster No. 0

Prescence 16%

Description HANDLE PIPE, STD, CS

Avg Quantity 450.571

Avg Size 8.734

Total Clusters 11

Cluster No. 1

Prescence 14%

Description PIPE SUPPORT INSTALL, SHIMCS

Avg Quantity 12.122

Avg Size 21.043

Total Clusters 7

Cluster No. 3

Prescence 19%

Description HANDLE MANUAL VALVE, 300 lb, CS

Avg Quantity 27.126

Avg Size 5.555

Project D Main Characteristics. Fabrication Activities.
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4.3.2.6. Project E Characterization 

 

 

 

 

 

 

 

 

 

 

 

Table 4-10: Project E Characterization, using a DBScan algorithm 

4.3.2.7. Case Study 2 Limitations 

This experiment involved application of two different Clustering algorithms in 

historical data, divided in four fabrication areas: 

• Simple K Means algorithm (used during analysis of Project A characteristic 

determination) 

Total Clusters 1

Cluster No. 0

Prescence 100%

Description BUTTWELD, STD, CS

Avg Quantity 12.76

Avg Size 6.831

Total Clusters 5

Cluster No. 0

Prescence 25%

Description HANDLE PIPE, STD, CS

Avg Quantity 182.677

Avg Size 8.437

Total Clusters 3

Cluster No. 1

Prescence 44%

Description PIPE SUPPORT INSTALL, SHIMCS

Avg Quantity 5.841

Avg Size 16.973

Total Clusters 3

Cluster No. 0

Prescence 35%

Description HANDLE CONTROL VALVE, 300lb, CS

Avg Quantity 3.784

Avg Size 2.959
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• DBScan algorithm (used for the analysis of Projects B to E) 

Clustering techniques were chosen to simplify the analysis of scattered data and 

to observe key points that could help define trends within fabrication areas. 

Normally for validation purposes, 80% of the total data is used for training and 

20% for testing. However, due to the limited amount of records present in 

historical projects (specified in Table 4-1), the totality of data was taken into 

account for analysis. The entirety of records was used as training data during 

clustering, impeding proper validation.  

A low number of records were observed in each project. In addition, most of 

these were incomplete and disperse. Limitations were found due to these 

circumstances. Furthermore, another limitation encountered was the 

effectiveness of the Simple K Means clustering algorithm in limited and scattered 

amount of data. Large cluster numbers (surpassing 20 clusters) and unexpected 

R squared error measures (above 100%, indicating possible association problems 

between expected and actual values) were obtained when analyzing project 

data. This was a sign indicating Simple K Means was not an algorithm suitable for 

analysis, due to highly sparse data.  Therefore, Simple K Means Algorithm was 

only used during analysis of data related to Project A, in which plausible results 

were collected. 
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The decision on how many initial clusters were going to be specified was based 

on two particular conditions. After several iterations experimenting with 

different k clusters values, the following conditions were established by the user: 

• Obtained R Squared Error must be below 30%. 

• The cluster number created has to be inferior to 25 clusters. 

Due to inadequate results retrieved during application of Simple K Means in 

analysis of remaining projects (Projects B to E), an alternative analysis instrument 

was chosen. DBScan algorithm was selected as an additional method of 

reviewing and detecting trends in past performances. As Ester et al.(1996) 

mentioned in their research, this algorithm has the capability of detecting 

clusters characterized by having random outlines. In addition, the same authors 

mentioned this algorithm has the capability of detecting noise in a database. 

Results achieved in analysis of project data using DBScan algorithm can be 

observed in Tables 4-7 to 4-10. This method identified main clusters present in 

scattered data under the same conditions specified in the application of Simple K 

Means algorithm, in terms of R squared errors result and cluster number. 

4.3.3. Case Study 3: Analysis of aggregated quantities of fabrication areas 

The techniques used during buildup of this case study are similar to those 

observed during the development of Case Study No. 2. Certain steps were 

required to achieve relevant results. 
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Firstly, data belonging to historical projects contained in Quantity Takeoffs files 

was compiled into a single database. In this way, all project data was unified. 

Secondly, the database was divided into four main fabrication areas. Each 

section contained condensed data from multiple historical projects. These 

fabrication areas were: 

• Welding 

• Supports 

• Handling pipe 

• Handling valves 

Thirdly, a DBScan algorithm was chosen as tool of analysis, similar to previous 

experiments. Using this algorithm an unsupervised quantity of clusters was 

created in each area. The largest cluster from all groups was selected. Table 4-11 

presents a sample of the clustered data for handling pipe activities. All examples 

presented in this case study belong to this fabrication area. Table 4-12 depicts all 

clusters created with their respective assigned instances in the Handling pipe 

area. 
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Table 4-11: Clustering results from implementation of a DBScan algorithm in aggregated 

fabrication data (Handling pipe area) 

 

 

 

 

 

 

 

 

 

Table 4-12: Clusters created by the DBScan algorithm (Handling pipe area) 

DESC QTY SIZEDESC UNITPRICE MH Cluster

HANDLEPIPESTDCS 59.2 16 278.1 0.81 --> 0

HANDLEPIPEXSCS 2.7 0.5 30.48 0.09 --> 1

HANDLEFO300 1.2 16 1557.57 2.63 --> 0

HANDLEPIPESTDCS 190.9 4 72.38 0.23 --> 6

HANDLEPIPESTDLOWTEMPCS 151.8 4 72.38 0.23 --> 6

HANDLEPIPESTDLOWTEMPCS 84.8 2 41.91 0.13 --> 2

HANDLESHIPLOOSE150VLV 4.6 2 84.79 2.63 --> 2

HANDLEPIPELESS20FTSTDLOWTEMPCS 29.9 2 167.62 0.13 --> 2

HANDLEPIPESTDCS 98.6 2 41.91 0.13 --> 2

HANDLEPIPESTDCS 62.1 14 251.44 0.75 --> 13

HANDLEPIPELESS20FTSTDCS 21.5 2 167.62 0.13 --> 2

HANDLEMANUALVALVE150lbCS 20.7 2 84.79 0.81 --> 2

HANDLEPIPESTDCS 31.7 8 156.19 0.46 --> 4

HANDLEPIPEXSCS 7.3 1 41.91 0.1 --> 9

HANDLEPIPELESS20FTSTDLOWTEMPCS 4.5 4 289.54 0.23 --> 6

HANDLEMANUALVALVE150lbLOWTEMPCS 3.5 4 155.64 1.5 --> 6

HANDLEPIPESTDCS 39.8 12 224.78 0.69 --> 5

HANDLEPIPESTDCS 1.3 3 57.14 0.18 --> 8

HANDLEPIPELESS20FTSTDCS 20.1 12 899.09 0.69 --> 5

HANDLEMANUALVALVE150lbCS 4.6 3 120.8 1.15 --> 8

HANDLEMANUALVALVE300lbCS 1.2 3 144.03 1.38 --> 8

HANDLEBLINDSPACER150lbCS 3.5 3 120.8 0.58 --> 8

HANDLEPIPELESS20FTSTDCS 0.7 8 624.8 0.46 --> 4

HANDLEPIPELESS20FTSTDCS 11.2 3 228.59 0.18 --> 8

HANDLEMANUALVALVE150lbCS 2.3 12 540.1 5.18 --> 5

Cluster Instances Percentage

2 295 15%

3 220 11%

4 176 9%

6 174 9%

8 176 9%

10 172 9%

9 156 8%

12 162 8%

5 91 5%

11 79 4%

0 65 3%

7 51 3%

1 39 2%

13 32 2%

14 45 2%

15 48 2%

16 14 1%

17 8 0%
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Fourthly, cluster data was transformed into graphs (Figure 4-9) to enhance data 

visualization. Table 4-13 presents a percentage distribution that became source 

data for development of these graphs. 

 

 

 

 

 

 

 

 

 

 

Table 4-13: Handling pipe percentage distribution results 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9: Pipe types Composition Chart 

PROJECT DESC Schedule Material QTY %

PROJECTD HANDLE PIPE XS CS 19056.42 52.06%

PROJECTD HANDLE PIPE XS LOWTEMPCS 9359.28 25.57%

PROJECTC HANDLE PIPE Sch80 CS 1864.27 5.09%

PROJECTD HANDLE PIPE Sch40S SS304304L 1556.07 4.25%

PROJECTC HANDLE PIPE Sch80 LOWTEMPCS 1217.62 3.33%

PROJECTB HANDLE PIPE STD CS 1167.6 3.19%

PROJECTC HANDLE PIPE Sch160 CS 591.91 1.62%

PROJECTB HANDLE PIPE Sch40S SS 358.34 0.98%

PROJECTC HANDLE PIPE Sch80S SS 292.33 0.80%

PROJECTD HANDLE PIPE Sch80S SS316316L 262.66 0.72%

PROJECTA HANDLE PIPE STD LOWTEMPCS 199.07 0.54%

PROJECTC HANDLE PIPE Sch160 CHROMEMOLY 168.82 0.46%

PROJECTB HANDLE PIPE Sch160 LOWTEMPCS 131.45 0.36%

PROJECTD HANDLE PIPE Sch40S SS316316L 120.98 0.33%

PROJECTB HANDLE PIPE XXS CS 106.61 0.29%

PROJECTD HANDLE PIPE Sch80S SS304304L 64.98 0.18%

PROJECTC HANDLE PIPE Sch160 CrGROUP3 31.74 0.09%

PROJECTD HANDLE PIPE Sch40S SS 24.15 0.07%

PROJECTB HANDLE PIPE Sch80S SS347347H 8.51 0.02%

PROJECTB HANDLE PIPE Sch40S SS347347H 4.49 0.01%

PROJECTB HANDLE PIPE Sch160 SS347347H 4.03 0.01%

PROJECTD HANDLE PIPE Sch160 SS 2.07 0.01%

HANDLE PIPE  XS CS

52%

HANDLE PIPE  XS 

LOWTEMPCS

26%

HANDLE PIPE  Sch80 CS

5%

HANDLE PIPE  Sch40S 

SS304304L

4%

HANDLE PIPE  Sch80 

LOWTEMPCS

3%

HANDLE PIPE  STD CS

3% HANDLE PIPE  Sch160 CS

2%

Analysis of Historical Fabrication Areas

Pipe Types
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Finally, a Predictive Apriori algorithm was implemented in the largest cluster to 

detect association rules that could represent important knowledge from 

fabrication processes. Table 4-14 presents twenty rules created in Cluster No. 2, 

obtained from Handling Pipe activity analysis. 

 

 

 

 

 

 

 

 

Table 4-14: Rules extracted from Cluster No. 2 (Handling pipe area) 

Figure 4-10 presents an overview of the analysis process for Case Study 3: 

 

 

 

 

 

 

 

Figure 4-10: Case Study 3 Workflow 

Company Data

Fabrication Areas:

-Welding

-Handling Pipe

-Handling Valves

-Supports

DBScan Clustering Algorithm

Implementation

Cluster 0 Cluster 1

Cluster 3

Predictible A priori

Application

Cluster 0

Rule A

Rule B

Rule C

Rule D 

60%

20%

15%

5%

Association Rules

Clustering Association Rules

ABCDABADCBACDDAABCDAA

CCDBABBDACADCBDCBADCA

ACBDCCCDAADCCBDACBBDA
CADBCCBDACADCBDCBADCB

CCDBABBDACADCBDCBADCA

Products:

-Graphs

- Rules

Rule No. Attribute No. 1 Attribute No. 2 Support Attribute No. 3 Attribute No. 4 Support Confidence

1 Material=SS347347H 3 ==> Prescence=Small 3 89.07%

2 PipeSchedule=Sch40 2 ==> Prescence=Small 2 83.27%

3 Material=SINCONEL625 2 ==> Prescence=Small 2 83.27%

4 PipeSchedule=XS Material=LOWTEMPCS 9 ==> Prescence=Large 8 77.97%

5 Material=CHROMEMOLY 7 ==> Prescence=Small 6 71.57%

6 PipeSchedule=XS 25 ==> Prescence=Large 18 68.53%

7 Material=LOWTEMPCS 17 ==> Prescence=Large 12 64.77%

8 PipeSchedule=XXS 5 ==> Prescence=Small 4 64.06%

9 PipeSchedule=Sch160 18 ==> Prescence=Small 12 61.35%

10 Material=LOWTEMPCS Prescence=Large 12 ==> PipeSchedule=XS 8 59.86%

11 Material=SS316316L 4 ==> Prescence=Large 3 59.71%

12 Material=SS304304L Prescence=Large 4 ==> PipeSchedule=Sch40S 3 59.71%

13 PipeSchedule=Sch160 Prescence=Large 6 ==> Material=CS 4 57.09%

14 Material=CS 33 ==> Prescence=Large 20 56.45%

15 Material=SS 8 ==> Prescence=Small 5 55.96%

16 Material=SS Prescence=Large 3 ==> PipeSchedule=Sch80S 2 54.43%

17 PipeSchedule=XXS 5 ==> Material=CS 3 53.27%

18 Material=LOWTEMPCS Prescence=Small 5 ==> PipeSchedule=STD 3 53.27%

19 PipeSchedule=XS 25 ==> Material=CS 14 53.07%

20 Material=SS304304L 7 ==> PipeSchedule=Sch40S 4 52.81%
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4.3.3.1. Results obtained from application of Clustering and Association rules 

Clustering techniques applied in this experiment obtained some notable results 

in each fabrication area: 

Welding area: 

• 69 instances were classified in Cluster No. 1, out of 16 created clusters. 

This represented 15% of the total sample for this area. All welds grouped 

within this cluster presented a diameter of 2 inches (2”). 72.65% of the 

observed welds were from the socketweld type. Within this type, 56.34% of 

these welds were performed on carbon steel (CS) pipes. Another relevant 

percentage observed in data classified under Cluster No. 1 was buttweld weld 

type, representing 22.31% of the total data present in Cluster No. 1. 98.76% 

of welds used in carbon steel pipes presented large usages. Socketwelds had a 

97.34 % probability of being applied in pipes presenting 3000 lb schedule (Sch 

3000lb). 

Handling pipe area: 

• The cluster with greater size for this fabrication area was Cluster No. 2 

(out of 18 created clusters). This cluster displayed 295 instances, representing 

15% of the total clustered data for this activity. All items within this cluster 

had a diameter of two inches (2”). The material with most presence in pipe 

spool composition was carbon steel (CS), with 92%. 52.06% of produced pipes 

had carbon steel and extra-strong (XS) pipe schedule. According to rules 



94 

 

obtained using Predictive Apriori algorithm, there is a 54.45% chance of 

observing large pipe quantities in those records that had carbon steel as 

prime material. In addition, in records with an extra-strong pipe schedule 

there was a 68.53% chance of presenting large quantities. 

Handling valves area: 

• Cluster No. 0 grouped the largest amount of records, having 77 instances 

representing 17% of the total data. 14 clusters were created for this 

fabrication area by the implementation of a DBScan algorithm. In addition, all 

items included in this cluster presented a valve diameter of 2 inches (2”). 

Furthermore, 84.15% of the total cluster data were manual valves made of 

carbon steel (CS). Only 7.62% of records present in this cluster were control 

valves fabricated with the same material. In terms of important rules 

observed within this cluster, 150lb manual valves made of carbon steel (low 

temp CS) had a 94.56% probability of being largely used in pipe spool 

fabrication processes. 

Supports area: 

• All supports classified in Cluster No. 8 presented a diameter of 2 inches 

(2”). The total amounts of records grouped in this cluster was 587, 

representing 20% of the total fabrication data. Furthermore, 18 clusters were 

obtained. 92% of the supports present in Cluster No. 8 presented carbon steel 

(CS) as material. Only 8% of the supports present in this cluster were made of 
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stainless steel (SS). In addition, there is a 62.85% chance of using large 

quantities of supports made of carbon steel (low temp CS) during fabrication. 

4.3.4. Case Study 4: Analysis of fabrication man-hours 

A different sample of pipe spool data was obtained from the Fabrication Time 

Studies database (previously developed by PhD students of the Hole School of 

Construction of the University of Alberta). This data presented 295 different 

records with the following attributes: 

• Material 

• Size 

• Pipe Schedule 

• Weld Type 

• Diameter Inches (DI) 

• Manhours per Diameter 

Inch (MhrsperDI) 

 

 

 

 

 

 

 

Table 4-15: Data sample obtained from Fabrication Time Studies 

Material Size PipeSchedule WeldType DI MhrperDI

Cr 2 XS BW 2.00 0.36

Cr 2 XS BW 2.00 0.39

Cr 2 XS BW 2.00 0.42

Cr 2 XS BW 2.00 0.48

Cr 3 XS BW 3.00 0.24

Cr 4 XXS BW 4.00 0.63

Cr 4 XXS BW 4.00 0.65

Cr 6 1.25 BW 6.00 0.05

Cr 6 XXS BW 6.00 0.65

Cr 6 Sch160 BW 6.00 1.14

Cr 11 0.25 FW 3.50 0.15

CS 1 3000 SW 1.00 0.08

CS 1 3000 SW 1.00 0.09

CS 1 3000 SW 1.00 0.09

CS 1 3000 SW 1.00 0.14

CS 1 3000 SW 1.00 0.15

CS 1 3000 SW 1.00 0.17

CS 1 3000 SW 1.00 0.18

CS 1 3000 SW 1.00 0.18

CS 1 3000 SW 1.00 0.20

CS 1 3000 SW 1.00 0.20

CS 1 3000 SW 1.00 0.21

CS 1 3000 SW 1.00 0.23

CS 1 3000 BW 1.00 0.24

CS 1 3000 SW 1.00 0.27

CS 1 3000 SW 1.00 0.29

CS 1 3000 SW 1.00 0.29

CS 1 3000 SW 1.00 0.29

CS 1 3000 SW 1.00 0.30

CS 1 3000 SW 1.00 0.30
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To analyze its data, this case study is constituted by three unique stages. 

In the first stage, data will be analyzed using a DBScan algorithm. Data clusters 

will be formed and subsequently studied using Statistical Analysis. In the second 

stage of the present case study, Association Rule known as Apriori algorithm is 

enforced to detect rules potentially characterizing clustered data. The third part 

of this study is to translate detected rules into graphical representations of data 

(pie charts). This is done to facilitate visualization of data distributions in pipe 

spool fabrication within a unique cluster. A brief description of this process is 

presented In Figure 4-11. 

 

 

 

 

 

 

Figure 4-11: Case Study 4 Workflow 

This data set was extracted from an alternative information source. Data present 

during development of this experiment does not belong to any historical project 

previously discussed. This data is part of a time studies project performed by 

other students to analyze pipe spool fabrication productivities. 
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4.3.4.1. Case Study 4: First Stage results. Statistical Analysis  

For the first stage of this experiment DBScan was the algorithm chosen to create 

clusters in this data set. In addition, it established assignment distributions for 

each of those clusters conforming to 69% of total pipe spool fabrication data. 

Table 4-16 depicts these distributions in those clusters considered important, 

due to their size. 

 

 

 

Table 4-16: Cluster assignments as result of implementation of a DBScan algorithm  

 

Cluster No. 2 presents a greater number of records from all created clusters. In 

this cluster, a total assignment of 54 records was found representing 25% of the 

total Pipe Spool Fabrication data. Statistical Analysis was performed to further 

study data present in this particular cluster. Man-hours per diameter inch 

attribute (MhrsperDI) were selected to study its behavior within this cluster. By 

building a histogram, frequency observations related to man-hours per diameter 

inches (MhrsperDI) can be observed. Their results are portrayed in Table 4-17. 

 

 

 

 

 

Table 4-17: Cluster 2 frequency results 

Ranges No. Obs Rel. Freq. Cum. Rel. Freq.

0.05-0.09 20.5 37.96% 0.38

0.09-0.13 14 25.93% 0.64

0.13-0.17 5.5 10.19% 0.74

0.17-0.21 7 12.96% 0.87

0.21-0.25 4.5 8.33% 0.95

0.25-0.29 1.5 2.78% 0.98

0.29-0.33 0 0.00% 0.98

0.33-0.37 1 1.85% 1.00

Cluster Assignments Percentage

2 54 25%

0 35 17%

8 29 14%

6 26 13%

69%
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Using data extracted from the above table a histogram was build and is 

presented in Figure 4-12. In this graph, it can be noted that 37.96% of the total 

cases included in Cluster No. 2 belonged to those pipe fabrication records that 

were in the ranges of 0.05-0.09 man-hours per diameter inch. 

 

 

 

 

 

Figure 4-18: Cluster No. 2 Histogram 

Furthermore, 25.93% of the cases observed in Cluster No. 2 expressed values 

within a range of 0.09-0.13 man-hours per diameter inch.  These two categories 

represented 63.89% of the total cases included in Cluster No. 2. In addition, all 

records classified in Cluster No. 2 presented consistency in the values of three 

different attributes (material, pipe schedule and weld type). In these records, 

values such as carbon steel (CS), pipe schedule 3000 (Sch 3000) and saw weld 

type (SW) continuously appeared. Such attributes resemble unique 

characteristics present during pipe spool fabrication activities in this particular 

project.  
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4.3.4.2. Case Study  4: Second Stage

The second stage of this experiment starts 

algorithm to the entire pipe spool database. In this case, 300 rules were set to be 

determined by the algorithm using Weka® software. A minimum confidence 

factor was defined at 60% in each discovered rule. In addition, a 

support value was establis

records. The attributes selected for rule generation were Material, Size, Pipe 

Schedule, Weld Type and MhrsperDI. These can be observed in Figure 4

 

 

 

 

Figure 4-19: Parameters set 

Furthermore, an extract o

observed in Table 4-18. 
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Second Stage results. Apriori algorithm  

The second stage of this experiment starts with the application of an 

to the entire pipe spool database. In this case, 300 rules were set to be 

determined by the algorithm using Weka® software. A minimum confidence 

factor was defined at 60% in each discovered rule. In addition, a minimum 

support value was established at 0.03, generating rules involving at least 9 

. The attributes selected for rule generation were Material, Size, Pipe 

Schedule, Weld Type and MhrsperDI. These can be observed in Figure 4-

 

 

 

 

 

arameters set in Apriori algorithm (Weka® software) 

Furthermore, an extract of the 300 rules generated by Apriori algorithm

with the application of an Apriori 

to the entire pipe spool database. In this case, 300 rules were set to be 

determined by the algorithm using Weka® software. A minimum confidence 

minimum 

involving at least 9 

. The attributes selected for rule generation were Material, Size, Pipe 

-13. 

 

Apriori algorithm is 
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Table 4-20: Sample rules generated by Apriori algorithm 

4.3.4.3. Case Study 4: Third Stage results. Graphical representations  

In this final stage, information derived from detected rules was transformed into 

pie charts. These charts facilitate data review by providing an accessible and 

simple way of portraying data. Figures 4-12 and 4-13 present some of the graphs 

created during this experiment stage. 

 

 

 

 

Figure 4-12: Schedule type distribution used in fabrication of a carbon steel pipe (1 inch) 

 

 

 

Sch 3000 

SW

78%

Sch 3000 

OL

13%

Sch 3000 

BW

3%

Sch 160 

BW

3%

Sch 160 OL

3%

Rule No. Attribute No. 1 Attribute No. 2 Attribute No. 3 Attribute No. 4 Support Attribute No. 5 Attribute No. 6 Attribute No. 7 Support %

120 PipeSchedule=3000 103 ==> WeldType=SW 91 88%

96 WeldType=SW 99 ==> PipeSchedule=3000 91 92%

209 WeldType=SW 99 ==> Material=CS 62 63%

215 WeldType=SW 99 ==> Size=2 61 62%

188 Size=2 91 ==> WeldType=SW 61 67%

202 Size=2 91 ==> PipeSchedule=3000 58 64%

122 Material=CS WeldType=SW 62 ==> PipeSchedule=3000 54 87%

216 Material=CS WeldType=SW 62 ==> Size=2 38 61%

123 Size=2 WeldType=SW 61 ==> PipeSchedule=3000 53 87%

211 Size=2 WeldType=SW 61 ==> Material=CS 38 62%

115 Material=CS PipeSchedule=3000 60 ==> WeldType=SW 54 90%

105 Size=2 PipeSchedule=3000 58 ==> WeldType=SW 53 91%

Material Size Observed Schedule Weld Type Observed %

Sch 3000 SW 24 77%

Sch 3000 OL 4 13%

Sch 3000 BW 1 3%

Sch 160 BW 1 3%

Sch 160 OL 1 3%

311"CS
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Figure 4-13: Schedule type distribution used in the fabrication of a stainless steel pipe (2 

inches) 

 

4.3.5. Case Study 5: Modeling data through probability distributions 

This case study has the purpose of analyzing from a different perspective 

fabrication processes, specifically pipe spool fabrication. Distribution Fitting of 

data is performed using two sources: 

1. Production reports obtained from Field Project Manager. These reports 

presented two sets of quantities, classified per each fabricated module: number 

of spools and diameter inches (DI) produced during module fabrication. Table 4-

20 illustrates these measures using Project A as a sample. The same structure of 

data was adapted in all five historical projects. 
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FW 2 4.76%

BW 1 2.38%
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2. Another source to be used for distribution fitting was derived from a 

Fabrication Time Studies database. Data capturing was executed by PhD 

Students of the Hole Construction School at University of Alberta. Multiple tables 

and queries are found in this database. Only two different outputs were taken 

into consideration for this section: 

� A file containing 289 records with multiple attributes (material, pipe 

schedule, weld type, weld number, pipe diameter, welding position, diameter 

inches and welding time). This file was later named small database. 

� A larger database with 19,960 records. This document presented six 

different attributes (shop order number, material, weld number, weld type, 

pipe size and pipe schedule). Because of the quantity of records embedded in 

this database, it was named large database. 

 

 

 

 

 

Figure 4-14: Case Study 5 Workflow 

4.3.5.1. Production Reports analysis 

Once historical project reports were obtained from the company’s Field Project 

Manager, two measures were extracted: number of spools and diameter inches 
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(DI). Each of these quantities was classified by fabricated module. As example, 

Table 4-19 presents quantities performed for these two measures during 

fabrication of pipe spools present in Project A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-21: Project A fabricated spools and diameter inches per module 

Using EasyFit 5.5 professional software (Mathwave Technologies, 2010) 

quantities derived from the number of spools and diameter inches performed 

were studied. Diverse distributions were fitted into these data sets in an attempt 

to find the best statistical option that could embody ad-hoc data from these 

attributes. Figures 4-17 and 4-18 present statistical distributions fitted to spool 

data for Project A. 

No. Total DI No. Total DI

1 40 876 17 22 1336

2 40 1732 18 122 3,876

3 53 2,905 19 18 1,060

4 78 4,317 20 25 1,375

5 101 5634 21 98 2,855

6 78 3,879 22 91 2,858

7 36 1760 23 56 1,787

8 58 3335 24 46 886

9 87 2,964 25 26 538

10 43 1,871 26 38 1,173

11 20 1365 27 9 628

12 131 2,752 28 24 1097

13 77 3499 29 12 263

14 48 3583 30 13 336

15 38 2,344 31 53 2,800

16 8 634 32 2 329

33 49 1,657

49.70       

41.65       

2,069.82  

0.05          

0.0012     

Average Welds per Spool

Average Welds per DI's

Average Spools per Mod

Spools Spools

Average DI's per Spool

Average DI's per Module
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� Normal Distribution 

� Beta Distribution 

� Exponential Distribution 

� Triangular Distribution 

� Uniform Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Project A spools Probability Density Function 

 

 

 

 

 

 

 

Figure 4-16: Project A spools Cumulative Distribution Function 
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4.3.5.2. Results obtained from distribution fitting 

For each historical project a statistical distribution fit was obtained. For number 

of spools fabricated per module attribute, best fits are highlighted and presented 

in Tables 4-20 to 4-22: 

 

 

 

 

 

 

 

 

 

Table 4-22: Best fit results (spools fabricated per module) for Projects A & B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-23: Best fit results (spools fabricated per module) for Projects C & D 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.13835 2 2.1596 4 0.39541 2

2 Exponential 0.2293 6 1.3741 3 4.5333 5

3 Exponential (2P) 0.18644 5 2.2209 5 1.3606 3

4 Normal 0.15211 4 0.52327 2 2.0154 4

5 Triangular 0.09731 1 0.23146 1 0.34669 1

6 Uniform 0.13905 3 7.5322 6

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.11701 2 1.495 4 0.20837 2

2 Exponential 0.25569 6 1.9449 5 7.07 6

3 Exponential (2P) 0.1874 5 2.3319 6 0.85564 4

4 Normal 0.13066 3 0.40077 2 1.293 5

5 Triangular 0.14129 4 1.4108 3 0.62469 3

6 Uniform 0.11284 1 0.35649 1 0.19886 1

Anderson

Darling
Chi-Squared

N/A

Project A Spools

Kolmogorov

Smirnov

Kolmogorov Anderson
Chi-Squared

Project B Spools Smirnov Darling

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.15641 1 2.4146 4 0.375 2

2 Exponential 0.19069 3 0.73456 1 0.17335 1

3 Exponential (2P) 0.16448 2 2.1174 3 3.7596 4

4 Normal 0.19935 4 1.0332 2 1.1495 3

5 Triangular 0.30047 6 5.6957 6 5.25 5

6 Uniform 0.23085 5 4.7483 5

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.16074 3 1.3105 3 0.37501 1

2 Exponential 0.12667 2 0.4798 1 1.4374 4

3 Exponential (2P) 0.10092 1 1.8879 4 0.50559 2

4 Normal 0.21922 5 0.98896 2 0.81215 3

5 Uniform 0.18981 4 10.893 5

6 Triangular 

Kolmogorov

N/A

Anderson
Chi-Squared

Project C Spools

Anderson

Smirnov Darling

Kolmogorov
Chi-Squared

Project D Spools Smirnov Darling

N/A

No Fit
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Table 4-24: Best fit results (spools fabricated per module) for Project E 

In the scenario in which diameter inches attribute was analyzed, best fit results 

are depicted in Tables 4-23 to 4-25: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-25: Best fit results (diameter inches per module) for Projects A & B 

 

 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.5776 6 39.832 4

2 Exponential 0.3 5 3.0378 2 2.1816 4

3 Exponential (2P) 0.3 3 60.403 5 2.1816 3

4 Normal 0.17281 1 0.86663 1 1.4027 1

5 Triangular 0.3 4 61.463 6 2.1154 2

6 Uniform 0.21435 2 4.434 3

Kolmogorov Anderson
Chi-Squared

Project E Spools Smirnov Darling

N/A

N/A

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.09927 2 1.8567 2 0.375 2

2 Exponential 0.23254 6 2.037 3 2.6834 5

3 Exponential (2P) 0.19816 5 2.6771 4 0.32921 1

4 Normal 0.10983 3 0.26559 1 1.1406 3

5 Triangular 0.19158 4 3.4533 5 2.25 4

6 Uniform 0.09912 1 3.9135 6

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.12592 2 1.9061 2 0.375 1

2 Exponential 0.32749 6 3.0969 4 2.1824 4

3 Exponential (2P) 0.20421 5 2.6863 3 1.0932 3

4 Normal 0.10694 1 0.28155 1 0.47007 2

5 Triangular 0.19492 4 3.3154 5 3.8333 5

6 Uniform 0.14191 3 7.3719 6 N/A

Anderson

Darling
Chi-Squared

N/A

Project A DI's

Kolmogorov

Smirnov

Kolmogorov Anderson
Chi-Squared

Project B DI's Smirnov Darling
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Table 4-26: Best fit results (diameter inches per module) for Projects C & D 

 

 

 

 

 

 

 

 

Table 4-27: Best fit results (diameter inches per module) for Project E 

Multiple statistical distributions represented the best fit for each attribute. 

Consistency of distributions in historical projects was not present, obtaining 

different results when fitting.  

However, according to each project profile defined by the number of fabricated 

spools and diameter inches performed, input models for a simulation project can 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.10959 1 1.2192 3 8.523E-06 1

2 Exponential 0.23592 5 0.90708 1 0.07097 2

3 Exponential (2P) 0.14762 2 2.4201 4 1.5525 3

4 Normal 0.19272 3 1.0271 2 2.3511 4

5 Triangular 0.25241 6 4.5671 5 5 5

6 Uniform 0.22853 4 7.8168 6

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.19982 4 3.0703 3 1.5 3

2 Exponential 0.27417 6 1.3445 2 1.7616 4

3 Exponential (2P) 0.2653 5 3.1453 4 1.4846 2

4 Normal 0.13904 1 0.3557 1 0.49692 1

5 Triangular 0.17562 3 3.9293 5 2.2499 5

6 Uniform 0.14198 2 4.0799 6

N/A

N/A

Kolmogorov Anderson
Chi-Squared

Project C DI's

Anderson

Smirnov Darling

Kolmogorov
Chi-Squared

Project D DI's Smirnov Darling

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.55706 6 36.202 5

2 Exponential 0.3 3 3.3602 2 3.9271 3

3 Exponential (2P) 0.3 4 3.3602 3 3.9271 4

4 Normal 0.152 1 0.68396 1 0.87756 1

5 Triangular 0.3 5 138.47 6 1.5 2

6 Uniform 0.19832 2 7.611 4

N/A

N/A

Kolmogorov Anderson
Chi-Squared

Project E DI's Smirnov Darling
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be established using these results. Five different models can potentially be used 

to simulate different alternatives derived from project profiles. 

4.3.5.3. Time Studies: small database 

289 records were obtained introducing nine attributes. Data depicting position 

weld types (rotated, fixed and rolled) and man-hours performed for each weld 

were present in this database. 

 

 

 

 

 

Table 4-28: Small database sample 

As observed in the data sample shown in Table 4-26, for each produced spool 

there is a combination of attributes defining unique records. Each spool 

possesses a control number for identification, pipe material, pipe schedule, weld 

type, weld number, pipe diameter, weld position, total units and man-hours 

performed during welding. 

Control Number Material PipeSchedule WeldType WeldNumber PipeDiameter WeldingPosition TotalUnits(DI) Welding Time

A CS STD BW 1 18 Rotated 50 0.95

A CS STD BW 2 18 Rotated 50 0.94

A CS 0.25 BW 3 14 Fixd 50 0.59

B CS STD BW 1 3 Roll 23 0.25

B CS STD BW 2 3 Roll 23 0.45

B CS 0.25 FW 3 24 Fixd 23 0.24

B CS STD BW 4 3 Roll 23 0.23

B CS STD BW 5 3 Roll 23 0.32

B CS STD BW 6 3 Roll 23 0.28

C CS Sch120 BW 1 10 Rotated 42 1.85

C CS 3000 OL 2 2 Fixd 42 0.78

C CS 3000 SW 3 2 Fixd 42 0.45

C CS 3000 SW 4 2 Rotated 42 0.18

C CS 0.25 FW 5 27 Fixd 42 0.61

C CS 0.25 FW 6 27 Fixd 42 0.53

C CS Sch120 BW 7 10 Rotated 42 1.62

D CS 0.25 FW 1 24 Fixd 22 0.28
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4.3.5.4. Preparing data for distribution fitting 

To study the distribution of welds per fabricated spool, this database was 

modified considerably. Only two attributes are used to reflect data and perform 

distribution fitting. These attributes are control number and number of welds. To 

determine quantities for the last mentioned attribute, this database was 

consolidated using an MS Excel® spreadsheet in which the number of welds per 

spool is counted. The final product of this process is a table outlining total weld 

numbers executed in fabricated pipe spools. 

Table 4-27 presents a sample of the mentioned table produced by this data 

cleaning and ordering process. 

 

 

 

 

 

 

Table 4-29: Number of welds per fabricated spool 

Similar means were performed while preparing data related to position welds 

and weld types. Alternative spreadsheets were created in MS Excel® for each 

case. One table detects how many position welds were used in the fabrication of 

ControlNumber Welds

A 3

B 6

C 7

D 11

E 9

F 10

G 1

H 8

I 14

J 7

K 3

L 1

M 16

N 11

O 2

P 2

Q 1

R 2

S 4
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a particular spool. The other accumulates quantities of weld types per pipe 

spool.   

In the case of position welds, some of the obtained results are presented in 

Table 4-28. 

 

 

 

 

 

 

 

 

 

Table 4-30: Weld types per fabricated spool sample (rolled, fixed and rotated position 

welds) 

 

All tables and their contents were analyzed using EasyFit 5.5 professional. 

Different statistical distributions were tested against raw data to determine a 

best fit. Figures 4-19 and 4-20 display results obtained in number of welds per 

fabricated pipe spool attribute. The rest of the graphs produced in this case 

study can be observed in the Appendices chapter of this thesis. 

 

 

ControlNumber Roll? Fix? Rotated?

A 3 0 0

B 3 3 0

C 6 1 0

D 9 2 0

E 0 5 4

F 0 1 9

G 0 0 1

H 0 0 8

I 0 1 13

J 0 2 5

K 0 1 2

L 0 0 1

M 0 2 14

N 0 3 8

O 0 2 0

P 0 0 2

Q 0 0 1
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Figure 4-17: Number of welds per fabricated pipe spool Probability Density Function 

 

 

 

 

 

 

  

Figure 4-18: Number of welds per fabricated pipe spool Cumulative Distribution 

Function 
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4.3.5.5. Results obtained from distribution fitting of a small database of 

records 

Results for each of the three categories mentioned during the development 

section of Case Study No. 5 were obtained using Distribution Fitting. In each case 

a best fit between acquired data and a statistical distribution was found. 

 

 

 

 

 

Table 4-31: Distribution results for number of welds used in pipe spool fabrication (small 

database) 

 

 

 

 

 

 

Table 4-32: Distribution results for number of fixed welds used in pipe spool fabrication 

(small database) 

 

 

 

 

 

 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.42561 5 22.678 3 31.356 3

2 Exponential 0.21511 1 2.3333 1 8.6487 1

3 Normal 0.23416 2 4.7444 2 11.933 2

4 Triangular 0.37107 4 83.508 5 65.604 4

5 Uniform 0.25581 3 31.441 4

Anderson

Darling
Chi-Squared

N/A

Welds per Spool

Kolmogorov

Smirnov

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.54662 5 194.96 4

2 Exponential 0.4 4 11.289 2 38.423 3

3 Normal 0.29118 1 6.0315 1 26.411 1

4 Uniform 0.30147 2 20.368 3

5 Triangular

Kolmogorov Anderson
Chi-Squared

Fixed Welds Smirnov Darling

N/A

N/A

NO FIT
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Table 4-33: Distribution results for number of roll and rotated welds used in pipe spool 

fabrication (small database) 

 

 

 

 

 

 

 

 

 

Table 4-34: Distribution results for number of BW and FW weld types used in pipe spool 

fabrication (small database) 

 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.67702 3 35.261 4 100.39 2

2 Exponential 0.91429 6 -5.9156 1 340.2 4

3 Normal 0.51863 2 21.796 2 52.393 1

4 Triangular 0.91429 5 1884.1 6 340.29 5

5 Uniform 0.49067 1 30.753 3

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.47116 6 84.302 4

2 Exponential 0.25714 3 13.941 2 10.952 2

3 Normal 0.24539 1 5.4885 1 16.117 3

4 Triangular 0.39942 5 162.69 6 75.671 4

5 Uniform 0.26336 4 23.646 3

N/A

Kolmogorov Anderson
Chi-Squared

Roll Welds Smirnov Darling

N/A

N/A

Kolmogorov Anderson
Chi-Squared

Rotated Welds Smirnov Darling

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.50876 5 78.929 4

2 Exponential 0.22857 2 15.246 2 6.7353 2

3 Normal 0.25953 4 5.2262 1 45.661 3

4 Uniform 0.25604 3 20.032 3

5 Triangular

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta

2 Exponential 0.5143 5 -14.135 1 119.57 4

3 Normal 0.34178 2 7.7331 2 16.852 1

4 Triangular 0.57143 4 712.13 5 105.13 2

5 Uniform 0.28638 1 17.222 3

N/A

N/A

NO FIT

Kolmogorov

N/A

Anderson
Chi-Squared

FW per Spool Smirnov Darling

N/A N/A N/A

Kolmogorov Anderson
Chi-Squared

BW per Spool Smirnov Darling
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Table 4-35: Distribution results for number of OL and SW weld types used in pipe spool 

fabrication (small database) 

 

The Normal distribution was predominantly observed during Distribution Fitting 

of fabrication attributes. In only a few occasions did Exponential distribution 

prove to obtain better results (in attributes such as number of welds and 

buttwelds executed per fabricated pipe spool).  

However, when reviewing Cumulative Distribution Function graphs, the Normal 

distribution can be used as the best fit. Because of its shape, it can be associated 

to project data. It has an approximated pattern closer to attribute distributions.     

4.3.5.6. Time Studies: large database 

A larger quantity of records containing fabrication data was obtained from the 

time studies database. 19,960 records were present in this document detailing 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta

2 Exponential 0.82857 4 -11.289 1 268.82 3

3 Normal 0.49356 2 17.881 2 45.37 1

4 Uniform 0.45158 1 26.189 3

5 Triangular

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.63876 3 47.561 4

2 Exponential 0.71429 6 8.9669 1 187.75 3

3 Normal 0.38408 2 15.27 2 25.107 1

4 Triangular 0.71429 5 1179.4 6 247.11 4

5 Uniform 0.37317 1 37.473 3 N/A

N/A

Kolmogorov Anderson
Chi-Squared

N/A N/A N/A

N/A

NO FIT

SW per Spool Smirnov Darling

AndersonKolmogorov
Chi-Squared

OL per Spool Smirnov Darling
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five attributes: shop order number, weld number, weld type, pipe size and pipe 

schedule.  

The goal of this particular section of Case Study 5 is to fit statistical distributions 

for number of welds and weld types used in the fabrication of a pipe spool. 

Because of the larger quantity of records present, a more representative fit of a 

statistical distribution is expected. 

 

 

 

 

 

 

 

 

 

Table 4-36: Large database sample 

The procedure used to extract data from both number of welds and weld types 

executed per fabricated pipe spool attributes is similar to the one described in 

the previous section of this case study. 

Shop Order No Weld Weld Type Size (Pipe) Schedule (Pipe)

A 1 SW 2 3000

A 2 SW 2 3000

A 3 SW 2 3000

B 1 FW 24 0.25

B 2 SW 2 3000

B 3 SW 2 3000

B 4 SW 2 3000

B 5 SW 2 3000

B 6 SW 2 3000

B 7 SW 2 3000

B 8 SW 0.75 3000

B 9 SW 0.75 3000

B 10 SW 0.75 3000

B 11 SW 0.75 3000

B 12 SW 0.75 3000

B 13 SW 0.75 3000

B 14 SW 0.75 3000

C 1 SW 2 3000

C 2 SW 2 3000

C 3 SW 2 3000

C 4 SW 2 3000

C 5 SW 2 3000

C 6 SW 2 3000

C 7 SW 2 3000

C 8 SW 2 3000

C 9 SW 0.75 3000

C 10 SW 0.75 3000

C 11 SW 0.75 3000

C 12 SW 0.75 3000
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Using a MS Excel® spreadsheet, information pertinent to these attributes was 

extracted and ordered as samples shown in Tables 4-35 and 4-36.  

 

 

 

 

Table 4-37: Number of welds per fabricated pipe spool (large database) 

 

 

 

 

 

Table 4-38: Weld types used per fabricated pipe spool (large database) 

Furthermore, another similarity from previous section was found in its analysis 

tool.  For all cases, distributions were fitted using EasyFit 5.5 Professional.  

This database contained the most detailed sample of data in Time Studies 

section. Once all records were ordered, Distribution Fitting was performed. The 

results are arranged in Figures 4-21 and 4-22. 

Shop Order No BW SW OL FW

A 0 3 0 0

B 0 13 0 1

C 0 15 0 0

D 0 20 0 1

E 0 4 0 0

F 0 11 0 0

G 0 4 0 0

H 0 6 0 0

I 0 0 0 0

Shop Order No Welds

A 3

B 14

C 15

D 21

E 4

F 11

G 4

H 21

I 0
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Figure 4-19: Number of welds per spool Probability Density Function 

 

 

 

 

 

 

 

Figure 4-20: Number of welds per spool Cumulative Distribution Function 

4.3.5.7. Results obtained from distribution fitting of a large database of 

records 

As result of data analysis using EasyFit 5.5, new distributions were found 

resembling the characteristics of raw data. In almost all cases, Normal 



 

118 

 

distribution presented best results in each attribute. These are displayed in 

Tables 4-37 to 4-39. 

 

 

 

Table 4-39: Distribution results for number of welds used in pipe spool fabrication (large 

database) 

 

 

 

 

 

 

 

 

Table 4-40: Distribution results for number of BW and FW weld types used in pipe spool 

fabrication (large database) 

 

 

 

 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.1661 4 789.71 5

2 Exponential 0.15562 3 78.625 2 429.02 1

3 Normal 0.14352 1 62.919 1 584.41 2

4 Triangular 0.29064 5 592.74 3 1043.7 3

5 Uniform 0.14612 2 767.33 4

Anderson

Darling
Chi-Squared

N/A

Welds per Order

Kolmogorov

Smirnov

N/A

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta

2 Exponential 0.59638 4 -144.56 1 8857.8 3

3 Normal 0.31941 1 304.23 2 793.95 1

4 Uniform 0.32914 2 894.9 3

5 Triangular

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta

2 Exponential 0.61985 5 -440.69 1 9464.1 4

3 Normal 0.3679 2 310.19 2 1090.7 1

4 Triangular 0.61985 4 30097 5 9436.2 2

5 Uniform 0.31279 1 883.59 3

N/A N/A N/A

N/A

NO FIT

Smirnov Darling

N/A N/A N/A

Kolmogorov

N/A

Anderson
Chi-Squared

FW per Order

Kolmogorov Anderson
Chi-Squared

BW per Order Smirnov Darling
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Table 4-41: Distribution results for number of OL and SW weld types used in pipe spool 

fabrication (large database) 

4.4.  Conclusions 

Five unique case studies were reviewed during development of this chapter. 

Information collected in all experiments was acquired from different company 

reports. Data Ordering and Cleansing techniques were applied, forming multiple 

groups of records. Clustering algorithms were used to analyze project data, 

detecting key characteristics defining fabrication areas. 

Case Study 1 created historical project profiles through Clustering using Simple K 

Means algorithm. In addition, it attempts to make comparisons between 

historical and potential project profiles to determine correspondent matches. 

Once similarities have been defined, a decision maker can potentially assign base 

prices in future tendering processes using historical data. However, establishing 

fixed structures based on historical data resembling project profiles increases 

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.43564 1 615.12 2 1167.1 1

2 Exponential 0.86656 6 -307 1 19498 4

3 Normal 0.50211 3 662.91 3 2065.6 2

4 Triangular 0.86656 5 57931 6 19521 5

5 Uniform 0.46661 2 974.83 4

# Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.60344 6 1765.6 4 6832.4 5

2 Exponential 0.26936 4 454.76 2 1444.8 3

3 Normal 0.1782 1 114.59 1 289.5 1

4 Triangular 0.36716 5 6554.6 6 2860.2 4

5 Uniform 0.23377 2 853.26 3 N/A

Kolmogorov Anderson
Chi-Squared

N/A

SW per Order Smirnov Darling

AndersonKolmogorov
Chi-Squared

OL per Order Smirnov Darling
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supervision during clustering. This can generate misleading results while 

attempting to produce matches between historical and potential projects. Even 

though this approach is more practical than using a uni-dimensional analysis 

currently performed by the company, it represents a deterministic path not 

recommended.   

Case Study 2 involved an application of two different clustering methods to 

define characteristics present in pipe module fabrication activities of historical 

projects. The analysis methods chosen were Simple K Means and DBScan 

algorithms, depending on the amount and quality of collected data. 

Characterizations were found in each of the four fabrication areas defined within 

this case study. However, for this Data Mining analysis records proved to be 

sparse. Most of the classification results obtained during characteristic 

determination presented a high average number of incorrectly classified 

instances (66.55% during clustering with DBScan algorithm). This proved that 

large amounts of very diverse records were present within data samples. 

Furthermore, insufficient data for testing algorithms was one limitation 

encountered during this case study progress. 

Case Study 3 demonstrated additions representing alternative analysis 

approaches. Initial data observed in Case Study No. 2 was merged into a single 

source condensing information in each fabrication area. Besides applying a 

DBScan algorithm to identify main characteristics of each fabrication area, other 
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data analysis techniques such as Association Rules were applied to discover 

knowledge hidden in company records. Furthermore, graphs reinforced present 

analysis providing information displays facilitating comprehension of company 

data. 

Case Study 4 studied man-hours involved in welding activities of fabricated pipe 

spools from a detailed insight. Frequencies between records were detected 

using simple Statistical Analysis means such as histograms. In addition, Apriori 

algorithm was applied detecting relationships between attributes present in 

fabrication. It is important to mention that initial parameters of Association Rules 

must be aligned to company requirements. Depending on the conditions 

specified by a user, results derived from Association Rules can vary. 

Case Study 5 presents the largest collection of records acquired during this 

research. In addition, historical data was examined using Distribution Fitting. 

Fabrication Time Studies represented an alternative data source. Two results are 

derived from this case study. First, it is possible to obtain statistical distributions 

representing historical project characteristics. Second, when analyzing pipe spool 

fabrication databases, Normal distribution seems to be the best choice 

representing data for each observed attribute.  

To conclude, the result of applying Clustering, Association Rules and Distribution 

Fitting techniques depends directly on data quality. Beneficial results can be 

obtained from those records providing truthful and reliable insights about 
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fabrication operations. Additional data is needed to efficiently define project 

profiles and main characteristics for case studies handling historical knowledge. 

This was the case of Case Studies 1 to 3. Supplementary data is required to 

increase robustness of these experiments. A different situation is observed in 

Case Studies 4 and 5, in which data forming statistical distributions provided an 

important contribution to build input models for computer simulation. These 

present real fabrication data from field operations. 
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Chapter 5: Conclusions and Recommendations 

5.1. Research Summary 

Over the course of months, information from multiple data sources and 

departments of an industrial construction Company was analyzed to study at a 

more detailed level pipe module fabrication processes. 

Research was performed in two different stages. The first stage was directed to 

enhance a company’s perception about its previous performances. During this 

phase, a great degree of difficulty was found when comparing data obtained 

from multiple sources. Each document produced by operational areas presented 

its own impression about fabrication operations. One obstacle encountered 

during research was consolidating knowledge produced by all departments into 

a single data source, to simplify its review by decision makers. Alternative 

Industrial Indicators were designed to comply with this requirement. Their 

development was comprised of previous historical performances using a 

combination display of graphs and figures, accumulating past experiences. 

The second stage of this research presented numerical analysis of data obtained 

from company records constituting Industrial Indicators. Three alternatives were 

explored to detect special relationships between numerous data quantities 

constituting previous performances. These were the following: 
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1. Clustering (using Simple K Means and DBScan algorithms) 

2. Association Rules (implementing Apriori and Predictive Apriori 

algorithms) 

3. Distribution Fitting 

The application of these techniques generated various results: 

� A first attempt to define project profiles using Simple K-Means Clustering, 

using a structure based on a combination of multiple attributes describing 

certain characteristics of pipe module fabrication projects. In this study 

further analysis is needed to determine how attribute weights are assigned, 

defining their importance. Alternative approaches exploring project profile 

determination are recommended due to excessive clustering supervision 

during implementation of this case study. 

� Data from fabrication activities was highly dispersed. This was 

experienced during analysis of fabrication activities through application of 

Clustering techniques. Because of this, two different algorithms were used in 

fabrication data: Simple K Means and DBScan. During Simple K Means 

experimentation, high amounts of clusters and R squared error percentages 

were obtained. In addition, an average of 66.55% of incorrectly classified 

instances during implementation of a DBScan algorithm was acquired, 

proving existence of deficient and scattered amounts of records.  

� The diameter observed in the entirety of clusters representing majorities 

within all fabrication areas (with average presence of 16.75%) was two inches 
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(2”). This indicated the most prevalent size used in fabrication of pipe spool 

modules. 

� The material with the greatest occurrence during pipe module fabrication 

was carbon steel (CS). This item displayed presence values above 50% in all 

fabrication areas. Association Rules such as Predictive Apriori algorithm 

estimated a 56.45% probability of using large quantities of carbon steel pipes 

during module fabrication activities. 

� When executing Distribution Fitting in fabrication data, the number of 

spools per fabricated module between historical projects does not pursue 

steady results according to a particular distribution. No consistency between 

project statistics was found. 

� On the other hand, the number of diameter inches per fabricated module 

presented a consistent trend. Its values can be represented with a Normal 

distribution. In those few cases in which Beta distribution represented the 

first choice (Project A and C), Normal distribution can be used as secondary 

alternative. 

� When analyzing an industrial construction small database containing 289 

records, the number of welds per spool observed is fitted by an Exponential 

distribution. An alternative for this case exists using a Normal distribution 

because it is considered the second best option for fitting. This was 

experienced when expanding obtained knowledge by analyzing a large 

database of records.  
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5.2. Research Contributions 

Analysis of pipe module fabrication activities from an alternative point of view 

has been one of the contributions of the present research. Operations were 

broken down by areas, achieving great level of details. Unique project 

characteristics were determined from multiple sources with variant structures, 

contents and numbers of records. 

The analysis performed by this research generated alternative Industrial 

Indicators which are currently used by the company as a decision support tool to 

its managerial team in charge of developing tenders during bidding processes.  

From multiple factors developed, historical distributions of pipe diameters used 

in fabrication and steel mix percentages present in module steel structures 

represented items of relevant interest to the company. 

Another contribution of this research is detection of statistical distributions 

present in fabrication activities of historical projects. Analysis of pipe spools, 

diameter inches and weld types in historical data represents a significant 

addition to spool fabrication research by supporting its study with a primary 

source of obtained knowledge that resembles real life conditions.   

5.3. Future Research  

Pertinent considerations are proposed as a continuation of this research: 

• Include additional projects in its scope. This can improve results obtained 

during application of Clustering and Association Rules techniques. 
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Distribution Fitting using supplementary data can reflect more robust 

results related to fabrication operations, by using an amplified knowledge 

base. More data can support validation of Data Mining techniques used 

in this research. 

• Develop input models using statistical distributions results derived from 

this study. This can reflect additional aspects of fabrication operations. 

Each historical project and their distinct distributions can emulate unique 

behaviors in pipe spool fabrication activities, representing versatile 

scenarios benefitting the study of this industrial discipline through 

application of computer simulation.  

• Explore other Data Mining techniques to discover additional insights of 

pipe fabrication activities. Decision Trees, Linear Regression and Neural 

Networks are some of the algorithms representing alternatives to study 

fabrication data.  
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7. Appendices 

7.1.  Case Study No. 3: Analysis aggregated quantities of fabrication areas 

7.1.1. Supports area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-1: Sample clustering results from implementation of a DBScan algorithm in 

unified fabrication data (supports area) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-2: Clusters created by the DBScan algorithm (supports area) 

 

DESC QTY SIZEDESC UNITPRICE MH Cluster

PIPESUPPORTLS13 2 16 961.72 6 --> 0

PIPESUPPORTGU11 15 4 187.00 6 --> 1

PIPESUPPORTGU04A1 15 4 235.78 6 --> 1

PIPESUPPORTGU03A1 12 2 185.84 6 --> 8

PIPESUPPORTGU10 6 2 141.70 6 --> 8

PIPESUPPORTLS11 2 2 188.16 6 --> 8

PIPESUPPORTGU12 6 14 235.78 6 --> 14

PIPESUPPORTLS13 2 14 961.72 6 --> 14

PIPESUPPORTFC04A2 1 2 322.90 6 --> 8

PIPESUPPORTGU12 2 12 235.78 6 --> 2

PIPESUPPORTSHS0099 1 12 0.00 6 --> 2

PIPESUPPORTSHS0131 1 12 0.00 6 --> 2

PIPESUPPORTSH25A3 9 12 1475.11 6 --> 2

PIPESUPPORTSH26A7 1 12 1779.42 6 --> 2

PIPESUPPORTBS07A8 2 8 636.50 6 --> 4

PIPESUPPORTBS23C4 1 8 192.81 6 --> 4

PIPESUPPORTSHS0130 1 12 0.00 6 --> 2

PIPESUPPORTSHS0012 1 12 0.00 6 --> 2

PIPESUPPORTFC211 1 4 734.07 6 --> 1

PIPESUPPORTGU12 2 18 235.78 6 --> 12

PIPESUPPORTLS13 1 18 961.72 6 --> 12

PIPESUPPORTGU01 2 2 183.52 6 --> 8

PIPESUPPORTGU11 3 6 187.00 6 --> 5

PIPESUPPORTLS12 2 6 326.38 6 --> 5

PIPESUPPORTLS02A 1 4 351.93 6 --> 1

PIPESUPPORTGU03A1 1 1.5 185.84 6 --> 3

PIPESUPPORTFC401 2 2 318.25 6 --> 8

Cluster Instances Percentage

8 587 20%

5 316 11%

6 284 10%

9 288 10%

1 256 9%

4 233 8%

10 208 7%

11 199 7%

2 110 4%

0 95 3%

3 86 3%

7 66 2%

13 71 2%

12 43 1%

14 36 1%

15 16 1%

16 11 0%

17 8 0%



 

136 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1: Supports material Composition Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-3: Association Rules extracted from Cluster No. 8 (supports area) 

 

 

CS

64%
LOWTEMPCS

28%

SS304304L

5%

SS

2% SS316316L

1%

Supports Material Composition

CS

LOWTEMPCS

SS304304L

SS

SS316316L

CHROMEMOLY

Cr

SS347347H

Rule No. Attribute No. 1 Support Attribute No. 2 Support Confidence

1 Material=Cr 2 ==> Presence=Large 2 70.12%

2 Material=LOWTEMPCS 170 ==> Presence=Large 108 62.85%

3 Material=CHROMEMOLY 10 ==> Presence=Small 6 55.34%

4 Material=SS316316L 17 ==> Presence=Small 9 53.41%

5 Material=SS 21 ==> Presence=Small 11 53.32%

6 Material=SS304304L 21 ==> Presence=Large 11 53.32%

7 Presence=Small 211 ==> Material=CS 113 53.25%

8 Material=SS 21 ==> Presence=Large 10 49.84%

9 Material=SS304304L 21 ==> Presence=Small 10 49.84%

10 Material=SS316316L 17 ==> Presence=Large 8 49.60%

11 Material=CHROMEMOLY 10 ==> Presence=Large 4 46.11%

12 Material=CS 331 ==> Presence=Large 218 45.01%

13 Presence=Large 362 ==> Material=CS 218 40.91%

14 Material=LOWTEMPCS 170 ==> Presence=Small 62 37.24%

15 Presence=Small 211 ==> Material=LOWTEMPCS 62 30.88%

16 Material=CS 331 ==> Presence=Small 113 21.01%

17 Presence=Large 362 ==> Material=LOWTEMPCS 108 15.96%

18 Presence=Small 211 ==> Material=SS 11 4.31%

19 Presence=Small 211 ==> Material=SS304304L 10 4.14%

20 Presence=Small 211 ==> Material=SS316316L 9 4.01%
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7.1.2. Welding area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-4: Sample clustering results from implementation of a DBScan algorithm in 

unified fabrication data (welding area) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-5: Clusters created by the DBScan algorithm (welding area) 

 

 

 

 

 

DESC QTY SIZEDESC UNITPRICE MH DIW Cluster

ORIFICEFLANGESETWELDNECKSTD300lbRF125250AARHASTMA105N 1 16 479.77 6.08 7.94 --> 0

FLANGEWELDNECKSTD150lbRF125250AARHASTMA350GrLF2Class1 25 2 17.63 6.08 7.94 --> 1

OLETWELDOLETSTDASTMA105N 3 2 9.15 6.08 7.94 --> 1

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 1 14 187.04 6.08 7.94 --> 9

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 14 2 12.88 6.08 7.94 --> 1

OLETWELDOLETSTDASTMA105N 1 8 162.12 6.08 7.94 --> 12

OLETWELDOLETSTDASTMA105N 1 2 9.15 6.08 7.94 --> 1

FLANGEWELDNECKSTD150lbRF125250AARHASTMA350GrLF2Class1 7 4 31.23 6.08 7.94 --> 7

OLETWELDOLETSTDASTMA105N 5 3 24.27 6.08 7.94 --> 3

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 2 3 18.76 6.08 7.94 --> 3

OLETWELDOLETSTDASTMA105N 1 12 419.80 6.08 7.94 --> 2

FLANGEWELDNECKXS150lbRF125250AARHASTMA105N 26 2 13.48 6.08 7.94 --> 1

OLETWELDOLETXSASTMA105N 1 2 15.94 6.08 7.94 --> 1

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 2 6 35.96 6.08 7.94 --> 13

BUTTWELDSTDLOWTEMPCS 3 4 142.86 2.88 7.94 --> 7

ORIFICEFLANGESETWELDNECKSTD300lbRF125250AARHASTMA105N 1 18 921.97 6.08 7.94 --> 11

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 1 18 301.23 6.08 7.94 --> 11

BUTTWELDSTDLOWTEMPCS 1 2 101.05 1.61 7.94 --> 1

ELBOW90DEGLRBWSTDASTMA420GrWPL6Welded 24 8 81.65 6.08 7.94 --> 12

FLANGEWELDNECKSTD150lbRF125250AARHASTMA350GrLF2Class1 21 8 110.33 6.08 7.94 --> 12

OLETWELDOLETSTDASTMA105N 1 12 397.69 6.08 7.94 --> 2

OLETWELDOLETSTDASTMA105N 1 3 25.19 6.08 7.94 --> 3

OLETWELDOLETXSASTMA105N 2 2 19.60 6.08 7.94 --> 1

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 2 4 25.62 6.08 7.94 --> 7

OLETWELDOLETXSASTMA105N 2 2 15.94 6.08 7.94 --> 1

FLANGEWELDNECKSTD300lbRF125250AARHASTMA105N 2 2 16.99 6.08 7.94 --> 1

FLANGEWELDNECKSTD150lbRF125250AARHASTMA105N 1 20 371.48 6.08 7.94 --> 4

Cluster Instances Percentage

1 69 15%

12 48 10%

5 41 9%

6 41 9%

3 36 8%

7 36 8%

8 35 8%

13 33 7%

0 25 5%

2 21 5%

10 18 4%

4 15 3%

11 15 3%

14 12 3%

9 8 2%

15 6 1%
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Figure 7-2: Welding types Composition Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-6: Association Rules extracted from Cluster No. 1 (welding area) 

 

 

BUTTWELD 

22%

FLANGE WELD NECK 

4%

OLET WELDOLET 

1%

SOCKETWELD 

73%

Analysis of Historical Fabrication Areas

Welding Types

BUTTWELD 

FLANGE WELD 

NECK 

OLET WELDOLET 

SOCKETWELD 

Rule No. Attribute No. 1 Attribute No. 2 Support Attribute No. 3 Attribute No. 4 Support Confidence

1 Material=CS 6 ==> Presence=Large 6 0.98761

2 Schedule=3000lb 4 ==> Weldtype=SOCKETWELD 4 0.97386

3 Schedule=Sch80 3 ==> Weldtype=BUTTWELD 3 0.95684

4 Material=150lb 3 ==> Weldtype=FLANGEWELDNECK 3 0.95684

5 Weldtype=OLETWELDOLET 2 ==> Presence=Small 2 0.92263

6 Schedule=Sch160 2 ==> Weldtype=BUTTWELD 2 0.92263

7 Material=SS304304L 2 ==> Presence=Small 2 0.92263

8 Weldtype=FLANGEWELDNECK Presence=Small 2 ==> Schedule=STD 2 0.92263

9 Weldtype=FLANGEWELDNECK Presence=Large 2 ==> Material=150lb 2 0.92263

10 Weldtype=SOCKETWELD 5 ==> Schedule=3000lb 4 0.64195

11 Weldtype=FLANGEWELDNECK 4 ==> Schedule=STD 3 0.57948

12 Weldtype=FLANGEWELDNECK 4 ==> Material=150lb 3 0.57948

13 Schedule=XS 4 ==> Presence=Large 3 0.57948

14 Material=LOWTEMPCS 4 ==> Weldtype=BUTTWELD 3 0.57948

15 Material=LOWTEMPCS 4 ==> Presence=Large 3 0.57948

16 Schedule=STD 6 ==> Presence=Small 4 0.5262

17 Material=CS 6 ==> Weldtype=BUTTWELD Presence=Large 4 0.5262

18 Weldtype=BUTTWELD Presence=Large 6 ==> Material=CS 4 0.5262

19 Schedule=Sch80 3 ==> Weldtype=BUTTWELD Presence=Large 2 0.51472

20 Weldtype=FLANGEWELDNECK Material=150lb 3 ==> Presence=Large 2 0.51472
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7.1.3. Handling valves area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-7: Sample clustering results from implementation of a DBScan algorithm in 

unified fabrication data (handling valves area) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-8: Clusters created by the DBScan algorithm (handling valves area) 

 

 

 

 

DESC QTY SIZEDESC UNITPRICE MH Cluster

HANDLEMANUALVALVE150lbCS 21 2 84.79 0.81 --> 0

HANDLEMANUALVALVE150lbLOWTEMPCS 3 4 155.64 1.50 --> 1

HANDLEMANUALVALVE150lbCS 5 3 120.80 1.15 --> 6

HANDLEMANUALVALVE300lbCS 1 3 144.03 1.38 --> 6

HANDLEMANUALVALVE150lbCS 2 12 540.10 5.18 --> 10

HANDLEMANUALVALVE150lbCS 2 6 204.42 1.96 --> 4

HANDLEMANUALVALVE150lbLOWTEMPCS 8 2 84.79 0.81 --> 0

HANDLEMANUALVALVE150lbCS 1 4 155.64 5.03 --> 1

HANDLEMANUALVALVE300lbCS 2 2 96.40 5.03 --> 0

HANDLEMANUALVALVE150lbLOWTEMPCS 1 3 120.80 5.03 --> 6

HANDLEMANUALVALVE150lbCS 30 2 84.54 0.81 --> 0

HANDLEMANUALVALVE150lbCS 3 3 120.44 1.15 --> 6

HANDLEMANUALVALVE150lbCS 1 8 298.79 2.88 --> 3

HANDLEMANUALVALVE150lbCS 6 12 538.52 5.18 --> 10

HANDLEMANUALVALVE150lbCS 5 16 836.15 8.05 --> 11

HANDLEMANUALVALVE300lbCS 12 2 96.13 0.92 --> 0

HANDLEMANUALVALVE300lbCS 3 4 179.50 1.73 --> 1

HANDLEMANUALVALVE300lbCS 3 6 311.54 2.99 --> 4

HANDLEMANUALVALVE300lbCS 5 10 621.91 5.98 --> 2

HANDLEMANUALVALVE600lbCS 1 8 778.55 7.48 --> 3

HANDLEMANUALVALVE900lbCS 1 3 227.70 2.19 --> 6

HANDLEMANUALVALVE900lbCS 2 10 1316.75 12.65 --> 2

HANDLEMANUALVALVE1500lbCS 1 2 119.60 1.15 --> 0

HANDLEMANUALVALVE150lbLOWTEMPCS 98 2 84.54 0.81 --> 0

HANDLEMANUALVALVE150lbLOWTEMPCS 2 3 120.44 1.15 --> 6

HANDLEMANUALVALVE150lbLOWTEMPCS 8 6 203.83 1.96 --> 4

HANDLEMANUALVALVE150lbLOWTEMPCS 6 8 298.79 2.88 --> 3

Cluster Instances Percentage

0 77 17%

4 70 15%

6 58 13%

1 50 11%

3 44 10%

2 36 8%

7 32 7%

9 23 5%

10 23 5%

5 16 3%

11 11 2%

12 8 2%

8 6 1%

13 6 1%
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Figure 7-3: Handling valves Composition Chart 

 

 

 

 

 

 
Table 7-9: Association Rules extracted from Cluster No. 1 (handling valves area) 

 

 

 

Rule No. Attribute No. 1 Attribute No. 2 Attribute No. 3 Support Attribute No. 4 Support Confidence

1 Desc=HANDLEMANUALVALVE Type=150lb Material=LOWTEMPCS 5 ==> Presence=Large 5 0.94958

2 Desc=HANDLEMANUALVALVE Type=150lb Material=CS 5 ==> Presence=Large 5 0.94958

3 Type=150lb Material=CS Presence=Large 5 ==> Desc=HANDLEMANUALVALVE 5 0.94958

4 Material=SS304304L 4 ==> Desc=HANDLEMANUALVALVE 4 0.92867

5 Material=SS316316L 4 ==> Desc=HANDLEMANUALVALVE 4 0.92867

6 Type=600lb Material=LOWTEMPCS 3 ==> Presence=Small 3 0.89497

7 Desc=HANDLEMANUALVALVE Type=150lb 11 ==> Presence=Large 10 0.84575

8 Type=150lb Presence=Large 11 ==> Desc=HANDLEMANUALVALVE 10 0.84575

9 Material=SS347347H 2 ==> Presence=Small 2 0.83877

10 Type=150lb Material=CS Presence=Small 2 ==> Desc=HANDLECONTROLVALVE 2 0.83877

11 Desc=HANDLEMANUALVALVE Type=300lb Material=CS 9 ==> Presence=Large 8 0.79541

12 Desc=HANDLEMANUALVALVE Material=CS 21 ==> Presence=Large 18 0.78494

13 Type=600lb Presence=Large 8 ==> Desc=HANDLEMANUALVALVE 7 0.76604

14 Presence=Large 41 ==> Desc=HANDLEMANUALVALVE 33 0.75702

15 Material=SS 7 ==> Desc=HANDLEMANUALVALVE 6 0.7336

16 Type=150lb Material=LOWTEMPCS 7 ==> Presence=Large 6 0.7336

17 Type=600lb 21 ==> Desc=HANDLEMANUALVALVE 16 0.70305

18 Material=CHROMEMOLY 6 ==> Presence=Small 5 0.69749

19 Type=300lb Material=CS 16 ==> Presence=Large 12 0.68258

20 Type=600lb Material=CS Presence=Small 3 ==> Desc=HANDLECONTROLVALVE 2 0.54636

HANDLE MANUAL VALVE  Cr

1%
HANDLE CONTROL VALVE  CS

8%

HANDLE MANUAL VALVE  CS

84%

HANDLE CONTROL VALVE  SS

0%

HANDLE MANUAL VALVE  SS

7%

Analysis of Historical Fabrication Areas

Handling Valves

HANDLE CONTROL VALVE  Cr

HANDLE MANUAL VALVE  Cr

HANDLE CONTROL VALVE  CS

HANDLE MANUAL VALVE  CS

HANDLE CONTROL VALVE  SS

HANDLE MANUAL VALVE  SS
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7.2.  Case Study No. 4: Analysis of fabrication man-hours 

Charts derived from Association Rules generated by an Apriori algorithm. 

 

 
 

 
Figure 7-4: Material (CS), Size (1”) and Schedule relationship 

 

 

 
 

 
 

Figure 7-5: Material (CS), Size (1”), Schedule and Weld type relationship 

 

Material Size Observed Schedule Observed

Sch 3000 29

Sch 160 2

94%

6%

%

311"CS

Sch 3000

94%

Sch 160

6%

Material Size Observed Schedule Weld Type Observed %

Sch 3000 SW 24 77%

Sch 3000 OL 4 13%

Sch 3000 BW 1 3%

Sch 160 BW 1 3%

Sch 160 OL 1 3%

311"CS

Sch 3000 SW

78%

Sch 3000 OL

13%

Sch 3000 BW

3%

Sch 160 BW

3%
Sch 160 OL

3%
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Figure 7-6: Material (CS), Size (2”) and Schedule relationship 

 

 

 

 
 

 
Figure 7-7: Material (CS), Size (2”), Schedule and Weld type relationship 

 

Material Size Observed Schedule Observed

Sch 0.25 5

Sch 3000 31

Sch 6000 9 20%

%

11%

69%452"CS

Sch 0.25

11%

Sch 3000

69%

Sch 6000

20%

Material Size Observed Schedule Weld Type Observed %

Sch 0.25 FW 5 11.11%

SW 30 66.67%

OL 1 2.22%

BW 1 2.22%

SW 8 17.78%

Sch 3000

Sch 6000

452"CS

Sch 0.25 FW

11%

Sch 3000 SW

67%

Sch 3000 OL

2%

Sch 6000 BW

2%

Sch 6000 SW

18%
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Figure 7-8: Material (CS), Size (6”) and Schedule relationship 

 

 

 

 
 

 
Figure 7-9: Material (CS), Size (6”), Schedule and Weld type relationship 

 

 

 

Material Size Observed Schedule Observed

Sch STD 16

Sch 160 6

73.00%

27.27%

%

226"CS

Sch STD

73%

Sch 160

27%

Material Size Observed Schedule Weld Type Observed %

Sch STD BW 16 72.73%

Sch 160 BW 6 27.27%
CS 6" 22

Sch STD

73%

Sch 160

27%
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Figure 7-10: Material (CS), Size (8”) and Schedule relationship 

 

 

 
 

 
Figure 7-11: Material (CS), Size (8”), Schedule and Weld type relationship 

 

Material Size Observed Schedule Observed

Sch 0.25 9

Sch 0.75 1

Sch 140 1

Sch STD 2

69.00%

7.69%

7.69%

15.38%

%

138"CS

Sch 0.25

69%

Sch 0.75

8%

Sch 140

8%

Sch STD

15%

Material Size Observed Schedule Weld Type Observed %

Sch 0.25 FW 9 69.23%

Sch 0.75 FW 1 7.69%

Sch 140 BW 1 7.69%

Sch STD BW 2 15.38%

CS 8" 13

Sch 0.25 FW

69%

Sch 0.75 FW

8%

Sch 140 BW

8%

Sch STD BW

15%
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Figure 7-12: Material (SS), Size (2”) and Schedule relationship 

 

 

 

 
 

 
Figure 7-13: Material (SS), Size (2”), Schedule and Weld type relationship 

Material Size Observed Schedule Observed

Sch 160 12

Sch 3000 27

Sch XXS 3

28.57%

64.29%

7.14%

%

422"SS

Sch 160

29%

Sch 3000

64%

Sch XXS

7%

Material Size Observed Schedule Weld Type Observed %

BW 10 23.81%

OL 2 4.76%

SW 23 54.76%

OL 3 7.14%

BW 1 2.38%

FW 2 4.76%

BW 1 2.38%

Sch 3000

Sch 160

Sch XXS

422"SS

Sch 160 BW

24%

Sch 160 OL

5%

Sch 3000 SW

55%

Sch 3000 OL

7%

Sch 3000 BW

2%

Sch XXS FW

5%

Sch XXS BW

2%
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Figure 7-14: Material (SS), Size (21”), Schedule and Weld type relationship 

 

 

 

 
 

 
Figure 7-15: Man-hours (0.04) and Material relationship 

Material Size Observed Schedule Weld Type Observed %

SS 21" 9 0.25 FW 9 100.00%

0.25

100%

Mhrs per DI Observed Material Observed %

SS 9 75.00%

CS 3 25.00%
0.04 12

SS

75%

CS

25%
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Figure 7-16: Manhours (0.06) and Material relationship 

 

 

 
 

 
Figure 7-17: Man-hours (0.07) and Material relationship 

Mhrs per DI Observed Material Observed %

CS 15 68.00%

SS 6 27.27%

LT 1 4.55%

220.06

CS

68%

SS

27%

LT

5%

Mhrs per DI Observed Material Observed %

CS 22 88.00%

SS 3 12.00%
0.07 25

CS

88%

SS

12%
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Figure 7-18: Man-hours (0.08) and Material relationship 

 

 

 

 
 

 
Figure 7-19: Man-hours (0.16) and Material relationship 

 

 

Mhrs per DI Observed Material Observed %

CS 12 92.00%

LT 1 7.69%
130.08

CS

92%

LT

8%

Mhrs per DI Observed Material Observed %

SS 12 63.00%

CS 5 26.32%

Cr 1 5.26%

LT 1 5.26%

190.16

SS

63%

CS

27%

Cr

5%

LT

5%
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7.3.  Case Study No. 5: Modeling data through probability distributions 

Production Reports analysis 

 

 
Figure 7-20: Project A DI’s Probability Density Function 

 

 

 

 
Figure 7-21: Project A DI’s Cumulative Distribution Function 
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Project B fabrication data  

 

 

 

 
Table 7-10: Project B fabricated spools and diameter inches per module 

 

 

 

 

 

 

 

 

No. Total DI No. Total DI No. Total DI No. Total DI

1 59 889 19 63 1226 37 26 651 66 63 1006

2 10 535 20 20 369 38 38 2270 67 14 521

3 49 971 21 67 1289 39 60 2892 68 43 1555

4 36 1089 22 35 684 40 21 1510 69 62 1124

5 36 1251 23 39 1090 40 7 628 70 25 568

5 8 469 24 22 815 40 12 691 71 25 1096

5 40 697 25 15 476 41 24 365 71 26 1178

6 22 854 26 8 348 42 41 1206 71 24 940

7 9 658 27 31 1367 43 17 130 72 15 500

8 24 1129 27 30 1258 44 30 1241 73 17 1176

9 61 1049 27 21 721 45 64 1159 73 15 856

10 26 516 28 28 807 46 129 3257 73 20 649

11 20 462 28 5 323 47 7 459 74 14 375

12 35 1785 28 21 703 48 48 1668 75 23 1290

13 24 1730 29 20 731 49 32 1140 75 29 688

14 58 1413 29 26 461 50 15 584 75 23 1025

15 53 1224 29 21 1617 51 20 1213 76 18 411

16 12 346 30 16 852 52 20 1104 77 29 1226

17 24 1273 30 10 255 53 15 943 78 23 1078

18 38 1166 31 24 844 54 5 158 78 21 975

32 18 1166 55 15 444 78 14 294

32 10 606 56 15 698 79 7 212

32 23 889 57 21 909 80 14 681

33 16 447 58 35 881 80 15 546

34 20 1081 59 22 439 80 9 229

34 16 1011 60 30 964 81 16 105

34 17 638 61 31 1045 82 17 1045

35 29 634 62 15 562 82 22 863

36 24 966 63 68 1677 82 16 831

36 13 354 64 38 1257 83 21 161

36 13 529 65 46 1057 84 16 531

84 14 547

84 12 366

85 29 297

86 29 1678

87 30 1726

88 24 785

89 30 300

90 47 646

3236 107346

35.96       

33.17       

1,192.73  

0.13          

0.0039     

Average DI's per Spool

Average DI's  per Module

Average Welds per Spool

Average Welds per DI's

Spools Spools Spools Spools

Average Spools per Mod
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Figure 7-22: Project B spools Probability Density Function 

 

 

 

 
Figure 7-23: Project B spools Cumulative Distribution Function 
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Figure 7-24: Project B DI’s Probability Density Function 

 

 

 

 
Figure 7-25: Project B DI's Cumulative Distribution Function 
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Project C fabrication data  

 

 

 

 
Table 7-11: Project C fabricated spools and diameter inches per module 

 

 

 

 

 

 

No. Total DI No. Total DI

1 20 699 19 35 836

2 25 680 20 158 4593

3 85 1467 21 128 3840

4 98 1808 22 61 940

5 35 988 23 61 2381

6 185 3819 24 125 2122

7 76 2639 25 125 4829

8 162 4402 26 98 2407

9 56 1678 27 131 2132

10 99 2977 28 74 1325

11 32 1366 29 24 687

12 90 2171 30 92 2599

13 28 1097 31 84 1750

14 340 7604 32 49 2125

15 49 833 33 94 2437

16 102 3856 34 90 1662

17 153 6088 35 37 1442

18 21 914 36 150 2916

37 135 2506

38 53 1592

39 86 3107

40 70 3350

41 30 554

42 6 306

3650 97523

76.04        

26.72        

2,031.74  

0.01          

0.0055      

Average Welds per Spool

Average Welds per DI's

Spools Spools

Average Spools per Mod

Average DI's per Spool

Average DI's per Module



 

154 

 

 

 
Figure 7-26: Project C spools Probability Density Function 

 

 

 

 
Figure 7-27: Project C spools Cumulative Distribution Function 
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Figure 7-28: Project C DI’s Probability Density Function 

 

 

 

 
Figure 7-29: Project C DI’s Cumulative Distribution Function 
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Project D fabrication data  

 

 

 

 

 

 
Table 7-12: Project D fabricated spools and diameter inches per module 

 

 

 

 

 

 

 

No. Total DI No. Total DI No. Total DI No. Total DI

1 109 3196 12 76 2461 39 60 1810 76 60 1163

1 32 1302 12 39 2060 40 71 1323 77 21 1136

1 15 1130 12 17 1042 41 40 1561 78 29 622

2 107 2929 12 17 1042 43 44 2183 79 100 2113

2 55 2323 13 16 903 44 36 1167 80 52 1259

2 15 828 14 21 1939 44 25 1687 81 84 1174

3 47 1409 15 18 642 44 10 1157 82 74 2371

3 17 933 16 33 2406 45 31 777 83 63 2372

3 7 105 17 6 405 45 30 1352 84 22 403

4 102 2673 18 29 1182 45 20 943 85 26 1256

4 29 1318 19 39 3014 48 117 4009 87 33 966

4 6 113 20 25 1789 49 135 4176 87 10 903

5 77 2328 21 36 1878 50 90 3773 88 140 4353

5 25 1012 22 39 1939 52 63 2130 89 147 3381

5 8 49 23 45 2508 52 14 1048 90 35 312

6 76 2559 24 20 1300 52 3 353 92 60 1111

6 31 1239 25 41 1426 53 58 1978 93 35 1248

6 14 966 25 22 1064 53 10 1352 94 55 1382

7 48 1694 25 5 268 53 1 58 95 46 1630

7 31 1900 26 48 1431 54 128 2957 96 23 1190

7 24 2036 26 17 1388 54 102 3198 97 24 758

8 61 2256 26 3 151 55 163 4784 98 13 654

8 23 1541 27 70 2701 56 51 2101 99 53 1942

8 30 1636 27 22 1120 57 91 2337 101 78 2095

9 46 1579 27 6 262 59 37 1079 102 141 3544

9 25 1278 28 91 3334 60 47 1436 104 79 2321

9 17 1224 28 17 1484 61 75 1196 105 62 1623

10 71 2416 28 2 41 62 40 775 106 66 1674

10 21 822 29 48 1824 63 49 1845 107 79 2087

10 21 998 29 30 1073 64 39 623 108 84 2857

11 58 2473 29 13 179 65 45 1021 109 63 1613

11 25 1225 30 97 2482 66 32 3376 110 113 2398

11 24 1213 30 45 1070 67 23 2179 111 60 1648

30 6 169 68 35 3279 113 82 1819

31 25 1001 69 32 2842 113 147 3315

32 20 918 70 110 2895 113 15 475

33 30 1059 71 267 5582 114 129 3306

34 28 1283 72 6 141 115 139 2267

35 20 1033 73 6 141 116 72 1365

36 13 488 74 71 2351 117 109 3259

38 45 1125 75 166 4327 118 101 2076

119 56 3499

120 54 3647

121 290 3389

8234 272858

68.05        

33.14        

2,255.03  

0.16          

0.0048     

Average DI's per Spool

Average DI's per Module

Average Welds per Spool

Average Welds per DI's

Spools Spools Spools Spools

Average Spools per Mod
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Figure 7-30: Project D spools Probability Density Function 

 

 

 

 
Figure 7-31: Project D spools Cumulative Distribution Function 
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Figure 7-32: Project D DI’s Probability Density Function 

 

 

 

 
Figure 7-33: Project D DI’s Cumulative Distribution Function 
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Project E fabrication data  

 
Table 7-13: Project E fabricated spools and diameter inches per module 

 

No. Total DI No. Total DI

1 94 2601 19 22 1025

1 20 850 20 24 653

2 38 1144 21 77 1993

2 9 537 21 18 874

3 0 0 22 47 1302

4 0 0 22 29 1473

5 87 1685 23 9 179

5 8 340 24 13 541

6 37 795 25 20 718

6 1 81 25 24 1040

7 0 0 26 20 710

8 0 0 26 31 1470

9 0 0 27 20 1010

9 0 0 27 56 2717

10 49 1329 27 44 994

10 17 883 28 22 587

11 0 0 28 26 804

12 23 1298 28 2 265

13 55 1587 29 13 646

13 24 935 29 33 1278

14 110 2486 30 28 988

14 30 1159 30 29 845

15 33 1201 30 14 844

16 21 585 31 22 1007

17 68 2040 32 28 1254

17 48 1971 33 40 574

18 39 1037 34 62 960

18 23 1048 35 56 1646

35 38 1347

35 7 384

36 6 213

36 9 414

36 5 321

37 10 378

37 6 270

37 5 324

1749 57638

47.27       

32.95       

1,557.78  

0.47          

0.01          Average Welds per DI's

SpoolsSpools

Average Spools per Mod

Average DI's per Spool

Average DI's per Module

Average Welds per Spool
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Figure 7-34: Project E spools Probability Density Function 

 

 

 

 
Figure 7-35: Project E spools Cumulative Distribution Function 
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Figure 7-36: Project E DI’s Probability Density Function 

 

 

 

 
Figure 7-37: Project E DI’s Cumulative Distribution Function 


