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A unifying theory for 2d spatial redistribution kernels with
applications in population spread modelling

Dean C. Koch1,∗, Mark A. Lewis2, Subhash R. Lele3

University of Alberta, Edmonton, Canada, T6G 2R3

Abstract

When building models to explain the dispersal patterns of organisms, ecologists often

use an isotropic redistribution kernel to represent the distribution of movement dis-

tances based on phenomenological observations or biological considerations of the un-

derlying physical movement mechanism. The Gaussian, 2d Laplace and Bessel kernels

are common choices for 2-dimensional (2d) space. All three are special (or limiting)

cases of a kernel family, the WMY, first derived by Yasuda from an assumption of 2d

Fickian diffusion with gamma distributed settling times. We provide a novel deriva-

tion of this kernel family, using the simpler assumption of constant settling hazard, by

means of a non-Fickian 2d diffusion equation representing movements through hetero-

geneous 2-dimensional media having a fractal structure. Our derivation reveals con-

nections among a number of established redistribution kernels, unifying them under

a single, flexible modeling framework. We demonstrate improvements in predictive

performance in an established model for the spread of the mountain pine beetle upon

replacing the Gaussian kernel by the WMY, and report similar results for a novel ap-

proximation, the pWMY, that substantially speeds computations in applications to large

datasets.
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1. Introduction

Ecologists are concerned with questions of an inherently spatial nature, since move-

ment and environmental heterogeneity are ubiquitous features of the natural world.

They are therefore often rewarded by new insights when the mechanism underlying a

spatial effect can be worked into a process model [1]. Redistribution kernels are a pop-

ular means to this end, with applications as diverse as predator-prey interactions [2];

range expansion and invasion biology [3]; grouping/swarming behaviour [4]; chemical

communication [5]; and cellular transport [6].

Statistical ecologists study many of the same questions, but with a focus on char-

acterizing the randomness in measurements. This, too, is a spatial problem. Ecological

datasets typically exhibit spatial autocorrelation (SAC) [7], which, if ignored, reduces

the precision of estimators [8]. A common solution is to use phenomenological mod-

els, known as covariograms (or covariance kernels), that map separation distances to

correlations [9].

Covariograms are qualitatively similar to redistribution kernels – both describe a

tapering of relatedness with spatial scale, so it is perhaps unsurprising that the same

function families often take on both roles. An example that we find particularly inter-

esting is the function known variously as the Whittle-Matérn [11] or K-Bessel kernel

[12]. Its versatility and mathematical elegance make it one of the most important covar-

iograms in spatial statistics [13]. Yet, in spite of many advantages over more familiar

alternatives (eg. the Gaussian), this function receives little attention in the context of

movement modelling.

Up to a normalization constant (and a restriction on the shape parameter), the

Whittle-Matérn is identical to the K-Bessel redistribution kernel first derived by Ya-

suda [12], and later by Yamamura [14] and Hapca et al. [15]. We focus in this paper on

its potential as a movement model, offering a new mechanistic derivation. However, as

the literature on covariograms contains decades worth of analysis into its mathematical

properties, we refer to this function as the Whittle-Matérn-Yasuda (WMY) kernel.

2
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1.1. Redistribution kernels

A redistribution kernel D(x,x′) maps pairs of coordinates (source x′ and destina-

tion x) to the probability density for the redistribution event from x′ to x. When mod-

eling movement events having a random character, kernels provide a simple means of

parametrizing the probability density function (PDF) for position following the move-

ment event. For example, in process-based models, redistribution kernels are often

derived from partial differential equations (PDE) representing the (time) evolution of

the position PDF during a random walk [16].

The simplest such models are stationary, meaning their kernels are functions of

the separation vector r = x − x′ only, independent of location. When isotropy (radial

symmetry) is also assumed, kernels can be defined more simply as a function of r = |r |.

Of these simpler kernels, the isotropic Gaussian (Table 1) is the most widely used. It

solves a PDE for Fickian diffusion proceeding until a particular (fixed) time.

shape (κ) kernel name density* D(r) mechanistic derivation

(−1, 0) - (r/ρ)κKκ (r/ρ) 2d fractal diffusion with constant

settling hazard (Section 2.1)

0 Bessel K0(r/ρ) 2d Fickian diffusion with constant

settling hazard [17]

1/2 2d Laplace exp(−r/ρ) 2d turbulent diffusion with instanta-

neous settling [18]

∞ Gaussian exp(−(r/ρ)2) 2d Fickian diffusion with instanta-

neous settling [19]

Table 1: Notable examples of stationary isotropic kernels from the WMY family, D(r; κ, ρ). All

arise from 2d Fickian diffusion with gamma-distributed settling times [12]. The special cases

listed here have been derived independently under various movement models. Alternatively, the

full WMY family can be derived by repeated iterations of the kernel in the top row (Section 2.2).

*for brevity the normalization 1/2π
∫ ∞
−∞

rD dr is omitted.

3
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With 2-dimensional (2d) isotropic models, one must take care to distinguish be-

tween the full density D(r) = D(r, θ) of the random point (R,Θ) and the marginal

density Dr (r) of the random radius R (ie. distance). The two are related by

Dr (r) :=
∫ 2π

0
D(r, θ)r dθ = 2πrD(r, θ) = 2πrD(r), (1)

where factor r in the integrand is the Jacobian of the polar transformation, so that∫
R2 D =

∫ ∞
0 Dr (r) dr = 1. This distinction between marginal and full densities is

important, but sometimes unclear in the ecological literature. Our notation will always

indicate the marginal by a subscript, as we do in (1).

The WMY is an important example of a stationary and isotropic kernel:

D(r; κ, ρ) = A (κ, ρ) (r/ρ)κKκ (r/ρ) , with 1/A (κ, ρ) = 2κ+1πρ2
Γ(κ + 1), (2)

where Kκ denotes the κth order modified Bessel function of the second kind (Appendix

1.1), ρ > 0 is a distance-scaling (range) parameter, and κ is a kurtosis (shape) param-

eter. The domain of κ depends on the application: For covariance, κ > 0 (to guarantee

positive definiteness); and for redistribution, κ > −1 (to guarantee integrability). By

studying κ we will see that the WMY is closely related to a number of other kernels in

common use, generalizing some the most prominent ones (Table 1), while providing a

more flexible range of tail behaviours (see Section 2.3).

This makes the WMY an unusually flexible model for the spread of populations.

An important example from our research area is the mountain pine beetle (MPB). Dis-

persal flights of this forest pest allow populations to spill outward into neighbouring

areas, and are therefore a key component of models for the progression of outbreaks

moving across the landscape. We discuss the use of redistribution kernels in such ap-

plied situations in Section 3, showing how the WMY (and a computationally efficient

approximation, the pWMY) can improve model fit when used in place of the less flex-

ible Gaussian kernel in a popular model for MPB forest damage patterns.

The bulk of this paper, however, is devoted to developing a new process-based

mechanism to explain how this kernel arises. To motivate the use of equation (2) more

generally, we derive the WMY kernel as the solution to a partial differential equation

(PDE) for diffusion through inhomogeneous habitat, with a constant hazard of settling

4
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(Section 2). In the course of this derivation we highlight the many appealing mathe-

matical properties of the WMY, and draw connections between the WMY and number

of other, better-established, isotropic models for redistribution.

2. The WMY as a model for diffusion with settling

In Yasuda’s 1975 paper [12], the WMY was derived as the settled density solution

to a Fickian diffusion process with gamma-distributed settling times. Equation (2) can

therefore be understood as an extension of the Bessel kernel (Table 1), with a more

general characterization of stopping times. Both models, however, assume the random

walk takes place in unrestricted 2d space. We will relax this assumption, by assuming

instead that obstacles in the environment may inhibit movements to some degree.

In statistics, the WMY is derived from the stationary random field solution of a

fractional stochastic PDE resembling a generalized Helmholtz equation [20]. This sug-

gests that as a redistribution kernel, the WMY might also solve a similar deterministic

PDE involving fractional derivatives. These exotic dynamical systems often appear in

connection with the statistical mechanics of (non-Fickian) diffusion through complex

media that hinder movement. They are studied in physics, for example, to explain the

physical and chemical properties of porous substrates [21]. Here we adapt those results

in the ecological context to find a versatile macro-scale description of random walks.

2.1. Diffusion over fractal media in 2d

To constrain the movements of our random walker, we view the domain of move-

ment as a porous 2d medium with a fractal structure, rather than a full 2d space. This

more faithfully reflects the type of movement behaviours that actively track patchy ar-

rangements of habitat, or navigate around complex arrangements of physical obstacles.

Fractal environments are not an unfamiliar idea in ecology. Fractal aspects of tree

crown cover, hydrological networks, and topography have been recognized for decades

[22]. These structures often exhibit power laws under scaling that allow their pertinent

features to be summarized by simple parameters, such as the Hausdorff dimension d f

[23]. The flight of a MPB, for example, is constrained within a complex network of

5
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gaps in the forest vegetation. Like many aspects of forest structure, the porosity of this

abstract medium can be conveniently described using d f [24]. For example Jonckheere

et al. improved predictions of light penetration in pine forests by estimating the d f

value in hemispherical images of scots pine canopy gaps, finding them to be highly

fractal [25]. We will use d f to describe the porosity of the patchy space navigated by

random walker.

d f summarizes space-filling properties. In full 2d space, the area enclosed in a disc

of radius r scales as πr2, whereas in an embedded fractal space it scales as πrd f [26].

Unlike the topological dimension (in our case, d = 2), Hausdorff dimension can assume

non-integer values. One can define spaces with 0 < d f < 2 that nearly fill the plane,

yet leave a complex arrangement of patches inaccessible, with the availability of habitat

decreasing with d f . [27], for example, used Hausdorff dimension to characterize the

quality of marten habitat, estimating a d f in the range of 1.7-1.9 for pine and spruce

forests in their Utah study area.

In the context of random walks, a fractal medium offers less space for movement.

This prompts some adjustments of the balance law behind Fickian diffusion: Sup-

pose u(r, t) is a PDF for occupancy within the available space at radius r , at time t.

If all of R2 were available, the density within the annulus Ω would be measured by

2π
∫
Ω

u(r, t)r dr . On a d f -dimensional fractal it is:

2π
∫
Ω

u(r, t)p(r)r dr where p(r) = rd f −2 , and 0 < d f ≤ 2. (3)

The scaling function p(r) = πrd f /πr2 is the proportion of the area inside radius r that is

available for movement. For notational convenience we will suppress this dependence

on r (and d f ) and simply write p. Function u(r, t) is therefore an occupancy PDF

with the (unusual) distance-scaled probability measure pr dr . Under the more familiar

Lebesgue measure, the PDF is D(r, t) = u(r, t)p with measure r dr .

In their 1985 paper [28], OShaughnessy and Procaccia described how the usual

equation for Fickian diffusion may be modified in order to remain consistent with the

scaling property (3). Their generalized 2d heat equation describes the time-evolution

6
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of D(r, t)/p = u(r, t):

∂u
∂t

=
1
pr

∂

∂r

(
αpr

∂u
∂r

)
with α > 0, u(r, 0) =

δ(r)
2πpr

, (4)

where δ(r) denotes the 1d Dirac delta function (and δ(r)/2πpr its 2d analogue), rep-

resenting the initial departure of the disperser from the origin. Notice the diffusivity

coefficient αp = αrd f −2 scales with distance, approximating correlations in move-

ments due to geometrical constraints [21]. Under the condition u → 0 as r → ∞

(required for a valid PDF), the general solution to (4) is known. Switching to Lebesgue

measure, it can be written:

D(r, t) = u(r, t)p =
(
πΓ(d f /2)(4αt)d f /2

)−1
rd f −2 exp

(
−r2/4αt

)
. (5)

D(r, t) is the PDF for the position (r, θ) at time t of a random walker that departs the

origin at t = 0 and diffuses through a medium with Hausdorff dimension d f . The effect

of decreasing d f is to make this density function fatter-tailed, with density shifted from

the shoulders of the distribution towards its extremities.

Note that u(r, t) is simply a Gaussian kernel renormalized for measure pr dr . In-

deed when d f = 2 we have D(r, t) = u(r, t) (since p = 1), and equation (4) is the classi-

cal 2d heat equation in radial coordinates, with the 2d Gaussian kernel its well-known

solution [4]. When d f = 1 equation (4) simplifies to become a 1d diffusion equa-

tion (since pr = 1), so in the resulting marginal density function Dr = 2πu(r, t)pr =

2πu(r, t) we find the 1d Gaussian kernel.

2.1.1. Settling via constant hazard

To build a redistribution kernel directly from (4)-(5), one could simply assume

movement proceeds until a particular fixed time t. However, in reality, the duration of

dispersal is often stochastic. Unpredictable environmental factors such as temperature

may compel the random walker to wait out unfavourable conditions [29]. Moreover,

settling events can be prompted by chance encounters, such as the detection of a prey

item [30] or mate [12].

Preferring a model that accounts for randomly cued settling events, we suggest a

simple extension of (4) that introduces a constant settling hazard λ > 0. We then define

7
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our kernel as the total settled density over all time. Thus we have D =
∫ ∞

0 λup dt, with

p defined as in (3), and:

∂u
∂t

=
α

pr
∂

∂r

(
pr
∂u
∂r

)
− λu with u(r, 0) =

δ(r)
2πpr

and lim
r→∞

u(r, t) = 0. (6)

Here the disperser moves about the domain as in (4) but settles at a randomly de-

termined time, drawn from an exponential distribution with mean 1/λ. D(r) now ex-

presses the PDF for position at the time of settling. To find D, one can integrate the

PDE (6) over all time and consider weak solutions u (Appendix 1.3.2). The resulting

kernels are the singular members of the WMY family:

D(r) =

∫ ∞

0
λup dt = D(r; κ, ρ) where κ = d f /2 − 1 and ρ2 = α/λ. (7)

These WMY kernels (−1 < κ ≤ 0) also emerge as the long-time limit of u(r, t)p

when the point source is stationary in time rather than instantaneous. To see this,

we modify (6) by viewing λ as a mortality hazard and adding a source term F =

λδ(r)/2πpr to the right-hand-side of the PDE. Dispersers are therefore continuously

introduced from the origin, and continously removed throughout R2 in a density-

dependent manner. The steady state in this smokestack-like system is limt→∞ u(r, t)p =

D(r; κ, ρ), with κ, ρ defined as in (7) (Appendix 1.3.1).

The (non-fractal) case of d f = 2 produces a Bessel kernel, or D(r; 0, ρ). This

model has a long history in ecology, as a description of the movements of worms [17]

and moths [31]; and later as a model for the biological activity of a chemical diffusing

outward from the center of a petri dish [32]. More recently, approximations of the

Bessel kernel have been used to model bark beetle dispersal flights [30, 49].

2.2. Multi-stage extensions

Redistribution events may naturally split into multiple stages. For example, diurnal

periods of flight activity occur in many insect orders [33]. Moreover forest-dwelling

insects like the MPB may initially fly in the unrestricted space above the canopy before

switching to subcanopy dispersal [29]. In this section we look at two simple ways of

extending (6) to model multi-stage processes.

8
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2.2.1. Switching via constant hazard

The first idea is to connect each stage by a switching hazard with rate constant

λ > 0. Writing um(r, t)p for the density in the mth stage, we assume an instantaneous

point release of unit density initializes dispersers in the first stage, so that the dynamics

of u1 are the same as u in (6). As time progresses, this initial impulse trickles through

subsequent stages, eventually exiting the nth stage at rate λ (as settled density). We

will be interested in the long-term settled density:

D(r) = Un(r)p = λ

∫ ∞

0
un(r, t)p dt , where (8a)

∂u1

∂t
=
α

pr
∂

∂r

(
pr
∂u1

∂r

)
− λu1 , with u1(r, 0) =

δ(r)
2πpr

, (8b)

and, for 1 < m ≤ n,

∂um

∂t
=
α

pr
∂

∂r

(
pr
∂um

∂r

)
+ λum−1 − λum , with um(r, 0) = 0. (8c)

Assuming limr→∞ um(r, t) = 0, an analytic solution is available (Appendix 1.3.3):

D(r) = U(r)p =
(
2n−1+d f /2πρ2

Γ(n)Γ(d f /2)
)−1

(r/ρ)n−2+d f /2 Kn−d f /2 (r/ρ) , (9)

where ρ2 = α/λ. The PDF in (9) is simply the (renormalized) product of the WMY

kernel D(r; n − d f /2, ρ) with the scaling function p. Thus in the non-fractal case of

d f = 2 it produces the kernel family D = U = D(r; n − 1, ρ). This extends the Bessel

kernel (n = 1) to yield a sequence of PDFs that are concave and bounded in their

approach to the origin. These are special cases of Yasuda’s gamma-distributed settling

time model [12], if we interpret settling time as a sum of exponentials (representing

time spent in each of the stages).

For d f < 2, however, the distribution (9) remains unbounded at the origin for all

n. In general, by increasing n we shift density away from the tails, effectively stalling

dispersers near the origin. Decreasing d f has the opposite effect, producing fatter tails

and a highly peaked shape.

This approach of linking PDEs for n-stage processes was suggested by Neubert,

Kot and Lewis [2] to describe (non-fractal) diffusion with settling on the real line. In

their 1d model, the solution is a product of a Laplace kernel and a polynomial of order

n − 1. These same kernels were later proposed as extensions of the Laplace that are

9
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robust to changes in sampling frequency [34]. We show in Appendix 1.3.3 that they

emerge also from (8)-(9), as the marginal density functions (Dr ) for d f = 1.

2.2.2. Convolutions of WMY kernels

A simpler approach to the n-stage modeling problem is to suppose a long time

delay separates stages. Thus within each stage, we assume the diffusion process (6)

operates until (nearly) all density has settled. The t → ∞ limit in (7) then becomes

initial data for the next stage. Under this assumption, the nth stage settled density can

be written as a convolution of n WMY kernels.

This is because when a population independently undergoes the redistribution pro-

cess represented by D twice in succession, the resulting composite kernel is the au-

toconvolution D ∗ D. More generally if a population undergoes a sequence of n in-

dependent redistribution stages described by the kernels D(1) , D(2) , . . . D(n) then their

combined effect is D = D(1) ∗ D(2) ∗ · · · ∗ D(n).

Certain kernels have the property of closure under n-part convolutions. Chesson

and Lee explained how this property aids interpretability, using it to develop redistri-

bution kernels for lattice data [35]. The Gaussian kernel is an example. The WMY is

another, provided the range parameter ρ > 0 is fixed in all stages (Appendix 1.2). In

particular if D(m) = D(r; κm , ρ) is a 2d WMY,

D(1) ∗ D(2) ∗ · · · ∗ D(n) = D (r; κ, ρ) , where κ = n − 1 +

n∑
m=1

κm . (10)

Note that we may assume the shape parameters κm belong to (−1, 0], since 0 <

d f ≤ 2. So by allowing arbitrary n > 0, the model (10) generates the complete set of

thinner-tailed and bounded WMY kernels (0 < κ < ∞) not captured by the single stage

model (6) in the previous section.

By adding stages we increase κ, shifting density away from the tails and origin,

and towards the shoulders of the distribution. Thus as κ increases through zero, D

becomes bounded at the origin; and as κ increases through 1/2, its approach to the

origin switches from convex to concave (Appendix 1.2). With further increases in

κ, the WMY increasingly resembles a 2d Gaussian kernel; In fact if we parametrize

ρ2 ∝ 1/κ, then D limits to a Gaussian kernel as κ → ∞ [36].
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When κ = 1/2 the WMY simplifies to D(r; 1/2, ρ) = (2πρ2)−1 exp(−r/ρ), which

has the same functional form as a (1d) Laplace kernel. The Laplace is the 1d analogue

of the Bessel; it arises from diffusion with constant-hazard settling in R1 [4]. In the 2d

setting, this exponential form arises from turbulent limnological diffusion [18]. How-

ever in ecological applications it is frequently invoked simply as a phenomenological

model [eg. as in 37, 38]. Equations (6)-(7) and (10) provide a new mechanistic origin

for this 2d Laplace kernel. κ = 1/2 can arise, for example, in a two-stage process

where the first stage of diffusion takes place in unrestricted 2d space (with d f = 2) and

the second in a fractal medium with d f = 1 (so that κ1 = 0 and κ2 = −1/2).

Note that if all the κm are identical, (10) expresses that the WMY family is robust to

changes in sampling frequency. In fact Schlägel and Lewis described the WMY family

implicitly (in Fourier space) as their first example of a 2d kernel with this property [34].

Equation (2) provides its explicit (back-transformed) density function.

2.3. Flexibility in kurtosis

The foregoing derivations are meant to illustrate how WMY patterns of redistribu-

tion might arise in a very wide range of ecological systems. In ecology, inhomogeneous

environments are the rule rather than the exception. It therefore makes sense to relax the

assumption of unrestricted movement while retaining it as a special case (the Bessel),

as we did in the model (6). The natural extension in (10) generates a wide spectrum of

kernel shapes, ranging from highly singular and heavy-tailed examples like the Bessel,

to the highly smooth and thin-tailed Gaussian kernel. Let us now consider how this

flexibility in shape is also attractive from a phenomenological standpoint.

One of the more important factors to consider when modeling redistribution is the

balance of peakedness and tailedness in a kernel, or its kurtosis. In R1, kurtosis is

the standardized fourth moment. In R2, we use the bivariate kurtosis measure k(D)

suggested in [39],

k(D) =

∫ ∞
0 r4Dr dr(∫ ∞

0 r2Dr dr
)2 . (11)

This definition is similar to the univariate case, but differs in using moments of

Dr (rather than D), and centering them on zero (rather than the nonzero marginal

11
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mean of r). This concisely summarizes the relevant behaviour of isotropic kernels;

Larger values of k(D) indicate fatter tails (a higher density assigned to long-distance

events) and a sharper peak at the origin. Note that while we use the term "fat-tailed"

to describe kernels with higher kurtosis than the Gaussian (here, and throughout the

paper), tail fatness is sometimes defined in terms more subtle than equation (11). A

detailed discussion of this topic can be found in [10].

For the WMY, kurtosis is determined entirely by κ (Appendix 1.2):

k(D) = 2
(
κ + 2
κ + 1

)
, where κ ∈ (−1,∞). (12)

The 2d Gaussian kernel sits at the low end of this range with a kurtosis of 2 (recall

it is the κ → ∞ limit of D). The WMY family extends it to capture a wide range

of leptokurtic (higher than Gaussian) alternatives. The 2d Laplace, for example, has

kurtosis 10/3; For the Bessel it is 4. The 1-stage diffusion model (7) spans (4,∞), with

extremely fat-tailed examples emerging as d f becomes small. This kind of flexibility

in kurtosis is of particular importance in dynamical systems for population spread,

where the tail behaviour can determine both the success and speed of invasions during

a range expansion [3]. For example, a model that uses a (thin-tailed) Gaussian kernel

out of mathematical convenience might fail to account for tail-like long-distance range

expansion events.

3. The WMY in applications

Redistribution kernels are the central feature of the integrodifference equation (IDE),

a model that combines growth (G) with spatially explicit dispersal (D) for a population

density variable Nt (x) indexed continuously in space and discretely in time [40]. D is

stationary in the most well-studied case, and the IDE reads Nt (x) = (D ∗ G (Nt−1)) (x),

where ∗ denotes convolution. A rich theory has emerged in connecting the mathemati-

cal properties of the function D with the spread dynamics of Nt as t becomes large [see

eg. 3, 41]. Redistribution kernels are also often applied in analyses of data from individ-

ual and aggregated years [eg. 42, 39]. In this more general setting, Ñ(x) = (D ∗ N)(x)

simply connects the pre (N) and post-dispersal (Ñ) levels in a population.
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In applications, populations are sampled at a finite set of locations, with centroids

{xk } (k ∈ 1, . . .m). The (continuous) kernel convolution D ∗ N must therefore be

replaced with a discretized version. In place of D one specifies an m × m redistribution

matrix D, where the entry [D]i j (a discretization of D, see Appendix 2.1) assigns

density to the redistribution event from location x j to xi . Thus ñ = Dn connects the

length-m pre (n) and post-dispersal (ñ) population vectors.

3.1. Separable approximations for gridded data

In many applied situations (eg. numerical likelihood maximization), the matrix-

vector product Dn must be evaluated many times. The operation has O(m2) com-

plexity, leading to issues of computability with large sample sizes (m). However, large

spatial datasets are often gridded, and for this configuration there are remedies: Fast

Fourier transforms (FFTs) reduce the complexity to O(m log m) [43]; and if D is spa-

tially separable, Kronecker products can reduce complexity to O(m2
x + m2

y ) (where the

grid has dimensions my × mx = m). On square domains that is O(m), a consider-

able improvement (Figure 1). The implementation of this trick is straightforward, but

notationally awkward, so we relegate the details to Appendix 3.3.

Figure 1: Time to compute the length-n post-dispersal vector Dn, for redistribution matrices from the

WMY (dashed line) and pWMY (solid line) kernels. The pWMY is computed using Kronecker products

(Appendix 3.3), while the nonseparable WMY uses FFTs.

Separability is the property that D(r) factors into a product of two 1d kernels,
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Dx (rx ) and Dy (ry ), where r = (rx , ry )T , each depending on only one of the spa-

tial dimension. The (2d) Gaussian kernel is an example: it has the form Dx (rx )Dy (ry ),

where Dx (r) = Dy (r) = (
√
πρ)−1 exp(−(r/ρ)2) are 1d Gaussian kernels. The 2d WMY

kernel, on the other hand, is not separable. In seeking a computationally simple alter-

native we propose the separable product-WMY (pWMY) kernel, D⊗ , in which the x

and y components (Dx and Dy ) are 1d WMY kernels. These have the same functional

form as the 2d WMY (2), differing only in normalization constants. Thus,

D⊗(r; κx , κy , ρx , ρy ) =
D(|rx |; κx , ρx )D(|ry |; κy , ρy )∫ ∞

−∞

∫ ∞
−∞
D(|rx |; κx , ρx )D(|ry |; κy , ρy ) drx dry

. (13)

In Appendix 2.3 we report on a simulation study indicating that the pWMY closely

approximates the WMY over much of its parameter space. Note that the 2d Gaussian

is a limiting case of D⊗ , similar to D. These (and other) computational properties of

separable models are discussed in more detail in [44], where the pWMY is employed

as a covariogram.

3.2. Extensions for geometric anisotropy

While mathematically pleasant, the assumption of isotropic redistribution is often

unsatisfactory in ecological applications. Wind, for example, is directional, and wind-

assisted migratory flights occur regularly in insects [29]. Indeed these were the cause

of a recent range expansion of the MPB [45].

One of the simplest ways to incorporate anisotropy into an isotropic kernel is to

compose it with an affine transformation of coordinates (Appendix 2.2). This effec-

tively incorporates two stages of movement: drift (by a translation of coordinates) and

directed diffusion (by a linear transformation of coordinates). In spatial statistics, such

transformations are common extensions of the isotropic covariance kernel [36]. We see

them far less often with redistribution kernels. However they are easy to implement,

and their effect on D is easy to visualize and understand (Figure 2).

3.3. Case study: predicting MPB infestations with the red-top model

To demonstrate the efficacy of the WMY and pWMY in applied movement mod-

elling, we use the example of the MPB. Populations of this tree-killing beetle exhibit

14
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Figure 2: A geometric model for anisotropic redistribution. Source populations (left) drift via translation Dτ

then diffuse according to a redistribution kernel D, which is rotated and stretched by a linear transformation

of coordinates. Two examples of D are shown: the WMY (Da, right), and an approximation, the pWMY

(with components Dx and Dy , middle)

.

periods of elevated activity (outbreaks) in western North America that can persist for

decades [46]. Pine mortality becomes visible on the landscape during outbreaks, with

clusters of crown fade (red-tops) spreading through space from year to year, reflecting

macro-scale movement patterns [47].

Annual aerial overview surveys (AOS) of MPB damage, carried out by the govern-

ment of British Columbia (BC), provide a spatiotemporal record of outbreak spread.

We analysed subsets of the AOS data using a slight modification of the red-top model

of Heavilin and Powell [37]. Their IDE relates the pine mortality, Mt (x), in a given

year (t) to its value in the following year. Pine deaths are a proxy for the beetle popu-

lation in this model, and dispersal across the landscape is represented by the kernel D.

Our modified version adds a (spatially uniform) constant 1 to all populations (adjust-

ing for the unobserved, but ubiquitous endemic beetle community), and accounts for

model error by an additive Gaussian term on the logit (ie. log-odds) scale instead of

the percent scale. The modified red-top model is thus written:

logit (Mt+1) = 2 log (1 + D ∗ (Mt St )) − 2 log (α) + Zt , (14)

where St (x) is the observed density of susceptible (healthy) pine, and Zt (x) is a noise

term representing process and measurement errors (Appendix 3.2). The growth pa-
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rameter α > 0 parametrizes a nonlinear growth function representing the dynamics of

beetle-pine interactions. The reader will find a more detailed explanation of (14) and

its discretization in Appendix 3.

3.3.1. Kernel selection: comparing the Gaussian, WMY and pWMY

In their model selection for D [37], Heavilin and Powell compared the Gaussian

and 2d Laplace kernels (Table 1). We conducted a more exhaustive model selection

(Figure 3), in order to emphasize three questions: Which WMY kernel (ie. which κ)

best characterizes MPB spread? Is the product-WMY a useful surrogate for the WMY?

And do the anisotropy extensions increase explanatory power?

Figure 3: Flow chart for estimating model error. Data are split into blocks partitioned into test and training

sets. Within-block likelihood is maximized on training data (for a given kernel), and predictions compared

with test data. Blockwise errors were poooled and compared for six redistribution kernels.

Using numerical maximum likelihood, we fit the (discretized) modified red-top

model independently to M = 81 nonoverlapping blocks of AOS data, each of size

10 × 10 km, with a grid resolution of 1 hectare (ha). Data were split into test and train-

ing sets, facilitating an evaluation of within-block model errors (Figure 3). To reduce

the effect of spatial autocorrelation on these error estimates, we first fitted a Gaussian

covariogram to the full dataset (containing all blocks), using it as a common (global)

estimate of covariance in all of the within-block likelihood calculations (Appendix 3.4).
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By pooling results over all M blocks, and repeating this process for different re-

distribution kernels D, we compared their overall explanatory power. We compared

kernels from three families: the Gaussian; the WMY with κ > 0 (to exclude singular-

ities at r = 0); and the pWMY (with κx , κy > 0). In each case we tested the kernel

with and without the anisotropy extensions of Section 3.2, and measured model perfor-

mance on test data (unseen by the model in training) using root-mean-square prediction

error (RMSPE), log-likelihood (LL), and Akaike’s Information Criterion (AIC) [53].

Figure 4 summarizes the results from all blocks and kernels, by centering each

test statistic on that of the best performing kernel for that block. For all three kernel

familes, the anisotropy extensions improved performance dramatically. Without these

extensions, there was little difference among kernels, with the WMY favoured slightly

overall. However, with the extensions, the WMY produced substantial improvements

over the Gaussian, and the pWMY performed best overall.

Figure 4: Model performance over 81 model-fitting trials for six redistribution kernels: The Gaussian, WMY,

and pWMY; and their anisotropic extensions (Gaussian-A, WMY-A, and pWMY-A); which have 1, 2, 4, 5,

6, and 7 parameters, respectively. RMSPE, negative LL, and AIC were computed on test data in each block,

and their differences (∆) with the best model within that block are summarized as boxplots. Extreme outliers

(points to the right of the boxplot whiskers) were associated with blocks having very low levels of MPB

activity, where it appears there was insufficient information to reliably parametrize movement patterns.

For the isotropic WMY kernels, the fitted value of κ varied substantially among

blocks. We observed a Laplace/Bessel-like spread pattern (κ̂ ≤ 1/2) in around one

quarter of the 81 tested blocks. For around a third of the blocks, the parameter estimate

stalled at its upper bound (κ = 25), indicating a tendency towards Gaussian spread

patterns (κ̂ → ∞). On the remaining blocks it was intermediate. Thus we observed no
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particular value (or range) of κ to be favoured overall in the point estimates.

4. Discussion

Radar evidence suggests that wind-assisted MPB flights, carrying the insects un-

usually long distances, are not uncommon [48]. One such long-distance event recently

led the MPB to cross the Rocky Mountains, from BC into central Alberta – a range ex-

pansion with severe ecological and economic consequences [45]. Equation (12) shows

how by using WMY kernels, the probability of such tail-like events in models can be

more finely tuned using κ.

Previous kernel selections in MPB spread models have led to somewhat contradic-

tory conclusions on this tail behaviour [37, 49]: One favoured the Gaussian kernel over

a 2d Laplace, suggesting fixed-time settling events leading to thin-tailed movement

patterns; the other favoured the (fat-tailed) Bessel over the Gaussian kernel, suggesting

a movement mechanism with constant settling hazard (see Table 1).

This inconsistency can be resolved by simply dropping the assumptions of single-

stage dispersal through homogeneous habitat. Our results on n-stage redistribution

processes in fractal media (Section 2) give a mechanistic explanation of how disparities

in dispersal patterns can arise simply as a result of geographical variation in habitat type

(as represented by d f ), or in the number of times the dispersal event is interrupted and

restarted, as might occur with local temperature swings [48].

This explanation is consistent with the wide range of fitted values for κ observed

in our case study (Section 3.3.1), which indicated that no single (stationary) kernel ad-

equately described the scope of MPB spread patterns exhibited in the AOS data. Note

that since these observations were based on the maximum likelihood point estimates

alone, their statistical significance cannot be verified here. However, it is very likely

that movement patterns will vary locally due to habitat structure [5]. For this reason

(among others) we also expect a certain directionality in movement patterns, so it is

perhaps unsurprising that the anisotropy extensions of Section 3.2 improved model

predictive performance across the board. This also indicated that adding directionality

to the red-top model did not lead to issues of overfitting, despite the introduction of
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3-4 additional parameters (see Appendix 3.5). In a companion paper, we discuss ap-

plications of these directed models, using them to estimate the size of cryptic endemic

subpopulations of MPB [50].

Yasuda’s model for ordinary Fickian diffusion with gamma-distributed settling times

[12] provides an alternative mechanistic view on geographical variations in kernel

shape. However it requires dropping the parsimonious hypothesis of a constant set-

tling hazard, which, for the MPB, is supported by evidence from laboratory flight-mill

experiments [51, 52].

More generally, the fractal diffusion kernels derived in Section 2 provide a plausible

process-based description of random walks through complex media, and so have wide

applicability beyond MPB dispersal. Recall that Section 2.1.1 extended the Bessel

kernel (originally a model for nematodes) by relaxing the classical assumption of un-

restricted movement space. Section 2.2.2 then showed how the full WMY family is

recovered through n-stage iterations, where the Gaussian kernel (originally a model for

muskrats) is approached in the limit n → ∞. The WMY kernel unifies both extremes

of qualitative behaviour under a common process model, defining a wide spectrum of

possible redistribution patterns, suitable for a wide range of study organisms.

The WMY has for a long time been embraced in spatial statistics community as

the covariogram of choice, for its mathematical elegance and flexibility. In light of

the mathematical connections to movement processes outlined in this paper, we would

encourage the ecological modelling community to embrace the WMY as the redistri-

bution kernel of choice.

Flexibility in tail behaviour is also desireable in phenomenological applications for

redistribution kernels. In Section 2.3, we explained how this notion of flexibility can be

made more precise, using 2d kurtosis. The WMY admits an exceptionally large range

of kurtosis values. To our knowledge, the only other comparable redistribution kernel

is the 2Dt [39], a phenomenological model of seed shadow distributions. In fact the

2Dt and WMY are closely related: They are Fourier duals.

Unsurprisingly, the red-top model performed better on replacing the Gaussian with

a more flexible WMY. More interesting was the superior performance of the pWMY.

This phenomenological kernel takes the best of both worlds; it closely approximates the
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(mechanistic) WMY kernel, matching its flexibility while retaining the computational

advantages of separability.
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