
University of Alberta

ROBUST GRID-BASED DEPLOYMENT SCHEMES FOR UNDERWATER OPTICAL SENSOR

NETWORKS

by

Abdullah Al Reza I Q

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47399-3
Our file Notre reference
ISBN: 978-0-494-47399-3

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Underwater sensor networks have received significant attention from the research commu

nity in recent years. Since radio signals face excessive absorption in the underwater en

vironment, acoustic communication has been the dominant physical layer medium in the

literature. Although acoustic communication has long range and omni-directional charac

teristics like terrestrial radio, it suffers from excessive propagation delay in water and very

low bandwidth. In this thesis, we consider the design of an optical underwater sensor net

work based on low cost LEDs and photodiodes. Such an optical communication system has

shorter range compared to acoustic systems but is cheaper and lighter and, most impor

tantly, can support significantly higher data rates. Optical communication is characterized

by the line of sight property which makes optical links vulnerable to occasional failures due

to underwater organisms and moving particles. We consider a grid based deployment of

underwater sensor nodes and the selection of a topology based on a minimal set of point-

to-point optical links that is robust to occasional link failures. We develop patterns for

networks with maximum 1, 2 and 3 interfaces per node constraints. We evaluate the ro

bustness of our proposed deployment patterns by simulating three simple resilient routing

protocols on these patterns and demonstrate that our patterns support a high degree of

robustness even though they use only a fraction of all potential links in the grid graph,

thereby minimizing the cost of deployment.

Acknowledgements

I would like to thank my supervisor Dr. Janelle Harms for her support and guidance

throughout the course of my thesis. She has always managed to find time to review my

work, listen to my problems and throw valuable comments and suggestions. She has also

helped me find the topic for this thesis. Above all, she has been a mentor for me throughout

my graduate student life at the University of Alberta and guided me in numerous ways to

become a successful graduate student. I would also like to thank Dr. Lorna Stewart

for reviewing my work and providing valuable insights and suggestions. I would like to

express my thanks to numerous friends at the department who have been there for me

throughout the course of my thesis. I would like to particularly mention Sunil Ravinder,

Israat Haque, Abhishek Srivastava, Ananth Venkateswaran, Chen Liu and Jianzhao Huang

for their support. I would also like to thank my friend Susanjib Sarkar from Mechanical

Engineering for being a true friend to me throughout my thesis. Finally, I would like to

thank my parents for their love and their support.

Table of Contents

1 Introduction 1
1.1 Motivations 1
1.2 Contributions: Robust Grid-based Deployment Schemes for Optical UWSN 3
1.3 Layout of the Thesis 5

2 Related Work 7
2.1 Underwater Acoustic Sensor Networks 7
2.2 Underwater Optical Sensor Networks 12

2.2.1 Optical Model used in this Thesis 15
2.3 Sensor Network Deployment 17
2.4 Chapter Summary 19

3 Robust Grid-based Deployment Topologies 20
3.1 Problem Definition 20

3.1.1 Optical Interface Model 23
3.2 Robust Deployment Schemes 24

3.2.1 Maximum 1 Interface per Node 24
3.2.2 Maximum 2 Interfaces per Node 26
3.2.3 Maximum 3 Interfaces per Node 27

3.3 Static Evaluation of Proposed Deployment Topologies 37
3.3.1 Failure Models 39
3.3.2 Results 40

3.4 Chapter Summary 45

4 Dynamic Evaluation of Deployment Topologies 46
4.1 Routing Protocols 47

4.1.1 Flooding (FLD) 47
4.1.2 Dual Paths Protocol (DPP) 48
4.1.3 Hop-by-Hop Acknowledgment with Local Update (HHA) 49

4.2 Simulation Environment 54
4.2.1 Traffic Model 55
4.2.2 Error Blobs 55

4.3 Simulation Metrics 56
4.3.1 Delivery Ratio 56
4.3.2 Average Delay Per Packet (ADPP) 57
4.3.3 Average Number of Payloads Transmitted per Successful Packet (APTS) 57

4.4 Experiment Methodology 58
4.4.1 Assumptions 58
4.4.2 Parameter Settings 59
4.4.3 Design of Experiments 60

4.5 Analysis of Experimental Results 61
4.5.1 Analysis of Flooding Protocol (FLD) 61
4.5.2 Analysis of Dual Paths Protocol (DPP) 73
4.5.3 Analysis of Hop-by-Hop Acknowledgment Protocol (HHA) 80

4.6 Possible Effects with Multiple Sources 92
4.7 Chapter Summary 94

5 Conclusion and Future Work 95
5.1 Conclusions 95
5.2 Future Directions for Research 97

Bibliography 99

A Implementation of FLD, D P P and HHA 103
A.l Implementation of Flooding (FLD) 103
A.2 Implementation of Dual Paths Protocol (DPP) 104
A.3 Implementation of Hop-by-Hop Acknowledgment Protocol (HHA) 105
A.4 Packet Formats 106

B Verification and Validation of Simulation Model 108

C Pseudo-code of Event Handlers for the Simulation Models 113
C.l Event Handlers for FLD Protocol 114
C.2 Event Handlers for HHA Protocol 116

List of Tables

3.1 Summary of proposed deployment topologies 38
3.2 Properties of different topologies when applied on a 12x12 grid with the sink

at center 38

4.1 Simulation Configurations 55
4.2 Performance of FLD, DPP and HHA on TOP6 at a hop distance of 10 hops

(a = 20m, b = 4m, speed = 15 cm/sec and TTL = 0.5 sec for HHA) 89
4.3 Performance of FLD, DPP and HHA on TOP6 with error blob dimension a

— 30m, b = 4m (hop distance=10 hops, speed=15 cm/sec and TTL=0.5 sec
for HHA) 92

A.l Different fields and their sizes in a fixed-length DATA packet of FLD/DPP
protocol 107

List of Figures

3.1 Grid-based deployment problem 21
3.2 Optical interface model: (a) maximum one interface per node (b) maximum

2 interfaces per node (c) maximum 3 interfaces per node 24
3.3 Topologies with 1-interface constraint: (a) One directed Hamiltonian Cycle

(b) 4 directed Hamiltonian cycles (TOPI) 26
3.4 TOP2: 4 undirected Hamiltonian cycles 27
3.5 Manhattan Distance Property 29
3.6 Four quadrants around the sink: edges on the axes cannot be avoided in a

shortest path spanning tree from the sink 30
3.7 A quadrant with horizontal axis of length m = 7 and vertical axis of length

n = 8 31
3.8 Optimal pattern for a quadrant: (a) x < y: total 3-degree nodes = (a; — 2)

(b) y < x: total 3-degree nodes = (y — 2) 32
3.9 (a) Optimal patterns for individual quadrants lead to optimal pattern for the

entire grid (b) Optimal patterns for individual quadrants violate the 3-degree
constraint 33

3.10 Pattern using only the vertical axis (clockwise right axis) to place 3-degree
nodes 34

3.11 (a) TOP3: pattern from the corollary applied on 4 quadrants (b) TOP4:
Leaves are connected 36

3.12 (a) TOP5: Q1&Q4 and Q2&Q3 are connected (b) TOP6: Q1&Q2 and Q3&Q4
are connected 36

3.13 An "error blob": an ellipse representing an underwater obstacle 40
3.14 Robustness to isolated failure 41
3.15 Average path length: isolated failure 42
3.16 Robustness to patterned failure with an elliptical failure model, b = 4m and

A = 3 44
3.17 Average path length under elliptical failure model, b = 4m and A = 3 . . . 44

4.1 Routing around the error blob in HHA 54
4.2 Delivery ratio vs hop distance with FLD. a = 20m, b = 4m and blob speed

= 15cm/sec 64
4.3 ADPP vs hop distance with FLD. a = 20m, b = 4m and blob speed = 15cm/sec 64
4.4 APTS vs hop distance with FLD. a — 20m, b = 4m and blob speed = 15cm/sec 65
4.5 Delivery ratio vs error blob size with FLD. Hop distance = 10 and blob speed

= 15cm/sec 69
4.6 ADPP vs error blob size with FLD. Hop distance = 10 and blob speed =

15cm/sec 70
4.7 APTS vs error blob size with FLD. Hop distance = 10 and blob speed =

15cm/sec 70
4.8 Delivery ratio vs error blob speed with FLD. a = 20m, b = 4m and Hop

distance = 10 72
4.9 ADPP vs error blob speed with FLD. a = 20m, b = 4m and Hop distance = 10 72
4.10 APTS vs error blob speed with FLD. a = 20m, b = 4m and Hop distance = 10 73
4.11 Delivery ratio vs hop distance with DPP. a = 20m, b = 4m and blob speed

= 15cm/sec 76
4.12 ADPP vs hop distance with DPP. a = 20m, b = 4m and blob speed = 15cm/sec 76

4.13 APTS vs hop distance with DPP. a = 20m, b = 4m and blob speed = 15cm/sec 77
4.14 Delivery ratio vs error blob size with DPP. Hop distance = 10 and blob speed

= 15cm/sec 79
4.15 ADPP vs error blob size with DPP. Hop distance — 10 and blob speed =

15cm/sec 79
4.16 APTS vs error blob size with DPP. Hop distance = 10 and blob speed =

15cm/sec 80
4.17 Delivery ratio vs TTL with HHA. a = 20m, b — 4m, hop distance = 10 and

blob speed = 50cm/sec 83
4.18 ADPP vs TTL with HHA. a = 20m, b - 4m, hop distance = 10 and blob

speed = 50cm/sec 83
4.19 APTS vs TTL with HHA. a = 20m, b = 4m, hop distance = 10 and blob

speed — 50cm/sec 84
4.20 Delivery ratio vs hop distance with HHA. a = 20m, b = 4m, blob speed =

15cm/sec and TTL = 0.5 sec 87
4.21 ADPP vs hop distance with HHA. a = 20m, b = 4m, blob speed = 15cm/sec

and TTL = 0.5 sec 88
4.22 APTS vs hop distance with HHA. a = 20m, b — 4m, blob speed = 15cm/sec

and TTL = 0.5 sec 88
4.23 Delivery ratio vs error blob size with HHA. Hop distance = 10, blob speed

= 15cm/sec and TTL = 0.5 sec 91
4.24 ADPP vs error blob size with HHA. Hop distance = 10, blob speed =

15cm/sec and TTL = 0.5 sec 91
4.25 APTS vs error blob size with HHA. Hop distance = 10, blob speed =

15cm/sec and TTL = 0.5 sec 92

B.l Modules in the simulation implementation 109

Glossary of Terms

UWSN. Underwater Wireless Sensor Network.

MAC. Medium Access Control. The MAC layer in the communication protocl stack is

responsible for dealing with the channel contention problem.

Optimal Pattern. A 3-degree constrained shortest-path spanning tree in a grid graph

rooted at a given grid node with minimum number of 3-degree nodes.

LB. Lower Bound on the number of 3-degree nodes in an optimal pattern for a grid

rooted at a given grid node. It is not possible to form a 3-degree constrained shortest-path

spanning tree in a grid graph with less than LB number of 3-degree nodes.

Error Blob. An underwater obstruction modeled as an ellipse that blocks optical

communication between two nodes by obscuring the line of sight.

TOPI. Four directed Hamiltonian cycles spanning all nodes in the grid. Each quadrant

around the sink is spanned by one directed Hamiltonian cycle.

TOP2. Four undirected Hamiltonian cycles spanning all nodes in the grid. Each

quadrant around the sink is spanned by one undirected Hamiltonian cycle.

TOP3. A 3-degree constrained shortest-path spanning tree in the grid rooted at the sink

with (LB+2) 3-degree nodes in the worst case.

TOP4. TOP3 with leaves in each quadrant connected together by a path.

TOP5. TOP4 with quadrant 1&4 and quadrant 2&3 connected with two additional

boundary edges.

TOP6. TOP5 with quadrant 1&2 and quadrant 3&4 connected with two additional

boundary edges.

FLD. The Flooding protocol for routing.

DPP. The Dual Paths Protocol for routing.

HHA. The Hop-by-Hop Acknowledgment with local update protocol for routing.

ADPP. Average Delay Per Packet. This simulation metric indicates the delay a packet

faces between its generation and delivery on average.

APTS. Average number of Payloads Transmitted per Successful packet. This simulation

metric indicates the communication overhead incurred by a routing protocol applied on a

particular deployment topology.

Chapter 1

Introduction

A wireless sensor network [10] is a collection of sensor nodes which are deployed in a target

region with a primary task of sensing data and communicating with each other to make the

data available to the user. In the most common settings, a special node in the network is

designated as the sink node to which all other sensor nodes send their sensed data, possibly

through other intermediate sensor nodes. Underwater wireless sensor networks (UWSN)

[1] are a relatively new family of wireless sensor networks which are deployed under water,

usually in a sea or an ocean, in order to monitor underwater environment. UWSNs make

it possible to monitor underwater organisms, environment and other things without having

to physically go under the sea and thus bring about enormous possibilities for research in

various fields that make use of the oceanographic data. Above all, UWSNs allow us to

monitor the underwater environment which constitutes 70% of the earth's surface.

1.1 Motivations

As a new and evolving field, UWSN has received a great amount of attention from the

research community in recent years. Since radio and most other electromagnetic signals

are excessively absorbed by water, acoustic communication has been considered almost

exclusively for UWSN. While acoustic signals have a range of several hundred meters [1] and

have omni-directional communication characteristics like terrestrial radio, they suffer from

low bandwidth of 5 to 10 Kbps [49, 13], very long propagation delay of nearly 1500m/s [37],

high and unpredictable error rate of acoustic signals in underwater environment [44, 40, 58]

and high cost of acoustic modems [49, 38].

1

The long propagation delay and extremely low bandwidth, added with high and un

predictable error rates, make acoustic communication unsuitable for applications that have

high bandwidth and short delay requirements, e.g., real-time and multimedia sensing ap

plications [46]. In this thesis, we consider an underwater sensor network where nodes com

municate optically using light and low-cost light emitting diodes (LED) and photodiodes

operating in green/blue visible range of spectrum. Such an optical system has extremely

fast propagation and can support a bandwidth of several megabits per second [49, 13] com

pared to only a few kilobits per second supported by an underwater acoustic system. This

high bandwidth and fast propagation make optical communication suitable for applications

with real-time and high data rate requirements.

The price to pay for this achievement in bandwidth and propagation speed is the re

duction in communication range. Depending on the clarity of water, the transmission

power, presence of concentrator lenses at the transmitter and amplifiers at the receiver,

the maximum communication range using such system varies from 8m to 40m [49, 13].

In contrast, acoustic communication can support ranges of several hundred meters, though

energy-efficiency and reasonable speed calls for a range of less than 150m [18, 43]. The range

of optical communication depends largely on the clarity of water. It has been demonstrated

that ocean areas that are not in close proximity with coastal areas usually have clarity very

close to pure water [43]. Thus, for an underwater sensing application that has a stringent

requirement for high bandwidth and has a smaller area of observation that is not very close

to the coastal areas, a point-to-point optical communication system using low cost LEDs

and photodiodes is an attractive solution.

Because of the limited range and directional communication characteristics, connec

tivity becomes an important design goal in such an underwater optical sensor network.

Unlike acoustic UWSN where nodes have long and omni-directional range of communi

cation, connectivity in an optical UWSN is not inherent in the deployment and calls for

careful placement of nodes in the target sensing region so that the resulting deployed net

work possesses the desired level of connectivity. In addition, since optical transceivers are

directional, higher degree of connectivity calls for higher number of transceivers in the net

work which introduces a new design goal of balancing the cost of deployment (number of

2

optical transceivers) with the degree of connectivity.

In this thesis, we design and evaluate deployment schemes for underwater optical sensor

networks that balance the cost of deployment and the degree of connectivity desired in the

network. Since optical communication depends on the line of sight property, underwater

optical links are expected to go down occasionally due to obstructions like underwater

organisms, floating objects and sediments. Therefore, we design deployment schemes that

possess enough redundancies in order to support desired levels of robustness to occasional

failures of optical links in the network.

1.2 Contributions: Robust Grid-based Deployment Schemes
for Optical UWSN

In this thesis, we design two-dimensional grid-based deployment schemes for underwater

optical sensor networks that support desired levels of robustness and path quality with

minimum number of optical interfaces. We assume that the nodes and the sink are placed

at grid points and then select point-to-point optical links between adjacent grid points to

produce a connected and robust topology. Each link in the deployment topology introduces

one optical interface for both nodes at the two ends of the link. Therefore, while designing

our deployment topologies, we introduce the least number of optical links in the network

to minimize the cost of deployment.

Since each optical interface in a node incurs an extra cost and requires extra space in the

node, we place constraints on the number of interfaces a node can have. We consider three

cases where each node in the network is constrained to have no more than 1, 2 and 3 optical

interfaces. For each of these cases, we design deployment patterns that result in topologies

with desired degrees of robustness and path quality with a close-to-minimum number of

per node and total optical interfaces in the network. In order to ensure deterministic

robustness, we design 2-edge-connected [53] topologies whenever the interface constraint

allows us to do so in order to ensure that any arbitrary link in the network can go down

without disconnecting any node from the sink. For 3 interfaces per node constraint, we

design deployment topologies in which a shortest path from sink to each sensor node in the

network is available in order to support lowest-cost communication to and from the sink in a

3

failure-free environment. For this constraint, we minimize the number of 3-degree nodes in

the network since these nodes are expensive and contribute in increasing the total number

of interfaces in the network.

We perform two kinds of simulation-based evaluation in order to analyze the performance

of our deployment topologies. First, we perform a static evaluation where we do not consider

dynamic behavior of the network such as as variation of failure rates with time, movement

of link-blocking obstacles with time, dynamic selection of routing paths to avoid obstacles

and network operations like routing, fault-detection etc. that changes with time. We apply

isolated and patterned failure models on our topologies and evaluate probabilistic robustness

of these topologies to these failures and the quality of available paths when some links in

the network are down. Then we perform a dynamic evaluation where we apply three simple

resilient routing protocols on our deployment topologies and evaluate their performance in

terms of resiliency to link failures, average delay of packet delivery to the sink and overall

communication overhead in the presence of multiple moving obstacles inside the network.

The contributions of our thesis can be summarized as follows:

• Deployment topologies for optical UWSN that utilize four directed and undirected

Hamiltonian cycles in a grid for cases with 1 and 2 interfaces per node constraints,

respectively.

• The formulation pattern for a 3-degree constrained shortest path tree in a grid rooted

at the sink and spanning all nodes in the grid with (LB+2) number of 3-degree nodes

in the worst case where LB is the lower bound on the number of 3-degree nodes in

such a tree. Our proposed formulation pattern works for any grid dimension and any

placement of the sink inside the grid.

• A series of deployment patterns built on the 3-degree constrained shortest path span

ning tree that support increasingly higher degrees of robustness by adding additional

links in the network at strategic points. These topologies have shortest paths from the

sink to all grid nodes since they are built on a shortest path tree while at the same

time they support higher degrees of robustness by strategically introducing higher

degrees of redundancies in the network.

4

• A static simulation-based evaluation of the proposed deployment topologies that eval

uates and compares the probabilistic robustness and path qualities of these topologies

by applying isolated and patterned failure models on the them.

• A dynamic evaluation of the proposed topologies performed by simulating three simple

resilient routing protocols on these topologies with one packet generating source and

multiple moving obstacles in the network. The performance of these routing protocols

on our topologies has been evaluated and compared in terms of packet delivery ratio,

average delay of delivery of packets to the sink and overall communication overhead.

• Directions for future research based on the research in this thesis.

1.3 Layout of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we present the infrastruc

ture and research challenges in acoustic underwater sensor networks and how underwater

optical communication differs from underwater acoustic communication. We also present

underwater optical communication characteristics and models and discuss the problem of

sensor network deployment in terrestrial radio and acoustic underwater environment and

how it differs from the deployment problem with underwater optical sensor network.

In Chapter 3, we present the formal definition of the problem that we consider in this

thesis and the design goals that we try to achieve. Then we design robust grid-based

deployment topologies for three cases where no node in the network is allowed to have

more than 1, 2 and 3 interfaces. Finally, we evaluate the probabilistic robustness of our

deployment topologies by simulating them with isolated and patterned failure models. We

do not consider dynamic aspects of network operations in this static evaluation.

In Chapter 4, we perform detailed dynamic evaluation of our deployment topologies

by simulating three simple resilient routing protocols on these topologies. We use a single

packet generating source and multiple moving obstacles in the network and evaluate the

performance of these protocols applied on our topologies in terms of packet delivery ratio

(resiliency), average delay of delivery and communication overhead.

In Chapter 5, we summarize the findings and contributions of our thesis. We also present

5

directions for future research in this chapter.

6

Chapter 2

Related Work

In this chapter, we present the research work in the current literature that are related to

our thesis. First, we present the architecture and research challenges for acoustic underwa

ter sensor networks since acoustic signaling remains the dominant means of communication

for underwater sensor networks in the current literature. Then we present research work

on underwater optical signaling and underwater sensor networks that make use of optical

communication to achieve higher bandwidth. Finally, we present related work on the de

ployment of sensor nodes in a target field to achieve particular design goals like coverage

and connectivity.

2.1 Underwater Acoustic Sensor Networks

Akyildiz et al. present two generic architectures for underwater sensor networks [1]. The

first architecture is a two-dimensional architecture where nodes are placed on the sea-floor

with the help of anchors. Possible applications of such networks include monitoring the

environment and organisms at the ocean bottom, monitoring underwater plates in tectonics

etc. The second architecture is a three-dimensional architecture where nodes are placed at

different depths with the help of anchors that pull them downwards through wires and

attached buoys that pull them upwards. The length of the wire, preferably electronically

controlled by the node, determines the depth of the node. Possible applications include

monitoring organisms and environment at different depths, monitoring pollution, ocean

currents etc.

Akyildiz et al. [1] also describe the unique characteristics of underwater nodes that

7

separate them from traditional terrestrial sensor nodes and make the design goals different

in an underwater environment regardless of the physical layer used for communication.

Underwater sensor nodes are more expensive than terrestrial nodes because of the need for

water-proof casings, special techniques for keeping them afloat, if applicable, etc. This high

cost of nodes results in a relatively low density of nodes in underwater sensor networks

compared to that in the terrestrial counterparts. The high cost of nodes often implies that

placing nodes randomly in the target area in large numbers is not a feasible solution. Rather,

careful deployment of nodes become more important in underwater sensor networks which

is the main focus of our thesis. Other differences between underwater and terrestrial sensor

nodes include lack of spatial correlation among sensed data from neighboring nodes because

of the increased distance between them and higher cost of communication resulted from

increased distance among nodes and sophisticated signaling techniques which is especially

true for acoustic communication.

Since radio and most other electromagnetic signals are excessively absorbed by water,

acoustic communication has been considered almost exclusively for underwater sensor net

works (UWSN). Acoustic communication has desirable similarities with terrestrial radio in

that it has omni-directional communication characteristics like radio. In addition, underwa

ter acoustic communication supports a range of several hundred meters [1]. The downsides

are the very low bandwidth of 5-10 Kbps [49, 13], very long propagation delay of nearly

1500 m/s [37], high and unpredictable error rates of acoustic signals in underwater environ

ments [44, 40, 58] and high cost of acoustic modems [49, 38]. Communication protocols at

different layers in an acoustic UWSN try to deal with the problems of low bandwidth, slow

propagation and high error rates.

Low bandwidth and extremely slow propagation introduce considerably higher number

of collisions in medium access control (MAC) layers for acoustic UWSN and degrades the

overall performance significantly if not handled well. Therefore, MAC layer protocols for

acoustic UWSN [34, 57, 32] primarily focus on reducing the number of collisions in order to

prevent the wastage of the inherently poor channel capacity in such networks. For example,

Paleato et al. [34] propose the use of a new warning packet along with the RTS/CTS

scheme in the original MACA protocol [20] designed for terrestrial radio. Because of the

8

very long propagation delay, a node that just received an RTS and replied with a CTS

(Clear To Send) may receive another RTS from a third node which was transmitted quite

a while ago. In such cases, the node that received the second RTS may send a warning

packet to the originator of the first RTS (Request To Send) to keep it from transmitting and

causing collision. A node receiving a CTS does not start transmission right away. Rather,

it waits for a while in case a warning packet arrives in which case it aborts transmission.

The R-MAC protocol from Xie et al. [57], on the other hand, uses careful scheduling to

avoid collisions altogether. The scheduling scheme is designed to improve energy efficiency

and ensure fairness of channel access among different nodes.

Routing protocols for acoustic UWSN can primarily be classified into two groups, each

group having the common goal of minimizing the consumption of energy which is a scarce

resource in sensor networks. The first group of routing protocols [37, 18] focus on the use

of the acoustic channel intelligently to fully utilize the limited channel capacities resulting

from low bandwidth, long propagation and high error rate. Pompili et al. [37] use an

acknowledgment-based forwarding method to achieve reliability and observe that channel

utilization efficiency in underwater acoustic environment is unacceptably low under such

circumstances which also results in high energy consumption. To improve efficiency, they

propose the use of packet trains where a group of packets are forwarded in a row and one

acknowledgment is sent for each train instead of one acknowledgment for each packet. The

acknowledgment indicates which packets, if any, were corrupted in the train so that the

sender can include those packets in the next train. Thus, channel efficiency is decoupled

into train efficiency and packet efficiency. Since trains are never retransmitted, we can

use very long trains to improve overall channel efficiency. Packets, on the other hand, are

retransmitted and therefore, we need to select an optimal size of each packet to achieve

the maximum efficiency. The authors also demonstrate the use of forward error correction

codes (FEC) to improve the efficiency further and propose two geographic routing schemes

that make use of the above observations.

Harris III et al. [18] thoroughly examine the physical layer characteristics of under

water acoustic media in order to deduce practical design goals for routing algorithms in

acoustic UWSN. They use underwater acoustic communication models to find out that un-

9

like terrestrial radio where attenuation is mainly a function of distance, the attenuation of

underwater acoustic signals is a function of both distance and frequency and an increase

in any or both of these factors results in an increase in attenuation for underwater acous

tic signals. The result is that as we decrease the distance between communicating nodes,

not only is the attenuation reduced but also the bandwidth available for communication

improves. The authors use a commercially available acoustic modem to deduce the rela

tionship of hop distance with available bandwidth and energy consumption and find out

that a hop distance of approximately 150m provides the optimum result for the modem in

hand. Although the actual value of this distance is different for different modems, this work

provides a guideline to finding out the desired hop distance for a particular communication

device and suggests that routing algorithms for acoustic UWSN should try to select hops

with lengths close to this distance instead of blindly minimizing the number of hops or per

hop distance in the selected routes. Harris III et al. [18] also propose a geographic routing

protocol called Bounded Distance that makes use of the above fact and tries to select hops

that have lengths close to 150m. Their simulation shows that Bounded Distance reduces

overall energy consumption compared to protocols that try to minimize the number of hops

or per hop length of the selected routes.

The second and the most thoroughly investigated group of routing protocols for acoustic

UWSN consists of the protocols that focus on improving the reliability and resiliency of de

livery in underwater acoustic environment that is characterized by high and unpredictable

error rates [44, 40, 58, 36, 39, 29]. Sun et al. [44] summarize different sources of noise that

result in high and unpredictable error rate in underwater acoustic channels. These noises

include man-made noise, ambient noise and noises caused by medium's physical charac

teristics. Man-made noises include acoustic disturbance caused by ships and other water

vehicles. Ambient noises include wave motion, storms on surface, underwater organisms

etc.

Most of these resilient routing schemes for acoustic UWSN handles the problems of

resiliency and reliability by using multiple paths for delivering a packet. Sun et al. [44]

propose a scheme called Packet Cloning where a belt-like route is formed from source to sink

and multiple copies of a packet (clones) are transmitted by the source with short intervals.

10

Packets are forwarded along the belt and the broadcast property of acoustic transmission

ensures that all or most possible paths through the belt forward a clone even though some

links are broken. Also, if a clone is lost, forwarding nodes can reproduce the clone by

copying subsequent clones of the same packet which ensures even higher resiliency. The

Vector-Based Forwarding (VBF) from Xie et al. [58] also uses a belt-like route to achieve

high resiliency but it works in a different geographic manner. Given that the source and the

sink know their locations, a routing belt consists of all the nodes that are within a predefined

distance from the vector connecting the source and the sink. Forwarding nodes calculate

their locations on the fly from the locations of the preceding nodes and the reception angle.

This eliminates the need for a separate localization scheme and supports node mobility.

While the above two protocols utilize the geographic proximity of forwarding nodes to

achieve high degree of resiliency, failure may occur if all links in a particular area go down

simultaneously. To this end, Seah et al. [40, 39] propose Virtual Sink architecture where

multiple sinks are placed at geographically distant points in the network and this set of

physical sinks is considered as one virtual sink in the sense that delivering a packet to any

one of these physical sinks means a successful delivery to the virtual sink. They propose a

multi-path routing protocol that forwards a packet simultaneously on multiple paths, one

path for each sink, and present analytical results on the number of sinks that need to be

deployed to achieve higher degrees of resiliency without incurring unreasonable cost. The

resilient routing scheme proposed by Pompili et al. [36] uses Integer Linear Programming to

find out two paths from each source to the (single) sink that incur minimum transmission

energies and this information is passed to all nodes during setup phase. Packets from a

source are forwarded on only one of these two paths but the selection of the actual path is

made based on the dynamic behavior of the paths measured from ACK timeouts.

Lee et al. [29] propose a routing scheme called Underwater Diffusion (UWD) that is

designed particularly for mobile sensor nodes that can move together in groups due to ocean

current. Their primary goal is to avoid the need for flooding to support mobile routing.

The idea behind UWD is to form a community of nodes around a forwarding node that

is in the path from a source to the sink. Each community node of a forwarding node

can hear transmissions from the forwarding node and the predecessor and successor of the

11

forwarding node in the path from the source to the sink. As a result, if a forwarding node

dies or moves away, its community nodes can detect it and one of the community members

can become the new forwarding node, thus supporting mobility and robustness without

flooding. Refresh packets are sent from source to the sink periodically along the path to

reconstruct the communities on the face of mobility. Although UWD primarily handles

mobility, robustness and resiliency is inherent in its design.

2.2 Underwater Optical Sensor Networks

As demonstrated in Section 2.1, although underwater acoustic signals support long ranges

and have desirable omni-directional characteristics like terrestrial radio, they suffer from

extremely low bandwidth, very long propagation delay and high and unpredictable loss

rates. As a result, acoustic communication cannot support applications that have high

bandwidth and short delay requirements, e.g., real-time and multimedia applications. To

overcome these shortcomings of underwater acoustic communication, underwater optical

communication systems built with light and low cost LEDs and photodiodes operating in

green/blue visible spectrum have been considered [49, 43, 13, 38] since only visible light

in this spectrum propagates well in water. Such a communication system has a very high

bandwidth and extremely fast propagation compared to an underwater acoustic system.

Vasilescu et al. [49] experiment with their underwater optical system with a bit rate of

320 Kbps whereas Giles et al. [13] use a mathematical model of a commercially available

LED and photodiode to produce a bit rate of up to 4.4 Mbps. This high bandwidth and

fast propagation of light makes such a communication system suitable for applications that

have real-time and high data rate requirements.

The downside of using such a communication system is the reduction in the range of

communication compared to acoustic counterparts. Depending on the clarity of water, the

transmission power, presence of concentrator lenses at the transmitter and amplifiers at

the receiver, the maximum communication range using such system varies from 8m to 40m

[49, 13]. In contrast, acoustic communication can support ranges of several hundred meters,

though energy-efficiency and reasonable speed calls for a range of less than 150m [18, 43].

The range of optical communication decreases as the water becomes turbid. However, ocean

12

areas that are not very close to the coastal areas usually have clarity very close to pure water

[43] allowing larger communication ranges to be supported. Farr et al. [11] experiment

with photomultiplier tubes as receivers instead of photodiodes to create a range as long

as 100m in clear water. However, photomultipliers are costly, heavy and power consuming

and therefore, not suitable for use with underwater sensor nodes. For this reason, we do

not consider such devices in our thesis. However, these devices can be used in the sink

which is naturally assumed to be more expensive or in networks where a small number of

expensive nodes are deployed for long time observation. The design we present in the next

chapter does not assume any specific value for the range and is therefore applicable to any

configuration.

An example of an underwater sensor network that makes use of optical communication

to achieve higher bandwidth is the hybrid network designed and implemented by Vasilescu

et al. [49] where nodes have both acoustic and optical communication systems. The optical

communication is performed using commercially available light emitting diodes (LEDs) as

transmitters and photodiodes as receivers, both working in the green/blue region of the

visible light spectrum, with additional concentrator lenses and amplifiers to improve the

range. Acoustic communication is used by the nodes to talk to each other to perform lo

calization. An intelligent autonomous underwater vehicle (AUV) periodically visits each

node and downloads its sensed data using short-range and high-speed optical communica

tion. Although this strategy supports high-speed data retrieval, it introduces long delay of

data delivery because of the slow physical movement of the AUV which makes such system

unsuitable for real-time applications. Also, this strategy causes high energy consumption

resulting from the movement of the AUV.

The oceanographic contamination detection system proposed by Kedar et al. [22], on

the other hand, uses only directional optical media to communicate under water and a

static sink instead of a mobile AUV. The authors propose a distributed cluster of under

water sensor nodes that detect contamination levels of ocean water by means of optical

backscattering [22] from contaminant particles. Because of the short range of underwater

optical communication, they propose the deployment of a number of sensor nodes within

the communication range of the sink where all sensor nodes transmit directly to the sink.

13

To minimize the interference at the sink caused by simultaneous transmissions from a large

number of sensor nodes, the authors propose the use of Space Division Multiple Access

(SDMA) [22] technique. In order to extend the area of observation, the authors propose

the use of multiple such clusters at different locations with the sinks of different clusters

communicating with each other to provide inter-cluster connectivity. However, the authors

do not discuss the means of this long range communication among sinks.

The use of directional radio antennas instead of traditional omni-directional antennas

has been investigated in the literature of terrestrial ad hoc and sensor networks [5, 27,

8, 4, 16, 6, 7, 17]. These antennas behave in a similar way to the optical transceivers

considered in this thesis in that the transmitter forms a directional beam and the receiver

needs to be in the sector covered by the beam. One difference is that most of this research

work on directional radio antenna assume the presence of an omni-directional receiver that

can receive signals from any direction. In contrast, optical receivers are directional and

can receive only from a direction from which it is expecting a signal. Also, an assumption

behind all this research work on directional radio antenna is that nodes are already deployed

randomly in large and redundant numbers and the focus is thus on network operation

and communication protocols. With underwater nodes, deploying nodes randomly in large

numbers becomes expensive because of the high cost of underwater sensor nodes. Also,

because of the limited range of optical communication, maintaining connectivity among

nodes becomes an important design goal.

Wireless optical communication has been used in terrestrial sensor, ad hoc and mesh

networks [15, 31, 21, 33]. These networks are referred to as Free Space Optical (FSO) net

works and enjoy very long range of laser or infrared communication (up to several kilometers

[33]) which is impossible in an underwater environment since laser and infrared signals are

excessively absorbed by water [38]. Because of this long range, a node in a terrestrial FSO

network can potentially connect with any other node but should choose to communicate

only with an intelligently selected subset of nodes so that the resulting energy consumption

and probability of line of sight obscuration is minimized. Therefore, design goals with terres

trial FSO networks are significantly different from the design goals with underwater optical

sensor networks. Because of the limited communication range, node placement becomes the

14

most important factor in underwater optical networks in order to maintain connectivity.

2.2.1 Optical Model used in this Thesis

In this thesis, we consider underwater sensor nodes with optical transceivers built with light

and low-cost LEDs and photodiodes operating in green/blue visible spectrum. We use the

underwater optical communication model proposed by Giles et al. [13]. In this model,

the transmitter sends a light beam the width of which can be controlled by a concentrator

lens placed with the LED. A narrow beam means longer range but calls for finer tuning

with the receiver's line of sight. The receiver can receive the signal if it is within the

transmission beam of the sender and if the beam falls at an angle less than the Field of

View of the receiver. Assuming narrow beams, these links effectively work as point-to-

point links working between two nodes exclusively. By placing a transmitter and a receiver

hardware together and separate processing circuitry for both, these links can be made to

work as bidirectional full-duplex links between two nodes and by having multiple instances

of such configuration, nodes can have multiple bidirectional links [38]. However, in the

latter case it is important to keep enough distance among the circuitries for different links

to prevent interference. Also, the circuitry for each additional link incurs extra cost. Thus,

it is important to keep the number of links for each node as small as possible. In our design,

we do not allow a node to have more than three bidirectional links (except for the sink) and

keep the spacing between two adjacent links of a node at least 90 degrees.

Note that we can use either one optical transceiver with steering hardware to rotate the

device to cover different directions or multiple independent transceivers each dedicated to

the communication to/from a particular direction [49, 13, 38]. In order to avoid the energy

consumption due to steering and the need for line of sight tuning every time a switch occurs

and to support parallelism and shorter delays, we use the latter model in our thesis where

we have dedicated optical transceivers for each desired direction of communication. This

model incurs higher deployment cost and thus calls for a well designed deployment scheme

that minimizes the number of transceivers while maintaining desired properties. We focus

on this deployment design problem in our thesis.

We consider a single static sink in the network instead of a moving AUV since collecting

15

data using a moving AUV incurs higher delay of delivery because of the slow speed of the

AUV compared the speed of optical communication. Also, a continuously moving AUV

causes high energy consumption due to its movement.

As an example application of a high-speed and real-time optical underwater sensor

network with static sink, we consider the VENUS project at the University of Victoria [46]

deployed for seafloor observation from the shore. In this project, a sink (called a "node"

in the VENUS project) is placed on the seafloor and it is connected to the shore using a

fibre optic cable. Connected to this sink with wires are different "scientific instruments" or

sensor nodes that transfer sensed data, e.g., temperature, pressure, current, sound, image

and video, to the sink in real-time and the sink in turn transmits data gathered from

all the instruments to the shore using the fibre cable, also in real-time. The sink also

supplies power to the sensor nodes. Connecting the sensors to the sink with wires limits

the number of sensors that can be connected and introduces the overhead of wiring. In

contrast, a network of sensors that communicates wirelessly and at the same time provides

the bandwidth and propagation speed similar to a wired network would introduce ease

of deployment, extendibility and greater area of observation. One of the five goals of

the VENUS project is "High-speed and real-time connection to instruments" from the

shore. With an optical wireless network of sensors around the sink, this goal is achieved

with greater flexibility and extendibility. However, another goal of the VENUS project is

"Unlimited power availability" which is currently ensured by directly supplying power to

the sensors from the sink. With a wireless network of sensors around the sink, this becomes

impossible. Still, we can deploy a hybrid network with some sensor nodes connected with

wires to the sink to achieve unlimited power while some sensor nodes form a wireless optical

network around the sink or around the nodes that are connected to the sink with wires to

provide greater flexibility, extendibility and wider area of observation. Also, with the rapid

development of power-harvesting technologies, it could be possible in future to design sensor

nodes that harvest energy from the underwater environment by utilizing thermal vibration

or kinetic energy of water.

16

2.3 Sensor Network Deployment

In our thesis, we consider the problem of deploying an underwater sensor network to achieve

desired levels of connectivity and robustness while incurring minimum deployment cost.

The problem of deployment to achieve a desired degree of coverage and/or connectivity

has been investigated thoroughly in the literature of terrestrial radio-based sensor networks

[23, 51, 2, 52, 61]. However, these works differ fundamentally from our thesis since they

consider circular sensing region and circular communication region for sensor nodes to reflect

omni-directional sensing and communication range. For underwater optical nodes, we have

directional point to point links that can be modeled as straight lines with a limitation on the

length. In our thesis, we assume that sensing ranges are much longer than communication

ranges and therefore we only consider connectivity and ignore coverage in our work. Even

if the sensing ranges are shorter, we believe that placing more nodes to cover all points

in the target area is infeasible because of the high cost of sensor nodes. Instead, having a

sparse but even distribution of sensor nodes throughout the target area should be sufficient

for many applications.

Although not directly related to sensor networks, Kershner et al. [23] present analytical

results that give important guidelines on the deployment of sensors with circular sensing

region in a target field to cover the entire field with minimum overlap (and thus, minimum

number of sensors). They prove that an optimal deployment of circles (requiring minimum

number of circles) on a convex two-dimensional region is to place the circles (their centers)

on the vertexes of an equilateral triangular lattice of side r \ /3 where r is the radius of

each circle. Thus, if sensors have circular sensing region of radius Rs, we can place sensors

on such lattice of side RSV3 to achieve full coverage with minimum number of nodes.

If communication range Rc is greater than or equal to RSV3, then this deployment also

ensures connectivity. For cases with Rc < RSV%, Wang et al. [51] propose a strip-based

deployment scheme where nodes are placed on horizontal strips with the spacing between

the nodes and the spacing between the strips selected carefully and additional nodes placed

between adjacent strips to connect them. Bai et al. [2] analytically prove that the strip-

based scheme is asymptotically optimal (requires minimum number of nodes) for achieving

17

coverage and connectivity when Rc < Rs\/o.

Note that in addition to finding a deployment that minimizes the total cost, e.g., number

of nodes (and links for optical networks), it is also important to find a regular pattern that

makes the task of deployment easier. For example, Bai et al. [2] suggest that using a complex

pattern like the strip-based one can make the task of deployment difficult. Therefore,

they discuss some simple deployment patterns like square pattern, rhombus pattern and

hexagonal pattern and present the percentage of extra nodes introduced in the network

resulting from the use of these non-optimal but regular patterns.

Pompili et al. [35] discuss the issues regarding the deployment of sensor nodes for an

underwater acoustic sensor network. Since acoustic communication supports a very long

range, the primary issue to deal with such cases is the sensing coverage. Pompili et al.

[35] assume circular sensing region which makes the deployment task similar to that with

terrestrial sensor networks, i.e., the optimal way to deploy nodes in a two dimensional target

region to ensure full coverage is to place nodes in a equilateral triangular lattice with sides

r \ /3 where r is the sensing range. They formulate the trajectory of a sensor node as it

sinks from the sea surface, where it is deployed, to the sea bottom given its initial velocity,

velocity of the ocean current, buoyant and liquid forces and the dimension of the node.

Pompili et al. [35] also consider three-dimensional deployment and propose three schemes

that can be used to achieve such deployment. The first and the simplest scheme is called

3D random where nodes are deployed at random on the sea-floor and then each node se

lects a depth at random and elevates itself to that depth by adjusting the length of the

wire that connects it to the anchor. The second scheme in terms of simplicity is called

Bottom-Random where nodes are deployed at random on the sea-floor and then a base sta

tion calculates the height of each node to achieve a desired level of coverage and each node

elevates itself to that height. The third and the most complex scheme is called bottom-grid

where nodes are placed on a square grid on the sea-floor with the help of one or more

AUVs. Each sensor is assigned a height from the sea-floor in order to achieve a desired

level of coverage and each node elevates itself to that height. Simulation shows that the

bottom-grid scheme supports maximum level of coverage with minimum redundancy of all

the three schemes. Note that with long range omni-directional acoustic media, connectivity

18

is inherent and coverage becomes the principal goal for the deployment of acoustic underwa

ter sensors. With short range directional optical media, connectivity becomes the principal

issue for node deployment which is the focus of our thesis.

In contrast to carefully deploying sensor nodes to achieve desired coverage and/or con

nectivity with minimum number of nodes, extensive research has been conducted on the

problem of deploying terrestrial sensor nodes randomly in large and redundant numbers and

then selecting a subset of deployed nodes to achieve desired levels of coverage [60, 47, 42] or

connectivity [59, 56, 55, 54, 3] or both [52, 61, 14]. These schemes are called node scheduling

schemes and are designed to improve network lifetime by selecting and rotating a subset of

deployed nodes to perform the sensing and communication tasks at a particular moment.

With underwater sensor nodes, deploying nodes in redundant numbers is often not cost ef

fective because of the high cost of sensor nodes [1]. In addition, with optical point to point

links with limited range, placing the nodes carefully to ensure desired level of connectivity

becomes the most important design goal.

2.4 Chapter Summary

In this chapter, we have presented the architecture of underwater acoustic networks and

different protocols used at the MAC and network layer of such networks. We have seen that

reliability and resiliency remain the most important design goals in the network layer of

such networks due to the lossy nature of underwater acoustic media. We have demonstrated

that extremely low bandwidth and long propagation delay make acoustic communication

unsuitable for applications with stringent bandwidth and delay requirements. Then we

have discussed research work and experiments on underwater sensor networks that use

optical communication to achieve high bandwidth and fast propagation. We have also

discussed physical characteristics and communication model for underwater optical sys

tems with LEDs and photodiodes. Finally, we have discussed different network deployment

schemes for terrestrial radio and underwater acoustic sensor networks and demonstrated

how the deployment of underwater optical sensor nodes differs from the deployment of

terrestrial radio or underwater acoustic nodes.

19

Chapter 3

Robust Grid-based Deployment
Topologies

In this chapter, we design grid-based deployment topologies for underwater optical sensor

networks. We assume a grid-based deployment where sensor nodes are placed on grid corners

and then propose edge-selection patterns that allow us to select a subset of edges from the

entire grid graph to achieve the desired levels of connectivity and path quality. We propose

deployment patterns for cases where no node in the grid is allowed to have more than 1, 2

and 3 optical interfaces. We also evaluate the robustness and path quality of our proposed

deployment patterns by simulating them using isolated and patterned failure models.

3.1 Problem Definition

We consider deploying sensor nodes in a two-dimensional gird lattice as shown in Figure 3.1.

The grid consists of x columns and y rows, where x — 12 and y = 12 in the figure. All

the unit squares have a side of length r where r is the maximum communication range of

the optical communication system. In this thesis, we consider underwater optical commu

nication using LEDs and photodiodes operating at green/blue visible light as transmitters

and receivers, respectively. Additional concentrator lenses and amplifiers can be used with

LEDs and photodiodes, respectively, to improve the range of communication. Such a com

munication system can have a value of r ranging from 8 meters to 40 meters depending

on the specific communication devices used and the clarity of water [49, 13]. However, our

design is independent of the actual value of r and is thus applicable to any configuration.

Note that it is necessary to use narrow light beams with precise pointing if we want to

20

support long range of communication. If the physical characteristics of the sensor nodes

and the target underwater environment do not support this, we can use wider beams with

shorter range but higher degrees of reliability and tolerance [49, 13].

We assume that each grid point has one sensor node placed on it, as shown if Figure 3.1.

A gray line between two adjacent grid points in Figure 3.1 indicates a potential point-

to-point optical communication link. That is, we can select actual links from this set of

potential links to form a connected topology for the deployed nodes. The sink can be either

one of the grid nodes or it can be a separate node placed within the vicinity of the grid

area. Assuming that a node is placed on each grid point in order to maintain proper sensing

coverage, having the length of each potential link equal to the maximum range r ensures

that the separation between adjacent nodes is maximized and the total number of nodes

(grid points) is minimized. As can be seen from Figure 3.1, a node has 4 potential links

unless it is on the network boundary in which case it has 2 potential links if it is one of the

four network corners and 3 potential links otherwise.

X

•4 •

• node
_ potential link

r

Figure 3.1: Grid-based deployment problem

The problem considered in this thesis is to select a set of actual links from the available

pool of potential links as shown in Figure 3.1 so that a connected topology spanning all the

sensor nodes and the sink is generated and the topology has the following three properties:

1) Robustness: The topology should have redundant links so that all or the maximum

possible nodes are connected to the sink when one or more links are down. We primarily

21

focus on link failures in our design since these are the main sources of failures in optical

communication which relies on the line of sight property that can be obscured by underwater

obstacles like underwater organisms, floating objects and sediments. We consider two types

of robustness:

a) Deterministic Robustness: The topology should be 2-edge-connected [53], i.e.,

the topology should be connected even if we delete an arbitrary link from it. We do not

consider having 3 or more edge-connected topologies since the resulting topology would

have excessively large number of links selected for it if we want 3 or more edge-connectivity.

Besides, it is not possible to generate a 3 or more edge-connected topology from the potential

grid of Figure 3.1 since this potential grid itself is not 3-edge-connected (we can disconnect

any of the four corner nodes by deleting the only two links it has).

b) Probabilistic Robustness: The topology should be such that if we delete an arbitrary

number of arbitrary links from it, a maximum possible percentage of nodes in the grid are

still connected to the sink.

2) Path-quality: The topology should have minimum cost paths for each node to

and from the sink in terms of number of links/hops that need to be traversed. Since the

network is expected to operate most of the time without link failures, it is important to

have minimum-cost paths in the topology from the sink to all nodes and vice versa in order

to minimize the energy consumption resulting from communication. The alternate paths in

the topology that will be used for communication in an event of one or more link failures

should also be kept as short as possible in terms of number of links/hops.

3) Interface-count: Each link in the topology represents one communication inter

face/transceiver on the nodes at both ends of the link. Therefore, having more links in

the topology to achieve the above two properties will introduce more interfaces per node

and more total number of interfaces in the network and thus increase the total cost. Thus,

we have to tradeoff property 1 and 2 above with per node and total interface count in the

network. We can represent both the grid in Figure 3.1 and the selected topology as a graph

by denoting the nodes and the sink as vertices and the links as edges. Thus, our goal is

to select a subset of edges from all the potential edges of Figure 3.1 so that the robustness

and path-quality of the resulting topology reaches a desired level and, at the same time, no

22

node in the topology has a degree greater than a threshold and the total number of edges

selected in the process is minimized.

In this thesis, we consider cases where each node in the topology is constrained to have

no more than 1, 2 and 3 interfaces/degree since having more interfaces per node increases

node cost and having more than 3 interfaces on one node is expensive in terms of cost

and space. For each of the three cases, we develop patterns to select edges from the pool

of potential edges to achieve desired levels of robustness and path quality while at the

same time ensuring that a minimum total number of edges are added in this process. We

consider placing one node at each grid point and then selecting the direction(s) in which a

node can communicate so that when the network starts operating, good paths are available

for low-cost communication and alternate paths are available if one or more links are down.

The deployment task of placing nodes on grid points and setting their interface directions

underwater can be done manually or using autonomous underwater vehicles (AUVs) [49].

It is important to note that we consider deployment in this chapter, not operation. In

other words, we aim at finding a good initial setup of the network and the amount of

resources (interfaces) needed for that setup. Network operation schemes for selecting paths,

detecting faults and choosing alternate paths are considered in Chapter 4 where we perform

dynamic evaluation of our deployment topologies. Also note that we do not consider having

diagonal links in the grid since optical links have limited range and diagonal links are

longer than horizontal and vertical grid links as shown in Figure 3.1. Also, having diagonal

links would reduce the separation between adjacent links of a node which may introduce

interference between the communications of the two adjacent links. With horizontal and

vertical links as shown in Figure 3.1, a minimum separation of 90 degrees is maintained

between any two adjacent links of a node.

3.1.1 Optical Interface Model

An optical interface consists of a transmitter and a receiver. It is cost-effective and intuitive

to place both the transmitter and the receiver in one interface/board. In such case, a node

can use one interface for transmitting to and receiving from the same direction. Thus we

can model one interface as one undirected edge between two nodes. In other words, an

23

undirected edge in our model indicates that each of the two nodes involved in this edge

is using up one interface to send to and receive from the node at the other end of the

edge. We use this model for the cases with maximum 2 interfaces per node and maximum

3 interfaces per node constraints as shown in Figure 3.2(b) and Figure 3.2(c). We call this

the undirected model of interface.

For the maximum 1 interface per node case, this model would allow each node to have

at most one undirected edge, thus making it impossible to generate a connected topology

spanning all grid nodes. Therefore, for 1 interface per node case, we assume that each node

can separate its receiver and transmitter portions of the interface since there is more room

in the node now. Thus, each node can have at most one directed outgoing edge and one

directing incoming edge and the incoming and outgoing edges need not originate from and

point to, respectively, the same other node (see Figure 3.2(a)). We call this the directed

model of interface.

(a) (b) (c)

Figure 3.2: Optical interface model: (a) maximum one interface per node (b) maximum 2
interfaces per node (c) maximum 3 interfaces per node

3.2 Robust Deployment Schemes

In this section, we present schemes to select a set of edges from the available pool to

generate robust deployment topologies for cases with maximum 1, 2 and 3 interfaces per

node constraints. In particular, we come up with patterns that allow us to select the edges

to produce deployment topologies with desirable properties.

3.2.1 Maximum 1 Interface per Node

As described in Section 3.1.1, having maximum one interface for each node means that

each node can have at most one incoming and one outgoing directed edges. With such a

24

configuration, the only way to ensure that each node is reachable both to and from the

sink is to have cycles in the network. If we select a directed path from the sink to a node,

we have to select a node-disjoint directed path from that node back to the sink in order to

not violate the 1-interface constraint for the nodes. A Hamiltonian cycle starts from one

node, visits all nodes in the graph exactly once and returns to the staring node [53]. By

definition, all nodes are touched and because of the cycle property, each node has a directed

path to each other node in the cycle. Each node is visited exactly once; therefore a node

is entered once and left once which meets the one-interface constraint. Thus, if we assume

that the sink is one of the grid nodes, a directed Hamiltonian cycle on the grid gives a

topology with 1-interface constraint where all nodes are connected to and from the sink.

A Hamiltonian cycle can always be formed in a grid graph if either the number of rows or

columns or both are even [41]. Figure 3.3(a) shows this topology where the sink can be

any grid node. The actual position of the sink does not make a difference in terms of path

lengths in this topology since the topology is one big cycle covering all the grid nodes.

Although this topology satisfies the 1-interface constraint and provides the desired con

nectivity to and from the sink, it has poor robustness. Removal of just one edge in the cycle

leaves one part of the network disconnected from the sink and the other part disconnected

to the sink. Removal of edges closer to the sink leaves most of the network unreachable

to/from the sink. Also, the path quality in this topology in terms of number of hops is

poor on average because most nodes can actually be reached in a much shorter path from

the sink than the paths available in the topology. However, with just one outgoing and one

incoming edges per node, we can hardly do better than that.

A better design would be to divide the grid into four quadrants around the sink and

form one directed Hamiltonian cycle for each quadrant. This is shown in Figure 3.3(b).

In this topology, having the sink at the center of the grid minimizes the average length of

the paths to and from other nodes. Therefore, we consider placing the sink only at the

center with this topology. As shown in Figure 3.3(b), we have a sink node in this topology

that is not a grid node. This has been done to keep the four Hamiltonian cycles non-

overlapping so that they do not introduce nodes that violate the 1-degree constraint. Note

in Figure 3.3(b) that the sink now has a total of eight directed edges. We assume that the

25

sink can have more interfaces than the sensor nodes do, therefore this is not a violation

of the 1-degree constraint. Also note that four of the eight edges of the sink are longer

than the maximum range r. We assume that the sink uses powerful concentrator lenses

and amplifiers to increase its range. Alternatively, we can introduce four additional nodes

around the sink to reduce the length of communication.

The topology shown in Figure 3.3(b) has better path qualities than that in Figure 3.3(a).

Also, it has better robustness since the removal of an edge disconnects only the nodes in

the quadrant in which the edge is, nodes in all other quadrants are still connected to and

from the sink. Better yet, all the edges in a quadrant can go down without disconnecting

nodes in the other three quadrants. We just have to add some additional edges with the

sink for all these advantages. Note that although the topology of Figure 3.3(b) has better

robustness, it is still not 2-edge-connected, i.e., we cannot remove an arbitrary edge from

the topology without disconnecting it. We call this topology TOPI in the rest of the thesis.

(a) (b)

Figure 3.3: Topologies with 1-interface constraint: (a) One directed Hamiltonian Cycle (b)
4 directed Hamiltonian cycles (TOPI)

3.2.2 Maximum 2 Interfaces per Node

With maximum 2 interfaces for each node, we use the undirected interface model as de

scribed in Section 3.1.1. That is, we consider only undirected edges and allow each node to

have a maximum degree of 2. With more freedom in the choice of interfaces, we consider

improving the deterministic robustness of the topology. To this end, we build a 2-edge-

26

connected topology so that any one edge can be removed from the topology without discon

necting it. The only way to build a 2-edge-connected topology with 2-degree constraint per

node is to form a ring or cycle spanning all nodes [31]. Therefore, we can use the Hamilto-

nian cycle based topologies discussed in the previous section with directed edges replaced

by undirected edges. Since four Hamiltonian cycles with a sink at the center of the grid (see

Figure 3.3(b)) provides significant advantage in terms of path length and robustness, we

consider only the topology with four undirected Hamiltonian cycles as shown in Figure 3.4.

This topology is 2-edge-connected since we can remove an arbitrary edge from it without

disconnecting the topology since we have two completely disjoint undirected paths from

sink to each node in each cycle. Improving the probabilistic robustness of this topology

requires adding some redundant edges to it. However, we cannot do this without violating

the 2-degree constraint since each grid node already has a degree of 2. The path quality

of this topology is still poor because most nodes are reached from the sink through a path

that is considerably longer than the shortest path in the grid. We call this topology TOP2

in the rest of the thesis.

Figure 3.4: TOP2: 4 undirected Hamiltonian cycles

3.2.3 Maximum 3 Interfaces per Node

With the number of interfaces/degree each node can have increased to 3, we have enough

freedom in our design to consider connected topologies that meet all the criteria described

in Section 3.1, e.g., deterministic robustness (2-edge-connectivity), probabilistic robustness

27

(most of the nodes remain connected on the face of multiple edge removals) and short paths

to and from the sink. Since the resulting topology must have shortest possible paths in

the grid from the sink to each node in order to provide lowest-cost communication in a

failure-free environment, our approach is to first build a 3-degree-constrained shortest path

tree from the sink spanning all nodes and then add additional edges to this tree to first

make it 2-edge-connected and then to further increase the redundancy of available paths to

improve probabilistic redundancy. Since our final topology with 3-degree constraint will be

2-edge-connected, each node in the network will have at least a degree of 2. Therefore, our

target is to minimize the number of 3-degree nodes as we move through each step. In the

discussion below, we assume that the sink is one of the grid nodes.

Let us first form a shortest path tree from the sink to all nodes. Our goal is to select a

set of edges from the grid to form a shortest path tree from the sink to all other nodes so

that no node in the tree has a degree greater than 3 and the number of 3-degree nodes in

the tree is minimized. We call such a tree an optimal pattern for the grid.

Definition 1. (Optimal Pattern) Given a grid graph and one of the grid nodes designated

as the sink, an optimal pattern is defined as a 3-degree-constrained shortest path tree with

minimum number of 3-degree nodes rooted at the sink and spanning all nodes in the grid.

Note that algorithms for generating a degree-constrained topology from a graph in

general have been discussed in the graph theory literature [26, 24]. In our work, we find a

deployment pattern that is 3-degree constrained, minimizes the number of 3-degree nodes

and also produces shortest paths in a grid network of arbitrary size.

While forming the optimal pattern, we use the notion of Manhattan Distance [25] to

find a shortest path from sink to a sensor node in the grid. Manhattan Distance between

two points (xi,yi) and (2:2,2/2) *s defined as \x\ — 2:21 + \yi — 2/21 and is the length of the

shortest path in terms of hops between the two points in a grid where a path can only have

horizontal and vertical edges. Also, in a grid with only horizontal and vertical edges, any

path from one node to another formed by never going back in a direction already used is

a shortest path in terms of hops between the two nodes. Here, going back in a direction

means going left in a path that already went right once and vice versa or going up in a

28

path that already went down once and vice versa. This is shown in Figure 3.5 where both

paths from S to D are shortest paths in the grid with a length of 13 hops since both paths

are formed without ever going back in a direction. We call this the Manhattan Distance

Property. This property implies that any shortest path between two nodes in a grid must

be on or inside the rectangle formed by drawing vertical and horizontal lines through the

two points, as shown in Figure 3.5.

Figure 3.5: Manhattan Distance Property

For our grid, we call the horizontal and vertical lines through the sink the axes. The four

quadrants created by the axes are called Qi, Q2, Qz and Q4 starting from the upper left

quadrant and traversing the quadrants clockwise around the sink (see Figure 3.6). According

to the Manhattan Distance property, the only shortest path from the sink to a node on one

of the axes is the path through the corresponding axis. Therefore, any shortest path tree

spanning all nodes must include all the edges on the axes. As can be seen in Figure 3.6, The

structures of the four quadrants are essentially the same. The upper-left (Qi) quadrant can

be described as a grid with a sink at the bottom-right corner and a horizontal and vertical

axes through the sink on which all the edges are already selected for the target shortest

path tree. Same description can be used for Q2, Q3 and Q4 if we rotate them by angles of

^, -K and 4^, respectively, around the sink counterclockwise. Having four quadrants of the

same structure, we now find the lower bound for the number of 3-degree nodes in a 3-degree

constrained shortest path spanning tree from the sink for one such quadrant.

Theorem 1: Consider a quadrant with sides of size m and n where m < n. A sink

is placed in a corner. A 3-degree constrained shortest-path tree rooted at the sink and

spanning all nodes inside and on the boundaries of the quadrant requires at least (m — 2)

29

p i !

;lt jtt aw #t ft at *< • f t at at at

M

p2i

m

• sink
X node on an axis
— potential edge

— edge already selected

Figure 3.6: Four quadrants around the sink: edges on the axes cannot be avoided in a
shortest path spanning tree from the sink

3-degree nodes.

Proof: Two axes extend from the sink. Consider the interior nodes of a diagonal from

the top (furthest from sink) of the longest axis (the one with size n) to the edge of the

quadrant. For example, this diagonal is shown as hollow circles in Figure 3.7(a) where

m — 7 and n = 8. There are (m — 2) nodes on the interior of this diagonal (that is, there

are m nodes on the diagonal and we exclude the axis node and edge node). We will show

that these (m — 2) nodes, call this set of nodes D, require unique 3-degree nodes in their

path to the sink.

Suppose we find a shortest path from one node a in D to the sink. According to the

Manhattan Distance property, any shortest path between the sink and one of the (m — 2)

nodes must be within or on the rectangle created by extending straight lines from the node

to the axes. For example, in Figure 3.7(b) the rectangle for a is shaded. Furthermore, the

axis nodes that are at the ends of this rectangle must be interior nodes since the nodes of

D are interior nodes.

To find a shortest path to the sink for this arbitrary interior diagonal node a, two cases

can occur. In the first case, the selected path joins a path already created for another node

in D. At the first node that it encounters this existing path, it will cause another edge

to be added to this node. Note that no other nodes in D are within or on the rectangle

of a. Therefore any paths already set up for other nodes of D will create 2-degree or 3-

30

degree nodes within the rectangle (no single degree nodes). Adding an edge to a 2-degree

node creates a 3-degree node; adding an edge to a 3-degree node will violate the 3-degree

constraint and is not allowed. The other case is that the path reaches an axis without

encountering another path created by other nodes in D. All the edges on the axes have

already been selected since these edges cannot be avoided to provide shortest paths to the

nodes on the axes. Since the rectangle of a hits an interior axis point/node, this node must

be a 2-degree node. Therefore, this also creates a 3-degree node. Both of these cases require

the creation of a 3-degree node. Since this is true for an arbitrary node in D, it is true of

all (m — 2) nodes in D resulting in at least (m — 2) 3-degree nodes. •

• sink —• potential edge Hypothetical
X node on an axis — edge already selected path

>t ft M ft ft ft

h=8

ft-#
m=7

(a) (b)

Figure 3.7: A quadrant with horizontal axis of length m — 7 and vertical axis of length
n = 8

We now propose an edge selection pattern for a quadrant that results in a 3-degree

constrained shortest path spanning tree from the sink with the minimum number of 3-

degree nodes. We assume that all the edges on the axes are already selected. If the number

of columns x (length of the horizontal axis) is less than the number of rows y (length of

the vertical axis), then for each node on the horizontal axis we select all the edges that

are on the straight line perpendicular to the horizontal axis at that point. All the nodes

on the horizontal axis except the sink and the node at the other end of the axis have

a degree of 3. Thus, the total number of 3-degree nodes is (x — 2). This is shown in

Figure 3.8(a). If y < x, we follow the same pattern except that now we select all the edges

31

perpendicular to the vertical axis and the number of 3-degree nodes is (y — 2). This is

shown in Figure 3.8(b). If x = y, we can follow either of the above two patterns. Note in

Figure 3.8(a) and Figure 3.8(b) that the path selected to each grid node is a shortest path

from the sink according to the Manhattan distance property since these paths are formed

by never going back in a direction already traversed. Also, no node has a degree greater

than 3, thus the pattern indeed produces a 3-degree constrained shortest path spanning

tree for the quadrant. In addition, according to Theorem 1, it has the fewest number of

3-degree nodes. Therefore, our pattern is an optimal pattern.

* * * h

• sink
X 3-degree

node

i r

(a) (b)

Figure 3.8: Optimal pattern for a quadrant: (a) x < y: total 3-degree nodes = (x — 2) (b)
y < x: total 3-degree nodes = (y — 2)

This gives us an optimal pattern for a single quadrant. If the sink is in the middle of

the grid and the quadrants are all of the same size, then we can apply this to each quadrant

as in Figure 3.9(a). According to the Manhattan Distance property, shortest paths to all

nodes within or on the boundaries of a quadrant must remain on or within that quadrant,

even when we consider the entire grid. Thus, an optimal pattern computed locally for a

quadrant remains an optimal pattern for that quadrant when the entire grid is considered,

provided that the 3-degree constraint is not violated. If the number of 3-degree nodes in

the local optimal patterns for the four quadrants are k, I < i < 4, then their sum Ylk,

1 < i < 4, represents the lower bound for the number of 3-degree nodes in the globally

optimal pattern for the entire grid. We call this lower bound LB. The case in Figure 3.9(a)

gives exactly this minimum. However, if the sink is not central causing the quadrants to

32

have different sizes, then the smallest axes may be shared by two different quadrants. Using

this design would violate the 3-degree constraint. This is demonstrated in Figure 3.9(b)

where both Q\ and Q2 draw edges from their common axis to form optimal patterns. In

such cases, we have to find alternative patterns for at least one of the quadrants.

01

P4

P2

•
Q3

1

(a) (b)

Figure 3.9: (a) Optimal patterns for individual quadrants lead to optimal pattern for the
entire grid (b) Optimal patterns for individual quadrants violate the 3-degree constraint

To avoid violating the 3-degree constraint, we must ensure that each quadrant draws its

edges from a different (unique) axis. For example, if each quadrant draws its edges from

its clockwise right axis around the sink, there is no chance of conflict between two adjacent

quadrants. Note that alternatively choosing the counterclockwise direction would result in

the same property. The price to pay to achieve this conflict-free pattern for a quadrant

is that the number of 3-degree nodes in the quadrant is "minimum" when the chosen axis

is smaller than or equal to the other but "minimum+1" when the chosen axis is larger.

The following corollary describes this pattern for the clockwise case (note that this is easily

proved for the counterclockwise case as well).

Corollary: Consider a quadrant Qi with a clockwise right axis of size y and a left axis

of size x. Consider the pattern for Qi shown in Figure 3.10 that draws edges only from the

clockwise right axis (y). Figure 3.10 shows the pattern for different relationships between x

and y. Let the number of 3-degree nodes in an optimal pattern for Qi be k. The value of l\

can be found using Theorem 1. The number of 3-degree nodes for the pattern in Figure 3.10

1
1

02)
I i

—

Q4

—

—- —

i ! i !
W I \

—

05

—

,„,,:„

33

applied on Qi is k if y < x but (k + 1) if y > x.

Proof: For any x and y, the pattern is a shortest path tree (according to Manhattan

Distance property) and does not have a node with degree greater than 3. For y < x, the

number of 3-degree nodes is (y — 2), as can be seen in Figure 3.10(a) and Figure 3.10(b).

According to Theorem 1, this is the number of 3-degree nodes l\ in an optimal pattern for

a quadrant Q, with y < x. For y > x, the number of 3-degree nodes is (x — 1), as can be

seen in Figure 3.10(c) and Figure 3.10(d). According to Theorem 1, the number of 3-degree

nodes in an optimal pattern for a quadrant Qi with y > x is Zj = (x — 2). Thus, the proposed

pattern has k + 1 number of 3-degree nodes in Qi when y > x. •

• sink
X, 3-degree

node

i
< >•

x
(a)y<x (b)y = x (c)y>x (d) y»x
(y=4,x=6) (y=6,x=6) (y=7, x=6) (y=9, x=6)

Figure 3.10: Pattern using only the vertical axis (clockwise right axis) to place 3-degree
nodes

Now consider a grid with an arbitrary dimension and the sink placed at an arbitrary

grid point. If we apply the pattern described in the corollary to individual quadrants of the

grid, the overall grid is guaranteed to have nodes of at most degree 3 since each quadrant

avoids conflict by placing its 3-degree nodes on its clockwise right axis. Thus, the resulting

overall pattern, as shown in Figure 3.11(a), produces a 3-degree constrained shortest path

tree from the sink to all grid nodes. We call the pattern in Figure 3.11(a) TOP3 in the rest

of the thesis.

For a given sink placement, a pattern can be designed with at most (LB+2) 3-degree

nodes where LB =]T^ij 1 < i < 4. This can be seen by the following. In general, a

34

TTT
-i | jk

-it.

-it

i
1

• T j *

< t

I i i : :
1 1 1 l—o

pattern created by a clockwise choice of axis will have at most 3 quadrants forced to draw

edges from their larger axes, creating (LB+3) 3-degree nodes. However, if this occurs, we

could instead choose axes using the counter clockwise direction. In this case, the three

quadrants will draw edges from their smaller axes but the fourth quadrant will draw edges

from its larger axis. Thus, the number of 3-degree nodes will be (LB+1). There are also

sink placements that create (LB+2) 3-degree nodes as shown in Figure 3.11(a). Therefore,

for any sink placement, we can generate a pattern for the entire grid with at most (LB+2)

3-degree nodes using the corollary or its counterclockwise version.

TOP3 (see Figure 3.11(a)) ensures the best paths from sink to each grid node (and vice

versa) with (LB+2) 3-degree nodes in the worst case. In addition to requiring only a small

number of 3-degree nodes compared to all grid nodes, TOP3 offers nice regularity by placing

all the expensive nodes (3-degree nodes) on the grid axes. Such regularity is desirable in node

deployment since it often introduces convenience in the task of deployment [2]. However,

TOP3 is a tree and hence has a very low level of robustness since there is exactly one path

from sink to each node and vice versa. We now add additional edges to TOP3 to first

make it 2-edge-connected to have the desired deterministic robustness and then to improve

its probabilistic robustness. Our first step would be to connect the leaves together since

that gives us the highest improvement in robustness. We note in Figure 3.11(a) that all

the leaves of a quadrant are on the boundary of the quadrant and they are adjacent to

each other on the boundary. Thus, we can connect all the leaves of a quadrant as shown

in Figure 3.11(b). Since all the leaves are on the network boundary, adding such edges

will not violate the 3-degree constraint. We apply this strategy in each quadrant which

leads us to our next topology called TOP4 as shown in Figure 3.11(b). Note that TOP4

has considerably greater robustness than TOP3 since we can now remove any edge from

the network, except the 4 edges of the sink, without disconnecting any node from the sink.

Thus, TOP4 has high robustness but it is not 2-edge-connected.

35

• sink
X 3-degree node

J _

a it it * * »

P*

P3

y jjt i t w<

! K?3

(a)

—f i i

I ! I

i

it m *• * it 4 • *P * 4

P4

P21

P3

(b)

Figure 3.11: (a) TOP3: pattern from the corollary applied on 4 quadrants (b) TOP4:
Leaves are connected

• sink

X 3-degree node

* * » 4* * H' m 4 * * • T

*» * *

P4

PI

P3

BE A-A

(a)

i •"

t-^»

• t •

'' I

?I

?4
....

i

I

! J

?

—*

J

-,.;

I — i

.

•

?2 ..

•

~i «-»

Q3

i-^»

(b)

Figure 3.12: (a) TOP5: QikQ4 and Q2&Q3 are connected (b) TOP6: Q1&Q2 and Q3&Q4
are connected

36

We next add two more edges to TOP4 to make it 2-edge-connected and call it T0P5 .

We connect Q\ and Q4 with one boundary edge and Q2 and Q3 with another, as shown in

Figure 3.12(a). TOP5 introduces 4 more 3-degree nodes on TOP4. The edge between Q\

and Q4 allows nodes in Q\ to be reached through Q4 and vice versa. Same is true for Qi

and Q3. Also note that T0P5 is 2-edge-connected since we can remove an arbitrary edge

from it, even one of the four the sink edges, without disconnecting any node from the sink.

Our last topology TOP6 arises from the observation that all possible paths in TOP5

from the nodes in Q\ and Q4 to the sink are confined within Q\ and Q4. Similar for Q2

and Q3. If we add two more edges to TOP5, one to connect Q\ and Q2 and the other

to connect Q3 and Q4, the number of possible paths from each node to the sink increases

greatly. This new topology is called TOP6 and is shown in Figure 3.12(b). Now the path

from a node in a quadrant can go through any of the other quadrants. This improvement

in robustness introduces just two more edges and four more 3-degree nodes in the network.

Note that TOP4, TOP5 and TOP6 all retain the regularity exhibited by TOP3 in the sense

that all the expensive nodes (3-degree nodes) are placed on the grid axes and the network

boundaries, not on arbitrary grid points.

We have thus designed a pattern for a deployment topology that is 2-edge-connected,

has a significant number of alternate paths from each node to the sink and has shortest

paths from sink to each node. While building this topology, we have introduced the least

number of 3-degree nodes in the network at each step while all the nodes have at least a

degree of 2 to ensure 2-edge-connectivity. We do not consider adding more edges to TOP6

since we believe that it is not possible to improve the robustness significantly by adding

few more edges to TOP6. In the next section we show that T0P6 shows a high degree of

robustness to isolated and patterned link failure models.

3.3 Static Evaluation of Proposed Deployment Topologies

In the previous section, we have designed six topologies for grid-based deployment for

different constraints on the number of interfaces a node can have. These topologies are

called TOPI, TOP2, TOP3, TOP4, TOP5 and TOP6 and have been shown in Figure 3.3(b),

37

Figure 3.4, Figure 3.11(a), Figure 3.11(b), Figure 3.12(a) and Figure 3.12(b), respectively.

These topologies have been summarized in Table 3.1. Various properties of these topologies

and the entire potential grid graph when applied on a 12x12 grid with the sink placed at the

center have been shown in Table 3.2. As can be seen from Table 3.2, T0P6 has a total of

165 edges/links whereas the potential grid has a total of 264 edges/links. This demonstrates

the enormous savings in deployment cost that our proposed deployment topologies offer.

As we shall see in this section, T0P6 offers a very high degree of robustness to isolated

and patterned link failures inside the grid even though it has only a fraction of the links

compared to the entire grid graph.

Topology
TOPI
TOP2
TOP3

TOP4

TOP5

TOP6

Description
4 directed Hamiltonian cycles

4 undirected Hamiltonian cycles
Shortest path tree from sink with 3-degree

constraint and with (LB+2) 3-degree
nodes in the worst case

TOP3 with leaves in each quadrant
connected together by a path

TOP4 with quadrant 1&4 and quadrant
2&3 connected with two additional edges
TOP5 with quadrant 1&2 and quadrant
3&4 connected with two additional edges

2-edge-connected?
No
Yes
No

No

Yes

Yes

Table 3.1: Summary of proposed deployment topologies

Topology

TOPI
TOP2
TOP3
TOP4
TOP5
TOP6

Grid Graph

1-d
nodes

144
0
22
0
0
0
0

2-d
nodes

0
144
103
111
107
103
4

3-d
nodes

0
0
18
32
36
40
40

4-d
nodes

0
0
0
0
0
0
99

Total
edges

148 (dir)
148
143
161
163
165
264

Avg. node
degree

1.00
2.00
1.97
2.22
2.25
2.28
3.66

Table 3.2: Properties of different topologies when applied on a 12x12 grid with the sink at
center

In our design in the previous section, we have made the topologies 2-edge-connected

whenever we have enough interfaces to do so in order to achieve deterministic robustness.

In this section, we evaluate the probabilistic robustness of these topologies by simulating

38

them with probabilistic failure models. We call our evaluation in this section "static"

since we do not consider the dynamic aspects of the network such as variation of failure

probabilities with time, movement of link-blocking obstacles with time, dynamic selection

of routing paths to avoid obstacles and network operations like routing, fault-detection etc.

that changes with time. Dynamic evaluation of our topologies have been performed in

Chapter 4. In our simulation in this section, we use a 12x12 grid with unit distance r —

20m.

Our metric for robustness is defined as the percentage of nodes that are reachable from

the sink when one or more links are failed according to the failure model under consideration.

To see the quality of the available paths in case of failures, we also calculate the average

length of the best (shortest) available path from the sink to each reachable node in the

grid. Note that we do not include the nodes that are not reachable from the sink in this

calculation.

3.3.1 Fa i lu re M o d e l s

We primarily focus on link failures in our evaluation since these are the main sources

of failures in optical communication which relies on the line of sight property. We use

failure models that are similar to the models used by Ganesan el al. [12] with some small

modifications. For isolated failure, we fail each link in the topology with probability pi and

calculate our metrics for robustness and path quality. We simulate 1000 such runs and take

their average in order to have acceptable 95% confidence intervals. Confidence intervals

have been shown in each plot presented in Section 3.3.2. This failure model represents

uncorrelated link failures in different parts of the network due to multiple small floating

objects in different parts of the network, temporary displacement of a node that cause the

loss of line of sight etc. We assume that nodes are anchored with the sea floor to keep them

in place.

For a patterned or correlated failure model, Ganesan et al. [12] fail all nodes within a

randomly placed circular area. We use ellipses with small semi-minor axis b and large semi-

major axis a, as shown in Figure 3.13, to model underwater floating objects and organisms.

We call such an obstructing ellipse an error blob in the remainder of the thesis. In each

39

run, we select k random locations inside the grid as the centers of k error blobs and we

select a random orientation for each error blob. Here, A; is a Poisson random variable with

mean A. We fail all links/edges that are completely or partially inside these error blobs and

calculate our metrics for robustness and path quality. We simulate 1000 such runs and take

their average to achieve acceptable 95% confidence intervals.

orientation

Figure 3.13: An "error blob": an ellipse representing an underwater obstacle

3.3.2 R e s u l t s

We present the results with the sink placed at the center of the grid. For TOPI and

TOP2 both of which use four Hamiltonian cycles, the sink is a separate node placed at the

geographic center of the grid area. For shortest-path based topologies (TOP3 to TOP6),

the sink is the grid node that is closest to the geographic center of the grid.

Figure 3.14 presents the robustness of the six topologies to isolated failure. As expected,

the directed Hamiltonian cycle based TOPI that uses 1 interface per node exhibits the worst

robustness. TOPI uses four directed cycles to connect all the nodes to and from the sink.

The removal of a single link on such a cycle causes one half of the cycle to be disconnected

from the sink and the other half to be disconnected to the sink. This is why robustness

of TOPI rapidly goes down as soon as the failure rate pi is increased above 0. As can

be seen in Figure 3.14, the undirected Hamiltonian cycle based TOP2 and the shortest

path tree based TOP3 exhibit close robustness. Since TOP2 uses undirected cycles, we

can remove one arbitrary link from each of the four Hamiltonian cycles in TOP2 without

disconnecting any node from the sink. Even if we remove multiple links from a cycle, the

number of nodes that are disconnected from the sink is small as long as the removed links

are geographically close. As a result, for smaller values of pi, the robustness of TOP2 is

40

fairly good and better than that of TOP3 which is a tree. As the failure rate increases

beyond 5%, robustness of TOP2 falls below that of TOP3. This is because at higher p,, the

probability of simultaneous failures of two links that are far apart in the cycle increases.

Such a failure effectively disconnects all the nodes between these two links in the cycle from

the sink. The robustness of TOP3, which is a tree, falls less steeply than that of TOP2

at higher values of pi. This is because removing multiple links from the tree disconnects

only the descendants of each edge in the tree rather than disconnecting a large portion of

the cycle as in TOP2. Once the leaves are connected together to generate TOP4, we see a

significant improvement in the robustness. The robustness of TOP4 falls steadily with the

increase of failure rate pi and 80% of the nodes are connected to the sink even with a high

failure rate of 8%. TOP5 and TOP6 show similar characteristics with small but consistent

improvement in robustness at high failure rates. Note that TOP5 and TOP6 use just 2

and 4 extra links, respectively, on TOP4. Therefore, this improvement in robustness comes

without a significant price.

Isolated Failure Model (Robustness vs pi)

T 1 1 r

0 0.02 0.04 0.06 0.08 0.1

pi (link failure probability)

Figure 3.14: Robustness to isolated failure

Figure 3.15 shows the average path length of the connected nodes from the sink under

isolated failure as a function of failure rate pi. As expected, TOPI and TOP2 have the

longest path lengths. Initially, path length for TOPI is twice the path length for TOP2 since

TOPI uses only directed edges. The path length of TOPI decreases sharply with higher

41

Isolated Failure Model (Average Path Length vs pi)

4 I I I I I I
0 0.02 0.04 0.06 0.08 0.1

pi (link failure probability)

Figure 3.15: Average path length: isolated failure

failure rates. This is not because the paths are becoming better but because more nodes are

becoming disconnected and we do not include disconnected nodes in our metric. For TOP2,

average path length increases initially since a high level of robustness is maintained and

longer paths are used to keep the nodes connected. As the failure rate goes up, the average

path length for TOP2 begins to fall gradually since more nodes are becoming disconnected.

TOP3 to TOP6 are all built upon a shortest path spanning tree. Thus, they all have optimal

average path length at no-failure condition. The path length metric decreases very slowly

for TOP3 (tree) with higher failure rates since more nodes are becoming disconnected. For

TOP4, TOP5 and TOP6, path length metric slowly increases with higher failure rate. This

is because in the presence of link failures, these topologies use alternate sub-optimal paths

to the sink. This reflects the fact that under higher failure rates, traffic will get through,

though on longer paths.

Figure 3.16 shows robustness of the proposed topologies to pat terned failure with an

elliptical failure model. The semi-minor axis b has been kept fixed at 4m and the semi-major

axis a has been varied along the x-axis. We choose the values of a that results in a total

area of the ellipses that we would get if we concentrate the isolated link failure probabilities

into a smaller area so that each link in that area has a failure probability of 1. We choose

42

the range of a to be from 7m to 90m which reflects isolated failure p, from 0.005 to 0.06 in

Figure 3.14. The value of A has been kept fixed at 3. As can be seen if Figure 3.16, the

relative performance of the six topologies is the same as that with isolated failure shown in

Figure 3.14. However, the difference between the performances of the various topologies is

significantly smaller in Figure 3.16. Also, the robustness of TOPI falls gradually and the

robustness of TOP2 remains higher than that of TOP3 (tree) all the time. This is because

with patterned failure, links removed from Hamiltonian cycle based TOPI and TOP2 are

close together which causes a smaller part of the cycle(s) to be disconnected from the sink.

The robustness of TOP4, TOP5 and TOP6 are consistently higher than that of TOP2 but

the difference is not significant. This is an indication that if link failures are geographically

close (patterned), TOP2 with undirected Hamiltonian cycles is a very good candidate for

deployment.

The average path lengths under patterned failure model are shown in Figure 3.17. As

in isolated model, TOPI and TOP2 exhibit the worst path lengths, with TOPI showing

almost twice the path length of TOP2. However, unlike the isolated model, the path length

of TOPI decreases gradually with larger sizes of the ellipses. This is due to the fact that in

patterned model the number of nodes disconnected from the sink increases very slowly with

higher ellipse sizes for TOPI (see Figure 3.16). Similar behavior is observed for TOP3 (tree)

with the exception that the average path length starts with the optimal. For TOP2, TOP4,

TOP5 and TOP6, the average path length increases slightly to allow alternate sub-optimal

paths for nodes. However, this increase is negligible compared to that in isolated failure

(see Figure 3.15) because link failures concentrated in specific geographic regions destroy

best paths of fewer nodes.

43

Ellipse Failure Model (Robustness vs error blob size)

- * * * *£ * * - * --«-*-.-,;f«:f:*i:fc

TOP1 I — h -
TOP2 t ~ * . -
TOP3 !•--*--
TOP4 i • Q -
TOP5 i — • - •
TOP6 >—O-

40 60 80

Axis 'a' of each ellipse (m)

3.16: Robustness to patterned failure with an elliptical failure model, b = 4m and

a 10

Ellipse Failure Model (Average Path Length vs error blob size)

1 1 1
TOP1 i—i—i
TOP2 ! - - * " !
TOP3 !•--*---:
TOP4 i•••«••••!
TOP5 t—B—i
TOP6 i — e ~ i

_-X X X X — x — X — X — X - -X X — X — X — x — X — X

--^^----*.-»..*---«.-.M...„...*..^..»..5K...s|(... ! | t... ! | f._s(<

40 60

Axis 'a' of each ellipse (m)

ure 3.17: Average path length under elliptical failure model, b = 4m and A = 3

44

We have also experimented with other sink placements in the grid. For example, with

the sink at the corner, there is just one quadrant in the entire grid. Thus, the number of

alternate paths for a node is decreased which causes lower robustness. The average path

lengths increase since the sink is far from many nodes. Other than this, different topologies

exhibit similar relative behavior. Therefore, we do not present our results with the sink

placed at a grid corner. We have also experimented with node failures instead of link failures

with isolated and patterned models. Robustness and path length with node failures exhibit

similar behavior as with link failures except that the robustness of each topology is slightly

lower with node failures than with link failures, especially at higher values of failure rates.

3.4 Chapter Summary

In this chapter, we have designed robust two dimensional grid-based deployment patterns

for underwater optical sensor networks. We have formulated deployment topologies for cases

where nodes are constrained to have no more than 1, 2 and 3 optical interfaces. For 2 and

3 interfaces per node constraints, we have proposed topologies that are 2-edge-connected to

introduce deterministic robustness. For 3 interfaces per node constraint, we have designed

robust topologies where each node can be reached using a shortest path from the sink.

While designing these topologies, we have introduced least number of links in the grid in

order to minimize the cost of deployment. To examine the probabilistic robustness, we

have simulated our topologies using isolated and patterned failure models. Results show

that our best topology TOP6 maintains a very high degree of robustness although it has

only a fraction of the links present in the potential grid graph. Directed Hamiltonian cycle

based TOPI shows worst performance in terms of robustness and path quality. Because of

its poor performance, we do not include TOPI in our dynamic evaluation presented in the

next chapter.

45

Chapter 4

Dynamic Evaluation of
Deployment Topologies

In this chapter, we evaluate the dynamic behavior of our proposed deployment topologies

by simulating three simple routing protocols on these topologies. Because of the presence

of dedicated point to point optical links, nodes do not contend for channel access and this

eliminates the need for a sophisticated Medium Access Control (MAC) layer. Therefore,

our focus is on the network layer which is responsible for routing packets towards the sink.

Since optical links depend on the line of sight property, they can occasionally fail due

to the presence of obstacles in the underwater environment such as underwater organisms,

floating objects, sediments etc. Therefore, the routing schemes need to be resilient in the

sense that they should be able to route packets around occasional underwater obstacles

that obscure optical links and deliver packets by dynamically adjusting the routes to the

sink. While doing so, the routing schemes should avoid introducing unreasonable delay and

communication in the network that may degrade the quality of service and increase energy

consumption. Note that the degree of resiliency that a given routing scheme can provide

depends on the degree of redundancy that the underlying deployment topology possesses

since higher degree of redundancy increases the probability that the routing scheme finds an

alternate path to the sink when the original path is obscured by an obstacle. We use three

simple routing schemes that handle the problem of resiliency in three different manners and

consider the performance of these routing protocols on our topologies in terms of resiliency

to link failures, average delay of delivery of packets to the sink and overall communication

overhead.

46

4.1 Routing Protocols

We simulate three simple routing protocols on our topologies: a flooding protocol (FLD),

a multi-path protocol (DPP) and an adaptive single path protocol (HHA). Our main goal

is to evaluate and compare the proposed deployment topologies rather than formulating an

optimal routing protocol. Therefore, while designing these protocols, we try to keep them

simple and make them attack the routing and robustness/reliability problems from three

different angles in order to produce a comprehensive evaluation of our topologies.

4.1.1 Flooding (FLD)

We use traditional memory-constrained flooding [45] as our first routing scheme. Here, a

source node forwards its packet to all neighboring nodes. Each node receiving this packet

forwards it to all its neighbors except the one from which the packet arrived. No acknowl

edgments are used: a best-effort delivery is assumed. Each node also remembers in its

FLOODING-TABLE which packets it has seen so far. A packet is identified by the source

and sequence number of the packet. If a node receives a packet that it has seen before,

it simply discards the packet. On the other hand, if it receives a packet it has never seen

before, it forwards the packet accordingly and inserts the packet's source and sequence

number into the FLOODING-TABLE to avoid forwarding it again in the future.

Although flooding causes excessive transmission and is therefore an impractical scheme

to use in a sensor network, we use flooding in our evaluation since it utilizes all possible

paths from the source to the sink and thus shows us the degree of redundancy present in a

topology and the maximum degree of robustness that we can expect from it. Also, flooding

delivers a packet on the shortest available path at a particular moment and thus incurs the

minimum delay of delivery. Thus, flooding gives us important insight about the topologies

and their redundancies.

In FLD, each node needs two kinds of storage: storage for FLOODING-TABLE and

storage for keeping packets temporarily if the target outgoing links are busy transmitting

previously received packets. The FLOODING-TABLE can be very large and its size depends

on the number of source nodes present in the network and the number of packets generated

by each source. The length of the FLOODING-TABLE can be kept shorter by applying

47

intelligent maintenance schemes. In our implementation, we assume infinite storage for both

FLOODING_TABLE and packet buffer. In FLD, nodes do not need to know the topology

of the entire network since flooding does not use topology information in its forwarding

logic. Also, there is no initial setup phase needed for FLD.

4.1.2 Dual Paths Protocol (DPP)

Dual Paths Protocol (DPP) utilizes the principle of multi-path routing [48, 30, 50] where

a packet is routed on more than one path in order to improve the probability of successful

delivery. In DPP, each source node initially computes two paths to the sink and forwards

each packet on both paths in order to achieve fault tolerance in the presence of link failures.

At the start of network operation, each source node computes its two paths and informs

all nodes that are on either of the paths of this information so that these nodes can do the

forwarding task when they receive packets from that source.

With TOP2, TOP5 and TOP6 all of which are 2-edge-connected, DPP selects two

completely disjoint shortest paths from each source to the sink. With TOP4, DPP selects

two paths from each source that are completely disjoint except for the link and node that

connects to the sink. With TOP3, there is only one path (shortest) from each source

to the sink and DPP selects this single path for packet delivery. In this sense, DPP on

TOP3 becomes a single path protocol rather than a dual path protocol. Like FLD, no

acknowledgments are used and a best-effort delivery is assumed.

We use DPP as an intermediate scheme between FLD that floods the network with a

packet to achieve robustness/reliability by utilizing the redundancy in the topology and

HHA (described next) that uses a single but dynamically adjusted path for delivery to

achieve the same goal. Note that unlike most multi-path routing schemes [48], DPP is static

in the sense that it computes the paths initially and never recomputes them based on current

network conditions. Because of this static nature, DPP fails to fully utilize the underlying

redundancy like FLD and HHA and thus is expected to have lower robustness/reliability

than a dynamic multi-path scheme. However, DPP gives us important insight on the average

delay and average number of transmissions per packet that we can expect from a typical

multi-path scheme [48, 30, 50] since it uses two "shortest" paths to the sink (whenever

48

available).

In DPP, a node does not need a FLOODING_TABLE and the storage to maintain such

a table. However, like FLD, a node in DPP does need storage to keep packets temporarily if

the desired outgoing links are busy forwarding previously received packets. In addition, each

node needs a FORWARDINGJTABLE to store routing information, e.g., which outgoing

link a packet should be forwarded on if the packet is originating from a particular source

node. The size of this table is O(N) where N is the number of nodes in the network. The

entries in this table are calculated during network setup. However, this setup phase does

not incur any transmission given that each node knows the deployment topology of the

network which takes up O(L) storage space at each node where L is the number of links in

the network.

4.1.3 Hop-by-Hop Acknowledgment with Local Update (HHA)

The Hop-by-Hop Acknowledgment with local update (HHA) protocol delivers all packets

on a single path and dynamically adjusts the path when a packet cannot be forwarded on

the original link. It makes use of acknowledgment packets (ACK) on each intermediate hop

to determine whether the packet is successfully received by the next hop neighbor. If not,

it recomputes a new remaining path from the current node to the sink and forwards the

packet accordingly. If no path to the sink currently exists, the packet is kept in the queue

and transmission is tried again after a RETRY JNTERVAL. This process continues until

the packet is delivered to the sink or a time greater than a parameter TTL (time to live)

has passed since the generation of the packet, whichever occurs first.

In order to keep the protocol simple, a source node includes the entire path (all the

node IDs on the path in strict order) to the sink in the REMAINING .PATH field of the

packet. Each intermediate node removes one node from the REMAINING-PATH field

of the packet and forwards it accordingly. If the packet cannot be forwarded to the next

neighbor as suggested by the REMAINING-PATH field of the packet, the intermediate node

recomputes a new remaining path from itself to the sink, if any, replaces the old remaining

path in the packet with this newly computed path and forwards the packet accordingly.

In order to prevent a recomputed path to include a link the failure of which caused the

49

packet to reach the current node in the first place, each node maintains a data structure

called LINK_STATUS that reflects which of its outgoing links are currently down and while

forwarding a packet the node appends this information in the LINKS-DOWN field of the

packet. If a node has to recompute a path, it does so by applying shortest path algorithm

on the original topology after removing the links indicated by the LINKS-DOWN field of

the packet in question and its current LINK-STATUS data structure. This mechanism

ensures that when a node recomputes a path for a packet, it does not include in the path

the links that the packet observed to be down on its way from the source to the current

node. Note that this information in a packet's LINKS-DOWN field is not stored locally by

the recomputing node, making it necessary to include this information in each subsequent

packet by the preceding nodes. A more intelligent protocol will have the nodes store this

information for some time and use it intelligently in order to reduce the amount of data

transmission. This is left for future work.

Details of the various aspects of the HHA protocol are discussed below.

Data Structures

Each node has one first-in-first-out buffer called PACKET-BUFFER and whenever a packet

is generated at this node or a packet arrives at this node from a neighbor, the packet is placed

on its PACKET-BUFFER, unless the packet is destined for this node. Packets are tried

from the head/front of PACKET-BUFFER and removed from PACKET-BUFFER only

when they have been successfully forwarded or dropped because they are too old. Another

important data structure of each node is the LINK-STATUS data structure that reflects

which of the outgoing links from this node are currently down. Whenever a node, say node

s, finds that its link to neighbor rt\ is down (did not receive acknowledgment), it marks link

(s, n\) in its LINK-STATUS to be down. When the link is restored again, this link is marked

to be up in the LINK-STATUS. The restoration of a link can be detected by periodically

sending echo packets or by having a timer the expiration of which roughly indicates the

restoration or any other hardware assisted technique. Finally, each node initially computes

a shortest path to the sink in the initial target topology {e.g., TOP2 or TOP5), assuming

all links are up, and stores this path in a data structure called PRIMARY-PATH.

50

Generat ion of a Packet at a Node

When a packet is generated at node s, node s places the whole primary path (as indicated

by its PRIMARY_PATH data structure) in the REMAINING-PATH field of the packet and

puts the packet on the PACKET_BUFFER. The LINKS-DOWN field of the packet is left

empty. The procedure to transmit a packet from the head/front of PACKET .BUFFER is

described below.

Forwarding a Packet from a Node

Step 1: When looking at the packet at the head/front of PACKET-BUFFER, node s first

checks to see if the time since the packet was generated is greater than a threshold TTL

(time to live). If so, the packet is dropped and the next one in PACKET-BUFFER is tried.

If not, node s looks at the REMAINING-PATH field of the packet in question and finds

out the next hop node (neighbor of s). Let this next neighbor be node n\. Two cases may

arise which are described in step 1(a) and 1(b) below.

Step 1(a): (The link from node s to node n\ is currently up according to LINK-STATUS

data structure of node s) Node s Removes n\ from REMAINING-PATH field of the packet,

appends the links that are currently down (according to LINK-STATUS of node s) to the

LINKS-DOWN field of the packet, transmits the packet to n\ and waits for an ACK packet

from n\ for a time ACKJNTERVAL by starting a timer of the same duration. If an ACK

from n\ arrives before this timer expires, the packet is removed from the head/front of

PACKET-BUFFER and the next packet in the buffer is tried in the same way (go to step

1 above). If no ACK arrives within this time, node s marks link (s, n{) to be down in its

LINK_STATUS structure. If this makes all outgoing links from node s to be down, node s

waits for a time interval RETRY -INTERVAL and starts over the whole process (go to step

1 above). If, on the other hand, there is at least one currently active/up outgoing link from

node s according to its LINK-STATUS, node s performs the procedure described in step 2

below (re-computation).

Step 1(b): (The link from node s to node n\ is NOT currently up according to the

LINK-STATUS data structure of node s) If all outgoing links from node s are down according

to its current LINK-STATUS, node s waits for a time interval RETRYJNTERVAL and

51

starts over the whole process (go to step 1 above). If, on the other hand, there is at least

one currently active/up outgoing link from node s according to its LINK_STATUS, node s

performs the procedure described in step 2 below (re-computation).

Step 2: (Re-computation of remaining path) Node s recomputes a best path from s to

the sink by applying a shortest path algorithm on the initial topology after removing all the

links from the topology that are down according to the packet's LINKS_DOWN field and

the current LINK_STATUS data structure of node s. Then node s replaces the REMAIN-

ING-PATH field of the packet with this newly computed remaining path, appends the links

that are currently down (according to LINK_STATUS of node s) to the LINKS-DOWN field

of the packet, forwards the packet to the neighbor, say n2, as suggested by the new path

and waits for an ACK packet from n<i for a time ACK JNTERVAL by starting a timer of the

same duration. If an ACK from 712 arrives before this timer expires, the packet is removed

from the head/front of PACKET .BUFFER and the next packet in the buffer is tried in the

same way (go to step 1 above). If no ACK arrives within this time, node s marks link (s,

rii) to be down in its LINK_STATUS structure and goes back to step 1 above. We go back

to step 1 instead of doing another re-computation because the original link intended for this

packet may have come back up by this time or the packet could have become so old that it

is worth dropping and the next packet in the buffer is to be transmitted.

An example of how HHA dynamically adjusts the routing path is shown in Figure 4.1.

The node numbers shown in the figure works as node IDs. Node 6 wants to send a packet to

the sink (node 67) and puts the packet on its PACKET JBUFFER with REMAINING .PATH

field set to be identical to its PRIMARY_PATH data structure which is the shortest path

from node 6 to the sink in the initial topology (TOP6 in the figure). In the figure, the path

is 6-7-19-31-43-55-67. The forwarding process in node 6 forwards the packet to node 7 and

gets an ACK from 7 before the timeout occurs. Thus, node 6 forgets about the packet and

it becomes the responsibility of node 7. The packet travels in the same way to node 19 and

31. Node 31 forwards the packet to node 43 but does not get an ACK before the timeout

since node 43 does not receive the packet because the link (31-43) is obscured by an obstacle

(shown as an ellipse in Figure 4.1). Thus, node 31 marks link (31-43) to be down in its

52

LINKS-DOWN data structure and recomputes a new path from node 31 to the sink taking

into account the fact that link (31-43) is now down. In Figure 4.1, this new path is 31-19-7-

8-20-32-44-56-68-67. Node 31 now assigns this path to the REMAINING_PATH field of the

packet, appends link (31-43) in the LINKS-DOWN field of the packet (which was empty

so far) and forwards the packet to node 19. The packet travels through nodes 19, 7, 8, 20

and 32 without any problem. When node 32 forwards the packet to node 44, it does not

receive and ACK since link (32-44) is also physically obscured. Thus, node 32 recomputes

yet another remaining path from itself to the sink taking into account that links (31-43)

and (32-44) both are down. This new path is 32-20-8-9-10-11-23-22-21-33-45-57-69-68-67.

Node 44 now assigns this path to the REMAINING-PATH field of the packet, appends

link (32-44) in the LINKS-DOWN field of the packet and forwards the packet to node 20.

The packet travels this new path without any obstruction and reaches the sink without any

more re-computation. Note that if node 31 did not append in the LINKS-DOWN field of

the packet that link (31-43) was down, node 32 would have no idea about this failure and

it would recompute a path 32-20-8-7-19-31-43-55-67 which would cause the packet to travel

back and forth between node 31 and 32 until the obstacle is gone.

HHA is thus a single path scheme but the path is dynamically adjusted to route around

an obstacle. It utilizes the underlying redundancy in the topology to achieve a high degree

of resiliency. This may occasionally produce very long paths in the presence of obstacles and

longer paths cause longer delays and more transmissions. However, assuming that obstacles

are infrequent, mobile and transitory, packets will be mostly delivered on short paths and

very infrequently on longer paths to route around obstacles. Therefore, we expect that

delay characteristics of single-path based HHA would be comparable on average with that

of multi-path based DPP and flooding and number of transmissions with HHA would be

smaller on average compared to multi-path based DPP and flooding. The latter observation

arises from the fact that even DPP always forwards a packet on two paths causing a large

number of transmissions whereas HHA forwards a packet on a single path although the

path can be very long occasionally. We present quantitative comparison of these protocols

in Section 4.5.

In HHA, a node does not need a FLOODING-TABLE and the storage to maintain such

53

a table. However, a node does need storage to maintain the PACKET-BUFFER. We assume

infinite space for PACKET_BUFFER at each node in our implementation. Each node also

needs to know the deployment topology which needs a storage space of 0{L) at each node

where L is the number of links in the network. There are two other data structures that a

node in HHA needs to maintain: LINK_STATUS and PRIMARYJPATH. LINK_STATUS

needs a storage space of 0(1) since the maximum number of links a node can have is

constant. PRIMARY_PATH needs a storage space proportional to the maximum length of

a shortest path in hops from a source to the sink. The setup phase consists of computing

PRIMARY_PATHs from each node to the sink which does not incur any transmission given

that the nodes know the deployment topology.

0 1 2

Figure 4.1: Routing around the error blob in HHA

4.2 Simulation Environment

The general simulation configuration has been summarized in Table 4.1. We use our custom

designed simulator written in C programming language. Our simulator uses discrete-event

simulation models with next-event-time-advance approach [28]. Like our static evaluation

in the previous chapter, we use a 12x12 grid (144 nodes) with unit distance r = 20m. We

place the sink at the center of the grid since this reduces average path length from the

sources to the sink. We use 1 Mbps full-duplex bidirectional links. That is, communication

54

can take place in both directions between two neighboring nodes simultaneously at a speed

of 1Mbps. We run each simulation for 20 minutes of simulation time and we run 1200 trials

of such simulations and take their average. All plots in Section 4.5 show 95% confidence

interval for each data point.

Grid Dimension
Grid Unit Distance
Sink Location
Link Bandwidth
Link Type
Packet Payload Size
Number of Error Blobs
Speed of Error Blobs
Blob Axis a
Blob Axis b
Simulation Time
Simulation Trials

12x12
20m
Center
1 Mbps
Full-duplex
1 Kb
3
15 cm/sec
20m
4m
20 minute
1200

Table 4.1: Simulation Configurations

4.2.1 Traffic Mode l

We use a simple traffic model where each node generates ten packets a second, each with

1Kb payloads. However, in our experiments, we have only one node generating packets, all

other nodes work just as forwarding nodes. We do this in order to keep our experiments and

analysis simple since our main goal here is to evaluate how resilient our proposed topologies

are under different protocols. Note that even if we considered all nodes as traffic generators,

we would not have collisions since all communication is on dedicated point-to-point links.

However, we would have do deal with congestion on certain parts of the network and lack

of buffer space and queuing delay resulting from them. We discuss the issues with multiple

sources in the network in Section 4.6 and leave the quantitative evaluation of these issues

as future work.

4.2.2 Error Blobs

Optical communication is hampered by obstructions that blocks line of sight. In underwater

environments, these obstructions could be underwater organisms, floating objects and sed

iments. We model these obstructions using ellipses with small minor axis and large major

55

axis, as shown in Figure 3.13 in the previous chapter, and call them error blobs. We overlay

a separate grid with higher granularity on top of the original network grid to define the

movement of the error blobs. This new grid has unit distance of 1 decimeter (0.1 meter)

compared to 20m in the original grid. At the start of simulation, we place three error blobs

of identical dimension (a x b) on three uniformly chosen random grid points on the new

grid with three uniformly chosen random orientations. Each blob moves with a speed of

15cm/sec (unless we experiment with blob speed) within the network in a fashion that is

similar to random walk [9]. At each step, the blob moves 1 decimeter in a direction chosen

at random from four possible directions (left, right, up, down) unless the blob is currently

on the network boundary in which case it choses a direction at random from the two or

three possible directions, whichever applicable. The frequency of such steps are chosen so

that the overall speed of the blob is 15cm/sec. Note that once we randomly select the

orientation of each blob at the beginning, we do not change it again during the simulation,

we only change the locations of the blobs. We keep the semi-minor axis of each blob fixed

at b = 4m and semi-major axis of each blob fixed at a = 20m. In our experiments with

blob size, we keep b fixed at 4m and vary a. At a certain point in time, if a link is inside or

intersects one or more of the error blobs, the link is considered down at that moment since

the line of sight is lost because of the blob.

4.3 Simulation Metrics

In our simulation, we measure the following metrics for different protocols applied on differ

ent topologies under different settings: delivery ratio, average delay per packet and average

number of payloads transmitted per successful packet. Each metric is averaged over 1200

trials of simulation.

4.3.1 Delivery Ratio

Delivery ratio is defined by the following equation.

Delivery ratio = (total number of packets successfully delivered at sink/total number of

packets sent by the source)

Delivery ratio is the most important metric since it denotes the degree of resiliency

56

supported by a protocol working on a certain topology. It reflects the degree of redundancy

inherent in a topology and the degree with which a routing protocol utilizes this redundancy

to provide high robustness in the presence of obstacles inside the network.

4.3.2 Average Delay Per Packet (ADPP)

Average Delay Per Packet, abbreviated as ADPP, is defined by the following equation.

ADPP = (total delay faced by all successfully delivered packets/number of packets

successfully delivered at sink)

The unit of this metric is seconds/packet. In the above equation, delay of a packet

indicates the total time between the generation of the packet and the successful delivery

of the packet at the sink. This includes the time spent in transmission and the time spent

waiting in the buffer, if at all. We sum up the delays of all successfully delivered packets

to get the numerator of the above equation. ADPP indicates the expected time needed to

deliver a packet since its generation. It is proportional to the length of the path on which

the packet is delivered in the absence of queuing delay.

4.3.3 Average Number of Payloads Transmitted per Successful Packet
(APTS)

Average number of Payloads Transmitted per Successful packet, abbreviated as APTS, is

defined by the following equation.

APTS = (total number of bits transmitted for all successfully delivered packets)/(number

of packets successfully delivered at sink*size of one payload in bits)

The unit of this metrics is payloads/packet. In the above equation, the term "data

transmitted" means actual data communication. Thus, if the same packet is transmitted

twice at the same forwarding node or at two different hops on its the way to the sink, we sum

up both transmissions in our estimate of "total data transmitted". Also, data transmitted

for a packet includes not only the transmissions of its payload but also packet overheads

and acknowledgments associated with this packet.

Size of one payload is always 1 Kb, i.e. 1000 bits. For FLD and DPP protocol, we

have fixed length packets whereas for HHA we have variable length packets (since HHA

carries path information in the packet). However, the payload field of a packet in all three

57

protocols is 1 Kb in length. See Appendix A.4 for detailed packet formats.

The APTS metric gives an estimate of the amount of communication in a protocol

applied on a certain topology and is particularly important for sensor networks since com

munication is the principal source of energy consumption in a battery-powered node [1].

Note that the APTS metric reflects the amount of communication for successfully delivered

packets only. We have also experimented with average number of payloads transmitted per

packet in general (considering both delivered and undelivered packets) but do not present

our results with such metric since we have observed similar qualitative behavior with this

metric as with the APTS metric.

4.4 Experiment Methodology

In this section, we present our assumptions, parameter settings and design of experiments.

Implementation details of the three routing protocols have been presented in Appexdix A

and verification and validation of the simulation models have been presented in Appendix

B. The pseudo-code of the implementations of FLD and HHA protocols have been presented

in Appendix C. We do not present the pseudo-code of DPP since it works like FLD except

that instead of forwarding packets blindly on all outgoing links, DPP forwards packets on

the specific links suggested by the precomputed paths.

4 .4.1 A s s u m p t i o n s

We make several assumptions in our implementation of different protocols. We assume

infinite buffer space for each protocol since we do not evaluate the effects of limited buffer

space in our analysis. We assume that a receiving node can determine whether a packet got

corrupted because an obstructing bubble appeared in the line of sight of communication in

the middle of a packet transfer. We also assume that all nodes have the complete initial

topology stored. Finally, we assume that computation takes place arbitrarily fast. That

is, we do not record the time needed for computation (e.g., forwarding logic, flooding table

lookup, shortest path computation etc.) in our simulation. For HHA, we also assume that

a node can automatically detect the revival of a link once the error blob moves away.

58

4.4.2 P a r a m e t e r Se t t i ngs

The general parameters and their settings are given in Table 4.1. Flooding (FLD) and Dual

Paths Protocol (DPP) do not have any special parameter. For Hop-by-Hop Acknowledge

ment with local update (HHA) protocol, we have three parameters: TTL (Time to Live),

ACKJNTERVAL and RETRYJNTERVAL. We perform a calibrating experiment to find

out a suitable value for TTL to be used in our other experiments (described in the next

subsection).

The value of the parameter ACKJNTERVAL indicates when a timeout for acknowledg

ment occurs for a DATA packet after it has been transmitted and no ACK has been received.

Let us consider the case when node i has just finished the transmission of a DATA packet to

node j and is waiting for an ACK from node j . The ACKJNTERVAL parameter should be

set to a value that allows node i to wait long enough before deciding that the DATA packet

or the ACK from j was lost. In other words, the value of ACKJNTERVAL should be at

least equal to the worst-case time needed for node i to receive an ACK from j if no loss

occurs. This includes the time for node j to finish transmitting a DATA packet to node i

(if node j started this transmission before receiving the DATA packet from node i) and the

time for node j to finish transmitting the ACK to node i. Since DATA packets are variable

in length because of the variable size of the REMAINING J>ATH and LINKS J30WN field,

we should consider the time needed to transmit a maximum-size DATA packet. Assuming

a maximum length of REMAINING J'ATH field to be 80 (nodes) and a maximum length

of LINKS J)OWN field to be be 20 links, the size of such a maximum DATA packet is

2.027 Kb which needs 2.027 msec to be transmitted at 1 Mbps speed. The size of each

ACK packet is 27 bits which needs 0.027 msec to be transmitted. Finally, we add a small

time delay of 5 microseconds to break ties between events to have a value of 2.059 msec

(2.027 + 0.027 + 0.005) as our value for ACKJNTERVAL parameter. After finishing the

transmission of a DATA packet, a node waits this long before it decides that the packet did

not get through. For detailed packet formats, see Appendix A.4.

Another important parameter for HHA protocol is RETRY JNTERVAL which is the

time a node waits before trying again when it finds all its outgoing links to be down at a

59

particular moment according to its LINKJ3TATUS data structure or it cannot find a path

from itself to the sink in the current topology. In our simulation, we set this parameter to

be the time that an error blob needs to travel 5 meters if it travels in a straight line. With

a blob speed of 15cm/sec, this is equal to 33.33 seconds.

4.4.3 Design of Experiments

We use FLD to demonstrate the inherent redundancy of our proposed deployment topolo

gies and expect a high value of delivery ratio from FLD under a given topology with a

minimum delay of delivery. However, FLD causes excessive transmissions that is unsuitable

for practical applications, especially for sensor networks. We then use DPP, a simplified

representative of multipath protocols, on our topologies as an intermediate solution between

FLD and HHA. Finally, we use HHA, a dynamic single-path protocol that exhibit delivery

ratio close to FLD with smaller amount of communications on average, even smaller than

that of DPP, at the cost of slightly longer delays on average.

We run each simulation trial for a simulation time of 20 minutes and take the average

of 1200 such trials to generate each data point in our experiments. We also calculate 95%

confidence intervals [19] for each data point and show these intervals in each plot presented

in Section 4.5.

For each protocol, we perform three sets of experiments and for each set, we present

results with our three metrics (see Section 4.3) on five different topologies (TOP2, TOP3,

TOP4, TOP5, TOP5 and TOP6). As mentioned in Section 4.2, we use a single packet

generating source node in the entire grid. In the first set of experiments, we vary the

shortest-path hop distance of the source node from the sink within the topology under

consideration. For each simulation trial for a hop distance, we select at random a node at

that hop distance and use that node as the packet generating source. During our experiment

with hop distance, we keep the dimensions of error blobs fixed at a = 20m and b = 4m,

the speed of error blobs fixed at 15cm/sec, and for HHA, keep TTL fixed at 0.5 sec. The

purpose of this experiment is to examine the variation in robustness (delivery ratio), delay

(ADPP) and number of transmissions (APTS) as the source node is moved away from the

sink. A packet from a source node that is farther away from the sink has higher probability

60

of facing an error blob(s) on its way to the sink because of the increased lengths of the

available paths.

In the second set of experiments, we vary the size of the error blobs to see the effects

of larger (and smaller) obstructions inside the network. We keep the semi-minor axis fixed

at b = 4m and vary the length of semi-major axis a. During our experiments with the size

of error blobs, we keep hop distance fixed at 10 hops. That is, for each simulation trial, we

select at random a node at a hop distance of 10 from the sink within the topology under

consideration and use that node as the packet generating source. We keep the speed of

error blobs fixed at 15cm/sec and for HHA, keep TTL fixed at 0.5 sec.

In the third set of experiments, we vary the speed of error blobs to see the effects of

faster (and slower) obstructions inside the network. As with our experiments with the size

of error blobs, we keep hop distance fixed at 10 hops. We also keep the dimensions of error

blobs fixed at a = 20m and b = 4m, and for HHA, keep TTL fixed at 0.5 sec.

For HHA protocol, we perform an extra set of calibrating experiments in which we vary

the value of the parameter TTL (Time To Live) in order to find out an appropriate value

of TTL (0.5 sec) to use in the above three experiments. In these experiments, we keep hop

distance fixed at 10 hops, the dimensions of error blobs fixed at a = 20m and b = 4m, and

the speed of the error blobs fixed at 50cm/sec.

4.5 Analysis of Experimental Results

We present our simulation results and their analysis in this section. Each plot in this

section shows 95% confidence intervals for each data points. For an overview of TOP2,

TOP3, TOP4, TOP5 and TOP6, please refer to Figure 3.4, Figure 3.11(a), Figure 3.11(b),

Figure 3.12(a) and Figure 3.12(b), respectively, and Table 3.1 in the previous chapter.

4.5.1 Analysis of F looding Protocol (FLD)

Experiment with Hop Distance

In this experiment, we vary the hop distance of the source node from the sink within the

topology under consideration in order to examine the effect of hop distance on different

metrics under the flooding (FLD) protocol. In this experiment, we keep the dimension of

61

each error blob fixed at a = 20m and b — 4m and the speed of each error blob fixed at

15cm/sec.

Figure 4.2 shows delivery ratio of flooding (FLD) on different topologies against hop

distance of the source node from the sink. As can be seen from Figure 4.2, TOP4, TOP5

and TOP6 have enough redundancy to keep the delivery ratio almost constant with distance

since FLD makes sure that a packet goes through all possible paths from source to the sink

regardless of where the source is. We also see a significant increase in delivery ratio as

we move from TOP4 to TOP5 since in TOP4, a sink edge (edge connected with the sink)

remains the single point of failure for the entire quadrant it connects to the sink. TOP5

gets rid of this property by connecting Q1&Q4 and Q2&Q3 together by two more links.

However, as we move from TOP5 to TOP6 by adding two more links the improvement in

delivery ratio is very small, although consistent and visible.

In TOP2 and TOP3, each node has exactly two paths and exactly one path, respectively,

to the sink. Thus, even with FLD, packets go through exactly one or exactly two paths

to the sink. With TOP3 which is a shortest path tree rooted at sink, the farther a node

is from the sink, the longer the path that it has to the sink, thus the higher the chance

that a packet from this node faces an error blob on its way to the sink. Hence, delivery

ratio falls steadily with increased hop distance from the sink (see Figure 4.2). With TOP2,

which consists of four undirected Hamiltonian cycles, one path from the source is very small

(e.g., 4 or 6 hops) while the other is very long (maximum 32 hops). Thus, most packets are

delivered through the primary (shorter) path. Among the packets that are not delivered on

this primary path, few get delivered on the secondary (longer) path since this path is very

long and is thus more error-prone. As a result, as the primary path gets longer (from 4 to

10 hops), the delivery ratio falls since the secondary path cannot deliver as many packets

when the primary path fails to deliver. However, because of the support of the secondary

path, the delivery ratio with TOP2 remains higher than that with TOP3 and the delivery

ratio falls less steeply with TOP2 than with TOP3 (see Figure 4.2).

Note that with very small hop distance from sink (4 hops), TOP2 outperforms TOP4

in terms of delivery ratio (see Figure 4.2). This is again due to the fact that in TOP4, all

paths from a source node go through a single link (the link connected to the sink) which

62

remains the single point of failure. In TOP2, a node has only two paths to the sink but the

two paths are geographically distant and are connected to the sink using two different links

from the sink. As the hop distance increases from 4, TOP4 keeps its delivery ratio constant

because of its high redundancy while the delivery ratio of TOP2 keeps falling steadily below

that of TOP4.

Figure 4.3 shows Average Delay Per Packet (ADPP) of flooding (FLD) on different

topologies against hop distance from the sink. With 1 Mbps bandwidth and 1 Kb payloads,

each packet should optimally be delivered in n milliseconds if the source's best path to the

sink is n hops in length. With TOP3 which is a shortest path tree, this is the case since only

successful packets are considered in the ADPP metric. However, ADPP is slightly higher

than n milliseconds for n hops distance (e.g., 4.2 milliseconds for 4 hops in Figure 4.3)

because of the extra time required to transmit the packet overheads (SOURCE, DESTI

NATION, SEQ etc. fields). As expected, ADPP increases linearly with hop distance for

TOP3 (see Figure 4.3). Note that the ADPP metric for FLD (and for DPP) is free from

queuing delays since FLD (and DPP) forwards a packet blindly as soon as it receives it (it

does not keep a packet in a queue when there is currently no path/link to the sink) and

with our packet generation rate (10 1-Kb packets per second), a node never has to keep

a packet in the queue while the transmission of the previous packet is in progress on the

desired outgoing link.

As can be seen from Figure 4.3, TOP2 has the highest ADPP of all topologies and the

ADPP of TOP2 increases almost linearly like TOP3. The high average delay in TOP2

results from the fact that although the primary path from a source to sink in TOP2 has the

same number of hops as that in other topologies in Figure 4.3, the secondary path (the rest

of the Hamiltonian cycle) is much longer (maximum 32 hops) compared to other topologies.

Thus, when the packet is not delivered on the primary path, a very long delay is associated

with the packet which increases the average delay. Note that the uncertainty (error bars)

with TOP2 is highest in Figure 4.3 compared to other topologies and this is the result of

the high difference between the time needed to deliver a packet on the primary path and

the time needed to deliver a packet on the secondary path.

63

Flooding protocol (Delivery ratio vs hop distance)

is 0.85

7 8
Hop distance of source from sink

TOP2 I—I—I
TOP3 h-x—!
TOP4 :---5K--i
-TOP5'P"B" ' - :
T o r e T ^ i p j "

Figure 4.2: Delivery ratio vs hop distance with FLD. a = 20m, b = 4m and blob speed
15cm/sec

Flooding protocol (Avg delay per packet vs hop distance)

-

^s*^
* ^ . - " ' ' * •

'ft*-'
,,--

1 1

/

J>S\

^ J- ; . -

/<^i=; ,-
^,-^>^ ,-••-""
< £ - • * " ' * ' - • * ' ' '

,--'
,,---''"'

i i

i i

J-"-

TOP2 H
TOP3 h
TOP4 1-
TOP5 i-
TOP6 i-

^'1^''
• C ^ " " ^ X ' ' '

^ *-''"

i i i

_^
-X- -

-*--B--

-*-

H

-: .

^

J*

_

7 8
Hop distance of source from sink

Figure 4.3: ADPP vs hop distance with FLD. a — 20m, b = 4m and blob speed = 15cm/sec

64

Flooding protocol (Avg Payloads Ix per successful packet vs hop distance)

1 1 1 1 1
TOP2 I—I—I

B m 4:OJ23-h~x-=r4_.| i
TOP4 h -•*—!
TOP5 i - B - i -
TOP6 i—•—i

0 O V

-«- * >i

.̂ #.);
- * * — • "

- I 1 1 1
4 5 6 7 8 9 10

Hop distance of source from sink

Figure 4.4: APTS vs hop distance with FLD. a = 20m, b = 4m and blob speed = 15cm/sec

As can be seen in Figure 4.3, ADPP of FLD with TOP4, TOP5 and TOP6 stays between

that with TOP2 and TOP3. Because of the added redundancies, FLD with TOP4, TOP5

and TOP6 deliver packets on alternative longer paths if they cannot be delivered on the

original shortest path and maintain a high level of delivery ratio (see Figure 4.2). This

causes an increase in the ADPP compared to that with TOP3. However, alternate paths in

TOP4, TOP5 and TOP6 are much shorter than those in TOP2 in most cases, thus these

topologies have lower ADPP than that with TOP2. As with TOP2 and TOP3, ADPP

for these three topologies increase with hop distance but the slopes decrease with higher

hop distances since the ratio of alternate path length to primary path length is smaller for

nodes that are far away from the sink in these topologies. In other words, if a packet is not

delivered on the primary path, the length of the alternative path compared to the original

path is smaller for nodes that are far away from the sink than that for nodes that are closer

to the sink (since we add redundant links on the network boundaries).

As can be seen in Figure 4.3, delay with TOP5 is consistently higher that that with

TOP4 because TOP5 supports higher delivery ratio by using alternate paths in the adjacent

quadrants (since Q1&Q4 and Q2&Q3 are connected in TOP5) and these paths are longer

than the paths that are inside the same quadrant. However, TOP6, which gives the highest

65

delivery ratio (see Figure 4.2), has average delay lower than that with TOP5 and almost

the same as that with TOP4. This is due to the fact that since all the quadrants are

connected together in TOP6, not only do more paths become available but in many cases

better (shorter) alternative paths are found. For example, in TOP5, Q\ is connected with

Qi but not with Q2- In TOP6, Q\ is connected to both Q4 and Q2 (and to Q3 as well).

Thus, for a node in Q\ for which no path in Q\ is currently able to deliver a packet and

which is very close to Qi but is far away from Q4, FLD with TOP5 will deliver the packet

on a very long alternate path that routes through distant Q4 but FLD with TOP6 will

select a relatively very short alternate path through nearby Qi- Thus, by connecting more

adjacent quadrants, TOP6 not only gives higher delivery ratio but also reduces average

delay compared with TOP5 and all this is achieved by adding two more links. This justifies

the addition of two links on TOP5 to produce TOP6 and demonstrates the superiority of

TOP6 over all other topologies.

Figure 4.4 shows Average number of Payloads Transmitted per Successful packet (APTS)

of flooding (FLD) on different topologies against hop distance from the sink. For none of

the topologies do we see any noticeable change in APTS with varying hop distances from

the sink. This is because with FLD a packet is flooded throughout the network regardless

of where the source node is located.

Note that for a source that is n hops away form the sink on its shortest path, n payloads

need to be transmitted per successful packet in the ideal scenario. However, in Figure 4.4,

we see that even for TOP3 which is a shortest path tree, we have almost 35 payloads

transmitted for packet on average from a node at a distance of just 4 hops. This is the

result of flooding: although a packet is delivered on the only available (shortest) path, the

packet is forwarded to the other branches of the tree as well although those branches do

not lead to the sink. Moving from TOP3 to T0P4 in Figure 4.4, we see almost 10 more

payloads transmitted per successful packet on average. As we move from TOP4 to TOP5

and to TOP6, we see APTS becomes almost double each time. This is because in TOP4,

all paths from a source are confined within the quadrant within which the source is located.

For TOP5, paths from a source are spread out in two quadrants (since Q1&Q4 and Q2&Q3

are connected) and for TOP6, paths from a source are spread out in four quadrants (since

66

all quadrants are now connected). As can be seen in Figure 4.4, with FLD on TOP6, for a

successfully delivered packet from a source at a distance of just 4 hops, almost 190 payloads

are transmitted. This clearly indicates that FLD is not a suitable protocol to use if we want

to save energy. However, we demonstrate later that we can use other protocols (HHA) to

achieve almost similar delivery ratio as FLD with much fewer transmissions at the expense

of slightly increased delay.

As can be seen in Figure 4.4, TOP2 has considerably lower APTS than that of TOP3

although TOP2 has two disjoint paths from each source (thus higher delivery ratio). This is

because with flooding in a cycle (TOP2), if a packet faces an error blob at some point, it does

not get forwarded any further in that direction to the sink, thus restricting transmissions.

With FLD in a tree rooted at sink (TOP3), if a packet faces an error blob at a forwarding

node, it does not get forwarded on one or more subtrees of that node but it is forwarded on

all other subtrees and branches, causing higher APTS than that in TOP2. Thus, if FLD is

to be used, TOP2 is a good candidate in terms of number of transmissions.

To summarize, FLD utilizes all possible paths in the network to provide very high degree

of delivery ratio at minimum possible delay but incurs excessive overhead. TOP4, TOP5

and TOP6 have enough redundancy to maintain almost constant delivery ratio at different

hop distances. TOP2 and TOP3, on the other hand, have very limited number of paths

to the sink and, therefore, their delivery ratios fall down as the source is moved away from

the sink. Finally, TOP6 not only provides the best delivery ratio but also introduces better

alternative paths in the network and thus have lower average delay than that of TOP5.

Exper iment with Error Blob Size

In this experiment, we vary the size of the error blobs to see the effect of larger and smaller

obstructions in the network under the flooding (FLD) protocol. We keep the semi-minor

axis fixed at b = 4m and vary the length of semi-major axis a. In this experiment, we keep

the hop distance of the source node from the sink fixed at 10 hops and the speed of each

error blob fixed at 15 cm/sec.

Figure 4.5 shows delivery ratio of flooding (FLD) on different topologies against error

blob size. As expected, delivery ratio of FLD with each topology decreases with larger

67

error blobs. The rate of this fall is highest and almost linear with TOP3 and TOP2 which

have just one and just two paths to the sink from each source, respectively. As we move

from TOP4 to TOP5 by connecting Q1&Q4 and Q2&Q3 with two more links, delivery ratio

increases significantly and the difference gradually gets larger as the size of the error blobs

grow. With TOP6, the decrease of delivery ratio with larger blobs is the minimum of all

other topologies and even with a = 30m, the delivery ratio is 95% which is significantly

higher than that of TOP5 at this blob size. This suggests that with larger error blobs,

TOP6 is preferable over TOP5 (and other topologies) in terms of delivery ratio since the

speed of the error blobs does not affect the delivery ratio on average (shown later).

Figure 4.6 shows Average Delay Per Packet (ADPP) of flooding (FLD) on different

topologies against error blob size. With TOP3 (shortest path tree), the delay is minimum

since packets are delivered on the shortest path only. Delay with TOP3 remains constant

with varying blob size since we consider only successful packets in the ADPP metric and

successful packets are always delivered on the shortest path in TOP3. ADPP with TOP2

is the highest while ADPP with TOP4, TOP5 and TOP6 remains in between the ADPPs

of TOP2 and TOP3. As with our experiment with hop distance (see Figure 4.3), TOP6

shows better ADPP than TOP5 for different blob sizes because of the availability of better

paths through adjacent quadrants, although TOP6 provides better delivery ratio.

As can be seen in Figure 4.6, ADPP with TOP2, TOP4, TOP5 and TOP6 increases

with increasing blob sizes since larger blobs increase the probability that the primary path

fails and the packet gets delivered on alternate longer paths. However, the rate of increase

of ADPP falls down with larger error blobs for TOP2 and TOP4 but goes up with larger

blobs for TOP5 and TOP6. With TOP2 and TOP4, the number of possible paths from a

source to the sink is limited and they are all confined within the same quadrant. For TOP2,

we have only two paths. Thus, with increasing blob sizes, although more and more packets

are dropped undelivered, the successful packets are delivered on the limited number paths

within the same quadrant. Therefore, the increase of delays are less acute at higher blob

sizes. With TOP5 and TOP6, quadrants are connected together and thus packets can be

delivered on paths that go through adjacent quadrant (for TOP5) or quadrants (for TOP6)

if they cannot be delivered on the path within the same quadrant as the one in which the

68

source is located. With larger error blobs, TOP5 and T0P6 use these increasingly longer

paths, thus they maintain high delivery ratio but the average delay keeps increasing with

higher rates as the size of the error blobs increases. With a = 10m, TOP4 and TOP6 have

approximately the same ADPP. However, because of the different increase patterns, TOP6's

ADPP reaches 11.25 msec at a = 30m while TOP4's ADPP reaches slightly less than 11

msec at a = 30m. However, as long as error blobs are small enough with a < 20m, TOP6

remains the best choice in terms of delivery ratio and delay.

Figure 4.7 shows Average number of Payloads Transmitted per Successful packet (APTS)

of flooding (FLD) on different topologies against error blob size. Relative performances of

the five topologies remain the same as in experiment with hop distance (see Figure 4.4).

However, unlike our experiments with hop distance, APTS of FLD on different topologies

decrease very slowly with increased blob sizes. Larger blobs occasionally prevent some part

of the network from being flooded which results in this behavior.

Flooding protocol (Delivery ratio vs error blob size)

I

I

10 15 20 25 30
Axis 'a' of each ellipse (m)

Figure 4.5: Delivery ratio vs error blob size with FLD. Hop distance = 10 and blob speed
= 15cm/sec

69

0.85*-..

Flooding protocol (Avg delay per packet vs error blob size)

Axis 'a' of each ellipse (m)

Figure 4.6: ADPP vs error blob size with FLD. Hop distance = 10 and blob speed
15cm/sec

Flooding protocol (Avg Payloads tx per successful packet vs error blob size)

TOP2 i—+—I
TOP3 !--*—!

" T O M - ! ~ * ~ +
TOP5 I •-£}- l
TOP6 <—m-^

20
Axis 'a' of each (m)

Figure 4.7: APTS vs error blob size with FLD. Hop distance = 10 and blob speed
15cm/sec

70

To summarize, larger error blobs cause delivery ratio of each topology to decrease with

FLD because of the increased degree of obstruction inside the network. However, TOP6

retains almost 95% delivery ratio with FLD even with error blobs of dimension as large as

a = 30m and b = 4m. While maintaining this high delivery ratio, TOP6 introduces longer

delays at larger blob sizes but the average delay with TOP6 remains lower than that with

TOP5 because of the availability of better paths in TOP6 through adjacent quadrants.

Experiment with Error Blob Speed

In this experiment, we vary the speed of the error blobs to see the effect of faster and slower

obstructions in the network under the flooding (FLD) protocol. Here, we keep the hop

distance of the source node from the sink fixed at 10 hops and the dimension of each error

blob fixed at a — 20m and b = 4m.

Figure 4.8, Figure 4.9 and Figure 4.10 show delivery ratio, ADPP and APTS, respec

tively, of FLD on different topologies against the speed of error blobs. As can be seen from

these figures, none of these metrics shows any noticeable variation with the change of speed

of error blobs. With the size of error the blobs constant at a = 20m and b = 4m, the

total area occupied by these blobs in the network remains constant even if they move at a

different speed. Therefore, the values of different metrics remain approximately the same

on average with changing speeds of the error blobs. Similar behavior has been observed in

our experiments with blob speed with other protocols (DPP and HHA). Therefore, we do

not present the numeric results of our experiments with blob speed with DPP and HHA

protocols.

71

Flooding protocol (Delivery ratio vs error blob speed)

•g 0 E

TOP2 I—\—
TOP3 *••&•-

„_x- X

14 16 18 20
Speed of each error blob (cm/sec)

Figure 4.8: Delivery ratio vs error blob speed with FLD. a = 20m, b = 4m and Hop distance
= 10

« •

*y
 p

er
 p

ac
ke

t
(m

ss

A
vg

 d
el

13.5

13

12.5

12

11.5

11 C

;

10.5 5

Flooding protocol (Avg delay per packet vs error

j-.-r.---r

j

T T T : r . T T T

1

• i

_ ^ ^ _ _ _ _ _ _ ^

1 — x — i 1 * _

blob

- , - 7

speed)

; - - - - r . r

'

T6P2 I -
TOP3 >•-
TOP4 !•-
TOP5 ! -
TOP6 K

e--:

-

*
r. -*

1 *

16 18 20
Speed of each error blob (cm/sec)

Figure 4.9: ADPP vs error blob speed with FLD. a = 20m, b = 4m and Hop distance = 10

72

http://j-.-r.---r

200 i-

i h

180 -
"S3
o «
£ 160 -
nj
O

a uo -
c
"53

g. 120 -

8 100 -

M f l
Q.
* 80 -
in
•o
cO o
5 s 60 -
Q.

5 >l
40 -

°,i

20 -
1C

Figure 4.10: APTS vs error blob speed with FLD. a = 20m, b = 4m and Hop distance =
10

4.5.2 Analysis of Dual Paths Protocol (DPP)

Experiment with Hop Distance

In this experiment, we vary the hop distance of the source node from the sink within the

topology under consideration in order to examine the effect of hop distance on different

metrics under the Dual Paths Protocol (DPP). In this experiment, we keep the dimension

of each error blob fixed at a = 20m and b = 4m and the speed of each error blob fixed at

15cm/sec.

Figure 4.11 shows delivery ratio of Dual Paths Protocol (DPP) on different topologies

against hop distance from the sink. As can be seen from Figure 4.11, TOP2 and TOP3 show

exactly the same delivery ratio in DPP protocol as we saw in FLD (see Figure 4.2) because

these two protocols use the same path(s) to deliver a packet. TOP4 consistently shows

smaller delivery ratio compared to TOP2, TOP5 and TOP6. The latter three topologies

show similar performance since they use two completely disjoint paths from the source to

the sink, whereas with TOP4 the two selected paths from the source go through the same

link at the last hop to the sink. Unlike with FLD where TOP4, TOP5 and TOP6 keep

delivery ratio constant with varying hop distance by fully utilizing the inherent redundancy

73

Flooding protocol (Avg Payloads tx per successful packet vs error blob speed)

1 1) 1 1

16 18 20

Speed of each error blob (cm/sec)

of the topologies, with DPP each of these topologies faces decrease in delivery ratio as the

source is moved away from the sink since longer paths increase the possibility of facing

error blobs. However, as we move from TOP2 to TOP5 and from TOP5 to TOP6, the

rate of this decrease falls down and TOP6 shows visibly better performance than TOP5

(and TOP5 better than TOP2) as the hop distance increases. This is because with TOP2

the alternative path is extremely long compared to the primary path and thus more error-

prone. Thus, the alternative path cannot offset and keep up with all the losses of the

primary path and the nature of delivery ratio mostly indicates the performance of the

primary path which falls with increased distance. With TOP5 and TOP6, the alternative

paths are increasingly better (shorter) than those in TOP2 and these paths have lengths

closer to the lengths of the primary paths. Thus, the alternative paths in TOP5 and TOP6

can better offset and keep up with the losses of the primary paths and the delivery ratio

falls less steeply with increasing hop distance. This observation suggests that in addition

to selecting alternative paths that are disjoint and geographically distant, we should also

make sure that the alternative paths have lengths comparable to the primary path. Since

we have significantly higher number of nodes at higher hop distances than at lower hop

distances from the sink, TOP6 is the most promising topology again in terms of delivery

ratio using DPP.

Figure 4.12 shows Average Delay Per Packet (ADPP) of Dual Paths Protocol (DPP) on

different topologies against hop distance from the sink. Like delivery ratio, average delay

of TOP2 and TOP3 remains the same as with FLD (see Figure 4.3) since DPP and FLD

have the same paths to deliver a packet under these topologies. With TOP4, TOP5 and

TOP6, average delay of DPP (Figure 4.12) is slightly lower than that of FLD (Figure 4.3),

especially at lower hop distances from the sink. This is due to the higher delivery ratio in

FLD which causes increasingly longer paths for delivery and the alternate paths become

even longer compared to the primary path as the source is moved closer to the sink (since we

add redundant links on the network boundaries). However, as can be seen from Figure 4.3

and Figure 4.12, the difference in average delay is so small that it becomes justified to use

the redundant paths to improve delivery ratio. FLD does that but it causes an enormous

amount of transmissions in the network. We shall recover from this excessive transmissions

74

property in our next protocol (HHA).

Figure 4.13 shows Average number of Payloads Transmitted per Successful packet

(APTS) of Dual Paths Protocol (DPP) on different topologies against hop distance from the

sink. With DPP, packets are not flooded anymore, thus we see a huge reduction in APTS in

Figure 4.13 compared to the APTS of FLD in Figure 4.4. TOP3 has the lowest APTS since

packets are transmitted along a single path which is the shortest path. Note that APTS

of DPP with TOP3 is much lower than the APTS with TOP3 we saw in FLD (Figure 4.4)

since although FLD delivered packets on the same path, it unnecessarily forwarded packets

on the other branches of the tree. As can be seen in Figure 4.13, T0P2 has the highest

APTS since the alternate path is extremely long. APTS with TOP4, TOP5 and TOP6 falls

from approximately 50, 90 and 190 payloads per packet, respectively, in FLD (Figure 4.4)

to approximately 20 payloads per packet in DPP (Figure 4.13). Since the path lengths get

longer with increased hop distance, we see a steady increase in APTS in Figure 4.13 with

higher hop distance for all five topologies. As we move from TOP4 to TOP5 and from

TOP5 to TOP6, we see consistent reduction in APTS since the length of the alternate path

becomes shorter (while the length of the primary path is the same for all three topologies).

The differences between these three topologies decreases with increasing hop distance since

the length of the alternative path as compared with the length of the primary path reduces

with higher hop distances from the sink. Overall, unlike FLD, APTS is now a function of

the path lengths of the primary and the alternative paths instead of the network size.

To summarize, Dual Paths Protocol (DPP) fails to utilize the redundancies inherent

in TOP4, TOP5 and TOP6 because of its static nature. Therefore, delivery ratio of DPP

on these topologies decrease as the source is moved away from the sink. However, TOP6

still shows the best delivery ratio at hop distances higher than 6 since it supports shorter

alternate paths. We do not see any significant change in average delay with DPP compared

to FLD since DPP delivers packets only on either of the two shortest paths from the source

to the sink. However, we see a huge reduction in average number of payloads transmitted

per packet in DPP compared to FLD since DPP does not flood a packet throughout the

network. With DPP, number of transmissions is proportional to the lengths of the primary

and the alternate path instead of the size of the network.

75

£ 0.85

DPP protocol (Delivery ratio vs hop distance)

Hop distance of source from sink

Figure 4.11: Delivery ratio vs hop distance with DPP. a = 20m, b = 4m and blob speed
15cm/sec

DPP protocol (Avg delay per packet vs hop distance)

1
TOP2 I—I—I
TOP3 !--X--H
TOP4 :---*---:
TOP5 ! - B -
TOP6

Hop distance of source from sink

Figure 4.12: ADPP vs hop distance with DPP. a = 20m, b = 4m and blob speed = 15cm/sec

76

DPP protocol (Avg Payloads tx per successlul packet vs hop distance)

0 I 1 1 I I I I
4 5 6 7 8 9 10

Hop distance of source from sink

Figure 4.13: APTS vs hop distance with DPP. a = 20m, b = 4m and blob speed = 15cm/sec

Experiment with Error Blob Size

In this experiment, we vary the size of the error blobs to see the effect of larger and smaller

obstructions in the network under the Dual Paths Protocol (DPP). We keep the semi-minor

axis fixed at b = 4m and vary the length of semi-major axis a. In this experiment, we keep

the hop distance of the source node from the sink fixed at 10 hops and the speed of each

error blob fixed at 15 cm/sec.

Figure 4.14 shows delivery ratio of DPP on different topologies against error blob size. As

can be seen from Figure 4.14, delivery ratio of TOP2 and TOP3 with DPP remains exactly

the same as with FLD (Figure 4.5) for different blob sizes. However, unlike FLD, delivery

ratio of TOP4, TOP5 and TOP6 decreases almost as steeply as TOP2 with increased blob

sizes because DPP uses only two paths when applied on these topologies. However, TOP5

and TOP6 consistently maintains better delivery ratio because these topologies use shorter,

thus less error-prone, paths to the sink. The graph in Figure 4.14 shows how DPP fails

to utilize the inherent redundancy of TOP4, TOP5 and TOP6 by statically selecting two

fixed paths from each source to the sink. A more intelligent multi-path routing protocol

would dynamically select the two paths to route a packet to consider current network

77

conditions and would prevent the delivery ratio from falling sharply with increased blob

sizes by utilizing the redundancy. However, the delay (ADPP) and transmissions (APTS)

incurred by the DPP protocol (discussed next) show us representative values that we can

expect from an intelligent disjoint multi-path protocol [30, 50] since DPP always uses two

"shortest" disjoint paths (whenever possible) from each source. We shall see later that a

single path reliable protocol (HHA) can achieve high delivery ratio with fewer transmissions

and acceptable increase in delay on average.

Figure 4.15 shows Average Delay Per Packet (ADPP) of DPP on different topologies

against error blob size. Like delivery ratio, average delay of TOP2 and TOP3 with DPP

remains exactly the same as with FLD (Figure 4.6) for different blob sizes. As can be seen

from Figure 4.15, ADPP of TOP4, TOP5 and TOP6 remains between that of TOP2 and

TOP3 and increases almost at the same rate as that of TOP2 with increased blob sizes since

with each of these topologies, increased blob sizes mean increased failure probability along

the primary path and thus increased rate of delivery on the alternate path. Note that with

FLD, ADPP of TOP5 and TOP6 increased at much higher rate with increased blob sizes

(see Figure 4.6) since a very high delivery ratio was maintained by delivering the packet

on more and more longer paths in presence of failure on primary (thus, shortest) paths.

As with FLD, TOP6 shows lower ADPP than that of TOP5 because the selected alternate

paths are shorter in TOP6 in some cases.

Figure 4.16 shows Average number of Payloads Transmitted per Successful packet

(APTS) of DPP on different topologies against error blob size. As with our experiment

with hop distance (see Figure 4.13), we see a huge reduction in APTS in Figure 4.16 com

pared to the APTS of FLD (Figure 4.7) for TOP3, TOP4, TOP5 and TOP6 since packets

are not flooded anymore. Also, APTS of TOP4, TOP5 and TOP6 remains between that of

TOP2 and TOP3. However, we see a gradual decrease of APTS with increased blob sizes

for TOP2, TOP4, TOP5 and TOP6 since with increased blob sizes, although the packet is

delivered on one of the two selected paths, the probability that the packet gets lost and not

forwarded further on the other path increases which reduces APTS. APTS remains constant

with blob sizes for TOP3 since packets are delivered on a single path and we consider only

successful packets in this metric.

78

de
liv

er
y

ra
tio

H

DPP protocol (Delivery ratio vs error blob size)

1 I I I

0.9 "~'''^^§!^:4-^
0.85 : - „ -i- ''''^'*^^^^t]-'.7'^

0.75

0.7

0.65

n A

~~-ij(.,_

i i i

TOP2 1—1—1
TOP3 ' - -X—'
TOP4 !•••*•--:
TOP5 !i-B••••! _
TOP6 i—•—i

_

" ' " •1

-

-

" " • • ^

Axis 'a' of each ellipse (m)

Figure 4.14: Delivery ratio vs error blob size with DPP. Hop distance = 10 and blob speed
= 15cm/sec

DPP protocol (Avg delay per packet vs error blob size)

£ 11.5

Axis 'a' of each ellipse (m)

Figure 4.15: ADPP vs error blob size with DPP. Hop distance
15cm/sec

10 and blob speed =

79

DPP protocol (Avg Payfoads lx per successful packet vs error blob size)

Axis 'a' ot each ellipse (m)

TOP2 I—I—I
TOP3 h-*-H
TOP4 !•-•*---:

4 TriPS i....i^....i
x TOP6 i—»—i

Figure 4.16: APTS vs error blob size with DPP. Hop distance = 10 and blob speed
15cm/sec

To summarize, larger error blobs cause higher reduction in delivery ratio with DPP

than with FLD on TOP4, TOP5 and TOP6 since DPP fails to utilize the redundancy in

these topologies. A more intelligent multi-path routing scheme would dynamically select the

paths to maintain higher delivery ratio with increased blob sizes. However, average delay

(ADPP) and communication overhead (APTS) metrics with DPP remains representative

of the similar metrics with an intelligent disjoint multi-path scheme [30, 50] since DPP uses

two disjoint "shortest" paths for packet delivery.

4.5.3 Analysis of Hop-by-Hop Acknowledgment Protocol (HHA)

Experiment with TTL

In this experiment, we vary the Time To Live (TTL) parameter of the Hop-by-Hop Acknowl

edgment with local update (HHA) protocol to find out a suitable value of this parameter

to be used in the subsequent experiments where we vary hop distance and error blob size.

The value of TTL should be large enough so that there is enough time for HHA to deliver

packets on recomputed/rerouted paths, if any, in case the packet cannot be delivered on the

original path because of one or more error blobs. Having larger values of TTL will further

80

improve delivery ratio by keeping the packets longer in the queue when there is no available

path to the sink and route the packets when the error blob(s) moves away to make one or

more paths available again. However, this would also introduce longer average delays. In

this experiment, we use different values of TTL to make the resiliency/delay trade-off and

find out a value of TTL for HHA that balances these two factors. We keep hop distance

fixed at 10 hops, the dimensions of error blobs fixed at a = 20m and b = 4m, and the speed

of the error blobs fixed at 50cm/sec.

Figure 4.17 shows delivery ratio of HHA on different topologies against TTL (time to

live). As can be seen, delivery ratio with each topology gradually increases as we increase

TTL. This is because with longer TTL, when a packet gets stuck at some node (because no

path to the sink currently exists from the node), the packet waits in the PACKETJ3UFFER

for a longer time before it is dropped, thus the probability that the blocking error blob(s)

moves enough to make one or more paths available again so that the packet can be forwarded

increases. This improves the delivery ratio on average. This improvement in delivery ratio

with TTL becomes more prominent as we move from the topologies with higher degrees

of redundancy to the the topologies with lower degrees of redundancy (e.g., from TOP5

to TOP4 and from TOP2 to TOP3) since packets have higher probability of getting stuck

in topologies with lower degrees of redundancy and thus higher values of TTL help these

topologies more in achieving higher delivery ratio. As can be seen in Figure 4.17, the

improvement in delivery ratio with higher TTL values is very slow. With TOP3, delivery

ratio increases from 74% to only 78% even when we increase TTL from only 0.5 sec to as

high as approximately 400 sec. This is the result of the slow speed of the physical objects

and their random walk movement pattern. A speed of 50 cm/sec, which is a very high

speed for a physical object or organism under water, with a random walk pattern is often

not enough for a large error blob to move away sufficiently even in 400 sec.

Figure 4.18 shows Average Delay Per Packet (ADPP) of HHA on different topologies

against TTL. As can be seen, ADPP increases rapidly with increasingly higher rate as we

increase TTL and the increase is higher for topologies that experience higher improvement

in delivery ratio with TTL in Figure 4.17 (e.g., TOP3 and TOP2). With TTL increased to

a higher value, packets stuck at a node can wait longer in the PACKET -BUFFER before

81

being dropped. If the error blob clears away before the TTL expires and such a packet

gets delivered to the sink, the delay associated with the packet is very high since it waited

in the PACKET-BUFFER for a very long time (close to TTL). This increases the average

delay rapidly. Note that when a packet gets stuck at a node, all the subsequent packets

that arrives at this node are placed in the PACKET_BUFFER behind this packet. Once

the error blob clears away, packets are forwarded from the front of the buffer. Thus, the

total time spent in the PACKETJ3UFFER is the sum of the time spent waiting for the

error blob to move away and the time spent waiting for the packets ahead in the buffer to

be cleared once the error blob is gone. Note in Figure 4.18 that the uncertainty (error bars)

of ADPP goes up with higher values of TTL. This is due to the huge difference between the

delays of the packets that get delivered without having to wait in a PACKET_BUFFER and

the packets that get delivered after waiting a while in a PACKET .BUFFER for the error

blob(s) to move away. For the former class of packets, delay is the time required to transmit

the packet along the selected path which is a function of the length of the delivery path and

the bandwidth of the links. On the other hand, for the latter class of packets, delay consists

mostly of the time required for the "physical error blob" to move away and the speed of

physical objects is much lower than the speed of communication. Overall, increasing TTL

gives very small increase in delivery ratio at the cost of very high average delay per packet.

Therefore, having very high values for TTL is not justified, especially for applications for

which delay needs to be kept below a certain level (e.g., real-time applications).

Figure 4.19 shows Average number of Payloads Transmitted per Successful packet

(APTS) of HHA for different topologies against TTL. We do not see any noticeable change

in APTS with increasing TTL since packets waiting in the buffer do not incur transmissions.

82

£ 0.85

.--*-'

HHA protocol (Delivery ratio vs TTL)

TOP2 I—I—I
TC13 !_.>e_j
TOP4 :-• -*---:
TOP-5 >•••«••••!
TQJ£6 i—•—i

100 150 200 250
TTL (sec)

400 450

Figure 4.17: Delivery ratio vs TTL with HHA. a = 20m, b = 4m, hop distance = 10 and
blob speed = 50cm/sec

HHA protocol (Avg delay per packet vs TTL)

5 10000

-

-

-

H"

1 1 1 1 1 1 1 ™ i . „
TOP2 1—1—1 TOP3 ! - - * — '
TOP4 !•--*•-•!
TOP5 I---B-H
TOP6 i—•—i

T

,*

' X " ' '

1 , " '

, ' * • '

1 , - ' _[

i

1

1

100 150 200 250
TTL (sec)

300 350 400 450

Figure 4.18: ADPP vs TTL with HHA. a = 20m, b = 4m, hop distance = 10 and blob
speed = 50cm/sec

83

HHA protocol (Avg Payloads tx per successful packet vs TTL)

0 50 100 150 200 250 300 350 400 450
TTL (sec)

Figure 4.19: APTS vs TTL with HHA. a = 20m, b = 4m, hop distance = 10 and blob speed
= 50cm/sec

In summary, increasing the value of TTL above 0.5 sec provides very slow increase in

delivery ratio because it allows packets to wait longer in the queues before being dropped

but results in a very high average delay per packet due to the long delays in the queues.

Therefore, we use 0.5 sec as a reasonable value for TTL in our next experiments. Note that

we have kept the speed of error blobs fixed at 50 cm/sec in this experiment which is higher

than the speed we use in our subsequent experiments (15 cm/sec). We do this in order to

make the effect of TTL more conspicuous. We have also experimented with an error blob

speed of 15 cm/sec (not shown in this thesis) and found out that the increase in delivery

ratio with higher TTL is even slower with this speed since it takes longer in such settings

for an error blob to move away sufficiently. This justifies the choice of a small value for

TTL (0.5 sec).

Experiment with Hop Distance

In this experiment, we vary the hop distance of the source node from the sink within the

topology under consideration in order to examine the effect of hop distance on different

metrics under the Hop-by-Hop Acknowledgment with local update (HHA) protocol. In this

experiment, we keep the dimension of each error blob fixed at a = 20m and b = 4m, the

84

speed of each error blob fixed at 15cm/sec and TTL fixed at 0.5 sec.

Figure 4.20 shows delivery ratio of Hop by Hop Acknowledgment with local update

protocol (HHA) on different topologies against hop distance from the sink. As can be

seen from Figure 4.20, delivery ratio of HHA very closely mimics that of FLD (Figure 4.2)

and there is no significant difference between the two protocols in terms of this metric for

all five topologies. This is because like FLD, HHA takes advantage of the redundancies

inherent in the topologies, although in a different way. HHA does this by selecting an

alternate "remaining path" whenever it sees that a packet cannot be forwarded any further

on the original path and this process repeats at each intermediate node until the packet

reaches the sink or TTL is expired. Note that if TTL is infinite, the delivery ratio for all

topologies should approach 100% since packets are not dropped, rather they are kept in the

PACKET J3UFFER until a path to the sink becomes available again (because the blocking

error blob has moved away). However, we have seen in our experiment with TTL that this

increase in delivery ratio is very slow with higher values of TTL and incurs excessive delay.

Therefore, in the graph shown in Figure 4.20, we keep TTL fixed at 0.5 sec which in most

cases is enough time for a packet to be rerouted around an error blob but is shorter than

the time required for an error blob that is blocking all possible paths to the sink for a packet

to move enough so that one or more paths to the sink become available again. As a result,

in most cases, delivered packets in this HHA settings are those packets that were not stuck

at a node for some time on their way to the sink because all possible paths from that node

were blocked. Therefore, the delivery ratio is approximately the same as that in FLD. Note

that although HHA exhibits similar delivery ratio to FLD, it achieves this delivery ratio in

a different way, i.e., using a single but often longer dynamically adjusted path. Thus, delay

and transmissions characteristics of HHA is expected to be different which we investigate

next.

Figure 4.21 shows Average Delay Per Packet (ADPP) of HHA protocol on different

topologies against hop distance from the sink. HHA uses a single path for each packet

delivery and whenever a link on the path is broken, a new remaining path from the current

node is selected. This makes the recomputed paths considerably longer than an alternate

path selected from the source of the packet. Thus, HHA has higher average delay (see

85

Figure 4.21) than that of FLD (Figure 4.3), especially in T0P4, T0P5 and T0P6 which

have the maximum redundancy. ADPP with HHA on T 0 P 3 is only slightly higher than that

with FLD since the presence of only one path keeps HHA from recomputing long suboptimal

alternative paths. This slight increase is thus due to the extra time needed to transmit the

packet headers which are longer and variable in HHA. With TOP2, TOP4, TOP5 and

TOP6, we see in Figure 4.21 a noticeable increase in ADPP compared to FLD (Figure 4.3)

because of locally recomputed paths. However, a small portion of this increased delay is

caused by long and variable length packet headers and thus can be avoided by designing

a more intelligent protocol that avoids such header formats. Another very small portion

of this delay is caused by the time that a forwarding node has to wait for an ACK before

it decides that the link is down and performs re-computation. With a TTL of 0.5 sec,

packets that are stuck at a node (because there is currently no path to the sink) and wait

in the PACKET .BUFFER to be forwarded are usually dropped eventually because their

TTL expires before the error blob(s) moves away. Thus, the ADPP shown in Figure 4.21

hardly contains any delay caused by such waiting in the the buffer. As in FLD, TOP6

exhibits better ADPP than that of TOP5 even though TOP6 has higher delivery ratio since

TOP6 has better alternate paths in many cases because of the added connectivity between

adjacent quadrants. As can be seen in Table 4.2 which summarizes the performance of the

three protocols on our best topology TOP6 at a hop distance of 10, TOP6 has an ADPP

of 14.24 msec with HHA compared to 10.88 msec and 11.14 msec with FLD and DPP,

respectively.

Figure 4.22 shows Average number of Payloads Transmitted per Successful packet

(APTS) of HHA protocol on different topologies against hop distance from the sink. Since

HHA delivers each packet on a single path, both delay and number of transmissions are

proportional to the length of the path on which a packet is delivered. Thus, both ADPP

and APTS should exhibit similar behavior. As can be seen from Figure 4.22, APTS for

different topologies show similar relative behavior as ADPP (Figure 4.21) for different hop

distances. Note that we include the transmissions of ACK in our metric which is negligible

compared to the sizes of the packets. As can be seen from the summary in Table 4.2, for

our best topology TOP6, APTS at a hop distance of 10 is 14.32 payloads per packet for

86

HHA compared to 188.60 payloads per packet for FLD and 21.96 payloads per packet for

DPP. Thus, even though HHA uses longer paths in presence of obstacles, it delivers packets

on the shortest path in most cases which causes a small average APTS compared to that of

FLD and DPP, although it supports delivery ratio as good as FLD. As with ADPP, TOP6

consistently shows lower APTS than TOP5 because of the use of smaller paths in many

cases which again demonstrates the superiority of TOP6 over all other topologies.

To summarize, HHA supports delivery ratio as good as FLD with smaller number of

transmissions on average compared to both FLD and DPP. The price to pay is a slight

increase in average delay because of the increased length of the path used by HHA in

the presence of obstacles. TOP6 again shows best delivery ratio with lower delay and

transmissions than that of TOP5.

hha protocol (Delivery ratio vs hop distance)

1

0.95

0.9

.2 0.85
1?
&
0)

I 0.8

0.75

0.7

0.65

4 5 6 7 8 9 10
Hop distance of source from sink

Figure 4.20: Delivery ratio vs hop distance with HHA. a = 20m, b — 4m, blob speed =
15cm/sec and TTL = 0.5 sec

87

TOP2 I—I—
TOP3 !--*•-
TOP4i~*—!•-*
TOP5--—e~~! •• f
TOP6 >—•-•

HHA protocol (Avg delay per packet vs hop distance)

-I I l I I I I
4 5 6 7 8 9 10

Hop distance of source from sink

Figure 4.21: ADPP vs hop distance with HHA. a = 20m, b = 4m, blob speed = 15cm/sec
and TTL = 0.5 sec

HHA protocol (Avg Payloads tx per successful packet vs hop distance)

\ I t i i i 1
4 5 6 7 8 9 10

Hop distance of source from sink

Figure 4.22: APTS vs hop distance with HHA. a = 20m, b = 4m, blob speed = 15cm/sec
and TTL = 0.5 sec

88

Delivery ratio
Average Delay Per Packet (ADPP)
in msec/packet
Average number of Payloads Transmitted
per Successful packet (APTS)
in payloads/packet

FLD
97%
10.88

188.60

D P P
90%
11.14

21.96

HHA
97%
14.24

14.32

Table 4.2: Performance of FLD, DPP and HHA on TOP6 at a hop distance of 10 hops (a
= 20m, b = 4m, speed = 15 cm/sec and TTL = 0.5 sec for HHA)

Experiment with Error Blob Size

In this experiment, we vary the size of the error blobs to see the effect of larger and smaller

obstructions in the network under the Hop-by-Hop Acknowledgment with local update

(HHA) protocol. We keep the semi-minor axis fixed at b = 4m and vary the length of

semi-major axis a. In this experiment, we keep the hop distance of the source node from

the sink fixed at 10 hops, the speed of each error blob fixed at 15 cm/sec and TTL fixed at

0.5 sec.

Figure 4.23 shows delivery ratio of HHA on different topologies against error blob size.

As with our experiment on HHA with hop distance, delivery ratio with HHA for all topolo

gies against error blob size remains closely similar to that with FLD (Figure 4.5) which

is considerably higher than that with DPP (Figure 4.14). This is because HHA utilizes

the underlying redundancies of the topologies like FLD, although in a different single-path

approach. As with FLD, the delivery ratio of the best topology TOP6 remains as high as

95% with error blobs as large as a = 30m.

Figure 4.24 shows Average delay Per Packet (ADPP) of HHA on different topologies

against error blob size. As with FLD, TOP3 has the lowest average delay which remains

more or less constant with larger error blob sizes since packets are delivered on a single

path and in presence of error blobs the packet is mostly dropped because of the small TTL.

As with FLD (Figure 4.6), TOP2, TOP4, TOP5 and TOP6 all show increase in average

delay with larger error blobs since larger blobs increase the probability of a link failure and

re-computation of a new and long suboptimal path. As with FLD, this rate of increase

goes up as we move from TOP2 to TOP4, from TOP4 to TOP5 and from TOP5 to TOP6.

89

In HHA, however, the difference in increase rate among different topologies is more acute

than in FLD because unlike FLD, HHA computes alternative paths locally (at the point

of failure) rather than globally (at the source) and local computation causes considerably

longer paths. Thus, although TOP4, TOP5 and TOP6 has lower ADPP at smaller blob

sizes (see Figure 4.24), their ADPPs exceed that of TOP2 at larger blob sizes. TOP6 has

lower ADPP than that of TOP5 up to a blob size of a = 25m. After that, TOP6 has higher

ADPP because it starts choosing paths through distant quadrants. Since error blobs as

large as a > 25m are unlikely, TOP6 remains the best candidate in terms of delay and

delivery ratio. Table 4.3 summarizes the performance of three protocols applied on our best

topology TOP6 with error blob size of a — 30m and b = 4m. As can be seen from the table,

TOP6 at a = 30m has an ADPP of 17.40 msec with HHA compared to 11.26 msec with

FLD and 11.27 msec with DPP. This suggests that if error blobs are very large, which is an

unlikely situation, HHA shows poor delay characteristics with TOP6. A more intelligent

multi-path scheme would probably be a better approach in such cases.

Figure 4.25 shows Average number of Payloads Transmitted per Successful packet

(APTS) of HHA on different topologies against error blob size. As expected, APTS shows

similar behavior as ADPP (Figure 4.24) since packets are delivered along a single path and

both delay and number of transmissions are proportional to the length of the path. As can

be seen from the summary in Table 4.3, we have an APTS of 17.33 payloads per packet

for TOP6 with HHA at a = 30m compared to 184.24 payloads per packet with FLD and

21.41 payloads per packet with DPP which demonstrates the superiority of HHA protocol

in terms of number of transmissions, even with very large error blobs.

90

HHA protocol (Delivery ratio vs error blob size)

1—
;---
•

-

r„^

~"~--,̂

i

*----....

,.
~~~T^ 

1 

1 

^ — % - : - • : : 

" " " • • * 

~~~*-~. 

i

i

:::: f™~-
$

• " • - *

~~~~~-*---
••• 

i 

TOP2 
TOP3 
TOP4 

"TOPS 
TOES. 

~~~-~^^ 

1—1—1
<—H—'
! — ! » • - ! .

-=-e-i-^
I—•—i .

i

-
!
~

•

"

---_,

"

20
Axis 'a' of each ellipse (m)

Figure 4.23: Delivery ratio vs error blob size with HHA. Hop distance = 10, blob speed
15cm/sec and TTL = 0.5 sec

HHA protocol (Avg delay per packet vs error blob size)

Axis 'a' of each ellipse (m)

Figure 4.24: ADPP vs error blob size with HHA. Hop distance = 10, blob speed = 15cm/sec
and TTL = 0.5 sec

91

HHA protocol (Avg Payloads tx per successful packet vs error blob size)

TOP2 I—I—
TOP3 f— X--
TOP4 :---*--
TOP5 • - B-
TOP6 i—•-••

- ¥ — -
10 15 20 25 30

Axis 'a' of each ellipse (m)

Figure 4.25: APTS vs error blob size with HHA. Hop distance = 10, blob speed = 15cm/sec
and TTL = 0.5 sec

Delivery ratio
Average Delay Per Packet (ADPP)
in msec/packet
Average number of Payloads Transmitted
per Successful packet (APTS)
in payloads/packet

FLD
95%
11.26

184.24

D P P
82%
11.27

21.41

HHA
96%
17.40

17.33

Table 4.3: Performance of FLD, DPP and HHA on TOP6 with error blob dimension a
30m, b = 4m (hop distance=10 hops, speed=15 cm/sec and TTL=0.5 sec for HHA)

4.6 Possible Effects with Multiple Sources

In our simulation, we use a single node as the packet generating source with all other nodes

working merely as forwarding nodes. This has been done to keep our experiments simple

since our main goal is to evaluate the resiliency of different protocols on our proposed topolo

gies. Even with multiple sources, our protocols do not introduce MAC layer collisions since

communication takes place on point-to-point dedicated links. However, multiple sources

can introduce the problems of congestion, lack of buffer space and queuing delay. Note that

our protocols do not handle the problem of load balancing. Thus, the problem of having a

particular set of nodes/links carrying traffic most of the time with other nodes/links being

92

idle is possible in our protocols. Examining this aspect of the protocols used is beyond the

scope of this thesis.

With FLD and DPP, a node forwards a packet blindly (without considering the current

link conditions) as soon as the node receives the packet and there is no anticipation for

ACK. With just one source node and a low packet generation rate of 10 1-Kb packets a

second, congestion never occurs and the forwarding node always finds the desired outgoing

links free when it wants to forward a packet on these links. Therefore, there is no queuing

delay and lack of buffer space. However, with very high packet generation rates or with

multiple sources, possibly with different packet generation rates, congestion can build up,

i.e., a forwarding node may find its outgoing link(s) busy transmitting a previously received

packet. In such cases, the node has to put the new packet on the SEND_BUFFER where

the packet waits for the outgoing link to become free again. This introduces queuing delay

and the possibility of lack of buffer space. Therefore, with multiple sources in FLD and

DPP, we would have to design experiments to examine the effects of limited buffer space,

the amount of buffer space needed for the best performance and the effects of queuing delay.

Assuming infinite buffer space, we expect that even with multiple sources FLD and DPP

would show similar relative behavior as with a single source in terms of delivery ratio and

Average number of Payloads Transmitted per Successful packet (APTS) on average since

packets would face the same forwarding logic, although sometimes delayed by the wait in

buffer due to congestion, and the same degree of obstructions by the error blobs on average.

With HHA, packets are kept in the PACKET_BUFFER if no route to the sink can be

found in presence of a nearby error blob(s). If more packets arrive when this is the case, they

are kept in the buffer in first-in-first-out manner. Thus, with HHA, we have queuing delay

and need for large buffer space even with a single packet generating source when error blobs

are present. In our experiments, we keep the buffer size infinite and include queuing delays

in the ADPP (average delay per packet) metric. It would be interesting to experiment

with the size of the buffer and see the resulting effects. With multiple sources, congestion

may build up and more queuing delay resulting from this congestion may arise, even in

the absence of error blobs. As with FLD and DPP, we expect that with an assumption

of infinite buffer space, HHA with multiple sources would show similar behavior as with a

93

single source in terms of delivery ratio and APTS on average since packets would experience

the same forwarding logic, although sometimes delayed by a longer period due to queuing

delays resulting from congestion, and the same degree of obstructions by the error blobs on

average. It would be interesting to design and experiment with a more intelligent version

of HHA that routes packets around the areas of congestion and selects routes intelligently

to evenly balance forwarding loads on nodes and links.

4.7 Chapter Summary

In this chapter, we have performed a dynamic evaluation of our proposed deployment topolo

gies by simulating three simple routing protocols, FLD, DPP and HHA, on these topolo

gies. These protocols attack the problems of link failures and resiliency from three different

perspectives. We have presented the design of these protocols in detail and performed ex

periments with varying hop distance, error blob size, error blobs speed and TTL (for HHA)

to evaluate and compare these protocols on different topologies in terms of packet deliv

ery ratio, delay of delivery and number of transmissions incurred. Our results show that

FLD achieves a very high degree of delivery ratio at the shortest delay but incurs excessive

transmissions in the network. DPP fails to fully utilize the inherent redundancies of the

topologies since it does not adjust its paths dynamically with current network conditions

but it works as a representative of disjoint multi-path routing schemes. HHA achieves de

livery ratio as good as FLD with a smaller average number of transmissions per packet than

both FLD and DPP by using single but dynamically adjusted paths to deliver packets. The

price to pay is a slightly longer average delay per packet, especially with very large error

blobs. Our results also justify the addition of two extra links on TOP5 to produce TOP6

since TOP6 not only supports higher delivery ratio by providing more redundancy but also

reduces the average delay by providing shorter alternative paths to the sink in some cases.

94

Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis, we have designed robust two-dimensional grid-based deployment schemes for

underwater sensor networks that use point-to-point optical communication links. In par

ticular, we have considered sensor nodes deployed in a grid structure and then designed

schemes to select point-to-point optical links between adjacent nodes to generate robust de

ployment topologies. Our design goals have been to include redundant paths in the topology

to improve robustness in the face of link failures and to include short paths from sink to

each sensor node to support low-cost communication in typical failure-free environment.

The trade-off we have made while doing so is to keep the number of total and per node

communication interfaces as small as possible in order to reduce the cost of deployment.

We have considered three cases where each node in the grid is constrained to have no

more than 1, 2 and 3 interfaces. For maximum 1 and 2 interfaces per node cases, we have

proposed deployment topologies consisting of four Hamiltonian cycles in the network. For

maximum 3 interfaces per node case, we have designed shortest-path tree based deployment

topologies where redundant links have been added at strategic points in the network on top

of a shortest path tree in order to improve the robustness while at the same time allowing

shortest path communication in the network in the absence of failures. To this end, we have

designed a formulation pattern for a 3-degree constrained shortest path tree in a grid rooted

at the sink and spanning all nodes in the grid with (LB+2) number of 3-degree nodes in

the worst case where LB is the lower bound on the number of 3-degree nodes in such a tree.

Our proposed formulation pattern works for any grid dimension and any placement of the

95

sink inside the grid. With this shortest path tree as the base, we have designed a series of

deployment topologies that offer higher degrees of robustness by adding additional links on

top of the shortest path tree at strategic points.

We have designed 2-edge-connected deployment topologies in order to support deter

ministic robustness whenever our constraint on the maximum number of interfaces a node

can have allowed us to do so. In order to examine the probabilistic robustness of our pro

posed deployment topologies, we have simulated our topologies with isolated and patterned

failure models under static settings. Our results demonstrate that our best topology TOP6

offers a very high degree of robustness even though it has a small number of optical links

compared to the entire potential grid graph.

In order to examine the dynamic behavior of our proposed topologies, we have performed

a detailed dynamic evaluation of these topologies by simulating them with three simple

resilient routing protocols. We have selected three simple routing protocols that approach

the problem of resiliency from three different perspectives. We have used a single packet

generating source node and multiple moving obstacles in the network and evaluated the

performance of the three protocols applied on our topologies in terms of packet delivery

ratio (resiliency), average delay of delivery of packets to the sink and overall communication

overhead. Our results show that the HHA (Hop-by-Hop Acknowledgment with local update)

protocol supports resiliency as good as flooding with fewer number of transmissions on

average compared to both flooding and multi-path based DPP (Dual Paths Protocol) by

using a single but dynamically adjusted path to deliver packets. However, HHA incurs

slightly higher delay of delivery on average compared to the other protocols since it uses

local updates that occasionally result in longer paths compared to flooding and DPP. Our

results also show that our best topology TOP6 outperforms all other topologies in terms of

resiliency. In addition, it has lower average delay than that of TOP5 since it not only has

higher degree of redundancy but also has shorter alternate paths to the sink from many

nodes. This justifies the addition of two more links on TOP5 to generate TOP6.

96

5.2 Future Directions for Research

We have designed a formulation pattern for a 3-degree constrained shortest path spanning

tree in a grid graph of arbitrary dimension rooted at an arbitrary grid node (the sink) that

has (LB+2) 3-degree nodes in the worst case where LB is the lower bound on the number

of 3-degree nodes in such a tree. It would be interesting to design a formulation pattern

for such a tree for which the number of 3-degree node is equal to this lower bound or prove

that such a tree cannot be formed. If the latter is the case, it would also be interesting

to prove or disprove that our pattern is a 3-degree constrained shortest path spanning tree

rooted at the sink with "minimum" number of 3-degree nodes.

Another interesting future work would be to extend our results to three-dimensional

deployment scenarios. For example, we can consider a three-dimensional grid instead of a

2D grid and see if our proposed patterns can be extended to the 3D case. One approach

could be to divide the 3D grid into horizontal 2D planar grids and then apply our patterns on

these 2D grids and add additional links to provide connectivity between adjacent 2D grids

to come up with a connected 3D deployment. Another approach could be to introduce

new constraints on node degrees, e.g., maximum 4 or 5 interfaces per node, and then

redesign the deployment pattern in a three-dimensional approach, e.g., divide the entire 3D

grid into eight 3D octants (in contrast to four 2D quadrants) and try to formulate degree

constrained shortest path spanning tree for each octant. It would also be interesting to

remove the assumption of grid-based deployment and consider other deployment schemes

such as triangular or hexagonal deployment.

In our dynamic evaluation, we have used a single packet generating source in the en

tire network with all other nodes working merely as forwarding nodes. While this setting

shows us the degree of resiliency of the routing scheme applied on the underlying topology,

having multiple sources in the network introduces issues such as congestion, queuing delays

and lack of buffer space. Therefore, it would be worthwhile to investigate these aspects of

performance by having multiple sources in the network, possibly with different packet gen

eration rates for different sources. Also, we have ignored the problem of balancing packet

forwarding loads evenly among nodes in our design of the routing protocols. An interesting

97

future work would be to design routing protocols that select routes more intelligently to

evenly balance forwarding loads on different nodes in the network.

The multi-path based Dual Paths Protocol (DPP) that we have used in our dynamic

evaluation selects the two routing paths at the start of network operation and never adjusts

these paths later on in order to improve the percentage of successful delivery. It would be

interesting to use a more intelligent and dynamic multi-path protocol [48, 30, 50] on our

topologies to examine the performance of such protocols on these topologies.

The single-path based Hop-by-Hop Acknowledgment with local update (HHA) protocol

includes routing information in the packet which increases the number of bits that need to be

transmitted. In contrast, we could design a version of HHA where each node takes routing

decision independently to avoid the inclusion of routing paths in the packets. However,

this would increase the amount of computation in the network since each subsequent node

would have to perform the re-computation of routes in the face of link failures instead of just

the node that detects the failure. It would be interesting to examine this communication-

computation trade-off resulting from such decisions. In our HHA protocol, a node detecting

a failure has to include this information in each subsequent packet since the subsequent

nodes do not remember this information. It would be interesting to design a more intelligent

version of HHA in which a node remembers link failure information sent by the preceding

nodes and makes use of this information intelligently so that the preceding nodes do not

have to transmit this information more than once.

98

Bibliography

[1] I.F. Akyildiz, D. Pompili, and T. Melodia. Challenges for efficient communication in
underwater acoustic sensor networks. ACM Mobile Computing and Communication
Review, July 2007.

[2] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T.H. Lai. Deploying wireless sensors to
achieve both coverage and connectivity. In Proc. of MobiHoc '06, Florence, Italy, May
2006.

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an energy-efficient co
ordination algorithm for topology maintenance in ad hoc wireless networks. In Proc. of
the Seventh International Conference on Mobile Computing and Networking (MobiCom
2001), Rome, Italy, July 2001.

[4] R.R. Choudhury and N.H. Vaidya. Ad hoc routing using directional antennas. Technical
Report, UIUC, August 2002.

[5] R.R. Choudhury, X. Yang, R. Ramanathan, and N.H. Vaidya. Using directional an
tennas for medium access control in ad hoc networks. In Proc. of MOBICOM '02,
Atlanta, GA, September 2002.

[6] F. Dai, Q. Dai, and J. Wu. Power efficient routing trees for ad hoc wireless networks
using directional antenna. Ad Hoc Networks 3 (2005), pages 621-628.

[7] F. Dai and J. Wu. Efficient broadcasting in ad hoc wireless networks using directional
antennas. IEEE Transactions on Parallel and Distributed Systems, 17(4), April 2006.

[8] J. Diaz, J. Petit, and M. Serna. Random scale sector graphs. Tecnical Report, Univer-
sitat Politecnica Catalunya, 2003.

[9] P.G. Doyle and J.L. Snell. Random Walks and Electric Networks. Mathematical As
sociation of America, Washignton D.C., 1984.

[10] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with
wireless sensor networks. In International Conference on Acoustics, Speech and Signal
Processing, Salk Lake City, UT, May 2001.

[11] N. Farr, A.D. Chave, L. Freitag, J. Preisig, S.N. White, D. Yoerger, and F. Sonnichsen.
Optical modem technology for seafloor observatories. In Proc. of IEEE OCEANS'06,
Boston, MA, September 2006.

[12] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient, energy-efficient
multipath routing in wireless sensor networks. Mobile Computing and Communications
Review, 1(2), 2002.

[13] J.W. Giles and I.N. Bankman. Underwater optical communications systems part 2:
basic design considerations. In Proc. of IEEE MILCOM 2005, Atlantic City, NJ,
October 2005.

99

[14] H. Gupta, S.R. Das, and Q. Gu. Connected sensor cover: self-organization of sensor
networks for efficient query execution. In Proc. of MobiHoc '03, Annapolis, MD, June
2003.

[15] P.C. Gurumohan and J. Hui. Topology design for free space optical networks. In Proc.
of ICCCN 2003, Dallas, TX, October 2003.

[16] Y.T. Hou, Y. Shi, J. Pan, S.F. Midkiff, and K. Sohraby. Single-beam flow routing for
wireless sensor networks. In Proc. of IEEE GLOBECOM '05, St. Louis, MO, November
2005.

[17] C. Hu, Y. Hong, and J. Hou. On mitigating the broadcast storm problem with di
rectional antennas. In Proc. of IEEE International Conference on Communication,
Anchorage, Alaska, May 2003.

[18] A.F. Harris III and M. Zorzi. On the design of energy-efficient routing protocols in
underwater networks. In Proc. of IEEE SECON 2007, San Diego, CA, June 2007.

[19] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Ex
perimental Design, Measurement, Simulation, and Modeling. John Wiley and Sons,
1991.

[20] P. Karn. Maca a new channel access method for packet radio. In ARRL/CRRL
Amateur Radio 9th Computer Networking Conference, 1990.

[21] A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman. Integrated topology
control and routing in wireless optical mesh networks. Computer Networks Journal,
51:4237-4251, October 2007.

[22] D. Kedar and S. Arnon. A distributed sensor system for detection of contaminants in
the ocean. In Proc of SPIE (Society of Photographic Instrumentation Engineers) Vol.
6399, 639903(2006), Stockholm, Sweden, 2006.

[23] B. Kershner. The number of circles covering a set. American Journal of Mathematics,
61:665-671, 1939.

[24] S. Khuller, K. Lee, and M. Shayman. On degree constrained shortest paths. In European
Symposium on Algorithms, Eivissa, Spain, October 2005.

[25] E.F. Krause. Taxicab Geometry. Dover, NY, 1987.

[26] M. Krishnamoorthy, A.T. Ernst, and Y.M. Sharaiha. Comparison of algorithms for
the degree constrained minimum spanning tree. Journal of Heuristics, 7(6), November
2001.

[27] M. Kubisch, H. Karl, and A. Wolisz. A mac protocol for wireless sensor networks with
multiple selectable, fixed-orientation antennas. Technical Report, Technische Univer-
sitat Berlin, February 2004.

[28] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis, 2nd Edition. McGraw-
Hill Inc, 1991.

[29] U. Lee, J. Kong, J.-S. Park, E. Magistretti, and M. Gerla. Time-critical underwater
sensor diffusion with no proactive and negligible reactive floods. In Proc. of ISCC'06,
Sardinia, Italy, June 2006.

[30] S. Li and Z. Wu. Node-disjoint parallel multi-path routing in wireless sensor networks.
In In Proc. of the Second International Conference on Embedded Software and Systems
(ICESS '05), Xian, China, December 2005.

[31] J. Llorca, A. Desai, and S. Milner. Obscuration minimization in dynamic free space
optical networks through topology control. In Proc. of IEEE MILCOM 2004, Monterey,
CA, November 2004.

100

M. Molins and M. Stojanovic. Slotted fama: a mac protocol for underwater acoustic
networks. In Proc. of IEEE OCEANS'06, Boston, MA, September 2006.

U.N. Okorafor and D. Kundur. Efficient routing protocols for a free space optical sensor
network. In Proc. of IEEE MASS 2005, Washington D.C., November 2005.

B. Peleato and M. Stojanovic. A mac protocol for ad-hoc underwater acoustic sensor
networks. In Proc. of WUWNet'06, Los Angeles, CA, September 2006.

D. Pompili, T. Melodia, and I.F. Akyildiz. Deployment analysis in underwater acoustic
wireless sensor networks. In Proc. of WUWNet'06, Los Angeles, CA, September 2006.

D. Pompili, T. Melodia, and I.F. Akyildiz. A resilient routing algorithm for long-
term applications in underwater sensor networks. In Proc. of Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net), Lipari, Italy, June 2006.

D. Pompili, T. Melodia, and I.F. Akyildiz. Routing algorithms for delay-insensitive
and delay-sensitive applications in underwater sensor networks. In MobiCom'06, Los
Angeles, CA, September 2006.

F. Schill, U.R. Zimmer, and J. Trumpf. Visible spectrum optical communication and
distance sensing for underwater applications. In Proc. of the Australasian Conference
on Robotics and Automation, Canberra, Australia, December 2004.

W.K.G. Seah and H.-X. Tan. Multipath virtual sink architecture for underwater sensor
networks. In Proc. of the MTS/IEEE OCEANS2006 Asia Pacific Conference, Singa
pore, May 2006.

W.K.G. Seah and H.P. Tan. Multipath virtual sink architecture for wireless sensor
networks in harsh environments. In Proc. of InterSense'06, Nice, France, May 2006.

S. Skeina. Implementing Discrete Mathematics: combinatorics and Graph Theory with
Mathematica. Addison-Wesley, Redwood City, CA, 1990.

S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless sensor net
works. In Proc. of IEEE International Conference on Communication, Helsinki, Fin
land, June 2001.

J. H. Smart. Underwater optical communications systems part 1: variability of water
optical parameters. In Proc. of IEEE MILCOM 2005, Atlantic City, NJ, October 2005.

P. Sun, W.K.G. Seah, and P.W.Q. Lee. Efficient data delivery with packet cloning for
underwater sensor networks. In Proc. of UT07 and SSC07, Tokyo, Japan, April 2007.

A.S. Tanenbaum. Computer Networks, J^th Edition. Prentice Hall PTR, New Jersey,
2002.

Victoria Experimental Network Under the Sea. http://www.venus.uvic.ca/.

D. Tian and N.D. Georganas. A coverage-preserving node scheduling scheme for large
wireless sensor networks. In Proc. of First International Workshop of Wireless Sensor
Networks and Applications (WSNA '02), Atlanta, GA, September 2002.

J. Tsai and T. Moors. A review of multipath routing protocols: from wireless ad hoc
to mesh networks. In Proc. ACoRN Early Career Researcher Workshop on Wireless
Multihop Networking, July 2006.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection, storage
and retrieval with an underwater sensor network. In ACM SenSys'05, San Diego, CA,
November 2005.

101

http://www.venus.uvic.ca/

[50] S. Waharte and R. Boutaba. Totally disjoint multipath routing in multihop wireless
networks. In Proceedings of the IEEE International Conference on Communications
(ICC 2006), Istanbul, Turkey, June 2006.

[51] W.-C. Wang, C.-C. Hu, and Y.-C. Tseng. Efficient deployment algorithms for ensuring
coverage and connectivity of wireless sensor networks. In Proc. of the First Interna
tional Conference on Wireless Internet (WICON '05), Budapest, Hungary, July 2005.

[52] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and
connectivity configuration in wireless sensor networks. In Proc. of SenSys '03, Los
Angeles, CA, November 2003.

[53] D.B. West. Introduction to Graph Theory, 2nd Edition. Prentice Hall, New Jersey,
2006.

[54] J. Wu and F. Dai. A distributed formation of virtual backbone in manets using ad
justable transmission ranges. In Proc. of the 24th International Conference on Dis
tributed Computing Systems (ICDCS '04), Tokyo, Japan, March 2004.

[55] J. Wu, F. Dai, M. Gao, and I. Stojmenovic. On calculating power-aware connected
dominating sets for efficient routing in ad hoc wireless networks. Journal of Commu
nications and Networks, 4(1), March 2002.

[56] J. Wu and H. Li. On calculating connected dominating set for efficient routing in
ad-hoc wireless networks. In Proc. of the Third International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, Seattle, WA,
1999.

[57] P. Xie and J.H. Cui. R-mac: An energy-efficient mac protocol for underwater sensor
networks. In Proc. of WASA 2007, Chicago, IL, August 2007.

[58] P. Xie, J.H. Cui, and L. Lao. Vbf: vector-based forwarding protocol for underwater
sensor networks. UCONN Technical Report UbiNet-TR05-03, February 2005.

[59] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad-
hoc routing. In Proc. of the Seventh International Conference on Mobile Computing
and Networking (MobiCom 2001), Rome, Italy, July 2001.

[60] F. Ye, G. Zhong, S. Lu, and L. Zhang. Energy efficient robust sensing coverage in large
sensor networks. UCLA Technical Report, 2002.

[61] H. Zhang and J. Hou. Maintaining sensing coverage and connectivity in large sensor
networks. UIUC Technical Report, March 2005.

102

Appendix A

Implementation of FLD, D P P and
HHA

In this appendix, we present the implementation details of the three routing protocols that

we have used in our analysis.

A.l Implementation of Flooding (FLD)

In flooding (FLD), each node has one separate first-in-first-out SEND_BUFFER for each

outgoing link. In our simulation, we set the capacity of this buffer large enough so that an

overflow never occurs. Whenever a node receives a packet on one of its incoming link, it

checks the SOURCE and SEQ field of the packet and looks up its FLOODING.TABLE (de

scribed shortly) to see if this packet has been seen before. If so, the packet is simply ignored.

If not, the source and sequence number of the packet is inserted into FLOODING_TABLE

to avoid forwarding the packet again in future. Then the node finds out which of its neigh

bors the packet arrived from, let us call this neighbor n\. The receiving node then inserts

this packet to the SEND-BUFFER of each of its outgoing links except the one that leads

to n\. Packets are transmitted one by one from the head/front of each SEND .BUFFER on

the corresponding outgoing link.

FLOODING.TABLE in a node is the data structure that records which packets (se

quence number) from which source node have been seen and forwarded before. It consists

of N linked lists where N is the number of nodes in the network. The list for node i con

tains all the sequence numbers that have been seen by the node in question so far. The

sequence numbers in a list are maintained in descending order of magnitude in order to

103

make insertion and lookup very fast, since a node most of the time sees a sequence number

from a source that is close to the largest sequence number seen so far from that source.

The simulator of FLD has three events: PACKET_GENERATED, PACKET_ARRIVED

and BLOBSJVIOVE. A PACKET.GENERATED event occurs at node i when node i has

generated a data packet and it takes place ten times a second at a source node in our

simulation. A PACKET_ARRIVED event occurs at node i when node i has received a

packet on one of its incoming links. A BLOBSJVIOVE event for error blob j , 1 < j < 3,

occurs when blob j needs to move in a random direction by 1 decimeter to achieve its desired

speed. Pseudo-code of the event-handling procedures of these events have been presented

in Appendix C.l.

Events are maintained in a priority queue and scheduling an event means inserting the

event in this queue. Extracting an event from this priority queue returns the event with the

earliest time of occurrence. The main simulation loop extracts one event from the queue at

each iteration, advances the simulation clock to this event's time of occurrence and performs

the event-specific tasks (calls the appropriate event-handling procedure) depending on the

type of the event.

A.2 Implementation of Dual Paths Protocol (DPP)

The dual paths protocol (DPP) is implemented in the same way as FLD except the following

differences. Nodes no longer need to keep the FLOODING-TABLE data structure except

the sink which needs it in order to avoid receiving duplicate packets. The forwarding

technique is slightly different in DPP than in FLD which calls for appropriate changes. At

the beginning of network operation, each node computes the two paths suggested by DPP

(one path for TOPI) from each node in the network to the sink and finds out for which source

node it should forward a packet to which of its outgoing links. It stores this information

in a data structure called FORWARDING_TABLE. Because of the disjoint nature of the

selected paths, a node should forward a packet on a single outgoing link if the source of

the packet is a node different than itself. For a packet that is generated in the forwarding

node itself, the node should forward the packet on two different outgoing links (except in

TOPI). During network operations, a forwarding node can find out which outgoing link(s)

104

it should forward a packet on by simply looking up its FORWARDING-TABLE with the

source of the packet.

The simulator for DPP has the same three events as FLD: PACKET_GENERATED,

PACKET_ARRIVED and BLOBS_MOVE. The procedure for BLOBS_MOVE event is ex

actly the same as in FLD. For PACKET .GENERATED and PACKET_ARRIVED events,

DPP works the same way as FLD except that instead of placing the packet blindly on

all SEND_BUFFERs, the node in question looks up its FORWARDING-TABLE with the

source of the packet and places the packet only on the SEND_BUFFER(s) as suggested by

the lookup and schedules appropriate PACKET_ARRIVED events.

A.3 Implementation of Hop-by-Hop Acknowledgment Pro
tocol (HHA)

In hop-by-hop acknowledgment with local update protocol (HHA), each node has a first-in-

first out buffer called PACKET_BUFFER, as mentioned in Section 4.1.3, where all generated

and arrived data packets are kept and packets are forwarded from this buffer in first-in-

first-out manner the logic of which has been described in Section 4.1.3. In our simulation,

we keep this buffer large enough so that overflow never occurs. For each outgoing link of a

node, we can have maximum two packets waiting to be transmitted at the same time: one

is a DATA packet that the node decides to forward on this link and the other is an ACK

packet that the node needs to forward on this link in response to a DATA packet arrival.

Thus, for each outgoing link, we have a first-in-first out SEND_BUFFER that can hold

maximum two packets at a certain moment. Whenever a node decides to transmit a packet

on an outgoing link, it inserts the packet on the SEND_BUFFER of the corresponding link.

Packets are physically transmitted from the SEND_BUFFER in first-in-first-out fashion.

Note that once a node places a DATA packet on the SENDJBUFFER of an outgoing link

for transmission, it does not attempt the transmission of another DATA packet on the

same outgoing link until the packet is completely transmitted and moved out of the buffer

and either an ACK for that packet is received or a time ACK JNTERVAL is passed after

the transmission. Also, once a node places an ACK packet on the SEND_BUFFER of an

outgoing link for transmission, it does not attempt the transmission of another ACK packet

105

on the same outgoing link until the ACK packet is completely transmitted and the node

at the other end of the link transmits another DATA packet in response to this ACK. As a

result, a SEND_BUFFER can have at most two packets in it at a particular point in time,

one DATA and one ACK.

A node considers one of its outgoing links to be down when it transmits a DATA

packet on this link and does not receive an ACK before the timeout occurs. To detect the

revival of a down link, periodic transmission of echo packets or a timer can be used. It our

implementation, we assume that a node automatically knows when a link comes back up,

perhaps with the help of a special-purpose hardware.

The simulator for HHA has total five events, three of which are the same as FLD and

DPP: PACKET.GENERATED, PACKET_ARRIVED and BLOBS_MOVE. The two new

events in HHA are ACK_TIMEOUT and RETRY_TIMEOUT. An ACK_TIMEOUT event

at node i indicates that a time equal to ACK JNTERVAL has passed since the transmission

of a data to a neighbor, say node j , and no ACK from node j has been received. A

RETY_TIMEOUT event at node i indicates that a time equal to RETRY JNTERVAL has

passed since node i tried to forward a packet but could not do it since there was no active

outgoing link from it or no path from it to the sink was found. Pseudo-codes of the event-

handling procedures of these events have been presented in Appendix C.2.

A.4 Packet Formats

FLD and DPP both have only one type of packet: fixed-length data packets. The format

and size of different fields of such a packet is shown in Table A.l. We number the nodes

(total 144) from 0 to 143 and use these numbers as node IDs. Since our highest node ID

is 143, we use 8 bit fields for denoting node IDs, e.g., SOURCE and DESTINATION fields

in Table A.l. The TYPE field is 3 bits and it indicates what type of packet we are dealing

with (can only be DATA for FLD and DPP). The SEQ field carries sequence number of

the packet which is generated by the source of the packet. GENERATION_TIME is a

time-stamp that indicates when the packet was generated (inserted by the source) which a

forwarding node can compare against current time to determine whether the packet is too

old. The total size of each DATA packet in FLD and DPP is 1.051 Kb.

106

With HHA, we have variable length DATA packets and fixed length ACK packets. The

packet format of DATA packet remains the same as with DPP and FLD (see Table A.l)

except that variable length REMAINING_PATH and LINKS-DOWN fields are added at

the end. Since each node ID takes 8 bits, if there are n nodes in the path, the REMAIN-

ING-PATH field will be n*8 bits in length. On the other hand, each link is denoted by two

node IDs. Thus, if there are m links in the LINKS-DOWN field, its size will be m * 8 * 2

bits. Additionally, there are two fields, each 8 bits, indicating the length of these two fields

(n and m).

The ACK packet in HHA has three fields: TYPE, SOURCE and SEQ. Thus, the total

size is 27 bits (3 + 8 + 16). The SOURCE and SEQ fields are used by the node receiving

the ACK packet to match the ACK packet with outstanding data packets.

Field Name
PAYLOAD
TYPE
SOURCE
DESTINATION
SEQ
GENERATION-TIME
Total

Size
1Kb
3 bits
8 bits
8 bits
16 bits
16 bits
1.051 Kb

Table A.l: Different fields and their sizes in a fixed-length DATA packet of FLD/DPP
protocol

107

Appendix B

Verification and Validation of
Simulation Model

In this appendix, we present the steps we have taken to perform the verification and vali

dation of the simulation model described in Chapter 4. We have carried out a number of

standard verification and validation techniques [19] on our simulation implementation and

results. The first and the most important one is the modular design we have used through

out our implementation in order to keep it tractable and well-organized. Figure B.l shows

the key modules of our implementation and their relationships. We have implemented and

tested each of these modules separately. The MAIN module is the starting point of the

simulation and contains the logic for different experiments, e.g., varying hop distance or

varying error blob size. It uses the module TOPOLOGIES to generate the target topology

and then invokes one of the three modules FLD, DPP and HHA which are responsible for

performing simulation of FLD, DPP and HHA protocols, respectively.

The structure of each of the modules FLD, DPP and HHA is essentially the same

with different logic to reflect the protocol in hand. Each of these modules contains an

initialization routine, the routine with the main simulation loop and event handler routines

for each event. Since these modules are similar in structure, Figure B.l shows only the

helper modules of FLD. The BFS module has the logic and data structure to run breadth

first search (BFS) on a given graph and it uses the module QUEUE that provides logic

and data structure to implement a queue that is required by the BFS algorithm. The BFS

module is used to find out shortest paths in the graph and is useful in DPP and HHA

protocols. The module RANDOM has routines that supply uniform random numbers and

108

integers and routines that initialize the random number generator with the desired seed.

The module ERRORJBLOBS has routines that place error blobs randomly on the grid

and move the error blobs using random walk. It also has routines that verify whether

or not a given link (or node) is inside an error blob or intersects an error blob. These

routines are implemented with the support of the module ELLIPSE which has routines to

perform ellipse-specific calculations since error blobs are elliptical in shape. The module

STATION has routines that initialize and update different data structures of a station (e.g.,

flooding table, buffers) and search for specific entries in these data structures (e.g., search

for a sequence number in the flooding table). Finally, the module TIMING maintains the

event list and has routines for inserting and retrieving events from the event list which is

maintained as a priority queue.

MAIN

1 '

BFS

^ >

QUEUE

TOPOLOGIES

/

RANDOM

DPP HHA

ERROR BLOBS STATION TIMING

ELLIPSE

Figure B.l: Modules in the simulation implementation

The next technique after modular design that we have used to verify our implementation

is anti-bugging [19]. We have placed codes at different places in our implementation to check

for bugs and inconsistencies and exit from the simulation with error message if a bug or

inconsistency is detected. For example, if a PACKET .ARRIVED event happens at a node,

the receive buffer of the node must have a valid packet. We have assumed infinite buffer

space in our model. Thus, whenever we need to insert a packet in a buffer, the buffer

109

must have sufficient space to accommodate this packet. The number of dropped packets

added with the number of delivered packets should be equal to the number of generated

packets. In HHA, if a node other than the sink receives a DATA packet, the packet's

REMAINING-PATH must be non-empty and indicate the next node the packet should be

forwarded to. We have used anti-bugging code in our simulation to detect these and many

other potential bugs and inconsistencies.

We have generated detailed traces of our implementation to check for errors and inconsis

tencies. We have run the simulation with simple settings and short duration and examined

the generated traces to verify the model. In order to perform structured walk-through [19],

we have documented detailed pseudo-codes of our implementations and examined these

codes for errors and inconsistencies. We have also explained the pseudo-code of flooding

(FLD) protocol to Dr. Janelle Harms in order to cross-check the correctness of our im

plementation. We have used visual verification whenever possible. For example, we have

drawn the generated topologies from within the program to see that they are actually the

topologies we have intended to use. To verify that the ellipse calculations are correct, we

have drawn ellipses at different grid locations with different orientations and then we have

drawn straight lines at different locations to see of they intersect or are inside the ellipse

and if our program detects it correctly.

We have also run our implementation for some simple and tractable but representative

cases to verify correctness by comparing the outputs with analytical estimates. We present

one such example here. We use the settings of Figure 4.1 in Chapter 4 where node 6 sends

a packet to the sink (node 67) using HHA protocol on T0P6. We use an error blob smaller

than the one shown in Figure 4.1 so that the blob blocks only link 31-43 instead of both

31-43 and 32-44 as shown in the figure. We place an error blob (ellipse) with dimension a —

15m and b = 4m with horizontal orientation as shown in Figure 4.1. This error blobs blocks

link 31-43 (not link 32-44) so that the packets first travels along the path 6-7-19-31 and then

along the path 31-19-7-8-20-32-44-56-68-67 to reach the sink. We set the simulation time

equal to 100 msec which is the time required to generate one packet. In our implementation,

the simulation continues even after the specified time has expired so that all the packets

generated so far are handled (delivered or dropped). With 100 msec simulation time, the

110

simulation generates one packet and continues to run until this packet is delivered to the

sink or dropped.

With this settings, let us calculate the amount of data transmitted to deliver this packet

using HHA on TOP6. The initial intended path for this packet is 6-7-19-31-43-55-67 which

has 6 hops although the packet is rerouted after it has traveled 3 hops. Once the packet faces

the error blob at node 31, it is rerouted and delivered on the path 31-19-7-8-20-32-44-56-

68-67 which is 9 hops in length. Each DATA packet has a fixed length portion of 1.067 Kb

(a 1.051 Kb portion identical to a DATA packet in FLD and DPP, as shown in Table A.l,

and two 8 bit fields to indicate the lengths of REMAINING_PATH and LINKS-DOWN

fields). Since the packet travels total 12 hops (3 + 9), total data transmitted for the

fixed length portions of DATA packets is 12.804 Kb (1.067 * 12). For each node in the

REMAINING-PATH field, we have to transmit 8 bits of data at each hop. Thus, total data

transmitted for REMAINING-PATH fields is 8 * (6 + 5 + 4) bits for the initial path and 8

* (9 + 8 + 7 + + 1) bits for the rerouted path which sum up to 0.48 Kb. For each link in

the LINKS-DOWN field, we have to transmit 16 bits at each hop. The LINKS-DOWN field

is empty throughout the initial path and has one link (31-43) throughout the recomputed

path. Thus, total data transmitted for LINKS-DOWN fields is 16*9 bits or 0.144 Kb.

Finally, ACK packets are sent at each 3 hops in the first path and each 9 hops in the

rerouted path which results in a transmission of 324 bits or 0.324 Kb (12 * 27 since each

ACK packet has 27 bits). Therefore, total data transmitted for the delivery of this packet

is 13.752 Kb (12.804 + 0.48 + 0.144 + 0.324).

Since only one packet is generated and it is delivered, the delivery ratio should be 1.

Since the size of the payload field is 1 Kb, Average number of Payloads Transmitted per

Successful packet (APTS) should be 13.752 payloads/packet. We have observed that our

implementation produces these exact same values.

In order to validate our simulation outputs, we have examined the outputs for consis

tency thoroughly in our analysis in Section 4.5. For example, flooding (FLD) and dual

paths protocol (DDP) should have exactly same outputs for TOP2 since DPP uses two best

paths from each source to the sink and TOP2 has exactly two paths from each source to

sink which makes FLD work identically as DPP. In the plots shown in Section 4.5, we have

111

seen that this is exactly the case. Another example is TOP3 which is a shortest path tree.

With FLD and DPP, we should have the same delivery ratio and average delay per packet

(ADPP) for T0P3 since there is exactly one path from each source to sink. However, be

cause of unnecessary flooding in other branches of the tree, FLD incurs significantly more

transmissions than DPP and thus has higher values of APTS. We have seen exactly this

behavior in out plots in Section 4.5. With HHA on TOP3, packets are delivered on the

exact same path as with FLD and DPP, although waiting at a stuck node can introduce

some extra delay. Thus, Average number of Payloads Transmitted per Successful packet

(APTS) should be the same with HHA as with FLD and DPP. However, because of longer

and variable packet headers and the transmissions of ACK packets in HHA, we expect a

slightly higher APTS with HHA on TOP3 and this is exactly what we have observed in the

plots of Section 4.5.

112

Appendix C

Pseudo-code of Event Handlers for
the Simulation Models

In this appendix, we present pseudo-codes for different event handlers in the simulation

model for the flooding (FLD) and Hop-by-Hop Acknowledgment with local update (HHA)

protocol. It has been assumed that there is a global variable named simjdock that keeps

track of the current simulation time. Also, an event has five different fields. The field type

indicates what type of event it is, e.g., PACKET.ARRIVED, PACKET.GENERATED etc.

The field time indicates the time of occurrence of this event. The fields node and link indi

cate the node and the link, respectively, where the event has occurred. For BLOBS_MOVE

event, the node field indicates the error blob which needs to move to a new location. Finally,

The field success indicates whether the transmission of the packet was successful (relevant

only for PACKET-ARRIVED event).

For HHA, we additionally assume that a node has a variable forwarded-on-originalJink

that indicates whether the packet at the head of the PACKET .BUFFER that is waiting for

an ACK was transmitted on the link indicated by the original REMAINING-PATH field

of the packet (a value of 1 for the variable) or it was forwarded on a link suggested by the

recomputed path since the original intended link was down (a value of 0 for the variable).

We also assume that a DATA packet in HHA has a new filed called tx_endJbime that in

dicates the time when the transmission of this packet was finished. The txjendJtime field

in an ACK packet indicates the time when the transmission of the corresponding DATA

packet was finished. Therefore, when an ACK is transmitted, we copy the tx^endJime field

of the corresponding data packet into the tx_enddime field of the ACK packet. This field

113

indicates us when the timer for an ACK needs to be started.

The event handlers in HHA use the helper procedures FORWARD_ONE_PACKET and

RECOMPUTE-PATH, each called with node i to indicate at which node the forwarding or

re-computation should take place. These two procedures reflect the core logic of the HHA

protocol as described in Section 4.1.3.

C.l Event Handlers for FLD Protocol

Event Handler for P A C K E T _ G E N E R A T E D Event

let the event be e ;
let the event happened at node i (extracted from e) ;
construct a new packet at node i with next sequence number for i. Let us call this packet P ;
for each outlink is of node i

if outlink is of node i is busy
append P to SEND_BUFFER[is] of node i ;

else
let the outlink is of node i is connected with the inlink j r of node j ;
put packet P on the receive buffer for inlink j r at node j ;
place a new PACKET-ARRIVED event in the event-list with the following:

iype=PACKET_ARRIVED, time=sim.clock+P.size,
node—j, link=jr, swccess=current state of link (i-j)

mark outlink is of node i busy ;
append P to the SEND_BUFFER[is] of node i ;

place a new PACKET-GENERATED event in the event-list with the following fields:
iype=PACKET_GENERATED,
ttme=sim_docfc+PACKET_GENERATIONJNTERVAL,
node=i

Event Handler for B L O B S _ M O V E Event

let the event be e ;
let the event happened for error blob i (extracted from e) ;
move error blob i to a new location as suggested by the mobility model ;
for each event g in the current event list that has type PACKET-ARRIVED

let this event indicates a packet arrival from node m to node n ;
if the new location of error blob i blocks link (m-n)

set g.success=false ; / / indicates that the packet transmission was unsuccessful
place a new BLOBS-MOVE event in the event-list with:

iype=BLOBS-MOVE, ttme=sim_cZocA;+ERROR_BLOBSJNTERARRIVAL,
node=i / / indicates that the event occurs for error blob %

114

Event Handler for P A C K E T _ A R R I V E D Event

let the event be e ;
let the event happened at inlink ir of node i (extracted from e) ;
extract the packet from receive buffer ir of node i. Let us call this packet P ;
let the inlink ir of node i is connected with the outlink j s of node j ;
delete a packet from the head of SEND_BUFFER[js] of node j ;
if SEND_BUFFER[js] of node j is empty

mark outlink j s of node j not busy ;
else

put the next packet in SEND_BUFFER[js] of node j on the receive buffer ir of node % ;
place a new PACKET-ARRIVED event in the event-list with the following fields:

iype=PACKET_ARRIVED, time=sim-dock+size of this new packet,
node=i, link=ir, success=current state of link (j-i)

update simulation variable total-bits-transmitted to reflect the transmission of the packet P ;
if e. success = false

return; / / return from handler if the packet transmission was corrupted
if P is not a DATA packet / / only DATA packets are allowed in FLD

return;
let the source and the sequence number of the packet be s and seq, respectively ;
if the touple (s, seq) is present in the FLOODING-TABLE of node i

return ; / / this packet has been seen before
insert the touple (s, seq) into the FLOODING.TABLE of node i ;
if node % is the sink

update simulation variables packets-delivered and total-delay to reflect
successful delivery of this packet and to include its delay in the output metric ;

else
for each outlink is of node i except the outlink that connects to node j

if outlink is of node i is busy
append P to SEND.BUFFER[is] of node i ;

else
let outlink is of node i is connected with the inlink kr of node k ;
put packet P on the receive buffer for inlink kr at node k;
place a new PACKET-ARRIVED event in the event-list with:

type=PACKET_ARRIVED, time=sim-dock+P.size,
node=k, link=kr, success=current state of link (i-k)

mark outlink is of node % busy ;
append P to the SEND_BUFFER[is] of node i ;

115

C.2 Event Handlers for HHA Protocol

Event Handler for PACKET_GENERATED Event

let the event be e ;
let the event happened at node i (extracted from e) ;
construct a new packet P at node % with next sequence number for i and with the following:

REMAINING_PATH=PRIMARY_PATH for node i
LINKS.DOWN=nil

place P on PACKET_BUFFER of node i ;
if PACKET_BUFFER of node i was empty before inserting P

call FORWARD_ONEJ?ACKET(node i) ;
place a new PACKET.GENERATED event in the event-list with the following fields:

t ype=PACKET_GENERATED,
time=stm_docfc+PACKET_GENERATIONJNTERVAL,
node=i

Event Handler for BLOBS_MOVE Event

let the event be e ;
let the event happened for error blob i (extracted from e) ;
move error blob i to a new location as suggested by the mobility model ;
for each event g in the current event list that has type PACKET-ARRIVED

let this event indicates a packet arrival from node m to node n ;
if the new location of error blob i blocks link (m-n)

set g.success—false ; / / indicates that the packet tx was unsuccessful
place a new BLOBS-MOVE event in the event-list with:

iype=BLOBS.MOVE,
iime=sim-docfc+ERROR-BLOBS-INTERARRIVAL,
node=i // indicates that the event occurs for error blob i

for each node j in the grid
for each link j-k from node j

if the link j-k is not inside or intersects any of the current error blobs
mark link j-k up in the LINK-STATUS structure of node j ;

116

Event Handler for A C K L T I M E O U T Event

let the event be e ;
let the event happened at outlink is of node i (extracted from e) ;
mark this outlink down in the LINK_STATUS structure of node i ;
if forwarded-on^originaLlink=0 for node i

if PACKETJBUFFER of node i is not empty
call FORWARD_ONEJPACKET(node i) ;

else
print error and exit ;

else
let x be the number of outlinks of node i that are up according to its LINK-STATUS;
if x=0

place a new RETRY_TIMEOUT event in the event-list with:
type=:RETRY_TIMEOUT,
time=sim_docfc+RETRYJNTERVAL,
node=i

else
if PACKET.BUFFER of node i is not empty

call RECOMPUTE_PATH(node t) ;
else

print error and exit ;

Event Handler for R E T R Y _ T I M E O U T Event

let the event be e ;
let the event happened at node i (extracted from e) ;
call FORWARD_ONE_PACKET(node i) ;

117

Event Handler for P A C K E T _ A R R I V E D Event

let the event be e ;
let the event happened at inlink ir of node i (extracted from e) ;
let us assume the following:

inlink ir of node i is connected with the outlink j s of node j
outlink is of node i is connected with the inlink j r of node j

extract the packet from receive buffer ir of node i. Let us call this packet P ;
delete a packet from the head of SEND_BUFFER[js] of node j ;
if SENDJBUFFER[js] of node j is empty

mark outlink j s of node j not busy ;
else

let the packet at the head of SEND .BUFFER^] of node j be Q ;
if Q is a DATA packet

set Q.tx-endjtime—simjdock+Q.size ;
put the packet Q on the receive buffer ir of node i ;
place a new PACKET_ARRIVED event in the event-list with the following :

type=PACKET.ARRIVED, time=sim.clock+Q.size,
node=i, link=ir, success=current state of link (j-i)

update simulation variable total-bits-transmitted to reflect the transmission of P ;
if P is a DATA packet

if e.SM<xess=true
/ / send ACK to node j :
build a new packet of type ACK called P-ACK with the following:

source and sequence of P-ACK identical to that of P
set P-ACK.tx-end-time = P'.tx-end-time

append P-ACK to the SEND.BUFFER[is] of node i ;
if outlink is of node i is not busy

put the packet P_ACK on the receive buffer j r of node j ;
place a new PACKET-ARRIVED event in the event-list with:

fype=PACKET_ARRIVED,
time=sim-clock+PLACK, size,
node=j, link=jr, success=current state of link (i-j)

mark outlink is of node i busy ;
/ / sending ACK complete
if node i is the sink

if this packet P has not been seen before
add this packet to the list of packets seen so far ;
update simulation variables packets-delivered
and total-delay ;

else
place P on PACKET_BUFFER of node i ;
if PACKET.BUFFER of node % was empty before inserting P

call FORWARD.ONE_PACKET(node i) ;
else / / e.success=false

place a new ACK-TIMEOUT event in the event-list with the following:
type=ACK_TIMEOUT, time=P.te_end_ttme+ACK_INTERVAL,
node=j, link=js

else if P is an ACK packet
if e.success=true

let R be the packet at the head of PACKET_BUFFER of node i ;
if source and sequence number of R matches with that of P

delete one packet from the head of PACKET-BUFFER of node i ;
if PACKETJ3UFFER of node i is not empty

118

call FORWARD_ONE_PACKET(node t) ;
else

print error and exit ;
else

place a new ACKJTIMEOUT event in the event-list with the following:
fyj9e=ACK_TIMEOUT, time=P.tx_endJime+ACKJNTERVAL,
node=i, link=is

P r o c e d u r e F O R W A R D _ O N E _ P A C K E T (argument: n o d e i)

let the packet at the head of PACKET_BUFFER of node i be packet P ;
/ / find the first packet in the PACKET-BUFFER that is not too old:
while (sirri-dock - generation time of packet P > TTL)

delete packet P from the PACKET-BUFFER of node i ;
if PACKET_BUFFER of node i is not empty

let the packet at the head of PACKET-BUFFER of node i be packet P ;
else

return ;
let the next node in P.REMAININGJPATH be node j ;
let the outlink is of node i is connected with the inlink j r of node j ;
if the link (i-j) is up according to LINK-STATUS structure of node i

make a copy of P, let's call it Q ;
remove node j from Q.REMAINING-PATH ;
append the links that are down according to LINK-STATUS of i to Q.LINKS-DOWN;
update Q.size to reflect the new size of the packet ;
append Q to the SEND-BUFFER[is] of node i ;
if outlink is of node i is not busy

set Q.tx.end-time=simjclock+Q.size ;
put the packet Q on the receive buffer j r of node j ;
place a new PACKET-ARRIVED event in the event-list with:

tj/pe=PACKET_ARRIVED, time=sim-dock+Q.size,
node=j, link=jr, swccess=current state of link (i-j)

mark outlink ia of node i busy ;
set forwarded.on.original_link=l for node % ;

else
let x be the number of outlinks of node i that are up according to its LINK-STATUS ;
if x=0

place a new RETRY-TIMEOUT event in the event-list with:
ij/pe=RETRY-TIMEOUT, £ime=sim_docfc+RETRYJNTERVAL,
node=i

else
call RECOMPUTE.PATH(node i) ;

119

P r o c e d u r e R E C O M P U T E J P A T H (a r g u m e n t : n o d e i)

let the packet at the head of PACKET.BUFFER of node i be packet P ;
create a copy of the current topology ;
remove from this topology those links that are indicate down by LINKJ3TATUS
of node i and LINKS-DOWN field of packet P ;
apply shortest path algorithm on the new topology to find a new shortest path from i to sink ;
if no such path exists

place a new RETRY.TIMEOUT event in the event-list with:
iype=RETRY_TIMEOUT, time=sim_docfc+RETRYJNTERVAL,
node=i

return ;
let the newly computed path indicates that the next node from % to sink is node j ;
let the outlink is of node % is connected with the inlink j r of node j ;
make a copy of packet P, let's call it packet Q ;
set Q.REMAINING-PATH=newly computed path ;
append the links that are down according to LINK.STATUS of i to Q.LINKS.DOWN ;
update Q.size to reflect the new size of the packet ;
append Q to the SEND_BUFFER[is] of node i ;
if outlink is of node i is not busy

set Q.tx-end-time=sim.clock+Q.size ;
put the packet Q on the receive buffer j r of node j ;
place a new PACKET .ARRIVED event in the event-list with:

type=PACKET_ARRIVED, time=sim^clock+Q.size,
node=j, link=jr, success=current state of link (i-j)

mark outlink is of node i busy ;
set forwarded-on„originalJink=0 for node i ;

120

